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Abstract – In the paper, the authors propose a novel control strategy of torque ripple on hybrid vehicle. 
The combustion engine ripple's are reduced by using an active filter and an AC machine which is 
mounted on the crankshaft to generate on inverse torque sequence. The control strategy is based on a 
multi-objectives state feedback synthesis. A complete modelling of the hybrid propulsion of the vehicle is 
achieved. Simulation results highlight the interest of the control scheme. 
 
 
1. Introduction 
In recent years, noise and vibration of automotive engines is becoming an integral part of the 
design process. Torque ripple, especially at low speeds is still one of the important source of 
vibration. This torque ripple comes from internal combustion engine nature and produces 
undesirable acoustic noise. Until now, only passive solutions are used to reduce these ripple.  

Active filtering of torque ripple reduces torque pulsation and thus provides an original way of 
overcoming the related problem. This technique requires an actuator coupled with the internal 
combustion engine. In the case of a hybrid vehicle, one has an actuator allowing the active 
compensation of the torque ripple. A permanent magnetic synchronous machine replace the 
flywheel that is normally used to smooth the oscillation torque of the internal combustion 
engine.  

This paper is organized as follows. Section 2 gives the mathematical modeling of the system. 
Section 3 deals with the state feedback design controller. The controller is obtained using 
Linear Matrix Inequalities framework. Simulation results are presented in section 4. 
 
 
2. Mathematical modeling 
 
2.1 Principle 

The system is depicted on figure 1. 
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Fig. 1. Principle 
 

The permanent magnetic synchronous machine is coupled to the internal combustion engine 
from the crankshaft. 

Active filter is made of parts of an inverter, a LC passive filter and a permanent synchronous 
machine (fig. 2). 
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Fig. 2. Active filter 
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Voltage outputs of the inverter present high frequencies components, inherent in the 
technology of the power electronics. These high frequencies components are found partly on 
the torque of the electric actuator. To eliminate them, a LC passive electrical filter is inserted 
between the inverter and the electrical motor. To avoid an useless dissipation of energy, the 
filter has no damping resistor, and tends to destabilize the system. One of the roles of the 
control laws will be to inhibit the damping between the passive filter capacitor and the 
equivalent reactance of the machine. 
 
2.2 System modeling in dq frame  

Denoting by  and  the direct and inverse rotation matrices, and assuming that 
, the direct and inverse Park transforms are defined as: 
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From (1), and denoting by ω , voltages and currents in capacitors are given by θ=&
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In the same way, voltages and currents in the self are given by 
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In the dq frame, the permanent magnetic synchronous machine equations are given by 
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The electrical equations of the active filter are as follows: 
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From (2) and (3), the active filter dynamics are described by: 
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2.3 Combustion engine modeling  

The mechanical model of a four cylinder combustion engine is given by: 
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where  denotes the torque generated by the pressure in the kpkC th cylinder, C  is the torque 
generated by oscillating masses and connecting rods,  is the opposite torque of the 
synchronous machine, and  is the exogenous load torque. Mathematical models are given 
by : 
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where  and π+θ=θ kk 0 ( ) ( )kmk sinsin θλ−=ϕ . ( )
kr

P θ  is the upward thrust on the kth stroke. 

l
r 0=m =λ  where l  is the length of the connecting rods and m.1 m.r 290=  the course of the 

stroke.  represents the mass of the connecting rods and  the mass of 
the stroke. 
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Figure 3: inertial torque (dotted lines), torque and total torque of the combustion engine 

1i
C

1p
C

 
 
3. Controller design 
As previously mentioned, the control purpose is to minimize the oscillation torque of the 
combustion engine, that is composed of two components  and C .  is a high-

amplitude torque generates by the gas combustion. Due to its large magnitude, it is not 
suitable to be countered by the active filter.  is a low-amplitude torque that cause 
vibrations in the vehicle. These vibrations ought to be eliminated by proper opposite torque.  
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Figure 4 presents a synoptic of the control strategy : 
 

∑ref

∑

)(K

e

ref
x

x
0

u

ref
u

0

 
Figure 4: Control structure 
 
Here  denotes the controller to be designed. The state space representation of  the 
system is derived from (4) : 
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where  is the state vector, [ qldlqdqd
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We assume that each coefficient  is real-time computable and it ranges between known 
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Note that the reference model has the same structure than the system and can be expressed as 
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The state feedback matrix is given by 
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4. Numerical results 
In the following section, the control law is applied to the simulation model. The parameters of 
the combustion engine are based on a 90 kW Diesel engine. The reference speed is fixed to 
1900 rpm. The currently injected fuel mass determines the energy release during the next 
stroke of the engine. The parameters of the electrical actuator are based on a 40 kW 
permanent magnetic synchronous machine.  

The control laws is applied to the combustion engine. The speed ω  ranges between known 
extremal values ω , and the variation rate is limited by known upper and 
lower bounds 
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Coefficients  are given by : iα
 

minmax

max)t(
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ω
−ω=α1         and    12 1 α−=α  

 

and the state feedback matrix is given by (12) where 2111 1 L)(L)(L α−+α=α   and  
.  2111 1 X)(X)(X α−+α=α

The electrical actuator generates a zero mean inverse torque to compensate the torque ripples 
of the engine (fig. 5). 
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Fig. 5:  Inertial torque (black solid lines), counter torque (red dashdot lines), resulting torque (black dotted lines), 
initial torque (blue dashed lines) in N.m for s/rad200=ω , versus θ .  
 
 
5. Conclusion 
In this paper, we present a novel control strategy of torque ripple on hybrid vehicle. A zero 
mean inverse torque is generated by an AC machine to compensate the ripples. The control 
law is based on a state feedback, which is well suited for electrical drive. A LMI framework is 
used to synthesis the controller. Simulation results show the interest of this approach.  
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