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P R Z E D M O W A .

Pierwsza część tego tomu uległa jedynie nieznacznym 
zmianom; przekształcenia ważniejsze dotyczą wyłącznie ostat­
nich rozdziałów.

W  pierwszym wydaniu mogłem poświęcić zaledwie nie­
wielką liczbę stronnic równaniom o pochodnych cząstkowych 
drugiego rzędu oraz rachunkowi warjacyjnemu. Ażeby osiąg­
nąć możność wyłożenia w sposób mniej zwięzły tematów tak 
rozległych, postanowiłem przesunąć je do tomu trzeciego, który 
będzie również zawierał szkic nowoczesnej teorji równań całko­
wych. Odrzucenie ostatniego rozdziału umożliwiło dodanie 
pewnych uzupełnień, z których najważniejsze dotyczą równań 
różniczkowych linjowych oraz równań, zawierających pochodne 

cząstkowe pierwszego rzędu.

17-go maja r. 1911 . E- Ooursat.

Kurs analizy matematycznej. 1





ROZDZIAŁ XIII.

Funkcje elementarne zmiennej zespolonej.

I. — Wiadomości ogólne. — Funkcje monogieniczne. (F. Monogenes).

259. Określenia. — Liczbą Ł) urojoną (ąuantite imaginaire) czyli ze­
spoloną (q. complexe) nazywamy wszelkie wyrażenie o postaci a -j- bi, 
gdzie a  i b oznaczają dwie jakiekolwiek liczby rzeczywiste, a i — sym­
bol szczególny, wprowadzony w celu osiągnięcia w algebrze większej 
ogólności. Liczba zespolona nie jest to w istocie nic innego, jak układ 
dwuch liczb rzeczywistych, wziętych w pewnym oznaczonym porządku. 
Jakkolwiek wyrażenia tego rodzaju jak a  -\- bi nie posiadają same przez 
się żadnego znaczenia konkretnego, stosujemy do nich zwykle zasady 
rachunku algiebraicznego, umawiając się ponad to, że będziemy zastępo­
wali wszędzie kwadrat i i) 2 przez — 1.

Dwie liczby urojone a  -f- bi i a' -j- b'i są uważane za równe, gdy 
mamy: a' =  a, b' =  b. Sumą dwu liczb urojonych a -{-bi i c -j- di nazy­
wamy symbol o tej samej postaci a -(- c -j- i (b -f- d)\ podobnież różnica 
a -}- bi — (c -J- di) równa się a — c -{- i (b — d). Aby otrzymać iloczyn 
a -j- bi przez c -j- di, obliczamy go na zasadzie zwykłych prawideł mno­
żenia algebraicznego i zastępujemy i 2 przez — 1; mamy w ten sposób:

(a -)- bi) (c -j- di) =  ac — bd -(- i (ad -)- bc).
Iloraz a-\- bi przez c -j- di jest to trzeci symbol urojony x -j- yi, 

który po pomnożeniu przez c -f- di daje a -j- bi.

i) Zgodnie z rozpowszechnionym u nas zwyczajem, zastępuję przekład do­
słowny „ilość” terminu „ęuantitć”, użytego w takim lub podobnym znaczeniu, przez 
termin właściwszy „liczba”. [Uw. tłum.].
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Równość
a +  bi =  (c +  di) (x +  yi)

jest równoważna, podług prawa mnożenia, związkom 

cx — dy =  a, d.r +  cy — b
skąd otrzymujemy

ac 4- bd bc — ad
<4 +  d1 ’ ' c* +  rf*

Iloraz a +  bi przez c +  di piszemy w zwykłej postaci ułamka al­
gebraicznego

, a +  bi
*  +  y * = c +  di

x —

aby obliczyć dogodnie .r i y, wystarczy pomnożyć oba wyrazy tego 
ułamka przez c — di i wykonać wskazane mnożenia.

Wszystkie własności podstawowych działań algiebraicznych pozo­
stają, w zastosowaniu do symbolów urojonych, bez zmiany; mamy tedy, 
oznaczając przez A, B, C ,... symbole urojone:

A .B  =  B .A . A .B .C  — A .(B.C), A(B  +  C) =  AB +  AC, ...,

i tak dalej. Liczby zespolone a +  bi i a — bi nazywamy sprzężonymi 
(des imaginaires conjuguees). Liczby a +  bi i — o — bi, o sumie rów­
nej zeru, są względem siebie przeciwny (opposees) czyli symetryczne (sy- 
raetriąues).

Mając w płaszczyźnie układ prostokątny dwuch osi o zwykłym 
zwrocie, 'wyobrażamy liczbę zespoloną a +  bi zapomocą punktu M 
płaszczyzny xOy, posiadającego spółrzędne x — a, y =  b. Nadajemy 
w ten sposób wyrażeniom czysto symbolicznym znaczenie konkretne, 
i wszelkie twierdzenie, uzasadnione dla liczb urojonych, odpowiada ja­
kiemuś twierdzeniu planimetrycznemu. Najważniejsze atoli korzyści 
z tego odwzorowania ujawnią się jeszcze lepiej w dalszym ciągu. Licz­
by rzeczywiste odpowiadają punktom osi Ox, zwanej również z tego po­
wodu osia rzeczywistą (ase reel). Dwie liczby sprzężone a -f- bi i a — bi 
odpowiadają dwu punktom symetrycznym względem 0.r; dwie liczby 
przeciwne a +  bi i — a — bi są wyobrażone zapomocą punktów syme­
trycznych względem punktu O.

Liczba o +  bi, odpowiadająca punktowi M o spółrzędnych (a, b), na­
zywa się również niekiedy afiksem (affixe) tego punktu. O ile nie bę­
dzie obawy żadnego nieporozumienia, będziemy oznaczali przez tę samą 
literę liczbę zespoloną i punkt, który ją wyobraża.

m



5

Połączmy początek układu z punktem m o spółrzędnych (a, b). 
Odległość Om nazywa się modułem (czyli wartością bezwzględną — Uw. 
tł.\ fr. module) liczby a bi, a kąt, o który należy obrócić promień, 
nakrywający Ox, aby przystał do Om (kąt ten odmierzamy podobnie jak 
w trygonometrji w kierunku od Ox do Oy) stanowi argument czyli am­
plitudę1) i fr. argument) a +  hi. Niech ę i to oznaczają moduł i amplitu­
dę liczby a +  bi; między liczbami rzeczywistemi a, b, ę, co zachodzą 
związki a =  ę cos co, b =  ę sin co, skąd otrzymujemy

; =  -+ b'ży cos co =  sin co =  — - —
W - Vb- Va2+b*

Moduł, liczba z istoty swej dodatnia, jest wyznaczony bez żadnych 
wątpliwości, gdy tymczasem amplituda, jako dana jedynie zapomocą 
funkcji trygonometrycznych, może przybierać różne wartości, różnią­
ce się o wielokrotności 2%, co jest oczywiste już ze względu na samo 
określenie tego pojęcia. Wszelka liczba urojona posiada tedy nieskoń­
czenie wiele argumentów, tworzących postęp arytmetyczny o różnicy 2% 
Do tego aby dwie liczby zespolone były równe, potrzeba, iżby były rów­
ne ich moduły a ponad to, iżby ich argumenty różniły się o wielokrot­
ność 2rc; waruaki te są wystarczające. Moduł ilości urojonej 2 oznacza 
się w ten sam sposób, jak wartość bezwzględna liczby rzeczywistej, 
przez 121.

Weźmy dwie liczby zespolone z =  a +  bi, 2' =  a! +  b'i oraz od­
powiadające im punkty m im ' ;  suma z z! będzie wyobrażona zapo­
mocą punktu m!', stanowiącego wierzchołek równoległoboku, opartego 
na Om i Om'. Boki trójkąta Omm” (rys. 46) równają się odpowiednio 
modułom liczb z, z', z +-«\ Stąd wnioskujemy, że moduł sumy dwuch liczb 
jest mniejszy, ni z suma modułów obu składników, lub co najwyżej równy jej, a

Rys. 46.

I. — Wiadomości ogólne. — Funkcje monogieniczne. (F. Monogónes).

1) Niektórzy z naszych autorów używają w tym znaczeniu nazwy: azym ut (Ł. 
Bottcher, Zasady algiebry elementarnej; J .  Mihułowicz, Podręcznik arytmetyki). Uw. t ł
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tńekszy lub co najmniej równy różnicy łych modułów. Ponieważ dwie liczby 
przeciwne mają ten sam moduł, przeto twierdzenie powyższe stosuje się 
również do modułu różnicy. Widzimy nareszcie w ten sam sposób, że 
moduł sumy jakiejkolwiek liczby ilości zespolonych równa się co naj­
wyżej sumie ich modułów; równość może zachodzić jedynie wtedy, kie­
dy wszystkie punkty, wyobrażające te ilości, są położone na tym samym 
promieniu, wykreślonym z początku układu.

Jeżeli przez punkt m przesuniemy proste m r', my', równoległe do 
Oi i Oy, to spółrzędnemi punktu iw' w tym nowym układzie osi będą: 
a — a i b' — b (rys. 47). Punkt m' wyobraża tedy w nowym układzie

Rys. 47.

z' — z\ moduł liczby z'— z równa się długości mm', a argument — ka­
towi 0 pomiędzy mm' i ;».r'. Wykreślmy z punktu O odcinek Om,, rów­
ny odcinkowi mm' i równoległy doń; koniec w, tego odcinka wyobraża 
różnicę z' — z w układzie osi Or, Oy. Lecz figura jest równo-
ległobokiem; punkt w, jest tedy symetryczny z m względem środka c 
odcinka Oni'.

Przypomnijmy sobie jeszcze wzór, który daje moduł i argument 
iloczynu dowolnej liczby czynników. Oznaczmy je ogólnie przez

zk =  ę* (cos iok -f i sin w*); (k =- 1, 2, ..., n)
zasady mnożenia, łącznie z wzorami, wyznaczającemi funkcje trygono­
metryczne sumy kątów, doprowadzają do wyniku

z1 z3 ... zn =  ę, ę2 ... ę„ [cos (io, -f- w, -f- ... -f- a>„) i sin (to, oj2 -f-... -f- <o„)],
co wskazuje, iż moduł iloczynu równa się iloczynowi modułów a argument 
iloczynu jest równy sumie argumentów. Wysnuwamy stąd z łatwością słynny 
wzór Moivre’a

cos nuo -f- i sin mw =  (cos w -(- i sin oa)m,
który zogniskowuje, w postaci nader zwięzłej, wszystkie wzory, wyzna­
czające funkcje trygonometryczne iloczynów.



Wprowadzenie symbolów urojonych pozwoliło w teorji równań al- 
giebraicznych osiągnąć doskonałą ogólność i harmonję. Zresztą właśnie 
z powodu równań drugiego stopnia wyrażenia te nasunęły się po raz 
pierwszy uwadze badaczy. Ich doniosłość w analizie matematycznej 
jest niemniejsza — wyjaśnimy tedy z początku w sposób dokładny, co 
należy rozumieć przez słowa: funkcja zmiennej urojonej.

260. Funkcje ciągłe zmiennej zespolonej. — Gdy x i y oznaczają 
zmienne rzeczywiste, niezależne od siebie, to liczba zespolona z =  x f-y i  
stanowi tak zwaną zmienną zespoloną. Jeżeli słowo: funkcja weźmiemy 
w jego znaczeniu najogólniejszym, to wyda się naturalnym orzeczenie, 
iż wszelka inna liczba urojona u, której wartość zależy od wartości z, 
jest funkcją zmiennej z. Pewna liczba określeń rozciąga się na ten no­
wy zakres bez żadnych trudności. Tak np. powiemy, że funkcja u =  f(z) 
jest ciągła, jeżeli moduł różnicy f(z  +  In) — f{z) dąży do zera, gdy mo­
duł h  dąży do zera, t. j. jeżeli do każdej liczby dodatniej e można do­
brać taką inną liczbę dodatnią •t], iżbyśmy dla h  | mniejszego od rj mieli:

f(z  +  h) — f(z )  | < e.
Szereg

u0{z) +  ux(z) +  ••• +  un (2) +  •••>
którego wyrazy są funkcjami zmiennej zespolonej z, jest jednostajnie 
zbieżny w pewnym obszarze A płaszczyzny, jeżeli wszelkiej liczbie do­
datniej e można podporządkować taką liczbę całkowitą N, iżbyśmy mieli 
przy n ;> N

i? — W„+1 (z) +  Un+2(z) +  ••• I <C £

dla wszystkich wartości z, branych w obszarze A. Można dowieść, jak 
wyżej (I, art. 31), że suma szeregu, którego wyrazy są funkcjami cią- 
głemi w jakimś obszarze A, a jednostajnie zbieżnego w tym obszarze, 
stanowi również funkcję ciągłą zmiennej 2 w tym samym obszarze. 
Można jeszcze poznać zbieżność jednostajną szeregu po tym, że dla 
wszystkich rozważanych "wartości 2 moduł jakiegokolwiek wyrazu \un\ 
jest mniejszy od wyrazu odpowiedniego vn szeregu zbieżnego, którego 
wszystkie wyrazy są liczbami stałemi i dodatniemi. Szereg jest w ta­
kim razie jednocześnie bezwzględnie zbieżny i jednostajnie zbieżny.

Wszelka funkcja ciągła zmiennej zespolonej 2 posiada postać 
u =  P(x, y) +  iQ(.r, y), w której P i  Q oznaczają funkcje rzeczywiste 
ciągłe dwu zmiennych rzeczywistych x, y. Gdybyśmy tedy nie dodali 
innych warunków, badanie funkcji zmiennej zespolonej 2 stałoby się 
w istocie rzeczy badaniem układu dwu funkcji dwu zmiennych rzeczy­
wistych: użycie symbolu i spowodowałoby jedynie pozorne upioszcze-

I. — Wiadomości ogólne. — Funkcje monogieniczne. (F. Monogónes). 7
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nią. Aby teorja funkcji zmiennej zespolonej wykazała pewne podobień­
stwo do teorji funkcji zmiennej rzeczywistej, poszukajmy wraz z Cau- 
chy’m, jakim warunkom winny czynić zadość funkcje P i Q, iżby wy­
rażenie P  -f  iQ posiadało podstawową własność funkcji zmiennej rze­
czywistej, do których się stosuje rachunek nieskoóczonostkowy.

261. Funkcje monogieniczne. — Jeżeli /(.r) oznacza funkcję zmien­

nej rzeczywistej .r, posiadajaca pochodną, to stosunek /(l

dąży do f'(x), gdy h dąży do zera. Zbadajmy również, w jakich wy­
padkach iloraz

A m A P 4- śAQ 
A z A.r -f- i Ay

dąży do pewnej określonej granicy, gdy moduł C\z dąży do zera, to jest 
gdy zmierzają niezależnie od siebie do zera przyrosty A r i Ay. Łatwo 
przewidzieć, iż nie będzie to zachodziło dla jakichkolwiek funkcji 
P(.r, y) i Q(.r, y), gdyż granica rozważanego stosunku zależy w ogólno­

ści od granicy stosunku t. j. od sposobu, w jaki punkt, wyobraża­

jący wartość z +  h, zbliża się do punktu, wyobrażającego wartość z.
Pozostawmy z początku y bez zmiany, a zmiennej r nadajmy war­

tość poblizką .r +  A.r; otrzymamy

u /*< > -  x ,y) — P(x,y) . 0(3  +  r,y ) -  Q(x, y)
Az Aa x

aby ten stosunek posiadał granicę, potrzeba, iżby funkcje P  i Q, posia­
dały pochodne cząstkowe względem .r; w takim razie owa granica wy­
raża się w sposób następujący:

lim A m

A z
dP
d.r +  i dQ

d.r
Uważajmy następnie x za stałe, a zmiennej y nadajmy wartość 

y 4- Ay; otrzymamy
1/ P (x ,y  4- Ay) — P(x, y) Q( r, y -f  Ay) —- Q(.r, y)

A z ~  iA y  ' Ay
stosunek ten dąży do granicy równej

dQ,   . dP
dy * dy ’

byleby funkcje P i Q posiadały pochodne cząstkowe względem y. Do



I. — Wiadomości ogólae. — Funkcje monogieniczne. (F. MonogCnes). 9

tego, aby granice stosunku były w obu wypadkach jednakowe, po­
trzeba warunków

(1)
dP _  dQ 
dx  d y '

dP
dy

dQ
dx'

Załóżmy, że funkcje P  i Q czynią zadość tym warunkom i że po-
, . .. dP dP dQ dQ . . . . . .  T . ..chodne cząstkowe -  T, - , , są to funkcje ciągłe. Jeżeli przy-(/.( i/y i/it t/y

piszemy obecnie zmiennym x i y dowolne przyrosty A r, A y, to będzie­
my mogli napisać, oznaczając przez 9 i 9' liczby dodatnie mniejsze od 
jedności, a przez s, s', e1; e1' —  nieskończenie małe, dążące do zera wraz
z A x i A y.

A P =  P (x  +  A x,y +  A^) — P(x +  Ax,y) +  P(x +  Ax; y) — P(x,y) =  
=  A y Py'{x-\- A x,y +  9 Ay) +  Ax Px' (x +  9'Ax,y)
=  A.x \PX' (x,y) +  s] +  A y [P,/ (x, y) +  Sj],

i podobnież
A Q =  Ax [Qx' (x, yj +  $'] +  Ay [Qy' (x, y) +  e/].

Przyrost A m — A P  +  iA Q  można napisać, zgodnie z warunkami 
(1), w postaci

A m =  A x +  i d x ) +
0Q . dP\------ 1- i —
dx dx ]

+  Y] A i  +  7)'Ay

=  (A^ +  iA y) +  i +  vjA* +  7]'Ay.
\ d x j

[yj, tj' — nieskończenie małe].
Stąd wynika

A m _  dP  ̂ d© •<] A x  +  r/Ay _
A z ~  dx 1 dx A x  +  iAi/ ’

jeżeli t] | i tj' są mniejsze od jakiejś liczby a, to moduł wyrazu uzu­
pełniającego jest mniejszy niż 2a. Wyraz ten dąży tedy do zera, gdy 
A x  i Ay zmierzają do zera, i mamy

lim A m dP dQ
A z dx ćx

Jeżeli tedy pochodne cząstkowe funkcji P  i Q są ciągłe, to wa-
A M

runki (1) są niezbędne i wystarczaja.ee do tego, iżby stosunek - 

posiadał oznaczoną granicę dla każdej wartości .z. Funkcja u nazywa
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się w takim razie funkcją monogieniczna (monogene) czyli analityczna (ana- 
lytique) zmiennej •?'): jeżeli ją  oznaczymy przez /(z), to pochodna f'(z) 
będzie się równała któremukolwiek z następujących, równoważnych 
względem siebie, wyrażeń:
„ „ dP . dQ dQ. . dP dP , . dP dQ , . dQ.

^  dx ' Óx dy * dy dx ' <iy dy ^  1 dx '
Nader zasadnicze znaczenie posiada ten wzgląd, że żadna z funkcji 

P(x, y), Q(x, y) nie może być wzięta dowolnie. W istocie, załóżmy, iż 
funkcje P  i ę  posiadają pochodne drugiego rzędu; jeżeli zróżniczkujemy 
pierwszy ze związków (1) względem x, a drugi względem y, a następ­
nie dodamy je, to otrzymamy

.P cPP dPP 
dx* dy- O,

i podobnież dowodzimy, że \  Q, O. Funkcje P(x, y), Q(x, y) stano­
wią tedy rozwiązania równania Laplaee’a.

Nawzajem, wszelkie rozwiązanie równania Laplace’a może być 
wzięte za jedną z funkcji P lub Q. Niech np. P(x, y) stanowi rozwią­
zanie tego równania; związki (1), w których Q jest uważane za funkcję 
niewiadomą, są zgodne z sobą, i funkcja monogieniczna o części rzeczy­
wistej, równej P(x, y), będzie wyznaczona zapomocą następującego wy­
rażenia, zawierającego stałą dowolną C:

P(x, y) +  i T *  l dP  J y - d P dx)  
\ dx dy }

C

Badanie funkcji analitycznych zmiennej zespolonej z staje się tedy 
w istocie rzeczy badaniem układu dwu takich funkcji P (x , y) i Q(x, y) 
zmiennych rzeczywistych x  i y, które czynią zadość warunkom (1), i 
możnaby rozwinąć całą teorję bez użycia symbolu t*). Będziemy atoli 
w dalszym ciągu posługiwali się symboliką Cauchyego, pamiętając 
o tym, że różnica pomiędzy temi dwiema metodami jest w gruncie rze­
czy* bardziej pozorna niż rzeczywista. Każde twierdzenie, uzasadnione 
dla funkcji analitycznej f(z), da się bezpośrednio wysłowić w postaci 
twierdzenia, stosującego się do funkcji P i Q, i nawzajem.

') Nazwa: m onogieniczna była często używana przez Cauchy ego. Mówi się 
również niekiedy: sgnektyczna (sijnerligue). Będziemy tu używali raczej terminu: 
analityczny; nieco dalej okaże się, iż powyższe określenie jest zupełnie zgodne z da­
nym poprzednio. ,1, art. 1971.

2) Takie właśnie stanowisko zajmują wogóle matematycy niemieccy ze szkoły 
Riemanna.
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PRZYKŁADY. — Funkcja u =  x 2 — y--\ -2 ix ij jest to funkcja analityczna, 
ponieważ związki (1) są spełnione, i pochodna równa się 2x -j- 2 iy  =  2z; funkcja 
owa nie jest to nic innego, jak  (x -|- iy p  =  z 2. Przeciwnie, wyrażenie v — x  — iy 
nie jest funkcją analityczną; w istocie, mamy

i _  i 41Ąv Ąx- — i/\,y _  Ł Aa;
A z Aa: +  i/\y . A y  ’

1 +  i —

i rzecz jasna, że granica stosunku Aę
Az

zależy od granicy stosunku AU
Az '

Gdy założymy, że r ę cos u>, y ę sin w i zastosujemy wzory, dotyczące 
zamiany zmiennych (I, art. 63), związki (1) przybiorą postać;

d P  dQ dQ dP(3) -— - — ę — , —— = ę — ,
Ów ó ę  ów  ó ę

i pochodna zostanie wyrażona w sposób następujący

/'(z)
Id P  dQ\

4- i ---- 1 (cos oj — i sin oj).
\dę Óę I

Zapomocą tych wzorów stwierdzimy łatwo, że funkcja 

zm ęm (cos mw -f- i sin mw) 

jest funkcją analityczną zmiennej z, o pochodnej równej

mz n~ 1 (cos m w  -\- i sin m w )  (cos w — i sin oj)  =  mzm~'.

262. Funkcje holomorficzne. — Wiadomości, wyluszczone powyżej, 
są jeszcze nieco zbyt ogólnikowe, ponieważ nie było dotychczas mowy 
o granicach, między któremi ma się zmieniać z.

Część A płaszczyzny nazywa się spójną (connexe) lub jednokrotnie 
spójną (d’un seul tenant), jeżeli dwa jakiekolwiek punkty, należące do 
tej części, można połączyć zapomocą linji ciągłej, położonej również 
całkowicie w tym obszarze. Obszar spójny, położony całkowicie w odle­
głości skończonej, może być ograniczony przez jedną lub więcej krzy­
wych zamkniętych, wśród których istnieje zawsze krzywa zamknięta, 
ograniczająca go zewnętrznie. Część płaszczyzny, rozciągająca się do 
nieskończoności, może się składać z punktów, leżących nazewnątrz je ­
dnej lub kilku krzywych zamkniętych; może również być ograniczoną 
przez krzywe, posiadające gałęzie nieskończone. Gdy nie będzie oba­
wy żadnej dwuznaczności, będziemy używali do oznaczenia części spój­
nej płaszczyzny któregokolwiek ze słów: pole (aire) lub obszar (region).

Funkcja f(z )  zmiennej zespolonej z nazywa się funkcja holomorficz-
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na (holomorphe) lub catokszłałtna *) w pewnym obszarze spójnym A pła­
szczyzny, jeżeli czyni zadość warunkom następującym:

po 1-sze) każdemu punktowi z obszaru A odpowiada oznaczona 
wartość /(:?);

po 2-gie) f(z) zmienia się w sposób ciągły, gdy z porusza się w ob­
szarze A, to jest moduł / (z  +  h) — /(*) dąży doz era wraz z modułem liczby A;

po 3-cie) /(z)  posiada w każdym punkcie z obszaru A jedną okre­
śloną pochodną /'(*), to jest każdemu punktowi r odpowiada taka liczba 
zespolona f'(z\ iż moduł różnicy

/(B +  m  -  n * )  _

dąży do zera, gdy A dąży do zera. Wszelkiej liczbie dodatniej s można 
w takim razie podporządkować taką inną liczbę dodatnią tj, iż przy ’A| 
mniejszym od t) mamy:

(4) t\z +  *) — /(-) — */'(«) sS ® A .
W danej chwili nie uczynimy żadnego założenia co do wartości 

f(z)  wzdłuż zarysu, ograniczającego A. Gdy powiemy, że funkcja /(z) 
jest całokształtna wewnątrz pola A, ograniczonego przez linję zamkniętą 
T oraz na samym obwodzie, będziemy przez to rozumieli, że f ( z ) jest ca­
łokształtna w obszarze A, zawierającym obwód I' i obszar A.

Funkcja analityczna J (z )  niekoniecznie musi być holomorficzną 
w całym obszarze istnienia; w ogólności funkcja taka posiada punkty 
osobliwe, które mogą być nader rozmaite. Szkicowanie klasyfikacji 
tych punktów osobliwych byłoby w tej chwili przedwczesne; ich istota 
zostanie odsłoniona właśnie przez badanie, do którego obecnie przy­
stępujemy.

«
263. Funkcje wymierne. — Przepisy, dotyczące obliczania pochod­

nej sumy, iloczynu lub ilorazu, jako wnioski logiczne z samego określe­
nia pochodnej, stosują się bez zmiany do funkcji zmiennej zespolonej. 
To samo zachodzi z prawidłem różniczkowania funkcji innej funkcji. 
Niech u =  f (Z)  oznacza funkcję analityczną zmiennej zespolonej Z; je­
żeli zastąpimy Z przez inną funkcję analityczną ty (z) zmiennej zespolo­
nej z, u okaże się również funkcją analityczną zmiennej z. Mamy 
w istocie:

*) Sądzę, te to spolszczenie wyrazu greckiego nie powinno wywołać żadnyeh 
nieporozumień. Podobnież używam w dalszym ciągu nazwy: częścioksztaUna zamiast: 
meromorficzna. [Cu1, tłum.].
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A m A m A  Z
—  =  X  — ;

Az AZ Az
gdy Az dąży do zera, to samo zachodzi z AZ , i każdy ze stosunków

—U, zmierza do określonej granicy. Stosunek dąży tedy rów-
A  Z Az Az
nież do granicy

lim  =  /' (Z) ó' (z).
Az

Stwierdziliśmy już powyżej (art. 261), że funkcja
z™ =  {% +  iy)m

jest funkcją -analityczną zmiennej z, o pochodnej mzm~\ Można prze­
konać się o tym bezpośrednio, podobnie jak w tym przypadku, gdy zmien­
na przybiera tylko wartości rzeczywiste. W istocie, wzór dwumianowy 
Newtona, jako oparty wyłącznie na własnościach mnożenia, rozciąga się 
oczywiście na ilości zespolone. Możemy tedy napisać, oznaczając przez 
m  liczbę całkowitą dodatnią

(z 4- h)m =  z™ -f- T  ź"1-' h -|------ -—-—-  z”1-2 A2 +  ...,1 \ . Ł
a przeto

( » - 4 ) - - s ~  =  +  4 f * W ~ 4 )  * *  +  ... +  4- J
h L 1 . 2  ]

rzecz jasna, iż prawa strona tej równości dąży do granicy mzm~' ,  gdy 
moduł h dąży do zera.

Wszelki wielomian całkowity o dowolnych spółczynnikach jest te­
dy również funkcją analityczną, całokształtną w całym obszarze płasz­
czyzny. Funkcja wymierna, to jest iloraz dwu wielomianów całkowi­
tych P(z), Q(z), które można uważać za pierwsze względem siebie, jest 
również funkcją analityczną — funkcja taka posiada atoli pewną liczbę 
punktów osobliwych, odpowiadających pierwiastkom równania Q(z) — O. 
Jest to funkcja całokształtna w każdym obszarze płaszczyzny, nie za­
wierającym żadnego z tych pierwiastków.

264. Badanie pewnych funkcji niewymiernych. — Gdy punkt z za­
kreśla krzywą ciągłą, spółrzędne ^ i y, zarówno jak moduł ę, zmieniają 
się w sposób ciągły — to samo stosuje się do argumentu, o ile przebie­
gana krzywa nie przechodzi przez początek układu. Gdy punkt 2 za­
kreśla krzywą zamkniętą, x, y i ę przybierają ponownie swe wartości 
początkowe, lecz niezawsze zachodzi to samo z argumentem. Jeżeli po-
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czątek układu leży nazewnątrz obszaru, otoczonego przez krzywa zam­
kniętą (rys. 4Sa), to, rzecz jasna, argument odzyskuje swą wartość po­
czątkową; dzieje się inaczej, gdy punkt z zakreśla krzywą w rodzaju 
M0NPM0 lub M0 nmpq M0 (rys. 48b).

Rys. 48a. Rys. ASb.

W pierwszym przypadku argument odzyskuje wartość początkową 
powiększoną o 2-, w drugim przybiera wartość początkową, powiększo­
ną o 4;:. Rzecz jasna, że można poruszać punkt 2 po takich krzywych 
zamkniętych, że zmienianie się w sposób ciągły argumentu wzdłuż jednej 
z nich doprowadza do wartości różnej od wartości początkowej o iloczyn 
liczby 2r przez dowolną liczbę całkowitą n, dodatnią lub ujemną. Ogól­
nie, gdy 2 zakreśla krzywą zamkniętą, argument różnicy 2 — o przybiera 
wartość początkową, jeżeli punkt a leży nazewnątrz pola. otoczonego 
przez tę krzywą zamkniętą, lecz można zawsze obrać krzywą, zakreśloną 
przez 2, w taki sposób, iżby wartość ostateczna argumentu różnicy 2 — a 
była równa wartości początkowej, powiększonej o 2nz.

Ustaliwszy te fakty, rozważmy równanie

(5) um =  z,

w którym m oznacza liczbę całkowitą dodatnią. Związek ten podpo­
rządkowuje wszelkiej wartości z, prócz 2 =  0, m wartości różnych 
zmiennej u. Istotnie, jeżeli założymy

2 =  ę (cos w -f- i sin w), u =  r (cos f  +  i sin 'f), 
związek (5) jest równoważny dwu następującym

rm =  ę, m tp =  <0 +  2A~;
1

z pierwszego otrzymujemy r =  ; m, to jest że r jest równe pierwiastko­
wi arytmetycznemu m-go stopnia z liczby dodatniej ;. Mamy następnie
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2 ki:
m - i w cela otrzymania wszystkich odmiennych wartości u

wystarczy nadać liczbie całkowitej dowolnej k m następujących po so­
bie wartości całkowitych 0, 1, 2,..., m — 1; w ten sposób wyrazimy m 
pierwiastków równania (5) w postaci

(6) uk =  ęm cos O) -(- 2&1C
m

i sin 2 ku
m

{k ^  0, 1, 2,..., m—1);

którykolwiek z tych pierwiastków oznaczamy przez z!"1.
Gdy punkt, odpowiadający zmiennej z, zakreśla krzywą ciągłą, 

każdy z tych pierwiastków zmienia się również w sposób ciągły. Gdy 
2 przebiega krzywą zamkniętą, względem której początek układu leży 
nazewnątrz, argument w przybiera ponownie wartość początkową, i każ­
dy z pierwiastków w0, uv ... um—i zakreśla również krzywą zamkniętą 
(rys. 49a). Lecz jeżeli punkt 2 zakreśla krzywą M0NPMU (rys. 48b), to 
w zmieaia się w w +  2tc, wartość końcowa pierwiastka w, równa się war­
tości początkowej pierwiastka m,+i, i krzywe, zakreślone przez różne 
punkty, odpowiadające pierwiastkom, tworzą jedną krzywą zamkniętą.

Rys. 49a. Rys. 49b.

m pierwiastków «0, uv ..., wm_ f ulegają tedy przemianie kołowej, 
gdy punkt, odpowiadający zmiennej z, przebiega w zwrocie dodat­
nim1) krzywą zamkniętą bez punktów podwójnych, otaczającą początek 
układu. Rzecz jasna, iż można poruszać ten punkt po takiej drodze 
zamkniętej, że jeżeli wartość początkowa któregoś z pierwiastków rów­
na się np. m0, to jego wartość końcowa będzie równa któremukolwiek 
innemu [pierwiastkowi. Jeżeli tedy nie chcemy wprowadzać nieciągło­
ści, to musimy uważać m pierwiastków równania (5) nie za tyleż funkcji

x) t. j. w kierunku wzrostu argumentów (Uw. U.)
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osobnych zmiennej r, lecz za m odmiennych gałęzi (branches distinctesi 
tej samej funkcji. Punkt .r — O, dokoła którego zJtchodzi permutacja 
tych m wartości zmiennej «, posiada nazwę punktu krytycznego (point cri- 
tique) czyli puntku rozgałęzienia (p. de ramifieation).

Na to aby m wartości u mogły być uważane za osobne funkcje 
zmiennej r, należy przerwać ciągłość tych pierwiastków wzdłuż jakiejś 
linji nieograniczonej, wychodzącej z początku układu. To zniesienie cią­
głości można sobie wyobrazić konkretnie w sposób następujący: wystaw­
my sobie, że w płaszczyźnie, w której wyobrażamy wartości zmiennej z, 
zostało zrobione cięcie nieograniczone podług promienia, wykreślonego 
z początku układu, np. podług promienia OL (rys. 50), i że rozsunęliśmy 
zlekka oba otrzymane brzegi, w ten sposób, iżby droga punktu z nie mogła 
przejść z jednego na drugi. W tych warunkach żadna droga zamknięta

Rys. 50.

nie może otaczać początku układu; każdej wartości z odpowiada zupeł­
nie określona wartość każdego z m pierwiastków u, , którą otrzymamy 
nadając argumentowi w wartość, zawartą między a i a — 2z. Należy je. 
dnak zauważyć, że wartości u w w dwu punktach nieskończenie bliz- 
kich m i m‘, położonych z różnych stron cięcia, nie są jednakowe. War­
tość m, w punkcie m' równa się wartości m, w punkcie w, pomnożonej

I 2z . . 2s\przez c o s -----1- i sin — |.
\ m m I

Każdy z pierwiastków równania (5) jest funkcją monogieniczną. Niech 
m0 stanowi wartość jednego z pierwiastków, odpowiadającą danej wartości 
2o> wartości z, zbliżonej do z0, odpowiada wartość u blizka wartości u0.

Zamiast odnajdywania granicy stosunku można szukać granicy

stosunku odwrotnego
z zg «m - -  u„m 
«  —  Mo _  «  —  “o ’



granica owa równa się mu™-'. Otrzymujemy tedy następujące wyra­
żenie pochodnej funkcji u

, 1 1 _ I m
m um 1 m z ’

można je napisać również w postaci, zawierającej wykładniki ujemne

, 1 1— iu' =  — zm , m
1 U

lecz postać ■ - lepiej wziąć z tego względu, iż unikniemy wówczas

nieporozumień co do wartości pochodnej, odpowiadającej danemu pier­
wiastkowi. Wewnątrz jakiejkolwiek krzywej zamkniętej, nie otaczającej

m_
początku układu, każdy z m pierwiastków yfz jest funkcją holomorficz­
ną. Również um =  A (z — a) posiada podobnież m pierwiastków, które 
ulegają przemianie kołowej dokoła punktu krytycznego z =  a. 

Rozpatrzmy jeszcze równanie
(7) m2 =  A (z — (z — e,)... (z — e )̂
w którym e1( e2, ..., e„ są to liczby, różne od siebie. Oznaczmy przez 
te same litery punkty, wyobrażające te n ilości. Załóżmy

A — R (cos a 4- i  sin a)
z — ek =  ęk (cos wk -\- i  sin w *) (k =  1, 2, ..., n) 

u =  r  (cos 9 -j- i sin 9);
w., oznacza kąt, utworzony przez kierunki prostych: Ox i e* z, łączącej 
punkt ek z punktem z. 7i równania (7) otrzymujemy

I- — Wiadomości ogólne. —  Funkcje monogieniczne. (F. Monogfenes). 17

rJ = Bę,ę....ęn , 29 =  a -f cOj +  ... +  2w!7t;

równanie to posiada tedy dwa pierwiastki przeciwne

(8)

Mj — (7f̂ 2̂ _....ęn) 

f
j Mi — (-Zfę,.. )

cos a -(- tą  - j - ... - j -  con
i  s in a +  wl +  — A

cos
w-f- w, -f- ... -|- (oM -j- 2 ji\ . . / ot—f- <Oj-(- ...-f- co„ -j- 1 + 1  sin'

Gdy punkt 2 przebiega krzywą zamkniętą C, otaczającą p z pośród 
punktów ej, e,, ..., en, to p argumentów, należących do ciągu uą, <o2, ..., <o„ 
powiększa się o 2tt; argument pierwiastka i podobnież argument pier­
wiastka u2 wzrastają przeto o pn. Jeżeli p jest parzyste, oba pierwiastki 
zyskują swe wartości początkowe; jeżeli p jest nieparzyste, to każdy 
chodzi w drugi. W szczególności zamiana pierwiastków zachodzi

Kurs analizy matematycznej.
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przypadku, gdy wewnątrz obwodu jest położony tylko jeden punkt c,. 
Punkty e, stanowią n punktów rozgałęzienia. Do tego aby pierwiastki 
u, i u. pozostawały określonemi dokładnie funkcjami zmiennej wy­
starczy utworzyć taki układ cięć, aby wszelka krzywa zamknięta ota­
czała zawsze liczbę parzystą punktów krytycznych. Można np. prze­
ciągnąć szereg cięć nieograniczonych podług prostych, wychodzących 
ze wszystkich punktów e,, w ten sposób, by te cięcia nie krzyżowały 
się. Lecz można również zastosować wiele innych sposobów. Jeżeli np. 
istnieją 4 punkty krytyczne e2, e3, ev  to można zrobić jedno cięcie
wzdłuż odcinka prostej ete2l a drugie — wzdłuż odcinka CjC,.

265. Funkcje jednowartościowe i wielowartościowe. — Przykłady 
elementarne, rozpatrzone przed chwilą, uwydatniają pewien fakt nader 
ważny. Wartość funkcji f ( z )  zmiennej  ̂ niezawsze mianowicie zależy 
jedynie od samej wartości z, lecz może również w pewnym stopniu za­
leżeć od sposobu, w jaki następują po sobie wartości, przybierane przez 
zmienną przy przejściu od pewnej wartości początkowej do wartości 
danej (actuelle), czyli innemi słowy od toru, po którym się porusza 
punkt, odpowiadający zmiennej.

m_
Powróćmy np. do funkcji u — \'z. Gdy będziemy szli z punktu M„ 

do punktu M dwiema drogami M„NM i M„PM (rys. 4Sb). nadając 
funkcji u w obu przypadkach tę samą wartość początkową, to w punk­
cie M nie otrzymamy tej samej wartości, ponieważ wartości argumentu 
zmiennej  ̂ w tych dwu przypadkach różnią się o 2k. Musimy tedy 
wprowadzić jeszcze nowe rozróżnienia.

Funkcja analityczna f{z)  nazywa się jednowartościową (uuiforme) czyli 
monodromiczną (monodrome) w obszarze A, jeżeli wszystkie drogi, poło­
żone w tym obszarze, które łączą jakiś punkt z jakimkolwiek punk­
tem z, wiodą do tej samej wartości końcowej f(z). Gdy wartość koń­
cowa f{z)  nie jest przy wszystkich możliwych drogach jednakowa, funk­
cja jest icielowartościowa (multiforme). Funkcja holomorficzna w obsza­
rze A musi być w tym obszarze jednowartościową. Ogólnie, do tego 
by funkcja f(z) była funkcją jednowartościową w danym obszarze, po­
trzeba i wystarcza, iżby jakakolwiek droga zamknięta, zakreślona przez 
zmienną, przywracała tej funkcji je j wartość początkową. W istocie, 
jeżeli przesuwanie się od punktu A do punktu B po dwuch drogach 
AMB i AXB (rys. 51) doprowadza do tej samej wartości /(z), to rzecz 
jasna, że poruszając punkt z po obwodzie zamkniętym A MBNA, odzy­
skamy w punkcie A wartość początkową f(z).

Nawzajem załóżmy, że przy poruszaniu się punktu  ̂ po obwodzie
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AMBXA powracamy do punktu wyjścia z wartością początkową u0, i niech 
ux oznacza wartość, którą funkcja osiąga w punkcie B, gdy z przebiegło 
drogę AMB. Gdy 2 przebiega łuk BN A, funkcja zmienia się od warto­
ści m1 aż do wartości u0; więc naodwrót droga ANB doprowadzi od war­
tości u0 do wartości uv t. j. do tej samej wartości, co droga AMB.

Rys. 51.

Należy zauważyć, że funkcja może nie być jednowartościową w ja ­
kimś polu, nie posiadając bynajmniej w tym polu punktów krytycznych. 
Rozpatrzmy np. część płaszczyzny, zawartą pomiędzy dwoma kołami 
spólśrodkowemi C i C", których środkiem jest początek układu. Funkcja 

1
u =  zrr nie posiada w tym obszarze żadnego punktu krytycznego; mimo
to nie jest w nim jednowartościową, gdyż w razie zakreślenia przez 2
okręgu spółśrodkowego, zawartego pomiędzy C a (7, funkcja ta zostaje

2tz . .  2 x
pomnożona przez cos— - f u m  —.* c m m

I I .  —  Szeregi potęgowe o wyrazach zespolonych. —  Elementarne
funkcje przestępne.

266. Kolo zbieżności. — Rozumowania, użyte przy badaniu szere­
gów potęgowych w rozd. IX  tomu I, dadzą się z łatwością rozciągnąć 
na szeregi potęgowe o wyrazach zespolonych (series entićres k termes 
imaginaires); wystarczy zastąpić wartość bezwzględną (w jej dawnym zna­
czeniu — Uw. U.) przez moduł. Przypomnimy tutaj pokrótce bieg roz­
ważań i wyniki.

Weźmy szereg potęgowy

(9) a0 +  â z +  a2z2 +  ... +  +  ...,

w którym spółczynniki i zmienna mogą przybierać dowolne wartości 
urojone. Rozpatrzmy jednocześnie, zakładając: Ai — a,- , r  =  \z , sze­
reg modułów
(10) A0 -f Ajr +  A2r2 +  ... +  Anrn f- ...;
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uzasadniliśmy (I, art. 1S1) istnienie takiej liczby dodatniej R, że szereg 
(10) jest zbieżny dla wszelkiej wartości r R, a rozbieżny dla wszel­
kiej wartości r >» R. Ta liczba R równa się odwrotności największej 
z granic ciągu

2_ 3 n ...
-4 ,, VA., V A$, ...,  ̂ A„ , ...,

i w przypadkach szczególnych może być równą zeru lub nieskończoną.
Z własności liczby R wynika bezpośrednio, że szereg (9) jest bez­

względnie zbieżny, gdy moduł z jest mniejszy od R. Dla wątłości z„ 
zmiennej z o module większym niż R szereg (9) nie może być zbieżnym, 
ponieważ w takim razie szereg modułów (10) musiałby być zbieżnym 
dla wartości r większych niż R (I, art. 181). Jeżeli, biorąc początek 
układu za środek, zakreślimy w płaszczyźnie zmiennej £ okrąg C o pro­
mieniu R (rys. 52', to szereg całkowity (9) okaże się bezwzględnie 
zbieżnym dla każdego punktu, położonego wewnątrz C, a rozbieżnym 
w każdym punkcie zewnętrznym: stąd nazwa koła. zbieżności (cercie de 
conrergence), nadawana temu kołu. W punkcie, położonym na obwo­
dzie kola, szereg może być zbieżnym lub rozbieżnym, stosownie do 
okoliczności l).

Wewnątrz kola C, spółśrodkowego z pierwszym i o promieniu R , 
mniejszym niż R, szereg (9) jest jednostajnie zbieżny, ponieważ dla każ­
dego punktu, położonego wewnątrz (7, mamy oczywiście

<7n+1 zn+' - f  ... - f  a„ +p sP+p <  A„+, B’n+i 4- ... +  A„+J) i?'n+r

i można znaleźć liczbę n dość wielką, by prawa strona była przy wszel­
kim p mniejsza od wszelkiej, danej z góry, liczby dodatniej e. Stąd 
wnioskujemy, że suma szeregu (9 jest to funkcja f(z)  zmiennej ,̂ cią­
gła w każdym punkcie, położonym wewnątrz kola zbieżności (art. 260).

Różniczkując dowolną liczbę razy, wyraz za wyrazem, szereg (9).

') Niech / z )  ~a„zn stanowi -zereg całkowity o promieniu zbieżności f t =  I. 
Jeżeli spółczynniki a0, a,, a 2, ... są liczbami dodatniemi, coraz to mniejszemi, i a„ dą­
ży do zera przy n rosnącym nieograniczenie, to szereg jest zbieżny we wszystkich 
punktach obwodu kola zbieżności, oprócz, być może. punktu * =  1. Istotnie, szereg 
X*n , w którym z = 1. jest. z wyjątkiem wartości * =  1, nieoznaczony, ponieważ

2
moduł sumy n pierwszych wyrazów jest mniejszy niż ; wystarczy tedy zasto­

sować rozumowanie z artykułu 166 i oprzeć się na twierdzeniu Abela uogólnionym. 
Podobnież szereg a , — a,z 4" a2z2 — ..., utworzony z poprzedniego zapomocą za­
miany z na — a, jest zbieżny we wszystkich punktach okręgu z = i ,  oprócz, być 
może, punktu * =  — 1 (p. art. 166).



I

otrzymujemy liczbę nieograniczoną szeregów potęgowych /x(s), /2(z),..., 
f n(z), ..., posiadających to samo kolo zbieżności, co pierwszy szereg 
(I, art. 183). Można dowieść w taki sam sposób jak w art. 184, że f x(z) 
stanowi pochodną funkcji f(z) i ogólnie, że f n(z) jest pochodną funkcji 
fn—\(z). Wszelki szereg potęgowy wyraża tedy funkcję holomorficzną wewnątrz 
kota zbieżności. Ciąg pochodnych tej funkcji daje się przedłużać nieogra- 
niczenie, i A^szystkie te pochodne są również funkcjami całoksztaltnemi 
w tym samym kole.

Rys. 52.
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Mając punkt z, położony wewnątrz kola C, zakreślmy dokoła tego 
punktu okrąg c styczny wewnętrznie do okręgu C i weźmy punkt zĄ- h, 
leżący wewnątrz c; jeżeli r i?  oznaczają moduły z i h , to r +  R 
(rys. 52). Suma f(z  +  h) szeregu jest równa sumie szeregu podwójnego

( U )

axz +  a#,1 +  ... +  a ^  +  ... 
afii -j— Ba ẑh -j- ... -)- nanzn ĥ -f- ...

+  a 2h2 -4- ... +
n(n — 1) 

1 . 2
anzn~2h2 +  ...

+ ...........................................................>
obliczonej za pomocą dodawania w kolumnach pionowych. Lecz szereg 
ów jest bezwzględnie zbieżny, ponieważ, zastępując każdy wyraz przez 
jego moduł, otrzymujemy szereg podwójny o wyrazach dodatnich, któ­
rego suma wynosi

A0 +  Ax(r +  <;) +  ... +  A„(r +  ę)n +  ...
Można tedy dodawać wyrazy szeregu podwójnego (11) również 

wzdłuż wierszy (poziomych), i przeto otrzymujemy dla wszelkiego punktu 
z h, leżącego wewnątrz koła c, związek następujący:
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(1?) f ( z  +  h) f{z )  +  hr\(2) +  ~  f 2(z) +  ...+  l  ■ 5" n fn (*) +  ...

Szereg z prawej strony znaku równości jest napewno zbieżny, 
skoro moduł przyrostu h jest mniejszy od R —r. może być jednak zbieżnym 
w większym jeszcze zakresie. Funkcje /',(*),/*(*), —/«(*)»•“ 8;l równe 
kolejnym pochodnym funkcji /(r), a więc wzór (12) utożsamia się ze 
wzorem Taylora.

Jeżeli szereg (9) jest zbieżny w punkcie Z obwodu kola zbieżności, 
suma /(Z )  szeregu jest granicą, do której dąży suma f(z), gdy punkt c 
dąż\ do punktu Z wzdłuż promienia, zakończonego w tym punkcie. 
Twierdzenie to nie przestaje być prawdziwym, gdy z, pozostając wciąż 
wewnątrz kola, zmierza do Z wzdłuż jakiejś krzywej, nie stycznej w punkcie 
Z z kotem zbieżności1).

Gdy promień R jest nieskończony, koło zbieżności wypełnia cala 
płaszczyznę, i funkcja /(z) jest holomorficzna dla wszelkiej wartości z. 
Powiemy, że jest to funkcja całkowita (fonction entiere); badanie tych 
funkcji przestępnych stanowi jedno z najważniejszych zadań Analizy. 
W najbliższych artykułach zbadamy klasyczne przykłady funkcji prze­
stępnych elementarnych.

267. Szeregi szeregów (Series de sśries). — Mając szereg potęgowy (9) o jakich­
kolwiek spólczynnikach, powiemy, iż jakiś inny szereg potęgowy £<*„*", którego 
wszystkie spólczynniki są rzeczywiste i dodatnie, jest dla pierwszego szeregu szere­
giem twtfistającym  (s. majorante), jeżeli przy wszelkim n zachodzi związek:
Wszystkie wyniki, osiągnięte zapomocą użycia funkcji zwyższających (art. 186—189), 
stosują się bez zmian do funkcji zmiennych zespolonych. Oto jeszcze jedno za­
stosowanie:
(13) /o W +  J i  (*) +  f i  (*) +  -  +  /„ (*) +  -

stanowi szereg, którego każdy wyraz jest znowuż sumą szeregu potęgowego, zbież­
nego w kole o promieniu równym lub większym od pewnej liczby R >  0.

f {(z) =  a,0 +  aitz +  ... +  ain z” +  ...

Wyobraźmy sobie, że każdy wyraz szeregu (13) jest zastąpiony przez odpowiedni 
szereg potęg zmiennej z\ otrzymujemy w ten sposób szereg podwójny, którego każda 
kolumna jest utworzona przez rozwinięcie jednej z funkcji J-,(z). Jeżeli ten szereg 
jest bezwzględnie zbieżny dla jakiejś wartości z o module ę, t. j. jeżeli szereg podwój­
ny X X i ain j  ę" jest zbieżny, to można przy każdej wartości z o module nie więk­

szym od c dodawać wyrazy pierwszego szeregu wzdłuż wierszy poziomych, i otrzy­
mujemy sumę F(z) szeregu (13) w postaci szeregu potęg zmiennej z

’) por. P i c a r d ,  Traili d’Analyse (Kurs Analizy), t. II, str. 73.
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F(z)  — b0 -j- b̂ z -j- ... +  b nzn -|- ...
b n =  a on +  «in +  -  +. +  -  ( "  =  °> *» 2> •••)■

Jest to w gruncie rzeczy to samo rozumowanie, które pozwoliło rozwinąć 
f(z  +  h) podług potęg liczby h.

M- T
Załóżmy np., że szereg /• (z) posiada funkcje zwyższajaca o p o s ta c i---- 1 -

Y  ' ‘ r — z
i że szereg —j  M i jest zbieżny. W szeregu podwójnym moduł wyrazu ogólnego jest

z n
mniejszy niż M  -----. Bylebyśmy mieli z \ c  r, szereg ten jest bezwzględnie

r  M ■
zbieżny, ponieważ szereg modułów jest zbieżny; jego suma jest mniejsza niż _______-  .

268. Rozwinięcie w szereg potęgowy iloczynu nieskończonego. — Weźmy iloczyn
nieskończony'

F (z )  =  (1 +  u0) (1 +  u J  ... (1 +  un) ...,

w którym każda z funkcji ut jest funkcja ciągłą zmiennej zespolonej z w pewnym 
obszarze D. Jeżeli szereg S£7; jest w tym obszarze jednostajnie zbieżny, F (z )  równa 
się sumie szeregu jednostajnie zbieżnego w O i przeto stanowi funkcję ciągłą (art. 
175, 176). Jeżeli funkcje ui są funkcjami analitycznemi zmiennej z, to z pewnego 
twierdzenia ogólnego, które zostanie dowiedzione w dalszym ciągu (art. 297), wynika, 
że to samo się stosuje do F (z).

Naprzykład iloczyn nieskończony

( i - i )
wyrażą funkcję zmiennej z, holomorficzną w dziedzinie całej 'płaszczyzny, ponieważ

szereg jest jednostajnie zbieżny wewnątrz dowolnej krzywej zamkniętej. Ten

iloczyn równa się zeru dla z =  0, + 1, + 2, ..., ale tylko dla tych wartości.
Można dowieść bezpośrednio, że iloczyn F  (z) może być rozwinięty w szereg 

potęgowy, jeżeli, rozwinąwszy każdą z funkcji u i w szereg potęgowy

u{ (z)  =  ai0 +  au z +  ...

otrzymujemy szereg podwójny 2 2
i  n

tości dodatniej r.
Załóżmy, jak w art. 174

ainzn +  ... (i =  0, 1, 2, ...),

ain r ” zbieżny przy odpowiednio dobranej war-

V0 =  1 -  u0, Dn =  (1 +  Mo' (1 +  Mj) ... (1  +  un ;

wystarczy okazać, że suma szeregu

(14) ••• "B +  ••• j

równego iloczynowi nieskończonemu F ( z ), da się wyrazić w postaci szeregu potę­
gowego. Owóż, jeżeli założymy jeszcze

= I aix\ +  | * J *  + ... + K „ K .+
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to rzecz jasna, że iloczyn

r„' =  (1 + u«') (1 r « ,')... (1 ~

będzie dla o„ funkcją zwyższającą. Szereg (14) może być tedy uszykowany podług 
potęg zmiennej z, jeżeli można orzec to samo o szeregu pomocniczym

(15) »•' o.' - -  K
Jeżeli rozwiniemy każdy wyraz tego szeregu w szereg potęgowy, to otrzymamy 

szereg podwójny o spóiczynnikach dodatnich i dla osiągnięcia naszego celu wystar­
czy dowieść, iż po zastąpieniu z przez r. ów szereg podwójny będzie zbieżny. Oznacz­
my przez U„' i V„' wartości funkcji b , '  i o , '  dla z r\ mamy

i przeto 

czyli jeszcze

= (14- Uq) (1 C/| ) ... (1 (Jn_, ) U„ ,

Vt’ -  ... + V„' = (1 +  IV) ...U + un ) 

V0' +  V»' +  ~ + V „ <  Cr*'+-  + r»' .

Gdy n wzrasta nieograniczenie, suma U„' ... Un dąży do pewnej granicy,
Vponieważ szereg ^ j  L’r j  jak założyliśmy, jest zbieżny. Szereg podwójny (15) jest te 

dy bezwzględnie zbieżny, o ile z 1 < ; r; szereg podwójny, otrzymany zapomocą roz­
winięcia każdego wyrazu r„ szeregu (14 jest tedy tjm bardziej bezwzględnie zbieżny 
wewnątrz odpowiedniego kola C, i można go uszykować podług potęg całkowitych z 

8 pólczynnik fef przy zr  w szeregu, wyrażającym F it ) ,  równa się podług tego 
granicy, do której dąży przy n rosnącym nieograniczenie spólczynnik przy * r 
w sumie c„ : r, +  ... Pn , czyli, co na jedno wychodzi, w szeregu, powstałym z roz­
winięcia iloczynu

Pn =  (1 4- m#) (1 -f «,) ... (1 m„ );

spólczynnik ten otrzymamy przeto, stosując do iloczynu nieskończonego zwykły spo­
sób obliczania spólczynnika jakiejś potęgi zmiennej z w iloczynie liczby skończo­
nej wielomianów.

Naprzyklad iloczyn nieskończony

F {z )  =  (1 U<1 4- * l) ( l  z 1) ... (1 4- z2” ) ...

tla się rozwinąć podług potęg zmiennej z, byleby z <  1. Wszelka potęga zmiennej z , 
np. zv , wystąpi w tym szeregu ze spólezynnikiem równym jedności, ponieważ wszel­
ka liczba całkowita N  może być napisana w pewien jedyny sposób w postaci sumy 
potęg liczby 2. Mamy więc, gdy ’ z <  1

(16) F(Z) =  1 4- z -  z 1 4- ... 4- zn +  ... =  ----- — »
1 —  Z

co możnaby również uzasadnić nader łatwo zapomocą tożsamości

i  n _ n—l
i___=  (1 +  * )  (i  - z - ) (1 X*) ... (1 z-
1 — z

269. Funkcja wykładnicza. — Określenie arytmetyczne funkcji 
wykładniczej (f. exponentielle) traci oczywiście wszelkie znaczenie, gdy 
wykładnik jest urojony. Aby uogólnić odpowiednio określenie, potrzeba
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przeto oprzeć się na jakiejś własności, dającej się rozciągnąć na funk­
cje zmiennej zespolonej. Użyjemy własności, wyrażonej przez związek 
funkcjonalny ax X  ' =  ax+x', i postaramy się wyznaczyć taki szereg 
potęgowy7 f(z), zbieżny w kole o promieniu R , iżbyśmy mieli
(17) f(z  +  z') =  f(z)f{z'\
skoro moduły liczb z, z', z +  z' są mniejsze od B, co zachodzi napewno, gdy

Rz ’ i z' są mniejsze niż Jeżeli uczynimy w związku poprzednim 

z’ =  O, to otrzymamy
/ (z )  =  /(z)/(o);

musi tedy się spełniać równość /(o) =  1, i szereg szukany napiszemy 
w postaci

/(*) =  1 +  t 2 + 1 . 2 Z2 i -  ... +
&n

1 . ‘i... — Z» -f .... n

Zastąpmy w tym szeregu 2 kolejno przez \t i \'t, oznaczając przez X i 
X' dwie stałe a przez t — zmienną pomocniczą, i pomnóżmy oba otrzy­
mane szeregi; wypadnie

/(Xf) f  (X'f) =  1 +  y  (X +  X') t +  ...

-|— -— -— ------ (a n Xn -|- — a n—\ oą Xn 1 X -f- <xn X ” \ 4- ...<
1 . I ... n \ 1 /

Z drugiej strony mamy

f(U  -|- X'Q =  1 +  ^  (X +  X')t +  ... +  Ł "" - - -  (X +  X')» #• +  ...

Równość f(k t  +X'ł) =  f(Xt)f(X't) musi zachodzić dla wszystkich
R

wartości X, X', t, spełniających warunki ' X|<  1, X' , <  1, i| <  —; trzeba 

tedy, iżbyr oba szeregi były identyczne, t. j. iżbyśmy mieli

o„ (X +  X')" =  an X" + aj X"-' X'

n(n — 1) 
1 . 2 _ &n—2 ®2 XB 2 X 2 —)— — — an X" ;

stąd wynikają związki a„ =  a„_, aą, an =  an- 2a2, ..., które można sfor­
mułować w postaci jednego warunku ogólnego

(18) a p + q  —  a P )

w którym p i j  oznaczają dowolne liczby całkowite dodatnie. Aby 
znaleźć rozwiązanie ogólne zagadnienia, załóżmy: ą =  1 i uczyńmy ko-
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lejno p — 1, p  =  2, p — 3, ...; wypada, iż o. =  a,*, potym a3 =  a.,^ —a,3, 
i wreszcie a„ a ," . Otrzymane w ten sposób wyrażenia spełniają 

warunek (1S), i szereg szukany przybiera postać

/(*) =  1 + 1 . 2 +  -  4- 1 . 2...B

szereg ten jest zbieżny w dziedzinie całej płaszczyzny i związek

f{z  +  z') =  f(z )f(z ')

jest spełniony przy wszelkich wartościach liczb ;  i z'.
Szereg powyższy zależy od stałej dowolnej a zakładając iż aŁ 1, 

przyjmiemy

1 + 1 1 . 2 +  ... + 1 . 2...w

w ten sposób rozwiązanie ogólne postawionego zagadnienia stanowi e*>\ 
Gdy r przybiera wartość rzeczywistą x, funkcja całkowita ex wy­

raża to samo, co funkcja wykładnicza e* , zbadana w algiebrze; przy 
dowolnych z i z mamy zawsze e5+*' =  ex X  e5’. Pochodna funkcji e ró­
wna się samej funkcji. Zgodnie z wzorem podstawowym mamy

ez+vi =  e* e*'* ;

aby módz obliczyć e- , gdy  ̂ posiada wartość zespoloną x  -f yt, wystar­
czy umieć obliczyć e*. Otóż, łącząc z osobna wyrazy o wykładnikach 
parzystych i nieparzystych, możemy napisać szereg, wyrażający e;/. 
w postaci

«i i .v2 , ,v* , . (y  y3 ,v5 _ \.
1 .2  1 1 .2 .3 .4  *” +  Al  1 . 2 . 3  1 2 . 3 . 4 . 5  "

rozpoznajemy po prawej stronie znaku równości wyniki rozwinięcia 
funkcji cos y i sin y, a więc, gdy y jtst rzeczywiste

(■y* =  cos y -)- i sin y.

Gdy zastąpimy we wzorze poprzednim e  ̂ przez to wyrażenie, o- 
trzymamy
(19) e*+y‘ =  e? (cos y -j- t sin y);

funkcja posiada moduł e* i argument y.
Wzór ten uwydatnia pewną ważną własność funkcji ex ; gdy zmie­

niamy mianowicie z na z 2j» , x  nie ulega zmianie a y wzrasta o 2z, 
co nie pociąga za sobą żadnej zmiany w wartości prawej strony wzoru 
(19). Mamy tedy =  e" ; funkcja wykładnicza ex posiada okres 2~i.



Postarajmy się jeszcze rozwiązać równanie e* =  A, w którym A 
oznacza dowolną liczbę zespoloną, różną od zera, o module ę i argumen­
cie to; chcemy mieć

gz+i/i _  (cos y ą. i sin y) =  z (cos oj +  i sin to), 

co wymaga spełnienia warunków

e* — ę, y =  <o +

Oznaczając przez symbol log logarytm naturalny liczby dodatniej, o- 
trzymujemy z pierwszego związku x  =  log ę. Przy wyznaczeniu y-ka ma­
my do czynienia z dowolną wielokrotnością 2it. Gdyby A =  0, równa­
nie e* =  O doprowadziłoby do wyniku niemożliwego. A więc równanie 
e == A, przy A różnym od zera, pońada nieskończenie wiele pierwiastków, wy­
rażonych przez wzór log ę +  i  (w +  2kri); równanie e% =  O wie posiada żadne­
go pierwiastku rzeczywistego ani urojonego.

Jjwaga. — Możnaby również określić e~ jako granicę wielomianu

/1 — - | przy m rosnącym nieograniczenie. Metoda, użyta w algiebrze
\ »/
w celu uzasadnienia, iż ten wielomian ma za granicę szereg ex , stosuje 
się również w tym przypadku, gdy 2 jest zespolone.
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270. Funkcje trygonometryczne. W celu określenia funkcji sin 0 i cos 0
dla 0 zespolonego zastosujemy bezpośrednio do wartości zespolonych 
szeregi potęgowe, znalezione w tym przypadku, gdy zmienna była rze­
czywista, i założymy

( 20 )

0sin 0 =  — 

cos 0 = 1

03 05 
1 . 2 . 3  +  1 . 2 . 3 . 4 . 5  

02 04 

1 . 2  'f 1 . 2 . 3 . 4  ~

Są to funkcje przestępne całkowite, posiadające wszystkie wdasności fun­
kcji trygonometrycznych. Tak np. widzimy ze wzorów (20), że pochodna 
funkcji sin 0 równa się cos 0 i że pochodną funkcji cos 0 jest — sin 0; gdy 
zmieniamy 0 na — 0, sin 0 przechodzi wr — sin 0, gdy tymczasem cos 0 po­
zostaje bez zmiany.

Obie nowe funkcje przestępne dadzą się wyrazić zapomocą fun­
kcji wykładniczej. Rozwińmy, w istocie, e*‘ w szereg potęg zmiennej 0, łącząc 
z osobna wyrazy o wykładnikach parzystych i nieparzystych

exi =  1 — 02
1 . 2

+  -
_0 4_____

1 . 2 . 3 . 4
01__

1 . 2 . 3
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równość tę, zgodnie z wzorami (20), można napisać w postaci
e*' — cos 2 4 - i sin 2.

Zastępując 2 przez — z, otrzymujemy jeszcze 
e~xt =  cos z —  i sin 2,

a z tych dwu związków wynika nawzajem
/01v e**’ +  r f e** — T-'

2. 2t

Są to znane wzory Eulera, sprowadzające funkcje trygonometryczne do 
funkcji wykładniczej. Wzory te uwydatniają okresowość obu funkcji, po­
nieważ ich prawe strony nie ulegają zmianie, gdy z przechodzi w z +  2it. 
Dodawszy je, po podniesieniu do kwadratu, otrzymujemy

cos2s rf sin*2 =  1 .
Użyjmy jeszcze wzoru e<̂ +i'>, =  «**«*'•' czyli 

cos (z +  z') 4- t sin (z 4- z')

— (cos 2 +  1 sin z) (cos z ’ -f f  sin z')

=  cos z  cos z' — sin z sin z' 4 - i (sin z cos z' 4  sin z' cos z); 

gdy zastąpimy w tym wzorze z przez — z, z' przez — z ,  otrzymamy
cos (z +  2') — i sin (z 4  z')

=  cos z coaz' — sin z sin z' — i  (sin z cos z' 4  sin z' cos z), 

i z tych dwu wzorów wynika
cos (2 4- z') =  cos 2 cos z — sin z sin z
sin (2 4  2’) =  Bin 2 cos 2' 4 - sin z' cos 2.

Wzory, wyznaczające funkcje sumy, zarówno jak wszystkie płynące 
z nich wnioski, stosują się tedy bez zmiany do przypadku, gdy zmienna 
jest zespolona. Obliczmy np. część rzeczywistą i spółczynnik przy i 
w wyrażeniach cos (x 4 yi) i sin (x 4  yi). Mamy przedewszystkim podług 
wzorów Eulera

e~y -|- &cos yi ---------------=  cos hip _y,

e~* — & . . , .sin yi =  ---- — —  =  1 sin hip y\Ctl
wzory powyższe dają następnie

cos (x 4- y*) =  cos x cos yi — sin x sin yi — cos x  cos hip y — i sin .v sin hip y, 
sin (x yi) == sin x  cos yi 4- cos x  sin yi — sin x  cos hip y 4- i cos x  sin hip y.
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Inne funkcje trygonometryczne dają się określić zapomocą po­
przednich. Mamy np.

sin z 1 exi — e~xitang 2 = ------= --------:--------- :
cos 2 i eM -f- e~m ’

co można również napisać w postaci

tang 2 1 ^ - 1
~i e2*i _)_ i  ’

prawa strona stanowi funkcję wymierną potęgi e2**'; styczna posiada te­
dy okres, równy tc.

271. Logarytmy. — Stwierdziliśmy już (art. 269), że gdy 2 jest dane, 
jako liczba urojona, różna od zera, to równanie eu =  z posiada nieskoń­
czenie wiele pierwiastków. Załóżmy, że u =  x  Ą-iy\ jeżeli prócz tego 
c i co oznaczają moduł i argument liczby z, to muszą zachodzić związki

e* =  z, y =  oj -)- 2Jcti.

Którykolwiekbądź z tych pierwiastków nazywa się logarytmem 
zmiennej 2 i oznaczamy go przez Log (z). Możemy tedy napisać

Log (z) =  log ę -+ i ( oj —1- 2kz),
zachowując symbol log dla oznaczenia zwyczajnego logarytmu nepe- 
rowskiego (czyli naturalnego — JJw. tł.) liczby dodatniej. Wszelka licz­
ba rzeczywista lub zespolona, różna od zera, posiada przeto nieskończe­
nie wiele logarytmów, tworzących postęp arytmetyczny o różnicy 2n i .  

W  szczególności, jeżeli 2 jest liczbą rzeczywistą i dodatnią x, mamy 
oj =  0 i biorąc Tc =  0, mamy do czynienia ze zwykłym logarytmem; lecz 
pozatym istnieje jeszcze nieskończenie wiele wartości zespolonych loga­
rytmu, o postaci log x  -f- 2km. Jeżeli 2 jest rzeczywiste i ujemne, to 
można założyć w =  st, i wszystkie wartości logarytmu są urojone.

Mech z' oznacza inną liczbę zespoloną o module z' i argumen­
cie oj'. Mamy

Log (z') =  log z +  i (oj' +  2&'t:); 

dodając oba logarytmy, otrzymujemy

Log (2) +  Log (2') =  log zz' +  i [ oj -f oj' +  2(Jc +  k')%\.

Ponieważ zi' równa się modułowi, a oj -|- oj' -— argumentowi iloczy­
nu 22', więc można jeszcze napisać ten wzór w postaci

Log (2) +  Log (2') =  Log (22'),
która wskazuje, że gdy dodajemy do którejkolwiek z wartości wyrażę-
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Log (:) którakolwiek wartość wyrażenia Log (r'), to otrzymana suma 
stanowi jedną z wartości wyrażenia Log (c: ).

Wyobraźmy sobie teraz, że punkt, odpowiadający zmiennej c, za­
kreśla w swej płaszczyźnie jakąkolwiek krzywą ciągłą, nie przechodzącą 
przez początek układu; wzdłuż tej krzywej ;  i w zmieniają się w sposób 
ciągły i to samo zachodzi z rozmaitemi wartościami logarytmu. Lecz 
jeżeli punkt przebiega krzywą zamkniętą, to należy odróżnić dwa od­
mienne wypadki. Gdy z, wyszedłszy z punktu z0, powraca doń, zakre­
ślając krzywą zamkniętą, nie otaczającą początku układu, to argument 
(o zmiennej odzyskuje wartość początkową m0, i rozmaite gałęzie loga­
rytmu wracają ponownie do swych wartości początkowych. Gdybyśmy 
wyobrazili wartości logarytmu zapomocą punktów, każdy z tych punktów 
zakreśliłby krzywą zamkniętą. Jeżeli zaś przeciwnie punkt i- zakreśla 
krzywą zamkniętą w rodzaju krzywej MaNATP (rys. 48b), to argument 
zmiennej z wzrasta o 2-  i każda gałąź logarytmu przybiera wartość po­
czątkową, powiększoną o 2zi. Ogólnie, gdy z przebiega jakąkolwiek krzywą 
zamkniętą, wartość końcowa logarytmu równa się wartości początkowej, 
powiększonej o 2Ars/; k oznacza przytym liczbę całkowitą dodatnią lub 
ujemną, którą otrzymujemy, mierząc kąt, o który się odchylił promień 
wodzący, wykreślony z początku układu do punktu  ̂ (t. j. liczbę całko­
witych obrotów promienia wodzącego, w kierunku dodatnim lub ujem­
nym — Uw. U.). Nie można tedy, o ile nie czynimy żadnych zastrzeżeń 
co do przebiegu zmian 5-tu, uważać rozmaitych określeń, funkcji Log(;> 
za tyleż funkcji osobnych tej zmiennej, ponieważ można przejść w spo­
sób ciągły od jednego z nich do innego. Są to gałęzie tej samej funkcji, 
które ulegają permutacji dokoła punktu krytycznego c 0.

Wewnątrz pola, ograniczonego przez jakąś jedną krzywą zamkniętą 
i nie zawierającego początku układu, każda z gałęzi Log (z) jest funk­
cją ciągłą i jednowartościową zmiennej z. Aby dowieść, że jest to funk­
cja całokształtna, wystarczy okazać, że posiada w każdym punkcie jed­
ną oznaczoną pochodną. Niech r i z, oznaczają dwie zbliżone do siebie 
wartości zmiennej, a Log (a), Log (2t) odpowiednie wartości logarytmu. 
wziętego w obu przypadkach w tym samym znaczeniu; gdy zt dąży do 
z, moduł Log (zj) — Log (z) dąży do zera. Załóżmy: Log (*). =  ur 
Log (z j  =  u,; otrzymamy

Log (z j  -  Log (z) a, — u
z1 — z eu‘ — e “ '

otóż, gdy dąży do u, iloraz ——— — zmierza do granicy, stanowiącej



pochodną e ‘ , t. j. do eu czyli 0. Logarytm posiada tedy w każdym 

punkcie jedną tylko pochodną, równą —.
Z

Ogólnie, Log (0 — a) posiada nieskończenie wiele wartości, które 
ulegają permutacji dokoła punktu krytycznego z =  a; pochodna tej

funkcji równa się -------.

Jeżeli m jest liczbą dowolną, rzeczywistą czy zespoloną, to funkcja 
zm da się określić zapomocą równości

__ gm Log (%).

o ile m nie jest rzeczywiste 1 wymierne, funkcja ta posiada, równie jak 
sam logarytm, nieskończenie wiele wartości, ulegających permutacji, 
gdy 2 obraca się dokoła punktu 0 =  0. Do tego, aby każda gałąź była 
funkcją holomorficzną w dziedzinie całej płaszczyzny, wystarczy wy­
tknąć cięcie nieograniczone wzdłuż dowolnego promienia, wychodzącego 
z początku układu. Pochodna posiada wyrażenie następujące

m T , ,
____  g i n  L o g  ( x )  —  YYlZm   ̂ "

2

rzecz jasna, iż należy nadawać argumentowi zmiennej z tę samą war­
tość w funkcji i w pochodnej.

272. Funkcje odwrotne: arc sin 2, arc tang 0. — Funkcje odwrotne 
względem sin z, cos z, tang z, określimy w sposób analogiczny. Tak 
więc określimy funkcję u =  arc sin 0 zapomocą związku

0 =  sin u-

aby rozwiązać to równanie wyzględem w, napiszemy
e ui _  e  u i e2ui   ]_

2 =  ------4------- =± -------:— ,
2i 2ieui

skąd wynika równanie drugiego stopnia

(22) U* — 2izU — 1 =  0

względem niewiadomej pomocniczej V =  eui. Z równania tego otrzy­
mujemy
(23) U =  iz +  Vl — z‘, 
a przeto
j(24) u — arc sin 0 =  — Log (iz +  V l—z*).

II.-S zereg i potęgowe o wyrazach zespolonych.—Elementarne funkcje, przestępne. 31
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Równanie c =  sin u posiada tedy dwa szeregi pierwiastków, po­
chodzących z jednej strony z dwu wartości pierwiastka \ 1 — z1, z dru­
giej zaś — z nieskończenie wielu wartości logarytmu. Lecz, jeżeli zna­
my jeden z tych pierwiastków, łatwo stąd wysnuć wszystkie inne. 
Ocznaczmy pierwiastki równania (22) przez V  — ę'eim' i L ” — 
zachodzi między niemi związek W W' 1, a zatym —1, to-fm
=  (2«-f 1)-. Można oczywiście założyć: w” — -  — i otrzymamy

Log {W) =  log ę +  +  2k'z)
Log (W )  =  — log ę’ +  »(* — w' +  2k"ic).

Wszystkie wartości funkcji arc s i n s ą  tedy dane zapomocą wzorów: 

arc sin z —  w' -f- 2k'x —  i log ę ' ,  arc sin z — z +  2 A - —  m' +  i log ę', 

które można jeszcze napisać, gdy założymy u w'— ilogę’, w postaci

(A) arc sin z — u +  2k'z
(B) arc sin z — ('2k" +  1)“ —

Gdy punkt < zakreśla krzywą ciągłą, różne wartości logarytmu 
we wzorze (24) przechodzą ogólnie jedna w drugą w sposób ciągły. 
Punkty * ^  1 są to jedyne możliwe punkty krytyczne; dokoła tych
punktów zachodzi kolejna przemiana dwu wartości pierwiastka \ 1 — z1. 
Wartości zmiennej z, które by czyniły wyrażenie iz r  t 1 — z1 równym 
zeru, nie istnieją, ponieważ, podnosząc do kwadratu obie strony równania 
iz — +  \' 1 — z‘, otrzymujemy 1 0.

Wyobraźmy sobie, żeśmy wykreślili dwa cięcia wzdłuż osi rzeczy­
wistej, jedno od — eo do punktu — 1, drugie od punktu -f 1 do +  co. 
Jeżeli postawimy warunek, aby zmienna w swym przebiegu nie prze­
kraczała tych cięć, to rozmaite gałęzie funkcji arc sin z będą funkcjami 
jednowartościowemi z. Istotnie, gdy punkt z zakreśla tor zamknięty, 
nie przekraczający żadnego z tych cięć, oba pierwiastki W, U równa­
nia (22) zakreślają również krzywe zamknięte. Początek układu nie 
leży wewnątrz żadnej z tych krzywych; gdyby np. krzywa, zakreślona 
przez W, otaczała początek układu, to musiałaby przeciąć co najmniej 
raz oś Oy w punkcie, położonym powyżej Ox. Otóż wartości V o po-

1staci i i  (a >  0) związek (22) podporządkowuje wartość zmiennej

z, rzeczywistą i >  1. Krzywa, zakreślona przez z, musiałaby tedy prze­
kroczyć cięcie, idące od 1 do -f- oo.

Rozmaite gałęzie funkcji arc sin z są ponad to funkcjami holomor-



ficznemi zmiennej z 1). W istocie, weźmy dwie wartości poblizkie u i ux 
funkcji arc sin z, odpowiadające dwom wartościom poblizkim z i z1 
zmiennej. Mamy

ux— u ux— u
zx— z ~~ sin ux — sin w ’

gdy moduł różnicy ux— u zmierza do zera, stosunek powyższy dąży do gra­

nicy — =  —= J : —• Dwie wartości pochodnej odpowiadają dwu szere-
cos u yT~— 2̂

gom (A) i (B) wartości funkcji arc sin 2.
Gdy nie czynimy żadnych zastrzeżeń co do przebiegu zmian liczby z, 

to można przejść od jakiejś określonej wartości początkowej arc sin z 
do którejkolwiek z gałęzi tej funkcji, byle dobrać odpowiednio krzywą 
zamkniętą, po której ma się poruszać punkt 2. Istotnie, widzimy prze- 
dewszystkim, że gdy z zakreśla dokoła punktu z — 1 taką krzywą
zamkniętą, że punkt z — — 1 leży zewnątrz niej, to obie wartości pier­
wiastka V l —z2 przechodzą jedna w drugą, i jedna z wartości, należą­
cych do szeregu (A), przechodzi w jedną z wartości, należących do (B). 
Załóżmy następnie, źe punkt 2 porusza się po obwodzie koła o promie­
niu i? większym niż 1 i o środku w początku układu; każdy z punktów 
U', U" przebiega krzywą zamkniętą. Punktowi z =  +  R równanie (22) 
podporządkowuje wartości U’ — ia, V" — i$, gdzie a i p są dodatnie; 
punktowi z — — R odpowiadają podług tego samego równania wartości
j j  = __ó*', TJ" =  — i%' (a' i P' — liczby również rzeczywiste i dodatnie).
Każda z krzywych zamkniętych, zakreślonych przez punkty U', U", 
przecina tedy oś Oy w dwu punktach, z których jeden leży powyżej,
drugi poniżej punktu O; oba logarytmy Log(ŁP) i Log (V") powięk­
szają się tedy lub zmniejszają o 2m. ,

Podobnież określamy funkcję arc tang s zapomocą związku 
tang w =  z czyli
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i| Jeżeli weźmiemy we wzorze U =  iz +  t/l — ■ *2 tę wartość pierwiastka, która 
staje się 1-ścią dla z =  0, to część rzeczywista liczby U pozostaje dodatnią, gdy z nie 
przekracza cięć, i możemy założyć, oznaczając przez <I> liczbę zawartą pomiędzy

_  — a 4- — , iż U =  R e ^  . Wartość odpowiednia wyrażenia — Log U
2 2 1

arc sin z =  — Log U =  ‘h — * log R
i

nazywa się niekiedy wartością główną (principale) funkcji arc sin jest to zwykła 
wartość kata o wstawię z, gdy z jest rzeczywiste i zawiera się między 1 a + 1.

3Kurs analizy matematycznej.
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skąd otrzymujemy

a przeto

1 e“ - l  
i e2-' +  1 ’

e-“' 1
1— iz

i  — z
i  +  z '

1arc tang z
2 i

Wyrażenie to uwydatnia istnienie dwu punktów krytycznych +  > 
funkcji arc tang z. Gdy z obraca się dokoła jednego z tych punktów,

Log I | powiększa się lub zmniejsza o 2ki, a arc tang z  wzrasta 
\» +  */

lub zmniejsza się o z.

273. Zastosowanie do rachunku całkowego. — Pochodne określo­
nych przed chwilą funkcji posiadają tę samą postać, jak w przypadku, 
gdy zmienna jest rzeczywista. Odwrotnie, znane przepisy co do odnaj­
dywania funkcji pierwotnych stosują się również do funkcji elementar­

nych zmiennej zespolonej. Tak np., oznaczając przez j / ( z ) dz wszelką 

funkcję zmiennej urojonej z, która ma za pochodną f(z), napiszemy

/-----------=  — («  >  1 ).
J  (z —  a )m tn— 1 (z —  a)m 1

I A dL  — A Log (z — a).
J  z — a

Te dwa wzory pozwalają odnaleźć funkcję pierwotną, odpowiada­
jącą dowolnej funkcji wymiernej, o spółczynnikach rzeczywistych lub 
urojonych, byleby były wiadome pierwiastki mianownika.

Rozpatrzmy w szczególności funkcję wymierną, o spółczynnikach 
rzeczywistych, zmiennej rzeczywistej .r. Jeżeli mianownik posiada pier­
wiastki zespolone, to są one parami sprzężone i oba pierwiastki tej sa­
mej pary występują tyle samo razy. Weźmy dwa pierwiastki sprzę­
żone a +  pi i a — pi, których rząd wielokrotności równa się p. Jeżeli 
przy rozkładzie na ułamki proste będziemy postępowali z pierwiastka­
mi urojonemi tak samo, jak z pierwiastkami rzeczywistemi. to pierwiast­
kowi n +  pi będzie odpowiadał ciąg ułamków prostych

J/j -|- A\i Al2 -f- Alp — A pi
x — a — pi 1 (,r—a—pt')a (.r— a — $i)p ’
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a pierwiastek a — pi da ciąg analogiczny o mianownikach, sprzężonych 
z poprzedniemi. Połączmy przy obliczaniu funkcji pierwotnej wyrazy, 
pochodzące od ułamków sprzężonych; otrzymamy, gdy p >• 1,

/' -f- Npi ^  r  Mp Np i
J (x —  a —  pi)P J (x —  a + p i ) ?

dx

1

P — 1

Alp -f- Afpi ^  ALp LLpi 1
(x — a— —1 (x — a +  pi)r—>]

1 (Alp +  Npi) (x — a +  pi^ -1 +  .
p - 1  [ ( * — <*) 2+ p 2] ^ i

licznik stanowi oczywiście sumę dwu wielomianów zespolonych sprzę­
żonych. Gdy p  =  1, mamy

/’ tl/j -j- A ii
J x  —  a —  pi

dx + £
Mr — N j

a +  pi
- dx

=  (AL1 +  Nji) Log [(x — a) — pi] +  (Af1 — f^i) Log [(x — a) +  pi].

Zastąpmy logarytmy przez ich wyrażenia szczegółowe, a otrzymamy po 
prawej stronie

Mx log [(x — a)2 +  p2] +  2Nj_ arc tang — ;

P / % . x — a\
wystarczy zastąpić jeszcze arc ta n g -------przez I — — arc tang —- 1,

x — ® \ z p /
aby odnaleźć wynik, który otrzymaliśmy byli bezpośrednio, bez pomocy 
symbolów urojonych.

Rozpatrzmy jeszcze całkę nieoznaczoną
r  dx

J VAx2 +  Bx +  C ’

która stosownie do znaku spółczynnika A występuje w dwuch, zasadni­
czo różnych postaciach. Wprowadzenie zmiennej zespolonej pozwala 
na połączenie obu wzorów w jeden; istotnie, jeżeli we wzorze

r  dx
./ v r+ ~ x 2 -

zmienimy x na ix, to wypadnie
r  dr

i prawa strona równości wyraża

Log (x +  VI +  x2)

— Log (ix +  V1— x2), 
i

właśnie arc sin x.
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Wprowadzenie symbolów urojonych do rachunku całkowego po­
zwala tedy stwierdzić ścisły związek pomiędzy wzorami, których powi­
nowactwa nie zauważylibyśmy, gdybyśmy nie opuścili dziedziny liczb 
rzeczywistych. Oto jeszcze przykład uproszczeń, wynikających z uży­
cia liczb zespolonych:

Mamy, gdy o i i  są rzeczywiste:

/ e(0+6,1r d i  — — — =  -----------  e"(cos b.r -f i sin b.r);
./ a bi a2 +  i 2

przyrównajmy części rzeczywiste i spółczynniki przy t, a otrzymamy 
odrazu obie obliczone już kiedyś (I, art. 109) całki

do całki j  .im dtt+hr>*dx, którą obliczamy, stosując kilkakrotnie całkowa­

nie przez części.

274. Rozkład na elementy proste funkcji wymiernej wstawy i dosta­
wy zmiennej z. — .Jeżeli, mając funkcję wymierną wstawy i dostawy 
zmiennej, .F(sin2, cos 2), zastąpimy w niej sin 2 i cos 2 przez ich wyra­
żenia, dane we wzorach Eulera, to funkcja ta zmieni się w funkcję wy­
mierną B(ł) zmiennej t =  exi. Funkcja B(ł), po dokonaniu rozdziału na 
elementy proste, będzie się składała z części całkowitej oraz z szeregu 
ułamków, odpowiadających pierwiastkom mianownika. Jeżeli mianow­
nik funkcji B(t) posiada pierwiastek / =  0, to ułamki, odpowiadające 
temu pierwiastkowi, dołączymy do części całkowitej, co nam da wielo­
mian lub wogóle funkcję wymierną

m może tu przybierać wartości ujemne.
Weźmy pierwiastek mianownika t =  a, różny od zera. Pierwia­

stek taki da szereg ułamków prostych.

Podobnież sprowadzamy całki

C e s .
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Ponieważ a nie jest równe zeru, przeto można znaleźć liczbę a, 

czyniącą zadość równaniu eai =  a\ ——— da się wyrazić nader łatwoZ —  (X
z — aw zależności od cot —- — . W istocie

, 2 — a . exi +  e ai . , ,COt -------- =  Z ---j--------  =  l I 1 +
2

i stąd wypada nawzajem 
1 1

- e ai
2e<«

f — a exl — eai
1 /1 , • 2 — a1 +  z cot -

2eai
ułamek wymierny /(<) przechodzi tedy w wielomian stopnia n wzglę­

dem COt ——rr—

. , , .z  — a , , z — a\ , , , Iz — a
-f cot— -̂----b ^2 cot2 I—- — I +  -  +  -4„ cot”

Kolejne potęgi dotycznej aż do re-tej mogą znowuż być wyrażone zapo- 
mocą kolejnych pochodnych tej funkcji, aż do (n— l)-ej; istotnie, ma­
my przedewszystkim

d cot z 1
----J----  = ------r—— =  — 1 — COt2 Z,dz sin2 z

a więc cot2 z da się wyrazić w zależności od
d cot z 

dz ; dalej można uza­

sadnić bez trudności, iż jeżeli omawiane prawo jest prawdziwe dla 
wszystkich potęg, aż do cot" z włącznie, to jest również prawdziwe dla

z — a .
cot”*1 z. Powyższy wielomian stopnia n względem cot —-—- zmienia

się tedy w funkcję linjową wyrażenia co t—- — i jego pochodnych

cfłg “T COt " +  o ^ f  (C0t 
dz

-|- ... -)- <Afn
j ”- 1 

dzn~ 1
cot z — a

Uczyńmy to samo ze wszystkiemi pierwiastkami b, c, ..., I mianownika fun­
kcji E(t), różnemi od zera, i dodajmy wyniki, otrzymane po zastąpieniu 
w E1(i) zmiennej t przez <?**'. Rozważana funkcja wymierna F  (sina;, cos z) 
będzie się składała z dwuch części
(25) F(sin z, cos z) =  <I>(̂ ) +  <łr( )̂;
funkcja (z), analogiczna do części całkowitej funkcji wymiernej zmien­
nej niezależnej, posiada postać następującą:
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(26) <!>(*) =  C +  £ (*«  cos tm -f sin mz)\

m oznacza tu liczbę całkowity, nie równą zeru. Co do funkcji V(z), 
odpowiadającej części ułamkowej funkcji wymiernej, jest to wyrażenie 
o postaci

(27)

V(z) =  ®tf, cot

-j- COt

r d , l z — a\ „ d"~'
+  c cot  I —  I - ( - . . .  -J- wó*n COt

dz \ 2 J d zn~'

„ d /2 — B\ _ dP~'
dz \ 2 I r dzP~'

+

Rolę elementu prostego odgrywa tu funkcja podobnie jak

przy rozkładzie funkcji wymiernej ułamek — — . Funkcja F(sine,cos?),z — a
rozłożona w ten sposób, daje się łatwo scałkować; mamy w istocie

/ d: — 2 Log

a pozostałe wyrazy całkujemy bezpośrednio. Ażeby funkcja pierwotna 
była funkcją okresową, potrzeba i wystarcza, iżby wszystkie spółczyn- 
niki C, J ł x, ... były równe zeru.

W praktyce nadanie funkcji F(sin z, cos z) postaci ostatecznej (25) 
niezawsze wymaga dokonania tych wszystkich kolejnych przekształceń. 
Niech a oznacza wartość zmiennej z, która czyni funkcję F  nieskoń­
czoną; można zawsze zapomocą zwykłego dzielenia obliczyć spółczyn-

niki ^_g , w części, która się staje nieskończoną dla z — a.

(I art. 188). Z drugiej strony, oznaczając przez P(z — a) odpowiedni 
szereg potęgowy, mamy

z — a 2 _cot — -  =  ----- - +  P(z — a);z z — a

przyrównywując spółczynniki tych samych potęg ułamka — 1 po obu
z — a

stronach wzoru (25), otrzymamy tedy łatwo J t x, ..., J f n.

Weźmy np. funkcję —------ --------- , która po podstawieniu: e%i — f,
COS Z —  COS Ot

«“*' =  a, przybiera postać
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2 at
a(t2 + 1) — ł(a2 +  1)

mianownik posiada dwa pierwiastki jednokrotne t =  a, t — -i-, a sto­

pień licznika jest niższy od stopnia mianownika. Otrzymamy tedy roz­
kład następujący

------------------ _ =  C +  o# cot i.------  |f 3  cot 2 .
cos z — cos a 2 2

Aby wyznaczyć J f ,  pomnóżmy obie strony przez z — a i uczyńmy na­

stępnie z =  a; otrzymamy J i  — —  ̂ - . Podobnież znajdujemy
2 sin a.

3  -------- . Gdy zastąpimy J t  i <3 przez te wartości i założymy
2 sin a

2 =  0, to okaże się, iż C =  0 i osiągamy ostatecznie wzór

______1_____ __  - A A  /co, l ± ^  _  eot2- ^ )  .
cos z — cos a 2 sin a \ 2 2 /

Zastosujmy jeszcze metodę ogólną do potęg całkowitych wstawy i dostawy
U m  i „  —  zi\m

zmiennej z. Mamy np. (cos z)\  =  I?------ -------- ) ’ łi*cz3c z sob  ̂ wZrazy> jednakowo

oddalone od obu końców licznika, w jego postaci rozwiniętej, i stosując wzory Eulera 
otrzymujemy bezpośrednio

m ( m  —  1 )
(2 cos *)*• =  2 cos mz +  2m cos (m — 2)z  +  2 — -  -  cos (m — 4)z +  . . . .

Jeżeli m jest nieparzyste, ostatni wyraz zawiera cos z; jeżeli m jest parzyste,
m\

to wyraz końcowy nie zależy od z  i równa się . , - •

(t ‘ )
Podobnież, jeżeli m jest nieparzyste,

m(m — 1) .
(2i sin z ) m =  2i sin mz — 2tm sin (m — 2)* +  2i — -  -  sin (m — 4)* +  . . . ,

a przy m parzystym

(2t sin *)m =  2 cos mz — 2m cos (m — 2) z +  ... +  (—

Wzory te wskazują bezpośrednio, iż funkcje pierwotne względem potęg (sin z)”’ 
i (cos z )r'\ są to funkcje perjodyczne zmiennej z, gdy m jest nieparzyste, ale tylko 
w tym przypadku.

U w a g a .  — Jeżeli funkcja i^sin z, cos z) posiada okres w, to moż­
na ją wyrazić, jako funkcję wymierną wyrażenia e2** i użyć w roli ele­
mentów prostych cot (z — a), cot (z P), —
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275. Rozwinięcie w szereg funkcji Log (l+ c ).— Określiliśmy powyżej 
funkcje przestępne dwojakiego rodzaju: niektóre, jakoto e l , sine, cos 2, 
są calokształtne w dziedzinie całej płaszczyzny, gdy tymczasem inne: 
Log (2), arc tang 2, ... posiadają punkty osobliwe i nie mogą być wyrażo­
ne zapomocą szeregów potęgowych, zbieżnych w dziedzinie całej pła­
szczyzny. Można atoli tworzyć w takich razach szeregi, ważne dla 
pewnych części płaszczyzny; okażemy to w zastosowaniu do funkcji lo­
garytmicznej.

Zapomocą zwyczajnego dzielenia otrzymujemy wzór elementarny

=  1 _  ,  +  2* _  *3 +  ... +  ( _  1 )«2n ±  ;
1 r  2 1 -f s

gW + l
jeżeli '2 <  1, reszta dąży do zera, gdy n wzrasta nieogranicze-

nie, i wewnątrz koła C o promieniu równym jedności mamy

- — 1 — 2 +  22 --  2® +- ... +  (--- l ) " 2n +
1 +  2

Oznaczmy przez F (z) szereg, otrzymany zapomocą całkowania tego sze­
regu wyraz po wyrazie

-«+i
/••<:) -  - - - -  ;  -  “ +  ... +  ( -  D" “ , +  . . . ;

1 2 3 4 n 4- 1
szereg ten jest zbieżny w tym samym kole i wyraża funkcję cało- 

kształtną o pochodnej F'(z) =  Owóż znamy już funkcję, posia­

dającą taką pochodną; jest to Log (1 +- 2). Różnica Log (1 4- 2) — F (2) 
musi tedy być liczbą stałą1); aby ją wyznaczyć, należy się porozumieć 
dokładnie co do obranej gałęzi logarytmu. Jeżeli weźmiemy wartość, 
która staje się równą zeru przy 2 =  0, to dla wszelkiego punktu, poło­
żonego wewnątrz C, zachodzi związek

Z 2^ g3 £ 4
(28) L o g ( l  +  z) =  y ~  -  +  -  +  . . . .

Połączmy punkt A (z =  — 1) z punktem M, wyobrażającym 2 (rys. 
53); moduł liczby 1 +  2 równa się długości odcinka r =  AM, a za argu­
ment tej ilości można wziąć kąt a, utworzony przez AM i AO; gdy

J) Do tego aby pochodna funkcji analitycznej X  +  Yi równała się zeru, po-
d X  d Y  ‘ d Y  d X  _  . „

trzeba iżby (art. 261) —  =  0, —  =  0, a przeto również: =  —  =  0; A 1 1
dx dx dy oy

sa tedy liczbami stalemi.
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punkt M  pozostaje wewnątrz koła C, kąt ten pozostaje zawarty pomię­

dzy — ~  a +  Wartość logarytmu, równa zeru dla z — 0, przybie­

ra postać log r +  ict, i wzór (28) nie daje powodu do żadnych niepo­
rozumień.

Eys. 53.

Zastępując w tym wzorze z przez — z i odejmując otrzymany 
wzór od pierwszego, osiągamy jeszcze wynik następujący

Los (j~H) -  2 (f +.T +' 7  + ;••):
a zastępując następnie z przez iz, odnajdujemy ponownie szereg, wyra­
żający arc tang z

arc tang z
2 i

Log 1 +  iz 

1 — iz 1' 3 +  5

Szereg (28) pozostaje zbieżnym w każdym punkcie okręgu koła zbieżności o- 
prócz punktu A (str. 19 odsyłacz); przeto oba szeregi

cos 2 9 cos 3 i
cos 9 -  —  +  *—

sin 2 9 sin 3 l 
sin 9 — — - —

cos 4 9 
4

sin 4 9 
4

+ • • ■ .

są zbieżne dla wszelkiej wartości argumentu 9 prócz 9 =  (2k +  1) it (por. art. 166). 
Podług twierdzenia Abela suma szeregu w punkcie M' stanowi granicę, do której dą­
ży suma tegoż szeregu w punkcie M, położonym na promieniu OM'. Jeżeli zakłada-

9
my, że 9 zawiera się pomiędzy — ir a +  rc, to kąt a dąży do granicy =  — , a moduł
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AM  ma za granicy 2 cos (j. Możemy tedy napisać

log (i'> cos =  cos 8
2/  2
.  sin 2 6 sin 3 5 —

2 3

cos 2 6 cos 3 6 cos 4 !
~ T ~  “  4

— ... (—  r. <  6 <  s >.

Jeżeli zastąpimy w ostatnim wzorze 6 przez 6 — k, to odnajdziemy wzór. uza­
sadniony dawniej bezpośrednio. (I, art. 204'.

276. Rozszerzenie zakresu wzoru dwumianowego. — W rozprawie, 
posiadającej znaczenie podstawowe dla teorji szeregów potęgowych, 
Abel zajął się wyznaczeniem sumy szeregu zbieżnego

(29)

,  . .  m  m (w  —  1 ) „
z (m ,z )  =  1 + - z  +  ----- _——----- 2 +

m (m —  1 ) ... (m — p  - f  1 ) 

1 . 2  ... p
*r +  ....

dla wszelkich wartości rzeczywistych lub urojonych m i z, czyniących 
zadość jedynemu warunkowi: j z <  1. Możnaby osiągnąć ten cel zapo- 
mocą równania różniczkowego, jak wskazaliśmy już, gdy chodziło o zmien­
ne rzeczywiste (I, art. 183). Użyjemy jednak innej metody, stanowiącej 
zastosowanie art. 269, a bardziej zbliżonej do biegu rozumowań Abela. 
Założymy, iż z jest dane i z ; <  1, i zbadamy własności funkcji f  (m, z), 
rozważanej jako funkcja zmiennej m. Jeżeli tn jest liczbą całkowitą do­
datnią, funkcja ta staje się oczywiście wielomianem (l-)-r )m. Jeżeli w 
i w’ oznaczają dwie jakiekolwiek wartości parametru m, to zawsze
(30) ®(m, z) f(m ', 2) =  ?(m +  to', z).

W istocie, obliczmy zapomocą zwykłych przepisów iloczyn szeregów 
® (m, z), ?(»)', z); zakładając dla uproszczenia

m (ni  —  1) ... (m —  k +  1)

możemy napisać spółczynnik przy zp w  tym iloczynie w postaci
(31) mr -f »tp_, 4- mf—i m2' -f ... m1 m'p-, +  m'p ,

i związek funkcjonalny (30) będzie uzasadniony, gdy okażemy, że wyra­
żenie (31) jest tożsamościowo równe spółczynnikowi przy z? w * (m + m r, z), 

to jest (m 4- m')p . Możnaby sprawdzić bezpośrednio tożsamość
(32) (m 4- m')p — mp +  nip-, m1' -f ....4- m'p ,
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lecz wykonywanie tego rachunku okaże się zupełnie zbyteczne, jeżeli 
zauważymy, że związek (30) jest napewno prawdziwy w każdym przy­
padku, gdy m i m '  są liczbami całko witemi dodatniemi. Obie strony 
wzoru (32) są to wielomiany całkowite względem m  i m', zawsze równe 
sobie, gdy m  i m  oznaczają liczby całkowite dodatnie; wielomiany te są 
przeto identyczne.

Z drugiej strony funkcja <p {m , z) może być rozwinięta w szereg 
uszykowany podług potęg rosnących liczby m . W istocie, <p (m , z), 
po wykonaniu wszystkich wskazanych mnożeń, może być uważana za 
sumę szeregu podwójnego

, , „ m  m  m
; ( m , z) =  l ą ----- z --------- z2 Ą------ -z3

1 2  3
m... ±  — ź? +  ... 
V

(33)

m - . m 2-—  z2 ------- z3 +  ...
9 2

+
mP

1 . 2 ... p ZP +

obliczoną zapomocą dodawania wyrazów wzdłuż kolumn. Ten szereg 
podwójny jest bezwzględnie zbieżny. W istocie, niech \z\ — ę i |m|=o; 
jeżeli zastąpimy każdy wyraz przez jego moduł, suma wyrazów nowe­
go szeregu, należących do (p +  l)szej kolumny, będzie równa

q(q +  1) -  (o-f p — 1) .
1 . 2 ... p

jest to wyraz ogólny szeregu zbieżnego. Można tedy dodawać wyrazy 
szeregu podwójnego (33) wzdłuż wierszy, i w ten sposób rozwijamy 
<p(»j, z) w szereg potęgowy

z  (m , z) —  1 -)— - m ° 2 ■ m2 -(- •••• 
1 . 2

Zgodnie ze związkiem (30) i wynikami, uzasadnionemi powyżej (art. 
269), szereg ten winien być tożsamościowo równym e°‘m. Owóż spół- 
czynnik przy m

a , ... =  Log (1 +  z);

mamy tedy, biorąc wartość logarytmu, równą zeru przy z =  0,  

(34) (m, z) —  em Log(1 + x\
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Można jeszcze nadać temu wyrażeniu postać (1 + 2)”*; ale w celu unik­
nięcia nieporozumień co do wartości, o którą chodzi, lepiej odwoływać 
się do wyrażenia em ^  <ł + *>.

Niech tu — T) -j- v i; nadając liczbom r  i a takie samo znaczenie, jak 
w poprzednim artykule, otrzymujemy

gW Log U + *) — g(P + v0 (log r  + id)

— gtMogr-va jco8 v j0g _|_ j sin({jLa -f _v log r)].

Aby skończyć z tym zagadnieniem, zbadajmy jeszcze omawiany szereg na ob­
wodzie koła zbieżności. Oznaczmy przez Un moduł wyrazu ogólnego, dla jakiegoś 
punktu z tego okręgu; stosunek dwu następujących po sobie wyrazów szeregu ino- 

m — n -f- 1 1
dulow równa się —---- ----- —  , t. j. jeżeli m = p vi,

V(|i 1 — «)* - vs p i 'l' n
 ̂ ” * ’. n n n 1

funkcja Tin) w tym wzorze pozostaje skończona, gdy n rośnie nieograniczenie. Za­
stosowanie znanego sprawdzianu zbieżności (I art, 163) przekonywa, że ów szereg 
modułów jest zbieżny, gdy p 1 >  l .a  rozbieżny we wszystkich innych wypadkach. 
Szereg (2.9) jest tedy bezwzględnie zbieżny we wszystkich punktach obwodu kola 
zbieżności, jeżeli p jest dodatnie.

Jeżeli p -  1 jest ujemne lub równe zeru, to moduł wyrazu ogólnego nigdy nie
Un+1

maleje, ponieważ stosunek nie jest nigdy mniejszy od jedności. A więc, jeżeli
 ̂n

p ^  — 1, szereg (29) jest rozbieżny we wszystkich punktach okręgu.
Należy jeszcze zbadać przypadek, gdy —  1 <  p <; 0. Rozpatrzmy szereg o wy­

razie ogólnym Unr; stosunek dwu następujących po sobie wyrazów równa się

P +  1 T  (nl]r , p (p 1) T,intI - I — 1 — -----------— ------ ,
n n2 J n u2

i jeżeli weźmiemy p dość wielkie, by został spełniony warunek p(p 1) >  1, szereg 
ten będzie zbieżny. Stąd wynika, iż UJ': a więc i moduł wyrazu ogólnego Un , dążą 
do zera. Wobec tego weźmy z obu stron tożsamości

f  (m, z) (1 ^  =  <p (m ł- i, z)

jedynie wyrazy stopnia niższego niż n lub równego n; oznaczając odpowiednio przez 
Sn i S ’n sumy (n 4- 1) pierwszych wyrazów szeregów f  im, z\ i <v(m 1, z), otrzy­
mujemy związek

SA l + , ) =  S , ’ +
m (m — 1 ) 

1
... im — n 1)—-----------------  Z
. 2  ... n

i

Jeżeli część rzeczywista liczby m zawiera się pomiędzy — 1 a 0, to część rzeczywis­
ta sumy m - 1 jest dodatnia. Załóżmy, iż |s| =  1: gdy n rośnie nieograniczenie, 
S \  dąży do swej granicy, a wyraz uzupełniający dąży do zera; stąd wynika, iż S„ 
zmierza również do pewnej granicy, o ile tylko nie mamy 1 2 =  0 . Przeto, gdy
— /  <  p p, szereg (29) jest zbieżny we wszystkich punktach obwodu kola zbież­
ności z wyjątkiem punktu z =  — l.
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I I I . —  Wiadomości o odwzorowaniu podobnym.

277. Znaczenie gieometryczne pochodnej. — Niech u =  X  +  Y i sta­
nowi funkcję analityczną, zmiennej zespolonej z, holomorficzną we­
wnątrz obwodu zamkniętego C\ wartość u wyobrazimy zapomocą pun­
ktu o spółrzędnych X. Y  w układzie prostokątnym; przytym dla do­
godniejszego wysłowienia osiąganych wyników założymy, że osie OX i 
OY, położone w płaszczyźnie xoy lub płaszczyźnie równoległej do pł. 

x ° i j ,  są odpowiednio równoległe do osi ox i oy i zgodne z niemi co do 
zwrotów. Gdy punkt 2 zakreśla pole A, ograniczone przez obwód C, 
punkt u o spółrzędnych (X, Y) zakreśla w swej płaszczyźnie pole A 
związek u =  f(z)  określa tedy pewien sposób podporządkowania wza­
jemnego punktów dwuch płaszczyzn lub dwuch części płaszczyzny. 
Lecz jest to rzecz oczywista, że z powodu związków pomiędzy pochod- 
nemi funkcji X i Y  ten sposób podporządkowania wzajemnego musi 
posiadać pewne szczególne właściwości; okażemy mianowicie, że kąty są 
zachowane hez zmiany.

Niech 2 i zx oznaczają dwa punkty sąsiednie pola A, u i u1 —pun­
kty odpowiednie pola A'\ stosownie do samego określenia pochodnej,

w. — u
iloraz - dąży zawsze do granicy f  (z), gdy moduł zx— 21 dąży do

zx — 2
zera, niezależnie od tego, w jaki sposób zx — 2 zmierza do zera. Za­
łóżmy, że punkt zx zbliża się do punktu 2, przebiegając krzywą C, któ­
rej styczna w punkcie 2 tworzy kąt a z prostą, równoległą do o.r; punkt 
ux zakreśli wtedy krzywą C', przechodzącą przez punkt u. Nie 
rozważając przypadku, w którym f  (2) =  0, oznaczmy moduł i argu­
ment pochodnej f  (z) przez ę i to; r i r x niech oznaczają odległości zzx 
i uuv a' —  kąt utworzony przez zzx z prostą zx' równoległą do o.r, (3' —

^ ^
kąt prostej uux z prostą uX', równoległą do OX. Moduł ilorazu —-------

zx — 2
Trówna się —, a argument p' — a'. Mamy tedy dwa związki 
r

v(35) lim — =  ę, lim ((3' — a') =  w 4- 2krc.
r

Zajmiemy się jedynie drugim z tych związków; można w nim założyć 
k — 0, ponieważ to jest równoważne powiększeniu argumentu w o wie­
lokrotność liczby 27e. Gdy punkt zv przebiegając krzywą C, zbliża się 
do punktu 2, a' dąży do a, jako do granicy, P' dąży do (3, i otrzymuje- 
P =  a -j- w, co wyraża, że aby mieć kierunek stycznej do krzywej, zakreślonej
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prze: punkt u, wystarczy obrócić o pewien kat stały co kierunek stycznej do krzy­
wej, zakreślonej przez z. Zakładamy, rzecz jasna, w tym twierdzeniu, że 
podporządkowujemy sobie wzajemnie zwroty stycznych, odpowiadające 
temu samemu kierunkowi przebiegu punktów 2 i u.

Weźmy w płaszczyźnie xoy inną krzywą D, przechodzącą przez 
punkt c, której odpowiada w płaszczyźnie X O Y  krzywa Z>'; oznaczając 
literami  ̂ i d kąty, utworzone przez odpowiadające sobie kierunki sty­
cznych tych dwu krzywych z prostemi 2.r' i uX’ (rys. 54a# i 54b), ma­
my jednocześnie

 ̂ =  a -f- <0, 5 =  7 -f co

a stąd 6 — ? =  T — a- Krzywe C  i D' przecinają sic pod tym samym ką­
tem, co krzywe C i D. Widzimy ponad to, że został zachowany bez 
zmiany zwrot kątów. Należy zauważyć, że dowód traci wartość, gdy 
t\zj =  0.

W szczególności, jeżeli rozważamy w jednej z płaszczyzn xoy i 
X O Y  dwie rodziny krzywych ortogonalnych, krzywe odpowiednie utwo­
rzą w drugiej płaszczyźnie również dwie rodziny krzywych, przecinają­
cych się pod kątem prostym. Np. dwie rodziny krzywych X = C , Y = C  
oraz dwie inne rodziny
(36) mod f(z) =  C, arg f(z) — C
tworzą w płaszczyźnie xoy sieci prostokątne, ponieważ krzywe, odpo­
wiadające im w płaszczyźnie XOY, tworzą w pierwszym przypadku dwa 
układy prostych, równoległych do osi spółrzędnych, w drugim zaś — są 
to koła, których środek stanowi początek układu, oraz proste, wykre­
ślone z początku układu.

Przykłady. — 1. Załóżmy, iż z' =  [a — liczba rzeczywista i dodatnia]. 
Gdy oznaczymy przez r  i 6 spólrzedne biegunowe punktu z', to związek poprzedni 
stanie się równoważny związkom: r ’ = r a , 9' =  a9. Przechodzimy tedy od punktu z 
do punktu z', podnosząc promień wodzący do potęgi a i mnożąc kąt biegu­
nowy przez a. Kąty są zachowane, z wyjątkiem tych, których wierzchołkiem jest 
początek układu, a które są pomnożone przez czynnik stały a.
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2. Rozważmy przekształcenie dwulinjowe

(37)
az  +  b 
cz +  d

a, b, c, d  —  liczby stale dowolne). W pewnych przypadkach szczególnych widać 
bezpośrednio, jak  przejść od punktu z do punktu z'. Weźmy np. przekształcenie 
z ’ =  z — b; jeżeli z =  x  +  yi, z' =  x' +  y ';, 6 =  a 4- pe, to ze związku tego wynika: 
x' =  x  -  a, y' — y - p, a więc przechodzimy od punktu z do punktu z' zapomocą 
przeniesienia równoległego. Załóżmy podobnież z' =  az; oznaczając przez p i iu mo­
duł i arg. liczby a, otrzymamy: r' =  o t , 9' =  u> —  9. Przechodzimy tedy od punktu z 
do punktu z' zapomocą pomnożenia promienia wodzącego przez liczbę stałą p, a na­
stępnie obrotu tegoż promienia o kąt stały oj. Otrzymujemy tedy przekształcenie, 
określone przez wzór z' — az, kojarząc przekształcenie jednokładne z obrotem. Roz­
patrzmy wreszcie związek

z' =  —;z

nadając symbolom r, 9, r', 9' zawTsze to samo znaczenie, otrzymamy w tym przypad­
ku r r ; = ) r S 4 - 9 '  =  0. Iloczyn promieni wodzących ró-wna się tedy jedności, gdy 
tymczasem kąty biegunowe posiadają znaki przeciwne ale są równe co do wartości 
bezwzględnej. Mając dane koło C o środku A i promieniu R, nazwiemy in w ers ją  
(inversioni względem tego koła przekształcenie przez promienie odwrotne (transfor- 
mation par rayons yecteurs róciproąues) o biegunie A i module R z. Otrzymujemy 
tedy przekształcenie, określone przez wzór z'z =  1 , wykonywując z początku inwer­
sję względem koła o promieniu, równym jedności, mającego środek w początku ukła­
du, a następnie biorąc punkt symetryczny z otrzymanym punktem względem osi Ox.

Przekształcenie najogólniejsze o postaci (37) może być otrzymane jako wynik 
skojarzenia przekształceń szczególnych, któreśmy przed chwilą poznali. Jeżeli c =  o, 
to można zastąpić przekształcenie (37) przez parę przekształceń

jeżeli c nie równa się zeru, to dzieląc licznik przez mianownik możemy napisać

a  bc — a d
c c 2z +  cd  ’

i badane przekształcenie może być zastąpione przez szereg przekształceń następują­
cych:

a
zt =  (bc — ad) *3, * ' =  *4 +  -•

Każde z tych przekształceń szczególnych zachowuje kąty i kierunek obrotu i 
przemienia kola również w koła; to samo tedy stosuje się do przekształcenia ogólne­
go (37), zwanego z tego powrodu p rz eksz ta łcen iem  ko łow ym  {transformation circu- 
lairei. Zauważmy, że formułując ten wynik, uważamy lin je proste za okręgi o pro­
mieniu nieskończenie wielkim.
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3. Oznaczając przez e„ es. ep jakiekolwiek ilości i biorąc za wykładniki 
m,, m .......  n>r liczby rzeczywiste, dodatnie lub ujemne, założymy:

z* = (* — «,)’*’ (z — ef>"s ... <* — ep lmP.
Liczby z, e,, et, ..., e. wyobraźmy zapomocą punktów M, £), ..., E.. ; odle­

głości M E„ ME._, ..., M £r oznaczmy przez r„  r„  ..., rp , a kąty, utworzone przez 
proste E tM , E .M , .... Ep M z prostemi. równoległemi do Ox — przez 8„ 9„ ..., 8̂  . 
Moduł i argument liczby z' równają się odpowiednio r™r i m, 9, ... mip 9f ;
dwie rodziny krzywych

r lm,r ,m’ ... r j>  =  C, m,9, m,9, ... mp Sp C

tworzą przeto sieó prostokątną. Gdy wykładniki wit, m,, .... mp są wymierne, wszyst­
kie te krzywe są algiebraiczne. Jeżeli np. p 2, r?ł, m, 1, to jedna z tych ro­
dzin składa sie z kassinoid (cassinoides) o dwuch ogniskach, a druga jest utworzona 
przez hiperbole równoboczne.

278. Badanie ogólne odwzorowań podobnych. — Roztrząsanie twier­
dzenia odwrotnego względem tego, któreśmy powyżej uzasadnili, nasu­
wa do zbadania zagadnienie o szerszym jeszcze zakresie. Mając dwie 
powierzchnie -  i - ,  podporządkujmy punkty każdej z nich punktom 
drugiej w sposób dowolny (z zachowaniem atoli pewnych warunków, 
które ściślej będą określone), i zbadajmy, w jakich przypadkach takie 
przekształcenie nie zmienia wielkości kątów. Oznaczmy przez x, y, z 
spólrzędne prostokątne punktu powierzchui S, a przez .r', y\ z' — spół- 
rzędne prostokątne punktu powierzchni I '.  Zakładamy, iż spólrzędne 
.r, y, z, x\ y', z' są wyrażone w zależności od dwu parametrów zmien­
nych m i v w ten’ sposób, że punkty odpowiednie obu powierzchni są 
wyznaczone przez ten sam układ wartości parametrów u i v

(38)
x =  / («, t>),
y =  ? («, «),
« =  («■

X' =  f  (u, »),
y' =  ę' (m, v), 
2' =  f  (w, »);

zakładamy ponad to, że zarówno funkcje /, z, ..., jak ich pochodne 
cząstkowe pierwszego rzędu są ciągłe, o ile punkty (x, y, z) i (x', y', z ) 
pozostają w pewnych określonych obszarach powierzchni £ i Przy­
pomnijmy sobie przytym znakowanie, wprowadzone dawniej (I, art. 131)

E  =  s i dU3 *
F c d r dr =  o  —-, 

du d v
(39) bg II r '\2

« / ’
F gd.r' dr 

du dv
ds2 =  Edu2 -f Fdudv -f Gdv2, ds'2 =  E ’du- +  Fdudv ■+■ G’dv2.
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Obierzmy na powierzchni £ dwie krzywe C i D (rys. 55a i 55b), 
przechodzące przez punkt m tej powierzchni, którym odpowiadają na 
powierzchni £' krzywe G i D', przechodzące przez punkt m'. Przy po­
ruszaniu się wzdłuż krzywej C parametry u i v stanowią funkcje jednej 
zmiennej pomocniczej ł — oznaczymy różniczki tych funkcji przez du i 
dv\ podobnież przy przebiegu wzdłuż 1) u i v stanowią funkcje jednej 
zmiennej f ,  [których różniczki oznaczymy przez Su i §v. Ogólnie bę­
dziemy oznaczali przez litery d i S różniczki, odpowiadające przesunię­
ciu wzdłuż krzywej C i wzdłuż D. Spółczynniki kierunkowe stycznej 
do krzywej C są następujące

dx =  —  du +  ^  dv, dy =  ^ -d u  +  du dv ’ * du dv dv. dz =  du 4- du dv
podobnież wyrazimy spółczynniki kierunkowe stycznej do krzywej D

dzdx dxox =  Su +  w- du dv dy =  % Su  +  %  Sv, Sz =  ~ S u  +  ^ 8 v .  du dv du dv

Dostawa kąta to pomiędzy stycznemi krzywych C i D da się wyznaczyć 
zapomocą wzoru

dxhx  +  dySy +  dzSz
COS O) -  - — - = = = = = ,

V d x 2 -j- dy2 dz2 V Sx2 Sy2 -j- dz2

który przy uwzględnieniu znakowania (39) może być napisany w postaci

(40) COS W =
EduSu +  F(duSv -f- dvSu) +  GdvSv 

\ / E' du* -\-'l!dudv +  Gdv2 \'Eou1 -f- 2 FouSv -Ą- Gov2

Rys. 55a. Rys- 55b.

Mamy podobnież, oznaczając przez to' kąt pomiędzy stycznemi 
krzywych C  i D ’,

EduSu +  F'{duSv +  dvSu) +  G’dvov________
(41) cos co' =  ^ EduX + 2 F dudv +  GFL? 8« *+  2 VSuSv +  G'Sv*’

Ażeby rozważane przekształcenie nie zmieniało wartości kątów, potrze­
ba. iżby przy wszelkich du, dv, Su, Sv zachodził związek cos «/ =  cos «o.

Kurs analizy matematycznej.
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Owóź obie strony równości
cos* w' =  cos3 <0

stanowią funkcje wymierne stosunków 1, które muszą być równe

przy wszelkich wartościach tych stosunków. Potrzeba do tego, iżby 
odpowiednie spólczynniki tych dwu funkcji ułamkowych były propor­
cjonalne, to jest iżbyśmy mieli, oznaczając przez X jakąś funkcję para­
metrów u i p

(42)
/•; f  G
E  F  G

warunki te są oczywiście dostateczne, gdyż np. cos to jest funkcją jed­
norodną stopnia zerowego ilości E, F , G.

Warunki (42) mogą być zastąpione przez jeden tylko związek 
— X’tfo* czyli

ds' — Xtfs;

związek ten wyraża, że stosunek dwu odpowiednich łuków dąży do 
granicy niezależnej od du i dv, gdy te oba luki maleją nieograniczenie. 
Taki warunek czyni wniosek, zależny odeń, niemal bezpośrednio oczy­
wistym. W istocie, weźmy na pierwszej powierzchni nieskończenie ma­
ły trójkąt abc — odpowiadający mu trójkąt, położony na drugiej po­
wierzchni, nazwijmy o' b' c'. Uważajmy te trójkąty w przybliżeniu za

. . . . . . a'A' a'c' b'ć , .prostoliniowe; ponieważ stosunki ^   ̂ dążą do tej samej grani­

cy X(u, r), przeto w położeniu granicznym trójkąty są podobne i odpo­
wiednie ich kąty są równe.

Widzimy, że dwie odpowiednie nieskończenie małe figury, położo­
ne na omawianych powierzchniach, mogą być uważane za podobne, po­
nieważ długości łuków są proporcjonalne i kąty są równe; z tego powo­
du nadajemy wszelkiemu podporządkowaniu, które zachowuje bez zmia­
ny kąty, nazwę odwzorowania podobnego (representation conforme).

Mając dwie powierzchnie -  i E' i jakieś określone podporządkowa­
nie punktów tych powierzchni, możemy zawsze przekonać się, czy wa­
runki (42) są spełnione, a więc czy mamy do czynienia z odwzorowa­
niem podobnym jednej powierzchni na drugiej. Może atoli chodzić o 
rozwiązanie innych zagadnień; możemy np., gdy są dane powierzchnie 
E i 2', zająć się wyznaczeniem wszystkich sposobów podporządkowania 
wzajemnego punktów tych powierzchni, które zachowują kąty bez zmia­
ny. Załóżmy, że spółrzędne (x, y, z) punktów powierzchni E są wyra­
żone w zależności od dwu parametrów («, »), a spółrzędne (x't y', z )
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punktów E' — w zależności od dwu innych parametrów (u', v')-, wyra­
żenia kwadratów elementów linjowych są następujące:

ds2 =  Edu1 +  2FdudvĄ- Gdv2, ds' 2 =  E'du! 2 -f- 2 Edu'dv' -f- G'dv'2.
Zagadnienie, dane do rozwiązania, sprowadza się do zadania: Znaleźć 
dwie takie funkcje u' =  ti, fu, v ) ,  v '  — ( u , v ),  izbyśmy mieli toźsamościowo,
oznaczając przez X junkcję dowolną zmiennych u i w.

E  dzf1 +  2F'dr.ldz2 +  (?'cfa22 =  rHEdu'1 -f- 2Fdudv-\- Gdv2).
Z teorji ogólnej równań różniczkowych wynika, iż zadanie to posiada 
zawsze nieskończenie wiele rozwiązań, w tym miejscu roztrząśniemy 
tylko pewne przypadki szczególne.

279. Odwzorowanie podobne płaszczyzny na płaszczyźnie. — Wszel­
kie podporządkowanie wzajemne punktów dwuch płaszczyzn określa się 
zapomocą wzorów o postaci
(44) X  =  P  (x, y), Y — Q (x, y)-
zakładamy przytym, że rozważane płaszczyzny stanowią odpowiednio 
podstawy układów spółrzędnych prostokątnych (x, y) i (X , Y). Podług 
tego cośmy stwierdzili, do zachowania kątów przy przekształceniu po­
trzeba i wystarcza, iżby zachodził związek

dX2 +  dY 2 =  \\dx2 +  dy2)
X — funkcja dowolna zmiennych *  i y, niezależna od ich różniczek). 

Rozwijając różniczki d X i d Y  i wyrażając warunki tożsamości dwu stron 
równania, przekonywamy się, że funkcje P(x, y) i Q(x, y) winny czynić 
zadość warunkom *

(45)
S ) ‘ +

dQ
dx =

IdP
W

dQV dP dP dQ d_Q =  Q 
dy j  ’ dx dy dx dy

Pochodne cząstkowe — , —  nie mogą jednocześnie równać się zeru,
dy dy

0gdyż pierwszy ze związków (45) wykazałby również, iż —  =  —
d x  dx

a więc funkcje P  i Q musiałyby być liczbami stałemi. Możemy tedy, 
oznaczając przez u niewiadomą pomocniczą, napisać na zasadzie dru­
giego związku

dP _  dQ dQ =  _  dP 
dx ** dy dx  ̂dy

Podstawiając te wartości do pierwszego z warunków (45), nadajemy mu 
postać
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- 0,

skąd wnioskujemy, że p =  +  1. Muszą tedy zachodzić już to związki

(46)

już to inne

(47)

dP dQ dP dQ
dx dy dy dx

dP dQ dP dQ.
dx dy ’ dy dx

Pierwszy układ warunków wyraża, że P  4- * Q jest funkcją analityczną 
zmiennej x  +  i y; co do drugiego układu, sprowadzamy go do pierwsze­
go zapomocą zamiany Q na — Q, to jest biorąc figurę symetryczną 
względem osi OX z figurą przekształconą. Ostatecznie, wszelkiemu od­
wzorowaniu podobnemu płaszczyzny na płaszczyźnie odpowiada jakieś 
rozwiązanie układu (46) a zatym pewna funkcja analityczna. Jeżeli za­
kładamy, że osie OX i OY są odpowiednio równoległe do osi ox i oy, 
to zwrot kątów jest lub nie jest zachowany, stosownie do tego, czy fun­
kcje P  i, Q czynią zadość równaniom (46) czy też (47).

280. Twierdzenie Riemanna. — Są dane: w płaszczyźnie zmiennej z pole A, ogra­
niczone przez obwód pojedynczy (czyli obwód niezlożony — contour simple) oraz, 
w płaszczyźnie zmienuej u, koło C. Riemann dowiódł, że w tych warunkach istnieje 
taka funkcja analityczna u = /"(*), caloksztaltna w obszarze .4, it każdemu punkto­
wi pola A odpowiada punkt kola i nawzajem każdemu punktowi koła odpowiada je­
den i tylko jeden punkt pola A. Funkcja )(s) zależy jeszcze od trzech stałych do­
wolnych, które można dobrać w ten sposób, aby środek kola odpowiadał jakiemuś 
określonemu punktowi pola A i ponad to jakiś punkt, dowolnie obrany na okręgu 
kola, odpowiadał określonemu punktowi obwodu pola A.

Nie podamy tutaj dowodu tego twierdzenia, lecz wskażemy tylko niektóre przy­
kłady z zakresu jego zastosowania.

Zauważmy, że można zastąpić koło C przez półpłaszezyznę. W istocie, załóż­
my, że okrąg koła C w płaszczyźnie zmiennej u przechodzi przez początek układu: 

:1
przekształcenie u' =  — zmienia ten okrąg w prostą, a koło w część płaszczyzny

zmiennej u', położoną z jednej strony tej prostej, przedłużonej nieograniczenie w obu 
zwrotach.

<
Przykłady. — Po 1-sze. Załóżmy, biorąc a rzeczywiste i dodatnie, że u =  za ; 

część A płaszczyzny zmiennej z niech się zawiera pomiędzy prostą ox a promieniem 
nieograniczonym, wychodzącym z początku układu i tworzącym z ox kąt un(a 2). 
Jeżeli z =  re’®, u — Re'm, to

— 9
R  =  r a , ta =  —;a



III. — Wiadomości o odwzorowaniu podobnym. 53

gdy punkt z przebiega obszar A, r zmienia się od O do +  oo a 9 od O do oic : R 
zmienia się tedy od O do -t- co a <o od O do s. Punut u przebiega przeto półpłasz- 
czyznę, położoną powyżej osi OX, i każdemu punktowi tej pólplaszczyzny odpowiada 
tylko jeden punkt pola A, ponieważ mamy nawzajem : r  =  Ra, 9 =  au>.

ii  eżmy jeszcze część B  płaszczyzny zmiennej z, ograniczoną przez dwa prze­
cinające się łuki kół. Punktom przecięcia niech odpowiadają wartości z„ zt; jeżeli 
wykonamy z początku przekształcenie

pole B  zostanie zastąpione przez część A płaszczyzny zmiennej z', zawartą pomiędzy 
dwoma promieniami nieograniczonemi, wychodzącemi z początku układu, ponieważ

wzdłuż luku koła, przechodzącego przez punkty z0, zlt argument ilorazu —— — zachowu-
Z —  Zj

je  stałą wartość. Stosując następnie przekształcenie poprzednie, określone przez wzór
i

u =  (z ')a , stwierdzamy, że funkcja
i

odpowiada przv a odpowiednio dobranym odwzorowaniu podobnemu pola B  na pół- 
płaszczyżnie.

Rys. 56.

y i ii i
A Li A'

-r -J--
O B

Po 2-gie. u =  cos z. Niech z  przebiega półpas (demi-bande) nieograniczony 
R  czyli A O B A ’ (rys. 56), określony zapomocą nierówności O ^  x  ^  ic, y ^  O\ wy­
znaczmy obszar, zakreślany przez punkt u =  X +  Yi. Mamy w tym przypadku 
(art. 270)

e ’J +  e~ 'J  —
(48) X =  cos x --------------, Y — — sin x ---------------.

Gdy x  wyrasta od O do k, Y  jest wciąż ujemne i punkt u pezostaje w części 
płaszczyzny, położonej poniżej osi X  OX. Każdemu punktowi obszaru R odpowiada 
przeto pewien punkt tej pólplaszczyzny zmiennej u, a gdy punkt z  leży na obwodzie

e y _e —y
pola R, to Y  =  O, ponieważ jeden z dwu czynników.- sin x  lub ------ -------  rówma się
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zeru. Nawzajem każdemu punktowi pól płaszczyzny zmiennej u. położonej poniżej 
OX, odpowiada pewien jedyny punkt półpnsa R w płaszczyźnie zmiennej z. Istotnie, 
jeżeli z' stanowi pierwiastek równania u =  cos z, to wszystkie inne pierwiastki posia­
dają postać ogólną 2 k c =fc i  . Załóżmy, iż spółezynnik przy i w z jest dodatni: 
w takim razie tylko jeden z punktów, odpowiadających pierwiastkom, należy do pasa 
R, ponieważ wszystkie punkty 2 k z. — z leżą poniżej osi Ox. Że istnieje zawsze 
jeden z punktów 2 k - z', należący do R. wynika z tego. ż« dość wyznaczyć odpo­
wiednio k, aby odcięta zawierała się pom'edzy O a 2r. Ta odcięta nie może być 
zawartą pomiędzy k a 2~, ponieważ w takim razie wartość odpowiednia )* byłaby 
dodatnia. Taki punkt jest tedy położony w polu R.

Z wzorów (48) łatwo wywnioskować, że gdy punkt z przebiega wewnątrz pasa. 
R odcinek prostej, równoległej do Ox. punkt u zakreśla pól elipsy. Gdy punkt z 
przebiega prostą, równoległą do Oy, punkt u zakreśla pół gałęzi hiperboli. Wszystkie 
te przekroje stożkowe mają za ogniska punkty C  i C’ osi OX. o odciętych 1 i — 1

Po 3 cie. Załóżmy, nadając parametrowi a wartość rzeczywistą i dodatnią:

(43) r,:
2 a

Ażeby | u i było mniejsze od jedności, potrzeba i wystarcza — jak wskazuje

łatwy rachunek — Iżby był spełniony warunek — > 0 .  Zmieniający od — a do a,

widzimy, iż pasowi nieograniczonemu, zawartemu między prostemi y — a i y o. 
odpowiada w płaszczyźnie zmiennej u koło C o promieniu równym jedności, mające 
za środek początek układu. Nawzajem każdemu punktowi tego koła odpowiada 
tylko jeden punkt wzmiankowanego pasa. Istotnie, wartości zmiennej z, odpowiadają­
ce jakiejś wartości «, tworzą postęp gieometryczny o różnicy 4 ai — do rozważanego 
pasa nie może tedy należeć więcej, niż jeden punkt, wyobrażający taką wartość z. 
Z drugąej strony istnieje zawsze pierwiastek, posiadający spółezynnik przy i zawarty 
między— a i 3 a; spółezynnik ten nie może się zawierać pomiędzy a i 3 o, ponieważ 
w takim razie wartość odpowiednia modułu u byłaby większa od jedności.

281. Mapy. — Wykonać mapę jakiejś powierzchni to znaczy pod­
porządkować punkty tej powierzchni punktom płaszczyzny w ten spo­
sób, iżby kąty zostały zachowane bez zmiany. Załóżmy, że spółrzędne 
punktów rozważanej powierzchni X są wyrażone w zależności od dwu 
parametrów zmiennych (u, v); kwadrat elementu linjowego

ds2 — E d u 2 +  2 F dudv -f- G dv2.

Oznaczmy przez (a, p) spółrzędne prostokątne punktu płaszczyzny 
P, odpowiadającego punktowi (m, v ) powierzchni Ł  Chodzi o wyznacze­
nie takich funkcji

«  =  %  ? ) ,  v =  z 2 ( a ,  f i ) ,
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iżbyśmy mieli tożsamościowo, oznaczając przez X funkcją dowolną 
zmiennych a. i p, nie zawierającą różniczek:

E du2 -f 2 F  dudv -j- G dv2 =  X (<fa2 +  rfp2).

Zagadnienie to posiada nieskończenie wiele rozwiązań, które może­
my odnaleźć, gdy się ma jedno z nich, stosując zbadane już odwzoro­
wania podobne płaszczyzny na płaszczyźnie. W istocie, załóżmy, że za­
chodzą jednocześnie związki

ds2 =  X (da.2 -f- ć/p2), ds2 =  X' (da.'2 -f d[d2); 

stąd wynika również

da.2 +  cżp2 =  —  (d a ’2 +  <żp'2),

a więc a. +  pi lub a. —  pi jest funkcją analityczną zmiennej a ' -j- p'i 
Twierdzenie odwrotne jest oczywiste.

Przykłady: 1. Rzut Merkatora. —  Można narysować mapę każdej 
powierzchni obrotowej w ten sposób, iżby równoleżniki i południki od­
powiadały prostym, równoległym do osi spółrzędnych. W istocie, spół- 
rzędne punktów powierzchni obrotowej o osi Oz mogą być wyrażone 
w sposób następujący:

x  =  ę cos to, y  =  ę s in  w, z  =  / (ę),
stąd

ds2 =  d i 2 [1 +  /'2 (ę)] + ę W  =  ę2

czyli

jeżeli zakładamy:
ds°- =  ę2 ( d X 2 +  d  Y 2), 

X = m ,  Y =  f  j . W ^ S )  d $ .

G-dy mamy do czynienia z kulą o promieniu R ,  to możemy napisać 
x  =  R  sin 9 cos «p, y  — R  sin 9 sin <p, z =  R  cos 9,

(f92
efs2 —  R 2 (cf92 +sin 29 cńp2) =  if2 sin 92 (dcc2 -f -

sin92
założymy tedy:

__ r  d9 . /4 9 \
-X =  <p, Y  =  0 =  l°g (tang -  •

J  sin 9 2/
Otrzymujemy w ten sposób rzut zwany rzutem Merkatora (projection 

de Mercator), który podporządkowuje południki prostym, równoległym



do osi OY, a równoleżniki — prostym, równoległym do 0X.  Aby otrzy­
mać całą powierzchnię kulistą, należy zmieniać tp od O do 2*, a 0 od O 
do je ; A' wzrasta przy tym od O do 2 i c ,  a Y  od — oo do +  co. Mapa 
posiada tedy postać pasa nieograniczonego o szerokości =  2z. Krzywe, 
położone na powierzchni i przecinające wszystkie południki pod tym 
samym kątem, czyli linie loksodromiczne (inaczej: linie stałego kierunku, 
fr. loxodromies), są wyobrażone na mapie zapomocą prostych.

2. Rzut stereograficzny. — Kwadrat elementu linjowego powierzchni 
kulistej może jeszcze być napisany w postaci
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czyli

0
tfo* =  4 cos* ~

Li 4 cos4 — 
2

-(- B2

ds2 = 4  cos4 rfw-),

jeżeli zakładamy, że ę — B tang — , w =  ?.

Ale r f ^ + ę 2 rfto2 przy użyciu spólrzędnych biegunowych (ę, w) sta­
nowi kwadrat elementu linjowego płaszczyzny; aby tedy osiągnąć od­
wzorowanie podobne powierzchni kulistej, wystarczy podporządkować 
punktowi (0, tp) tej powierzchni punkt płaszczyzny, posiadający odpo­
wiednie spółrzędne biegunowe (ę, to). Wykonywując rysunek, widzimy 
bezpośrednio, że ę i w stanowią spółrzędne biegunowe rzutu stenogra­
ficznego punktu (0, tp) powierzchni kulistej na płaszczyznę równika, gdy 
środkiem rzutu jest jeden z biegunów.

3. Mapa pierścienia. — Rozpatrzmy pierścień, utworzony przez obrót kola o 
promieniu R  dokoła osi, położonej w płaszczyźnie tegoż kola, w odległości a od jego 
środka (założymy, iż a >  R). Biorąc za oś Oz oś obrotu, a za płaszczyznę xy 
płaszczyzno środkową pierścienia, możemy wyrazić spółrzędne dowolnego punktu po­
wierzchni w sposób następujący:

x  — (a - R cos 9) cos =  (a +  R  cos 9) sin ?, z =  R  sin 9,

i wystarczy zmieniać 9 i ą od — s~do Z tych wzorów otrzymujemy:

fP  d9»
ds* =  (a — R  cos 9)1 [ d ? * ------------------- —  ;

(a +  R  cos 9j*J

aby wykonać mapę powierzchni, założymy:
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X=%
Y =  e

1 — e cos 0
2e

—\-------- arc tang
V I  — e2

R
e = — <  1 .a

Powierzchnia całkowita pierścienia odpowiada p rzy tym sposobie podporządko-
2 ic e

w ania punktów powierzchni prostokąta o bokach, równych 2- i _____ .
V I — e2

282.
Laplace’a

K rzyw e  izoterm iczne. — Jeżeli [U x, y) stanowi rozwiązanie równania

A 2 U =
d t U
d x  *

d^U
ó y 2

to krzywe, wyrażone przez równanie

(50) U (x, y) =  C,

w którym  C oznacza stalą dowolną, tworzą rodzinę krzywych izotermicznych 
(isothermes). W szelkie rozwiązanie U (x , y) równania Laplace’a można skojarzyć 
z takim  innym rozwiązaniem V (x, y), iżby U +  i V  stanowiło funkcję analityczną 
zmiennej x  +  yi\ związki

d U d V d U _  d V
ó x  by dy dx

wskazują, iż dwie rodziny krzywych izotermicznych

U (x , y) =  C, V (x , y) C

tworzą sieć prostokątną, pODieważ spólczynniki kątowe stycznych do krzywych C i Cr 
równają się odpowiednio

d L  d U 0 V d V
dx  oy ’ o x  by

Krzywe, prostopadle do rodziny krzywych izotermicznych, tworzą zatym drugą 
rodzinę krzywych izotermicznych. Otrzymamy wszystkie układy sprzężone krzywych 
izotermicznych, rozważając funkcje analityczne f  (2) i biorąc krzywe, dla których 
zachowuje wartość stalą część rzeczywista funkcji f  (z) lub spólczynnik przy i. K rzy ­
we, którym  odpowiada stały moduł R funkcji /  (*), tworzą również wraz z krzywemi, 
dla których argument 9. tej funkcji zachowuje stałą wartość, parę układów izotermicz­
nych sprzężonych, ponieważ log R równa się części rzeczywistej funkcji analitycznej 
L o g  \f (2)], a 9  stanowi tam spólczynnik przy i.

Otrzrmujemy również układy izotermiczne sprzężone, nadając zmiennej x  lub 
zmiennej y wartość stalą i biorąc krzywe, zakreślone w tych warunkach przez punkt 
o spółrzędnych X, Y  [X  +  i Y  =  /  (*)]. W  istocie, wystarczy uważać nawzajem 
x  i y za funkcję analityczną zmiennej X  i Y. Ogólnie wszelkie przekształcenie 
punktowe płaszczyzny na płaszczyznę, zachowujące wielkość kątów, zmienia rodzinę 
krzywych izotermicznych w inną rodzinę krzywych izotermicznych. Niech wzory

x  =  p (x\ y'), x  =  q (x\ y’)
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określają przekształcenie, zachowujące wielkość kątów: oznaczmy przez F\x ,y') wynik 
podstawienia do Łr(x, y) funkcji p(,r\ y"\ i q(x\y') zamiast x  i y. Cale zadanie polega 
na uzasadnieniu, że f (x ',y  ) stanowi rozwiązanie równania Laplace'a, jeżeli jest nim 
17(x , y). Odpowiedni rachunek nie nastręcza żadnych trudności (patrz rozdział I I I ,  
ćwiczenie 8); lecz można również okazać prawdziwość twierdzenia bez żadnego rachun­
ku. W istocie, możemy założyć, że funkcje p[x', y ) i q(x', y') spełniają warunki

dp dq dp dq
dx' dy ’ dy' dx'

ponieważ przekształcenie symetryczne zmienia oczywiście rodzinę krzywych izoter- 
micznych w inną rodzinę krzywych izotermicznych. Funkcja x iy p iq jest 
w takim razie funkcją analityczną zmiennej zespolonej z' x' iy'. i U iV  staje 
się również po podstawieniu funkcją analityczną P(x , y ) / *t» fjc', y') tejże zmien­
nej z' (art. 263). Równania

F (x ', y') =  C, 4>(X’, y') =  C
wyznaczają tedy nową sieć prostokątną, utworzoną przez dwie rodziny izotermiczne 
sprzężone.

Tak np. kola spółśrodkowe i promienie, wychodzące z początku układu, two­
rzą dwie rodziny izotermiczne sprzężone, jak się przekonywamy bezpośrednio z roz­
ważania funkcji analitycznej Log z. Stosując przekształcenie przez promienie od­
wrotne, dochodzimy do wniosku, że okręgi, przechodzące przez dwa punkty stałe, 
tworzą również układ izotermiczny. Układ sprzężony z nim składa się również 
z okręgów. *___

Elipsy spółogniskowe tworzą także układ izotermiczny. W istocie widzieliśmy 
powyżej, że gdy punkt z przebiega proste, równolegle do osi Ox, punkt u = cos z 
zakreśla elipsy spółogniskowe (art. 280). Układ sprzężony składa się z hiperbol spól- 
ogniskowycb, ortogonalnych względem elips.

Uwaga. — Do tego, aby rodzina krzywych, dana przez równanie P (x, y) ~ C. 
była izotermiczna, nie potrzeba koniecznie, iżby funkcja P(x, y) stanowiła rozwiąza­
nie równania Laplace’a. Istotnie, tym krzywym odpowiada także równanie 
® [F\x, //)] =  C, w którym ? może oznaczać jakąkolw iek funkcję; warunek dostatecz­
ny stanowi możność wyboru funkcji » w taki sposób, iżby funkcja L (x, y) <p (P) 
czyniła zadość równaniu Laplacea. W ykonywując odpowiedni rachunek, stwierdza­
my, że winien zachodzić związek

dbp i / a p y  z a p y l  d[? /a*p a » P \  _
dP1 [ \ a x 7  \dy) . dP \daP Oy*)

trzeba tedv, iżbv stosunek
<pp a»p
d x ! dy*

/d P  y  fdP  y
W  /  \dy)

zależał jedynie ,od P  i jeżeli ten warunek jest spełniony, to otrzymamy funkcję ? 
zapomocą dwuch kwadratur.
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Ć w i c z e n i a ,

1. W yznaczyć funkcję analityczną f{z) =  X  iY  o część rzeczywistej X
równej

2 sin 2 x
eiy — e 2y —  2 cos 2 x  ’

to samo przy założeniu, że podana funkcja jest równa X  +  Y.

2. f (m, p =  0 stanowi równanie stycznościowe krzywej algiebraicznej rzeczy­
wistej, czyli warunek, żeby prosta y =  mx p była styczna do tej krzywej. Do­
wieść, że pierw iastki równania rf(i, —  iz) — 0 odpowiadają ogniskom rzeczywistym 
tej krzywej.

3. Jeżeli p i q sa liczbami całkowitemi, pierwszemi względem siebie, wyraże-
/ ir \P <1---

nia '\ z } i V zp są równoważne. Co siędzieje, gdy p i q posiadają największy wspól­
ny dzielnik d >  1?

4. Znaleźć moduł i argument wyrażenia ex+yl, uważanego zagranicę, do któ-
( x  — y i \m

rej dąży wielomian (1  1 , gdy liczba całkowita m wzrasta meograniczeme.

5, Uzasadnić wzory 

cos a +  cos (a +  6) —

sin a — sin (a b) — 6 7 8

6. Ja k a  będzie wartość końcowa funkcji arc sin z, gdy z przebiega odcinek 
prostej, łączący początek układu z punktem 1 i, a w^artość początkowa równa się 
zeru?

7. Uzasadnić ciągłość szeregu potęgowego zapomocą wzoru (12) (art. 266)

j (z  +  h) -  f(z )  =  A/i(s) +  U z )  +  . . .  J n (z) +  ....

Należy wziąć odpowiednią funkcję zwyższającą (f. majorante) względem szeregu, wy­
stępującego z prawej strony znaku równości],

8. Obliczyć całki

/ x m e*1  cos b x  d  x , j  x m e sin b x  d  x ,

J  cot (x  -  a) cot (x  — b) . . .  cot (x — l) dx.
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9. Mając w płaszczyźnie r O y  krzywą zamkniętą C  o dowolnej liczbie punk­
tów podwójnych, przebieganą w umówionym zwrocie, oznaczamy, podług przepisu 
z a rt  97 (I), każdy z obszarów płaszczyzny, wyznaczonych przez tę krzywą, odpo­
wiednim spólczynnikiem liczbowym. Z dwu obszarów sąsiednich, oddzielonych In­
kiem a  b krzywej, przebieganym od a  ku 6, ten, który leży na lewo. posiada spół- 
czynnik wyższy o jedność, niż ten, który jest położony na prawo; obszar zewnętrzny 
względem C  posiada spólczynnik 0.

Niech z 0 oznacza punkt, położony w jednym z obszarów, o spólczynniku Ar. 
Dowieść, iż przyrost argumentu różnicy z  — z 0, gdy punkt z  przebiega krzywą C 
w umówionym zwrocie, równa się 2AV.

10. Rozwijając w szereg Log 

suma szeregu
sin 0 sin 3 6 sin 5 9 

1 8 5

na obwodzie kola

sin(2n 1)5 
2 n 1

zbieżności, dowieść, iż

równa się — lub — —, stosownie do tego czy sin 9 >  0 czy <  0. (I. art. 204). 
4 4

11. Zbadać krzywe, zakreślone przez punkt Z  z2, gdy punkt i  przebiega 
prostą lub okrąg.

,, e2
12. Związek 2 Z  =■  z  — — wyznacza odwzorowanie podobne pola, zawartego

między dwiema elipsami spółogniskowemi na pierścieniu kołowym, zawartym między 
dwoma spólśrodkowemi okręgami.

[Weźmy np. z  =  Z  -f  J Z -  — e2, z umową, że w płaszczyźnie zmiennej Z  istnie, 
je cięcie prostolinjowe (— c, c), i że obieramy wartość pierwiastka, dodatnią przy 
Z  rzeczywistym i większym od e|.

13. Wszelkie przekształcenie kołowe z' — ^  może być otrzymane przez

połączenie liczby parzystej inwersji. Uzasadnić twierdzenie odwrotne.

14. Wszelkie przekształcenie, określone przez związek ------- —. w któ-
c 2$ d

rym z„ oznacza liczbę sprzężoną z liczbą z, stanowi wynik liczby nieparzysty inwer­
sji. Twierdzenie odwrotne.

15. Przekształcenia Fuchsa (T. Fuchsicnnes). — Wszelkie przekształcenie kołowe 
a  z  +  b

z '  =  -------------- —, którego parametry a ,  b, c , d  spełniają warunek a d  — b c 1, pod-
c : +  «  ' r

porządkowuje każdemu punktowi *, położonemu powyżej Oar, punkt z\ położony 
z tej samej strony.

Całki określone C  d j 2 /’ f  d -r  d y

J y~ / / >
stanowią n i e z m ie n n i k i  (invariants) tych wszystkich przekształceń.

Omawiane przekształcenie daje dwa punkty podwójne, odpowiadające pierwiast­
kom i  i $  równania c z 2 — ( d  — a )  z  — 6 =  0. Jeżeli n i  ̂ są rzeczywiste i nierów-
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ne, to można napisać równanie z' — -------------- w postaci równoważnejcz +  d

------- r =  k ----------;z - p ’
k  jest rzeczywiste i przekształcenie nazywa się hiperbolicznym. Jeżeli a. i (5 są licz­
bami zespolonemi sprzężonemi, to równanie przybiera postać

z ' — a -m z — a
z ,_p = e  —-------- Toj - liczba rzeczywista];

jest to przekształcenie eliptyczne. Jeżeli p =  a, to możemy napisać, oznaczając przez 
k  liczbę rzeczywistą (równie jak  a)

1
+  k.

Z —  a

Takie przekształcenie nazywa się parabolicznym.

16. z' =  f(z) wyraża przekształcenie Fuchsa. Zakładamy:

Zi =  / ( * ) ,  =  / ( * i), • • • , Z n =

Dowieść, że wszystkie punkty z, zv z2. . . . ,  zn leżą na pewnym okręgu. Czy punkt 
z dąży do jakiegoś położenia granicznego, gdy n wzrasta nieograniczenie?

17. Dwa punkty M i M ', położone na półprostej, wykreślonej ze środka O 
koła o promieniu R, nazywają się symetrycznemi względem tego koła, jeżeli 
OM X  OM' =  R\ Załóżmy, że są dane dwa koła C i C', położone w tej samej pła­
szczyźnie, oraz dowolny punkt M tej płaszczyzny. Weźmy punkt A/ł; symetryczny 
z M  względem C, następnie punkt M \  symetryczny z M± względem C', potym punkt 
M2, symetryczny z M\ względem C i tak dalej bez końca. Zbadać rozkład punktów 
M v M j ,  M„  M2', . . .  w ich płaszczyźnie.

18, Jak a  funkcja analityczna Z - f  {z) pozwala na przejście od rzutu Merka- 
tora do rzutu stereograficznego?

19*. Dowieść, iż wszystkie rodziny izotermiczne, złożone z okręgów, są utwo­
rzone przez okręgi, przechodzące przez dwa punkty stałe, różne lub nakrywające się, 
rzeczywiste lub urojone.

[Równanie 'rodziny okręgów, zależnych od parametru zmiennego X, którego 
funkcjami są spółczynniki tego równania (a, b, c), może być napisane przy założeniu 
że z =  x  +  iy, z0 =  x  — iy, w postaci następującej

zz0 + az + bzn -f- c  =  0.
d*\

Aby ta  rodzina była izotermiczna, potrzeba, iżby zachodził związek —------ =  0. Czy-
J óz Oz0

niąc odpowiedni rachunek, uzasadniamy przytoczone twierdzenie].

20*. Jeżeli

(1 +  q) (1

q <. 1, to mamy tożsamość

?2)"' (1  7 q =  ( 1 - ? )  ( l - ? 3) . . .  (1 -  q2n+i)...
[E uler],
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|Dla dowodu przekształcamy iloczyn nieskończony, występujący z lewej strony 
znaku równości, w iloczyn nieskończony o dwu wskaźnikach, biorąc do pierwszego 
wiersza czynniki 1 q, 1 q\ 1 4- q\ , . . ,  1 , . . . .  do drugiego czynniki
1 1 7*, . . . , 1 (ę5)*" , . . . ,  1 stosujemy wzór (16) z art. 26SJ.

21. Rozwinąć w szereg potęg zmiennej s iloczyny nieskończone

F\s) =  (1 xx) (1 x sx) . . . a  x" z ) . . . .
4>(*) ( l ł z ł ) ( l  * » * ) . . .  (1 x 2" + ' z ) . . . .

|Można użyć np. związków F(xx) (1 xz) F(x). 4>(xJ* j (  1 x ł)  - 4>(ż).J 

22*. Zakładając iż x , <  1, uzasadnić wzór Eulera

(1 -  x) (l -  xV (1 (1 .
3 w* — n 3 n* 4- «

1 — a r X* -  x : .r'- -  . r “ -  X 2

[J. Bertrand, Calcul dif/órentiel (Rachunek różniczkowy), str. 328],

23*. Biorąc za grodek rzutu jeden z biegunów danej kuli o promieniu równym 
jedności, wyznaczamy jej rzut stereograficzny na płaszczyznę równika. Każdemu 
punktowi M  powierzchni kulistej podporządkowujemy w ten sposób liczbę zespoloną 
a x  iy, oznaczając przez x  i y spółrzędne prostokątne rzutu rn punktu M  w u- 
kladzie osi, położonych w płaszczyźnie równika i przecinających się w środku kuli. 
Dwu końcom jednej średnicy powierzchni kulistej odpowiadają liczby zespolone 

1
s, — | s — liczba sprzężona z liczbą sj. Wszelkie przekształcenie linjowe o po-

*o
staci

(A)
S —  a

spełniające warunek 1 0, wyznacza obrót kuli dokoła jednej ze średnic Gru­
pom obrotów, które zmuszają jakiś wielościan foremny do zajęcia tego samego miej­
sca w przestrzeni (font re.venir sur lui-meme), odpowiadają grupy rzędu skończonego 
podstawień Iinjowych o postaci (A). (K l e in , Das Ikosaeder .



ROZDZIAŁ XIV.

Teorja ogólna funkcji analitycznych podług
Cauchy’ego.

I. — Całki określone, obliczane pomiędzy granicam i urojonemi.

283. Określenia i wiadomości ogólne. — Wyniki, wyłożone w po­
przednim rozdziale, nie są zależne od prac Cauchy’ego; pochodzenie ich 
jest przeważnie jeszcze dawniejsze. W danej chwili rozpoczniemy na 
nowo badanie funkcji analitycznych, wprowadzając [pewien ścisły sy­
stem i rozwijając wnioski logiczne, wypływające z samego określenia 
tych funkcji. Przypomnijmy sobie, że funkcja /(z)  jest całokształtna 
'czyli holomorficzna) w jakimś obszarze A: 1) jeżeli każdemu punkto­
wi, położonemu w tym obszarze, odpowiada określona wartość funkcji 
/(z); 2) jeżeli ta wartość zmienia się w sposób ciągły wraz z z; 3) je­
żeli dla wszelkiego punktu z, należącego do A, stosunek

f ( z + h )  — f(z )  
h

dąży do pewnej granicy f  (z), gdy moduł h dąży do zera.
Cauchy zapoczątkował rozważanie całek określonych, w których 

zmienna przechodzi przez ciąg wartości urojonych*); jest to źródło me­
tod nowych i owocnych.

‘) vM ernoire sur le s  int ig r  aleś d ifin ie s , p r is e s  entre des lim ites im ag in a ires11, 
1825 („Rozprawa o całkach określonych, branych pomiędzy granicami urojonemi"). 
Można znaleźć przedruk tej rozprawy w tomach VII i VIII wydawn, vBulletin  des  
Sciences m ath£m atiquesu (serja 1-szaJ.
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Weźmy funkcję /(z) zmiennej z, ciągłą wzdłuż luku AMB (rys. 57); 
oznaczmy na tym łuku pewną liczbę punktów podziału z0, zu z2, z n- i ,  
Y , następujących po sobie od punktu A do punktu B  w porządku wy­
znaczonym przez wzrost wskaźnika: przytym punkty z0 i z' mają na­
krywać punkty A i B.

Rys. 57.

Weźmy następnie inny szereg punktów Cu ..., C* luku AB, poło­
żonych w ten sposób, że puukt Ci należy do luku zk- 1 zh , i utwórzmy 
sumę

S  — /(C,)(21   ty) +  ~  ty) +  — +  f  ( î )(ty  **—l) +  —
+  f  (̂ n ) {?'   ty—l)i

gdy liczba punktów podziału elt ..., z,,-, wzrasta nieograniczenie w ta­
ki sposób, iż moduły wszystkich różnic Zi — ty, z2 — ty, . . . , stają się 
mniejsze od obranej dowolnej liczby dodatniej, suma 5 dąży do grani­
cy, którą nazywamy całką funkcji /(z), określoną wzdłuż AMB, i którą 
oznaczamy zapomocą symbolu

I f(e) dz.
J  (AMB)

W istocie, wyodrębnijmy w wyrażeniu sumy S część rzeczywistą 
i spólczyunik przy i; w tym celu załóżmy, oznaczając przez .Y i Y fun­
kcje ciągłe wzdłuż luku AMB:

f  (z) =  X  - f  Yi, zk — +  y t  i, C i  =  S i  +  t y  i-

Łącząc wyrazy analogiczne, możemy napisać S w postaci

S  — X  (?!, ty) (ty —  * 0) +  • • • +  X  ( ? ł, ty ) (xk —* x h _ i)  +  . . .
~i“ X ( £ n , t y  ) (ar X n—

— [Y ty) (yi — y0> +  . ■ • 4- i r( u , ty ) (y* — y*-i) +  • ••]
+  * [X  (5lf ty) (yl — y0) +  •••]-+ * t1 (̂ i) ty) C*i ' -*0) +  • • •]•
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Gdy liczba punktów podziału wzrasta nieograniczenie, suma każdego 
z czterech szeregów wyrazów analogicznych dąży do granicy, równej 
pewnej całce krzywolinjowej, obliczonej wzdłuż AMB, a więc granica 
S równa się sumie czterech całek krzywolinjowych i, * * * * * * * * x):

I f(z)dz I (X d x — Ydi/) +  i I (Ydx  -f Xdy).
J  (AMB) •’ (AilB) J  (AMB)

Z samego określenia wypływa bezpośrednio wniosek:

i f{z)dz +  I f{z)dz =  0.
J  (AMD) J  (BMA)

Często potrzeba znać jakąś granicę wyższą modułu całki. Jeżeli 
s oznacza długość łuku AM, L  — długość luku AB, sk sk , ak — długo­
ści łuków Az, Azk , ACk krzywej, wzdłuż której całkujemy, wreszcie
F(s) =  f(z )  , to

/R* ) (zk — z-i— i) | =  F (ok ) zk — żk—i ^  F (ak ) (sk — «*—jl,
gdyż zk — Zk - i  wyraża długość cięciwy, a (sk — sa- J  — długość łuku. 
Moduł sumy S jest tedy mniejszy niż suma S F (ak ) (sk — sa- j) lub co 
najwyżej równy jej. i po przejściu do granicy otrzymujemy

,.Ł
I f(z)dz <  { F(s)ds.

• ' (AMB) ■ 0

Jeżeli M stanowi granicę wyższą modułu j  (z) wzdłuż AB, to rzecz ja­
sna, że moduł drugiej całki jest mniejszy niż ML i tym bardziej

I f(z)dz  <[• M L.
■ ' u  MB)

284. Zamiana zmiennych. — Rozważmy przypadek nader często 
spotykany w zastosowaniach, gdy spółrzędne x, y punktów łuku AB  są 
takiemi funkcjami ciągłemi x  =  ® (t), y =  <1 (*) parametru zmiennego t,

i , Aby uniknąć przy dowodzie niepotrzebnych zawikłań, zakładamy, iż spół­
rzędne x ,  y punktów luku AMB  stanowią funkcje ciągle *  =  y =  >1(0 parame­
tru f, posiadające pomiędzy A i B  liczbę skończoną największośei i najmniejszości.
Można w takim razie rozłożyć drogę całkowania na liczbę skończoną luków, z któ­
rych każdy jest wyrażony zapomocą równania y — F (x ) ,  zawierającego funkcję h,
cia^lą w odpowiednich granicach -  albo też na liczbę skończoną luków, którym od­
powiadają równania o postaci x  G(y). Takie przypuszczenie nie powoduje żad­
nych niedogodności, ponieważ we wszystkich zastosowaniach panuje znaczny stopień
dowolności co do wyboru krzywej, wzdłuż której funkcja ma byc całkowana. Wy­
starczyłoby zresztą założenie, że <?(t) i <1(0 są funkcjami o zmienności ograniczonej.
Widzieliśmy, że w tym przypadku luk A M B  jest sprostowalny. (t. I).

Kurs analizy matematycznej. 5
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posiadająeemi ciągle również pochodne z (/). <V (/), iż przy zmianie ł od
i. aż do [i. punkt (,v, y) przebiega drogą całkowania od punktu A do 
punktu B. Oznaczmy przez P (/) i Q (/) funkcje zmiennej t. powstałe 
przez podstawienie do A' i Y zamiast zmiennych v i y funkcji o (t) i ó (/). 
Podług wzoru, uzasadnionego dla całek krzywolinjowych (I, art. 95), 
otrzymujemy:

• * p
I X dx — Y dy =  / [P (t) z' (t) -  Q (t) f  (<)) dt,

. ' [A B )  . ' a

/’ i '?I X dy +  r  dx =  I (P (<) f  (<) +  ę (0] dt.

Dodajmy do siebie te dwa związki, pomnożywszy drugi z nich przez 
t; wypadnie

( 1) I t  (■?)(AB)
I ' [P(t) +  f <?(<)] f? (0 +  (OJ

Ten sam wynik otrzymalibyśmy, stosując bezpośrednio do całki

f f  (z) dz wzór, uzasadniony dla całki określonej w tym przypadku, gdy
zmienna i funkcje są rzeczywiste: ażeby otrzymać nową całką, wystar­
czy zastąpić w f  (z) dz zmienną z przez z (<) -f i ó (f), a dz przez

\z (t) +  i 'Y (t)J dt. Obliczenie całki f f  (?) dz daje się tedy spro­

wadzić do obliczenia dwu zwyczajnych całek określonych. Jeżeli łuk 
A MB składa się z kilku odrębnych odcinków krzywej, to można zasto­
sować danv wzór do każdej z tych części z osobna.

/ + 1 dz
Zbadajmy np. całkę określona I T- Funkcja, dana do całkowa-

uia, staje się nieskończoną przy z =  o, i dlatego nie można jej całkować 
wzdłuż osi rzeczywistej; można jednak obrać dowolną drogę, nie prze­
chodzącą przez początek układu. Przypuśćmy, że ? przebiega półokrąg 
o promieniu równym jedności, którego środek stanowi początek układu; 
w tym celu wystarczy założyć, że z =  e " i zmieniać / od s do O. 
Wypada

r + 'd z  r °  r °
J 2 =  j i e —u dt =  i I cos t dt 4- J sin t dt — — 2; 

stosując wzór podstawowy rachunku całkowego do funkcji pierwotnej 

(I, art. 78), otrzymalibyśmy ten sam wynik.
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Ogólniej, niech z = ą fu) stanowi taką funkcję ciągłą nowej zmiennej zespolo­
nej u =  $ - •i\i, iż wtedy, gdy u przebiega w swojej płaszczyźnie drogę C N D ,  
punkt z zakreśla luk A M  B. Punktom podziału luku A M  B  odpowiadają na luku 
C N  D punkty u v « 2, . . .  uk__v uk , . . .  . u'. Jeżeli funkcja © («) posiada wzdłuż 
luku C S D  pochodną tp'(w), to możemy napisać, oznaczając przez liczbę, dążącą do 
zera, gdy uk zbliża się po luku C N D  do uk_ j  :

zk — zk— 1 

uk ~  uk—\
Gdy zastąpimy zk — przez wyrażenie, otrzymane z tej równości i za­

łożymy że to suma S, rozważana powyżej, przybierze postać

n n

s V  /• (zk_ J  © ' (uk_ i) ( uk -  uk__t) 2  -k f  ( * k - 1 ) uk - 1 ->

;. = i fc=t
Pierwszy wyraz z prawej strony znaku równości ma za granicę całkę określoną

| f  ll> (u.)] f '  (U) du.
J (CND)

Co do drugiego wyrazu, to, oznaczając przez yj liczbę większą od wszystkich 
modułów ek a przez L ' długość łuku C N D ,  możemy stwierdzić, iż moduł jego 
jest mniejszy niż yj M D' ( M  ma takie samo znaczenie, jak w art. 283 uw. tł.).
Jeżeli można obrać punkty podziału tak zbliżone do siebie, iżby wszystkie moduły 

6j. ! były mniejsze od dowolnej liczby dodatniej, ten wyraz uzupełniający dąży do 
zero, i otrzymujemy wzór ogólny, dotyczący zamiany zmiennych

(9) / /  (z) dz  =  / f  [<f («)] f '  (u) du.
J (AMB)  J (CND)

Wzór ten da się zastosować zawsze, gdy <p (u) jest funkcją całokształtną; do­
wiedziemy istotnie nieco dalej, iż pochodna funkcji calokształtnej jest również funkcją 
całokształtną.’)( (p. art. 292).

(’) Założywszy istnienie tej własności, uzasadniamy z łatwością twierdzenie na­
stępujące:

Jeżeli J  (z) jest funkcją holomorficzną w obszarze skończonym A płaszczyzny, 
to do wszelkiej liczby dodatniej s można dobrać taką inną liczbę dodatnią yj, iżby 
związek

/ (z + h) — /  (*) 
h

(*) <  e

zachodził w każdym przypadku, gdy z i z  h oznaczają punkty obszaru A, których 
odległość h jest mniejsza od yj.

W istocie, załóżmy że /  (*) =  P (x, y) +  i Q (x, y), 

h =  A  x + i A  y- Podług obliczenia, wykonanego powyżej w celu odszukania 
warunków istnienia jedynej pochodnej, można napisać
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285. Wzory Weierstrassa i Darbou\’a. — Dowód twierdzenia o war­
tości średniej (I art. 76) opiera się na nierównościach, które tracą zna­
czenie, gdy chodzi o liczby zespolone. Mimo to Weierstrass i Darboux 
otrzymali w tym względzie zajmujące wyniki, rozważając całki, brane 
wzdłuż odcinka osi rzeczywistej. Widzieliśmy powyżej, iż przy pomocy 
pewnych założeń o charakterze nader ogólnym co do drogi całkowania, 
pozatym dowolnej, można ją sprowadzić do tego typu szczególnego.

Weźmy trzy funkcje rzeczywiste zmiennej rzeczywistej t, ciągłe 
w przedziale (a, ji) i utwórzmy całkę określoną o postaci następującej:

1 =  f  (0 [« (0  +  i ł  (OJ dt;. a

podług samego określenia całki, mamy oczywiście
 ̂O , c

I ■* / / (t) ? (*) dt +  i I ‘ ./ (t) $ (t) dt.

Załóżmy, w celu ustalenia uwagi, iż ot <  fi; różnica t — a wyraża 
w takim razie długość drogi całkowania, liczoną od początku tej drogi, 
i wzór ogólny, której wyznacza granicę wyższą całki określonej, przy­
biera w tym przypadku postać

1 g  I f  (t) I? (f) 4 i 'l </>| dt:
J  OL

czyli, przy założeniu, że funkcja f  (/) jest między a i £ wciąż dodatnia
r ?

I / / (0 ? (t) 4 i ł  (ł) dt.

/ (ł h) -  f  (3) |P x (> - 4 a  y) -  p ’ (X. v)l A—------  - — / (■*) »
ń A *  i A j

+  \p ’v (r A x, y 4- 9 a > y) — P ’p (*, y)] a  y

A  x  t i A j

Ponieważ pochodne P ’x . P  p , Q x , Q ’ są ciągle w obszarze A. przeto można 
znaleźć taką liczbę r(. iżby moduły spólczynników przy A  x  i A  U były mniejsze

°d ^N.&dy V A  x- A  .V' Jest <  Ti- Nierówności, przytoczonej powyżej, stanie się

tedy zadość, gdy weźmiemy h <  rt. 'Wobec tego, jeżeli funkcja ? (a) jest cało- 
ksztaltna, w celu uczynienia wszystkich modułów mniejszemi od danej z góry
liczby dodatniej s wystarczy podzielić luk C  X  D  w ten sposób, iżby odległość dwu 
sąsiednich punktów podziału była mniejsza od odpowiedniej liczby prawdziwość 
wzoru (2) nie ulega tedy wątpliwości.
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Stosując do tej nowej całki twierdzenie o wartości średniej i ozna­
czając przez £ odpowiednią wartość t, zawartą pomiędzy a i (3, otrzymu­
jemy również ,

Zakładając jeszcze, iż <p (t) -f- i ć (t) =  F  (t) i oznaczając przez 
X liczbę zespoloną o module mniejszym niz jedność lub równym jedności, mo­
żemy napisać ten wynik w postaci

jest to właśnie wzór Darboux’a.
Wyrażenie bardziej dokładne, które.można nawiązać do elemen­

tarnych rozważań z zakresu statyki, pochodzi od Weierstrassa. Gdy t 
zmienia się od a do [3, punkt o spółrzędnych x  =  'o (t), y =  t]> (t) prze­
biega pewien łuk krzywej L. Przypuśćmy, że wartościom a, tv ... > 

... zmiennej t odpowiadają punkty (x0, y0), (xlt yj), . .. (xk—\, ijk—i), • •' 
krzywej L. Napiszmy wyrażenia

podług znanego twierdzenia A i 7  są to spółrzędne środka ciężkości 
układu mas, rozłożonych w punktach (x 0, y„), (x,. yj), . ..  , (xk—i, yk—i), • ■ • 
linji L  w ten sposób, iż masa, ześrodkowana w punkcie {xk—i, yk—i), 
równa się f  (łk—i) (tk — h —i)- Rzecz jasna, że środek ciężkości leży 
wewnątrz wszelkiego obwodu wypukłego zamkniętego C, otaczającego 
krzywą L. Gdy liczba przedziałów wzrasta nieograniczenie, punkt (x , y) 
dąży do granicy, którą stanowi punkt (u, v) o spółrzędnych

położony również wewnątrz C. Można złączyć te dwa wzory w jeden 
pisząc

(3)

£ -f f ( t k - 1) (tk -  h - 1)
S 1) (fc — tk -x )

S  ł (fc-i) L  ( ^ )  ”  ** ,)
£ /  ( 4 - i )  (4  -  4 —i)

u V

(u i v) I /'(<) dt
,. O.(4) 1



Z oznacza tutaj punkt, położony wewnątrz wszelkiego obwodu wypu­
kłego zamkniętego, otaczającego linję T..

Rzecz jasna, iż ogólnie czynnik Z Weierstrassa może się zmieniać 
w zakresie o wiele bardziej ograniczonym, niż obszar zmienności czyn­
nika X F  (ć) we wzorze Darboux’a.

286. Całki, brane wzdłuż obwodu zamkniętego. — W poprzednich 
artykułach wystarczało założenie, że / ( z )  jest funkcją zmiennej zespo­
lonej z, ciągłą wzdłuż drogi całkowania. Obecnie założymy jeszcze, że 
funkcja f  (z) jest analityczna, i zbadamy przedewszystkim, jak wpływa 
na wartość całki określonej wybór drogi, wiodącej w płaszczyźnie 
zmiennej z od jakiegoś punktu A do innego punktu B.

Jeżeli funkcja f  (z) jest holomorficzna wewnątrz jakiejś krzywej zamkniętej

i na samej krzywej, to całka f f  («) dz, wzięta wzdłuż tej krzywej, równa 
się zeru.

W celu dowiedzenia tego podstawowego twierdzenia, które za­
wdzięczamy Cauchy’emu, uzasadnimy z początku kilka twierdzeń po­
mocniczych:

Po 1-sze. Całki / dz , ) z dz. obliczone wzdłuż dowolnej krzy­

wej zamkniętej, równają się zeru. Istotnie, stosownie do samego 

określenia całka / dz, wzięta wzdłuż jakiejkolwiek krzywej, łączącej 

punkty a i b, równa się b—o, a więc staje się równą zeru, gdy tor się 

zamyka, ponieważ wtedy b =  a. Co do całki f z dz, wziętej wzdłuż

jakiejkolwiek krzywej, łączącej punkty a i b, sprawdzamy, zakładając 
kolejno: u  =  i a potym =  zk (art. 283), iż całka ta stanowi 
również granicę sumy

V  Zj (Zf+t “  z ,) - z ,., i z, , z, ) V  z-,-1 — z2i i* - a2
T  2 “ “ 2 2

jeżeli tedy krzywa jest zamknięta, j z dz =  0.

Po 2-gie. Jeżeli pole, ograniczone przez dowolny obwód C, rozło­
żymy na części zapomocą krzywych poprzecznych, wykreślonych w do­

wolny sposób, to suma całek j f iz )  dz, obliczonych wzdłuż obwodów 

tych wszystkich części z zachowaniem tego samego kierunku przebiegu,

70 Rozdział XIV. — Teorja ogólna funkcji analitycznych podług Cauchy ego.



I .— Całki określone, obliczane pomiędzy granicami urojonemi. 71

okaże się równa całce f f  (z) dz, obliczonej wzdłuż ogólnego obwodu C.

W istocie, rzecz jasna, że każda część którejś z krzywych pomocni­
czych oddziela dwa sąsiednie obszary cząstkowe i winna być przebie- 
żona dwa razy w przeciwnych zwrotach. Gdy więc dodamy te 
wszystkie całki, pozostaną po redukcji jedynie całki, liczone wzdłuż 
łuków obwodu — suma ich równa się całce

Ustaliwszy te fakty, wyobraźmy sobie, żeśmy podzielili pole A na 
części foremne, a mianowicie kwadraty o bokach równoległych do osi 
Ox i Oy, oraz nieforemne, utworzone przez podział tych kwadratów, 
które występują częściowo poza obwód C. Wszystkie te kwadraty nie­
koniecznie muszą mieć równe boki. Można np. wyobrazić sobie, że 
wykreśliliśmy z początku dwa szeregi prostych równoległych do Ox 
i Oy, w ten sposób, iż odległość między dwiema sąsiedniemi równoległe- 
mi jest stała i równa l, i że następnie podzieliliśmy niektóre z otrzyma­
nych przy tym kwadratów zapomocą nowych prostych równoległych 
do osi na mniejsze kwadraty. Jakikolwiekbyśmy zresztą obrali sposób 
podziału, przypuśćmy, iż utworzyło się X  części foremnych i N' części 
nieforemnych; oznaczmy części foremne, uszykowane w dowolnym po­
rządku, zapomocą liczb od 1 do N, a części nieforemne — zapomocą 
liczb od 1 do N'. Załóżmy, że kwadrat o wskaźniku i posiada bok l,• a 
część nieforemna o wskaźniku k należy do kwadratu o boku l'u ; że na­
stępnie obwód C posiada długość L, a powierzchnia jakiegoś wielokąta, 
wewnątrz którego leży C, równa się A.

Rvs. 58.

c
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Jeżeli z, oznacza punkt, położony wewnątrz kwadratu a b c d  o 
wskaźniku i (rys. 58' lub na jednym z jego boków, a z dowolny 
punkt obwodu tego kwadratu, to można napisać wzór

/ (z )  — f  ( ź, ) _
(5) = f  ( 2i ) -j- E, ,

Z — Zi

w którym wyraz s, posiada bardzo małą wartość bezwzględną, jeżeli 
bok kwadratu jest również bardzo mały. Stąd wynika

f  (Z) == Z f  ( 2 ,  ) +  / ■ ( * ( ) —  Z i f  (Z, ) +  Ej J, 2 —  2j ),

i następnie po scałkowaniu wzdłuż obwodu r, kwadratu:

J ,  fi , f W f e  f ’ < Zj ) /   ̂ ( 2-/2 : | / ( 2 ,  ) — Z(f  (Z, )| j dz

-ł- Ej ( 2 —  2, ) dz:
J  < r. )

zgodnie z pierwszym twierdzeniem pomocniczym dwa pierwsze składni­
ki znikają i otrzymujemy

(6) / /(2)dz I =t (z zt) dz.
, < Cj 1 , '  I fi )

Weźmy jeszcze część nieforemną prjrst i oznaczmy przez z\ punkt, 
położony wewnątrz tego obszaru lub na jego obwodzie, a przez z -  
punkt zmienny obwodu: możemy podobnież napisać, wprowadzając nową 
liczbę E j, , malejącą nieograniczenie wraz z

f(Ż\ -  / ( 2 ’j,
( 1' 7 -• f  (Z k) -+- £ fc ,2 —  Z k

stąd wnioskujemy

( 8) I f i Z ) d Z , I B’k ( 2  -  Z'k) dz.(.<■'k ) <r'l. )

Obierzmy następnie liczbę dodatnią yj, większą od modułów wszyst­
kich czynników e, i e ' ;, . Moduł różnicy z z, jest mniejszy niż /, \ 2, 
i z wzoru (6) wynika, że

/ / (2) dz < 4  Fi r, \ 2 4 rt \ 2 to,
. < ci )

(to, — pole części foremnej o wskaźniku n. Podobnież otrzymujemy ze 
związku (8)
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I f  (zj dz V  2 (4 l k -j-łukrs = 4vjV 2 w'* -f- rj V 2 łukrs.
. ( c ’t  >

w’fc — pole kwadratu, zawierającego hi(t część nieforemnąb
Dodając te wszystkie nierówności i wprowadzając do wzoru gra­

nicę wyższą a boków l'k , otrzymujemy z tym większą pewnością

(9) / / z) dz <  •/] [4 V 2 (S o)i +  I  o>'fe ) +X V 2 L].
■ ' (O

Gdy liczba kwadratów wzrasta nieograniczenie, w ten sposób, iż 
wszystkie boki i l'k dążą do zera, suma X w* +  I  <n'k staje się mniej­
sza od A. Mamy tedy z prawej strony znaku nierówności iloczyn wiel­
kości, która pozostaje skończoną, przez czynnik \ który może być 
uczyniony mniejszym od wszelkiej liczby dodatniej, z góry danej. Stąd 
wynika, że lewa strona nierówności (9) musi niezbędnie równać się zeru:

I / (z )  dz =  O.
d <o

237. Ażeby wniosek powyższy byt zupełnie uprawniony, potrzeba się upewnić, 
iż można nadać kwadratom wymiary dość małe, by przy odpowiednim wyborze pun­
któw z; i z'k moduły wszystkich liczb i były mniejsze niż dowolna liczba do­
datnia i), z góry dana. i1) Powiemy dla krótkości, iż pole, ograniczone przez krzy 
wą zamkniętą f. położoną w obszarze płaszczyzny, ograniczonym przez obwód C, 
czyni zadość warunkowi (o) względem liczby vj, jeżeli można znaleźć wewnątrz krzy­
wej ■; lub na niej samej taki punkt z ’, iżby przy zakreślaniu przez z  krzywej " stale 
zachodził związek
«) I A c) -  f [ z ’) -  f '(z ')  | I z - z ' . ''I-

Wszystko polega na wykazaniu, iż można nadać kwadratom wymiary dość ma­
ić, by wszystkie rozważane części obszaru, foremne i nieforemne, czyniły zadość wa­
runkowi ‘u względem liczby -i\.

Uzasadnimy to nowe twierdzenie pomocnicze zapomocą znanej metody kolej­
nych podziałów. Wyobraźmy sobie z początku, iż wykreślono dwa szeregi prostych 
równoległych do osi Ox i Oy, tak iż odległość między dwiema sąsiedniemi równole- 
głemi jest stała i równa l. Wśród otrzymanych w ten sposób części niektóre mogą 
spełniać warunek (<z), gdy tymczasem inne nie czynią mu zadość. Nie zmieniając w ni­
czym części, spełniających warunek («), podzielmy pozostałe na mniejsze części zapo­
mocą połączenia środków boków przeciwległych kwadratów, które stanowią te po­
zostałe części lub zawierają je. Jeżeli po tym nowym podziale okażą się jeszcze czę­
ści, nie spełniające warunku (a), to zastosujemy do nich to samo postępowanie i tak 
samo w dalszym ciągu. Mogą się zdarzyć przytym tylko dwa przypadki: albo otrzy­
mamy wreszcie jedynie części, spełniające warunek (a), i twierdzenie nie będzie w\ -

(•) Transaclions of tlie American Matbcmatical Sociely. (Rozprawy Amery­
kańskiego Towarzystwa Matematycznego). Tom I, 1900, str. 14.



magalo więcej dowodów, albo też, jakkolwiekbyśmy się posunęli w ciągu działań, 
zawsze będziemy mieli do czynienia z częściami, nie czyniącemi zadośó temu wa­
runkowi.

Jeżeli tak jest, to dzieląc we wskazany sposób nieograniczenie jedną z części 
foremnych lub nieforemnych. otrzymanych przy pierwszym podziale, nie osiągamy 
nigdy tego, by wszystkie obszary częściowe czyniły zadość warunkowi (aj; nazwijmy 
tę część .4,. Po dokonaniu drugiego podziału otrzymujemy część .4,, zawartą w 4 , .  
która również nie może być podzieloną wyłącznie na obszary, spełniające warunek (ai. 
Powtarzając to rozumowanie bez końca, otrzymamy ciąg obszarów (kwadratów lub 
części kwadratów)

.4, .4, .4 , . . . .  An ,

z których każdy zawiera się w poprzednim i których wymiary dążą do zera, gdy n 
wzrasta nieograniczenie.

Istnieje tedy punkt graniczny r0. położony wewnątrz obwodu C lub na samym 
obwodzie. Ponieważ, zgodnie z założeniem, funkcja /< r) posiada dla r =  r, pochodną 
/ (r,). przeto można znaleźć taką liczbę ę, iżbv przy |r— z0 < ę  zachodził związek

/(r) — /(r,i — (r—r.) /'('«) ! £  t] | r— .

Niech c oznacza kolo o promieniu «, zakreślone dokoła punktu r„, juko środka 
Przy n większym od pewnej odpowiedniej liczby pole d n leży wewnątrz kola c i wszyst­
kie punkty obwodu tego pola spełniają warunek

A  - )  -  / (* o) ( -  **0> f  ( - # )  _ =   ~G T1-

Skądinąd jest to rzecz jasna, że punkt r„ jest położony wewnątrz lub na obwo­
dzie pola An , a więc obszar ten winien czynić zadość warunkowi (a) względem y. 
Ostatecznie widzimy, że przypuszczenie, jakoby twierdzenie pomocnicze nie było 
prawdziwe, doprowadza do sprzeczności.

288. Czyniąc odpowiednią umowę co do kierunku przebiegu, mo­
żemy również zastosować powyższe twierdzenie do obwodów, utworzo­
nych z kilku różnych krzywych zamkniętych. Rozważmy np. fnnkcję 
/ (z), całokształtuą zarówno wewnątrz pola A, ograniczonego przez 
krzywą zamkniętą C oraz dwie krzywe wewnętrzne C , C", jakoteż na 
tych samych krzywych (rys. 59). Obwód całkowity r  pola A składa

Rys. 59.
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się z tych trzech osobnych krzywych, i powiemy, że obwód ten jest 
przebiegany w zwrocie dodatnim, gdy pole A pozostaje wciąż z lewej 
strony; ów kierunek dodatni przebiegu wzdłuż każdej z krzywych jest 
oznaczony na rysunku zapoinocą wskazówek. Obliczając, zgodnie z ta­
ką umową, całkę funkcji wzdłuż całkowitego obwodu w zwrocie do­
datnim, otrzymujemy zawsze

Można tu zastosować bezpośrednio taki sam dowód, jakiegośmy 
użyli przy rozważaniu pola o pojedynczym obwodzie; można również 
sprowadzić ten przypadek do poprzedniego, przeciągając poprzeczne 
ab  i cd  i stosując omawiane twierdzenie do krzywej zamkniętej
a b m b a n d c p c d g a  (I, art. 153).

Bywa niekiedy dogodnie dla celów praktycznych pisać wzór po­
wyższy w postaci

wszystkie trzy całki winny być przytym liczone w tym samym zwro­
cie, a więc dwie ostatnie — w zwrocie przeciwnym temu, który ozna­
czają wskazówki.

Powróćmy do pytania, postawionego na początku artykułu 286-go; 
łatwo w tej chwili dać na nie odpowiedź. Weźmy funkcję/(a), cało- 
kształtną w pewnym obszarze A płaszczyzny zmiennej z; dwie różne 
drogi A M B  i A NB, położone całkowicie w tym obszarze i posiadające

wspólne punkty końcowe, dają tą samą wartość całki I f { z ) d z , byleby

funkcja / (z) była całokształtna wszędzie wewnątrz krzywej zamkniętej, 
utworzonej przez drogę A MB  wraz z B B A . (W celu ustalenia uwagi 
założymy, że ta krzywa zamknięta nie posiada punktów podwójnych). 
W istocie, skoro suma całek, branych wzdłuż A MB i wzdłuż B N  A, 
równa się zeru, to całki, wzięte wzdłuż A M B  i wzdłuż A NB, muszą 
być równe. Można jeszcze sformułować ten wynik w sposób nastę­
pujący:

Dwie drogi A M B i A N B, posiadające te same punkty końcowe, wiodą do 

tej samej wartości całki f f  (z) dz, jeżeli mokną przejść od jednej z nich do

drugiej zapomocą przekształcenia ciągłego, bez natknięcia się na żaden punkt, 
w którym funkcja przestałaby być całokształtna (holomorficzną).



Twierdzenie, wyrażone w tej postaci, daje się zastosować również 
wtedy, gdy dwie badane drogi posiadają oprócz punktów końcowych 
dowolną liczbę punktów wspólnych (I. art. 152). Stąd wnioskujemy, iż 
gdy funkcja j  tz) jest całoksztaltna w obszarze, ograniczonym przez

jedna łi/lko krzywą zamkniętą, całka / f( z )  dz, wzięta wzdłuż jakiego­
kolwiek obwodu zamkniętego, zawartego -w tym polu, równa się zeru. 
Nie należy atoli rozciągać tego wniosku ua przypadki, w których 
występują pola, ograuiczone przez kilka osobnych krzywych zamknię­
tych. Weźmy np. funkcję /(z ) ,  całokształlną w dziedzinie pierście­
nia, zawartego pomiędzy dwoma okręgami spółśrodkowymi C i C. 
Oznaczmy przez C" okrąg o tym samym środku, zawarty pomiędzy

1 a C\ całka f /(z) dz, obliczona wzdłuż C\ w ogólności nie równa
się zeru. Twierdzenie Oauchy ego pozwala jedynie orzec, iż wartość 
tej całki pozostaje bez zmiany, gdy zmieniamy promień koła C". (•)

(l) Do warunków niezbędnych prawdziwości twierdzen'a ogólnego Caueby'ego 
nie należy bynajmniej ani istnienie funkcji / tr) poza polem A, ograniczonym przez 
obwód < , ani też istnienie pochodnej w każdym punkcie krzywej C. Wystarcza, iż­
by funkcja /(z) była całoksztaltna w każdym punkcie wewnętrznym pola .4 i ciągła 
na obwodzie C. to jest iżby wartość / ( Z )  funkcji w punkcie Z krzywej C zmieniała 
się w sposób ciągły wraz z położeniem punktu Z na tym obwodzie i żeby różnica 

/ ( Z ) —-fiz) pom iędzy/(Z) i wartością /(r) , odpowiadającą punktowi wewnętrznemu i, 
dążyła do zera jednocześnie z Z z . W istocie, załóżmy z początku, że wszelki 
promień, wykreślony z pewnego określonego punktu a obszaru .1. przecina obwód C 
w jednym tylko punkcie. Gdy puukt z przebiega C. punkt a 9 (z —  u) (9— jakaś 
liczba rzeczywista, zawarta między o a I) zakreśla obwód C , położony w polu 1 • 
Różnica całek, wziętych wzdłuż obwodów C i C'. równa się

76 Rozdział XIV. — Teorja ogólna funkcji analitycznych podług Canchy'ego.

i możua nadać różnicy 1— S wartość dość małą, iżby 3 było mniejsze od wszelkiej 
liczby dodatniej, z góry danej, ponieważ funkcja, poddana całkowaniu, może być na­
pisana w postaci:

Ze względu na to. że całka wzięta wzdłuż C', równa się zeru, mamy tedy 
również

Mając do czynienia z obwodem C o dowolnej postaci, możemy zapomoeą prze­
ciągnięcia odpowiednio dobranych linji poprzecznych zastąpić ten obwód szeregiem 
obwodów zamkniętych, spełniających powyższy warunek.

• (C)

f  i r ) / [ r  — — ( ni l  — 9 ]  <1 — 9) f [ z — (z — a ) ( l  9i].

■ (C . )
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289. Rozszerzenie zakresu wzorów rachunku całkowego.—Niech f  (z) 
oznacza funkcję całokształtną w obszarze A, ograniczonym przez obwód 
niezłożony C. Całka określona

• z
(^) I f(z )d z ,

* ~0

liczona wzdłuż drogi, położonej w polu A, od punktu stałego z0 do 
punktu zmiennego Z, stanowi stosownie do tego, cośmy stwierdzili, zu­
pełnie określoną funkcję granicy wyższej Z. Dowiedźmy obecnie, iż ta 
funkcja <1> (Z) jest również funkcją holomorficzną zmiennej Z i że ma 
za pochodną/(Z). Istotnie, oznaczając przez Z Ą-h punkt zbliżony do 
punktu Z, mamy związek

d> (Z +  A) — <b (Z) I / ( z )  dz,' v

i możemy założyć, że całka, która w nim występuje, jest liczona wzdłuż 
odcinka prostej, łączącego punkty Z i Z 4-h. Jeżeli te punkty są po­
łożone nader blizko siebie, to f ( z )  wzdłuż całej drogi całkowania różni 
się bardzo mało od /(Z), i możemy napisać, oznaczając przez 3 liczbę, 
której wartość bezwzględna przy j AI dość małym jest mniejsza od do­
wolnej liczby dodatniej vj:

f ( z )  - /(Z) +  8.

Dzieląc pi’zez h, otrzymujemy stąd 

<I>(Z+fc) - {Z) =  f( Z )  +
"Z  Mi

8 dz;

moduł ostatniej całki jest mniejszy od rj h , a więc gdy h dąży do zera; 
lewa strona równości dąży do f  (Z).

Jeżeli już znamy jakąś funkcję F  (Z), która ma za pochodną /(Z), 
to możemy być pewni, że funkcje <I> (Z) i F  (Z) różnią się od siebie je­
dynie o liczbę stałą (art. 275, odsyłaczy; stąd wynika, że również w za­
stosowaniu do funkcji zmiennej zespolonej jest prawdziwym wzór pod­
stawowy rachunku całkowego

( 10) J f {z )d z -^ -F (z i).— F(z0).

Wzór ten, uzasadniony przy założeniu, że funkcje f ( z )  i F  (z) są 
calokształtne wewnątrz pola A, daje się zastosować również w warun­
kach bardziej ogólnych. Może się zdarzyć, iż funkcja F  (z) posiada 
różne gałęzie albo też że posiadają różne gałęzie obie funkcje / (z )  i F(z)
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jednocześnie; w takim razie całka daje się wyznaczyć zupełnie dokładnie, 
jeżeli droga całkowania nie przechodzi przez żaden z punktów krytycz­
nych tych fuukcji. Przy stosowaniu wzoru należy wybrać wartość po­
czątkową F (z0) fuukcji pierwotnej i następnie baczyć, by w miarę za­
kreślania przez 2 drogi całkowania funkcja ta zmieniała się w sposób 
ciągły; prócz tego, jeżeli /(z) jest również funkcją wielowartościową, 
to pomiędzy gałęźmi funkcji F (2 ) należy wybrać tę, której odpowiada 
pochodna, równa danej odmianie funkcji f(z).

W każdym przypadku, gdy droga całkowania daje się pomieścić 
wewnątrz pola o obwodzie niezłożonym, w którym rozważane rozgałę­
zienia funkcji /(z )  i F(z) są całoksztaltne, można uważać wzór za do­
wiedziony. Otóż, jakąkolwiekby była droga całkowania, możemy ją 
rozłożyć na łuki, czyniące zadość temu warunkowi, i stosować wzór 
(10) do każdego z nich z osobna. Dodając otrzymane wyniki, stwier­
dzamy, że wzór ten posiada znaczenie ogólne; należy jeno przy jego 
stosowaniu zachować niezbędne ostrożności.

Przypuśćmy np., że oznaczając przez m liczbę rzeczywistą lub ze­
spoloną różną od — l i  obierając dowolną drogę, nie przechodzącą przez

początek układu, chcemy obliczyć całkę określoną f z mdz. Jedną 
• ' *#

Z m‘ł'l
z funkcyi pierwotnych jest  ̂  ̂ i wzór ogólny (10) przybiera w tym

razie postać

z m dz —
1

m -f 1

aby usunąć wieloznaczność, występującą w tym wzorze, gdy w nie jest 
liczbą całkowitą, napiszmy go w postaci

e  <m J - l )  ( i j  __  c ( m + l )  Log(t„)

m -f- 11 dz

Obierając wartość początkową Log (z0), ustalamy przez to zarówno 
wartość potęgi z m wzdłuż drogi całkowania, jak wartość końcową Log (z,). 
Wartość całki zależy jednocześnie od wartości początkowej Log (z0) i od 
drogi całkowania. Podobnież nie sprawia trudności interpretacja wzoru

r ** f\ z)
I J\ź) dz =  Lo9 — L°9 [/(*«)!,

byleby tylko wzdłuż drogi całkowania funkcja f ( z )  była ciągła i nie 
równała się nigdzie zeru. Punkt m —  / (z) zakreśla w swej płaszczyźnie



luk, nie przechodzący przez początek układu, i prawa strona równości 
wyraża zmianą, której ulega Log (u) wzdłuż tego łuku.

Zauważmy jeszcze, nie zatrzymując się przy tym dłużej, iż wzór, 
dotyczący całkowania przez części, jako wypływający z wzoru (10), sto­
suje się z tego powodu również do całek funkcji zmiennej zespolonej.

290. Inny dowód powyższych wyników. — Własności całek lf{z )d z

posiadają wiele wspólnego z własnościami całek krzywolinjowych, wy- 
stępującemi w tym przypadku, gdy jest spełniony warunek całkowal- 
ności. (I, art. 152). Riemann dowiódł istotnie, że twierdzenie Cauchy’e- 
go wynika bezpośrednio z analogicznego twierdzenia, dotyczącego całek 
krzywolinjowych. Niech f { z )= X + i Y stanowi funkcję zmiennej z, ca- 
łokształtną wewnątrz pola A o obwodzie niezlożonym; całka tej funkcji, 
brana wzdłuż obwodu zamkniętego C, położonego w tym polu, równa 
się sumie dwu całek krzywolinjowych:

I f(z )d z  =  I X d x — Y dy i Y dx +  Xdy;
J  (O J  (o  •' (C)

ze względu na związki, zachodzące pomiędzy pochodnemi funkcji X i )
dX dY dX  c>Y
dx dy ’ dy dx

obie te całki są równe zeru (x) (I, art. 152).

Stąd wynika, że całka / f(z)dz, wzięta od punktu stałego z0 do
• -o

punktu zmiennego z, jest funkcją jednowartościową w polu A; oznaczmy 
ją przez <l>(z) i rozpatrzmy z osobna część rzeczywistą oraz spółczyn- 
nik przy i

<I>(z) =  P(x,y) +  i Q(x,y), 
rfr.y) ,•(*.«)

P (x ,y )=  / X dx — Y dy, Q(x,y) =  I Ydx +  Xdy;
•'  (*0.i/») • (x0.y„)

funkcje P  i Q posiadają pochodne cząstkowe
d P  T d P  v  d Q _  v d Q

A ,  — 1  , J  ,
dx dy dx dy

które czynią zadość warunkom

(i) Należy zauważyć, że dowód Riemanna wymaga ciągłości pochodnych

—  to jest ciągłości pochodnej/'(r'.
Ox dy

t . — Całki określone, obliczane pomiędzy granicami urojonemi. 79



(I V O Q 0 I' d (,>
(ix dy <)y i)x

Przeto P  -j- i Q jest funkcją caiokształtną zmiennej z, której pochodna 
równa się X  -+- * Y, to jest /(z).

Jeżeli funkcja /(,z) jest nieciągła w pewnych punktach pola A, to 
samo zachodzi z jedną co najmniej z funkcji A' i V, i całki krzywo- 
linjowe funkcji P  (x, y), Q (x, y) posiadają w ogólności okresy, pocho­
dzące z dróg, zakreślonych dokoła punktów nieciągłości. To samo tedy
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można orzec o calce ) f  : dz. Powrócimy do badania tych okresów 

po zgłębieniu istoty punktów osobliwych, jakie może posiadać / (z).

Jako jeden przynajmniej przykład, weźmy całkę 

rzeczywistą i urojoną, otrzymujemy
r  f ; oddzielając część

I l i t  , / j .  1 ( [ y

J .  :  ■ ‘ iy

. r  d  x - z  t/ d  y  . r ( r , g ) .cdi/ — f f d r

•'(...t y ' x * rł !/ ■

Część rzeczywista nie zależy od drogi całkowania i równa
1
2 log (x! i / '  . Co do

spókzynnika przy i stwierdziliśmy już, iż posiada okres, równy 2r; jest to kat obro­
tu promienia wodzącego, który łączy początek układu z punktem ( v,y). Otrzymuje­
my tedy istotnie różne wartości funkcji Log < r >.

I I .  Całka Cauchy’ego. Szeregi Tay lora  i Laurenta. Punkty
osobliwe. Pozostałości.

Przechodzimy obecnie do szeregu nowych i ważnych wyników, 
otrzymanych przez Cauchyego zapomocą badania całek określonych, 
branych pomiędzy granicami urojonemi.

291. Wzór podstawowy. — Weźmy funkcję /(;), caiokształtną w po­
lu skończonym A, o obwodzie /, utworzonym przez jedną lub kilka 
różnych krzywych zamkniętych, a ciągłą na samym obwodzie. .Jeżeli 
.V oznacza punkt (*), położony w’ polu A, to funkcja

f(z )
Z —  X

jest całokształtna w tym samym obszarze, z wyjątkiem punktu ? ,v.

i 1) W dalszym ciągu będziemy mieli często do czynienia jednocześnie z kilku 
liczbami zespoioneini. Będziemy je oznaczali przez którakolwiek z liter: x , z. u..
Z wyjątkiem przypadków, w których to będzie wyraźnie zaznaczone, litera x  nie 
będzie używana specjalnie do oznaczania zmiennej rzeczywistej.



Zakreślmy dokoła punktu x okrąg 7 o promieniu ę, położony cał­
kowicie w polu A\ wymieniona funkcja jest całokształtna w obszarze 
płaszczyzny, ograniczonym przez obwód F i okrąg 7, więc można dp 
niej zastosować twierdzenie ogólne z art. 286. Przypuśćmy, w celu 
ustalenia uwagi, że obwód F składa się z dwu krzywych zamkniętych 
C i C (rys. 60); w takim razie, licząc całki w kierunku, oznaczonym za- 
pomocą wskazówmk, mamy równość

• f(z )  dz =  r  f( z )  dz +  r  f{ z )  dz
J  (O z — x J (O z — X ./ (7) Z — X

którą można napisać w postaci

/• f  (z) dz _  r  f(z )  dz
J  (D z — x J  (f) z — x ’

jeżeli I oznacza całkę, braną wzdłuż całkowitego obwodu F  w zwro-
J  (D

cie dodatnim. Jeżeli promień ę
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Rys. 60.

koła 7 jest nader mały, to wartość f ( z )  w jakimkolwiek punkcie obwo­
du tego koła różni się bardzo nieznacznie od f  (x)\

f{ z )  =  /(x) +  8,
przytym 6 jest nader małe. Zastępując f  (z) przez to wyrażenie, 
otrzymujemy

(U)
’ f_F) dz
(D z — x

f(x )  i
r(>

dz
Z —  X

r  o dz
J  (T) js — x

Łatwo obliczyć pierwszą z całek, występujących z prawej strony 
znaku równości; jeżeli założymy, że z =  x +  «egi, to wypadnie

dz
Z —  X

Kurs analizy matematycznej.
6
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O CU
Całka nie zależy tedy od promienia ę oftręgu 7; z dru-

./ (7) z — x
giej strony, jeżeli 2 pozostaje mniejszym od liczby dodatniej tj, to mo-

TJ
duł tej całki jest mniejszy niż — 2 * ;  =  2 s r(. Otóż ze wzglądu na

ciągłość funkcji f( z )  dla 2 =  x można uczynić promień ;  dość małym, 
by 7) było dowolnie małe. Omawiana całka równa gię przeto zeru 
i dzieląc przez 2 -  i obie strony wzoru (11), otrzymujemy:

( 12) /(*)
1 /’ /(g) d:

- ~i J  (D * — x

Jest to wzór podstawowy Cauchy ego, wyrażający wartość funkc ji 
/ (c) w jakimś punkcie y, położonym wewnątrz pewnego obwodu, w za­
leżności od wartości, jakie ta sama funkcja przybiera wzdłuż obwodu.

Weźmy punkt y +  A y, zbliżony do x: przypuśćmy, że punkt ten 
leży np. wewnątrz koła 7 o promieniu ę. Mamy również

f  (x +  A x) 1 r  /(> d*
2 ~i j (D 0 — X — A y

a przeto po odjęciu stronami i podzieleniu przez A x wypada:

f ( x  4- A x) -  /'(.V) 1 r  f (a) de
A y 2it» J (D (* — y) (8 — .v — a  x )'

Gdy A x dąży do zera, funkcja, poddana całkowaniu, zmierza do
m

(z — x)‘-
różniczkowania, napiszmy tę całkę w postaci:

, . Aby dowieść ściśle, iż mamy prawo stosować zwykły sposób

l' __  f( z )  dz______  /• f{z )  dz r  A y f ( z )  dz
J  (r> (z — y) (z — x — A y) r, U — v)- .* ,r . (« — .v 1 (e — y — A X

Oznaczmy przez J f  jakąś granicę wyższą modułu /(;< '  wzdłuż 1'. 
przez L  — długość tego obwodu a przez 2 — granicę niższą odległości 
jakiegokolwiek punktu okręgu 7 od dowolnego punktu krzywej T. Mo-

ML
duł ostatniej całki jest mniejszy niż A x i przeto dąży do zera

wraz z A y ■ Otrzymujemy tedy po przejściu do granicy

f ( x )  -
1

2 TU <n
f( z )  dz 
[z — y)2(13)



^  ten sam sposób dowodzimy, że zwykły przepis różniczkowania 

pod znakiem ) daje się zastosować (*) do całki (13) i do wszystkich 

całek, które otrzymujemy kolejno na tej zasadzie, a więc
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/" (*) 

i wogóle

(14)

'•* i2zi J
' f  (z) dz 
(D (2 — *)  3 /"(*) =

1 . 2 . 3
2z i I

• f(z )  dẑ  
(D { z  -  X) 4

f { n ) {X)  =
1 . 2 . . .  w

2 ’iii
f  / fe) dz

J  (D {z —  x ) n+1 ’

F ( x ) - =  f  
J  a

Widzimy przeto, iż jeżeli funkcja f(z )  jest całokształtna w pewnym 
obszarze płaszczyzny, to ciąg kolejnych pochodnych tej funkcji jest 
nieograniczony i każda z nich jest również funkcją eałokształtną w tym 
samym obszarze. Warto zauważyć, iż osiągnęliśmy ten wynik, zakła­
dając jedynie istnienie pierwszej pochodnej.

Uwaga. — Rozumowania, rozwinięte w tym artykule, doprowadzają 
do wniosków jeszcze ogólniejszych. Weźmy funkcję y (z) zmiennej 
zespolonej z, niekonieczrue analityczna, lecz ciągła wzdłuż łuku F» 
zamkniętego lub nie. Całka określona

®(s) dz 
(D  ̂— x

posiada przy wszelkiej wartości x, nie należącej do drogi całkowania, 
pewną określoną wartość. Obliczenia, dokonane przed chwilą, wyka-

F  (x -j- A x) — F  (x)
A x

A x  zmierza do zera, jest całka określona

C te (z) dz
F fć :

F  (^)__gtanowi_ tedy funkcję analityczną, eałokształtną dla wszelkiej 
wartości zmiennej x, oprócz tych, które odpowiadają punktom obwodu 
F; są to w ogólności punkty osobliwe tej funkcji ip. nieco dalej, art. 
348). Stwierdzamy, jak poprzednio, że n-ta pochodna F <n) (x) posiada 
wyrażenie

żują, że granicą, do której dąży stosunek gdy

(*) Przepis ogólny różniczkowania pod znakiem j  będzie uzasadniony poni­

żej. (Eozdz. XV II).
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Fin)(x) =  n! I 
• <n

J  W dz 
(z — X) n 1

292. Twierdzenie Morery. — Twierdzeniu podstawowemu Cauchy ego odpowia­
da twierdzenie odwrotne, podane przez Moren;, które brzmi jak następuje: Jeżeli 
funkcja f i s )  zmiennej zespolonej z jest ciągła w polu A i jeżeli całka określona

I f{x ) dz. liczona iczdiuż jakiegokolwiek obwodu zamkniętego C, położonego
J  (r)
w obszarze A, równa się zawsze zeru, to f  z) jest funkcją całoksztallną w polu A.

Istotnie, w tych warunkach całka określona F  (z) | f , t )  dt, wzięta wzdłuż
•

dowolnej drogi, położonej w polu A i łączącej dwa punkty tego pola z„ i z, posiada 
wartość niezależną od drogi całkowania; jeżeli zakładamy, że punki i 0 jest stały, to 
ta całka jest funkcją zmiennej z. Rozumowanie, rozwinięte w art. 289, przekonywa, że 

■ F
stosunek' <lażv do granicy, równej f  (z , gdv A *  dąży do zera. Funkcja F(z)

A -
jest tedy funkcją ealoksztaltną zmiennej z, mającą za pochodną f  (z), a przeto f  (z) 
jest również funkcja holomorficzną.

293. Szereg Taylora. —  J e ż e l i  f  ( z )  je s t  f u n k c j ą  c a ł o k s z t a ł t u  w e w n ą t r z  

k o ł a  C o ś r o d k u  a ,  to w a r t o ś ć  t e j  f u n k c j i  w  j a k i m k o l w i e k  p u n k c ie  X, p o ło ż o n y m  

w  tym k o le ,  r ó w n a  s ię  s u m ie  s z e r e g u  z b ie ż n e g o , d a n e g o  w e  w z o r z e :

(15)
f{x) =  f (a)  -r j f'(d )

( x - a f -
1.2 f " ( a )  +  . . .

(X — fl) "
1 . 2 . . . « /<n>(a) +  . . . .

Możemy założyć przy dowodzie, że funkcja f ( z )  jest całokształtna 
również na samym okręgu C; w istocie, jeżeli x oznacza jakikolwiek 
punkt, położony wewnątrz koła, to można zawsze znaleźć okrąg C' o 
środku a i promieniu mniejszym niż promień okręgu C, dla którego 
punkt x byłby również punktem wewnętrznym, i zastosować do tego 
okręgu C' te same rozumowania, jakie zastosujemy do C. Stwierdziwszy 
to, wyrażamy zgodnie z wzorem podstawowym wartość funkcji w punkcie 
X, położonym wewnątrz O.

(12 bis) 

napiszmy
1

z — x

1
z — X

w postaci następującej

1
(z — a) — (x — a)

1
Z — a  \ 1
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skąd otrzymujemy, po wykonaniu dzielenia aż do reszty stopnia (» +  l)-go 
względem x — a

1
z — x

1
2 — a

X — a  (x
{z — a) 2 (z — a)

(x — a) n

a) 2
3 +

+ +
(X — a) n+1

a) n+1(z — a) n+1 r (z — x) {z 

Podstawmy to wyrażenie do wzoru (12 bis) i przenieśmy poza znak 

I czynniki x — a, (x — a)2, . . .  , niezależne od a; otrzymamy wzór 

f  (x) =  J 0 4- J\ (x — a) +  •. • +  J n (x — <z)n +  Rn ;

w którym spółczynniki J 0, J j  , . . .  , J n i reszta posiadają wartości 
następujące:

Jo —
1 /' /  (2) dz

J i =
1 r  f{z ) dz

2 7zi „/ (O 2 — a 2 TCi Ł!  (o (2 — 0 ) 2 ’ ” ■ ’

Jn =
1 r  f(z ) dz

Rn =
1 r  l x — a\n+1f ( z ) d z

2 TC i „1 (C) (2 -  a) n+1 ’ 2 TC i Ł1 (C) \s — a / 2 — X

Gdy liczba n wzrasta nieograniczenie, reszta Rn dąży do zera. 
Istotnie, oznaczmy przez M jakąś granicę wyższą modułu funkcji f(z)  
wzdłuż okręgu C, przez R — promień tego okręgu, a przez r — moduł 
różnicy x — a. Gdy 2 przebiega okrąg C, to j 2 — x [ ^  R — r, a więc 

1 1
I ^  ------- ; moduł reszty Rn jest tedy mniejszy niżR — T

r \ n + iM  M R I r 1"+* / r \ "+1
I j  U - r 2E* - J ^ r  (y) ' ĉ n"ik zaś U)

tego iloczynu dąży do zera, gdy n wzrasta nieograniczenie. Stąd wynika) 
że /(x) równa się sumie szeregu zbieżnego

J 0 +  J-y (x — a) +  . ■. +  Jn (X a) n +  • • •

Owóż, wystarczy we wzorach (12), (13) i (14) uważać okrąg C za 
obwód F i założyć, że x =  a, aby otrzymać

J 0 =  f  J\ — J  (a)t • • • i Jn 1 2  n ’ ’ ' '  ’

szereg powyższy utożsamia się z szeregiem (15), to jest z szeregiem 
Taylora.

Koło C jest to koło o środku a, wewnątrz którego funkcja jest 
całokształtna; rzecz jasna, że otrzymamy możliwie największe koło,
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spełniające ten warunek, biorąc za promień odległość punktu a od 
punktu osobliwego funkcji /(c), najbardziej zbliżonego do punktu a. 
Będzie to również koło zbieżności szeregu, stanowiącego prawą stronę 
równości (’)

f ( x )  =  +  .7, (x — a )  +  . . .  (x — a )" +  . . .
Ważne twierdzenie, uzasadnione przed chwilą, wykazuje tożsamość 

obu danych przez nas określeń funkcji analitycznej (girt. 197 i 261). 
W istocie, wszelki szereg potęgowy wyraża funkcję calokształtną w ko­
le zbieżności (art. 266) i nawzajem stwierdziliśmy, że wszelka funkcja, 
calokształtną w kole o środku a, może być rozwinięta w szereg kolej­
nych potęg różnicy x  — a , zbieżny w tym kole. Zauważmy jeszcze, że 
niektóre z otrzymanych przedtym wyników stają się niemal oczywiste; 
np. stosując dane twierdzenie do funkcji Log (1-fr) i ( l + c ) m, calo- 
kształtnych w kole o promieniu równym jedności i o środku w początku 
układu, odnajdujemy wzory z art. 275 i 2 <6. Zbadajmy jeszcze iloraz 
f(X)

7  dwu szeregów potęgowych, zbieżnych w tym samym kole o pro-
T \-'7
mieniu Ii; jeżeli szereg s (x) nie równa się zeru dla x  =  O, to ze 
względu na jego ciągłość można zakreślić okrąg o promieniu r H,

f ( x )
wewnątrz którego z (x) nie staje się równym zeru. Funkcja ^  jest

w takim razie caloksztaltna w kole o promieniu r, i przeto w sąsiedztwie 
początku układu daje się rozwinąć w szereg całkowity (I, art. 188). 
Możnaby rósvnież sprawdzić twierdzenie, dotyczące podstawiania jedne­
go szeregu do drugiego i t. d.

lira g a .— Weźmy funkcję f{z ), calokształtną wewnątrz koła C o 
środku a i promieniu r i ciągłą na samym obwodzie koła. Moduł f(z) \ 
funkcji na okręgu C jest funkcją ciągłą, której największość oznaczymy 
przez JYl(r). Skądinąd, spółczynnik an przy (x —  a) n w szeregu, wyra-

1
żającym / (x ),  równa się , f {n) (a), to jest

1 f  _ l i i ' 1 d :—
2 i~ J  (Q {z — a) n+l ’

a więc
1 =^(r) „(17) An — a n <  2 z r n+l ~r' r r n

( ')  Ostatni wniosek wymaga pewnych wyjaśnień co do istoty punktów osobli­
wych—damy je w rozdziale, omawiającym przedłużenie analityczne.
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tak iż c7Ti j j  jest większe od wszystkich iloczynów A n r n . (x) Można 
tedy w wyrażeniu funkcji zwyższającej (I, art. 185) zastąpić M przez fJYtjr).

294. Twierdzenie LiouvilIe’a. — Jeżeli funkcja f  (x) jest calokształtna 
dla wszelkiej wartości skończonej zmiennej x, to można ją rozwinąć 
w szereg Taylora, przy dowolnym a, w dziedzinie całej płaszczyzny — 
taka funkcja nazywa się funkcją całkowitą (fonction entiere). Z wyrażeń 
(17), ograniczających spółczynniki, łatwo wywnioskować następujące 
twierdzenie, podane przez Liouville’a:

Wszelka funkcja całkowita, której moduł 'pozostaje mniejszym od liczby 
stałej M, musi być liczbą stałą.

Istotnie, przypuśćmy, iż rozwinęliśmy f (x )  podług potęg różnicy 
x  — a .  i oznaczmy spółczynnik przy (x — a )n przez a n. Rzecz jasna 
iż przy jakimkolwiek promieniu r największość fJYl (r) jest mniejsza niż 

M
j f  a przeto a n <  . Lecz promieniowi r możemy, nadać wartość

dowolnie wielką; otrzymujemy tedy a n =  O, gdy n ^  1, i / (x) równa się 
stałej f(a ) .

Można jeszcze uogólnić to twierdzenie. Weźmy funkcję całkowitą f(x),
f(x )

spełniającą ten warunek, iż moduł ilorazu — — dla wartości x o module

większym od pewnej liczby dodatniej R pozostaje mniejszy niż liczba 
stała M: funkcja f  (x) musi być wielomianem stopnia co najwyżej m-ego. Istot 
nie, wyobraźmy sobie, że rozwinęliśmy f{x )  podług potęg zmiennej x, 
i a n niech stanowi spółczynnik przy x n. Jeżeli promień r koła C jest 
większy od R, to JT ljr) <  Mr™,  a zatym a n <  M  r  Stąd wy­
nika, iż a n — O, gdy n >  m, ponieważ w takim razie, obierając dość 
wielkie r, możemy uczynić M r m~n dowolnie małym.

295. Szereg Laurenta.—Rozumowanie, zastosowane przez Cauchy'ego 
do uzasadnienia wzoru Taylora, nadaje się do wielostronnego uogólnie­
nia. Weźmy np. funkcję /(s), holomorficzną w pierścieniu kołowym, 
zawartym między dwoma okręgami CM C’ o wspólnym środku a; do­
wiedziemy, iż wartość f(x )  funkcji w dowolnym punkcie X tego obszaiu równa

( i)  Nierówności (17) zasługują na uwagę głównie dlatego, że wyrażają zwią­
zek pomiędzy rzędem wielkości spółczynników szeregu całkowitego a rzędem wiel­
kości funkcji, danej przez ten szereg; jłi (r) nie jest zresztą w ogólności najmniejszą 
z liczb, czyniących zadość tym nierównościom, jak można stwierdzić bezpośrednio, 
o-dy wszystkie spółczynniki an są rzeczywiste i dodatnie. Nierówności (17) mogą 
być uzasadnione bez pomocy całki Cauchy’ego (M E R A Y , Lecons nouoelles sur 
1’analyse in f in it is im a le .  (Nowe w ykłady analizy nieskonczonostkowej), t. I., str. 99).
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się sumie dwu szeregów zbieżnych, z których jeden jest uszykowany podług potęg 
dodatnich różnicy x  — a, drugi zaś podług potęg dodatnich jej odwrotności

x ~ a -  (,)
Możemy założyć, podobnie jak przed chwilą, że funkcja J  (2) jest 

holomorficzna na samych okręgach C i C . Oznaczamy promienie tych 
okręgów przez U i lf ,  a moduł różnicy x — a przez r: jeżeli C  jest 
okręgiem wewnętrznym, to £ ' < r <  /?. Zakreślmy dokoła punktu x 
mały okrąg 7, położony w całości pomiędzy C a C. Biorąc całki w od­
powiednim zwrocie, otrzymujemy równość

/ ’ f ( z ) d z  r  f ( z )dz i ’ f  (z)dz 

.1(0  z —  x  .!  (C-) z — X J  (X) z — x ’

ostatnia z tych całek, liczona wzdłuż 7, równa się 2 -t‘/(x), i możemy, 
zachowując wciąż ten sam zwrot przy całkowaniu, napisać związek po­
wyższy w postaci

(18) f(s)A* 1 r Ą  ds
z — jc 2*» ./ (o) x  — z

Powtarzając rozważania, podane w art 293, otrzymujemy w dal 
szym ciągu wzór

(19) ---- - I — =  J„ — J\ (x — a) -f- . . .  -f- J n (x — a)" -j- . . . ,
2 k i J  (o  z — x

w którym współczynniki Jo, Ju  . . . .  ./ „, . . .  są dane przez wzory (16). 
Aby rozwinąć w szereg drugą całkę, zauważymy, że

+
2 — a

-L.
(x -  a)*

(z — a)”- 1 (2 — o)*
(JC — o)" (x — 2) (x — a f

i że całka wyrazu uzupełniającego

1 r  Iz — «\" /(g) 
2tt i J (oj \-V — aj X — z

dąży do zera, gdy n wzrasta nieograniczenie.

dz

W istocie, jeżeli M' sta-

(V Comptes rendus de 1'Acadimie des Sciences. (Sprawozdania Akademji 
Nauk), t. X V I I I .  — P. Ocucres de Cauchg. (Dzieła Cauchv’ego), Serja l-sza. 
t. V II I ,  str. 115.



II.—Całka Cauchy’eg-o.—Szeregi Taylora i Laurenta.—Punkty osobliwe. 89

nowi największość modułu /(z) wzdłuż C', to moduł tej całki jest 
mniejszy niż

- 1  / I K Y
. 2  i c \ r  ) r  —  R ' r  —  R' \ r  ]

(
Rr \

I jest mniejszy od jedności. Otrzymujemy tedy ró­

wnież

(20)  ̂ I -^2_  _|_ _|_ K n
2 K i j  (c') X —  2 X  —  a (x —  a )2 ^  (x  — a )n ’

przytym spółczynnik K n równa się następującej całce określonej

(21) K n =  - 1 ~  f  (z -  < - i  f ( z ) d z .
2 tri J  (o

Wystarczy teraz dodać oba szeregi (19). i (20), aby otrzymać roz­
winięcie funkcji /(x).

Stosując wzory (16) i (21), wyznaczające spółczynniki J n i K nt 
można brać całki wzdłuż jakiegokolwiek okręgu F o środku a ,  zawarte­
go pomiędzy C a C, gdyż funkcje, poddane całkowaniu, są w dziedzinie 
pierścienia całokształtne. Umówiwszy się, że wskaźnik n  ma się zmie­
niać od — oo do 4- oo, można w tych warunkach napisać szereg, wy­
rażający /(x), w postaci

+ CO
(22) /(X) =  ^  J n ( x ~ a r - ,

71 =  —  CO

spółczynnik J n, niezależnie od znaku w, wyznacza się zapomocą wzoru

(23)
1  r  / ( z )  dz

2  % i J \T) (2 — a)” + 1

P r z y k ła d .  — Ta sama funkcja / (x) może być rozwijana w różne zupełnie sze­
regi, zależnie od rozważanego obszaru. Weźmy np. ułamek wymierny/(ar), którego 
mianownik posiada jedynie pierwiastki jednokrotne o różnych modułach; pierwiastki 
te, uszykowane podług wzrostu modułów, oznaczmy przez a ,  6 ,  c , . . . ,  l.  Odrzuca­
jąc część całkowitą, która tu nie odgrywa żadnej roli, możemy napisać

f(X)
A

x  —  a

W kole o promieniu |a|, mającym za środek początek układu, każdy z ułam­
ków prostych może być rozwinięty podług potęg dodatnich zmiennej®, i szereg, wy­
rażający w ten sposób f ( x ) ,  jest tym samym, co szereg, dany przez wzór Maclaurina
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-  - f !  • •  t) - ( Ś  ••• a —
A

_n -1 r
W dziedzinie pierścienia, zawartego pomiędzy okręgami o promieniach1 a i 

6 ułamki ~  _  b . ^ g winny być rozwinięte podłuir potęg dodat­

nich zmiennej ar, natomiast ułamek ~ winien być rozwinięty podług potęg do­

datnich ułamka ; otrzymujemy w ten sposób

r  .. lB •u <) w
-  f ^ - . M  rn _  '

U " 1 r  ') ■ *
Aa 
x5

Aa,n—l

Następnym pierścieniom odpowiadają szeregi analogiczne. Wreszcie nazewnatrz ko­

ła o promieniu l mamy do czynienia jedynie z potęgami odwrotności

fy g ) *  - L Aa . . .  IA A a " - ' . . . L I " - '
*  ars x n

296. Szeregi rozmaite. — Dowody, zastosowane przy wprowadzeniu szeregów 
Taylora i Laureata. opierają się ostatecznie na rozwinięciu w pewien sposób w sze-

l u 1reg ułamka prostego - ^ . gdy punkt x  leży nawewnątrz lub zewnątrz pewnego

stałego kola. Appell dowiódł, iż możemy jeszcze uogólnić te wzory, rozważając fun­
kcję / ( * ) ,  caloksztaltną wewnątrz pola A, ograniczonego przez liczbę dowolną łuków 
okręgu lub ciflych okręgów. Weźmy np. funkcję/(a- , caloksztaltną w trójkącie krzy- 
wolinjowym PQR r̂ys. 61 ), utworzonym przez trzy luki PQ, QR. RP, należące odpo­
wiednio do trzech okręgów C, C . C". Oznaczając przez x  jakikolwiek punkt, poło­
żony wewnątrz tego trójkąta krzywolinjowego. mamy związek:

(24) 1 r  f(M 'ds 1 ę  f >2 d i 1 f  fiz^-dz

Gdy z przebiega wzdłuż luku PQ. to, oznaczając środek koła C przez a, może- 
my napisać

x  — a
a że w tym przypadku moduł ilorazu---------jest mniejsze od jedności, przeto mo-z — a
dul całki

') Acta mathematica, t. I, str. 145.
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1
2-i

f  * '
z —  x

dąży do zera. gdy n wzrasta nieograniczenie. Stąd otrzymujemy

1 r  f . z d z
(o. —  ---------=  J 0 -  J 1 - x  — a -  . . .  -  J n x  — a)'1 +  . . . ;

- ‘■lJ  (PQ)Z x
spółczynuiki J v . . .  są to stale, których wyrażenia łatwo utworzyć. Przebiegowi 
wzdłuż luku QR okręgu C o środku b odpowiada wzór

1 1 z -  b
7rO1 1 Iz — 6’

x  — z x  — b , — ■ •(X — b)2
-o12)-

x  — z \a: — bl

ponieważ moduł potęgi
b\n

\x — b
to druga całka daje się rozwinąć w szereg o postaci

dąży do zera. gdy n wzrasta nieograniczenie, prze-

1 r  f .z  dz K, K.ż __
2set J  —  x  x  —  6 (X  —  b ) 2

-  . . . .

Rys. 61.

Podobnież, oznaczając przez c środek kola C '. otrzymujemy

1 f  f  z dz L , L t  Ln ■
2rU J  (RP)Z — x  ~. x  — c \x — cr- "■  (x — e ,n

Dodajac te trzv wzory (a , (jH i (•(', wyrażamy f  *x) w postaci sumy trzech sze-
1

regów,. uporządkowanych odpowiednio podług potęg dodatnich wyrażeń: x  a,

— 1 . Rzecz jasna, że można przekształcić tę sumę w szereg1, którego wszystkie
X — c
wyrazy są funkcjami wymiei*ucuii zmiennej x, np. zapomocą połączenia wyrazów te-
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go samego stopnia względem x  — a. Rozumowanie powyższe daje
1 1

x  — b x  — c 
się zastosować do liczby dowolnej luków kołowych.

Zauważmy jeszcze, że szeregi (a), (0) i występujące w poprzednim przykła­
dzie, pozostają zbieżnemi, gdy punkt x  znajdzie sic wewnątrz trójkąta P Q R i że

. . , . C /<* disuma tych szeregów równa się tak samo calce / ' , wziętej wzdłuż obwodu
J  3  — X

trójkąta P  Q Ii w zwrocie dodatnim. Owót, gdy punkt x  leży w trójkącie P Q' R 

funkcja  ̂ jest caloksztattna wewnątrz trójkąta P Q R , a wiec omawiana całka
2  — X

jest równa zeru. Otrzymujemy tedy w ten sposób szereg ułamków wymiernych, któ­
ry jest zbieżny, gdy x  leży wewnątrz jednego z dwu trójkątów P Q R  lub P Q R  , i 
posiada sumą równą funkcji f  (;n  lub zeru, stosownie do tego, czy punkt < jest po- 
toiony w trójkącie PQR czy tez w trójkącie P Q R  .

W tej samej dziedzinie badań Painlevć otrzyma! wyniki jeszcze ogólniejsze ( 1 >. 
Poprzestając na przypadku nader prostym, weźmy krzywą wypukłą zamkniętą P, 
której styczna, istniejąca w każdym punkcie, zmienia się w sposób ciągły, i której 
promień krzywizny pozostaje mniejszy od pewnej liczby stałej. Można w takim ra­
zie, jak łatwo stwierdzić, dobrać do każdego punktu M  krzywej P kolo C styczne 
w tym punkcie z T, zawierające wewnątrz siebie całą tę krzywą i spełniające waru­
nek, iżby jego środek poruszał się w sposób ciągły wraz z punktem M. N iech /tzi  
stanowi funkcję całoksztaltną wewnątrz krzywej P i ciągłą na samym obwodzie; we 
wzorze podstawowym

1 / ’ f(z )d z
2it i J  z — x ’/(*)

zastosowanym do punktu x, leżącego wewnątrz P, oznaczając przez a środek kola C, 
odpowiadającego punktowi z obwodu, możemy zastąpić, podobnie jak poprzednio-

przez

x  — a
t z — a 2

(x a)" 1__ lv  — a \ n+1

z — x  \z — aj(z -  a)" +
a nie jest stałe, jak w zbadanych już przypadkach, lecz stanowi funkcję liczby z‘ 
zmieniającą się w sposób ciągły, gdy punkt Al przebiega krzywą T. Mimo to mo- 

x  — a
duł ilorazu  ̂ ^  f l> stanowiący funkcję ciągłą zmiennej z, pozostaje mniejszy od pe­

wnej liczb} stałej ę, mniejszej niż jedność, ponieważ nic może nigdy osiągnąć warto 
ści — 1, a przeto całka wyrazu uzupełniającego dąży do zera. gdy n wzrasta nie- 
ograniczenie. Mamy tedy znów związek

(25) fix ) 1 V  /2- i Al !
(P)

(r -  cif
(z — a)n + T f i *  dx ,

M Sur les lignes singulićres des fonctions analytigues (Annales de la Facul- 
te de Toulouse, 1888). [..0 linjach osobliwych funkcji analitycznych" — Roczniki 
Uniwersytetu Tufuskiego, 1888].
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i  rzecz jasna, że wyraz ogólny tego szeregu jest wielomianem całkowitym P„ (x), 
stopnia co najwyżej n-go. F u n kc ja  f  • z) d a je  się tedy rozw in ąć wewnątrz obwodu  F 
w szereg  w ielom ianów .

Teorja przekształceń podobnych umożliwia wyrażenie funkcji holomorficznych 
zapomocą szeregów innego jeszcze rodzaju. Weźmy funkcję/(a ;', całoksztaltną we­
wnątrz pola A, które może się rozciągać do nieskończoności. Przypuśćmy, ze umie­
my podporządkować z zachowaniem kątów polu A pole kola C, w ten sposób, iż 
każdemu punktowi pola A odpowiada tylko jeden punkt koła i nawzajem; niech 
u =  z z stanowi funkcję analityczną, podporządkowującą polu A kolo C, które ma 
za środek w płaszczyźnie zmiennej u punkt u — 0. Gdy u zmienia się w dziedzinie 
tego koła. wartość odpowiednia * jest funkcją całoksztaltną zmiennej u. To samo 
stosnje się do funkcji /(*■, która przeto może być rozwinięta w szereg zbieżny, usta­
wiony podług potęg zmiennej u czyli -f (z 1, gdy punkt z pozostaje wewnątrz pola A.

Załóżmy np. iż pole A jest to pas nieograniczony, zawarty pomiędzy dwiema 
TÓwnoległemi do osi rzeczywistej y =  ±  a. Stwierdziliśmy (art. 280), iż możemy pod-

e2 “ — 1 . . .
porządkować temu pasowi zapomocą wzoru u =  ——------  kolo o promieniu równym

e2" + 1
jedności, mające za środek punkt u =  0. Wszelka funkcja f ( z ) ,  całoksztaltna w dzie­
dzinie rozważanego pasa nieograniczonego, może być tedy rozwinięta w tym zakre­
sie w szereg zbieżny o postaci następującej:

/ *)
-c o
VX I
n =  O

297. Szeregi funkcji całokształtnych. — Suma szeregu jednostajnie 
zbieżnego, którego wyrazy są funkcjami kolomorficznemi zmiennej z, 
stanowi funkcję ciągłą tej zmiennej, lecz nie można oprzeć na tej je ­
dynie podstawie twierdzenia, iż jest to również funkcja całoksztaltna. 
Należy jeszcze dowieść, iż funkcja taka posiada w każdym punkcie je­
dną określoną pochodną; łatwo to uczynić przy pomocy całki Cau- 
chy’ego.

Zauważmy z początku, że szereg jednostajnie zbieżny, którego 
wyrazy są funkcjami ciągłemi zmieąnej zespolonej z, może być całko­
wany wyraz po wyrazie, równie jak w tym przypadku, gdy mamy do 
czynienia ze zmienną rzeczywistą. Dowód, podany dla zmiennej rze­
czywistej (I, art. 114), da się tu zastosować bez żadnej zmiany, byleby 
droga całkowania posiadała długość skończoną.

Twierdzenie, które chcemy uzasadnić, należy oczywiście do zakre­
su następującego twierdzenia bardziej ogólnego:

Weźmy szereg

( 2 6 ) t\ (2) +  / 2 (2) +  • • • +  /n  (2) +  ■•• >



94 Rozdział XIV. — Teorja ogólna funkcji analitycznych podług 1'auchy’ego.

którego wszystkie wyrazy sa funkcjami anałitycznemi, całokształtncmi w obszarze 
A, ograniczonym przez obwód zamknięty 1", i ciągłetni na samym obwodzie. Jeżeli 
szereg (26) jest jednostajnie zbieżny wzdłuż krzywej F, to jest również zbieżny 
w każdym punkcie obszaru A, i suma tego szercgti stanowi funkcję całokształtna 
F  (z), której p-ia pochodna wyraża się zapomoca szeregu, utworzonego z po­
chodnych rzędu p poszczególnych wyrazów.

Oznaczmy przez z (z) sumę szeregu (26), odpowiadającą jakiemuś 
punktowi krzywej F; z (z) jest funkcją zmiennej z, ciągłą wzdłuż tego 
obwodu, a więc, jak stwierdziliśmy w uwadze do art. 291. całka 
określona

co

<ri - — r
w której x oznacza dowolny punkt obszaru A, stanowi funkcję cało- 
kształtną w obszarze A. której pochodna rzędu p jest dana przez wzór

V  /,(=)

V=1 dz.
<D (z — v) P+1

Lecz z powodu zbieżności jednostajnej szeregu (26) wzdłuż F, sze­
reg, otrzymany zapomocą podziału wszystkich wyrazów przez z — r. 
posiada tę samą własność, i możemy napisać

(28) /'b»(.i) 1 . 2 . . .  p A z  ( z ) d z  

2 Jtł . ’  ( Z  — Xl > ' * 1
1 .2  ... p

2r.i  e

F(.v)
+ co

1 , / .• (z) dz
—  2 * i  / z - 

v—i J  <n

a stąd, uwzględniając, że /, \z) jest funkcją całokształtną wewnątrz 
krzywej T, otrzymujemy [wzór <12)[

f( .v ) = / , ( . r )  +  M r )  +  ...  +  A  (x) +  . . .
Wzór (28) przybiera również postać

F W  (.,) =  ffp ) (r) +  . . .  +  /„  w  (x) +  ...
Zatym, jeżeli szereg (26) jest jednostajnie zbieżny w obszarze A 

płaszczyzny zmiennej z, a x oznacza dowolny punkt tego obszaru, wy­
starczy zastosować poprzednie twierdzenie do jakiegokolwiek obwodu 
zamkniętego F, położonego w obszarze A i otaczającego punkt r; w ten 
sposób otrzymujemy twierdzenie następujące:



Wszelki szereg, zbieżny jednostajnie w obszarze A płaszczyzny, którego 
wszystkie wyrazy są funkcjami całokształtnemi w polu A, wyraża funkcję F  {z),
< ałokształtną w tym samym obszarze. Pochodna rzędu p funkcji F  (z) równa 
się sumie szeregu, otrzymanego zapomocą p-krotnego różniczkowania każdego 
wyrazu szeregu, który wyraża F  (z). (’)

298. Bieguny. —  Wszelka funkcja, całokształtna w kole o środku a, 
równa się wewnątrz tego kola sumie szeregu potęgowego
(29) /(z) =  A0 +  A, (z — a) . ..  +  Am (z — a) m +  . . .

Powiemy dla krótkości, iż funkcja jest regularna (reguliere) w punkcie 
a, który stanowi dla niej punkt zwyczajny (point ordinaire); wnętrze koła 
C  o promieniu ę, zakreślonego dokoła a, w którym daje się zastosować 
wzór (29), nazwiemy otoczeniem punktu a (le domaine du point a). 
Zauważmy, iż niekoniecznie ma to być największe z kół, wewnątrz 
których jest ważny wzór (29); promień c otoczenia będzie często wy­
znaczony zapomocą jakiejś innej własności szczególnej.

Jeżeli pierwszy ze spółczynników A0 jest równy zeru, to f ( a )  =  O, 
i punkt a jest punktem zerowym (2) funkcji /  (z). Rząd punktu zerowego 
określamy tak samo jak w zastosowaniu do wielomianów: jeżeli szereg, 
wyrażający f  (z), rozpoczyna się od wyrazu stopnia m względem 2 —  a,

f(z )  = Am (z— a) m -f A m+i (z—a ) m+1 +  . . .
[m >  O, A m 4= O], 

to
f { a )  =  O, f  (a) =  O, . . .  ,/(m -i)(o) =  O, /<"» (a) =4 O,

1 punkt a jest punktem zerowym rzędu m (zero d’ordre m). Można jeszcze, 
jeżeli oznaczymy przez © (2) szereg potęgowy, nie stający się zerem dla
2 =  a, napisać wzór poprzedni w postaci

f  (2) —  (z — a) m ci (2).

Ponieważ cc (z) jest funkcją ciągłą zmiennej 2, można uczynić pro­
mień ę obszaru dość małym, iżby cc (2) nigdzie w tym obszarze nie było

i1) Twierdzenie to jest ogólnie przypisywane Weierstrassowi.
(-) J. Puzyna używa w tym znaczeniu nazw: miejsce zerowe, miejsce pier­

wiastkowe, pierwiastek („Teorja funkcji analitycznych“—t. I, str. 129). Tłumaczenie 
bezpośrednio nazwy francuskiej „le zćro dane fonction’' przez „zero funkcji" powo- 
dowaćby mogło, jak sądzę, pewne nieporozumienia. Termin „pierwiastek", o ile chodzi 
0 bezwględną ścisłość, wypada stosować do samej wartości zmiennej zespolonej, a nie 
do punktu, który jej odpowiada — zresztą, zgodnie z utartemi zwyczajami, skrupula­
tności w tym względzie nie chciałbym posuwać zbyt daleko, (por. np. E. Pascala 
„Repertorjum matematyki wyższej", w przekładzie S. Dicksteina, t. I). [Uw. Tłum .]•

II. — Całka Cauchy ego. — Szeregi Taylora i Laureata. — Punkty osobliwe. 9ó
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równe zeru; wewnątrz takiego obszaru funkcja f  (z) nie będzie miała 
innego punktu zerowego, prócz punktu a. Zera funkcji całokształtnej sa 
tedy punktami odosobnionemu.

Wszelki punkt, który nie jest punktem zwyczajnym funkcji jedno- 
wartościowej f(z), nazywa się punktem osobliwym (point singulier). Punkt 
osobliwy a funkcji f  (e) nosi nazwę bieguna (póle), jeżeli jest punktem

zwyczajnym dla odwrotności  ̂^ . Szereg potęg różnicy r — a, w któ-
1

ry daje się rozwinąć ~ , nie może zawierać wyrazu stałego, ponie-
/ (*)

waż punkt a byłby w takim razie dla f  (:) punktem zwyczajnym. Przy­
puśćmy, iż ten szereg rozpoczyna się od wyrazu stopnia m-ego względem 
z — a, czyli że mamy wzór

(30)
1

f(z ) (z — a) »' ę (c),

w którym <p (r) oznacza funkcję regularną w otoczeniu punktu a i nie 
równą zeru przy z a. Wnioskujemy stąd, iż nawzajem

(31) f(z)
1 1

(s — a) m ' ?(z)
_+(f)

(z— a) m ’

(;) oznacza również funkcję regularną w otoczeniu punktu a i nie 
równą zeru przy z =  a. Możemy napisać ten wzór w postaci równo­
ważnej

(31 bis) / (z) =  B m +  — B-m_l +  . . .  +  B' +  P  (z — o),
(z— a) m (z— a) m—1 z — a

oznaczając przez B m, B m_ u  . . .  Bt liczby stałe, a przez P (z — a), jak 
to często będziemy czynili w dalszym ciągu, funkcję regularną dla 
z =  a. Niektóre ze spółczynników B v B2, . . .  , Bm—i mogą być równe 
zeru, lecz spółczynnik Bm jest napewno różny od zera; liczba całkowita 
m jest to rząd bieguna (l'ordre du póle). Widzimy, że biegun rzędu m

1
funkcji f{ź )  jest punktem zerowym rzędu m dla^.(  ̂ i nawzajem.

Szereg, wyrażający f  {z) w otoczeniu bieguna a. składa się z części
1

regularnej P  (z — a) oraz z wielomianu całkowitego względem 1

nadajemy temu wielomianowi nazwę części głównej (partie principale) 
funkcji f(z) w otoczeniu bieguna. Gdy moduł różnicy z — a doży do zera, 
moduł funkcji f{z) wzrasta nieograniczenie, niezależnie od sposobu, w jaki punkt



II. — Całka Cauchyego.— Szeregi Taylora i Laurenta.— Punkty osobliwe. 97

2 zbliża się do bieguna. W istocie, korzystając z tego, że funkcja <|>(2) nie 
równa się zeru dla z =  a, uczyńmy promień otoczenia dość małym, by 
moduł ó (2) przewyższał w tym całym obszarze pewną liczbę dodatnią

M
M: oznaczając przez r moduł różnicy 2 — a, otrzymujemy |/(z) i >> —

a przeto f(z) wzrasta nieograniczenie, skoro tylko r dąży do zera. 
Ponieważ funkcja <j> (z) jest regularna dla 2 =  a, możemy wyznaczyć kolo 
C o środku w punkcie a, wewnątrz którego funkcja <]>(z) jest cało-

kształtna. Iloraz 'M2)
{z — a) m jest funkcją całokształtną we wszystkich

punktach tego koła, prócz samego punktu a. Funkcja f(z) nie posiada 
tedy w otoczeniu jakiegoś bieguna a żadnego innego punktu osobliwego 
prócz samego bieguna; innemi słowy, bieguny są to -punkty osobliwe odosob­
nione.

299. Funkcje meromorficzne. — Wszelka funkcja jednowartościowa, 
która nie posiada w jakimś obszarze A innych punktów osobliwych, niż 
bieguny, nazywa się funkcją meromorficzną czyli częściokształtną (mero- 
morphe) w tym obszarze. Funkcja częściokształtną w dziedzinie całej 
płaszczyzny może posiadać nieskończenie wiele biegunów, lecz w obsza­
rze, położonym całkowicie w odległości skończonej, może się zawierać 
jedynie liczba skończona tych punktów. Odpowiedni dowód opiera się 
na twierdzeniu ogólnym, do którego wypadnie nam również odwoływać 
się w dalszym ciągu, a mianowicie: Jeżeli w obszarze A, położonym całko­
wicie w odległości skończonej, istnieje nieskończenie wiele punktów o pewnej 
szczególnej własności, to zbiór tych punktów posiada co najmniej jeden punkt 
graniczny, położony w obszarze A lub na jego obwodzie. (Punktem granicznym 
(point limite) nazywamy każdy punkt, w którego sąsiedztwie istnieje 
nieskończenie wiele punktów, posiadających omawianą własność). Twier­
dzenie to da się uzasadnić zapomocą tak często używanej metody ko­
lejnych podziałów. Oznaczmy dla krótkości zbiór rozważanych punktów 
przez (E ) i wyobraźmy sobie, żeśmy podzielili obszar A zapomocą 
równoległych do osi 0 .1  i Oy na kwadraty lub części kwadratów; jeden 
co najmniej z obszarów cząstkowych, A,, zawiera nieskończenie wiele 
punktów zbioru (P). Dzieląc podobnież A1 i tak dalej, utwoizymy ciąg 
nieograniczony obszarów A1, A2, . . .  , A n , coraz to mniejszych, z któ­
rych każdy stanowi część poprzedniego i zawiera nieskończenie wiele 
punktów omawianego zbioru. Wszystkie punkty obszaru A n dążą do 
punktu granicznego Z, położonego wewnątrz obszaru A lub na jego 
obwodzie. Ów punkt Z musi być jednym z punktów granicznych zbioru

7Kurs analizy matematycznej.
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(E ),  ponieważ wewnątrz koła o dowolnie małym promieniu, mającego za 
środek punkt Z, zawiera się zawsze nieskończenie wiele punktów 
zbioru (E).

Ustaliwszy ten fakt, załóżmy, że funkcja f(z) jest częściokształtna 
wewnątrz pola A, położonego w odległości skończonej, jak również na 
obwodzie I' tego pola. Gdyby ta funkcja posiadała w obszarze A nie­
skończenie wiele biegunów, to musiałby istnieć, zgodnie z poprzednim 
twierdzeniem, przynajmniej jeden punkt Z, położony w tym obszarze 
lub na I\ w którego sąsiedztwie znajdowałoby się nieskończenie wiele 
biegunów. Taki punkt Z nie mógłby być ani biegunem (ponieważ bie­
guny są punktami odosobnionemi — Uw. //.) ani punktem zwyczajnym. 
Tak samo stwierdzamy, że funkcja f(z) może posiadać w omawianym 
obszarze jedynie liczbę skończoną punktów zerowych. Możemy tedy' 
wypowiedzieć twierdzenie ̂ następujące:

Wszelka funkcja, częściokształtna (mcromor/iczna) ir obszarze A, położonym 
całkowicie w odległości skończonej, i na jego obwodzie, może posiadać w lej dzie­
dzinie jedynie liczbę skończona punktów zerowych i liczbę skończona biegunów.

W otoczeniu jakiegokolwiek punktu a funkcja częściokształtna / ( ;i 
może być wyrażona zapomocą wzoru
(32) /(«) =  (* — o) p <p (8),
w którym <p(z) oznacza funkcję regularną, nie równą zeru dla c a. 
Wykładnik (i nazywa się rzędem (l’ordre) funkcji f(z) w punkcie a. Rząd 
równa się zeru, jeżeli punkt a nie jest dla f(z) ani biegunem ani 
punktem zerowym; jeżeli punkt a jest punktem zerowym rzędu m 
funkcji /(z), to rząd równa się m, a jeżeli a jest biegunem rzędu n 
funkcji /(z), to rząd =  — n.

300. Punkty istotnie osobliwe. — Każdy punkt osobliwy funkcji 
jednowartościowej, który nie jest biegunem, nazywa się punktem istotnie 
osobliwym (point singulier essentiel). Punkt istotnie osobliwy a jest odo­
sobniony, jeżeli można zakreślić okrąg C o środku o, wewnątrz którego 
funkcja f(z) nie posiada, oprócz punktu a, żadnego innego punktu oso­
bliwego; w tej chwili poprzestaniemy jedynie na takich punktach.

Twierdzenie Laurenta daje bezpośrednio szereg, wyrażający funkcję 
/(z) w otoczeniu punktu istotnie osobliwego. Weźmy kolo C o środku a, 
nie zawierające żadnego innego punktu osobliwego funkcji /(z); c zaś 
niech oznacza koło spólśrodkowe, położone wewnątrz C. W pierścieniu 
kołowym, zawartym pomiędzy C i c, funkcja /(z) jest eałokształtna, 
i przeto równa się sumie szeregu, uszykowanego podług potęg dodatnich 
i ujemnych różnicy z — o
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+ 03
(33) /(z) =  ^  Am(z — d)m .

m — —  c o

To rozwinięcie w szereg jest ważne dla wszystkich punktów, po­
łożonych wewnątrz koła C, z wyjątkiem punktu a, ponieważ do każde­
go punktu z, leżącego wewnątrz C, a różnego od a, można dobrać pro­
mień kola c, mniejszy niż | z — a |, a spółczynniki Am nie zależą bynaj­
mniej od tego promienia (art. 295). Szereg (33) składa się z części re­
gularnej w punkcie a, utworzonej przez wyrazy o wykładnikach dodat­
nich, którą oznaczymy przez P(z — a), oraz z drugiej strony, z szeregu

uporządkowanego według potęg ilorazu —-—
z — a

(34) A—i . ->4—2
z — a (z — a)2

+ +
(2

----—  +
— a)m J

jest to cześć główna (partie principale) funkcji / ( z )  w obszarze punktu 
osobliwego. Owa część główna nie może być wielomianem, gdyż punkt 
z =  a, wbrew założeniu, byłby w takim razie biegunem (1). Jest to

funkcja całkowita ułamka —-— . Istotnie, niech r oznacza jakąkolwiek
z — a

liczbę dodatnią, mniejszą od promienia koła C; jeżeli oznaczymy przez 
O kolo o promieniu r i środku a, to spółczynnik A-m  szeregu (34) da 
się wyrazić (art. 295) w postaci

A—m =  f  (z — a)™-1  dz.
2 Tii J  (&)

Stąd wynika nierówność

(35) \A-m\ <  JYl(r) rm ,

w której J fl{r )  oznacza największość modułu f(z) na okręgu C'. Szereg
(34) jest tedy zbieżny, o ile tylko | z — a \ jest większe niż r, a ponie­
waż r jest liczbą dodatnią, którą możemy uczynić dowolnie małą, więc 
szereg (34) jest zbieżny dla wszelkiej wartości z, różnej od a , i może­

(i) Aby nie pominąć żadnego przypuszczenia ,należałoby również zbadać przy­
padek, w którym szereg, wyrażający / ( * )  wewnątrz C, zawiera jedynie potęgi dodat­
nie różnicy z — a, a wartość / ( a )  funkcji w punkcie a jest różna od wyrazu szere­
gu, niezależnego od z — a. Punkt * = a byłby w takim razie d la /(z )  punktem nie­
ciągłości (point de discontinuitć). Osobliwość tę, o charakterze zupełnie sztucznym 
usuniemy z naszych rozważań, (p. poniżej, rozdz. XVI).
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my napisać, oznaczając przez P(z — a) funkcję regularną w punkcie a 

a przez G

/(*) =  P ( z - a ) +  <?( 1
\2 — a

Gdy moduł j c — a maleje nieograniczenie, wartość funkcji f  (z) 
nie dąży do żadnej określonej granicy. Dokładniej: wewnątrz okręgu C, 
zakreślonego dokoła punktu a dowolnym promieniem ę, istnieją zawsze punkty z, 
w których f(z) różni się dowolnie mało od wszelkiej liczby z góry danej. ( W e i e r -  

ST R A SS).

Dowiedzmy z początku, iż przy jakichkolwiek wartościach dwu 
liczb dodatnich ;  i M istnieją wartości zmiennej 2, spełniające jednocze­
śnie warunki | -— a <  ę, f(z)  | >  M. Gdyby, w istocie, moduł funkcji 
f(z )  był co najwyżej równy M, gdy z — a <  ę, to dla r <  ę JYl(r) by­
łoby mniejsze od M lub równe M, i zgodnie z nierównością (3bj 
wszystkie spółczynniki A—m równałyby się zeru, ponieważ iloczyn 
c7)7(r) rm J/r”1 dążyłby do zera wraz z r.

Weźmy następnie jakąkolwiek wartość A. Jeżeli równanie f(z) A 
posiada pierwiastki wewnątrz koła C o wszelkim, dowolnie małym pro­
mieniu ę, to twierdzenie sprawdza się odrazu. Jeżeli równanie /(c) - A 
nie posiada w sąsiedztwie punktu a nieskończenie wielu pierwiastków, 
to można wybrać tak mały promień ę, iż wewnątrz koła C o tym pro­
mieniu, mającego punkt a za środek, omawiane równanie nie posiada

» 1
żadnego pierwiastka. Funkcja ?(z) =  jest w takim razie cało-

f(z) — A
kształtna w każdym punkcie 2, położonym wewnątrz C, prócz punktu 
a, który może być dla y(z) jedynie punktem istotnie osobliwym, gdyż 
w przeciwnym przypadku punkt ten byłby dla f(z) albo biegunem al­
bo też punktem zwyczajnym. Przeto, zgodnie z otrzymanym przed 
chwilą wynikiem, istnieją wewnątrz koła C wartości 2, spełniające wa­
runek

•5 (2) >> — czyli f  (2) — A <  e ,
6

przy dowolnie malej wartości liczby dodatniej e.
Własność ta stanowi wybitną różnicę pomiędzy biegunami a punk­

tami istotnie osobliwemi. W otoczeniu bieguna moduł funkcji f[z) wzra­
sta nieograniczenie, gdy tymczasem wartość f(z) w punkcie istotnie

j funkcję całkowitą (ł) ułamka —-— : 
/ * ' z — a

(!) Będziemy często oznaczali funkcję całkowitą zmiennej x przez G(x\.
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osobliwym jest zupełnie nieokreślona. Picard f1) otrzymał twierdzenie 
jeszcze dokładniejsze, wykazując, iż każde z równań f(z )  =  A, bez wy­
jątku lub z wyjątkiem jednego, zawierającego pewną szczególną wartość 
A , posiada w sąsiedztwie punktu istotnie osobliwego nieskończenie wie­
le pierwiastków.

Przykład, — Punkt z =  0 jest punktem istotnie osobliwym funkcji:

V 1 1 1  1 1
e =  1 +  — 4 - ----- --------+  . . .  + -----------

z 1 . 2  z'1 1 . 2 . . .  n z

łatwo sprawdzić, iż równanie e z =  A  posiada nieskończenie wiele pierwiastków o 
module mniejszym od dowolnie małej liczby c, o ile A nie równa się zeru. Załóżmy, 
że A =  r(cos 0 f  i sin 9); z równania powyższego wynika, j

1
— =  log r  +  i (9 +  2/cit ; 
z

do tego, by \z\ było <  ę, wystarcza warunek

(log r )2 +  (0 +  2 k n )2 — .
ę2

Istnieje, rzecz oczywista, nieskończenie wiele wartości liczby całkowitej k, speł­
niających ten warunek. W rozważanym przykładzie istnieje wartość wyjątkowa A, 
mianowicie A =  0. Może jednak również zdarzyć się, iż niema żadnej wartości wy-

1
jątkowej, jak np., gdy mowa o funkcji sin— .

Z

301. Pozostałości. — Niech a oznacza biegun lub punkt istotnie 

osobliwy odosobniony funkcji f(z). Obliczmy całkę j  f  (z) dz wzdłuż

okręgu C o środku a, zakreślonego w otoczeniu punktu a. Część regu­
larna P(z  — a) daje przy tym całkowaniu wynik równy zeru. Co do

części głównej G j — ) , można ją całkować wyraz po wyrazie; istot-
\z — aj

nie, jeżeli punkt a jest punktem istotnie osobliwym, mamy do czynienia 
z szeregiem potęgowym jednostajnie zbieżnym. Całka wyrazu ogólnego

A -m  dz 
(z — a)m

równa się zeru, gdy wykładnik m jest większy od jedności, ponieważ

p) Annales de l’Ecole Normałe supćrieure, 1880. (Roczniki Wyższej Szkoły 
(Normalnej).
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funkcju pierwotna — ’ przybiera po zakreśleniu przez
(w — 1) (c — a)"~ 1

zmienną drogi zamkniętej to samą wartość. Jeżeli zaś m 1, to całka

określona A - m f  ~ f  ^  posiada, jak wykazuje oblicze-
./ (s -  a)m J  z — o

nie, dokonane już w art 291-yiu, wartość 2z i A —t. Mamy tedy wzór

2 z i A . ^ C  f(z)dz ,
J  (O

który stanowi zresztą w istocie rzeczy jedynie zastosowanie szczególne 
wzoru (23), wyznaczającego spółczynniki szeregu Laurenta. Spółczyn- 
nik A—i nazywa się pozostałością czyli residuum (residu) funkcji f(z )  
względem punktu osobliwego a.

Weźmy obecnie funkcję/(c), ciągłą na obwodzie zamkniętym T i 
posiadającą wewnątrz tego obwodu jedynie liczbę skończoną punktów 
osobliwych a, b, c, . . . ,  1. Oznaczmy odpowiednie pozostałości przez 
A, B, C, . . . ,  L\ jeżeli otoczymy każdy z tych punktów osobliwych ko­

łem o nader małym promieniu, to całka j  f  (z) dz, wzięta wzdłuż 1’

w zwrocie dodatnim, będzie się równała sumie całek, liczonych w tym 
samym zwrocie wzdłuż małych okręgów — stąd wzór nader ważny 36

(36) f  f(z )  dz =  2sw (A +  B  +  C +  . . .  +  L),
J  (O

który wyraża, że całka j f  (z) dz, brana wzdłuż F w zwrocie dodatnim, jest

równa iloczynowi liczby 2 ~ i przez sumę pozostałości, odpowiadających punktom 
osobliwym funkcji /(z), Idących wewnątrz tego obwodu.

Rzecz jasna, iż to twierdzenie stosuje się również do obwodów F, 
utworzonych przez kilka krzywych zamkniętych.

Z powyższych rozważań widzimy, jak ważną rolę odgrywają po­
zostałości; pożytecznie umieć je szybko obliczać. Jeżeli punkt a jest 
dla /(;) biegunem rzędu m, to iloczyn (z - a)mf(z )  jest funkcją regular­
ną w punkcie a, i pozostałość funkcji / (z )  równa się oczywiście spół- 
czynnikowi potęgi (=’ — a)"—1 w szeregu, wyrażającym ten iloczyn. 
W razie, gdy mamy do czynienia z biegunem pierwszego rzędu (póle 
simple), przepis się upraszcza; pozostałość równa się wtedy granicy ilo­
czynu (z — o) /(:) przy z =  a. Najczęściej funkcja /(z )  jest dana w po­
staci
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/(z) =
Q{*)'

przytym funkcje P(z) i Q(z) są regularne dla z =  a, i P(a) nie równa 
się zeru, dla Q(s) zaś a jest punktem zerowym pierwszego rzędu. Niech

Q(z) =  (z — a)R(z); pozostałość jest równa ilorazowi czyli także,
P (a)

jak można bezpośrednio sprawdzić, ilorazowi
Q\a)

I I I .  — Zastosowania tw ierdzeń ogólnych.

Zastosowania ostatniego twierdzenia nie dadzą się zliczyć. Poda­
my niektóre z nich, dotyczące głównie obliczania całek określonych 
oraz teorji równań.

302. Uwagi rozmaite. — Weźmy taką funkcję /(z ), iż iloczyn 
(z — a) /(z) dąży do zera wraz z z — aj. Całka tej funkcji, brana 
wzdłuż okręgu 7, o środku a i promieniu ę, dąży do zera wraz z pro­
mieniem tego okręgu. W istocie możemy napisać

/' /(z )d z  =  f  (z -a ) f(z )  —  ;
J  (7) J  (7) z — a

jeżeli maximum modułu (2 — a)/(z) na okręgu 7 równa się -q, to mo­
duł całki jest mniejszy niż 2to] a przeto dąży do zera, ponieważ tj ma­
leje również nieskończenie wraz z ę. Tak samo można stwierdzić, iż 
jeżeli iloczyn (z — a)/(z ) dąży do zera, gdy moduł różnicy 2 — a nieo-

graniezenie wzrasta, to całka / f(z)dz, liczona wzdłuż okręgu C o
J  (C)

środku a, dąży do zera, gdy promień koła nieograniczenie wzrasta. 
Uwagi powyższe nie tracą wartości, gdy całkujemy zamiast całego okrę­
gu tylko wzdłuż pewnej jego części, byleby rozważany iloczyn dążył 
do zera wzdłuż tej części.

Częstokroć potrzeba znaleźć granicę wyższą modułu całki określo­

nej o postaci / /(jc) d.v, branej wzdłuż osi rzeczywistej. Załóżmy w ce-
J  a

łu ustalenia biegu myśli, że a <  b. Stwierdziliśmy powyżej (art. 283), 

że moduł takiej całki jest równy co najwyżej całce ( \/(x)\ dx, i prze­
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to mniejszy niż iloczyn M (b — o), w którym M oznacza jakąś granicę 
wyższą modułu funkcji /(ar).

303. Obliczanie elementarnych całek określonych. — Całka określo-
r +CSjna funkcji wymiernej F(.r), wzięta wzdłuż osi rzeczywistej, / F(x)dx

— O J

posiada określoną wartość, o ile mianownik nie staje się równym zeru 
przy żadnej wartości rzeczywistej zmiennej .r oraz stopień licznika jest 
mniejszy od stopnia mianownika co najmniej o dwie jedności. Zakreśl­
my dokoła początku układu okrąg C o promieniu B dość wielkim, by 
wszystkie pierwiastki mianownika funkcji /•’( r) były zawarte wewnątrz 
tego okręgu i całkujmy wzdłuż obwodu, utworzonego ze średnicy B A , 
wykreślonej wzdłuż osi liczb rzeczywistych i z półokręgu C, leżącego 
powyżej tej osi. Wewnątrz tego obwodu F(e) nie posiada innych punk­
tów osobliwych, prócz biegunów, powstających z tych pierwiastków 
mianownika funkcji F (z), które mają przy i spółczynnik dodatni. Mo­
żemy tedy, oznaczając przez I  Bk sumę pozostałości, odpowiadających 
tym biegunom, napisać wzór

/ PF ( z ) d :+  f  F(z)dz =  2 **£/ ?*;
J  —R (O

gdy promień B wzrasta nieograniczenie, całka wzdłuż C  dąży do zera 
ponieważ iloczyn zF(z) równa się zeru dla z nieskończenie wielkiego- 
i po przejściu do granicy otrzymujemy

I F(x)dz =  2 « H R k .

Łatwo sprowadzić do tego typu całki określone funkcji wymier­
nych wielkości trygonometrycznych sin r i cos x, nie stających się nie- 
skończonemi przy żadnej wartości rzeczywistej x, liczone wzdłuż osi 
rzeczywistej:

rz*
/ F(sin x, cos j ) dr.

. f n

Zauważmy przedewszystkim, że wartość całki nie ulega zmiauie, 
jeżeli weźmiemy za granice dowolną liczbę rzeczywistą x0 oraz T0- f 2r; 
można tedy obrać np. granice — -  i +  Otóż klasyczne podstawie- 

x . . .me tang — =  t zamienia badaną całkę w całkę funkcji wymiernej zmień-
u
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nej t, braną pomiędzy granicami — oo i -foo, ponieważ tan g— wzra­

sta od — oo do -f- oo, gdy x rośnie od — rc do +  n.
Można postępować jeszcze inaczej. Gdy założymy: e xi =  z to

, dz .dx =  i otrzymujemy podług wzorow Eulera
iz

Z2 +  1 . 22— 1cos x = ---- , sin x =  --------;
2 2 2 iz

badana całka przechodzi tedy w całkę

f Flz2 — 1 . z2 + 1  
^   ̂ 2 iz ' 2 z

dz
iz

Co do nowej drogi całkowania łatwo stwierdzić, że gdy x wzrasta 
od 0 do 2 u, punkt 2 przebiega w zwrocie dodatnimi okrąg o promieniu 
równym jedności, mający za środek początek układu. Wystarczy tedy 
obliczyć pozostałości otrzymanej w ten sposób funkcji wymiernej zmien­
nej 2 względem biegunów o module mniejszym od jedności.

Ix — a — bi\/ 2 *
cot

o

bi
cot

czyli inaczej

\ 2

| zeru. Otó:

i l x ~ a — bi
2

i  ( x ~
a — bi

e {
2

d r, która posiada wartośd

cot
bi -  1

\  . ( x  — a — b i \

) , „ - ' ( — i — )

) . - f

2

a — b i \

+  e ' 
— e

b +  ai  

b + ai

Zamiana e xi =  z doprowadza tedy do całki

i 2 +  e ~  b + ai dz
(C )  2

, — b +  ai

Funkcja do całkowania posiada dwa bieguny pierwszego rzędu 
z = 0  i z = e ~ b + ai, i  odpowiednie pozostałości są równe — 1 i +  2. 
Jeżeli b jest dodatnie, oba te bieguny leżą wewnątrz obwodu całkowania 
i całka równa się jeżeli b jest ujemne, wewnątrz obwodu leży tylko 
punkt 2 =  0 i całka równa się — 2 ni. Dana całka równa się tedy 
+  2izi, stosownie do tego, czy b jest dodatnie czy ujemne. — Podajemy 
poniżej kilka przykładów mniej elementarnych.



106 Rozdział XIV. — Teorja ogólna funkcji analitycznych podług Cauchy’ego.

304. Różne przykłady rachunku całek określonych. -  1) Funkcja —

posiada dwa bieguny i i — i, którym odpowiadają pozostałości “ * i —

Załóżmy, w celu ustalenia biegu myśli, iż m jest dodatnie i rozpatrzmy obwód, utwo­
rzony z półokręgu o promieniu R nader wielkim, mającego za środek początek ukła­
du, oraz ze średnicy, nakrywającej oś rzeczywistą. Wewnątrz tego obwodu funkcja 
. r a i :

posiada tylko jeden biegun z =  i, więc całka, obliczona wzdłuż tej całej

linti zamkniętej, równa się r . e ~ m. Otóż całka, wzięta wzdłuż półokręgu, dąży do 
zera, gdy R wzrasta nieograniczenie. ponieważ moduł iloczynu

e ,m ldążv w punktach tej krzywej do zera. W istocie, jeżeli zastąpimy z przez
1 +  i 1
R (cos 9 l sin 91, to otrzymamy

g rn ( * £ —  m R  »in $ +  i m R cos OJ

gdy 9 wzrasta od O do b, moduł e ~  m R ,ln 9 pozostaje mniejszy od jedności. Co

do modułu czynnika 4 , ten dla z nieskończonego równa się zeru. Otrzymujemy
1 + s*

tedy po przejściu do granicy

/
CO -mir djr -  e 1

_CV> 1 t X'
po zastąpieniu t mi T przez cos m x  t sin m x  spólczynnik przy i z lewej strony 
znaku równości okazuje się równym zeru, gdyż elementy całki znoszą się parami. 
Ponieważ mamy prócz tego cos (— m x) — cos m x % przeto można wzorowi po­
przedniemu nadać postać

<37)
cos m x  
1 — x l

dx
2

e m

2] Funkcja jest holomorficzna wewnątrz obwodu ABMBANA  (rys. 62>,

utworzonego z dwu pólokręgów B M B t, A NA, zakreślonych dokoła początku układu 
promieniami R i r, oraz z prostych AR, B'A}.

Stąd wynika związek

r  e b  r ~ r e iz r  e '* .
dx  4 -1 ------d i  — / ------dx  - 1 ------ dz =  O,

J  (B.M B1) * J  — R X J  (A’NA) Z

który można również napisać w postaci

x
dx  +

(BMB')
dz fJ  (A'NA) S

dz O.

Gdy r  dąży do zera, ostatnia całka dąży do -— ~ i; istotnie, oznaczając przez 
P d )  pewną funkcję regularną w początku układu, możemy napisać
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e u 1
P (*)

Z z
"wiec

I -  dz =  / • P(z> dz +  f
' (A’NA) z J  (A’NA) J  (

dz

(A 'N A )

Całka części regularnej P{z) staje się nieskończenie małą wraz z długością 
drogi całkowania, gdy tymczasem droga z tych całek równa się przyrostowi funkcj 
L og  (z), nabytemu wzdłuż A ’NA, to jest — r. i.

Eys. 62.

Całka, brana wzdłuż B M B ’, dąży do zera, gdy R wzrasta nieograniczenie. 
W  istocie, jeżeli założymy, że z =  R  (cos 9 - f i  sin 9), to

f  —  dz =  i f  
J  (B M B ’) Z J  0(B M B ')

moduł tej całki jest mniejszy niż

— R  sin fi _ .
e d 9 =  2

— R  sin fi + i R  cos fi , .e d 9,

 ̂— fi sin e

n sin 9 2
Gdv 9 wzrasta od 0 do - - . stosunek ------ maleje od 1 do — , więc

2 9 tc -

i  przeto

R sin 9 >  — R 9,
77 i

— fi sin 15 —
e <  e . ^

skąd wynika wypowiedziane twierdzenie.
Po przejściu do granicy otrzymujemy zatym (p. t. I, art. 100)
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czyli

d r ~1

mii e 
X

~

3] Całka funkcji całkowitej e ~ z\ liczona wzdłuż obwodu O A BO, utworzo­
nego z dwu promieni 0 .4  i OB, nachylonych do siebie pod kątem 45°, i z łuka 
.4 B okręgu (rys. 63), równa się zeru, co można wyrazić jak następuje

I e ~ *  dx + I e~~' di = f  e ~ ‘ dt.
J  o  J (,\B) (OB)

Rys. 63.

Gdy promień R okręgu, do którego należy łuk A B, powiększa się nieograni- 
czenie, całka, brana wzdłuż A B , dąży do zera. W istocie, jeżeli założymy, że 

® *
i R (cos — i sin —), to całka ta przybierze postać

<?
— IV (cos <f + i sin 9 2

e e df.

więc jej moduł jest mniejszy od całki — J 2 g coi  ̂ d f .  W ten sam sposób,
o

jak w poprzednim przykładzie, otrzymujemy

Ostatnia z tych całek posiada wartość

dąży zatym do zera, gdy R wzrasta nieograniczenie.
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Można założyć, iż wzdłuż promienia OB
' 2 * 23 =  ę (cos — +  i sin —); stad e ~ 2 = e ~  ’S , i gdy R wzrasta nieograniczenie, 
4 4

•osiągamy granicę (p. 1.1, art. 135)

/ : cos i sin —) dę 
4

r+ co
/ eJ  o

dar
2

-wiec

/
. -  1C2'  dc =_  V W cos — — t sin —) 

4 4 ;

Przyrównywująe do siebie części rzeczywiste i spółczynniki przy i, otrzymuje­
my wartości całek Fresneła

(38) / :
+ CO 1

cos c dc =  -g i .  f *
2 J o

sin ę2dę

305. Obliczanie f  (p) f  (1 — p)■ — Całka określona / :
M x  p —1 dar

1 4 - a?
(zmienna a: i wykładnik p — rzeczywiste) posiada wartość skończoną, o ile p jest 
dodatnie i mniejsze od jedności; wartość ta równa się iloczynowi P (p )  T (1 — pM 1)

Aby obliczyć tę całkę, weźmy funkcję
rP—i

posiadającą jeden biegun, w punkcie

x -  — 1, oraz jeden punkt rozgałęzienia, z =  O. Weźmy obwód abmb'a'na (rys. 64^ 
utworzony z dwu okręgów C i C  o promieniach r  i ę, zakreślonych dokoła początku 
układu, oraz z dwu prostych, nieskończenie b'izkich, ab  i a'b', położonych z obu

Rys. 64.

(>) Wystarczy zastąpić w tym celu we wzorze, podanym na str. 340 (t. I) 

u dołu, t przez —- — . Wzór (39), uzasadniony przy założeniu, że p  jest rzeczywiste,
1 - 3C

jest wogóle prawdziwy, gdy część’ rzeczywista wykładnika p  zawiera się pomiędzy
O a 1.
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3 P - 1
stron cięcia, wyznaczonego podług o x. Funkcja ---------  jest wewnątrz tego obwodu.

1 z
który otacza tylko jeden punkt osobliwy, a mianowicie biegun z — 1, funkcja 
jedno wartościowa; aby określić ja w zupełności, umówmy się, że nadajemy argumen­
towi zmiennej z wartość, zawarta pomiędzy O a 2 r. Oznaczając przez R pozostałość, 
odpowiadająca biegunowi z —1, otrzymujemy przeto:

Całki, brane wzdłuż okręgów C i C', dążą do zera, gdy r  wzrasta nieskończe­
nie lub ę nieograniczenie maleje, ponieważ w tych warunkach zmierza również do 

a pzera iioczcn , a to z powodu że O <  p <  1.
1 4- i

Wzdłuż ab z jest rzeczywiste; w celu osiągnięcia większej jasności, oznaczmy 
jego wartość przez x. Wobec tego, że argument zmiennej z równa się zeru, z p~ 1 jest 
równe wartości arytmetycznej potęgi x p~ 1. Wzdłuż a b' z jest również rzeczywiste, 
lecz ze względu na to, że jego argument równa się 2 rc, otrzymujemy:

t P- 1 _  e ( P - D  <log* + 2«s.) =  e i ( p - 1 )  x p- 1  

Suma całek, liczonych wzdłuż ab  i b a , dąży tedy do granicy

r+  ~  xl l _ c 2« i(p -l))

Pozostałość R jest równa (— 1) p 
liczby — 1 uważamy za równy s. Stąd

r + & x p~ l 2
I --------- dx -

J o  1 + *  1 -  g 2 *  i (P 1) t

czyli wreszcie

(39) i
’+ c*> 

o
x p~ '
1 +  X

l, t. j. e <p ponieważ argument

2 z i — -
— (p —t) B 1  g (p—i) K i sin (p — 1) i;

dx  =  ------— .
sin p it

306. Zastosowanie do funkcji częściokształtnych.— Przypuśćmy, że 
są dane dwie funkcje: / ( z )  i rp(z), z których jedna, /(2), jest częścio- 
kształtna (meromorficzna) wewnątrz pewnego obwodu zamkniętego Cr 
a druga—całokształtna (holomorficzna) wewnątrz tego samego obwodu, 
i że ponad to funkcje /(-), /'(z) i z (2) są ciągłe na samym obwodzie.

/•(z)
Poszukajmy w tych warunkach punktów osobliwych funkcji z(z)

zawartych wewnątrz C. Każdy punkt a, który nie jest dla f  (z) anj 
biegunem ani punktem zerowym, jest oczywiście punktem zwyczajnym 

/ ' ( z ł  . / ' ( z )
dla ^   ̂ . a przeto i dla z (z) /(_j ■ Jeżeli punkt a jest biegunem lub
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punktem zerowym funkcji /(z ) ,  to w otoczeniu tego punktu daje się 
zastosować wzór:

/(*) =  (2 — a / ' <j> (z) ,
w którym jj. oznacza liczbę całkowitą, dodatnią lub ujemną, wyrażają­
cą rząd funkcji w tym punkcie (art. 299), a ej) (z) — funkcję regularną 
i nie równą zeru dla z =  a. Stąd wynika, przy pomocy pochodnych lo­
garytmicznych:

/'(z) =  9- f  f(z)
/ (z )  z — a <j> (z)

Ponieważ, z drugiej strony, w otoczeniu punktu a

<P (2) =  '■? («) +  (z — a) cp'(a) +  . . .  ,
f(z )

zatym punkt a jest dla iloczynu tp (2) —— -  biegunem pierwszego rzędu,
/(z)

któremu odpowiada pozostałość, równa (icp(a) to jest m cp (a), jeżeli punkt 
a jest punktem zerowym rzędu m funkcji /(z), lub równa — w cp (a), je ­
żeli punkt a jest biegunem rzędu n tej funkcji. Otrzymujemy tedy, po­
dług twierdzenia ogólnego o pozostałościach i przy założeniu, że na ob­
wodzie C niema żadnego pierwiastka funkcji /(z), wzór następujący:

(40) dz =  £ c p  (a) — £ cp (b) ,

w którym a oznacza którykolwiek z punktów zerowych funkcji /(z ) , po­
łożonych wewnątrz obwodu C, b — którykolwiek z biegunów, należą­
cych do tegoż obsżaru, a przytym każdy z punktów zerowych lub bie­
gunów liczymy tyle razy, ile wymaga jego rząd. Wzór (40) dostarcza 
nieskończenie wielu związków, ponieważ możemy zastąpić w nim sym­
bol ogólny cp (z) przez dowTolną funkcję całoksztaltną.

W szczególności załóżmy, że cp (z) =  1 i oznaczmy odpowiednio 
przez N  i P  liczbę pierwiastków i liczbę biegunów funkcji /(z), zawar­
tych wewnątrz obwodu C\ wzór (40) przybiera postać

(41) N  — P  =  —  / 
2 ni J (O /(s)

Wzór ten stanowi podstawę ważnego twierdzenia. A mianowicie,

f ' (z\ jest to pochodna funkcji Log [/(z)]; aby obliczyć całkę określoną,
/(*)
występującą we wzorze (41) z prawej strony znaku rownosci, wystar­
czy tedy znaleźć przyrost, który otrzymuje

log | f  (z) | +  i arg / (z),
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gdy punkt z przebiega obwód C w zwrocie dodatnim. Lecz f(z) ! 
przybiera napowrót wartość początkową, gdy tymczasem argument fun­
kcji /  (z) wzrasta o 2 K z  (K — liczba całkowita, dodatnia lub ujemna). 
Stąd

(42) 1V — P =  =  K
2 i i

to jest: różnica iV — P równa się ilorazowi od podzielenia prze: 2~ przyrostu, 
który otrzymuje argument funkcji/(z ), gdy punkt z przebiega obwód C w zwro­
cie dodatnim.

Oddzielmy część rzeczywistą funkcji f(z) od części, zawierającej 
czynnik i:

/(=) =  X +  Y i:

gdy punkt z — z  -f  y i  zakreśla w zwrocie dodatnim obwód C, punkt o 
spółrzędnych A', V przebiega w układzie prostokątnym osi, ułożonych 
w ten sam sposób, jak osie spółrzędnych z, y, również krzywą zamknię­
tą C„ którą wystarczy nakreślić bodaj w przybliżeniu, aby na zasadzie 
jej wyglądu wyznaczyć liczbę K  Istotnie, potrzeba jedynie policzyć 
w tym celu liczbę całkowitych obrotów w tym lub w innym kierunku, do­
konanych przez promień wodzący, który łączy punkt (X, V) z począt­
kiem układu. Wzór (42) można jeszcze napisać w postaci

(43) N — P — 1 I d arc tang / ^ | =  1 /
2 * 7  (ci \xj 2*.! c»

XdY  — YdX 
X1 -f K8

Vze względu na to, że funkcja X odzyskuje po zakreśleniu przez z ob­

wodu zamkniętego C tę samą wartość, całka określona

r  X dY — YdX
J (0t X* +  Y2

równa się iloczynowi n przez nadmiar 1 ilorazu —  na obwodzie C., czy-

Y  Yli: wskaźnik ilorazu —  na obwodzie C(f) (.lindice du ąuotient — le

long du contour Cu), t. j. przewyżkę liczby przypadków, w których 
ten iloraz staje się nieskończonym, przechodząc od -f oo do — oo nad 
liczbą przypadków, w których przechodzi od — oo do - f  (t. I, art.

(*) J. Puzyna. Teorja funkcji analitycznych, t. II, str. 438.
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79, 154), czyli n i  | ^  

stać równoważną:

(44)

Możemy tedy nadać jeszcze wzorowi (43) po-

307. Zastosowanie do teorji równań. — Jeżeli sama funkcja /(z) jest 
całokształtna wewnątrz obwodu C i nie posiada na tym obwodzie ani 
bieguna ani punktu zerowego, to wzory powyższe stosują się jedynie 
do pierwiastków równania /(z )  =  O, położonych wewnątrz C. Wzory 
(42), (43) i (44) wyznaczają liczbę N tych pierwiastków zapomocą przy­
rostu, nabytego przez argument funkcji /(z) wzdłuż obwodu C lub za­

pomocą nadmiaru ilorazu Y
X

Jeżeli funkcja /(z )  jest wielomianem cał­

kowitym względem z, o jakichkolwiek spólczynikach, a obwód G składa 
się z liczby skończonej luków krzywych jednobieżnych (unicursales); 
to można obliczyć ten nadmiar zapomocą działań elementarnych, t. j. 
mnożenia i dzielenia wielomianów. W istocie, niech lukowi A B  obwo­
du odpowiadają wzory:

*  =  ?(*), V =  + (0 , ■
w których cp(ź) i <|>(ź) oznaczają takie funkcje wymierne parametru t, 
że parametr ten musi się zmieniać od a do p, na to aby punkt (x, y) 
przebiegł luk A B  w zwrocie dodatnim. Zastąpiwszy w wielomianie 

/(z) zmienną z przez <p(ż) +  ity(t) i oznaczając przez B(t) i (t) funkcje 
wymierne zmiennej t o spólczynnikach rzeczywistych, otrzymujemy:

/(z )  =  R(t) f  i Jt, (()■

Nadmiar ilorazu —  na luku A B  jest tedy równy nadmiarowi, na-
X

Iłbytemu przez funkcję wymierną \ gdy t zmienia się od a do p, który

nauczyliśmy się obliczać (t. I, art. 79). Jeżeli przeto obwód O składa 
się z łuków krzywych jednobieżnych, to wystarczy, w celu otrzymania 
liczby pierwiastków równania /(z) =  0, zawartych wewnątrz obwodu C, 
obliczyć nadmiar, odpowiadający każdemu z tych łuków i wziąć połowę 
sumy tych wszystkich nadmiarów.

Uwaga. — Z powyższych rozważań wynika bez trudności twierdze­
nie d’Alemberta. W tym celu uzasadnijmy przedewszystkim pewne 
twierdzenie pomocnicze, którym będziemy się nieraz posiłkowali. Niech

8Kurs analizy matematycznej.
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/•’(£) i 4>(s) oznaczają funkcje holomorficzne wewnątrz krzywej zam­
kniętej C, ciągle na samej krzywej i takie, że mamy stale wzdłuż C: 

‘h (2)1 <  F(z) |; w tych warunkach równania

F(z) 0, F(z) +  <t» (;) =  O

poxiada/n wewnątrz C l< sama liczbę pierwiastków. W istocie

I <b
F(z) +  * (z )  F(z) 1 +  ^TT :

I *(*)J
ą> (-)

gdy punkt z przebiega obwód C, punkt Z 1 zakreśla krzywą
F(s)

zamkniętą, położoną całkowicie wewnątrz koła o promieniu równym je­
dności, mającego za środek punkt Z 1, ponieważ wzdłuż całej krzy­
wej C zachodzi związek Z — 1 < 1 .  Argument tego czynnika odzys­
kuje tedy po zakreśleniu przez punkt 2 obwodu C swą wartość począt­
kową, i przyrost argumentu sumy F (z) -f <1> (z) równa się przyrostowi 
argumentu składnika F(z); oba równania posiadają przeto wewnątrz C 
tę samą liczbę pierwiastków.

Stwierdziwszy ten fakt, weźmy wielomian f(z) stopnia m c  go o ja ­
kichkolwiek spólczynnikach i załóżmy.

i  (z) =  A 0 z*", <1>(2) =  A t 2*"—1 -f . . .  -f A m, /(z) =  F{z) (2).

Obierzmy liczbę B dość wielką, by zachodziła nierówność

A t 1 A 2 1_L ... +
A o B ^ 0 ; B«

1
R” <  1:

wzdłuż całego okręgu C o promieniu większym od B , zakreślonego do­

koła początku układu, będziemy oczywiście mieli nierówność: <h
F < 1-

Równanie /(z)  =  0 posiada zatym wewnątrz koła C taką samą liczbę 
pierwiastków, jak równanie F(z) =  0, to jest m.

308. Wzór Jensena. — Weźmy funkcję /(ł), częściokształtną wewnątrz okręgu 
C o promieniu r, zakreślonego dokoła początku układH, a całoksztaltną i pozbawio­
ną punktów zerowych na C Oznaczmy przez av a,, . . .  an punkty zerowe, a przez 
b„ b„ . . .  bm — bieguny funkcji / (z ) ,  zawarte wewnątrz tego okręgu, licząc każdy 
z nieh tylekroć, ile wymaga jego rząd: założymy prócz tego, że początek układu nie 
jest dla /(« )  ani punktem zerowym ani biegunem. W tych warunkach przystąpmy 
do wyznaczenia całki określonej

i45) I Log | f(s)\
< it

z
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branej wzdłuż C w zwrocie dodatnim; niech np. punkt z rozpoczyna swą drogę od 
położenia z =  r  na osi rzeczywistej, a przytym argument funkcji / ( z )  posiada 
wartość, z góry obraną. Całkując przez części, otrzymujemy

(46> I =  {Log (z) Log [ f  (z)]) (Q ~  f  Log (z) f  (Z) dz;
J  (C) f i z)

pierwsza część prawej strony równości oznacza przyrost, nabyty przez iloczyn Log1 (z) 
Log [ / ( 2)] przy zakreśleniu przez punkt z okręgu C. Przyrost ten, jeżeli bierzemy 
zero, jako wartość początkową argumentu zmiennej z , równa się

(log r  -r  2 t c  i) {Log [f{r)\  f  2 iti  (a -  m)} -  log r Log [/(/»)]
=  2 t u  Log [/(/*)] +  2 t c  i (n — m) log r — 4 (n — m) t c 2 .

Aby obliczyć nową całkę określoną, rozpatrzmy obwód zamknięty T, utworzony 
z okręgu C, okręgu c o promieniu z nieskończenie małym, zakreślonego dokoła 
początku układu, oraz dwu brzegów cięcia, wyznaczonego wzdłuż osi rzeczywistej od 
punktu z =  ę do punktu z =  r  (rys. 64). [W celu ustalenia biegu myśli zakładamy 

/ ( * )  ni© posiada na tym odcinku osi rzeczywistej ani biegunów ani punktów 
zerowych; w przeciwnym razie wystarczyłoby wyznaczenie cięcia, tworzącego z osią 
rzeczywistą kąt nieskończenie mały]. Funkcja Log (z) jest całokształtna wewnątrz 
r  i podług wzoru ogólnego (40) otrzymujemy związek

I Log (z) ^  (t) dz +  / Log ( * ) ~ ^  dz +  (  Log dz
J  (ab) /(*) J  (C) /(*> a’) /<*>

+ dz =  2 t c  i  Log
m (

& i 0 .2 . . .  Ctn

6 ,  Ó2 . . .  6/n

Całka, wzięta wzdłuż okręgu c, dąży do zera wraz z ę, gdyż iloczyn z Log (z) 
maleje nieskończenie wraz z ę. Z drugiej strony, jeżeli argument zmiennej * jest 
równy zeru wzdłuż ab, to wzdłuż a b '  równa się 2 t c  i, i suma dwu odpowiednich 
całek zmierza do granicy

— /  2 tu f ^  dz =  — 2 ni Log [ /(r )]  +  2 Tti Log [/(O)].
J  o /(* )

Więc ostatecznie

I Log (z) ^  (i) dz =  2 it i Log
J  (O /(*>

a\ai ■
i b, ■• • Óm

+  2 t c  i Log

i wzór (46) przybiera postać

I =  2 t c  i (n —  m) log r

+  2 t c  i Log [/(O)] — 2 t c  i Log
a 2 . . . *an
b2 . • • bm

— 4 ( n  —  m )  t c 2 .

Całkując wzdłuż okręgu C, możemy założyć: z re '  ̂ i zmieniać ip od o do 
dz

Otrzymujemy wtedy: - =  id y . Załóżmy jeszcze, oznaczając przez R i <I>
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funkcje zmiennej y, ciągłe wzdłuż C, że f ( t )  R e '^  Frzyrównywując do siebie 
w poprzednim wzorze spółczynniki przy i, otrzymujemy wzór Jensena(‘).

1 ( * "  . b i 6* . . .  Óm
(47) I log R dz log f [0 )  log r o "i ------

“ ® Q fl| (X h «•« d l i

w którym występują jedynie zwyczajne log&rytmy neperowskie.
Rzecz jasna, iż w razie, gdy / ( * i jest caloksztaltna wewnątrz C, należy zastąpić 

iloczyn b, 6, . . .  bm przez jedność, i wzór Jensena przybiera postać

1 i ’2 ~ r  n
(48) / log R dz log /(o )  log

- 1* ,/ o dx fl2 • • • fln

Wzór ten zasługuje na uwago ze względu na to, że zawiera jedynie moduły 
pierwiastków funkcji / ( * ) ,  położonych wewnątrz C. tudzież moduł funkcji /(z )  na 
okręgu C oraz w środku tego okręgu.

309. Wzór Lagrange’a. Wzór I.agrangea, uzasadniony już po­
przednio zapomocą metody T.aplace’a (I, art. 195), może być również 
dowiedziony z wielką łatwością zapomocą twierdzeń ogólnych Cauchyego. 
obierzemy przytym bieg myśli, wskazany przez Hermite’a.

Niech / (z)  oznacza funkcję, całokształtną w pewnym obszarze D, 
zawierającym punkt a. Równanie

(49) f  (r) — r — o—  a/(r) =  0,

w którym a stanowi parametr zmienny, posiada przy a o pierwiastek 
r a. Załóżmy, że a 4= 0; niech C oznacza okrąg o środku a i promie­
niu r, położony w obszarze D i taki, że w każdym jego punkcie 
a/ (r) <  r — a ; równanie F  (z) =  O, zgodnie z uzasadnionym powy­

żej (art. 307) twierdzeniem pomocniczym, posiada wewnątrz obwodu C 
tyleż pierwiastków, co równanie r — a 0, to jest jeden tylko pier­
wiastek. Oznaczmy ten pierwiastek przez t i wprowadźmy jeszcze 
pewną funkcję II (r), całokształtną w kole C.

HU)
Funkcja posiada wewnątrz C tylko jeden biegun, a miano­

wicie i odpowiednia pozostałość równa się
n( i )

Przeto, we­

dług twierdzenia ogólnego:

ri(£' _1 f  t l  (z) dz 1 II
2*ł ./(o F ( : )  2*» a < * / ( : ) ’

Acta mat/iematica, t. XXII.
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Aby rozwinąć ostatnią całkę w szereg potęg parametru a, zasto­
sujmy zupełnie takie samo postępowanie, jak przy dowodzie wzoru 
Taylora, pisząc:

* f ( z )
+  «/(* ) 

a (z —  a ) 2 

[a/ ( : ) }  "
(r — a)"+ i

+  . . .

+
o —  a. / ( : )

o - f ( z )  

z —  a

n + 1

podstawiając tę wartość do całki, otrzymujemy wzór

U(i) t u
=  - 7 0  — a . 7 j  4 -  . . .  a'* J n +  i ? „ _ i ,

F ' (fe)
w którym

*7o
1 r  n  (z) dz

I i • • • • J  n - 1 |
r |/(r)] " n  (z) dz

2*i z —  a 2*i J (O (' —  «) n+1

R n + l  = f
IIW a /(rV

2*i . (C) 7 —  a  —  a /  (z) r —  a

Niech m oznacza największość modułu a / (z) 1 na okręgu C; sto­
sownie do założenia m jest mniejsze od r. Największość modułu funkcji 
n  (z) na okręgu C nazwijmy M; otrzymamy

, 1 lm\ n+1 2 i  r M
n+l i

2 * \ r / r — m
co wskazuje, że Rn , dąży do zera, gdy n wzrasta nieograniczenie. 
Pozatym, ze względu na same wyrażenia spółczynników .70, .71( ... , 
J n , . . .  i zgodnie z wzorami (14)

•70 n ( « ) ..........  ==:1 d [ [ / ( « ) ) n u w i ­
l i  /  d a  " \ j

i ostatecznie otrzymujemy szereg następujący:

( 5 0 , i

11(4)
F'(4)

n  (a)

-4- C O

V
n 1

a " 

w/ da "
ii (a) [/(a)] n

Można jeszcze nadać temu wzorowi postać nieco odmienną. Ozna­
czając przez <I> (z) funkcję, całokształtną w tym samym obszarze, za­
łóżmy: II (z) =  <1> (r) [1 —  a / ' (z)]; lewa strona wzoru (50) nie będzie 
w takim razie zawierała a i zamieni się w ‘J> (£). Co do prawej strony, 
zauważmy, że musi ona zawierać dwa wyrazy stopnia w go względem a, 
których suma wyraża się w sposób następujący:
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a "  d n | \ a "  d n ~ l | \
^(a) |/(a)]n} ~  (n_  j }! ^  \ 1 / (ałJ 1 f  (°) |d a n \

n > dan~ l " + " * (a) f  <a) [.Aa)ln_1 — » (<*) f  (a) (/(a))"-1 J

a n d n~ l i )
-  „7 7 7 ^  r >,(o) ,/(a)Ji *

otrzymujemy tedy ponownie wzór Lagrangea w jego zwykłej postaci 
[p. I, art. 195, wzór (52)]

(51) d>(( --- <!>(«)+ 1 d>’(a)/(a) +  . . .  +  ^  rfa„_, [ ^'(a) |/f(a)]"j +  . . .

Założyliśmy, iż wzdłuż kola C mamy stale a /(z )  < ; r; warunek 
ten jest spełniony, gdy a jest dość małe. Szukając największośd 
modułu | a , poprzestańmy na przypadku, w którym / ( : )  jest wielomia­
nem lub funkcją całkowitą. Niech (r) oznacza wartość największą 
modułu j/(z) ! na okręgu C o promieniu r, zakreślonym dokoła punktu a- 
dowód podany może być zastosowany do tego koła, byleby a, Jlfl(r)<^r.

r
Musimy tedy obliczyć tnaximum stosunku , przy wzroście r od 0 doJ f t  (r)
- f  c o .  Stosunek ten równa się zeru przy r — 0, ponieważ gdyby JYl (r) 
dążyło do zera \\ raz z r, punkt z =  o byłby punktem zerowym funkcji 
f(z), i funkcja F(z) byłaby podzielna przez czynnik z — a; dla r oo 

r
stosunek w jest także równy zeru, gdyż inaczej funkcja /(z) byłaby

r
wielomianem pierwszego stopnia (art. 294). Stąd wynika, że o//7 (r)
osiąga przy pewnej wartości r, promienia r jakąś wartość największą g. 
Zgodnie z poprzednim rozumowaniem równanie (41) posiada jeden 
i tylko jeden pierwiastek o module mniejszym niż r,, o ile a <[ [t; 
wzory (50) i (51) dają się tedy zastosować, o ile la nie przewyższa g, 
byleby funkcje II (z) i d> (z) były całoksztaltne w kole C\ o promieniu r,.

t- — l
P rzyk ład . — Weźmy /(*) - ; równanie (49) posiada pierwiastek

1 — V 1 — 2 a a

który dąży do a, gdy o dąży do zera. Niech U (*) — 1; wzór (50) przybiera postać
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V 1 — 2 aa — a2
(52) 1

+ ~

t

d n 
da n

(al — i)_n 
2 n

+ oo
1 V a n Xn (a);

1

X n  oznacza tu n-ty wielomian Legendrea (p. I, art. 90, 189). W celu rozpoznania’ 
pomiędzy jakiem i granicami daje się zastosować ten wzór, załóżmy, że a jest rzeczy­
wiste i większe od jedności. Na okręgu o promieniu r  jń (r )  równa się oczywiście
( a  +  r ) 2 —1 2 r

-  , i należy obliczyć wartość największą, osiąganą przez  ̂ ■—  ̂ przy

wzrastaniu r  od O do co. To maximum odpowiada wartości r =  V a2— 1 i równa

się a — Va2— 1. Podobnież, jeżeli a zawiera się pomiędzy—1 a 1 1, znajdujemy zapo-
/*- -f-1—a 2 2 i* V1  a 2

mocą nader prostego i elementarnego rachunku ]ii ( r )  ■ . Otóż
2 Vl a 2 r2 1 — a2

osiąga największość, równą jedności, przy r  Vl — a 2.

Łatwo sprawdzić te wyniki. W istocie, pierwiastek \ l - 2 a o  +  o! , rozważa­

ny jako funkcja zmiennej a, posiada dwa punkty krytyczne a ±_ Va 2 — 1. Jeżeli 

a >  1, punktem bardziej zbliżonym do początku układu jest punkt a — V a 2 — 1 

Jeżeli a zawiera się pomiędzy — l a  1, oba punkty krytyczne a + i V 1 — a 2 
posiadają moduły równe jedności.

W kursie litografowanym Hermite’a (wydanie 4-te, str. 185) znajdzie czytelnik 
nader wyczerpujące roztrząsanie, przy pomocy tej metody, równania Keplera 
z — a a sin z. Potrzeba przy tym obliczyć pierwiastek równania przestępnego 
e r (r  — 1) e ~  r (r 1), zawarty pomiędzy 1 a 2. Stieltjes otrzymał wartości

r , =  1,199678640257734, p =  0,6627434193492.

310. Badanie funkcji przy wartościach nieskończenie wielkich zmien­
nej. _  W celu zbadania funkcji/ ( : )  przy wartościach'zmiennej o module

1 , . / 1  \ 
rosnącym nieograniczenie można założyć: r • i badać funkcję / I ,

w sąsiedztwie początku układu. Łatwo jednak pominąć to przekształ­
cenie pomocnicze. Załóżmy z początku, że można znaleźć taką liczbę 
dodatnią U, że wszelka wartość skończona zmiennej o module większym 
niż R, oznacza punkt zwyczajny funkcji /{-)■  Jeżeli zatoczymy dokoła 
początku układu okrąg 6' o promieniu równym R, funkcja /(z )  będzie 
regularna w każdym punkcie r, położonym w odległości skończonej 
i nazewnątrz C. Dziedzinę płaszczyzny, położoną zewnątrz C nazwiemy 
otoczeniem punktu w nieskończoności (domaine du point a 1 infini).

Zakreślmy jeszcze, oprócz okręgu 6', okrąg spółśrodkowy C o  pro­
mieniu R' >  R. Funkcja /(z), jako całokształtna w pierścieniu kołowym, 
zawartym pomiędzy C a C', równa się, podług twierdzenia Laurenta,
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sumie szeregu, uszykowanego według potęg całkowitych, dodatnich i 
ujemnych, zmiennej z

r  CO

(53) /(z )  = V  A - " * * .

Spółczyuniki A_tego szeregu nie zależą od promienia A", który mo­
żna uczynić dowolnie wielkim; stąd wynika, że wzór (53) daje się za­
stosować do całego otoczenia punktu w nieskończoności czyli do wszel­
kiego obszaru, położonego zewnątrz C. Ustaliwszy ten fakt, możemy 
odróżnić kilka przypadków:

po l-sze) Gdy szereg, wyrażający /(z), zawiera jedynie potęgi 
ujemne zmiennej z

(54) /"(z) =  A 0 ■+■ A , ---- \- A 2---- h ••• +  e im —  +  • • • i
Z z* ZT

/(z) dąży przy wzroście nieograniczonym modułu |z| do A0; mówimy, 
że funkcja /(z )  jest regularna w punkcie w nieskończoności lub inaczej^ że 
punkt w nieskończoności jest punktem zwyczajnym funkcji /(z). Jeżeli spół- 
czynniki A 01 A u . . . .  A„—t są równe zeru, a Am nie jest równe zeru, 
to punkt w nieskończoności jest punktem zerowym rzędu m funkcji /(z).

Po 2-gie) Gdy szereg, wyrażający /(z), zawiera liczbę skończoną 
potęg dodatnich zmiennej z

(55) /(z) — B„, z"' -f- B„,—i i” —1 -f- /?, z -f- A0 -+- A l -f- A 2 -f- . . .
z z’

[pierwszy współczynnik B,„ =£ 0],
to punkt w nieskończoności jest biegunem rzędu m funkcji /(z), i wielo­
mian Bm zm .. .  -j- ił, z stanowi część główną funkcji w stosunku do te­
go bieguna. Gdy z wzrasta nieograniczenie, to samo dzieje się z L/(z) , 
niezależnie od sposobu poruszania się punktu z.

Po 3-cie). Wreszcie, gdy szereg, wyrażający /(z), zawiera liczbę 
nieskończoną potęg dodatnich zmiennej z, punkt w nieskończoności jest 
punktem istotnie osobliwym funkcji /(z). Szereg, utworzony przez potęgi 
dodatnie zmiennej z, wyraża funkcję całkowitą G(z), stanowiącą część głów­
ną funkcji /(z) w otoczeniu punktu w nieskończoności. W szczególno­
ści widzimy, że punkt w nieskończoności jest punktem istotnie osobli­
wym dla każdej funkcji całkowitej.

Określenia powyższe wypływają poniekąd z określeń, zastosowa­
nych poprzednio do punktów w odległości skończonej. W istocie, przy

założeniu, że z funkcja f(z) przemienia się w funkcję zmiennej z',
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, i stwierdzamy bezpośrednio, że przenieśliśmy jedynie na

punkt w nieskończoności nazwy, przybierane przez punkt z' =  0 
w stosunku do funkcji <p(z'). Rozumując przez analogję, bylibyśmy 
skłonni dać nazwą pozostałości spółczynnikowi A — i pierwszej potęgi 
zmiennej z w szeregu (53); byłoby to jednak mylne. Aby zachować 
charakterystyczną własność tego pojęcia, nazwiemy pozostałością, odpowiada­

jąca punktowi w nieskończoności, spółczynnik przy -  , wzięty ze znakiem przeci-
z

wnym, t. j. — A x. Liczba ta równa się, jak dawniej, całce

liczonej w zwrocie dodatnim wzdłuż obwodu otoczenia punktu w nie­
skończoności. W danym razie atoli, ponieważ otoczeniem punktu w nie­
skończoności jest część płaszczyzny, położona zewnątrz C, za zwrot do­
datni uważać należy zwrot, przeciwny zwykłemu. W istocie całka ta 
sprowadza się do całki

—  IIm  J
A x dz A ,

<c) 2 ni
: (Log z)(o ;

gdy punkt z przebiega w żądanym zwrocie okrąg C, argument zmien­
nej z zmniejsza się o 2%, skąd wynika dla całki wartość — A v

Należy koniecznie zauważyć, że funkcja może być regularną w nie­
skończoności, choćby pozostałość nie równała się zeru; za przykład mo­

że służyć funkcja 1 H---- .
z

Jeżeli punkt w nieskończoności jest dla /(z )  biegunem lub punk­
tem zerowym, to w otoczeniu tego punktu daje się zastosować wzór

/ ( z )  =  z'x ® (z),

w którym jj. oznacza liczbę całkowitą dodatnią lub ujemną, równą rzę­
dowi funkcji, wziętemu ze znakiem przeciwnym, a © {z) - funkcję regu­
larną w nieskończoności i nie równą zeru dla r =  co. Stąd wynika

m
funkcja 'ŁCźl jest również regularna w punkcie w nieskończoności,

f ( 2)
, • 1

lecz szereg, który ją wyraża, zaczyna się od wyrazu, zawierającego -
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lub wyrazu o stopniu jeszcze wyższym (względem Uw. tł). Pozo-

f '  (r)stałość fu ikcji —  równa sie tedy ji, to jest rzędowi funkcji /(z)
A 2)

w punkcie w nieskończoności, Otrzymujemy zatym to samo twierdze­
nie, co w zastosowaniu do bieguna lub punktu zerowego w odległości 
skończonej (art. 306).

Weźmy funkcję jednowartośeiową / ( : ) ,  posiadającą liczbę skończo­
ną punktów osobliwych. Umowa, zawarta co do punktu w nieskończo­
ności, pozwala na wysłowienie w nader prostej postaci następującego 
twierdzenia ogólnego:

Suma pozostałości funkcji f  (r) w całej płaszczyźnie, włącznie z punkiem 
w nieskończoności, równa się zeru.

Dowodzimy tego odrazu, zakreślając dokoła początku układu okrąg 
C, otaczający wszystkie punkty osobliwe funkcji f(i), różne od punktu

w nieskończoności. Całka f / { z) dz, wzięta wzdłuż tego okręgu w zwy­

kłym zwrocie, jest równa iloczynowi 2si przez sumę pozostałości, odpo­
wiadających wszystkim punktom osobliwym funkcji /(z), położonym 
w odległości skończonej. Z drugiej strony ta sama całka, wzięta wzdłuż 
tegoż okręgu w zwrocie przeciwnym, równa się iloczynowi 2xi przez 
pozostałość, odpowiadającą punktowi w nieskończoności. Ponieważ su­
ma takich dwuch całek jest równa zeru, więc to samo stosuje się do 
sumy pozostałości.

Cauchy nadawał sumie pozostałości funkcji/(:), odpowiadających 
wszystkim punktom osobliwym w odległości skończonej, nazwę, pozosta­
łość całkowita (residu integral). Gdy mamy do czynienia tylko z liczbą 
skończoną punktów osobliwych, to, jak widzieliśmy, pozostałość całko* 
wita równa się pozostałości, odpowiadającej punktowi w nieskończono­
ści, wziętej ze znakiem przeciwnym.

Przykład. — Weźmy iloraz

/<*-)
Pi-)

V Q(z) ’

w którym P(z) oznacza wielomian stopnia p. Q(z>— wielomian stopnia 
parzystego 2 q. Nazewnątrz koła C o promieniu B , większym od modu­
łów wszystkich pierwiastków wielomianu Q(z), funkcja /(z )  jest jedno- 
wartościowa, i możemy napisać

f(z) =  zp- i <p(r),
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oznaczając przez <o (z) funkcję regularną w nieskończoności, nie równą 
zeru dla z — oo. Punkt w nieskończoności jest dla /(z) biegunem, je­
żeli p^> q, a punktem zwyczajnym, jeżeli p <= q. Pozostałość równa się 
napewno zeru, jeżeli p  jest mniejsze od q — 1.

IV . — Okresy całek określonych.

311. Okresy biegunowe. — Badanie całek krzywolinjowych wyka­
zało występującą .w pewnych warunkach okresowość tych całek. Po­
nieważ wszelka całka funkcji f(z )  zmiennej zespolonej z stanowi sumę 
całek krzywolinjowych, więc rzecz jasna, że taka całka może również 
posiadać pewne okresy. Weźmy z początku funkcję analityczną/{z ), 
posiadającą wewnątrz jakiejś krzywej zamkniętej C jedynie liczbę skoń­
czoną odosobnionych punktów osobliwych, bądź biegunów, bądź punk­
tów istotnie osobliwych. Ten przypadek jest zupełnie współrzędny 
z przypadkiem, zbadanym już w teorji całek krzywolinjowych (I, art. 
153), i stosować można bez zmiany te same rozumowania. Wszystkie 
drogi, położone wewnątrz obwodu C, które można wytknąć pomiędzy 
dwoma punktami z0 i Z tego obszaru, tak aby nie przechodziły przez 
żaden z punktów osobliwych funkcji /(z), dają się zastąpić przez jakąś 
jedną określoną drogę, łączącą te dwa punkty i następującą po pewnej 
liczbie pętel (lacets), zakreślonych z punktu z0 dokoła punktów osobli­
wych av a 2, . . . ,  a n funkcji /(z). Niech A lt A 2, . . . ,  A n oznaczają od­

powiednie pozostałości tej funkcji: całka j / [ - )  dz, wzięta wzdłuż drogi, 

okrążającej punkt a1( jest równa +  2 u iA 1— i podobnież w stosunku do
r zinnych punktów. Różne wartości całki j f(z )  dz są tedy dane przez 

wzór
-z

(56) I / ( : )  dz =  F (Z) +  2ui (m1 Z, -f m2 A.t, -f . . .  +  mn An ),

w którym F(z) oznacza jedną z wartości tej całki, odpowiadającą pew­
nej określonej drodze, a mlt m2, . ..  — dowolne liczby całkowite, dodat­
nie lub ujemne; okresy są równe

2 ui A.̂ y 2 ui A 2, . *., 2 ui A.yi .
W większości przypadków punkty alt a 2, . . . ,  a„ są to bieguny, i okre­
sy powstają wskutek zakreślania dokoła tych biegunów nieskończenie 
małych obwodów, skąd nazwa: okresy biegunowe (periodes polaires), nada­
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wana im zwykle w celu odróżnienia od okresów inuego rodzaju, o któ­
rych będzie mowa poniżej.

Zamiast obszaru, położonego wewnątrz krzywej zamkniętej, można 
rozważać obszar płaszczyzny, rozciągający się w nieskończoność: funk­
cja /(z i może w takim razie posiadać nieskończenie wiele biegunów, a 
całka — nieskończenie wiele okresów. Jeżeli pozostałość, odpowiadają­
ca jakiemuś punktowi osobliwemu a funkcji /(z), równa się zeru, to od­
powiedni okres jest równy zeru, i punkt a jest również biegunem lub 
punktem istotnie osobliwym dla Całki. Lecz jeżeli ta pozostałość nie 
równa się zeru, punkt a jest dla całki punktem krytycznym logarytmicz­
nym (p. oritiąue logarithmiąue). Jeżeli up. punkt a jest biegunem rzę­
du w funkcji f{z\  to w otoczeniu tego punktu

s, , Bm firn - 1
/(*) -  —  +  - + .-•  +  

(z — a)m (r — a)"*-1
Ą +- A0 -f- A,(z — a) -f-

i zatym

i m d z  C 
» '  1 _

B„,
(w — 1) {z — a)”' 1

+  ... 4- B\ Log [z — o)

, „ (z — a)*
+  A  o (* —  a )  -f- A , ł- • • • j

C oznacza w tym wzorze stałą, zależną od punktu początkowego z0 i od 
zakreślonej drogi.

Stosując te rozważania ogólne do funkcji wymiernych, czynimy 
pewne znane wyniki zupełnie oczywistemi. Tak np.. do tego aby całka 
funkcji wymiernej była również funkcją wymierną, potrzeba niezbędnie, 
iżby ta całka nie posiadała okresów czyli iżby wszystkie pozostałości 
były równe zeru. Ten warunek jest jednoczeście dostateczny. Całka 
określona

'** dz 
- z — a

posiada tylko jeden punkt krytyczny z a i odpowiedni okres równa 
się 2«i- a więc właśnie w rachunku całkowym kryje się prawdziwe 
źródło wielowartościowości funkcji Log (z — a), jak to już wyjaśniliśmy

szczegółowo co do I (art. 289). Weźmy jeszcze całkę określoną 
J  i z
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całka ta posiada dwa punkty krytyczne logarytmiczne +  i i — i, ale 
tylko jeden okres, równy it. Jeżeli poprzestajemy na wartościach rze­
czywistych zmiennej, różne gałęzie funkcji arc tang x wydają się tyluż 
odmiennemi funkcjami zmiennej x. Wbrew temu widzimy, jak myśl 
Cauchy ego zniewala nas do uważania ich za tyleż różnych odnóg tej 
samej funkcji analitycznej.

Uwaga. — G d y  m a m y  w i ę c e j  n i ż  t r z y  o k r e s y ,  w a r t o ś ć  c a ł k i  o k r e ś l o n e j  w  j a ­
k i m ś  p u n k c i e  z  m o ż e  b y ć  z u p e ł n i e  n i e o z n a c z o n ą .  P r z y p o m n i j m y  s o b i e  z  p o c z ą t k u  
t w i e r d z e n i e ,  n a l e ż ą c e  d o  z a k r e s u  t e o r j i  u ł a m k ó w  c i ą g ł y c h  I 1 ) :  G d y  j e s t  d a n a  d o w o l ­
n a  l i c z b a  n i e w y m i e r n a  a ,  t o  m o ż n a  z a w s z e  z n a l e ź ć  t a k i e  d w i e  l i c z b y  c a ł k o w i t e  p  i  q, 
d o d a t n i e  l u b  u j e m n e ,  i ż  p  +  qa  <  s  ( s  —  l i c z b a  d o d a t n i a  d o w o l n a ) .

O b r a w s z y  w  t e n  s p o s ó b  l i c z b y  p  i  q,  w y o b r a ź m y  s o b i e ,  ż e  t w o r z y m y  c i ą g  w i e ­
l o k r o t n o ś c i  w y r a ż e n i a  p  -  q a .  W s z e l k a  l i c z b a  r z e c z y w i s t a  A  r ó w n a  s i ę  j e d n e j  z  t y c h  
w i e l o k r o t n o ś c i ,  l u b  z a w i e r a  s i ę  p o m i ę d z y  d w i e m a  w i e l o k r o t n o ś c i a m i ,  k o l e j n o  p o  s o ­
b i e  n a s t ę p u j ą c e m u  M o ż n a  t e d y  z n a l e ź ć  r ó w n i e ż  t a k i e  d w i e  l i c z b y  c a ł k o w i t e  m i n ,  
i ż  m  n a  —  A  j e s t  m n i e j s z e  n i ż  s .  S t w i e r d z i w s z y  t o ,  w e ź m y  f u D k e j ę

„ 1 / 1  « i  t B \
f(* ) =  --------- , ' -  ------- - ;2 - i  \ . s  —  a  *  —  o  z - c  z  —  dl

a, b. c  i  d  o z n a c z a j ą  t u  c z t e r y  r ó ż n e  b i e g u n y ,  a  a i  j l  —  l i c z b y  r z e c z y w i s t e  n i e w y ­

m i e r n e .  C a ł k a  j f ( z ) d z  p o s i a d a  c z t e r y  o k r e s y :  1 ,  a, i,  j f ł .  N i e c h  l ( z )  s t a n o w i  w a r ­

t o ś ć  t e j  c a ł k i ,  g d y  j ą  l i c z y m y  w z d ł u ż  p e w n e j  o k r e ś l o n e j  d r o g i ,  ł ą c z ą c e j  z 0 z  z,  a  
M  N i  n i e c h  o z n a c z a  d o w o l n ą  l i c z b ę  z e s p o l o n ą .  M o ż n a  z a w s z e  z n a l e ź ć  t a k i e  l i c z b y  
c a ł k o w i t e  m , n, m ' ,  n ' ,  i ż b y  m o d u ł  r ó ż n i c y

I ( z )  — m  - n a  - f -  i ( m '  A  n '$ )  —  ( M  +  N i )

b y l  m n i e j s z y  o d  d o w o l n e j  l i c z b y  d o d a t n i e j  s .  D o  t e g o  w y s t a r c z y ,  b y  z a c h o d z i ł y  
z w i ą z k i

£ £
\m - n a  — A  i <  —  ,  m '  n '  6  —  B  <  - ,

2  2

w  k t ó r y c h  A  i  6  s ą  d a n e  p r z e z  z a ł o ż e n i e :  M  N i  —  /  ( « )  =  A  B i .  M o ż n a  t e d y  
o b r a ć  d l  a  z m i e n n e j  t a k ą  d r o g ę ,  ł ą c z ą c ą  d w a ,  z  g ó r y  d a n e ,  p u n k t y  z0 i  z ,  i ż  w a r t o ś ć

c a ł k i  j f (z ) dz.  w z i ę t e j  w z d ł u ż  t e j  d r o g i ,  r ó ż n i  s i ę  d o w o l n i e  m a ł o  o d  w s z e l k i e j  l i c z b y ,

z  g ó r v  d a n e j .  S t w i e r d z a m y  w  t e n  s p o s ó b  r a z  j e s z c z e  p i e r w s z o r z ę d n e  z n a c z e n i e ,  j a ­
k i e  p o s i a d a  d r o g a ,  z a k r e ś l o n a  p r z e z  p u n k t  z,  d l a  w a r t o ś c i  k o ń c o w e j  f u n k c j i  a n a l i ­
t y c z n e j .

312. Badanie całki / -------- = .  — Rachunek całkowy wyjaśnia ró.
J  o V f —  t 2

wnież w sposób najprostszy wielowartościowość funkcji arc sin z; różne 
jej wartości pochodzą z obliczania całki określonej

O  N i e c o  d a l e j  p o d a m y  d o w ó d  b e z p o ś r e d n i  ( a r t .  3 2 4 ) .
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wzdłuż dróg, wiodących do różnych wyników. W celu ustalenia biegu 
myśli, załóżmy, iż rozpoczynamy całkowanie od początku układu, na­
dając pierwiastkowi wartość początkową 1, i oznaczmy przez 1 war­
tość tej całki, osiągniętą wzdłuż pewnej określonej drogi tczvli drogi 
bezpośredniej, franc. chemin direct), np. wzdłuż prostej, gdy punkt 2 
nie leży na osi rzeczywistej, poza odcinkiem łączącym punkty — 1 i 
-f 1; gdy * jest rzeczywiste i z > 1, weźmiemy za drogę bezpośrednią 
drogę, położoną ponad osią rzeczywistą.

Rys. <>5.

Uczyniwszy te założenia, możemy, ze względu na to, że punktami 
krytycznemi funkcji V  1 — są jedynie punkty z =  -f 1 i ;  =  — J, za­
stąpić wszelką drogę, wiodącą od początku układu do punktu r przez 
szereg pętel (lacets), zakreślonych dokoła punktów krytycznych 1 i 
— I z  dodatkiem drogi bezpośredniej. Musimy tedy zbadać wartość, 
osiąganą przy całkowaniu wzdłuż jednej z pętel. Weźmy np. pęt­
lę O arna O, zakreśloną dokoła punktu z =  1 i składającą się z od­
cinka Oa, przeciągniętego od początku układu do punktu 1 — s, okręgu 
arna o promieniu s, zakreślonego dokoła 2 = 1  oraz z odcinka aO. Cał­
ka, liczona wzdłuż tej drogi, równa się tedy sumie całek

całka, wzięta wzdłuż małego okręgu, dąży do zera wraz z e, ponieważ 
iloczyn (r — l)/(r) dąży również do zera. Z drugiej strony, po zakre­
śleniu przez 2 tego okręgu pierwiastek \ 1 — X2 zmienia znak, i przy cał­
kowaniu wzdłuż odcinka a O należy mu nadawać wartość ujemną. Cał­
ka, wzięta wzdłuż drogi OamaO  równa się tedy granicy, do której 

/’i—s dx
zmierza 2 1 - _  , gdy e dążv do zera, t. j. n. Zauważmy, że

J o  V I —
wartość tej całki nie zależy od zwrotu, w którym jest przebiegana 
pętla O am ao , lecz że powracamy zawsze do punktu wyjścia z war­
tością — 1 pierwiastka.
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Gdybyśmy całkowali wzdłuż tego samego obwodu, okrążającego 
punkt 2 =  +  1, nadawszy pierwiastkowi wartość początkową — 1, to 
wartość całki byłaby — u, i powrócilibyśmy do punktu wyjścia z war­
tością — 1 pierwiastka. W ten sam sposób stwierdzamy, że pę­
tli. zakreślonej dokoła punktu krytycznego z =  — 1, odpowiada 
wartość całki, równa — tc lub -f- rc, stosownie do tego, czy w początku 
układu nadajemy pierwiastkowi wartość początkową, równą -f 1 czy 
—  1 .

Całkując kolejno wzdłuż dwu pętlic (t. j. wzdłuż dwu ró­
żnych takich dróg lub dwa razy kolejno wzdłuż tej samej, — Dod. tłum,.), 
odzyskujemy w początku układu wartość początkową -f 1 (lub — 1, sto­
sownie do założenia — Uw. tłum.), a wTartość ogólna całki równa się 
w takim razie -{-2%, O lub — 2 %, stosownie do porządku, w jakim są 
przebiegane te drogi. Liczba parzysta pętel nadaje tedy całce 
wartość o postaci 2 /«n, a pierwiastkowi przywraca jego wartość po­
czątkową +  1. Liczba nieparzysta pętel nadaje natomiast całce 
wartość o postaci (2m +  l)n, a wartość końcowa pierwiastka w po­
czątku układu równa się w takim razie — 1. Stąd wynika, że wartość 
całki F(z) posiada jedną z dwu postaci

1 -\~ 2 m%, (2m -f- 1) % — I,
stosownie do tego, czy droga, zakreślona przez zmienną, może być za­
stąpiona przez drogę prostą, poprzedzoną przez liczbę parzystą czy nie­
parzystą pętlic.

313. Okresy całek ultraeliptycznych. — Można 
sposób różne wartości całki określonej

P (z) dz

badać w ten sam

(58) F(z) = V B(z)
zależnej od dwu wielomianów całkowitych P(z) i B(z), z których i?(z), 
stopnia rc-tego, staje się równym zeru przy n różnych wartościach 
zmiennej z,

B(z) =  A  (z — ex) (z — e2) . . .  (z — en ).
Załóżmy, że pun\t z0 nie należy do punktów ex, e2l . . . ,  en \ równanie 
u1 — P(z0) posiada w takim razie dwa nierówne pierwiastki +  m0 i — w0; 
u0 ma oznaczać wartość początkową pierwiastka V R{z). Jeżeli punkt z 
przebiega drogę o jakiejkolwiek postaci, nie przechodzącą przez żaden 
z punktów krytycznych ev e2, , en, to wartość pierwiastka V B (z)
w każdym punkcie tej drogi jest wyznaczona przez ciągłość. Wyobraź­
my sobie, że z każdego z punktów ê , e2, . . . .  en zostało wykreślone cię-
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cie nieograniczone, w ten sposób, iż te cięcia nie krzyżują się ze sobą. 
Całka, liczona od r0 aż do jakiegokolwiek punktu :  wzdłuż drogi, która 
nie przekracza żadnego z tych cięć (czyli drogi bezpośredniej — fr. che- 
min direct), posiada wartość l { :) zupełnie określoną, zależną jedynie od 
z. Należy jeszcze zbadać wpływ na wartość całki pętli, zakre­
ślonej z punktu r0 dokoła któregokolwiek z punktów krytycznych e, 
Oznaczmy przez 2 E, wartość całki, wziętej wzdłuż obwodu zamkniętego,- 
rozpoczynającego się od punktu r0 i otaczającego jakiś jeden punkt 
krytyczny e,- , przy założeniu, że wartość początkowa pierwiastka jest 
równa m0; wartość 2 £’, nie zależy od kierunku, w którym jest zakreśla­
ny ten obwód, lecz jedynie od wartości początkowej pierwiastka w pun­
kcie r0. Istotnie, oznaczmy przez 2 Et ' wartość całki, wziętej wzdłuż 
tego samego obwodu w zwrocie przeciwnym, przy tej samej wartości 
początkowej m0 pierwiastka. Jeżeli przesuniemy punkt z wzdłuż rozwa­
żanego obwodu dwa razy po kolei, w dwu przeciwnych zwrotach, to 
rzecz jasna, że suma otrzymanych całek musi być równa zeru. Owóż 
całka, otrzymana przy pierwszym przesunięciu, równa się 2 Ej , a do 
punktu powracamy z wartością — ua pierwiastka całka, wzię­
ta wzdłuż obwodu, przebieganego po raz drugi w zwrocie przeciwnym, 
równa się tedy — 2 E t i ostatecznie E ,' — E , . Rozważany obwód zam­
knięty można zastąpić pętlą, złożoną z prostej r0 a, okręgu Ci o promie­
niu nieskończenie małym, zakreślonego dokoła e, oraz prostej az0\ całka,

R yg. 66.

dąży do zera wraz z modułem różnicy z — e, . Co do całek, liczonych
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wzdłuż z0 a i a z0, ich części składowe powtarzają się dwukrotnie, i osta­
tecznie

przy założeniu, że całka została wzięta wzdłuż prostej, a wartość po­
czątkowa pierwiastka równa się u0.

Wskutek tego całka, wzięta wzdłuż drogi, którą można zastąpić 
dwiema następującemi po sobie kolejno pętlami, zakreślone- 
mi dokoła punktów ea , ep, jest równa 2 Ea — 2 E g , ponieważ po za­
kreśleniu pierwszej pętli powracamy do punktu z0 wartością 
— u0 pierwiastka, i całka, wzięta wzdłuż drugiej pętli musi się 
równać — 2 Eo . Po zakreśleniu tej drugiej drogi okólnej zostaje od­
zyskana w punkcie z0 pierwotna wartość początkowa u0. Jeżeli 
droga, zakreślona przez z, sprowadza się do liczby parzystej 
pętel, zakreślonych kolejno dokoła punktów ea, ep, , eg,
ey , ex (wskaźniki a, p, . . . ,  *, X są wzięte z pośród liczb 1, 2, . . . ,  n) 
oraz drogi bezpośredniej, wiodącej od z0 do z, to wartość całki, obliczo­
nej wzdłuż tej drogi, równa się, zgodnie z powyższemi rozważaniami

Jeżeli zaś droga, którą przebiega z, może być zastąpiona przez 
liczbę nieparzystą pętlic, zakreślonych kolejno dokoła punktów 
krytycznych ea , ep, . . . , ey , e ,̂ e  ̂ (tudzież, jak poprzednio, drogę bez­
pośrednią — dod. tłum.), to wartość całki wynosi

Okresami badanej całki są tedy wszystkie wyrażenia 2 (Et — Eh ); wszyst­
kie te okresy dają się jednak sprowadzić do (n — 1) takich okresów:

w istocie, rzecz jasna, że można napisać ogólnie:

2 (Ei — Eh) =  2 (Ei — En) — 2(Eh — En) =  a>, — u>A .

Ponieważ z drugiej strony 2 E^ =  ay +  2 En, przeto stwierdzamy, że 
wszyst. ie wartości, jakie może przybierać w punkcie z całka określona 
F(z), są dane przez wzory

w których mx, m2, . . . ,  mn~\ oznaczają liczby całkowite dowolne.

F(z) =  1 +  2 (Ea -  Ą )  + §  (Er - E h ) +  . .  . +  2(E%-  Ex).

F(z) =  2 (E a - E ? ) +  . . .  +  2(E %- E k ) +  E ^ - I .

F  (z) =  / + «?! Wj - f -  .  . . +  mn_ i  c o n _ i  ,
F  (z) =  2 En — I  +  mx (oŁ +  . . . +  m„_i u>n_ i ,

Kurs analizy matematycznej. 9
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Otrzymany wynik nasuwa pewne ważne uwagi. Jest to rzecz nie­
mal oczywista, że okresy winny być niezależne od punktu r0, obranego 
za początek drogi całkowania; łatwo to sprawdzić. Weźmy np. okres 
2 Ei — 2 E * , równy wartości całki, wziętej wzdłuż obwodu zamkniętego 
T, przechodzącego przez punkt r0 i otaczającego tylko dwa punkty kry. 
tyczne e, i e*. Jeżeli założymy, w celu ustalenia biegu myśli, że we­
wnątrz trójkąta o wierzchołkach r0, e, , c* niema żadnego innego pun­
ktu krytycznego, to ten obwód zamknięty może być zastąpiony przez 
obwód bh’ nc'cmb irys. fi6), i zmniejszając nieograniczenie promienie 
dwu małych okręgów, stwierdzamy, że omawiany okres równa się pod­
wójnej całce

r*k P (z) dz
J  * i  / ? ( * ) ’  ’

liczonej wzdłuż prostej, która łączy punkty krytyczne & i e,. .
Może się zdarzyć, iż (« — 1) okresów oą, w2. nie są nieza­

leżne od siebie. Ta okoliczność zachodzi zawsze, gdy wielomian R(z)

posiada utopień parzysty, a stopień wielomianu P(z) jest mniejszy od —  — 1.

Aby to wykazać, zakreślmy dokoła punktu g0l okrąg C o promieniu 
dość wielkim, by wewnątrz tego koła zawierały się wszystkie punkty 
krytyczne. i wyobraźmy sobie, w celu uproszczenia zadania, iż ponume­
rowaliśmy te punkty zapomocą liczb od 1 do n. biorąc je w tym po­
rządku, w jakim są spotykane przez promień nieograniczony, obracają­
cą się dokoła z0 w zwrocie dodatnim.

Obliczając całkę
/' P (z) d:

J VR(z)
wzdłuż obwodu zamkniętego z0A M A :0, utworzonego z promienia : 0.4. 
okręgu C oraz promienia A r„ (zakreślonego w przeciwnym zwrocie), 
otrzymujemy wynik, równy zeru. Istotnie, całki, wzięte wzdłuż A i 
wzdłuż znoszą się wzajemnie, gdyż koło C zawiera liczbę parzysta 
punktów krytycznych, i po zakreśleniu jego obwodu przez * pierwiastek 
odzyskuje tę samą wartość. Z drugiej strony całka, wzięta wzdłuż C, 
dąży do zera, gdy promień koła wzrasta nieograniczenie, ponieważ, zgo­
dnie z założeniem co do stopnia wielomianu P(z). to samo zachodzi 

•i z P (z)z iloczynem ; a że ta całka me zależy od promienia okręgu C,
\ R (z)

przeto musi być równą zeru.
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Owóż, rozważany obwód z0 A M A z0 może być zastąpionynym 
przez szereg pętlic, zakreślonych dokoła punktów krytycznych ev 
e2, en w porządku, odpowiadającym wskaźnikom. Stąd wypływa 
związek

2 E1 — 2 E 2 — 2 E3 — 2 Eą — .. • -j- 2 En—\ — 2 En =  0, 
który można jeszcze napisać w postaci

— w2 +  w3 --  w4 + ■ • • +  wn—i =  0;
widzimy tedy, że w — 1 okresów całki sprowadza się do n — 2 okresów
wl> w2i • • ) tón—2 • .

Zbadajmy jeszcze całkę o postaci hardziej ogólnej

P (z) dz
Q(«) JR(*) '

zależną od trzech wielomianów P, Q, R, z których ostatni R (z) posiada jedynie pier­
wiastki jednokrotne. Niektóre z pośród pierwiastków wielomianu Q {z) mogą nale­
żeć do R{z); oznaczmy przez ou a2, . . . .  as pierwiastki, które nie czynią R (z) równym 
zeru. Całka F\z) posiada, podobnie jak powyżej, okresy 2 (Et — E h ), przyczym 2 E { 
oznacza zawsze całkę, wziętą wzdłuż obwodu zamkniętego, przeciągniętego od punk 
tu z0 i nie otaczającego żadnych pierwiastków wielomianów Q(i) i R(z), prócz et . 
Ale całka ta posiada ponad to pewną liczbę okresów biegunowych, pochodzących od 
pętel, zakreślonych dokoła biegunów ax a2, . . . , as . Liczba ogólna tych
okresów zmniejsza się o jedność, gdy R(z) posiada stopień parzysty n i przytym za­
chodzi związek

Tl
P <  9 +  — — b

w którym p i q oznaczają stopnie wielomianów P i Q.
Pryyklad. — Niech R (z) oznacza wielomian czwartego stopnia, posiadający 

pierwiastek wielokrotny. Poszukajmy liczby okresów całki

r x dz
J Xo J~R(z)

Jeżeli R {z) posiada pierwiastek podwójny ex oraz dwa 
, to całka

F (z )
dz

(z — ex) <JA{z — e2)(z — e,)

pierwiastki pojedyncze

posiada okres 2 E , - 2  E , i oprócz tego okres biegunowy, pochodzący od drogi, za 
kreślonej dokoła bieguna ex; zgodnie z uczynioną przed chwilą uwagą, okresy te są 
równe. Jeżeli R(z) posiada dwa pierwiastki podwójne, to widać odrazu, że całka po
siada tylko jeden okres biegunowy.

Jeżeli jeden z pierwiastków R (z) jest potrójny, to całka

dz
(z -  Cj) y/A{z -e^ jlz  -  <?,)
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posiada okres 2 £ ,  — 2 E t. który stosownie do uwagi ogólnej równa się zeru. To 
samo zachodzi, gdy R (i) ma pierwiastek poczwórny. Ostatecznie: jcieli R (s) posia­
da jeden pierwiastek podwójni/ lub dwa pieneiastki podwójne, to całka posiada j e ­
den okres-, jcielt R(s) posiada pierwiastek potrójny lub poczwórny, to całka nie ma 
okresów.

Łatwo sprawdzić te wszystkie wyniki bezpośrednio zapomocą całkowania.

314. Okresy całki eliptycznej gatunku pierwszego. Niech R (z ) 
oznacza wielomian trzeciego lub czwartego stopnia, pierwszy względem 
swej pochodnej; całka eliptyczna gatunku pierwszego (lintegrale elli- 
ptique de preraićre espćce)

F dz
\ /?(*) ’

zgodnie z wyłożona poprzednio teorją ogólną, posiada dwa okresy. Do­
wiedźmy, że stosunek tych dwu okresów jest liczba zespoloną.

Nie zmniejszając ogólności rozważań, możemy założyć, iż R(z) jest 
wielomianem trzeciego stopnia. W istocie, niech R x(z) stanowi wielo­
mian czwartego stopuia; jeżeli a jest jednym z pierwiastków tego wie­

lomianu, to zakładając, iż z =  a -f 1 , otrzymujemy (t. I, art. 105)
y

/
dz

f
dy

\ R iy)
]/?(y) — wielomian trzeciego stopnia],

i rzecz oczywista, że obie całki posiadają te same okresy.
Jeżeli R(z) jest wielomianem trzeciego stopnia, to można założyć, 

iż posiada pierwiastki 0 i 1, ponieważ wystarczy odpowiednie podsta­
wienie linjowe z a -\ -$y , aby przejść do tego przypadku. Ostatecz­
nie, wszystko polega na uzasadnieniu, że całka

(59) dz
Vz (1 — z) (a — z)

w której a jest różne od zera i od jedności, posiada dwa okresy, któ­
rych stosunek jest urojony.

Jeżeli a jest rzeczywiste, własność ta daje się stwierdzić odraz u 
jeżeli np. a jest większe od jedności, to całka posiada okresy

2 dz
V'z (1 — z) (a — z)

r a dz
J 1 Vz (1 — z) (a — z)

z których pierwszy jest rzeczywisty, drugi zaś równa się iloczynowi
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jednostki urojonej i przez liczbę rzeczywistą. Żaden z tych okresów 
nie może być równym zeru.

Załóżmy następnie, że a jest liczbą zespoloną, taką np., że spół- 
czynnik przy i jest dodatni. Można znów wziąć za jeden z okresów

r 1 dz
fii 2 / ;

J o  Vz{ 1 — z) (a — z)

zastosujmy do tej całki wzór Weierstrassa (art. 285). Gdy z zmienia

się od 0 do 1, czynnik 1 pozostaje dodatni, i punkt, ozna-
\Jz (1 — z)

czający 1 , zakreśla krzywą L, o której łatwo wytworzyć sobie
\a — z

pojęcie. Niech A stanowi punkt, wyobrażający liczbę a; gdy z wzrasta 
od 0 do 1, punkt a — z przebiega odcinek AB  równoległy do 0x, któ­
rego długość równa się jedności (rys. 67).

Rys. 67.

Oznaczmy przez Op i Oq dwusieczne kątów, utworzonych przez 
proste O A i OB z osią Ox, przez Op' i Oq' proste symetryczne z temi 
dwusiecznemi względem Ox. Jeżeli weźmiemy tę wartość pierwiastka

TC
\/a — z, której argument zawiera się pomiędzy O a , to punkty a —2! 

zakreśli łuk ap, biegnący od punktu a na Op do punktu p na Oq\ punkt 

zakreśli tedy luk a'[i', który połączy punkt a' na Op' z punk-
\ a — z
tern p', należącym do Oq'. Jeżeli oznaczymy przez odpowiednik licz­
bowy (affise) pewnego punktu, położonego wewnątrz wszelkiego obwo­
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du wypukłego, otaczającego łuk a!}', to stosując wzór Weierstrassa, 
otrzymamy

»i =  2 Z, r  ao Vz(l - 2)
= 2 sZ.

Rzecz jasna, że punkt Z, leży w kacie p'Oq' i że nie może znaleźć 

się w początku układu; jego argument zawiera się tedy między — a O. 

Jako drugi okres, można wziąć

f  l,: 2  f  $
. o a  V^(l —  z ) ( a  —  z )  J o  V*(l — z ) ( a  — *

czyli, przy założeniu, że .r a t:

B, =  2 l"
J o  vt

dł
i l  /) 1 at

Aby zastosować do tej całki wzór Weierstrassa, zauważmy, że 
przy wzroście zmiennej t od 0 do.l punkt a t  zakreśla odcinek O A, a 
punkt, wyobrażający liczbę 1 — at, zakreśla odcinek równy i równole­
gły, przeciągnięty od punktu z 1 do punktu C. Obierając odpowied­
nio wartość pierwiastka, stwierdzamy podobnie jak poprzednio, że mo­
żemy napisać, oznaczając przez Zi pewną liczbę zespoloną różną od ze­

ra, o argumencie zawartym pomiędzy O a

a* 2^ r  ,Ą
J o  V<Uo
z 2
Zy

dt
(1 — t)

2 * Z 2 .

Sio aStosunek okresów czyli jest przeto liczba zespoloną. 
--1

Ć w i c z e n i a ,

1. Rozwinąć funkcję

y l  (x  J x ‘ — 1 )” (a; — Jx -  — 1 )"

w szereg potęg całkowitych zmiennej .r. Liczba m -  dowolna. 

Rozwiązanie (dod. tłum.). Dla x  < 1 :

y = / ( * )  =  /(O) J ' ( 0 , x -  ~  - /-(O). J f  (0). ar3
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m2 (mi — 4) 
4!

/(O) x4 1) (m* — 91
5! /'(O ) x i -  . . .

m2(m2 — 4) . . .  Im- — (2n -  2)2|

+ ( -  ii" (m2 — 1) (m2 — 91 . . .  [m2 — (2n — l ) 2] 
(2n 1)! f  (0) x,2/1+1

n  oi = J [*ro -  ( -  •, /' i o* = — f  [*m+1 (_  0m+lj

2. Znaleźć szeregi potęg* dodatnich lub ujemnych zmiennej z, wyrażające fun-
1

keję ^  ^   ̂ PrzJ  rozmaitych położeniach punktu * w płaszczyźnie.

[ Wskazówka tłum. — Najdogodniej użyć metody, wskazanej przy końcu art. 
295 („Przykład11)].

3. Obliczyć całkę określoną j z - Log  ̂ ^  dz wzdłuż okręgu o promie­

niu, równym 2, zakreślonego dokoła początku układu, przy założeniu, że wartość po­
czątkowa logarytmu w punkcie £ 2 jest rzeczywista. Obliczyć wzdłuż tego same­
go obwodu całkę

dz

f ■J Z '1 -(- z - 1 

4rci
(Rozwiązanie [dod. tłum.]. 1J  ̂ 2) 2 ni (o ile w punkcie z =  0 nadaje­

my pierwiastkowi wartość +  1).

4. f ( z i oznacza funkcję całokształtną wewnątrz krzywej zamkniętej C, otacza­

jącej początek układu. Obliczyć całkę określoną I f ' ( z )  Log  z dz, rozpoczyna-
J  (C)

jąc drogę całkowania od wartości początkowej z0.

5. Uzasadnić wzór
' + OT

/
dt

(1 t2)n + 1
1 . 3 . 5 . . .  (2n — 1)

2 . 4 . 6 . . .  2n

użyć go do obliczenia całek określonych

r +cc dt r+ n
I  l l i  __  r . \ i  . f t a i n + 1 f+ 00

—  (jw*
dt

2 Bt C)n+1-oo [ «  -  *).* +  ^

6. Obliczyć zapomocą metody pozostałości następujące całki określone:

C '  °" sin m x  d x
x(x- + a2)2 przy m i a — rzeczywistych,

/ + 00 

— OT
cos aa; 
1 a;4

da; przy a rzeczywistym
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* _______ dx
J  _ <x (e* -  2p<* -  «*)n+1

® cos x  dx
J I*s !>(*’ 4>

przy a i p — rzeczywistych,

3

Jo 11 *)*

/.

d x  ,
(l + *)*

+ *  cos a x  — cos h x
f.+ ® x log x d r

o a T x » )> '

przy a i 6 — rzeczywistych i dodatnich.

(Aby wyznaczyć wartość ostatniej całki, możemy całkować funkcje 

wzdłuż obwodu, podanego "na rys. 62-im'.

dy

£<i i  z    g b i z

7. Dowieść, że całka określona / ;  a C — (A — C) cos <p
równa się, o ile

ma wartość skończoną, iloczynowi /  , w którym czynnik t jest równy + 1 i do-
2 y iiC

tiJA C  , ,
brany w ten sposób, ażeby spólczynnik przy i w wyrażeniu — ——• byl dodatni.

8. Niech F(z) i G (*t oznaczają funkcje holomorficzne, a z a niech stanowi 
pierwiastek podwójny równania G 0, taki, że F (a )^ 0 \  odpowiednia pozosta-

F<s) 6 F  (a) G " (ai — 2 F (a)'G  " (a)
lość ilorazu _ równa się „ , ,.--------------- •

G (*) 8 | G («)1 *
Ffz)

Podobnież pozostałość ilorazu względem pierwiastka pojedynczego o
[G tz) ]s

F' (a) G' (a) — F  (a) G "  (al 
równania G (*) -  0 Ijest równa ( „

9. Uzasadnić wzór

,+ 1 dx
_t (ar — ai / i  — 5*

w którym a oznacza liczbę zespoloną lub rzeczywistą o module, większym od jedno­
ści, a pierwiastkowi — x ‘ nadajemy przy całkowaniu (wzdłuż osi rzeczywistej) 
wartość dodatnią.

Określić dokładnie wartość, którą należy przypisać pierwiastkowi — a-.

10. Weźmy całki: / i / , w których S  i 5 , ozna-
J ( .)  ^  ; J m  * 1 +  **

czają obwody, utworzone w sposób następujący: obwód 5  składa się z prostej 0 ,4  
("którą przedłużamy nieograniczenie). przeciągniętej wzdłuż Oi, z okręgu o środku 0 
i promieniu O A, wreszcie z prostej A O; obwód S, — z trzech pętel, otaczających 
punkty a, b, c, które odpowiadają pierwiastkom równania z3 +  1 0. Sformuło­
wać związek pomiędzy całkami
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dr
■Jl -+- x ó

wynikający z porównania tamtych całek.

11. Zapomocą całkowania funkcji e z wzdłuż obwodu prostokąta, utworzo­
nego przez proste y =  0, y — b, x =  +  R, x ■ =  — R i powiększania nieograniczone­
go odległości R, uzasadnić związek

/
+  Co

cos 2 b x d x =  J k e— b‘

12. Scałkować funkcję e *  zn 1 \n— 1. rzeczywista i dodatnia] wzdłuż obwo­
du, utworzonego przez promień OA, nakrywający Ox, luk AB koła o promieniu OA, 
zakreślonego dokoła punktu 0, oraz takiego promienia BO, że kąt a =  AOB jest za­

warty pomiędzy O a Użyć otrzymanego wyniku, w którym należy w tym celu

powiększać nieograniczenie OA, do obliczenia całek określonych

un 1 e cos bu d u , I
— oc J o

+  CO un—l e au

[a i b — liczby rzeczywiste i dodatnie],
K

Otrzymane wzory są ważne również dla a - , byleby n spełniało warunek

n <  1.

13. m, m ', n oznaczają liczby całkowite dodatnie; m e n ,  m e n  (jedna 
z nich może być — 0 — Uus tl.) Uzasadnić wzór

14. Wysnuć z poprzedniego wzoru wzór Eulera

J
r* -f- oo 

0
f mdt

i +  f n
TT

2 n sin

15. Jeżeli część rzeczywista parametru a jest dodatnia i mniejsza od jednoś­
ci, to

/■+“ eaxdx 
)  _  1 - e *  sin a ji

[Można to wywnioskować z wzoru (39) (art. 3Q5), albo też scałkować w tym
4a~

celu funkcje wzdłuż obwodu prostokąta, utworzonego przez proste y O,
1 -j- e~

y 2 tt. x -j- R. x - — R, a następnie założyć, że R wzrasta nieograniczenie],

16. Podobnież uzasadnić wzór
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* + OD  ̂OX   ębT
/ , * (cot ar. cot b k) ,

. —cc ’ ^

w którym a i 6 są to liczby o częściach rzeczywistych dodatnich i mniejszych od je­
dności.

(Można obrać za drogę całkowania obwód prostokąta, utworzonego przez pro 
ste y — 0, y ~. ,v R .x  — R i zastosować poprzednie ćwiczenie].

17. Z w z o ru

/ U 
(O **

(1 ii"
d:  2 z i

n  <n —  1 ) . . .  ( n  —  k  i>

I .2  . . .  k
w którym n i k oznaczają liczby całkowite dodatnie a C  — okrąg, mający za środek 
początek układu, wysnuć wzorv

/
I (2 cos u * cos i n — Ar u du it! A0

/ :

+ł X2" dx
, — X- 2 . 4 .6  . . .  2/1

<w l i m  f  2) . . .  (n • k) 
1 . 2  . . .  At 

1 . 3 . K . . .  <2n — 1)

[Załóżmy s e2, , następnie ces u x i zastąpmy n przez n k a k
przez n].

*18. Całka określona

•t> 1X1
d?

aix 4- Jxi — 1 cos <pi

jest równa, o ile posiada wartość skończona, stosownie do po-
/ l  — 2 « x  -  a 1 v

łożenia względnego punktów c» i x. Otrzymać stąd wyrażenie n-tego wielomianu Le- 
gendre’a, podane przez Jacobiego

/ ix /*»— 1 cosfi"df .
R .' o

19. Zbadać również całko określona /
J o  x ~

manego wyniku wysnuć wzór Laplace’a

dtp
a 4- Jx‘ —  1 cos f i z otrzr-

X, ro
dtp

(x Jx ' —  1 cos .f-ł-i »

w którym i _  1 lub — 1. stosownie do tego, czy część rzeczywista zmiennej x jest
dodatnia czy ujemna.

*20. Uzasadnić ostatni wzór zapomocą całkowania funkcji

1
2 n  t  1 J  1 — -2 X  Z I *

d
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wzdłuż okręgu o promieniu rosnącym nieograniczenie, mającego za środek początek 
układu.

2  TC i s2 *

*21. Sumy Gaussa. — Niech Ts =  e n (n i s — całkowitej; oznaczmy 
przez Sn sumę T0 4- T 1 T fl_ v Uzasadnić wzór

„ (1 + i)(l + i3”) ,
Sn =  <]n •

2 K IX1
e n

(Zastosujmy twierdzenie o pozostałościach do funkcji cpfz) =  . , bio-gzi TC 1 %    ̂ ’
rac za obwód całkowania boki prostokąta, utworzonego przez proste x =  0, x =  n, 
! J  =  -  R ,  y =  — R ,  Z dodatkiem dwu półokręgów o promieniu e, zakreślonych do­
koła punktów x =  0, * =  n, w celu uniknięcia biegunów z — 0, z — n funkcji <p(z); 
załóżmy następnie, że R wzrasta nieograniczenie].

22. Jeżeli / ( z )  oznacza funkcję holomorficzną wewnątrz obwodu zamkniętego 
T, otaczającego punkty a, b, c, . . . ,  l, a  «, p, . . . ,  i  — liczby całkowite dodatnie, to 
suma pozostałości funkcji

t? (z) =
/  (zj I x — a\0' lx —

odpowiadających biegunom a, b, c , . . .  , l, stanowi wielomian stopnia a+  g X — 1,
F (x), spełniający warunki

F (a )  /'(Oj, F '( a )  = /'(O ), . . . ,  F (a- ł)(o) =  / (a_1)<o),

^  (fo) = J ( b ) ,  F'(b)  =  / ' ( & ) ,  . . . ,  F ^ \ b )  = f $ - » ( b ) ,

[Można się oprzeć na związku F (x) =  f {x )  +  — / f(zjd z],
'i TC i J  (r>

'23. Niech / i z  i oznacza funkcję calokształtną wewnątrz koła C o środku a. 
Jest dany również ciąg nieograniczony punktów av a a n , . . . ;  przy n wzra­
stającym nieograniczenie punkt an zmierza do punktu a, jako do granicy. Załóżmy:

F n (z) =  (z — a1xz — a2) . . .  (z — an ) i

dla każdego punktu z, położonego wewnątrz C, jest ważne rozwinięcie w szereg

f (z )  = f a 1) (Z — Oj) (Z — O,) . . .  (Z 1
f ' ah )_

F J  (ah i

[L aurent „Journal de Mathśmatiquesu. serja 5a, t. VIII, str. 325|. |Użyć 
następującego wzoru, łatwego do sprawdzenia:
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1 1 x — a.
+ •• •* — x z — a, i* — a, u *  — a,i

( x — a t ) . . . ( x  <*„_,) 1 (x — 0 , 1 . . .  (x a,,)

ii  a , > , . . ( *  O, z x (*  — 0,1 — 0 ,1

i postępować, jak przy uzasadnieniu wzoru Taylora].

24. Niech z0 a +  bi stanowi pierwiastek rzędu n równania f\Z\ X  Yi O, 
w którym /< « t oznacza funkcję calokształtną w sąsiedztwie tego punktu Punkt 
x =  o, y =  6 jest dla obu krzywych X O. Y  O punktem wielokrotnym rzędu 
n; styczne w tym punkcie do każdej z tych krzywych tworzą rodzaj „róży wiatrów* 
(rosę de vents>, przy tym promienie jednego z tych pęków są dwusiecznemi kątów, 
otworzonych przez promienie drugiego.

25. Weźmy wielomian stopnia m o dowolnych spólęzynnikach 

/ ( « )  = X  iY  A,xm A, *m_1 . . .  +  An .

Dowieść, iż wszystkie asymptoty krzywych X  O. Y  O przechodzą przez punkt
Al 9

------- i sa ułożone tak «smo jak proste z poprzedniego ćwiczenia.
m A,

26. Szereg Burmanna. Gdy mamy dane dwie funkcje/(xł i F<xi zmiennej 
x, wzór Burmanna pozwala na rozwinięcie jednej z nich według potęg drugiej. Aby 
nadać zagadnieniu postać ściślejszą, weźmy pierwiastek pojedynczy a równania 
F (x )  =  O i załóżmy, że obie funkcje f (x i i P (x) są całokształtne w otoczeniu pun­
ktu a. W tym obszarze zachodzi związek

w którym ? fx> oznacza funkcję regularną dla x a  (o ile a jest pierwiastkiem po­
jedynczym równania F(x» 0). Zastępując F (x i  przez y, otrzymujemy zamiast po­
przedniego związku związek równoważny

x — a y y  ix i  O,

należy rozwinąć J  z według potęg zmiennej y iwzór Lagrange'ai.

27. Równanie Keplera. Równanie z a - e sin z 0. w którym a i e 
oznaczają liczby dodatnie, przy tym a <  c. e <  1, posiada jeden pierwiastek rzeczy­
wisty, zawarty pomiędzy O a -. oraz dwa pierwiastki o częściach rzeczywistych, za­
wartych pomiędzy mts a tm -1- 11 k, o ile m jest liczbą dodatnią parzysta lub ujemna 
nieparzystą; jeżeli m oznacza liczbę dodatnią nieparzystą lub ujemną parzystą, to nie­
ma żadnego pierwiastka, którego część rzeczywista byłaby zawarta pomiędzy m- a 
im -  1 [Briot et BoUQtJET ,  Theorie des fonetions elliptigues“ i.Teorja funkcji 
eliptycznych", wyd. 2-gie, str. 199).

[Należy zbadać krzywą, zakreśloną przez punkt u z a e sin z, gdy 
zmienna z przebiega po kolei boki prostokąta, utworzonego przez proste x m -  
x = l m  list, y +  R, y R-, R oznacza tu liczbę bardzo wielką].
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28. Przy nader wielkich wartościach 'liczby m, pierwiastki, omówione w po­
przednim ćwiczeniu, których część rzeczywista zawiera się pomiędzy 2 m i  a 
(2 m +  1 i Tc, są w przybliżeniu równe

log ( “ ) +  log

[G o ukier , „Annales de l'Ecole Normale* (Roczniki Szkoły Normalnej), serja 
2-ga, t. VII, str. 73].

71
2m it + -----i* i

2



ROZDZIAŁ XV.

Funkcje jedno war t oś c i owe .

Pierwsza część tego rozdziała jest poświęcona udowodnieniu twier­
dzeń ogólnych Weierstrassa (’) i Mittag-Leffłera o funkcjach całkowitych 
oraz funkcjach jednowartościowych, posiadających nieskończenie wiele 
rzeczy osobliwych. Twierdzeuia te zastosowuję następnie do funkcji 
eliptycznych. Przeznaczywszy na tę teorję niewielką liczbę stronnic, 
nie mogłem marzyć o rozwinięciu jej w sposób o tyle o ile zupełny; 
poprzestałem tedy jedynie na zaznaczeniu w grubszych zarysach 
rzeczy najbardziej zasadniczych, tak iżby czytelnik mógł bodaj zdać 
sobie sprawę z wagi tych funkcji. Tym, którzyby pragnęli posunąć 
dalej badania nad funkcjami eliptycznemi lub zająć się zastosowaniem 
ich, nie wystarczy zwykły kurs analizy matematycznej; tacy będą zmusze­
ni zawsze do posiłkowania się traktatami specjalnemu

I. Czynniki pierwsze Weierstrassa. — Twierdzenie  
lYlittag -  Lefflera.

315. Wyrażanie funkcji całkowitej w postaci iloczynu czynników 
pierwszych.— Wszelki wielomian stopnia m-ego równa się iloczynowi liczby 
stałej przez m czynników o postaci x  — a, równych lub nierównych,

( ')  Twierdzenia Weierstrassa, które mamy wyłożyć, zogtaly ogłoszone drukiem 
w jego .Rozprawie o funkcjach jcdnowartościowych jednej zmiennej“. iRozprawy 
\Mimoires\ Akademji Berlińskiej, r. 1876 >. Prof. Picard umieścił w ..Rocznikach 
wyższej Szkoły N orm alnej“ (Annales de 1'Ecole Normale superieure'. w r. 1879, 
przekład tej rozprawy. Ogól badań Mittag-Leffłera znajdziemy w rozprawie, ogłoszo­
nej w %Acta mathematica“ i,tom II).
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i rozkład ten ujawnia pierwiastki wielomianu. Euler pierwszy rozwinął 
sin z w podobny iloczyn nieskończony, składający się atoli, jak zoba­
czymy poniżej, z czynników drugiego stopnia względem z. Cauchy 
stwierdził, iż w pewnych przypadkach jest się zmuszonym do skojarze­
nia z każdym czynnikiem dwumiennym, o postaci x — a, odpowiedniego 
czynnika wykładniczego. Atoli dopiero Weierstrass opanował to zagad­
nienie w jego postaci najogólniejszej, okazując, że wszelka funkcja 
całkowita o nieskończenie wielu pierwiastkach może być wyrażoną jako 
iloczyn liczby nieskończonej czynników, z których każdy staje się 
równy zeru jedynie przy pewnej określonej wartości zmiennej.

Znamy już funkcję całkowitą, która się nie staje równą zeru przy 
żadnej wartości zmiennej 0: jest to e z ; to samo dzieje się z funkcją 

o ile g (z) oznacza wielomian lub funkcję całkowitą. Nawzajem, 
wszelka funkcja całkowita, która nie staje się równą zeru dla żadnej 
wartości z, posiada ten właśnie kształt. Istotnie, jeżeli funkcja całko­
wita G {z) nie równa się zeru przy żadnej wartości zmiennej z, punkt, 
odpowiadający dowolnej wartości z — a, jest punktem zwyczajnym dla

G'(z)
funkcji Q{e) ; jest to tedy funkcja całkowita, którą oznaczymy przez

9i (*):
G ’ (z) 
G(z) =  9 i(2)’

całkując obie strony równości pomiędzy granicami z0 i z i oznaczając 
przez g (z) pewną nową funkcję całkowitą zmiennej z, otrzymujemy:

Log

i stąd

G(z)
G (*0) I 9 i ( z)

Zn

dz 9 (z) — g 0 „)

G(z) =  G (z0) '== e fir (z) — {/ Óo) + Log [G (z0)]_

Prawa strona równości tej posiada istotnie żądaną postać.
Jeżeli funkcja całkowita G (z) posiada tylko n pierwiastków av a 2 

. . .  . a n, odmiennych lub nie, to oczywiście należy jej j 1) przypisać 
postać (0 — a^ (z — a2) ... (0 — a n) e 'l(z):

G (z) =  {z — aj )  (0 a2) . . .  (0 —  a n ) e»<z).

ł1) Ponieważ iloraz
G  a )

(0 — a1)-(z—a2> . . .  ( * — an)

winien być funkcją całkowitą, nie stającą się zerem, a więc posiadać, jak uzasadni- 
iśmy powyżej, kształt [Uw. tlum.\.



144 Rozdział X V .— Funkcje jednowartościowe.

Rozważmy teraz przypadek, gdy równanie G (z) — 0 posiada nie­
skończenie wiele pierwiastków. Ponieważ może istnieć tylko skończona 
liczba pierwiastków o module równym jakiejkolwiek liczbie R lub 
mniejszym od niej (art. 299), przeto, jeżeli uszykujemy wszystkie pier­
wiastki w ten sposób, iżby moduł nigdy nie malał, to każdy z nich 
otrzyma określone miejsce w otrzymanym, zgodnie z tym założeniem, 
ciągu:
(1) U|, flj, . . .  , ® n j a n fli j

w którym a n a n + a i a n wzrasta uieograniczenie wraz ze 
wskaźnikiem n. Przypuśćmy, że każdy z tych pierwiastków występuje 
w ciągu tyle razy, ile wymaga jego stopień wielokrotności, i że tam 
nie wchodzi pierwiastek z 0, jeżeli G (Q) 0. Okażemy z początku,
jak można utworzyć funkcję całkowitą <?, (c), mającą za pierwiastki 
wyrazy ciągu ( 1) i nie posiadającą innych pierwiastków.

Iloczyn — j e  0V<5\ w którym Qv(z) oznacza jakiś wielomian,

stanowi funkcję całkowitą, równą zeru jedynie przy 2 =  a n. Iloczyn 
ten możemy napisać w postaci

ov(») + u — ‘ ) ."  a n  / ł

jeżeli zastąpimy Log ( 1 ------ I  przez szereg całkowity, w który da się
a  n l

rozwinąć to wyrażenie, to szereg w wykładniku rozpocznie się od wy­
razu stopnia v +  1, bylebyśmy założyli

Z Z* . . z '1Qv(z) + +
'l a, v a vn

W ten sposób właśnie obierzemy wielomian stopnia v, Qy{z).
Liczba całkowita v jest na razie nieoznaczona. Dowiedziemy, że 

można obrać ją w zależności od w w ten sposób, iżby iloczyn nieskoń­
czony

+ * 2 \
(2) n  a -  e° v w

n —1 ° n'
był bezwzględnie i jednostajnie zbieżny we wszelkim kole o promieniu 
R, zakreślonym dokoła początku układu, chociażby R było nieskończe­
nie wielkie. Ustaliwszy liczbę R, oznaczmy przez a liczbę dodatnią, 
mniejszą od jedności. Odsuńmy na bok czynniki iloczynu (2), odpowia-

dające pierwiastkom a n o modułach, nie przewyższających . Przy­



I .— Czynniki pierwsze Weierstrassa.— Twierdzenie Mittag-Lefflera. 145

puśćmy, że ten warunek spełnia q pierwiastków. Iloczyn q czyn­
ników

i
*i(« ) =  n  (!

n  = 1

stanowi oczywiście funkcję całkowitą, zmiennej z; rozpatrzmy iloczyn 
czynników dalszych, poczynając od (q +  1) e°°

+  CO \

* , ( * ) -  n  ( i - f  « o , w -
n=,+l

Gdy punkt 2 leży wewnątrz koła o promieniu R, to z j <1 R, a 
Rponieważ a n <  gdy n^>q, przeto mamy również a <  a. a n |.

Dowolny czynnik ( 1 ------) e.Ov<:i tego iloczynu, zgodnie ze sposobem,

■w jaki obraliśmy Q v (z), może być napisany w postaci
1 / 2 \ V + 1 _  1 / 2 \

V +  l \ an/ V +  2 l  “n /
z \ v +  2

i jeżeli go oznaczymy przez 1 +  to

1 i - i V + 1 1 /_£ \ v + 2
V +  3 V an / v +  2 \ an )

Un =  e —  1 .

Wszystko polega obecnie na uzasadnieniu, że przy odpowiednim 
wyborze liczby v szereg o wyrazie ogólnym Un =  'u n\ jest jednostajnie 
zbieżny w kole o promieniu R. (T. I, art. 176). Owóż mamy ogólnie, 
dla wszelkiej liczby rzeczywistej lub urojonej m:

tym bardziej tedy
1 <  e ’m — 1;

V +  1 , V +  1 V +  1 z

v +  1 ■ an 1̂ + v +  2 “n + v +  3 "n - )
TJn <  e

czyli, ze względu na to, że z\<^a. a n gdy z <^R:

Un <  ev +  1 an

-f-1 1
1—a —  i.

Lecz przy x  rzeczywistym i dodatnim, e x — 1 jest mniejsze od x ex\ 
otrzymujemy przeto jeszcze

z v +  l  1

Un

l | _z_
1 Z  ' 1 1 v + 1 a n--- -— _  -------e

v +  1 an 1 — a

1 — a 1
V +  1 an

v + 1 , e 

1 - a

i
1 — a

Kurs analizy matematycznej. 10
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Do lego. aby szereg o wyrazie ogólnym Un był jednostajnie zbieżny 
w kole o promieniu Ii, wystarczy, iżby to samo się stosowało do szere-

2 v f t
gu, którego wyrazem ogólnym jest . Jeżeli istnieje taka liczba

całkowita p, że szereg jest zbieżny, to wystarczy wziąć—̂  a„ •
v P — 1- Jeżeli niema liczby całkowitej p, posiadającej tę własność,(*) 
to wystarczy wziąć v n - l. Istotnie, szereg o wyrazie ogólnym

z n
jest zbieżny jednostajnie w kole o promieniu R, ponieważ jego

wyrazy są mniejsze od wyrazów szeregu

stopnia z wyrazu ogólnego tego właśnie 
zera, gdy « wzrasta nieograniczeniej*)

pierwiastek »-ego

szeregu, to jest
R

dąży doi  W

Można tedy zawsze obrać liczbę całkowitą v w ten sposób, iżby 
iloczyn nieskończony Ft (*) był w kole o promieniu i? jednostajnie 
i bezwzględnie zbieżny; iloczyn ten może być zastąpiony przez sumę 
szeregu jednostajnie zbieżnego (art. 176), którego wyrazy są holomor­
ficzne. Jest on przeto sam funkcją całokształtną w tym kole (art. 297). 
Mnożąc F, (z) przez iloczyn F, (z), który zawiera tylko skończoną 
liczbę czynników całokształtnych, stwierdzamy, że iloczyn nieskończony

(3)
+ «

(z) n a
n  =  1

6 P v W

jest również bezwzględnie i jednostajnie zbieżny wewnątrz koła C o 
promieniu R i wyraża funkcję całokształtną w tym kole. Ponieważ 
promień Ii może być obrany dowolnie a liczba v nie zależy odeń. więc 
iloczyn ten jest funkcją całkowitą, mającą za pierwiastki wyrazy 
ciągu (1) i nie posiadającą innych pierwiastków.

<‘ i Weźmy np an log n n 3 :2 ' .  Szereg o wyrazie ogólnym dog n ~  p 
jest rozbieżny przy jakiejkolwiek wartości dodatniej liczby p, ponieważ suma in - li 

, n — 1
pierwszych wyrazów jest większa niż - . a wyrażenie to wzrasta nieogranicze-

(log n tp
nie wraz z n.

i -i Borel zwróci! uwagę na to, że wystarczy wziąć taka

było większe niż log n. W istocie. szereg V R
On

log n
jest

liczbę v, iżby v -  1 

zbieżny, ponieważ



Jeżeli dla funkcji całkowitej G (z) jest ponad to punktem ze-
G{z) .

rowym rzędu p punkt z =  0, to iloczyn zP q ^  iest funkcją analitycz­

ną, nie posiadającą w dziedzinie całej płaszczyzny ani biegunów, ani 
punktów zerowych. Jest to tedy funkcja całkowita o postaci e«G (g (z)— 
wielomian lub funkcja całkowita), i funkcja G (z) daje się wyrazić w po­
staci następującej:
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G (z) =  eaM zp Y\(l
T l —  1

Z

a n
! Q  V  ( Z )  •

Funkcja całkowita g (z) może znowuż być zastąpioną nieskończenie 
wielu sposobami przez sumę szeregu jednostajnie zbieżnego wielo­
mianów

g(z) =  gx (z) +  g* (z) +  ••• +  gn(z) +  ••• , 

i wzorowi poprzedniemu możemy jeszcze nadać kształt

G (z) -- zp f j  (1 e Gv (*) + «n G) ;

czynniki tego iloczynu, z których każdy staje się równym zeru tylko 
przy pewnej jednej wartości z ,  nazywają się czynnikami pierwszemi lub 
pieruotnemi (facteurs primaires).

Wobec zbieżności bezwzględnej iloczynu (4) można ustawiać czyn­
niki pierwsze w dowolnym porządku lub też dowolnie łączyć je ze so­
bą. Występujące w tym iloczynie wielomiany Qv (z), skoro tylko zo­
stało wybrane prawo, wyznaczające liczbę v w zależności od n, zależą 
jedynie od samych pierwiastków. Lecz czynnik wykładniczy e»(z) nie 
może być wyznaczonym, o ile znamy tylko pierwiastki funkcji G (z). 
Weźmy np. funkcję sin n z, której pierwiastkami pojedynczemu są 
wszystkie liczby całkowite, dodatnie i ujemne. W tym przypadku szereg

2 ' r
jest zbieżny;* można tedy wziąć v - 1, i funkcja

log n log on log . Poczynawyraz ogólny może być napisany w postaci e
an

jąc od pewnej, dość wielkiej, wartości n, jest większe od e», więc wyraz ogól-
R

nv — mniejszy niż n-
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«<•> -- n ' < i -
— ac

w której symbolu kreska, umieszczona na prawo od n. oznacza, że 
wskażuikowi n nie należy nadawać wartości zerowej (*), będzie posia­
dała te same pierwiastki, co sin -  z. Przeto sin z z e #t£> G (̂ ), lecz 
powyższe rozumowanie nie poucza nas bynajmniej co do czynnika 
Dowiedziemy poniżej, że czynnikiem tym jest poprostu -

316. Rodzaj funkcji całkowitej. — Ujrzeliśmy, w jaki sposób — gdy
jest dany jakikolwiek ciąg nieskończony a,, (J2. ... ,  a o wyrazie
ogólnym, którego wartość bezwzględna a n wzrasta nieograniczenie 
wraz z fi — można utworzyć nieskończenie wiele funkcji całkowitych, 
mających za punkty zerowe wszystkie wyrazy tego ciągu i nie posia­
dających innych punktów zerowych. Jeżeli istuieje taka liczba całko­
wita p, że szereg I  a n ~ p jest zbieżny, to wszystkie wielomiany 
Qv (z) mogą posiadać stopień p — 1.

Gdy mamy funkcję całkowitą o postaci

+ 00 \ i_ + 1 / _ \ \ 2 1 ( * \ p~l
O z) z'e  P w n < !  - ] «  «« - ' /—> ' ° « '

z tym zastrzeżeniem, że P (z oznacza wielomian stopnia co najwyżej 
(p — l)-ego . to nazywamy liczbę { p — 1 ) rodzajem (genre) tej funkcji.

+  CD ^  \

Tak np. funkcja FI (1 — ~ ) jest funkcją rodzaju zerowego; funkcja 
sin «c z . . . .
— -— , wyrażona powyżej — funkcją rodzaju pierwszego. Badanie ro­

dzaju funkcji całkowitej spowodowało w ciągu kilku ostatuieh lat 
powstanie wielkiej liczby prac naukowych. (2)

317. Funkcje jednowartościo we o liczbie skończonej punktów osobli­
wych.— Gdy funkcja jednowartościowa F (z posiada w dziedzinie całej 
płaszczyzny tylko liczbę skończoną punktów osobliwych, wówczas muszą 
to być punkty osobliwe odosobnione (isoles): bieguny lub punkty istotnie

(*) (idy ten wyjątek ma być zastrzeżony w jakim wzorze, przypominamy o tym, 
umieszczając kreskę ' po znaku charakterystycznym iloczynu lub 6umy.

(2) Por. rozprawę E. Borela ,.Lekcje o funkcjach całkowitych Legom  sur 
Lee fonctions entieres“ — 1900 i najnowszą pracę Blumentbala „O funkcjach całko­
witych rodzaju nieskończonego“ („Sur les fonctions entieres de genre inflni 
-  1910).



osobliwe. Punkt z =  co jest również punktem zwyczajnym lub punktem 
osobliwym odosobnionym art. 3101 Nawzajem, jeżeli funkcja jednowarto­
ściow a p o sia d a  w d z ied z in ie  całej płaszczijzny (z  punktem w nieskończoności 
w łącznie) jed y n ie  pu n k ty  osobliwe odosobnione, to liczba tych punktów musi być 
skończoną. Istotnie, punkt w' nieskończoności jest dla funkcji punktem 
zwyczajnym lub punktem osobliwym odosobnionym. W obu przypad­
kach można zakreślić okrąg C  o promieniu dość wielkim, by naze- 
wnątrz tego okręgu dana funkcja nie posiadała żadnych punktów oso­
bliwych, prócz samego punktu w nieskończoności. Wewnątrz koła C  

może się zawierać jedynie liczba skończona punktów osobliwych; gdyby 
bowiem funkcja posiadała ich tam nieskończenie wiele, istniałby przy­
najmniej jeden punkt osobliwy graniczny (art. 299), a ten nie byłby 
już punktem osobliwym odosobnionym. Tak tedy fu n k c ja  jednowartościowa, 
p o sia d a ją ca  tylko b ieg u n y , m oże p o sia d a ć tylko skończoną ich  liczbę, ponieważ 
biegun jest punktem osobliwym odosobnionym.

W szelka fu n k c ja  jednow artościow a, re g u la rn a  d la  wszelkiej wartości skoń­
czonej. z  i d la  z =  oc, jest liczbą stałą. —  Istotnie, gdyby taka funkcja 
była czymś innym, to ze względu na to, że jest regularna dla 
wszelkiej wartości skończonej z, musiałaby być wielomianem lub 
funkcją całkowitą —  w takim razie atoli wbrew założeniu, punkt w nie­
skończoności byłby dla niej biegunem lub punktem istotnie osobliwym.

Stwierdziwszy to, weźmy funkcję jednowartościową F  {z), posiada­
jącą n  różnych punktów osobliwych cą, a 2, . ., a n , w odległości skoń­
czonej; część główną postaci rozwiniętej funkcji F  (z) w otoczeniu punktu

a, oznaczmy" przez G , | j • C, jest tu symbolem wielomianu lub

funkcji całkowitej — w obu przypadkach ta część główna jest regularna 
dla wszelkiej wartości z (włącznie z wartością 2 = 00), oprócz 2 =  a,-. 
Niech również P  (z) oznacza część główną postaci rozwiniętej funkcji 
F  (z) w otoczeniu punktu w nieskończoności; jeżeli punkt w nieskończo­
ności jest dla F  (z) punktem zwyczajnym, to P  (z) równa się zeru. 
Różnica

U  =  F  (z) —  P  {z) - 2  G i ( - — *
i  =  1 '

jest oczywiście funkcją regularną dla wszelkiej wartości zmiennej z 
wlączpie z wartością z =  00; jest to tedy stała Ci otrzymujemy równość

( 1 Osiągamy także ten wzór zapomocą przyrównania do zera sumy pozosta- 
/ 1 1 \

lości funkcji F >x \ . uważając i  i z0 za stale, a ar za zmienną (por,
\oc —  Z X  —  Z J

art. 31Qj.
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co wskazuje, że funkcja F (z) jest zupełnie określona -  z pominięciem 
pewnego stałego składnika —  gdy znamy części główne w otoczeniu 
każdego z punktów osobliwych. Te części główne, równie jak same 
punkty osobliwe, mogą być zresztą obrane dowolnie.

Gdy wszystkie punkty osobliwe są biegunami, części główne Cr, są 
to wielomiany; P (s), o ile nie równa się zeru, jest również wielomianem- 
i prawa strona wzoru (5) staje się ułamkiem wymiernym. Ponieważ 
z drugiej strony funkcja jednowartościowa, która posiada z punktów 
osobliwych jedynie bieguny, ma je w licżbie skończonej, przeto funkcja 
jednowartościowa. której wszystkie punkty osobliwe sa biegunami, nie jest niczym 
innym, tylko ułamkiem wymiernym.

318. Funkcje jednowartościowe z liczbą nieskończoną punktów oso­
bliwych. —  Jeżeli funkcja jednowartościowa posiada nieskończenie wiele 
punktów osobliwych w jakimś obszarze skończonym, to istnieje co 
najmniej jeden punkt graniczny tego zbioru, położony wewnątrz obszaru

1
lub na jego ograniczenia. Np. biegunami funkcji ( są wszystkie

sin

punkty, odpowiadające pierwiastkom równania

wszystkie punkty, odpowiadające wartościom

ia sin | j
* 1
k k

0, to jest 

(.k —  dowolna

liczba całkowita); punktem granicznym jest tu początek układu.
1

Punkty osobliwe funkcji ( , są również wyznaczone, jako1
sin sin 1

odpowiadające pierwiastkom równania sin

leżą wszystkie wartości
2 k'x -f arc siuin U

, do których na

. zależne od dwu

liczb całkowitych dowolnych k i k'. Wszystkie punkty są punk-£ K i*
tarni granicznemi, gdyż wyrażenie poprzednie, przy k rosnącym nie-



1
ograniczenie a stałym k' zmierza do granicy Łatwo, zapomocą

uwielokrotniania znaku sin tworzyć coraz to bardziej złożone przykłady 
tego rodzaju. Istnieją również, jak stwierdzimy nieco dalej, funkcje, dla 
których punktami osobliwemi są wszystkie punkty pewnej linji.

Może się zdarzyć, że funkcja jednowartościowa ma tylko liczbę 
skończoną punktów osobliwych w każdym skończonym obszarze płasz­
czyzny, chociaż posiada ich nieskończenie wiele w dziedzinie całej 
płaszczyzny. Nazewnątrz każdego koła C , jakkolwiek wielki byłby jego 
promień, leży nieskończenie wiele punktów osobliwych, i powiemy z te­
go powodu, że punkt w nieskończoności jest punktem granicznym (zbio­
ru punktów osobliwych— dod. tłum .). W następnych artykułach zajmie­
my się funkcjami jednowartościowemi, posiadającemi nieskończenie 
wiele punktów osobliwych odosobnionych, których jedjnym punktem 
granicznym jest punkt w nieskończoności.
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319. Twierdzenie Mittag-Lefflera. —  Jeżeli w* każdej części płaszczy­
zny w odległości skończonej leży tylko liczba skończona punktów oso­
bliwych. to można, jak już zauważyliśmy co do punktów zerowych 
funkcji całkowitej, ustawić te punkty osobliwe w ciąg

(6 ®1' a2> • • ■ 1 • • • ’
w ten sposób, iżbyśmy mieli a „  ^  a n + 1 , i rzecz jasna, że a „ bę­
dzie w takim razie wzrastało nieograniczenie wraz z n . Możemy 
oprócz tego założyć, że wszystkie wyrazy tego ciągu są różne. Każde­
mu wyrazowi ciągu (tl) podporządkujmy wielomian lub funkcję

całkowitą względem  ̂ 1 > G,- ( )* obraną w sposób zupeł-

nie dowolny. Twierdzenie Mittag-Lefflera może być wysłowione w spo­
sób następujący:

Istn ie je  fu n k c ja  a n a lity czn a  jednow artościow a, re g u la rn a  dla  w szelkiej 

w artości z , n ie  n a leż ą cej do c ią g u  (6), a k tórej częścią 'głów ną w otoczeniu

p u n k tu  z  =  a,- je s t  G ;

W celu udowodnienia tego twierdzenia

możliwą dołączyć do każdej funkcji 6-'; |

okażemy, że jest rzeczą

) taki wielomian P,- (z), a i I
iżby szereg

Cr, +  P. (*)
i = 1
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wyrażał funkcję analityczną, posiadającą te własności. Jeżeli punkt 
z =  0 należy do ciągu ( 6), to weźmiemy dlań wielomian równy zeru. 
Każdemu z innych punktów at podporządkujmy taką liczbę dodatnią 
e iżby szereg -s , był zbieżny; oznaczmy prócz tego przez a. liczbę 
dodatnią mniejszą od jedności. Niech C, oznacza okrąg koła o środku 
w początku układu, przechodzący przez punkt a t , a C , okrąg, spół- 
środkowy z tamtym, o promieniu równym a a, . Ponieważ funkcja

jest caloksztaltna w kole C,, przeto w każdym punkcie
«i /

wewnętrznym tego koła

Gj I =  « > 0  +  ® i 1 2 +  .. .  +  ® , n  3 "  +  . . . .

Szereg całkowity z prawej strony znaku równości jest jednostajnie 
zbieżny w kole C( , można tedy znaleźć liczbę całkowitą v. doś wiel­
ką, by wewnątrz kola C', zachodziła nierówność:

(7) G( | —— -■ —| — a (o — « 11 * — — a >v *v £i)

wyznaczywszy w ten sposób liczbę v, weźmiemy za P, (c) wielomian
—  »  i  0 —  ® 1 1 2 ----- ••• —  ® i» 2V .

Ustaliwszy to, weźmy koło C o promieniu 2?, mające za środek 
punkt z 0. Odsuńmy na bok w ciągu (6) punkty osobliwe a ,, któ-

rych moduł nie przewyższa . Oznaczając liczbę ich przez 7, za­

łóżmy:

i  =  1

Co do szeregu

jest on bezwzględnie i jednostajnie zbieżny w kole C. gdyż dla każdego 
punktu, wziętego w tym kole, (< \ o ile wskaźnik i jest
większy od 7. Ze względu na nierówność (7) i sposób, w któryśmy 
obrali wielomian P, (z), moduł wyrazu ogólnego tego drugiego szeregu 
jest mniejszy od s,-, gdy punkt 2 leży wewnątrz C. Funkcja P, (2) 
jest tedy funkcją holomorficzną w tym kole, i rzecz jasna, iż, gdy 
dodamy do niej F x {z), suma

0

+  P, (2)
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(8) f  {z) ---= y  G
i = 1 L

będzie miała w kole C te same punkty osobliwe co F x (z), wraz z temi 
samemi częściami głównemi. Te punkty osobliwe są to właśnie wyrazy 
ciągu (6) o modułach mniejszych niż R, i częścią główną w otoczeniu

funkcja F  (z) spełnia wszystkie warunki twierdzenia.
Ezecz jasna, iż dodając do F  (z) jakikolwiek wielomian lub funkcję 

całkowitą G (z), otrzymujemy sumę F  (z) +  G (z), posiadającą te same 
punkty osobliwe co F  (z) wraz z temi samemi częściami głównemi. 
Nawzajem, powstaje w ten sposób wyrażenie ogólne funkcji jednowarto- 
ściowych, posiadających dane punkty osobliwe wraz z danemi częścia­
m i głównemi, odpowiadającemi tym punktom, gdyż różnica dwu takich 
funkcji, będąc regularną dla wszelkiej wartości skończonej z, jest wie­
lomianem lub funkcją całkowitą. Wobec tego, że funkcja G (z) może 
również być wyrażoną w postaci sumy wielomianów, funkcja F  (z) 
— G (z) może z kolei być wyrażoną w postaci sumy szeregu, którego 
każdy wyraz da się otrzymać przez dodanie do części głównej

Jeżeli wszystkie części główne (?; są wielomianami, funkcja jest 
częściokształtna (meromorficzna) we wszelkim obszarze płaszczyzny 
w odległości skończonej i nawzajem. Widzimy tedy, iż wszelka funkcja 
meromorficzna może być przedstawioną w postaci sumy szeregu, którego 
każdy wyraz jest ułamkiem wymiernym, przybierającym wartość nie­
skończoną tylko przy jednej wartości skończonej zmiennej z. To upo­
staciowanie jest podobne do rozkładu ułamka wymiernego na elementy 
proste. Wszelka funkcja częściokształtna <ł> (2) może również być wyra­
żoną przez iloraz dwu funkcji całkowitych. W istocie, załóżmy, że 
bieguny funkcji <f> (z) stanowią wyrazy ciągu (6), w ten sposób, że 
uwzględniamy stopień wielokrotności każdego z nich. Przypuśćmy, że 
G (z> oznacza funkcję całkowitą, posiadającą te właśnie zera; iloczyn 
<l> (z) G {:) nie posiada żadnych biegunów. Jest to tedy funkcja całko­
wita Gx (2), i otrzymujemy równość

Ponieważ promień R jest dowolny, przeto

odpowiedniego wielomianu.

G, (z)
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320. Badanie pewnych przypadków szczególnych. Dowód powyższy 
twierdzenia ogólnego niezawsze daje sposób najprostszy tworzenia 
funkcji jednowartościowej, spełniającej postawione warunki. Przypuść­
my np., że chodzi o wyznaczenie funkcji ‘b (:), dla której wszystkie 
punkty ciągu (6) są biegunami o pozostałościach równych jedności: 
założymy przy tym, że punkt :  =  O nie jest biegunem. Część główna,

odpowiadająca biegunowi at . równa się , i możemy napisać: 
a i

1 1
= — a,

jeżeli bierzemy

Pt (s)
1

( l i

2V~'

to wszystko się sprowadza do wyznaczenia w zależności od wskaźnika 
i liczby całkowitej v w ten sposób, iżby szereg

X

V
I r 1

1
s — a t

+- 00 zv

I = 1 (lii

1
O V - 1

był bezwzględnie i jednostajnie zbieżny we wszelkim kole, mającym za 
środek początek układu, po odrzuceniu dostatecznej liczby wyrazów

V  / -  \v+1początkowych. Wystarczy, by sam szereg ^  \ a ) był bezwzglę­

dnie i jednostajnie zbieżny w tym samym obszarze. Jeżeli istnieje taka 
^0 1 r

liczba p, że szereg ^  jest zbieżny, to wystarczy wziąć v = p — 1.

Jeżeli nie istnieje żadna liczba całkowita, posiadająca tę własność, to 
można wziąć, jak powyżej (art. 315) v ~ i — 1, albo v -+- 1 >  log i. Po 
odpowiednim wyborze liczby v funkcja meromorficzna

(9) <t> ,z) V
i = 1

y V - 1

będzie miała za bieguny wszystkie punkty ciągu (6), oraz pozostałości 
równe jedności.

Łatwo wysnuć stąd nowy dowód twierdzenia Weierstrassa o roz­
kładzie funkcji całkowitej na czynniki pierwotne. W istocie, można 
całkować szereg (9) wyraz po wyrazie wzdłuż dowolnej drogi, nie 
przechodzącej przez żaden z biegunów, gdyż skoro ta droga jest za­
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warta w kole O', mającym za środek początek układu, szereg (9) może 
być zastąpiony przez szereg jednostajnie zbieżny w tym kole z do­
datkiem sumy liczby skończonej funkcji częściokształtnych [wynika to 
z samego uzasadnienia wzoru (9)J. Biorąc przy całkowaniu punkt 
z =  0 za granicę niższą, otrzymamy

I (z) dz 
o 2 Log (1

a przeto

I + X
0 ( z ) d z

(10) e J n  r |  (1

i =  1
a i I

2 7

z v
v  a : v

Łatwo sprawdzić, iż lewa strona tego wzoru jest funkcją całko­
witą zmiennej z. W sąsiedztwie wartości a tej zmiennej, nie należącej

/ • z  I  < D ( z )  d z

do ciągu (6), całka / <I> (z) dz jest całokształtna; funkcja e  ̂ 0
J  o

jest również całokształtna i różna od zera przy z — a. W otoczeniu 
punktu a, mamy, oznaczając przez P i Q, pewne funkcje holomorficzne,

<t> (z) = ---- - +• P (z  — a i) ,
2 — a i

I $  (z) dz =  Log (z — a i) + Q (z — a i),
J  o

f  o,
J  o

> ( z )  dz

=  ( 2  — a , ) e O (z a i1 .

Widzimy, że ta funkcja całkowita ma za pierwiastki wyrazy ciągu 
(6), i wzór (10) wyraża to samo, co wzór (3), uzasadniony dawniej.

Ten sam dowód daje się zastosować do funkcji całkowitych 
o pierwiastkach wielokrotnych. Jeżeli <?, jest pierwiastkiem wielokrot­
nym rzędu r, to wystarczy założyć, iż <ł> (z) posiada biegun z =  a { . 
z pozostałością równą r.

Postarajmy się jeszcze utworzyć funkcję meromorficzną, której 
biegunami drugiego rzędu byłyby wszystkie punkty ciągu (6\ tak iżby

część główna w otoczeniu punktu a, miała kształt j  “ j • Przy­
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puśćmy, że punkt :  — O jest punktem zwyczajnym i że szereg

V jest zbieżny; rzecz jasna, że to samo stosuje się do szeregu

V Kończąc rozwinięcie ułamka w szereg potęg zmien­

nej z na pierwszym wyrazie, możemy napisać:

1
(- - a ,

,2

a ,■ • a r ( z — a ,)- <i,4(l

i szereg

(11) <1> (z) V i l 1 + *  2 a i z -

5  M
i 1

(c- a i ) 2 «r,2J ^  <i -t = i a il

będzie spełniał postawione warunki, byleby tylko był jednostajnie 
zbieżny w dowolnym kole. C, zakreślonym dokoła początku układu, przy 
pominięciu dostatecznej liczby wyrazów początkowych. Otóż, jeżeli 
uwzględnimy tylko wyrazy szeregu, pochodzące od biegunów o f, speł-

p
mających warunek <i, >> , w którym R oznacza promień kola C a

a — liczbę dodatnią mniejszą od jedności, moduł potęgi (1
a , bę­

dzie pozostawał wciąż mniejszym od pewnej granicy, i szereg o wyrazie

ogólnym
-2

—, — *— 7 . zgodnie z założeniami, uczynionemi co do bie-a ,3 « ,*
gunów a i, będzie bezwzględnie i jednostajnie zbieżny w kole C.

321. Metoda Cauchy’ego. — Twierdzenie Mittag Lefflera pozwala, 
gdy jest dana funkcja meromorficzna F  (z), utworzyć szereg o wyrazach 
wymiernych, którego suma F t (z) posiada te same bieguny, co F  (z) 
z temi sarnemi częściami głównemu Pozostaje atoli jeszcze do wyzna­
czenia funkcja całkowita, równa różnicy F  (z) — F x (z). Na długo przed 
pracami Weierstrassa Cauchy wysnuł metodę rozkładu funkcji częścio- 
kształtnej na liczbę nieskończoną składników wymiernych, przy pe­
wnych założeniach nader ogólnych co do tej funkcji, z teorji pozosta­
łości. Łatwo zresztą wyłożyć ową metodę w jej postaci najogólniejszej.

Niech F  (z) oznacza funkcję częściokształtną, regularną w otocze­
niu początku układu, a C„ C,, . . . ,  C„, ,... — ciąg nieograniczony 
obwodów zamkniętych, otaczających punkt z =  0, nie przechodzących 
przez żaden z biegunów i takich, że poczynając od dość wielkiej war­
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tości wskaźnika n, odległość początku układu od jakiegokolwiek punktu 
zarysu Cn pozostaje większą od wszelkiej liczby danej. Rzecz jasna, 
że każdy biegun funkcji F  (z) musi się znaleźć wewnątrz wszystkich ko 
lejnych obwodów Cn, Cn+X, . . .  , byleby tylko n było dość wielkie. 
Całka określona

J  (Cn  ) Z -  X

w której x oznacza jakikolwiek punkt, położony wewnątrz Cn i różny, 
od biegunów, równa się wartości F(x), powiększonej o sumę pozostało­
ści, odpowiadających rozmaitym biegunom funkcji F(z), położonym we­
wnątrz Cn ■ Weźmy jeden z tych biegunów ak ; odpowiednia część głó­

wna Gk (----------- ) jest funkcją wymierną, i w otoczeniu punktu ak
\ z — ak ]

F(z)
Am—1

(z — ak ),n- 1
------------VB0-\-Bx[z-- ak)~r . ..
Z Cl/c

W zastosowaniu do otoczenia tegoż punktu można również napisać

1 1 _  1 _  z — ak __ (z — ah )2 _
z — zr x  — ak — {z—ak ) x —ak-  {x—ak )i (x— a k)3

i wykonywując mnożenie, stwierdzamy, że pozostałość funkcji
Z — X

względem bieguna ak jest równa
A  ̂ Ajn—i A r,

x — Ot ' (X — ah )m~l (x — ak )" 

Otrzymujemy tedy związek

=  -— Gi
X — a k

( 12) yF(x) =  J j  Gk 
c„

1
X  —  a k

+ —  f
2 n i ./ (c„

F  (z) dz
Z — X

w którym znak ^  wskazuje sumowanie, rozciągające się na wszyst-

kie bieguny ak, położone wewnątrz obwodu G'„. Z drugiej strony, mo­

żemy zastąpić —-— przez
z — x

2 Z2 ZP+ 1 Z -  X\Z }

i napisać wzór poprzedni w postaci
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(13) F{x) V  Gk L

+

X -  a* 

x?

1 r  F(z)de

2** J  (cn) zp+ 1
F(z) < k + - L  f

“*» .^cn) z - x \  z ]

Całkaa - i _  /
2 " ‘  - ( C , , )

równa się wartości F(O), powiększonej

.. 1o sumę pozostałości funkcji /-'(:), odpowiadających biegunom funkcji F [z\

położonym wewnątrz Cn. Ogólnie, całka określona 1 /
2 k **M c„> -

. . Fir-HO) .równa się , więcej suma pozostałości funkcji z ~ T F(z),
1 . 2  . . .  yr — 1)

odpowiadających biegunom funkcji F  (z), położonym wewnątrz C„. 
Oznaczając przez st 'r_l) pozostałość funkcji F(z) z~r względem bieguna 
ak , możemy napisać wzór (13) w postaci

F(z'dz

(14) F(x) =  i F ( O )  +  X F'(0) +  . . .  -f V / » ( 0 )
1 1 . 2  . . .  p

+  2 Qi I -  i - f  * łtm •+ ■«*,h x -f .. . -f *1 'P' x p\ x  — ak j

j _  r  £ ^ .
2 s* J  (C „ )  2 -  .r V 2 /

Aby otrzymać granicę wyższą wyrazu uzupełniającego, napiszmy 
ten wyraz w postaci

X P + 1  r  J T ( Z )

2 * t  J  ( c „ )  &  s ( c  — x )

7̂(2)
załóżmy, że wzdłuż Cn moduł funkcji — —  pozostaje wciąż mniejszym

od M, a moduł zmiennej z większym od 8. Ponieważ liczba n ma wzra­
stać nieograniczenie, możemy przypuścić, iż wzięto dość wielką war­
tość tej liczby, iżby £ było większe od x , i wzdłuż Cn będziemy mieli

1 <  ~  - ■
Z —  X <j X

Otrzymujemy przeto, jeżeli Sn jest to długość obwodu C n:
'x 'P+1 Sx \i 0 n
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Można twierdzić, iż ten wyraz uzupełniający dąży do zera przy n 
wzrastającym nieograniczenie, jeżeli można znaleźć ciąg obwodów zam­
kniętych Cl7 Cit . . . ,  Cn, . . . ,  oraz liczbę całkowita dodatnią p, spełnia­
jące warunki następujące:

po 1-sze). Wzdłuż tych wszystkich obwodów moduł iloczynu 
F (z)z~p pozostaje mniejszym od pewnej liczby stałej M.

g
po 2-giey Stosunek - długości obwodu Cn do odległości naj-

0
mniejszej 5 początku układu od punktu obwodu pozostaje mniejszą od 
pewnej granicy L. gdy n wzrasta nieograniczenie.

Jeżeli te warunki są spełnione, Rn jest mniejsze od ilorazu pe­
wnej liczby stałej przez liczbę S — xj ,  rosnącą nieograniczenie wraz 
z n. Owa reszta R n dąży przeto do zera, i mamy po przejściu do 
granicy

y-p
(15) F(x) =  F(0) +  x F'(0) +  . . .  H-----------------/"(p) (0)

1 . 2  . . .  p

( -------------------) - f  «A t0) +  8k (1)X  j -  . . .  - f -  Sk tp). l p .
\x — ok j

Funkcja F(x) została tedy rozwinięta w szereg, złożony z nieskończe­
nie wielu wyrazów wymiernych. Porządek, w jakim następują po so­
bie, jest wyznaczony przez prawo kolejnego następstwa obwodów C17
Ct, —  Cn .......... Jeżeli otrzymany szereg jest bezwzględnie zbieżny,
można je ustawić w dowolnym porządku.

Lwcfya — Jeżeli punkt z =  0 jest dla F{z) biegunem o części głó­

wnej G | ---1 , to wystarczy zastosować powyższą metodę do funkcji

' “ > -  e  (7 ) '

322. Iloczyny nieskończone, wyrażające cot x i sin x. — Zastosujmy

tę metodę do funkcji F(z) — cot z — , której biegunami pierwszego

rzędu są punkty z =  kn  (k — dowolna liczba całkowita, różna od zera); 
odpowiednie pozostałości równają się jedności. Weźmy za obwód Cn 
obwód takiego kwadratu, jak BCB'C' na rysunku, którego środkiem jest 
początek układu, a którego boki, równoległe do osi, posiadają długość 
2 nr. +  T.\ na zarysie tym nie leży żaden biegun, a stosunek jego długo­
ści Sn do odległości najmniejszej § od początku układu jest stały i ró­
wny 8. Kwadrat modułu funkcji cot (x 4- yi) równa się
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&  +  e~*i +  2 cos 2 x 
e2* +  e -2* — 2 cos 2 .r

Rys. 68.

S

B'

C,L-

Na bokach BC  i B'C' mamy cos 2.r —- 1, i moduł funkcji jest mniej­
szy od jedności. Na bokach B B ' i CC' kwadrat tego modułu jest 
mniejszy od

2 | i < ■ ' \» %
, &  A- < r 2*  — 2  \ i  —  c -> I ’

we wzorze tym należy zastąpić 2y przez +  (2n -F 1)~; otrzymane wy­
rażenie dąży do jedności, gdy w wzrasta nieograniczenie. Ponieważ

moduł odwrotności  ̂ na obwodzie Cn dąży do zera, gdy w rośnie
z

nieograniczenie, moduł funkcji cot z — 1 na obwodzie Cn pozostaje przy
z

wszelkiej wartości n mniejszym od dowolnej liczby stałej M. Możemy 
tedy stosować do tej funkcji wzór (15), zakładając, że p =  O. Mamy tu

^ ( 0) =  lim
x=o

/ x cos x — sin x \ _  q 
\ x sin x /

a wyraz s'0), stanowiący pozostałość funkcji —  cot z -------- w biegunie
2 C*

k~, równa się —  . Otrzymujemy tedy 
k -

(16) c o tx ------ — lim ^  f---- -------- f- - V
x n=* \x — kz  kr. j

przytym wartość k =  0 została wyłączona przy * sumowaniu. Szereg, 
powstający przy nieograniczonym wzroście wskaźnika w, jest bezwględ- 
nie zbieżny, gdyż wyraz ogólny może być napisany w postaci



I .— Czynniki pierwsze Weierstrassa. — Twierdzenie Mittag-Lefflera. 161

1
^  —  k 7i

X 1 x

k i t  ( k i t — x )  k 2 it2 j    x  ’

k  it
Xa moduł czynnika —  - pozostaje wciąż mniejszym od pewnej gra-

1 —  —  
k  ic

nicy, byleby x nie było wielokrotnością liczby it. Otrzymujemy tedy 
ostatecznie

(17) cot X
1
X

Gdy się scałkuje obie części tej równości wzdłuż drogi, wychodzą­
cej z początku układu i nie przechodzącej przez żaden z biegunów, to 
wypadnie

+ 00

Log (S1̂ )  =  2 ' L°g d

skąd wynika 

(18)
+  X

sin x =  x |~| (1
X

Czynnik e a (x) jest w tym przypadku równy jedności. Kojarząc we wzorze (17) 
pary wyrazów, danych przez wartości przeciwne liczby k, otrzymujemy wzór:

+ x
(17/ cot x = ------h 2 r, ' x

"I-  X

x2 — k 1 it2

\ Podobnież kojarząc ze sobą pary czynników iloczynu (18), odpowiadających 
wartościom przeciwnym liczby k, otrzymamy nowy wzór. (1)

+ x
.18) sin x =  x n n

c2 \

możemy tedy jeszcze napisać, zastępując x przez n x :

+ x
sin xx n 1 X-

k l

i, Ten rozkład funkcji sin x  na nieskończenie wiele czynników zawdzięczamy 
Eulerowi, który go otrzymał w sposób elementarny (Jntroductio  in Analysin 
infinitorum*).

Kurs analizy ma tematy cza ej. H
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Uicagi rozmaite. —  Po 1-sze. Ostatnie wzory uwydatniają okresowość funkcji 
sin x, która się nie ujawnia przy rozwinięciu w szereg potęgowy. Widzimy istotnie*

te ^  —  stanowi granicę, do kiórej dąży przy n rosnącym nieograniczenie wielomianK

? „  (X ) =  (1 ]  (1 —  — — :)  ...  (1 — x) x  (1 +  ar) . . .  (1 +  — J;n I n 1/ n /

zmieniając x  na ar 1, stwierdzamy z łatwością, że

, n +  1  ̂x
?„ »> — ?„<*> -----------.Ti. X

skąd. powiększając n nieograniczenie, otrzymujemy wynik

sin ( tc x  +  it) =  sin na*

czyli sin (z -f- «) =  —  sin i ,  a przeto 6in (a 2 r)  sin a.
Po 2-gie. Przy rozważaniu tego przykładu szczególnego łatwo zdać sobie 

sprawę z konieczności dołączania do każdego z czynników dwumiennych o postaci

1 —  — - odpowiedniego czynnika wykładniczego, gdy chcemy otrzymać iloczyn 
ak

bezwzględnie zbieżny. Załóżmy, w celu ustalenia biegu myśli, że x jest rzeczywiste 

i dodatnie. Ze względu n a  to, te szereg >   ̂ jest rozbieżny, iloczyn

Pm = *  (1 + 7 (1 t)
wzrasta nieograniczenie wraz z m. gdy tymczasem iloczyn

Qn «  ( 1 - * )  (1 -  | )  . . .  (1 -  * )

dąży do zera, gdy n wzrasta nieograniczenie (t. I, art. 177). Gdy bierzemy m  n, 

iloczyn Pm Qn — Pm Qm dąży do granicy .7 ? ; lecz gdy m i n mają wzrastaćft
niezależnie od siebie, granica tego iloczynu staje się zupełnie nieokreśloną. Łatwo 
to stwierdzić dla wszelkiej wartości liczby x  przy pomocy czynników pierwszych 
Weierstrassa. Zauważmy przedcwEzystkim, że oba iloczyny nieskończone

*■.(*)
+ 00

*  n  <»
n=l

+ x
F , ix , — |“| a

n =  l

■r \ n 
n) e

są bezwzględnie zbieżne, a ich iloczyn F, (x ) Ft (x) równa się 

Napiszmy teraz iloczyn Pm Qn w postaci następującej:

m  x  n

p„o„=,n'> + *)« ’ n o-*)
V =  1 v =  1

e e 2 I ) .

Gdy obie liczby m i n wzrastają nieograniczenie, iloczyn wszystkich czynników 
po prawej stronie znaku równości, prócz ostatniego, dąży do granicy F1>x\ F , i x ) --
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sin x x
- ■ Co do pominiętego czynnika, stwierdziliśmy, że wyrażenie

+
1
n

dąży do granicy, równej log u>, jeżeli u> oznacza granicę stosunku (t. I, art. 161).

Granicą iloczynu P m Qn jest zatym sin —  e *  lo~ ; widzimy, w jaki sposób granica

ta zależy od prawa, podług którego rosną nieograniczenie liczby m i n .
Po 3-cie. Można zastosować zupełnie podobne uwagi do rozwinięcia w szereg 

funkcji cot x. Wskażemy tu jedynie, jak można z szeregu (17) wyciągnąć wniosek 
co do okresowości tej funkcji. Zauważmy przedewszystkim, że szereg o wyrazie 

1
ogólnym —  

k x
1

określonym przy założeniu, iż wskaż-
( rZ   1 j  TT K K    1 / TT

nik k przybiera wszelkie wartości całkowite od oo do +  oo, prócz k =  0 i k =  1,
2jest bezwzględnie zbieżny i że jego suma = ------ , co znajdujemy, zmieniając k z po-
TC

czątku od 2 do - x ,  następnie od 1 do oo. Możemy tedy, uważając wartości 
k — 0, k  = 1 za wyłączone przy sumowaniu co oznaczamy zapomocą” — Uio. tłum.), 
napisać szereg, wyrażający cot x, w postaci

+ 00
cot X 1 _̂__

X X
J._

x  k  x (k 1,

Wszystko polega na odjęciu od każdego wyrazu szeregu (17) odpowiedniego 
wyrazu szeregu zbieżnego, utworzonego z szeregu, przytoczonego powyżej, przez

dodanie — . Zmieniając x  aa. x

cot (x x

x, otrzymujemy:

+ oo

‘ + 2 " + (k — 1,

czyli wreszcie

1
cot (X +  It) =  -

+ 00

2 '
1

[x k  1, -
+

(* 1)

k 1 ma tu przybierać wszystkie wartości całkowite, prócz zera. Prawa strona 
ostatniej równości wyraża właśnie cot x.

I I .  Funkcje podwójnie okresowe. Funkcje eliptyczne.

323. Funkcje okresowe. Ich rozwijanie w szeregi. — Funkcja anali­
tyczna jednowartościowa f(z) nazywa się perjodyczna (periodiąue) czyli 
okresową, jeżeli istnieje taka liczba co, rzeczywista lub zespolona, że przy
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wszelkiej wartości 2 jest spełniony warunek f ( z  +  t o )  f  ( z ) .  Zaznaczmy
na płaszczyźnie punkt, odpowiadający liczbie w i na prostej nieograni­
czonej, przechodzącej przez początek układu i przez ten punkt, od­
mierzmy dowolnie wiele razy w tym lub innym zwrocie, poczynając 
od początku układu, odcinek o długości, równej w . Otrzymamy w ten 
sposób punkty t o , 2 to, 3 w, , wio, ... , i punkty — a>, — 2<o, ... , 
—  wio, . . .  . Przez te wszystkie punkty i przez początek układu prze­
ciągnijmy równolegle o dowolnym kierunku, różnym od kierunku prostej 
O to ; w ten sposób płaszczyzna zostaje podzielona na nieskończenie wiele 
pasów o jednakowej szerokości (rys. 69).

Rys. C9.

Przeciągnijmy jeszcze przez jakikolwiek punkt 2 równoległą do 
prostej O w; otrzymamy wszystkie jej punkty zapomocą zmiany para­
metru rzeczywistego X w wyrażeniu 2  4 -  Xu> od —  0 0  do +  c o .  W  szcze­
gólności, jeżeli punkt 2 zakreśla pierwszy pas AA BB ', punkt odpo­
wiedni 2 -f-io musi zakreślać pas przyległy B B  CC’, punkt 2 +  2 10 — pas 
trzeci z kolei i tak dalej. Wszystkie wartości funkcji /(z), odpowiada­
jące punktom pierwszego pasa, będą się odtwarzały perjodycznie wr in­
nych pasach.

Niech LL' i MM' oznaczają dwie proste nieograniczone, równo-
2 i * z

ległe do prostej Oto. Załóżmy: u =  e 10 i zbadajmy, jaki obszar pła­
szczyzny zmiennej u zakreśla punkt u, gdy punkt 2 pozostaje w obrębie 
pasa nieskończonego, zawartego pomiędzy dwiema równoległemi LL' 
i MM'. Jeżeli a +  pi jesf liczbą, odpowiadającą punktowi prostej L L  ,
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to otrzymamy wszystkie inne punkty tej prostej, zakładając, że z =  a +  
■+ M — Xco i zmieniając X od — oo do +  oo. Otrzymamy wówczas:

2  ? “  _ _ o t —}— 8  i,
-----  v a -' - St - X u)) 2 7c i  X 2 t u --------  •O) 1 O) »u =  e =  e e

gdy X wzrasta od —  c o  do +  c o ,  punkt u zakreśla okrąg Cv którego 
środkiem jest początek układu. Stwierdzamy również, iż, gdy punkt z 
zakreśla prostą MM, punkt u pozostaje na okręgu C2, spółśrodkowym 
z C{, gdy punkt z zakreśla pas nieograniczony, zawarty pomiędzy 
prostemi L L '  i MM', punkt u zakreśla pierścień, zawarty pomiędzy 
dwoma okręgami C1 i C2. Gdy atoli każdej wartości zmiennej 2 odpo­
wiada tylko jedna wartość zmiennej u, każdej wartośći zmiennej u od­
powiada nieskończenie wiele wartości zmiennej z, tworzących postęp 
arytmetyczny o różnicy co, nieograniczony z obu stron.

Funkcja perjodyczna f(z), posiadająca okres co i całoksztaltna w pa­
sie nieograniczonym, zawartym pomiędzy prostemi LL' i MM', jest 
równa funkcji <p (u) nowej zmiennej u, caloksztaltnej w dziedzinie pier­
ścienia, zawartego pomiędzy okręgami G1 i C2. W istocie, każdej war­
tości u odpowiada wprawdzie nieskończenie wiele wartości zmiennej z, 
lecz wszystkie te wartości zmiennej 2 dają, z powodu okresowości, tę 
samą wartość funkcji f(z). Z drugiej strony, jeżeli «0 oznacza wartość 
szczególną zmiennej u, a z0 jedną z wartości odpowiednich zmiennej z, 
to wartość z, dążąca do z0, jest funkcją calokształtną zmiennej u w oto­
czeniu punktu w0; to samo się tedy stosuje do «p’(«). Możemy przeto za­
stosować do tej funkcji <p (u) twierdzenie Laurenta; w pierścieniu, za­
wartym pomiędzy okręgami Cx i C2, funkcja ta równa się sumie szere­
gu o postaci następującej:

-i- CO

<P («) =  ^  Am u '" >
m = &

powracając do zmiennej z, wnioskujemy stąd, że funkcja okresowa f(z)
+ 00 2 mi te z

równa się wewnątrz rozważanego pasa sumie szeregu ^  Am e 0J
_  CO

+ co 2 m i  tc z

f ( z )  =  ^  A '»e 01 
00

Jeżeli funkcja /(z) jest całoksztaltna w dziedzinie całej płaszczyz­
ny, to można przypuścić, że proste LL i MM, ograniczające pas, 
oddalają się nieograniczenie, jedna ku górze, druga w dół. Wszelka
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funkcja okresowa całkowita daje się tedy rozwinąć w szereg, uporządkowany we-
2  « i s

dług potęg dodatnich i ujemnych funkcji wykładniczej e “  i zbieżny dla wszel­
kiej wartości skończonej zmiennej z.

34. Niemożliwość istnienia funkcji jednowartościowej o trzech okresach. -
Według słynnego twierdzenia Jacobiego funkcja jednowartościowa nie może posiadać 
więcej niż dwa okresy, różne od siebie. Aby to wykazać, wystarczy oczywiście 
dowieść, iż funkcja jednowartościowa nie może posiadać trzech odmiennych okresów. 
Uzasadnijmy z początku twierdzenie pomocnicze następujące:

Niech a, b, c, oznaczają trzy ilości dowolne, rzeczywiste lub urojone, a m, n, p 
—trzy liczby całkowite dowolne, dodatnie lub ujemne, s których jedna co najmniej 
jest różna od sera. Jeżeli uwzględnimy takie układy wszystkich możliwych warto­
ści całkowitych, prócz m n p O. to kraniec nisssy wyrażenia ma nb p c  
bfdsie równy seru.

Wyobraźmy sobie zbiór ( E i punktów płaszczyzny, odpowiadających liczbom
0 postaci ma nb p c. Jeżeli dwa punkty, odpowiadające dwu różnym układom, 
nakrywają się, to mamy np.

m a nb p c  m, a  +  n, 6 p, c
1 przeto

(m —  nt,i a i n — n,t b (p — p ,) c o,

przy założeniu, że jedna co najmniej z liczb m mv n — n„ p — p,, nie równa się 
zeru. W tym przypadku twierdzenie jest oczywiste. Jeżeli wszystkie punkty zbioru 
(/i) są odmienne, oznaczmy przez 2 8 kraniec niższy wyrażenia \ma nb  p c ; ;  
owa liczba 2 8 jest również krańcem niższym odległości pomiędzy dwoma jakieini 
kolwiek punktami zbioru (E). W istocie odległość dwu punktów, wyobrażających 
m a nb p c  i m, a n ,b  p, e równa się (m—m pa tn—n,) b ip — p, c .
Dowiedziemy, że założenie 8 >  O prowadzi do wniosku niedorzecznego.

Weźmy jakąś liczbę całkowitą dodatnią N  i utwórzmy wszelkie możliwe połą­
czenia wartości liczb m, n i p, branych z ciągu:

_  s ,  — (N — 1).......... O, . . .  , N  — 1, N.

Otrzymamy w ten sposób (2 .V 1) punktów (V zbioru (2?>, i zgodnie z zało­
żeniem, wszystkie te. punkty są różne od siebie. Przypuśćmy, że a b c ; 
odległość któregokolwiek z tych punktów od początku układu równa się co najwyżej 
3 A1 a ■ Wszystkie te punkty są tedy położone wewnątrz kola C o promieniu 
3 N a i środku w początku układu, lub też na samym obwodzie koła. Jeżeli do­
koła każdego z ty h punktów jako środka zatoczymy kolo o promieniu 5, wszystkie 
te kola będą leżały wewnątrz koła Cv o środku w początku układu i promieniu 
równym 3 .V 1 a 8, jedno nazewnątrz drugiego, gdyż odległość pomiędzy środkami 
jakichkolwiek dwu z nich nie może być mniejszą od 2 8. Suma pól tych wszystkich 
kół jest tedy mniejsza od pola koła C„ i otrzymujemy:

(>) Ściślej: (2 N  4- l ) 3 -  1, gdyż wyłączamy układ m ~ n  p O; zgodnie z tą
' 3 N  a .

poprawką, otrzymamy wzór: 8 < ----------  — . uprawniający, rzecz oczywista, do
(2 N +  1) * — 2

tych samych wniosków. (Uw. tłum.).
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czyli
• 3 N , a +  8 )2 >  (2 iV +  l ) 2 S2

8 < 3 N\a'

(2 N +  1)^— 1

Prawa strona tej nierówności dąży do zera, gdy N  rośnie nieograniczenie; za- 
tym żadna liczba dodatnia 3 nie czyni jej zadość przy wszelkim N. Stąd wynika, 
że krańcem niższym wyrażenia \ma +  nb  +  pc\  nie może być żadna‘liczba do­
datnia, kraniec ów musi się tedy równać zeru, i twierdzenie pomocnicze jest uza- 
sadnione.

Widzimy przeto, iż jeżeli nie istnieją takie układy liczb całkowitych m, n i p 
(prócz m = n  =  p = O), iż m a nb  +  p e  =  O, to można zawsze nadać tym liczbom 
całkowitym takie wartości, iżby wyrażenie | m a -  nb p e  \ było mniejsze od do­
wolnej liczby dodatniej e. W tym razie funkcja jednowartościowa f (z )  nie może 
posiadać jednocześnie trzech okresów a, 6 i e. W istocie, niech z0 oznacza punkt 
zwyczajny funkcji f(z]-, dokoła tego punktu, jako środka, zatoczmy kolo o promieniu 
s tak małym, iżby równanie f  (z) =  /(*„) nie miało wewnątrz tego kola żadnych 
pierwiastków prócz z =  z0 (art. 298). Jeżeli a ,b ,c  są to okresy funkcji f(z ), to rzecz 
jasna, że m a n b  p c jest również, przy dowolnych wartościach liczb m, n i p, 
jej okresem, i że przeto

f ( z 0 +  m a  +  n b  +  p c ) = f  (z„).

Gdyby można było obrać m, n i p  w ten sposób, ażeby \ma +  nb +  pc\ było 
mniejsze niż s, to równanie f ( z )  =  f ( z 0) miałoby pierwiastek z v różny od z„ i taki, 
że zr — z(> : <  e, co jest niemożliwe.

Gdy pomiędzy liczbami a, b i c istnieje związek o postaci

(20) m a  Ą- nb  +  p a =  O,

w którym m, n i p nie równają się jednocześnie zeru, to funkcja jednowartościowa 
f (z )  może posiadać okresy a, b, c, lecz te trzy okresy sprowadzają się do dwu lub 
do jednego. Możemy istotnie założyć, że liczby całkowite m, n i p, brane wszystkie 
trzy jednocześnie, nie posiadają wspólnych czynników. Niech D oznacza największy 
wspólny czynnik liczb m i n; m =  Z)m', n =  D n ’. Ponieważ liczby m' i n' są 
pierwsze względem siebie, przeto można znaleźć takie dwie inne liczby całkowite m" 
i n", iż m 'n"  — m ”n' — 1. Załóżmy:

m a  n'b =  a ’, m"a +  n” b =  b';

otrzymamy nawzajem a =  n"a' — n b', b =  m'b' —  m"a'. Jeżeli a i b stanowią 
okresy funkcji f  (z), to samo się stosuje do a' i b' i nawzajem. Można tedy zastąpić 
układ z dwu okresów a i  b przez układ okresów a' i b'. Związek (20) przybiera 
postać Da' p e O; obierzmy teraz, co jest możliwe wobec tego, że D i p są 
pierwsze względem siebie, dwie inne liczby całkowite D ' i p ', spełniające warunek 
D p ’ — D'p =  1, i załóżmy, że D a' p'c =  c'. Otrzymujemy z tych związków 
a' =  — p c ', c -  D c', i stwierdzamy w ten sposób, że trzy okresy a, b, c stanowią 
kombinacje dwu okresów b' i c'.

Uwaga. — Z powyższego twierdzenia pomocniczego wysnuwamy wniosek na­
stępujący: jeżeli a i fi oznaczają dwie liczby rzeczywiste, a m i n  — dowolne liczby 
całkowite (z których jedna przynajmniej nie jest równa zeru), to kres niższy modułu 

m a +  nfi | równa się zeru. Istotnie, wystarczy założyć a — a, b — fi, c =  i i za­
uważyć, że moduł sumy m a nfi p i  może być mniejszym od liczby e <  1 jedy­
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nie wtedy, gdy p o, ma. n fi|<». Stąd wynika, że funkcja jednowartościowa 
f  (s) nie może posiadać dwu różnych okresów rzeczywistych o , fi. Jeżeli stosunek
P jest niewymierny, to można wyznaczyć takie dwie liczby m i n (całkowite), że 
a
m a n £ | <• «, i rozumowanie da sie skończyć jak przed chwilą. Jeżeli stosunek 

fł m
— jest wymierny i równy ułamkowi nieskracalnemu , to obierzmy dwie takie licz- 
a n

by m' i nr, iżby byl spełniony warunek m n — m n  l i  załóżmy, iż m a  n '{3 y. 
Liczba y jest również okresem, i ze związków m a — n$  O, m'a n/fł y otrzy­
mujemy. a ~  ny. j3 = my, tak iż a i p są to wielokrotności jedynego okresu y. 
Ogólniej, funkcja jednowartościowa / is) nie może posiadać dwu różnych okresów 
a i 6, których stosunek byłby rzeczywisty, gdyż w takim razie funkcja / iaz> posia-

b
dałaby dwa odmienne okresy rzeczywiste 1 i a •

325. Funkcje podwójnie okresowe. — Funkcja podwójnie okresowa 
czyli podwójnie pxw jody cena, u krócej: dwuokresowa lub dwuperjodyezna (f. 
doubleraent periodiąue) jest to fónkcja jednowartościowa, posiadająca 
dwa okresy, których stosunek jest urojony. Aby się uzgodnić ze zna­
kowaniem Weierstrassa, oznaczmy zmienną niezależną przez u, a okre­

sy przez 2 w i 2 to', i załóżmy, że spólczynnik przy i w stosunku ^

jest dodatni. Zaznaczmy na płaszczyźnie punkty 2 w, 4o>, 6 w, ..•
1 punkty 2 w'. 4 to', 6 to', . . .  ; przez punkty 2 w to wykreślmy równoległe 
do prostej Oto', a przez punkty 2 » tV  — równoległe do Oto. Otrzymu­
jemy w ten sposób na płaszczyźnie sieć równych równoległoboków (rys. 
70). Weźmy funkcję jeduowartościową /(«), posiadającą dwa okresy
2 to i 2 to'; ze związków / ( u  -f 2 to) =  /(u ) , / ( u  -f 2 to ) =  /(u )  
wnioskujemy natychmiast, że f(u -f 2 mto -f- 2 mV) = /(w), tak iż 
2 tn to 4- 2 m'to' jest to również okres, przy jakichkolwiek wartościach 
całkowitych m i m'\ oznaczmy ten okres przez 2 w.

Punkty, wyobrażające okresy, są to właśnie wierzchołki wzmian­
kowanej sieci równoległoboków. Gdy punkt u zakreśla równoległobok 
OABC, o wierzchołkach O, 2 to, 2 to -f 2 to', 2 to', punkt m +  2 te zakreśla 
równoległobok, którego wierzchołkami są punkty 2 w, 2 w +  2 to, 
2 w +  2 to -j- 2 w', 2 w -)- 2 to', i funkcja / (u) przybiera w punktach 
odpowiednich tych dwu równoległoboków te same wartości. Wszelki 
równoległobok o wierzchołkach w0, m0 -f 2 to, w0 +  2 to', u0 -f 2 to -f 2 to', 
nazwiemy równoległobokiem okresowości lub równoległobokiem elementarnym l)

(’) Termin .równoległobok perjodyczności* napotkałem w tomie II istr. 503) 
„Teorji funkcji analitycznych* J. Puzyny; S. Dickstein w przekładzie dzieła E. Pascala 
.Repertorjum matematyki wyższej* używa nazw .wielokąt tworzący*, .równoległobok
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(parallelogramme des periodes); bierzemy zwykle równoległobok OABC, 
lecz można zastąpić początek układu przez dowolny punkt płaszczyzny. 
Okres 2 <o +  2 to' oznaczymy dla krótkości przez 2 co"; punkt co' jest 
środkiem równoległoboku OABC , a punkty co i co' stanowią środki bo­
ków OA i OC.

Wszelka funkcja dwuokresowa całkowita jest stałą. W istocie, niech 
/(«) oznacza funkcję dwuokresową; jeżeli funkcja ta jest całkowita, to

Rys, 70.

jest holomorficzna w równoległoboku OABC, i moduł \f(u)\ pozostaje 
wszędzie wewnątrz tego równoległoboku mniejszym od pewnej liczby 
stałej M. Lecz wartość funkcji f  (u) w jakimkolwiek punkcie pła­
szczyzny jest równa, z powodu podwójnej okresowości, wartości tej 
funkcji w odpowiednim punkcie równoległoboku OABC. Moduł jej po­
zostaje tedy mniejszy od liczby stałej Jkf; jest to więc, według twier­
dzenia Liouville’a, liczba stała.

326. Funkcje eliptyczne. Własności ogólne. — Z powyższego twier­
dzenia wynika, że funkcja dwuokresowa, o ile nie ma być stałą, musi 
posiadać punkty osobliwe w odległości skończonej. Funkcje dwuokre- 
sowe częścioksztaltne (=  meromorficzne) nazywamy funkcjami eliptyczne- 
mi (fonctions elliptiąues). W każdym równoległoboku elementarnym 
funkcja eliptyczna posiada pewną grupę biegunów; liczbę tych biegu­
nów, wyznaczoną przy uwzględnieniu ich stppnia wielokrotności, nazy-

elementarny“ (t. I, str. 321). Obaj ci polscy autorzy wprowadzają również nazwę „równo- 
leglobok zasadniczy* dla odróżnienia pewnych równoległoboków szczególnych, każdy 
zresztą w innym znaczeniu. („T. f. an.“ t. II, str. 506, „Rep. m. w. t. I, str. 321).
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wamy rzędem (ordre) funkcji. Zauważmy, iż jeżeli funkcja eliptyczna 
/ (tt) posiada biegun k0 na boku OC, to punkt «0 4- 2 w, położony na bo­
ku przeciwległym AB, jest również biegunem; obliczając jednak liczbę 
biegunów, zawartych w OABC, należy uwzględniać tylko jeden z tych 
biegunów. Podobnież, jeżeli początek układu jest biegunem, to wszyst­
kie wierzchołki siatki są również biegunami funkcji fiu ) , lecz w każdym 
równoległoboku należy liczyć tylko jeden z nich. Wystarczyłoby na- 
przyklad przesunąć nieskończenie blizko wierzchołek sieci, | ołożony 
w początku ul.ladu, ażeby rozważana funkcja f iu )  nie posiadała już 
żadnego bieguna na obwodzie równoległoboku. Gdy będziemy mieli 
całkować funkcję eliptyczną /(w) wzdłuż obwodu równoległoboku ele­
mentarnego, będziemy zawsze zakładali, iż równoległobok ten, o ile 
zachodzi potrzeba, został przesunięty w ten sposób, iżby funkcja f iu )  
nie posiadała biegunów na jego obwodzie. Stosując twierdzenia ogólne 
teorji funkcji analitycznych, uzasadnimy z łatwością następujące twier­
dzenia podstawowe:

1. Suma pozostałości Junkcji eliptycznej, odpowiadających biegunom, poła­
żonym w jednym równoległoboku elementarnym, równa się zeru.

Załóżmy, w celu ustalenia biegu myśli, że /  (u) nie posiada żadnego 
bieguna na obwodzie OABC O. Suma pozostałości, odpowiadających bie­
gunom, położonym wewnątrz obwodu, jest równa iloczynowi

/ /(u) du, w którym całka jest wzięta wzdłuż OABCO. Całka ta 
2 r a  . /
równa się zeru, gdyż suma całek, wziętych wzdłuż dwu przeciwległych 
boków, jest zerem. Mamy np.

I f { u ) du
J  (0.4)

p2at p
/ f(u) du, / f i u ) du

O J  (BO
f(u ) du\

jeżeli zastąpimy w drugiej całce u przez m+ 2 o>, otrzymamy
c  z*® /*o /»
/ /(u) du — / f iu  f  2 to') du =  1 fiu )  du =  — / /(«) du.

J  (BO • 2 oj  «' 2u> • (0.4)

W podobny sposób stwierdzilibyśmy, że suma całek, wziętych 
wzdłuż AB i CO, równa się zeru. Zresztą, fakt ten wydaje się niemal 
oczywistym, gdy spoglądamy na rysunek (rys. 71); zwróćmy np. uwagę 
na dwa odpowiadające sobie elementy dwu całek, branych wzdłuż OA 
i wzdłuż BC. W punktach m i m' wartości funkcji /(w) są takie same, 
gdy tymczasem wartości różniczki du są przeciwne.

Z dowiedzionego twierdzenia wynika, że funkcja eliptyczna f  (u) 
nie może posiadać w równoległoboku elementarnym tylko jednego
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Rys. 71.

e

c

o

bieguna pierwszego rządu. Funkcja eliptyczna musi być co najmniej funkcją 
drugiego rzędu.

2. Liczba punktów zerowych funkcji eliptycznej w równoległoboku elemen­
tarnym równa sie rzędowi funkcji (każdy z punktów zerowych liczymy 
przytym z uwzględnieniem jego stopnia wielokrotności).

Weźmy funkcją eliptyczną /(«); iloraz —  =  9 (w) jest również

funkcją eliptyczną, i suma pozostałości funkcji 9 (w) w równoległoboku 
równa sią liczbie punktów zerowych funkcji f(u ) , zmniejszonej o liczbą 
biegunów (art. 306). Stosując do funkcji 9 (u) twierdzenie poprzednie, 
wywnioskowujemy stąd twierdzenie, o którym mowa w tej chwili. 
Ogólnie, liczba pierwiastków równania/(m) =  C w jakimś równoległo­
boku okresowości jest równa rządowi funkcji, gdyż f  (u) C posiada,
przy wszelkiej wartości stałej C, te same bieguny, co /(w).

3. Bóżnica pomiędzy sumą wartości zerowych, a sumą biegunów funkcji 
eliptycznej, należących do jednego równoległoboku elementarnego, równa się 
jednemu z okresów.

Zbadajmy całką 2 V  f  u du, braną wzdłuż obwodu równo­

ległoboku O A BC. Jak już się przekonaliśmy w art. 306, całka ta jest 
równa sumie wartości, odpowiadających punktom zerowym funkcji f(u ), 
położonym wewnątrz tego równoległoboku, zmniejszonej o sumą liczb 
zespolonych, odpowiadających biegunom funkcji wewnątrz tegoż obwo- 
du. Obliczmy sumą całek, powstających na dwu bokach przeciwległych
OA i BC:

gdy zmienimy w drugiej z tych całek u na u +  2  oj' ,  suma ta przybie-

f'(u)

rze postać:
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du -f / (u 4-
2iu

2 co ) f'(u f 2 co') 
/(« + 2 co) du.

czyli ze względu na okresowość funkcji f(u)

’2 co' fiu) 
./ »)

du.

z’2"  f(u )
Całka / --- du równa się przyrostowi, nabytemu przez

J  o / ( « )
Log (/(«)!, gdy punkt m przebiega bok OA\ /(u) odzyskuje wówczas 
wartość początkową, i przeto przyrost funkcji Log [Z-(u)] jest równy 
iloczynowi - 2 »is jti, w którym m2 oznacza liczbę całkowity. Suma 
całek, liczonych wzdłuż boków przeciwległych O A i BC, równa się tedy 

1
O -j — 2 »łi co'. W podobny sposób stwierdzilibyśmy, że suma

całek, wziętych wzdłuż AB i CO, ma postać 2 m1 co. Badana różnica 
równa się tedy 2 w, <o -f 2 co', t. j. jednemu z okresów.

Twierdzenie to stosuje się również do pierwiastków równania 
/(«) =  C, zawartych wewnątrz jednego z równoległoboków elementar­
nych, przy dowolnej wartości stałej C, a to na mocy tego samego argu­
mentu.

4. Pomiędzy dwiema funkcjami ełiptycznemi o tych samych okresach 
istnieje związek algiebraiczny.

Niech /(«) i f x (u) oznaczają dwie funkcje eliptyczne, posiadające 
te same okresy 2 co, 2 co'. Weźmy w jednym z równoległoboków ele­
mentarnych punkty u„ fl2, . ..  , am, stanowiące bieguny jednej z tych 
dwu funkcji /(«), /j («) lub obu jednocześnie, i niech ja, oznacza wyższy ze 
stopni wielokrotności bieguna o,- w stosunku do tych dwu funkcji: załóżmy: 
l*a+ m +  ••• +  tL* — N- Niech z drugiej strony F (x ,y ) oznacza wielo­
mian całkowity stopnia n o spółczynnikach stałych: jeżeli zastąpimy 
w tym wielomianie x przez /(w) a y przez f y («), to wynikiem będzie 
nowa funkcja eliptyczna <L(u), której biegunami mogą być tylko 
punkty aj, a2, ... , am, oraz punkty, otrzymane przez dodanie okresu. 
Ażeby ta funkcja <!>(«) zamieniła się na liczbę stałą, potrzeba i wy­
starcza, iżby znikły części główne w otoczeniu każdego z punktów 
Oj, a2, ... , am . Owóż punkt a, jest dla 4> (u) biegunem rzędu co naj­
wyżej równego M|i(. Wyrażając tedy, że wszystkie współczynniki części 
głównych są równe zeru, otrzymamy co najwyżej

*  +  m +  ••• +  P-mł
związków linjowych i jednorodnych pomiędzy spółczynnikami wielomia­
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nu F  (x, y), w których nie będzie występował wyraz niezależny od x i y.

Liczba tych spółczynników wynosi n  ^  ^ ; jeżeli obierzemy liczbę

n dość wielką, by został spełniony warunek n (w+ 3 )  >• 2 Nn czyli 
» + 3  >  2 N, to otrzymamy układ równań linjowych i jednorodnych,
0 liczbie niewiadomych większej od liczby równań. Równania takie 
posiadają zawsze układ rozwiązań, nie równych jednocześnie zeru. 
Jeżeli F  (x , y ) jest wielomianem, otrzymanym właśnie w ten sposób, 
funkcje eliptyczne /(w), fx (u) czynią zadość związkowi algiebraicznemu:

F  [/(“)» A («)] = <?,
w którym C oznacza liczbę stałą.

Uwagi. —  Zanim skończymy z temi wiadomościami ogólnemi, zro­
bimy jeszcze kilka uwag, które będą potrzebne w dalszym ciągu.

Funkcja jednowartościowa f ( u ) jest 'parzysta (paire), jeżeli / (—  u ) 

=  f ( u  : nieparzysta (impaire), jeżeli / (— u) =  —  /(w). Pochodna funkcji 
parzystej jest funkcją nieparzystą; a pochodna funkcji nieparzystej —  
funkcją parzystą. Ogólnie, pochodne rzędu parzystego funkcji parzy­
stej są to również funkcje parzyste, a pochodne rzędu nieparzystego —  
funkcje nieparzyste. Przeciwnie, pochodne rzędu parzystego funkcji 
nieparzystej są to funkcje nieparzyste, a pochodne rzędu nieparzystego 
—  funkcje parzyste.

Weźmy funkcję eliptyczną nieparzystą /(w); jeżeli w jest połową 
okresu, to muszą być jednocześnie spełnione warunki f ( w )  =  —  f ( — w )

1 f(w ) =  / (— w), ponieważ w =  —  w-\-2w. Potrzeba tedy, ażeby war­
tość f{w )  była równa zeru lub nieskończona, t. j. ażeby punkt w był 
punktem zerowym lub biegunem funkcji /(w). Stopień wielokrotności 
tego punktu zerowego lub bieguna musi być koniecznie nieparzysty. 
Istotnie, gdyby punkt w był punktem zerowym rzędu parzystego 2 n 
funkcji' f  (u), to pochodna / (2,1) (u), jako funkcja nieparzysta, byłaby 
holomorficzna i różna od zera dla u =  w. Gdyby punkt w był biegunem 
rzędu parzystego funkcji /(«), byłby to punkt zerowy rzędu parzystego

odwrotności — . Ostatecznie, wszelki półokres funkcji eliptycznej nieparzystej
A u)

stanowi jej wartość zerową lub biegunową rzędu nieparzystego.
Jeżeli funkcja eliptyczna parzysta f{u )  ma za biegun lub punkt 

zerowy jeden z punktów, odpowiadających półokresom, to rząd tego 
bieguna lub tego punktu zerowego jest liczbą parzystą. W istocie, gdyby np. 
punkt w był punktem zerowym rzędu nieparzystego 2 w+ l ,  to byłby
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to punkt zerowy rzędu parzystego pochodnej /'(«), będącej'funkcją 
nieparzystą, i to samo stosowałoby się do biegunów. Ponieważ okres 
podwojony jest również okresem, .przeto wszystko, cośmy powiedzieli
0 pólokresach stosuje się również do samych okresów.

327. Funkcja p u.—Zauważyliśmy już, że wszelka funkcja eliptyczna 
posiada w każdym równolegloboku elementarnym co najmniej dwa biegu­
ny pierwszego rzędu lub jeden biegun podwójny. W symbolice Jaco- 
biego wzięto za elementy pierwotne funkcje o dwu biegunach jedno- 
krotnj-ch; używając znakowania Weierstrassa, uważamy natomiast za 
element prosty funkcję eliptyczną, posiadającą jeden tylko biegun 
podwójny w równolegloboku elementarnym. Ponieważ pozostałość winna 
być zerem, część główna w otoczeniu bieguna a winna posiadać kształt

. Aby ująć dość ściśle zagadnienie, wystarczy wziąć A 1
VM — a)'1
1 założyć, że biegunami funkcji są: początek układu u .-= 0 i wszystkie 
punkty, odpowiadające okresom 2ir =  2tn w -f 2m ’ co'. W ten sposób 
nasuwa się nam z początku potrzeba rozwiązania zagadnienia na­
stępującego:

i tworzyć funkcję eliptyczna, mającâ  za bieguny drugiego rzędu wszystkie 
punkty 2  w ~ 2 m  co +  2  tn co ( m  i m !  —  dwie dowolne liczby całkowite) i nie 
posiadająca innych biegunów, w ten sposób, izby część główna w otoczeniu

punktu 2 w, była równa ------- ?------ .
(u — 2 w

Przed zastosowaniem do tego zagadnienia metody ogólnej z art. 
320 dowiedziemy z początku, że szereg podwójny

(21) V' ______L - ...
W C U  —  M  U  , • * ,

w którym tn i tn' przybierają wszelkie wartości całkowite od — co do 
-f oo (z zastrzeżeniem, że wyłączamy skojarzenie tn =»«' =  0), jest 
zbieżny, byle by wykładnik ja był liczbą dodatnią większą od 2.

Weźmy trójkąt, którego wierzchołkami byłyby punkty u =  0, 
u — m co, u =  m co -j- m’ co'; boki tego trójkąta są odpowiednio równe
w co , tn co' |, m co -f- m' cd Mamy tedy, oznaczając przez 0 kąt dwu

prostych Ocd i O co' (o<9<^s;', związek następujący:

| tn co -)- t«'co' |2 s  m 2 cd 2 -j- tn' 2 co' i 2 —{- 2 w ot' co co cos 9.

Załóżmy dla krótkości: 1 co \ =  a, co' ; =  b, i przypuśćmy, że a <,b
Związek poprzedni może być również n a p i s a n y  w  postaci:
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m w — m' co' 2 =  »i2cz2 +  2 fc2 +  2 mm' a b  cos 0 ,
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przy założeniu, że kąt 0  =  9 jeżeli 9 sS —, a it — 9, jeżeli 9 —; ów
2 2

kąt 0  nie może się równać zeru, ponieważ punkty 0, co, co' nie leżą na 
jednej prostej, i zatym 0 cos 0 < [1 . Otrzymujemy tedy jeszcze:

m u> — m co' 2 =  (1 — cos 0 ) (m-a2 -j- m'2b2) +  cos 0  (»z a +  m'b) 2, 
i przeto

fn co — »i'co' 2 3; (1 — cos ©; (m2 o2 -f- m'2 ó2) Sg (1 •—- cos 0 ) a2 (m2 -f- m'2).

Stąd wyniką, że wyrazy szeregu (21) są odpowiednio mniejsze od
1 p. _

wyrazów szeregu 'S" j -------  I 2 . pomnożonych przez pewien czynnik

stały (lub co najwyżej równe), a wiemy, że ten właśnie szereg jest

zbieżny, jeżeli wykładnik  ̂ jest większy od 1 (tom I, art. 172b

Szereg (21) jest tedy zbieżny, gdy bierzemy p. =  3 lub p. =  4. 
Zgodnie z osiągniętym już dawniej wynikiem (art. 320), szereg

<p (u) 1
-i W2

(w =  mco -|-m'co')

wyraża funkcję częściokształtną, posiadającą te same bieguny wraz 
z temi samemi częściami głównemi, co szukana funkcja eliptyczna. 
Wykażemy, że ta funkcja cc (w) posiada właśnie dwa okresy 2 co i 2 co'. 
Zbadajmy z początku szereg

n 1 1
2j L(2 w -r 2 co,2 (2 <cp2J ’

w którym 2 w =  2m  oj +  2 »i'w', a sumowanie rozciąga się na wszystkie 
wartości całkowite m i m', prócz m =  w! =  0 i m =  — 1, m’ — 0. 
Szereg ten jest bezwzględnie zbieżny, gdyż jest to szereg cp(w), w któ­
rym, po usunięciu dwu wyrazów, zastąpiono u przez — 2 co. Łatwo 
stwierdzimy, uważając ten szereg za podwójny i obliczając z osobna 
sumę każdego wiersza, że suma jego równa się zeru; możemy tedy, 
odjąwszy go od cc (u), napisać jeszcze

____ 1
(2 w -\- 2 co2)

zachowujemy przytym wciąż to zastrzeżenie, że skojarzenia (m =  m'—0),
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(m =  — 1, *n'= 0) 8'4 przy sumowaniu wyłączone, 
u — 2 u; wypadnie:

<p u — 2 tó! = 1
u-

1
// — 2 io — 2 tcp

Zmieńmy teraz u na

1 ___ '
(2 w ą-2 to,2

przyczym jest wyłączone jedynie skojarzenie m =  — 1, m '= 0. Lecz 
prawa strona tej równości jest tożsamościowo równa ę u\ Funkcja ta 
posiada przeto okres 2 w. i podobnież stwierdzilibyśmy, że posiada także 
okres 2 w . Jest to funkcja, którą Weierstrass oznaczył przez pu, i któ­
ra daje się tedy określić zapomocą równości:

( 22 ) pu 1
u-

1___
— 2 M>)2

1
4 w2

(tc =  ni to +»»'«').

Jeżeli w różnicy p u — uczynimy u równym zeru, wszystkie
u-

wyrazy podwójnej sumy staną się zerami i sama różnica stanie się 
równą zeru. Funkcja pu posiada tedy własności następujące: •

po 1-szc) jest ona podwójnie okresowa i biegunami jej są 
wszystkie punkty 2 »r, ale nie żadne inne;

po 2-gie) część główna w otoczeniu początku układu równa się ;
u 2

po 3-ciei różnica pu — równa się zeru przy u - 0.
u 2

Te własności znamionują wyłącznie funkcję pu. W istocie, wszel­
ka funkcja /(«), posiadająca drugą i trzecią, różni się od pu jedynie 
o liczbę stałą, gdyż różnica jest funkcją dwuokresową bez biegunów.

Jeżeli taka funkcja spełnia prócz tego warunek, że f u )  — -  =  0 dla
u~

u =  O, to /(u )  — pu równa się zeru przy u =  0; zatym f(u  — pu.
Funkcja i — pu) posiada oczywiście wszystkie te trzy własności; 

przeto / (— u) =  pu, i funkcja pu jest parzysta, co również da się 
stwierdzić bez trudności bezpośrednio zapomocą wzoru (22).

Weźmy okres o najmniejszym module i oznaczmy ten moduł przez <5. 
W kole Cg o promieniu 3, zakreślonym dokoła początku układu, jako

środka, różnica pu— — jest całokształtna i może być rozwinięta w sze-
u-

reg według potęg dodatnich zmiennej u. Wyraz ogólny szeregu (22; 
da się rozwinąć podług potęg zmiennej u w sposób następujący

1 _  l 2 u ^  Hu2 ^  ^  (w +  1) un
(u — 2 wp 4. w- (2K05 (2 «0 4 (2 w>,n+2
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i łatwo się upewnić, iż funkcją zwyższającą dla tego szeregu będzie
5 a . . . . . . .—, a tym bardziej wyrażenie, otrzymane zapomocą za 

16 w 3 „ u1 _  .—
' w

stąpienia ilorazu 1 — H przez 1 — -■U . Ponieważ szereg
u • o •—J w ,3

jest zbieżny, przeto mamy prawo dodawać do siebie wyraz po wyrazie 
otrzymane szeregi (art. 257). Spółczynniki potęg nieparzystych zmien­
nej u okażą się równe zeru, gdyż wyrazy, pochodzące od okresów prze­
ciwnych, znoszą się wzajemnie, i możemy, zakładając:

(24)
=  3 y  - 1 , 

(2 wy
c,s =  5 y  J l j

^  (2iv)''

H =. (2 X— 1) y — L -  , . . . .
—  (2 U')-'-

napisać szereg, wyrażający p u , w postaci:

(23) P u =  — +  c2 u2 +  ą  ui +  . . . +  C). w2X~2 + -----
u1

Wzór (23) jest wążny tylko wewnątrz okręgu c?j , mającego za 
środek początek układu i przechodzącego przez najbliższy z punktów, 
wyobrażających okresy (point -periode), gdy tymczasem wzór (22) sto­
suje się do całej płaszczyzny.

Pochodna p'u jest także funkcją eliptyczną, której biegunami trze­
ciego rzędu są wszystkie punkty 2w\ daje się ona wyrazić w zakresie 
całej płaszczyzny zapomocą szeregu

, 2 - 1 
(25) p  u = 2 V'

— 2 tv,3uA — (u
W ogólności, pochodna rzędu- n, p'n) u, jest funkcją eliptyczną, któ­

rej biegunami rzędu n +  2 są wszystkie punkt\ u 2w.

26) p (n) « =  ( — !/' ' ' ' „ S i

Polecamy czytelnikowi stwierdzenie prawowitości tych sposobów 
rozwinięcia w szeregi, co nie powinno, przy uwzględnieniu twierdzeń, 
uzasadnionych powyżej (art. 297 i 3l9), nasunąć żadnych trudności.

323. Związek algiebraiczny pomiędzy p a  a p'u. — Zgodnie z twier­
dzeniem ogólnym, podanym w art. 326, istnieje pomiędzy p  u a /  u za-

12Kurs analizy matematycznej.
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leżność algiebraiezna. Otrzymujemy ją z łatwością w sposób następu, 
jacy: w otoczeniu początku układu, według wzoru (23 :

■p'u 2 +  2cs u +  4c, «* +

( p’ u 2
4 8r2

U*
— - — 16 c3 +  .
u*

(p U)*
]

//«
. 3 *'s . O, ,+  3 cj +  . .

u-

przyczyni wszystkie wyrazy pominięte są równe zeru przy u 0. Ró­
żnica />'*(«>— 4p xu jest tedy funkcją, dla której początek układu jest 
biegunem drugiego rzędu, i w otoczeniu tego punktu mamy

20r>
p'1 u) — 4 p 3 u ~  — ■— *---- 2Sr5 -f . . .  ;

ws

wyrazy pominięte równają się przytym zeru dla u 0.
Funkcja eliptyczna — 20ctp u — 28c, posiada tedy te same bieguny 

z temi samemi częściami głównemi, co funkcja eliptyczna / '*  — 4 /*  
i różnica tych funkcji równa się zeru przy u 0. Owe dwie funkcje 
eliptyczne są tedy identyczne, i zakładając:

g2 r  20e2 60 V  |±-J ’ , 9l «= 28c, =  140 V '  ,

otrzymujemy związek szukany w postaci

(27) (P'u,* — 4 p * u —g2p u — 9l.

Związek (27» posiada w teorji funkcji eliptycznych znaczenie pod­
stawowe; liczby g2 i gt nazywają się niezmiennikami (inrariants).

Wszystkie spółczynniki c-, szeregu (23) są to funkcje całkowite 
niezmienników g2 i gz\ istotnie, ze związku (27), biorąc pochodne obu 
stron i dzieląc przez 2 p'u, wnioskujemy, że

(28) p"u  -  6 /> «  — i* - .

Z drugiej strony, w otoczeniu początku układu:

/ " «  =  —  +  2 c, +  12 c, «* +  . . .  +  (2Ji -  2 2 X  — 3 e, +  . . . .  
u 4

■Zastępując w związku 128) p u  i p" u przez wyrażające je szeregi i utoż 
samiając ze sobą obie strony, otrzymujemy wzór zwrotny



\
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który ^pozwala obliczać kolejno wszystkie spółczynniki C) w zależności 
od c2 i c3, a przeto od g, i g3\ znajdujemy w ten sposób

24. 3 . 52
c, = 9̂2

2 4 . 5 . 7 .11

Ten rachunek uwydatnia fakt godny uwagi, iż wszystkie sumy 
1 dają się wyrazić w postaci funkcji całkowitych dwu pierw-

(2 w,2n 
szych sum.

Pierwiastki funkcji p' u znamy z góry. Ponieważ jest to funkcja 
trzeciego rzędu, więc posiada w każdym równoległoboku trzy pierwiast­
ki. Ze względu na nieparzystość tej funkcji, pierwiastkami jej są
wartości u =  w, u u =  w1 =  w -f CO (art. 326, Uwagi'. Według
wzoru (27), pierwiastki równania 4/ 3 — g2p  — gz =  0 są zatym ' wartoś­
ciami funkcji /  «  przy u  =  oj, w' ,  o/ '. Oznaczać będziemy te trzy pier­
wiastki przez eu e2, e3:

=  /  w, e2 =  P e3 =  /

Są to trzy wartości odmienne, gdyby bowiem np. e1 równało się e2> to 
równanie p u  =  ^posiadałoby w jednym rówmoległoboku elementarnym 
dwa pierwiastki podwójne co i co', co jest niemożliwe, gdyż pu  jest fun 
keją drugiego rzędu. Możemy tedy napisać:

4 p*u— g2p u  — g3 =  4 [t>u — ex){pu  — e2){p u — e3\

a więc pomiędzy niezmiennikami g2, g3 i pierwiastkami elt e2, e3 zacho­
dzą związki

e i  +  e 2  + ■  e 3 —  0  7 +  e i  e 3 + '  e 2  O  —  > e i  e 2 e 3 ~  ~ ~  •4 4

Wyróżnik —  'gp -  - 27^32) jest niewątpliwie różny od zera.
16

329. Funkcja — Całkując funkcję pu  wzdłuż jakiejkol­

wiek drogi, wychodzącej z początku układu i nie przechodzącej przez 
żaden z biegunów, otrzymujemy związek

± \ d u  - v  f -----+ T- +#2 / ^  u — 2w 2w
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Szereg z prawej strony znaku równości wyraża funkcję częścioksztalt- 
tną, której biegunami pierwszego rzędu są wszystkie punkty u 2u

prócz u 0. Zmieniając znak i dodając ułamek ' , załóżmy: 

(29) U  = I  +  y

u
u\___  1

u — 2 w 2«r (2wp
wobec tego poprzedni związek może być napisany w postaci

(39) / \p a — 1 Wu =  — Cm +  — ;
J  o ms / u

po zróżniczkowaniu obu stron, otrzymujemy
(•31) C' u =  — / u.

Łatwo stwierdzić zaporuoeą któregokolwiek z tych wzorów, że fun­
kcja Cm jest nieparzysta. W otoczeniu początku układu mamy, zgodnie 
z rozwinięciem w szereg (23) i wzorem (30),

. 1 Ci C«C M ----------- 2 U3 — ’ M5 4 - ___
M 3 5

Funkcja Cm nie może mieć okresów 2u> i 2w', gdyż posiadałaby w ta­
kim razie tylko jeden biegun pierwszego rzędu w równolegloboku ele­
mentarnym. Atoli, ponieważ funkcje C(u +  2m) i C« posiadają tę samą 
pochodną — p u , te dwie funkcje różnią się od siebie tylko o liczbę 
stałą; funkcja C« wzrasta zatym o liczbę stałą, gdy zmienna u powię­
ksza się o jeden okres. Łatwo otrzymać wyrażenie, wyznaczające tę 
stalą. Napiszmy, dla większej jasności, wzór (30) w postaci

I l / v  — 1 \dv =  — — Cm;
J o  l>l / M

po zamianie u na u -f 2w i odjęciu od siebie obu wzorów, otrzymamy:
/•« + 2oi

C (m -f- 2io) — C u =  — 1 p v d v .
J  U  $

Załóżmy
, ' U  +  2o> /•u+2u>’

~ri — I pvdv ,  2r/ =  — / P vdv\
. U J  U

tj i t/ są to stałe, niezależne od granicy dolnej u i drogi całkowania. 
Niezależność od drogi całkowania jest oczywista a priori, ponieważ 
wszystkie | ozostałości funkcji p v są równe zeru. Funkcja I u czyni te­
dy zadość dwu warunkom
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Z ( u  -f- 2o>) =  ę u  -)- 2-fj , Z (u  -f- 2 o3V =  ę m - f  '2Y j'.

Czyniąc w tych wzorach u  równym — w lub u  —  —  co', otrzymujemy

Yj =  C OJ , '({ —  C oj' .

Pomiędzy czterema ilościami oj, oj', q, r{ istnieje związek nader pro- 
sty. Ażeby go uzasadnić, wystarczy obliczyć dwoma sposobami całkę

I Z u d u ,  braną wzdłuż obwodu równoległoboku o wierzchołkach u 0,

u0 — 2oj, u0 +  2oj +  2oj', u 0 +  2oj'. Założymy przytym, że Z, u  nie posia­
da na tym obwodzie żadnego bieguna i że spółczynnik przy i w ilora-

f
zie — jest dodatni, tak iż przy przebieganiu obwodu w zwrocie dodat-

OJ

nim napotykamy wierzchołki w takim porządku, w jakim zostały tu 
napisane. Wewnątrz tego obwodu istnieje tylko jeden biegun funkcji 
Z u, z pozostałością równą +  1; badana całka równa się tedy 2 x i. 
Z drugiej strony, suma całek, wziętych wzdłuż boku, łączącego wierz­
chołki w0 i u 0 +  2oj oraz boku przeciwległego, jest równa (p. art. 326) 
całce: /■«, + 2m -

/ [Z u  —  Z ( u  +  2 u > ') ld u  =  — 4  oj Yj ,

i stwierdzamy podobnież, że suma całek, pochodzących z dwu innych 
boków, jest równa 4 oj' yj. Otrzymujemy przeto zapowiedziany związek 
w postaci

(32) oj' y] —  oj y/ = i  .

/•w-f 2u>
Obliczmy jeszcze całkę określoną F(u) =  Zvdv, biorąc jaką-

J  U

kolwiek drogę całkowania, nie przechodzącą przez żaden z biegunów.
Otrzymujemy *

F ’(u) =  Z (u +  2oj) — C« =  2tj,

tak iż F (u )  ma postać 2 yjm +  K-, przytym stała K  daje się wyznaczyć 
z pominięciem wielokrotności iloczynu 2m, gdyż można zawsze zmienić 
drogę całkowania bez zmiany jej końców w ten sposób, iżby całka zo­
stała powiększona o dowolną wielokrotność liczby 2m. Aby ją wyzna-

/*-f tli 1 \
czyć —  z tym zastrzeżeniem —  obliczmy całkę określoną / (Zv— \dv

wzdłuż drogi nader zbliżonej do odcinka prostej, łączącego punkty oj i 
— w'. Całka ta równa się zeru, gdyż można zastąpić drogę całkowania 
przez drogę prostolinjową; i wówczas elementy całki będą się parami
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znosiły. Lecz, zastępując u przez — w we wzorze, wyznaczającym F\u). 
otrzymujemy:

/  • CUI Z v dv — — 2 Tj w L K ,
J  CO

/* -i- C0 J
a całka | dv jest równa +  z i, tak iż można wziąć K  — 2 tj w +  zi\

J  —w v
nie czyniąc tedy żadnego przypuszczenia co do drogi całkowania, mo­
żemy napisać ogólnie

(33) / Zvdv — 2t((m -f co) -f (2nt -f 1)~£
J  U

[m Liczba całkowita];
/•»H 2o>*

podobny wzór stosuje się do całki 1 C idv.

330. Funkcja o m . —  Całkując funkcję Zu — — wzdłuż jakiejkol-
u

wiek drogi, wychodzącej z początku układu a nie przechodzącej przez 
żaden z biogunów, otrzymujemy

M ) +  ~  +  ~
2 te] 2 w 8tc*

«•
8ir’

Funkcja całkowita z prawej strony .znaku równości jest najprost­
szą z funkcji całkowitych, których pierwiastkami jednokrotnemi są 
wszystkie okresy 2ie; jest to funkcja om:

(35)

Równość (34) może być napisana w postaci

f “  (  Cu -  -  "i (tu
(34 bis) om =  uc' 0
i gdy weźmiemy pochodne logarytmiczne obu stron, to wypadnie;

(36)
o ' m 1  1  r

+  ,  M ---------- =  Z U .
OM M U
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I  ankcja n u, jako funkcja całkowita, nie może być dwuokresową; 
gdy zmienna wzrasta o jeden okres, funkcja ta zostaje pomnożona przez 
czynnik wykładniczy, który można wyznaczyć w sposób następujący; 

Wnioskujemy np. z wzoru (34 bis)
/ u+2ui . 2.

u r - - y u
o u u

czynnik ten był już wyliczony powyżej, i ostatecznie

(37) g ( u +  2w) =  e-p (« + <«) + <2m + 1)ni r> u — — ê l(«+u>) G u _
Podobnież dochodzimy do wzoru

(38) n(u -f 2(o') =  — e2V <“ + 01’) nu.

Oba wzory (35) i (34 bis) uwydatniają ten fakt, iż aw jest funkcją nie­
parzystą.

Jeżeli rozwiniemy tę funkcję według potęg zmiennej u, to otrzy­
many szereg będzie ważny w dziedzinie całej płaszczyzny. Łatwo wy­
kazać, że wszystkie współczynniki są funkcjami całkowitemi liczb g2 i 
<73. Istotnie

/ i, u ---- — du) = ------— - u* ----- —— mg — . . . -----------^------ u2>, _  ,, ,
J o  u 3 . 4  5 . 6  2X(2X — 1)

-  -£*_ «* -  J i -  «•... 
nu =  ue 3 ■ 4 5-G

Widzimy, iż niema wyrazu, któryby zawierał u* i że każdy ze spól- 
czynników jest funkcją całkowitą łiczb ck a przez to i niezmienników 
y2 i g3\ pierwsze pięć wyrazów mają kształt następujący:

nn q.2ua g3 u7 a .a .u 11(39) oii — u ------ —--------------- —-----------------—----------------- ------------------
24 . 3 . 5  2 3 . 3 . 5 . 7  2». 32. 5 . 7  2Ł38.5*.7.11

Trzy funkcje p u , Lu, nu stanowią pierwiastki zasadnicze teorji funkcji 
eliptycznych. Dwie pierwsze można uzależnić od nu zapomocą związ- 

n' uków Lu =  — , p u  =  — L'u . 
nu

33Ł Wyrażenia ogólne funkcji eliptycznych.—Wszelka funkcja elip­
tyczna /(u )  może być wyrażoną już to zapomocą jednej tylko funkcji 
nu, już to zapomocą funkcji Lu i jej pochodnych, już to wreszcie zapo 
mocą dwu funkcji p u  i p'u. Wyłożymy zwuęźle wszystkie te trzy me­
tody.

fJ
C u d u
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1. Wyrażanie funkcji /  (u) zapotnocą funkcji 3 u. — Niech alt a it . . . ,  
oznaczają punkty zerowe funkcji /(u )  w jednym równolegloboku ele­

mentarnym, a bt, b,, . . . ,  b„ — je j bieguny w tym samym równoleglobo­
ku; każdy z punktów zerowych i biegunów liczymy przy tym tyle ra­
zy, ile wymaga jego stopień wielokrotności. Pomiędzy temi punktami 
zerowerui a temi biegunami istnieje związek.

(40) al ■+- at -J- . . . -j- on -- b\ +  i j  +  . .  • +  +  2 u ,

w którym 2 U oznacza jeden z okresów. Stwierdziwszy to, 
keję:

om — o,) . . . o (u — a„ )
3 u ~ bt) . . .  o [u — l>„ — 2l> )

weźmy fun-

Funkcja ta posiada te same bieguny i te same punkty zerowe, co fun­
kcja / (m), gdyż wartościami zerowemi czynnika a (u — a, ) są tylko war­
tości u -- Oi oraz wartości zmiennej u, różne od a, o jeden okres. 
Z drugiej strony funkcja f(u )  jest funkcją podwójnie okresową, jeżeli 
bowiem zmienimy up. u na u + 2co, to na mocy związku (37) licznik i 
mianownik tej funkcji zostaną pomnożone odpowiednio przez czynniki

(—  ])" ( _ ] " g2rl <” « + n co —  *i — I ;  -  — 21>>t

które według związku (40, są równe sobie. Stwierdzilibyśmy podob­

nież, że ę(K + 2w') 3 u . Iloraz / " stanowi tedy funkcję dwuokre-
?(«)

sową zmiennej u, nie posiadającą żadnych wartości nieskończonych, a 
więc jest to liczba stała, i możemy napisać

.41) f  u)
— o,) - u —  a f  . . ./tfu — a„ ) 

b y\ [u — b„) . . . - ( m —  b„ —  2 UJ

Ażeby wyznaczyć stałą C, wystarczy nadać zmiennej u wartość, 
któraby nie odpowiadała ani biegunowi ani punktowi zerowemu.

Ogólniej, ażeby wyrazić funkcję eliptyczną f  u) o znanych biegu­
nach i punktach zerowych w zależności od funkcji a u, wystarczy 
obrać n punktów zerowych (a,', a2', . . . , a„') oraz n biegunów ( b f  b2', 
. . .  b„') w taki sposób, iżby każdy z pierwiastków funkcji /(«) mógł 

być otrzymany zapomocą dodania jednego z okresów do jednej z liczb 
a', , a wszelki biegun funkcji/ {u )  — przez dodanie jednego z okresów 
do jednej z liczb b\ , i żeby ponad to był spełniony warunek la ' ,  — .
Owe bieguny i punkty zerowe mogą zresztą być położone w płaszczy­
źnie w sposób dowolny, byleby czyniły zadość powyższym warunkom.
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2. Wyrażanie funkcji f{u )  w zależności od funkcji 'Q u i jej pochodnych — 
Y\ eźmy k takich biegunów a-lt a2, . .  . , ak funkcji /(w), iż wszelki inny 
biegun może być otrzymany przez dodanie do jednej z tych wartości 
jednego z okresów. Można wziąć np. bieguny, położone w tym samym 
równolegloboku, ale to nie jest niezbędne. Niech wyrażenie

A (i) A nf------------- 1----------------- a. . -i_________ !_____
u — a, (u — a i )2 ' (u — a, )  "i

stanowi część główną funkcji f(u )  w otoczeniu punktu a,-.
Różnica

. k
/(«) — . 2  (M — a i)

jest funkcją holomorficzną w dziedzinie całej płaszczyzny; jest to ponad 
to funkcja dwuokresowa, gdyż jeżeli zmieniamy u na u +  2a>, funkcja ta 
wzrasta o — 2y]XA1ó) j t. j. o 'liczbę, która równa się zeru ze względu 
na to, że wyraża sumę pozostałości w jednym równolegloboku
Badana różnica jest tedy liczbą stałą i ostatecznie

k
/ ( « )  =  c +  2  C(« —  ot) c' (w —  Oi) . . .

<42) !=l 4  (O
+  ( -  1) "i -  1 , Q-----7------- r  C(n‘ -  (« -  o, )].1 . 2 . . .  (w,- — 1;

Wzór powyższy zawdzięczamy Hermite’owi. Ażeby go móc zastosować, 
należy znać bieguny funkcji eliptycznej /(u )  i odpowiednie części głów­
ne. Podobnie jak wzór (41) jest analogiczny z wzorem, wyrażającym 
funkcję wymierną w postaci ilorazu dwu wielomianów, rozłożonych na 
swe czynniki linjowe, tak wzór (42) odpowiada wzorowi, dającemu roz­
kład ułamka wymiernego na składniki proste. W tyra razie rolę elemen­
tu prostego odgrywa funkcja £(m— a).

3. Wyrażanie funkcji f(u )  w zależności od p  u i p'u. — Weźmy prze- 
dewszystkim funkcję eliptyczną parzystą/(w). Wartości zerowe tej funk­
cji, które nie są okresami, są parami przeciwne sobie; możemy tedy zna­
leźć n takich punktów zerowych (av a2, . . . ,  an), iż wszystkie wartości 
zerowe, różne od okresów, będą dane przez wzory

— A2«  £' (u — ot ) . . .

(— 1) "i „(/>
+  ----r----------------

i . 2 . . .  (m — i
C(ni — !) (u — ai )]
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Można wziąć np. równoległobok, którego wierzchołkami byłyby 
punkty w - f  w', w’ —  o>. —  w — w’, w — o>', i uwzględnić w tym równole- 
głoboku punkty zerowe, położone z tej samej strony jakiejś prostej, 
przechodzącej przez początek układu. Jeżeli któryś z pierwiastków u, 
nie jest pólokresem, powtórzymy go w ciągu a,, a2, . . .  , a„ tyle razy, 
ile jedności zawiera jego stopień wielokrotności. Jeżeli jakiś pierwia­
stek, np. a, jest pólokresem, must to być pierwiastek rzędu parzystego 
2r (326, Uiragi)] powtórzymy taki punkt zerowy w ciągu au av . .  . ,  an 
tylko r razy. Przy tych umowach iloczyn

(fiu — f ia j( f iu  — f ia t) . . .  (fi u -  fia„ )
posiada tyleż pierwiastków i tego samego rzędu, co /(u ), o ilê  tylko nie 
mamy /(O) — 0. Utwórzmy podobnież drugi iloczyn

(fiu — f ib j i f iu  fib2) . . .  (fiu  — fibm),
którego punktami zerowemi, z zastrzeżeniem, że stopnie wielokrotności 
są odpowiednio takie same. są wszystkie bieguny funkcji /(w) prócz 
punktów, odpowiadających okresom. Załóżmy:

[fiu — fia^)(fiu — f ia t) . . . {fiu — fia n)z {u • ----— ;
(pu — pbi )(p u — pb2) . . .  (pu — pbm)

iloraz f 1,1 jest funkcją eliptyczną, posiadającą przy wszelkiej warto- 
® (m)

ści zmiennej u. nie równej okresowi, wartość skończoną i różna od zera. 
Taka funkcja eliptyczna nie jest niczym innym, tylko liczbą stałą, gdyż 
biegunami jej mogą być tylko okresy, a gdyby nawet tak było, jej od­
wrotność nie posiadałaby biegunów. Otrzymujemy tedy:

u )  C  ( f > “ “ A —  f i O t )  - ( f i u  —  f i a n )

(fiu -fil\)(fiu — fib2) . . .( f iu  — fibń)

Jeżeli /] (m) jest funkcją eliptyczną nieparzystą, — jest funkcją
fi' u

parzystą, i przeto ten iloraz stanowi funkcję wymierną funkcji fiu. 
Wreszcie dowolna funkcja eliptyczna F (u) może być uważana za sumę 
funkcji parzystej i funkcji nieparzystej:

F , , F(u) +  F ( -u )  F ( u ) - F ( - u )  .
2 ' 2

zastosowując poprzednie wyniki, stwierdzamy, że wszelkiej funkcji eli 
ptycznej można nadać postać
43) . F(u) U (fi u) ą fi'uR, (fiu

[R i h\ — funkcje wymiernej.



— Funkcje podwójnie okresowe. — Funkcje eliptyczne. 187

332. Wzory, wyznaczające funkcje sumy. —Wzór elementarny, doty­
czący funkcji sin x, pozwala wyrazić sin (a -f- b) w zależności od wartości 
tej funkcji i jej pochodnej dla x =  a i x =  b. Istnieje wzór podobny 
dla funkcji p  m, ale wyrażenie, wyznaczające p(u v) w zależności od 

P u i p v ,  p '  u, p '  v jest nieco bardziej złożone, z powodu obecności mianow­
nika.

Zastosujmy z początku wzór ogólny (41), w którym występuje fun­
kcja o u, do funkcji eliptycznej p u — pv. Widzimy odrazu, że

a (m -f- u) a (u — v) 
a2 u

jest funkcją eliptyczną, posiadającą te same punkty zerowe i te same 
bieguny, co i p u ,— pv, Otrzymujemy tedy:

pu  — p v  =  C < (u -f v) a (u — v)
rSU

ażeby wyznaczyć stałą C, wystarczy pomnożyć obie strony przez a2w 
i założyć, że u dąży do zera. Dochodzimy w ten sposób do związku 
1 =  — Ca2*;, skąd wnioskujemy

(44) p  u — p  v a (u v) a (u — v) 
o2 u a2 *;

Weźmy pochodne logarytmiczne obu stron, uważając przytym v za sta­
łą a u za zmienną niezależną. Wypada

- - - - - —- - - - - - - -  —  C (w V) - j -  - (u — r) — 2 C u ;
p u  — p v

wzór ten, po przestawieniu liczb u i v, przybiera postać

—p ’ v =  ((«  +  !))— C (w — v) — 2 £v ;
pu  —■ pv

wreszcie, dodając do siebie oba te wzory, otrzymujemy związek

(45)
1 p' u — p’ v

C ( m  - f  « )  —  Qu  —  O  =  —
2 p u  — pv

który stanowi właśnie wzór poszukiwany dla funkcji Cm.
Różniczkując obie strony względem w, otrzymalibyśmy wyrażenie 

funkcji p{u-\- v)\ prawa strona zawierałaby drugą pochodną/"w, którą

należałoby zastąpić przez 6/2w — fh_ 
2 '

Rachunek ten byłby nieco przy
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długi, i dojdziemy do żądanego wyniku w sposób bardziej wytworny, 
uzasadniając z początku wzór

(46) + + [C (w + v) — Cm C ej*.
Uważajmy wciąż u za zmienną niezależną; obie strony stanowią funk­
cje eliptyczne, których biegunami drugiego rzędu są punkty m — 0, 

— v oraz wszystkie inne, które dadzą się otrzymać przez dodanie 
do tych wartości jednego z okresów. W otoczeniu początku układu

a przeto

C (w -j- ®) C m — C v ,C ® -f- u Cr v -j- . . .  — C u — C v 
1

— -------- j-MCtf-ł-aM*
M

[C m -(- v) Cm C — ------ 2 C' v — 2 <x u . . . .
u*

Część główną tego wyrażenia, równie jak pierwszej strony wzoru (46 , 

stanowi Porównajmy podobnież części główne w otoczeniu biegu-

na u v. Zakładając, te u — v -f h. otrzymujemy

C/i C( v -f h) Cr =  1 h C'r -f {śA2 -f . . . ,
h

f i h C Kh V) - C i f  - 1  —  2 ? v  + ____
h '

Część główna prawej strony wzoru (46) w otoczeniu punktu u — v, 

równa się tedy — , równie jak część główna lewej strony. Różni-
(M ~r tż,2

ca nie może tedy być niczym innym, tylko liczbą stałą. Aby wyzna­
czyć tę stałą, porównajmy naprzykład szeregi, stanowiące wyniki roz­
winięcia w otoczeniu początku układu; mamy w tym otoczeniu:

P U - V) pU 4 p r —  +  2 p\’ 
«2

up' V A- . . .  .

Porównywując to rozwinięcie z rozwinięciem funkcji [ C ( n - e )  Cm — Cejs, 

stwierdzamy, że przy u =  0 różnica równa się zeru. Wzór {46) jest te 
dy uzasadniony. Zestawiając oba wzory (45) i (46), otrzymujemy wzór 
na dodawanie dla funkcji p  u

1 lP 'a P'v
4 \ P M - p v

(47; p (w +  v, + p u  -f pv
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333. Całkowanie funkcji eliptycznych. — Wzór rozkładowy Hermi- 
te'a nadaje się bezpośrednio do całkowania funkcji eliptycznej. W isto­
cie, wnioskujemy z wzoru (42)

(48)
/ f(u )d u  =  Cu ^  {A (i)Log [a'u —- a; ) ] — A,(i) C u — a; )- j- .. .
 ̂ i=l

A AA
-f- ( ---  1) n i — 1 ------------------ A ni ~  2) { U --- a ; )}.

{ni — 1/
Widzimy, że całka funkcji eliptycznej daje się wyrazić w zależno­

ści od tych samych funkcji przestępnych o, £, p, od których zależy sa­
ma funkcja; lecz funkcja a u może tam występować pod znakiem Log. 
Ażeby całka funkcji eliptycznej była również funkcją eliptyczną, trzeba 
przedewszystkim, iżby całka nie posiadała punktów krytycznych loga­
rytmicznych, to jest iżby wszystkie pozostałości Aj® były równe zeru. 
Jeżeli tak jest, całka jest funkcją częściokształtną (meromorficzną); do 
tego, aby była funkcją eliptyczną, wystarczy, by nie ulegała zmianie 
przy dodaniu okresu, t. j. iżby były spełnione warunki:

2 Ca — 27) y  A2A =  o , 2 Co/ — 2 tf ^  =  0 ;
i  ' i

skąd wynika: C =  0, ZA.^ — 0. Jeżeli te warunki są spełnione, całka 
przybiera sama przez się postać, wskazaną we wzorze Hermite’a.

Gdy funkcja eliptyczna, którą chcemy całkować, jest wyrażona przy pomocy 
funkcji p u i p'u , bywa często dogodnie opierać się na tym wzorze zamiast używać 
metody ogólnej. Niech będzie dana do całkowania funkcja eliptyczna /v (/; li)

-  p ’ u R 1 ( ju ) ,  przyczyni R  i R t oznaczają funkcje wymierne. Nie mamy potrzeby

zajmować się całką j  R1(pu)pudu,  która przy pomocy zamiany zmiennej, określonej 

przez wzór pu  =  t, daje się sprowadzić do typu całki funkcji wymiernej. Co do cał 

ki J r (P u) du, możnaby zapomocą działań wymiernych, połączonych z obraDemi od­

powiednio całkowaniami przez części, sprowadzić ją do pewnej liczby całek typo­
wych, lecz toby polegało na przerobieniu ponownym pod inną postacią obliczeń, 
dawniej już wykonanych. (Rozdz. V, str, 257 -  262 oryginału). Istotnie, jeżeli wy­
konamy zamianę zmiennej: pu  =  t, skąd p' u du  =  dt, czyli

dt dt
du p u  / 4 f 3 — g-A — g3

to całka j R ( p u ) d u  przybierze postać

.1

R (t) dt 
A 413 — g,t — g3
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Widzieliśmy, w jaki sposób ta całka rozkłada się na funkcję wymierna zmień

/ ’ _______ C dlJ  v -  g,t -

ncj t i pierwiastka Jit*  — yĄ — y, . na pewną liczbę całek o postaci

<" dl

Ih
i wreszcie na pewną liczbę całek o postaci

I Q(ł>
J  P (V  J  Al' -  <jt( -  g , '

w których P(t) oznacza wielomian pierwszy względem swej pochodnej i trójmianu 
At' — g ,t  — a Q (t) — wielomian pierwszy względem P (t), o stopniu niższym 
niż / ’ (<).

Powracając do zmiennej u, stwierdzamy tedy, iż całka j I t l p u d u  równa się

sumie fnnkcji wymiernej funkcji p u  i p’ u. pewnej liczby całek o postaci j  (pu)n du 

oraz innych całek typu
Q(pu)du(49» / P(pu)

i cala ta redukcja może być dokonana zapomocą działań wymiernych (mnożenie j 
dzielenie wielomianów), połączonych z pewnemi calkowaniami przez części.

Łatwo otrzymać wzór zwrotny do obliczania całek In j (pu)n du. W związku

du \(pu)n ' p u )  (n — 1) ( /« ) "  2 p 2u (pu>" ' p "  u

zastąpmy p ł « i p ” u odpowiednio przez 4 / ’ « — p i f "  — g, i 6 p 2 u — ) y,; otrzy­

mamy, porządkując względem f u :

- ^ I f u f - A p u l ^

=  (4n +  2 ) (fu )H+l  — (n — ^ - j y , ( p a ) n 1 — (n — 1) g, (fu)  

skąd, zapomocą całkowania obu stron, wnioskujemy

-  2

( 5 0 )  (pu)* 1 p’ u =  ( 4 n  +  2 )  /n + 1 -  ( n - - M g, fn_ l -  ( «  -  l ) y , / „ _ 2 .

Czyniąc kolejno w tym wzorze n równym l , 2, 3, . . . ,  potrafimy obliczać stopniowo 
wszystkie całki In w zależności od dwu pierwszych 10 — u, I} — — ! u.

Ażeby módz wyrazić przy pomocy bardziej znanych tjpów całki o postaci (49), 
należy znać pierwiastki wielomianu P(f). Jeżeli znamy te pierwiastki, to wszystko 
polega na obliczeniu pewnej liczby całek o postaci

du
f u  —■ f  v
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w  k t ó r y c h  j>v  j e s t  r ó ż n e  o d  e l t  e,, i  e 3 ,  g d y ż  w i e l o m i a n y  P [ t )  i  4 ( 3  —  g j  — g 3 s ą  
p i e r w s z e  w z g l ę d e m  s i e b i e .  W a r t o ś ć  o  n i e  j e s t  t e d y  ż a d n y m  p ó ł o k r e s e m ,  i  p ' o  n i e  
r ó w n a  s i ę  z e r u .  W z ó r

3 3 4 .  F u n k c j a  9 .  —  S z e r e g i ,  z a p o m o c ą  k t ó r y c h  o k r e ś l i l i ś m y  f u n k c j e  pu,  C  u ,  o  u, 
o r a z  s z e r e g  p o t ę g o w y ,  w a ż n y  w  d z i e d z i n i e  c a ł e j  p ł a s z c z y z n y ,  w  k t ó r y  r o z w i n ę l i ś m y  
a  u ,  n i e n a z b y t  s i ę  n a d a j ą  d o  w y l i c z e ń .  Z a ł o ż y c i e l e  t e o r j i  f u n k c j i  e l i p t y c z n y c h ,  A b e l  
i  J a c o b i ,  w p r o w a d z i l i  t a m  j e s z c z e  j e d n ą  f u n k c j ę  p r z e s t ę p n ą ,  g o d n ą  u w a g i ,  k t ó r ą  F o u ­
r i e r  n a p o t k a ł  j u ż  b y ł  w  s w y c h  p r a c a c h  o  t e o r j i  c i e p ł a ,  a  k t ó r ą  m o ż n a  r o z w i n ą ć  
w  s z e r e g  b a r d z o  s z y b k o  z b i e ż n y ;  j e s t  t o  t .  z w .  f u n k c j a  9 .  U z a s a d n i m y  p o k r ó t c e  g ł >  
w n e  w ł a s n o ś c i  t e j  f u n k c j i  i  w s k a ż e m y ,  w  j a k i  s p o s ó b  m o ż n a  p r z e j ś ć  o d  n i e j  z  ł a t w o ­
ś c i ą  d o  f u n k c j i  o  u  W e i e r s t r a s s a .

N i e c h  t  o z n a c z a  l i c z b ę  z e s p o l o n ą  r  --- si,  w  k t ó r e j  s p ó ł c z y n n i k  s  p r z y  i  j e s t  d o ­
d a tn i ,  a  v -  z m i e n n ą  z e s p o l o n ą ;  f u n k c j ę  9  ( o )  o k r e ś l i m y  z a p o m o c ą  s z e r e g u

S z e r e g  t e n  j e s t  b e z w z g l ę d n i e  z b i e ż n y ,  g d y ż  m o d u ł  Un  w y r a z u  o g ó l n e g o  p o s i a d a  w y ­
r a ż e n i e

O  i l e  v =  a  p i ;  s! Un d ą ż y  d o  z e r a ,  g d y  n  w z r a s t a  n i e o g r a n i c z e n i e ,  p r z e c h o d z ą c y

p r z e z  w a r t o ś c i  d o d a t n i e ,  i  t o  s a m o  s i ę  s t o s u j e  d o  -J U_  n . F u n k c j a  9  ( o )  j e s t  z a t y m  
f u n k c j ą  p r z e s t ę p n ą  c a ł k o w i t ą  z m i e n n e j  o. J e s t  t o  f u n k c j a  n i e p a r z y s t a ;  i s t o t n i e ,  j e ż e ­
l i  p o ł ą c z y m y  w y r a z y  s z e r e g u ,  o d p o w i a d a j ą c e  w a r t o ś c i o m  n  i  n  —  1  w s k a ź n i k a  
( p r z y  z m i a n i e  l i c z b y  n  o d  0  d o  -  c o ) ,  t o  s z e r e g  ( 5 2 )  b ę d z i e  z a s t ą p i o n y  p r z e z  i n n y :

G 4 y  v p o w i ę k s z a  s i ę  o  j e d n o ś ć ,  w y r a z  o g ó l n y  s z e r e g u  ( 5 2 )  u l e g a  p o m n o ż e n i u  
p r z e z  e ( 2 n + 1 ) “  ' :  =  —  1 .  M a m y  t e d y :  9  ( o  +  1 )  —  9  ( o ) .  Z m i e n i a j ą c  v n a  v +  t ,  n i e
s p o s t r z e g a m y  o d r a z u  j a k i e g o ś  p r o s t e g o  z w i ą z k u  p o m i ę d z y  d w o m a  s z e r e g a m i .  L e c z  
m o ż e m y  n a p i s a ć

=  S  {u  +  v) —  £  (u  —  v) —  2  ę  v ,

u z a s a d n i o n y  p o w y ż e j  f a r t .  3 3 2 ) ,  d a j e  n a m  w o b e c  t e g o

C  d u  —  1
( o l )  I  - - - - - - - - - - - - - =  — -  ~  [ L o g  3  (u  +  v) -  L o g  o  {u v) -  2  u  £  o ]  +  C  .(51) /

1

( 5 2 ) \q =  e K i T | ,

k t ó r y  m o ż n a  u w a ż a ć  z a  s z e r e g  L a u r e n t a ,  w  k t ó r y m  z  j e s t  z a s t ą p i o n e  p r z e z  e i ” f

e
—  tz s ( n  +  - *  )  —  ( 2 n +  1 )

n
n

o
c o  w s k a z u j e ,  i ż

9  ( -  o) — —  6  ( o ) ,  0  ( 0 )  =  0 .

9 (c  t)
(2 n  +  1 )  i i  i  v .
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zamieńmy w tym szeregu n ua n 1, a wyraz ogólny nowego szeregu

i V ’
( l)n_1 2 * 1 g <2» + e — 2 Kir

okaże się równym wyrazowi ogólnemu szeregu pierwotnego (52), pomnożonemu 
przez — q ~  1 Funkcja 9 (c) czyni tedy zadość dwu związkom:

(54) 9 o p i ;  = — 9(o), 9(r +  t) =  — q ~ l e~2' ir 9 (c);

ponieważ początek układu jest punktem zerowym funkcji 9(r), przeto związki te 
wskazują, że wogóle punktami zerowemi tej funkcji są punkty, dane przez wyrażę" 
nie »«, m g, w którym ml i m, oznaczają liczby całkowite dowolne, dodatnie lub 
ujemne.

Są to jedyne pierwiastki równania 9 tc) 0. Istotnie, rozpatrzmy równoleglo- 
bok, którego wierzchołkami są punkty r,„ r 0 1, o0 1 t, o„ t, zakładając, że 
wierzchołek r0 został obrany w ten sposób, iżby żaden z punktów zerowych funkcji 
9(o) nie był położony na obwodzie równolegloboku. Dowiedziemy, że równanie 
9 iP O posiada w tym równolegloboku jeden tylko pierwiastek. Wystarczy w tym

"'(O)
dc wzdłuż obwodu równolegloboku w zwrocie dodat-eelu obliczyć całkę J 9(r)

nim; zgodnie z założeniem co do z, napotkamy przytym wierzchołki w takim porząd­
ku, w jakim zostały napisane.

Ze związków (54) wnioskujemy:

9' o 1) 9' (o) 9' (o t) 9'<p )
9,r 1) 9.0 : c) 

Rys. 72.

9 vo)
2 - i  .

'(i/o . i + T>

Pierwszy z tych związków wskazuje, że w puktach odpowiednich n irys. 72) i n
9' (o)

boków A D  i BC  funkcja - — —  przybiera tę samą wartość. Ponieważ te dwa bo­

ki są przebiegane w zwrotach przeciwnych, suma odpowiednich całek jest równa ze­
ru. Jeżeli zaś weźmiemy dwa punkty odpowiednie m i m ’ na bokach AB  i DC, to

9 (oi
wartość funkcji —------ w punkcie m równa się wartości tej funkcji w puntaie m,

zmniejszonej o 2rd. Suma całek, która powstałaby na tych dwu bokach, równa się

tedy I — 2 - i  dc, t. j. 2 - r .  Ponieważ w równolegloboku ABCD istnieje, rzfecz 
J  {CD)

oczywista, jeden i tylko jeden punkt, którego odpowiednik liczbowy ma postać 
m, m,z, przeto funkcja 9 o) nie posiada żadnych innych punktów zerowych.
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Ostatecznie lunkcja O (o) jest funkcją całkowitą nieparzystą, spełniającą wa­
runki (54) i taką, że jej punktami zerowemi pierwszego rzędu są wszystkie punkty 
OTi~ r m2~! ale nie żadne inne. Weźmy teraz takie dwa okresy 2 to i 2 to', że spół-

t
czynnik przy i w ilorazie — jest dodatni. Zastąpmy w funkcji 0  (v) zmienną v

03

przez 1 ~ . a t przez L~ i oznaczmy przez z (w) funkcję 0
2 CO 03

(óó) , (ł4 =  e (2" -) .

--(ii) • st to funkcja całkowita nieparzysta, której punktami zerowemi są wszyst­
kie punkty, odpowiadające okresom

2 w =  2 m to — 2 tri tu',

zamiast związków (54) występują teraz następujące: 

(56) -f ( u  - j -  2to) =  — <p (u). ^  [u +  2 w')

Własności te są nader zbliżone do własności funkcji a u. Aby przejść do 
-■u. należy pomnoży ć -ui)  przez Dewien czynnik wykładniczy. W istocie, załóżmy, 
oznaczając jak poprzednio przez r( funkcję okresów to i tu', określoną w art. 329-ym:

(57) •ł(«) = 0'(O)
(u) jest również funkcją całkowitą nieparzystą, posiadającą te same punkty 

zdrowe, co f (u). Pierwszy ze związków (56) przybiera postać

2«) ,v1 ( u  - j- 2 to) - 2 ti ( i i  —j— tu)
(58) <!» (m+ 2co) =  -  q7(ó)- e 2<° * ( « )  =  - *  -i (a).

Otrzymujemy następnie

i (a-j-2to') =  ■
2 t o  7,‘ ( u - j - 2 to')3 —  ( m - j -  t o ')e 2 to e to ę (u)0'(O)

czyli ze względu na związek r/to' — r/to

(59)
2 /;'(« +  t0')

. (w-j-2to') =  — e ,y  <!(«)•

Związki (58) i (59) wyrażają to samo,' co związki, uzasadnione powyżej dla
■i (u)

funkcji cm. Iloraz - - - -  posiada zatym dwa okresy 2to i 2to', ponieważ oba wy­

razy tego stosunku ulegają pomnożeniu przez ten sam czynnik, gdy u wzrasta o je­
den okres. Ponieważ obie funkcje posiadają te same punkty zerowe, przeto ten sto­
sunek jest stały; zresztą spółczynnik pierwszej potęgi zmiennej n w obu szeregach 
równa się jedności. A więc zu =  d (ii) czyli

(60) c u
2 OJ

©MW
i funkcja cm została uzależniona od funkcji 0, jakeśmy zapowiedzieli byli. Gdy się
nadaje zmiennej niezależnej v wartości rzeczywiste, przy module liczby q mniejszym

Knrs analizy matematycznej. 13
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od jedności, szereg (53) jest nader szybko zbieżny. Nie będziemy więcej rozwijali tych 
wskazówek, które w uwzględnionym zakresie wystarcza do okazania podstawowej roli 
funkcji k* w zastosowaniach funkcji eliptycznych.

III. —  O dw racanie. —  Krzywe pierwszego rodzaju.

385. Związek pomiędzy okresami a niezmiennikami. — Wszelkie­

mu układowi dwu liczb zespolonych u>, w', których stosunek 1 nie jest

rzeczywisty, odpowiada funkcja eliptyczna />«, najzupełniej okreś/ona, po­
siadająca dwa okresy 2 ™ i 2 io', regularna dla wszystkich wartości 
zmiennej //, które nie mają postaci

2 m w -f 2 m! w'
i mająca za bieguny drugiego rzędu wszystkie okresy. Funkcje Ca i -a. 
które otrzymujemy z />u za pomocą jednego lub dwu całkowań, dają się 
również wyznaczyć przez układ okresów (2 co, 2u>'). Gdy chodzi o uwy­
datnienie tych okresów, można użyć do oznaczenia trzech funkcji podsta­
wowych symbolów

f> (a I w, u>'), £ (u | cu, co') i <3 (H ! co, co').

Należy atoli zauważyć, że można zastąpić układ (to, co') przez nie­
skończenie wiele innych układów (12, 12'), tak iż funkcja f>u nie ulegnie 
zmianie. W eźmy. w istocie, cztery liczby całkowite nt, m', n, ri, dodat­
nie lub ujemne, spełniające warunek

m  r i — m ' n =  +  1.
Jeżeli założymy, że

12 =  m co -j- n co', 12' =  m' to -j- ri co', 
to otrzymamy nawzajem:

<o =  (ri 12 — n 12') to' =  i m 12' — tri 12).
i rzecz jasna, że wszystkie okres}- funkcji eliptycznej /> u są równie do­
brze kombinacjami dwu okresów 212, 212', jak pan okresów 2 to, 2 co'.

Powiemy, że dwa układy okresów (2 co, 2 co') i (2 12, 2 12') są rów­
noważne. Funkcja f> {u J 12, 12') posiada te same okresy i te same 
bieguny z temi samemi częściami głównemi, co funkcja /> (u | to, co'),
1 różnica tych funkcji równa się zeru dla u =  0. Są one przeto identycz­
ne, co wynika również z rozwinięcia w szereg (22), gdyż zbiór liczb
2 m u> —j— 2 t r i  ri i zbiór liczb 2 m il -f- 2 m' 12' są tym samym. Z tegoż 
powodu

C (u | 12, 12') =  : (a | co, co'), a (U | 12, 12') =  3 (u | to, to'j.
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funkcje f i u ,  Z u, ~ u  dają się również dokładnie określić zapomocą
niezmienników g 2, g3. Istotnie, widzieliśmy, że funkcja o u wyraża się
-zapomocą szeregu potęgowego, którego wszystkie spółczynniki są wielo-

, , . a'umianami względem g2 i g3; mamy następnie Cu =  . a wreszcie
G U

f i u  =  — Z'u. Aby oznaczyć funkcje, odpowiadające niezmiennikom g.,
i g x, używać będziemy symbolów

P ( « j  §2, g»), C Im ; g2, g 3), o (m ; g2, g 3).

W tym miejscu nasuwa się zagadnienie o znaczeniu podstawowym. 
Jeżeli jest to oczywiste, ze względu na sam sposób tworzenia się funkcji 
fiu , że każdemu układowi (to, to') odpowiada funkcja eliptyczna fiu , byleby

tylko stosunek nie bjd rzeczywisty, nic nie przekonywa z góry, że(O
wszelkiemu układowi g 2, g 3 wartości niezmienników odpowiada również 
pewna funkcja eliptyczna. Wiemy wprawdzie, że wyrażenie gy — 27 g 32 
winno być różne od zera, niema jednak pewności, czy ten warunek jest 
wystarczający. Zagadnienie, o które tu chodzi, polega w swej istocie na 
rozwiązaniu uzasadnionj-ch powyżej równań przestępnych

(61)
g2

v 1
=  60 >  ----------------------- — ,

(2 m to +  2 m' to )4

*■ " "  ^ (2 m to - j -  2 m' to')6

względem niewiadomych to i to', lub przynajmniej na rozpoznaniu, czy 
w tym przypadku, gdy g 2%— 27 g 32 nie jest równe zeru, równania te

posiadają taki układ rozwiązań, iżby stosunek  ̂ nie był rzeczywisty.

Jeżeli istnieje jeden układ rozwiązań, to istnieje również nieskończenie 
wiele innych układów, lecz zbadanie bezpośrednie powyższych równań 
wydaje się niedostępnym. Osiągamy rozwiązanie zagadnienia w sposób 
uboczny, badając z początku zagadnienie co do odwracania całki eliptycz­
nej pierwszego gatunku.

U ) '

Uwaga. — Weźmy dwie takie liczby zespolone tu i u/, iż stosunek — nie jest 

rzeczywisty. Odpowiednia funkcja fi (u «>, «>') czyni zadość równaniu różniczkowemu

( * p L )  =  l p -  g , f i - g 3 ,
\ d u i

którym g 2 i g 3 mają wartości, wyznaczone przez równanie (61). 1 rzy u " t
w artość p 10 funkcji pu jest równa jednemu z pierwiastków, równania

4 />' -  g t p  —  g » = 0.
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F>dy u zmienia się <1 O di> <». />u zakreśla linję L  ciągnącą się ad nieskończo­
ności <lo punktu c ,: ze związku

, dp\
i  +  p*-g'. p - g i

wnioskujemy, że pólokres w równa się calce określonej

, - f ,  ó p

J  <U 1 *  Pl~gt P ~St

wziętej wzdłuż łin ji L  Dla w’ otrzymujemy wyrażenie analogiczne, zastępując w tej 
ralce e, przez c . .

Wyrażamy w ten sposób oba pólokresy <•> i <V w zależności od niezmienników 
St * Cs Aby niódz wysnuć stąd rozwiązanie zajmującego nas zagadnienia, należałoby 
uzasadnić, że ten nowy ukiad jest równoważny układowi (61), t j. iż określa £ s i gt 
jako funkcje jednowąrtościowe pólokresów m. ™’.

iiiltl. Funkcja odwrotna względem całki eliptycznej pierwszego 
gatunku. Niech Riz) oznacza wielomian trzeciego hth czwartego sto­
pnia. pierwszy względem swej pochodnej.

Możemy go napisać ogólnie w postaci

R  i z  i — A (z — a,) (z — as) iz — a,) (z — a 4);

przytym a it <z4 oznaczają cztery różne pierwiastki, gdy R iz)
jest wielomianem czwartego stopnia; gdy zaś R (z) jest wielomianem 
trzeciego stopnia, to oznaczać będziemy jego trzy pierwiastki przez a lf 
a 2. a, i zakładać ponad to, że a t — v , z tym zastrzeżeniem, że w wy­
rażeniu powyższym z — ^ ma być zastąpione przez jedność, (lalka 
eliptyczna pierwszego gatunku posiada kształt:

zakładamy przytym, w celu ustalenia uwagi, że początek drogi całkowa­
nia z0 jest różny od punktów' zerowych funkcji R (z) i położony' w odleg­
łości skończonej, i że pierwiastkowi została nadana określona wartość po­
czątkowa. Gdy R iz)  jest wielomianem czwartego stopnia, pierwiastek
ł R (z) posiada cztery punkty krytyczne a ] , a 2, o, i «4, i dla każdej 
wartości tego pierwiastka punkt z — ->c jest biegunem drugiego rzędu.

Gdy R(Z) jest wielomianem trzeciego stopnia, pierwiastek 1 R iz) posiada 
już tylko trzy punkty krytyczne a l , a 2, a, w odległości skończonej; 
lecz gdy punkt z zakreśla okrąg, otaczający punkty a v av a v dwie 
wartości pierwiastka przechodzą nawzajem jedna w drugą. Punkt z =  sl

jest tedy w tym przypadku punktem rozgałęzienia funkcji 1 Riz i.
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Prz3'pomnijmy sobie jeszcze uzasadnione już własności całki ełiptycz- 
nej u (art. 313). Jeżeli u(z) oznacza jedną z wartości,. przybieranych 
przez tę całkę, gdj- się idzie po pewnej określonej drodze od punktu zy 
do punktu z, to całka ta może przybrać w tjun samym punkcie u nie­
skończenie wiele wartości, zawartych we wzorach:

(63' z =  u (z) —j— 2 u> —j— 2 m' o/, u =  I — u (z) -j- 2m to -j- 2 m o/.

We wzorach tych m i m oznaczają dwie liczby całkowite, zupełnie 
dowolne, 2 w i 2 o/ — dwa okres}’, których stosunek nie jest rzeczywi­
sty, a 1 — stałą, którą można np. uważać za równą całce, wziętej wzdłuż 
pętli, zakreślonej dokoła punktu a x.

Weźmy funkcję eliptyczną p (u j oj, oj' ) ,  wyznaczoną przez okresy 
2 oj, 2 oj'  całki eliptycznej (62). Zastąpmy w tej funkcji zmienną u

przez samą całkę (62), zmniejszoną o , i oznaczm)’ funkcję, otrzyma­

ną w ten sposób, przez <t> (z):

(64) (p (z )—p \ r
dz . / ,

----------- . 1 OJ, OJ
lLt/ x0 1 /?(z) 2

=  p(u — - I oj, oj' ) .

Owa funkcja <E> (z) jest funkcją jednowartościową zmiennej z. 
W istocie, gdy zastąpimy u przez którąkolwiek z wartości (63), otrzyma­
my zawsze, przy dowolnych wartościach m i m'

<1> (z) - = p U ( Ż ) -------- --- OJ, oj' czyli O (z) =  p ■u (z)

czyli wciąż tę samą wartość <D (z).
Poszukajmy punktów osobliwych tej funkcji ^(z). Weźmy z począt­

ku wartość skończoną Zj zmiennej z, nie odpowiadającą punktowi rozga­
łęzienia, i przypuśćmy, że idziemy po pewnej określonej drodze od punktu 
z0 do punktu z( . W punkcie tym otrzymujemy pewną określoną war­
tość pierwiastka i pewną wartość ut - całki. W otoczeniu punktu z,

j , -t funkcją całokształtną zmiennej z, i możemy ją rozwinąć
V R(z)
w szereg o postaci następującej:

Ł-. =  a0-j- at (z — zj) -f- a2 (z — z j - f r  . . . ,
R (.z)

skąd wynika rj'
(65) it =  « i +  ao (z — zj) +  • J2 (2 ~~ +  '

K  =k=
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Jeżeli a, —  ̂ nie równa się żadnemu z okresów, to funkcja 

f> | u — ' | jest eałoksztaltna w otoczeniu punktu i przeto funkcja

dMz) jest eałoksztaltna w otoczeniu punktu z l . Jeżeli uv— ' stanowi

okres, to punkt //, jest dla /> |u — j biegunem drugiego rzędu, i za-

tym punkt z, jest biegunem drugiego rzędu dla <1>(Z\ gdyż w otocze­
niu punktu a,, przy oznaczeniu przez P pewnej funkcji całoksztaltnej. 
mamy w tyra przypadku związek:

f i l a  — '|
2 / , (a —

Załóżmy dalej, że punkt z dąży do punktu krytycznego a,. W oto­
czeniu punktu a,

{ R 1 *) ] * =  (z  —  a,)~  ̂ Pi {z —  a,)

[ Pi — funkcja eałoksztaltna dla z  =  a,  j
czyli

I *« +  *i (* -  «*/) +  *i (* —  «<)’ + • ■ • ] ,  [«0 =ł= 0];
I R (z) V z -  a,

całkując wyraz po wyrazie, otrzymujemy stąd:

(fifi) u  =  U i - \ - V  z  — a, [ 2 z,, - f  ‘  7, (z —

Jeżeli  ̂ nie jest okresem, /> | u — ' I stanowi funkcję cało-

kształtną zmiennej u w otoczeniu punktu a,. Gdy zastąpimy w szeregu 
potęg różnicy u — u,, wyrażającym tę funkcję, u — u, przez wartość tej 
różnicy, otrzymaną z wzoru (fifi), to potęgi ułamkowe różniej’ z — a, bę­
dą musiał}’ zniknąć, gdyż, jak wiemy, lewa strona jest funkcją jednowar- 
tościową zmiennej z, i funkcja tf>(z) okaże się całokształtną w otoczeniu 
punktu a,. Jest to wskazówką — co zauważmj’ przj' sposobności — że

różnica «, — ' musi być równą półokresowi. Stwierdzamy w podobny spo­

sób, iż jeżeli //, — ' równa się jednemu z okresów’, punkt a, jest dla <E> (z 

biegunem pierwszego rzędu.
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Zbadajmy wreszcie zachowanie się funkcji <5 (z) przy wartościach 
nieskończonych zmiennej z. Musimy tu odróżnić dwa przypadki, stosow­
nie do tego, czy R (z) jest wielomianem czwartego czy trzeciego stopnia. 
Jeżeli jest to -wielomian czwartego stopnia, to nazewnątrz koła C, zakre­
ślonego dokoła początku układu i zawierającego wszystkie cztery pier­

wiastki, każda z wartości wyrażenia stanowi funkcję całokształtną
1 -R(z)

ułamka . Mamy np., dla jednej z nich 
z

1

l R \z)
[ a0 =(= 0 ] .

i wystarczy tylko zmienić wszystkie znaki, ażeby otrzymać szereg, wyra­
żający drugą wartość. Jeżeli moduł zmiennej z wzrasta nieograniczenie,

a pierwiastkowi nadajemy wrartość, wyrażoną przed chwilą, to
1 R {z)

całka u dąży do pewnej wartości skończonej ux , i w otoczeniu punktul
w nieskończoności

(67) u =  ua
2 z2

Jeżeli ux  — 1 nie jest jednym z okresów, funkcja p  | u — - - j jest 

w punkcie ux  regularna, a więc punkt z =  oo jest dla <l> (z) punktem 

zwyczajnym. Jeżeli wartość ux — jest okresem, to punkt ux  jest

dla p  | u —  ̂ j biegunem drugiego rzędu, i, ponieważ możemy napisać 

dla otoczenia punktu z =  co

punkt z =  c o  jest również biegunem drugiego rzędu funkcji <l> (z).

Jeżeli R(z> jest wielomianem trzeciego stopnia, to zewnątrz koła, 
mającego za środek początek układu i zawierającego trzy punkty krytycz­
ne Oj, a2, as, jest ważne rozwinięcie w szereg o postaci następującej

1

l R  ( z )

[ «o =t= 0 ] ,
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a przeto

(6S) u — u

Rozumując tak samo. jak powyżej, stwierdzamy, że punkt w nie­
skończoności jest dla (Ił (z) punktem zwyczajnym lub biegunem pierwszego 
rzędu. Ostatecznie funkcja '!> (z ma z punktów osobliwy ch ty lko biegu­
ny: jest to tedy funkcja wymierna zmiennej z, i całka eliptyczna pierw­
szego gatunku (62) spełnia związek o postaci

w którym d> (z) jest funkcją wymierną. Nie znamy jeszcze stopnia tej 
funkcji; okażemy, że stopień ten równa się jedności, i w tym celu będzie­
my' badali funkcję odwrotną. Innemi słowy, będziemy teraz uważali u 
za zmienną niezależną i poszukiwali własności granicy wyższej z całki (62), 
uważanej za funkcję tej całki. Podzielimy to badanie, dość trudne, rta 
kilka części:

•1. Wszelkiej wartości skończonej zmiennej u odpowiada m war­
tości zmiennej z, je ie l i  m równa się stopniowi funkcji wymiernej <t> (z).

Niech, istotnie, uv oznacza pewną wartość skończoną zmiennej u ; 
równanie

wyznacza m wartości zmiennej z, w ogólności różnych i skończonych, 
acz może się zdarzyć przy pewnych szczególnych wartościach «, . iż nie­
które z tych pierwiastków staną się równemi sobie lub nieskończonemi. 
Niech z, oznacza jedną z tych wartości zmiennej z; wartości całki elip­
tycznej u, odpowiadające tej wartości zmiennej z, czynią zadość równaniu:

w obu przypadkach punkt z może zakreślić taką drogę, idącą od punk­
tu z0 do Zj, iżby wartość całki, wzięta wzdłuż tej drogi, była ró­
wna właśnie ul . Jeżeli tedyr <I>(z) iest funkcją stopnia m, to istnie­
je m wartości zmiennej z, dla których całka (62) przybiera daną war­
tość «.

(60)

Mamy tedy jeden z dwu związków:

u =  Wj -j- 2  w ij w - j -  2  o/, u = /  — -f- 2  /Bj to 4 * 2  m% u/:
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2. Weźmy wartość skończoną ux zmiennej h, której odpowiada war­
tość skończona z x zmiennej z; wartość zmiennej z, dążąca do zv gdy  u 
dąży do Uj, stanowi funkcję całokształtną zmiennej u w otoczeniu 
punktu

W istocie, jeżeli punkt zx nie jest punktem krytycznym, wartości 
zmiennych u i z, dążące odpowiednio do ux i zY, są związane przez wzór 
(65), uzasadniony przed chwilą, w którym spółczynnik «0 nie równa się 
zeru. Według twierdzenia ogólnego o funkcjach uwikłanych (t. J, art. 193), 
wysnuwamy stąd nawzajem rozwinięcie różnicy z — z: w szereg potęg cał­
kowitych i dodatnich różnicy u — ux.

Gdyby przy jakiejś wartości szczególnej «, zmienna z przybierała 
wartość krytyczną a,-, to możnaby również uważać prawą stronę wzoru 
C66) za szereg potęg pierwiastka 1 z — a,; ponieważ a0 nie równa się 
zeru, otrzymani}" stąd nawzajem rozwinięcie pierwiastka Iz  — u,-, a więc 
i różnicy z — a, w szereg potęg całkowitych różnicy u —

3. Niech ux  oznacza jedną z wartości, które przybiera całka u, 
gdy | z ! wzrasta nieograniczenie; punkt u^ jes t  biegunem dla wartości 
zmiennej z. której moduł wzrasta nieograniczenie.

Istotnie, wartość całki u, która dąży do , wyraża się w otoczeniu 
punktu w nieskończoności przez jeden lub drugi z szeregów (67) i (68).

W pierwszym przypadku otrzymamy rozwinięcie odwrotności ~ w szereg,

uporządkowany względem potęg różnicy u — ux

---- Cl (W 1 “H Ć2 (li " II00 )" “H • • • I [ ćl ^  ® ] i
Z

w drugim można będzie rozwinąć w ten sam sposób a przeto:

— — {u — «x )2 f jh ?2  (u — Ucc) ~h • ■ -]2-
z

Punkt ux  jest tedy biegunem pierwszego lub drugiego rzędu, sto­
sownie do tego, czy R(z) jest wielomianem czwartego czy trzeciego 
stopnia.

4. Uzasadnijmy wreszcie, że jednej wartości zmiennej u nie może 
odpow iadać więcej niż jedna wartość zmiennej z. W istocie, przypuśćmy, 
że przy zakreślaniu przez punki z dwu dróg, wiodących od punktu z0 
do dwu różnych punktów zt i z2, otrzymujemy równe wartości całki.
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Możnaby w takim razie znaleźć drogę L , łączącą punkty g, i r , i takąr

żby całka I bvła równa zeru. Przy wyobrażaniu całki"
l | R {Z)

u = X + i Y

przez punkt o spółrzędnych (.V, K) w układzie osi spółrzędnych OX, O) 
punkt u zakreśliłby krzywą zamkniętą I', gdy punkt z zakreśla krzywą 
niezamkniętą L. Owóż jest to niezgodne z własnościami, uzasadnionemi 
przed chwilą, jak zaraz dowiedziemy.

Każdej wartości zmiennej u związek

Ą u~  ̂ ) =  <Ił

podporządkowuje liczbę skończoną wartości zmiennej z, z których każda 
zmienia się wraz z u w sposób ciągły, o ile tylko droga, zakreślana 
przez u, nie przechodzi przez żaden z punktów, odpowiadających war­
tości z — 3o ( l>. Według tego, cośmy założyli, gdy punkt u przebiega 
w swej płaszczyźnie krzywą zamkniętą 1 . wychodząc z punktu A(u0) 
i wracając do tego samego miejsca, punkt z  zakreśla łuk ciągły i nie- 
zamknięty, wiodący od punktu z, do punktu zs. Weźmy na krzywej I 
wa pun kty M  i P  (rys. 73), i niech z\ z" oznaczają wartości, które się

Rys. 73.

u

osiąga w tych punktach, gdy przy wartości początkowej z, zmiennej z 
punkt u zakreśla odpowiednio drogi .-hH i A MNP. Oznaczmy jeszcze 
przez z"  wartość, osiąganą w punkcie P w tym przypadku, gdy u zakre­
śla łuk AQP\ zgodnie z założeniem, z" i zt" są różne. Połączmy punkty 
Af i P  linją poprzeczną MP, zawartą wewnątrz obwodu 1 i wyobraźmy 
sobie, że punkt u zakreśla z początku łuk AmM , a potym poprzeczną 
MP\ niech z2" oznacza wartość, z którą się przybywa do punktu P.

(') Uznajemy tu za prawdziwe własności tunkrji uwikłanych, które zostaną 
uzasadnione później (w rozdz. XVII).
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Wartość ta musi być różną albo od z" albo od z/'. Jeżeli jest różna 
od z " ,  to drogi Am M P  i A Q P nie wiodą do tej samej wartości z 
w punkcie P. Jeżeli z" i z2" nie są równe, to drogi A m M P  
i Am M N P  nie wiodą do tej samej wartości w punkcie P; więc gdy 
się wychodzi z punktu M z wartością z' zmiennej z i podąża do P  
droa:ą M P  lub drogą M N P, otrzymuje się różne wartości zmiennej z.

W obu przypadkach stwierdzam}7, iż można zastąpić obwód zamknię­
ty T przez mniejszy obwód zamknięty 1\, zawarty częściowo wrewnątrz P 
i taki, że gdy u zakreśla go, punkt z przebiega luk niezamknięty. Po­
wtarzając to samo postępowanie w stosunku do obwodu !\, i tak dalej 
nieouraniczenie, otrzymalibyśmy ciąg nieograniczony obwodów zamknię­
tych F, l\, P2, . . . ,  posiadających tę samą własność, co pierwszy ob­
wód P. Można oczywiście uczynić to w taki sposób, iżby -wymiary tych 
następujących po sobie kolejno obwodów malały nieograniczenie, a w ta­
kim razie obwód l';! dąży do punktu granicznego X. Stosownie do spo­
sobu, w który został określony ten punkt, wewnątrz wszelkiego koła 
o promieniu s, dowolnie małym, i środku w punkcie X istniałaby zawsze 
jakaś droga zamknięta, nie przywracająca zmiennej z jej wartości począt­
kowej. Owóż jest to niemożliwe, gdyż punkt X jest dla różnych wartości 
zmiennej z punktem zwyczajnym lub biegunem; w obu przypadkach 
z jest funkcją jednowartościową zmiennej u w sąsiedztwie punktu X. Przy-

C dzpuszczając tedy, że całka j , wzięta wzdłuż linji niezamkniętej L,

może być równą zeru lub, co wychodzi na jedno, że jednej wartości 
zmiennej u odpowiadają dwie różne wartości zmiennej z, dochodzimy do 
sprzeczności. •

Zauważyliśmy już powyżej, iż jeżeli dla dwu wartości odmiennych 
z, i z2 zmiennej z zachodzi równość: (J> (z j =  d> (z2), wówczas można

znaleźć taką drogę L, wiodącą od zt do z2, iżby całka j , /  r®wna â

się zeru. Potrzeba tedy, iżby funkcja wymierna <l> (z) nie mogła przybrać 
tej samej wartości przy dwu różnych wartościach zmiennej z, t. j. iżby 
była to funkcja pierwszego stopnia:

Wobec tego ze związku (69) wynika co następuje:

(70 )
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i dochodzimy do takiego ważnego twierdzenia: Granica wyższa całki 
eliptycznej pierwszego gatunku, brana ja k o  funkcja tej całki, jest funkcją 
eliptyczną drugiego rzędu.

Teorja całek eliptycznych była zgłębiana przez Legendre a: odwra­
cając to zagadnienie, Abel i .lacobi doszli do odkrycia funkcji elip­
tycznych.

Rzeczywiste wyznaczanie funkcji eliptycznej z — f{ u i stanowi za­
gadnienie, zwane • odwracaniem  czyli inwersją (probleme de l’inversion).

Ze związku (621 wynika

liz =  1 R (z) , 
du

a przeto l A? (z) = / '(« ) .  Widzimy, iż sam pierwiastek) R (z) jest rów­
nież funkcją eliptyczną zmiennej u. W języku gieometrycznym można 
streścić wszystkie poprzednie wyniki w sposób następujący:

Niech R (x) oznacza wielomian trzeciego lub czwartego stopnia, 
pierwszy względem swej pochodnej; spoi rzędne jakiegokolwiek punktu 
krzywej C,
(71) v2 =  R (-v),

dają się wyrazie zapomocą funkcji eliptycznych całki pietwszego g a ­
tunku

C* dx  iM dx 
u — =

... y  J  i R (Z)

w taki sposób, iż każdemu punktowi \, y) tej krzywej odpowiada tylko 
jedna wartość u, o ile się nie zważa na różnicę, równą dowolnemu 
okresowi.

Ażeby uzasadnić część ostatnią twierdzenia, wystarczy zauważyć, 
że wszystkie wartości całki u, odpowiadające danej wartości .v, są dane 
przez wzory

un -f- 2 ml « -j- 2 m? »>, / — a0 +  2 mx «  -f- 2 m2

Wszystkie wartości całki u, zawarte w pierwszym wzorze, pochodzą 
od liczby parzystej pętli, zakreślonych dokoła punktów krytycznych, wraz 
z drogą bezpośrednią, wiodącą od ,v0 do .v, i odpowiadają tej samej war­
tości pierwiastka) R {x ). Wartości całki u, dane przez drugi wzór, po­
wstają za pomocą zakreślenia dokoła punktów krytycznych liczby niepa­
rzystej pętli oraz drogi bezpośredniej od ,v0 do x : odpowiednia wartość
pierwiastka I R (x) jest przeciwna względem pierwszej. Jeżeli tedy maym
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dane jednocześnie x  i y , odpowiednich wartości szukać należy tylko 
w jednym z tych wzorów,

Z obliczeń, wykonanych powyżej, wynika, że funkcja eliptyczna 
x  =  f  u) posiada w równoległoboku elementarnym jeden biegun podwój­
ny, jeżeli R (x ) jest wielomianem trzeciego stopnia, a dwa bieguny pierw­
szego rzędu, jeżeli R (x) jest wielomianem czwartego stopnia; y  =  /' («) 
jest tedy funkcją trzeciego lub czwartego rzędu stosownie do stopnia 
wielomianu R(x).

Uwaga. — Załóżmy, iż spółrzędne x, v) punktu krzywej y 2 =  R (x) 
zostały w jakikolwiek sposób wyrażone zapomocą funkcji eliptycznych 
parametru v, a mianowicie x =  's(v:, y  =  rs> 1(v). Całka eliptyczna pierw­
szego gatunku przybiera wówczas postać:

rU  (v ) dv .

'S' lV) .funkcja eliptyczna ' —- nie może posiadać biegunów, ponieważ u winno

zachowywać wartość skończoną przy wszelkiej wartości skończonej zmien­
nej v ; jest to tedy stała k,  i u =  k v  +  l. Stała l zależy oczywiście 
od wartości, obranej jako granica niższa całki U ; co do spółczynnika k,  

wystarczy wt celu wyznaczenia tegoż nadać zmiennej v jakąś wartość 
szczególną.

837. Nowe określenie funkcji /> u za pomocą niezmienników. —
Bardzo łatwo obecnie odpowiedzieć na pytanie, postawione powyżej (art. 
325). Przypuśćmy, że są dane dwrie takie liczby g2 i gy, iż g 2̂  — ~̂ &s~ 
nie równa się zeru: istnieje zawsze taka funkcja eliptyczna p  u, której 
niezmiennikami są  g2 i g3 • Istotnie, wielomian

R(z) =  4 z3— g 2 z g3,
Cjest pierwszy względem swej pochodnej, i całka eliptyczna I , —

J  V l\V R (z)
posiada dwa okresy 2 w, 2 w', których stosunek jest liczbą urojoną. 
Niech p(u  \ oj, o/ ) oznacza odpowiednią funkcję eliptyczną. Zastąpmy

w tej funkcji li przez całkę f — H \
J  I R(z)

u
dz

V r {z)
—

H  ma tu oznaczać stałą, obraną w ten sposób, iżby jedna z wartości 
funkcji u przy z =  była równa zeru. Można wziąć np. półprostą



nieograniczoną L, wychodzącą z punktu *0 i nadać liczbie H wartość całki 

I '  , wziętej wzdłuż tej pół prostej L. Wykażmy przedewszystkim,
J 1 R (z)
że funkcja, otrzymana w ten sposób, jest funkcją jeduo wartościową
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Rys 71.

L

zmiennej z. W eźmy dowolny punkt płaszczyzny 
i v' wartości całek

r  dz

• *) 1 R (Z) •J (.-« n z)

z : oznaczmy przez v

dz 
I R

branych z tą samą wartością początkową pierwiastka 1 R (z) wzdłuż 
dwu dróg ZQ m z, z0«z, które t worzą łącznie obwód zamknięty, ota­
czający trzy punkty krytyczne , es pierwiastka. W eźmy obwód
zamknięty m z n z„ Z M N Z z0, utworzony przez obwód z0m n z z Q, 
odcinek z„ Z, okrąg C o promieniu bardzo wielkim i odcinek Zz0.

Wewnątrz tego obwodu

z w i ą z e k
dz

l R(z)

funkcja

+  1'

1

R(z) 

dz
(Q 1 R(z)

jest całokształtna, i mamy

• -o 1 R (z i

który przy wzroście nieskończonym promienia koła C przybiera postać:

v -j- v' — 2 H =  0.

Wartości całki u, otrzymane na dwu drogach zgm z , zgnz.  czynią 
iedy zadość warunkowi u Ą- u' — 0. W nioskujemy stąd, że funkcja

dz
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jest funkcją jednowartościową zmiennej z. Stwierdziliśmy już, że jest to

funkcja linjowa o postaci a z  ' . Ażeby wyznaczyć a ,  b, c  i d, wy-
c z  - j -  d

starcz}- zbadać rozwinięcie tej funkcji w otoczeniu punktu w nieskończo­
ności. Owóż w tym obszarze

1

' R ( z )

1
~Z 5" 2 z*

j _  g 2/ _  _g3_
4 z 2 4 z 3

1 Ś2
3

2 z? 16 ż*
- . +  ••• ;

wartość całki a,  równa zeru dla z  nieskończonego, wyraża się tedy 
^apomocą szeregu

1
rz-

1 2̂
4 0  z 2

Otrzymujemy stąd 

1
=  z  1 + g  2 

40 z2

—2 g2 
2 0  z

tak iż różnica p u — z  równa się zeru przy z =  >̂. Lecz różnica

a ~— !—  ----- z  może się stać zerem przy wartości nieskończonej zmiennej z
c z  -j- d
jedynie wtedy, gdy c =  O, b =  0, a  =  d, i funkcja p  (u \ w, «o') po 
zastąpieniu zmiennej u  przez całkę (72) staje się tożsamościowo równą z. 
Biorąc za granicę niższą tej całki sam punkt w nieskończoności, możem} 
ją jeszcze napisać w postaci

(720 « =  |
'  J  « }  R(z)

i związek ten pociąga za sobą związek p a  =  z, przy założeniu, że funkcja 
p a  została utworzona w ten sposób, iż jej okresami są okresy 2 w, 2 w

dz . Porównywując wartości pochodnej , wysnute z tych
J  V R (z)' ' ____  dZ

związków, otrzymujemy p ' a  =  \ R ( z )  czyli po podniesieniu do kwadratu

.(73) p ' 2 u  =  R ( z )  =  + P 3 u  —  g 2 p a — g 3 .

całki |

Liczby g 2, g 3 sa niezmiennikami funkcji eliptycznej p a ,  wyznaczonej 
przez okresy 2 o>, 2 tu'. W ten sposób zagadnienie, postawione wyżej
(art. 335), zostaje rozwiązane, .leżeli g23 — 27 g 32 nie równa się zeru, 
równania (61) są spełnione przez nieskończenie wiele układów wartości 
W, tu'. Niech e v  e 2, e 3 oznaczają pierwiastki równania

R(z) —  4 Zz— g2z — g-i =
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otrzymamy jeden układ rozwiązań, hioi-ąc np.

(74)
• ' \ R (z)

d i
l R (z\

stąd zaś dadzą się wyznaczyć, jak zostało wyjaśnione, wszystkie inne 
układy rozwiązań.

W zastosowaniach tourji funkcji eliptycznych tunkeja p u bywa najczęściej 
określono przez swe niezmienniki. Ażeby wykonać rachunki liczbowe, należy umieć 
obliczyć prze pomocy i gt Jeden układ okresów i ponadto umieć znaleźć jeden 
z pierwiastków równania p u — .4, gdy jest dana stała A Co do szczegółów metody, 
której się tu używa, zarówno ink co do wszystkiego, co dotyczy zastosowania tablic, 
możemy jedynie polecić czytelnikom udanie się do dzieł specjalnych (!).

;łHs. Zastosowanie do krzywych płaskich trzeciego rzędu. — le­
żeli wyrażenie g**— 27 g 2' nie jest równe zeru, to równanie

(75) y* =  4.v* — g 2 x  — g t

odpowiada krzywej trzeciego rzędu bez punktu podwójnego. Czynimy za­
dość temu równaniu, zakładając- x — fiu, y  =  p u, z warunkiem, że 
niezmiennikami użytej funkcji fiu  są właśnie dane liczby g 2 i g3. Każde­
mu punktowi krzywej odpowiada w każdym równoległoboku elementarnym 
jedna wartość zmiennej u. Istotnie, równanie fiii =  x posiada w tówno- 
łegłoboku dwa pierwiastki u, i ut\ suma //, -f- stanowi okres i wartości 
fi'ul , fi'uj  są przeciwne. Wartości te równają się zatyni odpowiednio 
dwu wartościom spółrzędnej y, odpowiadającym tej samej wartości spół- 
rzędnej x.

Ogólnie, spółrzędne punktu krzywej płaskiej trzeciego rzędu bez 
punktu podwójnego dają się wyrazić zapomocą funkcji eliptycznych .je­
dnego parametru. Wiemy, w istocie, iż przy pomocy przekształcenia ho- 
mograficznego można nadać równaniu krzywej trzeciego rzędu postać 75), 
lecz przekształcenie to może być wykonane tylko wówczas, gdy znamy 
jeden z punktów przegięcia krzywej, których wyznaczenie zależy od ioz- 
wiązania pewnego równania dziewiątego stopnia, o szczególnej postaci. 
Wykażemy, iż można otrzymać równania parametryczne krzywej trzeciego 
rzędu, zawierające funkcje eliptyczne, bez rozwiązywania żadnego równa­
nia, bylebyśmy tylko znali spółrzędne jednego punktu krzywej.

(i) Wzór (39), wyrażający nu w postaci szeregu potęgowego, oraz wzory, 
które otrzymamy zeń przez różniczkowanie, umożliwiają, bodaj teoretycznie, "blieza- 
nie funkcji -u,’ =’//. n"u, a zatym i funkcji Ui i p u, dla wszystkich układów
wartości u, g?. gi ■
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Załóżmy z początku, że równanie krzywej trzeciego rzędu ma postać

(76) y 2 =  b0 x 3;-\- 3 \  x2 -f- 3 b2 x  -\$ib3,

co wymaga, by punkt wr nieskończoności był punktem przegięcia. Rów­
naniu temu możemy nadać postać poprzednią, zakładając:

4 , by , 4 ,
y  =  - y ,  x =  — - -  +  x ,

bo bo ^o

skąd powstaje równanie

/  2 =  4 x ' 3 — g2x' — g 3,

w k t ó r y m  niezmienniki g2 i £3 posiadają odpowiednio wartości;

g  2 =
12 (by2— b0b2) 

16 gt =
3 bn by b2 — 2by3 — b 2 b3

16

Dla spółrzędnych punktu krzywej trzeciego rzędu (76) otrzymujemy 
tedy wyrażenia:

by , 4
*  =  — T  + — /«. 

0̂ 0̂

Weźmy teraz jakąś dowolną krzywą trzeciego rzędu ć 3, i niech 
a. pi oznaczają spółrzędne pewnego jej punktu. Styczna do krzywej 

w tym punkcie (a, p) spotyka ją jeszcze w innym punkcie (a', p'), któ­
rego spółrzędne można otrzymać w postaci wymiernej. Jeżeli ten punkt 
(V, p') jest wzięty za początek układu spółrzędnych, to, oznaczając ogól­
nie przez <fi(x, y) wielomian jednorodny stopnia i (1 =  1, 2, 3), możemy 
napisać równanie krzywej sześciennej w sposób następujący

?3 (x, y) +  ?2C*, y) +  ?i (*, y > =  °-
Wprowadźmy sieczną y  =  tx\ odcięte dwu punktów przecięcia 

są wyznaczone przez równanie drugiego stopnia

x- ę=3 ( 1, t) -f- X'd2 (1, t) -j- 9i (1, t) =  0,

skąd, oznaczając przez R (t) wielomian

?32 (1, t) — 4 «pg (1, t) T! (1, t), 

w ogólności czwartego stopnia, otrzymujemy 

— ©, (1, t) +  V R (t)
2 c?3 (1, t)

Knrs analizy matematycznej.

y  =  t x.

11
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Pierwiastki wielomianu R(t) są to właśnie spółczynniki kątowe stycz­
nych do krzywej trzeciego rzędu, przechodzących przez początek układu. 
Jeden z tych pierwiastków znamy z góry, a mianowicie spólczynnik ką­
towy t„ prostej, łączącej początek układu z punktem (a, Jj). Zakładając

t , otrzymujemy

I R {f)  =  1 A’ iO :
t ' 2

/?! ( f  jest tu wielomianem trzeciego stopnia. Spółrzędne tjc, v) 
punktu bieżącego krzywej trzeciego rzędu Cs dają się tedy wyrazić 
w sposób wymierny w zależności od parametru t' i pierwiastka kwadra­
towego z wielomianu trzeciego stopnia Rft'). Widzieliśmy już, w jaki
sposób można wyrazić / i 1 zapomocą funkcji eliptycznych pe­
wnego parametru «; więc x  i y  otrzymać możemy również w postaci 
funkcji eliptycznych tegoż parametru u.

Zgodnie z użytym sposobem postępowania punktowi <.v, y) krzywej 
trzeciego rzędu odpowiadają: jedna tylko wartość zmiennej t i dokładnie 
określona wartość pierwiastka I R <t ), a przeto i dokładnie określone war­
tości zmiennej t i pierwiastka 1 Rx (t'). Owóż każdemu układowi war­
tości t' i 1 /?, ((') odpowiada, jak już zauważyliśmy, tylko jedna wartość 
parametru u w równoległoboku elementarnym. Wyrażenia x  — f  (u) 
• y  — f i  («), otrzymane dla spółrzędnych punktu bieżącego krzywej C„ 
są tedy takie, że wszystkie wartości parametru u. wyznaczające ten sam 
punkt tej krzywej trzeciego rzędu, dają się otrzymać zapomocą dodania 
do jednej z nich tego lub innego okresu.

To przedstawienie parametryczne krzywych płaskich trzeciego rzędu zapomocą 
funkcji eliptycznych jest nader ważne ('). Dla przykładu wykażemy, w jaki sposób 
pozwala ono wyznaczyć punkty przegięcia. Niech spółrzędne będą dane w postaci

x = / (“), y =  /,(«):

argumenty punktów przecięcia krzywej z prostą A x  -f- B y  -f- C  =  0 są to pier­
wiastki równania

Af(u)-\- B f, (u i 4- C =  0.

(') Clebsch , Ueber diejenigen Cun<en dereń Coordinaten sich ais elliptische Fun- 
ktionen eines Parameter darstellen lassen. ( , 0  krzywych, których spółrzędne dają się 
wyrazić w postaci funkcji eliptycznych jednego parametru"). (Journal de Crelle 
t. LXIV).
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Ponieważ punktowi (x, y) odpowiada tylko jedna wartość zmiennej u w równo- 
legloboku elementarnym, przeto funkcja eliptyczna

A f { a )  +  B f , (u )  +  C

winna być funkcją trzeciego rządu. Bieguny je j  są oczywiście niezależne od A, B, C 
jeżeli tedy uu u... u3 oznaczają trzy wartości, odpowiadające trzem punktom przecię­
cia się krzywej trzeciego rzędu z prostą, musimy mieć związek (art. 326)

u, u., -j- u3 =  K  -j- 2 m, u> -j- 2 m2 to',

w którym K  oznacza sumę wartości biegunowych w równoległoboku. Zastępując
IS

•w / i /, u przez _  +  możemy napisać ten- związek w postaci prostszej
3

u, -(- «2 +  u3 =  okresowi.

Nawzajem, ten warunek wystarcza do tego, by trzy punkty M, (u,), M2 (u2), 
M3 (u8) były położone na jednej prostej. W istocie, niech M's oznacza trzeci punkt, 
w którym prosta M, M2 spotyka krzywą trzeciego rzędu, a u'3 - odpowiedni argu­
ment. Ze względu na to, że suma «i +  «2 +  lh' równa się okresowi, u3 i u3 
mogą się różnić tylko o okres, i przeto M'3 nakrywa M3.

Jeżeli u odpowiada punktowi przegięcia, styczna w tym punkcie spotyka krzy­
wą w trzech punktach zbiegających się, i iloczyn 3 u winien się równać jednemu 
z okresów. Winniśmy tedy mieć:

2 m, oj -f- 2 rn2 w'

i wystarczy oczywiście nadać liczbom całkowitym m, i m., wartości 0, 1, 2,
aby otrzymać wszystkie punkty .przegięcia; a więc istnieje dziewięć punktów prze­
gięcia. Prosta, przechodząca przez dwa punkty przegięcia

2 m , w + 2  trig u/ 2 m,'(u- j- 2 w2'<u'
“ 3 ' 3~

przecina krzywą trzeciego rzędu w trzecim punkcie, którego argument

2 (m, -j- m,') o) -j- 2 (w2 m3 ) <u'
_  3

stanowi znowuż trzecią część /okresu, a więc w jeszcze jednym punkcie przegięcia. 
Liczba prostych, spotykających w ten sposób krzywą trzeciego rzędu w 3 punktach 

8 9
przegięcia, równa się - ^ , to jest dwunastu.

• Uwaga. — Punkty przecięcia krzywej normalnej trzeciego rzędu (75) z prostą 
y — m x  n dają się wyznaczyć zapomocą równania

p' u — m p u — n = 0

którego lewa strona posiada biegun potrójny u =  0. Suma wartości zmiennej u, 
odpowiadających punktom przecięcia, jest tedy równa jednemu z okresów. Jeżeli 
u, i u2 oznaczają argumenty dwu z tych punktów, to można uważać — u, — wa 
za argument trzeciego punktu przecięcia, i odcięte tych punktów będą wyznaczone 
w postaci Pu,, P U2, P (u, 4- «s).
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Motna wysnuć -ląd nowy dowud twierdzenia o dodawaniu, dotyczącego funk­
cji p u. Istotnie, odcięte punktów przecięcia są to pierwiastki równania:

otrzymujemy przeto
4 .<•> — ę. v — "j — (m x -f- łi)ł;

r, -f .v, — v, -  pu, +  />«, -p p (u, -f //,) =
4

Z drugiej
Jł| (ui)> (u»)t

strony, ponieważ prosta y — m x -  n 
mamy związki

przechodzą przez punkty

stąd wynika, że
p'u, — m p ii, -f- n,, p’n3 =  m p us 4- n:

ni — P'“i — />' uI
p H, — f  U,

otrzymujemy w len sposób związek, już wykryty tart. 332)

p u, —  p « ,  - f  p (u, +  « , )  = ' P B
/>' \* 
/> »l /

Wzory inwersyjnc ogólno. — Niech R (x) oznacza wielomian 
czwartego stopnia, pierwszy względem swej pochodnej. Zbadajmy krzy­
wą CĄ, daną przez równanie

(77) y 2 =  R (.x) — a0 X* -f- -I a, .v3 -j- fi a.2 x 2 4 -  4 a3 x  -}- a t ;

chcemy przytym wskazać, w jaki sposób można wyrazić spólrzędne .v i v 
jakiegoś punktu tej krzywej zapomocą funkcji eliptycznych parametru. 
Jeżeli znamy jeden pierwiastek a równania- R (x) =  0, to wiemy już, 
na zasadzie poprzedniego badania krzywych trzeciego rzędu, jak należy

1
postępować. Gdy założymy x =  a  4- , to związek 77) przybiera

.v'
postać

[/?,(*') — wielomian trzeciego stopnia).

Punkty danej krzywej Ct odpowiadają tedy punktom krzywej trze­
ciego rzędu C,' o równaniu y '■=  /?,(*'), i przekształcenie to jest okre­
ślone zapomocą wzorów:

1 y
x  — a -j~ , > y  =  3 7 -X X -

Owóż możemy wyrazić x' i y' 
metru u zapomocą wzorów o postaci:

w zależności od jednego para-

x' — ci fi u 4 - p, 5?<sII

przy odpowiednim wyborze spółczynników a i jj oraz niezmienników 
funkcji fiu.
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Otrzymujemy stąd dla X i y  wzory następujące:

(78» x — a ~\- 1
°.pu +  $ y =

a p' u
(a/ «+ p )»

z wzorów tych wynika, że du — — ' , tak iż parametr u jest tym
y

samym, z pominięciem znaku, co całka eliptyczna gatunku pierwszego
f*

j   ̂ ^__ i wzory (78) stanowią zupełne rozwiązanie zagadnienia odwraca­

nia funkcji.
Przejdźmy teraz do przypadku ogólnego, w którym nie znamy żad­

nego pierwiastka równania R {x) =  0. Wykażemy, że bez wprowadza­
nia żadnej niewymierności prócz pierwiastka kwadratowego, można wy­
razić wymiernie x i y zapomocą funkcji eliptycznej p  u o znanych 
niezmiennikach oraz j e j  pochodnej /'u.

Zastąpmy na chwilę x i y  odpowiednio przez t i v, tak iż zwią­
zek (77) przybierze postać

(77 bis) v2 =  R  (t) =  a0 R  -j-' 4a1 R  -f- Ca2t2-\- 4a s t a 4 .

Wielomianowi R (t można nieskończenie wielu sposobami nadać
l i  Q 7 ł f l ł t

R { t )  =  [<p2 ( t ) ] 2 - ' h ( t )  ( t ) ,

z umową, że ęą, ?2, oznaczają wielomiany stopnia, równego wskaźni­
kowi. Istotnie, niech (a, (3) oznaczają współrzędne dowolnego punktu 
krzywej C\. Weźmy taki wielomian <p.2 ((), iż cp2 (a) =  p, co można 
osiągnąć nieskończenie wielu sposobami; równanie

K (0 - [ ? .  =  o
posiada w takim razie pierwiastek t =  u. i można wziąć '?i (t) — I *•

Nadawszy wielomianowi /?(() wskazaną postać, rozpatrzmy krzywą 
pomocniczą trzeciego rzędu C3, daną przez równanie

je ż e l i  ją przetniemy sieczną y  =  t x, to odcięte dwu zmiennych punk­
tów przecięcia będą stanowiły pierwiastki lównania

x 2 <p3 ( t )  +  2 *(< )■ +  ? i ( 0  =  0
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będą przeto wyznaczone przez wzór:

„ _  — f  I (t] +  V
-V ------  - j

rS(0

w którym występuje wartość v, wyznaczona przez równanie (77 bis). 
Widzimy, że nawzajem t i v  dają się wyrazić w sposób wymier­
ny w zależności od spótrzędnych a-, y  punktu krzywej C.\ zapomocą 
wzorów

Otóż A' i y  potrafimy wyrazić zapomocą funkcji eliptycznych 
parametru a, ponieważ znamy jeden punkt krzywej sześciennej C3, 
a mianowicie początek układu. To samo się tedy stosuje do zmiennych 
n i v. Można oczywiście wielu sposobami urozmaicać to postępo­
wanie; wprowadzamy przytym jedno tylko wyrażenie niewymierne
[3 =  1 /?(*), zależne od liczby dowolnej i.

Wykonamy dokładnie odpowiednie obliczenie, zakładając, co może 
być zawsze uczynione, że usunęliśmy przedewszystkini spółczynnik a, 
przy t* w wielomianie R(t). Możemy wówczas napisać

R (t) — 12)2 -r- 6 a0 a21- - f  4
i założyć

? i ( 0  =  — I- »»<*) =  a o ? s ( 0  — *><*<, a 2 R-j~ ■ia0a s t - j - a 0 a i .

Krzywa pomocnicza trzeciego rzędu Cs otrzyma równanie:

(SI) r. a 0 a J x y 2 -f- 4 a 0 a ,  x * y  - j-  a0 a t x*  - f  2 a 0y -  — x  —  0.

Według metody ogólnej przetnijmy tę krzywą sieczną y  =  tx ;  
otrzymane równanie można napisać w postaci

( 1 ) — 2 a 0 t 2 1 — i6 a 0 a t t* -f- 4 a 0 a ,  t -f- a 0 a t) =  0,
' X I X

skąd wynika:
1 =  a 0 V- 4- I a„ R U ).
x

Nawzajem, możemy wyrazić t i I a(l R (t) w zależności od x  i y

a 0 R (0  =  y  — a„ ( | •(82)
x
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Z drugiej strony, rozwiązując równanie (81) względem y, otrzy­
muj emj’

y =  — 1 4 a0- a 32 x* — % (g0 a i x 2 — 1) (6 a0n2x + 2  a 0)
6 a 0a 2x 2 a0

Wielomian pod znakiem pierwiastka posiada pierwiastek x =  0 ; 
stosując wyłożoną przed chwilą metodę, będziemy tedy mogli wyrazić 
x  i y  zapomocą funkcji eliptycznych jednego parametru. Po dokona­
niu obliczeń dojdziemy do wzorów:

(83j x = W2 a0p u  — a-i

zawierających funkcję eliptyczną p  a, 
wypadnie wartości następujące:

(84) g  2
_  ao a i +  3 a-ż

a,r

a0 p'u — a 3
2 (c0 p u +  a 3) (2 a0p u — a2) ’ 

której niezmiennikom g2 i g 3 nadać

_  a0 a 2 a4 — a2:i — a0 a3- 
a0s

Zastępując we wzorach (82) x i y  przez te wyrażenia, otrzy­
mujemy

(85)

p'u — an
L , a 2 pu Ą -  2 

a 0

R (t) =  1 a0 a., 1 pn  —
2 P u -  - - - - - -

0
«0 4 p u -j- 

l ao

Wzory te można napisać w postaci nieco prostszej, ze względu na 
zgodność związków

(86)

wobec danych wartości niezmienników g 2 i g3. Z drugiej strony mo­
żna zastąpić

1 I p j i --------p v  | przez p  ( j i  _j_ _j_ p  n  _[_ p

4 \ p u — p v j

Łącząc ze sobą te wyniki i zastępując odpowiednio t  i 1 R  (f) przez 
x  i y, dochodzimy do sformułowania twierdzenia następującego:
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Spółrzędne (x, y) dowolnego punktu krzywej C4, określonej przez 
równanie (77) (w którym a, =  0), dają się wyrazie w zależności od p a ­
rametru zmiennego ii zapomocą wzorów

(87' * .v =  1  ̂U , V =  I a„ [ p u — p (u -j- ?') ],
2 p u — p v

prz\< założeniu, że g, i gs posiadają wartości dane przez wzory (84), 
a p'\ i p  v zostały wyznaczone przez równania zgodne (84 .

Z wzoru (45), uzasadnionego powyżej (art. 582), otrzymujemy zapo­
mocą różniczkowania obu stron

1 d ip ii— p'v\ , .
\= PU  / » (« + * ') .

2 du \ pil — p v j
to jest

dx
du

y
1

czyli d u — 1 a. d x

Parametr u równa się tedy calce eliptycznej pierwszego gatunku

1 Oq
' dx
> R (X) ’

i wzory (87) stanowią rozwiązanie zagadnienia odwracania funkcji.

540. Krzywe rodzaju pierwszego. — Krzywa plaska algiebraiczna
. .. In — 1) (n — 2) .

Cn rzędu n-go me może posiadać więcej niz - punktów po­

dwójnych, o ile nie rozkłada się na kilka osobnych krzywych. Jeżeli 
krzywa C„ jest nierozkladalna i posiada d punktów podwójnych, to różnicę

(n — 1) (n — 2) p — — d

nazywamy rodzajem  (genrei tej krzywej. Krzywe rodzaju zerowego są to 
krzywe jednobieżne, których spółrzędne dają się wyrażać w' postaci funk­
cji wymiernych jednego parametru. Krzywe najmniej złożone po tamtych 
są to krzywe rodzaju 1 (de genre un) czyli rodzaju pierwszego: krzy­
wa Cn rodzaju pierwszego posiada

(n — 1) (n — 2) _  _  n {n — 3)
2 2

punktów podwójnych.
Spółrzędne punktu krzywej rodzaju pierwszego mogą być wyrażone 

przez funkcje eliptyczne jednego parametru.
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Abj* dowieść tego twierdzenia, wprowadźmy krzywe dołączone (cour- 
bes adjointes) rzędu n — 2, to jest krzywe Cn- 2, przechodzące przez

n— ~̂  — punktów podwójnych krzywej Cn. Ponieważ do wyznaczenia

krzywej rzędu n — 2 potrzeba —-----punktów, przeto krzy­

we dołączone 2 zależą jeszcze od

(« — 2) (,n - f  1) — n (n — 3) =  n _  l .
2

parametrów dowolnych. Jeżeli poddamy te krzywe temu warunkowi, by 
przechodziły jeszcze przez n — 3 punkty zwyczajne, obrane dowolnie 
na Cn, to otrzymamy sieć krzywych dołączonych, przechodzących przez

>l~ l—■— punktów podwójnych i n — 3 punkty zwyczajne krzywej Cn.

Niech F  (x, y) =  0 stanowi równanie krzywej C„, a równanie

A (x, y) +  >• /, (x, y) +  U {x,  y )  =  0,

w którym /. i u oznaczają dwa parametry dowolne, niech będzie rów­
naniem wzmiankowanej sieci krzywych C„-i- Każda krzywa tej sieci 
spotyka Cn tylko w trzech punktach zmiennych, gdyż każdy punkt po­
dwójne winien być liczony jako dwa punkty wspólne, a mamy związek:

n (n — 3) -f- n — 3 =  n (n — 2) — 3.

Załóżmy obecnie:

( 88)
A  (x, y )
f i (x , y ) '

, _  / « y ) . 

f i  ( x ,  y ) '

gdy punkt (x, y) przebiega krzywą C n , punkt {x\ / ) zakreśla krzywą 
algiebraiczną C , której równanie otrzymalibyśmy zapomocą rugowania 
zmiennych x  i y  z równań (88) i równania F (x, y) =  0. Krzywe 
C '  i C n odpowiadają sobie wzajemnie tak, iż pokrewieństwo punktowe 
pomiędzy niemi jest pokrewieństwem dwuwymiernym (transformation 
birationelle), gdyż nawzajem spółrzędne (x, y) punktu krzywej Cn wyra­
żają się w sposób wymierny w zależności od spółrzędnych (x\ / ) punktu 
odpowiedniego krzywej C ' . Ażeby dowieść tego, wystarczy okazać, że 
punktowi (x , / ) krzywej C '  może odpowiadać tylko jeden punkt krzy­
wej Cn, lub że równania (88), przyłączone do równania F  (x, y) =  0, 
posiadają, jako równania względem x i y, tylko jeden układ rozwiązań, 
zmieniających się wraz z x’ i y ’.
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Istotnie, przypuśćmy, że punktowi krzywej C  odpowiadają dwa 
punkty (a, b )  i { a ' ,  b ' )  krzywej Cn, nie należące do punktów węzło­
wych (points de hase) sieci krzywych C„_2. Otrzymaliśmy:

f i  ( a \  b ' )  _  f j  (a\ b ' )  _ / ,  ( a \  b ' )

A  (< * i f >) A  (a > b )  / , (<7, 6)

i wszystkie krzywe sieci, przechodzące przez punkt (*a. /?), przechodziłby 
również przez punkt (a\ b’). Krzywe, należące do sieci i przechodzące 
przez te dwa punkty, zależałyby jeszcze linjowo od jednego parametru 
zmiennego i spotykałyby krzywą C„ w jednym punkcie zmiennym. śSpół- 
rzędne Jego właśnie punktu przecięcia z C„ byłyby tedy funkcjami wy- 
miernemi pewnego parametru zmiennego, i krzywa C„ byłaby jednobież-

na: jest lo zaś niemożliwe, gdyż posiada ona tylko " ln o punktów

podwójnych.

Każdemu punktowi (.v', y') krzywej C  odpowiada zatym tylko jeden 
punkt (a*, y) krzywej Cn, i spółrzędne tego punktu, według teorji elimi­
nacji. są funkcjami wymiernemi zmiennych ,v', v'

($•) JC =  ?i (*', / ), y  — (a-', /).

Ażeby wyznaczyć rząd krzywej C , poszukajmy liczby punktów 
wspólnych tej krzywej i prostej dowolnej

a  A-'-j— by' -j- c — 0.

Sprowadza się to do wyznaczenia punktów przecięcia się krzywej 
Cn z krzywą

a A  (-V, ,v) - f  b A  (-v, y) -1- c A (*, y) — o,

ponieważ każdemu punktowi krzywej C  odpowiada tylko jeden punkt 
krzywej C„ i nawzajem. Owóż istnieją tylko trzy punkty przecięcia, 
zmieniające się wraz z a, b ,  c. C '  jest tedy krzywą trzeciego rzędu. 
Zatym spółrzędne punktu krzywej Cn dają się wyrazić wymiernie w za­
leżności od spółrzędnych krzywej płaskiej trzeciego rzędu, a ponieważ 
spółrzędne takiej krzywej stanowią funkcje eliptyczne pewnego parametru, 
to samo się stosuje do spółrzędnych punktu krzywej C „ .

Z podanego dowodu i z tego, cośmy powyżej stwierdzili co da 
krzywych trzeciego rzędu wynika, że można ustalić to uzależnienie 
w ten sposób, iżby każdemu punktowi krzywej C „  odpowiadała tyl­
ko jedna wartość parametru u w każdym równoległoboku elemen­
tarnym.
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Niech jc i y  będą dane przez wzory

x  =  'L (u), y  =  (a);
wszelka całka abelowa

w  = f  R ( x ,  y )  d x ,

związana z krzywą C„ (t. I, art. 10Bi, przechodzi przy tej zamianie zmien­
nej w całkę funkcji eliptjcznej; taka całka w wyraża się tedy również 
zapomocą funkcji eliptycznych p ,  C, a. Wprowadzenie tych funkcji 
przestępnych do Analiz}’ podwoiło potęgę rachunku całkowego.

PRZYKŁAD. — Krzywe czwartego rzędu dwukołowe (Quartiques bicirculai- 
res). — Krzywa czwartego rzędu o dwu punktach podwójnych jest krzywą rodzaju 
pierwszego. Gdy punktami podwójnemi krzywej C, są punkty kołowe w nieskończo­
ności, jest to krzywa czwartego rzędu dwukołowa (quartique bicirculaire).

Gdy bierzemy za początek układu jakiś punkt tej krzywej, to za krzywe dołą­
czone Cn— 2 mogą nam służyć okręgi, przechodzące przez początek układu

x 2 -f- y 2 -j- /. x  -j- \i.y =  0:

ażeby otrzymać krzywą sześcienną, odpowiadającą punkt za punktem krzywej czwar­
tego rzędu C4, wystarczy według metody ogólnej założyć:

Nawzajem
x-+y-

y
x2+ y 2'

x  —
x'2+ y ' 2’

i wzory te określają inwersję (przekształcenie przez promienie odwrotne) wsgłędem 
koła o promieniu =  jedn ości, posiadającego środek w początku układu. Ażeby otrzy­
mać równanie krzywej trzeciego rzędu C3', wystarczy zastąpić w równaniu krzywej 
Ct x  i y  przez wyrażenia, dane powyżej. Przypuśćmy np., że krzywa czwartego 
rzędu Ct posiada równanie

(x 2 -f- y 2)'1 — a y  — 0;

równaniem krzywej sześciennej C3' będzie:

a y ' ( y " J + x ' 2) -  1 =  0.

Uwaga. — Jeżeli jakaś krzywa płaska Cn posiada punkty osobliwe o charak­
terze bardziej złożonym, !o jest ona krzywą rodzaju pierwszego, o ile te wszystkie

punkty osobliwe są równoważne —— zwykłym punktom podwójnym. Naprzy-

kład krzywa czwartego rzędu, posiadająca jeden tylko punkt podwójny, w którym 
obie jej gałęzie są styczne do siebie, bez innych zresztą własności osobliwych, jest 
rodzaju pierwszego; ażeby to stwierdzić, wystarczy przeciąć tę krzywą siecią 
stożkowych, stycznych do obu gałęzi w punkcie podwójnym i przechodzących 
przez pewien inny punkt danej krzywej. Jeżeli •/?(■*’) oznacza wielomian czwartego
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stopnia, pierwszy względem swej pochodnej, to krzywa y- R(x) posiada w nie­
skończoności właściwość tego właśnie rodzaju Zastępujemy ją  przez krzywą sze 
ścienną zapomocą przekszialeonia dwuwymiernego, danego przez wzory

.r =  x\ v — y' ‘ I u,, V*,

co pozwala z łatwością odnaleźć ponownie wzory inwersyjne (ś.).

Ć W I C Z E N I A .

1. Dowieść, że funkcja dwuokresowa całkowita jest to liczba stała przy pomo­
cy rozwinięcia w szereg:

+ a  2 ni TJ

Am * "  -
— X

| Warunek / ( z  ~<u) =  / ( z )  wymaga, iibyśm y mieli An 0, gdy n ł 1 0 ]. 

2 .leżeli i  nie jest wielokrotnością liczby r, to

I I  J '**•
| Zmieniamy we wzorze, .tającym rozwinięcie w szereg funkcji rot z, z na 

z Ar a. a następnie całkujemy pomiędzy granicami 0 i .‘ 1

3. Wysnuć z wzoru poprzedniego wzory, zawierające nowe iloczy ny* nieskoń­
czone:

? " ' z .  2_* I Y r i 4 -  \en
cos a \ 2fl +  r l  I  I  [ /  ' 2 a — VI n — 11 ~ J

sin a — sin z
sin * \~ i=(1—-)(■ ; ' n  <' - . -j„-i Ł rJ .-t

. I n  i  I I ' - : , :
cos z — 

1

Przekształcić te iloczyny w iloczyny, nie zawierające już czynników wykład­
niczych, takie, ja k  np.:



ć w ic z e n ia .

4. Udowodnić wzory: 

tang z =  'lz 1 1 1
.. '' 9*»■ - " ’ ' • +  (2>i -i-1)'^  _  +  • ‘ ' 

4
T -z -  ^ ~ -z

1 __ 1
sin z z  L- — z ■— 4 ~ -  Z -  —  n - r j  J

Uzasadnić podobne wzory dla _____ _______; _____J;______
sin z — sin a ’ cos z — cos a

22 1

5. Uzasadnić wzór 

sinin 1 _  £2 o, z-(z- — 1) _  z- (z2 — 1) (z1—  4) ,
- Z  1 (1 . 2)2 ( 1 . 2 .  H

( -  1) 1  z- (z- — 1) . . . (z- — n-) 

[1 . 2 . . .  (« +  1)]“

6. Rozłożyć na elementy proste funkcje - i—, -JL _.p’ ii p'1 li­

to
7. Gdy g., =  0, a a oznacza jeden z pierwiastków, sześciennych z jedności, 

P (* u\ 0, gi) = *p (a; 0, g3), p’ (o. u; 0, gj,) =  p' (u; 0, g8).

Oprzeć na tym rozkład na elementy proste funkcji ------------- , gdy g2=  0.p'u — p' v

8. Są dane całki

/' a £ + 6 . r a x- + b ,
J  IX—1)1 x 8—1 X’ J  i 1 -} ,v‘ ‘ X’ 

f  *! =  f  ----- j.
/  V  . , r ' -  t J  1 ( i  —  - t1)  ( 1 — fts * s)

wyrazić zmienną v i którąkolwiek z tych całek zapomocą funkcji przestępnych
A C, «•

!). Uzasadnić wzór rozkładowy Hermite’a (art. 331) zapomocą przyrównania do 
zera sumy pozostałości funkcji

F(z) [ C ( x t(x0 — z)]
w jednym równoległoboku elementarnym, przy założeniu, że F(.r) jest to funkcja 
eliptyczna, a r  i .r0 są tiważane za stałe.

10. Wywnioskować z wzoru (60) związek
(■ )"' (0)

r' — “ 12 (o O’ (0)
[ Zauważmy", że szereg cu  nie posiada wyrazu, zawierającego u3 1 ■
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U*. W \razie w postaci funkcji eliptycznych jednego parametru spólrzędne 
,v i y którejś i krzywych następujących:

y*—  A  [  (  v  —  a) (.v  b) (,v  —  c ) \\ y  =  A  1 (JC -  a )  (X  -  b) W

v* =  A (X  u ) ł  ( . r  />)’  ( x  —  c)\ y  =  A ( r  —  a ) ’  (nr —  b)'.

—  A  (x  —  a ) '  (.v  —  by,

y* —  A  ( . r  a )* ( x  —  by  ( . r  —  c)*, y  =  .4 ( . r  —  a ) ’  ( x  —  b)\

/  =  A {x  -  ay (  v  -  by, y  =  A ( x  —  a ) ‘ ( x  —  by,
y* .r 5 -f -m  x  - f  « )  y* +  A 1 (.v  —  a )  f.r —  b) (,v  —  c ) ) ’  =  0,

,  3* A ' v5
w* ,1 x  y  Hr x »  ( f l . t  r  4< 4 R)  =  0. y  +  -4 * y  +  JC* ( B * ' +  V  ? & ) ' =  « ,

y ‘ +  .-1 r  y  - ( Bxt +  4 ,  | =  0 ,
/ 4‘  A > Syi +  -4 f  y  - f  x* ( B x  —  51 i  H ) =  0,

/ 4ł A*\-
y> \ A x y < + ( B x > -  p  4 /?) - 0 .

p  dx
Parametr zmienny ma się równać, z pominięciem -nalej, calec /  ■- .

[ HRtoT et BouyiKT, Thćoric des fonctions doublcment prriodięues (Teorja funk­
c ji dwuokresowych), wyd. 2-gie, sir. t!i8— 4121 ■



R O Z D Z IA Ł  X V I .

Przedłużanie analityczne.

I. —  O kreślanie fukcji analitycznej przy pom ocy jednego

z jej elem entów.

341. Pierwsze pojęcie o przedłużaniu analitycznym. — Niech f ( z ) 
oznacza funkcję całokształtną w obszarze spójnym A  płaszczyzny, ograni­
czonym przez jedną albo kilka krzywych, zamkniętych lub niezamknię- 
tych: słowa „krzywe" używamy przy tym zawsze w jego zwykłym zna­
czeniu elementarnym, jak to czyniliśmy dotychczas.

Jeżeli znamy wartość funkcji f  (z) i wszystkich jej kolejnych po­
chodnych w jakimś określonym punkcie a obszaru A , to potrafimy otrzy­
mać stąd wartość tej funkcji w jakimkolwiek innym punkcie b tegoż 
obszaru. Aby tego dowieść, połączmy punkty a  i b linją L, za­
wartą całkowicie w obszarze A  np. linją łamaną lub też krzywą o dowol­
nej postaci. Niech o oznacza granicę niższą odległości dowolnego punktu 
drogi L  od jakiegokolwiek punktu obwodu obszaru A , tak iżby koło 
o promieniu 5, mające za środek jakikolwiek punkt linji L, było położone 
całkowicie w tym obszarze. Jak założyliśmy, znamy wartość f  (a) funk­
cji oraz wartości jej kolejnych pochodnych,

/' (a), f"  (a ) ----  dla z — a.

Możemy tedy napisać szereg potęgowy, wyrażający funkcję f(z )  
w otoczeniu punktu a:

( l j  f { z )  ~  f  (a)  +  Z— ^— f  (a) +  • • • +  ^  / (,,) («) +  ••• •
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'•Promień koła zbieżności tego szeregu równa się co najmniej i. lecz 
może być większym. Jeżeli punkt b  jest położony w kole zbieżności C0 
szeregu ( 1), to wystarczy zastąpić w nim z przez b . aby otrzymać f ( b ) .

Przypuśćmy, iż punkt b  leży poza C'0, i niech a, oznacza punkt, 
w którym .droga L wychodzi z tego koła ( ! (rys. 75). \a drodze tej,

Rys. 75.

wewnątrz koła C0, weźmy punkt Z,, blizki punktu a, i taki. iżby odleg- 

łość między tenii punktami z , i a, była mniejsza od . Szereg (1)

i szeregi, które się dadzą zeń otrzymać przez kolejne różniczkowanie, wy­
znaczają wartości funkcji f i  z) i wszystkich jej pochodnych dla z =  z ,:

/(*,!. /'<-1) ..........  /<", (21).

Spółczynniki szeregu, wyrażającego funkcję f\z) w otoczeniu punk­
tu z., mogą być tedy wyznaczone, gdy znamy spółczynniki szeregu (1), 
i w sąsiedztwie punktu z,:

(2) /(z) —/(z,) +  r “ ** f ( z t) 4 - . . ^  /(">(*,) +  . .  . .

Promień koła zbieżności C, tego szeregu jest równy co najmniej o; 
punkt a, należy zatym do punktów wewnętrznych tego koła. skąd wyni­
ka, że musi ono być położonym częściowo poza pierwszym kołem C0. 
Jeżeli punkt b  leż}7 w tym nowym kole C., to wystarczy, w celu otrzy­
mania wartości f  b  l, uczynić w szeregu (2) z równym b .  Przy-

(*) Ponieważ wartość funkcji f(:\ w punkcie b nie zależy od drotri L o ile 
ta droga nie wychodzi poza obszar A . przeto można założyć. ;ak to 7 -tai. wyobra­
żone na rysunku, iż ta droga przecina tylko w jednym punkcie okrąg kola C... a co 
najwyżej w dwu punktach okręgi następne C j, C j , . . . .  Sprowadza się to, jeżeli 
kio chce, do obrania za -z, o s t a t n ie g o  punktu przecięcia się drogi L  z , i podob­
nież dla innych kol.
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puśćmy, że punkt b leży również nazewnątrz koła Cj, i niech ot2 oznacza 
punkt, w którym droga zx b wykracza poza to koło. Weźmy na linji 
L punkt z2, położony wewnątrz koła Cj i taki, że odległość pomiędzy

nim a punktem a2 jest mniejsza od 8
2

Szereg (2) i szeregi, które otrzy­

mujemy zeń przez kolejne różniczkowanie, wyznaczają wartości

/(**). /'(*«). f " ( z  *).•••»

funkcji f  (z) i je j pochodnych w punkcie za. Można tedy utworzyć 
nowy szereg

(B) /(z) =  /(z2) +  ^  /' (**) +  . . .  +  /W (*a) +  • • ■ ,
1 1. 2 . . .n

który będzie wyrażał funkcję /(z) w nowym kole C2 o promieniu 
większym od o lub równym o. Jeżeli punkt b jest położony w tym kole, 
to wj'starczy zastąpić w powyższej równości (B) z przez b\ jeżeli nie, 
to musimy ciągnąć dalej to samo postępowanie. Po liczbie skończonej 
działań dojdziemj' wreszcie do tego, że otrzjunamy koło, zawierające 
punkt b, jako punkt wewnętrzny; na naszym rysunku punkt b leży we­
wnątrz koła C%. W istocie, można zawsze dobrać punkty zx, , z,
w ten sposób, iżby odległość pomiędzy dwu następującemi po sobie punk­

tami była mniejsza od •; z drugiej strony, niech oznacza długość

drogi L. Długość linji łamanej a zx z2 . . . zp_i zp b jest zawsze mniej­
sza niż 5 ; przeto

P ~  +  I ?p  ̂ I <  S-

Weźmy taką liczbę całkowitą p , iżby była spełniona nierówność

(f+i)ip-
Nierówność poprzednia wskazuje, że co najwyżej po p działaniach otrzy­
mamy punkt zp drogi L, którego odległość od punktu b będzie mniejsza od 8, 
punkt b okaże się wówczas położonym wewnątrz koła zbieżności Cp sze­
regu potęgowego, wj-rażającego funkcję f  (z) w otoczeniu punktu zp , 
i wystarczy zastąpić w tym szeregu z przez b, ażeby otrzymać f  (b). 
W ten sam sposób zdołamy obliczyć wszystkie pochodne f  (b), f"  (b),...

Rozumowanie powyższe wskazuje możliwość, przynajmniej teoretyczną, 
obliczenia wartości funkcji, całokształtnej w pewnym obszarze A, oraz

15
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wszystkich jej pochodnych, w dowolnym punkcie tego obszaru, bylebyśmy 
tylko znali ciąg wartości

(4) /(a), /<">(«)..........

funkcji i jej kolejnych pochodnych w jednym określonym punkcie o tego 
obszaru. Stąd wynika, że wszelka funkcja, całoksztaitna w obszarze A, 
jest najzupełniej określona w tym całym obszarze, jeżeli jest znana 
w obszarze tak małym, jak tylko zechcemy, otaczającym jakikolwiek 
punkt a, należący do obszaru A, a nawet, jeżeli znamy jej wartości 
wzdłuż luku jakiejś krzywej, tak małego, jak tylko zechcemy, kończącego 
się w punkcie a. Istotnie, jeżeli są dane wartości, przybierane przez 
f  (z) wzdłuż pewnego łuku, wówczas to samo się stosuje do pochod­
nej /' IZ), gdyż wartość /' (z,) w dowolnym punkcie tego łuku ró­

wnia się granicy, do której dąży stosunek — -----fS tU , gdy punkt z,
z2 — z,

zbliża się wzdłuż rozważanego łuku do punktu zŁ; znając pochodną f'(z), 
wyznaczymy w7 ten sam sposób f"  (z), potem /"' (z), . . . .  Wszystkie 
kolejne pochodne funkcji /(z) mogą ,być tedy wyznaczone dla z — a. 
Powiemy dla krótkości, że znając wartości liczbowe wszystkich wyrazów 
ciągu (4), mamy element funkcji /(z) ( l). Wynik otrzymany może tedy 
być wysłowionym w sposób następujący: Funkcja, całoksztaitna w obsza­
rze A, je s t  najzupełniej określona, jeżeli znamy ja k iś  jeden z je j  ele­
mentów. Można jeszcze stwierdzić, że dwie funkcje, całokształtne w tym 
samym obszarze, nie mogą mieć elementu wspólnego, o ile nie są iden­
tyczne.

Założyliśmy, w celu ustalenia biegu myśli, iż chodzi o funkcję ca- 
łokształtną /(z); lecz to samo rozumowanie może być zastosowane do 
dowolnej funkcji analitycznej, byleby droga L, po której punkt, odpowia­
dają^ zmiennej, porusza się od a do b, nie przechodziła przez żaden 
punkt osobliwy funkcji. Wystarczy w tym celu, jakeśmy to już czynili 
byli w7 art. 289, podzielić tę drogę na takie łuki, iżby każdy z nich mógł 
być otoczony przez obwód zamknięty, wewnątrz którego badana gałąź 
funkcji /(z) b}7łaby holomorficzna. Znajomość elementu początkowego 
i drogi, zakreślanej przez zmienną, wystarcza, przynajmniej teoretycznie, (*)

(*) Por. E. Pascal „Repcrtorjum matematyki wyższej" (wyd z 1900) t. I. 
str. 201, J. Puzyna „Teorja funkcji analitycznych" (wyd. z r. 1898) t. I, str. 506. 
Elementem funkcji nazwano w drugim dziele szereg potęgowy i t. d., jak powyżej 
szereg (1).
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do wyznaczenia elementu końcowego, to jest wartości liczbowych wszyst­
kich wyrazów ciągu analogicznego

(5) f(b ) ,  /<»>(*),....

342. Nowe określenie funkcji analitycznych. — Funkcje anali­
tyczne, któreśmy badali dotychczas, były określone przez wyrażenia, po­
zwalające na obliczanie wartości tych funkcji przy wszelkiej wartości 
zmiennej, należącej do obszaru, w którym dana funkcja była badana. 
Pojmujemy- obecnie, zgodnie z powyższemi wyjaśnieniami, iż można okre­
ślić funkcję analityczną dla dowolnej wartości zmiennej, skoro tylko zna­
my jeden element tej funkcji. Ażeby jednak wyłożyć naszą teorję przy 
zastosowaniu tego nowego punktu widzenia, w sposób bardziej zupełny, 
musimy dorzucić do określenia funkcji analitycznych według Cauchy’ego 
nową umowę, której jasne sformułowanie wydaje nam się tu poży­
tecznym. ,

Weźmy dwie funkcje f x (z) i f 2 (z), całokształtne w dwu od­
powiednich obszarach Ax i A2, posiadających jedną i tylko jedną 
część wspólną A  (rys. 76).

Rys. 76.

Jeżeli w części wspólnej A

U (z) = / i {z),

co musi nastąpić, jeżeli te dwie funkcje posiadają bodaj jeden element 
wspólny w tym obszarze, to będziemy uważali f x (z) i / 2 (z) za two­
rzące jedną funkcję całokształtną F(z), określoną w obszarze Ax -j- A2 
przez równości:

F ( z ) = f l (z) w obszarze Ax i F ( z ) = f 2{z) w A2.

Powiemy również, że f 2 (z) jest przedłużeniem czyli dalszym cią­
giem analitycznym (prolongement analytiąue) w obszarze A2 — A  funkcji 
całokształtnej f x (z), która była określona według założenia, tylko w obsza­
rze Ax. Rzecz jasna, że przedłużenie analityczne funkcji f x (z) w części
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obszaru A7, położonej zewnątrz .4^ da się uskutecznić tylko w jeden 
sposób (l).

Weźmy teraz ciąg nieskończony liczb rzeczywistych lub zespo­
lonych

(6) floi f l i  i d jl ' 1 .* ' ^« i • • • )

poddanych temu tylko warunkowi, że szereg

(7) <*•+<*,«+ +  . . .  +  a„zn +  . . . ,

ma być zbieżny przy jakiejś wartości zmiennej • z, różnej od zera. (Bie­
rzemy za wartość początkową zmiennej z — 0) co nie zmniejsza ogól­
ności).

Zgodnie z tym założeniem szereg (7) posiada koło zbieżności C0 
o promieniu R, nie równym zeru. Jeżeli R jest nieskończone, szereg ten 
jest zbieżny dla wszelkiej wartości zmiennej z i stanowi funkcję całkowitą 
zmiennej niezależnej. Gdy promień R  ma wartość skończoną, różną od 
zera, suma szeregu (7) jest funkcją całokształtną wewnątrz koła C0. 
Ponieważ atoli znamy tylko ciąg spółczynników (6), nie wiemy nic z góry

(') Ażeby dowieść, że powyższa umowa jest odmienna od określenia funkcji 
analitycznych, wystarczy zauważyć, że pociąga ona za sobą bezpośrednio wynik na­
stępujący: jeżeli jakaś funkcja f  (z) jest calokształtna w obszarze A, wszelka inna 
funkcja (z), przybierająca te same wartości, co f fz )  w pewnej części obszaru A, 
równa się totsamościowo funkcji f fz )  w całym obszarze A. Owóż, weźmy funkcję 
Ffz),  określoną dla wszystkich wartości zmiennej zespolonej z w sposób na 
stępujący:

Ffz)  — sin z; jeżeli z 4= ^ ; fr ( ~ ) = 0 .

Aczkolwiek ta umowa wydaje się nader dziwaczną, niema w niej nic sprzecz­
nego z określeniem dawniejszym funkcji analitycznych. Funkcja F(r), określona 
w ten sposób, byłaby calokształtna dla wszelkiej wartości zmiennej z prócz wartoś­

ci z =s — , któraby była punktem osobliwym szczególnego rodzaju. Lecz włas­

ności tej funkcji Ffz)  byłyby niezgodne z umową, którą przyjęliśmy, gdyż iunkcje 
Ffz)  i sin z byłyby, identyczne dla wszystkich wartości zmiennej z, prócz war­

tości z =  ~ ,  dającej punkt osobliwy jednej tylko z nich.

Weierstrass w Niemczech, a Meray we Francji rozwinęli teorję funkcji anali­
tycznych, opartą wyłącznie na własnościach szeregów potęgowych; ich badania są 
zresztą zupełnie niezależne. Teorja Meray’a została wyłożona w jego wielkim dzieie 
, Leęons nouoelles sur iAnaiise infinitisimale“ (.Nowe wykłady z dziedziny Analizy 
nieskończonościowej"). Wykażemy w tekście, w jaki sposób można określać stopnio 
wo funkcję analityczną, gdy mamy dany jeden z jej elementów; będziemy przytym 
zawsze uważali za znane twierdzenie Cauchy’ego o funkcjach holomorficznych.



o istocie tej funkcji zewnątrz koła Cj. Nie wiemy, czy można dołączyć 
do koła C 0 obszar, któryby tworzył z tym kołem takie pole spójne A ,  

iżby istniała funkcja, całokształtna w A  a równa tożsamościowo / (z ) we­
wnątrz C 0 . Metoda z poprzedniego artykułu pozwala rozpoznać, czy tak 
jest istotnie. Weźmy w kole C0 punkt a, różny od początku układu; 
zapomocą szeregu (7) i szeregów, które powstają z różniczkowania tegoż 
wyraz po wyrazie, możemy otrzymać element funkcji /(z), odpowiadający 
punktowi a, i przeto utworzyć szereg potęgowy

(8) /  (a) +  - 7 - -  f  W  +  ..-• +  / (n) (a) +  • • • ,

wyrażający funkcję f ( z )  w otoczeniu punktu a . Szereg ów jest napew- 
no zbieżny w kole o środku a  i promieniu R —  | a  | (art. 266), lecz 
może być również zbieżnym w większym kole, którego promień nie może 
zresztą przewyższyć R  -j- | a  | ; gdyby bowiem był zbieżny w kole
0 promieniu /? —(— | a  | —(— o, to wynikałoby stąd, wbrew założeniu, jako­
by szereg ( 1 )  był zbieżny w kole o promieniu R  -j- 8, zakreślonym do­
koła początku układu.

Przypuśćmy przedewszystkim, iż promień zbieżności szeregu (8) 
równa się zawsze R  —  | a  | , niezależnie od tego, jaki punkt a  bierze­
my wewnątrz koła C0. Wówczas niema żadnego sposobu przedłużenia 
analitycznego funkcji f ( z )  nazewnątrz koła, przynajmniej o ile używa­
my tylko szeregów potęgowych. Możemy twierdzić, iż nie istnieje żadna 
funkcja całokształtna F  {z ) , określona w obszarze płaszczyzny A ,  więk­
szym niż koło C 0, i równa tożsamościowo funkcji / (z ) w tym kole, po­
nieważ metoda przedłużania analitycznego pozwoliłaby, jak stwierdziliśmy, 
na wyznaczenie wartości tej funkcji w punkcie, położonym zewnątrz ko­
ła C 0 . Mówimy w takim razie, że część płaszczyzny, położona poza ko­
łem C g, stanowi dla funkcji f  (Z) p r z e s t r z e ń  p r ó ż n ą  (espace lacunaire). 
Odpowiednie przykłady spotkamy nieco dalej.

Przypuśćmy następnie, że przy odpowiednim obiorze punktu a  

w kole Cg koło zbieżności Cj szeregu (8) posiada promień większy niż 
R  —  | a  | . To koło Cj posiada część, leżącą zewnątrz C0 (rys. 77),
1 suma szeregu (8) jest w kole Cj funkcją całokształtną f x {ż ) . Wewnątrz 
koła y 0 środku a , stycznego wewnętrznie do koła C0, /j (z) =/(.?) 
(art. 266); równość ta jest tedy spełniona dla całego obszaru, wspólnego 
obu kołom C„ i Cj. Szereg (8) daje nam dalszy ciąg analityczny 
tunkcji f ( z ) w części koła Cj, położonej poza kołem C0.

Niech a '  oznacza inny punkt, wzięty w tym właśnie obszarze; 
postępując w ten sam sposób, utworzymy nowy szereg, uporządkowany
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według potęg różnicy z  — a', a zbieżny w pewnym kole C,. Jeżeli to 
koło nie leży całkowicie wewnątrz Clt nowy szereg posłuży do przedłu­
żenia funkcji / ( z ) ,  tak iż zostanie określona w obszarze jeszcze rozle- 
glejszym — i podobnież w dalszym ciągu. Widzimy tedy, iż można w ten 
sposób rozszerzać kolejno obszar istnienia funkcji / ( z ) ,  określonej po­
czątkowo jedynie wewnątrz koła C0.

Rys. 77.

Rzecz jasna, iż można wykonać opisane działania nieskończenie 
wielu sposobami. Ażeby zdać sobie z tego sprawę, musimy określić ści­
śle drogę, przebieganą przez zmienną. Przypuśmy, że można otrzymać 
w sposób, wyjaśniony przed chwilą, dalszy ciąg analityczny funkcji, 
określonej przez szereg (7) wzdłuż drogi L. Każdy punkt x  drogi L jest 
środkiem koła o promieniu r, wewnątrz którego funkcja daje się wyrazić 
zapomocą szeregu zbieżnego, uporządkowanego według potęg różnicy 
z — x. Promień r tego koła zmienia się w sposób ciągły wraz z x.

Istotnie, niech x  i x! oznaczają dwa punkt}' poblizkie drogi L , 
a r i f  — odpowiednie promienie zbieżności; jeżeli punkt X1 leży dość 
blizkb punktu x, aby był spełniony warunek

| X' —  X | <  r,

to promień r' zawiera się pomiędzy

r — | x ‘ — x |  a r -(- \ x' — x | ,

jak zauważyliśmy przed chwilą. Różnica r’ — r dąży tedy do zera wraz 

z x ’ — x  . Weźmy teraz okrąg C0’ o promieniu — , zatoczony dokoła po­

czątku układu, jako środka; jeżeli a oznacza jakikolwiek punkt tego okręgu,



to promień zbieżności szeregu (8) równa się co najmniej — , ale może

być większym. Ponieważ ten promień zmienia się w sposób ciągły 
wraz z położeniem punktu a, osiąga tedy w pewnym punkcie okręgu C0'
minimum — -j-  r. Nie można przytym otrzymać wartości r >  0.

Istotnie, gdyby r było dodatnie, to istniałaby funkcja F(z), ca- 
łokształtna w kole o promieniu R  -j- r, mającym za środek początek 
układu, i identyczna wewnątrz kola C0 z funkcją f  (z). Przy wartości 
zmiennej z o module, zawartym pomiędzy R a R -)- r, funkcja F (z) 
byłaby równa sumie któregokolwiek z szeregów (8), przy założeniu, że a 
oznacza taki punkt okręgu C0', że

i i R ,z — a  < ----- k r .
2

Według twierdzenia Cauchy’ego funkcja F{z) byłaby równa sumie 
szeregu potęgowego, zbieżnego w kole o promieniu R -j- r, i szereg 
ten musiałby być tożsamościowo równym szeregowi (7), co jest nie­
możliwe.

Istnieje zatym na okręgu C0' przynajmniej jeden taki punkt a,
Ą

iż koło zbieżności szeregu (8) ma za promień — , i koło to jest styczne

do koła C0 w punkcie a, w którym promień O a  przecina okrąg koła Cn. 
Punkt a jest to punkt osobliwy (singulier) funkcji /(z) na okręgu ko­
ła C0. W żadnym kole c, dla którego punkt a jest środkiem, jakkolwiek 
małym byłby jego promień, nie może istnieć żadna funkcja całokształtna, 
równa tożsamościowo funkcji / (z) w części wspólnej obu kołom C0 i c. 
Rzecz jasna również, że koło zbieżności szeregu (8), które ma za środek 
punkt dowolny promienia On, musi być styczne wewnętrznie w punkcie 
a do okręgu koła C0 (!).
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(V Jeżeli wszystkie spółczynniki szeregu (7) są rzeczywiste i dodatnie, to punkt 
z =  R musi być koniecznie punktem osobliwym okręgu Cn. Istotnie, gdyby tak nie było, 
szereg potęgowy

( - s r'(f) + (*-f)'(T)+- n! ■/«( D + - .

wyrażający

R
szy niż —

u

f ( z )  w sąsiedztwie punktu 2 — , miałby promień zbieżności więk

To samo stosowałoby się tym bardziej do szeregu:
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Weźmy teraz drogę Z., wychodzącą z początku układu i kończącą 
się w jakimkolwiek punkcie Z, położonym poza kołem C0, i wyobraźmy 
sobie ciało ruchome, przebiegające tę drogę zawsze w tym samym zwro­
cie od O ku Z. Niech a, oznacza punkt, w którym to ciało rucho­
me wychodzi poza obręb koła: gdyby ten punkt a, był punktem oso­
bliwym, posuwanie się dalsze wzdłuż drogi L byłoby niemożliwe. 
Przypuścimy, że nie jest to punkt osobliwy; można wówczas utwo­
rzyć taki szereg, uporządkowany według potęg różnicy z — a, i zbież­
ny w kole Cj o środku a ,, że jego suma równa się tożsamościowo funk­
cji /(z) w części, wspólnej obu kołom C0 i Cj. Ażeby obliczyć

można będzie użyć np. punktu pośredniego na promieniu Oa,. Sumo­
wanie drugiego szeregu daje nam dalszy ciąg analityczny funkcji f  (z) 
wzdłuż drogi L, poczynając od o ile ciało ruchome, zakreślając tę dro­
gę, nie wychodzi z koła Cj. W szczególności, jeżeli cała ta droga od a, 
leży wewnątrz koła C ,, to ten szereg da wartość funkcji w punkcie Z. 
Jeżeli droga L wychodzi z koła C, w punkcie 54, to potrzeba utworzyć 
podobnież nowy szereg, zbieżny w kole C2 o środku o,, i podobnież 
w dalszym ciągu.

Przypuśćmy z początku, że po liczbie skończonej takich działań do­
chodzimy do koła Cp o środku zp, zawierającego całą część drogi L, 
następującą po ap, a w szczególności punkt Z. Wystarczy zastąpić z 
przez Z w ostatnim z użytych szeregów oraz w szeregach, które dają 
się zeń otrzymać przez różniczkowanie wyraz po wyrazie, ażeby wyzna­
czyć wartości funkcji ■

/(Z), /'(Z), / " ( Z ) , . . . ,

osiągane w punkcie Z, t. j. element końcowy funkcji badanej.
Rzecz jasna, że do punktu jakiegokolwiek drogi L przybywamy 

z zupełnie określonemi wartościami funkcji i wszystkich jej pochodnych. 
Zauważmy również, że możnaby zastąpić koła C0, Cj, Cj, . . .  , Cp

przy dowolnej wartości argumentu «o, gdyż mamy oczywiście, ze względu na to, że 
wszystkie spółczynniki an są dodatnie

j £ / « ( ? ) •

Minimum, osiągane przez promień zbieżności szeregu (8), gdy a zakreśla
fi

okrąg C byłoby tedy większe niż — .



przez ciąg kół, określonych w ten sam sposób, których środkami byłyby 
punkty dowolne zv z2, . . . z q drogi L , byleby koło o środku Zi zawierało 
część drogi L od z i do z l+i. Możemy również zmienić drogę L, zacho- 
wuj^c j ej  punkty końcowe, w taki sposób, ażeby nie uległy zmianie war­
tości końcowe funkcji f  (z), f  (z), f "  (z), . . . . W istocie, koła C0, 
Cv , Cp nakrywają część płaszczyzny, stanowiącą rodzaj pasa, w któ­
rym leż}’ droga L ; drogę tę można zastąpić przez wszelką inną drogę L', 
idącą od z =  O do punktu Z, . i położoną w tym samym pasie. Za­
łóżmy, w celu ustalenia biegu myśli, że byliśmy zmuszeni do użycia trzech 
następujących po sobie kolejno kół C0, C\, C2 (rys. 78). Niech L'

Rys. 78.
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oznacza nową drogę, położoną w pasie, utworzonym przez te trzy koła; 
połączmy punkty m  i n. Rzecz jasna, że, idąc od O  do m  z po­
czątku po drodze O m, a następnie po drodze O n m, otrzymamy 
w punkcie m ten sam element, ponieważ mamy do czynienia z funkcją, 
całokształtną w obszarze, utworzonym przez C0 i Cj. Podobnież, idąc 
od m do Z  po drodze m a2 Z lub po drodze m n Z, przybywamy 
do punktu Z z- tym samym elementem. Droga L jest tedy równo­
znaczna drodze O n m n Z ,  t. j. drodze L ’. Metoda nie ulega zmianie 
przy liczbie dowolnej następujących po sobie kół. W szczególności moż­
na zawsze zastąpić drogę dowolnego kształtu przez linję łamaną (1).

343. Punkty osobliwe. — Przy wyjaśnionym powyżej postępowa­
niu może się zdarzyć, iż choćbyśmy posuwali jakkolwiekbądź daleko wska­
zane działania, nie zdołamy otrzymać koła, zawierającego całą część dro-

( ‘) Rozumowanie powyższe wymaga nieco więcej uwagi, gdy droga L posiada 
punkty podwójne, gdyż wówczas pas, utworzony przez następujące po sobie kola 
C0, Cu C2. . . ,  może częściowo nakrywać sam siebie. W istocie rzeczy jednak nie­
ma tu żadnej prawdziwej trudności.
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gi L, która ma być jeszcze zakreślona. Nie otrzymamy go, gdy punkt 
<xp będzie punktem osobliwym okręgu Cp~j, ponieważ będziemy zmu­
szeni wówczas do zatrzymania się. Jeżeli można powtarzać wskazane dzia­
łania nieograniczenie bez osiągnięcia kola, któreby zawierało całą część 
drogi L, która ma być jeszcze zakreślona, to punkty <xp-\, *p, a.p+\ ,...,  
dążą do punktu granicznego X, położonego na drodze L, którym może być bądź 
sam punkt Z, bądź jakiś punkt, położony pomiędzy O i Z. Punkt X jest 
również punktem osobliwym (point singulier), i przedłużanie analityczne funk­
cji /(z) wzdłuż drogi L poza punkt X jest niemożliwe. Jeżeli jednak X 
jest różne od Z, okoliczność ta nie dowodzi, iżby sam punkt Z był punk­
tem osobliwym, i iżby nie można było przejść od O do Z inną drogą.
Weźmy np. funkcje 1 1 -j- z lub L og (l-f-z ); od początku układu do 
punktu Z — — 2 nie można się posuwać wzdłuż osi rzeczywistej, gdyż 
nie zdołalibyśmy przekroczyć punktu osobliwego z — — 1. Atoli jest to 
rzecz jasna, iż jeżeli każemy punktowi z  przebiegać drogę, nie przecho­
dzącą przez ten punkt, to punkt z  =  — 2 zostanie osiągnięty po liczbie 
skończonej działań, gdyż wszystkie koła, kolejno po sobie następujące, 
przejdą przez punkt z = — 1. Zauważmy, że powyższe określenie punk­
tów osobliwych zawńera uzależnienie od drogi, zakreślanej przez zmienną; 
punkt X może być punktem osobliwym dla jakiejś określonej drogi i nie 
być nim dla innej, jeżeli funkcja posiada kilka odmiennych gałęzi.

Gdy dwie drogi Lx, L'v idące od początku układu do punktu Z, 
dają wr punkcie Z różne element}', to istnieje przynajmniej jeden punkt 
osobliwy wewnątrz obszaru, który byłby zakreślony przez jedną z tych 
dróg, np. Z.n gdybyśmy przekształcali ją w sposób ciągły, zachowując 
punkty końcowe, tak by przystał do Lx. Przypuśćmy, co zawsze można 
uczynić, iż obie drogi Lx i L\ są to linje łamane o tej samej liczbie 
boków:

Oax bl cl . . .  lxZ  i Oax b\ c’x . . .  l'x Z
i

(rys. 79). Oznaczmy przez

a2, b2, Cj, . . . , /2
środki odcinków'

a x u x , b x b x , . . .  , lx lx, 

droga Ls wzdłuż linji łamanej
O a2 b 2 . . .  l2 Z

nie może być równoważna jednocześnie dwTu drogom Lx i Lx, o ile 
nie zawiera punktów osobliwych. Jeżeli ta droga L2 zawiera punkt 
osobliwy, twierdzenie nie wymaga dalszego dowrodu. Jeżeli dwie drogi 
Lx i L2, nie są równoważne, można będzie w ten sam sposób otrzymać



nową drogę Z.3, zawartą pomiędzy L1 i L.2. Postępując tak samo 
w dalszym ciągu, albo dojdziemy do jakiejś drogi Lp z punktem osobli­
wym, albo otrzymamy ciąg nieograniczony dróg Lx, L2, . . .  . Drogi te 
będą dążyły do pewnej drogi granicznej A, gdyż punkty a l , a 2 , a 3, . . .  

będą zmierzały do punktu granicznego, zawartego pomiędzy a u  a a x' , . . . ,

Rys. 79.
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z

6,

i podobnież inne punkty. Owa droga graniczna \ musi przechodzić 
niezbędnie przez punkt osobliwy, gdyż można wykreślić po dwu stronach 
drogi A drogi, nieograniczenie zbliżone do A i dające różne elementy 
funkcji w punkcie Z. Nie byłoby to możliwe, gdyby droga A nie za. 
wierała żadnego punktu osobliwego, gdyż drogi nieograniczenie blizkie tej 
drogi winnyby być jej równoważne.

Określenie powyższe punktów osobliwych posiada charakter czysto 
negatywny i nie poucza nas zupełnie o istocie funkcji w sąsiedztwie ta­
kich punktów. Żadne przypuszczenie co do nich samych, ani też co do 
ich rozkładu w płaszczyźnie nie może być z góry usunięte, o ile nie 
chcemy narazić się na sprzeczności. Jedynie badanie przedłużenia anali­
tycznego może nas doprowadzić do poznania różnych możliwych oko­
liczności (x).

(') Niech f(x) oznacza funkcję analityczną, całokształtną wzdłuż odcinka ab 
osi rzeczywistej. W sąsiedztwie jakiegokolwiek punktu a tego odcinka funkcja może 
być wyrażona przez szereg potęgowy o promieniu zbieżności R (a), nie równym zeru. 
Ów promień R, jako funkcja ciągła zmiennej «, osiąga najmniejszość dodatnią r. 
Niech p oznacza liczbę dodatnią, mniejszą od r, a E  — pole, zamiatane przez koło 
o promieniu p, którego środek przebiega odcinek ab. Funkcja f ( x ) jest całokształt- 
na w obszarze E  i na jego obwodzie; oznaczmy przez M granicę wyższą modułu tej
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343. Zagadnienie ogólne. — Z poprzedniego wynika, że funkcja 
analityczna jest teoretycznie określona (virtuellement dćterminće), gdy 
znamy jeden z jej elementów, t. j. gdy znamy taki ciąg spółczynników

że szereg
&jł  • • • • ł̂lł • • • »

a04-<i1 (x — a) . . .  -f- a* (jc — a)" +  . . .

posiada promień zbieżności różny od zera. Przypuśćmy, że te spółczyn- 
niki są dane; wypada sobie w takim razie postawić zagadnienie ogólne 
następujące: wyznaczyć wartość, którą funkcja przybiera w dowolnym 
punkcie £ płaszczyzny, gdy każemy zmiennej przebiegać pewną określo­
ną drogę, wiodącą od punktu a do punktu (3. Można również dążyć 
do wyznaczenia z góry punktów osobliwych funkcji analitycznej; rzecz 
jasna zresztą,  ̂że oba te zagadnienia ściśle się wiążą ze sobą. Sama me­
toda przedłużania analitycznego daje rozwiązanie, przynajmniej teoretycz­
ne, obu tych zagadnień, można ją jednak zastosować w praktyce jedynie 
w nielicznych przypadkach szczególnych. Ponieważ np. nic nie wyzna­
cza a  priori liczby szeregów pośrednich, których należy użyć, aby przejść 
od punktu a do punktu [5, i ponieważ sumy tych szeregów można 
obliczyć jedynie z pewnym przybliżeniem, zdanie sobie sprawy ze stopnia 
przybliżenia, który otrzymamy w końcu, wydaje się rzeczą niemożliwą. 
Przeto na.eżalo koniecznie poszukiwać rozwiązań prostszych, przynajmniej 
w przypadkach szczególnych. Atoli dopiero od lat kilku to zagadnienie 
poczęło być badane w pracach systematycznych, które już dostarczyły po­
ważnych Wyników f1). Jeżeli te badania są tak niedawne, nie należy tego 
przypisywać jedynie trudności zagadnienia, acz istotnie wielkiej. W isto­
cie, funkcje, zbadane kolejno przez matematyków, nie były przez nich 
wybierane w sposób dowolny; badanie tych funkcji narzucało się samo 
przez się ze względu na istotę zadań, wymagających ich wysiłków. Owóż, 
poza małą liczbą funkcji przestępnych, wszystkie te funkcje zostały

funkcji; z wzorów ogólnych (14) art. 291 wynika, że dla dowolnego punktu x  odcin­
ka a b jest ważna nierówność:

/ (a> (x) <  -  y  ■

(Por. t. I, str. 484).

(') Co do wszystkiego, dotyczącego tego zagadnienia, odeślę czytelnika do do­
skonałej rozprawy Hadamard’a: La sćrie de Taylor et son prolongement analytiąue 
(Szereg Taylora i jego przedłużanie analityczne). (Naud, 1901). Można tam znaleźć 
bardzo wyczerpujące wskazówki bibljograficzne.
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określone po funkcjach wyraźnych elementarnych bądź jako pierwiastki ró­
wnań, nie dających się formalnie rozwiązać, bądź jako całki równań róż­
niczkowych algiebraicznych. Łatwo tedy pojąć, że badanie funkcji uwi­
kłanych i funkcji, określonych przez te równania różniczkowe, musiało ze 
względów logicznych poprzedzić zbadanie zagadnienia ogólnego, którego 
postaciami nader szczególnemi są właściwie w istocie rzeczy tamte dwa 
zagadnienia.

Łatwo okazać, w jaki sposób badanie równań różniczkowych algie­
braicznych wiąże się z teorją przedłużania analitycznego Weźmy, w ce­
lu ustalenia biegu myśli, dwa szeregi y  (x), z (x), uporządkowane we­
dług potęg dodatnich zmiennej x i zbieżne w kole C o promieniu R, 
zakreślonym dokoła punktu x =  0, jako środka. Niech z drugiej strony

F ( X ,  y ,  y, y " , . ■ ■ ,  y (p\ z,  2' , . . . ,  * < « > )

oznacza wielomian całkowity względem

y ,  y (p\ z, z ' , . . . ,  z<*>.

Przypuśćmy, że się zastępuje w tym wielomianie y  i z przez 
szeregi powyższe,

/ ,  y " , - . - y (p\

przez kolejne pochodne szeregu y  (x) ,  a

z', z " , . . . ,  Z <«>,

przez pochodne szeregu z(x) ;  wynik stanowić będzie również szereg, 
zbieżny w kole C. Jeżeli wszystkie spółczynniki tego szeregu są równe 
zeru, to funkcje całoksztaltne y(x) i z (x) czynią zadość, w kole C, 
warunkowi:

(9) F  (x , y ,  y (p\ z ,  z ' , . . . ,  z W )  =  0.

Uzasadnimy teraz, że funkcje, otrzymane zapomocą przedłużania 
analitycznego szeregów  y(x) i z(x), spełniają ten sam warunek w całym 
obszarze swego istnienia. Dokładniej: jeżeli punkt x przebiega drogę , 
wychodzącą z początku układu, wykraczającą poza koło C i kończącą 
się w jakimkolwiek punkcie a płaszczyzny, i jeżeli można tworzyć dalszy 
ciąg analityczny obu szeregów y ( x )  i *  (*) wzdłuż tej drogi bez na­
potkania żadnego punktu osobliwego, to szeregi potęgowe

Y (x  — a) i Z\x — a),

do których dochodzimy w punkcie a, wyrażają w otoczeniu tego punk­
tu funkcje całoksztaltne, spełniające związek (9).
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Niech, w istocie, .v, oznacza punkt drogi L, położony wewnątrz 
kola C i blizki punktu, w którym ta droga L wychodzi poza koło C\ 
dokoła punktu .v, jako środka można zakreślić koło C,, położone 
częściowo zewnątrz koła C, i istnieją dwa szeregi potęgowe

y ( x  —  JCj), z ( x  —  x,i,

zbieżne w kole Cv i takie, że ich sumy są tożsamościowo równe sumom 
szeregów y  (x) i z (x) w części wspólnej obu kołom C  i C ]. Wy­
nikiem zastąpienia w F  funkcji y  i z przez te dwa szeregi będzie 
szereg potęgowy P (x  — .v,), zbieżny w kole Ct. Owóż, w części 
wspólnej dwu kołom C i Ct P ( x — x,) =  0 ; szereg P (x  — .V[) po­
siada tedy wszystkie spólczynniki równe zeru, i dwa nowe szeregi

y  (x — x,) i z (x — Xj)

czynią zadość warunkowi (9) w kole Ct. Postępując tak samo w dalszym 
ciągu, stwierdzamy, że ten warunek nie przestaje być nigdy spełnionym— 
jakąkolwiek byłaby droga zmiennej — przez dalsze ciągi analityczne sze­
regów y  (x) i z (x); twierdzenie tedy jest dowiedzione.

Badanie funkcji, określonej przez równanie różniczkowe, jest tedy 
w istócie rzeczy tylko odmianą szczególną zagadnienia ogólnego co do 
przedłużenia analitycznego. Z drugiej strony atoli łatwo zrozumieć, że 
znajomość pewnego szczególnego związku pomiędzy funkcją analityczną 
i niektóremi jej pochodnemi może w pewnych przypadkach ułatwić roz­
wiązanie zadania. Wypadnie nam wrócić do tego punktu przy badaniu 
równań różniczkowych.

II. —  Przestrzenie próżne. —  Cięcia.

Badanie funkcji modułowych eliptycznych dało Hermite owi pierwszy 
przykład funkcji analitycznej, określonej tylko w pewnej części płaszczyz­
ny. Wskażemy tu bardzo prosty sposób otrzymywania funkcji analitycz­
nych, dla których przestrzeń próżną stanowi dowolny obszar płaszczyzny, 
odpowiadając}’ pewnym założeniom o charakterze nader ogólnym co do 
krzywej, która go ogranicza.

345. Linje osobliwe. Przestrzenie próżne. — Uzasadnijmy prze- 
dewszystkim pewne twierdzenie pomocnicze (Ł).

( ’) P oincare, Acta Societatis Fennicae, t. XIII, 1881. — Goursat, Bulletin des 
Sciences mathśmatiques, serja 2, t. XI, str. 109 i t. XVII, str. 247.
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Weźmy dwa szeregi

ai - r  a2 +  ••• +  «/>+••• i Cx - f  c2 -f- . . . -j- cn - f - . . .

o wyrazach dowolnych i załóżmy, że drugi z nich jest bezwzględnie zbież­
ny i że każdy jego wyraz jest różny od zera; niech C oznacza okrąg 
o środku z0, nie otaczający żadnego z punktów a,- i przechodzący 
przez jeden  tylko z tych punktów; szereg

+ oo
co ) =

' t ?  a -'~z

wyraża w kole C funkcję całokształtną, która może być rozwinięta 
w' szereg, uporządkowany względem potęg różnicy z — z0. Kołem, zbież­
ności tego szeregu jes t  właśnie koło C.

Można, rzecz oczywista, założyć, że z0 — 0, gdyż przy zamianie 
zmiennej z  na z0 z', a-, zostaje zastąpione przez av— z0, i Cm 
nie ulega zmianie. Założymy również, oznaczając przez R promień 
koła C, że

| | =  R, oraz | at | >  R  przy / >  1.

II.— Przestrzenie próżne. — Cięcia.

W kole C wyraz ogólny ---- -— może być rozwinięty w szereg
CLy---Z

potęgowy, dla którego funkcją zwyższającą, jak łatwo stwierdzić, będzie

M  1
R 1 — —

R

Według twierdzenia ogólnego, dowiedzionego wyżej (art. 267), przy 

zbieżności szeregu I c\ funkcja F  (z) może być rozwinięta w ko­

le C w szereg potęgowy, który możemy otrzymać, dodając wyraz po 
wyrazie szeregi, wyrażające poszczególne wyrazy. Otrzymamy tedy, 
w tym kole C

(10)' F{z)  =  M0 +  M1 z + M 2 z 2 +  . . . +  A „ z * + .  . . ,

+ 00
X "  *
v = l

av'
+ 00

Obierzmy taką liczbę całkowitą p, iżby suma 2  ̂| Cm | była
v=P-f-l

mniejsza niż — | q  |, co jest możliwe, gdyż c, nie równa się zeru,
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■V t
a szereg ć\ jest zbieżny. Obrawszy w ten sposób p i za­
kładając:

^  &  = y  , r ,  {z) =  + \
*=2

1 t\-------1
J  £lv— Z

możemy napisać: v=P+I

Fiz) =  F, (z) +  F, (z).

F i (■*) jest to funkcja wymierna, posiadająca bieguny jedynie ze­
wnątrz koła C, można ją tedy rozwinąć w szereg potęgowy o promie­
niu R' >  R. Co do Ft (z), mamy

(U) f i ( * )  =  Ą  +  ą *  +  . . . +  £ „ *• +
zakładając, że

! H  fB - =  ■ • _i_ ___ L CP+*
n-f 1 - I -  — . g i l , _ J _ . . .

1 ł7l - ot" + •(fl-p+lln 1 (fip+i)

Można jeszcze napisać ten spółczynnik w postaci

V==#HH

lecz zgodnie z założeniem i — , 1, i moduł sumy
;a> i

y f t f r r ,
— \ov!

y=p+l ,

jest ze względu na sposób, w jaki została obrana liczba p, mniejszy 

niż — ; Ci . Moduł spółczynnika Bn zawiera się tedy pomiędzy7

1 3-------  c, a -------  c. ,
2Rn+] 2 R"+l

i moduł wyrazu ogólnego szeregu 11) jest zawarty pomiędzy

c,| I z  n 3 c, z n a ! •
2 R R 2R R |

szereg ten jest zatyrm rozbieżny, gdy | z | >  R.
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Rzecz oczywista, że dodając do szeregu F2 (z), zbieżnego w kole 
o promieniu R, szereg FL (z) zbieżny w kole o promieniu R' >  R, otrzy­
mamy sumę F  (z), dla której kołem zbieżności będzie koło C o pro­
mieniu /?; wypowiedziane twierdzenie jest już tedy dowiedzione.

Weźmy teraz jakąś krzywą L, zamkniętą lub nie, któraby posia­
dała w każdym punkcie określony promień krzywizny. Pamiętając, że

i to w taki sposób, że na każdym łuku skończonym tej krzywej mieści 
się nieskończenie wiele tych punktów. Szereg

jest zbieżny we wszelkim punkcie z0, nie należącym do krzywej L, 
i wyraża funkcję, całokształtną w otoczeniu takiego punktu: w celu uza­
sadnienia tego wystarczyłoby podjąć na nowo pierwszą część poprzednie­
go dowodu z warunkiem zastąpienia koła C dowolnym kołem o środ­
ku z0, nie zawierającym żadnego punktu a,-. Jeżeli krzywa L nie 
jest zamknięta i nie posiada punktów podwójnych, szereg ( 12) wyraża 
funkcję, całokształtną w dziedzinie całej płaszczyzny, z wyjątkiem punk­
tów krzywej L. Nie możemy jeszcze stąd wnioskować, że ta krzywa jest 
linją osobliwą; należałoby jeszcze upewnić się, że przedłużenie funkcji F(z) 
poprzez jakąś część, bodaj najmniejszą, krzywej L, jest niemożliwe. 
Wystarczy do tego stwierdzenie, że koło zbieżności szeregu potęgowego, 
który wyraża F(z)  w otoczeniu jakiegokolwiek punktu z0, nie położo­
nego na L, nie może nigdy zawierać żadnego łuku tej linji, choćby 
najmniejszego. Istotnie, załóżmy, że koło C o środku z0 zawiera 
łuk a [3 linji L. Na tym łuku a (3 weźmy punkt a t, a na normal­
nej do łuku w punkcie ćz, punkt z’, tak blizki punktu a,-, izby 
okrąg Ci o promieniu z' — cl i | , zatoczony dokoła punktu z , jako 
środka, leżał całkowicie wewnątrz . C i nie posiadał żadnych punktów 
wspólnych z łukiem a [ 3  prócz samego punktu h,. Według uzasadnio­
nego przed chwilą twierdzenia koło C, byłoby kołem zbieżności szeregu 
potęgowego, wyrażającego F  (Z) w otoczeniu punktu z . Lecz byłoby 
to sprzeczne z własnościami ogólnemi szeregów potęgowych, gdyż to koło 
zbieżności nie może być mniejsze od kola o środku z , stycznego we­
wnętrznie do koła C.

szereg bezwzględnie zbieżny, załóżmy, że wszystkie punk- 

i a 1, a2, . . . , at, ■ . ■ leżą na krzywej Lty, należące do ciągu , • ■ • , Cii , . .

16Kurs anal izy  matematycznej.
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Jeżeli linja L jest zamknięta, szereg ( 12) wyraża dwie odrębne 
funkcje analityczne, z których jedna istnieje tylko w obszarze .4, poło­
żonym wewnątrz linji L, tak że obszar płaszczyzny, zewnętrzny wzglę­
dem tej linji, stanowi dla tej funkcji przestrzeń próżną (espace lacunaire); 
druga zaś, przeciwnie, istnieje zewnątrz linji L, i przestrzenią próżną 
jest dla niej obszar wewnętrzny. Mówi się również, iż linja L jest dla 
każdej z tych funkcji 'cięciem istotnym (coupure essentielle).

Gd}- mamy kilka linji, zamkniętych lub nie, Lv Li, , Lr , 
można utworzyć w ten sposób szeregi o postaci szeregu (12), dla których 
te linje stanowią odpowiednio cięcia istotne: dla sumy owych szeregów 
cięciami będą wszystkie te linje razem.

PRZYKŁADY. — Niech AB oznacza odcinek prostej, a a i ,ś — od­
powiedniki liczbowe końców A i B. Wszystkie punkty

m i  -j- n ’-j 
1 m -f- n

przy założeniu, że m I n są to liczby całkowite dodatnie, zmieniające się od 1 
do -j-os, 8!ł położone na odcinku AB, i na każdej części tego odcinka leży nie­
skończenie wiele punktów tego rodzaju, ponieważ punkt 7 dzieli A B  w sto­

sunku m Niech z drugiej strony C oznacza wyraz ogólny szeregu o dwu 
n

wskaźnikach, bezwzględnie zbieżnego Szereg podwójny

Ftz) m 1 

m

’ m . n

_
n

wyraża funkcję analityczną, dla której odcinek A B jest cięciem istotnym. Można 
w istocie nieskończenie wielu sposobami przekształcić ten szereg w szereg o jednym 
wskaźniku. Rzecz oczywista, że dodając do siebie kilka szeregów takiego rodzaju 
można utworzyć funkcję analityczną, której przestrzenią próżną byłby dowolny 
wielokąt.

Oto jeszcze drugi przykład, w którym linia L będzie okręgiem. Niech 1 ozna­
cza jakąś liczbę dodatnią niewymierną. v  liczbę dodatnią całkowitą. Załóżmy:

2t~7. 2ir.:

wszystkie punkty ov są różne i leżą na okręgu C o promieniu 1, zakreślonym 
dokoła początku układu. Ponad to, jak wiemy, można wyznaczyć takie dwie liczby 
całkow-ite m i n, iżby różnica 2 s (n« — m) była mniejsza co do wartości bez­
względnej od liczby e. dowolnie małej.

Istnieją tedy potęgi liczby- a, których moduł jest tak blizki zera, jak tylko 
zechcemy, i przeto na każdym luku skończonym okręgu leży nieskończenie wiele
punktów a ‘. Załóżmy następnie, że

o v



II. — Przestrzenie próżne. — Cięcia. 243

szereg

■wyraża według twierdzenia ogólnego funkcję caiokształtną w kole C, dla której 
przestrzeń próżną stanowi cały obszar płaszczyzny, położony zewnątrz tego koła. 
Rozwijając każdy wyraz według potęg zmiennej z, otrzymujemy jako wrynik rozwi­
nięcia funkcji F  (z) szereg potęgowy s

(13) . . .  +  '
z"

~2a"- 1

Łatwo sprawdzić bezpośrednio, że funkcja, wyrażona przez ten szereg potęgo­
wy, nie może być przedłużona analitycznie poza koło C. Istotnie, jeżeli dodamy do 

1
mej szereg

1 — z
, to otrzymamy

'('K -ji- z = 2 ^  - 1) + • ■ ■ + - (y y L  r k  ■ • • - 2 F(az),

•czyli
l 1 1

F(az) =  - F(z)  - - - ■  —

Zmieniając w tym związku z na a z, potym na a-z, . . .  , dochodzimy do 
związku ogólnego

1 1  1
(14) F { a n z) — 2„ F (z) +  2n a  __ z) +  9« - 1 (i—az) 

który wskazuje, że różnica

.. .+
2 (1 — an~ l z)

2 " F(an z) — F  (z)

jest -to funkcja wymierna o (z), posiadająca n biegunów pierwszego rzędu

1 1
lj a ’ ..........  fi"-'

M zór (14) został uzasadniony przy założeniu, że

| z | <  1 i I a | =  1.

Jeżeli argument liczby a jest współmierny z n, to z wzoru tego wynika, że F(z)  
jest funkcją wymierną; wystarczy wziąć za n taką liczbę całkowitą, iżby 1.
Jeżeli argument liczby a jest niewspółmierny z «, to jest niemożliwością, iżby 
funkcja F(z)  była całokształtna na jakimś łuku skończonym AB  okręau, chociaż­
by dowolnie małym. W istocie, niech a-p  i an—p oznaczają dwa punkty, poło­
żone na łuku A B (n >  p). Obrawszy w ten sposób liczby n i p, wyobraźmy 
sobie, że z zmierza do a~P\ wówczas iloczyn a" z będzie dążył do a»-p, 
i obie funkcje F(z)  i F ( a nz) musiałyby dążyć do granic skończonych Otóż 
związek (14) wskazuje, że jest to niemożliwe, gdyż funkcja <p (z) posiada biegun a-p.
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Podobna metoda da się zastosować, jak wykazał Iładamard. do szeregu bada­
nego przez Welerstrassa

w którym a oznacza liczbę całkowitą dodatnią, a b — -tałą o module mniejszym 
oil Jedności. Szereg ten jest zbieżny, o ile i z  | nie przekracza jedności, a rozbież­
ny, gdy | z | >  1. Kolo C o promieniu =■ 1 jest tedy kołem zbieżności. Okrąg 
tego kola Jest cięciem Istotnym funkcji F (z). Załóżmy, w istocie, że na jakimś 
luku skończonym a ?  lego okręgu nic leży żaden punkt osobliwy funkcji. Jeżeli

dwie liczby całkowite dodatnie, a c jest to dzielnik liczby n, lo wszystkie wyra­
zy szeregu (15), poczynając od wyrazu o wskaźniku pozostają bez zmiany,
i różnica

musi być wielomianem. Funkcja F(z) nic posiadałaby tedy również żadnego punk­

dokola początku układu. 5\ eżmy U dość wielkie, by iloraz  ̂ byl mniejszv od 

luku * rzecz jasna, że luki *i Pi , ji,..........  otrzymywane kolejno przy

nakryłyby w zupełności okrąg. Funkcja F  (z) nie posiadałaby tedy na nim żadne­
go punktu osobliwego, co Jest niedorzeczne (art 3*2).

W przykładzie tym występuje następujący objaw szczególny, zasługujący na 
uwagę: szereg (15) jest wzdłuż okręgu C bezwzględnie i jednostajnie zbieżny. Wy­
raża tedy na tyin okręgu funkcję ciągłą argumentu «  (').

(') Fredholm dowiódł, że suma szeregu

w którym a oznacza liczbę dodatnią mniejszą od jedności, nie może być przedłużo­
na poza koło zbieżności (Comptes rendus, d. 24 marca r. 1890). Przykład ton pro­
wadzi do wniosku, który zasługuje na zaznaczenie. Na okręgu o promieniu =  1 
szereg jest zbieżny i suma

05)

2* IR
zastąpimy zmienną z w F(z) przez zc fl‘ , przy założeniu, że * i ft są to-

tu osobliwego na hiku i k powstającym z luku przez obrót o kąt —

T .

O

jest funkcją ciągłą argumentu A, posiadającą nieskończenie wiele pochodnych 
Mimo to owa funkcja ^ (9 )  nie może być rozwinięta zapomocą wzoru Taylora, 
w żadnym przedziale, choćby dowolnie małym.
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34?. Osobliwości, występujące przy badaniu wyrażeń analitycz­
nych. —  Wszelkie wyrażenie analityczne o typie szeregu, którego wyrazy 
-stanowią funkcje zmiennej z , lub całki oznaczonej, w której ta zmienna 
występuje jako parametr, wyraża przy zachowaniu pewnych warunków 
funkcję całokształtną w sąsiedztwie każdej wartości zmiennej z, dla któ­
rej da się wogóle obliczyć. Jeżeli ogół takich wartości zmiennej z  na­
krywa w zupełności pewien obszar spójny A  płaszczyzny, dane wyra­
żenie stanowi funkcję holomorficzną w tym obszarze A .  Lecz jeżeli zbiór 
tych wartości zmiennej z tworzy dwa lub więcej obszarów osobnych 
i o d d z i e l o n y c h  o d  s i e b i e  (separees), to może się przydarzyć, że dane wy- ,, 
rażenie analityczne wyznacza w tych różnych obszarach funkcje zupełnie 
różne. Napotkaliśmy już taki przykład w art. 296-ym.

Widzieliśmy, w istocie, w jaki sposób można utworzyć szereg o wy­
razach wymiernych, zbieżny w dwu trójkątach krzywolinjowych P  Q R ,  

P ' Q ' R '  (rys. 61), którego suma równa się w trójkącie P Q R  funkcji 
całokształtnej /(z), a w trójkącie P ’Q ' R ' —  zeru. Dodając dwa takie 
szeregi, możemy otrzymać szereg o wyrazach wymiernych, którego suma 
będzie równa / (z ) w trójkącie P  Q  R , a innej funkcji całokształtnej 
•d (z ), jak najzupełniej dowolnej, w trójkącie P 'Q ' R ' .  Rzecz jasna, że 
wobec dowolności -obu funkcji -/(z) i c? (z) suma szeregu w trójkącie 
P ’Q  R  nie będzie miała w ogólności żadnego związku z dalszym ciągiem 
analitycznym sumy tegoż szeregu w trójkącie P Q R .

Oto jeszcze przykład nader prosty, podobny do przykładu, podanego
1 — z nprzez Schrbdera i Tannerv’ego. Wyrażenie , w którym n  ozna-

~ 1—|—z”
■cza liczbę całkowitą dodatnią, wzrastającą nieograniczenie, dąży do gra-

tstotnie. przypuśćmy, że w pewnym przedźiale (0 O — s, 0o-(- a)

F ( « )  =  A0 +  A, (0 — 0„) +  . . . +  An (0 -  0 o)n + ------

Szereg  z prawej strony znaku równości wyraża w kole c o promieniu a i środku

w punkcie 0„ funkcję całokształtną zmiennej zespolonej H. Związek z =  e U‘ 
podporządkowuje temu kołu w płaszczyźnie zmiennej z pole zamknięte A, które 
zawiera łuk y okręgu o promieniu =  1, łączący punkt o argumencie 0O — a 
z  punktem o argumencie <->0 +  a. W polu A  dałaby się zatym określić funkcja 
całoksztaltna zmiennej z, równa tożsamościowo sumie szeregu

wzdłuż y; jest to atoli niemożliwe, gdyż sumy tego szeregu nie można przedłużyć 
poza kolo zbieżności.
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nicy =  - f -  1, jeżeli j z | <  1, a - l ,  jeżeli j z | >  1; jeżeli | z j =  l r 

wyrażenie to nie posiada granicy, chyba że z — \. Owóż suma n pierw­
szych wyrażeń szeregu

równa się temuż wyrażeniu. Szereg ów jest tedy zbieżny, o ile tylko 
wartość bezwzględna | r | jest różna od jedności, i suma jego równa się 
-f- 1 wewnątrz kola C o promieniu równym jedności i środku w po­
czątku układu, a — 1 zewnątrz tego koła. Ustaliwszy to, weźmy dwie 
jakiekolwiek funkcje analityczne, np. dwie funkcje całkowite, f  (z) i z z)\ 
wyrażenie

’! '( * ) — 0 \f̂ z) +  r (.*)] +  $ (z) [/(z) — ?(*>].

jest równe funkcji / ( z )  wewnątrz kola C, a z (z) zewnątrz tego 
kola. Sam obwód koła jest dla tego wyrażenia cięciem, lecz zupełnie in­
nego rodzaju, niż cięcia istotne, o których przed chwilą mówiliśmy. Funk­
cja, równa ó (z) wewnątrz tego koła C, może być przedłużona anali­
tycznie poza to koło, i podobnież funkcja, równa ó (r) zewnątrz C, 
może być przedłużona analitycznie wewnątrz koła.

Podobne osobliwości występują, gdy mowa o funkcjach, wyrażonych 
przez całki oznaczone. Przykład najprostszy stanowi całka Cauchy’ego; 
jeżeli f ( z )  jest funkcją calokształtną wewnątrz obwodu zamkniętego T 
i na samym obwodzie, całka

1 /* f  (z) dz
2 r .i J r z — .v

równa się /(x), gdy punkt ,v leży wewnątrz F ; ta sama całka rów­
na się zeru, gdy punkt x  jest położony zewnątrz obwodu r, gdyż

funkcja jest wówczas całokształtna wewnątrz obwodu. Linja /
Z  —  .V

jest dla całki również cięciem nieistotnym. Podobnież -dla całki ozna­
czonej

cot f i ' )
jest cięciem oś rzeczywista; całka ta jest równa —j- 2 ~ / lub — 2 z i, 
stosownie do tego, czy punkt ,v leży nad tym cięciem lub też pod nim.
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348. Wzór Hennite’a. — Z tym samym biegiem myśli można skojarzyć pe­
wien zajmujący wynik, który zawdzięczamy Hermiteuwi ('). Niech F  (t, z) i G (t, z) 
oznaczają dwie funkcje calokształtne dwu zmiennych t i z, np. wielomiany lub 
szeregi potęgowe, zbieżne przy wszystkich wartościach tych zmiennych.

Całka oznaczona
i ' ? F  (t. z)

(16) 0 ( z ) =  — - -  dt,
* G (t,z)

wzięta wzdłuż odcinka prostej, łączącego punkty a i p, stanowi, jak  uzasadnimy 
dalej (art. 353) funkcję zmiennej z, wogóle ealoksztaltną, z wyjątkiem jednak tych 
wartości tej zmiennej, które są pierwiastkami równania G (t, z) =  0, rozumianego 
w ten sposób, że t jest odpowiednikiem liczbowym jakiegoś punktu odcinka ap. 
Równanie to wyznacza przeto liczbę skończoną lub nieskończoną krzywych, dla któ­
rych całka (Ib) traci określone znaczenie. Niech A B oznacza jedną z tych krzy­
wych, nie posiadającą punktów podwójnych; aby znaleźć się w warunkach ściśle 
"kreślonych, załóżmy, iż przy zakreślaniu przez punkt t odcinka o. p jeden z pier­
wiastków równania G (t, z) =  0 zakreśla łuk A B, i że wszystkie inne pierwiast­
ki tego równania, o ile istnieją, są położone zewnątrz pewnego obwodu zamkniętego, 
odpowiednio dobranego, otaczającego luk AB, tak iż odcinek a p i łuk A B  od­
powiadają sobie wzajemnie punkt za punktem. Całka (16) traci wszelką treść, gdy 
punkt z dostaje się na luk A B ; postarajmy się obliczyć różnicę wartości, które 
przybiera funkcja (z) w punktach N i N1, nieskończenie blizkich punktu M 
linji A B , a wziętych z obu stron tej linji. Niech S, ? - f  e, C +  s' stanowią 
odpowiedniki liczbowe tych trzech punktów. Związek G (t, z) =  0 podporządkowu­
je  tym trzem punktom w płaszczyźnie zmiennej t punkt m na a f  i dwa punk­
ty nieskończenie blizkie n i n’t położone po obu stronach odcinka ap; niech 
h, h U- rh 6 -f-r/ oznaczają wartości odpowiednie zmiennej t. Weźmy w sąsiedzt­
wie odcinka a p punkt y dość zbliżony, by wewnątrz trójkąta «Py (rys. 80), 
równanie G (t,  ̂-j- e) =  0, miało tylko jeden pierwiastek t =  0  -j- rt. • Funkcja

F{t, ;  +  »)
G (t, , - j -  ć )

posiada zatym wewnątrz trójkąta r>- p y tylko jeden biegun W r(, i stosownie do 
uczynionych założeń, jest to biegun jednokrotny. Stosując twierdzenie Cauch^ ego. 
otrzymamy tedy związek:

(17)

f  (t, ;  l) 
G (t, r +  0

F  (t, ś -|-  Q 
G (t, :  +  c)

dt

G(t, :  +  i) G’i CH-ę, ;  +  £)

( ' )  Hk r m it k , Sur quelques points de la theorie des fonctions. (70 pewnych tema­
tach z teorji funkcji”). (Journal de Crelle. t. 91).
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Obie całki I , j mają tę samą postać, co <f>(c); stanowią one tedr 
J  (■ i

funkcje <!', (z), «f>s (*), caloksztaline, o ile tylko punkt zmienny nie jest położony 
na pewnych cięciach. Oznaczmy przez AC i RC cięcia, odpowiadające odcinkom 
® T  ̂ Hy płaszczyzny zmiennej t i położone nieskończenie blizko cięcia A R  
funkcji <t» (z).

Rys. SO.

Y

Nadajmy następnie zmiennej z wartość . 1 i': wartością odpowiednią zmien­

nej t będzie wartość, h X. wyobrażona przez punkt n' i funkcja ^
J G(f, C -f- c'>

zmiennej t jest całokształtna wewnątrz trójkąta 0 ^ 7. Mamy tedy związek:

(1«) f u . ; 4- «■)
tt G (I, , -j 6 )

dt FU. Z-f f)
I ~  dt

J   ̂ g  (t, ;  4 - 1 ) I
7 F(t, g-H*)

- g  u , :  - f d )
dt — 0;

odejmowanie stronami wzorów (17) i (18) daje nam wynik, który możemy* napisać 
w postaci następującej:

*  <; - f - 0  — <f> (.* 4 -  o  I <t>, G 4 o  _  <J>, G 0 )  I 4

4- 1 (-: +  4 — <*>, g F(H 1. . e) 
G'.C- - t)

Atoli funkcje ‘J’ , (z) i ^ ( z ) ,  dla których A R  nie jest cięciem, są eało- 
kształtne W sąsiedztwie punktu z =  7, i przy dążeniu liczb j i e' do zera, otrzy­
mamy. jako granicę, różnicę wartości funkcji <P (z) w dwu punktach nieskończenie 
zbliżonych z jednej i drugiej strony do A R. Napiszemy ten wynik w postaci 
skróconej

(10) <I> (K )  — 4> (Ar’) -  ■ i -  ■
d G (H, •)

d h
jest to wzór llermite’a. Stwierdzamy, iż wzór ten wiąże się w sposób nader prosty 
z twierdzeniem Cauchy'cgo ('). Dowód wskazuje wyraźnie, w jaki sposób należy 
wziąć punkty Ar i Ar'; punkt Al (1 -|- i) winien być położony w taki sposób, iżby 
punkt odpowiedni H 4 * 7i leżał na lewo od widza, przebiegającego odcinek ap.

0 ) ,  G o i r s a t , Sur un thćoreme dr Al. Hermite. (O pewnym twierdzeniu Her- 
mite’a). (Acta mathematica, t. 1).
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Należy zauważyć, że linja A B  nie jest dla funkcji 0 ( 2 )  cięciem istotnym. 
W  sąsiedztwie punktu N' można zastąpić, według wzoru (18), <I> (z) przez

-  [<&,(*)+ <!»,(*)],
owóż suma <!>, (z) <J>2 (z) jest funkcją calokształtną w trójkącie krzywolinjo-
wym A C B  i na samej prostej AR, równie jak w sąsiedztwie punktu N'. Zmien­
na z może tedy przekroczyć linję A B  w jakimkolwiek jej punkcie M, różnym 
od krańców A i B, bez napotkania żadnej przeszkody do przedłużania analitycz­
nego Rzecz oczywista, to samo działoby się przy przechodzeniu przez punkt z 
linji A B  w kierunku przeciwnym.

Przykład. — Zbadajmy całkę

(20)
/  U) At 
t — z

braną wzdłuż odcinka A B  osi liczb rzeczywistych, z warunkiem, że /(z )  oznacza 
funkcję calokształtną wzdłuż tegoż odcinka AB. Wyobrażajmy zmienną z na tej 
samej płaszczyźnie, co t. Funkcja 0 (2 )  jest funkcją zmiennej 2, calokształtną 
w sąsiedztwie wszelkiego punktu, nie położonego na samym odcinku A B, który 
stanowi dla całki cięcie. Różnica <I> (N) — <1> (N') równa się tu

-  2 = i/ (0
C  odpowiada pewnemu punktowi odcinka A B\. Gdy zmienna 2 przekracza li­
nję A B, dalszym ciągiem analitycznym funkcji (z) staje się suma

<1> (z) + 2 - i  f(z ).

‘Przykład ten nasuwa nam ważną uwagę. Funkcja O (z) jest funkcją cało- 
kształtną zmiennej 2 również węwczas, gdy / ( z )  nie jest funkcją analityczną 
zmiennej t, byleby funkcja ta była ciągła między o. i % (art. 291). Lecz w tym 
przypadku rozumowania powyższe nie mogą być zastosowane, i odcinek A B będzie 
w ogólności dla funkcji <t> (z) cięciem istotnym.

Ć W I C Z E N I A .

1 Wyznaczyć linje nieciągłości całek określonych

F «  ~  I
z dt

1 r(- z" t-

_  dt
1 +  i z

branych wzdłuż prostej, łączącej punkty (O, 1) lub (a, b): określić ściśle wartość 
każdej z tych całek w punkcie 2, nic położonym na cięciach.

1
2. Weźmy cztery koła o promieniu

L +/, -

których środkami byłyby punkty
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Przestrzeń, położona zewnątrz tych czterech kól, składa się z pola skończonego -i,, 
zawierającego początek układu, oraz z pola nieograniczonego .4,. Utworzyć zapo- 
mocą metody z art. 200 szereg funkcji wymiernych, zbieżny w tych obszarach, któ­
rego suma byłaby równa -|- L w A, a O w A.. Sprawdzić wynik, obliczając sumę 
otrzymanego szeregu.

3. Zbadać to samo zagadnienie w stosunku do dwu pól, położonych wewnątrz 
kola o promieniu -  2, mającego za środek początek układu, a zewnątrz dwu kół 
o promieniu =  1, których środkami są odpowiednio punkty U 1 i — l.

[APPELL, Acta mathematica, t. 1],

4. Dla całki określonej 

« <l> (z) =  I t sin z
/  o 1+2 t cos z + /5 

branej wzdłuż osi rzeczywistej, cięciami są proste

x  =  (2 *  -  l ) c

; -  (2 *  +  i) *

dt,

[ k - całkowite). Niech

oznacza punkt na Jednym z tych cięć. Różnica pomiędzy wartościami całki w dwu 
punktach, nieskończenie zbliżonych do tego punktu i położonych z różnych stron 
cięcia, równa się

-(* "• +  e ~ ° l).

IHekmite, Journal de Crelle. t. 91],

5. Dla całek określonych, branych wzdłuż osi liczb rzeczywistych

f
/•+* gHt-z)

' I :— : at>
-W-z)

t — z t — z
dt.

stanowi cięcie oś liczb rzeczywistych w płaszczyźnie zmiennej z. Nad tą osią 
J  — 2 i s, / „ =  0, a pod nią ./ - 0 ,  J0 =  2 i* . Wysnuć z tych wzorów wartości
całek określonych

• J x i  t

t — Z

t — Z

dt.

dt.

cos ( t - z )  
t — z

dt.

sin (t—z i
dt.

| Hkrmite, Journal de Crelle, t. 91)

ń. I zasadnie zapomocą eięc wzór (Rozdz. XIV, ćw. 15)

, dt =  -
1 - e sin a -

| Hkrmite, Journal de Crelle. t !»1 ].
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Bierzemy całkę
ea (t+i) 

l  +  e t+z
dt,

dla której są cięciami wszystkie proste

y =  (2*+l) -»
i która zachowuje stalą wartość w pasie, zawartym pomiędzy dwoma kolejnemi cię­
ciami. Potym, oznaczając przez

z i z 4 - 2 i -

dwa punkty, oddzielone od siebie przez cięcie y  =  - .  uzasadniamy związki

<&(z +  2 i - )  =  4>(zr) +  2 i x e l " a , O (z 4-  2 i  *) =  e 2 1 “ a <I> (z).

~ ■ Weźmy funkcję analityczną caloksztaltną w otoczeniu początku układu

/(z) =  ^ V  z'1

i oznaczmy przez F (z)  funkcję całkowitą skojarzoną (assoćiee), równą

Stwierdzamy łatwo, że
1 /' / (u) 5?

(1) F  (az) =  -  ; I e “ du,
2 ~l J(Q

jeżeli obwód C, wzdłuż którego obliczamy całkę, otacza początek układu w ten spo­
sób, iż funkcja / (z) jest  całokształtna w ograniczonym przezeń obszarze; wniosku­
jemy stąd, oznaczając przez l liczbę rzeczywistą i dodatnią:

(2)
1

e—a F  (az) da =  —  2-i
r  m
I u’ (Q

•Jeżeli część rzeczywista stosunku — pozostaje mniejsza od 1 — £ (s — do­

datnie) przy zakreślaniu przez punkt u obwodu C, to całka

f  ' dai
. 0

dąży jednostajnie do u , gdy 1 wzrasta nieograniczenie, i wzór (2) przybiera 

postać graniczną
l ‘+ x  1 /’ /(«) du , ,  ,( 3 1 I e - a  F  (az) da =  . I ------------- =  f  {z).

J  0 • —l j  (c) u z
Wzór ten daje się zastosować do wszystkich punktów, położonych wewnątrz 

linji spodkowej ujemnej (podaire negative) krzywej C.

[Ob. B orel, Leęons sur les sśries diuergentes, (Wy­
kłady o szeregach rozbieżnych)].
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8*. Weźmy dwa szeregi potęgowe

/ ( ; !  a" z" i ? (zi = ^ S  t>" z".

których promienie zbieżności są równe odpowiednio r i Szereg

Ą (z) N  aH hn

posiada promień zbieżności, równy co najmniej r o, i funkcja <1 (z) posiada tylko 
takie punkty osobliwe, które można otrzymać przez mnożenie odpowiedników liczbo­
wych różnych punktów osobliwych funkcji f  (z) przez odpowiedniki liczbowe punk­
tów osobliwych funkcji < (r)

( H a Da m a R D ,  Acta mathematica, t. XXIII, s t r .  6 5 ).



R O Z D Z I A Ł  X V I I .

Funkcje analityczne wielu zmiennych.

I. —  W łasności ogólne.

Zajmiemy się w tym rozdziale funkcjami wielu niezależnych zmien­
nych zespolonych. Ażeby uprościć wykład i wzory, założymy, że chodzi 
tylko o dwie zmienne; rozciągnięcie jednak własności ogólnych na funkcje 
dowolnej liczby zmiennych nie stanowi nic trudnego.

d-li). Określenia. — Weźmy dwie zmienne zespolone niezależne 

z =  u -J- i v, z' — w - f- i t\

wszelka inna liczba zespolona Z, której wartość zależy od wartości 
zmiennych z i z', może być nazwana funkcją  dwu zmiennych z i z . 
Wyobraźmy wartości tych zmiennych zapomocą punktów, posiadających 
odpowiednio w dwu układach spółrzędnych prostokątnych, położonych 
w dwu płaszczyznach P  i P\ spółrzędne (u, v) oraz (w , i) i oznacz­
my przez A i A' dwa jakiekolwiek obszary tych dwu płaszczyzn. Po­
wiemy, że funkcja Z  =  /(z, z j  jest holomorficzna (holomorphe) czyli 
całokształtna w obszarach A i A', jeżeli wszelkiemu układowi dwu 
punktów z, z', położonych odpowiednio w polach A i A', odpowiada 
zupełnie określona wartość /(z, z j ,  zmieniająca się w sposób ciągły 
wraz z z i z', i jeżeli każdy ze stosunków

/(z +  h , z j  — f(z , z j  f { z ,  z-\ -k) — f( z ,  z j
h k

dąży do pewnej określonej granicy, gdy przy stałych wartościach z i z'
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moduł}- przyrostów h i k dążą do zera. Granice te są to pochodne 
cząstkowe funkcji f(z , z'), i używamy do nich tego samego znakowania, 
które stosowaliśmy do zmiennych rzeczywistych.

Rozróżnijmy w f  (z. z') część rzeczywistą i spólczynnik przy /', 
pisząc

f ( z ,  *') =  *  +  /K;

-V i Y są to funkcje rzeczywiste czterech zmiennych niezależnych rze­
czywistych u, v , w , t, spełniające cztery warunki następujące

dX &Y dX _ d Y  dX  _  dY dX _  _  dY
du dv dv du dw dt dt dw

których znaczenie jest oczywiste |‘j.

Przechodząc do pochodnych drugiego rzędu, możemy wyrugować Y 
sześciu różnemi sposobami; lecz sześć otrzymanych przy tym związków 
sprowadza się tylko do czterech równań (niezależnych)

<1»

d* X  _  d3 X  
du dt dvdw

d3X & X
du2 dvł

=  0.

du dw

d*X  
dw7

+

- f

d- X  
dv Ot

=  0.

d1 X 
dP

=  0.

Znaczna liczba tych związków jest zrozumiałym powodem, dla któ­
rego mało się niemi posiłkowano dotychczas przy badaniu funkcji anali­
tycznych dwu zmiennych.

350. Koła zbieżności skojarzone. Własności szeregów potęgo­
wych, zależnych od dwu zmiennych rzeczywistych (t. I, art. 190 — 192), 
dają się z łatwością rozciągnąć na przypadek, gdy spółczynniki i zmienne 
przybierają wartości zespolone. Weźmy szereg podwójny o spółczynni- 
kach dowolnych
(2) F  (z, z') a m„ zm ź n.

(‘) Jeżeli 2 i z' są to funkcje analityczne innej zmiennej x, to związki powyższe 
pozwalają łatwo uzasadnić, że pochodna funkcji /(z, z’) względem x da się otrzy­
mać przez zastosowanie zwykłego przepisu, dającego pochodną funkcji złożonej. 
Wzory rachunku różniczkowego, a w szczególności wzory, dotyczące zamiany zmien­
nych, stosują się tedy również do funkcji analitycznych zmiennych zespolonych.
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Oznaczmy | am „ | przez Am „; stwierdziliśmy byli (tom I, art. 190), 
że istnieje w ogólności nieskończenie wiele takich układów dwu liczb 
dodatnich R i R\ iżby szereg modułów

(3) y ' A m n Z<"Z'% .

był zbieżny, gdy jednocześnie

a rozbieżny, gdy
Z  <  R, Z '  <  R\

Z > R  i Z' >  R'.
Niech C oznacza okrąg o promieniu R, zakreślony w płaszczyź­

nie zmiennej z dokoła początku układu, jako środka; podobnież O  niech 
oznacza okrąg, zakreślony w płaszczyźnie zmiennej z' dokoła punktu 
Z  — 0, jako środka, promieniem — R' (rys. 81). Szereg podwójny (1) 
jest bezwzględnie zbieżny, gdy punkt}7, odpowiadające zmiennym z i z'

leżą odpowiednio wewnątrz kół C i C’, a rozbieżny gdy punkty te są 
położone odpowiednio zewnątrz tych kół (t. I, art. 191). Mówimy, że ko­
ła C i C‘ tworzą układ kół zbieżności skojarzonych (associes). Ta 
para kół odgrywa tu tę samą rolę, co koło zbieżności w stosunku do sze­
regu potęg jednej zmiennej; lecz zamiast jednego koła dla szeregu potę­
gowego, zależnego od dwu zmiennych, istnieje w ogólności nieskończenie 
wiele układów kół skojarzonych. Naprzykład szereg

V  ■'" ' z " ,

jest bezwzględnie zbieżny wtedy i tylko wtedy, gdy | z j- | z | < 1 .
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Wszelki układ kół C i C\ których promienie R i R  spełniają 
warunek R R  =  1, jest układem kół zbieżności skojarzonych. Może 
się zdarzyć, iż wystarczy wprowadzenie jednego tylko układu kół zbież­
ności skojarzonych; dzieje się tak np. z szeregiem

•

X "  -m

który jest zbieżny jedynie wtedy, gdy jednocześnie

u i < i ,  m < i -
Niech C\ oznacza koło o promieniu Rl <^R, spółśrodkowe z C, 

a Ci — koło o promieniu /?,' -< R , spółśrodkowe z C'; gdy punkty 
z  i z' pozostają odpowiednio wewnątrz kół C, i Cj', szereg (2) jest 
jednostajnie zbieżny (p. art. 1911, i suma tegoż stanowi przeto wewnątrz 
dwu kół C i C' funkcję ciągłą F(z, z') dwu zmiennych z i z'.

Różniczkując wyraz po wyrazie szereg (2), np. względem zmien­
nej z. otrzymujemy nowy szereg

m a„ „  zm~l z ",

który jest również bezwzględnie zbieżny, gdy z i z' pozostają odpo­

wiednio wewnątrz kół C i C' i którego sumą jest pochodna ^  funkcji
dz

F  (z, z’) względem z. Dowód byłby zupełnie podobny do dowodu, poda­
nego dla zmiennych rzeczywistych (t. 1, art. 191). Podobnież F  (z, z )

posiada pochodną cząstkową względem z', ^ , wyrażającą się zapomo-
dz'

cą szeregu podwójnego, który otrzymujemy, różniczkując wyraz po wyra­
zie szereg (2) względem z'. Funkcja F  (z, z \ jest tedy w omawianej 
dziedzinie funkcją analityczną dwu zmiennych z i z'. To samo się sto­

suje oczywiście do dwu pochodnych , i przeto funkcja Fiz, z')
dz dz'

może być różniczkowaną wyraz po wyrazie ilekolwiek razy; wszystkie jej 
pochodne cząstkowe są to również funkcje analit3*czne.

Weźmy wewnątrz koła C jakikolwiek punkt z o module r, i do­
koła tego punktu, jako środka, zakreślmy okrąg c o promieniu R — r. 
styczny wewnętrznie do koła C. Niech również z' oznacza punkt ja ­
kikolwiek o module F <  R , a c' — okrąg, zatoczony dokoła tego punk­
tu promieniem R  — F. Niech wreszcie z h i z' -f- k oznaczają dwa 
dowolne punkty, położone odpowiednio w kołach c i c\ tak iż

| z j +  | h | s :  /?, | z' | -+  ! *  | c R .
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Jeżeli zastąpimy w szeregu (2) z i z' przez 

z -f- h i z’ k,

to można będzie rozwinąć każdj' wyraz w szereg, uporządkowany według 
potęg przyrostów h i k, i szereg podwójny, otrzymany w ten sposób, 
będzie bezwzględnie zbieżny. Ustawiając ten szereg według potęg przy­
rostów h i k, otrzymamy wzór Taylora

fim  +  n p

(4) F  ( z h , z'+ k ) dzm d ź n 
. m . 1 72 —  hm kn. . n

351. Całki podwójne. — Gdy chcemy rozciągnąć na funkcje wielu 
zmiennych zespolonych twierdzenia ogólne, które Gauchy wysnuł z bada­
nia całek określonych, branych pomiędzy granicami urojonemi, spotykamy 
trudności, które zostały w zupełności wyświetlone przez H. Poincarego. 
Zbadamy tutaj tylko jeden przypadek bardzo prosty, który nam wystarczy 
do dalszego wykładu. Niech f  (z, z') oznacza funkcję, która jest cało- 
kształtna, gdy punkty z i z' pozostają odpowiednio w obrębie dwu 
pól A i A' (rys. 82). Weźmy krzywą a b , położoną w obszarze A

Rys. 82.

1 krzywą a'b', należącą do obszaru A', i podzielmy każdą z tych 
krzywych na mniejsze łuki zapomocą dowolnej liczby punktów granicz­
nych: oznaczmy przez

Z0 ,  Z j ,  Z 2 ,  .  • ■ ,  Zk—\ 1  Z/i, .  .  ,  Zn— 1 ,  Z.

( ' )  P o i n c c r i : .  S u r  les res id u s  d e s  in teg ra les  do u b les  ( O  p o z o s t a ł o ś c i a c h  c a ł e k  
p o d w ó j n y c h ) ,  ( A cta m a th em n tica ,  t .  I X ) .

K u r s  a n a l i r y  m a t e m a t y c z n e j 17
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punkty podziału luku a b, z zastrzeżeniem, że punkty z0 i Z utoż-
samiają się z punktami a i b, a przez

■ J>  V  
* o’ * i * ~ a • ••ł N łj —1 1 *•' m — \ * Z'

punkty podziału łuku a b', przytym punkty sf„ i Z ' mają nakrywać
a' i b'. Suma o dwu wskaźnikach:

m  n

( 5 )  5  =  ^  / (Zk I ,  Z * _ l )  ( Z k   Zk l)  (Z'h —  ~'/i - 0

dąży do pewnej granicy, gdy obie liczby m i n wzrastają nieograni- 
czenie w taki sposób, że wszystkie moduły

j k Zk—1 J i j Z h ~~ Z /,—) j

zmierzają do zera. Załóżmy, że

f(z , z') =  X +  i K,

gdzie .V i Y są to funkcje rzeczywiste czterech zmiennych u, v, w, t ; 
załóżmy również, że

zk =  //* -f- iVk, z\ — Wh -j- i tt,.

Wyraz ogólny szeregu 5  może być napisany w postaci

[X (Uk—i, Vk—i; zv/i—i, th—i) 4" i ł Vk—\: 1> —i)]

. [uk — Uk-1 -j- i (Vk — f*-i) } [Wh — w*-\ +  i V* — tn-i) ]>

i wykonywując wskazane mnożenia, otrzymamy osiem iloczynów częścio­
wych. Dowiedźmy np„ że suma iloczynów częściowych

n m

(6) ^  X (jlh—U 'Uk— l! ZSJh—l, th—l) (M*— Uk— |) (Wh — Wh-1),
f , -= l h— 1

dąży do pewnej granicy. Załóżmy zgodnie z rysunkiem, że krzywą a b  
wszelka prosta, równoległa do osi Ov, przecina w jednym tylko punkcie, 
i że podobnież prosta, równoległa do osi O t, spotyka tylko w jednym 
puukcie krzywą a ’b’. Niech

v =  ? («), t =  (®)

stanowią równania tych dwu krzywych, n i  U — granice, między któ- 
remi zmienia się u, w0 i W — granice, pomiędzy któremi zmienia się w. 
Jeżeli zastąpimy w wyrażeniu X zmienne v i t odpowiednio przez
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•f («) i ']> (w i, to wyrażenie to stanie się funkcją ciągłą P («, w) zmien­
nych u i w.

Sumie (6) możemy tedy jeszcze nadać postać
u m

(6)' , P (Uk-l, Wit-i) (Uk— -Uk-i) (Wh — Wh-1).
k —l h—l *

Gdy m  i n  rosną nieograniczenie, suma ta dąży do granicy, którą 
stanowi całka podwójna

| | P («, te;) du d v ,

wzięta w prostokącie, ograniczonym przez proste

u =  «0, u — U, w =  w0, w =  W.

i\lożna napisać również tę całkę w postaci
r u rW

du P {u, w)
J  Uo J  W0

dw,

albo też wreszcie, przy uwzględnieniu całek krzywolinjowych

(7) I du ( X  («, v; w, t) dw. 
J  (ab)  J  (a ’ b ’)

Go do ostatniego wyrażenia, zakładamy, że u i v  są to spółrzęd- 
ne jakiegokolwiek punktu łuku ab , a w i t — spółrzędne dowolnego 
punktu luku a'b‘. Zakładając, że punkt («, v) jest stały, każemy punk­
towi (w, t) zakreślać łuk a' b’ i bierzemy całkę krzywolinjową

I X  dw wzdłuż a'b'. Otrzymujemy funkcję liczb u i v, którą ozna­

czymy np. przez R(u, v)\ następnie obliczamy wzdłuż łuku a b  całkę 

krzywolinjową J  R (u, v) du.

Ostatnie (7) z otrzymanych wyrażeń granicy sumy (6) może być za­
stosowane przy jakichkolwiek drogach a b  i a' b . X ystarczy, jak to 
już wielokrotnie czyniliśmy, podzielić każdą z krzywych ab i a b na 
luki dość małe, ażeby spełniały żądane warunki, skojarzyć wszelkiemi mo- 
żliwemi sposobami części łuku a b  z częściami łuku a b' a następnie 
dodać otrzymane wyniki. Postępując w ten sam sposób ze wszystkiemi 
sumami iloczynów częściowych, analogicznemi do sumy (6), stwierdzimy, 
że granicą sumy 5  jest suma ośmiu całek podwójnych, podobnych do
całki (7).
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Oznaczmy tę granicę przez

mamy równość:

(8)

i

( ’ |' F ( z .  z') dz, dz'-

' = I du I X  dw — I dv X dt
> (ab) ' (a'b'i (ab) ' (a b-)

— 1 du f  Y d t- \ r dv I Y dw
J  (ab) '(ab-) J (ab) J' (a b )

-f i 1 du 1 Ydw—i 1 dv 1 Y dt
. (ab) ’ tab) (Ob) ' ( ab)

+  *l du
J  (ai)

f  X d t + i 1 dv 1 X dw,
'(ab-) ' (ab) ' (a b )

którą można jeszcze napisać w postaci skróconej

I | F(z, z') dz dz' =  I (du -f /' dv) I (X -f- < V) (dw -f i dt)

lub wreszcie

(9) ( f F(z, z’) dz dz' =  f  dz I F (z, z') dz'.

Wzór (9) jest zupełnie podobny do wzoru, który pozwala obliczyć 
zapomocą dwu kolejnych kwadratur zwykłą całkę podwójną, rozciągniętą 
na powierzchnię prostokąta (t. I, art. 120). Obliczamy z początku całkę

f F(z, z ) dz'

wzdłuż łuku a'b', uważając z za stałe; wynik stanowi funkcję '!> (z) 
zmiennej z. którą całkujemy następnie wzdłuż łuku ab. Ponieważ obie 
drogi a b  i a' b' odgrywają podobną rolę, można oczywiście odwracać 
porządek całkowali.

Niech M oznacza liczbę dodatnią większą od wartości, przybiera­
nych przez moduł funkcji F (z, z ), gdy z i z' przebiegają łuki nb 
i a b' ; jeżeli L i L' oznaczają odpowiednio długości tych łuków, to 
moduł całki podwójnej jest mniejszy niż MLL' (art. 283). Gdy jedna 
z tych dróg, np. a'b' jest krzywą zamkniętą, całka

F{z, z') dz'
J  <.o'b')
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równa się zeru, jeżeli funkcja F(z, z') jest całokształtna dla wartości z', 
odpowiadających punktom, położonym wewnątrz tej krzywej i dla war­
tości zmiennej z, odpowiadających punktom łuku ab. To samo tedy 
stosuje się do całki podwójnej.

352. Uogólnienie twierdzeń Caucliy‘ego. — Niech C i C’ 
oznaczają dwie krzywe zamknięte bez punktów podwójnych, położone 
odpowiednio w płaszczyznach zmiennnych z i z', a F  (z, z') — funkcję, 
którą jest całokształtna, gdy punkty z i z' pozostają w obszarach, ogra­
niczonych przez te krzywe i na samych krzywych. Weźmy całkę po­
dwójną

/ = ( '  *  f  F ( z , z ’) d +  ^
J  (O  J  (C ) (z —  x) (z' —  x ’)

w której a; oznacza punkt, położony wewnątrz obwodu C, a x' — 
punkt wewnętrzny względem obwodu C\ i przypuśćmy, że oba te obwo­
dy są przebiegane w zwrocie dodatnim. Jeżeli z oznacza punkt stały 
obwodu C, to całka

/’ F  (z, z') dz'
. ’ (C) (z — x) (z' — x') ’

jest równa

2 z i F  (Z’ X  ) ■ 
z — %

Otrzymujemy tedy

1 = 2  Z i f  d z ,
. 1 ( 0  Z X

a następnie, stosując raz jeszcze wzór Cauchy’ego

/  =  — 4 ~2 F  (x, x'),
skąd wynika wzór

( 10) F(x, x') =  —
F  (z, z') dz' i

(z — x) (z! — x')

podobny zupełnie do wzoru Cauchy'ego i upoważniający do podobnych 
wniosków. Przekonywamy się przy pomocy tego wzoru o istnieniu w roz­
ważanych polach pochodnych cząstkowych wszystkich rzędów funkcji 
F  (z, z') i otrzymujemy dla pochodnej

fint + n p

dxm dx'‘
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wzór ogólny

I ()"' • F  \ . '1 . . .  m . \ . '1 . . .  n l (z, z ')  dsf
ÓX" d x ‘ 4 s* ./(O J «  , (2  a i:' ,vV' 1

W celu otrzymania wzoru Taylora załóżmy, że obwody C i  C  
są okręgami; niech a  oznacza środek a R — promień koła C, b zaś 
i R ’ — środek i promień kola C'. Gdy bierzemy punkty ,v i x ,  po­
łożone odpowiednio wewnątrz tych okręgów, to

| jc -  a  | r  <  R  i | a-' — b \ —  r ’ <  R\

i ułamek wymierny

I 1
(z — a) i 2 — a-’ i I z — a (x— a)] [sf— b — (a '— b11

może być rozwinięty według potęg różnic x  — a i x "— b

1 lv O)1" {x ’ b)

i ;  -  X) (2* a  ) r “  — T 1 ' • 1 i: W  '

szereg z prawej strony znaku równości jest jednostajnie zbieżny, gdy 
punkty z  i z' przebiegają odpowiednio okręgi C i C ', ponieważ 
moduł wyrazu ogólnego jest równy

Można tedy we wzorze (10) zastąpić
___1________

(z — x) (z" — x )

przez ten szereg i całkować wyraz po wyrazie, co nam da:

F ( x ,  x') = ------ -
4 - 2

^  ^  (x—a)m (X* -
mz=0 n=0

F(z, z') dz 
—a)»+, (2'—̂ )"+ł’

uwzględniając wzory, powstające przez podstawienie do związków (10) 
i (11) liczb a  i b zamiast x  i x ’, odnajdujemy  ̂ wzór Taylora

( 12) F { x ,  X1) =  F ( a ,  6 ) + V
m=0

()n,- n f

d a m d b n

(x  — a )m (x ‘ — b )n 
m ! n !

w którym skojarzenie m =  n — 0 zostaje przy sumowaniu wyłączone.
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Uwaga. — Spółczynnik amn przy (x — a)m (x'— b)n w szeregu 
powyższym równa się całce podwójnej

—  f  dz f F  (z, z') dz'
. (Q • (C) (z—a)m+1(z'—b)n+1 ’

jeżeli M jest granicą wyższą modułu | F (z, z ’) | na okręgach C. 
i C \  to zgodnie z pewną znaną uwagą ogólną

n M 2 -  R . 2 -  R ’ =  — —
4 - 2 Rm+K R'n+1 Rm R’n

Funkcja
M

x  — a
R

l — x'— b\ ’
R'

est zatym dla F (x, x') funkcją zwyższającą (t. I, art. 192).

354. Funkcje, dane w postaci całek określonych. — Ażeby zbadać 
niektóre funkcje, staramy się często wyrazić je w postaci całek określo­
nych, w których zmienna niezależna występowałaby pod znakiem całko­
wania jako parametr. Podaliśmy już warunki dostateczne do tego, iżby 
można było stosować zwykły sposób różniczkowania, gdy zmienne są rze­
czywiste (t. I, art. 98, 100).

Poruszmy na nowo to zagadnienie w zakresie zmiennych zespolonych. 
Niech F(z, z ’) oznacza funkcję dwu zmiennych z i z', całokształtną, 
gdy punkt}’, odpowiadające tym zmiennym, leżą odpowiednio w obszarach 
A i A'. Weźmy w obszarze A jakąś określoną drogę L o długości 
skończonej i zbadajmy całkę określoną

(13) < & (x )= j‘ F (z, x) dz,

przy założeniu, że x oznacza dowolny punkt obszaru A'. Ażeby do­
wieść, że ta funkcja <P> (x) jest funkcją całokształtną zmiennej x / za­
kreślmy dokoła punktu jako środka, okrąg o promieniu R, położo­
ny całkowicie w obszarze A'. Ponieważ funkcja F  {z, z’) jest cało- 
kształtna, przeto według wzoru podstawowego Cauchy’ego:

F(z, x) = J (Q
F  (z, z') dz

z’ — a:
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i całka (13) może być napisana w postaci

Weźmy w kole C punkt zbliżony do punktu x, ma
my podobnież:

<i> <jc+ i x )  =  1 r  d z  r  z ' dz  ,
2 - i  J a )  J<o z' — x  — A*

i przeto, zapomocą rachunku, wykonanego już kiedyś (art. 21*1), otrzy­
mujemy:

i \ A v' ■ I' i v i I |' . • F (z , z') dz'
A  v 2  - /  J  , n  J  (a  ( z '  —  -VI5

4 - —  j rfż |’ F(z, z’) dz:--------
J  (c» (<S*— X)* (Z' —  X —  A*)

Niech Af oznacza liczbę dodatnią, większą od wartości, przybiera­
nych prJPez moduł funkcji F (Z, z'), gdy punkty z i z' zakreślają
odpowiednio linje L i C, S  — długość linji Z., a p — moduł przy­
rostu A.v. Moduł drugiej całki jest mniejszy niż

P ^  2 z R S _ M S
2 z R2 (R— p ) R (R — p)

i przeto dąży do zera, gdy punkt zbliża się nieograniczenie do
punktu x. Funkcja 4>(x) posiada tedy jedną określoną pochodną:

F(z, z!) dz' 
( z ' - x y

Atoli istnieje również związek (art. 291)

dF  _  1 r  F{z, z1) dz'
dx 2 ni J (c, (z' — x)2

wzór poprzedni może być napisany w postaci

r  dF
(14) $ ' ( * ) =  T - dz-J  a) dx

Odnajdujemy zwykły wzór, dotyczący różniczkowania pod znakiem
całki.
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Rozumowanie powyższe nie da się zastosować, gdy droga całkowa­
nia L rozciąga się w nieskończoność. Załóżmy, w cełu ustalenia biegu 
myśli, że L jest to półprosta nieograniczona, wychodząca z punktu an 
i tworząca z osią liczb rzeczywistych kąt 0. Powiemy, że całka

pCD
<£> (x) =  F  (z , x) dz,

J  a0
jest jednostajnie zbieżna, jeżeli wszelkiej liczbie dodatniej e można pod­
porządkować taką liczbę dodatnią Al, iżby przy wszelkim położeniu 
punktu x w A' był spełniony warunek

..co
F  [z, x) dz

• ’ ao+-P e‘
e .

o ile tylko o jest większe niż Al. Dzieląc drogę całkowania na nieskoń­
czenie wiele odcinków prostolinjowych, uzasadnimy, źe wszelka całka je ­
dnostajnie zbieżna jest równa sumie szeregu jednostajnie zbieżnego, które­
go wyrazami są całki, brane wzdłuż pewnych odcinków półprostej nieograni­
czonej L.  Wszystkie te całki są funkcjami całokształtnemi zmiennej x ;  
to samo da się tedy orzec o całce

F  (z, x) dz

fart. 297).
Stwierdzamy również, że można stosować zwykły sposób różniczko­

wania, byleby otrzymana całka

00 dF , dz,
a,„  ĆX

była także jednostajnie ’ zbieżna.
Przypuśćmy, że funkcja F(z, z’) staje się nieskończoną dla jednej 

z granic a0 linji całkowania: powiemy podobnież, że całka jest jednostaj­
nie zbieżna w pewnym obszarze, jeżeli do każdej liczby dodatniej e mo­
żna dobrać taki punkt a 0 . + y  linji L, iżby przy wszelkim położeniu 
punktu x  w danym obszarze dowolny punkt b linji L, zawarty po­
między punktami a0 i a0 -j- czynił zadość warunkowi: I

I A {z, x) dz 
I J  ao+’l

6 .

Można związać z tym określeniem takie same wnioski, jak w przy­
padku, gdy jedna z granic całki oddala się w nieskończoność, i uzasadnić 
je w taki sam sposób.
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•Ul. Zastopowanie do funkcji — i alka, określona wzdłuż osi liczb rze­
czywistych

(15) r  (z) =  ( *" ł*~ l e ~ ' dt,
o

którą zbadaliśmy byli tylko dla wartości rzeczywistych i dodatnich zmiennej z 
(t. I, art. 9t), przybiera wartości skończone, gdy część rzeczywista tej zmiennej, 
klórą oznaczymy przez TJ(z), jest dodatnia. Weźmy w istocie, z ~  x  iv\ stąd 
wynika, te

| t!~ l e~ ' | =  t '~ l e ~ ! .

Ponieważ całka

I V-» e-< dt
.) o

posiada wartość skotlczoną, gdy x  jest dodatnie,-to samo się stosuje do całki (lał, 
(t. I, art. 91. 92). Całka ta jest jednostajnie zbieżna we wszelkim obszarze, określo­
nym przez warunki

N  >  ^ ( z ) > r (,

przy założeniu, że N  i r, oznaczają dwie dowolne liczby dodatnie. Istotnie, 
możemy napisać

r(z) = I /*-' e~' dtĄ- I V-» e~' dt,
o ,/ i

i wystarczy dowieść, że każda z całek z prawej strony z.naku równości jest jedno­
stajnie zbieżna. Dowiedźmy tego np. co do drugiej. Niech l oznacza liczbę do­
datnią większą od jedności; jeżeli '7? (z) N, to

f* + * /* + OC
I e~' dt <  I tN~ l e~ ‘ dt,

J  i J  i i
i można wyznaczyć liczbę dodatnią A lak wielką, iżby ostatnia całka była mniejsza 
od wszelkiej liczby dodatniej e, byleby był spełniony warunek / A. Funkcja 
F (z), określona przez całkę (15), jest zatym funkcją, cąłokształtną w każdym obsza­
rze płaszczyzny, położonym na prawo od osi Oy. Funkcja r (z )  czyni jeszcze 
prócz tego zadość warunkowi

(16) r ( z  +  i) =  z r w ,

który da się otrzymać zapomocą całkowania przez części, a przeto i warunkowi 
bardziej ogólnemu

(17) r  (z -(- n) =  z (z -j- 1) . .  . (z -f  n — 1) F (z),

który stanowi bezpośredni wynik poprzedniego.
Własność ta pozwala rozciągnąć określenie funkcji T {z )  również na wartości 

zmiennej z, których części rzeczywiste są ujemne. Weźmy, w istocie, funkcję

( 1 S )
T (z n)

1). . .( *  +  „ - ! )  ’
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oznaczając przez n liczbę całkowitą dodatnią; licznik 1' (z -1- n) jest funkcją ca- 
loksztatną zmiennej z , określoną dla wartości, spełniających warunek

funkcja -i (z) jest to tedy funkcja częścioksztaltna, określona dla wszystkich war­
tości zmiennej, których część rzeczywista jest większa, niż — n. Owóż ta funkcja 
•i (z) na prawo od osi Oy równa się tożsamościowo, według wzoru (17), funkcji 
całokształtnej T (z); jest to tedy właśnie-, w pasie zawartym między prostemi

Ti (z) — 0 i n  (z) =  — n,

dalszy ciąg analityczny funkcji całokształtnej T (z). Ponieważ atoli liczba całko­
wita n jest dowolna, wnioskujemy stąd, iż istnieje funkcja częścioksztaltna, której 
biegunami pierwszego rzędu są wszystkie punkty

z =  0, z =  — 1, z z =  — n, . . .  ,

i która na prawo od osi Oy równa się całce (15). Oznaczamy również tę funkcję 
częściokształtną przez T (z), lecz wzór (15) pozwala wyznaczyć jej wartość liczbową 
tylko wówczas, gdy Ti (z) >  0. Gdy 71 (z) <  0, należy w celu otrzymania wartości 
liczbowej tej funkcji stosować prócz tego związek (17).

Podamy tu wyrażenie funkcji T (z), ważne przy wszelkiej wartości zmien­
nej z.

Weźmy funkcję całkowitą
+ 3°

której punktami zerowemi są bieguny funkcji P(z). Iloczyn 5  (z) r (z )  musi być 
funkcją całkowitą. Można dowieść, że ta funkcja całkowita równa się e , gdzie 
C oznacza stalą Eulera ( ‘), (t. I, str. 42), i stąd wysnuwamy wzór

(19)

który wskazuje, że

_1____ 1
z r (z) r (z 4- 1) 

1

Cz
H K )

e n ,

r t z - ł - i )
jest to funkcja przestępna całkowita.

855. Przedłużanie analityczne funkcji dwu zmiennych. — Niech n =  F (z ,z ')  
oznacza funkcję dwu zmiennych z i z', całoksztaltną, gdy punkty, wyobrażające 
te dwie zmienne, pozostają w dwu obszarach spójnych A i A' odpowiednich pła­
szczyzn. Można dowieść, podobnie jak w stosunku do jednej zmiennej (art. ->41), że 
wartość tej funkcji dla dowolnego układu punktów z i z', należących do obsza­
rów A i A', może być wyznaczona, gdy znamy wartości funkcji F  i wszystkich 
jej pochodnych cząstkowych, odpowiadające układowi dwu punktów z a, z b, 
należących do tych samych obszarów. Wobec tego wydaje się rzeczą łatwą zastoso- 1

(1) hermite, Cours d Analyse, (kurs Analizy), wyd. 4, str. 142.
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wanie pojęcia przedłużenia analitycznego również do funkcji dwu zmiennych zespo-

Jmn, iż istnieją dwie liczby do­

datnie r  i r\ posiadające własność następującą: szereg

(20) F(z. z') =V ?' n

jest zbieżny, gdy jednocześnie
I - I <  r, | z' | <  f ,

a rozbieżny, gdy jednocześnie
| z | >  r, | z* | >  r*.

Szereg ten określa zatym funkcję F(z, która jest ealoksztaltna, gdy
punkty z, z' pozostają odpowiednio w kołach C  i C  o promieniach r i r'; 
nie poucza’nas jednak bynajmniej o sposobie istnienia tej funkcji, gdy

I z | >  r luli | z' | >  F .

Wyobraźmy sobie, w celu ustalenia biegu myśli, że punki z przebiega dro­
gę L. idącą od początku układu do punktu Z. położonego zewnątrz kola Cj 
a punkt z' inną drogę L\ która się zaczyna w punkcie z' =  0, a kończy w pew­
nym punkcie Z ' ,  zewnętrznym względem kola C . Weźmy dwa punkty a i fi, 
położone odpowiednio na dwu drogach L i L’, wewnątrz kół C i C .  Szereg 
(20) i szeregi, które otrzymujemy zeń przez wielokrotne różniczkowanie, pozwalają 
utworzyć nowy szereg potęgowy

( 21) ( Z - a r  (*' — ?)",

który jest bezwzględnie zbieżny, gdy moduły

I * — “ I i U' -  M
są odpowiednio mniejsze od dwu dobranych stosowni* liczb dodatnich r, i r,':

I z — a I < r u | z' — ? | <  r,\
Oznaczmy przez Cj okrąg o promieniu r,. zakreślony w płaszczyźnie z-ów 

dokoła punktu i, jako środka, a przez Cj' — okrąg o promieniu r,', zakreślony 
w płaszczyźnie zmiennej z' dokoła punktu jł. Gdy punkt z leży w części wspól­
nej dwu kół C i  Cj, a punkt z' w części wspólnej kół C' i Cj', suma szeregu
(21) równa się tożsamościowo sumie szeregu (20). Jeżeli można obrać liczby r, i r,' 
w ten sposób, iżby koło Cj wykraczało częściowo poza koło C lub koło C,' poza 
kolo C'. to określenie funkcji F (z , z') zostaje rozciągnięte na obszar, występują­
cy częściowo poza poprzedni. Łatwo zrozumieć, iż postępując dalej w ten sposób, 
możemy stopniowo przedłużać coraz dalej funkcję F (z , z'). Lecz tu występuje nowy 
ważny pierwiastek. W istocie, naleiy koniecznie uwzględniać spólzaletność sposobów 
poruszania się obu punktów zmiennych po ich drogach. Oto przykład nader prosty, 
który zawdzięczamy Sauvage’owi (')•

(') S auyage, Premiers principcs de la Thiorie gćnćrale des fonctions de plu- 
sieurs rariables (Pierwsze zasady teorji ogólnej funkcji wielu zmiennych). (Annales
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Mamy dane:
u =  \ z — z' -f-1;

weźmy wartości początkowe następujące:

z =  z' =  0, u — 1

i określmy drogi punktów zmiennych z i z' w taki sposób: po 1-sze) drogą, za­
kreślaną przez z', ma być odcinek prostolinjowy, rozciągający się od początku 
układu do punktu z' — 1; po 2-gie) droga, zakreślana przez z, ma się składać 
z trzech pólokręgów: pierwszego OMA (rys. 83), o środku na osi liczb rzeczywi­

stych, na lewo od początku układu, i promieniu mniejszym od 2 ’ drugiego A N B ,

o środku, położonym również na osi liczb rzeczywistych, w ten sposób, iżby punkt —1 
należał jeszcze do średnicy AB\ wreszcie trzeciego, PBC, którego środkiem byłby

Rys. 83.

środek odcinka, łączącego punkt B z punktem C (z — 1). Pierwszy i trzeci pól - 
okrąg niech będą położone powyżej osi liczb rzeczywistych, a drugi — poniżej, tak 
iżby obwód OMANBPCO otaczał punkt z =  — 1. Obierzmy teraz przebieg na- 
stępujący:

1) z’ pozostaje równym zeru, a punkt z zakreśla całą drogę O ABC’,

2) z . pozostaje równym 1, a punkt z' zakreśla całą swą drogę.

Biorąc zmienną pomocniczą ł =  z — z', stwierdzamy łatwo, że drogą, prze­
biegana przez punkt, wyobrażający zmienną t w płaszczyźnie z-6w, jest właśnie 
obwód OABCO, który otacza punkt krytyczny t =  — 1 pierwiastka \t -f- 1. War­
tość końcowa funkcji u równa się zatym — 1.

de la Faculte de Sciences de M arseille — Roczniki wydziału nauk ścisłych w Mar- 
syiji _  t. XVI). Rozprawa ta jest doskonałym wstępem do badań nad funkcjami ana- 
litycznemi wielu zmiennych.
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Obierzmy natomiast przebieg następujący:

1) z pozostaje równym zeru, a zmienia się od O do L t  (c— liczba 
dodatnia nader mała);

2) t1 pozostaje równym 1 - C. ii punkt - zakreśla całą drogę OARC;

3) - pozostaje równym 1, a 2 zmienia się od 1 — t do 1.

• idy zmienia się od O do 1 — t, punkt pomocniczy t zakreśla drogę
która się kończy w punkcic O' nader hlizkim punktu — 1 osi liczb rzeczy-

wistych Ody - zakreśla następnie drogę OARC, t przebiega drogę 0 'A 'R 'C . 
nakladalna na poprzednią i kończącą się w punkcie C osi liczb rzeczywistych, 
takim żc O C  — t. Wreszcie, gdy z' zmienia się od 1 — t do 1, punkt t wra­
ca z C ’ do początku układu. Punkt pomocniczy t przebiega tedy obwód zamknię­
ty 0 0 'A'KCO, względem którego punkt 1 loży ze strony zewnętrznej, byle­
byśmy obrali dos<; intlo «. Wartość końcowa funkcji u będzie tedy równa -J- 1.

Istota osobliwości funkcji analitycznych wielu zmiennych jest o wiele mniej 
znana, niż istota osobliwości funkcji jednej zmiennej. Jedną z największych trud­
ności tego zagadnienia stanowi to, że pary wartości osobliwych nie są odosobnione (').

II. —  Funkcje uwikłane. Funkcje algiebraiczne.

356. Twierdzenie Weierstrnssa. — Jużeśmy uzasadnili (t. I, art. 193) 
istnienie funkcji uwikłanych, określonych przez równania, których lewa 
strona może być rozwinięta w szereg, uporządkowany według potęg do­
datnich rosnących dwu zmiennych. Rozumowania, użyte przy założeniu, 
że zmienne i spółczynniki są rzeczywiste, dają się zastosować bez zmiany, 
gdy zmienne i spółczynniki przybierają jakiekolwiek wartości rzeczywiste 
lub urojone, byleby zostały zachowane inne założenia. Uzasadnimy teraz 
wzór bardziej ogólny, zachowując znakowanie, użyte poprzednio przy tym 
badaniu; zmienne zespolone oznaczymy przez x  i y .

Niech F(x, y ) oznacza funkcję, całokształtną w otoczeniu układu 
wartości „v — a, y  =  ? i taką, że F(a, | i)= 0 ; załóżmy, do czego 
jesteśmy zawsze uprawnieni, że a =  p =  0. Równanie F  (0, y) =  0 
posiada pierwiastek y  =  0, jedno lub wielokrotny. Zbadaliśmy przypa­
dek, gdy y  — 0 jest pierwiastkiem jednokrotnym; zbadajmy obecnie za­
wożenie ogólne, że y  =  0 jest pierwiastkiem wielokrotnym rzędu n ró­
wnania ^(O, y  =  0. Jeżeli uporządkujemy względem potęg zmiennej y  
szereg, wyrażający F (x ,y )  w otoczeniu punktu x — y  =  0, to sze­
reg ten przybierze postać:

(') Wszystko, co dotyczy tego zagadnienia, znajdzie czytelnik w rozprawie 
1’oincare'go w czasopiśmie .Acta mathematica’ (t. XXVIJ i w pracy P. Cousin a 
(tamże, t. XIX).
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( 2 2 )  F ( x ,  y )  =  A 0 - j - A i y  +  . . .  +  A ny ‘ +  A n + iy ™  +  . . . ;

spólczi nniki A , w tym wzorze są to szeregi potęg zmiennej x ,  z któ­
rych n  pierwszych równa się zeru przy x  =  0 , lecz (n  - f  l)-szy, A n , 
nie jest równi zeru przy x  =  0. Niech C  i C  oznaczają dwa okrę­
gi o płomieniu R  i R , zakreślone odpowiednio w płaszczyznach x-ów 
i y - ó w dokoła początku układu, jako środka. Załóżmy, że funkcja 
F ( x ,  y)  jest całokształtna w obszarze, określonym przez te dwa koła 
oraz na karnych obwodach tych kół; ze względu na to, że A n nie równa 
się zeru przy x  —  0 , możemy założyć, że promień R  koła C  jest tak 
mały, że funkcja A n nie staje się zerem ani wewnątrz koła C  ani na 
jego obwodzie. Niech M  stanowi granicę wyższą modułu | F ( x ,  y )  | 
w omawianym obszarze, a B  —  granicę niższą modułu | A „  \ . Według 
wzoru podstawowego Cauchy’ego, przy oznaczaniu przez % i y  dwu 
dowolnych punktów, położonych wewnątrz kół C  i C ,  mamy

I I .  E u n k c je  u w ik ła n e . —  F u n k c je  a lg ie b ra ic z n e .

wnioskujemy stąd, 

jest mniejsz}- od - 

koła C.

F(x , y) -
= - -  c2 n i J  c

F (x, /) dy'
y  —

że moduł spółczynnika Am przy y m
M , , , .a to przy dowolnej wartości

R'

we wzorze (22) 

x wewnątrz

Po stwierdzeniu tego możemy napisać

(23) F(x , y) =  Any" (1 +  P  +  Q),
zakładając, że

p  =  A nt1 y  ńn+2_ y  i _
An An y ^

Q '=== —°- —  +  . . .  +  —
An y n An y

Niech p oznacza moduł zmiennej y\ otrzymujemy

P
M , 2

'n \ D’ ' V' 2 1
i jeżeli 

(24)

BR'" 1 R' R

P < R ’

B R'n

P
R'

1 -
R '

B R ’n 
BR'a+ 2 M

moduł ten musi być mniejszym od
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Oznaczmy z drugiej strony przez ą(r) wartość największą mo­
dułów funkcji

AłJ * * M ' ' I —1

dla wszystkich wartości zmiennej ,v. których moduły nie przewyższają 
liczby dodatniej r  <  R. Ponieważ le n funkcji równają się zeru przy 
.V =  0, przeto ;u (rI dąży do zera wraz z r. i można zawsze obrać 
dość małe r, iżby, przy oznaczeniu przez p jakiejś określonej liczby 
dodatniej, był spełniony warunek

(25)
|Mr)

B
1
O \ r < R ] .

Obrawszy liczby r i p, czyniące zadość wskazanym warunkom
(24) i 125), zastąpmy koło C w płaszczyźnie jc-ow kołem C r o środ­
ku w punkcie x =  0 i promieniu r, i podobnież koło C  w pła­
szczyźnie zmiennej y  kołem spółśrodkowym Cy o promieniu p. Je ­
żeli nadajemy zmiennej ,v taką wartość, że | X | <  r i każemy pun­
ktowi y  przebiegać okrąg Cp', otrzymujemy wzdłuż tego całego okrę- 
gu, ze względu na sp osób , w który obraliśmy liczby r i p:

I P \ < ~ ,  I Q I <  ” ’

a przeto | P -f- Q | <  1. Gdy punkt y  przebiega okrąg Cd w zwro­
cie dodatnim, argument sumy 1 -J- P  -|- Q odzyskuje wartość początko­
wą, gdy tymczasem argument czynnika A„y" wzrasta o 2 n~. Równa­
nie F (x, y) =  0, w którym | x | r, posiada tedy n i tylko n
pierwiastków o module mniejszym od p.

Wszystkie inne pierwiastki równania F (x, y) =  0, o ile istnieją, 
posiadają moduły większe od p. Otóż liczbę p można zastąpić przez
liczbę dowolnie małą, mniejszą niż p, byleby r było zastąpione je­
dnocześnie przez liczbę mniejszą, a spełniającą zawsze warunek (251; 
stwierdzamy tedy, że równanie F  i.v, y )  — 0 posiadają nie mniej i nie 
więcej, niż n pierwiastków, które dążą do zera wraz z x.

Gdy punkt x  pozostaje wewnątrz koła Cr lub na jego obwodzie, 
n punktów, odpow iadających pierwiastkom y lt y',, . . . , y n o module 
mniejszym niż p, pozostaje wewnątrz koła Cp'. Pierwiastki te nie są
w  ogólności funkcjami całokształtnemi zmiennej x wt kole CM lecz 
wszelka funkcja symetryczna całkowita tych n pierwiastków jest taką 
funkcją. Wystarcz.}- oczywiście uzasadnić to dla sumy

v *  +  V  +  • • ■ +



I f .  —  F u n k c je  u w ik ła n e .—  F u n k c je  a lg ie b ra iczn e . 273

w której k oznacza jakąkolw iek liczbę całkow itą dodatnią. Zbadajmy 
w tym  celu całk ę podwójną

ó F (x \  / )

y ' k  ć y '  d x ' t

(Cr) F (X ’’ / )  X

przy założeniu, że \ x  \ <  r. Jeżeli | y '  | =  p, to funkcja F ( x ' ,  y ') 
nie m oże się stać rów ną zeru przy żadnej w artości zmiennej x '  
w obszarze C r i na obwodzie tegoż, i jedynym  biegunem funkcji pod­
całkowej w ew nątrz koła Cr jest punkt x '  =  x . O trzym am y tedy

a przeto

d F (x /)
d y

F ( x ’, y )

d x '

x ’— x

d F ( x ,  / )

f  (x , y )

d F (x , / )
<>y‘__

F ( x ,  y ’)
d y '.

Zgodnie z pewnym twierdzeniem ogólnym (art. 306), całka ta równa 
się wyrażeniu

—  4  - 2 ( j /j * +  y 2k +  • • • +  y«*) ,
w  którym

yi> y% > ■ • i y»

oznaczają n pierwiastków równania F { x , y ) =  0, których moduły 
są mniejsze od p. Z drugiej strony całka / jest funkcją całokształtną 
zmiennej x w obszarze zmienności Cr (1), gdyż można rozwinąć

_ -1— w szereg jednostajnie zbieżny, uporządkowany według potęg zmien­

(i) Oczywiście, oznaczamy tutaj, jak w wielu innych miejscach, tą samą literą 
zarówno pewien określony zbiór wartości liczbowych czyli obszar zmienności, jak od­
powiadający mu obszar płaszczyzny (koło i t. p.). /Oo więcej, nie odróżniamy często 
dla krótkości tych pojęć, mówiąc o poruszaniu się zmiennej, zawieraniu się zmiennej 
wewnątrz kola i t. p., co na danym poziomie naukowym nie powinno powodować 
żadnych nieporozumień. Oryginał odznacza się w tym względzie jeszcze większą 
swobodą.

[ Uw. tłum.

Kurs analizy matematycznej 1S
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nej .v i całkować następnie wyraz po wyrazie. Ponieważ rozmaite su­

my ^  yik stanowią funkcje całokształtne w kole C r, to samo sto­

suje się do sumy tych pierwiastków, sumy iloczynów par tych pierwiast­
ków i t. d.; więc ostatecznie pierwiastki

są jednocześnie pierwiastkami równania stopnia n

(26) <J| y - *  -f- Oj y" 2+  . . . +  a„ -x y  - f  a„ =  0,

którego spółczynnikami
* l̂t ^ji • • • t

są funkcje zmiennej x, całokształtne w kole Cr i równe zeru przy 
x  =  0.

Obie funkcje

F(x , y) ' /(•*, y) a l y n~l + a t y n̂ + . . .  +  a„-.l y  +  a„,

stają się równe zeru dla tych samych układów zmiennych x, y, wzię­

tych wewnątrz obszarów C r i CV Dowiedźmy, że stosunek  ̂ (A' ' *
/(.v. y)

jest funkcją całokształtną w tej dziedzinie. Weźmy w tym celu takie 
określone wartości tych zmiennych, że

I x  | <  r, | y  | <  p,

i zbadajmy całkę podwójną

j =  f  r f / f  f  — i * . ----------
. / ( C r)  .; (Cr)  / ( * ' , / )  ( y — x ) ( y ' —y)

Po ustaleniu jakiejś wartości y' o module p, funkcja f ( x ’, y )  
zmiennej A"’ nie może się stać zerem przy żadnej wartości tej zmiennej, 
należącej do koła C r lub jego obwodu. Funkcja podcałkowa posiada 
tedy wewnątrz C r jeden tylko biegun x' — x, i odpowiednia pozosta­
łość równa się

F (x, / )  1
/ (x, / ) y - y '

Otrzymujemy przeto

F  (x, y ) dy'
f ( x ,  / ) y  — y
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Atoli obie funkcje całoksztaitne F (x, / ) i f ( x ,y ' )  zmiennej /  
posiadają wewnątrz C), te same punkty zerowe o tych samych stopniach 
wielokrotności; stosunek tych funkcji jest tedy w kole ć}/ funkcją cało- 
Kształtną zmiennej y', i jedynym biegunem funkcji, danej do całkowania, 
jest w tym kole punkt y 1 =  y\ więc

. J  =  -  4 y L .
/ {x, y)

Z drugiej strony można zastąpić w całce iloraz

_  __1
(x'—x) ( y —y)

przez szereg jednostajnie zbieżny, uporządkowany według potęg dodatnich 
zmiennych x i y. Całkując wyraz po wyrazie, stwierdzamy, że ta całka 
równa się sumie szeregu potęgowego, uporządkowanego według potęg 
zmiennych x  \ y  i zbieżnego w kołach Cr, Cc,'. Możemy tedy napi­
sać, oznaczając przez H (x, y) funkcję całokształtną w kołach Cr i C\:

F  (x, y) = f ( x ,  y) H (x, y)
czyli

(27) F  (x, y) =  { y n- f  a x y n~x +  . . . +  a„) ■ H (x, y).

Spółczynnik An przy y n w F  (x, y) zawiera wyraz stały, róż 
ny od zera; ponieważ

są równe zeru przy % =  0, przeto postać rozwinięta funkcji H (x, y) 
musi zawierać wyraz stały, różny od zera, i rozkład, dany przez wzór 
(27), uwydatnia ten fakt, że wszystkie pierwiastki równania F  (x, y) — 0, 
dążące do zera wraz z dadzą się otrzymać zapomocą przyrównania 
do zera pierwszego czynnika.

Ważne twierdzenie, wyłożone przed chwilą, zawdzięczamy Weierstas- 
sowi (Ł). Twierdzenie to stanowi — o ile to.tylko możliwe w stosunku do 
funkcji dwu zmiennych — uogólnienie rozkładu na czynniki funkcji jednej 
zmiennej.

(') Abhandlungen aus der Funktionenlehre von K Weierstrass. (K. Weierstrass, 
Rozprawy z dziedziny teorji funkcji). — llcrlin, 1860. Możemy również uzasadnić to 
twierdzenie, opierając się jedynie na własnościach szeregów potęgowych i na twier­
dzeniu o istnieniu funkcji uwikłanej (Butletin de la Societe mathematiąue. t. XXXVI, 
1908, str. 209—215).
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d.'>7. Punkty krytyczue. — Badanie n pierwiastków równania 
F  (x, y) =  O, nieskończenie małych wraz z x, sprowadza się tedy do 
badania przy wartościach zmiennej x, blizkieh zera, pierwiastków rów­
nania o postaci

(28) f { x ,  y ) = y "  - f  rt, y"~* l - f  a, y”- 2- f  . . . - f  a„_, y  +  an=  0, 

w którym a,, ait . .  . , a„

są to funkcje całokształtne, równe zeru przy a- =  0. Gdy n >  1 ( je ­
dyny przypadek, którym mamy się zająć) punkt x — 0 jest w ogólności 
punktem krytycznym (point critiąue). Wyrugujmy z równań

/ =  0 i y = o
dy

zmienną y : rugownik i  (.v) stanowi wielomian całkowity względem 
spółczynników

®1» ai i • • • t &ni

a więc funkcję całoksztaltną av otoczeniu początku układu. Ów rugow­
nik (') staje się równym zeru przy A' =  0, i ze względu na to, że punk­
ty zerowe funkcji jednokształtnej tworzą układ punktów odosobnionych, 
możemy przypuścić, że obraliśmy tak mały promień r koła C,, iż 
wewnątrz tego kola równanie A (a) =  O nie ma innych pierwiastków, 
tylko A' =  0.

Każdemu punktowi A'0, wziętemu w tym kole, a różnemu od po­
czątku układu, będzie odpowiadało n różnych pierwiastków równania

f ( x o. y )  =  ° ;

zgodnie z poprzedniemi badaniami (t. I, art. 194), n pierwiastków rów­
nania (28) stanowi w otoczeniu punktu x0 tyleż funkcji całokształtnych 
zmiennej x. Wewnątrz kola Cr nie może zatym istnieć żaden punkt 
krytyczny, oprócz początku układu.

Oznaczmy n pierwiastków równania

/ (*o> y )  =  0 Przez y v y v ■. . , y„.

0 )  Odsuwamy na bok przypadek, w którym rugownik byłby tożsamościowo 
równy zeru. Wówczas funkcja / (x, y ) byłaby podzielna przez czynnik

1 / .  (•*, y) 1 * ■ w którym k >  1,
a fi (x, y) posiadałaby tę samą postać, co / (,r, y).
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Xiech zmienna x zakreśla pętlę dokoła punktu x =  0, poczynając od 
punktu x0; wzdłuż tej pętli wszystkie pierwiastki równania

/  (*, n) =  o
są różne i zmieniają się w sposób ciągły. Jeżeli się wychodzi np. z punk­
tu x 0 z wartością y 1 i zachowuje ciągłość w zmianie tego pierwiastka 
wzdłuż pętli, to się powraca do punktu wyjścia z wartością końcową, rów­
ną jednemu z pierwiasków równania

/ ( * o. y )  =  0

Jeżeli tą wartością końcową jest y u  to badany pierwiastek jest 
funkcją jednowartościową w otoczeniu początku układu. Przypuśćmy, że 
wartość końcowa jest różna od y 1 i równa się y 2. Zakreślanie ponow­
ne pętli w tym samym zwrocie spowoduje zastąpienie pierwiastka y 2 , 

którymś innym z pierwiastków

y i ,  y 2, ■ ■ ■, y n.

Nie może to być _y2, gdyż droga odwrotna winna prowadzić od y 2 

do y v Nową wartością końcową winien tedy być jeden z pierwiastków

y i > y 31 • • •) y n >
jeżeli jest to y 1, to stwierdzamy, że pierwiastki y l i y 2 ulegają per- 
mutacji, gdy punkt zmienny zakreśla pętlę dokoła początku układu. Je­
żeli tą wartością końcową nie jest y u  to jest nią jeden z (« —  2) 
pozostałych pierwiastków; niech to będzie np. y 2 . Ponowne zakreślenie 
w tym samym zwrocie doprowadzi od pierwiastka y 3 do jednego z pier­
wiastków

Ni> n2> yv y\i • • • > n«-

Nie może to być, z tej samej przyczyny, co poprzednio, pierwiastek y/3; 
nie jęst to również y-i, ponieważ droga odwrotna powodowałaby zamianę 
tego pierwiastka y 2 na y v  Wartością końcową jest zatym teraz 
lub też jeden z ( n  —  3) pozostałych pierwiastków

Nu Ns> • • • > y ^

Jeżeli (o jest y v to trzy pierwiastki y u  y 2, _y3 ulegają prze­
mianie kołowej, gdy punkt zmienny x przebiega pętlę dokoła początku 
układu. Jeżeli wartość końcowa jest różna od y lf to będziemy obracali 
w dalszym ciągu punkt zmienny dokoła początku układu i po pewnej 
skończonej liczbie działań powrócić musimy niezbędnie do jednego z pier­
wiastków już otrzymanych, a mianowicie do pierwiastka y , .  Przypuśćmy 
np., że to nastąpi po p  obrotach; p  otrzymanych pierwiastków

Nu N2> • • • » N/i
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ulega przemianie kołowej, gdy punkt zmienny .v przebiega pętlę dokoła 
początku układu; mówimy, że tworzą one układ kołowy p pierwiastków  
(systeme circulaire de p  racines). Jeżeli p — n, to wszystkie n pier­
wiastków tworzą jeden tylko układ kołowy. Jeżeli p  <. n, to zacznienn 
na nowo to samo rozumowanie, poczynając od jednego z n — p pozo­
stałych pierwiastków i t. d.; rzecz jasna, że postępując wciąż w ten spo­
sób, wyczerpiemy wreszcie wszystkie pierwiastki, i że można wypowiedzieć 
twierdzenie następujące: n pierwiastków równania F (x , y) =  0, rów­
nych zeru przy x  =  0, tworzy w otoczeniu początku układu jeden lub 
więcej układów kołowych.

Ula ogólności wystarczy umówić się. że układ kołowy może się skła­
dać z jednego tylko pierwiastka; pierwiastek ów jest wówczas funkcją 
jedno wartościową w otoczeniu początku układu.

Pierwiastki, należące do tego samego układu kołowego, mogą być 
wyrażone przez ten sam szereg. Oznaczmy p pierwiastków z jednego 
układu kołowego przez

i • • • > yp
i załóżmy, że x  — x'p. Każdy z tych pierwiastków staje się funkcją 
całokształtną zmiennej .v' dla wszelkiej wartości tej zmiennej, różnej od 
x' — f); z drugiej strony, gdy ,v' zakreśla pętlę dokoła punktu ,v'— 0, 
punkt ,v zakreśla kolejno w tym samym zwrocie p pętli dokoła po­
czątku układu. Każdy z pierwiastków

y i- j ' 3. • • •. yP
odzyskuje tedy swą wartość początkową: są to, w otoczeniu początku 
układu funkcje jednowartościowe zmiennej a'; ponieważ te pierwiastki 
dążą do zera, gdy x' dąży do zera, początek układu xJ =  0 może być 
tylko punktem zwyczajnym, i jeden z tych pierwiastków da się wyrazić 
zapomocą szeregu o postaci

(29) y  =  *, * ' +  * 2  x ’ 2-j- . . . - f  i m x ' m-\- . . .

czyli, po zastąpieniu zmiennej x  przez x p :

(3<>) y  =  a , x p  - f  a2 - f  . . . -L  am |-V/> j  - j -  . . . .

Twierdzę obecnie, że szereg (JO) stanowi wynik rozwinięcia -wszyst­
kich pierwiastków, należących do tego samego układu kołowego, o ile

i
tylko nadajemy przytym potędze x p j e j  p różnych wartości W isto- 

cie, przypuśćmy, ze, nadając pierwiastkowi I x  jedną z jego wartości.



II- — Funkcje uwikłane. — Funkcje algiebraiczne. 279

otrzymaliśmy rozwinięcie pierwiastka y Ł; gdy punkt x przebiega 
w zwrocie dodatnim pętlę dokoła początku układu, _yt zamienia się 

— .
na y 2, a x p ulega pomnożeniu przez e p . Stwierdzamy podobnież,

i
że y q powstaje przez zamianę we wzorze (30) pierwiastka x p przez

_1_ 2 q ~ i

x p e p . Ten wspólny szereg dobrze uwydatnia przemianę kołową p  

pierwiastków.

Należałoby jeszcze wskazać, w jaki sposób można podzielić n  pier­
wiastków równania F(x, y) =  0 na układy kołowe i jak obliczać spół- 
czynniki a, szeregów (30). Rozpatrzyliśmy już przypadek, gdy punkt 
x = y  =  0 jest punktem podwójnym (t. I, art. 199). Rozważmy inny 
jeszcze przypadek szczególny.

d FJeżeli przy x  =  y  =  0 pochodna —  nie jest równa zeru, to sze-
dx

reg, wyrażający F  (x, y), zawiera wyraz pierwszego stopnia względem x; 
wówczas możemy zastosować wzór

(31) F(x, y). =  A x  -j- By'14- . . . ,  (<4S=U0)

w którym wyrazy nienapisane są podzielne przez jeden z czynników

x 2, xy, y n+l.

Uważajmy na chwilę y  za zmienną niezależną; równanie F(x, y) =  0 
posiada jeden tylko pierwiastek, dążący do zera wraz z y ,  i pierwiastek 
ten jest funkcją całokształtną w otoczeniu początku układu. Szereg, któ­
ry nauczyliśmy się układać (t. I, art. 35, 193), posiada postać

(32) x =  y n (fl0 +  a i y  +  • • •) (a o =*= °)-
Wyciągając pierwiastek n -go stopnia z obu części równania, otrzy

mujemy
J_ n,---------------------------

(33) X" = y  V a0 +  a x y  + ...........

Przy y  =  0 równanie pomocnicze

un =  a0 +  a, y  +  . . .

posiada n  różnych pierwiastków, z których każdy daje się rozwinąć 
w szereg potęg zmiennej y. Ponieważ te pierwiastki stanowią iloczyny

2 ~ i
jednego z nich przez kolejne potęgi wyrażenia € n ? przeto można wziąć
jako n .

[  a 0 +  y  +  • • • •



we wzorze (33) którykolwiek z tych pierwiastków, pod warunkiem, że
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nadamy kolejno potędze x" wszystkie jej n wartości.

Można tedy napisać równanie (33) w postaci:
i

* " =  *> y  +  b2 y 2- f . . . ( * , 4= 0),

skąd wysnuwamy nawzajem rozwinięcie zmiennej y  według potęg pier-
t

wiastka .vn:

(34) y =  c,

Szereg ten, gdy nadajemy kolejno pierwiastkowi x n jego n war­
tości, wyraża n pierwiastków, dążących wraz ze zmienną .v do zera. 
Pierwiastki te tworzą przeto jeden układ kołowy.

O ile. chodzi o zbadanie ogólne zagadnienia, musimy odwołać się do 
dzieł, poświęconych specjalnie teorji funkcji algiebraicznych (’).

358. F u n k c j e  algiebraicznc. — Funkcjami uwikłanemi, zbadanemi 
dotychczas najlepiej, są funkcje algiebraicznc (fonctions algebriąues), 
określone przez równanie F (x, y) =  0, którego lewa strona jest to wie­
lomian nicrozkladalny (indócomposable) względem x  i y. Mówimy, że 
wielomian całkowity jest nierozkładalny, jeżeli nie można znaleźć dwu ta­
kich wielomianów całkowitych stopnia niższego

Fy (x, y ) i F, (•*, y).
iżby funkcja F(x, y) równała się tożsamościowe ich iloczynowi:

F(x, y) =  Fx (x, y) X  Fi (x, y).

Gdyby wielomian F(x, y) równał się iloczynowi tego rodzaju, to 
równanie F (x, y) =  0 mogłoby być, rzecz jasna, zastąpione przez dw a 
osobne równania

F{ (x, y) — o, F2 (x, y) — 0.

Weźmy tedy równanie stopnia «-tego względem y, w którym

?0^ ?1» • • • » -pn 

oznaczają wielomiany całkowite względem x:

(35) F(x, y) =  ®0 (x) y n - f  ®, (x) y n~' +  ®„_, (x) y  - f  (x) =  0.

C) Ob. również słynna rozprawę pr. Puisen\ o funkcjach algiebraicznych 
(Journal de M a t h e m a t ią u e s , t. XV , 1850).
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Rugując y  ze związków

^ = 0,
d F
dy

0,

otrzymujemy jako wynik wielomian A (x ), który nie może być tożsamo- 
ściowo równym zeru, gdyż założyliśmy, że wielomian F  (x, y) jest nie- 
rozkładalny. Oznaczmy w płaszczyźnie punkty

ai > *2, - . . ,  ®a,

odpowiadające pierwiastkom równania A (x) =  0 i punkty
O O O
Pl > P2 J * * * > Ph t

odpowiadające równaniu cp0(x) =  0 ; niektóre z pierwiastków mogą przy- 
tym należeć również do pierwiastków równania cp0 (x) =  0. W punk­
cie a, różnym od punktów a,-, jBy, równanie F  (a, y) — 0 posia­
da n pierwiastków różnych i skończonych

b±, b̂ i • • • i bn.

W otoczeniu punktu a równanie (35) posiada zatym n pierwiastków 
catoksztaltnych (holomorphes), dążących odpowiednio do

b\i b%, • • ■ , bn,

gdj- x  dąży do a. Niech a,• oznacza jeden z pierwiastków równa­
nia A (x) =  0; równanie F(a.i, y) =  0 posiada pewną liczbę pierwiast­
ków równych. Załóżmy np., że posiada ono /? pierwiastków, równych b. 
p pierwiastków, które dążą do b, gdy x  zmierza do a,-, dzieli się 
na pewną hczbę układów kołowych, i pierwiastki, należące do tego same­
go układu kołowego, dają się wyrazić w postaci szeregu, uporządkowane­
go według potęg ułamkowych różnicy x  — a,-. Jeżeli dla wartości a,- 
funkcja ?0 (x) nie staje się równą zeru, wszystkie pierwiastki równania
(35) w otoczeniu punktu a, tworzą tedy pewną liczbę układów kołowych; 
niektóre z tych układów mogą zawierać tylko jeden pierwiastek. Przy 
wartości fy, czyniącej funkcję <p0 (x) równą zeru, niektóre z pierwiast­
ków równania (35) stają się nieskończone; aby zbadać te pierwiastki,

zakładamy że y  =  * i przystępujemy do badania pierwiastków rów-
y

nania
Fl (x, y') = y ' n F(x, \ ) =  0,

y
które stają się równemi zeru przy x  — jty- 1 ierwiastki te dzielą się 
również na pewną liczbę układów kołowych, takich że pierwiastki te­



282 Rozdział  X V I I .  — F u n k c je  a n a l i ty c z n e  wielu zm ienn ych.

go samego układu dają się wyrazić zapomocą szeregu o postaci nastę- 
pującej: m m -f 1
(3(1) /  =  a„ [x — am+\ (X — fy) p +  . . . ; \am 4= 0),

odpowiednie pierwiastki równania względem y  będą 
szereg m 1
(37) (* — fo) r ‘m “f  u m (X -  h) ” Hr .

wyznaczone przez

który można uporządkować według potęg rosnących wyrażenia
r

zawierający na początku liczbę- skończoną wyrazów o wykładnikach 
ujemnych.

Ażeby zbadać wartości funkcji y, odpowiadające wartościom nie­

skończonym zmiennej x, używamy podstawienia X — ' ,  i w  ten
x'

sposób sprowadzamy zadanie do badania pierwiastków równania o tej sa­
mej postaci w otoczeniu początku układu. Ostatecznie w otoczeniu jakie­
gokolwiek punktu x =  a n pierwiastków równania (35) wyraża się za­
pomocą pewnej liczby szeregów, uporządkowanych według wzrostu potęg 
wyrażeń: ,

i
x — a lub (x  — a) p ;

szeregi te mogą zawierać liczbę skończoną wyrazów o wykładnikach 
ujemnych. To samo się stosuje również do wartości nieskończonych 
zmiennej x, z tą zmianą, że zastępujemy

1x — 2 0  przez —  
x

Należy zauważyć, że potęgi ułamkowe lub wykładniki ujemne wy­
stępują tylko wtedy, gdy mowa o punktach wyjątkowych. Punktami oso- 
bliwemi pierwiastków równania są tedy punkty krytyczne, dokoła których 
niektóre z tych pierwiastków ulegają przestawieniu kołowemu, i bieguny, 
w których pewne pierwiastki stają się nieskończone; zresztą żaden punkt 
nie może być jednocześnie biegunem i punktem krytycznym. Te dwa ro­
dzaje punktów osobliwych nazywa się często punktami osobliwemi algie- 
braicznemi (points singuliers algebriąues).

Badaliśmy dotychczas pierwiastki danego równania jedynie w oto­
czeniu jakiegoś określonego punktu. Załóżmy obecnie, że dwa punkty
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x  — a i x — b, z których każdemu odpowiada n pierwiastków róż­
nych i skończonych równania (35), zostały połączone zapomocą linji AB, 
nie przechodzącej przez żaden punkt osobliwy równania. Niech y l ozna­
cza jeden z pierwiastków równania F (a ,y )  =  0; pierwiastek y = f ( x ) ,  
który się staje równym y x przy x =  a, jest wyznaczony w otoczeniu 
punktu a przez szereg potęg całkowitych P { x - a ) ,  i można szukać 
jego dalszego ciągu analitycznego przy zakreślaniu przez punkt zmienny 
luku AB. Jest to przypadek szczególny zagadnienia ogólnego, i wiemy 
z góry, że w punkcie B zostanie osiągnięta wartość końcowa, stanowią­
ca jeden z pierwiastków równania F (b, y) — 0 (art. 344). Przybędzie­
my napewno do punktu b po liczbie skończonej działań; w istocie, pro­
mienie kół zbieżności szeregów, wyrażających różne pierwiastki równania 
F  (x, y) =  0 — przy założeniu, że środkami tych kół są rozmaite punkty 
drogi AB — posiadają kraniec niższy (Ł) 3 >  0, ponieważ ta droga nie
zawiera żadnego punktu krytycznego, i rzecz jasna, że można będzie 
zawsze wziąć promienie kół, których się użyje przy przedłużaniu anali­
tycznym, conajmniej równe 3.

Pomiędzy wszystkiemi drogami, łączącemi punkty A i B, można 
zawsze znaleźć taką, która prowadzi od pierwiastka y x do któregokol­
wiek z pierwiastków równania F(b, y) =  0, jako do wartości końcowej. 
Aby dowieść tego, opieramy się na twierdzeniu następującym: Jeżeli 
funkcja analityczna z zmiennej x przybiera przy każdej wartości tej 
zmiennej tylko p różnych wartości i posiada w dziedzinie całej płasz­
czyzny (wraz z punktami w nieskończoności) jedynie punkty osobliwe 
algiebraiczne, to wartości tej funkcji stanowią pierwiastki równania sto­
pnia p, którego spólczyunikami są funkcje wymierne zmiennej x.

Niech
Z\, » • ‘ • » Zp

oznaczają p  wartości funkcji z; gdy punkt x  zakreśla krzywą zam­
kniętą, owe wartości

Z\ > Z%, . . .  , Zp

mogą tylko przechodzić jedna w drugą. Funkcja symetryczna

uk =  z f - { -  Z of-f . . . zpk,

(k — liczba całkowita dodatnia) jest tedy funkcją jednowartościową.

( ' )  W  c e l u  d o w i e d z e n i a  t e g o  z  c a ł ą  ś c i s ł o ś c i ą  w y s t a r c z y  z a s t o s o w a ć  r o z u m o ­
w a n i e  p o d o b n e  d o  r o z u m o w a n i a  z  a r t .  3 4 2 .
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Funkcja ta zresztą może posiadać jedynie miejsca osobliwe o charakterze 
biegunowym (des singularitćs polaires). W istocie szeregi, wyrażające

Zf ,  Z „  . . . , Zp

w otoczeniu punktu dowolnego w odległości skończonej x  — a, zawie­
rają tylko liczbę skończoną wyrazów o wykładnikach ujemnych. To sa­
mo się zatym stosuje do szeregu, wyrażającego w*. Z drugiej strony, 
szereg, wyrażający //*, nie może zawierać potęg ułamkowych, gdyż 
funkcja ta jest jednowartościowa. Punkt a  jest tedy dla «* biegunem 
lub punktem zwyczajnym, i to samo się stosuje do punktu w nieskończo­
ności. Fukcja u* jest przeto, przy wszelkiej wartości liczby całkowi­
tej A’, funkcją wymierną zmiennej .v; to samo się stosuje do funkcji 
symetrycznych niezlożonych jakoto

N "  z,, NT z( zk, . . . ,

i w ten sposób dowód wypowiedzianego twierdzenia zostaje ukończony.
Przypuśćmy teraz, że idąc wszelkiemi możliwemi drogami od punktu 

a do jakiegokolwiek innego punktu .v płaszczyzny otrzymujemy jako 
wartości końcowe jedynie p pierwiastków równania

F ( x ,  y )  =  0 ( /? < « ) .
Owe pierwiastki

v„ y » -  • • . y P
mogą, rzecz oczywista, tylko przechodzić w siebie wzajemnie, gdy punkt 
X zakreśla obwód zamknięty; posiadają one wszystkie własności p  ga­
łęzi

*1 i , . . . , Zp

funkcji analitycznej z, którą przed chwilą zbadaliśmy. Stąd wniosku­
jemy, że

yv  ^2. • • > y*
byłyby pierwiastkami równania stopnia p  o spólczynnikach wymiernych: 
Ft (x, y) =  0. Równaniu F  (x, y) — 0 czyniłyby tedy zadość przy 
wszelkiej wartości x  wszystkie pierwiastki równania Fx (.v, y) =  0, 
i wielomian F(x, y) nie by łby, wbrew założeniu, nierozkładalnym.
n pierwiastków równania 351 należy przeto uważać— jeżeli nie czyni­
my żadnych zastrzeżeń co do drogi, zakreślanej przez punkt x  — za osob­
ne gałęzie jednej funkcji analitycznej, podobnie jak już zauważyliśmy z po­
wodu pewnych prostych przykładów (art. 264).

Wyobraźmy sobie, że z każdego punktu krytycznego zostało wy­
kreślone cięcie nieograniczone, w taki sposób, iż cięcia te nie przecinają
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się wzajemnie. Jeżeli droga punktu x  spełnia ten warunek, by nie 
przekroczyć żadnego cięcia, to pierwiastki stanowią funkcje jednowar- 
tościowe w dziedzinie całej płaszczyzny, gdyż każda z dwu dróg o tych 
samych punktach końcowych może przejść w drugą bez przekraczania 
żadnego punktu krytycznego (art. 343], Ażeby było możliwe zdanie so­
bie sprawy ze zmienności jakiegoś pierwiastka wzdłuż jakiejkolwiek drogi, 
wystarczy znajomość prawa przemiany tych pierwiastków przy zakreślaniu 
przez zmienną pętli dokoła każdego z punktów krytycznych.

U w aga. — Badanie funkcji algiebrakznych czyni stosunkowo łatwym ta oko­
liczność, iż można wyznaczyć z góry, zapomoęą obliczeń algiebraicznych, punkty oso­
bliwe tych funkcji. Nie tak się dzieje w ogólności z funkcjami uwikłanemi niealgie- 
braicznemi, które mogą posiadać punkty osobliwe p rz es tęp n e  (p. singuliers transcen- 
dants). Np. funkcja uwikłana y ( x ) ,  określona przez równanie ey  —  x  — 1 = 0  
nie posiada żadnpgo punktu krytycznego algiebraicznego, ale ma punkt osobliwy 
przestępny x  == — 1.

359. Całki abelowe. — Niech y  oznacza funkcję algiebraiczną, 
określoną przez równanie F  (x, y) =  0, a R (x, y) funkcję, wymier­
ną względem x i y\ wszelka całka o postaci

/ =  I R (x, y) dx

jest całką abelową (integrale abelienne), związaną z tą krzywą. Aźebj 
wyznaczyć ostatecznie tę całkę, musimy jeszcze mieć: granicę dolną x0 
oraz odpowiednią wartość yB, wybraną z pośród pierwiastków równania 
F (x Cj. y) — 0. Podamy tu niektóre z ogólnych i najważniejszych włas­
ności tych całek. Gdy się idzie od punktu x0 do jakiegokolwiek punk­
tu x po wszystkich możliwych drogach, to otrzymane przy tym war­
tości całki / dają się wyznaczyć zapomocą jednego z wzorów

(3S) /  =  /* -j- m x <oj -f- tn2 <»2 4“ • • • mr °v (A= 1 ,2

oznaczają wartości całki, odpowiadające pewnym określonym drogom,

mx, m2, . . .  , tnr —

liczb}' całkowite dowolne, a
01, , o>2, . . .  , wr

okresy. Istnieją dwa rodzaje tych okresów. Niektóre pochodzą z zakre­
ślania pętel dokoła biegunów funkcji R (x, y)\ są to okresy biegunowe



(pćriodes polaires). Inne powstają na obwodach zamkniętych, zwanych 
cyklami icyc.les , otaczających pewną liczbę punktów krytycznych; są to 
okresy cykliczne (p. cycliąues). Liczba różnych okresów cyklicznych za­
leży tylko od badanego związku algiebraicznego F x ,  y) — 0; jeżeli p 
oznacza rodzaj tej krzywej art. 840), to liczba ta równa się 2 p. Liczba 
okresów biegunowych może być, przeciwnie, dowolna.

Co do miejsc osobliwych, odróżniamy trzy klasy całek abelowych. 
Nazywamy całkami gatunku pierwszego (de premiere espece) takie, które 
w sąsiedztwie wszelkiej wartości zmiennej x  pozostają skończone: jeżeli 
ich moduł wzrasta nieograniczenie, to tylko z powodu dodania nieskończo­
nej liczby okresów. Całki gatunku drugiego (de deuxieme espece) są to 
takie całki, które posiadają jeden tylko biegun: całki gatunku trzeciego 
(de troisieme espece) posiadają dwa punkty osobliwe logarytmiczne. Każ­
da całka abelowa stanowi sumę całek trzech gatunków, i liczba różnych 
całek pierwszego gatunku równa się rodzajowi.

Badanie tych całek można uskutecznić bardzo łatwo zapomocą po­
wierzchni płaskich o wielu liściach (feuillets), zwanych powierzchniami 
Riemanna. Nie będziemy jednak niemi się tutaj zajmowali. Podamy tyl­
ko, a to ze względu na charakter zupełnie elementarny, dowód pewnego 
podstawowego twierdzenia, odkrytego przez Abela.

300. Twierdzenie Abela. — Aby łatwiej wysłowić wyniki, weźmy 
krzywą płaską C, wyrażoną przez równanie F(x, y) — 0 ; równaniem 
drugiej krzywej płaskiej algiebraicznej niech będzie *1' (x, y) =  0. Te 
dwie krzywe posiadają N punktów wspólnych

(* ,, Ti)- ( * 2» Ta). • • • - (Xv, T.v).
(N jest równe iloczynowi stopni obu krzywych ). Niech jeszcze R (x, y») 
oznacza jakąś funkcję wymierną; rozważmy sumę następującą:

N
'k . a . "* (*/, y i )

( 3 9 )  I  —  %  I R  ( * ,  y )  dx ,
--------- ■ <*o-.Vo)1—1

w której
r  (*i, y, )

R (x, y) dx
J  (*o, > o)

oznacza całkę abelową, braną od punktu stałego x0 aż do punktu x, 
wzdłuż drogi, która, co do y, prowadzi od wartości początkowej v0 do 
wartości końcowej yr, wartość początkowa y 0 zmiennej y  ma być 
jednakowa dla tych wszystkich całek. Rzecz jasna, że suma / daje się 
wyznaczyć jedynie z pominięciem okresu, równie jak każda z całek.
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Wyobraźmy sobie teraz, że niektóre ze spółczynników

287

, d2 , • . . , dk

wielomianu <t> (x, y) są zmienne. Gdy te spółczynniki zmieniają się 
w sposób ciągły*, punkty x,- zmieniają się również w sposób ciągły, i je ­
żeli żaden z nich nie przechodzi przez jedno z miejsc nieciągłości całki

j  R (x, y) dx,

suma / zmienia się także w sposób ciągły. Zakładamy przy tym, że się 
podąża za zmianą ciągłą każdej z całek, występujących w tej sumie, 
wzdłuż drogi, zakreślonej przez odpowiednią granicę wyższą. Suma I jest 
tedy funkcją parametrów

1 • • • » >
której postaci analitycznej będziemy obecnie szukali.

Oznaczmy ogólnie przez o V różniczkę zupełną jakiejkolwiek funk­
cji V względem zmiennych an a2, . ■ . ,

dV   ̂ . . dV  .
aa j odk

Zgodnie z wzorem (39) otrzymujemy:
N

S I = ' sy 'R  (xu yi) Sx,

Ze związków
i= 1

F(x,-, yi) =  0, d> (Xi, yi) =  0
wynika

"  ■ . * + • » = o . ' ^  ^  + * ♦ , - « .ćbc, <?y, ZVi

i przelo, oznaczając przez T  (je,-, y,) funkcję wymierną zmiennych

J / i * ,  ^ 2 »  * * * t ^

i pisząc 4>/ zamiast O J//) otrzymujemy

o x,- =  M’ (X„ yi) 0<I>,.
Stąd:

AT

* SI  = ' V '  (Xi, y,) ł ’ t e ,  y,)
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spólczynnik przy 5a, w drugiej części równości jest funkcją wymierną 
symetryczna spólrzędnych Ai punktów (.v,, _v,), wspólnych obu krzy­
wym C ■ i C'\ teorja eliminacji wykazuje, iż jest to funkcja .wymierna 
spółczynników dwu wielomianów F(x, y) i "I* (,v. y) a przeto funkcja 
wymierna parametrów

Q] * < • • • t A k •

To samo się stosuje oczywiście do spółczynników przy óas, . . . , o a*, 
i / można otrzymać zapomocą całkowania różniczki zupełnej, zawiera­
jącej funkcje wymierne

a* zmiennych i •, a k

!  =  | *1 ''a i +  ~3 ''a i +  • tak.

Owóż całkowanie to nie może wprowadzić żadnych funkcji przestęp­
nych prócz logarytmów. Suma I równa się tedy funkcji wymiernej 
spółczynników

U\, d j, . . . ,

powiększonej o sumę wyrazów , z których każdy jest równy loga ryt mó­
wi funkcji wymiernej tych samych spółczynników, pomnożonemu przez 
czynnik stały. To jest właśnie sformułowanie twierdzenia Abela w posta­
ci najogólniejszej. W języku gieometrycznym można rzec również, że 
suma wartości jakiejkolw iek całki abelowej, branej od wspólnego począt­
ku aż do N punktów przecięcia danej krzywej z krzywą zmienną 
stopnia m o równaniu d> (x, y) — 0, jest równa sumie funkcji wy­
miernej spółczynników funkcji d><x, y) i liczby skończonej składników , 
z których każdy jest utworzony z logarytmu funkcji wymiernej tych sa­
mych spółczynników i pewnego czynnika stałego.

Druga redakcja wydaje się na pierwazy rzut oka bardziej interesu­
jącą; lecz gdy chodzi o zastosowania, należy zawsze odwoływać się w my­
śli do analitycznego sposobu wysłowienia, aby ocenić zmiany ciątrłe su­
my /, odpowiadające zmianom ciągłym parametrów

• • • t •

Twierdzenie nabiera określonej dokładnie treści dopiero wówczas, 
gdy się uwzględnia drogi, zakreślane przez N  punktów

x,, x2, . . .  , Xs

w płaszczyźnie zmiennej x.
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Twierdzenie staje się ogromnie prostym, gdy mamy całkę gatunku 
pierwszego. W istocie, gdyby

"1 j ^2» * • • >

nie był}- równe tożsamościowo zeru, możnaby znaleźć układ wartości

d\ - - -  d  . . .  j dk  - - -  d  k)

przy którym suma / stałaby się nieskończoną. Niech punktami prze­
cięcia krzywej C z krzywą C', odpowiadającą wartościom

d  i ,  .  .  .  5 d  k

parametrów będą punkty

(X i, y i ) , • - - , x 'n , y 'N ).

Całka
r (x. y)
I R(x, y) dx

J  (.x<>,yo)

wzrastałaby nieogramczenie, gdyby granica wyższa dążyła do jednego 
z punktów (x i, y'i); jest to zaś niemożliwe dla całki gatunku pier­
wszego. Przeto o I =  0 i gdy

zmieniają się w sposób ciągły, / pozostaje stałe; twierdzenie Abela 
można wypowiedzieć w sposób następujący:

Gdy są dane krzywa stała  C i krzywa zmienna C' stopnia m, 
suma przyrostów całki abelowej gatunku pierwszego, związanej z krzy­
wą C, nabytych wzdłuż linji ciągłych, zakreślonych przez punkty prze­
cięcia krzywych C i C', je s t  równa zeru.

Uwaga. — Przypuszczamy, że stopień krzywej C ’ pozostaje sta­
łym i równym m. Gdyby przy pewnych szczególnych wartościach spół- 
czynników

1̂1 @2 > • • ) ) j

stopień tej krzywej uległ obniżeniu, niektóre z punktów przecięcia krzy­
wej C z C  winnyby być uważane za odrzucone w nieskończoność, 
i należałoby to uwzględnić przy stosowaniu twierdzenia. Dołączmy 
jeszcze tę, niemal oczywistą, uwagę, że gdy niektóre z punktów przecię­
cia krzywych C i C‘ są stałe, niema potrzeby uwzględniania odpo­
wiednich całek w sumie /.

Kurs analizy matematycznej. 19
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361. Zastosowanie <lo całek ultraeliptycziiych. Zastosowania 
twierdzenia Abela do analizy i gieometrji są nader liczne i ważne. 
Obliczmy wyraźnie o/ dla całek ultraeliptycznych (ul!ra-eliptiques). 

Weźmy związek algebraiczny

(40) y  =  R ( x )  =  A0 x*P+i + A l x * r + '  +  . . . +  A 2p+2,

w którym R (x) oznacza wielomian pierwszy względem swej pochodnej; 
załóżmy, iż spółczynnik ,40 może być równym zeru lecz że A0 i .4, 
nie są jednocześnie równe zeru, tak iż R(x) jest wielomianem stopnia

2 p  -j- 1 lub 2 p  -j- 2.

Niech Q (x) oznacza jakikolwiek wielomian stopnia q\ weźmj' 
za początek wartość x„ zmiennej x, nie czyniącą wielomianu /?(x) 
równym zeru, i oznaczmy przez y 0 jeden z pierwiastków równania

f  =  R (JC0).

Całkując wzdłuż drani, łączącej x0 z x, i oznaczając przez y  war­
tość końcową pierwiastka I R(x), gdy się wychodzi z punktu x0 zwar­
tością y n, napiszemy

v (x, y) =
(x. y)

(*► J'o)

Q (x) dx  

I R (x)

W celu zbadania punktów przecięcia krzywej ć, odpowiadającej 
równaniu (40), z inną krzywą algiebraiczną C ’ można oczywiście zastą­
pić wt równaniu krzywej C’ każdą potęgę parzystą y 2r zmiennej y  
przez [ /? (x) ]", a potęgę nieparzystą y 2r+1 przez y [/ ?(x )]r. Po 
dokonaniu tych podstawień otrzymamy równanie, zawierające y  jedynie 
w pierwszej potędze, i możemy tedy, oznaczając przez /(x) i ■; <x) 
dwra wielomiany pierwsze względem siebie, stopnia /. i stopnia a, któ­
rych niektóre spółczynniki będziemy uważali za zmienne, nadać równaniu 
krzywej C' postać

(41) y  9 (x) — /(x) =  0.

Odciętemi punktów przecięcia krzywych C i C ’ są pierwiastki 
równania stopnia N

(42) (x) =  / 2 (x) — R (x) ? 2 (x) =  0.

Przy pewnych szczególnych układach wartości spółczynników zmien­
nych wr dwu wielomianach f (x )  i ® (x) może się zdarzyć, że stopień



II. — Funkcje uwikłane, — Funkcje algiebraiczne. 291

równania będzie niższy od N ; niektóre z punktów przecięcia będą 
wówczas odrzucone w nieskończoność, lecz odpowiednie całki winny wy­
stępować w sumie, którą będziemy badali. Wszelkiemu pierwiastkowi 
równania (42) odpowiada dokładnie określona wartość

zmiennej y. Po tych zastrzeżeniach rozważmy sumę

otóż

.N N

I v (xi, yi)
e=i i=i

(xi , yi )

(*o, yo)

Q (x ) dx . 

V R (x)

N N
/ Q (Xi) OXj _  Q (xj) <f (x ) 8x^

1/ R  (Xi) ' /  (x d1=1 V ' £= 1
gdyż wartość końcowa pierwiastka w punkcie winna być równa y,,

t. j. —— -  . Z drugiej strony z równania ó (x,j =  0 wynika 
? (*/)

'!/ (x,j o Xi —)— 2 R (Xi) cp (Xi) 8 (fi — 2 f  (xt) o f i =  0,

a przeto
•w

' = y

Q (je,) cp (x,j 2 f  (xi) 8 f i  — 2 R W,-) cp (x,) o cp, 
X.

/=1 /(*/) f  (*/)

czyli ze względu na samo równanie (42):
N

(43) ; , = y 2 Q (•*■) (?1 8f i — fi  &'f<) 
'V (*i)

Obliczmy np, oznaczając przez a* spółcz.ynnik przy xk w wie­
lomianie f {x) ,  uważany za zmienny, spółczynnik przy o a k w S/; 
ofl* nie występuje w 5cp,- a w 8f, jest pomnożone przez x f .  Spół­
czynnik poszukiwany przy 8 a k jest tedy równy

Q (xi) cp (Xj) 

¥ (*<)

XiK

przy założeniu, że
-  (x) =  Q (x) cp (x) xk.
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Sumowanie to winno być rozciągnięte na wszystkie pierwiastki rów­
nania

otrzymujemy funkcję wymierną i symetryczną pierwiastków, a więc fun­
kcję wymierną spółczynników dwu wielomianów / ,v) i (.V). Można 
ułatwić obliczenie tej sumy zapomocą uwagi, że

- sr(x,)
—^  f  (*0

równa się sumie pozostałości funkcji wymiernej 

N biegunom w odległości skończonej

‘ , odpowiadających

> -̂ 2 i • • • i
Według pew nego twierdzenia ogólnego suma ta jest także równa pozo­
stałości, odpowiadającej punktowi w nieskończoności, ze znakiem zmienio­
nym (art. 310). Otrzymamy tedy spółczynnik przy oa* zapomocą zwy­
kłego dzielenia.

Łatwo sprawdzić, iż ten spółczynnik jest równy zeru, jeżeli całka 
v  (.v, y) jest całką gatunku pierwszego. Zakładamy, że q <  p — 1, 
stopień wielomianu t: ( x ) równa się <7 -f -1 1 -f -  ^  i

<l-\r'ł +  k ^iV- +  k + P  —  !•

Wyznaczmy stopień funkcji Ą (x). Jeżeli wyrazy najwyższego stop­
nia wielomianów

/?(x) ę J (x ) i / 2 (x )
nie znoszą się, to 

skąd

i tym bardziej

2 >. <  N, 2 p -j- 1 -j- 2 ji <  N, 

1 <  AZ,

fc-ft^ -ł-p  +  ł s w .

Gdyby te dwa wyrazy się znosiły, to mielibyśmy związek:

). r= [X -j- 7; -j- 1 ;

ponieważ jednak wyraz ak xK+k .nie może ulec redukcji z żadnym in­
nym. więc otrzymalibyśmy

X +  k <  N,

a stąd tę samą nierówność, co przed chwilą. Zawsze tedy

q p. -f- k < N — 2.
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Pozostałość funkcji wymiernej 

skończoności, jest tedy równa zeru,

zu, zawierającego —  lub wyrazu
x 2

— , odpowiadająca punktowi w nie-
ł  (x)

gdyż szereg się rozpocznie od wyra- 

stopnia jeszcze wyższego. Stwierdzi­

my podobnież, że spółczynnik przy o bp w 3/ — pi’zy założeniu, 
że b), jest jednym ze zmiennych spółczynników wielomianu cp (x) — 
jest równy zeru, gdy Q(x) jest wielomianem stopnia p — 1 lub niż­
szego. Wynik ten jest zupełnie zgodny z teorją ogólną.

Weźmy np. ® (x) =  1 i napiszmy, oznaczając przez

^0> ®1> • • • ! ®P
p  l spółczynników zmiennych:

/ (x) =  V A0 xp+x -|-  ap xpĄ- ap- i  x^-] -f- . . .  a y x  -f- a0.

Krzywe
yt =  R(x), y = f ( x )

przecinają się w 2 p \ punktach zmiennych, i suma wartości całki 
v{x,  y), branej od wspólnego początku aż do tych 2 p -(- 1 punktów 
przecięcia jest funkcją algiebraiczno-logarytmiczną (algebrico-logaritmiąue) 
spółczynników

a 0, CL\ > • • • >

Otóż można dobrać p  +  1 spółczynników w ten sposób, iżby p -|- 1 
z liczby tych punktów przecięcia były jakiemikolwiek, z góry danemi, 
punktami krzywej y 2 =  R (x ); spółrzędne p  punktów pozostałych bę­
dą wówczas funkcjami algiebraicznemi spółrzędnych p -j- 1 punktów 
danych.

Suma p  -f- 1 całek

v (Xj, ~j-  ^ (x%) y 2) 1 * • • I  ̂(Xp+1, yP+O?

branych od początku wspólnego aż do p  -j- 1 punktów dowolnych, jest 
tedy równa sumie p  całek, których granicami są funkcje algiebraiczne 
spółrzędnych (xlt y j , . . . , (xP+h yp+i), oraz wyrażeń algiebraiczno-lo- 
garytmicznych. Rzecz jasna, że zapomocą kolejnych redukcji można za­
stosować twierdzenie do sumy liczby całkowitej jakiejkolwiek tv, więk­
szej od p, całek. W szczególności suma jakiejkolwiek liczby całek ga­
tunku pierwszego daje się zastąpić przez sumę lylko p  całek. Własność 
ta, którą posiadają najogólniejsze całki abelowe gatunku pierwszego, sta­
nowi treść twierdzenia o dodawaniu tych całek.
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(tdy chodzi o całki eliptyczne gatunku pierwszego, twierdzenie Abela prowadzi 
właśnie do twierdzenia o dodawaniu, dotyczącego funkcji p u. Weźmy w istocie 
krzywą normalną trzeciego rzędu

y‘ =  * x ł — gt* —
i mech

.W, ( x , , y,), 41. y„ Afj (x j, yj)

stanowią punkty przecięcia się tej krzywej z pewną prostą /). Według twierdzenia 
ogólnego suma

/*(Jfi. yd dx /'(*«. yi) dx
|  - 7 = = —  +  /

• x  V 4 x» — g ,x  — g , J  x  V 4 x> — g, x  — g ,

/•(*». yi.) dx

. /  a- I 4 x » — g ,X  — £ , 

jest równa okresowi, gdyż punkty
M„ M„ .VI,

zostają odsunięte w nieskończoność, gdy prosta D oddala się w nieskończoność. 
Owóż, gdy się używa do określenia krzywej sześciennej równań parametrycznych

x = pu,  y =  p'u,

parametr u równa się właśnie całce •

/•<*. y) dx

J  *  ^  * * • - & *  — g a

i wzór powyższy wyraża, że suma argumentów

«i, «S, U),
odpowiadających trzem punktom

M„ M,, Af„

jest równa okresowi. Widzieliśmy już powyżej, w jaki sposób związek ten jest ró­
wnoważny twierdzeniu o dodawaniu, dotyczącemu funkcji pu (art. 338).

3(12. rosrólnicnie wzoru Lagrnnge‘a. — Twierdzenie ogólne o funkcjach uwi­
kłanych, określonych przez układ równań (t. I, art. 194), stosuje się również do 
zmiennych zespolonych, bylebyśmy zachowali inne założenia, występujące w nim. 
Rozważmy np. dwa równania współczesne

(44) P (x , v) as x  — a — « / ( x ,  y) =  0; Q (x, v) — y  — b — p ? (x , y) =* 0, 

w których x  i y  oznaczają zmienne zespolone, a

/  (x, y) i ? (x, v)

funkcje tych zmiennych, całokształtne w sąsiedztwie układu wartości

x  =  a,
Przy

» =  0,

y =  b. 

? — o,
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równania (44) posiadają układ rozwiązań

x  =  a, y =  b

i wyznacznik D (P. Q)
D (x, y)

staje się równym jedności. Przeto równania (44), zgodnie

z Twierdzeniem ogólnym, posiadają jeden i tylko jeden układ pierwiastków, dążących 
odpowiednio do a i b, gdy a i jś dążą do zera, i pierwiastki te są funkcjami 
całokształtnemi zmiennych « i p. laplace pierwszy zastosował do tego układu 
równań wzór Lagrange’a (art. 309).

Przypuśćmy, w celu ustalenia biegu myśli, iż dokoła punktów a i b jako 
środków zostały zakreślone w płaszczyznach zmiennych x  i v okręgi C i C' 
o promieniach r i F  dość małych, ażeby funkcje

/  ( x, y) i o (x, y )
\

były całokształtne, gdy punkty x  i y pozostają odpowiednio wewnątrz tych okrę­
gów lub na samych okręgach; niech M i M' oznaczają wartości największe 
funkcji

I f  {x, y) | i | © (x, y) |

w tym obszarze. Załóżmy ponadto, że stałe a i fł spełniają warunki

M | i  | <  r, M! | % | < y .

Nadajmy teraz zmiennej x  jakąkolwiek wartość, położoną wewnątrz C lub 
na samym okręgu; równanie

Q (x, y) =  0,

sprawdza się przy jednej tylko wartości zmiennej y wewnątrz koła C', gdyż 
argument funkcji

y  _  b — & ® (x, y)

wzrasta o 2 - ,  gdy y  zakreśla C  w zwrocie dodatnim (art. 307). Pierwiastek 
ten jest tedy w kole C funkcją całokształtną

yi =  '!> (x)
zmiennej Jeżeli
manę równanie

zastąpimy y  w P ( x ,y ) przez ten pierwiastek y„ otrzy- 

jtr — a — i  f  (x, y,) =  0

będzie posiadało wewnątrz kola C z tego samego powodu co poprzednio, jeden 
i tylko jeden pierwiastek.

Oznaczmy len pierwiastek przez =, a przez r ( odpowiednią wartość zmien-

Uogólniony wzór Lagrange’a służy do rozwinięcia według potęg liczb o. i 
wszelkiej funkcji F  (S, r(b całokształtnej w obszarze, który teraz określiliśmy.

Zbadajmy w tym celu całkę podwójną; •

(45)
F (x , y) dy . 

P (x, y) Q (x, y)

O
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gdy x  jesl punktom okręgu C, P (x, y) mc mole się stać zerom HJa zadnei war­
tości y, wewnętrznej względem C . gdyż argument funkcji

x  — a — n f  (ar, y)

musi koniecznie-odzyskać swą wartość początkową. gd\ y  zakreśla C', a x  jest 
punktem stałym okręgu C. Jedynym biegunem funkcji podcałkowej, uważ.anej za 
funkcję jednej zmiennej y, jest zatym biegun y  y , , wyznaczony jako pier­
wiastek równania

Q(x, v) =  0.

odpowiadający wartości v na okręgu C, i otrzymujemy po pierwszym całkowaniu

(C)
F  (ar, y  ) dy .

P (x , y) Q (.r, y)
P (OT, y

F (x ,  y,)
dQ\

'■> t e ) ,

Druga część tej równości przy założeniu, że y, zostało w niej zastąpione 
przez funkcję caJo kształtną -Ł(or), określoną powyżej, posiada również wewnątrz C 
jeden tylko biegun pierwszego rzędu, a mianowicie punkt ar =  5, któremu odpo- 
wfada wartość y, =  ę, i odpowiednia pozostałość, jak wykazuje łatwe obliczenie, 
iest równa

. O (X, >') J  y =  r'

Całka podwójna / posiada tedy wartość

/  =  — 4 F(i, Ti)
DjP. Q)
F> (x, y)

X  =  ę
y —

Z drugiej strony można rozwinąć -^  w ~zereg jednostajnie zbieżny

1 "V  ̂ o„ f m ?n
(.r — a — a /) (y i> — (tą) (ar — (y  _ /,r

skąd otrzymujemy 

zakładając, że

/  =  Jmn i m

F (x , y) 1 / (ar, y)l"» | * (v, y)]» d\
Jmn t= I dx I

(O  J  (C )  (x  —  o )m+1 ( y  —  ł>)n+t

Całkę tę już obliczaliśmy (aft. 352) i przekonaliśmy się, żc jest równa

_ J d̂ +n | F(a, b) /"» (a, b) ą"(a, b)]
ml n! dam d b n
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Przyrównywując do siebie dwie wartości całki /, otrzymujemy wzór szukany, 
który posiada oczywiste podobieństwo do wzoru (50) (art. 309)

(46)

F  (;,

D(P, (?)
D (x, y)

A

1 2
o.m °,n 

m! n!
d m + n  [F (a ,  b) f m (a, b) cp« {a, b)] 

dam dbn

Moglibyśmy otrzymać również drugi wzór, analogiczny do wzoru (51) z art. 
309, zakładając, że

F  (x, y) =  <t> (x, y) D (P, Q)
D (x, y) ’

lecz spółczynniki tego wzoru są bardziej złożone niż wówczas, gdy chodzi o jedną 
zmienną

ĆWICZENIA.

1. Wszelka krzywa algiebraiczna Cn stopnia n i rodzaju p może być 
zmieniona zapomocą przekształcenia dwuwymiernego na krzywą stopnia p.

[Postępujemy podobnie jak  w art. 340, przecinając daną krzywą pękiem krzy­
wych Cn—2, przechodzących przez

3
2

punkty krzywej Cn, do których należy

{n — 1) (« — 2)
2

punkt' w podwójnych, i zakładając:

'fi
przy umowie, że równaniem pęku jes t

'fi (X, y) +  X <p2 {x, y ) - f  (1 f 3 (X, y) =  0 ] .

2. Wywnioskować z poprzedniego ćwiczenia, że spółrzędne punktu krzywej 
rodzaju 2-go dają się wyrazić zapomocą funkcji wymiernych parametru t i pier­
wiastka kwadratowego z wielomianu R (t), piątego lub szóstego stopnia, pierwszego 
względem swej pochodnej.

[Można zacząć od wykazania, że krzywa przechodzi przy pomocy przekształ­
cenia punktowego w krzywą czwartego stopnia z jednym punktem podwójnymi.
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3*. Niech y =  a, x  -(- s, jrJ - - .  . .

oznacza szereg potęgowy, wyrażający funkcję algiebraiczną, określoną jako pier 
wiastek równania F  (x, y) =  0, w którym F  (x, y) jest takim wielomianem 
o spótczynnikach całkowitych, że punkt o spółrzędnych x  =  0. y =  0, jest punktem 
zwyczajnym krzywej, danej przez równanie F  (x, y) =  0. Wszystkie spólczynniki 
a„ są to utamki, i wystarczy zmienić x  na K x  (K  — liczba całkowita
odpowiednio dobrana), ażeby te wszystkie spólczynniki stały się liczbami całko­
witemu

| E is e n s t e in  |.

| Zauważmy, że wystarczy przekształcenie o postaci

x  =  y — ky\

ażeby spólczynnik przy y' w pierwszej części nowego związku stał się równym 
jedności, a wszystkie inne — liczbami całkowitemi |.









Z2


