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Summary

The doctoral thesis presents the results of investigations of strain localization in concrete.
An understanding of the mechanism of the formation of localized zones is of a crucial impor-
tance since they act as a precursor to ultimate fracture and failure of concrete specimens. A
realistic description of the width and spacing of localized zones is also important to evaluate
material strength at the peak and post—peak regime and ensure safety to civil engineering
structures.

The laboratory experiments were carried out to determine the width and shape of a
localized zone on the surface of notched concrete beams during quasi—static three—point
bending. To measure two—dimensional displacements on the surface of concrete beams, a
non—invasive Digital Image Correlation technique was used. Beams with different geometry
were tested.

The numerical calculations using the finite element method were performed with con-
crete and reinforced concrete elements at macro—, meso— and macro-meso—scale. To cap-
ture strain localization in long concrete beams under tensile failure and short reinforced con-
crete beams under shear failure at macro-scale, three different constitutive continuum models
for concrete were used: an elasto—plastic with isotropic hardening and softening using the
Drucker—Prager criterion in compression and the Rankine criterion in tension, an isotropic
continuum damage describing the degradation with the aid of one damage scalar parameter
and an anisotropic smeared—crack approach with fixed cracks or one rotating crack. To prop-
erly describe strain localization, the continuum models were enhanced by a characteristic
length of micro—structure by means of a non—local theory. Thus, underlying boundary value
problems were mathematically well-posed.

The mesoscopic FE calculations were carried out with a concrete element subjected to
uniaxial tension. Concrete was described as a random heterogeneous three—phase material
composed of cement matrix, aggregate and interfacial transition zones (ITZ) between the
cement matrix and aggregate. An isotropic damage model with non—local softening was
used. The concept of a Representative Volume Element (RVE) in concrete using a standard
approach was analysed. In addition, two alternative non—standard strategies to determine
RVE in concrete under uniaxial tension were proposed.

Finally, comprehensive FE calculations at a combined macro—meso—scale were performed
with notched concrete beams under bending. An isotropic damage model with non—local
softening was used again. The effect of the beam size, aggregate distribution, aggregate
density, aggregate shape, aggregate size and characteristic length on the width and shape
of a localized zone and the load—displacement curve was numerically investigated. The
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macro—meso computations showed a satisfactory agreement with corresponding own labo-
ratory tests.
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Chapter 1

Introduction

1.1. Phenomenon and problem

Fracture process is a fundamental phenomenon in cementitious materials (BaZant and
Planas [16], Lilliu and van Mier [99]). An analysis of this process is very complex due to
occurrence of main cracks with various branches, secondary cracks and micro—cracks. It is
a major reason of damage in concrete material under mechanical loading contributing to a
significant degradation of material strength. Fracture is always preceded by the occurrence
of narrow zones of intense deformation which have a certain volume being not negligible as
compared to the specimen size. The localization of deformation can occur as tensile zones
(failure mode I), shear zones (failure mode II) or mixed zones (failure mode III) An under-
standing of the mechanism of the formation of localized zone is thus of a crucial importance
since they act as a precursor to ultimate fracture and failure. A realistic description of the
width and spacing of localized zones is also crucial to evaluate material strength at peak— and
post—peak regime and ensure safety to the civil engineering structures. The mechanism of
strain localization strongly depends upon a heterogeneous structure of materials over many
different length scales, changing e.g. in concrete from the few nanometres (hydrated cement)
to the millimetres (aggregate particles). Therefore, to realistically model strain localization,
concrete should be considered at meso—scale by distinguishing at least cement matrix, ag-
gregate and bond. However, when modelling the structure of concrete at meso—scale using
the FEM, a huge number of finite elements and computational effort is needed which pose a
big problem. To practically solve this problem, a direct macroscopic—mesoscopic approach
can be used, where a mesoscopic approach is applied to the region with strain localization
only, and a macroscopic approach to the remaining region. A meso-region has to be large
enough to not influence numerical results. To obtain mesh—independent FE results for con-
crete specimens with localized zones and to describe their width and spacing, constitutive
models have to be equipped with a characteristic length of micro—structure.

1.2. Aims

The intention of the thesis is to numerically analyse quasi—static localization of deforma-
tion in concrete specimens by means of enhanced constitutive models formulated within con-
tinuum mechanics using a macroscopic, mesoscopic and macroscopic—mesoscopic approach.
The macroscopic FE analyses of concrete elements were performed using three different
continuum models: isotropic elasto—plastic, isotropic damage and smeared—crack one. The
models were enhanced by a characteristic length of micro—structure by means of a non—local
theory. So they could describe both: the formation of localized zones with a certain thick-
ness and spacing and a related deterministic size effect. The FE—contours of localized zones
converged to a finite size upon mesh refinement, initial and boundary value problems became
mathematically well-posed at the onset of localization. The 2D finite element analyses were
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performed with notched concrete beams and unnotched slender reinforced concrete beams
under bending. The numerical results were compared with the corresponding experiments.
The meso—scopic studies on concrete specimens under uniaxial tension were carried out with
an isotropic damage model with non—local softening. The size of a Representative Volume
Element (RVE) was studied using a standard averaging approach. Two novel non—standard
methods to determine RVE in concrete were also proposed. The macroscopic—mesoscopic
studies on concrete specimens under bending were performed again with a damage model
with non—local softening, where a mesoscopic approach was applied to the region with strain
localization only. The effect of different material parameters was carefully analysed: beam
size, aggregate distribution, aggregate density, aggregate shape, aggregate size, character-
istic length and width of a meso-region. The numerical results were compared with the
corresponding own experiments. The advantages and disadvantages of the approach were
outlined as compared to usual multi—scale models.

The innovative research points concern:

1. FE analyses of strain localization in concrete described as a heterogeneous three—phase
material,

2. adetermination of RVE using non—standard averaging methods,

3. identification of a characteristic length of macro—structure with calculations and experi-
ments.

1.3. Outline

The thesis consists of 7 chapters. After Introduction (Chapter 1), Chapter 2 presents the
most important mechanical properties of concrete and describes shortly continuum consti-
tutive models for concrete used in this thesis to simulate strain localization. In addition,
a model for reinforcement and bond between concrete and reinforcement is depicted. In
Chapter 3, the results of own experimental tests on strain localization are described. To
measure two—dimensional displacements on the surface of notched concrete beams during
quasi—static bending, a non—invasive Digital Image Correlation (DIC) technique was used.
Chapter 4 summarises macroscopic numerical FE results of strain localization on notched
concrete beams and unnotched slender reinforced concrete beams without shear reinforce-
ment. The results of a mesoscopic modelling of strain localization in concrete under uni-
axial tension are listed in Chapter 5. Concrete was modelled as a random heterogeneous
three—phase material. The simulations were carried out with FEM using an isotropic damage
constitutive model enhanced by a characteristic length of micro—structure by means of a
non—local theory. The existence of a Representative Volume Element (RVE) was discussed
using a standard approach. Alternative two non-standard approaches of the RVE determina-
tion were proposed. Chapter 6 describes FE investigations on strain localization at a com-
bined macro—meso—scale in notched concrete beams subjected to quasi—static three—point
bending. The simulations were carried out with FEM using an isotropic damage constitutive
model with non—local softening. The effect of different material parameters was carefully
analysed: beam size, aggregate distribution, aggregate density, aggregate shape, aggregate
size and characteristic length. The numerical meso—macro results were compared with own
laboratory tests results using a Digital Image Correlation and own numerical results using a
direct macroscopic—mesoscopic approach. Chapter 7 includes final conclusions and future
work perspectives.
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1.4. Literature review

A fracture process in concrete can be modelled with continuous and discrete models.
Continuum models describing the mechanical behaviour of concrete were formulated within,
among others, non-linear elasticity (Kompfner [89], Liu et al. [100], Palaniswamy and
Shah [128]), rate—independent plasticity (Bobiriski and Tejchman [25], Menetrey and Willam
[113], Mroz [120], Pietruszczak et al. [135]) damage theory (Bobiriski and Tejchman [24],
Dragon and Mroz [52], di Prisco and Mazars [49], Peerlings et al. [134]), endochronic
approach (BaZant and Bhat (8], BaZant and Shieh [17]), coupled damage and plasticity (de
Borst et al. [44], Ibrahimbegovi¢ et al. [77], Klisiriski and Mroz [87]), micro—plane theory
(BaZant and OZzbolt [13]) and smeared—crack approach (de Borst and Nauta [42], Jirasek
and Zimmermann [81]). The continuum models were also used at meso-level (Gitman et
al. [67]). Within discrete methods, the most popular ones are classical particle discrete
models (Donze et al. [50], D’Addetta et al. [40]), interface element models with constitutive
laws based on elasto—plasticity and fracture mechanics (Caballero et al. [32]) and linear and
non-linear lattice models (Schlangen and Garboczi [145], Cusatis et al. [39], Kozicki and
Tejchman [95)).

Classical FE-simulations of the behaviour of materials with strain localization within
continuum mechanics are not able to describe properly both the thickness of localization and
distance between them. They suffer from mesh sensitivity (its size and alignment) and pro-
duce unreliable results. The strains concentrate in one element wide zones and the computed
force—displacement curves are mesh—dependent (especially in a post—peak regime). The
reason is that differential equations of motion change their type (from elliptic to hyperbolic
in static problems) and the rate boundary value problem becomes ill-posed (de Borst et al.
[41]). Thus, classical constitutive continuum models require an extension in the form of a
characteristic length to properly model the thickness of localized zones. Such extension can
be by done within different theories: a micro—polar (Miihlhaus [121], Sluys [153], Tejchman
and Wu [159], Tejchman et al. [158]), a strain gradient (Zbib and Aifantis [172], Miihlhaus
and Aifantis [122], Pamin [129], de Borst and Pamin [43], Pamin [130], Sluys and de Borst
[154], Peerlings et al. [134], Meftah and Reynouard [112], Pamin and de Borst [131], Chen
etal. [37], Zhou et al. [174], Askes and Sluys [5]), a viscous (Sluys [153], Sluys and de Borst
[154], Neddleman [123], Loret and Prevost [102], Lodygowski and Perzyna [101], Win-
nicki et al. [171], Pedersen et al. [132], Winnicki [170]) and a non-local (Pijaudier—Cabot
and Bazant [136], Bazant and Lin [10], Brinkgreve [31], de Vree et al. [45], Stromberg
and Ristinmaa [156], Marcher and Vermeer [108], Maier [106, 107], di Prisco et al. [48],
Bazant and Jirasek (9], Jirasek and Rolshoven [80], Tejchman [157]). Other numerical tech-
nique which also enables to remedy the drawbacks of a standard FE-method and to obtain
mesh-independency during formation of cracks, are approaches with strong discontinuities
which enrich continuous displacement modes of the standard finite elements with additional
discontinuous displacements (Belytschko et al. [20, 19], Simone et al. [148], Asferg et al.
[4], Oliver et al. [126]) or approaches with cohesive (interface) elements (Ortiz and Pandolfi
[127], Zhou and Molinari [173]). In the first approaches, discontinuity paths are placed
inside the elements irrespective of the size and specific orientation. In the latter approaches,
discontinuity paths are defined at the edges between standard finite elements. The most real-
istic continuous-discontinuous approach was used by Moonen et al. (Moonen et al. [119]).
The enhanced continuum models were also used at meso-level of concrete (Gitman et al.
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[67]).

To experimentally determine the width of the fracture process zone on the surface of
concrete specimens, a non—invasive method called Digital Image Correlation (DIC) can be
used. It is a powerful optical surface—displacement measuring tool (originally developed
in the field of experimental fluid and gas mechanics (Adrian [2], Raffael et al. [140])) to
visualise two—dimensional displacements by successive post—processing of digital images
(White et al. [169], Bhandari and Inoue [21], Rechenmacher [141], Stominski et al. [152],
Kozicki and Tejchman [94], Skarzyrski et al. [150]). To investigate strain localization inside
specimens, a three—dimensional acoustic emission technique (Pijaudier—Cabot et al. [137],
Mihashi and Nomura [118]) can be also applied. Another non—invasive method to detect
damage in concrete is the elastic wave technique (Skarzyriski et al. [149], Rucka and Wilde
[144]).

To realistically capture numerically the mechanism of strain localization, material micro—structure
should be taken into account (Nilsen et al. [125], BaZant and Planas [16], Sengul et al. [146],
Lilliu and van Mier [99], Kozicki and Tejchman [95], He [72]). The mechanism strongly
depends upon a heterogeneous structure of materials over many different length scales,
changing e.g. in concrete from the few nanometres (hydrated cement) to the millimetres
(aggregate particles). In particular, the presence of aggregate is important since its volume
fraction can be as high as 0.70-0.75 in concrete. However, when modelling micro—structure,
a huge number of finite elements and computational effort are needed. A directly combined
macroscopic—mesoscopic model for strain localization can be used where the material is
modelled as partially homogeneous (within the area without strain localization) and partially
heterogeneous (within the area where strain localization occurs). A mesoscopic region can
be switched on only if strain localization is created (Eckardt and Konke [54]). Alternatively,
an adaptive FEM solution can be implemented in the region of strain localization (Ehlers
et al. [55], Cecot [35], Cecot and Rachowicz [36]). Usually, a multi-scale approach is
used, aimed to predict a macroscopic constitutive behavior of materials with heterogeneous
micro—structure. Different levels can be distinguished: level of quantum mechanics (infor-
mation about electrons), level of molecular mechanics (information about individual atoms),
level of meso—scale or nano—scale mechanics (information about different phases) and level
of continuum mechanics. Each level addresses a phenomenon over a specific length and
time. To predict a macroscopic behaviour of materials on the basis of micro—structure, sev-
eral analytical and computational homogenization techniques were developed. A general
framework to link material properties at two different levels of the description, incorporating
both physical and geometrical nonlinearities, was suggested in 1984 by Hill (Hill [73]). He
described the material as heterogeneous one on one level, whereas a macroscopic behaviour
was assumed to be homogeneous. In 1980s and 1990s, multi—scale techniques were applied
to quasi-brittle materials (Zimmermann et al. [175]), polycrystalline materials (Miehe et
al. [117]) and porous media (Trukozko and Zijl [162]). An increasing complexity of a
microstructural mechanical and physical behaviour corresponding with the development of
computational methods, contributed to the development of so—called unit cell methods (e.g.
Christman et al. [38], Bao et al. [6], van der Sluis [163, 164]). The unit cell methods
provided valuable information on local microstructural fields as well as effective material
properties. These properties were generally determined by fitting the averaged microscopic
stress—strain fields (resulting from the analysis of a microstructural representative cell sub-
jected to certain loading paths) to macroscopic closed—form phenomenological constitutive
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equations established ‘a priori’. Once a constitutive behaviour became non—linear (geomet-
rically and physically), it was difficult to make an assumption on a suitable macroscopic con-
stitutive format. Lately, multi—scale computational homogenization techniques (also called
hierarchical analyses) were laid down (Guedes and Kikuchi [69], Terada and Kikuchi [160],
Ghosh et al. [62, 63]). Further developments and improvements have been done by Smit
et al. (Smit et al. [155]), Miehe et al. (Miehe et al. [116, 117]), Michel et al. (Michel
et al. [114]), Feyel and Chaboche (Feyel and Chaboche [59]), Terada and Kikuchi (Terada
and Kikuchi [161]), Ghosh et al. (Ghosh et al. [64]), Kouznetsova (Kouznetsova [92]),
Kouznetsova et al. (Kouznetsova et al. [91]), Miehe and Koch (Miehe and Koch [115]) and
Maasart (Maasart [105]). During computational homogenization (Gitman [65], Kouznetsova
et al. (93], Kaczmarczyk [84), Kaczmarczyk et el. [83]), the material behaviour is simulta-
neously studied at two different scales: (1) at the meso—level where strain localization is
created and the material is composed of different phases (e.g. aggregate, cement matrix
and bond zones for concrete) and (2) at the macro—level where the material is treated as a
homogeneous one (Gitman et. al. [67]). These two different scales interact by coupling
kinematics, various stresses and forces. A macroscopic constitutive relation is implicitly
provided by a macro—meso connection in the following way: a material is described as ho-
mogeneous with any constitutive assumption at macro-level, a meso—level cell is assigned
then in each integration of the descritised macro—level (a macro-level strain field is trans-
lated into meso—level displacement boundary conditions), later a boundary value problem is
solved for each meso—level cell, homogenization is performed on a meso—level response in
terms of local reaction forces and local stiffness relations and finally a homogeneous material
is transferred to a macro—level. Different modelling techniques were applied at micro—level,
e.g. the finite element method (Smit et al. [155], Feyel and Chaboche [59], Terada and
Kikuchi [161], Kouznetsova [92], Kouznetsova et al. [91]), the Voronoi cell method (Ghosh
et al. [62, 63]) or numerical methods based on Fast Fourier Transforms (Michel et al. [114]).
However, a local homogenization concept indicates a macro—level size dependence (due to
a lack of a characteristic length at macro—level by local considerations) and meso—level size
dependence (due to the lack of RVE in a softening regime). A second—order homogenization
scheme overcomes a dependence on a macro—level discretisation by considering non—local
values (Kouzntsova [92]) but suffers from a meso—level size dependence. To avoid both a
macro— and meso—level dependence, a Coupled Volume approach can be used (Gitman et
al. [67]), where a size of a macro—level element equals a meso—level cell size. A realistic
assumption of a meso—level region is of a importance. This approach is similar to a directly
combined macro—meso calculation scheme (Chapter 6).

As it was mentioned, the most important parameter in a multi—scale approach is a cell
size at meso—level, called a Representative Volume Element (RVE) which includes effective
properties of a homogenized macro—scopic model. RVE was originally defined by Hill (Hill
[73]) as “a sample that is structurally entirely typical of the whole mixture on average and
contains a sufficient number of inclusions for the apparent overall moduli to be effectively
independent of the surface values of traction and displacement, as long as these values are
macroscopically uniform”. Thus, the size of RVE should be large enough with respect to an
individual grain size in order to define overall quantities such as stress and strain, but this
size should also be small enough in order not to hide macroscopic heterogeneity (Evesque
[56]). Many researchers attempted to define the size of RVE in heterogeneous materials with
a softening response in a post—peak regime (Hill [[73], BaZant and Pijauder—Cabot [15],
Drugan and Willis [53], Evesque [56], van Mier [165], BaZant and Novak [11], Kanit et al.
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[86]). In the majority of different applications of multi—scale approaches, it is assumed that
a RVE has a certain specified size. Van Mier (van Mier [165]) suggested that the RVE in
concrete was approximately equal to 3—8 times the largest particle size. In turn, Bazant and
Pijauder—Cabot (BaZant and Pijauder—Cabot [15]), Bazant and Novak (BaZant and Novak
[11]) proposed the size of the RVE to be V = ["* where n is the number of spatial dimensions
and / denotes a characteristic length of the material which equals to 2.7-3.0 times the maxi-
mum inclusion size. However, the authors did not take into account strain localization. (see
Chapter 5).



Chapter 2

Continuum modelling of concrete and
reinforcement

This chapter presents the most important mechanical quasi—static properties of concrete
and briefly describes continuum constitutive models for concrete used in this thesis to sim-
ulate strain localization. Next, a regularisation technique in the form of an integral-type
non-local theory is sumarised. In addition, a model for reinforcement and model for bond
between concrete and reinforcement are depicted.

2.1. Mechanical properties of concrete

In a Stress—strain diagram under uniaxial compression (Fig.2.1) one can distinguish sev-
eral regimes of the concrete behaviour. The behaviour is linear—elastic until approximately
30% of its uniaxial compressive strength f. of concrete. Above this point, concrete starts to
behave non-linearly (it hardens) up to the peak. Later, the stress decreases, with increasing
strain, in a softening regime to the failure. With increasing compressive strength f,, concrete
becomes brittle (Fig.2.2). The strain corresponding to f. is about value & = 0.0022. The
Young modulus E increases with increasing f. as well. Poisson’s ratio v ranges from 0.15
to 0.22 and is constant up to 80% of f,.. Afterwards, it increases up to 0.5 during cracking
(Fig.2.3). Under uniaxial tension concrete behaves linearly up to 60% of the uniaxial tension
strength f;. After the strength is reached, a stress—strain curve falls down again (Fig.2.4) .

During biaxial compression, the concrete strength is higher than in uniaxial compression
(Kupfer et al. [96]), Fig.2.5. The maximum increase of 25% is obtained with the ratio of the
principal compressive stresses 07, 6, equal to 0.5 (Figure2.6). The tensile strength f; is very
similar in the case of biaxial and uniaxial tension.

A O

_fc 77777777

Figure 2.1. Stress—strain curve for concrete in uniaxial compression
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Figure 2.2. Stress—strain curves for concrete in uniaxial compression for various compressive

strength f,
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Figure 2.3. Evolution of Poisson’s ratio v during deformation

Figure 2.4. Stress—strain curve for concrete in uniaxial tension
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The usual triaxial compression laboratory tests were carried out by Kotsovos and New-
man (Kotsovos and Newman [90]) (Fig.2.7). Fig.2.14 demonstrates the results of these
experiments. The cylindrical specimens were initially loaded under hydrostatic confining
pressure till the required value is reached. After that, horizontal confining pressure was
kept constant and the specimen was subjected to increasing vertical loading. With increas-
ing lateral pressure, a pronounced increase of compressive strength f,. was obtained. An
approximate shape of a failure surface for concrete in the space of principal stresses based
on experiments is shown in Fig.2.8. The failure surface of concrete is symmetric against
the hydrostatic line 61 = 0, = 03. The shape of the surface in a principal stress space
is paraboloidal. In deviatoric planes, the surface shape is approximately circular (during
compression) and approximately elliptic (during tension); thus it changes from a curvilinear
triangle with smoothly rounded corners to nearly circular with increasing pressure.

—— f.=19,1 MPa
- f.=31,3MPa

fo=594MPa  —06-|

Figure 2.5. Envelope of principal compressive stresses o; under biaxial conditions (Kupfer et al. [96])

Figure 2.6. Stress—strain curves in biaxial compression (Kupfer et al. [96])
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Figure 2.7. Stress—strain curves in triaxial compression (Kotsovos and Newman [90])

Figure 2.8. Shape of triaxial surface in the space of principal stresses o;

2.2. Constitutive models for concrete

2.2.1. Elasto—plastic model

Elasto—plastic models describe plastic deformations in the material connected with en-
ergy dissipation (originally introduced by Tresca in 1864). To loading—unloading stages
can by distinguished: (a) elasto—plastic loading, (b) elastic unloading. The simplest plastic
surface for elasto—plastic materials is:

flo.%) =0, 2.1)

where o is the Cauchy stress tensor and x is the hardening / softening parameter. If f =0
material is in a plastic regime and if f < 0 material is in an elastic regime. Plastic criterion
can be re—written as:

£(6,%) =F(6)— 0, (k) =0, 2.2)
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where F — the function including tensor invariants and oy — the yield stress. Total strains de
can be decomposed into elastic strains de® and plastic strains de”:

de = de€ 4 de?. (2.3)
The Stress increment do depends on the elastic strain increment de®:
do = C°:de, (2.4)
where C¢ denotes the elastic stiffness tensor:
C*=AI®I+2ul, (2.5)

with A and p are the Lame’s constants, I — second-order tensor and I — fourth—order tensor.
The plastic strain increment is derived on the basis of a flow rule:

dg (o)
oo’

where g is the plastic potential and dA stands for the non—negative scalar multiplier (propor-
tionality factor). Loading and unloading conditions can be defined as follows:

de? =dA

(2.6)

dA >0 f(6,K)<0 dAf(o,k)=0. (2.7)

Usually, the following relation between the increment of the hardening / softening parameter
dx and the plastic multiplier dA is valid:

dk = ndA, (2.8)

where 71 is the constant dependent on the assumed model. The plastic criterion f and plastic
potential g are described with the help of stress tensor invariants. The first invariant is:

Iy =tr6 = 011 + 022 + 033, (2.9)

and the second invariant is:

1 1
h=28:8=c [(611 —00)*+ (02— 033)° + (033 — 611)2] +07,+ 03+ 035, (2.10)

The stress deviator is equal to:
1

the the mean stress p to:
tro 011 + 022 + 033
3 3 ’

and the effective von Mises stress ¢ to:

(2.12)
3

qg=1/=S:8§. (2.13)
2

One of the most popular approaches realistically simulating the concrete behaviour in com-

pression and tension is the two—surface model based on the Drucker—Prager criterion (in
compression) and the Rankine criterion (in tension) (Feenstra and de Borst [57]), Bobinski
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(a) (b)

—01a

=Y

oy
Figure 2.9. Linear Drucker—Prager criterion (a) in the space of principal stresses o; and (b) on the
p — g surface

(Bobiriski [22]) and Marzec (Marzec [109]). In a compression regime, a linear Drucker—Prager

criterion with isotropic hardening and softening used in this thesis is expressed as (Fig.2.9) :

f1(6,Kk1) = q + ptanf (1—§tanﬁ) 6. (k1) = 0, @.14)

where 8 — the internal friction angle, o, — the uniaxial compression yield stress and k| —
the parameter corresponding to plastic normal stress during uniaxial compression. The flow
function is expressed by:

dg (o)

oo’

where dA. is the plastic multiplier in the compression, g; is the plastic potential assumed as:

de? = dA.

(2.15)

g1 =q+ptany, (2.16)

where v is the dilatancy angle (v # ). Using Eq.2.16 and the derivatives of p and ¢
invariants, the flow function becomes:

de? =dA, 35 + lItanl,t/ : (2.17)
2g 3

For the uniaxial compression, the relationship between the hardening parameter and the
strain multiplier can be written as:

1
di; = —def| = <1 — 3 tan y/) . (2.18)

A hypothesis by Bednarski (Bednarski [18]) assumes that the increment of the hardening
parameter K is equal to the increment of the equivalent strain measure €:

_ 1
dg =2,/ e (2.19)
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where I1,;, denotes the second invariant of the strain increment deviator:

e = [ 3\/d6}, +de3, + ded; +2 (dek, + el + ded,)

(2.20)
de = de— )y,
On the basis of Eq.2.17 one obtains:
- d
E=dl, = 8 2.21)
1
l—3tany

An alternative definition of the hardening parameter increment can be also used (Sluys [153],

Pamin [130]):
/ /2
dk; = gdep . der, (2.22)

and the following relationship is obtained:

. /143 (tany)?

dx; = dki. (2.23)

1—%tanl]/

After scaling of the o, (k) curve, the both formulae are equivalent.
In FE calculations, different hardening / softening curves are used.

In the tensile regime a Rankine criterion with isotropic softening is used:
b (O',Kz) :maX{O'l,Gz,G3}—Gt(K2) =0, (2.24)

where o1, 65, 03 — the principal stresses, 6; — the uniaxial tensile yield stress and k», —
the hardening / softening parameter. A geometric interpretation of this condition are three
planes perpendicular to the o7, 07 and 03 axes (Fig.2.10). Eq.2.24 can be re—written in the
following way:

fH1(0,K)=01—0; (k) =0

fr2(0,K0)=0,—0; (k) =0 (2.25)

£3(0,K) =03—0; (k) =0.

The singularities in the Rankine criterion occur where individual planes cross each other
(edge and vertex). The increments of plastic strains are calculated according to the Koiter’s
formula (Eq.2.15):

3 dfai
de? =Y da, ==
i_zl 2,1 86 Y

where dA; ; is a plastic multiplier connected with plane f>; (i=1, 2, 3). Using Eq.2.25, the
following formula is obtained:

(2.26)

dfoi
de? = iy, fé’. —dh;  i=1,2,3. (2.27)

1

The softening parameter k; is defined as:

Ky = € +kgk (6] +€1), (2.28)
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Figure 2.10. Rankine criterion: (a) in the space of principal stresses, (b) for plane stress, (c) in the
octahedral space, (d) on the & — p surface
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Figure 2.11. Evolution of tensile yield stress o;: (a) linear law, (b) exponential law by Hordijk
(Hordijk [74])
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where €/ (i = 1, 2, 3) are the principal plastic strains, kgx denotes the coefficient taking
into account the influence of plasticity in the areas of a singularity. It is equal to O or to 1
(Lourenco [104], Pivonka et al. [138]). On the basis of Egs.2.27 and 2.28 the increment of
the softening parameter is equal:

dir, = d)LzJ + krg (d7l,272 + d)uz73) . (2.29)
To define the evolution of the tensile yield stress oy, a linear softening law can be introduced
(Fig.2.11):
K
o (1) = f, (1 - —2> , (2.30)

Ku

or a non—linear exponential curve proposed by Hordijk (Hordijk [74]) can be used:

3
1+ (c1%> ] exp (—cz%> ~2(1 +c%)exp(—cz)}, 2.31)

U U u

o: (k2) Zﬁ{

where ¢ = 3.0, ¢, = 6.93 (constants are based on the experimental investigations) and x,
denotes the ultimate value of k. In the numerical calculations of the reinforced concrete
beams the second curve was mainly used.

This simple isotropic elasto—plastic model for concrete (Eqs. 4.4 — 2.31) requires two elastic
constants: modulus of elasticity £ and Poisson’s ratio v, two plastic constants: internal fric-
tion angle ¢ and dilatancy angle y, one compressive yield stress function o, = f (k) with
softening and one tensile yield stress function o; = f (k) with softening. The disadvantages
of the model are following: the shape of the failure surface in a principal stress space is
linear (not paraboloidal as in reality). In deviatoric planes, the shape is circular (during
compression) and triangular (during tension); thus it does not gradually change from a curvi-
linear triangle with smoothly rounded corners to nearly circular with increasing pressure.
The strength is similar for triaxial compression and extension, and the stiffness degradation
due to strain localization and non-linear volume changes during loading are not taken into
account.

The constitutive law was implemented in the commercial finite element code Abaqus (Abaqus
[1]) with the aid of subroutine UMAT (user constitutive law definition) by Bobinski (Bobiriski
and Tejchman [23]).

2.2.2. Damage model

A simple isotropic damage continuum model which describes the degradation with the
aid of only a single scalar damage parameter D growing monotonically from zero (undam-
aged material) to one (completely damaged material) was used. A damage variable D is
associated with a degradation of the material due to the propagation and coalescence of
micro—cracks and micro—voids. It is defined as the ratio between the damage area and the
overall material area (Kachanov [82], Simo and Ju [147]). The stress—strain function is
represented by the following relationship:

0ij = (1= D) Cjj € (2.32)

1

where: ijkl — the linear elastic material stiffness matrix and & — the strain tensor. The
damage parameter D acts as a stiffness reduction factor (the Poisson ratio v is not affected
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by damage) that changes from 0 to 1. A general isotropic damage model takes into ac-
count two scalar parameters corresponding to two independent elastic constants. To control
a degradation of the material a loading function of damage was introduced:

f(g,x)=€—x, (2.33)

where the damage threshold parameter kK was defined as:

K (t) = max {maxé (1), Ko} ) (2.34)

Tt

with Ky — the initial value of k¥ when damage begins. If the loading function f is negative,
damage does not develop. During monotonic loading, the parameter kK grows (it coincides
with €) and during unloading and reloading it remains constant. The growth of the damage
is controlled by a damage threshold parameter k¥ which is defined as a maximum of the
equivalent strain measure € reached during the load history up to time ¢.

The general function controlling growth of a degradation process is defined as follows:

(2.35)
0 for other cases

N {g(D,é)Z‘ for f=0 and f=0 and D< 1
The damage evolution law determines the shape of the softening curve, i.e. material brittle-
ness. The material softening starts when the strain reaches the initial threshold xp (material
hardening is neglected). The parameter 3 determines the rate of the damage growth (larger
value of 8 a faster damage growth). The simplest function describing the evolution of the
damage parameter D is a linear softening one (Fig.2.12a):

Ko (2.36)

kXK for k<K
D—
1 for k> k.

The drawback of this approach is the linear relationship ¢ — € in a softening regime what
does not reflect the real behaviour of concrete. Other alternative solution to this problem is
an exponential softening law (Mazars and Pijauder—Cabot [111], Peerlings [133], Peerlings
et al. [134]) (Fig.2.12b):

D=1-%0 (l—oc+oce’ﬁ("”<0)> (2.37)
K

where o and 3 are the material constants describing growth of a degradation process. In
one dimensional problems, for € — oo (uniaxial tension) the stress approaches the value of
(1 — a) Exp. The damage parameter D grows asymptotically to 1 (it means that material can
not be totally damaged). Due to that, for € — oo, a residual value of the stresses is obtained.
A different evolution law was proposed by Geers (Geers [60]) (Fig.2.12c):

o
1— (& ﬁ(—’“") for x <
D— ()" (=% or ke (2.38)
1 for x> k.

where « and 3 are the material constants describing the growth of a degradation process.
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Figure 2.12. Uniaxial tension. Evolution of damage parameter D and corresponding ¢ — € curves:
(a) linear law, (b) exponential by Peerlings (Peerlings et al. [134]) and (c) exponential law by Geers
(Geers [60])
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To define the equivalent strain measure €, the elastic strain energy can be used (Lemaitre
and Chaboche [98]):
2y 1
E=\/—, Y=-€:C:¢. 2.39
= Y= (2.39)
This approach does not distinguish a different ratio between the compressive and tensile
strength of the material. Another definition was proposed by Mazars and Pijauder—Cabot

(Mazars and Pijauder—Cabot [111]):

(2.40)

where g; denotes the principal strains for i =1, 2, 3. The modified von Mises equivalent
strain measure € was also proposed by de Vree et al. (de Vree et al. [45]) and Peerlings et
al. (Peerlings et al. [134]):

k=1 e 1 (k—1)
2k(1-2v)" " 2k\| (1-20)>

2 12k
(5)" +———=5, (2.41)
(14+v)
where I{ = tr(€) is the first invariant of the total strain tensor, J5 = I1, is the second invariant
of the deviatoric strain tensor, v denotes the Poisson’s ratio and & stands for the ratio between
the compressive and tensile strength of the material.

&=

Alternatively, a Rankine failure type criterion (Jirasek and Marfia [79]) may be used:

|
E= Emax(cff h, (2.42)
where E denotes the modulus of elasticity and fo 1 are principal values of the effective stress
fori=1, 2, 3:
fof = O 11€k1- (2.43)

Finally, a failure criterion following HiuBler—Combe and Prochtel (Hdufler—Combe and
Prochtel [71]), based on the failure criterion by Hsieh—Ting—Chen (Hsieh et.al [75]), can be
chosen:

| 2
E= <a2, JJE + a3Emax + aslf + \/ (a2 + aseman + sl ) +4a1J§) L (244

where €, is the maximum principal total strain, a;, a», a3 and a4 are the coefficients de-
pending on o = f;/ f. (ratio between the uniaxial tensile strength and the uniaxial compres-
sive strength), 0p = f;/ fpe (ratio between biaxial and uniaxial compressive strength), o, ¥
— multipliers of the material strength in triaxial compression.

The constitutive isotropic damage model for concrete requires 5 material parameters: FE,
v, Ky, @ and B (Eq.2.42), 6 material parameters: E, v, kp, &, B and k (Eq.2.41) or 9
material parameters E, v, Ky, Q, 3, ¢, 0, o3 and ¥ (Eq.2.44).

The constitutive law was implemented in the commercial finite element code Abaqus (Abaqus
[1]) with the aid of subroutine UMAT (user constitutive law definition) by Marzec (Marzec
[109]).
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2.2.3. Smeared—crack model

An anisotropic smeared—crack approach was used wherein a discrete crack was repre-
sented by cracking strain distributed over a finite volume (de Borst and Nauta [42], Rots
and Blaauwendraad [143]). The total strains were decomposed into the elastic and inelastic
strains (coupled with cracks) (Bobiriski [26]):

&ij = & T & (2.45)

The stresses were related to elastic strains by the following relationship:

6ij = ClEf), (2.46)

where ijkl is the elastic stiffness matrix. Between stresses and cracked strains, the following
relationship is held (in a local coordinate system):

__Cr aCr
Oij = Cijki € » (2.47)

with the secant cracked stiffness matrix ijrkl(deﬁned only for open cracks). The matrix was
assumed to be diagonal. A crack was created when the maximum tensile stress exceeded
tensile strength f;. To define softening in a normal direction under tension, a Hordijk’s curve
(Hordijk [74]) was adopted:

0:(k) = f; [(1 + A1) exp (—A2k) — Azk] (2.48)
with
b b 1
Al=—L Ay="2 Ay=— (14b}) exp(—bn), (2.49)
Enu Enu Enu

&, 1s the ultimate cracked strain in tension and the material constants are by = 3.0 and
by = 6.93. The shear modulus G was reduced by the shear retention factor 8 according to
Rots and Blaauwendraad (Rots and Blaauwendraad [143]):

cr\ P
B (1 _ ‘i) , (2.50)

85 u

where &, is the ultimate cracked strain in shear (usually &, = &,,) and p is the material
parameter. Combining Eqgs. 2.45 — 2.47, the following relationship between stresses and
total strains (in local coordinate system) is derived:

with the secant stiffness matrix Cisjkl as:

-1
C; k= P ikl G jrs (Crstu + Crau) Tkl (2.52)

After cracking, the isotropic elastic stiffness matrix is replaced by the orthotropic one. In this
thesis two different formulations are investigated: a rotating crack model and a multi—fixed
orthogonal crack model. In the first approach (rotating crack), only one crack is created
which can rotate during deformation. To keep the principal axis of total strains and stresses
aligned, the secant stiffness coefficient is calculated according to:

cs . _Gi=0jj

L/ )/ 2.
M2 (e gjy) 239
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Figure 2.13. Distribution of: (b) strain and (c) stress in (a) aggregates and cement matrix according
to experiments by Dantu (Godycki—Cwirko [68])

The second formulation (fixed crack) is allowed for a creation of three mutually orthogonal
cracks in 3D problems (or two cracks in plane simulations, respectively). The orientation
of the crack is described by its primary inclination at the onset, i.e. the crack cannot rotate
during loading.

The constitutive smeared crack model for concrete requires the following 8 material parame-
ters: E, v, p, by, by, fi, €y, and &,;,. The constitutive law was implemented in the commercial
finite element code Abaqus (Abaqus [1]) with the aid of subroutine UMAT (user constitutive
law definition) by Bobifiski (Bobiriski and Tejchman [26]).

2.3. Non-local theory

Concrete is still the most widely used construction material in terms of volume since
it has the lowest ratio between cost and strength as compared to other available materials.
It is a composite phase material consisting mainly of aggregate, cement matrix and voids
containing water or air. As a consequence, the concrete structure is strongly heterogeneous
and the stress and strain distribution is very non—uniform.(Fig.2.13) .

A non-local model of the integral type (so called “strongly non—local model”) was used
as a regularisation technique:

to properly describe strain localization (width and spacing),

to preserve the well-posedness of the boundary value problem,

to obtain mesh-independent results,

to take into account material heterogeneity and

to include a characteristic length of micro-structure for simulations of a deterministic
size effect (Pijauder—Cabot and BaZant [136], BaZant and Jirasek (9], Bobiriski and
Tejchman [23)).

It is based on a spatial averaging of tensor or scalar state variables in a certain neighborhood
of a given point (i.e. material response at a point depends both on the state of its neigh-
borhood and the state of the point itself). The idea of non—local models is thus based on
averaging procedures due to occurring non—uniformities in concrete (one or several state

ARl S
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variables can be replaced by their non—local equivalents). Thus, a characteristic length /. can
be incorporated and softening can spread over material points. It is in contrast to classical
continuum mechanics, wherein the principle of local action holds (i.e. the dependent vari-
ables in each material point depend only upon the values of the independent variables at the
same point), and softening at one material point does not affect directly the yield surfaces of
other points. Polizzotto et al. (Polizzotto et. al. [139]) laid down a thermodynamic consistent
formulation of non—local plasticity.

The averaging procedure for local field of body volume V can be presented as follows:

Flx) = / o (x.E) f (E)dE. (2.54)
1%

where V is the integration volume, ® is the weighting function, x denotes coordinates of
material point and € denotes coordinates of neighbouring material points. In general, it is
required that the weighting function @ should not alter a uniform field which means that it
must satisfy the normalising condition (BaZant and Jirasek [9]):

/a)(x,g)dg =1 VxeV. (2.55)

%

The most popular weighting function w is the Gauss distribution function (Brinkgreve [31],
Borino et al. [29]):

g 1 r
w;(r) = —er|—p r=0, (2.56)
8 c

where ¢, is the coefficient and the parameter r denotes the distance between two material

points. The averaging in Eq.2.56 is restricted to a small representative area around each
material point (the influence of points at the distance of r = 3/, is only 0.01% (Fig.2.14)).

0,01% a(0
1,83% ao(0
37% (0
ap(0

(
1,83% ap(0
0,01% (0

s s S N e Nt

Figure 2.14. Region of the influence of a characteristic length /. and the weighting function ® in the
non—local approach.

A characteristic length is usually related to the micro—structure of the material and is usu-
ally determined with an inverse identification process of experimental data (Le Bellégo et al.
[97]). However, the determination of a representative characteristic length of micro—structure
is very complex in concrete since the strain localization can include mixed mode (cracks,
shear zones) and the characteristic length (which is a scalar value) is related to the localized
zone with a certain area of volume which increases during deformation (BaZant and Jirasek
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[9]). It depends also on the choice of the weighting function. In turn, other researches
conclude that the characteristic length depends upon the boundary value problem (Ferrara
and di Prisco [58]). In general, the Gauss can also have the following representation (Jirasek
[78]):

1 r
s (r) = gexp (—2—13> r=0, (2.57)
or (BaZant and Pijauder—Cabot [15], Rodriguez—Ferran et al. [142)):
1 472
a)g(r) = —exp (—Lz) r>0. (2.58)
Cg Iz

In this thesis only Gauss distribution according to Eq.2.56 is used.

Other representation can also be used for the function @, e.g. the bell-shape function (BaZant
and OZbolt [13], Jirasek and Marfia [79))):

1 2 2 .
1L <

wf(r) =14 @ (1-f) ir r<r r>0, (2.59)
0 if r>R

where ¢;, is the coefficient and R is the characteristic length. In the calculations within
the elasto—plastic model, the softening parameters k; (i = 1, 2) are assumed to be non—local
(independently for both yield surfaces):

ol gl R (E)a
M) = o (- &) g

where K;(x) is the non—local softening parameter, V — the volume of the body, x — the coor-
dinates of the considered (actual) point, & — the coordinates of the surrounding points and @
— the weighting function (Gauss distribution according to Eq.2.56). The softening non—local
parameters K; near boundaries were also calculated on the basis of Eq.2.60 (which satisfies
the normalising condition). The FE—analyses show that a classical non—local assumption
(Eq.2.60) does not fully regularise a boundary value problem in elasto—plasticity (Bobiriski
and Tejchman [23], Bazant and Jirasek [9]). Therefore, a modified formula (Brinkgreve
[31]) was used to calculate the non—local parameters:

K(x)=(1-m)K(x)+ fv ol (Ilx ”xg Hglil (fg) dé

where m denotes the additional non—local parameter controlling the size of the localized plas-
tic zone and the distribution of the plastic strain. For m = 0, a local approach is obtained and
for m = 1, a classical non—local model is recovered. If the parameter m > 1, the influence of
the non—locality increases and the localized plastic region reaches a finite mesh—independent
size (Bobirniski and Tejchman [23], BaZant and Jirasek [9]). To simplify the calculations, the
non-local rates were replaced by their approximation Axf* calculated on the basis of the
known total strain increment values (Brinkgreve [31]):

Aﬁi(x)%AKi(x)—Fm(fV fv”x Hf” ;Tfé) é—AKf”(x)) i=1,2. (262

=1,2, (2.60)

=1,2, 2.61)

Eq.2.62 enables to ‘freeze’ the non—local influence of the neighbouring points and to deter-
mine the actual values of the softening parameters using the same procedures as in a local
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formulation.

In the damage model, the equivalent strain measure € was replaced by its non—local defi-
nition (Pijauder—Cabot and BaZant [136]) to evaluate the loading function (Eq.2.33) and to
calculate the damage threshold parameter «x:

o Lol gDEE)
) = o (k- E)dE

where V — the volume of the body, x — the coordinates of the considered (actual) point, & —
the coordinates of the surrounding points and @ — the weighting function. As a weighting
function .

(2.63)

In the smeared crack approach, the secant matrix was calculated with the non—local strain
tensor defined (independently for all tensor components) as (Jirasek and Zimmermann [81]):

Jo(lx—=E&|)eu (g)d'ﬁ.

& (x) = (2.64)
Jo(lx-&l)d§
Thus, the resulting stresses were calculated from the following relationship:
0ij = Ciju (&t ) €a- (2.65)

The 2D and 3D non-local models were implemented in the commercial finite element code
Abaqus [1] for efficient computations (Bobiniski and Tejchman [23] Marzec et al. [110]).
Such implementation was performed using two identical overlapping FE-meshes (with the
same nodes). The first mesh allows to gather information about coordinates of integration
points in the entire specimen, area of all finite elements and total strain rates in each element.
The mentioned elements are defined by the user in the UEL procedure (user element defi-
nition) and they do not influence the results of stresses in the specimen since they have no
stiffness. The stored information is needed to calculate non—local variables with the aid of
the second mesh which includes standard elements from the Abaqus library [1]. The consti-
tutive law is defined by the UMAT procedure (user constitutive law definition). During odd
iterations, information is gathered in the elements of the first mesh. During even iterations,
stresses in the elements of the second mesh (including standard elements) are determined
taking into account non—local variables. Afterwords for a solution of a non—linear equation
of motion governing the response of a system of finite elements, the initial stiffness method
was used with a symmetric elastic global stiffness matrix. The following convergence criteria
were assumed:

Fmax < 0.01g and  cpax < 0.01 A upay, (2.66)

where r,,,, — the largest residual out—of—balance force, g — spatial averaged force over the en-
tire body, ¢4 — the largest correction of the displacement between two consecutive iterations
and Auy,,, — the largest change of the displacement in the increment. The procedure yielded
sufficiently accurate and fast convergence. The magnitude of the maximum out—of—balance
force at the end of each calculation step was smaller than 1% of the calculated total force
on the specimen. The calculations with smaller tolerances (Eq.2.66) did not influence the
FE-results. The integration was performed at one sample point of each element (centroid).

The calculations were carried out using a large—displacement analysis available in the Abaqus
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Figure 2.15. Stress—strain relationship in uniaxial tension for (a) real steel, (b) constitutive model

finite element code [1]. According to this method, the current configuration of the body was
taken into account. The Cauchy stress was assumed to be the stress measure. The conjugate
strain rate was the rate of deformation. The rotation of the stress and strain tensor were
calculated with the Hughes—Winget method (Hughes and Winget [76]). The non—local aver-
aging was performed in the current configuration. For the solution of a non—linear equation
of motion governing the response of a system of finite elements, the initial stiffness method
was used with a symmetric elastic global stiffness matrix.

The more detailed information about non—local theory can be found in the doctoral theses by
Bobinski (Bobirski [22]) and Marzec (Marzec [109]).

2.4. Constitutive model for reinforcement

The reinforcement cooperates with concrete during loading by carrying principal tensile
and compressive stresses. To simulate the behaviour of the reinforcement, the Huber—Mises
criterion was assumed:

fs=(0,K) =q— 05 (K), (2.67)

where o is the yield stress for steel and K is the hardening parameter. This law describes an
elasto—perfect plastic material (in tensile and compressive experiments, usual steel behaves
linearly until its yield limit is reached, Fig.2.15).

2.5. Bond between concrete and reinforcement

Bond between concrete and reinforcement plays a crucial role in a structural behaviour
(den Uijl and Bigaj [46], Dorr [51]). It embraces three major mechanisms: adhesion and
friction between concrete and steel surface, and the bearing of reinforcement ribs against
concrete. It depends on many factors such as: bar diameter, bar type (smooth or ribbed),
dimensions of ribs, concrete type and stress state perpendicular to bars. Usually, two types
of bond failures can occur, namely, a pull-out failure or splitting failure (den Uijl and Bigaj
[46D).
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Figure 2.16. Bond stress—relative displacement relationship (T — 8) according to (a) Dorr (Dérr [51])
and (b) CEB—FIP [34]

There are many proposed bond models for bars embedded in concrete. One of the oldest
is the bond-slip law according to Dorr (Dorr [51]):

5 f,{5.0(%)—4.5(%)2“.4(%)3} if 0<8<d, 06
1.9f; if 0>,

This is a simple relationship between the bond stress 7(6) and slip d (Fig.2.16a). In the
Eq.2.68 §, is the limit displacement during which bond stress reaches its residual value
equal to 7(8) = 1.9f;. Different values of &, were proposed: 0.06 mm (Ddrr [51]) or 1.0
mm (Haskett et al. [70]).

Other possibility is the CEB-FIP [34] (Fig.2.16b) formula:

Tmm(gél)a 0<5<51
0<0<H
(8) = { ISOS % (2.69)
Tmax_(fmax_ff)% 32<5<53
T 6<6

where 0; denotes various bar displacements for different bond zones, T, and Ty are the
maximum and residual tangential stress respectively, & is a parameter.

An alternative concept was proposed by den Uijl and Bigaj (den Uijl and Bigaj [46]). This
model presents the relationship between the radial stresses o, and the radial strains &, for
the concrete cylinder. Different loading stages are analysed. In the first phase (non—cracked
concrete cylinder), the radial stresses are defined as follows:

E

2 2
ci{+rs
—=+v

lers

€, (2.70)

Gr7rsa[ =

where E denotes the modulus of elasticity, v denotes Poisson’s ratio, rg is the radius of
reinforcement bar and ¢ = ry+ c.rf (ce sy — effective radius of concrete cover).
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Figure 2.17. Displacement 6 — radial stress o, relationship (7 — 8) according to den Uijl and Bigaj
(den Uijl and Bigaj [46]) for two types of bond failures (a) splitting (b) pull-out

In the second phase (partially cracked concrete cylinder), the following expression is as-

sumed:
r Corg (rer 2 Yer
Gr7nY7II:fClC1ﬂ+fCt <_— 1) +—-=11, 2.71)

Iy 2 Ty T

where r., describes the location of the crack start against the axis of the reinforcement (in
the II phase ry < o < 7).

In the third phase (totally cracked concrete cylinder), the radial stresses are equal:

(aCs+b) (SLo1) =95 ([« S (2.72)
a3+ r_y 2 r_s . .

The coefficients C; — C4 and a and b are defined by other equations. They depend on concrete
properties in tension / compression and number of radial cracks along the bar perimeter. This
bond law (den Uijl and Bigaj [46]) distinguishes two types of bond failures: a pull-out failure
and splitting failure (Fig.2.17). The first one characterises with developing cracks parallel
to the reinforcement bar. The second one appears when the reinforcement bar is pull-out
of concrete. For the splitting failure, the radial strains &, are linearly dependent on the slip
0, and for the pull-out failure, they are nonlinearly dependent. If the radial stresses o, are
smaller than the maximum slip stresses T = 5 f;, a splitting failure takes place. Otherwise
a pull-out failure occurs (t"**/ 0., < 1). A splitting failure is often caused by an insufficient
concrete cover.

Orr il = fet

Akkerman (Akkerman [3]) modified bond law by den Uijl and Bigaj (den Uijl and Bigaj
[46]) by applying relations between radial stress and strain for various limit deformations

Erryt

kn—n> <
Gr,r_hmaler(k,z)n 0 X 8r,m < 8r7rs7max
G”Js (8,,7“) = Gr,rs,max [1 + h ('gr,rs - gr,rs,max)] gr,rs,max < gr,rs < Sr,rs,res ) (273)

Or.ry,res gr,rs,res < gr,rs
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where k, 1 and 4 are calculated as follows:

k _ Ergr,rs,max n sr,rs h _ I— ﬁt ’ (274)
Gr,rs,max Sr,rs,lnax gr,rs,res - er,rs,max
where E, is the initial stiffness in the radial direction, f3; is usually equal to 0.2, Oy, max and
€. r,,max denote maximum stress and strain during the failure.

Finally a relationship between bond stress and relative displacement (7 — 0) according to
Haskett et al. ((Haskett et al. [70]) was tested (Fig.2.18). It assumes that until the limit
displacement (5, = 1.5 mm) is reached, bond stress is as follows:

5\ 04
7(8) = Tax (6_) , (2.75)

where T, denotes the maximum bond stress equal to 2.5,/ f;. After the maximum value is
reached, a linear decrease of stress occurs. Haskett et al. (Haskett et al. [70]) assumed that
bond stress decreases to 0 for the limit displacement &, = 1.5 mm.

250 e

5u=1 Smm 5max o

Figure 2.18. Bond stress — relative displacement relationship (7 — &) according to Haskett et al. (Has-
kett et al. [70])

It has to be noted that a universal bond law does not exist since it depends on bound-
ary conditions of the entire system (specimen size, concrete type, reinforcement diameter,
reinforcement roughness and confining pressure).






Chapter 3

Laboratory tests on strain localization

This chapter presents the results of experimental investigations of the width of a local-
ized zone on the surface of notched concrete beams under quasi—static three—point bending
(Skarzyriski et al. [150]) which were a continuation of similar tests performed by Kozicki
and Tejchman (Kozicki and Tejchman [94]). To experimentally measure two—dimensional
displacements on the surface of beams, a non—invasive Digital Image Correlation (DIC) tech-
nique was used. The laboratory experiments were performed with several notched concrete
beams of a different geometry. The specimens were prepared using to concrete mixes: sand
and gravel. Obtained results were also compared with a deterministic size effect law by
Bazant (Bazant [7]) for notched specimens.

3.1. Digital Image Correlation technique

The Digital Image Correlation was originally developed in the field of experimental fluid
and gas mechanics (Adrian [2], Raffael et al. [140]). It is an optical method to visualise
surface displacements by successive post—processing of digital images taken with a con-
stant time between frames from a professional digital camera (Kozicki and Tejchman [94]).
The coloured surface serves as the tracer in concrete elements. The digital camera sensors
are comprised of tiny, light—sensitive elements called pixels. When an image is captured,
each pixel reflects three numbers (called the colour components Y C,C,) in proportion to the
amount of the light reflected from the imaged object, where Y is the luminosity (brightness),
Cp is the blueness and C, is the redness. The DIC system interprets differences in light
intensity as a grey—scale pattern recorded at each pixel on CCD—camera (Charge Coupled
Device). Three functions are of a major importance for DIC: (a) image field intensity, (b)
cross—correlation function and (c) interpolation function. The image intensity field assigns
to each point in the image plane a scalar value which reflects the light intensity (Y —colour
component) of the corresponding point in the physical space (it maps simply the light energy
of an individual particle in a physical space). The grey levels range numerically between
0 (black) and 255 (white) for an 8-bit image. A so—called area of interest is cut out of the
digital image and small overlapping sub—areas called search patches are chosen (Fig.3.1).
The search patch ranges in size from 15x 15 pixels up to 240 <240 pixels. If the deformation
between two images is sufficiently small, the patterns of the interrogation cells are supposed
not to change their characteristics (only their locations). A displacement pattern is detected
by comparing two consecutive images captured by a camera which remains in a fixed po-
sition with its axis oriented perpendicularly to the plane of deformation. To find a local
displacement between images 1’ and ’2’, a search zone is extracted from the second image
(Fig.3.1). A correct local displacement vector for each interrogation cell is accomplished
by means of a cross-correlation function between two consecutive brightness distributions
(Y—colour component) in two digital images. The function calculates simply possible dis-
placements by correlating all grey values from the first image with all grey values from the
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Figure 3.1. Two successive digital images with the marked square pixel subsets (white squares) and
other overlapping pixel subsets (hashed squares) from Digital Image Correlation (DIC) analysis

second image. The correlation plane is evaluated at single pixel intervals, what means that the
resolution is equal to one pixel. By fitting an interpolation function to the region close to the
peak, the displacement vector is established with a high accuracy (equal to the correlation
offset). The peak in the correlation function indicates that two images are overlying each
other (thus, it indicates the “degree of match” between two images). The Charged Coupled
Device operates in the colour space Y, Cp, C, in opposition to widely known colour space
RGB (R isred, G is green, B is blue). The first step in the image pre—processing is to convert
the RGB colour space into Y, Cp,, C, colour space according to the ISO/TC42N 4378 TIFF/EP
standard, assuming R, G, B in the range (0,255) and Y, Cp, C, in the range (0, 255):

Y = 0.2989R +0.5866G +0.1145B
Cp, =128 —0.168736R —0.331264G +-0.5B . 3.1
C,=128+0.5R—0.418688G —0.081312B

To calculate a strain field on the specimen surface, two successive digital images were com-
pared with each other. First, one pixel was selected on the first digital image, then a square
pixel subset of a certain size was chosen around it. Next, a search for this pixel subset
on the second damage was done by using correlation function (Fig.3.1). The Person’s
product—-moment correlation function was used (Fig. 3.2) which was obtained by dividing
the covariance of the two variables by the product of their standard deviations (Kozicki and
Tejchman [94]):

nYy xiyi— Y. xi}yi

V/nEa? — (D2 fnT? — (i

where x refers to the first image, y refers to the second image, » is the number of pixels in the
pixel subset and indexes i are Y channel values of subsequent pixels from pixel subset. The
top of a correlation function is usually not clearly distinguished as the correlation function
produces results for each pixel of image. To precisely locate the top of the peak, a sub—pixel
interpolation was performed. As an interpolation function, the function sinc256 was used
(Kozicki and Tejchman [94]) (Figs. 3.3 and 3.4) which was the most effective among other
interpolation functions (Dersh [47]) tested in preliminary calculations:

R(x,y) = (3.2)
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Figure 3.2. Comparison between search patch sizes using Pearson’s formula (Eq. 3.2) with (a) 10
pixels, (b) 50 pixels and (c) 200 pixels
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Figure 3.3. Interpolation function sinc256 used to achieve sub—pixel precision
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Figure 3.4. Correlation plane with correlation peak (16x 16 pixel area): (a) surface before sub—pixel
interpolation (b) surface after sub—pixel interpolation
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Figure 3.5. Standard deviation from expected zero strain versus search patch size
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Figure 3.6. Images used to validate experiments: (a) two subsequent images, (b) random image with
3%3 ’grains’, (c) single image, (d) random image with 1x1 ’grains’
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1 for a=20

sin(ma) sin(mwa/8)
Ta ma/8

w(a) = (3.3)

for a>0’

where a denotes the distance in pixels. The interpolation was evaluated at 1/500/" pixel
intervals, yielding a system resolution of 0.002 pixels. The programme written in C++ by
Kozicki (Kozicki and Tejchman [94]) was applied for DIC tests.

A series of preliminary tests were conducted to assess the precision of the DIC technique
(according to the procedure proposed by White et al. (White et al. [169])). Figure 3.5
shows the standard deviation of the measured strain on the basis of two successive digi-
tal images versus the assumed strain equal to zero against the search patch size. In turn,
Figs. 3.6-3.9show the results for the following digital image pairs: (a) two subsequent im-
ages of the concrete specimen, (b) random image with 3x3 ’grains’, (c) single image of
the concrete specimen compared with itself, (d) random image with 1x1 grains’ (Fig. 3.6).
For those four cases, the DIC precision was better than 0.0005 for the search patches larger
than 60 pixels (Fig.3.7). The precision errors were associated with the asymmetry of the
correlation peak. In the case of the random image with 1x1 grains’ (Fig. 3.6d), the highest
precision was found. For 3x3 ’grains’ and two subsequent, no perfect match was found,
since the correlation peak was asymmetric. The strain value fluctuations along a single line
of the image are shown in Fig. 3.9 for the point A’ of Fig.3.7. Next, the second image for all
four cases (Fig. 3.6) was artificially modified, so strain oscillated between 0 and 0.0033 every
300 pixels. Figure 3.8 reveals a higher precision for the real case (Figs.3.6a and 3.6¢c) than
for the random pixel pattern (Figs. 3.6b and 3.6d). In the randomly generated pixel pattern,
the noise had a high amplitude in the frequency domain. Thus, by stretching it (to achieve
the strain of 0.0033), an image interference occurred. The real images had a small amplitude
in the frequency domain. In this way, the artefacts were not generated. Moreover, a large
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Figure 3.7. Precision of DIC against the search patch size for strain equal zero for images of Fig. 3.6:
(a) two subsequent images, (b) random image with 3 x3 *grains’, (c) single image, (d) random image
with 1x1 ’grains’
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every 300 pixels for images of Fig.3.6: (a) two subsequent images, (b) random image with 3x3
’grains’, (c) single image, (d) random image with 1x1 ’grains’

search patch size blurred the boundaries between oscillating strain values whereas a
smaller search patch size yielded a more accurate result. Thus, the precision of DIC strongly
depends on the search patch size and the quality of a random pattern in the image. The
speckle pattern on the concrete surface should include 4—-10 pixels on the captured image.
The selection of an optimum search patch size in the analysis requires two conflicting param-
eters to be balanced. The larger search patch improves accuracy (Figs.3.7 and 3.8) but it blurs
the boundary between strain values. In turn, a too small pixel subset produces noise (Kozicki
and Tejchman [94]).The number of measurement points depends only on the computational
time since the distance between the search patch centres can be as small as one pixel. In the
calculations, this distance was assumed to lie between 10 and 40 pixels. It was small enough
to have no influence on the resolution of results.
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Figure 3.9. Strain fluctuations along single line of the image for the point A’ of Fig. 3.7 (pixel subset
size has 40 pixels, standard deviation from the expected zero strain is 0.0012)
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3.2. Experimental set—up

The three—point bending laboratory tests were carried out on concrete specimens of five
different sizes D X L (D — beam height, L = 4D — beam length) with free ends (Fig. 3.10).
Three beams were geometrically similar:

— small-size beams 80%320 mm? (beam ’1°),

— medium-size beam 160x640 mm? (beam ’2°),

— large—size beam 320x 1280 mm? (beam ’3’).

The beams were geometrically similar in two dimensions only to avoid differences in hydra-
tion heat effects being proportional to the thickness of the member (BaZant and Planas [16]).

The remaining two types had the same cross-section as the beams "1’ and ’2’ but they were
longer:

- small-size long beam 80 x 640 mm? (beam ’4’),

— medium-size long beam 160x 1280 mm? (beam ’5).

P D=32cm
l large: 32x128x4 cm® span 96 cm

D=16cm s
large long: 16x128x4 cm, span 96 cm

D=16cm
medium: 16x64x4 cm? span 48 cm

D

D/10
jlh

A ;; D=8cm
3
7 o Z medium long: 8x64x4 cm? span 48 cm
m . w
4D D=8cm

small:  8x32x4 cm? span 24 cm

Figure 3.10. Geometry of experimental concrete beams subjected to three—point bending

Table 3.1. Contents of concrete mixes: (a) with sand, (b) with gravel

() (b)
No. Material ~Volume No. Material Volume
1. Sand 62% 1.  Gravel 76%
2. Cement 27% 2. Cement 17%
3. Water 11% 3. Water 7%

The beam thickness was always b = 40 mm. The beam span was equal to 3D. A notch of the
height of D/10 mm and the width of 3 mm was located in the middle of each beam bottom.
The quasi-static deformation in beams was induced by a vertical displacement u prescribed
at the beam mid—-span with a rate of 0.001 mm/min. The geometry of the first three beams
was the same as that assumed in laboratory tests by Le Bellégo et al. (Le Bellégo et al. [97])
which were carried out using Crack Mouth Opening Displacement (CMOD) control. In the
tests by Le Bellégo et al. (Le Bellégo et al. [97]), no snap-back behaviour was observed
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during beam deformations.

Two different concrete mixes were composed of ordinary Portland cement (CEM II/B-S
32.5R), water and: sand (mean aggregate diameter dsp = 0.5 mm, maximum aggregate
diameter dj,, = 3.0 mm) or gravel (mean aggregate diameter dsop = 2.0 mm, maximum
aggregate diameter d,;,,, = 8.0 mm) (Tab. 3.1 and Fig.3.11). The beams were cut out from
the same mix block. The uniaxial compression strength obtained on cubes 10x10x 10 cm?
was about f. = 64 MPa (sand concrete) and f. = 52 MPa (gravel concrete). In experiments,
the digital camera Canon EOS-1Ds Mark II (Fig.3.12a) with a powerful 16.7 megapixels
CMOS sensor was applied. It was mounted on a tripod with its axis perpendicular to the
photographed specimen surface. The concrete beams were initially carefully polished. Then
a speckle pattern (serving as a tracer) was put on this surface using to colour sprays: black
and yellow (Fig.3.12b). During the experiments, the width of a localized zone was also
measured with an induction displacement gauge placed under the notch (Fig. 3.12b).
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Figure 3.11. Grading curve of sand and gravel used for concrete mixes

(a) (b)

Figure 3.12. Measurement instrumentation: (a) digital camera Canon EOS-1Ds Mark II in front of a
small size beam, (b) induction displacement gauge at the beam covered with the black—yellow pattern
inside the image area of interest
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Since the assumed photographed region did not cover the entire beam height (Fig.3.12b),
the length of a localized zone could not be determined. The digital photos were shot every
30s. Totally, 44 tests were carried out (24 with sand concrete specimens and 20 with gravel
concrete specimens).

3.3. Experimental results

are shown in Fig.3.13.

The typical evolutions of the nominal tensile strength oy = 1.5PI/(bD?) versus the nor-
width, [ = 3D — beam span) for sand and gravel concrete beams during three—point bending

malised deflection u/D (P — vertical force, u — beam deflection, D — beam height, b — beam
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Figure 3.13. Nominal strength 1.5P1/bD? versus normalised beam deflection u/D (where u — beam

deflection, b — beam width, D — beam height, [ — beam span, P — vertical force) from experiments: (A)
with gravel concrete: (a) small-size beam 80x320 mm?, (b) small-size long beam 80x 640 mm?, (c)
medium-size beam 160x640 mm? and (B) with sand concrete: (a) small-size beam 80x320 mm?,
(b) small-size long beam 80x 640 mm?, (c) medium-size beam 160x640 mm?, (d) medium-size

long beam 160x 1280 mm?, (e) long—size beam 320 1280 mm?
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For beams of a similar geometry (beams ’1°, 2’ and ’3’), the nominal strength increases
with decreasing specimen height indicating a pronounced deterministic size effect (caused by
a different ratio between a characteristic length of micro—structure and beam height) similarly
as in experiments by Le Bellégo et al. (Le Bellégo et al. [97]). In the case of beams with the
same cross—section but with a different length ("4’ and ’5’), the nominal strength is smaller
for a longer beam span indicating a statistical size effect (the longer the beam, the higher
the probability of encountering in it a material element of a given low strength; BazZant and
Planas [16], Koide et al. [88], Bazant et al. [14]). The tensile strength of sand concrete
beams is higher than of gravel concrete ones independently on the size (similarly as the
compressive strength). The vertical normal strain corresponding to the maximum vertical
force increases with decreasing specimen size. The response of beams after peak is purely
brittle in spite of a very small vertical deformation rate prescribed in experiments.

Force [kN]

0 0.1 0.2 0.3 0.4 0.5

Force [kN]

0 0.1 0.2 0.3 0.4 0.5
Deflection [mm]

Force [kN]

0 0.1 0.2 0.3 0.4 0.5
Deflection [mm]

Figure 3.14. Evolution of a localized zone from DIC during experiments (vertical and horizontal
axes denote coordinates in [mm], colour scales denote the strain intensity in [-]) and experimental
load—deflection curves for gravel concrete medium size beam (points correspond to images)
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Figure 3.15. Formation of a localized zone from DIC in gravel concrete: (a) small-size beam 80x 320
mm?, (b) small-size long beam 80x640 mm?, (¢) medium-size beam 160x640 mm? (vertical and
horizontal axes denote coordinates in [mm], colour scales denote the strain intensity [-])

Figure 3.14 presents the typical evolution of the horizontal normal strain on the surface
of a concrete beam above the notch from DIC measurements. The localized zone occurs
before the peak on the load—deflection diagram (Fig. 3.14). The zone can be almost straight
or it can be significantly curved. In some cases, the localized zones can branch (Figs. 3.15a
and 3.15b).

The localized zone above the notch occurs before the peak on the load—deflection diagram
(Fig.3.14). At peak, it is already well developed (Figs. 3.14 and 3.16). The width of a local-
ized zone increases during deformation (Fig.3.17) due to concrete dilatancy. The maximum
width of a localized zone on the surface of concrete specimens is small and is equal to 3.5
mm-5.5 mm. It does not surprisingly depend upon the mix type and beam size. It means that
the characteristic length of micro—structure may not always be related to the aggregate size.
This outcome is in contrast to statements by Pijaduder—Cabot and Bazant (Pijauder—Cabot
and BaZant [136]), Bazant and Oh (BaZant and Oh [12]) where the width of a localized
zone (also called fracture process zone (FPZ)) was estimated to be 3 Xd,4,. The experiments
by Mihashi and Nomura (Mihashi and Nomura [118]) using the three—dimensional acoustic
emission technique have also shown that the width of a localized zone in the case of normal
concrete increases with the aggregate size. The width may be related e.g. to the aggregate
spacing or cement particle size. It is also possible that the width of a localized zone (which
was measured on the concrete surface in experiments) is significantly larger inside the con-
crete specimen. Further experimental investigations (under CMOD control) are necessary to
correlate the characteristic length with micro—structural parameters of concrete.



60 Chapter 3. Laboratory tests on strain localization

The horizontal displacement measured with the induction gauge was used as a verification
of the localized zone width obtained from DIC (Fig.3.18). It was assumed that the measured
displacement was equal to the strain integral over the width of a localized zone:

U= / edl~) ed, (3.4)

where d is a distance between pixel subsets. Before the beam failure, a perfect fit occurred
between two curves. After the failure, a small discrepancy could be noticed due to the fact
that the displacement was not exactly measured at the same height where the width of the
localized zone was determined with DIC.
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Figure 3.16. Formation of a localized zone from DIC in sand concrete: (a) small-size beam

80x320 mm?, (b) small-size long beam 80x640 mm?, (c) medium-size beam 160x640 mm?, (d)

medium-size long beam 160x 1280 mm?, (e) long—size beam 320 x 1280 mm? (vertical and horizontal
axes denote coordinates in [mm], colour scales denote the strain intensity [-])
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Figure 3.17. Evolution of the width of a localized zone from DIC versus normalised beam deflection
u/D (u — beam deflection, D — beam height): (A) gravel concrete: (a) small-size beam 80x 320 mm?,
(b) small-size long beam 80x 640 mm?, (c) medium—size beam 160x 640 mm? and (B) with sand con-
crete: (a) small-size beam 80x320 mm?, (b) small-size long beam 80x 640 mm?, (¢) medium—size
beam 160x640 mm?2, (d) medium—size long beam 160x 1280 mm?, (e) long-size beam 320x 1280
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Figure 3.18. Measurements of the width of a localized zone by: (a) an induction displacement gauge
and (b) DIC technique (A) large—size gravel beam, (B) small-size sand beam
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Figure 3.19 shows a measured size effect for beams of a similar geometry (beams ’1°,
’2” and ’3’). In addition, the results following the deterministic size effect law by Bazant
(BaZant [7]) (being valid for structures of a similar geometry with pre—existing notches or
large cracks) are enclosed where the nominal strength was calculated as:

_ Bfi
N = /1T (D/Dy)

where f; — the tensile strength, B — the dimensionless geometry dependent parameter which
depends on the geometry of the structure and of the crack, D — the specimen size (beam
height in this case) and Dy — the size dependent parameter called transitional size. To find the
parameters B and Dg a non-linear least—squares Marquardt—Levenberg algorithm was used.
The measured data with concrete beams of a similar geometry match well the size effect law
of Eq.3.5. In turn, the nominal strength of long beams (4’ and ’5’) was significantly below
the size effect curve.

(3.5)

The summary of vertical failure forces from own laboratory experiments and corresponding
laboratory tests by Le Bellégo et al. (Le Bellégo et al. [97]) is attached in Tab. 4.3.
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Figure 3.19. Calculated and measured size effect in nominal strength 1.5PI/(bD?) versus beam

height D for concrete beams of similar geometry (beams ’1°, °2’ and ’3’: (a) own laboratory ex-

periments, (b) size effect law by Bazant (Bazant [7]), Eq. 3.5, (c) experiments by Le Bellégo et al. (Le
Bellégo et al. [97])

3.4. Conclusions

The Digital Image Correlation technique is a very effective optical technique to deter-
mine the displacement field on the surface of concrete with a high accuracy and without any
physical contact with the surface.

The width of the localized zone on the concrete surface of notched beams does not depend
on the beam dimensions and concrete mix. Its maximum size (on the concrete surface) lies
between 3.5 mm and 5.5 mm (on the basis of experimental results obtained using DIC tech-
nique). It means that the characteristic length of micro—structure may not always be related
to the aggregate size. It can be supposed that /. may be more related to the aggregate spacing
or cement particle size than to the aggregate size.
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The nominal strength of notched concrete beams during three—point bending increases with
decreasing beam height and beam span.

Table 3.2. Data summary of own laboratory experiments and corresponding laboratory tests by Le
Bellégo et al. [97]

Force Force Force Force Force
No small beam medium beam large beam small long beam  medium long beam
" (D=008m) D=016m) (D=0.32m) (D=0.08 m) (D=0.16 m)
[kN] (kN] [kN] [kN] [kN]

Experiments for sand concrete beams by Le Bellégo et al. (Le Bellégo et al. [97])

1 2.96 4.97 9.44 - -

Own experiments with gravel (g) and sand (s) concrete beams

1 2.81 (g) 5.21 (g) 8.42 (g) 1.12 (g) 1.74 (2)
2 2.83 (g) 4.62 (g) 8.27 (g) 1.41 (g) 1.95 (s)
3 2.95 (g) 5.07 (g) 8.84 () 1.20 (g) 1.82 (s)
4 2.75 (g) 5.45 (g) 8.05 (g) 1.25 (s) -
5 271 (g) 5.25 (g) 9.15 (s) 1.08 (s) -
6 2.93 (g) 5.55(s) 8.65 (s) 1.15 (s) -
7 2.87 (g) 5.34 (s) 9.01 (s) 1.18 (s) -
8 2.91 (s) 5.62 (s) 9.15 (s) 1.51 (s) -
9 3.26 (s) 5.66 (s) ; ; ]
10 3.03 (s) 573 (s) - - -
11 3.24 (s) - - - -
12 3.45 (s) - - - -
13 3.15 (s) . ; ] ]
14 332 (s) - ; _ ]

15 2.95 (s) - - - -







Chapter 4

Macroscopic modelling of strain localization in
concrete and reinforced concrete

This chapter presents macroscopic numerical FE results of strain localization on notched
concrete beams subjected to quasi—static three—point bending and unnotched short reinforced
concrete beams without shear reinforcement under mixed shear—tension failure. Three differ-
ent constitutive continuum models for concrete (Chapter 2) were used (isotropic elasto—plastic
model with a Rankine criterion in tension, isotropic damage and anisotropic smeared—crack
one). All models were enhanced in a softening regime by a characteristic length of micro—structure
by means of a non—local theory. To simulate the behaviour of reinforcement in reinforced
concrete beams, an associated elasto—perfect plastic constitutive law by von Mises was as-
sumed. A bond-slip (den Uijl and Bigaj [46], Dorr [51], Haskett et al. [70]) between
concrete and reinforcement was also considered. The numerical results for concrete beams
were compared with the corresponding laboratory tests performed by Le Bellégo (Le Bel-
légo et al. [97]) and for reinforced concrete beams with corresponding laboratory tests by
Walraven and Lehwalter (Walraven and Lehwalter [168]). In addition, the numerical results
were confronted with the and deterministic size effect law by Bazant (Bazant [7]).

4.1. Concrete beams

Laboratory tests on notched concrete beams described in Chapter 3 were simulated with
two different continuum crack models for concrete: an elasto—plastic and a damage one with
non-local softening. In the first case, a Rankine criterion was used with a yield function
f with isotropic softening. A non-linear exponential tensile softening curve proposed by
Hordijk (Hordijk [74]) (Eq.2.31) was assumed (with: ¢; = 3.0, ¢, = 6.93 and k, = 0.005).
In the second case, an isotropic damage model was used. To define the equivalent strain
measure, the Rankine failure type criterion was assumed (Eq.2.42). To describe the evolu-
tion of the damage parameter, an exponential softening function was used by Eq.2.37 with
Ko =7x10—5, a =0.99 and B = 600. The following elastic material parameters were as-
sumed: E = 38500 MPa and v = 0.2. A characteristic length of micro—structure was /. =2
mm. The non—local averaging was performed in the current configuration. The non—local
coefficient was chosen as m = 2 on the basis of other calculations. The tensile strength f;
was taken from a Gaussian (normal) distribution around the mean value 3.6 MPa with a
standard deviation 0.05 MPa and a cut—off £0.1 MPa. To obtain a Gaussian distribution of
the concrete strength, a polar form of so—called Box—Muller transformation was used (Box
and Muller [30]).

The two—dimensional calculations were performed with FE meshes composed of 6908 (small-size
beam) up to 51632 (large—size beam) quadrilateral elements composed of four diagonally
crossed triangles to avoid volumetric locking. The maximum finite element size in the neigh-
bourhood of the notch was not greater than 3 x /. to achieve mesh—objective results (Marzec

et al. [110], Bobiriski and Tejchman [23]).
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Table 4.1. Maximum vertical failure forces obtained in laboratory tests and numerical FE calculations

=

Failure vertical Calculated Calculated
Beam Beam vertical failure vertical failure
. force
Beam height length i force force
D[mm] L [mm] (experiments) (elasto—plasticity) ~ (damage mechanics)
[N] [N] [N]
Small 80 3017 2871 2915
Medium 160 5350 5115 5175
Large 320 8692 8524 8602
Small long 80 1237 1161 1137
Medium long 160 1837 1954 2101
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Figure 4.1. Calculated nominal strength 1.5PI/(bD?) versus normalised beam deflection u/D (u —

beam deflection, D — beam height): (sand concrete): (A) elasto—plasticity, (B) damage mechanics, (a)

FE results, (b) experiments by Le Bellégo et al. (Le Bellégo et al. [97]): (1) small-size beam, (2)
medium-size beam, (3) large—size beam, (4) small-size long beam, (5) medium—size long beam
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The beam deformation was included by prescribing a vertical displacement at the mid—point
of the beam top. For the solution of a non-linear equation of motion governing the response
of a system of finite elements, the initial stiffness method was used with a symmetric elastic
global stiffness matrix.

Figure 4.1 presents the numerical results of the nominal strength oy = 1.5PI/(bD?) for sand
concrete beams compared to tests by Le Bellégo et al. (Le Bellégo et al. [97]). The results
are in a satisfactory agreement with tests by Le Bellégo et al. (Le Bellégo et al. [97]) and
with own experiments (Tab.4.1). They are quantitatively similar with an elasto—plastic and a
damage model. The deterministic size effect was realistically modelled in calculations. The
calculated widths of the localized zone above the notch at u/D = 0.0005 are: 6 mm and 7 mm
(small-size beam), 7 mm and 7 mm (small-size long beam), 7 mm and 7 mm (medium-size
beam), 6 mm and 7 mm (medium—size long beam) and 7 mm and 7 mm (large—size beam)
within enhanced elasto—plasticity and damage mechanics, respectively (Fig.4.2).

4.2. Reinforced concrete beams

Laboratory tests were carried out on five different short reinforced concrete beams with-
out shear reinforcement and free at ends (Walraven and Lehwalter [168]). The geometry of
the specimens is shown in Fig.4.3. The beam length L varied between 680 mm and 2250
mm and the height 4 was between 200 mm and 1000 mm (the beams’ width b was always
250 mm). The cylinder compressive strength of concrete was about 20 MPa. In turn, the
cylinder splitting tensile strength of concrete was about 2 MPa. The maximum size of the
aggregate in concrete was dqy = 16 mm. The concrete cover measured from the bar centre
to the concrete surface was 40 mm for the smallest beam and 70 mm for the largest one. In
all tests, the span—to—depth ratio was a/d = 1. The reinforcement ratio of the specimens was
1.1%, so the failure by yielding of longitudinal steel bars was excluded in advance (yield
strength of longitudinal reinforcement was 420 MPa). To obtain a geometrically similar
cross—sectional area, various combinations of bar sizes were used (with diameters of 16, 18,
20 mm). The ratio between the width of the loading plate k and the effective depth d was kept
constant (k/d = 0.25), (Fig.4.3). The beams were incrementally loaded by a vertical force
applied at a mid—span of each beam. During loading, first, at about 40% of the failure load,
bending cracks appeared. Afterwards, at about 45-50% of the failure load, the first inclined
crack occurred. The beam failure took place in a gradual gentle way in shear compression
by crushing concrete adjacent to the loading plate initiated by a formation of short parallel
inclined cracks.

A pronounced size effect was observed, exemplified by the reduction of the nominal nor-
malised shear strength v, =V, /(bd fc) with increasing effective cross sectional depth d in
the range of the beam height # = 200 — 800 mm: v,, = 0.23 (A =200 mm), v, = 0.15 (h =400
mm), v, = 0.13 (h = 600 mm), v,, = 0.10 (A = 800 — 1000 mm). The cracks developed sig-
nificantly faster in the larger beams.

The geometry details of the reinforced concrete beams and shear failure forces V, are given
in Tab. 4.2.

To describe a deterministic size effect and pattern of cracks in short reinforced concrete
beams without shear reinforcement subjected to mixed shear—tension failure, three different
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enhanced continuum constitutive models for concrete (Chapter 2) were used: an isotropic
elasto—plastic model with a Drucker—Prager criterion in compression and with a Rankine
criterion in tension, an isotropic damage model and an anisotropic smeared crack model.

Table 4.2. Beams’ properties and failure loads

beam h ’ d L L Ay number of fe Vi
specimen [mm] ’ [mm] ‘ [mm] [mm] [mm?] ‘ steel bars [N/mm?] [kN] ‘
V711 200 160 320 680 606 3016 18.1 165
V022 400 360 720 1030 1020 4918 19.9 270
V511 600 560 1120 1380 1570 5¢20 19.8 350
V411 800 740 1480 1780 2040 2 (4918) 194 365
V211 1000 930 2250 1860 2510 2 (4¢918) 20.0 505

To simulate the behaviour of reinforcement, an associated elasto—perfect plastic consti-
tutive law by von Mises was assumed. A bond—slip between concrete and reinforcement was
considered according to Dorr (Dorr [51]) (Eq.2.68). The computations were a continuation
of other numerical studies of deterministic size effect in slender reinforced concrete beams
without shear reinforcement subjected to bending under tensile failure (Marzec et al. [110])
which were carried out within both isotropic elasto—plasticity and isotropic damage mechan-
ics using non—local softening. A good agreement between experiments and FE analyses with
respect to a deterministic size effect and geometry of localized zones was achieved.

The two-dimensional FE calculations were performed with 4 reinforced concrete beams of
Section 2.3 (h = 200 — 800 mm). The regular meshes with 2720 (h = 200 mm) up to 16560
(h = 800 mm) quadrilateral elements composed of four diagonally crossed triangles were
used to avoid volumetric locking. The maximum finite element height, 15 mm, and finite el-
ement width, 10 mm, were not greater than 3 x /. (/. =5 —20 mm) to achieve mesh—objective
results (Marzec et al. [110]). Two comparative 3D calculations were performed for the beam
of h =200 mm. The mesh with 16320 eight—nodded solid elements was used. The maximum
sizes of finite elements were again not greater than 3 x /. (I, = 10 — 20 mm).

The following elastic material parameters were assumed for concrete: E = 28900 MPa (mod-
ulus of elasticity) and v = 0.20 (Poisson’s ratio). The cylinder compressive strength was
given as f. = 20 MPa. The tensile strength was f; =2 MPa. The deformation was induced
by prescribing a vertical displacement at the mid—point of the beam top.

To investigate the effect of the bond stiffness, several numerical tests were carried out with a
different value of &) changing from 0.06 mm (Ddrr [51]) up to 1.5 mm (Haskett et al. [70]),
Figs.2.16a and 2.18.

Enhanced elasto—plastic model

Preliminary FE calculations have shown a certain effect of a characteristic length of micro—structure,
tensile fracture energy, compressive fracture energy, softening rate in tension and compres-
sion (linear and non-linear) and stiffness of end—slip on both the nominal beam strength,
width and spacing of localized zones (Tabs.4.4 and 4.5). The beam strength increased
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(A)

(1) small beam (2) medium beam

(3) large beam

(1) small beam (2) medium beam (3) large beam

(4) small long beam (5) medium long beam

(B)

(4) small long beam

(5) medium long beam

n

Figure 4.2. Distribution of the non—local: (A) softening parameter kK (elasto—plasticity) and (B) strain
measure € (damage mechanics) above the notch from numerical calculations for: (1) small-size beam,
(2) medium-size beam, (3) large—size beam, (4) small-size long beam, (5) medium-size long beam
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Figure 4.3. Geometry of reinforced concrete beams used in laboratory tests by Walraven and Lehwal-
ter (Walraven and Lehwalter [168])

with increasing characteristic length, tensile fracture energy and compressive fracture en-
ergy. In turn, the spacing of localized zones increased with increasing characteristic length
and softening rate, and decreasing tensile fracture energy, compressive fracture energy and
bond stiffness. The calculated width of localized tensile and compressive zones increased
with increasing characteristic length /. and was equal approximately to (1.5 —4) x [, with
I =5 —20 mm. The ultimate vertical force P was smaller for the 3D model by 5%.

On the basis of the preliminary calculations, the further analyses were performed with a 2D
model, using a characteristic length of /. = 5 mm, a non—local parameter m = 2, and linear
softening in tension and compression (Fig.4.4). The tensile fracture energy was Gy = 50
N/m and compressive fracture energy was G, = 1500 N/m. The tensile fracture energy was
calculated as Gy = gr X wy; gr — area under the entire softening function (with wy ~ 4 x [,
— width of tensile localized zones, [, = 5 mm). In turn, the compressive fracture energy was
calculated as G, = g, X w¢; (g, — area under the entire softening/hardening function up to
k1 = 0.006, w, =~ 4 x [. — width of compressive localized zones, /. = 5 mm). The internal
friction angle was ¢ = 14° and the dilatancy angle was chosen as y = 8°. The displacement
0o at which perfect slip occurred was 0.24 mm. The distribution of material parameters was
uniform in all beams.

Figure 4.5 shows the calculated force—displacement curves (P — vertical force at the mid-point
of the beam top, u — vertical displacement of this mid—point) for the beams of &2 = 200 — 800
mm. The distribution of the non—local tensile softening parameter is depicted in Fig. 4.6 at
the beam failure. In addition, the distribution of of the non—local tensile softening parameter
is shown at the normalised vertical force of V /(bd f.) = 0.10 as compared to the experimental
crack pattern (Fig.4.7).

The calculated failure forces are in a satisfactory agreement with the experimental ones
(Tab.4.2), but are always larger by 10-20% than the experimental ones (the differences
increase with increasing beams’ size). The geometry of localized zones is in satisfactory
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agreement with experimental crack patterns (Fig.4.7). The vertical and inclined long and
short localized zones were numerically obtained. The experimental crack pattern was more
non-symmetric. The widths of calculated tensile and compressive localized zones are about
wr = we =4 X .. In turn, the calculated average spacing s of main localized tensile zones
is: s = 80 mm (h = 200 mm), s = 90 mm (& = 400 mm), s = 170 mm (4 = 600 mm) and
s = 150 mm (£ = 800 mm).

(a) (b)

25 ! ! ! 25 ; ! !

0. [MPa]
o, [MPa]

1 1 1 0 1 1 1
0 0.002 0.004 0.006 0.008 0 0.002 0.004 0.006 0.008
Ry K2

Figure 4.4. Assumed hardening/softening functions for FE—calculations: (a) ;= f(k») in tension,
(b) 0. = f(x1) in compression (o, — tensile stress, 0, — compressive stress, k; — hardening/softening
parameter)

The calculated spacing of localized zones s was also compared with the average crack
spacing according to by Lorrain et. al (Lorrain et. al [103]):

s:l.SC—i—O.l%:1.5x32+0.1%:193mm (h =200mm), 4.1)

s=15c401% Z15%31 4015 —210mm (h = 400mm), (4.2)
p 0.011

5= 15¢4+0.1% Z 15%3040.1-20 — 227mm (h = 600mm), 4.3)
P 0.011

s=15¢4+0.1% Z 155514012 — 240mm (h = 800mm), (4.4)
P 0.011

wherein ¢; = 16 —20 mm is the mean bar diameter, p = 1.1% denotes the reinforcement
ratio and ¢ = 30 — 51 mm denotes the concrete cover. The calculated spacing of localized
zones, 80 — 170 mm, is significantly smaller than these obtained with analytical formula by
Egs.4.1 —4.3 (193 — 240 mm).

Enhanced smeared-crack and enhanced damage model

The following parameters were assumed in enhanced smeared crack and damage models:
E = 28900 MPa, v = 0.2, ky = 1E-4, & = 0.95 and B = 500 (damage approach Eq.2.42),
E = 28900 MPa, v = 0.2, xyp = 1E-4, a = 0.95, B = 500 and k = 10 (damage approach
Eq.2.41), E = 28900 MPa, v = 0.2, xyp = 1E-4, @ = 0.95, B =500, a; = 0.1, op = 1.16,
03 = 2.0 and Y = 0.2 (damage approach Eq.2.44) and E = 28900 MPa, v = 0.2, p = 4.0,
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Figure 4.5. Calculated force—displacement curves within elasto—plasticity (as compared to the exper-
imental maximum vertical force) for different beams: (A) 2 =200 mm, (B) & =400 mm, (C) 2 = 600
mm, (D) A= 800 mm (P — resultant vertical force, u — vertical displacement)



4.2. Reinforced concrete beams 73
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Figure 4.6. Distribution of calculated non—local tensile softening parameter within elasto—plasticity
in beams at failure for different beams: (a) /=200 mm, (b) #/=400 mm, (¢) & = 600 mm, (d) A= 800
mm (note that the beams are not proportionally scaled)
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Figure 4.7. Comparison of distribution of the non-local tensile softening parameter within

elasto—plasticity in short reinforced concrete beams at the normalised vertical force V /(bd fc) = 0.10

with experimental crack patterns for different beams: (a) & = 200 mm, (b) 2 = 400 mm, (c) 2 = 600
mm, (d) 2 = 800 mm (note that the beams are not proportionally scaled)




4.3. Conclusions 75

by =3.0, b, =6.93, f; =2.0 MPa, &, = 0.006 and &,, = 0.006 (smeared crack approach).
The results are shown in Figs. 4.8 and 4.9 (smeared rotating crack model) and Figs.4.10 and
4.11 (damage model). The results using fixed cracks and a rotation crack were similar.

The force—displacement curves are very similar as those obtained with an elasto—plastic
model. The calculated forces at failure are always larger by 5 —20% than the experimental
ones. The calculated geometry of localized zones within a smeared crack approach is similar
as this within elasto—plasticity except of beams with 4 > 400 mm where the localized zones
are more diffuse. The effect of crack type assumed in the model (fixed or rotating cracks) was
insignificant. In turn, large discrepancies occur in the distribution of localized zones when
using the damage model. The inclined localized zones were not obtained in FE analyses
(only one vertical).

To obtain a better match with experiments more refined continuum models should be used
at macro—level. A more advanced concrete model in compression can be implemented in
elasto—plasticity (e.g. model by Menetrey and Willam [113]). In addition, the evolution of
internal friction and dilatancy against plastic deformation can be taken into account. In the
case of damage mechanics, anisotropy can be considered. Within a smeared crack approach,
plastic crack strain can be added (de Borst and Nauta [42]). Other alternative to improve
the FE results is to apply simple macro—continuum models to reinforced concrete elements
considered at meso—scale (Gitman et al. [67], Skarzyriski and Tejchman [151]).

Deterministic size effect

Figure 4.12 shows a comparison between the calculated (Section 4.1) and experimental size
effect (Chapter 3) for concrete beams subjected to three—point bending. The nominal strength
1.5P1/(bD?) at failure as a function of the beam height D is analysed. In addition, the size
effect law by Bazant (BaZant and Planas [16]) is enclosed.

The measured data of concrete beams of a similar geometry match well the size effect law
by BaZant (Bazant and Planas [16]).

In turn, Figure 4.13 shows a comparison between the calculated and experimental size ef-
fect: the relative shear stress V /(bd f,) at failure as a function of effective beam depth d for
reinforced concrete beams under mixed shear—tension failure. In addition, the size effect law
by BaZant (BaZant and Planas [16]) is enclosed.

The experimental and theoretical beam strength shows a strong parabolic size dependence
and well match the size effect law by Bazant.

4.3. Conclusions

The following conclusions can be drawn from FE analyses with concrete beams at macro—level
under tensile failure:

— Two simple isotropic continuum models within elasto—plasticity and damage continuum
enhanced by a characteristic length of micro—structure are able to capture the width of
localized zones and a deterministic size effect in concrete beams subjected to three-point
bending.
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Figure 4.8. Calculated force—displacement curves with smeared crack approach (as compared to the
experimental maximum vertical force) for different beams: (a) 2 = 200 mm, (b) & = 400 mm, (c)
h = 600 mm, (d) # = 800 mm (P — resultant vertical force, u — vertical displacement)
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Figure 4.9. Distribution of calculated non—local strain measure with smeared crack approach in dif-
ferent beams at failure: (a) 2 = 200 mm, (b) &z = 400 mm, (¢) & = 600 mm, (d) 2z = 800 mm (note that
the beams are not proportionally scaled)
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Figure 4.10. Calculated force—displacement curves within damage mechanics (as compared to the

experimental maximum vertical force) for two beams: (A) &~ = 400 mm, (B) 2~ = 600 mm (P —

resultant vertical force, u — vertical displacement): (a) equivalent strain measure by Eq.2.42, (b)
equivalent strain measure by Eq.2.44

(A)
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(a) (b)

Figure 4.11. Distribution of the calculated non—local strain measure within damage mechanics in two
beams at failure: (A) 7 =400 mm, (B) 7 = 600 mm, (a) equivalent strain measure by Eq.2.42, (b)
equivalent strain measure by Eq.2.44 (note that the beams are not proportionally scaled)
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The nominal strength of notched concrete beams during three—point bending increases
with decreasing beam size.

The calculated width of the localized zone is approximately equal to 67 mm (within
elasto—plasticity) and 7 mm (within damage mechanics) with the characteristic length
equal to 2 mm. It depends insignificantly on the beam size.

The assumed characteristic length of micro—structure in continuum crack models has to
be very small (i.e. 1-2 mm) to obtain a satisfactory agreement with experiments with
respect to the width of a localized zone.

The following conclusions can be drawn: from FE analyses with reinforced concrete beams
at macro—level under shear failure

Three different simple continuum crack models enhanced by non—local softening are
able to capture a deterministic size effect in short reinforced concrete beams without
shear reinforcement.

The calculated material strength was in a satisfactory agreement with experiments for 4
reinforced concrete beams of a different size using 3 different models. It was higher by
5-20% as compared to experimental ones.

The geometry of localized zones was in a good agreement within elasto—plasticity, in
a medium agreement within a smeared—crack approach and a completely false within
isotropic damage mechanics.

The calculated spacing of localized tensile zones increased with increasing characteristic
length, softening rate and beam height and decreasing fracture energy and bond stiffness
within elasto—plasticity. The tensile fracture energy was Gy = 50 N/m and the compres-
sive fracture energy was G, = 1500 N/m.

The calculated and experimental spacing of localized zones was significantly smaller
than this from analytical formulae.

B
EN (&)

1.5PI/bD? [MPa]
w
n

2.5 i i i
0 0.1 0.2 0.3 0.4

D [m]

Figure 4.12. Calculated and measured size effect in nominal strength 1.5PI/(bD?) versus beam
height D for concrete beams of similar geometry (beams °1°, °2’ and ’3’: (a) own laboratory ex-
periments, (b) own FE—calculations (elasto-plasticity), (c) size effect law by Bazant (BaZant [7]),

Eq. 3.5, (d) experiments by Le Bellégo et al. (Le Bellégo et al. [97])
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d [mm]

Figure 4.13. Calculated size effect in reinforced concrete beams from FE—analyses compared to ex-

periments (Walraven and Lehwalter [168]) and to the size effect law by Bazant (BaZant and Planas

[16]) (b — beam width, d — effective beam height, f. — compressive strength of concrete, V,, — ultimate

vertical force): (a) experiments, (b) FE—calculations (elasto—plasticity), (c) FE—calculations (smeared
crack model), (d) FE—calculations (damage mechanics), (e) size effect law by BaZant
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Table 4.3. Data summary of own laboratory experiments, FE—results and corresponding laboratory
tests by Le Bellégo et al. [97]

Force Force Force Force Force
No small beam medium beam large beam small long beam medium long beam
" D=008m) (D=016m) (D=0.32m) (D=0.08 m) (D=0.16 m)
[kN] [kN] [kN] [kN] [kN]

Experiments for sand concrete beams by Le Bellégo et al. (Le Bellégo et al. [97])

1 2.96 4.97 9.44 - -

FE-results for sand concrete beams (elasto—plasticity)

1 2.87 5.11 8.52 1.16 1.95

FE-results for sand concrete beams (damage mechanics)

1 291 5.17 8.60 1.14 2.10

Own experiments with gravel (g) and sand (s) concrete beams

1 2.81 (g) 5.21 (g) 8.42 (g) 1.12 (g) 1.74 (2)
2 2.83 (g) 4.62 (g) 8.27 (g) 1.41 (g) 1.95 (s)
3 2.95 (g) 5.07 (g) 8.84 (g) 1.20 (2) 1.82 (s)
4 2.75 (g) 5.45 (g) 8.05 (g) 1.25 (s) -
5 2.71 (g) 5.25 (g) 9.15 (s) 1.08 (s) -
6 2.93 (g) 5.55(s) 8.65 (s) 1.15 (s) -
7 2.87 (g) 5.34 (s) 9.01 (s) 1.18 (s) -
8 2.91 (s) 5.62 (s) 9.15 (s) 1.51 (s) -
9 3.26 (s) 5.66 (s) - - -
10 3.03 (s) 573 (s) - - -
11 3.24 (s) - - - -
12 3.45 (s) - - - -
13 3.15 (s) ; ; _ ]
14 3.32(s) - ; _ ]
15 2.95 (s) - - - -
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Table 4.4. Summary of FE—-input data

beam width of tensile width of compressive
. . . charact.
FE—-simulatibgight tensile fracture compress. fracture
. . length I, bond model
number h localized energy G; localized energy G, (mm]
mm
[mm]  zones wy [m] [N/m] zones w, [m] [N/m]
la 15 50 20 1500 5
1b 200 15 50 20 1500 10 bs
1c 15 50 25 1750 20
2a 15 100 20 1500 5
2b 200 20 100 20 1500 10 bs
2c 40 100 25 1750 20
3a 15 200 20 1500 5
3b 200 35 200 25 1750 10 bs
3c 60 200 25 1750 20
4a 15 50 15 1500 5
400 bs
4b 35 50 25 1750 10
5a 20 100 15 1500
400 5 bs
5b 40 100 25 1750
6a 15 50 15 1500
600 5 bs
6b 15 100 25 1750
Ta 15 50 15 1500
800 5 bs
7b 15 100 25 1750
8a 15 50 20 1500 bs
8b 15 50 20 1500 bs (69 = 0.12 mm)
8 200 15 50 20 1500 > bs (8 = 0.24 mm)
8d 15 50 20 1500 bs (6o = 1.0 mm)
9a 40 100 25 1750 bs
9b 40 100 25 1750 bs (69 = 0.12 mm)
9 400 40 100 25 1750 10 bs (8 = 0.24 mm)
9d 40 100 25 1750 bs (& = 1.0 mm)
10a 15 50 20 1500 pb
200 10
10b 15 50 20 1500 bs
11a 40 100 25 1750 pb
400 10
11b 40 100 25 1750 bs
12a 15 50 15 900
12b 200 15 50 20 1500 5 bs
12¢ 15 50 20 1800
13a 15 50 20 900
13b 400 35 50 25 1750 10 bs
13c 35 50 25 2250
14a (3D) 200 35 50 25 1750 20 bs
14b (3D) 200 20 100 20 1400 10 bs
15 (3D) 200 35 50 25 1750 20 bs (8 = 1.0mm)
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Table 4.5. Data summary of experiments, FE—results and analytical formulae (crack spacing)

FE-simulation beam failure vertical failure vertical spacing of crack spacing by crack spacing by
R . localized zones
number height  force (experiments) force (FEM) from FEM CEB-FIP model Lorrain et al.
(Tab.4.4 h [mm] [kN] [kN] s [mm] [34] [mm] (103] [mm]

la 182 105
1b 200 165 185 105 270 193
lc 187 160
2a 186 80
2b 200 165 190 80 270 193
2¢ 193 160
3a 190 105
3b 200 165 192 105 270 193
3¢ 197 160
4a 285 180

400 270 303 210
4b 287 145
5a 291 60

400 270 303 210
5b 295 90
6a 400 110

600 350 337 227
6b 405 170
7a 425 85

800 365 303 240
7b 435 150
8a 182 105
8b 178 105
8 200 165 187 105 270 193
8d 175 105
9a 295 145
9% 296 145
%c 400 270 207 145 270 193
9d 275 230
10a 195 80

200 165 270 193
10b 190 80
lla 305 145

400 270 303 210
11b 295 180
12a 170 80
12b 200 165 182 105 270 193
12¢ 185 80
13a 275 360
13b 400 270 295 145 303 210
13¢ 297 180
l4a 195 160

200 165 270 193
14b 220 80

15 200 165 175 160 270 193







Chapter 5

Mesoscopic modelling of strain localization in
concrete

This chapter deals with strain localization in concrete specimens subjected to uniax-
ial tension and investigations of localized zones in notched concrete beams subjected to
quasi—static three—point bending. The material was described at the meso—scale as a random
heterogeneous three—phase one. The simulations were carried out with the FEM using an
1sotropic damage constitutive model (with a Rankine failure type criterion and an exponen-
tial softening law) enhanced by a characteristic length of micro—structure /. = 0.5 mm by
means of non—local theory (Eqs.2.32, 2.37 and 2.42). The effect of a specimen size, random
distribution of aggregate, aggregate density and shape, characteristic length on the width and
shape of a localized zone and load displacement curves was investigated here. The existence
of Representative Volume Element (RVE) was studied.

5.1. Determination of RVE with standard averaging approach

The intention of FE investigations is to determine the effect of a random distribution of
aggregate, aggregate density, characteristic length and non—local range on both strain local-
ization and stress—strain curves in concrete during uniaxial tension and to check the existence
of the Representative Volume Element (RVE) (according to idea given by Girman et. al
[65]) using an enhanced damage for all individual phases (which naturally causes an overall
material anisotropy) within a standard averaging approach (Skarzynski and Tejchman [151]).

The FE investigations were performed with concrete described as a three—phase material
composed of cement matrix, aggregate and interfacial transition zones (ITZ) between the
cement matrix and aggregate. The aggregate grains were assumed to be of a circular shape
and were randomly distributed in a homogeneous cement matrix according to a sieve curve
(Fig. 5.1). They were generated according to the method given by Eckardt and Konke
(Eckardt and Konke [54]). First, a grading curve was chosen. Next, certain amounts of
particles with defined diameters d;,d>,...,d, were generated according to this curve. The
size of aggregate inclusions varied from d,,;;, = 2.5 mm up to dyqxy = S mm. The circles were
randomly placed in the prescribed area starting with the largest ones and preserving a certain
mutual distance (van Mier et al. [166]):

D, +D,

D> :
2

(5.1)

where D is the distance between two neighbouring particle centres and D1, D, are the diam-
eters of two particles. In the next step, the generated particle structure was overlaid with an
irregular mesh of 8000-12000 quadrilateral elements composed of four diagonally crossed
triangles to avoid volumetric locking. The finite elements belonging to cement matrix, ag-
gregate inclusions and bond zones, respectively, had their own properties (Tab. 5.1). It was



86 Chapter 5. Mesoscopic modelling of strain localization in concrete

100 N S B B R By

sieve passing grain amount [%]

0 i i 0 I O A A I
0 notsimulated aggregates d; d, d; ... .. d

sieve size d [mm]

Figure 5.1. Approximation of the grading curve with discrete number of aggregate sizes

Table 5.1. Material properties assumed for FE calculations

Material properties Inclusions Matrix ITZ
Young’s modulus £ [MPa] 30000 25000 20000
Poisson’s ratio v [-] 0.2 0.2 0.2
Crack initiation strain kj [-] 0.5 8E-5 S5E-5
Residual stress level o [-] 0.95 0.95 0.95
Slope of softening B [-] 200 200 200

assumed that the inclusions and bond zones had the highest and the lowest stiffness, re-
spectively (Tab.5.1). The elements in the cement matrix were taken twice as small as a
characteristic length of micro—structure. In turn, the size of bond zone elements, 0.25 mm
(equal to 0.1 X d,;i,), was smaller than the size of cement matrix elements.

The calculations were carried out with periodic boundary conditions and material period-
icity to avoid the effect of walls (van der Sluis [164], Gitman [65]). In the first case, the
positions of nodes along corresponding specimen boundaries were the same before and after
deformation. This is illustrated in Fig. 5.2, where an arbitrary periodically deformed unit
cell under uniaxial extension conditions is shown. The deformation of each boundary pair

is the same and the stresses are opposite in sign for each pair. The displacement boundary
conditions are:

Uiy — U4 = Uy — Uy
U —U| = Uy — Uy, (5.2)

Uz — Uz = up3 —uj
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Figure 5.2. Periodically deformed unit cell with boundaries I'g and nodes v; (van der Sluis [164])
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Figure 5.3. Distribution of different unit cells in a concrete specimen (Gitman [65])
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where u;; is the displacement for any material point along the boundary I';; and u; is the node
displacement. From the periodicity equations (Eq. 5.2) can be observed that the independent
entities are I'y1, I'21, uy, up and uy whereas the tied dependent entities are 1,, I'; and u3.

In addition, to eliminate wall effects, the periodicity of the material was assumed (Gitman
[65]). According to its definition, the RVE should represent any part of the material. Figure
5.3 presents samples different unit cells A — F' in a concrete specimen. The cells A, B, D
and E are valid in the context of material periodicity. However, the cells C and F experience
wall—effects since some edges are crossed by inclusions. In the calculations, we avoided
inclusions penetrating through the unit cell boundaries by letting them re—appear at the op-
posite edge (Fig.5.4).

To analyse the existence and size of the RVE, a two—dimensional uniaxial tension tests
(Fig.5.5) were performed with a quadratic concrete specimen representing a unit cells (Figs.5.6-5.8)
with periodicity of boundary conditions and material. For periodic boundary conditions, the
displacements were suppressed in the node ‘v;’ (Figs.5.2 and 5.5). Furthermore, in the
node ’1;’, a non—-zero displacement was prescribed in a horizontal direction in while the
displacement a vertical direction was suppressed. The displacement components of the node
‘03’ and ‘v4” were free and tied together.

First, concrete specimens of five different size were investigated (a characteristic length
of micro—structure was /. = 0.5 mm). The smallest and the largest unit cells were 10x 10
mm? and 25x25 mm?, respectively (Fig. 5.6). For each specimen, five different stochastic
realisations were performed (Fig.5.7) with an aggregate density p kept constant (p = 30%,
p =45% and p = 60%) (Fig.5.8). Next, the calculations were carried out with a different
characteristic length of micro—structure varying between /. = 0.1 — 2.0 mm. Later, the effect
of the aggregate density (p = 30%, p =45% and p = 60%) on strain localization was inves-
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Figure 5.4. Simulation of material periodicity

Figure 5.5. Uniaxial tension test (schematically)

(a) (b) ©) (d)

Figure 5.6. Concrete specimens of a different size: (a) 10x10 mm?, (b) 15x15 mm?, (c) 20x20
mm?, (d) 25x25 mm? (aggregate density p = 30%)

Figure 5.7. Different distributions of aggregate for a concrete specimen of 15x 15 mm? (aggregate
density p = 30%)
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Figure 5.8. Concrete specimens for different aggregate density p: (a) p = 30%, (b) p = 45%, (c)
p =60%

tigated ([, = 0.5 mm). In the final comparative calculations, non—locality was prescribed to
the cement matrix only.

The averaging was performed in the entire material domain. The homogenized stress and
strain are defined in two dimensions as:

int
y
=2y 5.3
<o> o (5.3)
u
<E>= -+ 54
R (5.4)

where fyi"t denotes the sum of all nodal internal forces in "y’ direction along the top edge of
the specimen (Fig.5.5), u is the prescribed displacement applied in ’y’ direction, and b and
h are the width and height of the specimen.

Figures 5.9-5.11 present the stress—strain relationships for various specimen sizes and ran-
dom distributions of aggregates with material constants from Tab. 5.1 (I, = 0.5 mm). The
aggregate density was p = 30%, p = 45% or p = 60%, respectively. In turn, the influence
of the specimen size on the evolution of the stress—strain curves for different aggregate den-
sities is demonstrated in Fig.5.12. The results evidently show that the stress—strain curves
are the same independently of the specimen size, aggregate density and distribution of in-
clusions in an elastic regime only (almost up to the peak). However, they are completely
different in a softening regime after the peak is reached. An increase of the specimen size
causes an increase of material brittleness. The differences in the evolution of stress—strain
curves in a softening regime are caused by strain localization contributing to loss of mate-
rial homogeneity (Fig.5.13). Strain localization in the form of a localized zone propagates
between aggregates and can be strongly curved. The width of the calculated zone is about
we = (4 x 1) =2 mm (with [, = 0.5 mm).

The results indicate that the RVE can be determined in a linear—elastic regime only. How-
ever, it cannot be determined in a softening regime due to strain localization (Gitman et al.
[66]). The fact of a non—existence of the RVE has to be taken into account in a multi—scale
approach in order to maintain the objectivity of results with respect to a cell size.
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Figure 5.9. Stress—strain curves with various sizes of concrete specimen and random distributions of
aggregate: (a) 10x 10 mm?2, (b) 15x 15 mm?, (c) 20x20 mm?, (d) 25x25 mm? (characteristic length
[, = 0.5 mm, aggregate density p = 30%)

The effect of a characteristic length of micro-structure on the stress-strain curve and strain
localization is shown in Figs. 5.14-5.17. Figures 5.14 and 5.16 demonstrate the influence of
I, on the evolution of stress—strain curves with two different specimen sizes: 10x 10 mm? and
25x25 mm?, respectively. In turn, Figs.5.15 and 5.17 present the distribution of a non—local
softening strain measure for various /. changing between 0.1 mm and 2.0 mm.

With increasing characteristic length, both specimen strength and width of a localized zone
increase. On the other hand, softening decreases and material behaves more ductile. Thus, a
pronounced deterministic size effect occurs (Bobiriski et al. [28]). The width of a localized
zone is about w, = 4 x [, independently of /.. A localized zone propagating in a cement
matrix between aggregates is strongly curved with /. = 0.25 mm-1.0 mm, whereas becomes
more straight for /. > 1.0 mm (Fig.5.17e).

The width of a localized zone, w, = 4 — 8 mm, with [, = 1.0 — 2.0 mm [/, = (0.2 —0.4) x
dmayx) 1s in good accordance with the measured width of the localized zone, 3.5 mm-5.5 mm,
on a surface of notched concrete beams subject to bending by means of a DIC technique
(Skariynski et al. [150]). However, this numerical outcome is in contrast with a statement
by Bazant and Novak (BaZant and Novak [11]) that a characteristic length is about 3 X d,4y.

Figure 5.18 demonstrates the effect of the aggregate density on the stress—strain curves
for two specimen sizes: 2020 mm? and 25x25 mm?, respectively (p = 30%, p = 45%,
p = 60%, with [, = 0.5 mm).
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Figure 5.10. Stress—strain curves with various sizes of concrete specimen and random distributions of
aggregate: (a) 10x 10 mm?2, (b) 15x 15 mm?, (c) 20x20 mm?, (d) 25x25 mm? (characteristic length
l. = 0.5 mm, aggregate density p = 45%)

A localized zone is also influenced by an aggregate spacing. With increasing aggregate
density, a localized zone becomes slightly narrower (Fig.5.19). This means that a character-
istic length of micro—structure may not be related to the aggregate size only but also to the
grain size of the cement matrix (Skarzyriski et al. [150]). Figure 5.20 shows the influence
of the range of non—locality on the stress-strain relationship. In contrast to studies where
the non—locality was prescribed to all three phases of concrete, here, a cement matrix was
solely assumed to be non—local due to fact that strain localization occurred only there. A
characteristic length was once more /. = 0.5 mm.

The effect of the non—locality range on results turned out to be insignificant since the range
of averaging (Eq.2.56) slightly decreased (Figs.5.20 and 5.21).

5.2. Determination of RVE with non-standard averaging approaches

The FE two—dimensional investigations were performed with concrete described as a
three—phase material composed of cement matrix, aggregate and interfacial transition (con-
tact) zones between the cement matrix and aggregate (the material constants each phase are
given in Tab.5.1). The interface was assumed to be the weakest component (Lilliu and van
Mier [99]) and its width was equal 50 um (He [72]). For the sake of simplicity, the aggre-
gate shape was assumed in the form of circles. The number of triangular finite elements was
4000 (the smallest specimen) — 100000 (the largest specimen). The size of triangular finite
elements was: s, = 0.5 mm (aggregate), s, = 0.25 mm (cement matrix) and s;77z = 0.05
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Figure 5.11. Stress—strain curves with various sizes of concrete specimen and random distributions of
aggregate: (a) 10x 10 mm?2, (b) 15x 15 mm?, (c) 20x20 mm?, (d) 25x25 mm? (characteristic length
[ = 0.5 mm, aggregate density p = 60%)
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Figure 5.12. Stress—strain curves with various sizes of concrete specimen and aggregate densities p:
(@) p =30%, (b) p =45%, (c) p = 60% (characteristic length /. = 0.5 mm)
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P
(a)

Figure 5.13. Distribution of non-local softening strain measure for two different random distributions
of aggregate: (a) 10x10 mm?, (b) 15x15 mm?, (c) 20x20 mm?, (d) 25x25 mm? (characteristic
length /. = 0.5 mm, aggregate density p = 30%)
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Figure 5.14. Stress—strain curves for different values of a characteristic length: (a) /. = 0.1 mm,
(b) I, =0.25 mm, (¢) [, = 0.5 mm, (d) [, = 1.0 mm, (e) [, = 2.0 mm (specimen size 10x 10 mm?,
aggregate density p = 30%)
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Figure 5.15. Distribution of non—local softening strain measure for different values of a characteristic
length: (a) [, =0.1 mm, (b) [, =0.25 mm, (c¢) [, = 0.5 mm, (d) /. = 1.0 mm, (e) /. = 2.0 mm (specimen
size 10x 10 mm?, aggregate density p = 30%)
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Figure 5.16. Stress—strain curves for different values of a characteristic length: (a) [, = 0.1 mm,
(b) I, = 0.25 mm, (c) I, = 0.5 mm, (d) I, = 1.0 mm, (e) /. = 2.0 mm (specimen size 25x25 mm?,
aggregate density p = 30%)

Figure 5.17. Distribution of non—local softening strain measure for different values of a characteristic
length: (a) [, =0.1 mm, (b) [, =0.25 mm, (c) [, = 0.5 mm, (d) [. = 1.0 mm, (e) /. = 2.0 mm (specimen
size 25x25 mm?, aggregate density p = 30%)
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Figure 5.18. Stress—strain curves for different aggregate densities: (a) p = 30%, (b) p = 45%, (c)
p = 60% and cell sizes (A) 20x20 mm?, (B) 25x25 mm? (I, = 0.5 mm)

(A)

(B)

Figure 5.19. Distribution of non—local softening strain measure for two different aggregate densities:
(@) p = 30%, (b) p = 45%, (c) p = 60% and cell sizes (A) 20x20 mm?, (B) 25x25 mm? (I, = 0.5
mm)
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Figure 5.20. Stress—strain curves for two different specimen sizes: (A) 15x 15 mm?2, (B) 25x25 mm?
with (a) non—locality prescribed to three phases and (b) non—locality prescribed to cement matrix
(aggregate density p = 30%, characteristic length /. = 0.5 mm)
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Figure 5.21. Distribution of non-local softening strain measure for two different specimen sizes: (A)
15x15 mm?, (B) 25x25 mm? with (a) non-locality prescribed to three phases and (b) non—locality
prescribed to cement matrix (aggregate density p = 30%, characteristic length /. = 0.5 mm)
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mm (interface). To analyse the existence and size of RVE under tension, a two—dimensional
uniaxial tension test (Fig.5.5) was again performed with a quadratic concrete specimen repre-
senting a unit cell with periodicity of boundary conditions and material periodicity (Figs. 5.4
and 5.22). The unit cells of six different sizes were investigated: 5x5 mm?, 10x 10 mm?Z,
15%15 mm?, 20x20 mm?, 25x25 mm? and 30x30 mm? respectively (Fig.5.23). For each
specimen, three different stochastic realisations were performed with an aggregate density
p = 30% (results for p = 45% and p = 60% showed the same trend). The characteristic

length of micro—structure was assumed to be /. = 1.5 mm (Chapter 3).
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Figure 5.22. Deformed three—phase concrete with periodicity of boundary conditions and material
periodicity

First similar calculations as in Section 5.1 were carried out using a standard averaging
approach for comparative purposes. Figure 5.24 presents the stress—strain relationships for
various specimen sizes and random distributions of aggregate with material constants from
Tab.5.1 (I, = 1.5 mm). In the first case, the aggregate distribution was similar and in the
second case it was random in different unit cells. The results show that the stress—strain
curves are the same solely in an elastic regime independently on the specimen size, aggregate
density and aggregate distribution. However, they are completely different at the peak and
in the softening regime. An increase of the specimen size causes strength decrease and an
increase of material brittleness (softening rate) (Fig. 5.24). The differences in the evolution
of stress—strain curves in a softening regime are caused by strain localization (in the form
of a curved localized zone propagating between aggregates Figs.5.25 and 5.26) contribut-
ing to loss of material homogeneity (due to the fact that strain localization is not scaled
with increasing specimen size). The width of a calculated localized zone is approximately
we =3mm =2 X [, = 12 X s¢y, (unit cell 5x5 mm?), w, = 5mm = 3.33 x [, = 20 X S, (unit
cell 10x10 mm?) and w, = 6mm = 4 X [, = 24 X sa, (unit cells larger than 10x 10 mm?).

Figure 5.27 presents the expectation value and standard deviation of the fracture energy
G versus the specimen height / for three different realisations. The fracture energy G was
calculated as the area under the stress—strain curves g multiplied by the width of a localized
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zone we:

Gr=grxwe= (] <o>d<e>)xw, (5.5)
a
The integration limits a; and a; are 0 and 0.001, respectively (Fig.5.24). The fracture energy
decreases with increasing specimen size, i.e. a strong size dependence of RVE exists since a
localized zone does not scale with its size
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Figure 5.23. Concrete specimens of different size: (a) Sx5 mm?, (b) 10x10 mm?, (c) 15x15 mm?,

(d) 20x20 mm?, (e) 25x25 mm?, (f) 30x30 mm? (aggregate density p = 30%)

Next, the homogenized stress and strain were averaged over the localized domain only
according to Verhoosel et al. (Verhoosel et al. [167]) and Nguyen et al. (Nguyen et al.
[124]):

1
<0 >= —/GmdAz, (5.6)
Az

Az
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1
Az
A

v4
where A; is the localized zone area (on the basis of a distribution of the equivalent strain
measure) and 6, and §,, are the meso—stress and meso—strain respectively. Thus, a linear
material behaviour is simply swept out and an active plastic response is solely taken into
account.
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Figure 5.24. Stress—strain curves for various sizes of concrete specimens and two different random
distributions of aggregate (a) and (b) using standard averaging procedure (characteristic length /. =
1.5 mm, aggregate density p = 30%)
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Figure 5.28 presents the stress—strain relationships for various specimen sizes and two
random aggregate distributions of aggregates with material constants from Tab.5.1 (/. = 1.5
mm) for the calculated localized zones of Figs.5.25 and 5.26. The stress—strain curves in a
softening regime (for the unit cells larger than 10x 10 mm?) are in a vary good accordance
with respect to their shape. In this case, the statistically representative volume element ex-
ists and is equal to 15x 15 mm?. Figure 5.29 presents the expectation value and standard
deviation of the fracture energy G versus the specimen height & for three different realisa-
tions. The integration limits were a; = 0 and a, = 0.004 (Fig.5.28). The fracture energy
decreases with increasing specimen size approaching an asymptote when the cell size is
15x15 mm?.With increasing characteristic length, both specimen strength and width of a
localized zone increase. On the other hand, softening decreases and material behaves more
ductile (Skarzyrnski and Tejchman [151]). Taking these two facts into account, a varying char-
acteristic length related to the reference specimen size (assumed as 15x15 mm? or 30x30
mm?) was introduced according to the formula:

®)

Figure 5.25. Distribution of non—local softening strain measure for various specimen sizes and
stress—strain curves of Fig. 5.24a using standard averaging procedure (characteristic length /. = 1.5
mm, aggregate density p = 30%)



5.2. Determination of RVE with non—standard averaging approaches 101

(b) (©) (d)

(e)

Figure 5.26. Distribution of non-local softening strain measure for various specimen sizes and
stress—strain curves of Fig.5.24b using standard averaging procedure (characteristic length /. = 1.5
mm, aggregate density p = 30%)

h [mm]

v _ 715x15

le=1e “1s [mm]’ (5-8)
h [mm]

v _ 73030

le=1e 30 [mm]’ 59)

where [15%15 = [30%30 — 1 5 mm is a characteristic length for the reference unit cell 15x 15

mm? or 30x30 mm? and # is the cell height. A larger unit cell than 30x30 mm? can be
also used (the width of a localized zone in the reference unit cell cannot be too strongly
influenced by boundary conditions as e.g. the cell size smaller than 10x10 mm?). The
stress—strain relationship for various specimen sizes and various characteristic lengths are
shown in Figs.5.30 and 5.31. A characteristic length varies between /. = 0.5 mm for the
unit cell 5x5 mm? and /. = 3.0 mm for the unit cell 30x30 mm? according to Eq.5.8 and
between /. = 0.25 mm for the unit cell 5x5 mm? and /. = 1.5 mm for the unit cell 30x30

mm? according to Eq.5.9.
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Figure 5.27. Expected value and standard deviation of fracture energy using standard averaging (ag-
gregate density p = 30%)

The width of a calculated localized zone (for the reference unit cell 15x 15 mm?) is ap-
proximately w, =4 X [. = 8 X §¢;, = 2 mm (unit cell 5x5 mm?), we =4 X I, = 16 X sep = 4
mm (unit cell 10x10 mm?), w, = 4 X I, = 24 X $on = 6 mm (unit cell 15x15 mm?), w, =
4 x 1. =32 X 8¢, =8 mm (unit cell 20x20 mmz), we =4 x 1. =40 X 5, = 10 mm (unit
cell 25%x25 mm?), w, = 4 x I, = 48 X s, = 12 mm (unit cell 30x30 mm?) (Figs.5.32 and
5.33). The width of a calculated localized zone (for the reference unit cell 30 x 30mm?) is
approximately w, =4 X [, =4 X s, = 1 mm (unit cell 5x5 mm?), we =4 x 1. =8 X sem =2
mm (unit cell 10x10 mm?), w, =4 x I, = 12 X s¢m = 3 mm (unit cell 15x 15 mm?), w, =
4xl.=16 X 5., =4 mm (unit cell 20x20 mmz), We =4 X [, =20 X §¢, = 5 mm (unit cell
25%25 mm?), w, = 4 X I, = 24 X $zy = 6 mm (unit cell 30x30 mm?) (Figs.5.34 and 5.35).
A localized zone is scaled with the specimen size. Owing to that the material does not lose
its homogeneity and its response during softening is similar for the unit cell 15x15 mm?
and larger ones. Thus, the size of the representative volume element is again equal to 15x 15

II’ll’l'l2 .

The expectation value and standard deviation of the unit fracture energy gr = G/w, versus
the specimen height & are demonstrated in Fig. 5.36. With increasing cell size, the value of
g stabilizes for the unit cell 15x 15 mm?.

5.3. Conclusions

The results of FE simulations under tensile loading of softening quasi-brittle materials
with a heterogeneous three-phase structure revealed the following points:

— the Representative Volume Element (RVE) cannot be defined in quasi-brittle materials as
concrete due to strain localization connected to softening. This fact has to be taken into
account when using a multi—scale approach to maintain the objectivity of results with
respect to a cell size. The RVE can be found in homogeneous materials only,
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Figure 5.28. Stress—strain curves for various sizes of concrete specimens and two different random
distributions of aggregate (a) and (b) using failure averaging procedure (characteristic length /. = 1.5
mm, aggregate density p = 30%)
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Figure 5.29. Expected value and standard deviation of fracture energy using failure averaging (ag-
gregate density p = 30%)

— the Representative Volume Element (RVE) cannot be defined in quasi-brittle materials
with a standard averaging approach (over the entire domain) due to occurrence of local-
ized zone which width is not scaled with the specimen size. The shape of stress—strain
curve depends on the unit cell size beyond the elastic region,

— the representative volume element (RVE) can be defined in quasi-brittle materials using
both a failure zone averaging approach and a varying characteristic length approach. In
the first case, the averaging is performed in the damage domain and in the second case,
a characteristic length is scaled with the specimen size. The size of a two—dimensional
statistically representative volume element is approximately equal to 15x 15 mm?.

— with increasing characteristic length of micro—structure /., both material strength and
width of a localized zone grow but material softening decreases. The width of a localized
zone is about w, =4 x [.. The localized zone can be strongly curved with a small /.,

— the width of the localized zone increases with decreasing aggregate density.
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Figure 5.30. Stress—strain curves for various sizes of concrete specimens and two different random
distributions of aggregate (a) and (b) using varying characteristic length averaging approach (refer-
ence size 15x 15 mm?, characteristic length according to Eq. 5.8, aggregate density p = 30%)
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Figure 5.31. Stress—strain curves for various sizes of concrete specimens and two different random
distributions of aggregate (a) and (b) using varying characteristic length averaging approach (refer-
ence size 30x30 mm?, characteristic length according to Eq.5.9, aggregate density p = 30%)
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(a) (b) (©) (d)

Figure 5.32. Distribution of non-local softening strain measure for various specimen sizes and
stress—strain curves of Fig.5.30a using varying characteristic length averaging approach (reference
size 15x 15 mm?, characteristic length according to Eq. 5.8, aggregate density p = 30%)
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(a) (b) (d)

(e)

Figure 5.33. Distribution of non-—local softening strain measure for various specimen sizes and
stress—strain curves of Fig. 5.30b using varying characteristic length averaging approach (reference
size 15x 15 mm?, characteristic length according to Eq. 5.8, aggregate density p = 30%)
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(a) (b) () (d)

®

Figure 5.34. Distribution of non-local softening strain measure for various specimen sizes and
stress-strain curves of Fig.5.31a using varying characteristic length averaging approach (reference
size 30x30 mm?, characteristic length according to Eq. 5.9, aggregate density p = 30%)



110 Chapter 5. Mesoscopic modelling of strain localization in concrete

(e)

Figure 5.35. Distribution of non-local softening strain measure for various specimen sizes and
stress—strain curves of Fig.5.31b using varying characteristic length averaging approach (reference
size 30x30 mm?, characteristic length according to Eq.5.9, aggregate density p = 30%)
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Figure 5.36. Expected value and standard deviation of fracture energy using standard averaging: (a)
reference size 15x 15 mm?, (b) reference size 3030 mm? (aggregate density p = 30%)






Chapter 6

Macroscopic — mesoscopic modelling of strain
localization

This Chapter describes investigations on strain localization at meso—scale in notched con-
crete beams subjected to quasi—static three point bending. The simulations were carried out
with FEM using isotropic damage constitutive model (with a Rankine failure type criterion
and an exponential softening law) enhanced by a characteristic length of micro—structure by
means of a non—local theory (Eqgs.2.32, 2.37 and 2.42). Concrete was modelled as a random
heterogeneous three—phase material. The effect of the beam size, aggregate distribution,
aggregate density, aggregate shape, aggregate size and characteristic length on the width
and shape of a localized zone and load—displacement curve was numerically investigated.
The numerical results were compared with own laboratory tests results using Digital Image
Correlation (Chapter 3), the tests by Le Béllego et al. (Le Béllego et al. [97]) and the size
effect law by Bazant (BaZant [7]).

If the meso—structure of concrete is taken into account, such FE modelling is connected with
a very large number of finite elements. To practically solve this problem, a macro—meso
connection is used. It is done in a direct way, where a region with strain localization is
considered at the meso—scale and a remaining region at the macro—level using a constitutive
model. Alternatively, a computational homogenization is made using a multi-scale approach
(Gitman et al. [67], Geers et al. [61], Kaczmarczyk et al. [85]). In this approach, the
macro—meso connection is used as a constitutive equation on the macro—level. Thus, instead
of an explicit formulation of the stress—strain relation, the data from the meso—level is taken
into account. The idea of such technique is as follows: the strain from the macro—level goes
in the form of boundary conditions to the meso—level, where a heterogeneous material be-
haviour is modelled, after which the reaction forces to boundary conditions are transformed
by means of a homogenization technique (by changing the macro—level constitutive tangent
stiffness) as stresses back to the macro—level. Different models for concrete can be used at
meso—scale, e.g. discrete (interface element models (Carol et al. [33]), lattice approaches
(Kozicki and Tejchman [95]), discrete element models DEM (Donze at al. [50])) or contin-
uum models (with cohesive elements (Kaczmarczyk et al. [85]), enhanced by a characteristic
length of micro—structure (Gitman et al. [67]) or using discontinuities (Belytschko et al.
[20, 19])).

The combined macro—mesoscopic simulations are similar to a multi—scale approach using
a Coupled Volume method where the size of a macro—element equals the size of a meso—cell
(to avoid the assumption of any size of RVE) (Gitman et al. [67]). However, they are
significantly faster because there is no need to move from one to another level.
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6.1. Input data

Two—dimensional numerical simulations of experiments with notched concrete beams
subjected to quasi—static three—point bending (Fig. 3.10) were performed. The deforma-
tion was induced by prescribing a vertical displacement at the mid—point of the beam top.
Concrete on meso—scale was considered as a three—phase material encompassing cement
matrix, aggregate and interfacial transition zones (ITZ) between cement matrix and aggre-
gate (Fig.6.1). Aggregate was randomly distributed in cement matrix according to a sieve
curve. Similarly as in experiments, two different concrete mixes were analysed: sand and
gravel concrete (Fig.3.11). To reduce the number of aggregates in calculations, the size of
inclusions varied from d,,;;, = 0.5 mm up to d,,,, = 3 mm in sand concrete and from d,,;;, = 2
mm up to d,,, = 8 mm in gravel concrete. Aggregate had mainly a circular shape for the
sake of simplicity. The width of ITZs was assumed to be 0.25 mm (Gitman et al. [66]).
Aggregate was generated according to the method given by Eckardt and Konke (Eckardt and
Konke [54]). The aggregate density was p = 30%, p = 45% or p = 60%. The FE-meshes
including 12000-1600000 triangular elements were assumed. The calculations were carried
out with one set of material parameters for usual concrete, which was prescribed to finite
elements corresponding to a specified concrete phase (Tab. 6.1). The interface was assumed
to be the weakest component (Lilliu and van Mier [99], Kozicki and Tejchman [95]). The
size of finite elements was: s, = 0.5 mm (aggregate), s¢;, = 0.5 mm (cement matrix) and
sirz = 0.1 mm (interface).

The following numerical calculation program was assumed. First, three beams of a different
size were modelled to be as totally homogeneous (as one—phase material). Afterwards, a
small-size beam (80x320 mm?) of gravel concrete was modelled: as a partially homoge-
neous and partially heterogeneous with a meso—section in the notch neighbourhood and as
an entirely heterogeneous at meso—scale. The width of a heterogeneous meso—scale section
bys varied between D/2 (40 mm) and D (80 mm) (D — beam height). These analyses allowed
us to determine a representative width of a required heterogeneous region close to the notch.

Next, the effect of different parameters was studied in a small-size beam. Finally, calcu-
lations were carried out with partially heterogeneous beams of a different size to determine
a deterministic size effect.

Figure 6.1. Three—phase concrete in the neighbourhood of the notch: aggregate of round shape,
cement matrix and interfacial transition zones (ITZ)
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Figure 6.2. Calculated and experimental nominal strength 1.5PI/(bD?) versus normalised beam de-

flection u/D (u—beam deflection, D-beam height): (a) FE—results, (b) experiments by Le Bellégo

et al. (Le Bellégo et al. [97]): (1) small-size beam, (2) medium-size beam, (3) large-size beam
(homogeneous one-phase material, /¥ = 2 mm)

Table 6.1. Material properties assumed for FE calculations of concrete beams on meso—scale

Material parameters Inclusions Cement matrix ITZ
Young’s modulus £ [MPa] 40000 35000 20000
Poisson’s ratio v [-] 0.2 0.2 0.2
Crack initiation strain k [-] 0.5 1E4 TE-5
Residual stress level o [-] 0.95 0.95 0.95
Slope of softening 8 [-] 200 200 200

Three—five different stochastic realisations were usually performed for the same case.
The width of the localized zone above the notch in all beams was measured at the deflection
of u = 0.15 mm on the basis of the non-local softening strain measure € (Eq.2.63). As
the cut—off value, §,;, = 0.025 was always assumed at the maximum mid—point value of
Enax = 0.08 —0.13.

6.2. Numerical results

Figure 6.2 presents the numerical results of the nominal strength oy = 1.5PI/(bD?) of
three different concrete beams versus the normalised deflection u/D (P — vertical force, u —
beam deflection, D — beam height, b — beam width, / = 3 x D — beam span) as compared
to laboratory tests by Le Bellégo et al. (Le Bellégo et al. [97]). Concrete was treated as an
entirely homogeneous one—phase material with the following material constants: £ = 38500
MPa, v = 0.2, kp = 1.3 x 1074, a = 0.95, B = 400, lé"’ = 2 mm (where lﬁ,” denotes the
macroscopic characteristic length). Totally, 12000-92000 triangular elements were assumed.
In turn, Fig. 6.3 shows the distribution of a non—local softening strain measure in beams.
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(a)

(b)

(©)

Figure 6.3. Distribution of non-local strain measure above the notch from numerical calculations (at
u/D = 0.005): (a) small-size beam, (b) medium-size beam, (c) large—size beam (homogeneous one
phase material, /Y = 2 mm)

The numerical results of strength are in a satisfactory agreement with tests by Le Bellégo et
al. (Le Bellégo et al. [97]). The deterministic size effect was realistically described (nominal
strength and material ductility increase with decreasing beam size). The width of a localized
zone above the notch is about w, = 6 mm (u/D = 0.0005) and approximately corresponds
to the measured maximum value of w, = 5.5 mm by DIC (Fig.3.17). However, in contrast
to experiments, the calculated localized zones are always straight. Even an assumption of
a stochastic distribution of tensile strength near the notch did not significantly affect their
shape Fig. 6.4 (Bobinski et al. [28]).

Figure 6.5 demonstrates the load—deflection curves obtained for two different aggregate
distributions to determine a realistic width of a meso—scale region close to the notch (to re-
duce computation time). Concrete was treated in a meso—scale as a random three-phase het-
erogeneous material with circularly—shaped aggregate using material constants form Tab.6.1.
In the remaining region, material was homogeneous one—phase material (E = 38500 MPa,
v =0.2, kp=1.3x107% a =0.95, B = 400). The beam size was 80x 320 mm?. The width
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Figure 6.4. Deformed FE mesh for a small-size beam 80 x 320 mm? with random spatially correlated
distribution of tensile strength (Bobiriski et.al [28])
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Figure 6.5. Calculated force—deflection curves for two different random distributions of aggregate in

small-size beam of gravel concrete (dsp = 2 mm, djyqe = 8 mm, /! = 1.5 mm): (a) entirely hetero-

geneous, (b) partially heterogeneous beam with width of meso—scale section of b,,; = 80 mm, (c)
partially heterogeneous beam with width of the meso—scale section of b,,; = 40 mm

of a meso—scale region was b,,; = 40 mm or b,,,; = 80 mm (Fig. 6.6). Totally 65000—-110000
finite elements were assumed. The characteristic length was [" = 1.5 mm and the aggregate
density was p = 30%. An entirely heterogeneous beam with 365000 elements served as the
reference beam. For comparison, a stochastic distribution of aggregate was always the same
in a meso—scale section. Figure 6.7 shows the distribution of a non—local softening parameter
above the notch.

The results show that the effect of the width of the meso—scale region on the results can be
significant if b,,; < D/2 (Figs.6.5B and 6.7B). However, when the width of the meso—scale
region close to the notch equals b,,; = D = 80 mm, the results of forces and strains with
an entirely and a partially heterogeneous beam are similar. In further calculations to save
computational time, a representative meso—scale section was assumed to be always equal to
the beam height b, = D (i.e. 80 mm for a small-size beam, 160 mm for a medium-size
beam and 320 mm for a large—size beam).

The effect of the aggregate distribution on the load—deflection diagram and strain local-
ization is shown in Figs.6.8-6.11 ( beam size 80x320 mm?) with material constants from
Tab.6.1 (/' = 1.5 mm). The aggregate density was p = 30% or p = 45% for sand concrete
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Figure 6.6. FE-mesh used for calculations (small-size beam 80x320 mm?) in the meso—scale region
(bms =D, p = 30%)

(dso = 0.5 mm and d,,,,x = 3 mm) and for gravel concrete (dso = 2 mm and d;;;;x = 8 mm)
respectively.

The load—displacement curves are the same in an almost entire elastic regime independently
of the distribution of inclusions. However, they can be significantly different after the peak
is reached (Figs. 6.8 and 6.10) due to a localized zone propagating between aggregate dis-
tributed at random. The localized zone is always non—symmetric and curved. The width
of the calculated localized zone is approximately w, = (4 x I!) = 6 mm (p = 30%) and
we = (3 xI") =4.5 mm (p = 45%) independently of dsy, what is in agreement with own
experiments (Figs.3.15 and 3.16). Calculated localized zone creates at u/D = 0.0002 and its
width linearly increases during deformation (as in the experiment).

Figures 6.12-6.14 demonstrate the effect of the aggregate size and aggregate density in sand
concrete (dsg = 0.5 mm and d,,,, = 3 mm) and gravel concrete (dso = 2 mm and dy,,c = 8
mm) for a small-size beam (80 x320 mm?) using aggregate density p = 30%, p = 45% and
p =60% (I = 1.5 mm). With increasing maximum aggregate and aggregate density, beam
strength slightly increases (by 10-25%, Fig.6.13). The width of a localized zone does not
depend on the maximum aggregate size d,,,. This outcome is in contrast to statements by
Pijauder—Cabot and Bazant (Pijauder—Cabot and BaZant [136]) and Bazant and Oh (Bazant
and Oh [12]) wherein the width of the localized zone was estimated to be about 3 X d;,4. It is
also in contrast to experimental results by Mihashi and Nomura (Mihashi and Nomura [118])
who have shown that the width of a localized zone in the case of normal concrete increases
with increasing aggregate size. The width of the localized zone is influenced by aggregate
density; the localized zone becomes narrower with increasing aggregate density: w, = 6 mm
at p =30%, w, =4.5 mm at p =45%, w. =3 mm at p = 60%). The calculated results of w,
compare well with the experimental ones (Fig.3.17). This means that a characteristic length
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of micro—structure may be also related to the grain size of cement matrix. The shape of a
localized zone is affected by dsg (djqx) and p (in particular for p = 60%).

The effect of the aggregate shape in a small—size beam (80x 320 mm?) of sand (dso = 0.5 mm
and d,,,,, = 3 mm) and gravel concrete (d5o = 2 mm and d,,,,, = 8 mm) is shown in Figs.6.15
and 6.17 (p =30%, p =45%, p = 60%, [" = 1.5 mm). The results with circular—shaped and
angular—shaped aggregate (Fig. 6.16) are compared. The beam strength is slightly higher for
beams with angular—shape aggregate (up to 10%), Fig.6.15. However, the shape of the local-
ized zone and material softening are significantly affected by the aggregate shape (Fig.6.17).

The effect of the characteristic length of micro—structure on the load—deflection diagram
and strain localization is shown in Figs. 6.18-6.21 using the same stochastic distribution
of aggregate. Figures 6.18 and 6.20 demonstrate the influence of /. on the evolution of
load—deflection curves for two different mixes: sand concrete (dsg = 0.5 mm and d;;q = 3
mm) with aggregate density p = 30%, and gravel concrete (dso = 2 mm and d;;;x = 8 mm)
with aggregate density p = 45%, respectively.

In turn, Figs.6.19 and 6.21 present the distribution of a non—local softening strain mea-
sure above the notch for various /. changing between 0.1 mm and 5.0 mm. With increasing
characteristic length, both beam strength and width of the localized zone obviously increase.
The material softening decreases and material becomes more ductile. A pronounced de-
terministic size effect occurs. The localized zone propagating in a cement matrix between
aggregate grains is strongly curved at [' = 0.1 — 2.5 mm, whereas it becomes more straight
at I > 2.5 mm. The width of the localized zone, w. = (3 —4) x I! = 4.5 — 6.0 mm with
I"=1.5mm and p =30—45%, (I"' = 0.5 X dyyqx for sand concrete and I = 0.2 X dq, for
gravel concrete). is in good accordance with the experimental width of the localized zone on
the surface of notched beams (3.5-5.5 mm, Fig.3.17).

The effect of the beam size is presented in Figs. 6.22 and 6.23. Figure 6.22 shows the numer-
ical results of the nominal strength oy = 1.5PI/(bD?) versus the normalised deflection u/D
for three different concrete beams compared to tests by Le Bellégo et al. (Le Bellégo et al.
[97]). Concrete was treated as a one—phase material with a heterogeneous three—phase close
to the notch (b,,,; = D) with material constants from Tab. 6.1. The following amount of finite
elements was used: 110000 (small-size beam), 420000 (medium—size beam) and 1600000
(large—size beam). In turn, Fig. 6.23 presents the distribution of non—local softening strain
measure in beams. The calculations were carried out with gravel concrete dy,;,x = 8 mm,
aggregate density p = 30% and characteristic length /! = 1.5 mm.

The results are in a satisfactory agreement with tests by Le Bellégo et al. (Le Bellégo et
al. [97]). The deterministic size effect is realistically modelled in calculations. The width of
the localized zone above the notch at /D = 0.0005 is 6 mm for all beam sizes. The localized
zone propagating between aggregate is always strongly curved, what satisfactory reflects the
experimental results (Figs.3.15 and 3.16).

Figure 6.24 shows a comparison between the measured and calculated size effect for con-
crete beams. In addition, the results of a deterministic size effect law by Bazant (BaZant
and Planas [16], BaZant [7]) are enclosed (which is valid for structures with pre—existing
notches) (Eq.3.5).
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(a)

(b)
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Figure 6.7. Calculated distribution of non—local strain measure above the notch (small-size beam

80x320 mm, /" = 1.5 mm) for gravel concrete (dso = 2 mm, d,,,x = 8 mm): (a) entirely heteroge-

neous beam, (b) partially heterogeneous beam with width of meso—scale section of b,,,; = 80 mm, (c)
partially heterogeneous beam with width of the meso—scale section of b,,,; = 40 mm
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Figure 6.8. Calculated load—deflection curves for two concrete mixes and three random distributions
of aggregate (curves (a), (b), (c)) in a small-size beam 80x320 mm? (" = 1.5 mm, p =30%): (A)
sand concrete (dso = 0.5 mm, d,,,,, = 3 mm), (B) gravel concrete (dso = 2 mm, dy,sx = 8 mm)
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Figure 6.9. Calculated distribution of non—local strain measure for various concrete mixes and three

random distributions of aggregate: (a), (b), (c) in small-size beam corresponding to load—deflection

curves of Fig. 6.8 (I! = 1.5 mm, p = 30%): (A) sand concrete (dso = 0.5 mm, djqx = 3 mm), (B)
gravel concrete (dsg = 2 mm, d,qx = 8 mm)
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Figure 6.10. Calculated load—deflection curves for two concrete mixes and three random distributions
of aggregate (curves (a), (b), (c)) in a small-size beam 80x320 mm? (' =1.5mm, p =45%): (A)
sand concrete (dso = 0.5 mm, d,,,,, = 3 mm), (B) gravel concrete (dso = 2 mm, d;,;x = 8§ mm)
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Figure 6.11. Calculated distribution of non—local strain measure for various concrete mixes and three

random distributions of aggregate: (a), (b), (c) in small-size beam corresponding to load—deflection

curves of Fig.6.10 (I = 1.5 mm, p = 45%): (A) sand concrete (dso = 0.5 mm, dyyqe = 3 mm), (B)
gravel concrete (dsg = 2 mm, d,x = 8 mm)
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Figure 6.12. Calculated load—deflection curves for different aggregate densities (small-size beam
80320 mm?): (A) p =30%, (B) p =45%, (C) p = 60%, (a) sand concrete (dso = 0.5 mm, d,5r = 3
mm), (b) gravel concrete (dso = 2 mm, djqr = 8 mm)
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Figure 6.13. Calculated load—deflection curves (small-size beam 80x320 mm?): (A) sand concrete
(dso = 0.5 mm, d,;;;, = 3 mm), (B) gravel concrete (dsp = 2 mm, d,.x = 8 mm), (a) p = 30%, (b)
p =45%, (c) p =60%
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Figure 6.14. Calculated distribution of non—local strain measure for different aggregate densities
(small-size beam 80x320 mm?): (a) p =30%, (b) p =45%, (c) p = 60% , (A) sand concrete
(dso = 0.5 mm, d,,,r = 3 mm), (B) gravel concrete (dso = 2 mm, d,q = 8 mm)
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Figure 6.15. Calculated load—deflection diagrams (small—size beam 80x320 mm?): (a) aggregate of
circular shape, (b) aggregate of angular shape for different aggregate densities: (A) p = 30%, (B)
p =45%, (C) p =60% (I! = 1.5 mm)
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Figure 6.16. Shape of aggregate used in calculations (p = 30%): (a) circular aggregate, (b) angular
aggregate
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(a)
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(c)

(A) (B)

Figure 6.17. Calculated distribution of non-local strain measure above notch (small-size beam
80x320 mm?): (A) aggregate of circular shape, (B) aggregates of angular shape, (a) p = 30%, (b)
p =45%, (c) p =60% (I, = 1.5 mm)
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Figure 6.18. Calculated load—deflection curves for different characteristic lengths: (a) /! = 0.1 mm,
(b) I =0.5mm, (¢c) I =1.5mm, (d) I' =2.5 mm, (e) [" = 5.0mm (small-size beam 80x320 mm?,
sand concrete dsg = 0.5 mm, d,,;x = 3 mm, aggregate density p = 30%)
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Figure 6.19. Calculated distribution of non—local strain measure for different characteristic lengths:
(@) I =0.1 mm, (b) [’ =0.5 mm, (c) [ = 1.5 mm, (d) I" =2.5 mm, (e) I =5.0mm (small-size
beam 80x320 mm?, sand concrete dsy = 0.5 mm, d,,.c = 3 mm, aggregate density p = 30%)
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Figure 6.20. Calculated load—deflection curves for different characteristic lengths: (a) " = 0.5 mm,
(b) I = 1.5 mm, (c) I =2.5 mm, (d) I" =5.0mm (small-size beam 80x320 mm?, gravel concrete
dso = 2 mm, d,,;, = 8 mm, aggregate density p = 45%)
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Figure 6.21. Calculated distribution of non—local strain measure for different characteristic lengths:
(@) I =0.5mm, (b) [ = 1.5 mm, (c) [} =2.5 mm, (d) I/ =5.0mm (small-size beam 80x320 mm?,
gravel concrete dsop = 2 mm, dpq = 8 mm, aggregate density p = 45%)
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To find the parameters B and Dy, a non-linear least squares Marquardt—Lavenberg algo-
rithm was used. The experimental and theoretical beam strength shows a strong parabolic
size dependence. The experimental and numerical results match quite well the size effect
law by Bazant (BaZant and Planas [16]).
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Figure 6.22. Calculated nominal strength 1.5P/(bD?) versus normalised beam deflection u/D (u —

beam deflection, D — beam height): (A) FE—results, (B) experiments by Le Bellégo et al. (Le Bellégo

et al. [97]): (1) small-size beam, (2) medium-size beam, 3) large—size beam (three—phase random
heterogeneous material close to notch b,,; = D, p = 30%, [!' = 1.5 mm)

6.3. Conclusions

A meso—scale numerical model was used in this Chapter to analyse strain localization in
concrete. The following conclusions can be drawn:

— material micro—structure on meso—scale has to be taken into account in calculations of
strain localization to obtain a proper shape of a localized zone,

— the calculated strength, width and geometry of localized zones are in a satisfactory agree-
ment with experimental measurements when the characteristic length is about [[" = 1.5
mm,

— the width of the localized zone above the notch is about 2 —4 x [". It increases with
decreasing aggregate density from 2 x [ (p = 60%), up to 4 x [I" (p = 30%). It in-
creases also with increasing characteristic length. It is not affected by the aggregate size,
aggregate roughness and beam height,

— beam strength increases with increasing characteristic length, aggregate density and ag-
gregate roughness and decreasing beam height. It depends also on the aggregate distri-
bution,

— material softening is strongly influenced by the characteristic length, aggregate density,
aggregate roughness and beam height,

— the localized zone above the notch is strongly curved with /! = 1.0 — 2.5 mm,

— the characteristic length of micro—structure is probably related to the grain size of cement
matrix
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(a)
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Figure 6.23. Calculated distribution of non—local strain measure above the notch from numerical
calculations (at u/D = 0.0005): (a) small-size beam, (b) medium-size beam, (c) large—size beam
(three—phase random heterogeneous material close to notch b, = D, p = 30%, [[! = 1.5 mm)
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Figure 6.24. Calculated and measured size effect in nominal strength 1.5P!/(bD?) versus beam

height D for concrete beams of a similar geometry (small-, medium—and large—size beam): (a)

own laboratory experiments, (b) own FE—calculations (homogeneous one—phase material), (c) own

FE—calculations (heterogeneous material close to the notch b,,; = D), (d) size effect law by BaZant
(BaZant [7]), (e) experiments by Le Bellégo et al. (Le Bellégo et al. [97])
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The calculation time using PC with Duo Processor E6320 and 3.5 GB RAM was:

146556 seconds (the entire beam considered at the meso—scale with approximately 350000

elements),
6340 seconds (the beam considered at the macro—meso scale with approximately 80000

elements),
30 seconds (the entire beam considered at the macro—scale with approximately 1000

elements).






Chapter 7

Final conclusions and future work

The following conclusions can be derived from the experiments with notched concrete

beams with a different geometry:

The Digital Image Correlation technique is a very effective optical technique to determine
the displacement field on the surface of concrete with a high accuracy and without any
physical contact with the surface.

The width of a localized zone on the concrete surface of notched beams does not depend
on the beam dimensions and concrete mix. Its maximum size (on the concrete surface)
lies between 3.5 mm and 5.5 mm (on the basis of experimental results obtained using
DIC technique). It means that the characteristic length of micro—structure /. may not
always be related to the aggregate size. It can be supposed that /. may be more related to
the aggregate spacing or cement particle size than to the aggregate size.

The nominal strength of notched concrete beams during three—point bending increases
with decreasing beam height and beam span.

The following conclusions can be derived from FE calculations with notched concrete beams
with a different geometry:

An isotropic continuum damage model with non—local softening is able to capture the
mechanism of evolution of strain localization in concrete elements during tension and
bending treated as a heterogeneous three—phase material.

The results of FE simulations under tensile loading of softening quasi—brittle materials
with a heterogeneous three—phase structure revealed that the Representative Volume El-
ement (RVE) cannot be defined in quasi-brittle materials as concrete with a standard
averaging approach (over the entire domain) due to occurrence of a localized zone which
width is not scaled with the specimen size. The shape of stress—strain curve depends on
the unit cell size beyond the elastic region. This fact has to be taken into account when
using a multi—scale approach to maintain the objectivity of results with respect to a cell
size.

The representative volume element (RVE) can be defined in quasi-brittle materials using
both alternative averaging methods like: a failure zone averaging approach and a vary-
ing characteristic length approach. In the first case, the averaging is performed in the
damage domain and in the second case, a characteristic length is scaled with the speci-
men size. The size of a two—dimensional statistically representative volume element is
approximately equal to 15 x 15mm?. Two novel methods allow to determine a size of
the so—called representative volume element (RVE) which is one of the most important
parameters in homogenization—based multi—scale models. Investigations of the existence
and size determination of the RVE also proved that with increasing characteristic length
of micro—structure /., both material strength and width of a localized zone grow but
material softening decreases.

The localized zone can be strongly curved with a small /., the width of the localized
zone increases with decreasing aggregate density. The material micro—structure on the
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meso—scale has to be taken into account in calculations of strain localization to obtain a
proper shape.
— The calculated strength, width and geometry of localized zones are in a satisfactory
agreement with experimental measurements when a characteristic length is about ' =
1.5 mm. The width of the localized zone above the notch is about 2 —4 x [* and it in-
creases with decreasing aggregate density from 2 x [" (p = 60%), up to 4 x I (p =30%).
It also increases with increasing characteristic length but it is not affected by the ag-
gregate size, aggregate roughness and beam height. The beam strength increases with
increasing characteristic length, aggregate density, aggregate roughness and decreasing
beam height. It also depends on the aggregate distribution. Material softening is strongly
influenced by the characteristic length, aggregate density, aggregate roughness and beam
height.
The research work will be continued. The laboratory tests will be performed with notched
and unnotched concrete beams subjected to three—point bending using mixes with different
density, size, shape and roughness of aggregate and size of cement particles. In experiments,
the crack mouth opening displacement (CMOD) will be controlled to capture material brit-
tleness after the peak. To determine the width of a localized zone inside beams, elastic waves
will also be used (Skarzyriski et el. [150]).

The size of the Representative Volume Element (RVE) in concrete under mixed—mode failure
conditions using two alternative non—standard averaging strategies will be numerically stud-
ied with concrete as a random heterogeneous material composed of three phases: aggregate,
cement matrix and bond.

The 3D mesoscopic analyses will be performed for beams to capture more realistically
micro-structure of concrete and a related size effect. The effect of aggregate roughness,
shape and size and the effect of the grain size in cement matrix will be also analysed to
identify a characteristic length of micro—structure. The full aggregate distribution curve will
be implemented.

To numerically capture a continuous—discontinuous character of failure, continuum crack
models with non—local softening will be initially connected with cohesive elements (Bo-
biriski and Tejchman [27]) and later with strong discontinuities (Oliver et al. [126]).

Finally, a two—scale approach will be used with mesoscopic RVE elements in integration
points. Alternatively, both scales will be linked by means of a Coupled Volume multi—scale
approach, where the size of a macro—element equals the size of a meso—cell (to avoid the
assumption of any size of RVE).
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Streszczenie

Praca doktorska przedstawia wyniki badan lokalizacji odksztalcen w betonie. Zrozu-
mienie mechanizmu powstawania stref lokalizacji jest niezwykle wazne, poniewaz sa one
prekursorami ostatecznego zarysowania i zniszczenia betonowych elementéw. Realistyczny
opis szerokosci i rozstawu stref lokalizacji jest istotny do okreSlenia wytrzymatosci materi-
alu w wierzchotku i w obszarze pokrytycznym aby zapewnié bezpieczenstwo konstrukcjom
inzynierskim.

Doswiadczenia laboratoryjne zostaty przeprowadzone w celu okreSlenia szerokosci 1 ksz-
tattu strefy lokalizacji na powierzchni nacigtych belek betonowych podczas quasi—statycznego
trzypunktowego zginania. Do pomiaru dwuwymiarowych przemieszczen na powierzchni
belek zastosowano bezinwazyjna metodg¢ cyfrowej korelacji obrazéw. W dos§wiadczeniach
przyjeto belki o réznej geometrii.

Obliczenia numeryczne wykonano metoda elementéw skoniczonych na poziomie skali
makro, mezo oraz makro—mezo dla elementéw betonowych i zelbetowych. Do opisu lokaliza-
cji odksztalcen na poziomie skali makro, w dtugich belkach betonowych podczas zniszcenia
od rozciagania i1 krétkich belkach zbrojonych podczas zniszczenia od Scinania, uzyto trzech
réznych ciagtych modeli konstytutywnych dla betonu: sprezysto-plastycznego z izotropowym
wzmocnieniem i1 ostabieniem (z kryterium Druckera—Pragera w $ciskaniu i kryterium Rank-
ine’a w rozciaganiu), izotropowego modelu z degradacja sztywnosci z jednym skalarem
zniszczenia 1 anizotropowego modelu rysy rozmytej z rysami nieobrotowymi 1 rysa obra-
cajaca si¢. Dla wlasciwego opisu lokalizacji odksztatcen, modele ciagle zostaty rozszerzone
o dlugos$¢ charakterystyczna mikrostruktury przy zastosowaniu teorii nielokalnej. W ten
sposéb rozpatrywane problemy brzegowe byly matematycznie dobrze postawione.

Mezoskopowe obliczenia metoda elementéw skonczonych wykonano dla elementu beto-
nowego podczas jednoosiowego rozciggania. Beton zostat opisany jako stochastyczny niejed-
norodny materiat trzyfazowy skladajacy si¢ z cementu, kruszywa i stref kontaktu pomigdzy
cementem a kruszywem. Zastosowano izotropowy model z degradacja sztywnosci i nielokalnym
ostabieniem. Analizowano koncept reprezentatywnego objetosciowego elementu w betonie
przy uzyciu standardowej metody usredniania. Dodatkowo, zaproponowano dwie alternaty-
wne niestandardowe metody usredniania do okreslenia reprezentatywnego objgtosciowego
elementu w betonie podczas jednoosiowego rozciagania.

Na zakoniczenie wykonano obszerne obliczenia MES przy zasosowaniu potaczonego
podejscia makro—mezoskopowego dla betonowych belek zginanych. Do obliczerh ponownie
zastosowano izotropowy model z degradacja sztywnosci i nielokalnym ostabieniem. Zbadano
numerycznie wptyw wymiaru belek, rozktadu kruszywa, zageszczenia kruszywa, ksztattu
kruszywa i dtugosci charakterystycznej na szerokoSc¢ i ksztalt strefy lokalizacji oraz krzywa
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obcigzenie—przemieszczenie. Obliczenia makro—mezoskopowe byly zgodne z wynikami
wlasnych do§wiadczen laboratoryjnych.
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