
GDAŃSK UNIVERSITY OF TECHNOLOGY

Faculty of Electronics,
Telecommunications and Informatics

Piotr Piotrowski

Knowledge Views and their application
in systems engineering

PhD Dissertation

Supervisor:

prof. Krzysztof Goczy la
Faculty of Electronics,

Telecommunications and Informatics
Gdansk University of Technology

Gdańsk, 2010

Simplicity does not precede complexity, but follows it.

“Epigrams in Programming” by Alan J. Perlis

Contents

1 Introduction 7
1.1 The rationale . 7
1.2 Goals and the thesis proposition 8
1.3 Thesis structure . 9
1.4 Assumptions, notations and abbreviations 10

1.4.1 Assumptions . 10
1.4.2 Notations and abbreviations 10

2 State of the art 13
2.1 Interoperability, standards and interchangeability 13

2.1.1 Interoperability . 13
2.1.2 Standards and interchangeability 17

2.2 Common ontology description languages 19
2.2.1 Entity-relationship model 20
2.2.2 Unified Modelling Language 21
2.2.3 Web Ontology Language 23

2.3 Views and information integration 24
2.3.1 Views . 24
2.3.2 Information integration 25

2.4 Existing technologies . 26
2.4.1 Java Persistence API 26
2.4.2 LINQ . 27
2.4.3 JXPath . 27
2.4.4 ActiveRDF . 27
2.4.5 Jastor . 28
2.4.6 Summary . 28

3 Knowledge Views 29
3.1 The Knowledge View concept 29
3.2 Model mapping . 32

3.2.1 Ontology-relational mapping 33

3

3.2.2 Ontology-object mapping 36
3.2.3 Query language mapping 39

3.3 Model transformation . 39
3.3.1 Transformation language 42
3.3.2 Transformation example 44

3.4 Knowledge sources . 46
3.5 General architecture . 47

3.5.1 The application layer 49
3.5.2 The views layer . 49
3.5.3 The Knowledge View layer 50
3.5.4 The adaptor layer . 50
3.5.5 The information sources 50

4 Case studies and experiments 53
4.1 Simulation with the Knowledge Views 53

4.1.1 Ontology . 54
4.1.2 Reasoning . 60
4.1.3 Application . 60
4.1.4 Knowledge engineer vs software engineer 68

4.2 Compatibility . 71
4.2.1 Compatibility with information sources 72
4.2.2 Compatibility with applications 72

4.3 Gradual introduction of knowledge bases 74
4.3.1 The classic approach 75
4.3.2 The Knowledge Views approach 76
4.3.3 Summary . 78

4.4 Ease of use experiments . 79
4.4.1 Seasoned software engineers 79
4.4.2 Students . 83

5 The Knowledge Views implementation 85
5.1 Knowledge Views core . 85

5.1.1 The Knowledge Views tools 86
5.1.2 Reasoning . 89
5.1.3 Ontology merging . 90
5.1.4 eXtended NeeK language (xNeeK) 91

5.2 Data Views . 94
5.2.1 DataView class . 94
5.2.2 DriverManager . 95
5.2.3 Materialised vs. non-materialised views 95

5.3 Object Views . 97

4

5.4 RDF Views . 99
5.5 DL Views . 102

6 Summary 103
6.1 Pros and cons of the proposed solution 105
6.2 Future work . 105

List of Figures 107

List of Tables 109

List of Listings 111

Bibliography 113

A Ease of use experiment 1 123
A.1 Description . 123
A.2 Object View API . 124
A.3 Jena API . 124

B Ease of use experiment 2 125
B.1 Description . 127
B.2 Data Views . 127
B.3 Object Views . 128

C xNeeK specification 129
C.1 Notation convention . 129
C.2 Root elements . 129
C.3 Types . 129

C.3.1 View . 129
C.3.2 RuleSetPair . 130
C.3.3 RuleSet . 131
C.3.4 ConceptRule . 132
C.3.5 RoleRule . 133
C.3.6 AttributeRule . 134
C.3.7 ConceptAtom . 135
C.3.8 RoleAtom . 136
C.3.9 AttributeAtom . 136
C.3.10 BuiltinAtom . 137
C.3.11 AtomicConcept . 138
C.3.12 NotConcept . 138
C.3.13 AndConcept . 139

5

C.3.14 OrConcept . 140
C.3.15 ExistsRoleConcept . 141
C.3.16 AtomicRole . 141
C.3.17 AtomicAttribute . 142
C.3.18 Individual . 142
C.3.19 Value . 143
C.3.20 BuiltinType . 143

D Knowledge Views Javadocs 145
D.1 Package pl.gda.pg.km.kv . 145

D.1.1 Interface ABox . 145
D.1.2 Interface TBox . 150
D.1.3 Interface KnowledgeBase 153
D.1.4 Class ABoxView . 153
D.1.5 Class InferencingKnowledgeView 154
D.1.6 Class KnowledgeView 154
D.1.7 Class MemoryABox . 155
D.1.8 Class MergedABox . 156
D.1.9 Class QueryEngine . 156
D.1.10 Class ViewFactory . 159
D.1.11 Class TBoxView . 160

E Object Views Javadocs 163
E.1 Package pl.gda.pg.km.ov . 163

E.1.1 Class ObjectViewGenerator 163
E.1.2 Class ObjectViewManager 164

E.2 Package pl.gda.pg.km.ov.annotation 167
E.2.1 Annotation Attribute 167
E.2.2 Annotation Concept 167
E.2.3 Annotation Role . 168
E.2.4 Annotation Uri . 168

F RDF Views Javadocs 169
F.1 Package pl.gda.pg.km.rv . 169

F.1.1 Class RDFView . 169

G Data Views Javadocs 173

Streszczenie 175

6

Chapter 1

Introduction

1.1 The rationale

There is a growing interest in Semantic Web technologies [100], however their
adoption in the IT industry is still poor. Semantic Web technologies are still
attributed more to the academia rather than to the industry. Nevertheless
some big companies like Hewlett-Packard (involved in developing Jena [52])
or Oracle (support for storage and query of semantic content is included in
Oracle 11g Database [71]) have already invested in the semantic technologies.

There is a number of reasons why semantic technologies are still more of
a novelty. For one thing, introduction of new technologies is always risky—
companies usually act according to the old adage:

If it isn’t broken, don’t fix it.

This is the reason why old technologies are so prevailing, which leads to the
need for mixing new and legacy technologies.

The high risk is also the result of lack of standards. There are some
existing Semantic Web standards proposed by W3C, for example RDF [56,
62, 47], SPARQL [91] or OWL [83, 66] and OWL 2 [101], however that is
only the beginning. These standards are being developed slowly, for example
SPARQL, the query language for RDF, was standardised 4 years after RDF
and some submissions are still pending, for example SWRL [48], whose status
did not change since year 2004.

Another reason for slow adoption of semantic technologies is the scepti-
cism and lack of knowledge about those technologies on the part of software
developers. Experience gained during the author’s work in the PIPS (Person-
alised Information Platform for Life and Heath Services [89]) project funded
by the European Commission under the Framework 6 call showed that soft-
ware developers are not eager to learn semantic technologies, which are not

7

yet mature and therefore prone to changes. Moreover, talking with software
engineers on various occasions, including scientific conferences, confirmed the
lack of knowledge and scepticism already mentioned. This creates a deadlock:
semantic technologies are not used, because they are not mature and they
are not mature, because they are not used (there is little feedback).

In both cases the introduction of a layer between semantic tools and tra-
ditional components could be a remedy. This layer would hide semantic tech-
nologies providing standard interfaces commonly used in systems engineering.
First of all that would increase compatibility between different technologies,
in some cases those technologies could even become interchangeable. This
would allow gradual introduction of new technologies and decrease the risk
involved in adopting them. Secondly developers would deal with interfaces
they are already familiar with and know how to use. The layer on top of
semantic technologies would allow developers to test them without investing
much time into learning new APIs. This approach is evolutionary rather than
revolutionary, which can positively influence adoption of semantic technolo-
gies in the industry.

Apart from the mere mapping of the models behind the technologies there
is also a need for model transformation. The experience from the PIPS project
showed that the data schema defined by ontologies created by knowledge
engineers were often not appropriate for direct use in the business logic of
the applications. Some transformations of the data schema were required to
cope with differences between the ontology model and the required object or
relational model.

There are different opinions about Semantic Web ideals [3]. Some of scep-
tical opinions state that the vision is too far fetched [63], however some of
the technologies developed within the Semantic Web initiative will in time
become more common. This is the reason why this work focuses on the in-
troduction of knowledge bases into contemporary systems, which is in the
author’s opinion achievable in short term. Moreover, the adoption of Se-
mantic Web technologies in information systems may influence their further
advancement.

1.2 Goals and the thesis proposition

The main goals of this work are:

1. To define mappings of the ontology model to models commonly used in
contemporary information systems, like object model, relational model
and RDF;

8

2. To define a set of transformations for the ontology model which al-
lows adjusting a given model to the needs of the business logic of an
application using it.

Achieving these goals contribute to proving the following thesis proposition:

The Knowledge Views, which hide the ontology model
and provide models commonly used in systems engineer-
ing, allow easy usage of knowledge bases as information
sources in contemporary information systems.

1.3 Thesis structure

This thesis is structured into the following chapters:

Chapter 2 contains an overview of the state of the art. It focuses on areas
related to component integration, in particular on interoperability and
interchangeability as well as the role of standards in component integra-
tion. Another area covered in this chapter concerns ontology description
languages commonly used in software engineering. Moreover this chap-
ter mentions the role of views in information integration. Finally, a
selection of tools that influenced the proposed solution is described.

Chapter 3 constitutes the main contribution of this thesis. In particular it
introduces the notion of the Knowledge Views. It defines mappings of
ontological model to relational and object models. Moreover it intro-
duces transformation language that allows users to adjust the models
to their needs. This chapter discuses compatibility of Knowledge Views
with legacy information sources. Lastly it presents the general archi-
tecture of the proposed solution.

Chapter 4 describes case studies that present how the Knowledge Views
work. Additionally, this chapter presents the results of the experiments
performed to evaluate the proposed solution. This chapter focuses on
proving the thesis proposition.

Chapter 5 describes details of the implementation of the Knowledge Views
that was done to test feasibility of the proposed solution. The imple-
mentation was used in the case studies and experiments described in
Chapter 4.

Chapter 6 summarises the work and outlines possibilities of future work
that would enhance the Knowledge Views idea.

9

Appendices A and B contain materials used during experiments described
in Chapter 4.

Appendix C contains the specification of the xNeeK language that was cre-
ated as part of this work. This language is used to define Knowledge
Views in a declarative manner. xNeeK includes the transformation lan-
guage described in Chapters 3 and 5.

Appendix D contains Javadoc documentation of Knowledge Views library.

Appendix E contains Javadoc documentation of Object Views library.

Appendix F contains Javadoc documentation of RDF Views library.

1.4 Assumptions, notations and abbreviations

1.4.1 Assumptions

This thesis refers to description logic (DL) and its notation as defined in [4].
If not stated otherwise, the terms ontology and ontology model refer to de-
scription logic with addition of Horn rules as in SWRL [48].

1.4.2 Notations and abbreviations

> universal concept (Top)

C u D intersection of concepts

C t D union of concepts

∃r.C existential quantification

∀r.C value restriction

≤ nr.C qualified at-most n restriction

r ◦ s role chain

C v D concept subsumption

C(i) concept assertion

r(s, o) role or attribute assertion

DL Description Logic

10

ERD Entity-Relationship Diagram

ERM Entity-Relationship Model

JDBC Java Database Connectivity

J2EE Java 2 Platform, Enterprise Edition (before version 5)

JEE Java Platform, Enterprise Edition (starting from version 5)

JPA Java Persistence API

MOF Meta Object Facility

OQL Object Query Language

OWL Web Ontology Language

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SWRL Semantic Web Rule Language

UML Unified Modelling Language

11

12

Chapter 2

State of the art

Many domains have influenced the work on the Knowledge Views and the
choice of approaches. In this chapter some of the ideas or technologies that
have had the most significant impact are shortly described. This includes
introduction to interoperability, ontology description languages, data inte-
gration and a few of the existing technologies.

2.1 Interoperability, standards and interchange-

ability

When integrating different components into systems there are some issues to
be considered. Among other they include interoperability of the components,
existing standards, but also whether several components that are candidates
for performing some function are interchangeable.

2.1.1 Interoperability

Interoperability is one of the most important characteristics that make soft-
ware components easy to integrate with each other. It means there is no need
to adjust the components to enable them to work with each other. IEEE de-
fined interoperability as [49]:

The ability of two or more systems or components to exchange
information and to use the information that has been exchanged.

This definition states that the components need to be able to use the ex-
changed information. This does not mean that the components need to “un-
derstand” the information the same way. For example, let us assume a waiter
in a restaurant is asked to describe a dish and he says it is spicy. One person

13

at the table might interpret this information as “this dish may be tasty”, be-
cause that person likes spicy food. Another person at the table might interpret
this as “this dish is not tasty”, because that person does not like spicy food.
These interpretations are opposite, but nevertheless both customers success-
fully used the information. This observation is important since it is assumed
in this work that components exchange information only, the interpretation
of the information depends on the receiver.

Creating interoperable components

Interoperability requires taking care of many details on each abstraction level.
A low level example is the endianness problem that still haunts programmers
when exchanging binary information, for example IPv4 uses big endian con-
vention, while little endian is used in x86 processor architecture. Another
example is when writing an application in an assembly language, to call
a library function one has to know its application binary interface (ABI).
This includes knowing how to pass arguments. There is a number of ways a
function can receive arguments. This depends on the processor architecture
and the programming language. Happily this has been standardised and au-
tomated. In higher level programming languages the details mentioned are
taken care of by the compiler. On the level of the high level programming lan-
guages what is important is to know the application programming interface
(API), that is what functions or classes are available, what arguments and
in which order should be passed to functions or methods, etc. In concurrent
computing inter-process communication (IPC) is what matters. Once again
there are many ways two processes can communicate with each other, for
example through a file, shared memory, a pipeline, etc. In distributed com-
puting message passing is used. On top of message passing remote procedure
call (RPC) is implemented. Again there are many implementations of RPC
depending on the technology and some that are technology independent, like
CORBA [74, 75, 76] or SOAP based RPC [69]. As can be seen interoperability
cannot be taken for granted.

When creating a new component programmers find themselves on one of
the mentioned abstraction levels. Any given level usually hides problems and
choices of the levels below, nevertheless any given level also provides its own
choices. For example, when writing a component that provides some meth-
ods for remote clients, one can choose CORBA to implement RPC, newer
SOAP or some other technology. The choice is not that obvious since ev-
ery technology has its strengths and weaknesses. Developers have to consider
what clients will use the component, what technology is used by those clients,
whether the component will be used in a real-time system, etc. Sometimes

14

Figure 2.1: Database boundaries

a technically superior form of communication can be replaced by a more
popular one, because more popular is almost by definition more interopera-
ble. There are no universal guidelines on choosing a communication method,
however as a rule of thumb using standard solutions instead of in-house ones
increases interoperability.

Interoperability and database systems

Together with the SPARQL language [91] the SPARQL Protocol [18] has
been defined. WSDL [10] is used to describe the protocol, which means the
SPARQL compatible RDF stores are Web Services. This definition exactly
specifies how a SPARQL query is encoded and sent through the Internet—the
specification contains some examples of messages that are sent.

In database systems the situation is different: communication is not stan-
dardised, only programming interfaces are. SQL is just a language, therefore
it covers only one part of the cited interoperability definition—it is still un-
known how to pass the SQL statement. As a remedy, the Open Database
Connectivity (ODBC) standard has been devised and in case of Java the
Java Database Connectivity (JDBC). These are just APIs, that is a program-
mer knows what functions or methods to call and knows nothing of what is
done behind the scenes. Behind the scenes is a driver that implements the
API and translates the calls of the individual methods to messages sent to
the database server. The messages are sent using a vendor specific protocol.
They can be sent over the Internet or passed to a server on the same ma-
chine via some inter-process communication form. There might not even be
a separate server process, as is in case of embedded databases. Notice that
the driver is actually an integral part of the database system rather than
the client (see Fig. 2.1). This is true even though in most cases the client
and the database server reside on separate machines and it is the client that
embeds the driver. The standardised API is the border between the client
and the database. Communication between the client and the server is de-
fined in terms of method calls, while communication between the driver and

15

Figure 2.2: RDF storage boundaries

the server is an internal matter. In SPARQL, on the other hand, the border
between systems is the network connection (see Fig. 2.2)—SPARQL protocol
is optimised for remote calls and is suboptimal in embedded uses.

Making components interoperable

In the nowadays very popular Service Oriented Architecture (SOA) [53] in-
teroperability is a must. It is often the case that a new application is created
with SOA in mind from the very beginning. However, there is much legacy
software in use that cannot be easily abandoned and that was built before the
age of Web Services, SOAP, REST [26], etc. What should be done with such
software? How to integrate it well with technologically newer components,
that is how to make those components interoperable? Even in the Web Ser-
vices world there are incompatibilities, for example there are the mentioned
SOAP-based as well as RESTful Web Services. This hinders interoperabil-
ity. In all of these cases into play come such ideas as: wrappers, adaptors,
converters, drivers, etc. They are not limited to software engineering, but
are also used in other fields, for instance electrical engineering: transformers,
voltage converters, rectifiers, socket/plug adaptors. The devices mentioned
cope with incompatibilities of electric current like voltage, type (AC/DC) or
differences in socket/plug shapes.

To make legacy components interoperable three design patterns are com-
monly used. These are: adaptors, converters and drivers.

Adaptors Adaptor design pattern [19] is a well known design pattern in
software engineering. It is simple, but simplicity is a virtue, because it needs
to be implemented quite often. This pattern produces a layer on top of some
component or in other words wraps the component, hence its alternate name:
wrapper. Thanks to this pattern the wrapped component seems like a differ-
ent one with different API, but similar function.

Converters Converters work on the data level, that is they change the
message passed between components. This complements the adaptor func-
tion which focuses mainly on how to pass the message. Often adaptors make

16

no sense without converters, therefore adaptors might embed converters. Con-
verters can make such small changes like byte order, that is endianness, or
can translate one sophisticated format to another.

Drivers Drivers provide an abstraction layer on top of some device or
database. This layer hides some proprietary interface and provides a stan-
dardised one, therefore could be considered a special case of an adaptor.
The difference is that the driver can be considered a part of the underlying
component (see Fig. 2.1) and is usually created by the component vendor.

2.1.2 Standards and interchangeability

Apart from interoperability there is another feature that is very important
in component-based development. It is interchangeability, that is the ability
for two components to be exchanged without additional work. The ability
to substitute one implementation with another is addressed by some design
patterns, for example the bridge pattern [19]. Interchangeability becomes
more and more important in modern software engineering, since developers
want to have the freedom of choosing and changing the component’s vendor
with little or no cost.

There is a lot of software with the same or similar functionality. When
writing software that uses some third party library one has to choose the
vendor. Unfortunately it is often the case that different vendors provide in-
compatible interfaces. What if we want to support several vendors and to be
able to switch between them? This can be useful when for example one im-
plementation is characterised by predictable processing time, while another
is faster on average, which may mean the first one is suitable for real-time
systems the other is better in other uses. To support two or more implemen-
tations of some function with incompatible interfaces our component would
need specialised communication code for every supported implementation
(see Fig. 2.3). This may be inconvenient and costly to maintain. This is why
standards are so important—by unifying interfaces they make components
interchangeable (see Fig. 2.4).

If supporting multiple vendors is impossible or impractical, standards can
reduce the risk of choosing a particular vendor, because, if the quality of the
chosen implementation does not fulfil user’s requirements anymore, the ven-
dor can be easily changed. Unfortunately, the process of creating a good
standard is lengthy. Usually many different vendors propose their solutions.
With the usage of those proprietary solutions their strengths and weaknesses
become apparent and in time the best features of different solutions are com-
bined in a single one that eventually becomes the standard. In the meantime

17

Figure 2.3: Interoperability in the absence of standardised interfaces

Figure 2.4: Standards and interchangeability

18

users can choose one of those solutions with the risk that it will cease to be
supported. It is helpful if the new solutions are backward compatible with
some already existing standard, which ensures a backup solution. An example
of this approach is the AMD64 technology [1] which became widely adopted
mainly because it was backward compatible rather than superior to its rivals.
This backward compatibility allowed the usage of old tools and knowledge,
and allowed gradual movement towards exploiting new capabilities.

2.2 Common ontology description languages

There are many definitions of an ontology in computer science. One of the
often cited is [12]:

An ontology is a formal specification of a shared conceptualiza-
tion.

However for this thesis a more appropriate is an earlier and more general
one [45]:

An ontology is an explicit specification of a conceptualization.

The reason for choosing this definition is the lack of the keyword “shared”.
Much emphasis is put on consensus and therefore reuse of ontologies. But is it
really critical? Certainly it is good if some work can be reused, which software
engineers are well aware of. Nevertheless they also know that sometimes, and
not so rarely, there is a need for a very specialised piece of software that is
unsuitable for reusing. Not mentioning that creating a good reusable compo-
nent requires much more effort than creating a specialised one, therefore it is
not always economically justified to create components that can be reused.
The same goes for hardware, for example central processing units (CPUs)
versus graphics processing units (GPUs)—CPUs are more general, whereas
GPUs are more specialised, but for the time being they outperform CPUs
in certain tasks. Therefore, why not employ the same principal in ontology
engineering: reusable ontologies are the ultimate goal, but let us acknowledge
the existence and value of the specialised ones. There are top (foundational)
ontologies [65] and domain ontologies (for example medical ontologies [72]),
but there are also application ontologies that may [50] or may not be based
on either one.

In this section the focus is placed on languages that are already commonly
used in software engineering for modelling. Those languages can be called
ontology description languages. However they are used for creating rather
specialised models dedicated to solving some particular problems and also
may contain certain details that are technology dependent.

19

Figure 2.5: A sample entity-relationship diagram

2.2.1 Entity-relationship model

The entity-relationship model (ERM) [17] is one of the most commonly used
world description methods in software engineering. It is hard to imagine a
software engineer that does not know it. The reason for this is that nowadays
relational databases are present in the majority of applications either as stand
alone servers or as embedded libraries. Over the years ERM, together with
transition rules of ERM to relational model, proved to be very convenient for
designing database schemata. One of the ERM’s advantages is its simplicity
and ability to visualise a model via an entity-relationship diagram (ERD).

Let us look at an example. Fig. 2.5 shows a simple entity-relationship
diagram. There are three entity sets: Human, Child and Woman. Human
has two attributes: id and age. Both Child and Woman inherit from Human.
Moreover there is a relationship between those two entity sets called has-
Mother. This relationship has some constraints. For one thing every Child
has a single mother from the Woman entity set, while a Woman can have
any number of children, including none.

After creating an entity-relationship diagram, the next step, while de-
signing a relational database schema, would be to translate the ERM to the
relational model. One possible outcome is as follows:

Human(id, age)
Woman(id REF Human)

Child(id REF Human, hasMother REF Woman)

id ∈ integer
age ∈ integer

(2.1)

The translation can be done by strictly obeying some simple rules, however
there is some information added that was not present on the ERD. The added
information are the domains of the attributes.

20

Listing 2.1: A sample database schema

CREATE TABLE Human
(id INTEGER PRIMARY KEY, age INTEGER) ;

CREATE TABLE Woman
(id INTEGER PRIMARY KEY REFERENCES Human) ;

CREATE TABLE Child
(id INTEGER PRIMARY KEY REFERENCES Human,

hasMother INTEGER NOT NULL REFERENCES Woman) ;

The last step is to produce the source code in SQL that creates a database
whose schema conforms to the original ERD. The code is presented in List-
ing 2.1. Each of the three notations (Fig. 2.5, (2.1) and Listing 2.1) represent
the same model or in other words describe the same part of reality, but their
uses are different, for example ERD is human readable, while SQL is machine
readable.

2.2.2 Unified Modelling Language

Unified Modelling Language (UML) [77, 78] is widely used in object-oriented
software design. There is some criticism of UML misuse [7, 8], as well as UML
itself (even in the form of a satire [67]). Nevertheless, nowadays virtually any
software engineer knows at least the basics of UML. Even though UML covers
both static as well as dynamic aspects of the object model, this section focuses
on the static aspect, more precisely on the class diagram. The purpose of such
narrowing is to cover only the part corresponding to the ERM or description
logic, which lacks behaviour.

The model from Fig. 2.5 can also be presented as an UML class diagram
(see Fig. 2.6) and source code (see Listing 2.2). Notice the difference between
the ERD and UML diagram: there is no id attribute in the UML version.
The attribute being the primary key in relational model is no longer needed
in the object model, because every object has identity—even two objects of
the same class with the same content can be distinguished. However, the id
attribute can be useful to distinguish objects in case of distributed systems,
when the object is passed through value between various systems. This is a
technical issue rather than the shortcoming of the ideal object model. Even
though there are some differences between relational and object models the
two can be mapped to each other. The mapping is not always one-to-one,
but can be useful in a wide range of use cases.

21

Figure 2.6: A sample class diagram

Listing 2.2: A sample Java implementation

public class Human {
private int hasAge ;

}

public class Child extends Human {
private Woman hasMother ;

}

public class Woman extends Human {
}

22

Listing 2.3: Sample OWL 2 ontology

Prefix(:=<http :// a . b . c/ sampleOntology#>)
Ontology(<http :// a . b . c/ sampleOntology>

Annotation (r d f s : l a b e l ”Sample OWL 2 onto logy ”)

SubClassOf (: Human owl : Thing)
FunctionalDataProperty (: hasAge)
DataPropertyDomain (: hasAge a :Human)
DataPropertyRange (: hasAge xsd : i n t e g e r)

SubClassOf (:Woman :Human)

SubClassOf (: Child :Human)
FunctionalObjectProperty (: hasMother)
ObjectPropertyDomain (: hasMother : Child)
ObjectPropertyRange (: hasMother :Woman)
SubClassOf (: Child ObjectMinCardinality (1 : hasMother))

)

2.2.3 Web Ontology Language

Web Ontology Language (OWL) [66, 101] is not as widely known by software
engineers, but it has been adopted by the Semantic Web community and
standardised by W3C. As opposed to the ERM and UML this language is
said to be “semantic”.

The same model as in the previous two cases can also be expressed in
OWL. Listing 2.3 shows the model in OWL 2 functional style syntax [70].
There is a variety of syntax for OWL, therefore this example can be rewritten
in several ways. The syntax chosen for this example is among the more hu-
man readable ones. Tools usually use the RDF/XML based syntax, which is
practically unreadable by a human even for small ontologies. OWL contains
a lot of syntactic sugar constructs. The same ontology as a description logic

23

(DL) axiom set looks as follows:

∃hasAge.> v Human
> v ∀hasAge.integer
> v ≤ 1hasAge.>

Woman v Human
Child v Human

∃hasMother.> v Child
> v ∀hasMother.Woman
> v ≤ 1hasMother.>

Child v ∃hasMother.>

(2.2)

Notice that in the OWL model the id attribute has been omitted as well.
OWL adopted the convention of using IRIs [23] as identifiers. However two
different IRIs can still denote the same individual.

2.3 Views and information integration

The Knowledge Views are strongly influenced by the concept of views in
general. Because of some properties of views, the Knowledge Views gained
the ability to integrate information, therefore a few words on the information
integration issue are also in place.

2.3.1 Views

The concept of views is well known to any software engineer familiar with
contemporary databases. The main idea is to define a virtual object (a table
in case of relational databases) in terms of other existing or virtual objects.
In relational databases the definition of the new virtual table is encoded as a
query. In object-oriented programming such patterns as adaptor or facade [19]
can also be considered views, because those patterns define new interfaces
(APIs) in terms of existing ones. New virtual objects are created because
existing ones are for some reasons inappropriate. However, views can also
be used for hiding existing objects. For example in databases hiding some
information can be required for security reasons. In programming hiding can
increase loose coupling and thus increase interchangeability of components.
This is a very desirable feature, because one can “tinker” with what is behind
a view without touching the rest of the system.

There are two kinds of views: materialised and non-materialised. The dif-
ference is that in materialised views mappings between new and old objects
(a query in case of databases) are evaluated once or from time to time, but

24

not during every request, while in non-materialised views the evaluation is
performed on every access. These two approaches to views have different
properties. In general materialised views tend to become stale quickly, that
is they do not contain up-to-date data, while non-materialised views tend
to be less efficient. This trade-off has to be taken into account when choos-
ing between those two approaches. However, from the user’s point of view
those views should not be distinguishable—if they are they no longer are
interchangeable.

2.3.2 Information integration

The concept of views has also its application in information integration where
one schema is defined in terms of another. Two common approaches are:
Local-as-View (LaV) [60, 99] and Global-as-View (GaV) [16, 99].

In LaV approach the information sources to be integrated are treated as
if they were views on the global information schema. This requires a complex
algorithm [59] that rewrites the queries to the global schema in terms of the
local schemata/views. The advantage of this approach is the ease of adding
new sources, because the only thing to do is to define the mapping for the
new source.

The GaV approach differs from LaV in that the global schema is treated
as the view, which is defined in terms of local schemata. This seems to be
more intuitive and has the advantage of simple query rewriting, since it only
requires execution of mappings. A disadvantage attributed to GaV is that
adding new information sources may cause the need of changing mediators
that are responsible for communicating with the sources and combining in-
formation from them.

Let us consider the following example. There is a global (target) schema t
containing one predicate: t:uncle(x, y). There are also two information sources
s1 and s2. The first one contains only one predicate: s1:uncle(x, y). The other
contains two predicates: s2:uncle(x, y) and s2:parent(x, y). In LaV approach
the mappings would look as follows:

s1:uncle(x, y) ← t:uncle(x, y)
s2:uncle(x, y) ← t:uncle(x, y)

(2.3)

In GaV the mappings are:

t:uncle(x, y) ← s1:uncle(x, y)
t:uncle(x, y) ← s2:uncle(x, y)

(2.4)

So far both approaches look very similar. Now let us add a new source s3
that contains a single predicate: s3:brother(x, y). In GaV only one additional

25

rule is needed to take advantage of the new information:

t:uncle(x, z) ← s2:parent(y, z) ∧ s3:brother(x, y) (2.5)

This rule states that x is an t:uncle of z if y is a s2:parent of z and x is a
s3:brother of y. How about LaV? We know that every t:uncle is someone’s
s3:brother, but it is not enough, because there is no way of knowing whose
s3:brother is the t:uncle. It turns out that to take advantage of the third
source in LaV the target schema needs to be changed and changing the
target schema can have further consequences.

The above example proves that the amount of work needed to add a new
source does not necessarily depend on the direction of the mappings alone,
but other factors have to be considered as well. For example the design of
mediators can be a factor here.

Apart from the two approaches presented, there are also other solutions,
for example GLaV [28] or BGLaV [102]. Moreover, there is some effort to
employ ontologies in the integration process, for example [64].

2.4 Existing technologies

There is a number of technologies that employ ideas similar to those pro-
posed in this thesis. Only the more prominent of the technologies are shortly
described below to outline their advantages that influenced the solution pro-
posed in this thesis, as well as disadvantages which should be overcome.

2.4.1 Java Persistence API

Java Persistence API (JPA) [20] is a standard that provides a way of querying
a relational database as if it were an object database. The main advantage
of such a solution is that querying from an object-oriented programming
language is easier than by using JDBC [2] directly, which is a low level access
method. There are several factors that cause this. For one thing a wrapper
like JPA hides the impedance mismatch between relational databases and
object-oriented programming languages. However, a more important cause
for this solution’s success is that using JPA requires significantly less code
than using JDBC. This means that there is less code to write, less code to
maintain and less place for bugs. This even outweighs the penalty caused
by the performance hit that an additional layer produces. JPA is dedicated
for relational databases, but the idea can be easily expanded to other data
sources.

26

2.4.2 LINQ

LINQ [68] is the Microsoft’s response to JPA. As it is a newer technology,
it provides some new features compared to JPA. The most significant is the
ability to query various data sources. They include relational databases, XML
files, object collections, etc. The uniform way of accessing various types of
storage causes those types to be interchangeable and therefore allows more
flexibility in software development.

Another feature that LINQ introduces is the embedding of the query lan-
guage into the programming language. This is supposed to make querying
even easier, but it requires the solution’s author to have full control over
the programming language and can cause the language to become overcom-
plicated. If too much syntactic sugar is introduced, the programmer has to
invest more effort into learning fully the language used.

2.4.3 JXPath

JXPath [54] is a library that allows querying object trees complying to Java
Beans guidelines using XPath [9] query language. It is an example of using
a query language that was devised for querying one model, here XML, to
query another model, here the object model. This solution is based on the
fact that object trees can be easily mapped to XML. It is not a complete
solution for querying object storages, but can be useful when using a fully-
fledged database is an excess, while handwritten code traversing the object
trees would overcomplicate things.

2.4.4 ActiveRDF

ActiveRDF [79, 80] is a library that provides object-oriented API to RDF
storages by mapping RDFS [13] to the object model. It is written in Ruby
programming language. The language choice is not incidental, because this
library uses some features, for example dynamic typing, that are not common
to all object-oriented programming languages. This makes the solution not
universal, for example it cannot be applied in commonly used statically typed
languages like Java or C++. In C#, another popular programming language,
the dynamic typing has only recently started to be introduced. ActiveRDF
also uses some other language features that are not common. The author of
ActiveRDF discards a group of commonly used languages as not suitable for
dealing with RDF. ActiveRDF addresses the problem of convenient access
to RDF storages from object-oriented programming languages, however the
solution is applicable only to a small group of languages omitting statically

27

typed languages that are still more widely used.

2.4.5 Jastor

Jastor [51] is a library that generates Java classes that implement mapping
of OWL to Java based on the ideas from [55]. The mapping proposed in [55]
is to some extent similar to the ontology-object mapping in this thesis (see
Section 3.2.2). For example both mapping propositions map OWL classes
to interfaces with accessors corresponding to OWL properties (roles and at-
tributes in DL nomenclature). There are, however, some crucial differences
between the two mapping propositions. The most notable difference is that
in [55] some OWL property restrictions are encoded as Java code that val-
idates values of properties whenever they change. There are several reasons
why no such thing is done in the solution proposed in this thesis. First of
all the validating code duplicates logic present in the knowledge base un-
derneath. Moreover, in some complex cases validation cannot be performed
on every property change, since consistency can depend on combined values
of several properties—several property changes might require treating them
as an atomic operation. These are just some of the reasons why proposition
from [55] was not adopted in this thesis. The Jastor library itself has yet an-
other significant shortcoming—the classes generated from an OWL ontology
are tightly coupled with the Jena library [52] and cannot be used with any
other knowledge base.

2.4.6 Summary

From the technologies presented above both ActiveRDF and Jastor have
similar purpose to the Knowledge Views, that is to provide a convenient way
to access knowledge bases. However both have significant shortcomings that
limit their application: ActiveRDF is tied to Ruby programming language
and cannot be applied in Java or C++, Jastor is tied to Jena as the underlying
knowledge base. Moreover, they focus only on providing an object-oriented
interface to knowledge bases. The Knowledge Views on the other hand strive
to be more general and more powerful. The Knowledge Views do not rely on
specific language features and they provide more than just an object-oriented
interface. Moreover, the Knowledge Views offer a systems engineer powerful
and flexible transformation and modularisation capabilities. Some of ideas
gained from JPA, LINQ and JXPath helped the author in achieving these
goals.

28

Chapter 3

Knowledge Views

The Knowledge Views role is to help in the integration of Semantic Web
technologies with traditional technologies used in contemporary information
systems. The two most important aspects of the Knowledge Views are model
mapping and model transformation. However, what is also important is the
architecture that defines how individual elements should work together to
achieve the goals of this thesis.

3.1 The Knowledge View concept

A Knowledge View is an abstraction layer that hides a knowledge source and
provides the information from the source in a different model. The knowledge
source provides knowledge as a description logic ontology. The user can choose
which information is relevant and should be provided by the view. Moreover,
the user may choose to change the schema so that the result better suits
his needs. This is similar to database views where the view’s definition is a
query that may select only some information as well as transform it. The
Knowledge View may provide as a result:

• DL View—a description logic ontology,

• RDF View—an RDF model with RDF triples,

• Object View—an object model with objects,

• Data View—a relational database schema with data.

The concept of views is flexible enough to allow more kinds of models.
A Knowledge View can play a variety of roles. First of all it can be used

to simplify access to a knowledge base. Knowledge bases are not widely used

29

and software engineers are seldom familiar with them. Furthermore, there is
still no single standardised interface provided by various knowledge bases. In
this situation an abstraction layer hiding all these issues and providing a well
known model like an object model can greatly ease the usage of knowledge
bases.

The Knowledge Views can also ease the process of integrating data-
oriented and knowledge-oriented components. For example, if some appli-
cation uses a database as a data source, changing the data source to a knowl-
edge base would only require defining a Data View and no modification of
the application.

The Knowledge Views provide more functionality like data integration,
however, this is rather a side effect of the chosen approach and will be dis-
cussed later.

While developing the Knowledge Views, some assumptions were made.
The first assumption is that each model is created to solve some particular
problem. Since a view is a model, each view is created for a specific pur-
pose. If, for example, an application uses a single knowledge source, but each
component of that application uses it differently, there is a good reason to
create several views, even if information provided by those views overlaps.
This approach promotes modularity.

By providing different models, Knowledge Views define mappings between
the ontological model and the resulting models. In general the mappings are
not one-to-one, i.e. some information can be lost. This is not considered to be
a disadvantage. Each model: relational, object or ontological has been devised
with some particular purpose in mind. As a result the models have different
expressivity. These three models have some common features like the concept
of classes of items, relationships between them and attributes. However, there
are also some important differences. For example, the object model, apart
from the structure, also has behaviour. The relational and ontological models
are both static. In the proposed solution the assumption is that models are
not interchangeable, i.e. each model has its purpose and information is passed
between different models only to allow them to fulfil their purposes. For
instance, in an application each of the models could be used in a different
layer (see Fig. 3.1). The relational model is used in databases, therefore, it
is present in the database layer that stores information and ensures their
efficient retrieval. The knowledge layer provides reasoning capabilities, i.e.
can produce some facts that are not explicitly stored in the database. The
business logic layer written in an object-oriented programming language can
perform some actions based on the facts provided by the knowledge layer.
The presentation layer visualises the results and might not use any of the
previous models. Each layer receives some information from its neighbours,

30

Figure 3.1: Sample layers in an application

but does not have to have full knowledge about the models in the other layers,
which is consistent with the “information hiding” modularisation technique
postulated in [82]. In the proposed solution it is assumed that in run time only
assertions are passed between models, while axioms are only used internally
by the knowledge layer for the sole purpose of reasoning. Since axioms define
the data schema, they are used indirectly during mapping. As a result of
this assumption, the expressivity of the knowledge source, on top of which a
Knowledge View is created, does not influence the view.

This approach can be compared to how people communicate: they pass
information, but how the same information is interpreted and what action it
induces depends on the person receiving the information. For example, the
information that there is fire causes most people to run away from the fire,
but there is a small group of people that head towards the fire and they
are called firemen. In software engineering, especially in multi-tier systems,
it is common that communication between tiers or components is performed
by passing structures or objects with no behaviour. Each tier keeps functions
working on the information passed in such an object separate from it. Putting
all the behaviour from all the tiers using the same data object into that object
would only cause problems with code maintenance, providing no or little
benefit. This may seem contradictory to the object-oriented programing, but
it can also be seen as taking advantage of the best of both worlds.

In the Knowledge Views one-to-one mapping is not considered to be cru-
cial. In model mapping in general, it is possible not to loose any information
while mapping one model to another one. However, this requires the target
model to have expressivity at least equal to the source model’s expressivity.
Creating a super-model that is able to express all information from every
other model would be impractical, because such a model would be too com-
plex to use or even to comprehend. Modelling means neglecting information
that is considered insignificant. If some important information is hard to
represent in a model, this means the model has been chosen inappropriately.

31

Figure 3.2: Mapping process in general

Figure 3.3: Narrowed mapping process

This approach conforms to the following statement [27]:

There is no right or wrong model, merely one that is more useful
for the job at hand.

3.2 Model mapping

Before discussing about model mapping a short clarification of what is meant
under this term is in place. Mapping is a function, therefore model mapping
would be some kind of function that changes one model into another. How-
ever, what exactly is changed? To answer that, different abstraction levels
need to be considered: information level, model level and metamodel level.
In Meta Object Facility (MOF) [73] these levels are called: M0 layer, M1
layer and M2 layer respectively. If we want to change an ontology model to
an object model, changes on the metamodel (M2) level are necessary, since
in an ontology model there are concepts, roles and attributes, while in an
object model there are classes and fields. For example a Cat concept would
change into a Cat class. The lower level (model or M1 level) can also bear
other names: terminology (in ontology model), schema or metadata. On this
level the Cat concept or class could be changed into the Felis catus concept
or class. If one model expresses temperature in ◦C and another in ◦F a change
on the information level (M0) is also necessary.

According to what was said about the three abstraction levels, a gen-
eral notion of model mapping would contain changes on all three levels (see
Fig. 3.2). However, in the proposed solution, the term model mapping has
been narrowed to encompass only changes on the metamodel level (M2) (see
Fig. 3.3).

32

Definition 1 (Model mapping) A model mapping is a function that asso-
ciates entities of the source metamodel with entities of the target metamodel.
Not every entity of the source model needs to have its image in the target
model.

Mappings do not have to preserve all the semantics of the source model.
The target model only takes such information from the source model which is
considered significant. This means that semantics can be lost in the process.
However, some semantics can be added as well, since, depending on the exact
model, some arbitrary assumptions can be made.

The reason for adopting such a solution is simplicity and user friend-
liness. Allowing the mappings to lose some semantic information can make
the mappings simpler, therefore easier to understand and more intuitive. Hav-
ing simple mappings the user can more easily determine the resulting model
knowing the source model. Some additional arbitrary assumptions can be
made in the mappings, to make the mappings more intuitive.

This solution does not seem so entirely unreasonable for anyone who
knows at least two human languages and has seen a movie with subtitles
where the actors spoke one language and subtitles where in another. The
translated dialogues can differ from the original ones and therefore convey
a different message. However, translating everything literally would produce
awkward sentences that sometimes would make no sense.

3.2.1 Ontology-relational mapping

The ontology-relational mapping is a set of rules describing how to represent
a given ontology model as an entity-relationship model:

1. Each concept is represented by a single entity set.

2. Each entity set representing a concept has an attribute being the pri-
mary key that contains the individual’s identity.

3. Each functional role is represented by a many-to-one relationship.

4. Each non-functional role is represented by a many-to-many relation-
ship.

5. Each functional attribute is represented by an attribute in any entity
set representing a concept which is not disjoint with the attribute’s
domain.

33

6. Each non-functional attribute is represented by a single entity set with
two attributes: the identity of the corresponding entity and the value
of the attribute. It is connected to the appropriate entity set with a
many-to-many relationship.

7. The subsumes relationship is represented by a IS A relationship.

The entity-relationship model can be mapped to a relational model in ac-
cordance with the rules commonly used for designing relational databases [29].
The rules allow some freedom of choice, therefore clarification of the chosen
approach is necessary:

1. Many-to-one relationships are represented by a reference on the many
side of the relationship.

2. IS A relationships are represented by a pair of relations: one represent-
ing the more general entity set and the other, having a reference to the
first one, containing only those attributes of the more specific entity set
that are not present in the first relation.

It is important to note that this mapping is not one-to-one. It cannot be
reversed, because some information is lost, for example information on the
disjointness of the concepts from the ontology.

Let us try to create a relational database schema from the ontology (3.1).

Woman v Human
Child v Human

∃hasMother.> v Child
> v ∀hasMother.Woman

∃hasAge.> v Human
> v ∀hasAge.integer

(3.1)

Fig. 3.4 shows the entity-relationship diagram obtained from the source on-
tology according to the specified mapping rules. Listing 3.1 shows the SQL
statements creating the resulting database.

When looking at the resulting model (see Fig. 3.4) one could not help
but notice that a child can have many mothers. The same holds for hasAge.
This is due to the lack of a proper statement in the source ontology. This
does not necessarily mean the source ontology is erroneous, it may as well
mean that such a statement was not necessary in the reasoning process and
therefore was omitted deliberately. It is not always possible or even reasonable
to modify the source model, so there is a need for some means to transform
the model so the results would seem more natural. In this case the resulting

34

Figure 3.4: Ontology (3.1) mapped to ERD

Listing 3.1: Ontology (3.1) mapped to SQL

CREATE TABLE Human
(id VARCHAR(255) PRIMARY KEY) ;

CREATE TABLE Woman
(id VARCHAR(255) PRIMARY KEY REFERENCES Human) ;

CREATE TABLE Child
(id VARCHAR(255) PRIMARY KEY REFERENCES Human) ;

CREATE TABLE HasAge
(id VARCHAR(255) REFERENCES Human, hasAge INTEGER,

PRIMARY KEY (id , hasAge)) ;
CREATE TABLE HasMother

(sub j e c t VARCHAR(255) REFERENCES Child ,
ob j e c t VARCHAR(255) REFERENCES Woman,

PRIMARY KEY (subject , ob j e c t)) ;

35

schema could be simplified by removing HasAge and HasMother tables and
introducing appropriate columns in Human and Child tables. This issue is
addressed in Section 3.3.

3.2.2 Ontology-object mapping

Having the similarities between models as a base, ontology-object mapping
rules can be defined:

1. Each concept is represented by an interface.

2. Each interface representing a concept has a pair of accessors to a value
that plays the role of the object identity (the identity handling issue is
described more thoroughly below).

3. Each functional role is represented by a pair of accessors. The accessors
are present in all the interfaces that belong to the role’s domain. The
type of the accessors is an interface representing the range of the role.

4. Each non-functional role is represented just like a functional one, except
that the type of the accessors is a collection.

5. Each functional attribute is represented like a functional role, except
that the accessors’ type corresponds to the attribute’s type.

6. Each non-functional attribute is represented like a functional one except
that the type of the accessors is a collection.

7. The subsumes relationship is represented by inheritance.

In the object model objects have identities. Similarly in the ontology
model individuals have identities. Why not take advantage of this similar-
ity and map each individual to a single object? There are several problems
with such an approach. First of all, in the lack of unique name assumption
(UNA) [4], two different identifiers in an ontology can refer to the same indi-
vidual. At a certain point in time there might not be enough information to
decide whether two identifiers point to the same individual or not. In the ob-
ject model, on the other hand, we can always decide whether two references
point to the same object or not. Moreover in RDF and OWL identifiers are
global, while in most object-oriented programming languages object identi-
ties are local. Existing object-oriented programming languages are only an
approximation of the ideal object model and restrictions of programming
languages need to be considered. The problem of object identities being local

36

Figure 3.5: Ontology (3.1) mapped to UML

is especially visible in distributed environments. The usual practice to cope
with this problem is just to add an additional field to the object and com-
pare objects by value and not by reference. This is why the ontology-object
mapping requires a pair of accessors for object identity.

Even though the object model supports multiple inheritance, it has been
chosen to use interfaces rather than classes, since some languages, like Java,
support multiple inheritance only through interfaces. Choosing interfaces
leads to another restriction: interfaces cannot have attributes, therefore acces-
sors are used in their place. These assumptions, however, are not important
for the mapping idea and were made only to handle some technical peculiar-
ities in some object-oriented programming languages.

Let us try to create a class diagram from the ontology (3.1) using the
defined mapping rules (see Fig. 3.5). Once it is done, source code of the
interfaces can be generated (see Listing 3.2).

Similarly as it was with ontology-relational mapping, the problem with
the source ontology not containing some information relevant to the target
model manifested itself in the Child having a collection of Mothers.

37

Listing 3.2: Ontology (3.1) mapped to Java

public interface Human {
St r ing get Id () ;
void s e t I d (S t r ing id) ;
java . u t i l . Co l l e c t i on <Integer > getHasAge () ;
void setHasAge (

java . u t i l . Co l l e c t i on <Integer > hasAge) ;
}

public interface Woman extends Human {
St r ing get Id () ;
void s e t I d (S t r ing id) ;

}

public interface Child extends Human {
St r ing get Id () ;
void s e t I d (S t r ing id) ;
java . u t i l . Co l l e c t i on <Woman> getHasMother () ;
void setHasMother (

java . u t i l . Co l l e c t i on <Woman> hasMother) ;
}

38

3.2.3 Query language mapping

In addition to mapping of the models themselves, there is a need to map the
query languages of individual models. For the relational model there is SQL,
for the object model OQL and for RDF SPARQL. A common approach to
query language mapping is to translate query in one language to a corre-
sponding query in another language. Examples of work using this approach
are [103] and [24]. This method cannot be applied in all circumstances. For
example, when query languages have different expressiveness, a single query
in one language might correspond to a series of queries in another language
or exact mapping is impossible altogether.

In this work queries in one language are not translated directly to queries
in another language. Instead, the queries are interpreted. During the inter-
pretation atomic operations are performed on the underlying source. Those
atomic operations evaluate unary and binary predicates, as well as some built-
in predicates for operations like arithmetic comparison. For convenience the
predicates can be grouped into Horn rules. Often a single query cannot be
expresses as a single rule, therefore the results of individual rules are com-
bined using set-theoretic union and intersection. The Knowledge Views can
be placed on top of various knowledge bases, therefore the atomic operations
are translated to the query language of a particular knowledge base. This is
done by an adaptor for the particular knowledge base. It is much easier to
implement a few atomic operations in every new adaptor than to implement
a complete translation library in each adaptor. Thus, the chosen solution fa-
cilitates the addition of new adaptors for new knowledge bases or even other
information sources. Another advantage of this solution is that it does not
require the knowledge base or other information source to support any par-
ticular query language and does not place any requirements on the query
language supported by the source. As a consequence this solution does not
take advantage of advanced query optimisers present in sources like relational
databases. In the chosen approach generality is placed before performance.

3.3 Model transformation

As already pointed out, when mapping one model to another, it might be the
case that source model does not contain some information that is significant
for the target model. Moreover there might be some more differences between
the source model and the one needed by the user. Let us consider the following
example. A car dealer has information about the cars he sells that conform

39

to the following terminology snippet:

Car v ∃hasEngine.Engine
Engine v ∃hasPower.int

(3.2)

He wants to have a web page where the information about the cars is short-
ened to the following:

Car v ∃hasHorsePower.int (3.3)

Assuming the web page is created in some object-oriented technology like
Java, ontology-object mappings might be useful. However, mappings as de-
fined by the Definition 1 do not suffice, since they would only map a Car
to a Car and an Engine to an Engine in another model. The mapping def-
inition does not allow changing the schema. In this example, on the other
hand, the user wishes to change the schema by removing the Engine concept
and introducing hasHorsePower attribute that replaces hasEngine◦hasPower
chain. Moreover, the units of engine power might change from kW to hp and
the value might need recalculation. This is why there is a need for model
transformation in addition to model mapping.

Definition 2 (Model transformation) A model transformation defines en-
tities of the target model (metadata) in terms of entities of the source model
(metadata).

What is important is that model transformation operates on a lower level
than model mapping. In Meta Object Facility [73] terminology model trans-
formation operates on the M1 level, whereas model mapping on the M2 level.
Changes on the model level may require changing data, for instance if source
model expresses power in kW, and target model requires hp.

An example of model transformation can be an SQL query, because it de-
fines a new relation in terms of existing relations. Similarly OQL, apart from
returning existing objects, can also define new objects in terms of existing
ones. This is why these query languages can be treated as transformation
languages. SPARQL, on the other hand, has several types of queries [91].
A SELECT SPARQL query produces a relation from an RDF graph, which
does not fit the model transformation definition. However, a CONSTRUCT
SPARQL query produces an RDF graph from an RDF graph, therefore it
can be used as a transformation language.

The model mapping and the model transformation operate on different
levels and only by combining both of them the desired effect can be achieved.
However, there are two ways to combine these two processes:

40

Figure 3.6: “Mapping first” combination of mapping and transformation

Figure 3.7: “Transformation first” combination of mapping and transforma-
tion

1. Mapping first and then transformation (see Fig. 3.6).

2. Transformation first then mapping (see Fig. 3.7).

For illustration let us assume that an ontology with terminology (3.2) is
our source model, however, developers require the following relational model:

Car(id, hasHorsePower)

id ∈ integer
hasHorsePower ∈ integer

(3.4)

This is the target model. In the “mapping first” approach (see Fig. 3.6) the
first step is mapping, therefore the intermediate model is the relational model
that conforms to the source terminology (3.2):

Car(id, hasEngine REF Engine)
Engine(id, hasPower)

id ∈ integer
hasPower ∈ integer

(3.5)

The second step is transforming (3.5) into (3.4). This can be done with a
single SQL query (see Listing 3.3). As seen in the above example the “map-
ping first” approach has the advantage of reusing existing query languages as
transformation languages. Nevertheless, this approach also has some disad-
vantages.

The most important disadvantage is that often transformation using ex-
isting transformation languages is unidirectional. It means that in general it
is not possible to insert data through the transformation back to the source

41

Listing 3.3: SQL query transforming (3.5) into (3.4)

SELECT Car . id , CAST(haspower /0.73549875 AS INTEGER)
FROM Car , Engine WHERE hasEngine = Engine . id

model. For example, database views might in some cases allow the insert
statement, however in general database views are read-only. SPARQL on the
other hand does not support inserting information into the repository at all.

The second disadvantage is that not every model has its transformation
language. For instance, even though OQL [15] exists, object-oriented pro-
gramming languages usually do not support querying collections of objects,
with the exception of Microsoft’s .NET languages implementing LINQ [68].

The second, “transformation first”, approach (see Fig. 3.7) first performs
transformation and the resulting model is mapped to the target model. Using
the above example, the source model (3.2) would be first transformed into
the intermediate model (3.3) and then mapped to the target model (3.4). The
transformation language used in this case will be discussed in Section 3.3.1.
The first advantage of this approach is that only one transformation language
is needed, since the transformation is performed only on the source model,
which in Knowledge Views is always the ontological model.

This solution is not without flaws—given a source and a target model, it is
not always possible to create a transformation that, combined with mappings,
would produce the desired target model from the source one. However, this
solution seems powerful enough to produce usable models, even if they are
not identical to the desired ones. In this solution it is paramount for the
mappings to be as simple as possible, since the creator of transformations has
to be able to predict how the model after transformation would be further
changed during the mapping process.

The second approach, with the transformation before the mapping, has
been chosen to be used in Knowledge Views. Nevertheless, both solutions had
been tried prior to making the final decision. Incorporating the transforma-
tion into the mapping process had also been considered. It had been rejected,
though, because it made the mappings more complex and that would influ-
ence the ease of use.

3.3.1 Transformation language

The transformation process needs an adequate language. Since the trans-
formation is performed on DL models, the language has to operate on DL
entities: concepts, roles, attributes, individuals and values. In database views

42

a new table, which is a realisation of an entity set, is defined with a query.
In Knowledge Views concepts, roles and attributes, which are interpreted as
sets of entities, are also defined with queries. The query language, which is a
part of the transformation language, is rule-based and it resembles rules in
SWRL [48].

A rule consists of a head and a body. The head is a concept, role or
attribute atom. The body is a conjunction of atoms. Apart from the concept,
role and attribute atoms, the body can also contain built-in atoms. Built-ins
greatly enhance expressivity. Built-ins provide means to perform arithmetic
operations, operations on strings and so on. The set of built-ins can be easily
expanded.

A sample rule:

Adult(i)← (Man tWoman)(i) ∧ hasAge(i, a) ∧ built-in:ge(a, 18) (3.6)

states that a man or a woman with age above or equal to 18 is an adult.
This example shows the usage of built-ins as well as the possibility of using
complex expressions as predicates. Note the difference between the above rule
and the following pair of rules:

Adult(i) ← Man(i) ∧ hasAge(i, a) ∧ built-in:ge(a, 18)
Adult(i) ← Woman(i) ∧ hasAge(i, a) ∧ built-in:ge(a, 18)

(3.7)

All adults derived from (3.7) will be derived from (3.6), but not the other
way round. The reason is that there might be some individuals that are
either a woman or man, but we do not know which one. This shows that the
possibility of using DL expressions as predicates adds some expressivity.

Rules are unidirectional, i.e. they are a description of how to create asser-
tions in the target ontology based on the assertions from the source ontology.
Those assertions can be read, but what if one would like to insert some as-
sertions through the view? When considering rules like:

Person(i)← (Man tWoman)(i) (3.8)

one might think nothing simpler than reversing the rule. However, another
rule:

hasUncle(x, z)← hasFather(x, y) ∧ hasBrother(y, z) (3.9)

might be more problematic. When inserting an assertion

hasUncle(Mary, Ben) (3.10)

variables x and z from the rule are bound, but y is not. A solution would
be to assign a unique random individual id to y. This could be compared to

43

blank nodes in RDF. Let us take into consideration another rule:

hasTotalLength(x, v) ← hasLength1(x, v1) ∧ hasLength2(x, v2)
∧built-in:add(v, v1, v2)

(3.11)

In this example there are infinitely many pairs of v1 and v2 that satisfy the
rule’s body for a given v. However, not every pair is legal since the relationship
between those values is defined by the add built-in.

This is a typical problem when trying to inverse a function that is not
one-to-one. The adopted solution to this problem is to allow the user to
define reverse rules that would create source ontology assertions from the
target ontology assertions. The forward rules work like queries on the source
model, while the reverse rules work like triggers. Nevertheless both sets of
rules are written using the same syntax. The proposed solution’s simplicity
makes it easy to predict the results of inserting an assertion through the view.
However, it does not guarantee that after inserting an assertion, it can be
retrieved afterwards.

The transformation language presented is a part of the Knowledge View
definition language called xNeeK. xNeeK was developed as a part of this
thesis and is further described in Section 5.1.4. A specification of xNeeK is
in Appendix C.

3.3.2 Transformation example

Let us go back to the car dealer example. The dealer has a knowledge source
with information about cars conforming to the following terminology:

Car v ∃hasEngine.Engine
Engine v ∃hasPower.int
Engine v ∃hasCompressionRatio.double

DieselEngine v Engine
PetrolEngine v Engine

Car v ∃hasMaxSpeed.int
Car v ∃hasModelName.string

(3.12)

This is the source model (see Fig. 3.7). This terminology defines four concepts.
The first concept is Car with hasEngine role, hasMaxSpeed attribute and has-
ModelName attribute. The second concept is Engine with hasPower attribute
and hasCompressionRatio attribute. The last two concepts are DieselEngine
and PetrolEngine. They are both types of Engine.

The dealer wants to create an information web page using object-oriented
technology like Java. Information to be presented on the web page does not

44

Figure 3.8: Sample Car class

contain everything present in the source ontology and is stored in a single
class (see Fig. 3.8) that constitutes the target model (see Fig. 3.7).

Having the given terminology and the class diagram of the required classes,
the next step is to determine the terminology that corresponds to the required
object model—the intermediate model (see Fig. 3.7):

∃modelName.> v Car
> v ∀modelName.string
> v ≤ 1modelName.>

∃engineType.> v Car
> v ∀engineType.string
> v ≤ 1engineType.>

∃horsePower.> v Car
> v ∀horsePower.int
> v ≤ 1horsePower.>

∃maxSpeed.> v Car
> v ∀maxSpeed.int
> v ≤ 1maxSpeed.>

(3.13)

In this terminology there are three statements for every attribute in the Car
class. The first statement defines the modelName’s domain, the second defines
the range and the third specifies that the attribute is functional. Similarly
domains and ranges for engineType, horsePower and maxSpeed are defined.
All the attributes are functional.

45

Finally, once the source model and the intermediate model are known,
the transformation between them can be defined:

Car(i) ← Car(i)
modelName(s, o) ← Car(s) ∧ hasModelName(s, o)

engineType(s, ”diesel”) ← Car(s) ∧ hasEngine(s, o)
∧DieselEngine(o)

engineType(s, ”petrol”) ← Car(s) ∧ hasEngine(s, o)
∧PetrolEngine(o)

horsePower(s, o) ← Car(s) ∧ hasEngine(s, e)
∧hasPower(e, p)
∧built-in:mul(o, p, 1.36)

maxSpeed(s, o) ← Car(s) ∧ hasMaxSpeed(s, o)

(3.14)

The first rule just rewrites all cars from one ontology to the other. The second
rule rewrites the model name. The third and fourth rules assign engine type
label. The fifth rule calculates horse power from power in kW, assigning it
to the car instead of the engine. The last rule rewrites max speed attribute.

3.4 Knowledge sources

Knowledge Views are created on top of knowledge sources. But what exactly
is a knowledge source?

Definition 3 (Knowledge source) A knowledge source is a provider of
information together with metadata (terminology). A knowledge source per-
forms reasoning over the existing information.

The terminology from the knowledge source is used during the mapping
process to create the target model. The information is passed through to the
user. However, if the optional transformation step is used, the information is
changed and then passed to the user, but the original terminology is hidden
and only the target terminology of the transformation process is visible. This
makes the original terminology unimportant from the user point of view—it
can always be changed.

Moreover, terminology is only used once during the view creation. It is
assumed that terminology changes infrequently. This assumption is still valid
for most information systems, since neither database schemata nor classes
definitions change very often in a working environment.

This gives some additional possibilities. Instead of a knowledge source
let us consider an information source. An information source differs from a

46

knowledge source in that even though it conforms to some metadata, it does
not necessarily expose it. Furthermore, information source does not perform
reasoning. Transformation process can be used to augment an information
source with an arbitrary terminology. After the transformation, a reasoning
process that uses the added terminology and the transformed information can
be performed. This means that by adding an additional layer on top of in-
formation sources, those information sources can be changed into knowledge
sources. As a consequence Knowledge Views can be created on top of an in-
formation source and not only on top of a knowledge source. The Knowledge
Views have been equipped with capabilities to reason over external informa-
tion sources similar to the capabilities of KL system [42], SDL library [5]
or as described in [25]. These reasoning capabilities of Knowledge Views are
more thoroughly described in Sections 4.1.2 and 5.1.2.

Considering information encoded in the predicate form:

Car(Clio)
hasEngine(Clio, 1.5 dCi 85)

hasPower(1.5 dCi 85, 63)
(3.15)

which takes part in the transformation process, information integration is rel-
atively easy. Information from various sources can be transformed to conform
to a common terminology using the already defined transformation process
and then combined with the union operator. However, the information in-
tegrity is not automatically checked. The integrity can be checked using the
reasoning capabilities and tested by issuing appropriate queries. A complete
integrity check may require reading all information from all the sources and
therefore might not always be feasible.

The capabilities of reasoning over external information sources as well
as information integration are a side effect of the chosen approach rather
than a goal by itself. However, these capabilities allow Knowledge Views
to utilise information scattered across the Internet and stored using various
technologies like knowledge bases, databases or plain HTML pages. This is
very valuable, especially in the era of distributed information systems.

3.5 General architecture

All the described elements of Knowledge Views are combined in the archi-
tecture depicted in Fig. 3.9. It is a layered architecture, where each layer is
responsible for one of the described functions like mapping or transformation.

47

Figure 3.9: Knowledge Views’ architecture

48

3.5.1 The application layer

The upper layer in this architecture are applications. These can be differ-
ent applications, i.e. using different storage types: databases, object storage,
RDF storage, etc. One way for those applications to benefit from reasoning
is to change the storage to a knowledge base. However, one must take into
account the costs and risk of such a change. Changing a storage type in an
application requires modifications in the source code of the application. This
produces cost. Moreover changing anything in a working application comes
with the risk of introducing new errors into the source code. Additional costs
can be caused by the need of developers to familiarise with a new storage
type. One way to mitigate these costs and risk is to use a wrapper on the
knowledge base that provides access to the knowledge base via the interface
already used by the application. This way the storage can be substituted
without any modifications in the application. However, such a change might
not be seamless if the application utilises some vendor specific extensions of
the storage in question. In such a situation even changing the storage to a
storage of the same type, but different vendor, is problematic. These kinds
of problems are not considered an issue, since it is the developer’s conscious
choice to bind the system to vendor specific solutions. The Knowledge Views
can be considered as a wrapper providing the interface already used by the
application, therefore providing means to gradually migrate existing applica-
tions to Semantic Web technologies.

3.5.2 The views layer

The second layer consists of views components. These components are re-
sponsible for providing the appropriate interfaces:

• DataView—SQL,

• ObjectView—OQL,

• RDFView—SPARQL,

• DLView—a DL query language.

This layer is also responsible for the mappings:

• DataView—ontology-relational mapping,

• ObjectView—ontology-object mapping,

• RDFView—encoding DL ontology in RDF,

• DLView—no mapping needed.

49

3.5.3 The Knowledge View layer

The Knowledge View layer is the core of the architecture. It provides the
transformation capabilities used by the upper layer. Moreover, it provides
some reasoning capabilities that allow using external sources which lack them.
This layer can also combine information from various and possibly hetero-
geneous external sources like: knowledge bases, databases, web services, web
pages, etc.

3.5.4 The adaptor layer

The adaptor layer wraps various information sources to provide a common
interface that can be directly used by the Knowledge View layer. This includes
encoding information in a predicate form. An adaptor can do as little as
forwarding a call to the underlying source like a knowledge base adaptor does
or can contain some caching and indexing code that might be required by
an HTML adaptor, since parsing a set of HTML pages during every query is
not reasonable. Moreover, there might be some general configurable adaptors
like a database adaptor, thanks to the standardisation of database systems,
or there might be a need for a separate adaptor for every source, which is the
case with web services, since they only standardise the information exchange
protocol, not the information semantics.

This layer in general is a realisation of the adaptor design pattern [19],
but also uses other related design patterns. The exact selection of techniques
is dependent on the specifics of the source wrapped, but also on some non-
functional requirements like performance requirements.

3.5.5 The information sources

There is a wide variety of information sources throughout the Internet: knowl-
edge bases, databases, HTML pages, sources accessed via web services, etc.
They all have their advantages and disadvantages and it is not possible to
just take all the sources and rewrite all the information to some common for-
mat, for example RDF. Moreover, obsolete technologies have the tendency to
remain in use, even if newer, superior technologies could easily replace them.
Fortran is an example of an over a half century old technology that is still in
use in spite of all the people who wish to forget it. In the seventies Edsger
W. Dijkstra stated [21]:

The sooner we can forget that FORTRAN ever existed, the bet-
ter, for as a vehicle of thought it is no longer adequate: it wastes
our brainpower, and it is too risky and therefore too expensive to

50

use. FORTRAN’S tragic fate has been its wide acceptance, men-
tally chaining thousands and thousands of programmers to our
past mistakes. I pray daily that more of my fellow-programmers
may find the means of freeing themselves from the curse of com-
patibility.

Yet, over thirty more years have passed and Fortran is still widely used,
for example in numerical weather prediction. Therefore, to be successful the
Knowledge Views need to be able to utilise any kind of information source.

The various information sources can be treated as potentially distributed
services providing required information, hence the proposed architecture cor-
responds in a way with the Service Oriented Architecture (SOA) [53]. More-
over, one instance of the Knowledge Views can become a source for another
instance of the Knowledge Views creating a hierarchy, where each layer adds
some value to the overall result. In this way this is also similar to SOA, where
services can use one another.

51

52

Chapter 4

Case studies and experiments

To prove the proposition stated in Chapter 1 case studies were conducted
and some experiments were performed. They focus on showing compatibility
of Knowledge Views with contemporary information systems as well as on
showing the ease of use of the Knowledge Views.

4.1 Simulation with the Knowledge Views

This case study has been inspired by [58]—it shows an example configura-
tion of Knowledge Views components that can be used to simulate malware
spreading throughout a local network. This example focuses on the usage of
the individual components of the Knowledge Views leaving the process of
malware spreading simplified. Nevertheless, this example shows that some
analysis of network vulnerability can be performed at a very low cost using
logic-based tools.

This example assumes there is an information source describing malware.
The malware description contains its requirements, reproduction capabilities
and the ability to install other malware. The information is similar to that
contained on web pages maintained by antivirus software producers. This
information source is considered to be external, i.e. it could be maintained
by some antimalware organisation and is available only as a read-only source
for the Knowledge Views user.

Another information source is the network layout. It contains the infor-
mation about the nodes, i.e. what software is installed on each node and how
the nodes are connected. The connections are defined in terms of the ability
to download or upload files, however this is just a special case of malware
spreading through services running on a node, for example HTTP server or
FTP server. The multiuser nature of contemporary operating systems is not

53

Figure 4.1: The infection ontology

modelled so as not to obscure the example, even though it is crucial for the
computer security. This omission, however, can reflect the common usage of
computers—non-power users often work using the computer’s administrative
account, because they are not aware of the risks or they consider it incon-
venient to use a limited account for non-administrative tasks. The network
layout information source is considered to be internal, i.e. the user has full
control over it.

In this example the role of the Knowledge Views library is to combine the
information sources, reason over them and provide the user application with
a simple interface to access the information.

4.1.1 Ontology

The ontology used in this example is not a simple file loaded to a knowledge
base, but rather a set of modules (see Fig. 4.1) that interact with each other
to produce the illusion of a knowledge base with a single ontology loaded.

This example shows some of the possible applications of the view concept
in ontology creation. There are two information sources given. They are seen
as ABoxes (the malware ABox and the network ABox). Additionally some
custom code that queries other ABoxes is also seen as an ABox (run info
ABox). The network ABox combined with the network rule set is seen as
the network ontology. The malware, network and run info ABoxes together

54

are seen as a single ABox (the infection ABox). Finally the infection ABox
combined with the infection TBox and the infection rule set is seen as a single
ontology (the whole infection ontology) that is used by an application. One
of the main advantages of configuring an ontology using some components
rather than creating one monolithic entity is the ability to change individual
components or even the whole configuration without changing the resulting
ontology or rather the resulting view of the ontology. It is also worth noting
that the information sources are used directly without the need of rewriting
their content—rewriting a whole information source is not always feasible.
Moreover, this approach supports semantic modularity, which can help to
comprehend the created ontology if used properly.

Terminology

The terminology (infection TBox) is provided to the system via an OWL file
which corresponds to the (4.1) DL axiom set. This terminology defines three
concepts: Computer, Malware and Software. A Computer canBrowse another
Computer or canDownloadFrom another Computer. A Malware canRunOn
a Computer. A Computer canUploadTo a Computer. A Malware has at most
one description. A Computer can be endangeredBy a Malware. A Computer
can have Software installed on it, which is denoted by hasInstalled role. A
Malware can install other Malware, which is denoted by hasPayload role. A
Computer can have at most one ip address. A Malware can have at most
one name. A Malware requires particular Software to be able to run on a
Computer. A Malware can represent a particular riskLevel. Once infected a
Computer is a sourceOf Malware.

In this example, the terminology is used to define the data schema visible
by the user rather than to perform reasoning. However, even such a simple
terminology can be used to infer some new facts not explicitly given. For
example, there is no need to state explicitly which individuals belong to the
Software concept—this can be inferred based on the range of hasInstalled
and requires roles.

Rules

In this example the infection rule set defines how malware propagates through-
out network—which computers are endangered by malware and which com-
puters can be used to distribute malware. The rules drive the reasoning pro-

55

Computer v >
Malware v >
Software v >

∃canBrowse.> v Computer
> v ∀canBrowse.Computer

∃canDownloadFrom.> v Computer
> v ∀canDownloadFrom.Computer

∃canRunOn.> v Malware
> v ∀canRunOn.Computer

∃canUploadTo.> v Computer
> v ∀canUploadTo.Computer

∃description.> v Malware
> v ∀description.string
> v ≤ 1description.>

∃endangeredBy.> v Computer
> v ∀endangeredBy.Malware

∃hasInstalled.> v Computer
> v ∀hasInstalled.Software

∃hasPayload.> v Malware
> v ∀hasPayload.Malware

∃ip.> v Computer
> v ∀ip.string
> v ≤ 1ip.>

∃name.> v Malware
> v ∀name.string
> v ≤ 1name.>

∃requires.> v Malware
> v ∀requires.Software

∃riskLevel.> v Malware
> v ∀riskLevel.int
> v ≤ 1riskLevel.>

∃sourceOf.> v Computer
> v ∀sourceOf.Malware

(4.1)

56

cess. The infection rule set consists of the following rules:

sourceOf(internet, m) ← Malware(m)
endangeredBy(c, m) ← canRunOn(m, c) ∧ sourceOf(c, m)
endangeredBy(c, m) ← canRunOn(m, c)

∧canDownloadFrom(c, s) ∧ sourceOf(s, m)
endangeredBy(c, m) ← canRunOn(m, c) ∧ canBrowse(c, s)

∧sourceOf(s, m)
sourceOf(s, m) ← hasPayload(n, m) ∧ endangeredBy(s, n)
sourceOf(s, m) ← canUploadTo(c, s) ∧ sourceOf(c, m)

(4.2)

The first rule states that internet is the sourceOf all Malware. The second
rule states that if a computer c is a sourceOf a malware m that canRunOn on
the computer then the computer is endangeredBy the malware. For example
if a computer runs an FTP server and the malware executable is on the
FTP server then this computer is a sourceOf the malware. If, moreover, the
malware is able to run on this computer then this computer is endangeredBy
it. The third rule states that if a malware m canRunOn a computer c and
the computer canDownloadFrom another computer s which is a sourceOf
the malware m then the computer c is endangeredBy the malware m. The
fourth rule is similar to the third rule. The only difference is that in the
fourth rule a computer c canBrowse computer s, while in the third rule a
computer c canDownloadFrom computer s. The fifth rule states that if a
computer s is endangeredBy malware n and this malware hasPayload in the
form of malware m then the computer s is a sourceOf malware m. The last
rule states that if a computer c is a sourceOf malware m and this computer
canUploadTo a computer s then the computer s also becomes a sourceOf
malware m. These rules can be easily extended to support other means of
malware propagation, for example transmission via USB flash drives.

ABox

The third part of the infection ontology is the infection ABox. This ABox
by itself only merges the three underlying ABoxes: the malware ABox, the
network ABox and the run info ABox. It is introduced solely to combine what
is below it into a single ABox, so the upper layer does not have to explicitly
handle multiple sources, which would unnecessarily complicate the matters.

The malware ABox provides information about malware. In particular it
provides assertions for:

• Malware,

• description,

57

Figure 4.2: Malware database ERD

• hasPayload,

• name

• requires and

• riskLevel

from the (4.1) terminology. This ABox is backed by a relational database
with a schema conforming to the ERD in Fig. 4.2.

The network ABox provides information about computers and connec-
tions between them. This ABox provides assertions for:

• Computer,

• canBrowse,

• canDownloadFrom,

• canUploadTo,

• hasInstalled and

• ip.

This ABox is backed by a relational database with a schema conforming to
the ERD in Fig. 4.3.

The third ABox, the run info ABox, unlike the previous two, is not ma-
terialised in a database. Instead, it is a piece of software that can handle
queries for instances of the canRunOn role. A Malware canRunOn a Com-
puter if all the requirements of the Malware are met by the software installed
on the Computer. The requirements are retrieved from the malware ABox,
while the software installed on a particular Computer are retrieved from the
network ontology. The Knowledge View’s reasoning capabilities are not used

58

Figure 4.3: Network database ERD

to confront the two retrieved sets, because the reasoning is performed un-
der open world assumption (OWA) [4]. As a consequence of this assumption,
during the reasoning process, the requirements of a given Malware are inter-
preted as known requirements with the possibility that there are also some
unknown requirements. This makes it impossible to determine whether all
requirements are met. The custom code, on the other hand, can query the
malware ABox for requirements and assume that the results contain all re-
quirements. Then they can be confronted with the software installed on a
given Computer.

The requirements might not always match exactly the installed software:
for example some malware might require Windows operating system, while
some computer might have Windows Vista installed. Windows Vista is still
a Windows operating system, therefore the requirement is met. However,
the information that Windows Vista is Windows has to be given explicitly.
Moreover Windows Vista Service Pack 2 is both Windows Vista and Windows
operating system and so on. To handle this case the network ontology is
created (see Fig. 4.1). This ontology combines the network ABox with the
network rule set that consists of the following rule:

hasInstalled(c, g) ← hasInstalled(c, s) ∧ is(s, g) (4.3)

The instances of the is role act as a bridge between the network ABox and
the malware ABox. These instances are stored in the network ABox to avoid
creating yet another ABox for a single role, although such a configuration is
also possible.

59

4.1.2 Reasoning

In the ontology configuration presented reasoning is performed by several
components (see Fig. 4.1). The network ontology produces new facts based
on the assertions from network ABox and network rule set. The network
ontology user does not know which of the provided facts were stated explicitly
and which were inferred. Since network ontology is used only as an ABox, it
is seen as a set of assertions. From the user point of view it is not important
where those assertions come from and whether they are materialised in some
underlying source or calculated on demand.

The run info ABox, which is a custom code, also performs reasoning, i.e.
it produces new facts based on some already known. However, this reasoning
does not conform to description logic or Horn logic. Moreover, this reasoning
is performed with closed world assumption (CWA) [4]. This component is
seen as a repository of canRunOn assertions and the fact that those assertions
are inferred on demand, and not stored, is unimportant.

The next component which performs reasoning is the infection TBox.
It performs terminological reasoning only. Again, the implementation is not
important—this can be any existing DL reasoner wrapped to satisfy a certain
interface that can respond to a basic set of terminological queries.

Finally, the infection ontology reasons over the infection ABox using the
infection rule set and infection TBox. The results of this last reasoning are
visible to the user. The user sees this ontology as a single monolithic entity,
whereas in fact it consists of several components that reason over information
from several sources.

The general idea is to provide the user only with the final results presented
as a single view. All details are hidden under the hood, for example different
kinds of reasoning used in various components. All details concerning the
ontology implementation are known only to the knowledge engineer that
created the ontology. All the components can be replaced at any time as
long as they provide the same response to the same queries. This modular
nature of the ontology implementation can help the knowledge engineer in
the ontology creation process.

4.1.3 Application

On top of the ontology a sample application has been built. It draws a graph
representing the computer network (see Fig. 4.4). When a computer is se-
lected a list of malware that endanger that computer is displayed. Selecting
some malware from the list causes the application to display information
about that malware. The application also provides capabilities to edit the

60

Figure 4.4: Sample Object View application

network, however the malware information is read-only.

Usage of the application

First, the application user inserts the URLs of the sources to be used. There
is a possibility of connecting to an existing network layout database or a new
one can be created (see Fig. 4.5). Once the application has connected to the
sources the user can:

• add new computers to the network (see Fig. 4.6),

• edit which software is installed on a computer,

• remove existing computers,

• define new connections between computers,

• remove existing connections,

• see what malware endangers the selected computer,

• see information about malware endangering the selected computer.

The application displays only some basic information concerning the malware
spread throughout the network. However, the Knowledge View, on top of

61

Figure 4.5: Connection dialog

Figure 4.6: New computer dialog

62

which the application is built, can provide more information. Therefore, the
application can be easily extended to present more information, for example
it could:

• list all endangered computers,

• list all computers endangered by malware having risk level above a
given threshold, etc.

However, for large networks and large malware databases “list all” queries
can consume considerable amount of time, since they could require reading
whole databases and reasoning over all the retrieved information.

The View concept in the application

The application uses a single ontology, possibly composed of several com-
ponents, in two different ways. On one hand the application presents the
reasoning results, i.e. which malware endangers which computers. This is ac-
companied by the information about the malware. On the other hand the
application queries the ontology to retrieve the network layout to draw the
graph of the network. In those two usages different information is required,
therefore two distinct views are created.

Computer view The information about a computer that is presented to
the user contains:

• IP,

• a collection of malware that endangers the computer.

However, when creating a new computer there is one more piece of infor-
mation about the computer that is necessary for the reasoning process: the
list of installed software. Information about malware that is presented to the
user contains:

• name,

• risk level,

• description.

Therefore, the application needs classes corresponding to the class diagram
depicted in Fig. 4.7. The instances of these classes are provided by an Ob-
ject View which is built on top of a Knowledge View that selects only the

63

Figure 4.7: Computer view class diagram

necessary information from the source ontology and provides rules for writ-
ing facts back to the ontology. The Knowledge View is defined by two sets of
transformation rules: forward rule set and reverse rule set. In the first rule set
(forward rule set) the consequent of each rule defines information provided
to the Object View, while the antecedent of each rule matches information
in the source ontology:

ComputerInfo(i) ← Computer(i)
ip(s, o) ← ip(s, o)

software(s, o) ← hasInstalled(s, i) ∧ built-in:uriToString(i, o)
endangeredBy(s, o) ← endangeredBy(s, o)

Malware(i) ← Malware(i)
name(s, o) ← name(s, o)

riskLevel(s, o) ← riskLevel(s, o)
description(s, o) ← description(s, o)

(4.4)

The first of the above rules rewrites instances of Computer concept as in-
stances of ComputerInfo concept—only the name of the concept changes.
The third rule for all instances of hasInstalled role transforms the URI de-
noting role filler i identity into a string value o. The results are written as
instances of software attribute. The rest of the rules simply rewrite instances
of Malware concept, endangeredBy role as well as ip, name, riskLevel and
description attributes. The names of variables i, s and o are insignificant i.e.
they are randomly chosen letters.

The above rule set allows the application to read information from the
source ontology. To be able to write new information into the source ontology

64

through the Knowledge View a second rule set (reverse rule set) is needed.
The second rule set works in the opposite direction than the first rule set.
The antecedent matches information passed from the Object View and the
consequent is stored in the source ontology:

Computer(i) ← ComputerInfo(i)
ip(s, o) ← ip(s, o)

hasInstalled(s, i) ← software(s, o) ∧ built-in:uriToString(i, o)
(4.5)

These rules change string values back to Software individuals, but what is
more important is that there are fewer rules in this set that there were in
the first rule set—not everything that can be read through this view can
be inserted back into the source ontology. On a write request the Object
View acts in a very simple way: it encodes as assertions all the information
stored in the object graph that is passed to become persistent and inserts
the assertions back to the underlying ontology. However, in this case some
of the information should not be written to the ontology, in particular the
endangeredBy(s, o) assertions. If endangeredBy(s, o) assertions were written
to the ontology and the information from which those assertions were inferred
changed, the ontology would no longer contain valid information. Moreover,
no information about malware is written back since the source containing the
information is read-only. Thanks to the Knowledge View consisting of these
rules the Object View does not need to know which of the assertions should
be written back and which should not. It simply stores all the assertions and
the underlying view selects what will actually be written back and what will
be omitted.

Network view The library used for visualising the network layout requires
the network to be modelled with both nodes and connections represented as
classes. This is different from the source ontology (4.1) where connections are
modelled as three roles: canBrowse, canDownloadFrom and canUploadTo.
Therefore, a view is created that changes the data schema in a way that
allows the retrieved objects to be directly used by the visualisation library
(see Fig. 4.8).

The rules that retrieve Computer and its ip from the source ontology are
straightforward:

Computer(i) ← Computer(i)
ip(s, o) ← ip(s, o)

(4.6)

They just rewrite the information to the view. However rules that retrieve in-
formation about Connections (4.7) are more complex. These rules transform

65

Connection(i) ← canBrowse(s, o) ∧ built-in:uriToString(s, ss)
∧built-in:uriToString(o, os)
∧built-in:stringConcat(is, ss, ”+browse+”, os)
∧built-in:uriToString(i, is)

source(i, s) ← canBrowse(s, o) ∧ built-in:uriToString(s, ss)
∧built-in:uriToString(o, os)
∧built-in:stringConcat(is, ss, ”+browse+”, os)
∧built-in:uriToString(i, is)

target(i, o) ← canBrowse(s, o) ∧ built-in:uriToString(s, ss)
∧built-in:uriToString(o, os)
∧built-in:stringConcat(is, ss, ”+browse+”, os)
∧built-in:uriToString(i, is)

type(i, 1) ← canBrowse(s, o) ∧ built-in:uriToString(s, ss)
∧built-in:uriToString(o, os)
∧built-in:stringConcat(is, ss, ”+browse+”, os)
∧built-in:uriToString(i, is)

Connection(i) ← canDownloadFrom(s, o)
∧built-in:uriToString(s, ss)
∧built-in:uriToString(o, os)
∧built-in:stringConcat(is, ss, ”+download+”, os)
∧built-in:uriToString(i, is)

source(i, s) ← canDownloadFrom(s, o)
∧built-in:uriToString(s, ss)
∧built-in:uriToString(o, os)
∧built-in:stringConcat(is, ss, ”+download+”, os)
∧built-in:uriToString(i, is)

target(i, o) ← canDownloadFrom(s, o)
∧built-in:uriToString(s, ss)
∧built-in:uriToString(o, os)
∧built-in:stringConcat(is, ss, ”+download+”, os)
∧built-in:uriToString(i, is)

type(i, 2) ← canDownloadFrom(s, o)
∧built-in:uriToString(s, ss)
∧built-in:uriToString(o, os)
∧built-in:stringConcat(is, ss, ”+download+”, os)
∧built-in:uriToString(i, is)

...

(4.7)

66

Figure 4.8: Network view class diagram

roles canBrowse, canDownloadFrom and canUploadTo to concept Connec-
tion, which was not present in the original ontology. To do this for every role
instance a new individual has to be created. That individual is the subject
of source and target roles. Additionally the type attribute is introduced to
distinguish between the original three roles. These rules could be written in
an equivalent shorter version using conjunction in the head of the rules.

This example shows that a single ontology modelling a domain in a certain
way can be easily used by users (human or software) that require different
models. All the different users can see the source ontology through a different
view. This way all the users get the models they require, while still using a
single source that is shared.

Apart from the presented rules this view has also some reverse rules that
enable us to store new connections in the underlying source:

canBrowse(s, o) ← type(i, 1) ∧ source(i, s) ∧ target(i, o)
canDownloadFrom(s, o) ← type(i, 2) ∧ source(i, s) ∧ target(i, o)

canUploadTo(s, o) ← type(i, 3) ∧ source(i, s) ∧ target(i, o)
(4.8)

These rules change the instances of Connection back to instances of the
appropriate roles. The reverse rules in this view ignore Computer and ip. This
is because this view contains only partial information about Computers. Let
us consider what would happen if writing Computer had been allowed and

67

someone decided to remove an object of Connection class. The object view
created on top of this knowledge view would translate the Connection object
to a set of assertions. However, since Connection has references to Computer
objects (see Fig. 4.8), those objects would also be included in the deletion
process. Assertions stating that an individual is a Computer and which ip it
has would be deleted, leaving information about installed software intact in
the source ontology. That could lead to inconsistencies.

When working with Object Views one has to be careful, because objects
are mapped to sets of assertions and if an object has references, the store and
delete operations work on the whole object graph recursively. On one hand
working with whole objects can help maintain consistency, but on the other
hand the recursive nature of the load, store and delete operations can lead
to unintentional loading or deleting large parts or even the whole underlying
knowledge base with just one procedure call. The presence of connections be-
tween the individuals in the knowledge base is important for reasoning, there-
fore it is not always possible to handle this problem by changing the source
knowledge base. However, the described situation can be avoided without
changes to the source by creating a carefully designed Knowledge or Object
View. As a result the classes used by the application can represent chunks of
information of reasonable sizes.

Using the view concept for read requests is fairly easy and straightforward,
while one has to be careful when designing the write access. This, however, is
true not only for the Object Views or the Knowledge Views, it is true for any
view that presents only partial information. This is why views in database
systems often do not provide the write access—partial information can break
consistency restrictions.

4.1.4 Knowledge engineer vs software engineer

Since the Knowledge Views are on the border between the “classic” com-
puter systems and knowledge enabled ones, two roles can be distinguished,
when using the Knowledge Views: a knowledge engineer and a software en-
gineer. Knowledge engineers and software engineers are concerned with dif-
ferent aspects of the Knowledge Views, therefore they need to be considered
separately.

Knowledge engineer

The knowledge engineer is responsible for creating the ontology to be used
in an application, therefore in this case study this engineer is responsible for
the work described in Section 4.1.1.

68

Simplicity One of the things that the knowledge engineer encounters most
frequently while working with the Knowledge Views are the ABox and TBox
interfaces (see Chapter 5), since most components implement one of those
interfaces or both. These interfaces can be compared to the Model interface
in Jena [52] and RDF2Go [92] or OWLOntology in OWL API [81]. The
interfaces in Jena, RDF2Go and OWL API are designed to reflect RDF,
RDFS or OWL and have plenty of methods (Model in Jena has over 100
methods). The interfaces proposed in the Knowledge Views (see Fig. 5.2), on
the other hand, reflect description logic. Moreover they are minimalistic—
there are as few methods as possible (ABox has 14 methods of which only
6 are mandatory and TBox has 13 methods), while trying not to fall into
the Turing tar-pit [84]. This design follows the humorous sentence stated by
Alan J. Perlis in [84]:

Syntactic sugar causes cancer of the semi-colons.

There are two main goals behind choosing such a design. The first is the ease
of learning—the fewer methods, the easier to learn. The second is expand-
ability. To write new components, for example new adaptors for external data
sources, only few methods need to be implemented. The run info ABox from
the case study example (see Fig. 4.1) implements 6 mandatory methods of
the ABox interface and only one of these methods is longer than a single line
of code.

Modularity Another aspect of Knowledge Views’ usage is modularity of
the created ontology. Modularity can help when working on complex ontolo-
gies. In a monolithic ontology a single axiom can break the integrity of the
whole ontology, however introducing modularity can restrict the influence of
axioms, assertions and rules. When working with small parts instead of the
ontology as a whole, it is also easier to find errors, moreover the idea of unit
testing can be introduced to ontology creation process.

Ontology modularisation is still an open problem and there is much work
concerning it. An approach to modularisation presented in [97] can be consid-
ered interesting, because it uses Distributed Description Logics (DDL) [11]
to implement modularisation solution. DDL, on the other hand, was devised
with information integration in mind rather than modularisation. This shows
that information integration and modularisation are in fact related. The main
difference between modularisation and integration is that in integration we
have small independent entities that we want to combine, while in modulari-
sation the process is reversed—we have some big and complex entity that we
want to divide. Similarly in Knowledge Views modularisation is achieved by

69

using tools devised for integration purposes and therefore modularisation is
rather a side effect of the chosen approach rather than one of the goals.

Some other modularisation approaches include E-Connections [43], SIM
method [39, 38] or S-modules [40, 33, 35]. This last modularisation approach
depends on an algebra that operates on fragments of knowledge called con-
glomerates. Most of the operators of this algebra can be relatively easily
implemented using Knowledge Views. Unlike the mentioned modularisation
solutions the Knowledge Views treat ontologies more as software modules
than as entities described in terms of formal logic.

The example presented in this chapter demonstrates yet another advan-
tage of modularity in Knowledge Views—the ability to mix different rea-
soning methods in a single ontology. In the example, apart from description
logic and rule-based reasoning, there is some custom reasoning in the run
info ABox. This ABox performs reasoning that is hard with the open world
assumption. Expressing that small part of the ontology in a programming
language can save time and effort.

Reuse of ontology components is also supported by modularity. In the
example (see Fig. 4.1) the network ABox is a part of both the network on-
tology and the infection ABox. This can lead to time savings, because one
well tested ontology component can be utilised many times.

Freedom of choice Freedom of choice is another advantage of the Knowl-
edge Views. The freedom manifests in the ability to use different already
existing tools in combination with the Knowledge Views. For example the
knowledge engineer can use tools already implemented in the Knowledge
Views library (see Section 5.1.1) to create an ontology in a similar way to
the one described in this chapter, yet he can choose to use some third party
knowledge base and just implement an adaptor, so it can work with the up-
per layers of the Knowledge Views (see Fig. 3.9). As a part of this project an
adaptor for Jena has been created, but new adaptors can be created as well,
for example for Sesame [95] or some other RDF storage system or knowledge
base. Developers like to choose the tools by themselves and giving them such
freedom can lead to products with higher quality and faster development
process.

Software engineer

The software engineer receives a knowledge base prepared by the knowledge
engineer. However, the software engineer does not use the description logic
interface directly. Instead a view is created: an Object View for ease of use in

70

Listing 4.1: Sample OQL queries

SELECT c FROM Connection c WHERE c . source . ip = ? ;
SELECT c FROM Connection c WHERE c . t a r g e t . ip = ? ;
SELECT c FROM Computer c ;

an object-oriented programming language, Data View for compatibility with
relational databases or some other views if needed.

In the case study application two Object Views were created. The cre-
ation of the views is the hardest part, since it is on the border of knowledge
and software engineer’s competencies. The knowledge engineer has to pro-
vide a Knowledge View that corresponds to the data schema required by
the software engineer. However, once it is done the mappings between the
models are straightforward. In the Object Views the mappings are defined as
annotations (see Section 5.3 and Appendix E.2), just like in JPA [20]. Since
annotating classes in order to map them to a data source is known in software
engineering, this process should be intuitive and easy to learn by the soft-
ware engineer. In the sample application there are 5 annotated classes. The
process of creating annotated classes can also be automated by generating
classes from the TBox provided by the knowledge engineer. The generated
classes can be afterwards easily adjusted to better suit their purpose in the
application.

Once the Object View is ready the knowledge-based layer is hidden from
the software engineer. What the software engineer sees is an object store,
which can be queried with OQL [15]. Sample queries from the application are
in Listing 4.1. These queries are quite simple, however more complex queries
are also possible, provided that the Object Views implement complete OQL.
Apart from querying, the application persists new objects, merges changes
into the object repository and removes objects. All these operations are done
in a way similar to JPA, which should make it easy to learn.

4.2 Compatibility

The Knowledge Views are a layer between an information source and an
application. Therefore when speaking about compatibility two kinds of com-
patibility can be considered: compatibility with various information sources
and compatibility with existing applications. The Knowledge Views can play
the role of a bridge between different models and different paradigms, for
example they can combine a relational information source, ontological rea-

71

soning and object-oriented interface. This supports the idea of many models
in a single application distributed among several components. Having a single
model throughout the entire application seems attractive, however it is less
flexible and more importantly it requires a model that is expressive enough
to be able to handle different uses in different components. Moreover having
a single model is more and more difficult in the era of heterogeneous systems.

4.2.1 Compatibility with information sources

Nowadays there are plenty of kinds of information sources: relational data-
bases, object databases, XML databases, RDF stores, HTML files, various
legacy formats, for example MARC bibliographic data [61], which is widely
used and therefore hard to replace, and many more. It is often not possible to
just rewrite all legacy data to some new format even if the format is superior
in every respect. Therefore the ability to understand many formats can be
useful.

In the Knowledge Views the adaptors play the role of translators of differ-
ent formats to the form of unary and binary predicates used in the description
logic. Many data formats can be translated to the predicate form. Relational
databases encode data as n-ary predicates, which can be easily transformed
to a set of unary and binary predicates. Therefore anything that can be
stored in a relational database can also be used by the Knowledge Views.
If a database table has a composite primary key, it is possible to create a
surrogate key or generate some unique id based on the attributes belonging
to the primary key.

The case study application is an example of usage of databases as the
information source. Moreover there is an information source that is a piece
of custom code, which proves how flexible this architecture is. In some exper-
iments also an RDF file was used as the source. These three types of infor-
mation sources have been chosen as examples, because databases are widely
used in software engineering, RDF is used in knowledge engineering and cus-
tom code shows the power of the solution. As far as the Knowledge Views
are concerned these sources are interchangeable, because they are wrapped
by appropriate adaptors that implement the same interface.

4.2.2 Compatibility with applications

Compatibility with applications means providing various interfaces that are
used by contemporary applications or conform to standards. The Knowledge
Views provide several interfaces widely used in software engineering and are

72

Listing 4.2: OQL query returning people with a given surname

SELECT p FROM Person p WHERE p . surname = ”SomeSurname ”

Figure 4.9: Three applications with different information sources

designed to allow the addition of new interfaces. This compatibility makes it
easier to integrate already existing components with new semantic ones.

The case study application issues OQL queries that are compatible with
Java Persistence Query Language, however the Object Views API (see Ap-
pendix E) differs from the JPA. This shows that the compatibility can be
achieved on different levels. This can be compared to the application pro-
gramming interface (API) and application binary interface (ABI) compati-
bility: an application can be compatible on the API level and still not com-
patible on the ABI level.

To better show the different levels of compatibility with existing compo-
nents that can be achieved with help of the Knowledge Views three versions
of the same application has been written. The application accesses Friend of
a Friend (FOAF) [14] data and issues a query returning all people with some
surname (see Listing 4.2).

The first application uses a relational database with the FOAF data
rewritten from the source RDF file. The application does not use the JDBC
API directly but uses the Java Persistence API (see Fig. 4.9 left).

The second application (see Fig. 4.9 middle) has exactly the same source
code, however there is one difference. In the JPA configuration file the JDBC
driver and URI had to be changed to point to another source. The URI
points to a manifest that describes how to construct the view. The manifest
is interpreted by the Data Views JDBC driver. In this example the Data
View emulates the relational database used in the first application. This time,

73

however, the original RDF file is used as the source with the Jena library as
an RDF parser.

The third application (see Fig. 4.9 right) no longer uses the JPA, which
is replaced with an Object View. The Object Views API (see Appendix E) is
similar, but not identical to the JPA, therefore some changes to the applica-
tion code were necessary. Nevertheless the query was kept intact. Moreover
the Java bean class used as an entity bean by the JPA in the previous appli-
cations did not change on the API level but was only annotated differently.
This means that if the application itself was further divided into a data access
layer and a business layer, where data is passed between these layers through
the entity bean objects, then the business layer would not change, only the
data access layer would change. The benefit of loosing full compatibility in
this example is slight performance gain, because there are fewer layers.

This example shows that it is in fact possible to use the Knowledge Views
in an existing application with little or no change in the existing code. Thanks
to injecting semantic components to an existing system, the system can gain
some additional capabilities, like reasoning.

4.3 Gradual introduction of knowledge bases

Let us consider a situation, where some company gathers information about
something as a side effect of the company’s true business activity. The infor-
mation can be incomplete therefore it is hard to use. Utilising the information
is not mission critical, nevertheless taking advantage of the information could
be beneficial. Examples of companies that conform to this description are
providers of social network related services. People store lots of information
in those services. Since very little information about a user is mandatory,
the information is usually incomplete. Sometimes the information is used
for marketing purposes, for example displaying one’s first name on an ad-
vertisement banner. However, even more information that is useful can be
retrieved from the information explicitly given by the users due to reasoning.
Some simple examples will be presented to prove the point. No legal issues
concerning privacy will be discussed here.

To sum up let us assume there is a social network service that wishes
to enhance or provide new services based on the optional information users
provide. The first step is to enhance the module that presents advertisements.
At present the advertisements are shown more or less at random, which
may annoy users who are shown advertisements not targeted at them, while
users potentially interested in the advertised product might never see the
advertisement. This way the advertisement might be ineffective.

74

4.3.1 The classic approach

First let us try to solve the problem the “classic” way, that is without use
of knowledge bases. The first advertisement is for women cosmetics that we
wish to show only to women. Nothing simpler than to query our relational
database for the gender column in the users profile table before displaying
the advertisement. However as mentioned before the column might be empty,
since the information is not mandatory. Therefore if the column is empty, we
issue another query to retrieve the first name, which might indicate the user’s
gender. If that is inconclusive, the next step might be checking surname,
since in some languages, Polish included, it may be possible to differentiate
gender by the surname suffix. As we see even in this very simple example
we get several special cases that need to be considered and there might be
even more cues in the profile pointing to the user’s gender. Hard coding every
query with some additional code for processing first name and surname is not
a good idea since it would be hard to change or add new cases for handling
more cues.

The next advertisement is for a casting that calls for women in their
twenties. The code and queries for checking user’s gender is ready and can
be reused, but there is the need for some code checking user’s age. Again the
column containing the year of birth might be empty and some reasoning can
be performed to fill the information. In this case there is no need for exact
birth year—it is sufficient to assign the user to some age group category.
Where can pointers to the user’s age be found? Let us assume the social
network service can store information about user’s education. By checking
in what years the user attended what kind of school the age can be inferred.
For example if the user attended high school about ten years ago, we can
assume that she is in her twenties. Another example might be that the user
is currently a student and so on. With the addition of a new advertisement
new reasoning code has to be added—this is unacceptable especially if there
are many advertisement providers.

Another advertisement is for a newly opened restaurant in Gdańsk. The
target group of this advertisement are people living in or often visiting the
city. The users can declare the city in their profile, but again it is optional
and can be inferred from other information. The information about education
can be useful—if the user currently studies at some school in Gdańsk, then
we can assume he or she often visits the city.

There is much useful information that can be inferred from information
given by users, even if the information is partial. The examples given above
are quite simple, but more complex examples are also easy to imagine. Using
knowledge bases to handle reasoning allows clean design of the system. There

75

Figure 4.10: Architecture of the Knowledge Views approach

is no need for a programmer to handle numerous special cases—they are all
taken care of by the reasoning engine. This improves maintainability. More-
over, terminology and rules can be checked by a reasoner for consistency—
source code written in a Turing complete programming language cannot be
checked in general.

4.3.2 The Knowledge Views approach

In the Knowledge Views approach the advertisement module would use two
repositories (see Fig. 4.10): the advertisement repository and the knowledge
base. The advertisement repository would contain pairs: an advertisement
and an SQL query template returning one row if the advertisement is to be
shown to the given user or an empty set if the advertisement is inappropriate.
The advertisement queries would be sent to the knowledge base through the
Data View. The Data View is there so that queries could be stated in SQL—a
language widely known. Another advantage of having the Data View there
is that if for some reason there is trouble with this solution, the knowledge
base can be scraped and substituted with a regular database view on top of

76

Listing 4.3: SQL query for user’s gender

SELECT ∗ FROM User WHERE id = ? AND gender=’W’

Listing 4.4: SQL query for young women

SELECT ∗ FROM User WHERE id = ? AND ageGroup=’ 20 s ’
AND gender=’W’

the profiles database. In such a case the system would still work, however the
results would be poorer.

Let us consider the first advertisement that is targeted at women. The
advertisement repository would contain a query checking the gender column
(see Listing 4.3). The gender attribute in the knowledge base would be de-
fined as an SQL query on the profiles database as well as rules that infer it
from other information:

gender(x, z) ← isGenderProvided(x, false) ∧ firstName(x, y)
∧firstNameGender(y, z)

gender(x, z) ← isGenderProvided(x, false) ∧ surname(x, y)
∧surnameGender(y, z)

(4.9)

In those rules the isGenderProvided predicate is mapped to an SQL query
on the original database and plays the role of a guardian so that the informa-
tion explicitly given have priority. The firstName and surname are mapped to
queries, while firstNameGender and surnameGender are custom code pred-
icates.

The second advertisement is targeted at women in their twenties (see
Listing 4.4). In the knowledge base the ageGroup attribute would be defined
as a query to the profile database and as the following rules:

ageGroup(u, ”20s”) ← belongsTo(u, c) ∧ hasSchool(c, s)
∧HighSchool(s) ∧ hasBegining(c, b)
∧hasYear(today, y)
∧built-in:subtract(d, y, b)
∧built-in:le(5, d) ∧ built-in:le(d, 15)

ageGroup(u, ”20s”) ← belongsTo(u, c) ∧ hasSchool(c, s)
∧University(s) ∧ hasBegining(c, b)
∧hasYear(today, y)
∧built-in:subtract(d, y, b)
∧built-in:le(1, d) ∧ built-in:le(d, 11)

...

(4.10)

77

Listing 4.5: SQL query for people visiting Gdańsk

SELECT ∗ FROM User WHERE id = ? AND v i s i t s=’ Gdansk ’

The first rule means that if the user u belonged to a class c in school s which
is a high school and that class started 5 to 15 years ago then the user is in
her twenties. The second rule is for universities, therefore the year range is
different.

The third advertisement is targeted at people connected with Gdańsk (see
Listing 4.5). The visits attribute is defined as a query to the profile database
and as a rule:

visits(u, p) ← belongsTo(u, c) ∧ hasSchool(c, s) ∧ hasLocation(s, p)
∧hasBegining(c, b) ∧ hasEnd(c, e)
∧hasYear(today, y) ∧ built-in:le(b, y)
∧built-in:le(y, e)

(4.11)

The rule states that the user u visits p if the user belongs to a class c in
a school s located in p. The end of the rule ensures that the user currently
belongs to the class and it is not historical information.

In the presented examples the addition of new advertisements requires the
addition of new mappings and rules to the knowledge base. What is important
only the knowledge base is affected, while the advertisement module is kept
simple, since the reasoning is moved to the knowledge base. When there is
a greater number of rules in the knowledge base there will be good chances
that adding a new advertisement would require no change at all, because the
knowledge base will already be able to answer the advertisement query.

4.3.3 Summary

Anything that the knowledge base can infer can also be inferred by writing
custom code. So what are the advantages of using a knowledge base? The
most important is maintainability achieved due to loose coupling. Changes
can be made more easily without fear of breaking the existing code. More-
over there is a clear assignment of responsibilities to the modules. Another
advantage is that queries to the knowledge base can be simpler than if they
were sent directly to the database underneath.

The penalty of using the knowledge base is that it should be maintained
by a knowledge engineer instead of a software engineer. However, thanks to
the Knowledge Views the knowledge base can be easily queried by a regular
software engineer without special knowledge of knowledge engineering.

78

This example shows that it is possible to gradually introduce a knowl-
edge base to an existing system, while retaining a backup solution, which
reduces the risk. Of course at first the knowledge base should be introduced
in modules that are not mission critical, but when the technology turns out
to perform well it can be included in other more important modules.

4.4 Ease of use experiments

Experiments have been conducted to test the ease of use of the proposed solu-
tion from the programmers point of view. The first experiment was conducted
with seasoned software engineers—their remarks were taken into account in
the subsequent version of the Knowledge Views library (see Chapter 5). The
next experiment was conducted with computer science students—if inexperi-
enced students are able to easily learn the proposed solution then experienced
software developers should have no problems in learning it either.

4.4.1 Seasoned software engineers

An experiment was conducted on two software engineers to check how fast
they can learn the Object View API (see Appendix E). Another important
purpose of this experiment was to gather some insight from the engineers
concerning the proposed API. The engineers were asked to do the same task
using Object Views and Jena with SPARQL, so they could compare the
proposed solution with an alternative.

First they were asked several questions to evaluate their knowledge. They
had working knowledge of Java Persistence API. They said they did not know
what OQL is, however they new Java Persistence Query Language (JPQL)
or its superset Hibernate Query Language (HQL), which are to a high degree
compatible with OQL. The engineers had heard of RDF, however never used
it and did not know SPARQL. The engineers had no prior knowledge of any
of the APIs used in the experiment.

Next the engineers were given instructions (see Appendix A) to write a
program that reads and queries an RDF file containing real life FOAF [14]
data. The file was downloaded from the Digital Enterprise Institute web site1.
The instructions contained some pointers telling where to start. Moreover the
participants received an archive with all necessary files.

Two versions of the application were to be written: first one using the
Object Views and the second using Jena. This order of the tasks had been

1http://www.deri.ie/

79

http://www.deri.ie/

Table 4.1: Ease of use experiment time results
Participant Object Views Jena

First 18 [min] 16 [min]
Second 26 [min] 21 [min]

Listing 4.6: OQL query for the ease of use experiment

SELECT p FROM Person p WHERE p . surname = ”SomeSurname ”

chosen deliberately to favour Jena—while doing the first task the partici-
pants had to get to know what are they to do, while during the second task
it was just rewriting the application using another library. Table 4.1 con-
tains times spent by each participant on each task. These times seem to
favour Jena, however the differences are insignificant. Moreover there were
several circumstances that caused the results to favour Jena. One of them
is the already mentioned order of tasks, which could be eliminated only by
gathering a large enough group of seasoned software engineers to be divided
into two groups with different orders of tasks. Moreover there was a signifi-
cant difference between these two tasks. Since the participants already knew
OQL syntax (through the knowledge of JPQL and HQL), they were asked
to write the query returning all people with a given surname by themselves
(see Listing 4.6). In the second task, on the other hand, the SPARQL query
was given (see Listing 4.7), because the participants did not know SPARQL
and learning a new query language would require too much time for this ex-
periment. As a result the participants had to write the Object View version
of the application from scratch, while in case of Jena version they only had
to look appropriate methods up in the library’s Javadoc—the requirement of
writing the query was deliberately omitted in the Jena version. This shows
that relying on technologies and standards already known to the developers
exempts them from learning new languages that consumes time.

An interesting thing to note is that the SPARQL query is much longer
than the equivalent OQL query (compare Listings 4.6 and 4.7). The main
reason for it is that some of the information that needs to be explicitly
given in the SPARQL query is taken from the class definition in OQL. This
information is reused between different OQL queries that reference the same
class. In SPARQL this is repeated in every query. This is the consequence of
RDF being a low level format in comparison with objects.

After performing the tasks the participants were asked which API they
preferred and why. They unanimously pointed out the Object Views. The

80

Listing 4.7: Ease of use experiment SPARQL query

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
SELECT ? u r i ? t i t l e ? f i rstName ?surname ?phone
WHERE {

? u r i f o a f : t i t l e ? t i t l e ;
f o a f : f i r stName ? f i rstName ;
f o a f : surname ?surname ;
f o a f : phone ?phone

FILTER (? surname = ”SomeSurname ”)
}

Listing 4.8: Ease of use experiment Object View code

JenaKB jkb = new JenaKB(inputStream , fa l se) ;
ObjectViewManager ovm = new ObjectViewManager (

jkb , Person . class) ;
Co l l e c t i on <Person> r e s u l t s = ovm . executeQuery (

”SELECT p FROM Person p” +
” WHERE p . surname = \”SomeSurname\”” ,
Person . class) ;

main reason was that the code using Object Views was shorter (compare
Listings 4.8 and 4.9) and that there was less mechanical work. However it
was pointed out by the participants that having a generator for the annotated
classes needed by the Object Views would make the task considerably easier.
The generator was actually ready by the time of the experiment, however
it was deliberately made unavailable for the task to force the participants
to annotate the Person class by themselves—this also extended the time
required for the Object Views task. The participants also stated that having
code samples would make the task of using Object Views even easier. This
was also not provided on purpose (only Javadoc documentation for Object
Views was available), because the task would be finished in just a few minutes
by copying and pasting and this would not guarantee that the participants
actually understand what they are doing.

Moreover the participants pointed out some details in Object Views that
break the conventions they were used to. First of all Object Views required
setters to be annotated not getters like in JPA (this has been corrected af-
ter this experiment). Another remark was that they were used to ’ as the
character string delimiter in query languages instead of ", because it is eas-

81

Listing 4.9: Jena code for the ease of use experiment

Model model = ModelFactory . createOntologyModel () ;
model . read (inputStream , ””) ;
QueryExecution queryExecution = QueryExecutionFactory

. c r e a t e (”PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/> ”
+ ” SELECT ? u r i ? t i t l e ? f i rstName ?surname ?phone ”
+ ” WHERE { ”
+ ” ? u r i f o a f : t i t l e ? t i t l e ; ”
+ ” f o a f : f i r stName ? f i rstName ; ”
+ ” f o a f : surname ?surname ; ”
+ ” f o a f : phone ?phone ”
+ ” FILTER (? surname = \”Kruk \”) ”
+ ” } ” , model) ;

Resu l tSet r e s u l t = queryExecution . e x e c S e l e c t () ;
Co l l e c t i on <Person> r e s u l t s = new ArrayList<Person >() ;
while (r e s u l t . hasNext ()) {

QuerySolut ion s o l u t i o n = r e s u l t . nextSo lut i on () ;
Person p = new Person (

s o l u t i o n . get (”? u r i ”) . t oS t r i ng () ,
s o l u t i o n . get (”? surname ”) . t oS t r i ng () ,
s o l u t i o n . get (”? f i rstName ”) . t oS t r i ng () ,
s o l u t i o n . get (”? t i t l e ”) . t oS t r i ng () ,
s o l u t i o n . get (”?phone ”) . t oS t r i ng ()) ;

r e s u l t s . add (p) ;
}

82

ier to embed it in a programming language where " is the delimiter (both
delimiters are permitted in the recent Object Views version). These remarks
clearly show that software engineers are accustomed to some conventions and
it is important for them that these conventions are followed to the smallest
detail.

This experiment shows that the Object Views library is easy enough to be
learnt by a seasoned software engineer in less than half an hour, even without
additional tools and sample code. This is partly due to conforming to known
conventions and reusing a known query language. Moreover the code using
the Object Views is more compact than the code using RDF handling library
Jena, which operates on a lower level and which was designed with different
goals in mind.

4.4.2 Students

Another experiment was conducted on computer science students to check
whether inexperienced students were able to quickly start using the Knowl-
edge Views—if students can quickly learn the proposed solution, then sea-
soned programmers should have no problems either. Furthermore the stu-
dents had been selected based on their academic curricula to check the sig-
nificance of basing the proposed solution on known technologies, that is JDBC
and JPA.

The experiment was conducted with five groups of students. Three of the
groups had had classes on JEE including JDBC and JPA. The other two
groups had no or very little prior experience with JEE. Most of the students
had no experience with semantic technologies and knowledge bases. The stu-
dents had 1.5 hour to get to know the Data Views and Object Views libraries
and query a knowledge base using them (see Appendix B). Before starting
the tasks students were asked to fill a questionnaire, in which they declared
their knowledge of related technologies. Those declarations often diverged
from the real skills of the students as observed during the experiment, there-
fore the skills where judged based on the specialisations of the groups and
their curricula.

This experiment showed (see Table 4.2) that all of the students after JEE
course managed to finish the first task (Data Views task) and most of them
finished the second task (Object Views task). The students without JEE
experience had more problems with both tasks—only about a half of them
finished the first task and one fourth finished the second task. These statistics
clearly show that if new technologies are based on standards already known
to the target group, those technologies are easier to learn and use.

Another conclusion from this experiment is that if the proposed solution

83

Table 4.2: Ease of use experiment with students

Student group
Stu-
dent
count

Data
View
task

Data
View

task %

Object
View
task

Object
View

task %

after JEE course 24 24 100.0 21 87.5
without JEE experience 24 13 54.2 6 25.0

is easy enough for students to learn within 1.5 hour, the solution should also
be easy enough to be learnt by seasoned programmers that have much more
experience with the technologies Data Views and Object Views are based on.
Moreover the lack of knowledge base related skills on the part of the students
did not influence finishing the tasks. This means that the Knowledge Views
successfully hid the semantic technologies and provided that the knowledge
base is prepared by a knowledge engineer, it can be used by software engineers
without additional training.

84

Chapter 5

The Knowledge Views
implementation

The Knowledge Views as a whole are designed to be lightweight and exten-
sible. Being lightweight allows the implementation to be embedded in vari-
ous system types including stand alone applications as well as client-server
applications. Extensibility helps in adding new functions, but also helps sub-
stituting the existing implementations of particular components with better
ones, for example to improve performance. The implementation of Knowl-
edge Views is divided into several main modules: the core of the Knowledge
Views and the individual views providing model mapping capabilities. The
implementation is a proof of concept rather than production quality software,
however it provides firm foundations for future work.

5.1 Knowledge Views core

The core of the Knowledge Views is designed according to the Unix philoso-
phy [94]:

This is the Unix philosophy: Write programs that do one thing
and do it well. Write programs to work together. Write programs
to handle text streams, because that is a universal interface.

The core of Knowledge Views is a set of tools, often consisting of a single
class, each performing only one function like: ABox merging or reasoning.
The tools can work together, for example two ABoxes can be merged and
then reasoned over as a single ABox or two ABoxes could be used in reason-
ing separately and then joined together yielding a different result. However,
instead of handling text, most of the tools handle ABoxes and provide the
ABox interface so a pipeline similar to Unix pipeline can be created.

85

5.1.1 The Knowledge Views tools

The tools created as a part of the thesis include:

• ABoxView—defines a new ABox based on a source ABox and transfor-
mation rules (no reasoning, implements the ABox interface);

• InferencingKnowledgeView—performs reasoning on a source ABox based
on a given TBox and rules creating a knowledge base (implements the
ABox and TBox interfaces);

• KnowledgeView—combines an ABox with a TBox creating a knowledge
base (no reasoning, implements the ABox and TBox interfaces);

• MemoryABox—an ABox that stores assertions in memory (implements
the ABox interface);

• MergedABox—combines several ABoxes into one (implements the ABox
interface);

• TBoxView—creates a TBox that defines new concepts, roles and at-
tributes based on a given TBox (implements the TBox interface).

Figure. 5.1 presents the UML diagram of these tools. The diagram shows
the dependencies of the classes: which interfaces each class implements and
which interfaces each class uses. A more detailed view of the ABox, TBox
and KnowledgeBase interfaces is shown in Fig. 5.2. This is a minimal set of
tools that was required to built a functioning prototype. However more tools
can be added as needed and used in conjunction with the existing ones.

Additionally two adaptors were created:

• DatabaseKB—maps SQL queries to assertion sets (implements the ABox
interface),

• JenaKB—translates the Jena API to the one used in the Knowledge
Views (implements the ABox and TBox interfaces).

Some of the above tools implement the TBox interface. This interface
plays two roles: it is used in reasoning by InferencingKnowledgeView and it
defines the data schema. The second role is important for the Object Views
and Data Views, where classes and the database schema can be automatically
generated from a TBox. In particular information about inheritance, domains
and ranges of roles and attributes as well as whether roles and attributes are
functional is used.

86

Figure 5.1: The UML diagram of the Knowledge Views tools

87

Figure 5.2: The UML diagram for the Knowledge Views interfaces

88

Figure 5.3: Query rewriting

5.1.2 Reasoning

The InferencingKnowledgeView performs reasoning, which is important when
creating a view that changes terminology. Without reasoning an assertion set
provided by the view may be incomplete. However, in some situations reason-
ing in a view may be undesirable. For example if a knowledge engineer knows
that reasoning will not add any new assertions, reasoning will only introduce
an unnecessary performance penalty. For such cases the KnowledgeView is
more suitable.

The current implementation of the InferencingKnowledgeView is not com-
plete, but provides some basic reasoning capabilities that were sufficient to
present the Knowledge Views prototype potential. The reasoning is based on
rules with some DL additions. As a future work the implementation will be
extended towards the SWRL expressivity.

The reasoning implementation in the InferencingKnowledgeView is simi-
lar to the query rewriting approach employed in QuOnto [90] and KL [103].
A user provided rule set, a TBox and a query are used to create a new rule
set (see Fig. 5.3). The resulting rule set is then used to answer the original
query. In the Knowledge Views the query rewriting is done in two steps (see
Fig. 5.4): first an intermediate rule set is derived from the initial rule set and
the TBox, then the final rule set is created that takes into account the query.
The first step is independent from the query therefore can be done once dur-
ing initialisation of the InferencingKnowledgeView. For simple queries the
second step might add no additional rules to the rule set.

The Knowledge Views differ from the QuOnto and KL in that the In-
ferencingKnowledgeView does not require the information sources to pro-
vide the SQL interface. The InferencingKnowledgeView uses a datalog-based
query language and an external TBox reasoner. It is sufficient for the infor-
mation sources to provide the information as sets of assertions—no high level
query language like SQL is required. This approach can give poorer perfor-
mance results, but is more general and supports heterogeneous distributed

89

Figure 5.4: Query rewriting in Knowledge Views

information sources. Moreover rules support is already included, since the
implementation is based on rules.

Rules used in the reasoning process can contain all the constructs that are
available for the model transformation rules (see Section 3.3.1), in particular
the built-ins (see Appendix C for more details on available built-ins). This
causes the reasoning to be undecidable. This implementation of reasoning
does not protect from creating undecidable ontologies, which can lead to
infinite loops. On the contrary it adds additional capabilities by allowing
mixing the DL and rule-based reasoning with custom code (see Section 4.1.1).
This approach allows creation of ontologies that are even more expressive
than SWRL ontologies, but at the cost of loosing decidability. It is up to the
knowledge engineer to make sure that the knowledge base will not enter an
infinite loop. The knowledge engineer can choose not to use the additional
potentially dangerous capabilities and have guarantee of decidability, but
the capabilities are there and may be exploited if needed. If the knowledge
engineer chooses to use the extended expressivity, then the modularisation
capabilities of the Knowledge Views can help isolate risk posing parts to
help testing and maintaining the whole ontology. This approach is similar
to programming where Turing complete languages are commonly used, but
programmers must face the halting problem [96]. This can be compared to a
hammer with which one can hurt oneself, but having a safe hammer that can
cause no harm is useless, because it would be impossible to hammer a nail
with it. An opposite approach is proposed in [44], where the Description Logic
Programs narrow expressivity to obtain interoperability of logic programs.

5.1.3 Ontology merging

Another important function implemented by the Knowledge Views tool set is
ontology merging. Here, ontology merging is understood as combining infor-
mation from various ontologies to create a new ontology. In this implemen-
tation each source ontology is treated as an ABox. The source ABoxes can

90

be transformed using the ABoxView to comply to a common terminology.
Next the resulting ABoxes are merged using a set-theory union operation
implemented by the MergedABox. As the last step the merged ABox is used
by the InferencingKnowledgeView together with a TBox representing the
terminology of the new ontology.

Such and example shows how the tools can cooperate to produce complex
results. Even with just a few tools there is a number of possibilities due to
ability to use them in different configurations.

5.1.4 eXtended NeeK language (xNeeK)

xNeeK is a language that gives possibility to define a Knowledge View in a
declarative way. This has several advantages. First of all it is a knowledge
engineer that defines a Knowledge View and not every knowledge engineer
has to be fluent in programming languages, therefore allowing a knowledge
engineer to define a view with an XML configuration file should make the
job easier—knowledge engineers know XML, since they use XML-based lan-
guages like RDF, OWL, SWRL, etc. The configuration file, called a man-
ifest, is passed to a software engineer. The manifest defines the knowledge
source, which is wrapped by a Data View or an Object View—depending
on the software engineer’s decision. Such a view is then used directly by the
business logic in an application. In a way the xNeeK language draws a line
between responsibilities of the two engineers.

The second advantage of xNeeK is that the manifest can be easily changed
without need of recompilation. Unless the data schema exposed by the view
defined in the manifest changes, there is no need for a software engineer
intervention if a knowledge engineer changes something in the knowledge
source.

Another advantage is the ease of storing an XML manifest. It can be
embedded within an application or it can reside as a configuration file in
an applications directory. Multiple manifests with different views used by an
application can be easily managed.

Listing 5.1 shows a sample xNeeK manifest that defines an Inferencing-
KnowledgeView with three arguments: a TBox (sampleTBox.owl), an ABox
(sampleABox.owl) and some rule set. This example shows that views can
be nested in other views—this gives possibility of creating complex views.
Comparing the Knowledge Views API (see Appendix D) with this example
can reveal that in general xNeeK provides a way to define a sequence of class
constructor calls outside the programming language, which, as stated before,
can be beneficial to the knowledge engineer.

Listing 5.2 shows the rule set that is missing in Listing 5.1. The rule set

91

Listing 5.1: Sample xNeeK manifest

<?xml version=”1 .0 ” encoding=”UTF−8”?>

<neek :v iew xmlns:neek=’ h t tp : // k io . pg . gda . p l /neek ’
type=”pl . gda . pg .km. kv . InferencingKnowledgeView ”>

<neek :v iew type=”pl . gda . pg .km. kv . adapters . JenaKB”>
<n e e k : s t r>ht tp : //a . b . c/sampleTBox . owl</ n e e k : s t r>
<neek :boo l> f a l s e</ neek :boo l>

</ neek :v iew>
<neek :v iew type=”pl . gda . pg .km. kv . adapters . JenaKB”>

<n e e k : s t r>ht tp : //a . b . c/sampleABox . owl</ n e e k : s t r>
<neek :boo l> f a l s e</ neek :boo l>

</ neek :v iew>
<n e e k : r u l e S e t>

. . .
</ n e e k : r u l e S e t>

</ neek :v iew>

consists of a single rule:

Student(u) ← belongsTo(u, c) ∧ hasSchool(c, s) ∧ University(s)
∧hasBegining(c, b) ∧ hasEnd(c, e)
∧hasYear(today, y) ∧ built-in:le(b, y)
∧built-in:le(y, e)

(5.1)

The rule states that if someone belongs to a class that has a school that is
a university and today is between the starting and ending year of the class,
then that someone is a student. The embedded rule language is similar to
RuleML [93], which is embedded in SWRL. Using RuleML had been con-
sidered, but a decision to create a new simple rule language has been made.
In the future, however, it is possible that RuleML will be used in xNeeK.
Similarly to SWRL xNeeK allows built-ins which can perform arithmetic op-
erations, string operations, etc. In this example a number comparison built-in
built-in:le is used—the predicate is true if the first argument is less than or
equal to the second argument.

The xNeeK language is named after its predecessor: the NeeK language [30].
After long evolution xNeeK has very little in common with its ancestor. The
original NeeK language was designed for Data Views and gave little possi-
bility of customisation—a view was directly derived from a terminology and

92

Listing 5.2: Sample xNeeK rules

<n e e k : r u l e S e t>
<neek :concept>

<neek:head>
<neek:atomicConcept name=”&p ; Student ”/>
<n e e k : i n d i v i d u a l i s V a r i a b l e=”true ” name=”u”/>

</ neek:head>
<neek:roleAtom>

<neek:atomicRole name=”&p ; belongsTo ”/>
<n e e k : s u b j e c t i s V a r i a b l e=”true ” name=”u”/>
<n e e k : o b j e c t i s V a r i a b l e=”true ” name=”c ”/>

</ neek:roleAtom>
<neek:roleAtom>

<neek:atomicRole name=”&p ; hasSchool ”/>
<n e e k : s u b j e c t i s V a r i a b l e=”true ” name=”c ”/>
<n e e k : o b j e c t i s V a r i a b l e=”true ” name=”s ”/>

</ neek:roleAtom>
<neek:conceptAtom>

<neek:atomicConcept name=”&p ; Un ive r s i ty ”/>
<n e e k : i n d i v i d u a l i s V a r i a b l e=”true ” name=”s ”/>

</ neek:conceptAtom>
<neek:attr ibuteAtom>

<neek :a tomicAtt r ibute name=”&p ; hasBegining ”/>
<n e e k : s u b j e c t i s V a r i a b l e=”true ” name=”c ”/>
<n e e k : o b j e c t i s V a r i a b l e=”true ” value=”b”/>

</ neek:attr ibuteAtom>
<neek:attr ibuteAtom>

<neek :a tomicAtt r ibute name=”&p ; hasEnd ”/>
<n e e k : s u b j e c t i s V a r i a b l e=”true ” name=”c ”/>
<n e e k : o b j e c t i s V a r i a b l e=”true ” value=”e ”/>

</ neek:attr ibuteAtom>
<neek:attr ibuteAtom>

<neek :a tomicAtt r ibute name=”&p ; hasYear ”/>
<n e e k : s u b j e c t i s V a r i a b l e=” f a l s e ”

name=”&p ; today ”/>
<n e e k : o b j e c t i s V a r i a b l e=”true ” value=”y ”/>

</ neek:attr ibuteAtom>
. . .

</ neek :concept>
</ n e e k : r u l e S e t>

93

the user could only select which entities are to be included in the view and
which excluded from the view. xNeeK gives much more possibilities to the
user. It not only allows selecting what is of interest, but also provides means
to transform knowledge sources, which was very early found to be necessary.

The full xNeeK specification can be found in Appendix C. The speci-
fication is developed in sync with the Knowledge Views implementation—
additional DL constructs will be added together with their support in the
Knowledge Views. This way the user is not confused by some constructs
present in the documentation that at present cannot be used.

5.2 Data Views

The Data Views provide a way to access a knowledge base via the JDBC
API. There are two ways to create a Data View. Moreover there are two
types of views: materialised and non-materialised, which are described in
Section 5.2.3.

5.2.1 DataView class

The main class of the Data Views is the DataView class. This is the class
that changes the Knowledge Views API into the JDBC API. To start using
this class one has to provide:

• a knowledge base or

• an ABox together with mappings.

In the first case the Data Views create a database schema based on the ter-
minology stored in the knowledge base according to the rules enumerated in
Section 3.2.1. In the second case an ABox is given with mappings instead of
terminology. Here the database schema is given by the user as opposed to
being generated automatically. The user enumerates the tables and columns
with matching concepts, roles and attributes. This gives possibility of select-
ing only a part of knowledge from the underlying knowledge base. Moreover
it allows the user to name the tables and columns. If more adjustments to the
terminology are needed, transformation capabilities of the Knowledge Views
in the lower layer can be used.

Once a DataView object is created, a JDBC connection can be retrieved
from it (see Listing 5.3). Since the connection is standard compliant, it can
be used in any way a connection retrieved from the java.sql.DriverManager
can be used. With this connection the underlying knowledge base is seen as
a standard relational database.

94

Listing 5.3: Data Views usage with DataView class

KnowledgeBase knowledgeBase = new JenaKB(
new Fi leInputStream (”/dev/shm/ t e s t . owl ”) , fa l se) ;

DataView dataView = new DataView (knowledgeBase) ;
Connection connect ion = dataView . getDVConnection () ;
Statement statement = connect ion . createStatement () ;
Resu l tSet r e s u l t S e t = statement

. executeQuery (”SELECT ∗ FROM OperatingSystem ”) ;

while (r e s u l t S e t . next ()) {
System . out . p r i n t l n (r e s u l t S e t . g e t S t r i ng (1)) ;

}

r e s u l t S e t . c l o s e () ;
statement . c l o s e () ;
connect ion . c l o s e () ;

5.2.2 DriverManager

The other way to retrieve a JDBC connection for a knowledge base is by
using the java.sql.DriverManager—that is in the usual way a connection for
a database is retrieved in Java. This way Data Views can seamlessly cooperate
with other standard technologies like for example JPA. To retrieve a JDBC
connection to a knowledge base in this manner the user has to provide the
java.sql.DriverManager with a proper URL (see Listing 5.4). In the example
shown in Listing 5.4, the Data View is created on top of an OWL file. The
database schema is created based on the terminology found in the file. Virtual
database tables contain the ABox information from the file. To access a Data
View on top of a complex Knowledge View an URL to an xNeeK manifest
has to be provided instead of an OWL file. The JDBC URL pointing to an
xNeeK manifest has the following form:

jdbc:dv:neek:http://server.domain/xNeeKManifest.xml

or

jdbc:dv:neek:file:///someDirectory/xNeeKManifest.xml

5.2.3 Materialised vs. non-materialised views

Similarly as it is in database systems, in Data Views there are two kinds
of views: materialised and non-materialised. Materialised views were imple-

95

jdbc:dv:neek:http://server.domain/xNeeKManifest.xml
jdbc:dv:neek:file:///someDirectory/xNeeKManifest.xml

Listing 5.4: Data Views usage with DriverManager

Connection connect ion = DriverManager
. getConnect ion (”jdbc : dv : f i l e : / dev/shm/ t e s t . owl ”) ;

Statement statement = connect ion . createStatement () ;
Resu l tSet r e s u l t S e t = statement

. executeQuery (”SELECT ∗ FROM OperatingSystem ”) ;

while (r e s u l t S e t . next ()) {
System . out . p r i n t l n (r e s u l t S e t . g e t S t r i ng (1)) ;

}

r e s u l t S e t . c l o s e () ;
statement . c l o s e () ;
connect ion . c l o s e () ;

mented first. They are implemented as a function that copies the required
information from the knowledge base to a database using a provided connec-
tion. The materialised views have some advantages over the non-materialised
ones:

• indexes can be build on any column in the view,

• all the reasoning needed to derive facts in the view is performed only
once,

• some advanced features of the target database can be used, for example
building database views on top of the materialised Data View.

The materialised views can provide much shorter response times for queries
than non-materialised views, because all the required information is already
cached in the database and indexes can be built. However the materialised
views are read-only and need to be refreshed periodically, possibly containing
stale data between two refreshes. Moreover the refresh operation can take
considerable amount of time, because potentially large amount of data must
be copied between the knowledge base and the database.

Non-materialised Data Views can respond to queries more slowly, but the
data is never stale, which is very important for certain applications. Moreover
these views can support the write operation. Currently the implementation
of non-materialised Data Views uses H2 RDBMS [46], in particular its linked
table functionality and ability to create an alias for a function that acts like

96

a database table. This implementation is rather a proof of concept. A full
implementation of the JDBC API for the non-materialised Data Views is
planned as a future work.

5.3 Object Views

The Object Views provide object-oriented access to a knowledge base. The
access point to the Object Views functionality is the ObjectViewManager
class (see Appendix E). To instantiate this class one has to provide an ABox
and a set of class objects. These class objects constitute the terminology. They
can be generated from an existing terminology by the ObjectViewGenerator
tool included in the Object Views or they can be hand written. The classes
need to adhere to the rules enumerated in Section 3.2.2.

The mapping rules in Section 3.2.2 state that concepts are mapped to
interfaces to handle multiple inheritance. Interfaces cannot be instantiated,
but classes can, therefore the ObjectViewManager works with classes only,
not interfaces. This is not contradictory to the mapping rules, because an
instance of a class that implements an interface is also an instance of that
interface. In general every concept of interest is mapped to an interface, but
for each interface there is a class that implements it (see Fig. 5.5). Since
the ObjectViewManager does not use the interfaces they can be abandoned
if the user does not need them. The ObjectViewGenerator generates both
interfaces and classes.

The classes passed to the ObjectViewManager’s constructor are Plain
Old Java Object (POJO) classes. They are loosely coupled with the Object
Views library through annotations, therefore they can be freely passed and
reused in different parts of the client application—even serialised and sent
over the network. The annotations in these classes define the mapping of
concepts, roles and attributes to classes and fields. There are four types of
annotations:

• Concept—annotates a class indicating which concept is mapped to it,

• Uri—annotates the getter of a field in which the URI of an individual
is stored,

• Role—annotates the getter of a field indicating which role is mapped
to it,

• Attribute—annotates the getter of a field indicating which attribute is
mapped to it.

97

Figure 5.5: Diamond inheritance in Object Views

98

See Appendix E.2 for more details

Listings 5.5 and 5.6 show two sample annotated classes with their inter-
faces. The WineClass and WineryClass are marked with the Concept an-
notation with the names of the corresponding concepts. Another mandatory
annotation is the Uri annotation in both classes—this denotes the field which
stores the identity of the individual. Each field denoting a role or an attribute
is marked with an appropriate Role or Attribute annotation—maker and year
in the WineClass class. The WineryClass class is an example of a minimal
class with no Role or Attribute annotation.

To instantiate an ObjectViewManager object one needs to pass a set
of annotated classes to its constructor. The constructor gathers information
about the ontology-object mapping from the annotations using the Java re-
flection API. If a class has a role field then the class being the range of the
role is processed recursively. The query answering is performed by the Ob-
jectViewManager in two stages. First the query is processed to give a set of
individuals fulfilling the conditions from the query. In the second stage an
object is created for every individual. For every annotated field in the object
a query is issued to the underlying knowledge base and the result is assigned
to the field. If the field represents a role the process is repeated recursively.

This implementation uses two features of the Java language: annotations
and reflection. However, unlike ActiveRDF (see Section 2.4.4), the concept
of Knowledge Views does not rely on language specific features. Annotations
provide a convenient way to add metadata to Java classes, however before
introduction of annotations to Java language the same goal had been achieved
by storing metadata in a separate file. For example in J2EE metadata had
been stored in separate XML files, called descriptors. The second feature
of Java language used in Knowledge Views implementation, reflection, is
supported by many modern languages, therefore a similar implementation
can be created for other programming languages as well. It is even possible
to create a similar object-oriented interface to a knowledge base in some
languages that do not support reflection. For example in C++ the ontology-
object mapping could be encoded using the C++ language feature called
pointers to members.

5.4 RDF Views

The RDF Views library provides possibility to export assertions from an
ABox to an RDF file and issue SPARQL queries. Encoding an ABox in the
RDF format is straightforward, since RDF was designed for storing simple
assertions. For SPARQL query processing ARQ library has been used. ARQ

99

Listing 5.5: Annotated Wine class

public interface Wine {
public St r ing getUr i () ;
public void s e tUr i (S t r ing u r i) ;
public Co l l e c t i on <Winery> getMaker () ;
public void setMaker (Co l l e c t i on <Winery> maker) ;
public int getYear () ;
public void setYear (int year) ;

}
@Concept (”Wine”)
public class WineClass implements Wine {

private St r ing u r i ;
@Uri public St r ing getUr i () {

return u r i ;
}
public void s e tUr i (S t r ing u r i) {

this . u r i = u r i ;
}
private Co l l e c t i on <Winery> maker ;
@Role (u r i=”maker ” , range=WineryClass . class)
public Co l l e c t i on <Winery> getMaker () {

return maker ;
}
public void setMaker (Co l l e c t i on <Winery> maker) {

this . maker = maker ;
}
private int year ;
@Attribute (”year ”) public int getYear () {

return year ;
}
public void setYear (int year) {

this . year = year ;
}

}

100

Listing 5.6: Annotated Winery class

public interface Winery {
public St r ing getUr i () ;
public void s e tUr i (S t r ing u r i) ;

}
@Concept (”Winery ”)
public class WineryClass implements Winery {

private St r ing u r i ;
@Uri public St r ing getUr i () {

return u r i ;
}
public void s e tUr i (S t r ing u r i) {

this . u r i = u r i ;
}

}

is a part of the Jena library [52].

The RDF Views ignore TBox completely, even though OWL specifica-
tion [83] defines how to encode OWL terminology as RDF. This is because a
TBox in the Knowledge Views is not an OWL terminology. It is a component
that can respond to subsumption queries—for Knowledge Views it is irrel-
evant what knowledge representation is used internally, for example it can
be some executable computer code. Such encapsulation of TBox has several
benefits which are well known from object-oriented programming. The draw-
back is that it is not easy to reverse engineer the complete terminology using
only the provided TBox interface. However, it is possible to create a view
that would masquerade the TBox as an ABox providing at least some infor-
mation about the terminology, for example subsumption of atomic concepts.
Such ABox can be wrapped by the RDF Views.

The RDF Views have been implemented, because RDF is the basic format
used in Semantic Web and supporting RDF and SPARQL makes the Knowl-
edge Views interoperable with many existing Semantic Web tools. From per-
spective of application business logic the RDF Views are the least convenient,
because RDF is very low level. It focuses on single assertions, while business
logic in an application usually operates on higher level entities like objects in
object-oriented programming.

101

Figure 5.6: QueryEngine class diagram

5.5 DL Views

Following the naming convention of the previous views, the DL Views pro-
vide the description logic ontology model. This is already done by the core
Knowledge Views with the ABox and the TBox interfaces. Therefore the core
Knowledge Views can be considered an implementation of the DL Views. The
core Knowledge Views also provide a rule-based query language that is used
in the model transformation. This query language is a part of xNeeK lan-
guage (see Section 5.1.4 and Appendix C). It is an ABox query language
only—to query the terminology the TBox interface has to be used directly.
The QueryEngine class (see Fig. 5.6) exports the API that allows the users
to use the query language.

For the DL Views to be truly on a par with the rest of the views a standard
or at least a widely accepted DL query language has to be implemented.
DIG [22, 6] is a DL query language that could become the query language of
the DL Views. Implementing a standard compliant query language processor
for the DL Views that would replace the current rule-based ABox query
language is among the tasks for future work.

102

Chapter 6

Summary

The main contribution of this thesis is the concept of the Knowledge Views
defined and elaborated upon in Chapter 3. Since Knowledge Views depend
on two processes: model mapping and model transformation, those processes
were also defined in Chapter 3. The general idea of model mapping was pre-
sented. Moreover rules that realise ontology-relational mapping and ontology-
object mapping were defined. Tightly coupled with the model mapping prob-
lem query language mapping was discussed and an adopted solution pre-
sented. The general idea of the second process the Knowledge Views depend
on, model transformation, was presented. Moreover a rule-based ontology
transformation language that is used in Knowledge Views was defined. Chap-
ter 3 ends with a presentation of the general architecture of Knowledge Views.
The two most important layers of the proposed architecture correspond to
the ideas of model mapping and model transformation defined earlier.

In Chapter 4 case studies were presented that show the ease of interfac-
ing Knowledge Views with existing technology, in particular with relational
databases and programs written in object-oriented language—Java in this
case. Additionally experiments with both seasoned and beginner software
engineers were conducted. Results of the experiments are presented in Chap-
ter 4. Experiments with seasoned software engineers proved that they are
accustomed to certain conventions known from existing technologies—they
noticed even small differences between the initial version of Knowledge Views
library and what they are used to. Those differences were removed in the sub-
sequent versions of Knowledge Views library to further enhance compatibil-
ity with existing technologies. Experiments with beginner software engineers
proved the ease of use of Knowledge Views—software engineering students
where able to start using the proposed library within a couple of hours.

The Knowledge Views concept was realised as the Knowledge Views Java
library. The implementation is described in Chapter 5 and Appendices D

103

through F. The implementation is divided in several parts: Knowledge Views
core, Data Views, Object Views, RDF Views and DL Views. Knowledge
Views core is mainly responsible for model transformation. Transformations
can be expressed using xNeeK defined in Chapter 5 and Appendix C. Data
Views realise ontology-relational mapping and Object Views realise ontology-
object mapping. RDF Views provide compatibility with RDF model and DL
Views with description logic.

In that way, the goals stated in Chapter 1 have been achieved, that is:

1. Mappings of the ontology model to object model, relational model and
RDF have been defined and implemented as Object Views, Data Views
and RDF Views.

2. Two sets of transformations for ontology model have been defined.
Transformations of a single model are encoded as a rule-based language,
while the abilities of combining several models are realised as a set of
tools in the Knowledge Views library. Both sets of transformations can
be expressed in the xNeeK language.

The idea of the Knowledge Views has been realised, implemented and
validated. Case studies have been conducted and experiments carried out to
prove the thesis proposition that the Knowledge Views allow for easy usage
of knowledge bases in contemporary information systems, by providing com-
patibility layer with existing systems and an easy to use API for developers.

Initial implementations of Data Views and Object Views and therefore
partial results of this thesis were utilised in the PIPS (Personalised Infor-
mation Platform for Life and Heath Services [89]) project funded by the
European Commission under the Framework 6 call. The Data Views were
used to augment query answering capabilities of the knowledge base used as
the core of knowledge management system (KMS) [41] in the project. In par-
ticular some queries that required closed world assumption were processed
through the Data Views. The Object Views constituted a layer between the
knowledge management system and a web portal. Its role was to increase the
ease of use of the knowledge base.

To recapitulate, the main achievements of this thesis are:

• Definition of the Knowledge Views concept and design of extensible
Knowledge Views architecture,

• Definition of ontology-relational and ontology-object mappings,

• Definition of a rule-based transformation language and its implemen-
tation as xNeeK language,

104

• Implementation of the Knowledge Views concept as Knowledge Views,
Data Views, Object Views and RDF Views libraries,

• Validation of the Knowledge Views concept by experiments performed
with seasoned and beginner software developers.

6.1 Pros and cons of the proposed solution

Apart from such features of the proposed solution as the ease of use that
where among the priorities, there are also some other notable advantages.
Generality is one of them. Generality of this solution can be understood in
several ways. First of all the methods described here can be applied when
implementing similar libraries for object-oriented languages other than Java.
Generality is also applied to information sources, that is the Knowledge Views
can take advantage of various information sources, not only those providing
SQL or SPARQL interface. Generality is closely related to extensibility. The
Knowledge Views can be easily extended to provide other views if needed,
but also the set of available transformations can be further extended in the
future.

The mentioned advantages of generality and extensibility are coupled with
performance penalties. Usually there is a trade-off between those features
and performance. Optimisation focuses on particular cases improving their
performance, but maintaining too many special cases can lead to coding by
exception anti-pattern. As Alan J. Perlis stated in his epigrams [84]:

Optimization hinders evolution.

The sole idea of adding an additional layer on top of a knowledge base is
bound to have negative effect on performance of querying the knowledge
base. However, if the performance is not satisfactory, a number of techniques
can be applied that are already in use in various implementations of Java
Persistence API or similar libraries.

6.2 Future work

There is much work that can still be done around the Knowledge Views
concept. One of tasks is to change the existing prototype into a production
quality product. To be suitable for uses in multi-user concurrent environments
the Knowledge Views require addition of transaction handling, which is still a
new concept in knowledge bases. The expansion of the supported expressivity
of terminologies, which requires improvements in reasoning capabilities of

105

the Knowledge Views, is also an important task. The set of operations on
ABoxes and TBoxes can be extended to support handling of multiple sources
containing inconsistent information. Such capabilities seem a must in the
world of the Internet, where there are many sources providing contradictory
information. Another task for future consideration is the inclusion of support
for n-ary predicates in the Knowledge Views. This last task could lead to
some improvements in performance. As it can be seen the work already done
is a core that gives firm grounding for future expansion. The Knowledge
Views were designed from the beginning with expandability in mind.

106

List of Figures

2.1 Database boundaries . 15
2.2 RDF storage boundaries . 16
2.3 Interoperability in the absence of standardised interfaces . . . 18
2.4 Standards and interchangeability 18
2.5 A sample entity-relationship diagram 20
2.6 A sample class diagram . 22

3.1 Sample layers in an application 31
3.2 Mapping process in general . 32
3.3 Narrowed mapping process . 32
3.4 Ontology (3.1) mapped to ERD 35
3.5 Ontology (3.1) mapped to UML 37
3.6 “Mapping first” combination of mapping and transformation . 41
3.7 “Transformation first” combination of mapping and transfor-

mation . 41
3.8 Sample Car class . 45
3.9 Knowledge Views’ architecture 48

4.1 The infection ontology . 54
4.2 Malware database ERD . 58
4.3 Network database ERD . 59
4.4 Sample Object View application 61
4.5 Connection dialog . 62
4.6 New computer dialog . 62
4.7 Computer view class diagram 64
4.8 Network view class diagram 67
4.9 Three applications with different information sources 73
4.10 Architecture of the Knowledge Views approach 76

5.1 The UML diagram of the Knowledge Views tools 87
5.2 The UML diagram for the Knowledge Views interfaces 88
5.3 Query rewriting . 89

107

5.4 Query rewriting in Knowledge Views 90
5.5 Diamond inheritance in Object Views 98
5.6 QueryEngine class diagram . 102

108

List of Tables

4.1 Ease of use experiment time results 80
4.2 Ease of use experiment with students 84

109

110

List of Listings

2.1 A sample database schema . 21
2.2 A sample Java implementation 22
2.3 Sample OWL 2 ontology . 23
3.1 Ontology (3.1) mapped to SQL 35
3.2 Ontology (3.1) mapped to Java 38
3.3 SQL query transforming (3.5) into (3.4) 42
4.1 Sample OQL queries . 71
4.2 OQL query returning people with a given surname 73
4.3 SQL query for user’s gender 77
4.4 SQL query for young women 77
4.5 SQL query for people visiting Gdańsk 78
4.6 OQL query for the ease of use experiment 80
4.7 Ease of use experiment SPARQL query 81
4.8 Ease of use experiment Object View code 81
4.9 Jena code for the ease of use experiment 82
5.1 Sample xNeeK manifest . 92
5.2 Sample xNeeK rules . 93
5.3 Data Views usage with DataView class 95
5.4 Data Views usage with DriverManager 96
5.5 Annotated Wine class . 100
5.6 Annotated Winery class . 101

111

112

Bibliography

[1] AMD. AMD64 Architecture Programmer’s Manual Volume 1: Appli-
cation Programming, September 2007. http://www.amd.com/us-en/

assets/content_type/white_papers_and_tech_docs/24592.pdf

(accessed 6.04.2010).

[2] Andersen, L. JDBC 4.0 Specification. Sun Microsystems, November
2006.

[3] Anderson, J. Q., and Rainie, L. The Fate of the Semantic Web.
Tech. rep., Pew Research Center’s Internet & American Life Project,
May 2010.

[4] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
and Patel-Schneider, P. F., Eds. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cambridge University
Press, September 2007.

[5] B ↪ak, J., and J ↪edrzejek, C. Wnioskowanie hybrydowe w relacyjnej
bazie danych wykorzystuj ↪ace podej́scie semantyczne. In Bazy danych.
Rozwój metod i technologii. Architektura, metody formalne i zaawan-
sowana analiza danych, S. Kozielski, B. Ma lysiak, P. Kasprowski, and
D. Mrozek, Eds. Wydawnictwo Komunikacji i L ↪aczności, 2008, pp. 333–
348.

[6] Bechhofer, S. DIG 2.0: The DIG Description Logic Interface. DIG
Working Group, September 2006. http://dig.cs.manchester.ac.

uk/index.html (accessed 15.10.2009).

[7] Bell, A. E. Death by UML Fever. Queue 2, 1 (2004), 72–80.

[8] Bell, A. E. UML Fever: Diagnosis and Recovery. Queue 3, 2 (2005),
48–56.

113

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://dig.cs.manchester.ac.uk/index.html
http://dig.cs.manchester.ac.uk/index.html

[9] Berglund, A., Boag, S., Chamberlin, D., Fernández, M. F.,
Kay, M., Robie, J., and Siméon, J. XML Path Language (XPath)
2.0. W3C, January 2007. http://www.w3.org/TR/xpath20/ (accessed
2.04.2010).

[10] Booth, D., and Liu, C. K. Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer. W3C, June 2007. http://www.

w3.org/TR/wsdl20-primer/ (accessed 2.04.2010).

[11] Borgida, A., and Serafini, L. Distributed Description Logics:
Assimilating Information from Peer Sources. In Journal on Data Se-
mantics, vol. 2800 of Lecture Notes in Computer Science. Springer
Berlin/Heidelberg, 2003, pp. 153–184.

[12] Borst, W. N. Construction of Engineering Ontologies for Knowledge
Sharing and Reuse. PhD thesis, Universiteit Twente, September 1997.

[13] Brickley, D., and Guha, R. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. W3C, February 2004. http://www.w3.org/

TR/rdf-schema/ (accessed 6.04.2010).

[14] Brickley, D., and Miller, L. FOAF Vocabulary Specifica-
tion 0.91, November 2007. http://xmlns.com/foaf/spec/ (accessed
27.07.2009).

[15] Cattell, R. G. G., and Barry, D. K., Eds. The Object Data
Standard: ODMG 3.0. Morgan Kaufmann, 2000.

[16] Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K.,
Papakonstantinou, Y., Ullman, J. D., and Widom, J. The
TSIMMIS Project: Integration of heterogeneous information sources. In
Proceedings of the 16th Meeting of the Information Processing Society
of Japan (1994).

[17] Chen, P. P.-S. The entity-relationship model – toward a unified view
of data. ACM Transactions on Database Systems 1, 1 (1976), 9–36.

[18] Clark, K. G., Feigenbaum, L., and Torres, E. SPARQL
Protocol for RDF. W3C, January 2008. http://www.w3.org/TR/

rdf-sparql-protocol/ (accessed 6.03.2010).

[19] Cooper, J. W. Java Design Patterns: A Tutorial. Addison-Wesley
Professional, February 2000.

114

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/wsdl20-primer/
http://www.w3.org/TR/wsdl20-primer/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://xmlns.com/foaf/spec/
http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/rdf-sparql-protocol/

[20] DeMichiel, L., and Keith, M. Java Persistence API. In JSR 220:
Enterprise JavaBeans, Version 3.0. May 2006.

[21] Dijkstra, E. W. The humble programmer. Communications of the
ACM 15, 10 (October 1972), 859–866.

[22] DL Implementation Group (DIG). http://dl.kr.org/dig/index.

html (accessed 23.06.2008).

[23] Duerst, M., and Suignard, M. Internationalized Resource Iden-
tifiers (IRIs). The Internet Society, 2005. http://tools.ietf.org/

html/rfc3987 (accessed 27.03.2010).

[24] Elliott, B., Cheng, E., Thomas-Ogbuji, C., and Ozsoyoglu,
Z. M. A complete translation from SPARQL into efficient SQL. In The
2009 International Database Engineering and Applications Symposium
(2009), ACM, pp. 31–42.

[25] Falkowski, M., and J ↪edrzejek, C. An efficient SQL-based query-
ing method to RDF schemata. In TPD 2007: II Krajowa Konferencja
Naukowa Technologie Przetwarzania Danych, T. Morzy, M. Gorawski,
and R. Wrembel, Eds. Wydawnictwo Politechniki Poznańskiej, 2007,
pp. 162–173.

[26] Fielding, R. T. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, 2000.

[27] Fowler, M. Analysis Patterns: Reusable Object Models. Addison-
Wesley, 1997.

[28] Friedman, M., Levy, A., and Millstein, T. Navigational plans
for data integration. In AAAI ’99/IAAI ’99: Proceedings of the six-
teenth national conference on Artificial intelligence and the eleventh
Innovative applications of artificial intelligence conference innovative
applications of artificial intelligence (Menlo Park, CA, USA, 1999),
American Association for Artificial Intelligence, pp. 67–73.

[29] Garcia-Molina, H., Ullman, J. D., and Widom, J. Database
Systems: The Complete Book. Prentice Hall, June 2008.

[30] Goczy la, K., Grabowska, T., Waloszek, W., and Zawadzki,
M. Designing World Closures for Knowledge-based System Engineer-
ing. In Software engineering: evolution and emerging technologies,
K. Zieliński and T. Szuc, Eds. IOS Press, 2005, pp. 271–282.

115

http://dl.kr.org/dig/index.html
http://dl.kr.org/dig/index.html
http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc3987

[31] Goczy la, K., and Piotrowski, P. Application of Knowledge
Views. Studia Informatica 31, 2A (89) (2010), 77–88.

[32] Goczy la, K., and Piotrowski, P. Introduction of knowledge
bases to existing systems using the Knowledge Views. Zeszyty
naukowe Wydzia lu Elektroniki, Telekomunikacji i Informatyki Politech-
niki Gdańskiej 19 (2010), 61–66.

[33] Goczy la, K., Piotrowski, P., Waloszek, A., Waloszek, W.,
and Zawadzka, T. Terminological and assertional queries in KQL
knowledge access language. Accepted for publication on ICCCI 2010.

[34] Goczy la, K., Piotrowski, P., Waloszek, A., Waloszek, W.,
and Zawadzka, T. J ↪ezyk KQL jako realizacja idei j ↪ezyka SQL dla
bazy wiedzy. Studia Informatica 31, 2A (89) (2010), 47–61.

[35] Goczy la, K., Piotrowski, P., Waloszek, A., Waloszek, W.,
and Zawadzka, T. KQL – j ↪ezyk dost ↪epu do konglomeratowych baz
wiedzy. In TPD 2010: III Krajowa Konferencja Naukowa Technologie
Przetwarzania Danych (2010), pp. 126–137.

[36] Goczy la, K., Piotrowski, P., Waloszek, A., Waloszek, W.,
and Zawadzka, T. KQL as application of SQL rationale for knowl-
edge bases. Zeszyty naukowe Wydzia lu Elektroniki, Telekomunikacji i
Informatyki Politechniki Gdańskiej 18 (2010), 69–74.

[37] Goczy la, K., Piotrowski, P., Waloszek, A., Waloszek, W.,
Zawadzka, T., and Zawadzki, M. Zarz ↪adzanie wiedz ↪a ontologiczn ↪a
w środowisku semantycznego internetu. In Inżynieria oprogramowania
– od teorii do praktyki. Wydawnictwa Komunikacji i L ↪aczności, 2008.

[38] Goczy la, K., Waloszek, A., and Waloszek, W. Hierarchiczny
podzia l przestrzeni ontologii na konteksty. In Bazy danych. Nowe
technologie – Architektura, metody formalne i zaawansowany analiza
danych, S. Kozielski, B. Ma lysiak, P. Kasprowski, and D. Mrozek, Eds.
Wydawnictwo Komunikacji i L ↪aczności, 2007, pp. 247–260.

[39] Goczy la, K., Waloszek, W., and Waloszek, A. Contextual-
ization of a DL Knowledge Base. In Proceedings of the 20th Interna-
tional Workshop on Description Logics (2007). http://ceur-ws.org/
Vol-250/paper_55.pdf (accessed 13.08.2010).

116

http://ceur-ws.org/Vol-250/paper_55.pdf
http://ceur-ws.org/Vol-250/paper_55.pdf

[40] Goczy la, K., Waloszek, W., and Waloszek, A. A Semantic Al-
gebra for Modularized Description Logics Knowledge Bases. In Proceed-
ings of the 22nd International Workshop on Description Logics (2009).
http://ceur-ws.org/Vol-477/paper_67.pdf (accessed 13.08.2010).

[41] Goczy la, K., Waloszek, W., Zawadzka, T., and Zawadzki,
M. Inference mechanisms for knowledge management system in e-
health environment. In Software engineering: evolution and emerging
technologies (2005), IOS Press, pp. 418–423.

[42] Goczy la, K., Zawadzka, T., and Zawadzki, M. Wnioskowanie
z danych zapisanych w zewn ↪etrznych źród lach w systemie zarz ↪adza-
nia wiedz ↪a. In Bazy danych. Nowe technologie – Architektura, metody
formalne i zaawansowana analiza danych, S. Kozielski, B. Ma lysiak,
P. Kasprowski, and D. Mrozek, Eds. Wydawnictwo Komunikacji i
 L ↪aczności, 2007, pp. 283–293.

[43] Grau, B. C., Parsia, B., and Sirin, E. Combining OWL ontologies
using E-Connections. Web Semantics: Science, Services and Agents on
the World Wide Web 4, 1 (2006), 40–59.

[44] Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. De-
scription Logic Programs: Combining Logic Programs with Description
Logic. In In Proc. of the Twelfth International World Wide Web Con-
ference (2003).

[45] Gruber, T. R. A translation approach to portable ontology specifi-
cations. Knowledge Acquisition 5, 2 (1993), 199–220.

[46] H2 Database Engine. http://www.h2database.com (accessed
15.09.2009).

[47] Hayes, P. RDF Semantics. W3C, February 2004. http://www.w3.

org/TR/rdf-mt/ (accessed 23.06.2008).

[48] Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,
Grosof, B., and Dean, M. SWRL: A Semantic Web Rule Language
Combining OWL and RuleML. W3C, May 2004. http://www.w3.org/
Submission/SWRL/ (accessed 19.06.2008).

[49] IEEE. IEEE Standard Glossary of Software Engineering Terminology,
1990. IEEE Std 610.12-1990.

117

http://ceur-ws.org/Vol-477/paper_67.pdf
http://www.h2database.com
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/

[50] Jarrar, M., and Meersman, R. Ontology Engineering – The
DOGMA Approach. In Advances in Web Semantics I. Springer, 2009,
pp. 7–34.

[51] Jastor – Typesafe, Ontology Driven RDF Access from Java. http:

//jastor.sourceforge.net/ (accessed 19.06.2008).

[52] Jena – A Semantic Web Framework for Java. http://jena.

sourceforge.net/ (accessed 19.06.2008).

[53] Josuttis, N. M. SOA in Practice: The Art of Distributed System
Design. O’Reilly Media, 2007.

[54] The JXPath Component. http://commons.apache.org/jxpath/ (ac-
cessed 19.03.2010).

[55] Kalyanpur, A., Pastor, D. J., Battle, S., and Padget, J.
Automatic Mapping of OWL Ontologies into Java. In Proceedings of
Software Engineering and Knowledge Engineering (Banff, Canada, 6
2004).

[56] Klyne, G., and Carroll, J. J. Resource Description Framework
(RDF): Concepts and Abstract Syntax. W3C, February 2004. http:

//www.w3.org/TR/rdf-concepts/ (accessed 23.06.2008).

[57] Kruk, S. R., Cygan, M., Piotrowski, P., Samp, K., and Wes-
terski, A. Building a heterogeneous network of digital libraries on the
Semantic Web. In Semantics Systems From Visions to Applications:
Proceedings of the Semantics 2006 (2006), pp. 31–36.

[58] Leszczyna, R., Fovino, I. N., and Masera, M. Simulating mal-
ware with MAlSim. Journal in Computer Virology (July 2008).

[59] Levy, A. Y. Answering queries using views: A survey. The VLDB
Journal 10, 4 (December 2001), 270–294.

[60] Levy, A. Y., Rajaraman, A., and Ordille, J. J. Querying Het-
erogeneous Information Sources Using Source Descriptions. In Pro-
ceedings of the Twenty-second International Conference on Very Large
Data Bases (1996), T. M. Vijayaraman, A. P. Buchmann, C. Mohan,
and N. L. Sarda, Eds., Morgan Kaufmann, pp. 251–262.

[61] MARC Standards. http://www.loc.gov/marc/ (accessed 24.10.2008).

118

http://jastor.sourceforge.net/
http://jastor.sourceforge.net/
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://commons.apache.org/jxpath/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.loc.gov/marc/

[62] Manola, F., and Miller, E. RDF Primer. W3C, February 2004.
http://www.w3.org/TR/rdf-primer/ (accessed 23.06.2008).

[63] Marshall, C. C., and Shipman, F. M. Which semantic web? In
HYPERTEXT ’03: Proceedings of the fourteenth ACM conference on
Hypertext and hypermedia (New York, NY, USA, 2003), ACM, pp. 57–
66.

[64] Mart́ın, L., Anguita, A., Maojo, V., Bonsma, E., Bucur, A.
I. D., Vrijnsen, J., Brochhausen, M., Cocos, C., Stenzhorn,
H., Tsiknakis, M., Doerr, M., and Kondylakis, H. Ontology
Based Integration of Distributed and Heterogeneous Data Sources in
ACGT. In HEALTHINF (1) (2008), L. Azevedo and A. R. Londral,
Eds., INSTICC - Institute for Systems and Technologies of Information,
Control and Communication, pp. 301–306.

[65] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., and
Oltramari, A. WonderWeb Deliverable D18: Ontology Library.
Tech. rep., Laboratory For Applied Ontology, 2003.

[66] McGuinness, D. L., and van Harmelen, F. OWL Web Ontology
Language Overview. W3C, February 2004. http://www.w3.org/TR/

owl-features/ (accessed 27.03.2010).

[67] Meyer, B. UML: The Positive Spin. Cutter IT Journal (formerly
American Programmer) X, 3 (1997). http://archive.eiffel.com/

doc/manuals/technology/bmarticles/uml/page.html (accessed
25.03.2010).

[68] Microsoft. The LINQ Project. http://msdn.microsoft.com/

en-us/netframework/aa904594.aspx (accessed 25.03.2009).

[69] Mitra, N., and Lafon, Y. SOAP Version 1.2 Part 0: Primer
(Second Edition). W3C, April 2007. http://www.w3.org/TR/

soap12-part0/ (accessed 2.04.2010).

[70] Motik, B., Patel-Schneider, P. F., and Parsia, B. OWL 2
Web Ontology Language Structural Specification and Functional-Style
Syntax. W3C, October 2009. http://www.w3.org/TR/owl-syntax/

(accessed 27.03.2010).

[71] Murray, C. Semantic Technologies Developer’s Guide, 11g Release 2
(11.2). Oracle Corporation, March 2010. http://download.oracle.

119

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://archive.eiffel.com/doc/manuals/technology/bmarticles/uml/page.html
http://archive.eiffel.com/doc/manuals/technology/bmarticles/uml/page.html
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/owl-syntax/
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11828/title.htm

com/docs/cd/E11882_01/appdev.112/e11828/title.htm (accessed
23.04.2010).

[72] National Center for Biomedical Ontology. NCBO Bioportal.
http://bioportal.bioontology.org/ (accessed 6.04.2010).

[73] Object Management Group. Meta Object Facility (MOF) Spec-
ification Version 1.4.1, July 2005. http://www.omg.org/spec/MOF/

ISO/19502/PDF/ (accessed 22.03.2009).

[74] Object Management Group. Common Object Request Broker Ar-
chitecture (CORBA) Specification, Version 3.1, Part 1: CORBA Inter-
faces, 2008.

[75] Object Management Group. Common Object Request Broker Ar-
chitecture (CORBA) Specification, Version 3.1, Part 2: CORBA Inter-
operability, 2008.

[76] Object Management Group. Common Object Request Broker Ar-
chitecture (CORBA) Specification, Version 3.1, Part 3: CORBA Com-
ponent Model, 2008.

[77] Object Management Group. OMG Unified Modeling Language
(OMG UML), Infrastructure Version 2.2, 2009.

[78] Object Management Group. OMG Unified Modeling LanguageTM
(OMG UML), Superstructure Version 2.2, 2009.

[79] Oren, E. Algorithms and Components for Application Development
on the Semantic Web. PhD thesis, National University of Ireland,
January 2008.

[80] Oren, E., Delbru, R., Gerke, S., Haller, A., and Decker, S.
ActiveRDF: Object-oriented semantic web programming. In Proceed-
ings of the International World-Wide Web Conference (Banff, Canada,
5 2007).

[81] The OWL API. http://owlapi.sourceforge.net/ (accessed
14.07.2009).

[82] Parnas, D. L. On the criteria to be used in decomposing systems
into modules. Communications of the ACM 15, 12 (1972), 1053–1058.

120

http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11828/title.htm
http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11828/title.htm
http://bioportal.bioontology.org/
http://www.omg.org/spec/MOF/ISO/19502/PDF/
http://www.omg.org/spec/MOF/ISO/19502/PDF/
http://owlapi.sourceforge.net/

[83] Patel-Schneider, P. F., Hayes, P., and Horrocks, I. OWL
Web Ontology Language Semantics and Abstract Syntax. W3C,
February 2004. http://www.w3.org/TR/owl-semantics/ (accessed
15.10.2009).

[84] Perlis, A. J. Special Feature: Epigrams on programming. SIGPLAN
Not. 17, 9 (1982), 7–13.

[85] Piotrowski, P. Implementacja widoków danych na baz ↪e wiedzy. In
TPD 2007: II Krajowa Konferencja Naukowa Technologie przetwarza-
nia danych (2007), T. Morzy, M. Gorawski, and R. Wrembel, Eds.,
Wydawnictwo Politechniki Poznańskiej, pp. 174–185.

[86] Piotrowski, P. Knowledge base views. In Proceeedings of the 1st
International Conference on Information Technology (2008), pp. 35–
38.

[87] Piotrowski, P. Object Views – metoda mapowania obiektowo-
ontologicznego. In Bazy Danych. Rozwój metod i technologii – Bez-
pieczeństwo, wybrane technologie i zastosowania. Wydawnictwa Komu-
nikacji i L ↪aczności, 2008, pp. 207–216.

[88] Piotrowski, P. The Internet as a knowledge source in Knowledge
Views. Studia Informatica 30, 2A (83) (2009), 201–211.

[89] Personalised Information Platform for Life and Heath Services.
http://www.ist-world.org/ProjectDetails.aspx?ProjectId=

f07c448095e6427d86c87f3e05e8075e (accessed 23.04.2010).

[90] Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenz-
erini, M., and Rosati, R. Linking Data to Ontologies. J. on Data
Semantics X (2008), 133–173.

[91] Prud’hommeaux, E., and Seaborne, A. SPARQL Query Lan-
guage for RDF. W3C, January 2008. http://www.w3.org/TR/

rdf-sparql-query/ (accessed 19.06.2008).

[92] RDF2Go. http://rdf2go.semweb4j.org/ (accessed 14.07.2009).

[93] The Rule Markup Initiative. http://ruleml.org/ (accessed
12.10.2009).

[94] Salus, P. H. A Quarter Century of UNIX. Addison-Wesley Profes-
sional, June 1994.

121

http://www.w3.org/TR/owl-semantics/
http://www.ist-world.org/ProjectDetails.aspx?ProjectId=f07c448095e6427d86c87f3e05e8075e
http://www.ist-world.org/ProjectDetails.aspx?ProjectId=f07c448095e6427d86c87f3e05e8075e
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://rdf2go.semweb4j.org/
http://ruleml.org/

[95] Sesame. http://www.openrdf.org/ (accessed 19.06.2008).

[96] Sipser, M. Wprowadzenie do teorii obliczeń. Wydawnictwa Naukowo-
Techniczne, 2009.

[97] Stuckenschmidt, H. Implementing Modular Ontologies with Dis-
tributed Description Logics. In Proceedings of the first international
workshop on modular ontologies at the International Semantic Web
Conference ISWC’06 (2006). http://ki.informatik.uni-mannheim.
de/fileadmin/publication/stuckenschmidt07implementing.pdf

(accessed 13.08.2010).

[98] Sun Microsystems. Java SE 6 Documentation. http://java.sun.
com/javase/6/docs.

[99] Ullman, J. D. Information Integration Using Logical Views. In
ICDT ’97: Proceedings of the 6th International Conference on Database
Theory (London, UK, 1997), Springer-Verlag, pp. 19–40.

[100] W3C Semantic Web Activity. http://www.w3.org/2001/sw/ (ac-
cessed 20.06.2008).

[101] W3C OWL Working Group. OWL 2 Web Ontology Language
Document Overview. W3C, October 2009. http://www.w3.org/TR/

owl-overview/ (accessed 27.03.2010).

[102] Xu, L., and Embley, D. W. Combining the Best of Global-as-View
and Local-as-View for Data Integration. In Information Systems Tech-
nologies and Its Applications (2004), A. E. Doroshenko, T. A. Halpin,
S. W. Liddle, and H. C. Mayr, Eds., vol. 48 of LNI, GI, pp. 123–136.

[103] Zawadzka, T. Integracja heterogenicznych źróde l wiedzy z wykorzys-
taniem logiki opisowej. PhD thesis, Gdańsk University of Technology,
2008.

122

http://www.openrdf.org/
http://ki.informatik.uni-mannheim.de/fileadmin/publication/stuckenschmidt07implementing.pdf
http://ki.informatik.uni-mannheim.de/fileadmin/publication/stuckenschmidt07implementing.pdf
http://java.sun.com/javase/6/docs
http://java.sun.com/javase/6/docs
http://www.w3.org/2001/sw/
http://www.w3.org/TR/owl-overview/
http://www.w3.org/TR/owl-overview/

Appendix A

Ease of use experiment 1

A.1 Description

In this exercise the goal is to create an application that reads an RDF file
containing FOAF information, searches the information for a particular per-
son or a group of people and prints the information found. The application is
to be created by extending a given template. The template includes a method
that prints the information found and a class Person in which information
about a single person is to be stored. The Person class corresponds to the
http://xmlns.com/foaf/0.1/Person concept (OWL class). The fields of
the class correspond to the following FOAF entities:

• uri – URI of the particular Person instance,

• surname – http://xmlns.com/foaf/0.1/surname attribute
(OWL datatype property),

• firstName – http://xmlns.com/foaf/0.1/firstName attribute
(OWL datatype property),

• title – http://xmlns.com/foaf/0.1/title attribute
(OWL datatype property),

• phone – http://xmlns.com/foaf/0.1/phone attribute
(OWL datatype property)1.

The participant’s task is to write Java code that reads the RDF file, queries
it and passes the results to the method that prints them. The task is to be
done twice: first using the Object View API, then using the Jena API.

1According to the FOAF specification this should be a role (OWL object property),
however the test file containing real life data uses it as an attribute (OWL datatype
property)

123

http://xmlns.com/foaf/0.1/Person
Person
http://xmlns.com/foaf/0.1/surname
http://xmlns.com/foaf/0.1/firstName
http://xmlns.com/foaf/0.1/title
http://xmlns.com/foaf/0.1/phone

A.2 Object View API

1. Read the provided RDF file using pl.gda.pg.km.kv.adapters.JenaKB
from the Knowledge View API. Do not use the Jena API (com.hp.hpl.jena
package).

2. Use pl.gda.pg.km.ov.ObjectViewManager from the Object View API
for querying.

3. Annotate the Person class.

4. Issue OQL query that finds people by surname.

A.3 Jena API

1. Read the provided RDF file using com.hp.hpl.jena.rdf.model.ModelFactory
and Model from the Jena API2.

2. Use com.hp.hpl.jena.query.QueryExecutionFactory and QueryExecu-
tion from the ARQ API3 for querying.

3. Issue SPARQL query that finds people by surname.

2http://jena.sourceforge.net/javadoc/index.html
3http://jena.sourceforge.net/ARQ/javadoc/index.html

124

http://jena.sourceforge.net/javadoc/index.html
http://jena.sourceforge.net/ARQ/javadoc/index.html

Appendix B

Ease of use experiment 2

Questionnaire

1. Do you know1 RDF, RDFS, OWL, DIG or other ontology definition
language and which?. .

2. Do you know SPARQL, DIG or other ontology query language and
which?

. .

3. Do you know SQL? .

4. Do you know JDBC? .

5. Do you know Java Persistence API (JPA)?. .

6. Do you know Object Query Language (OQL), Java Persistence Query
Language (JPQL) or HQL (Hibernate Query Language) and which?

. .

7. What time is it? .

Now start doing the tasks—instructions are on the next page.

8. What time is it (after doing the tasks)? .

9. Have you successfully finished the Data Views task?

10. Have you successfully finished the Object Views task?.

1“Know” refers to working knowledge, that is can you use the technologies

125

11. Any comments (for example what was the hardest part)?

. .

. .

. .

126

B.1 Description

The task is to write two Java applications. The first one queries a knowledge
base using the JDBC interface (the Data Views). The second application
queries the same knowledge base using an object interface (the Object Views).
The goal of both applications is to list all people with surname “Piotrowski”
and print the following information: surname, first name, title, phone. The
manifest describing the knowledge base to be queried can be found at:

• http://knot221.eti.pg.gda.pl/piotr/kv/e4/manifest.xml.

Required libraries can be downloaded from

• http://knot221.eti.pg.gda.pl/piotr/kv/e4/lib.zip.

Documentation needed for the task can be found at:

• http://knot221.eti.pg.gda.pl/piotr/kv/e4/KnowledgeView/javadoc/

– the Knowledge Views,

• http://knot221.eti.pg.gda.pl/piotr/kv/e4/DataView/javadoc/ –
the Data Views,

• http://knot221.eti.pg.gda.pl/piotr/kv/e4/ObjectView/javadoc/

– the Object Views,

• http://knot221.eti.pg.gda.pl/piotr/kv/e4/HOWTO.xhtml – how to
with some tips.

The tasks can be done in any order!

B.2 Data Views

1. Connect to the knowledge base using the DriverManager and a properly
constructed JDBC URL pointing to the knowledge base manifest.

2. Issue a query listing all people with surname “Piotrowski” using SQL.

3. Print the required information about the returned people.

127

http://knot221.eti.pg.gda.pl/piotr/kv/e4/manifest.xml
http://knot221.eti.pg.gda.pl/piotr/kv/e4/lib.zip
http://knot221.eti.pg.gda.pl/piotr/kv/e4/KnowledgeView/javadoc/
http://knot221.eti.pg.gda.pl/piotr/kv/e4/DataView/javadoc/
http://knot221.eti.pg.gda.pl/piotr/kv/e4/ObjectView/javadoc/
http://knot221.eti.pg.gda.pl/piotr/kv/e4/HOWTO.xhtml

B.3 Object Views

1. Generate classes for the knowledge base from the manifest.

2. Create a knowledge base object from the manifest.

3. Create an Object View for this knowledge base.

4. Issue a query listing all people with surname “Piotrowski” using OQL
(Java Persistence Query Language has the same syntax for simple
queries as OQL).

5. Print the required information about the returned people.

128

Appendix C

xNeeK specification

C.1 Notation convention

• <tag/> – an XML tag,

• <tag1/> <tag2/> – a sequence of tags,

• (<tag1/> <tag2/>) – grouping of tags,

• <tag/>* – a sequence of any number of <tag/> (including 0),

• <tag/>{x, y} – a sequence of x to y tags,

• <tag1/> | <tag2/> – alternative.

C.2 Root elements

• <view/> – type: View (see Section C.3.1),

• <ruleSetPair/> – type: RuleSetPair (see Section C.3.2),

• <ruleSet/> – type: RuleSet (see Section C.3.3).

C.3 Types

C.3.1 View

Definition of a view.

129

Attributes

• type – required, type: string, qualified class name

Body

(<view/> | <ruleSetPair/> | <ruleSet/> | <str/> | <int/> | <bool/>)*

• <view/> – type: View (see Section C.3.1), embedded view passed as
an argument;

• <ruleSetPair/> – type: RuleSetPair (see Section C.3.2), embedded pair
of rule sets passed as an argument;

• <ruleSet/> – type: RuleSet (see Section C.3.3), embedded rule set
passed as an argument;

• <str/> – type: string, string passed as an argument;

• <int/> – type: int, integer passed as an argument;

• <bool/> – type: boolean, boolean value passed as an argument.

Example

<view type=”pl . gda . pg .km. kv . adapters . JenaKB”>
<s t r>ht tp : //a . b . c/sampleTBox . owl</ s t r>
<bool>t rue</ bool>

</view>

C.3.2 RuleSetPair

Pair of rule sets. The second set reverses the transformation done by the first
set of rules.

Attributes

None

Body

<rules/> <reverseRules/>

• <rules/> – type: RuleSet (see Section C.3.3), forward rules;

• <reverseRules/> – type: RuleSet (see Section C.3.3), reverse rules.

130

Example

<r u l e S e t P a i r>
<r u l e s>

<concept>
<head>

<atomicConcept name=”C1”/>
< i n d i v i d u a l name=” i ” i s V a r i a b l e=”true ”/>

</head>
<conceptAtom>

<atomicConcept name=”C2”/>
< i n d i v i d u a l name=” i ” i s V a r i a b l e=”true ”/>

</conceptAtom>
</ concept>

</ r u l e s>
<r eve r s eRu l e s>

<concept>
<head>

<atomicConcept name=”C2”/>
< i n d i v i d u a l name=” i ” i s V a r i a b l e=”true ”/>

</head>
<conceptAtom>

<atomicConcept name=”C1”/>
< i n d i v i d u a l name=” i ” i s V a r i a b l e=”true ”/>

</conceptAtom>
</ concept>

</ r eve r s eRu l e s>
</ r u l e S e t P a i r>

C.3.3 RuleSet

Set of rules.

Attributes

None

Body

<concept/>* <role/>* <attribute/>*

131

• <concept/> – type: ConceptRule (see Section C.3.4), rule defining a
concept;

• <role/> – type: RoleRule (see Section C.3.5), rule defining a role;

• <attribute/> – type: AttributeRule (see Section C.3.6), rule defining
an attribute.

Example

<r u l e s>
<concept>

<head>
<atomicConcept name=”C1”/>
< i n d i v i d u a l name=” i ” i s V a r i a b l e=”true ”/>

</head>
<conceptAtom>

<atomicConcept name=”C2”/>
< i n d i v i d u a l name=” i ” i s V a r i a b l e=”true ”/>

</conceptAtom>
</ concept>

</ r u l e s>

C.3.4 ConceptRule

Rule that defines a concept.

Attributes

None

Body

<head/> (<conceptAtom/> | <roleAtom/> | <attributeAtom/> |
<builtinAtom/>)*

• <head/> – type: ConceptAtom (see Section C.3.7), head of the rule;

• <conceptAtom/> – type: ConceptAtom (see Section C.3.7), concept
atom belonging to the body of the rule;

• <roleAtom/> – type: RoleAtom (see Section C.3.8), role atom belong-
ing to the body of the rule;

132

• <attributeAtom/> – type: AttributeAtom (see Section C.3.9), attribute
atom belonging to the body of the rule;

• <builtinAtom/> – type: BuiltinAtom (see Section C.3.10), built-in
atom belonging to the body of the rule.

Example

<concept>
<head>

<atomicConcept name=”C1”/>
< i n d i v i d u a l name=” i ” i s V a r i a b l e=”true ”/>

</head>
<conceptAtom>

<atomicConcept name=”C2”/>
< i n d i v i d u a l name=” i ” i s V a r i a b l e=”true ”/>

</conceptAtom>
</ concept>

C.3.5 RoleRule

Rule that defines a role.

Attributes

None

Body

<head/> (<conceptAtom/> | <roleAtom/> | <attributeAtom/> |
<builtinAtom/>)*

• <head/> – type: RoleAtom (see Section C.3.8), head of the rule;

• <conceptAtom/> – type: ConceptAtom (see Section C.3.7), concept
atom belonging to the body of the rule;

• <roleAtom/> – type: RoleAtom (see Section C.3.8), role atom belong-
ing to the body of the rule;

• <attributeAtom/> – type: AttributeAtom (see Section C.3.9), attribute
atom belonging to the body of the rule;

133

• <builtinAtom/> – type: BuiltinAtom (see Section C.3.10), built-in
atom belonging to the body of the rule.

Example

<r o l e>
<head>

<atomicRole name=”R1”/>
<sub j e c t name=”s ” i s V a r i a b l e=”true ”/>
<ob j e c t name=”o ” i s V a r i a b l e=”true ”/>

</head>
<roleAtom>

<atomicRole name=”R2”/>
<sub j e c t name=”s ” i s V a r i a b l e=”true ”/>
<ob j e c t name=”o ” i s V a r i a b l e=”true ”/>

</roleAtom>
</ r o l e>

C.3.6 AttributeRule

Rule that defines an attribute.

Attributes

None

Body

<head/> (<conceptAtom/> | <roleAtom/> | <attributeAtom/> |
<builtinAtom/>)*

• <head/> – type: AttributeAtom (see Section C.3.9), head of the rule;

• <conceptAtom/> – type: ConceptAtom (see Section C.3.7), concept
atom belonging to the body of the rule;

• <roleAtom/> – type: RoleAtom (see Section C.3.8), role atom belong-
ing to the body of the rule;

• <attributeAtom/> – type: AttributeAtom (see Section C.3.9), attribute
atom belonging to the body of the rule;

134

• <builtinAtom/> – type: BuiltinAtom (see Section C.3.10), built-in
atom belonging to the body of the rule.

Example

<a t t r i b u t e>
<head>

<atomicAttr ibute name=”A1”/>
<sub j e c t name=”s ” i s V a r i a b l e=”true ”/>
<ob j e c t va lue=”o ” i s V a r i a b l e=”true ”/>

</head>
<attr ibuteAtom>

<atomicAttr ibute name=”A2”/>
<sub j e c t name=”s ” i s V a r i a b l e=”true ”/>
<ob j e c t va lue=”o ” i s V a r i a b l e=”true ”/>

</ attr ibuteAtom>
</ a t t r i b u t e>

C.3.7 ConceptAtom

Concept atom.

Attributes

None

Body

(<atomicConcept/> | <notConcept/> | <andConcept/> | <orConcept/> |
<existsRoleConcept/>) <individual/>

• <atomicConcept/> – type: AtomicConcept (see Section C.3.11), atomic
concept;

• <notConcept/> – type: NotConcept (see Section C.3.12), concept com-
plement;

• <andConcept/> – type: AndConcept (see Section C.3.13), intersection
of concepts;

• <orConcept/> – type: OrConcept (see Section C.3.14), union of con-
cepts;

135

• <existsRoleConcept/> – type: ExistsRoleConcept (see Section C.3.15),
existentially qualified concept;

• <individual/> – type: Individual (see Section C.3.18), individual.

Example

<conceptAtom>
<atomicConcept name=”C”/>
< i n d i v i d u a l name=” i ” i s V a r i a b l e=”true ”/>

</conceptAtom>

C.3.8 RoleAtom

Role atom.

Attributes

None

Body

<atomicRole/> <subject/> <object/>

• <atomicRole/> – type: AtomicRole (see Section C.3.16), atomic role;

• <subject/> – type: Individual (see Section C.3.18), subject of the role;

• <object/> – type: Individual (see Section C.3.18), object of the role.

Example

<roleAtom>
<atomicRole name=”R”/>
<sub j e c t name=”s ” i s V a r i a b l e=”true ”/>
<ob j e c t name=”o ” i s V a r i a b l e=”true ”/>

</roleAtom>

C.3.9 AttributeAtom

Attribute atom.

136

Attributes

None

Body

<atomicAttribute/> <subject/> <object/>

• <atomicAttribute/> – type: AtomicAttribute (see Section C.3.17), atomic
attribute;

• <subject/> – type: Individual (see Section C.3.18), subject of the at-
tribute;

• <object/> – type: Value (see Section C.3.19), object of the attribute.

Example

<attr ibuteAtom>
<atomicAttr ibute name=”A”/>
<sub j e c t name=”s ” i s V a r i a b l e=”true ”/>
<ob j e c t va lue=”o ” i s V a r i a b l e=”true ”/>

</ attr ibuteAtom>

C.3.10 BuiltinAtom

Built-in atom.

Attributes

None

Body

<builtin/> (<individual/> | <value/>)*

• <builtin/> – type: BuiltinType (see Section C.3.20), built-in predicate
name;

• <individual/> – type: Individual (see Section C.3.18), individual being
an argument of the built-in predicate;

• <value/> – type: Value (see Section C.3.19), value being an argument
of the built-in predicate.

137

Example

<built inAtom>
<b u i l t i n>s t r ingConcat</ b u i l t i n>
<value value=” r e s u l t ” i s V a r i a b l e=”true ”/>
<value value=”s1 ” i s V a r i a b l e=”true ”/>
<value value=”s2 ” i s V a r i a b l e=”true ”/>

</ bui lt inAtom>

C.3.11 AtomicConcept

Atomic concept.

Attributes

• name – required, type: string, name of the concept.

Body

None

Example

<atomicConcept name=”C”/>

C.3.12 NotConcept

Complement of a concept.

Attributes

None

Body

<atomicConcept/> | <notConcept/> | <andConcept/> | <orConcept/> |
<existsRoleConcept/>

• <atomicConcept/> – type: AtomicConcept (see Section C.3.11), atomic
concept;

138

• <notConcept/> – type: NotConcept (see Section C.3.12), concept com-
plement;

• <andConcept/> – type: AndConcept (see Section C.3.13), intersection
of concepts;

• <orConcept/> – type: OrConcept (see Section C.3.14), union of con-
cepts;

• <existsRoleConcept/> – type: ExistsRoleConcept (see Section C.3.15),
existentially qualified concept;

Example

<notConcept>
<atomicConcept name=”C”/>

</notConcept>

C.3.13 AndConcept

Intersection of concepts.

Attributes

None

Body

(<atomicConcept/> | <notConcept/> | <andConcept/> | <orConcept/> |
<existsRoleConcept/>){2, 2}
• <atomicConcept/> – type: AtomicConcept (see Section C.3.11), atomic

concept;

• <notConcept/> – type: NotConcept (see Section C.3.12), concept com-
plement;

• <andConcept/> – type: AndConcept (see Section C.3.13), intersection
of concepts;

• <orConcept/> – type: OrConcept (see Section C.3.14), union of con-
cepts;

• <existsRoleConcept/> – type: ExistsRoleConcept (see Section C.3.15),
existentially qualified concept;

139

Example

<andConcept>
<atomicConcept name=”C1”/>
<atomicConcept name=”C2”/>

</andConcept>

C.3.14 OrConcept

Union of concepts.

Attributes

None

Body

(<atomicConcept/> | <notConcept/> | <andConcept/> | <orConcept/> |
<existsRoleConcept/>){2, 2}

• <atomicConcept/> – type: AtomicConcept (see Section C.3.11), atomic
concept;

• <notConcept/> – type: NotConcept (see Section C.3.12), concept com-
plement;

• <andConcept/> – type: AndConcept (see Section C.3.13), intersection
of concepts;

• <orConcept/> – type: OrConcept (see Section C.3.14), union of con-
cepts;

• <existsRoleConcept/> – type: ExistsRoleConcept (see Section C.3.15),
existentially qualified concept;

Example

<orConcept>
<atomicConcept name=”C1”/>
<atomicConcept name=”C2”/>

</ orConcept>

140

C.3.15 ExistsRoleConcept

Existentially qualified concept.

Attributes

None

Body

<atomicRole/> (<atomicConcept/> | <notConcept/> | <andConcept/> |
<orConcept/> | <existsRoleConcept/>)

• <atomicRole/> – type: AtomicRole (see Section C.3.16), atomic role;

• <atomicConcept/> – type: AtomicConcept (see Section C.3.11), atomic
concept;

• <notConcept/> – type: NotConcept (see Section C.3.12), concept com-
plement;

• <andConcept/> – type: AndConcept (see Section C.3.13), intersection
of concepts;

• <orConcept/> – type: OrConcept (see Section C.3.14), union of con-
cepts;

• <existsRoleConcept/> – type: ExistsRoleConcept (see Section C.3.15),
existentially qualified concept;

Example

<ex i s t sRo leConcept>
<atomicRole name=”R”/>
<atomicConcept name=”C”/>

</ ex i s t sRo leConcept>

C.3.16 AtomicRole

Atomic role.

Attributes

• name – required, type: string, name of the role.

141

Body

None

Example

<atomicRole name=”R”/>

C.3.17 AtomicAttribute

Atomic attribute.

Attributes

• name – required, type: string, name of the attribute.

Body

None

Example

<atomicAttr ibute name=”A”/>

C.3.18 Individual

Individual.

Attributes

• name – required, type: string, name of the individual or variable;

• isVariable – required, type: boolean, is it a variable to be bound.

Body

None

Example

< i n d i v i d u a l name=” i ” i s V a r i a b l e=” f a l s e ”/>

142

C.3.19 Value

Some value.

Attributes

• value – required, type: string, value or variable name;

• isVariable – required, type: boolean, is it a variable to be bound.

• type – optional, type: string, type of the value.

Body

None

Example

<value value=”123 ” type=” i n t ” i s V a r i a b l e=” f a l s e ”/>

C.3.20 BuiltinType

Name of a built-in predicate, one of (type: string):

• uriToString – converts individual (first argument) to string represen-
tation of its URI (second argument), can also be used to create new
individuals from strings,

• stringConcat – concatenates two strings (second and third argument)
into third string (first argument),

• equal – checks for value equality,

• notEqual – checks for value inequality,

• lessThan – less than predicate,

• lessThanOrEqual – less than or equal predicate,

• greaterThan – greater than predicate,

• greaterThanOrEqual – greater than or equal predicate.

143

144

Appendix D

Knowledge Views Javadocs

D.1 Package pl.gda.pg.km.kv

D.1.1 Interface ABox

An interface representing an information source.

public interface ABox

Method getConceptAssertions

Returns a collection of Individuals fulfiling the given criteria.

public java . u t i l . Co l l e c t i on <pl . gda . pg .km. kv . r u l e s . Ind iv idua l >
getConceptAsser t ions (

p l . gda . pg .km. kv . onto logy . Concept concept ,
p l . gda . pg .km. kv . r u l e s . I n d i v i d u a l pattern)

throws pl . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• concept – Concept to which the Individuals belong

• pattern – pattern of individuals to be matched, null for a wildcard

Returns: a collection of Individuals fulfiling the given criteria

Method putConceptAssertion

Inserts the given concept assertion into the information source.

145

public void putConceptAssert ion (
p l . gda . pg .km. kv . onto logy . Concept concept ,
p l . gda . pg .km. kv . r u l e s . I n d i v i d u a l i n d i v i d u a l)

throws pl . gda . pg .km. kv . KnowledgeBaseException ,
java . lang . UnsupportedOperationException

Parameters:

• concept – the concept whose assertion to insert into the information
source.

• individual – the individual to insert into the information source.

Method delConceptAssertion

Deletes the given concept assertion from the information source.

public void de lConceptAssert ion (
p l . gda . pg .km. kv . onto logy . Concept concept ,
p l . gda . pg .km. kv . r u l e s . I n d i v i d u a l i n d i v i d u a l)

throws pl . gda . pg .km. kv . KnowledgeBaseException ,
java . lang . UnsupportedOperationException

Parameters:

• concept – the concept whose assertion to delete.

• individual – the individual to delete.

Method getRoleAssertions

Returns a collection of role instances fulfiling the given criteria.

public java . u t i l . Co l l e c t i on <
pl . gda . pg .km. kv . onto logy . BinaryInstance<

pl . gda . pg .km. kv . r u l e s . Ind iv idua l ,
p l . gda . pg .km. kv . r u l e s . Ind iv idua l >> ge tRo l eAs s e r t i on s (

p l . gda . pg .km. kv . onto logy . Role ro l e ,
p l . gda . pg .km. kv . onto logy . BinaryInstance<

pl . gda . pg .km. kv . r u l e s . Ind iv idua l ,
p l . gda . pg .km. kv . r u l e s . Ind iv idua l > pattern)

throws pl . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• role – Role to which the Individuals belong

• pattern – Pattern of role instances to return

Returns: a collection of role instances fulfiling the given criteria

146

Method putRoleAssertion

Inserts the given role assertion into the information source.

public void putRoleAssert ion (
p l . gda . pg .km. kv . onto logy . Role ro l e ,
p l . gda . pg .km. kv . onto logy . BinaryInstance<

pl . gda . pg .km. kv . r u l e s . Ind iv idua l ,
p l . gda . pg .km. kv . r u l e s . Ind iv idua l > i n s t anc e)

throws pl . gda . pg .km. kv . KnowledgeBaseException ,
java . lang . UnsupportedOperationException

Parameters:

• role – the role whose assertion to insert into the information source

• instance – the instance to insert into the information source

Method delRoleAssertion

Deletes the given role assertion from the information source.

public void de lRo l eAs s e r t i on (
p l . gda . pg .km. kv . onto logy . Role ro l e ,
p l . gda . pg .km. kv . onto logy . BinaryInstance<

pl . gda . pg .km. kv . r u l e s . Ind iv idua l ,
p l . gda . pg .km. kv . r u l e s . Ind iv idua l > i n s t anc e)

throws pl . gda . pg .km. kv . KnowledgeBaseException ,
java . lang . UnsupportedOperationException

Parameters:

• role – the role whose assertion to delete.

• instance – the instance to delete.

Method getAttributeAssertions

Returns a collection of attribute instances fulfiling the given criteria.

public java . u t i l . Co l l e c t i on <
pl . gda . pg .km. kv . onto logy . BinaryInstance<

pl . gda . pg .km. kv . r u l e s . Ind iv idua l ,
p l . gda . pg .km. kv . r u l e s . Value>> g e t A t t r i b u t e A s s e r t i o n s (

p l . gda . pg .km. kv . onto logy . Att r ibute a t t r i bu t e ,
p l . gda . pg .km. kv . onto logy . BinaryInstance<

pl . gda . pg .km. kv . r u l e s . Ind iv idua l ,
p l . gda . pg .km. kv . r u l e s . Value> pattern)

throws pl . gda . pg .km. kv . KnowledgeBaseException

147

Parameters:

• attribute – Attribute to which the instance belong

• pattern – pattern of attribute instances to return

Returns: a collection of attribute instances fulfiling the given criteria

Method putAttributeAssertion

Inserts the given attribute assertion into the information source.

public void putAtt r ibuteAsse r t i on (
p l . gda . pg .km. kv . onto logy . Att r ibute a t t r i bu t e ,
p l . gda . pg .km. kv . onto logy . BinaryInstance<

pl . gda . pg .km. kv . r u l e s . Ind iv idua l ,
p l . gda . pg .km. kv . r u l e s . Value> i n s t anc e)

throws pl . gda . pg .km. kv . KnowledgeBaseException ,
java . lang . UnsupportedOperationException

Parameters:

• attribute – the attribute whose assertion to insert into the information
source

• instance – instance to insert into the information source

Method delAttributeAssertion

Deletes the given attribute assertion from the information source.

public void d e l A t t r i b u t e A s s e r t i o n (
p l . gda . pg .km. kv . onto logy . Att r ibute a t t r i bu t e ,
p l . gda . pg .km. kv . onto logy . BinaryInstance<

pl . gda . pg .km. kv . r u l e s . Ind iv idua l ,
p l . gda . pg .km. kv . r u l e s . Value> i n s t anc e)

throws pl . gda . pg .km. kv . KnowledgeBaseException ,
java . lang . UnsupportedOperationException

Parameters:

• attribute – the attribute whose assertion to delete

• instance – the instance to delete

148

Method putAssertions

Inserts a collection of assertion into the information source.

public void putAsse r t i ons (
java . u t i l . Co l l e c t i on <pl . gda . pg .km. kv . r u l e s . Atom> a s s e r t i o n s)

throws pl . gda . pg .km. kv . KnowledgeBaseException ,
java . lang . UnsupportedOperationException

Parameters:

• assertions – assertions to insert into the information source

Method delAssertions

Deletes a collection of assertions from the information source

public void d e l A s s e r t i o n s (
java . u t i l . Co l l e c t i on <pl . gda . pg .km. kv . r u l e s . Atom> a s s e r t i o n s)

throws pl . gda . pg .km. kv . KnowledgeBaseException ,
java . lang . UnsupportedOperationException

Parameters:

• assertions – assertions to delete

Method getConcepts

Returns a collection of concepts this information source supports.

public java . u t i l . Co l l e c t i on <pl . gda . pg .km. kv . onto logy . Concept>
getConcepts ()

Returns: a collection of concepts this information source supports

Method getRoles

Returns a collection of roles this information source supports.

public java . u t i l . Co l l e c t i on <pl . gda . pg .km. kv . onto logy . Role>
getRo le s ()

Returns: a collection of roles this information source supports

Method getAttributes

Returns a collection of attributes this information source supports.

public java . u t i l . Co l l e c t i on <pl . gda . pg .km. kv . onto logy . Attr ibute>
ge tAt t r i bu t e s ()

Returns: a collection of attributes this information source supports

149

D.1.2 Interface TBox

An interface representing a terminology

public interface TBox

Method getConcepts

Returns a collection of supported concepts.

public java . u t i l . Co l l e c t i on <pl . gda . pg .km. kv . onto logy . Concept>
getConcepts ()

Returns: a collection of supported concepts

Method getRoles

Returns a collection of supported roles.

public java . u t i l . Co l l e c t i on <pl . gda . pg .km. kv . onto logy . Role>
getRo le s ()

Returns: a collection of supported roles

Method getAttributes

Returns a collection of supported attributes.

public java . u t i l . Co l l e c t i on <pl . gda . pg .km. kv . onto logy . Attr ibute>
ge tAt t r i bu t e s ()

Returns: a collection of supported attributes

Method subsumes

Returns true if lhv subsumes rhv.

public boolean subsumes (
p l . gda . pg .km. kv . onto logy . Concept lhv ,
p l . gda . pg .km. kv . onto logy . Concept rhv)

Parameters:

• lhv – subsumer

• rhv – subsumee

Returns: true if lhv subsumes rhv

150

Method isEqual

A convenience method that checks if lhv subsumes rhv and rhv subsumes
lhv.

public boolean i sEqua l (
p l . gda . pg .km. kv . onto logy . Concept lhv ,
p l . gda . pg .km. kv . onto logy . Concept rhv)

Parameters:

• lhv – first concept to check for equivalence

• rhv – second concept to check for equivalence

Returns:

Method isSatisfiable

Checks if the given concept is satisfiable.

public boolean i s S a t i s f i a b l e (
p l . gda . pg .km. kv . onto logy . Concept concept)

Parameters:

• concept – a concept to check fo satisfiability

Returns: true if concept is satisfiable

Method getRoleDomain

Returns the domain of the given role.

public pl . gda . pg .km. kv . onto logy . Concept getRoleDomain (
p l . gda . pg .km. kv . onto logy . Role r o l e)

Parameters:

• role – role whose domain to return

Returns: domain of the given role

151

Method getRoleRange

Returns the range of the given role

public pl . gda . pg .km. kv . onto logy . Concept getRoleRange (
p l . gda . pg .km. kv . onto logy . Role r o l e)

Parameters:

• role – role whose range to return

Returns: range of the given role

Method isRoleFunctional

Checks if the given role is functional

public boolean i sRo l eFunc t i ona l (
p l . gda . pg .km. kv . onto logy . Role r o l e)

Parameters:

• role – role to check whether it is functional

Returns: true if the role is functional

Method getAttributeDomain

Returns the domain of the given attribute.

public pl . gda . pg .km. kv . onto logy . Concept getAttributeDomain (
p l . gda . pg .km. kv . onto logy . Att r ibute a t t r i b u t e)

Parameters:

• attribute – attribute whose domain to return

Returns: domain of the given attribute

Method getAttributeType

Returns the range of the given attribute.

public java . lang . Class <?> getAttr ibuteType (
p l . gda . pg .km. kv . onto logy . Att r ibute a t t r i b u t e)

Parameters:

• attribute – attribute whose range to return

Returns: range of the given attribute

152

Method isAttributeFunctional

Checks if the given attribute is functional.

public boolean i s A t t r i b u t e F u n c t i o n a l (
p l . gda . pg .km. kv . onto logy . Att r ibute a t t r i b u t e)

Parameters:

• attribute – attribute to check whether it is function

Returns: true if the attribute is functional

D.1.3 Interface KnowledgeBase

A knowledge base - implements both the ABox and TBox interfaces.

public interface KnowledgeBase
extends pl . gda . pg .km. kv . ABox , p l . gda . pg .km. kv . TBox

D.1.4 Class ABoxView

Performes ABox transformation according to a given RuleSetPair.

public ABoxView
extends java . lang . Object
implements pl . gda . pg .km. kv . ABox

Constructor ABoxView

Creates a new instance of ABoxView.

public ABoxView(
p l . gda . pg .km. kv . ABox aBox ,
p l . gda . pg .km. kv . neek . RuleSetPair r u l e S e t P a i r)

Parameters:

• aBox – an ABox that is the information source to transform

• ruleSetPair – a RuleSetPair used to transform the given ABox

Methods from interface ABox

This class implements methods defined in interface ABox.

153

D.1.5 Class InferencingKnowledgeView

A Knowledge View that performs reasoning overt the given ABox according
to the given TBox and RuleSet.

public InferencingKnowledgeView
extends java . lang . Object
implements pl . gda . pg .km. kv . KnowledgeBase

Constructor InferencingKnowledgeView

Creates a new instance of InferencingKnowledgeView.

public InferencingKnowledgeView (
p l . gda . pg .km. kv . TBox tBox ,
p l . gda . pg .km. kv . ABox aBox ,
p l . gda . pg .km. kv . neek . RuleSet r u l e s)

Parameters:

• tBox – TBox used in reasoning

• aBox – ABox to reason over

• rules – Horn rules being part of the knowledge base (content of rules
can be changed by this object)

Methods from interface ABox

This class implements methods defined in interface ABox.

Methods from interface TBox

This class implements methods defined in interface TBox.

D.1.6 Class KnowledgeView

A Knowledge View that does not perform reasoning. Is only used to combine
an ABox with a TBox.

public KnowledgeView
extends java . lang . Object
implements pl . gda . pg .km. kv . KnowledgeBase

154

Constructor KnowledgeView

Creates a new instance of KnowledgeView.

public KnowledgeView (
p l . gda . pg .km. kv . TBox tBox ,
p l . gda . pg .km. kv . ABox aBox)

Parameters:

• tBox – TBox providing terminology

• aBox – ABox providing assertions

Methods from interface ABox

This class implements methods defined in interface ABox.

Methods from interface TBox

This class implements methods defined in interface TBox.

D.1.7 Class MemoryABox

An ABox that stores assertions in memory.

public MemoryABox
extends java . lang . Object
implements pl . gda . pg .km. kv . ABox

Constructor MemoryABox

Create a new empty instance of MemoryABox.

public MemoryABox()

Method clear

Removes all assertions from this ABox

public void c l e a r ()

155

Method clearAll

Removes all assertions from this ABox as well as removes the information
about supported concepts, roles and attributes.

public void c l e a r A l l ()

Methods from interface ABox

This class implements methods defined in interface ABox.

D.1.8 Class MergedABox

An ABox that combines several other ABoxes.

public MergedABox
extends java . lang . Object
implements pl . gda . pg .km. kv . ABox

Constructor MergedABox

Creates a new instance of MergedABox that combines assertions from the
given ABoxes.

public MergedABox(
java . u t i l . Co l l e c t i on <pl . gda . pg .km. kv . ABox> aboxes)

Parameters:

• aboxes – ABoxes to combine

Methods from interface ABox

This class implements methods defined in interface ABox.

D.1.9 Class QueryEngine

Class that provides querying capabilities for a given ABox.

public QueryEngine
extends java . lang . Object

156

Constructor QueryEngine

Creates a new QueryEngine for the given ABox.

public QueryEngine (
p l . gda . pg .km. kv . ABox aBox)

Parameters:

• aBox – ABox to be queried

Method conceptQuery

Returns a collection of individuals that are a result of evaluating the given
ConceptRule.

public java . u t i l . Co l l e c t i on <pl . gda . pg .km. kv . r u l e s . Ind iv idua l >
conceptQuery (

p l . gda . pg .km. kv . r u l e s . ConceptRule r u l e)
throws pl . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• rule – a rule to evaluate

Returns: a collection of individuals that are a result of evaluating the given
ConceptRule

Method roleQuery

Returns a collection of role instances that are a result of evaluating the given
RoleRule.

public java . u t i l . Co l l e c t i on <
pl . gda . pg .km. kv . onto logy . BinaryInstance<

pl . gda . pg .km. kv . r u l e s . Ind iv idua l ,
p l . gda . pg .km. kv . r u l e s . Ind iv idua l >> ro leQuery (

p l . gda . pg .km. kv . r u l e s . RoleRule r u l e)
throws pl . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• rule – a rule to evaluate

Returns: a collection of role instances that are a result of evaluating the given
RoleRule

157

Method attributeQuery

Returns a collection of attribute instances that are a result of evaluating the
given AttributeRule.

public java . u t i l . Co l l e c t i on <
pl . gda . pg .km. kv . onto logy . BinaryInstance<

pl . gda . pg .km. kv . r u l e s . Ind iv idua l ,
p l . gda . pg .km. kv . r u l e s . Value>> attr ibuteQuery (

p l . gda . pg .km. kv . r u l e s . Attr ibuteRule r u l e)
throws pl . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• rule – a rule to evaluate

Returns: a collection of attribute instances that are a result of evaluating the
given AttributeRule

Method query

Returns a list of bindings of loose variables in the given atom list.

public java . u t i l . L i s t<java . u t i l .Map<java . lang . Str ing ,
p l . gda . pg .km. kv . r u l e s . Term>> query (

java . u t i l . L i s t<pl . gda . pg .km. kv . r u l e s . Atom> query)
throws pl . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• query – atom list to evaluate

Returns: a list of bindings of loose variables in the given atom list

Method optimiseQuery

Optimises the query by changing atom order

public stat ic java . u t i l . L i s t<pl . gda . pg .km. kv . r u l e s . Atom>
optimiseQuery (

java . u t i l . L i s t<pl . gda . pg .km. kv . r u l e s . Atom> query)

Parameters:

• query – query to optimise

Returns: optimised query

158

Method optimiseQuery

Optimises the query by changing atom order. Constants are a set of variable
names that should be considered already bound.

public stat ic java . u t i l . L i s t<pl . gda . pg .km. kv . r u l e s . Atom>
optimiseQuery (

java . u t i l . L i s t<pl . gda . pg .km. kv . r u l e s . Atom> query ,
java . u t i l . Set<java . lang . Str ing> cons tant s)

Parameters:

• query – query to optimise

• constants – a set of variable names that should be considered already
bound

Returns: optimised query

D.1.10 Class ViewFactory

A factory used to create KnowledgeBases, ABoxes and TBoxes from an
xNeeK manifest object (View).

public ViewFactory
extends java . lang . Object

Constructor ViewFactory

Creates a new instance of ViewFactory.

public ViewFactory ()

Method createABox

Creates an ABox from a manifest object.

public stat ic pl . gda . pg .km. kv . ABox createABox (
p l . gda . pg .km. kv . neek . View view)

throws pl . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• view – the manifest object

Returns: the ABox

159

Method createTBox

Creates a TBox from a manifest object

public stat ic pl . gda . pg .km. kv . TBox createTBox (
p l . gda . pg .km. kv . neek . View view)

throws pl . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• view – the manifest object

Returns: the TBox

Method createKnowledgeBase

Creates a KnowledgeBase from a manifest object

public stat ic pl . gda . pg .km. kv . KnowledgeBase createKnowledgeBase (
p l . gda . pg .km. kv . neek . View view)

throws pl . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• view – the manifest object

Returns: the KnowledgeBase

D.1.11 Class TBoxView

Create aliases for concept, role and attribute expressions from another TBox

public TBoxView
extends java . lang . Object
implements pl . gda . pg .km. kv . TBox

Constructor TBoxView

Creates a new instance of TBoxView.

public TBoxView(
p l . gda . pg .km. kv . TBox tBox ,
java . u t i l .Map<pl . gda . pg .km. kv . onto logy . Concept ,

p l . gda . pg .km. kv . onto logy . Concept> concepts ,
java . u t i l .Map<pl . gda . pg .km. kv . onto logy . Role ,

p l . gda . pg .km. kv . onto logy . Role> r o l e s ,
java . u t i l .Map<pl . gda . pg .km. kv . onto logy . Attr ibute ,

p l . gda . pg .km. kv . onto logy . Attr ibute> a t t r i b u t e s)

160

Parameters:

• tBox – TBox being the source terminology

• concepts – pairs of concepts, first concept is from this TBox and second
is from source TBox

• roles – pairs of roles, first role is from this TBox and second is from
source TBox

• attributes – pairs of attributes, first attribute is from this TBox and
second is from source TBox

Methods from interface TBox

This class implements methods defined in interface TBox.

161

162

Appendix E

Object Views Javadocs

E.1 Package pl.gda.pg.km.ov

E.1.1 Class ObjectViewGenerator

Class used for generating classes and interfaces from terminology.

public ObjectViewGenerator
extends java . lang . Object

Constructor ObjectViewGenerator

Creates a new generator of the given TBox.

public ObjectViewGenerator (
p l . gda . pg .km. kv . TBox knowledgeBase)

Parameters:

• knowledgeBase – TBox to generate classes and interfaces from

Method main

Method implementing command line program for generating classes and in-
terfaces.

public stat ic void main (
java . lang . S t r ing [] a rgs)

throws java . i o . IOException

Parameters:

• args – the command line arguments

163

Method generateCode

Generates code for the TBox that will be placed in the given basePackage

public java . u t i l .Map<java . lang . Str ing , java . lang . Str ing>
generateCode (

java . lang . S t r ing basePackage)

Parameters:

• basePackage – the package to place the classes and interfaces in

Returns: pairs of class/interface names and their source code.

E.1.2 Class ObjectViewManager

Tha class used to create an Object View.

public ObjectViewManager
extends java . lang . Object

Constructor ObjectViewManager

Creates a new instance of ObjectViewManager for the given knowledge base
and ontology representing classes. All the classes given as types need to be
annotated with Concept and have to have exactly one Uri annotated getter
with a matching setter. The classes should use Role and Attribute annota-
tions to map getters to roles and attributes from the knowledge base.

public ObjectViewManager (
p l . gda . pg .km. kv . ABox knowledgeBase ,
java . lang . Class [] types)

Parameters:

• knowledgeBase – knowledge base to use

• types – annotated classes to be used to represent the query answeres

Method query

Methods that queries for instance with given id that needs to be of the
specified class.

public T query (
java . lang . S t r ing id ,
java . lang . Class<T> type)

throws pl . gda . pg .km. ov . ObjectViewException

164

Parameters:

• id – the URI of the instance.

• type – the annotated class to be returned.

Returns: object representing the instance or null if the instance is not of the
specified class.

Method query

Method that queries for instances with given ids that need to be of the
specified annotated class.

public java . u t i l . Co l l e c t i on <T> query (
java . u t i l . Co l l e c t i on <java . lang . Str ing> ids ,
java . lang . Class<T> type)

throws pl . gda . pg .km. ov . ObjectViewException

Parameters:

• ids – the URIs of the instances.

• type – the annotated class to be returned.

Returns: objects representing the instances. If some instance is not of the
specified class null is included.

Method query

Method returning all instance of the given Concept that need to be of the
specified annotated class.

public java . u t i l . Co l l e c t i on <T> query (
p l . gda . pg .km. kv . onto logy . Concept concept ,
java . lang . Class<T> type)

throws pl . gda . pg .km. ov . ObjectViewException

Parameters:

• concept – concept to which the returned instances belong

• type – the annotated class to be returned

Returns: instance of the given Concept

165

Method persist

Persists the given Object. The object has to be an instance of an annotated
class.

public void p e r s i s t (
java . lang . Object obj)

throws pl . gda . pg .km. ov . ObjectViewException

Parameters:

• obj – object to be persisted

Method remove

Removes the given Object from the repository. The object has to be an
instance of an annotated class.

public void remove (
java . lang . Object obj)

throws pl . gda . pg .km. ov . ObjectViewException

Parameters:

• obj – object to be removed from the repository.

Method merge

Merges changes done to the Object with data in the repository. The object
has to be an instance of an annotated class.

public void merge (
java . lang . Object obj)

throws pl . gda . pg .km. ov . ObjectViewException

Parameters:

• obj – object to be merged with its image in the repository

Method executeQuery

Performs an OQL query and returns results as a collection of instances of the
given annotated class.

public java . u t i l . Co l l e c t i on <T> executeQuery (
java . lang . S t r ing query ,
java . lang . Class<T> type)

throws pl . gda . pg .km. ov . ObjectViewException ,
p l . gda . pg .km. ov . query . QueryException

166

Parameters:

• query – an OQL query to be executed

• type – type of the objects returned

Returns: collection of instances being the result of the query

E.2 Package pl.gda.pg.km.ov.annotation

E.2.1 Annotation Attribute

This annotation marks which getter is to be used to get the value of the
attribute specified by this annotation argument.

@Target (ElementType .METHOD)
@Retention (Retent ionPo l i cy .RUNTIME)
public @inte r f a c e Att r ibute

Element value

The URI of the attribute.

public java . lang . S t r ing value

E.2.2 Annotation Concept

This annotation specifies that the annotated class represents the concept
specified by the URI being this annotation attribute.

@Target (ElementType .TYPE)
@Retention (Retent ionPo l i cy .RUNTIME)
public @inte r f a c e Concept

Element value

The URI of the concept the annotated class represents.

public java . lang . S t r ing value

167

E.2.3 Annotation Role

This annotation marks which getter is to be used to get the role fillers of the
role specified by this annotation argument.

@Target (ElementType .METHOD)
@Retention (Retent ionPo l i cy .RUNTIME)
public @inte r f a c e Role

Element uri

The URI of the role.

public java . lang . S t r ing u r i

Element range

The annotated class the role fillers should be.

public java . lang . Class <?> range

E.2.4 Annotation Uri

This annotation marks which getter is to be used to get the URI of the
instance. The method has to return a String.

@Target (ElementType .METHOD)
@Retention (Retent ionPo l i cy .RUNTIME)
public @inte r f a c e Uri

168

Appendix F

RDF Views Javadocs

F.1 Package pl.gda.pg.km.rv

F.1.1 Class RDFView

An RDFView that allows querying ABoxes using SPARQL.

public RDFView
extends java . lang . Object

Constructor RDFView

Creates a new RDFView for the given ABox

public RDFView(
p l . gda . pg .km. kv . ABox aBox)

Parameters:

• aBox – ABox that will be used for querying.

Method getABox

Returns the ABox that is being queried.

public pl . gda . pg .km. kv . ABox getABox ()

Returns: the ABox that is being queried

Method selectQuery

Performs a SELECT query.

169

public pl . gda . pg .km. rv . r e s u l t . Sparql s e l ec tQuery (
java . lang . S t r ing queryStr ing)

throws pl . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• queryString – SPARQL SELECT query to issue.

Returns: result of the SPARQL query.

Method askQuery

Performs an ASK query.

public pl . gda . pg .km. rv . r e s u l t . Sparql askQuery (
java . lang . S t r ing queryStr ing)

throws pl . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• queryString – SPARQL ASK query to issue.

Returns: result of the SPARQL query

Method constructQuery

Performs a CONSTRUCT query.

public pl . gda . pg .km. rv . RDFView constructQuery (
java . lang . S t r ing queryStr ing)

throws pl . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• queryString – SPARQL CONSTRUCT query to issue.

Returns: an RDFView that represents the resulting RDF graph

Method dump

Dumps the content of the undelying ABox as an RDF file.

public void dump(
java . i o . OutputStream out)

throws java . i o . IOException ,
p l . gda . pg .km. kv . KnowledgeBaseException

Parameters:

• out – stream to dump content to

170

Method knowledgeBaseToABox

Creates an ABox the contains an RDF graph for both assertions and termi-
nology

public stat ic pl . gda . pg .km. kv . ABox knowledgeBaseToABox (
p l . gda . pg .km. kv . KnowledgeBase knowledgeBase)

Parameters:

• knowledgeBase – knowledge base that contains the assertions and ter-
minology

Returns: an ABox the contains an RDF graph for both assertions and termi-
nology.

Method tBoxToABox

Converts a TBox to an RDF ABox.

public stat ic pl . gda . pg .km. kv . ABox tBoxToABox(
p l . gda . pg .km. kv . TBox tBox)

Parameters:

• tBox – TBox to convert

Returns: return an RDF ABox for the given TBox

171

172

Appendix G

Data Views Javadocs

Data Views library implements the standard JDBC API [2], therefore it con-
forms to the standard Java SE 6 Javadocs [98].

173

174

Widoki na baz
↪
e wiedzy i ich

zastosowanie w inżynierii systemów
Streszczenie

1 Wst
↪
ep

1.1 Problematyka

Można zaobserwować rosn ↪ace zainteresowanie technologiami Semantic Web [100].
Jednakże wykorzystanie tych technologii w przemyśle informatycznym jest
niewielkie. Wi ↪eksze zainteresowanie technologiami Semantic Web można za-
obserwować w środowisku akademickim niż w przemyśle. Mimo to niektóre
duże firmy, takie jak Hewlett-Packard, Oracle, czy Google, zainwestowa ly
pewne środki w technologie semantyczne.

Jest wiele powodów, dla których technologie semantyczne s ↪a ci ↪agle uwa-
żane za nowość. Po pierwsze wdrażanie nowych technologii jest zawsze ryzy-
kowne. Powoduje to, że trudno jest wyprzeć stare, sprawdzone technologie.
Powoduje to również cz ↪este mieszanie nowych technologii ze starymi.

Brak standardów jest kolejnym czynnikiem zwi ↪ekszaj ↪ace ryzyko wdra-
żania technologii semantycznych. Istnieje kilka standardów promowanych
przez W3C, np. RDF [56, 62, 47], SPARQL [91], czy też OWL [83, 66] i
OWL 2 [101]. Jest to jednak ci ↪agle niewystarczaj ↪ace. Proces powstawania
standardów jest zazwyczaj d lugotrwa ly, a pierwsze wersje standardów s ↪a cz ↪e-
sto niedopracowane i wymagaj ↪a sprz ↪eżenia zwrotnego od użytkowników.

Kolejn ↪a przyczyn ↪a powolnego wdrażania technologii semantycznych jest
sceptycyzm i brak wiedzy na temat tych technologii wśród inżynierów opro-
gramowania. Doświadczenie zdobyte przez autora w trakcie projektu PIPS
(Personalised Information Platform for Life and Heath Services [89]) po-
twierdza stwierdzenie, że inżynierowie oprogramowania niech ↪etnie poznaj ↪a
technologie semantyczne, które s ↪a jeszcze niedojrza le, a przez to bardziej po-
datne na zmiany. Również dyskusje z inżynierami oprogramowania wykazy-
wa ly ich brak wiedzy i sceptycyzm w stosunku do technologii semantycznych.
Powoduje to swoiste zakleszczenie: technologie semantyczne nie s ↪a używane,
ponieważ nie s ↪a dojrza le, a nie s ↪a dojrza le, ponieważ nie s ↪a używane, wi ↪ec
nie ma sprz ↪eżenia zwrotnego od użytkowników.

Aby zmniejszyć ryzyko zwi ↪azane z wdrażaniem nowych technologii oraz
zminimalizować nak lad pracy inżynierów na zapoznanie si ↪e z nimi, można
przes lonić technologie semantyczne warstw ↪a, która b ↪edzie dostarcza la inter-
fejsy powszechnie używane w inżynierii systemów. Taka warstwa pośredniczy-

175

 laby pomi ↪edzy technologiami, a zarazem zwi ↪eksza laby kompatybilność tych
technologii. Ponadto inżynier mia lby do czynienia ze znanymi sobie interfej-
sami. Dzi ↪eki temu móg lby skorzystać z technologii semantycznych bez ko-
nieczności poznawania wszystkich zwi ↪azanych z nimi niuansów – by lyby one
przes loni ↪ete. Podej́scie to jest ewolucyjne, a nie rewolucyjne – pozwala mie-
szać technologie, a przez to stopniowo wprowadzać technologie semantyczne
do praktycznego stosowania w klasycznych systemach informatycznych.

1.2 Cele i teza pracy

G lównymi celami pracy s ↪a:

1. Zdefiniowanie odwzorowań modelu ontologicznego na modele powszech-
nie używane we wspó lczesnych systemach informatycznych, takie jak
model obiektowy, relacyjny i RDF.

2. Zdefiniowanie zestawu przekszta lceń dla modelu ontologicznego, który
pozwoli dostosować dany model do potrzeb wynikaj ↪acych z logiki apli-
kacji z niego korzystaj ↪acej.

Tez ↪a pracy jest:

Widoki na baz
↪
e wiedzy, które ukrywaj

↪
a model ontolo-

giczny i udost
↪
epniaj

↪
a jeden z modeli powszechnie zna-

nych w inżynierii systemów, pozwalaj
↪
a na latwe wykorzy-

stanie baz wiedzy jako źróde l danych we wspó lczesnych
systemach informatycznych.

2 Przegl
↪
ad bież

↪
acego stanu wiedzy

Kilka różnych dziedzin mia lo wp lyw na rozwój widoków na baz ↪e wiedzy.
Najważniejszymi z nich s ↪a: interoperacyjność i wymienność komponentów, co
jest ścísle powi ↪azane ze standardami, j ↪ezyki opisu ontologii oraz integracja
danych. Ponadto istotny wp lyw na rozwój widoków na baz ↪e wiedzy mia lo
kilka już istniej ↪acych technologii.

2.1 Interoperacyjność, standardy i wymienność kom-
ponentów

Interoperacyjność to zdolność systemów do wymiany informacji oraz wyko-
rzystania wymienianych informacji [49]. Dla przyk ladu, programuj ↪ac w j ↪e-
zyku Java aplikacj ↪e bazodanow ↪a, korzystamy z interfejsu programistycznego

176

(API) JDBC [2], natomiast zapytania zapisujemy w j ↪ezyku SQL. JDBC okre-
śla sposób wymiany informacji poprzez wywo lywanie odpowiednich metod,
natomiast SQL określa w laściw ↪a wiadomość, która jest przesy lana.

Gdy tworzy si ↪e komponent, który ma mieć możliwość wspó lpracy z innymi
komponentami, trzeba mieć na uwadze interoperacyjność na różnych pozio-
mach abstrakcji. Dla przyk ladu, aby przes lać czterobajtow ↪a liczb ↪e ca lkowit ↪a,
trzeba wiedzieć, w jakiej kolejności przes lać pojedyncze bajty. Na wyższym
poziomie, gdy wywo luje si ↪e funkcje programistyczne, trzeba przestrzegać in-
terfejsu ABI, który definiuje mi ↪edzy innymi, w jaki sposób przekazywać pa-
rametry do funkcji, np. czy przekazać je za pośrednictwem rejestrów, czy też
poprzez stos. Na jeszcze wyższym poziomie jest interfejs API, itd.

Standardy s ↪a istotnym elementem wp lywaj ↪acym na interoperacyjność.
Definiuj ↪a na przyk lad, w jaki sposób komponenty maj ↪a wymieniać ze sob ↪a
informacje. W przypadku relacyjnych baz danych ustandaryzowano dla j ↪e-
zyka Java interfejs programistyczny JDBC, który stanowi medium wymiany
informacji pomi ↪edzy aplikacj ↪a a baz ↪a danych. Dzi ↪eki temu standardowi oraz
standardowi SQL możliwa jest w Javie wymiana bazy danych na baz ↪e da-
nych innego producenta. Tak ↪a wymian ↪e bazy danych utrudnia korzystanie
z funkcji specyficznej dla konkretnego producenta, czyli wykraczanie poza
standardy.

Inaczej niż w przypadku relacyjnych baz danych ma si ↪e sprawa z repozyto-
riami RDF. Ustandaryzowany zosta l j ↪ezyk zapytań SPARQL [91], który jest
odpowiednikiem SQL-a, oraz protokó l komunikacyjny SPARQL [18]. Proto-
kó l SPARQL jest zdefiniowany jako us luga sieciowa, czyli jest na wyższym
poziomie abstrakcji niż interfejs programistyczny JDBC.

Nie zawsze komponenty tworzone s ↪a z myśl ↪a o interoperacyjności. Cza-
sami jest potrzeba dostosowania istniej ↪acych komponentów do wspó lpracy ze
sob ↪a. Typowymi wzorcami projektowymi wykorzystywanymi w tym celu s ↪a
adaptory, konwertery oraz sterowniki.

2.2 J
↪
ezyki definiowania ontologii

W środowiskach zwi ↪azanych z inicjatyw ↪a Semantic Web podstawowym j ↪ezy-
kiem stosowanym do definiowania ontologii jest OWL [66, 101]. Jednakże w
inżynierii oprogramowania by ly już stosowane j ↪ezyki definiowania ontologii
na d lugo przed powstaniem inicjatywy Semantic Web. Dwoma najważniej-
szymi s ↪a ERM [17] oraz UML [77, 78].

ERM, UML oraz OWL maj ↪a inne przeznaczenie, lecz w pewnych aspek-
tach s ↪a do siebie podobne. Każdy z wymienionych j ↪ezyków pozwala na defi-
niowanie zbiorów bytów, które posiadaj ↪a cechy wspólne. W ERM zbiory te
nazywaj ↪a si ↪e zbiorami encji, w j ↪ezyku UML klasami, w j ↪ezyku OWL również

177

s ↪a to klasy, które w terminologii logiki opisowej s ↪a konceptami. W każdym
z tych j ↪ezyków wspomniane byty posiadaj ↪a atrybuty. Ponadto możliwe jest
definiowanie zwi ↪azków pomi ↪edzy bytami. Istotna jest też tożsamość bytów,
lecz tutaj zaczynaj ↪a si ↪e różnice. W ERM tożsamość jest definiowana przez
wartości atrybutów. W j ↪ezyku UML obiekt ma tożsamość niezależn ↪a od jego
zawartości. W j ↪ezyku OWL tożsamość wyznacza etykieta, dok ladniej IRI.
Dwa różne IRI mog ↪a wskazywać na to samo indywiduum, wi ↪ec samo porów-
nywanie IRI nie jest wystarczaj ↪ace, aby ustalić tożsamość indywiduum.

Inne przeznaczenie każdego z wymienionych j ↪ezyków powoduje, że różnic
mi ↪edzy nimi jest wi ↪ecej, np. UML, jako jedyny w tej grupie ma możliwość
opisania czynności. W rozprawie tej uwaga jest jednak skupiana na podo-
bieństwach, a nie na różnicach.

2.3 Widoki a integracja informacji

Idea widoków jest szeroko rozpowszechniona w informatyce i ma różne za-
stosowania, np. ukrywanie poufnych danych w bazach danych. Jednymi z
ważniejszych cech widoków s ↪a: zdolność do ukrywania informacji oraz zdol-
ność do przekszta lcania informacji. Interesuj ↪acym zastosowaniem widoków,
w którym cechy te s ↪a wykorzystywane, jest integracja informacji.

Dwoma podstawowymi podej́sciami do integracji informacji z wykorzysta-
niem widoków s ↪a: Local-as-View (LaV) [60, 99] oraz Global-as-View (GaV) [16,
99]. W podej́sciu LaV lokalne źród la informacji s ↪a traktowane jako widoki na
schemat globalny, zatem odwzorowania pomi ↪edzy schematami lokalnymi a
schematem globalnym polegaj ↪a na definiowaniu bytów ze schematów lokal-
nych za pomoc ↪a bytów ze schematu globalnego. W podej́sciu GaV jest od-
wrotnie. Schemat globalny jest traktowany jako widok na schematy lokalne.
W tym przypadku odwzorowania definiuj ↪a byty ze schematu globalnego za
pomoc ↪a bytów ze schematów lokalnych. Oba te podej́scia maj ↪a swoje zalety
i wady. Warto jednak zauważyć, że GaV wydaje si ↪e być bardziej intuicyjny,
czego konsekwencj ↪a s ↪a prostsze algorytmy obs luguj ↪ace GaV. Oba te podej-
ścia pokazuj ↪a, że samo wykorzystanie koncepcji widoków daje, w pewnym
sensie

”
za darmo”, możliwości w zakresie integracji danych.

2.4 Istniej
↪
ace technologie

Wp lyw na niniejsz ↪a prac ↪e mia ly istniej ↪ace aktualnie technologie. Najważ-
niejsze z nich to Java Persistence API (JPA) [20], LINQ [68], JXPath [54],
ActiveRDF [79, 80] oraz Jastor [51].

JPA jest nak ladk ↪a na relacyjne bazy danych upodobniaj ↪ac ↪a je do obiekto-
wych baz danych. Dost ↪ep do bazy danych jest realizowany za pomoc ↪a obiek-

178

towego j ↪ezyka zapytań. Podobnym do JPA rozwi ↪azaniem jest LINQ. Poza
dost ↪epem do relacyjnych baz danych LINQ umożliwia również dost ↪ep do in-
nych źróde l informacji, np. plików XML oraz kolekcji obiektów. LINQ jest
ponadto zintegrowany z j ↪ezykiem programowania – wymaga to pe lnej kontroli
nad j ↪ezykiem programowania, co zazwyczaj jest niemożliwe.

JXPath jest bibliotek ↪a programistyczn ↪a, która umożliwia odpytywanie
drzewa obiektów z wykorzystaniem j ↪ezyka zapytań XPath [9], który jest
przeznaczony dla j ↪ezyka XML. Jest to ciekawy przyk lad wykorzystania podo-
bieństw pomi ↪edzy j ↪ezykiem XML a modelem obiektowym w celu umożliwie-
nia wykorzystania j ↪ezyka zapytań XPath w programach pisanych w obiekto-
wym j ↪ezyku programowania.

ActiveRDF jest bibliotek ↪a programistyczn ↪a, która umożliwia obiektowy
dost ↪ep do repozytoriów RDF. Podstawow ↪a wad ↪a tego rozwi ↪azania jest brak
ogólności. ActiveRDF wykorzystuje specyficzne cechy obiektowych j ↪ezyków
programowania z dynamiczn ↪a typizacj ↪a. Autor biblioteki ActiveRDF odrzuca
j ↪ezyki o statycznej typizacji, takie jak Java, C++, czy do niedawna C#, jako
j ↪ezyki, które nie nadaj ↪a si ↪e do obs lugi RDF-a. Bior ↪ac pod uwag ↪e, że wymie-
nione j ↪ezyki o statycznej typizacji s ↪a powszechnie używane, rozwi ↪azanie to
ma bardzo ograniczon ↪a stosowalność.

Jastor jest bibliotek ↪a realizuj ↪ac ↪a odwzorowanie ontologiczno-obiektowe
zaproponowane w [55]. Odwzorowanie zastosowane w bibliotece Jastor różni
si ↪e w pewnych istotnych elementach od odwzorowania zaproponowanego w
niniejszej pracy. Istotn ↪a wad ↪a biblioteki Jastor jako implementacji odwzoro-
wania ontologiczno-obiektowego jest ścis le zwi ↪azanie jej z bibliotek ↪a Jena [52],
która stanowi jedyn ↪a baz ↪e wiedzy, z któr ↪a Jastor może wspó lpracować.

3 Widoki na baz
↪
e wiedzy

3.1 Koncepcja widoków na baz
↪
e wiedzy

Widoki na baz ↪e wiedzy stanowi ↪a nak ladk ↪e na baz ↪e wiedzy, która umożli-
wia dost ↪ep do bazy wiedzy jak do relacyjnej bazy danych, obiektowej bazy
danych, czy też repozytorium RDF. Ponadto użytkownik widoku może wy-
brać, które informacje maj ↪a być dost ↪epne poprzez widok oraz przekszta lcić
schemat udost ↪epnianych informacji – jest to funkcjonalność znana dobrze z
widoków w relacyjnych bazach danych. W ramach niniejszej pracy zosta ly
opracowane nast ↪epuj ↪ace rodzaje widoków:

• DL View – ontologia sformu lowana w logice opisowej,

• RDF View – model RDF wraz z trójkami RDF,

179

• Object View – model obiektowy wraz z obiektami,

• Data View – schemat relacyjnej bazy danych wraz z danymi.

Koncepcja widoków jest na tyle elastyczna, że umożliwia wprowadzenie no-
wych rodzajów widoków.

Podstawowymi zastosowaniami widoków na baz ↪e wiedzy s ↪a uproszczenie
dost ↪epu do bazy wiedzy i zwi ↪ekszenie kompatybilności baz wiedzy ze wspó l-
czesnymi systemami informatycznymi. Ponadto przyj ↪ete rozwi ↪azania umoż-
liwi ly zastosowanie widoków na baz ↪e wiedzy w integracji informacji oraz mo-
dularyzacji ontologii – s ↪a to jednak swoiste

”
skutki uboczne” i nie stanowi ↪a

g lównego przedmiotu rozprawy.
Widoki na baz ↪e wiedzy staraj ↪a si ↪e patrzeć na baz ↪e wiedzy z punktu wi-

dzenia jej użytkownika, a nie twórcy. Konsekwencj ↪a tego jest umożliwienie
przekszta lcania schematu, a nie tylko odwzorowanie modelu. Gdy pierwsze
wersje widoków na baz ↪e wiedzy by ly wykorzystane w projekcie PIPS [89],
transformacja schematu danych okaza la si ↪e nieodzowna – bazy wiedzy s ↪a
cz ↪esto tworzone z myśl ↪a o wnioskowaniu i do tego celu dostosowana jest
ontologia, natomiast wykorzystanie wywnioskowanych informacji w aplikacji
cz ↪esto wymaga innego schematu.

Różne modu ly w systemie informatycznym mog ↪a wykorzystywać różne
modele (ontologiczny, relacyjny, obiektowy) w zależności od swoich potrzeb.
Ponieważ modu ly s ↪a hermetyczne, modele w nich zawarte s ↪a prywatne i nie
musz ↪a, a cz ↪esto wr ↪ecz nie powinny, być udost ↪epniane na zewn ↪atrz. Modu ly
wymieniaj ↪a si ↪e informacjami

”
publicznymi”, co stanowi ich interfejs. Konse-

kwencj ↪a tej obserwacji jest za lożenie, że widoki na baz ↪e wiedzy nie musz ↪a
odwzorowywać modeli wzajemnie jednoznacznie. Ponadto takie odwzorowa-
nie jest cz ↪esto niemożliwe ze wzgl ↪edu na różn ↪a ekspresywność poszczegól-
nych modeli. Dla przyk ladu, podczas odwzorowania modelu ontologicznego
na model relacyjny przenoszony jest schemat danych, natomiast pewne rela-
cje mi ↪edzy konceptami, które s ↪a niezb ↪edne do wnioskowania, s ↪a pomijane.

3.2 Odwzorowanie modeli

Odwzorowanie modeli polega na przyporz ↪adkowaniu bytów źród lowego me-
tamodelu do bytów docelowego metamodelu. W nomenklaturze Meta Object
Facility (MOF) [73] jest to poziom M2. Dla przyk ladu, podczas odwzoro-
wania modelu ERM na model obiektowy zbiór encji staje si ↪e klas ↪a, zwi ↪azek
referencj ↪a, a atrybut atrybutem. Odwzorowania mog ↪a być stratne, tzn. nie
wszystkie elementy jednego metamodelu musz ↪a przek ladać si ↪e na elementy
drugiego metamodelu. Nie zawsze możliwe jest bezstratne odwzorowanie, a
nawet jeśli jest możliwe, nie zawsze jest to potrzebne.

180

Opracowane w ramach niniejszej pracy odwzorowanie ontologiczno-rela-
cyjne definiowane jest przez nast ↪epuj ↪ace regu ly:

1. Każdy koncept jest reprezentowany przez jeden zbiór encji.

2. Każdy zbiór encji posiada atrybut b ↪ed ↪acy kluczem g lównym, który re-
prezentuje tożsamość indywiduum.

3. Każda rola funkcyjna jest reprezentowana przez zwi ↪azek typu
”
wiele do

jednego”.

4. Każda rola niefunkcyjna jest reprezentowana przez zwi ↪azek typu
”
wiele

do wielu”.

5. Każdy atrybut funkcyjny jest reprezentowany przez atrybut w każdym
zbiorze encji, który nie jest roz l ↪aczny z dziedzin ↪a atrybutu.

6. Każdy atrybut niefunkcyjny jest reprezentowany przez zbiór encji z
dwoma atrybutami: tożsamości ↪a encji posiadaj ↪acej dany atrybut i war-
tości ↪a danego atrybutu. Ten zbiór encji jest po l ↪aczony z odpowiednim
zbiorem encji zwi ↪azkiem typu

”
wiele do wielu”.

7. Zawieranie konceptów jest reprezentowane przez zwi ↪azek IS A.

Powsta ly w wyniku zastosowania powyższych regu l model zwi ↪azków encji jest
przekszta lcany do modelu relacyjnego zgodnie z powszechnie stosowanymi
zasadami.

Opracowane w ramach niniejszej pracy odwzorowanie ontologiczno-obiek-
towe definiowane jest przez nast ↪epuj ↪ace regu ly:

1. Każdy koncept jest reprezentowany przez interfejs.

2. Każdy interfejs posiada par ↪e akcesorów do wartości stanowi ↪acej tożsa-
mość obiektu.

3. Każda rola funkcyjna jest reprezentowana przez par ↪e akcesorów w każ-
dym interfejsie, który należy do dziedziny roli. Typ akcesorów jest in-
terfejsem reprezentuj ↪acym zakres roli.

4. Każda rola niefunkcyjna jest reprezentowana analogicznie do roli funk-
cyjnej, przy czym typem akcesorów jest kolekcja referencji typu zgod-
nego z zakresem roli.

5. Każdy atrybut funkcyjny jest reprezentowany analogicznie do roli funk-
cyjnej, przy czym typ akcesorów odpowiada typowi atrybutu.

181

6. Każdy atrybut niefunkcyjny jest reprezentowany analogicznie do funk-
cyjnego, przy czym typem akcesorów jest kolekcja wartości zgodnych z
typem atrybutu.

7. Zawieranie konceptów jest reprezentowane przez dziedziczenie.

Odwzorowanie korzysta z interfejsów, a nie z klas, ponieważ wielokrotne dzie-
dziczenie w niektórych j ↪ezykach programowania obiektowego jest możliwe
tylko w przypadku interfejsów.

Odwzorowaniu modelu musi również towarzyszyć odwzorowanie j ↪ezyków
zapytań. Cz ↪esto spotykanym rozwi ↪azaniem jest przepisywanie zapytania w
j ↪ezyku źród lowym na zapytanie w j ↪ezyku docelowym. Nie zawsze jest to moż-
liwe ze wzgl ↪edu na potencjalne różnice w ekspresywności j ↪ezyków zapytań. W
niniejszej pracy zapytanie źród lowe jest interpretowane poprzez wykonywanie
sekwencji elementarnych zapytań w j ↪ezyku docelowym.

3.3 Transformacja modeli

Doświadczenie z pierwszymi wersjami widoków na baz ↪e wiedzy pokaza lo, że
samo odwzorowanie modeli to cz ↪esto za ma lo. Schemat danych wynikaj ↪acy
z ontologii, która by la projektowana przede wszystkim z myśl ↪a o wniosko-
waniu, nie zawsze odpowiada l potrzebom użytkowników bazy wiedzy. Wi-
doki na baz ↪e wiedzy zosta ly zaopatrzone w funkcj ↪e transformacji modeli, aby
udost ↪epniany model lepiej odpowiada l potrzebom logiki biznesowej aplikacji
korzystaj ↪acej z bazy wiedzy.

Podczas gdy odwzorowanie modeli operuje na bytach metamodelu (po-
ziom MOF M2), to transformacja operuje na poziomie modelu (poziom MOF
M1). Transformacja modelu definiuje byty modelu docelowego w terminach
bytów modelu źród lowego. Dla przyk ladu koncept Cz lowiek w modelu doce-
lowym może być zdefiniowany jako Kobieta lub M ↪eżczyzna, gdzie koncepty
Kobieta i M ↪eżczyzna pochodz ↪a z modelu źród lowego. Podobnie j ↪ezyk SQL
może być uznany za j ↪ezyk transformacji, ponieważ można za jego pomoc ↪a
zdefiniować now ↪a wirtualn ↪a tabel ↪e (widok bazodanowy), korzystaj ↪ac z tabel
już istniej ↪acych.

W niniejszej pracy przyj ↪eto, że najpierw dokonywana jest transformacja
modelu ontologicznego, który nast ↪epnie jest odwzorowywany na model doce-
lowy. Dzi ↪eki takiemu za lożeniu wystarczaj ↪acy jest jeden j ↪ezyk transformacji.
Gdyby transformacja nast ↪epowa la po odwzorowaniu, potrzebne by lyby j ↪e-
zyki transformacji dla każdego modelu docelowego: relacyjnego, obiektowego
itp. Niektóre modele posiadaj ↪a swoje j ↪ezyki transformacji, lecz nie wszyst-
kie. Model obiektowy posiada j ↪ezyk transformacji OQL [15], lecz nie jest on
wbudowany w j ↪ezyki programowania obiektowego.

182

W ramach niniejszej pracy zaproponowano j ↪ezyk transformacji dla ontolo-
gii zgodnych z logik ↪a opisow ↪a, który jest oparty na regu lach Horna. J ↪ezyk ten
przypomina regu ly z j ↪ezyka SWRL [48]. W ciele regu l możliwe jest stosowa-
nie konceptów z lożonych jako predykatów. Ponadto możliwe jest stosowanie
predykatów wbudowanych, które umożliwiaj ↪a mi ↪edzy innymi wykonywanie
operacji arytmetycznych.

3.4 Źród la wiedzy

Pocz ↪atkowo widoki na baz ↪e wiedzy by ly tworzone z myśl ↪a o bazach wiedzy
jako źród lach wiedzy. Źród lo wiedzy by lo rozumiane jako źród lo informacji
z wbudowanym wnioskowaniem. Przyj ↪ete rozwi ↪azania pozwoli ly jednak na
uogólnienie, dzi ↪eki któremu zamiast źróde l wiedzy można by lo stosować źró-
d la informacji, jak np. relacyjna baza danych, natomiast proste wnioskowanie
zosta lo wbudowane w widoki na baz ↪e wiedzy.

3.5 Ogólna architektura

Architektura widoków na baz ↪e wiedzy jest warstwowa (patrz rys. 1). Na
najniższym poziomie znajduj ↪a si ↪e źród la informacji, np. bazy wiedzy, bazy
danych, us lugi sieciowe itp. To, jakie źród la mog ↪a zostać użyte, zależy od
warstwy wyższej, która zawiera adaptory. Jeśli istnieje adaptor dla danego
źród la informacji, to może ono zostać wykorzystane w po l ↪aczeniu z wido-
kami na baz ↪e wiedzy. Architektura zosta la pomyślana tak, aby latwo można
by lo napisać nowe adaptory dla nowych typów źróde l. Powyżej adaptorów
umiejscowiona jest biblioteka Knowledge Views, która stanowi rdzeń ca lego
rozwi ↪azania. To ona udost ↪epnia funkcje transformacji modeli, integracji źró-
de l informacji, prostego wnioskowania oraz modularyzacji ontologii. Powyżej
biblioteki Knowledge Views umiejscowione s ↪a biblioteki Data Views, Object
Views oraz RDF Views. Te biblioteki odwzorowuj ↪a model ontologiczny na
model relacyjny (Data Views), obiektowy (Object Views) oraz RDF (RDF
Views). Architektura zosta la tak pomyślana, aby możliwe by lo dodanie no-
wych bibliotek odwzorowuj ↪acych na kolejne modele. Z bibliotek odwzorowu-
j ↪acych korzystaj ↪a bezpośrednio aplikacje. To, z której biblioteki odwzorowu-
j ↪acej korzysta konkretna aplikacja, zależy od jej twórcy – wybierany jest ten
model, który najlepiej pasuje do danej aplikacji.

183

Rysunek 1: Architektura widoków na baz ↪e wiedzy

184

4 Studia przypadku i eksperymenty

Aby dowieść tez ↪e pracy, zosta ly przeprowadzone studia przypadku oraz eks-
perymenty.

4.1 Symulacja z użyciem widoków na baz
↪
e wiedzy

Pierwsze studium przypadku pokazuje przyk ladowe wykorzystanie widoków
na baz ↪e wiedzy do symulacji rozpowszechniania si ↪e szkodliwego oprogramo-
wania w sieci komputerowej. Studium to prezentuje poszczególne możliwości
widoków na baz ↪e wiedzy.

Jedn ↪a z możliwości widoków na baz ↪e wiedzy, które zosta ly zaprezento-
wane, jest integracja kilku, w tym przypadku dwóch, źróde l informacji. Oba
źród la to relacyjne bazy danych. Do jednego ze źróde l aplikacja ma upraw-
nienia do odczytu i zapisu, do drugiego ma tylko uprawnienia do odczytu.

Kolejn ↪a możliwości ↪a zaprezentowan ↪a w tym studium jest zapisywanie in-
formacji przez aplikacj ↪e poprzez widok do źród la informacji. Ponieważ cz ↪eść
informacji jest tylko do odczytu, twórca widoku decyduje, co powinno być
zapisane, a co nie.

Zaprezentowana jest również możliwość modularyzacji wykorzystywanej
ontologii. Modularyzacja ta umożliwia mieszanie różnych rodzajów wniosko-
wania – każdy modu l może wnioskować w inny sposób. W tym studium
wykorzystywane jest oparte na regu lach wnioskowanie w świecie otwartym
(OWA) [4] oraz wnioskowanie zaimplementowane w j ↪ezyku programowania,
które dzia la w świecie zamkni ↪etym (CWA) [4].

Aplikacja korzysta z dwóch różnych widoków na t ↪e sam ↪a ontologi ↪e. Każdy
z widoków skupia si ↪e na innych szczegó lach, chociaż pewne informacje s ↪a do-
st ↪epne w obu widokach. Aplikacja jest napisana w obiektowym j ↪ezyku progra-
mowania i wykorzystuje bibliotek ↪e Object Views do odwzorowania ontologii
na model obiektowy.

4.2 Kompatybilność

W koncepcji widoków na baz ↪e wiedzy bardzo ważn ↪a rol ↪e odgrywa kompa-
tybilność. Z jednej strony jest to kompatybilność z różnymi źród lami infor-
macji, z drugiej strony kompatybilność ze wspó lczesnymi aplikacjami. Aby
to zobrazować, zosta la napisana aplikacja korzystaj ↪aca z relacyjnej bazy da-
nych za pośrednictwem standardowej biblioteki Java Persistence API (JPA),
implementuj ↪acej odwzorowanie relacyjno-obiektowe. Nast ↪epnie baza danych
zosta la zast ↪apiona przez widok relacyjny (Data View), pod którym ukryty by l
plik RDF zawieraj ↪acy te same informacje, co baza danych. Aby wykonać ten

185

zabieg, niepotrzebne by ly żadne zmiany w aplikacji, jedynie zmodyfikowany
zosta l adres bazy danych w konfiguracji JPA. Dok ladnie taka sama zmiana
by laby potrzebna przy zmianie producenta bazy danych. Dowodzi to, że wi-
doki na baz ↪e wiedzy s ↪a kompatybilne z aplikacjami bazodanowymi, ponieważ
pozwalaj ↪a zast ↪apić baz ↪e danych baz ↪a wiedzy bez modyfikacji aplikacji.

Zosta la wykonana jeszcze jedna próba, w której we wspomnianej aplikacji
bazodanowej zamieniono standardow ↪a bibliotek ↪e JPA na bibliotek ↪e Object
Views, pod któr ↪a ukryty by l plik RDF. W tym przypadku aplikacja wymaga la
drobnych zmian w miejscach, w których odwo lywa la si ↪e do biblioteki JPA.
Odwo lania te musia ly być zast ↪apione odpowiadaj ↪acymi im odwo laniami do
biblioteki Object Views. Zachowana by la jednak kompatybilność na poziomie
j ↪ezyka zapytań – zapytania przekazywane do JPA i do Object Views by ly
identyczne.

4.3 Stopniowe wdrażanie baz wiedzy

Ponieważ widoki na baz ↪e wiedzy umożliwiaj ↪a zast ↪apienie bazy danych baz ↪a
wiedzy, możliwe jest stopniowe wprowadzanie baz wiedzy do wspó lczesnych
systemów informatycznych w miejscach, gdzie do tej pory by ly wykorzy-
stywane bazy danych. Nie chodzi tu o kompletne zast ↪apienie baz danych,
ponieważ ci ↪agle b ↪ed ↪a one pe lni ly rol ↪e wydajnych źróde l informacji. Ponadto
nie zawsze jest sens zast ↪epowania bazy danych baz ↪a wiedzy. Celem wprowa-
dzenia baz wiedzy jest przeniesienie cz ↪eści wnioskowania wykonywanego w
logice biznesowej aplikacji do bazy wiedzy, co znacznie upraszcza aplikacj ↪e.

Aby zaprezentować, jak można wdrożyć baz ↪e wiedzy w aplikacji, zosta lo
przeprowadzone studium przypadku. W zaprezentowanym przyk ladzie zo-
sta la wprowadzona baza wiedzy, która wykonywa la cz ↪eść wnioskowania, które
w klasycznym podej́sciu wykonywane by loby przez logik ↪e biznesow ↪a. W tym
przyk ladzie wykorzystano bibliotek ↪e Data Views, dzi ↪eki czemu programista
logiki biznesowej korzysta ze znanego mu interfejsu i j ↪ezyka zapytań SQL. Z
punktu widzenia programisty baza wiedzy jest baz ↪a danych, z której można
pobrać informacje, które nigdy tam nie by ly umieszczane, lecz które można
wywnioskować z innych informacji jawnie do niej wstawionych.

4.4 Latwość użycia

W koncepcji widoków na baz ↪e wiedzy ważn ↪a rol ↪e odgrywa również latwość
użycia. Środkiem użytym, aby osi ↪agn ↪ać ten cel, jest implementacja przez
widoki na baz ↪e wiedzy standardowych interfejsów programistycznych (tak
jest w przypadku biblioteki Data Views) oraz upodobnienie stworzonych bi-
bliotek do już istniej ↪acych i powszechnie stosowanych rozwi ↪azań (tak jest w

186

przypadku biblioteki Object Views). Aby zbadać, czy faktycznie stworzone
rozwi ↪azania s ↪a latwe w użyciu przez programistów, zosta lo przeprowadzonych
kilka eksperymentów.

Pierwszy eksperyment zosta l przeprowadzony z doświadczonymi progra-
mistami. Jego celem by lo sprawdzenie ile nak ladu pracy jest wymagane, by
zacz ↪ać używać biblioteki Object Views. Rozwi ↪azania przyj ↪ete w bibliotece
Object Views by ly wzorowane na standardowej bibliotece Java Persistence
API, któr ↪a testowani programísci znali. Zadanie polega lo na napisaniu prostej
aplikacji odpytuj ↪acej baz ↪e wiedzy poprzez bibliotek ↪e Object Views. Jednym
z elementów zadania by lo

”
r ↪eczne” dostosowanie klas reprezentuj ↪acych onto-

logi ↪e do wymogów biblioteki Object Views, mimo iż w sk lad Object Views
wchodzi lo narz ↪edzie, które pozwala lo automatycznie wygenerować te klasy z
ontologii. Ponadto programísci nie mieli dost ↪epu do przyk ladowych kodów
źród lowych, co sprawi lo, że zadanie nie by lo zbyt proste. Dla porównania
tak ↪a sam ↪a aplikacj ↪e należa lo wykonać z wykorzystaniem biblioteki Jena [52],
która s luży do manipulowania plikami OWL. Po wykonaniu zadania pro-
gramísci zostali poproszeni o uwagi dotycz ↪ace biblioteki, której mieli użyć.
Programísci jednog lośnie stwierdzili, że wygodniejsza w użyciu jest biblioteka
Object Views, ponieważ powsta ly kod by l krótszy i napisanie go wymaga lo
mniej mechanicznej pracy. Uczestnicy stwierdzili również, że możliwość uży-
cia wspomnianego generatora klas uprości loby zadanie. Ponadto stwierdzili,
że posiadanie przyk ladowych kodów źród lowych również uprości loby zada-
nie. Wśród uwag dotycz ↪acych testowanej biblioteki uczestnicy wymienili kilka
drobnych różnic pomi ↪edzy testowan ↪a bibliotek ↪a a bibliotek ↪a Java Persistence
API – jest to o tyle ciekawe, że pokazuje, że programísci mocno przyzwycza-
jaj ↪a si ↪e do znanych im rozwi ↪azań, wi ↪ec warto nowe rozwi ↪azania upodabniać
do znanych, aby w ten sposób u latwić proces przej́scia na nowe rozwi ↪azania.
Różnice wymienione przez uczestników zosta ly usuni ↪ete w kolejnych wersjach
biblioteki.

Kolejny eksperyment zosta l przeprowadzony ze studentami informatyki.
Jego celem by lo zbadanie, jak szybko niedoświadczeni programísci s ↪a w stanie
zacz ↪ać używać bibliotek stworzonych w ramach niniejszej pracy. Testowana
by la biblioteka Data Views, która implementuje standardowy interfejs JDBC,
oraz biblioteka Object Views, która jest wzorowana na standardowej biblio-
tece Java Persistence API (JPA). Studenci zostali dobrani w dwie grupy.
Studenci z pierwszej grupy uczyli si ↪e już w ramach studiów o JDBC oraz
JPA. Druga grupa nie mia la takiego doświadczenia. Taki dobór grup mia l na
celu zbadanie wp lywu doświadczenia z korzystania z wymienionych techno-
logii na zdolność wykonania zadań. Studenci mieli 1,5 godziny na napisanie
prostej aplikacji odpytuj ↪acej baz ↪e wiedzy poprzez Data Views oraz Object
Views. Zgodnie z oczekiwaniami grupa studentów, która mia la uprzednie

187

doświadczenie z technologiami JDBC i JPA, lepiej poradzi la sobie z zada-
niem. Istotnym wnioskiem z przeprowadzonego eksperymentu jest to, że na-
wet niedoświadczeni programísci, jakimi byli studenci, s ↪a w stanie nauczyć
si ↪e proponowanych rozwi ↪azań w ci ↪agu zaledwie kilku godzin, co oznacza, że
proponowane rozwi ↪azania s ↪a latwe w użyciu.

5 Implementacja widoków na baz
↪
e wiedzy

Widoki na baz ↪e wiedzy zosta ly zaimplementowane jako zestaw bibliotek:
Knowledge Views, Data Views, Object Views oraz RDF Views.

5.1 Knowledge Views

Biblioteka Knowledge Views stanowi rdzeń ca lego rozwi ↪azania. Biblioteka
ta udost ↪epnia klasy implementuj ↪ace funkcje transformacji modeli, integracji
źróde l informacji oraz prostego wnioskowania. W bibliotece tej zosta ly też
zaimplementowane dwa przyk ladowe adaptory dla źróde l informacji. Jeden
z adaptorów obs luguje relacyjne bazy danych, drugi pliki OWL i RDF po-
przez bibliotek ↪e Jena [52], która może dzia lać jako baza wiedzy. Biblioteka
Knowledge Views zosta la zaprojektowana w sposób umożliwiaj ↪acy rozszerze-
nie zbioru funkcji oraz dost ↪epnych adaptorów.

Możliwości wnioskowania zawarte w bibliotece Knowledge Views można
przyrównać do rozwi ↪azań takich jak QuOnto [90] i KL [103], ponieważ umoż-
liwia wnioskowanie z informacji zawartych w zewn ↪etrznych źród lach. Biblio-
teka Knowledge Views różni si ↪e od QuOnto i KL przede wszystkim tym,
że nie wymaga, aby źród lo informacji by lo relacyjn ↪a baz ↪a danych. Kosztem
ogólności jest jednak wydajność.

Istotnym elementem wchodz ↪acym w sk lad biblioteki Knowledge Views
jest j ↪ezyk xNeeK. Jest to j ↪ezyk, który pozwala definiować widoki na baz ↪e
wiedzy w sposób deklaratywny. Z jego poziomu można wykorzystać klasy za-
warte w bibliotece Knowledge Views, które s luż ↪a do integracji źróde l, trans-
formacji itp. Aby obs lużyć transformacje modeli, xNeeK zawiera możliwość
zapisania regu l transformacji, które zosta ly opisane w rozdziale 3.

5.2 Data Views

Biblioteka Data Views realizuje odwzorowanie ontologiczno-relacyjne. Imple-
mentuje standardowy interfejs dost ↪epu do relacyjnych baz danych JDBC [2].
Aby po l ↪aczyć si ↪e z baz ↪a wiedzy za pośrednictwem tej biblioteki, wystarczy
użyć standardowej klasy java.sql.DriverManager i podać URL w postaci:

188

jdbc:dv:neek:http://server.domain/xNeeKManifest.xml

lub

jdbc:dv:neek:file:///someDirectory/xNeeKManifest.xml

który wskazuje manifest xNeeK. Można też podać URL wskazuj ↪acy bezpo-
średnio plik OWL:

jdbc:dv:file:/dev/shm/test.owl

Zaprezentowany powyżej sposób dost ↪epu do bazy wiedzy tworzy widok
niezmaterializowany. Biblioteka Data Views pozwala również tworzyć widoki
zmaterializowane. Polega to na tym, że użytkownik podaje po l ↪aczenie do
bazy danych, natomiast biblioteka tworzy schemat odpowiadaj ↪acy ontolo-
gii i wype lnia go danymi. Ten rodzaj widoku pozwala na korzystanie z za-
awansowanych możliwości relacyjnych baz danych, np. indeksów. W trakcie
tworzenia widoku zmaterializowanego wnioski pochodz ↪ace z bazy wiedzy s ↪a
również zapisywane w bazie danych, zatem proces wnioskowania jest jednora-
zowy. Podstawow ↪a wad ↪a widoków zmaterializowanych jest to, że dane w nich
zawarte starzej ↪a si ↪e, co w niektórych zastosowaniach jest niedopuszczalne.

5.3 Object Views

Biblioteka Object Views realizuje odwzorowanie ontologiczno-obiektowe. Jest
wzorowana przede wszystkim na bibliotece Java Persistence API. Klasy, które
reprezentuj ↪a ontologi ↪e, s ↪a zwyk lymi klasami j ↪ezyka Java (ang. Plain Old Java
Object, POJO). Nie musz ↪a one implementować żadnego specjalnego inter-
fejsu. Odwzorowanie w nich zawarte jest zapisywane za pomoc ↪a adnotacji.
Klasy te można automatycznie wygenerować z ontologii. W trakcie dzia la-
nia programu odwzorowanie jest odczytywane z klas za pomoc ↪a mechanizmu
refleksji.

5.4 RDF Views

Biblioteka RDF Views umożliwia wyeksportowanie informacji zawartych w
ontologii do pliku RDF. Ponadto umożliwia odpytywanie bazy wiedzy za
pomoc ↪a j ↪ezyka SPARQL. Biblioteka RDF Views skupia si ↪e na asercjach, a
ignoruje terminologi ↪e. Mimo iż ontologie w j ↪ezyku OWL można zapisać w
ca lości, l ↪acznie z terminologi ↪a, jako pliki RDF, to bazy wiedzy, które s ↪a za-
krywane przez RDF Views, nie musz ↪a być zgodne z j ↪ezykiem OWL. Przez
to wydobycie kompletnej terminologii z bazy wiedzy nie zawsze jest moż-
liwe. G lówn ↪a motywacj ↪a implementacji tej biblioteki jest fakt, iż RDF jest

189

jdbc:dv:neek:http://server.domain/xNeeKManifest.xml
jdbc:dv:neek:file:///someDirectory/xNeeKManifest.xml
jdbc:dv:file:/dev/shm/test.owl

silnie wspierany przez środowiska zwi ↪azane z inicjatyw ↪a Semantic Web, wi ↪ec
biblioteka ta zwi ↪eksza kompatybilność tego rozwi ↪azania z innymi rozwi ↪aza-
niami Semantic Web.

5.5 DL Views

DL Views nie zosta lo zrealizowane jako osobna biblioteka, ponieważ jego rol ↪e
spe lnia biblioteka Knowledge Views, która operuje na modelu ontologicznym
zgodnym z logik ↪a opisow ↪a.

6 Podsumowanie

G lównym efektem pracy jest zdefiniowanie koncepcji widoków na baz ↪e wie-
dzy przedstawionej w rozdziale 3. Widoki na baz ↪e wiedzy zależ ↪a od procesu
odwzorowania modeli oraz transformacji modeli, które również s ↪a przedsta-
wione w rozdziale 3. Poza przedstawieniem ogólnej idei odwzorowania mo-
deli zosta ly zdefiniowane regu ly odwzorowania ontologiczno-relacyjnego oraz
ontologiczno-obiektowego. Zosta lo również przedstawione przyj ↪ete rozwi ↪aza-
nie realizacji odwzorowania j ↪ezyków zapytań, które jest silnie zwi ↪azane z
odwzorowaniem modeli. Poza przedstawieniem idei transformacji modeli za-
prezentowany zosta l opracowany regu lowy j ↪ezyk transformacji. Rozdzia l 3
kończy si ↪e prezentacj ↪a ogólnej architektury widoków na baz ↪e wiedzy. Dwie
najważniejsze warstwy w zaproponowanej architekturze odpowiadaj ↪a odwzo-
rowaniu modeli oraz transformacji modeli.

W rozdziale 4 zosta ly zaprezentowane studia przypadku, które ilustruj ↪a
 latwość integracji widoków na baz ↪e wiedzy z istniej ↪acymi technologiami, w
szczególności z relacyjnymi bazami danych oraz programami napisanymi w
obiektowym j ↪ezyku programowania, jakim jest Java. Ponadto zosta ly prze-
prowadzone eksperymenty z doświadczonymi oraz pocz ↪atkuj ↪acymi progra-
mistami. Wnioski z przeprowadzonych eksperymentów zaprezentowane s ↪a w
rozdziale 4. Eksperymenty z doświadczonymi programistami pokaza ly, że pro-
gramísci przyzwyczajaj ↪a si ↪e do konwencji wykorzystywanych w znanych im
rozwi ↪azaniach – uczestnicy zauważyli nawet drobne różnice pomi ↪edzy pierw-
sz ↪a implementacj ↪a widoków na baz ↪e wiedzy a rozwi ↪azaniami, które znali. W
kolejnych wersjach widoków na baz ↪e wiedzy różnice te zosta ly usuni ↪ete, aby
zwi ↪ekszyć poziom kompatybilności z istniej ↪acymi rozwi ↪azaniami. Ekspery-
menty z pocz ↪atkuj ↪acymi programistami pokaza ly, że widoki na baz ↪e wiedzy
s ↪a na tyle proste w użyciu, że studenci informatyki s ↪a w stanie je poznać w
zaledwie kilka godzin.

190

Koncepcja widoków na baz ↪e wiedzy zosta la zrealizowana jako zestaw bi-
bliotek programistycznych. Implementacja widoków na baz ↪e wiedzy zosta la
opisana w rozdziale 5 oraz w dodatkach od D do F. W sk lad implemen-
tacji wchodz ↪a biblioteki: Knowledge Views, Data Views, Object Views oraz
RDF Views. Biblioteka Knowledge Views jest odpowiedzialna za transforma-
cje modeli, które mog ↪a być zapisane za pomoc ↪a j ↪ezyka xNeeK, który zosta l
opisany w rozdziale 5 oraz w dodatku C. Biblioteka Data Views realizuje
odwzorowanie ontologiczno-relacyjne, a biblioteka Object Views odwzorowa-
nie ontologiczno-obiektowe. Biblioteka RDF Views zapewnia kompatybilność
rozwi ↪azania z modelem RDF. Biblioteka Knowledge Views umożliwia po-
nadto dost ↪ep do bazy wiedzy zgodny z logik ↪a opisow ↪a.

W ten sposób cele określone w rozdziale 1 zosta ly osi ↪agni ↪ete, tzn.:

1. Odwzorowania modelu ontologicznego na model obiektowy, relacyjny
oraz RDF zosta ly zdefiniowane i zaimplementowane jako biblioteki Ob-
ject Views, Data Views oraz RDF Views.

2. Dwa zestawy transformacji modelu ontologicznego zosta ly zdefiniowane.
Transformacje pojedynczego modelu zosta ly zapisane jako regu lowy j ↪e-
zyk transformacji, natomiast możliwości l ↪aczenia kilku modeli zosta ly
zrealizowane jako zestaw klas w bibliotece Knowledge Views. Oba ze-
stawy transformacji mog ↪a być wyrażone w j ↪ezyku xNeeK.

Idea widoków na baz ↪e wiedzy zosta la zrealizowana, zaimplementowana
i poddana walidacji. Przeprowadzone studia przypadku oraz eksperymenty
dowodz ↪a postawion ↪a tez ↪e, że widoki na baz ↪e wiedzy pozwalaj ↪a na latwe wy-
korzystanie baz wiedzy we wspó lczesnych systemach informatycznych po-
przez udost ↪epnienie warstwy zapewniaj ↪acej kompatybilność z istniej ↪acymi
systemami oraz poprzez udost ↪epnienie prostego w użyciu interfejsu progra-
mistycznego.

Pierwsze implementacje bibliotek Data Views oraz Object Views, a za-
tem cz ↪eściowe efekty niniejszej pracy, zosta ly wykorzystane w projekcie PIPS
(Personalised Information Platform for Life and Heath Services [89]) finanso-
wanym ze środków Komisji Europejskiej w ramach 6. Programu Ramowego.
Biblioteka Data Views zosta la wykorzystana, aby zwi ↪ekszyć możliwości od-
powiadania na zapytania kierowane do bazy wiedzy, która by la rdzeniem sys-
temu zarz ↪adzania wiedz ↪a (KMS) [41]. W szczególności zapytania wymagaj ↪ace
za lożenia o świece zamkni ↪etym by ly obs lugiwane przez bibliotek ↪e Data Views.
Biblioteka Object Views stanowi la warstw ↪e pomi ↪edzy systemem zarz ↪adzania
wiedz ↪a a portalem internetowym. Jej rol ↪a by lo u latwienie korzystania z bazy
wiedzy.

Reasumuj ↪ac, do g lównych osi ↪agni ↪eć rozprawy nalez ↪a:

191

• zdefiniowanie koncepcji widoków na baz ↪e wiedzy i zaproponowanie roz-
szerzalnej architektury widoków na baz ↪e wiedzy,

• zdefiniowanie odwzorowań ontologiczno-relacyjnych i ontologiczno-o-
biektowych,

• zdefiniowanie regu lowego j ↪ezyka transformacji i zaimplementowanie go
w postaci j ↪ezyka xNeeK,

• zaimplementowanie koncepcji widoków na baz ↪e wiedzy w postaci bi-
bliotek: Knowledge Views, Data Views, Object Views i RDF Views,

• poddanie koncepcji widoków na baz ↪e wiedzy walidacji poprzez prze-
prowadzenie eksperymentów z doświadczonymi i pocz ↪atkuj ↪acymi pro-
gramistami.

6.1 Wady i zalety rozwi
↪
azania

Poza kluczowymi cechami zaproponowanego rozwi ↪azania, jakimi s ↪a latwość
użycia oraz kompatybilność, widoki na baz ↪e wiedzy maj ↪a kilka innych istot-
nych zalet. Jedn ↪a z nich jest ogólność. Ogólność może być tu rozumiana na
kilka sposobów. Po pierwsze metody opisane w niniejszej pracy mog ↪a być
zastosowane do stworzenia podobnych bibliotek programistycznych w j ↪ezy-
kach programowania obiektowego innych niż Java. Ogólność ma zastosowanie
również w stosunku do źróde l informacji, tzn. widoki na baz ↪e wiedzy mog ↪a
wspó lpracować z różnymi źród lami informacji, nie tylko z takimi, które im-
plementuj ↪a interfejsy SQL lub SPARQL. Ogólność jest także powi ↪azana z
rozszerzalności ↪a. Widoki na baz ↪e wiedzy mog ↪a zostać rozszerzone o kolejne
typy widoków dla innych modeli. Ponadto zbiór dost ↪epnych transformacji
również może zostać rozszerzony w miar ↪e potrzeby.

Wspomniana ogólność i rozszerzalność poci ↪aga za sob ↪a koszty wydaj-
nościowe. Coś za coś – zazwyczaj możliwe jest uzyskanie albo ogólności i
rozszerzalności, albo wydajności. Alan J. Perlis w swoich epigramach [84]
napisa l:

”
Optymalizacja utrudnia ewolucj ↪e.”

Sama koncepcja dodania warstwy nad baz ↪a wiedzy musi poci ↪agać za pogor-
szenie wydajności. Jednakże, jeśli wydajność w praktycznych zastosowaniach
okaże si ↪e niewystarczaj ↪aca, możliwe jest zastosowanie technik optymalizacyj-
nych znanych z różnych implementacji biblioteki Java Persistence API lub
bibliotek podobnych.

192

6.2 Możliwości rozwoju

Widoki na baz ↪e wiedzy można dalej rozwijać, np. można dodać obs lug ↪e trans-
akcji, aby widoki na baz ↪e wiedzy nadawa ly si ↪e do wykorzystania w środowisku
wieloużytkownikowym. Można również polepszyć możliwości wnioskowania
zawarte w bibliotece Knowledge Views. Możliwy jest również rozwój dost ↪ep-
nego zestawu transformacji, aby móc dodać obs lug ↪e niespójnych źróde l infor-
macji – jest to dość istotna funkcja w świecie internetu, w którym wyst ↪epuje
duża liczba źróde l podaj ↪acych sprzeczne informacje. Warte rozważenia jest
rozszerzenie możliwości widoków o obs lug ↪e predykatów n-arnych – w pew-
nych przypadkach mog loby to pozytywnie wp lyn ↪ać na wydajność. Widoki
na baz ↪e wiedzy by ly projektowane od pocz ↪atku z myśl ↪a o rozszerzalności i
stanowi ↪a dobry fundament do dalszego rozwoju metod integracji świata baz
wiedzy ze światem klasycznej inżynierii systemów.

193

	Introduction
	The rationale
	Goals and the thesis proposition
	Thesis structure
	Assumptions, notations and abbreviations
	Assumptions
	Notations and abbreviations

	State of the art
	Interoperability, standards and interchangeability
	Interoperability
	Standards and interchangeability

	Common ontology description languages
	Entity-relationship model
	Unified Modelling Language
	Web Ontology Language

	Views and information integration
	Views
	Information integration

	Existing technologies
	Java Persistence API
	LINQ
	JXPath
	ActiveRDF
	Jastor
	Summary

	Knowledge Views
	The Knowledge View concept
	Model mapping
	Ontology-relational mapping
	Ontology-object mapping
	Query language mapping

	Model transformation
	Transformation language
	Transformation example

	Knowledge sources
	General architecture
	The application layer
	The views layer
	The Knowledge View layer
	The adaptor layer
	The information sources

	Case studies and experiments
	Simulation with the Knowledge Views
	Ontology
	Reasoning
	Application
	Knowledge engineer vs software engineer

	Compatibility
	Compatibility with information sources
	Compatibility with applications

	Gradual introduction of knowledge bases
	The classic approach
	The Knowledge Views approach
	Summary

	Ease of use experiments
	Seasoned software engineers
	Students

	The Knowledge Views implementation
	Knowledge Views core
	The Knowledge Views tools
	Reasoning
	Ontology merging
	eXtended NeeK language (xNeeK)

	Data Views
	DataView class
	DriverManager
	Materialised vs. non-materialised views

	Object Views
	RDF Views
	DL Views

	Summary
	Pros and cons of the proposed solution
	Future work

	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Ease of use experiment 1
	Description
	Object View API
	Jena API

	Ease of use experiment 2
	Description
	Data Views
	Object Views

	xNeeK specification
	Notation convention
	Root elements
	Types
	View
	RuleSetPair
	RuleSet
	ConceptRule
	RoleRule
	AttributeRule
	ConceptAtom
	RoleAtom
	AttributeAtom
	BuiltinAtom
	AtomicConcept
	NotConcept
	AndConcept
	OrConcept
	ExistsRoleConcept
	AtomicRole
	AtomicAttribute
	Individual
	Value
	BuiltinType

	Knowledge Views Javadocs
	Package pl.gda.pg.km.kv
	Interface ABox
	Interface TBox
	Interface KnowledgeBase
	Class ABoxView
	Class InferencingKnowledgeView
	Class KnowledgeView
	Class MemoryABox
	Class MergedABox
	Class QueryEngine
	Class ViewFactory
	Class TBoxView

	Object Views Javadocs
	Package pl.gda.pg.km.ov
	Class ObjectViewGenerator
	Class ObjectViewManager

	Package pl.gda.pg.km.ov.annotation
	Annotation Attribute
	Annotation Concept
	Annotation Role
	Annotation Uri

	RDF Views Javadocs
	Package pl.gda.pg.km.rv
	Class RDFView

	Data Views Javadocs
	Streszczenie

