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Abstract

The aim of this dissertation is to investigate the impact of AOP on software
modularity, evolvability and reusability in comparison to OOP. In our case study,
we compared OO and AO implementations of 11 real-life systems and the 23 GoF
design patterns. We also conducted a controlled experiment in which an example
program having two implementations (AOP and OOP) was subjected to subsequent
increments with the aim to investigate consequences of these increments on
program evolvability and reusability. In addition we explored the existing AO
implementations of the GoF design patterns according to applying generics and
reflective programming. The results of our research demonstrate that AOP has not
obvious advantages over OOP as far as modularization is concerned. We also
demonstrated that there are limited situations where a reasonable aspect-oriented

implementation improves software evolvability and reusability.

Streszczenie

Celem rozprawy jest ocena wptywu paradygmatu aspektowego na: modularnosc,
mozliwo$¢ dalszego rozwoju oraz ponowne uzycie oprogramowania. Jako punkt
odniesienia do oceny paradygmatu aspektowego wybrano paradygmat obiektowy.
W ramach pracy przeprowadzono studium przypadkow, w ktérym zbadano
implementacje obiektowe oraz aspektowe 11 rzeczywistych systemow i 23
wzorcow projektowych. Ponadto zrealizowano kontrolowany eksperyment, w
ramach ktérego stworzono prosty system, ktory nastgpnie zostal poddany
inkrementalnym modyfikacjom polegajacym na realizacji nowych wymagan. Na
kazdym etapie zaimplementowano zarowno wersje obiektowa jak i aspektowa.
Zaproponowano rowniez nowe implementacje wzorcow projektowych przy
wykorzystaniu paradygmatu aspektowego. Przeprowadzane badania wykazaty, ze
paradygmat aspektowy wbrew powszechnym pogladom nie poprawia
modularyzacji oprogramowania. Niemniej, zaobserwowano sytuacje, w ktorych
implementacja aspektowa zapewnila lepsza modyfikowalno$¢ oraz mozliwosé

ponownego wykorzystania oprogramowania.
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CHAPTER 1. INTRODUCTION

Chapter 1. Introduction

Begin with the end in mind.
Stephen Covey, 1989

The aim of this chapter is to state the research problem, to outline the scope of the

research, to present the research methods chosen, and to discuss the related work.

1.1 Overview

The evolution of software development techniques has been driven by the need to
achieve a better separation of concerns (SoC). A concern is a specific requirement
or an interest which pertains to the system’s development. The term SoC was
coined by Dijkstra [1974] and it refers to the ability to decompose and organize
system into manageable modules, which have as little knowledge about the other
modules of the system as possible Parnas [1972]. In practice, this principle actually
corresponds with finding the right decomposition of a problem [De Win et al.,
2002]. SoC is closely related to software modularity. The IEEE Standard Glossary
of Software Engineering Terminology [1990] defines modularity as the degree to
which a software system is composed of discrete modules such that a change to one
module has minimal impact on other modules. While software engineering gurus
vary in their definitions of modularity, they tend to agree on the concepts that lie at
its heart; the notion of loose-coupling and high-cohesion [Yourdon & Constantine,
1979; Meyer, 1989; Coad & Yourdon, 1991; Booch, 1994; Fenton & Pfleeger,
1997; MacCormack et al.,, 2007]. Modularity is considered a fundamental
engineering principle since it allows [Baldwin et al., 2000; Brito ¢ Abreu et al.,
2002]:

e to develop and test different parts of the same system in parallel by

different programmers;
e to break down the problem of understanding a complex system into the
independent problems of understanding each module individually;
e toreuse existing parts in different contexts;

e to reduce the propagation of side effects when changes occur.

10



CHAPTER 1. INTRODUCTION

Concerns can be mapped easily to different modules, if they are functional in
nature [Beltagui, 2003]. Such concerns are called core concerns. Kiczales et. al.
[1997] found that many systems contain also other kind of concerns, like logging,
authentication, error handling, and data persistence, that cannot be represented as
first-class entities in the underlying programming language. These are known as
crosscutting concerns. They usually play a supporting role and capture non-
functional requirements or technical-level issues that affect a system as a whole
[Przybylek, 2007]. When they are implemented using a traditional language, their
code spreads throughout the system. The reason is that traditional languages
provide only one dimension along which systems can be decomposed. This
limitation is known as the tyranny of the dominant decomposition [Tarr et al.,
1999] and it states that concerns which do not match to the dominant
decomposition must be implemented together with core concerns.

The symptoms of implementing crosscutting concerns in procedural or
object-oriented (OO) languages are code scattering and code tangling. Code
tangling occurs when a module implements multiple concerns. Code scattering
occurs when similar pieces of code implements the same concern, appear in
multiple modules in the program.

Code tangling and scattering run into problems significant enough for
practitioners to begin questioning clasical programming paradigms. To achieve
more advanced separation of concerns these questioners have proposed a number
of approaches such as composition filters, subject-oriented programming, feature-
oriented programming and aspect-oriented programming (AOP). The most
prominent and recognizable of these is AOP.

AOP introduces a new unit of modularity, an aspect, to implement
crosscutting concerns. Although AOP allows programmers to avoid the phenomena
of code tangling and scattering it comes with its own set of problems. The
distinguishing characteristic of AO languages is that they provide quantification
and obliviousness [Filman & Friedman, 2000]. Quantification is the idea that one
can write unitary and separate statements that have effect in many, non-local places
in a program [Filman, 2001]. Obliviousness states that the places these
quantifications apply do not have to be specifically prepared to receive these
enhancements [Filman, 2001]. Quantification and obliviousness may cause
problems such as difficulties in modular reasoning [Leavens & Clifton, 2007,

Figueiredo et al., 2008]. Furthermore, several new kinds of dependencies are

11



CHAPTER 1. INTRODUCTION

introduced by the AO constructs to allow for the alteration both of the structure,
control and data flow of the modules of the system. These dependencies can make
higher the complexity of the code affecting its comprehension [Bernardi & Lucca,
2010]. Hence, AOP by preventing code tangling and scattering improves the
comprehensibility of source code in one dimension, and at the same time by
introducing quantification, obliviousness, and new kinds of dependencies decreases
it in the other dimension. The question is whether the possible gains are worth the

confusion it causes.

1.2 Problem statement

Every new technology begins with naive euphoria — the claims of what it can do
are exaggerated [Bezdek, 1993]. As a technology grows in strength and moves
beyond the embryonic stage, a battle over its acceptance starts. In 2005, Steimann
stated the question:

“Does aspect orientation really have the substance necessary to found a new
software development paradigm, or is it just another term to feed the old
buzzword-permutation based research proposal and PAD thesis generator?”

Paradigms gain their status because they are more successful than their competitors
in solving a few problems that the group of practitioners has come to recognize as
acute [Kuhn, 1962]. AOP emerged in 1997 [Kiczales et. al., 1997] as a paradigm to
implement the concerns that cannot be modularized either in procedural
programming or in OOP because of the limited abstractions of the underlying
programming languages. Nowadays, with its growing popularity, practitioners are
beginning to wonder whether they should start looking into it.

Several studies [Figueiredo et. al., 2008; Filho et. al., 2006; Garcia et. al.,
2005; Greenwood et. al., 2007; Sant’Anna et. al., 2003; Soares et. al., 2002]
suggest that AOP is successful in modularizing crosscutting concerns.
Unfortunately, these studies either are based on intuition and gut feelings, rather
than scientific evidence; or wrongly identify modularization with the lexical SoC
offered by AOP; or wrongly measure coupling in AO systems. Since we have
found indications of the contrary [Przybylek, 2010a, 2010b, 2011b], we argue for

the following thesis:

12



CHAPTER 1. INTRODUCTION

I. Aspect-oriented programming allows for lexical separation of
crosscutting concerns, but it violates the fundamental principles
of modular design, such as low coupling, information hiding,

and explicit interfaces.

Since modularity is a low-level quality attribute that influences high-level quality
attributes [Fenton & Pfleeger, 1997], we have also tried to assess the extent to
which AOP promotes software reuse and systems evolution. This area of research
within the AOP community is somewhat restricted by the lack of available AOP-
based projects that include adequate maintenance/reuse documentation.
Nevertheless, we have observed the superiority of AOP in some narrow scope that

is valuable enough to define the second part of our thesis as:

II. There are limited situations where a reasonable aspect-oriented

implementation improves software evolvability and reusability.

The overall aim of this research is to investigate the impact of AOP on source code

quality.

1.3 Justification for the importance and the

relevance of the research

The goals of software engineering research include reducing the cost of software
development and evolution, reducing the time-to-market, and improving software
quality. To a significant degree, outcomes in all of these dimensions depend on
design structure [Cai, 2006]. The term structure is used in this dissertation in the

same broad sense defined by Ossher [1987]: “Any system consists of parts such as
modules, procedures, classes and methods. The structure of the system is the
organization and interactions of those parts” In particular, developers seek to

modularize their systems to better accommodate expected changes, have parts that
can be developed and evolved independent from each other, and to ease the
understanding of complex designs through abstraction of details hidden within

modules [Cai, 2006].

13
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After a decade of research, AOP is still an active topic of discussion in the
research community. On the one hand, AOP is glorified and considered as a
milestone in programming language development:

e AOP “is a recent technology for handling crosscutting concerns in a structured

and modular manner” [Hohenstein & Jager, 2009];

e AOP offers a way to separate concerns and to ensure a good

modularization [Guyomarc'h et al., 2005];

e “AO0Pis a programming paradigm that increases modularity” [Hovsepyan et

al., 20107];

o  “Given the power of Aspect] to modularize the un-modularizable, I think it’s

worth using immediateli/” [Lesicki, 2002];

e AO software “is supposed to be easy to maintain, reuse, and evolution”

[Zhao, 2004];

e AOP “increases um{erstam{aﬁi[ity and eases the maintenance burden, because

modules tend to be more cohesive and less coupled”’ [Lemos et. al., 2006].

On the other hand, “disciples of Dijkstra” believe that “A0 programs are ticKing time
bombs, which, if widely deployed, are bound to cause the software industry irreparable
harm” [Dantas & Walker, 2006]. However, both viewpoints are not backed up by
empirical evidence.

In addition, some significant vendors of software like IBM, Motorola,
Siemens, and SAP are interested in understanding, evaluating, and applying aspect-
oriented techniques. SAP scientists presented a road map to adopting Aspect-
Oriented Software Development (AOSD) at SAP for productive use [Pohl et al.,
2008]. Siemens developed a large-scale hospital information system (Soarian) that
supports seamless access to patient medical records and the definition of
workflows for health provider organizations. Aspect were used to implement
architecture validation, caching, auditing, and performance monitoring [Rashid et
al., 2010].

AOQP is also the subject of interest at the most prestigious conferences in
software engineering, like OOPSLA, ACM SAC, ICSE, and ECOOP. The Program
Committee of the ACM SAC 2010 put forward the question whether the use of A0P

is double-edged? In the “Call for Papers” for the OOPSLA’08 Workshop on

Assessment of Contemporary Modularization Techniques we read:

14
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A number of new modularization techniques are emerging to cope with
the challenges of contemporary software engineering, such as AO
Software Development, Feature-Oriented Programming, and the like.
The effective assessment of such technologies plays a pivotal role in (i)
understanding of their costs and benefits when compared to conventional
development techniques, and (ii) their effective transfer to mainstream
software development. The main goal of this workshop is to put together
researchers and practitioners with different backgrounds in order to
discuss open issues on the assessment of contemporary modularization
techniques, such as:

e How do new modularization techniques affect working practices
and help with software development and evolution? What
guidelines can be established from assessment results to improve
working practices?

o  What is the impact of using conventional quantitative metrics to
assess software modularity? Are they effective enough to assess
contemporary modularity techniques? How can we validate
assessment mechanisms?

e What are the potential paths leading to more effective

modularization techniques?

e How can we compare these modularization techniques?

This dissertation provides contributions to answering some of the above questions.

1.4 Research approach

The philosophical stance on which this research is based is critical-positivist.
Positivists view objective truth as possible, i.e. that there exists some absolute truth
about the issues of relevance, even if that truth is elusive, and that the role of
research is to come ever closer to it [Seaman, 1999]. Objective knowledge about
the real world can be achieved from the empirical knowledge accumulated through
perceptual experience [Becker & Niehaves, 2007]. Positivists are reductionist, in
that they study things by breaking them into simpler parts. This corresponds to
their belief that scientific knowledge is built up incrementally from verifiable
observations, and inferences based on them [Easterbrook et al., 2007]. Research
methods privileged by positivist are based on the assumption that the
measurements of empirical phenomena can be accurate and precise [Cecez-
Kecmanovic, 2007]. Positivists prefer methods that start with precise theories from

which verifiable hypotheses can be extracted, and tested in isolation. Hence,
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positivism is most closely associated with the controlled experiment, however, case
studies are also frequently conducted with a positivist stance. [Easterbrook et al.,
2007].

The fundamental issue of critical research is that it aims to change the
status quo [McGrath, 2005; McAulay et al., 2002]. The critical approach is focused
on what is wrong with the world rather than what is right [Walsham, 2005]. It is a
different perspective on the analysis that can add up to critical-positivist or critical-
interpretivist research [Niehaves & Stahl, 2006]. Critical theorists often use case
studies to draw attention to things that need changing [Easterbrook et al., 2007].

The critical-positivist researcher tries to falsify the predictions of the
scientific theory. He usually believes that it is more productive to refute theories
than to prove them. It is enough to indicate one observation that contradicts the

prediction of a theory to falsify it.

1.5 Research methods

The main research method employed in our research is case study. A case study is
an empirical inquiry that investigates a contemporary phenomenon within its real-
life context [Yin, 2003]. Case studies offer in-depth understanding of how and why
certain phenomena occur, and can reveal the mechanisms by which cause-effect
relationships occur. A case study can be applied as a comparative research strategy,
comparing the results of using one approach to the results of using another
approach [Wohlin et al., 2000]. Case studies can be classified according to the
number of cases, as single or multiple cases [Yin, 2003]. A case study is multiple
when it involves the examination of more than one similar case. Since a multiple
case study does not rely on a sample, the cases investigated do not offer a basis for
statistical generalizations, but they are generalizable to theoretical propositions
(analytic generalization) [Yin, 2003]. A multiple case design usually offers greater
validity [Easterbrook et al., 2007]. Analytic conclusion independently arising from
several cases will be more powerful than those coming from a single case alone.
The context of these cases are likely to differ to some extent. If common
conclusions can still be derived from all the cases, they will have immeasurably
expanded the external generalizability of the findings, again compared to those

from a single case alone [Yin, 2003].
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A case study can involve the examination of more than one unit of
analysis. This occures when, within a single case, attention is also given to a
subunit or subunits [Yin, 2003]. The unit of analysis defines what the “case” is and
it is related to the way the study question is defined [Trindade, 2005]. In software
engineering, the unit of analysis might be a project, a particular episode or event, a
specific work product, etc. [Easterbrook et al., 2007]. A case study with subunits of
analysis is called embedded [Yin, 2003].

We also do experimentation using the quasi-controlled experiment method.
A controlled experiment is a scientific investigation that takes place in a setting
especially created by the researcher [Boudreau et al., 2001]. With this research
method, the researcher manipulates one or more independent variables to measure
their effect on one or more dependent variables [Basili et al., 1999]. Each
combination of values of the independent variables is a treatment. In its simplest
form, an experiment has just two treatments representing two levels of a single
independent variable (e.g. using OOP vs. using AOP) [Easterbrook et al., 2007].
Experimentation is invaluable in assessing how effective or how promising
techniques, paradigms and methodologies are in contrast to other approaches. True
experimental research is characterized by manipulation of an independent variable
combined with random assignment of participants to groups [Hancock &
Algozzine, 2006]. An alternative to true experimental designs are quasi-
experimental designs in which experimental rigor so far as manipulation, control,
or randomization is not feasible, but the comparison of treatment versus
nontreatment conditions is approximated, and the compromises and limitations are
stated, understood, and taken into account in all conclusions and interpretations
[Mauch & Birch, 2003].

Moreover, we use the Goal Question Metric (GQM) approach when we
define measurement systems to be used in our empirical studies. GQM is a top-
down approach to establish a goal-driven measurement system on three levels
(Figure 1.1). It is particularly useful for assessing new software engineering
technologies (e.g. what is the impact of the technique X on the productivity of the
projects?) [Basili et al., 1994]. The GQM approach was originally developed by
Basili & Weiss in the early '80s for evaluating defects and monitoring
achievements for a set of projects in the NASA Goddard Space Flight Center
environment [Basili & Weiss, 1984; Basili et al., 1994; Solingen & Berghout,

1999]. Today, it is in widespread use for creating and establishing measurement
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programs throughout the software industry [Basili et al., 2007]. GQM is typically

described as a six-step process where the first three steps are about using business

goals to drive the identification of the right metrics and the last three steps are

about gathering the measurement data and making effective use of the

measurement results to drive decision making and improvements.

Conceptual level

measurement goals, which often start
outwith a set of quality factors, like
reliability, maintainability, reusability,
and so on.

GQM begins by identifying Goal 1

Goal 2

Operational level

The goal is refined into questions, that break
down the issue into its major components.
In many instances, questions may need to be

answering the questions, one should be able
to conclude whether the goal is reached.

broken out into many sub-questions to
express the goal in a quantifiable way. By Ql Qz Q3

Quantitative level

Each question is refined into metrics
that should provide all the quantitative
information to answer the question in a
satisfactory way. The same metric can

questions under the same goal.

be usedin order to answer different M 1 M2 M3 M4

N
T
E
R
P
R
E
T
A
T

o —

Figure 1.1 The Goal Question Metric approach [Basili & Weiss, 1984; Solingen
& Berghout, 1999]

Applying the GQM involves [Basili, 1992; Solingen & Berghout, 1999]:

1.
2.

Develop measurement goals for productivity and quality.

Generate questions which collectively represent an operational definition

of the goal.

Specify the measures needed to be collected to answer those questions and

track process and product conformance to the goals.

Develop mechanisms for data collection.
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5. Collect, validate and analyze the data in real time to provide feedback to
projects for corrective action.

6. When GQM is implemented to support an organization-wide improvement
process, analyze the data in a postmortem fashion to make
recommendations for future improvements. The experiences and lessons
learned from the study are packaged in the form of policies, procedures
and best practices.

In addition, the action research method is apply to conduct our supporting research
(developing graphical notation for visualizing Aspect] code). In this method, the
researcher attempts to solve a real-world problem while simultaneously studying
the experience of solving the problem [Davison et al., 2004]. He becomes a part of
the research - to be affected by and to affect the research [Milton, 1985]. A
precondition for action research is to have a problem owner willing to collaborate
to both identify a problem, and engage in an effort to solve it. In some cases, the
researcher and the problem owner may be the same person [Easterbrook et al.,
2007]. Action research seems to be an ideal research method for the Information
Systems field [Avison et al., 2001], especially in those domains where the
researcher can be actively involved and benefits for the organization and research
community can be expected; where obtained knowledge can be immediately
applied and the research process links theory and practice in a cyclical process
[Baskerville & Wood-Harper, 1996]. Two key criteria for judging the quality of
action research are whether the original problem is authentic (i.e. whether it is a
real and important problem that needs solving), and whether there are authentic
knowledge outcomes for the participants [Easterbrook et al., 2007].

To conduct action research we follow the design-science paradigm.
Design-science has its roots in engineering and the sciences of the artificial
[Simon, 1996]. It seeks to extend the boundaries of human and organizational
capabilities by creating new and innovative artifacts [Hevner et al., 2004]. Such
artifacts include - but certainly are not limited to - algorithms (e.g. for information
retrieval), human/computer interfaces and system design methodologies or
languages [Orlikowski & Iacono, 2001]. IT artifacts are commonly categorized as
constructs, models, methods (algorithms and practices), and instantiations
(implemented and prototype systems) [Hevner et al., 2004; March & Smith, 1995].
Constructs provide the language in which problems and solutions are defined and

communicated [Schon, 1983]. The entity-relationship model, for example, is a set
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of constructs for representing the type of information that is to be stored in a
database. Models aid problem and solution understanding. They use constructs to
represent a real world situation and to explore the effects of design decisions and
changes on the real world. [Simon, 1996]. Methods provide guidance on how to
solve problems. They can range from formal, mathematical algorithms that
explicitly define the search process to informal, textual descriptions of "best
practice" approaches [Hevner et al., 2004]. Instantiations show that constructs,
models, or methods can be implemented in a working system. They are usually in
the form of software tools aimed at improving the process of information system
development.

Hevner et al. [2004] developed seven guidelines (Table 1.1) for conducting
and evaluating good design-science research. Researchers, reviewers, and editors
must use their creative skills and judgment to determine when, where, and how to

apply each of the guidelines in a specific research project [Hevner et al., 2004].

Table 1.1 Design-Science Research Guidelines [Hevner et al., 2004]

No | Guideline Description
1 | Design as an Design-science research must produce a purposeful artifact
Artifact in the form of a construct, a model, a method, or an
instantiation.
2 | Problem The objective of design-science research is to develop
Relevance innovative artifacts to important and relevant problems.
3 | Design The utility, quality, and efficacy of a design artifact must
Evaluation be rigorously demonstrated via well-executed evaluation
methods.
4 | Research Effective design-science research must provide clear
Contributions contributions in the areas of the design artifact, design
construction knowledge, and/or design methodologies.
5 Research Rigor | The artifact itself must be rigorously defined, formally
represented, coherent, and internally consistent.
6 | Designas a Design is essentially an iterative search process to discover
Search Process | an effective solution to a problem. Problem solving can be
viewed as utilizing available means to reach desired ends
while satisfying laws in the problem environment [Simon,
1996]. Means are the set of actions and resources available
to construct a solution. Ends represent goals and
constraints on the solution. Laws are uncontrollable forces
in the environment.
7 | Communication | Design-science research must be presented effectively both
of Research to a technical audience and to a managerial audience.
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1.6 Related work

Work that are mostly related to ours are distributed in four categories: (I) studies
that propose coupling metrics for aspects; (II) studies that evaluate the impact of
AOP on software modularity; (III) studies that evaluate the impact of AOP on
software maintainability and reusability; and (IV) studies that extend UML to
support AOM.

Numerous coupling metrics for AO software have been proposed up to
now. However, they cannot by used to compare the OO and AO implementations.
Zhao [2004], Ceccato & Tonella [2004], Shen & Zhao [2007], and Burrows et al.
[2010a; 2010b] proposed fine-grained metrics that separate the coupling
contributions of individual AOP mechanisms. Since these metrics measure only a
specific kind of coupling, they cannot by used to compare the OO and AO
implementations. Our metric quantifies the overall coupling of a given module.
The most closely related coupling metric to ours is the one defined by Sant’Anna et
al. [2003]. Nevertheless, their metric does not cover all the significant kinds of
coupling dependencies in AO software.

There are many studies focusing on a metrics-based comparison among
OO and AO modularization. They differ from our research in study settings.
Firstly, Garcia et al. [2005], Filho et al. [2006], Hoffman & Eugster [2007],
Figueiredo et al. [2008], and Castor et al. [2009] interpret the tally of the metrics’
values associated with all the modules for a given implementation, while we
interpret the average of the metrics’ values.

Secondly, other researchers apply coupling metrics that are invalid to
compare between OO and AO implementations. Sant’Anna et al. [2003] and
Garcia et al. [2005] do not take into account so-called “semantic dependencies”
(see Chapter 5). Other studies can be classified into two groups. In the first group
[Filho et al., 2006; Greenwood et al., 2007; Madeyski & Szata, 2007; Figueiredo et
al., 2008; Castor et al., 2009], new kinds of coupling introduced by pointcuts are
not considered at all. In the second group [Tsang et al., 2004; Hoffman & Eugster,
2007], the coupling introduced by a pointcut is considered only if a module is
explicitly named by the pointcut expression.

In addition, Sant’Anna et al. [2003], Garcia et al. [2005], Filho et al.
[2006], Greenwood et al. [2007], Figueiredo et al. [2008], and Castor et al. [2009]

measure code tangling and code scattering using Concern Diffusion metrics

21



CHAPTER 1. INTRODUCTION

[Sant’Anna et al., 2003]. They find that AO implementations performed better than
their OO equivalents. Since avoiding code tangling and code scattering is the
cornerstone of AOP, their observations are predictable and inevitable. In our study
we take as given that AOP improves lexical SoC and do not investigate it.

There are also several studies that quantitatively evaluate the impact of
AOP on software maintainability and reusability. They differ from our research
mainly in the way they measure the quality attributes. Kulesza et al. [2006]
evaluate the OO and AO implementations of a Web information system before and
after maintenance activities. They apply a suite of metrics for separation of
concerns, coupling, cohesion and size. In our opinion, this suite measures software
modularity instead of maintainability. Sant’Anna et al. [2003] simulate seven
maintenance/reuse scenarios on a multi-agent system. For each scenario, the
difficulty of maintainability and reusability is defined in terms of structural
changes to the artifacts in the AO and OO implementations, such as number of
modules, operations, and lines of code that were added, changed, or copied. Similar
metrics suite is used by Figueiredo et al. [2008] to evaluate the stability of software
product lines (SPL) that undergoes seven change scenarios. Figueiredo et al. [2008]
measure the number of modules, operations, and lines of code that were added,
removed or changed during each scenario. In our research, we use one metric to
evaluate evolvability and one to evaluate reusability. We consider atomic changes
as the indicators of maintenance tasks. The more atomic changes occur between
two software versions, the less evolvable the software is. Our reusability metric
bases on the ratio of reused LOC to the total number of LOC in a program. Bartsch
& Harrison [2008] measure how much time it takes to perform maintenance tasks
on an online shopping system. The results appeared to slightly favor the OO
implementation over the AO implementation. Their approach to measure
maintainability can be viewed as complementary to ours.

There are also empirical studies in AOP rest on qualitative investigation
[Hanenberg & Unland, 2001; Koppen & Storzer, 2004; Griswold et al., 2006;
Kistner et al., 2007; Munoz et al., 2008; Mortensen, 2009; Taveira et al., 2009;
Taveira et al., 2010]. Our dissertation is a continuation of their work and further
explores the impact of AOP on software evolvability and reusability. Hannemann
& Kiczales [2002] developed AO implementations of the 23 Gang-of-Four (GoF)
design patterns. For 12 out of all 23 patterns, they find reusable implementations.

We build on their implementations as a starting point. Our research goes a step
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further and shows how AO solutions can take advantage of generics and reflective
programming. Using these techniques, we provide a highly reusable
implementation of the Decorator, Proxy, and Prototype pattern.

Although we think aspects are best modeled with a new set of UML
elements, several extensions exist as UML profiles [Evermann, 2007; Fuentes &
Sanchez, 2007; Gao et al., 2004; Groher & Baumgarth, 2004; Groher & Schulze,
2003; Mosconi et al., 2008; Stein et al., 2002a; Stein et al., 2002b; Zakaria et al.,
2002]. Our research draws inspirations from the work that bases on a heavy-weight
extension mechanism [Lions et al., 2002; Hachani, 2003a; Hachani, 2003b; Kande,
2003; Yan et al., 2004]. Our extension is built on top of UML 2.2. This opposes
with the proposals that base on the UML 1.x metamodel [Lions et al., 2002;
Hachani, 2003a; Hachani, 2003b]. Moreover, differently from Hachani [2003a;
2003b], we do not modify the UML metamodel in any way. Furthermore, in
contrast to [Hachani, 2003a; Hachani, 2003b; Yan et al., 2004] our metamodel

provides dedicated icons for new elements.

1.7 Dissertation outline

Chapter 2 lays the foundations for understanding the central ideas of this
dissertation. It focuses on concepts related to separation of concerns and
modularization. This Chapter also gives an introduction to the problem of
implementing crosscutting concerns in OO languages. The limitations of OO
languages are explained and illustrated by two scenarios of adapting software to
new requirements.

Chapter 3 illustrates how aspects can lexically separate the implementation of
different concerns. It presents the state-of-the-art in implementing crosscutting
concerns. The basic concepts of AOP and Composition Filters are explained and
illustrated by two scenarios introduced in the previous Chapter. Section 3.3
provides a discussion on the AO modularization. It also highlights the emerging
research efforts in restoring modular reasoning to AOP. An earlier version of this

Section appeared in the proceedings of ICSOFT'10 [Przybytek, 2010c].

Chapter 4 gives the definition of a new modelling language named AoUML that

we elaborated to incorporate aspects into class diagram. AoUML is an extension to
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the UML metamodel. It is used in the next Chapters to visualize the presented

source code. This Chapter is based on our IMCSIT'08 paper [Przybytek, 2008a].

Chapter 5 introduces metrics that we intend to apply to compare the paradigms
with regards to software modularity, evolvability, and reusability. It also explains
semantic dependencies in AO software to give a rationale for our coupling metric.
The metrics discussed are derived from their OO counterparts. They are used in the

next Chapters in our evaluation studies.

Chapter 6 presents a metrics-based comparison among AO and OO software with
respect to coupling and cohesion. We evaluate the 23 GoF design patterns and 11
real-world systems. The major findings of the chapter were published in the

proceedings of ENASE’10 [Przybylek, 2010a] and ETAPS’11 [Przybylek, 2011b].

Chapter 7 is divided into two parts, that were earlier published in the proceedings
of BIR'08 [Przybytek, 2008], ICSOFT’10 [Przybylek, 2010b], and TOOLS’11
[Przybytek, 2011c]. The first part of the Chapter presents a quasi-controlled
experiment comparing evolvability and reusability between OO and AO
implementations in 5 subsequent versions of the producer-consumer program. The
second part of the Chapter explores the possibilities for improving implementations
of the GoF design patterns using Aspect] with generics and reflective

programming.

Chapter 8 summarizes the dissertation.
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Chapter 2. Software modularity

1 have a small mind and can only comprehend one thing at a time.

Dijkstra, 1972

The aim of this chapter is to review the approaches employed so far to modularize
concerns, and to illustrate the need for new decomposition/composition

mechanisms.

2.1 Criteria for software modularity

The evolution of programming languages is driven by the perennial quest for better
separation of concerns (SoC). Subroutines, which encaptulated a unit of
functionality, were invented in the early 1950s and all subsequent program
structuring mechanisms such as procedures and classes, have been designed to
provide better mechanisms for realising the SoC [Sommerville, 2010]. The term
SoC was coined by Dijkstra [1974] and it means “focusing one'’s attention upon some
aspect” to study it in isolation for the sake of its own consistency; it does not mean
completely ignoring the other ones, but temporarily forgetting them to the extent
that they are irrelevant for the current topic. In the context of systems development,
this term refers to the ability to decompose and organize the system into
manageable modules, which can be developed and maintained in relative isolation.
Dijkstra [1976] and Parnas [1972] suggested, that the best way to achieve
SoC is through modularisation. Modularization is the process of decomposing a
system into logically cohesive and loosely-coupled modules that hide their
implementation from each other and present services to the outside world through a
well-defined interface [Parnas, 1972; Yourdon & Constantine, 1979; Booch, 1994].

Cohesion is the “intramodular functional relatedness” and describes how tightly

bound the internal elements of a module are to one another, whereas coupling is

“the degree of interdependence between modules” [Yourdon & Constantine, 1979].

Modularization makes it possible to reason about every module in isolation, such
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that when a small change in requirements occurs, it will be possible to go to one
place in code to make the necessary modifications [Cline, 1998].

Modularization is closely related to composition and decomposition
mechanisms in programming languages. Software composition and the reverse
notion of software decomposition are about the partitioning of a software system
into smaller parts (decomposition) and the assembly of software systems in terms
of these smaller parts (composition) [Ostermann, 2003]. Thus, in practice,
modularization corresponds with finding the right decomposition of a problem [De
Win et al., 2002].

Herein, the term module is used as a generalization of procedure, function,
class, interface, and aspect. A module consists of two parts: an interface and a
module body (implementation). An interface presents the services provided by a
module. It separates information needed by a client from implementation details. It
represents a boundary across which control flow and data are passed. A module
body is the code that actually realizes the module responsibility. It hides the design
decisions and should not be accessible from outside the module. A programmer
should be able to understand the responsibility of a module without understanding
the module’s internal design [Parnas, 1984]. The interface specification should be
weaker than the implementation so that an interface allows multiple possible
implementations and hence leaves room for evolution that does not invalidate the
interface [Ostermann et al., 2011].

An interface as presented above is often termed provided interface. A
module can also stipulate a so-called required interface, which is another module’s
provided interface. A required interface specifies the services that an element needs
from some other modules in order to perform its function and fulfill its own
obligations.

One of the first mentions of the importance of interfaces appeared in a

1970 textbook on systems development by Gouthier & Pont [1970]: “At
imp[ementation time each module and its inputs and outputs are we[[—c{eﬁnec{, there is
no confusion in the intended interface with other system modules.* Since then, this
issue has been repeatedly headlined. Raymond advertizes [Raymond, 2003]: “Zhe
only way to write complex software that won't fall on its face is to build it out of

simple modules connected by well-defined interfaces, so that most problems are local
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and you can have some hope of fixing or optimizing a part without breaKing the
whole”

The interface and implementation parts are also called public and private,
respectively. The users of a module need to know only its public part [Riel, 1996].
An interface serves as a contract between a module and its clients. Such contract
allows the programmer to change the implementation without interfering with the
rest of the program, so long as the public interface remains the same [Riel, 1996].
Parnas [1984] postulates that “It should be possible to change the implementation of
one module without Knowledge of the implementation of other modules and without
affecting the behavior of other modules. [...| Except for interface changes, programmers
changing the individual modules should not need to communicate.”

The paradigm that has made a significant contribution to improving
software modularity is structured programming. Its origins date back to 1968, when
the famous letter "GoTo statement considered harmful" [Dijkstra, 1968] was sent
by Dijkstra to the Communications of the ACM. In this letter, Dijkstra calls for the
abolishment of GoTo from high-level languages. He states that “tfe unbridled use of
the Go'To statement has an immediate consequence that it becomes terribly hard to find
a meaningful set of coordinates in which to describe the process progress” (i.e. the state
of the program). Next, Dijkstra presents the following program flow structures:
sequence, selection, repetition and procedure call. When composing a program
using these structures, the contents of the call stack and loop iteration stack are
sufficient to determine the state of the program. Hence those contents make up a
coordinate system according to which any trace of a program can be represented.

Other issues advocated by structured programming are: splitting a program
into subsections with a single point of entry and exit, reducing reliance on global
variables and information hiding.

The use of global variables is usually considered bad practice. Wulf &
Shaw [1973] in their article “Global variable considered harmful” argue that global
variables “force upon the programmer the need for a detailed global Knowledge of the

program which is not consistent with his human [imitations”. Since any code

anywhere in a program can change the value of the variable at any time,
understanding the use of the variable may entail understanding a large portion of

the program.
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Designing a module so that implementation details are hidden from other
modules is called information hiding and was proposed by Parnas. In his paper,
Parnas [1972] argues that the primary criteria for system modularization should
focus on hiding critical design decisions (i.e. difficult design decisions or design
decisions which are likely to change). Similar postulates were later put forward in

the context of OOP: “The main idea is to organize things so that when changes to the
concept or abstraction occur (as is inevitable), it will be possible to go to one place to
make the necessary modifications” [Cline, 1998]. In the programming community,

information hiding has become such an undisputed dogma of modularity that
Brooks [1995] even felt that he had to apologize to Parnas for questioning it
[Ostermann et al., 2011].

Parnas [1972] also enumerates the benefits expected of modularization: (1)
managerial — development time should be shortened because separate groups
would work on each module with little need for communication; (2) product
flexibility — it should be possible to make drastic changes to one module without a
need to change others; (3) comprehensibility — it should be possible to study the
system one module at a time. The whole system can therefore be better designed
because it is better understood. This comprehensibility is often termed modular
reasoning. Clifton & Leavens clarify [2003] that a language supports modular
reasoning if the actions of a module M written in that language can be understood
based solely on the code contained in M along with the signature and behavior of
any modules referred to by M. A module M refers to N if M explicitly names N, if
M is lexically nested within N, or if N is a standard module in a fixed location
(such as Object in Java).

Meyer [1989] summarizes the research on software modularity by
enumerating the essential requirements for modular design: (1) decomposability -
means that a system can be and is decomposed into a set of cohesive and loosely
coupled modules; (2) composability - demands that every module may be freely
combined with each other to produce new systems, possibly in an environment
quite different from the one in which they were initially developed; (3)
understandability - means that each single module is understandable on its own; (4)
continuity - describes that a small change in requirements leads to a small change
in limited parts of the system and does not affect the architecture; (5) protection -
demands that the effect of errors be limited to one little part of a system. Meyer

[1989] also postulates five rules which we must observe to ensure modularity: (1)
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Direct Mapping - the modular structure devised in the process of building a
software system should remain compatible with any modular structure devised in
the process of modeling the problem domain; (2) Few Interfaces - every module
should communicate with as few others as possible; (3) Small Interfaces - if two
modules communicate, they should exchange as little information as possible; (4)
Explicit Interfaces - whenever two modules A and B communicate, this must be
obvious from the text of A or B or both; (5) Information Hiding - the designer of
every module must select a subset of the module’s properties as the official

information about the module, to be made available to authors of client modules.

2.2 From structured to object-oriented programming

The term structured programming was coined to describe a style of programming
that merges the ideas proposed in the late 1960s and early 1970s by:

e Dijkstra: SoC, layered architecture, structured control constructs;

e  Wirth: stepwise refinement, modular programming;

e Parnas: information hiding, modular programming;

e Hoare: designing data structures;

e Knuth: local variables, literate programming.
In the past, the structured paradigm proved to be successful for tasks, such as
controlling petroleum refining facilities and providing worldwide reservation
systems. However, as software grew in size, inadequacies of the structured
techniques started to become apparent, and the OOP was proposed by Dahl and
Nygaard as a better alternative. Since the late 1980s OOP has been the mainstream
of software development.

OOP was created from a desire to close correspondence between objects in
the real world and their counterparts in software. The object-oriented purism comes
from the dogma that everything should be modeled by objects, because human
perception of the world is based on objects. An object is a software entity that
combines both state and behavior. An object’s behavior describes what the object
can do and is specified by a set of operations. The implementation of an operation
is called a method. The way that the methods are carried out is entirely the
responsibility of the object itself [Schach, 2007] and is hidden from other parts of
the program (Larkin & Wilson 1993). An object performs an operation when it
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receives a message from a client. A message is a request that specifies which
operation is desired. The set of messages to which an object responds is called its
message interface [Hopkins & Horan, 1995]. An object's state is described by the
values of its attributes (i.e. data) and cannot be directly accessed from the outside.
The attributes in each object can be accessed only by its methods. Because of this
restriction, an object’s state is said to be encapsulated. The advantage of
encapsulation is that as long as the external behavior of an object appears to remain
the same, the internals of the object can be completely changed [Hunt, 1997]. This
means that if any modifications are necessary in the implementation, the client of
the object need not be affected.

In OO software development, a system is seen as a set of objects that
communicate with each other by sending messages to fulfil the system
requirements. The object receiving the message may be able to perform the task
entirely on its own (i.e. access the data directly or use its other method as an
intermediary). Alternatively, it may ask other objects for information, or pass
information to other objects [Hopkins & Horan, 1995].

The most popular model of OOP is a class based model. In this model, an
object’s implementation is defined by its class. The object is said to be an instance
of the class from which it was created. A class is a blueprint that specifies the
structure and the behaviour of all its instances. Each instance contains the same
attributes and methods that are defined in the class, although each instance has its
own copy of those attributes.

OO languages offer two primary reuse techniques: inheritance and
composition. Software reuse refers to the development of software systems that use
previously written modules. Inheritance allows for reusing an existing class in the
definition of a new class. The new class is called the derived class (also called
subclass). The original class from which the new class is being derived is called the
base class (also called superclass). All the attributes and methods that belong to the
base class automatically become part of the derived class [Cline et al., 1998]. The
subclass definition specifies only how it differs from the superclass [Larkin &
Wilson, 1993]; it may add new attributes, methods, or redefine (override) methods
defined by the superclass.

An object of a derived class can be used in every place that requires a
reference to a base class [Cline et al., 1998]. It allows for dispatching a message

depending not only on the message name but also on the type of the object that
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receives the message. Thus, the methods that matches the incoming message is not
determined when the code is created (compile time), but is selected when the
message is actually sent (run time) [Hopkins & Horan, 1995]. An object starts
searching the methods that matches the incoming message in its class. If the
method is found there, then it is bound to the message and executed, and the
appropiate response returned. If the appropiate method is not found, then the search
is made in the instance’s class’s immediate superclass. This process repeats up the
class hierarchy until either the method is located or there is no further superclass
[Hopkins & Horan, 1995]. The possibility that the same message, sent to the same
reference, may invoke different methods is called polymorphism.

A new class can be composed from existing classes by composition.
Composition is the process of putting an object inside another object (the
composite) [Cline et al., 1998]. A composite can delegate (re-direct) the requests it
receives to its enclosing object. Composition models the has-a relationship. It is
claimed that composition is more powerful than inheritance, because (1)
composition can simulate inheritance, and (2) composition supports the dynamic
evolution of systems, whereas inheritance relations are statically defined relations
between classes [Bergmans, 1994].

Inheritance is also called “white box” reuse, because internals of a base
class are visible to its extensions. In contrast, composition is called “black box”
reuse, because the internals of the enclosed object are not visible to the enclosing
object (and vice-versa) [Oprisan, 2008]. With composition, an enclosing object can
only manipulate its enclosed object through the enclosed object's interface.
Because composition introduces looser coupling between classes it is preferable to
inheritance.

Developing high quality software requires knowledge usually learned only
by experience [Gamma et al., 1995; Albin-amiot & Guéhéneuc, 2001]. Experience
acquired in projects that have worked in the past allows a designer to avoid the
pitfalls of development [Kuhlemann, 2007]. Over the years, the wisdom about OO
software development had been accumulated into what are known as design
patterns and then catalogued by Gamma et al. in what is known as the “Gang of
Four” book [Gamma et al., 1995].

A design pattern is a general solution that addresses a recurring problem
encountered in software development [Hannemann & Kiczales, 2002]. It

constitutes a set of guidelines that describe how to accomplish a certain task in a

31



CHAPTER 2. SOFTWARE MODULARITY

specific design situation [Pressman, 2005]. A design pattern also identifies classes
that play a role in the solution to a problem and describes their collaborations and
responsibilities. However, with OO techniques, only the solutions of the patterns
are considered reusable. As a consequence the programmer still has to implement

the patterns for each application he is constructing [Borella, 2003].

2.3 Tyranny of the dominant decomposition

When solving a simple problem, the entire problem can be tackled at once.
For solving a complex problem, the basic principle should be divided into easier to
comprehend pieces, so that each piece can be conquered separately [Jalote, 2005].
Programming languages provide mechanisms that allow the programmer to break a
system down into modules of behavior or function, and then compose those
modules in different ways to produce the overall system [Kiczales et al., 1997].
Although the exact nature of the decomposition unit differs between the structured
and OO paradigm, in each case, it feels comfortable to talk about what is
encapsulated as a functional unit of the overall system [Kiczales et al., 1997].
Therefore, both decomposition techniques can be generally treated as functional
decomposition.

The manner in which a system is physically divided into modules can
affect significantly the structural complexity and quality of the resulting system
[Parnas, 1972; Yourdon & Constantine, 1979]. Dahl, Dijkstra & Hoare [1972]

explain that “good decomposition means that each module may be programmed
independently and revised with no, or reasonably few, implications for the rest of the
system.” Yourdon & Constantine suggest [Yourdon & Constantine, 1979] to

decompose a system so that (1) highly interrelated parts of the system should be in
the same module; (2) unrelated parts of the system should reside in different

modules. According to Yourdon & Constantine [1979] “What we are striving for is
loosely coupled system - that is, a system in which one can study (or debug, or maintain)
any one module without having to Know very much about any other modules in the
system.” Although the different modules of one system cannot be entirely

independent of each other, as they have to cooperate and communicate to solve the
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larger problem, the design process should support as much independence as
possible [Jalote, 2005].

Implementation and maintenance costs generally will be decreased when
each piece of the system corresponds to exactly one small, well-defined piece of
the problem, and each relationship between a system's pieces corresponds only to a
relationship between pieces of the problem [Yourdon & Constantine, 1979].
Kiczales et al. [1997] found that the abstractions offered by functional
decomposition are insufficient to express crosscutting concerns in a modular way.
In his PhD dissertation, Ostermann [2003] ilustrates this problem graphically on
abstract concern space (Figure 2.1). Each figure represents a particular concern of a
software system. There are three options for organizing this space: by size, by
shape, or by color. Each of these decompositions is equally reasonable, but they are

not hierarchically related [Ostermann, 2003].

Figure 2.1. Abstract concern space

With a functional decomposition, one fixed classification sequence has to be
choosen. In Figure 2.2, the classification sequence is color, shape, size. The
problem with such a fixed classification sequence is that only the first element of
the list is localized whereas all other concerns are tangled in the resulting
hierarchical structure [Mezini & Ostermann, 2004]. Figure 2.2 illustrates this with
the concern “circle”, whose definition is scattered around the color-driven
decomposition [Ostermann, 2003]. Only the color concern is cleanly separated into
white, grey, and black, but even this decomposition is not satisfactory because the

color concern is still tangled with other concerns [Mezini & Ostermann, 2004].
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Figure 2.2. Arbitrariness of the decomposition hierarchy

The presented problem is known as the f#yranny of the dominant
decomposition and it means that traditional programming languages generally
support only a single “dominant” decomposition at a time. This dominant
decomposition satisfies some important needs, but usually at the expense of others
[Tarr et al., 1999]. In the result, no matter how well a system is decomposed, the
implementation of crosscutting concerns will cut across the chosen decomposition
[Mens et al., 2004] causing code tangling and code scattering. Code tangling
occurs when a module implements multiple concerns. Code scattering occurs when
similar pieces of the implementation of one concern appear in multiple modules in
the program. Tangling and scattering negatively affect source code quality. For
example, tangling reduces comprehensibility, as one has to know which statements
belong to which concern, and this may not always be obvious [Durr, 2008].
Moreover, whenever a concern needs to be changed, a developer has to localize the
code that implements it. This may possibly require him to inspect many different
modules, since the code may be scattered across several of them [Bruntink et al.,

2004]. Furthermore, tangling reduces maintainability, because updating one
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concern may break surrounding code related to other concerns. Tangling also
makes it harder to reuse a module, since the module addresses several concerns,
and a software designer may wish not to reuse all of them at the same time

[Havinga, 2009].

2.4 Impact on maintainability and reusability

Composing systems from existing modules rather than building from scratch has
been one of the main goals of the software engineering since its beginning in the
1960s [Mcllroy, 1968]. Reusability is the ease with which existing modules can be
used in new context [Peters & Pedrycz, 2000]. Using previously written modules as
building blocks allows programmers to simplify the construction of software, since
the traditional phases of development are replaced with processes of module search
and selection [Andrews et al., 2002]. Such approach reduces the development time
and costs, downgrades the risk of new projects, and improves the software quality.
One of the obstacles to a massive application of software reuse in industrial
environments is that creating reusable software modules requires a huge initial
investment which is not rapidly amortized.

When development of a software product is complete and it is released to
the market, it enters the maintenance phase of its life cycle [Kan, 2002]. Software
maintainability is the ease with which a software product can be modified after
delivery [IEEE, 1990; Pressman, 2005]. ISO/IEC [1999] defines four categories of
maintenance: perfective, adaptive, corrective, and preventive. As software is used,
the user usually requests additional features and capabilities [Lewis, 2004].
Perfective maintenance extends the software beyond its original requirements.
Over time, the original environment (terminal devices, operating system, laws,
regulations, business rules, external product characteristics) for which the software
was developed is likely to change. Adaptive maintenance accommodates the
software to its external environment [Pressman, 2005]. It has been estimated that
80% of the software maintenance effort is devoted to software evolution (adaptive
and perfective maintenance) [Pigoski, 1997].

Even with the best quality assurance activities, it is likely that the delivered
software contains some latent defects that were not detected during testing.

Corrective maintenance repairs these defects. Computer software deteriorates due
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to change, and because of this, preventive maintenance, often called software
reengineering, must be conducted to enable the software to operate effectively and
to make subsequent maintenance easier. In essence, preventive maintenance refers
to enhancements to software modularity or understandability. It may also include
the study of a system to detect and correct latent faults in the software product
before they become effective faults [ISO/IEC, 1999].

Software maintenance has been recognized as the most costly and difficult
phase in the software life cycle [Li & Henry, 1995]. Studies and surveys over the
years have indicated that software changes typically consume 40% to 80% of
overall software development costs [Lientz, 1978; Zelkowitz, 1978; Boehm, 1981;
Meyers, 1988; Yourdon, 1992; Hatton, 1998; Glass, 2002; Pressman, 2005].
Hewlett-Packard estimates that 60% to 80% of its R&D personnel are involved in
maintaining existing software, and that 40% to 60% of software budget are directly
related to maintenance [McKee, 1984; Coleman et al., 1994].

Software modularity, maintainability and reusability are closely related.
Much academic work asserts a relationship between the design of a system and the
manner in which this system evolves over time [MacCormack et al., 2007]. In
particular, modularity creates “options” to adapt a design to meet unforeseen future
requirements [Baldwin & Clark, 2000]. Moreover, the more connections between
modules, the more dependent they are and the harder it is to reuse them in different

contexts. Table 2.1 enumerates work that documented these relationships.

Table 2.1 Impact of coupling and cohesion on reusability and maintainability

reusability maintainability

coupling | [Hitz & Montazeri, [Hitz & Montazeri, 1995; Chaumun et al., 2000;
1995; Bowen et al., Bowen et al., 2007; MacCormack et al., 2007;

2007] Breivold et al., 2008]

cohesion | [Bieman & Kang, [Bowen et al., 2007; Perepletchikov et al., 2007]
1995; Bowen et al.,
2007]
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2.5 Weaknesses of object-oriented programming —

running examples

2.5.1 Example 1 - mathematics software

Consider some mathematics software that is implemented in Java. It consists of
many classes and Matrix (Figure 2.3) is one of them. The core concern here is to
support mathematical operations. Let's assume that we have a new requirement.
We would like to log every method call in the system and how long it takes to

execute the method.

h=triz

M int fread0nly}
MN: int freadOnly}
data: double [0 {readCnly}

b atrizgint, int)

il atrizgdauble )
Tl atriz i atriz) o - - - - -
randamiint inhEAIate protected void swapi(int i, int j){
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transpase) : Matrix datal[i] temp ;
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aqihd atriz) : boolean
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shovl) : void
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Figure 2.3. The Matrix class

One of the possible ways of OO solution requires embedding the logging code in
every method. For example, Listing 2.1 shows how the swap method is

instrumented to mesure its execution time.

public class Matrix {
/]
protected void swap (int i, int j) {
long start = System.currentTimeMillis();
double[] temp = datal[i];
datal[i] = dataljl;
datal[]j] = temp;
long end = System.currentTimeMillis();
long time = end - start;
System.out.println ("void Matrix.swap (int,int) - "+ time);
}
/],
}

Listing 2.1 The Matrix::swap() method with time logging
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The code associated with the logging concern is shown as shaded code. Such
instrumentation is very invasive and breaks the open-closed principle, which states
that modules should be open for extension, but closed for modification. Moreover,
the log statements are tangled with the operation’s core logic and the similar code
is scattered across every method in the system.

An alternative approach is to define a new class that extends Matrix and
then to wrap each super method call with log statements (Listing 2.2). Moreover,
every place in the code where Matrix is instantiated must be replaced by
LogMatrix. While this approach limits code tangling, code scattering is still
present. Parts of the implementation of logging are replicated in several places.
Keep in mind that the application contains hundreds of classes and a new log class

is needed for every original class.

public class LogMatrix extends Matrix {
/...
protected void swap (int i, int j) {
long start = System.currentTimeMillis();
super.swap (i, 3);
long end = System.currentTimeMillis();

long time = end - start;

System.out.println ("void Matrix.swap (int,int) - "+ time);
}
public LogMatrix transpose() {

long start = System.currentTimeMillis();

LogMatrix m = new LogMatrix (super.transpose());

long end = System.currentTimeMillis();

long time = end - start;

System.out.println ("Matrix Matrix.transpose() - "+ time);
return m;

}
/)
}

Listing 2.2 Logging in the subclass

2.5.2 Example 2 — Learning Management System
A learning management system (LMS) is deployed at a college. It is suspected that
unauthorised persons know lecturers' passwords and have modified data in the
system. As a result, it has been decided that all data-changing SQL statements have
to be watched. In order to do this, it has been proposed that the existing application
be extended by logging every DML statement that modifies the records, together
with the date of the incident, the database username, and the login name.

The application uses JDBC to access its database (Figure 2.4). The key

elements of JDBC API (in terms of the example presented) are the Connection
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interface, the Statement interface and the DriverManager class. DriverManager
manages all the details involved in establishing the connection to a specified
database. The established connection is returned by
DriverManager::getConnection(..) which is a static method. In a typical application
scenario, the next step is creation of a Statement object. The
Connection::createStatement() method is called upon to do this. The Statement
object is associated with an open connection and used to send SQL statements to
the database. DML statements such as INSERT, UPDATE, DELETE are usually
executed using Statement::executeUpdate(..).

2 Driverbanager

I .

H conn:= getConnectionfurl,user, pass) '

conn Connection J

L strot -Statemert
, .
[}
[}

stmt:= createStateme nh:L

1 1

exacutelpdateisgl i
I : .
1

Figure 2.4 A typical usage scenario for accessing a database

An OO solution is based on a delegation model. The LogStatement class is
responsible for tracing SQL queries (Listing 2.3). It implements the Statement
interface and aggregates the statement object. All messages specified by the
Statement interface are delegated to the statement object. Those which are able to
modify records (i.e. execute, executeUpdate) are redefined in order to implement
tracing. Moreover, to fulfil the new requirement, every object returned by
Connection::createStatement() has to be wrapped with LogStatement.
LogStatement implements 40 methods. Of these 1 is a constructor, 29 methods are
used for forwarding only, 8 methods call the log method and then forrward the
original message to Statement object, and 2 methods implement logging. It is

apparent that logging is scattered through and tangled with the business logic.
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public class LogStatement implements Statement {

}

private Statement delegate;
public LogStatement (Statement st) {
delegate = st;
}
private boolean isDML (String sqgl) {
String tmp = sqgl.toUpperCase() ;
return tmp.indexOf ("UPDATE")>=0 | |
tmp.indexOf ("INSERT")>=0 || tmp.indexOf ("DELETE")>=0;
}
private void log(String sgl) throws SQLException {
String dbUser =
delegate.getConnection () .getMetaData () .getUserName () ;
String login = User.getCurrentUser () .getLogin () ;
System.out.println (
new Date() + "; " + login + "; " + dbUser + "; " + sql);
}
public void cancel () throws SQLException {
delegate.cancel () ;
}
public boolean execute (String sgl) throws SQLException {
if (isDML(sqgl)) log(sqgl);
return delegate.execute(sqgl);
}
public boolean execute (String sgl, int autoGeneratedKeys)
throws SQLException {
if (isDML(sqgl)) log(sql);
return delegate.execute (sgl, autoGeneratedKeys) ;
}
public boolean execute (String sqgl, int[] columnIndexes)
throws SQLException {
if (isDML(sqgl)) log(sqgl);
return delegate.execute(sgl, columnIndexes)
}
public boolean execute (String sgl, String[] columnNames)
throws SQLException {
if (isDML(sqgl)) log(sqgl);
return delegate.execute (sgl, columnNames) ;
}
public int executeUpdate (String sgl) throws SQLException {
if (isDML(sqgl)) log(sqgl);
return delegate.executeUpdate (sgl);

}
//other methods specified by the Statement interface

Listing 2.3 LogStatement class definition

2.6 Summary

Modularity is a key concept that programmers wield in their struggle against the

complexity of software systems. Although modules have taken many forms over

the years from functions and procedures to classes, no form has been capable of
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expressing a crosscutting concern in a modular way. The term crosscutting concern
refers to an aspect of the system that cannot be cleanly modularized because of the
limited abstractions offered by the underlying programming language. In a
traditional environment, implementing crosscutting concerns usually results in
code scattering and code tangling. The presented examples illustrate that a
crosscutting concern cannot be directly implemented by dedicated classes. Instead,
its implementation usually spreads over the whole system and cuts across the
implementation of all other concerns. Maintaining a crosscutting concern means
modifying each fragment of the scattered code realizing that concern. Therefore,
increasing the maintenance cost and error proneness [Eaddy et al., 2008; Munoz et
al., 2008]. This chapter is partly based on work published in [Przybytek, 2007] and
[Przybytek, 2009].
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Chapter 3. Aspect-oriented programming

If the only tool you have is a hammer, then everything looks like a nail.

The aim of this chapter is to outline the background material necessary to
understand the state-of-the-art in implementing crosscutting concerns, and to

provoke thoughts about the concepts behind AOP.

3.1 Basic concepts

AQOP dates back to 1997, when it grew out of the research work undertaken by
Kiczales et al. [1997] at Xerox PARC (Palo Alto Research Center). AOP appeared
as a reaction to the problem of dominant decomposition. The aim of AOP is to
improve SoC by providing a new unit of decomposition called an aspect and new
ways of composition. Aspects allow the secondary concerns to be implemented in
self-contained modules. The composition of aspects and classes is implemented
through new programming mechanisms, such as pointcuts, advices and
introductions.

Traditionally, many aspect languages have been implemented as an
extension to existing languages. This, in most cases, leads to a conceptual
distinction between the “aspect code” and the “base code” [Havinga, 2009]. Once
implemented, both base code and aspect code are combined together to produce a
final system [Burrows et al., 2010]. The process of actually inserting the aspect
code into the code of other modules at the appropriate points is known as weaving.
Weaving is typically performed at compile-time.

Aspect] was the first AO language and remains the most complete and
successful AOP implementation available to date, with AJDT as a production ready
IDE. When Aspect] reached a level of stability, it was relocated from Xerox PARC
into the arms of the open source community. Aspect] is now maintained as an
Eclipse Technology project. Since Aspect] is becoming a de facto standard, we

have chosen it as a referral language in this dissertation. Aspect] is implemented as
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a weaver that extends the Java compiler. It produces bytecode that runs inside the

JVM just like any other java class. Figure 3.1 explains the weaving process.

source code
o
L

base code

e
=

aspect code Aspectd compiler JVM

Figure 3.1 Build process with AspectJ

In Aspect], an aspect can, like a class, realize interfaces, extend other module and
declare attributes and operations. In addition, it can declare advices, pointcuts, and
inter-type declarations. A pointcut is a language construct designed to specify a set
of join-points and obtain the context surrounding the join-points as well. A
Jjoinpoint is an identifiable location in the program flow where the implementation
of a crosscutting concern can be plugged in. Typical examples of joinpoints include
a throw of an exception, a call to a method, and an object instantiation. An advice
is a method-like construct used to define an additional behaviour that has to be
inserted at all joinpoints picked out by the associated pointcut. An advice is
implicitly triggered when specific events (e.g. a method call or a field access) occur
during the program execution. The body of an advice is the implementation of a
crosscutting concern. An advice is able to access values in the execution context of
the pointcut. Depending on the type of advice, whether “before”, “after” or
“around”, the body of an advice is executed before, after or in place of the selected
joinpoints. An around advice may cancel the captured call, may wrap it or may
execute it with the changed context. An inter-type declaration is used to crosscut
the static-type structure of classes and their hierarchies. It allows a programmer to
add attributes and methods to an established class, from outside the original class
definition. Inter-type declarations can also declare that other types implement new
interfaces or extend a new class. The reader interested in a comprehensive
explanation of AspectJ is referred to [Laddad, 2003; Colyer et al., 2004; Miles,
2004; Gradecki & Lesiecki, 2003].
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3.2 Running examples

3.2.1 Example 1 - mathematics software

In the OO implementation, logging was scattered through every method in the
system (see Listing 2.2). All we have to do in AOP is to define a single aspect that
implements the new requirement (Listing 3.1). The eachMethod() pointcut uses
wildcards to capture all method executions regardless of their name, regardless of
the name of the class on which the method is defined, and regardless of the return
type. The around() advice is activated whenever the eachMethod() pointcut
captures something. The logging code is injected around the execution of each
method. Aspect] provides the proceed() statement to execute the original method.
The thisJoinPoint pseudo-variable is used to expose a context from the join-point

that triggers the advice.

public aspect TimelLogging {

pointcut eachMethod () : execution(* *.*(..));
Object around(): eachMethod () {
long start = System.currentTimeMillis();

Object tmp = proceed() ;

long end = System.currentTimeMillis();

long time = end - start;

// we take the signature of the original method
Signature sig = thisJoinPointStaticPart.getSignature();
System.out.println(sig +" - "+ time);

return tmp;

}
Listing 3.1 The TimeLogging aspect

3.2.2 Example 2 — learning management system

The OO implementation tangled the secondary concern with the core logic (see
Listing 2.3). A better solution can be obtained by using AOP and implementing a
new functionality as an aspect (Listing 3.2). The fundamental difference between
the OO and AO solution is lexical separation of the tracing code. The joinpoints at
which tracing should be injected are specified as the places where the update

methods are called.
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public aspect DMLmonitoring {

pointcut DMLexecute (String sqgl, Statement st): target(st)
&& call( * Statement.execute*(..) ) && args(sql,..);

after (String sgl,Statement st) returning (Object o):
DMLexecute (sqgl, st) {
String login = User.getCurrentUser () .getLogin();
String dbUser = "";
try {
dbUser=st.getConnection () .getMetaData () .getUserName () ;
} catch (SQLException e) {};
String tmp = sqgl.toUpperCase();
if ( tmp.indexOf ("UPDATE")>=0 || tmp.indexOf ("INSERT")>=0
|| tmp.indexOf ("DELETE")>=0 ) System.out.println/(
new Date()+"; "+login+"; "+dbUser+"; "+sql);

}
Listing 3.2. DMLmonitoring aspect definition

3.3 Aspects vs Modularization

3.3.1 AOP promotes unstructured programming

Constantinides et al. [2004] show that AOP has some of the problems associated
with the GoTo statement. In particular, it does not allow for creating a coordinate
system for the programmer. Since an advice can plug into just about any point of
execution of a program, one can never know the previous (or following) statement
of any statement [Steimann, 2006]. An advice is even worse than GoTo as the
GoTo statement transfers control flow to a visible label, while an advice does not.
As a result, just looking at the source code of the base module is not enough to
deduce a variable value — an advice might have changed it invisibly for the
programmer. Constantinides et al. compare Advice to the ComeFrom statement,
which was proposed as a way to avoid GoTo — of course only as a joke

[Constantinides et al., 2004].

3.3.2 AOP breaks information hiding

A well designed module hides its implementation details from other modules. Prior
to AOP, public interfaces together with private implementations guaranteed that
changing a module’s implementation would not break other modules as long as the
interface would be kept the same. Since AOP this is no longer true. Aspects have

the ability to interject functionalities at any joinpoint in the entire program,
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effectively bypassing class interfaces. Aldrich [2005] tightens this problem by
restricting quantification, in that internal communication events (e.g., private calls
within a module) cannot be advised by external clients.

In addition, an aspect can access the private members of any module by
using the privileged modifier. In turn, it leads to a globalization of the data
contained in modules. Hence, the conclusion drawn by Wulf & Shaw [1973] — that

in the presence of global variables a programmer needs “a detailed global Knowledge
of the program” — is therefore also true for the presence of aspects [Steimann,

2006]. Moreover, the ability of aspects to access unrestrictedly the base code can
invalidate some important properties of the system by modifying the program flow

or leaving protected data structures in an inconsistent state [Munoz et al., 2007].

3.3.3 AOP leaves interfaces implicit

Steimann [2006] tries to apply the idea of provided/required interfaces to AOP. On
the one hand, the aspect provides a particular service through which it extends the
base module; therefore it should specify the provided interface. However, the
matching required interface of the base module remains implicit — the base module
does not specify that it needs something. On the other hand, the base module
provides a set of program elements, which are required by the aspect to perform its
function. Although the aspect depends on these elements, the base module comes
without an explicit counterpart interface specification: its provided interface is
implicit. Seen either way, the base module specifies no interfaces that could be
matched with those of its aspects [Steimann, 2006]. The lack of interfaces makes
aspects vulnerable to any changes in the classes to which they apply [Ongkingco et
al., 2006]. For the programmer of the base module, this means that everything
accessible for aspects should be kept constant. Otherwise, aspects can break down
as classes evolve. Ferrari et al. [2010] measured the impact of the obliviousness
property on the fault-proneness of the evaluated systems. They found that the lack
of awareness between base and aspectual modules tends to lead to incorrect
implementations.

The efforts of introducing an explicit interface between aspects and base
modules were originated by Gudmundson & Kiczales (G&K) and then continued
by Aldrich. Gudmundson & Kiczales [2001] notice that the signature (a name and
parameterization) of a pointcut can convey the abstract responsibility captured by

the pointcut definition. As such pointcuts provide a basis for a new kind of
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interface, which Gudmundson & Kiczales call the pointcut interface. A pointcut
interface consists of a collection of named pointcuts and is exported by the base
module, which can be a class or a package. The pointcut definition is kept within
the module that exports the interface, so anyone looking at the definition would
also be looking at the implementation of the base module. By having the exported
pointcut, the programmer is aware that the base module may be influenced by
aspects. Preserving the pointcut interface guarantees that upgrades to the base
module will not disturb the dependent aspects.

Aldrich [2005] introduces a new modularization unit - Open Module - that

“is intended to be open to extension with advice but modular in that the
implementation details of a module are hidden”. In this approach, modules (the word

"module" here bearing a meaning distinct from common usage) have to export
these join points that can be captured by the aspects that are external to the module.
Since an advice queries exported pointcuts in order to achieve its function, the
pointcuts can be thought of as a provided interface, while its counterpart in the
advice header as a required interface. In addition, all calls to interface methods
from outside the open module can also be advised. This property is important
because many aspects rely only on calls to interface methods, so exporting
pointcuts for all of these calls would be cumbersome. The main drawbacks of Open
Modules are: (1) Explicitly exposing an interface pointcut means a loss of some
obliviousness; (2) The programmer of the base module must anticipate that clients
might be interested in the internal event; (3) The programmer has to hide out some
implementation details of the designed module to make the module open for
advising; (4) When pointcuts are defined within base modules, many join points
that have to be advised in the same way cannot be captured by quantified pointcuts,
e.g., using wild-card notations. A separate pointcut is required for each base
module.

Leavens & Clifton [2007] introduce a required interface in the base module
by explicitly naming the aspects that may affect the module behaviour. Then,
aspects can only be applied to the modules that reference them. Explicit acceptance
of an aspect can be expressed by an annotation.

Hoffman & Eugster [2007] extend Aspect] with explicit join points (EJPs).
EJPs introduce a new type of join point, which is explicitly declared by the
programmer within aspect, has a unique name and signature. Base code then

explicitly references these join points where crosscutting concerns should apply.
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The idea of EJPs is to represent cross-cutting concerns via explicit interfaces that
act as mediators between aspects and base code.

The placement of interface between the aspect and the base code breaks the
obliviousness property of aspects and make the base code aware about the
existence of aspects [Munoz et al., 2007]. In addition, as was pointed out by
Steimann [2006], both the above solutions not only make advice activation almost
indistinguishable from guarded subroutine calling but also they re-introduce the
scattering that AOP was to avoid. For instance, with tracing as a crosscutting
concern, annotating every method whose execution is to be traced is just as
annoying as adding the tracing code on site [Steimann, 2006]. Thus, the use of
annotations has potential scaling problems. In addition, this technique is invasive
for base modules and unfeasible in case base modules are third party components.

Sullivan et al. [2005] suggest the introduction of design rules that govern
how code has to be written to expose specific points in program execution. These
rules are documented in so called “crosscutting interface” (XPI) specifications that
base code designers “implement” and that aspects may depend upon. Once these
interfaces are defined, designers can develop aspect and base code independently

[Sullivan et al., 2005]. However, as Steimann [2006] points out, “specification of
the XPI requires an a priori decision what the crosscutting behavior of a system is”. To

address this, Sullivan et al. designed their XPIs by asking the question [Sullivan et

al., 2005] - “what constraints on the code would shape it to maKke it relatively easy to
write the aspects at hand, as well as support future aspects?” Although XPIs do not

define a concrete interface, they also violate obliviousness by defining a coordinate
coding style between aspects and base code [Munoz et al., 2007]. As mentioned in
Chapter 1, obliviousness requires that the underlying system does not make
assumptions of any kind about the possible aspects that may be applied [Katz,
2004].

3.3.4 AOP makes modular reasoning difficult

Aspects are most effective when the code they advise is oblivious to their
presence [Filman, 2001]. In other words, aspects are effective when programmers
of the underlying system does not have to prepare any hooks or annotations
[Dantas & Walker, 2006]. However, obliviousness also implies that a base module

has no knowledge of which aspects modify it where or when [Steimann, 2006]. It
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conflicts with the ability to study the system one module at a time. When studying
some module, one needs to consider all aspects that can possibly interfere and
change the module's logic [Recebli, 2005]. The need of global analysis is a sign of
being unmodular.

A proposal to maintain modular reasoning was put forward by Clifton &
Leavens [2002] (C&L) and then continued by Dantas & Walker [2006] and Recebli
[2005]. Not all violations of encapsulation by aspects are harmful — otherwise AOP
would be useless [Recebli, 2005]. C&L [2002] propose to divide aspects into two
categories, assistants and spectators, which provide complementary features.
Assistants have the full power of Aspect]’s aspects, but to maintain modular
reasoning it is required that assistants are explicitly accepted by a module (see
Section 3.3.2). Spectators are constrained to not modify the behavior of the
modules that they advise. In concrete terms, a spectator may only mutate the state
that it owns and it must not change the control flow to or from an advised method.
In addition to mutating the owned state, it seems reasonable to allow spectators to
change accessible global state as well, since a Java module cannot rely on that state
not changing during an invocation (modulo synchronization mechanisms) [Clifton
& Leavens, 2002]. The claim is that spectators are safe to ignore in reasoning about
the base-code as they do not influence its specification. Nevertheless, when
problems arise, a programmer must examine both the base and relevant aspect code
to identify a bug. Moreover, the C&L’s approach breaks the obliviousness property
in a such way that the base code is aware about specific aspect advising it.

Recebeli [2005] proposes the notion of aspects purity to reduce the harm
that aspects can do. A pure aspect is one that promises not to alter the behaviour of
specified set of modules, only possibly adding something new. Nevertheless, pure
aspects only assure harmless when aspects have pure intentions, but giving no
assurance with other aspects.

Munoz et al. [2008] propose a framework for specifying the expected
interactions between aspect and the base program. Aspects are specified with the
invasiveness patterns they realize (Table 3.1), and the base program with assertions
allowing or forbidding invasiveness patterns. In AspectJ, aspects crosscut the base
program at two levels. At method level advices manipulat the method’s behavior

and at module level inter-type declarations modify the program structure.
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Table 3.1 Classification of invasiveness patterns [Munoz et al., 2008]

classification
element

description

invasiveness
level

Augmentation

After crosscutting, the body of the
intercepted method is always executed.
The advice augments the behavior of the
method it crosscuts with new behavior that
does not interfere with the original
behavior. Examples of this kind of advices
are those realizing logging, monitoring,
traceability, etc.

method

Replacement

After crosscutting, the body of the
intercepted method is never executed. The
advice completely replaces the behavior of
the method it crosscuts with new behavior.
This kind of advices eliminate a part of the
base program.

method

Conditional
replacement

After crosscutting, the body of the
intercepted method is not always executed.
The advice conditionally invokes the body
of the method and potentially replaces its
behavior with new behavior. Examples of
this kind of advices are advices realizing
transaction, access control, etc.

method

Multiple

After crosscutting, the body of the
intercepted method is executed more than
once. The advice invokes two or more
time the body of the method it crosscuts
generating potentially new behavior.

method

Crossing

After crosscutting, the advice invokes the
body of a method (or several methods) that
it does not intercepts. The advice have a
dependency to the class owning the
invoked method(s).

method

Write

After crosscutting, the advice writes an
object field. This access breaks the
protection declared for the field and can
modify the behavior of the underlying
computation.

method
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After crosscutting, the advice reads an
object field. This access breaks the

Read protection declared for the field and can method
potentially expose sensitive data.
After crosscutting, the advice modifies the
Argument argument values ‘ of the method it
. crosscuts and then invokes the body of the | method
passing

method. The body of the method always
executes at least once.

The aspect modifies the declared class
Hierarchy hierarchy. For example, the aspect adds a | module
new parent interface to an existing one.

The aspect adds new fields to an existing
class declaration. These fields depending
Field addition | on their protection can be acceded by | module
referencing an object instance of the
affected class.

The aspect adds new methods to an
exiting class declaration. These methods
depending on their protection can be | module
acceded by referencing an object instance
of the affected class.

Operation
addition

Munoz et al. [2008] also developed a tool support for their framework. This tool
analyzes aspects to infer which invasive pattern they realize. It can also statically
check that the aspects conform to the specification of the base program. The
violation of the specification is used to alert developers about the risk introduced
by unexpected interactions. This assists developers reviewing the harmful code and
to reason about its interaction with the base program. Since the Munoz’s approach
requires a huge amount of work for formalising all the specifications, it seems too

complex to be practical and scalable to the real world.

3.3.5 AOP breaks the contract between a base module and
its clients

In the presence of aspects, clients of a base module can no longer trust that the
provided service meets its specification. Each service can be affected by an advice.
Dantas & Walker introduce [Dantas & Walker, 2006] the notion of harmless

advice, which is similar to the notation of spectators (see Section 3.3.4). Unlike an
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ordinary advice, a harmless advice is not allowed to influence the the underlying
computations. Therefore, programmers may ignore harmless advices when
reasoning about the partial correctness properties of their programs. Although
harmless advices are useful for many common crosscutting concerns including:
logging, tracing, profiling, invariant checking and debugging, they limit the power
of AOP by forbidding aspects to be invasive.

Lagaisse et al. [2004] propose aspect integration contracts (AICs) to
specify the permitted interference between an aspect and a base module. AICs
specify the permitted interference between an aspect and the base code. AiC are
composed of the “aspect requirements” specifications (what aspects require from
the base code), “aspect functionalities and effects” specifications (what aspect do
with the base code), and the “permitted interference” specification (what aspect can
do with the base code). Although AICs seem to be a reasonable limitation of the

expressive power of AOP, they require too much of work from the programmers.

3.3.6 AOQOP escalates coupling

Similar to how OO languages rely on symbolic referencing (e.g. method calls by
name), most AO languages in use today rely on referencing more complex
structural properties of the program such as naming conventions and package
structure [Wampler, 2007]. These structural properties are used by pointcuts to
define intended conceptual properties about the base program [Kellens et al.,
2006]. It means that pointcuts impose “design rules” that developers of the base
program must adhere to in order to prevent unintended join point captures or
accidental join point misses [Sullivan et al., 2005]. Design rules introduce tight
coupling between the pointcut definition and the base program’s structure. If a
change occurs in any base module, all aspects need to be reviewed whether they
are still working. This phenomenon is called the fragile pointcut problem.
Furthermore, AO constructs introduce semantic coupling (see Section 5.2.3) that
does not exist in OO systems.

Kellens et al. [2006] address the fragile pointcut problem by declaring
pointcuts in terms of a conceptual model of the base program, rather than defining
them directly in terms of how the base program is structured. As such, they
transformed the fragile pointcut problem into the problem of keeping a conceptual

model of the program synchronised with that program, when the program evolves.
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3.3.7 Impact on maintainability and reusability

AOP has been proven to be effective in lexically separating different concerns of
the system [Sant’Anna et al., 2003]. However, the influence of AOP on other
quality attributes is still unclear. On the one hand, replacing code that is scattered
across many modules by a single aspect can potentially reduce the number of
changes during maintenance [Mortensen, 2009]. In addition, modules may be
easier to reuse, since they implement single concerns and do not contain tangled
code.

On the other hand, constructs such as pointcuts and advices can make the
ripple effects in AO systems far more difficult to control than in OO systems.
Current AO languages rely on referencing structural properties of the program such
as naming conventions and package structure. These structural properties are used
by pointcuts to define intended conceptual properties about the program. The
obliviousness property of Aspect] implies that the underlying system does not have
to prepare any hooks, or in any way depend on the intention to apply an aspect over
it [Katz, 2004]. Thus, maintenance changes that conflict with the assumptions
made by pointcuts introduce defects [Mortensen, 2009]. This phenomenon is called
the pointcut fragility problem [Dijkstra, 1968]. It occurs when a pointcut
unintentionally captures or misses a given join point as a consequence of seemingly
safe modifications to the base code [Koppen et al., 2004; Mortensen, 2009].
Késtner et al. [2007] reported such silent changes during AO refactoring.

Obliviousness also leads to programs that are unnecessarily hard to
understand [Griswold et al., 2006]. Since not all the dependencies between the
modules in AO systems are explicit, an AO maintainer has to perform more effort
to get a mental model of the source code [Storey et al., 1999]. Creating a good
mental model is crucial to understand the structure of a system before attempting to
modify it [Mancoridis et al., 1998]. Studies of software maintainers have shown
that 30% to 50% of their time is spent in the process of understanding the code that
they have to maintain [Fjeldstad & Hamlen, 1983; Standish, 1984; Glass, 2002].

Moreover, incremental modifications and code reuse are not directly
supported for the new language features of Aspect] [Hanenberg & Unland, 2001].
In particular, concrete aspects cannot be extended, advice cannot be overridden,
and concrete pointcuts cannot be overridden. Hanenberg & Unland proposed four

rules of thumb [Hanenberg & Unland, 2001], which allow one to build reusable
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and incrementally modifiable aspects. However, increased complexity is the price

that has to be paid for it.

3.4 Composition Filters - an alternative approach

Composition Filters (CF’s) was defined by Aksit & Tripathi [1988] and originally
implemented in the Sina language. The Composition Filters model can be thought
of as the conventional OO model in which an object can be surrounded by input
and output filters. Filters extend the message passing mechanism by manipulating
incoming and outgoing messages. Incoming messages have to pass through the
input filters until they are dispatched and the outgoing through the output filters
until they are sent outside the object [Czarnecki & Eisenecker, 2000; Bergmans &
Aksit, 2001]. Dispatching here means either to start searching of a local method, or
to delegate the message to another object. The filters together compose the
enhanced behaviour of the object, possibly in terms of other objects. The resulting

model and its elements are shown in Figure 3.2.

incoming messages ——| put(4)

input filters .. “Tfilter Wait {

P ” (counter==buf.length) => put(int);

(counter==0) => get();
o |
attributes
int[] buf;
/ int counter;
methods — = NS\ =000 LA
public int get() {
return buf[--counter];

output filers > : uu}
outgoing messages ———»

Figure 3.2 The Composition Filters model

A filter definition consists of a filter type and filter guards. It has the following

form:

filter filterType {
condition => selectorl, selector?2, .y selectorN;
//filter guard 1

//filter guard 2
}
A selector is mainly used for matching messages. In addition it may modify certain

parts of messages or indicate the targget object to which the message should be
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redirected. When the selector on the left hand matches, no further selectors should
be considered. A guard matches the message if (1) the condition evaluates to true,
and (2) the message matches one of the selectors. As soon as the first guard is
matched, the message is said to be accepted by the filter. A filter rejects a message
if none of the filter guards matches the message. The filter type determines the
semantics associated with acceptance and rejection of messages [Bergmans, 1994;
Bergmans & Aksit, 2001]. In other words, it determines how to handle the
messages after the matching process.

The running example of CF's is shown using scenerio 2 (Learning
Management System) from Chapter 2.5.2. The presented source code is written in a

simplified version of CF's (Listing 3.3).

public class LogStatementCF implements Statement ({
private Statement delegate;
public LogStatementCF (Statement st) { delegate = st; }
private boolean isDML (String sqgl) {
String tmp = sqgl.toUpperCase();
return tmp.indexOf ("UPDATE")>=0 | |
tmp.indexOf ("INSERT")>=0 || tmp.indexOf ("DELETE")>=0;
}
private void log(String sqgl) {
String login = User.getCurrentUser () .getLogin() ;
String dbUser = "";
try {
dbUser=st.getConnection () .getMetaData () .getUserName () ;
} catch (SQLException e) {};
System.out.println (
new Date() + "; " + login + "; " + dbUser + "; " + sql);
}
public boolean execute (String sgl) throws SQLException {
if (isDML (sgl)) log(sql);
return delegate.execute(sqgl);
}
//other execute(..) methods
public int executeUpdate (String sgl) throws SQLException {
if (isDML (sgl)) log(sql);
return delegate.executeUpdate (sgl);
}
//other executeUpdate(..) methods
filter Dispatch { true => this.*, delegate.* };

}
Listing 3.3 The LogStatementCF class using CF’s

An arriving message is evaluated according to the Dispatch filter. When a Dispatch
filter rejects a message, an exception is raised. In case of acceptance, the message
is dispatched to the object that corresponds to the target of the matching selector

[Bergmans, 1994]. In our example, an object starts searching the method that
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matches the incoming message in its class. If the method is not found, then the
search is continued in the Statement class.

The difference between the OO and CF’s solution is that the latter does not
need to define 29 methods for delegating messages to Statement object, because
the delegation is achieved by the Dispatch filter. However, it should be noticed that

the CF’s implementation is not free from code tangling.

3.5 Summary

The essential problem with OOP is the lack of proper mechanisms to separate the
implementation of crosscutting concerns from the implementation of core
concerns. This limitation can be overcome by AOP and CF’s. Each of these
paradigms builds on all the advantages of the OO paradigm and overcomes some
OO weaknesses. However, no programming paradigm is without its own set of
problems and pitfalls. In Section 3.3 we have explained the current problems that
present a major threat against a mainstream adoption of AOP. Aspects make the
source code hard to understand, break encapsulation, and increase coupling. On the
other hand, CF’s extends the OO paradigm in a natural way, but is less powerful
than AOP. Comparing to AOP, CF’s improves delegation-based reuse and allows
one to avoid composition anomalies. We took an overview of CF's, because it is an
interesting alternative to AOP. However, since CF’s is less powerful than AOP and
is still a theoretical concept unsupported by mainstream programming languages,
we do not investigate it further in this dissertation. The earlier version of Section
3.3 was originally published in [Przybylek, 2010c], while other sections of this
Chapter are partly based on work published in [Przybytek, 2007] and [Przybytek,
2009].
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Chapter 4. AoUML: a proposal for aspect-
oriented modelling

One picture is worth ten thousand words.

Barnard, 1927

The aim of this chapter is to define a notation which we will use to visualize the

source code presented in the next Chapters.

4.1 Introduction

A software design coordinates well with a programming language when the
abstraction mechanisms provided at both levels correspond to each other [Piveta &
Zancanella, 2003]. Misalignment of design and code results in weak traceability
and poor comprehensibility. The wide acceptance of AOP in academia has led to
growing interest in aspect-oriented (AO) modelling languages. Since AOP is
usually built on top of OOP, it seems natural to adapt UML to aspect-oriented
modelling (AOM). Although UML was not designed to provide constructs to
describe aspects, its flexible and extensible metamodel enables it to be adapted for
domain-specific modelling [OMG, 2009a]. The progression of the AO paradigm,
from implementation to design, is very similar to the evolution of the object-
oriented and structured paradigms moving from the implementation level to the
design level. The movement of the paradigm up the stages of the software lifecycle
aid in reducing the semantic gap between each development phase [Gray, 2002].
UML has two ways of extending its language, one is by elaborating a Meta
Object Facility (MOF) metamodel and another is by constructing a UML profile. A
UML profile is a predefined set of stereotypes, tagged values, constraints, and
graphical icons which enable a specific domain to be modelled. It was defined to
provide a light-weight extension mechanism [OMG, 2009a]. The term “light-
weight” means that the extension does not define new elements in the UML
metamodel. The intention of profiles is to give a straightforward mechanism for
adapting the UML metamodel with constructs that are specific to a particular

domain [OMG, 2009a]. The advantages of choosing the light-weight extension
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mechanism are that models can be defined by applying a well-known notation and
that this method is generally supported by UML tools. On the other hand, the
drawbacks are that, since stereotypes are extensions to the existing elements,
certain principles of the original elements must be observed, and consequently
expressiveness is limited. Elaborating an MOF metamodel is referred to as heavy-
weight extension and is harder than constructing a profile. It also has far less tools
support. However, the metamodel constructed can be as expressive as required.
Another drawback of the heavy-weight mechanism is the introduction of
interdependency between specific versions of UML and its extensions. If UML
changes in any way, its extensions may also have to change.

In the last decade, numerous UML’s extensions to support AOM have been
presented (see [Schauerhuber et al., 2007]). However, none of them has become an
acceptable standard. Researchers have usually concentrated on providing UML
profiles, while less attention has been given to constructing heavy-weight
extensions.

The remainder of this Chapter is organized as follows. In the next Section,
the motivation for our proposal is explained. Section 4.3 describes the research
methodology. In Section 4.4, a general overview of our extension to the UML
metamodel is given. Then, in Section 4.5, the details of each meta-class are
introduced. In Section 4.6, in turn, we give two examples of using our proposal.

Finally, the last section summarizes our work.

4.2 Motivation for our proposal

The motivation behind our proposal is to integrate the best practices of the
existing AO extensions — particularly the following: [Clarke & Banaissad, 2005;
Evermann, 2007; Hachani, 2003b; Jacobson & Ng, 2005; Kande, 2003; Kande et
al., 2002; Lions et al., 2002; Sapir et al., 2002; Stein et al., 2002a; Stein et al.,
2002b] — to define an MOF metamodel that supplements UML with means to
visualize Aspect] programs. The existing extensions are not satisfactory for
different reasons. Evermann [2007], Fuentes & Sanchez [2007], Gao et al. [2004],
Groher & Baumgarth [2004], Groher & Schulze [2003], Mosconi et al. [2008],
Stein et al. [2002a], Stein et al. [2002b], Zakaria et al. [2002] stereotype the class

element as <<aspect>> and the method element as <<advice>>, although an aspect
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is not a class, nor is an advice a method. While such stereotyping was acceptable
until UML 1.5, it can no longer be used; the 2.0 release requires semantic
compatibility between a stereotyped element and the corresponding base element.

The most valuable heavy-weight extensions were elaborated by Hachani
[2003b] and Yan et al. [2004]. The main drawback of both metamodels is the lack
of graphical representation for new modelling elements. Moreover, both
metamodels contain too much implementation detail and so seem to overwhelm the
designer. The Hachani's proposal is specified more strictly and in a more formal
fashion but needs updating, because it extends UML 1.4. The other drawback of his
proposal is that it modifies the UML metamodel.

Efforts [Aldawud et al., 2003; France et al., 2003; Hachani, 2003a; Reina
et al.,, 2004] to create a generic metamodel which could be fitted to every AO
implementation have been unsuccessful, because a metamodel of this kind
introduces an impedance mismatch between the design constructs and the language
constructs. The conceptual differences between aspect implementations such as
Aspect], JAsCo, Spring, AspectWerkz are significant and cannot be captured
effectively in a single metamodel. Moreover, generalization at the design level
would be counter-productive at a time when Aspect] is squeezing out other

technology at the implementation level.

4.3 Research methodology

In developing our notation, we follow the guidelines developed by Hevner et al.
[2004]. Table 4.1 discusses the realization of these guidelines in our work. Not the
all guidelines are completely fulfilled in this project. Indeed, Hevner et al. advise

against mandatory use of them.

Table 4.1 The AoUML project

No | Guideline Realization
1 Design as an The result of this research is a modelling language named
Artifact AoUML, which is a construct in Simon’s terminology

[Simon, 1996]. AoUML extends UML to support AOM.
The capture of aspects in the design phase simplifies the
AO software development. It helps to better understand and
document the design.
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2 | Problem The relevance of modeling techniques in software
Relevance development is well demonstrated. While AOP has been
and remains one of the most visible research streams in the
software engineering field, there is still no clear standard
for AOM. AoUML bridges the gap between design and
implementation in AOSD.

3 | Design The utility of the artifact is demonstrated on several
Evaluation examples.

4 | Research The contribution of this research is the artifact itself, that
Contributions enriches UML with constructs for modeling aspects.

AoUML provides traceability to aspect-oriented code and
in consequence allows developers to keep the consistency
among design and implementation.

5 | Research Rigor | AoUML is defined as a MOF metamodel in a way
consistent with UML. Its specification uses the class
diagram, and natural language.

6 | Design as a AoUML is designed by integrating the best features of the
Search Process | existing notations.

7 Communication | Section 4.5 motivates a technical audience, while Section
of Research 4.6 primarily focuses on a designer audience.

4.4 Our extension to the UML metamodel

The elaborated extension is described by using a similar style to that of the UML
metamodel. As such, the specification uses a combination of notations:

e UML class diagram — to show what elements exist in the extension and

how the elements are built up in terms of the standard UML constructs;

e natural language — to describe the semantic of the meta-classes introduced.
The proposed extension introduces a new package, named AoUML, which contains
elements to represent the AO concepts, such as: aspect, pointcut, advice,
introduction, parent declaration, soft, custom compilation message and
crosscutting dependency (Figure 4.1). The proposal reuses elements from the UML
2.2 infrastructure and superstructure specifications by importing the Kernel
package. Figure 4.2 shows the dependencies between the UML Infrastructure
[OMG, 2009a), the UML Superstructure (OMG, 2009b) and the AoUML package.
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Figure 4.1 The AoUML package.
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+ CustomCompilationMessage
+ DeclarationKind

+ ExceptionKind

+ ExecutedAtPointcutCrosscuttingFeature
+ Introduction

+ MemberKind

+ ParentDeclaration

+ Pointcut

+ Soft

+ Structural CrosscuttingFeature

Figure 4.2 Dependencies between packages.

4.5 The AoUML package

4.5.1 Aspect

Semantics

An Aspect is a classifier that encapsulates the behaviour and structure of a

crosscutting concern. It can, like a class, realize interfaces, extend classes and

declare attributes and operations. In addition, it can extend other aspects and

declare advices, introductions and parent declarations.

Attributes:

e isPrivileged — if true, the aspect code is allowed to access private members

of the target classifier as a "friend"; the default is false.

e instantiation — specifies how the aspect is instantiated; the default is a

singleton.

e precedence — declares a precedence relationship between concrete aspects.

Associations:

e ownedPointcut — a set of pointcuts declared within the aspect.

e instantiationPointcut — the pointcut which is associated with a per-clause

instantiation model.
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e ownedCrosscuttingFeature — a set of crosscutting features owned by the
aspect.
e ownedAttribute — a set of attributes owned by the aspect.
e ownedOperation — a set of operations owned by the aspect.
Notation
The aspect element looks similar to the class element but has additional sections
for pointcuts and crosscutting feature declarations. Figure 4.3 provides a graphical

representation for aspects.

aspect ——— EnhancedCircle
pointcut —ﬁ@ Circle2String(): execution(* Circle.toString());
advice ——— WX String around(Circle c): Circle2String() && target(c) { -
String s= proceed(c); «interface»
s = s+ "\tposition: "+c.x+";"+c.y; Moveable
return s;
moveTo(int,int): void

<] public int Circle.x;

introduction <] public int Circle.y;

~] public void Circle.moveTo(int x, int y) { Paintable

this.x = x;
}thls.y =y; paint(): void
parent declaration
(extends) ~——> 4[> Paintable
parent declaration T S O— .
(implements) g Moveable Circle
|

crosscut relationship r-——_—————————— === —X radius: double

Circle(r:double)

setRadius(r:double) : void

‘\ RethrowSoft getRadius(): double
(
| getCircumference(): double
ll@ anywhere(): call (* *.*(..)); getArea(): double
error, warning .
or soft ! soft: Exception : anywhere(); toString(): String
precedence Logging, RethrowSoft, EnhancedCircle

‘\ Logging

'
|
\@eachMethod(): execution(* **(..)); \\‘

% before(): eachMethod() {
Signature sig = thisJoinPointStaticPart.getSignature(),
System.out.printin(sig);
}

Figure 4.3 Aspect representation.

63



CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

4.5.2 CrosscuttingFeature

Semantics

A CrosscuttingFeature is an abstract meta-class to generalize ,,pointcut-
determinable” and structural features.

Associations:

e declarer — the aspect that owns this crosscutting feature.

4.5.3 StructuralCrosscuttingFeature

Semantics

A StructuralCrosscuttingFeature affects the structure of the classifier specified by
the targetTypePattern expression.

Attributes:

o targetTypePattern — a pattern expression to match classes, interfaces or

aspects which are affected by the crosscutting feature.

4.5.4 Introduction
Semantics
An Introduction allows designers to add new attributes or methods to
classes, interfaces or aspects.
Attributes:
e memberType — specifies the kind of the inter-type member
declaration.
Associations:
¢ introducedMember — the new member which has to be added to the

target classifier.

4.5.5 ParentDeclaration

Semantics

A ParentDeclaration allows designers to add super-types to classes, interfaces or
aspects.

Attributes:

e declarationType — specifies the kind of the declaration.
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Associations:

e parent — the type implemented or extended by the target classifier.

4.5.6 ExecutedAtPointcutCrosscuttingFeature
Semantics
An ExecutedAtPointcutCrosscuttingFeature is woven with the base code at the
places specified by the attached pointcut.
Associations:
e attachedPointcut — refers to the pointcut that defines a set of join-points at

which the feature affects the base code.

4.5.7 Advice
Semantics
An advice affects the execution behavior of the base program by inserting its body
at each join-point picked out by the attached pointcut. In addition, it has access to
values in the execution context of the pointcut.
Attributes:
e adviceType — specifies when the advice’s body is executed relative to the
join-points picked out.
e body — the code of the advice.
Associations:
e ownedParameter — an ordered list of parameters to expose the execution
context.
e raisedException — a set of checked exceptions that may be raised during
execution of the advice.
e returnType — specifies the return result of the operation, if present (the

“before” and “after” advice cannot return anything).

4.5.8 Pointcut

Semantics

A Pointcut is designed to specify a set of join-points and obtain the context
surrounding the join-points as well. Join-points are well-defined places in the

program flow where the associated advice must be executed. The purpose of
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declaring a pointcut is to share the pointcut expression in many advices or other
pointcuts.
Attributes:
e isAbstract - if true, the Pointcut does not provide a complete declaration;
the default value is false.
e pointcutExpression — if a pointcut is not abstract, it specifies a set of join-
points; it has the same form as in Aspectl.
Associations:
e ownedParameter — an ordered list of parameters specifying what data is
passed from runtime context to the associated advice.
e advice — an advice that executes when the program reaches the join points.
Notation

The pointcut signature is as follows:

[visibility-modifier] pointcutName ([parameters]) :
PointcutExpression

4.5.9 CustomCompilationMessage
Semantics
A CustomCompilationMessage specifies that particular join-points should never be
reached. If the join-points picked out by the attached pointcut are reached, then
either an error or warning will be signaled. It allows enforcing constraints such as
coding standards and architectural rules.
Attributes

e message — the string the compiler will print if it encounters a match for the

attached pointcut.
e exceptionType — error or warning; the only difference between error and

warning is that errors will stop the compilation

4.5.10 Soft

Semantics

A Soft specifies that a particular kind of exception, if thrown at a join point, should
bypass Java's usual static exception checking system and instead be thrown as an
org.aspectj.lang.SoftException, which is subtype of RuntimeException and thus

does not need to be declared.
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Attributes:

e type — refers to the type of exception to soften.

4.5.11 Crosscut
Semantics
A Crosscut is a directed relationship from the aspect that specifies crosscutting
concerns to one or more classifier, where the additional structure and/or behaviour
will be combined.
Associations:

e baseElement — refers to the classifier that is crosscut.

e aspect — refers to the aspect that affects the classifier.

4.6 Illustrative examples

4.6.1 The Singleton pattern

The aim of Singleton is to ensure that only one instance of a class is created. All
requests to create a new object are redirected to that one and only instance. The
Singleton pattern ensures that only one instance of a class is created. All requests to
create a new object are redirected to that one and only instance. The AO
implementation of this pattern (Listing 4.1) was proposed by Hannemann &
Kiczales [2002]. The coresponding AoUML diagram is shown at Figure 4.4. The
protectionExclusions pointcut indicates what classes can access the Singleton's
constructor (if any). Its implementation (may be left empty) is provided by
concrete sub-aspects. The around advice protects the Singleton's constructor (lines
7—-11). It creates the unique instance on demand and returns it instead of a new
object. The concrete sub-aspect of SinglefonProtocol defines what classes are

Singleton (line 13).
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\ SingletonProtocol

\ -singletons: Hashtable \
[ 1

~= #protectionExclusions()

-constructors():
call((Singleton+).new(..)) && !protectionExclusions()

Object around(): constructors() {
Class type = thisJoinPoint.getSignature().getDeclaringType();
if (singletons.get(type) == null) {
singletons.put(type, proceed());

return singletons.get(type);
}

\ Singletoninstance

= #protectionExclusions(): :
call((PrinterSubclass+).new(..)) «interface»

Singleton
——=-3 O— Singleton g

Figure 4.4 The Singlaton pattern.

public abstract aspect SingletonProtocol {

private Hashtable singletons = new Hashtable();

public interface Singleton {}

//2
//3

protected abstract pointcut protectionExclusions(); //4

private pointcut constructors():

call ((Singleton+) .new(..)) && !protectionExclusions();//6

Object around(): constructors () {
Class type =

//5

/77

thisJoinPoint.getSignature () .getDeclaringType(); //8

if (singletons.get (type) == null) {
singletons.put (type, proceed());
}

return singletons.get (type);

}

public aspect SingletonInstance {
declare parents: Printer implements Singleton;

protected pointcut protectionExclusions():
call ((PrinterSubclass+) .new(..));

}
Listing 4.1 The AO implementation of the Singleton pattern

//9
//10

//11

//13

//14
//15
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4.6.2 The Visitor pattern

The intent of the Visitor pattern is to represent an operation to be performed on the
elements of a tree structure. Visitor lets programmers define a new operation
without modifying the classes of the elements on which it operates. Following the
concept of SoC, the Visitor pattern allows to distinguish between the structure and
its processing. Both concerns are implemented by two separate class hierarchies.
Without the Visitor pattern, all the methods pertaining to the same kind of
functional behavior would be spread over the structure hierarchy. With the Visitor
pattern they are encapsulated into a single visitor class, which can be freely added
or deleted from the system.

The first AO implementation of the Visitor pattern was presented by
Hannemann & Kiczales [2002]. However, their implementation has a few
imperfections. (1) The visit methods are distinguished via the name (i.e. visitLeaf,
visitNode); a better practice is to use overloading and to distinguish the methods
via the type of their parameter. (2) They use instanceof operator which is not a
good programming practice. (3) They use confusing names of classes and
interfaces. Our solution improves the above deficiencies.

H&K [2002] apply the Visitor pattern to operate on a binary tree. Their
binary tree either: (a) is a leaf which consists a value, or (b) is a node which
consists of a left binary tree, and a right binary tree. Figure 4.5 is the AoUML class
diagram of the example.

The Visitor interface is implemented by all classes representing operations
on the elements of the tree structure. It declares one operation for the type of each
element in the structure. Every operation accepts as a parameter an object of the
class it deals with. There are two concrete visitors: SummationVisitor (Listing 4.3)
and TraversalVisitor. They provide the context for the algorithm and store the
accumulated results as local state. The former collects the sum of all leaf values in
the tree, whereas the later displays the tree. Adding a new behavior can be achieved
by creating a new class that implements the Visitor interface.

Processing the tree starts when the visitor object is applied to the root node,
using the accept method. This accept method invokes a visit method (Listing 4.2,
Lines 10, 12) of the overgiven visitor using itself as the parameter. If the passed
parameter is type of BinaryTreeLeaf it is proceeded directly (Listing 4.3, Line 7-9).
If it is type of BinaryTreeNode, before or after processing it, the visitor object
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applies itself to the left and right subtree by invoking their accept method and thus

the whole tree structure is traversed recursively (Listing 4.3, Line 3-6).

|—|> «interface»

«interface» +Visitable «interface»

—

#Leaf

#Node

«interface»
+Visitor

VisitorProtocol

+visit(Node node): void
+visit(Leaf leaf): void

SummationVisitor

<] public void Node.accept(Visitor visitor) {

visitor.visit(this);

#sum: int=0

} .
<] public void Leaf.accept(Visitor visitor) { +getSum(): int

visitor.visit(this);

}

<] public void Visitable.accept(Visitor visitor){}

+visit(VisitorProtocol.Node node): void
+visit(VisitorProtocol.Leaf leaf): void

£ &

TraversalVisitor

T

#result: String =

Visiting

+visit(VisitorProtocol.Node node): void
+visit(VisitorProtocol.Leaf leaf): void
+getTree(): String

----- > O— Visitable

BinaryTreeNode | ————= > O— Node
BinaryTreeLeaf | ————= > O— Leaf

«interface»

BinaryTree

A

BinaryTreeNode

#left: BinaryTree
#right: BinaryTree

+BinaryTreeNode(BinaryTree left, BinaryTree right)
+getLeft(): BinaryTree
+getRight(): BinaryTree

i

BinaryTreeLeaf

#value: int=0

+BinaryTreeLeaf(int value)
+getValue(): int

Figure 4.5 The Visitor pattern.

The Visiting aspect assigns the application classes, i.e. BinaryTreeNode and

BinaryTreeLeaf, to implement the interfaces Node and Leaf respectively (Listing

4.2, Lines 15-16). These

interfaces implement the accept methods via

VisitorProtocol (Listing 4.2, Lines 9-12). Each accept method is used to pass the

current tree to a visitor.
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public abstract aspect VisitorProtocol {

protected interface Visitable {} //2

protected interface Node extends Visitable {} //3

protected interface Leaf extends Visitable {} //4

public interface Visitor { //5
public void visit (Node node) ; //6
public void visit (Leaf leaf); /77

}

public void Visitable.accept (Visitor visitor) {} //8

public void Node.accept (Visitor visitor) { //9
visitor.visit (this); //10

}

public void Leaf.accept (Visitor visitor) { //11
visitor.visit (this); //12

}
}

public aspect Visiting extends VisitorProtocol {

declare parents: BinaryTree implements Visitable; //14
declare parents: BinaryTreeNode implements Node; //15
declare parents: BinaryTreeleaf implements Leaf; //16

}
Listing 4.2 VisitorProtocol.aj and Visiting.aj

public class SummationVisitor implements

VisitorProtocol.Visitor { //1
protected int sum = 0; //2
public void visit (VisitorProtocol.Node node) { //3

BinaryTreeNode btnode = (BinaryTreeNode) node; //4
btnode.getLeft () .accept (this) ; //5
btnode.getRight () .accept (this) ; //6
}
public void visit (VisitorProtocol.Leaf leaf) { //7
BinaryTreeleaf btleaf = (BinaryTreeleaf) leaf; //8
sum += btleaf.getValue(); //9
}
public int getSum() { return sum; }

}

Listing 4.3 SummationVisitor.java

4.6.3 Summary

The evolution of the AO paradigm is progressing from programming towards the
design phase. AoUML enriches UML with constructs for visualizing Aspect] code.
Although it takes inspiration from previous work [Evermann, 2007; Hachani,
2003b; Lions et al., 2002; Yan et al., 2004], it is one more step towards closing the
gap between development phases. It makes the system model more consistent with

the system implementation. In contrast to [Evermann, 2007; Hachani, 2003a;
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Hachani, 2003b; Yan et al., 2004] AoUML provides dedicated icons for new
elements. Graphical representation improves the understanding of models.
Moreover, our proposal allows all aspect-related concepts to be specified in
metamodel terms, so that no textual specification or notes are necessary. This
means that automatic verification of the created models is simplified. Furthermore,
AoUML does not modify the UML metamodel in any way. The earlier version of
this Chapter was originally published in [Przybytek, 2008a].
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Chapter 5. Adaptation of object-oriented
metrics

When you can measure what you are speaking about, and
express it in numbers, you know something about it; but
when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meagre and unsatisfactory
kind; it may be the beginning of knowledge, but you have
scarcely in your thoughts advanced to the state of Science,
whatever the matter may be.

Kelvin, 1883

The aim of this chapter is to introduce the AO metrics, which are the basis for the

empirical studies conducted in the next Chapters.

5.1 Software measurement

To assess with some objectivity the quality of a design, we need to quantify design
properties. Software engineers need quantitative assessment techniques to evaluate
design alternatives. Measurement is fundamental to any engineering discipline and

software engineering is no exception [Balasubramanian, 1996]. Measurement is “tfe
act or process of assigning a number or category to an entity to describe an attribute of
that entity’ [IEEE, 1998] and is conducted by using metrics. IEEE Standard 1061
[1998] defines a software quality metric as “a function whose inputs are software
data and whose output is a single numerical value that can be interpreted as the degree
to which software possesses a given attribute that affects its quality” In this

dissertation software metrics are used as an objective means to compare the quality of

software systems developed using two different paradigms.
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5.2 Modularity metrics

5.2.1 Existing OO metrics

Software engineering gurus consider modularity as a key principle when
comparing design alternatives [Eick et al., 2001]. For years, they have proposed
various programming techniques to improve software modularity. The dogma is
that good modularization should exhibit high cohesion and low coupling [Anquetil
& Laval, 2011]. This pair of attributes was firstly suggested to measure software
modularity by Yourdon & Constantine [1979] as part of their structured design
methodology and then it was adapted to the OO paradigm by Coad & Yourdon
[1991], Booch [1994], and Meyer [1989]. It was also used by Tsang et al. [2000] to
assess modularity in AO software. Furthermore, several empirical studies [Briand
et al., 1999; Briand et al., 2001; Hitz & Montazeri, 1995; Ponnambalam, 1997]
confirm that improvements in coupling and cohesion are linked to improved
modularity.

Despite coupling and cohesion having been concepts in software design for
almost 50 years, we still do not have widely-accepted metrics for them. However
the most referenced and well-known are CBO (Coupling Between Object classes)
and LCOM (Lack of Cohesion in Methods), defined by Chidamber & Kemerer
(CK) in their metrics suite [Chidamber & Kemerer, 1994]. The CK suite is widely
used for OO assessment; among other things, it was chosen by the Software
Assurance Technology Center at NASA Goddard Space Flight Center. CBO is a
count of the number of other modules to which a module is coupled. Two modules
are coupled when methods declared in one module use methods or instance
variables of the other module [Chidamber & Kemerer, 1994]. LCOM is the degree
to which methods within a module are related to one another. It is measured as the
number of pairs of methods working on different attributes minus pairs of methods
working on at least one shared attribute (zero if negative).

CBO and LCOM complement each other, and because of their dual nature,
they are useful only when analyzed together. Attempting to optimize a design with
respect to CBO alone would trivially yield to a single giant module with no
coupling. However, such an extreme solution can be avoided by considering also
the antagonistic attribute LCOM (which would yield inadmissibly high values in
the single-module case) [Hitz & Montazeri, 1995].
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5.2.2 Existing AO metrics
Since AOP introduces several new kinds of interactions among modules, existing
0O measures cannot be directly applied to AO software. The efforts to make the
CK metrics suite applicable to AO software were originated by Sant’Anna et al.
[2003] and continued by Zhao [2004], Ceccato & Tonella [2004], Shen & Zhao
[2007], and Burrows et al. [2010a; 2010b]. The general suggestion is to treat
advices as methods and to consider introductions as members of the aspect that
defines them. Although this suggestion is enough to adapt LCOM, the adjustment
of CBO requires further explanation. Ceccato & Tonella [2004] defined five
metrics to measure different kinds of coupling:
e CMC (Coupling on Method Call) is a number of modules declaring
methods that are possibly called by a given module;
e CFA (Coupling on Field Access) is a number of modules declaring fields
that are accessed by a given module;
e CAE (Coupling on Advice Execution) is a number of aspects containing
advices possibly triggered by the execution of operations in a given
module;
e CIM (Coupling on Intercepted Modules) is a number of modules explicitly
named in the pointcuts belonging to a given aspect;
e CDA (Crosscutting Degree of an Aspect) is a number of modules affected
by the pointcuts and by the introductions in a given aspect.
Zhao [2004] complemented the Ceccato & Tonella’s work by specifying the
coupling dependencies in a formal way. Full definition of the Zhao’s metrics can
be found in the original study. One other AOP-specific coupling metric, named
BAC (Base-Aspect Coupling), was defined by Burrows et al. [2010a]. BAC is a
number of join points shadowed from an aspect via advice plus the number of
module hierarchy changes from an aspect via intertype declarations, declare soft
statements and declare parents statements. Shen & Zhao [2007] and Burrows et al.
[2010b] created several fine-grained coupling metrics by splitting the Ceccato &
Tonella’s metrics into their component elements. These metrics quantify specific
coupling properties of AOP.

Since the metrics proposed by Zhao [2004], Ceccato & Tonella [2004],
Shen & Zhao [2007], and Burrows et al. [2010a; 2010b] measure only a specific
kind of coupling, they may be used to assess the impact of individual AO

mechanisms on high-level quality attributes. Nevertheless, they cannot by used to
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compare the OO and AO implementations. An AO counterpart to be comparable
with CBO must measure multiple kinds of coupling together. The metric that
satisfies this requirement is CBC (Coupling between Components) defined by
Sant’Anna et al. [2003]. It is broader than the original CBO in the sense that it
additionally counts modules declared in formal parameters, return types, throws
declarations and local variables. CBC considers most of the new kinds of coupling
dependencies in AO software: accesses to aspect methods and attributes defined by
introduction, and the relationships between aspects and classes or other aspects
defined in the pointcuts. However, it is not complete, since it takes into account
only syntactic dependencies. Syntactic dependency occurs when there is a direct

reference between modules, e.g. aggregation.

5.2.3 Proposed coupling metric — CBO,o

Coupling is a more complex attribute in AO systems, because new programming
constructs introduce novel kinds of coupling dependencies. Since some of them
occur without explicit references in the code, they are not so easy to realize.
Ribeiro et al. [2007] call them semantic dependencies. We propose a metric, named

CBO,o, that takes into account this subtle coupling.

CBOyo considers a module X to be coupled to Y if (in parentheses, we
provide abbreviations for the dependencies):

e X accesses attributes of Y (A);

o X calls methods of Y (M);

e X potentially captures messages to Y (C);

e Messages to X are potentially captured by Y (C_by);

e X declares an inter-type declaration for Y (I);

e X is affected by an inter-type declaration declared in Y (I_by);

e X uses pointcuts of Y, excluding the case where Y is an ancestor

of X (P).

The C by and I by dependencies are semantic and are consequences of C and I

respectively. Figure 5.1 illustrates coupling dependencies in a simple program.
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EnhancedCircle

shapeChanged():
r execution(void Circle.setRadius(double));

=3 Circle2String(): execution(String Circle.toString());

Circle

radius: double

Circle(r:double)
setRadius(r:double) : void

getRadius(): double

] public void CirdlemoveTolintx inty) {1~ | gotAreal): double

. }thls.y =y; : F\I—_by/ toString(): String

@ pointcut changes(): EnhancedCircle. shapeChanged()
|| EnhancedRectangle.shapeChanged(); K

before(): changes() {
Signature sig = thisJoinPointStaticPart. getSlgnature()
System.out.printin(sig); :

Figure 5.1 Examples of coupling dependencies.

A coupling dependency is represented by a labelled arrow from module X to module Y.
The source of the arrow is the construt in X that generates coupling. The target is a module
Y to which module X is coupled.

To construct our metric, we extrapolated the original CBO definition according to
the question that underlies coupling: “How much of one module must be Known in
order to understand another module?” [Yourdon & Constantine, 1979]. The syntactic
dependencies (i.e. A, M, C, I, P) occurring in our metric do not raise any doubts
even among proponents of AOP [Sant’ Anna et al., 2003; Garcia et al., 2005]. Thus,
we only need to demonstrate that for understanding a given module X, we have to
analyze Y if the C_by or I by dependency exists between X and Y.

Let us consider two modules X and Y1 as shown in Listing 5.1. Assume
that the inc(5) message has been sent to an instance of X. If we analyze X without

considering the C by dependency from X to Y1, we will deduce (following
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program control flow) that the result is 6. However, the result is actually 11, and

analyzing Y1 is necessary to compute it correctly.

public class X {
public int inc (int x) {
return ++x;

}
}

public aspect Y1 {
int around(int i): execution( int X.inc(int) ) && args (i) {
return proceed (2*1i);
}
}

Listing 5.1 The C_by dependency

Now, suppose that two new modules Y2 and SubX were added as shown in Listing
5.2. Assume that the same message (inc(5)) has been sent to an instance of SubX.
Once again, if we analyze X without considering the I by dependency from SubX

to Y2, we will deduce an incorrect result. The correct is 20.

public aspect Y2 {
public int subX.inc (int x) {
return x+10;

}
}

public class SubX extends X {}

Listing 5.2 The I_by dependency

5.2.4 Coupling and cohesion at the system level

CBM,0 and LCOM are module level metrics. Nevertheless, we intend to compare
systems. Thus, we need to lift the values of the module level to the system level.
This lifting can be done by aggregating. There are a number of different
aggregation functions such as average, sum, max and min. The sum is not useful
because the size of an application would affect the measurement results, while
modularity is orthogonal to size. The max and min function would make the result
based on only one module [Rentrop, 2006]. In this research we use the average
aggregation function to lift metric values to the system level.

We present the details of the computation on the Observer pattern
[Hannemann & Kiczales, 2002]. Table 5.1 shows the values for both metrics for
each module. The correspondence computations are as follows:

e for the OO implementation: CBO,o = (2+1+2+0+0)/5 = 1;

LCOM = (0+24+4+0+0)/5 = 5,6
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e for the AO implementation: CBO»o = (2+2+14+0+5+2+3+0+0)/9 = 1,7

LCOM = (0+0+0+10+0+9+0+0+0)/9 = 2,1

a) OO implementation

2

module name module kind CBOpo | LCOM
Main class 2 0
Point class 1 24
Screen class 2 4
ChangeObserver interface 0 0
ChangeSubject interface 0 0
b) AO implementation

module name module kind CBO,o |LCOM
ColorObserver aspect 2 0
CoordinateObserver |aspect 2 0
ScreenObserver aspect 1 0
ObserverProtocol aspect 0 10
Main class 5 0
Point class 2 9
Screen class 3 0
Observer interface 0 0
Subject interface 0 0

Table 5.1 The CBO,o and LCOM values for the Observer pattern

5.3 Evolvability and reusability metrics

Evolvability and reusability are quality characteristics that we cannot measure
directly. The amount of reuse is usually measured by comparing the number of
reused “items” with the total number of “items” [Frakes, 1993], where items
depend on the granularity chosen, e.g. lines of code (LOC), function, or class.
Since we are going to measure code reuse, we have chosen the granularity of LOC,
yet we count only these reused lines that are part of the modules reused by
applying the composition mechanisms of the underlying programming language.

Thus, the proposed reuse level metric is defined as:

Reuse Level = LOC_of reused modules / total LOC in_system

The evolution metric we use is based on previous studies performed by
Zhang et al. [2008] and Ryder & Tip [2001]. In their work, the difficulty of

evolvability is defined in terms of atomic changes to the modules in a program. At
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the core of this approach is the ability to transform source code edits into a list of
atomic changes, which captures the semantic differences between two releases of a
program. Zhang et al. [2008] presented a catalog of atomic changes for Aspect]
programs. For the purpose of our study, we have slightly modified their catalog.
Firstly, we consider deleting a non-empty element as an atomic change. Secondly,

we use the term “module” as a generalization of class, interface, and aspect.

Our evolution metric breaks source code edits into a list of the following

atomic changes:

add an empty module,
delete a module,

add a field,

delete a field,

add an empty method,
delete a method,
change body of method,
add an empty advice,
delete an advice,
change an advice body,
add a new pointcut,
change a pointcut body,
delete a pointcut,

introduce a new field,

change an introduced field
initializer,

introduce a new method,
delete an introduced
method,

change an introduced
method body,

add a hierarchy declaration,
delete a hierarchy
declaration,

add an aspect precedence,
delete an aspect
precedence,

add a soften exception

e (delete an introduced field, declaration,

e delete a soften exception

declaration.

5.4 Summary

The advent of a new paradigm requires software engineers to define new metrics to
measure the quality of programs in this paradigm. In this chapter we reviewed the
existing AO metrics. We found that the existing metrics are invalid for evaluating
coupling in AO systems, since they do not take into account semantic dependencies

between the system modules. Next, we presented all the ways by which modules
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can be coupled to each other within AO systems. A new coupling metric (CBOxo)
was defined on the base of these coupling dependencies. CBOao was earlier
presented and discussed in scientific forums at ENASE’10 [Przybytek, 2010a] and
ETAPS’11 [Przybyltek, 2011b]. We also proposed metrics for assessing software
evolvability and reusability. These metrics were originally introduced in

[Przybytek, 2011c].
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Chapter 6. Impact of aspect-oriented
programming on software
modularity

Measure all that is measurable and attempt to make
measurable that which is not yet so.

Galileo

The aim of this chapter is to perform a metrics-based comparison among AO and

0O software with respect to modularity.

6.1 Research methodology

The aim of this research is to compare AO and OO systems with respect to
software modularity from the viewpoint of the developer. The research method
employed is Multiple Embedded Case Study. The units of analysis are the 23
Gang-of-Four (GoF) design patterns [Gamma et al., 1995] and 11 real-world
systems. Because every individual case involves the examination of two subunits
of analysis (OO and AO implementation), our study is called embedded. The
process of conducting our study is illustrated using Activity Diagram in Figure 6.1.

The assessment of both OO and AO implementations bases on the
application of metrics that quantify two fundamental modularity attributes, namely
coupling and cohesion. In addition, the analysis of real-world systems is
supplemented by size metrics. Table 6.1 overviews the employed metrics and
associates them with the attributes measured by each one of them. Detailed
description of the coupling metric is provided in Chapter 5.2.2. Figure 6.2

illustrates our measurement system.
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@ﬁning the study in terms of GQI\D

gathering source code of the extending the AOPmetrics tool
systems that have been (adding the CBO metric that
implemented in both Java and considers A, M, |, I_by, and P
AspectJ dependencies)

using AOPmetrics to collect
data and to generate EXCEL
report

manually revising the CBO
[AO implementati(ﬁkvalues (considering C and

C_by dependencies)

[OO implementation]

calculating average
values

Figure 6.1 Activity Diagram for our study.

Table 6.1 Metric Definitions

Attributes | Metrics Definitions
Vocabulary Number of modules (classes, interfaces, and
. Size aspects) of the system
Size - ;
. Number of lines in the text of the system's
Lines of Code
source code
Coupling . Number of other modules to which a
Between Object .
module is coupled
classes
Modularity Number of pairs of methods/advices
Lack of . . . . .
.. working on different attributes minus pairs
Cohesion in .
of methods working on at least one shared
Methods

attribute (zero if negative)
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GOAL

What is the average
Purpose comparison » coupling for each » e
implementation?

Issue software modularity
Object Ofotsnd . Impltementatlons What isthe average
BRI EIE » cohesion for each » LCOM

Viewpoint | software developers implementation?

Figure 6.2 GQM diagram of the study.

The data were collected for each module (class, interface or aspect) of each system
using the extended version of the AOPmetrics tool [Stochmiatek, 2006]. We
extended AOPmetrics (available at: http:/przybylek.wzr.pl/AOP/) to support the
CBOyxo metric as defined in the previous Chapter, except for capturing C and
C_by. This is due to some inherent bugs in AOPmetrics [Przybytek, 2010]. Hence,
the CBOao measures were recalculated manually using the Cross Reference View
provided by the AJDT Eclipse plugin. The results are presented separately for

design patterns (academic examples) and real-world systems.

6.2 Selected programs

Our study uses systems from different domains and of varying sizes (Table 6.2).
All of the real-world systems were originally implemented in Java and, afterwards,
were refactored using Aspect], so that the code responsible for some crosscutting
concerns was moved to aspects. In each case, code refactoring was done by

proponents of AOP to present the benefits of AOP over OOP.

Table 6.2 Overview of the selected systems

Name Description

Telestrada A traveler information system being developed for a Brazilian
national highway administrator. It allows its users to register and

visualize information about Brazilian roads.

Pet Store A demo for the J2EE platform that is representative of existing e-

commerce applications.
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CVS Core

An Eclipse Plugin that implements the basic functionalities of a CVS
client, such as checkin and checkout of a system stored in a remote

repository.

Elmp

An Eclipse Plugin that supports collaborative software development

for distributed teams.

Checkstyle

An Eclipse Plugin to help programmers write Java code that adheres
to a coding standard. The plugin does this by inspecting the Java
source code and pointing out items that deviate from a defined set of

coding rules.

Health
Watcher

A web-based information system that was developed by Soares et al.
[2002] for the healthcare bureau of the city of Recife, Brazil. The
system aims to improve the quality of services provided by the
healthcare institution, allowing citizens to register complaints
regarding health issues, and the healthcare institution to investigate
and take the required actions. It involves a number of recurring
concerns and technologies common in day-to-day software

development, such as GUI, concurrency, RMI, Servlets and JDBC.

JHotDraw

A framework for technical and structured 2D graphics. Its design
relies heavily on some well-known design patterns. JHotDraw's

original authors are Gamma & Eggenschwiler.

HyperCast

Software for developing protocols and application programs for
application-layer overlay networks. It supports a variety of overlay
protocols, delivery semantics and security schemes, and has a
monitor and control capability. It was developed at the University of

Virginia in cooperation with the Microsoft Corporation.

Prevayler

An object persistence library for Java. It is an implementation of the
Prevalent System design pattern, in which business objects are kept
live in memory and transactions are journaled for system recovery.
Business object must be serializable, i.e., implement the
java.io.Serializable interface, and deterministic, i.e., given an input,

the object’s methods must always return the same output.
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Berkeley DB | A database system that can be embedded in other applications as a
Java Edition | fast transactional storage engine. It stores arbitrary key/data pairs
as byte arrays and supports multiple data items for a single key.
Berkeley DB provides the underlying storage and retrieval system

of several LDAP servers, database systems and many other

applications.
HyperSQL A relational database management system. It offers a small and fast
Database database engine which supports both in-memory and disk-based

tables. HSQLDB is currently being used as a database and
persistence engine in many projects, such as Mathematica and

OpenOffice.

In the first five systems (i.e. Telestrada, Pet Store, CVS Core, EImp, Checkstyle),
aspects were used to implement exception handling [Filho et al., 2006; Castor et
al., 2009; Taveira et al., 2009]. Exception-handling is known to be a global design
issue that affects almost all system modules, mostly in an application-specific
manner.

For the next system (Health Watcher) [Soares et al., 2002; Greenwood et
al., 2007] refactoring went beyond exception handling, including in addition
concerns such as data persistence, concurrency and distribution (basic remote
access to system services using Java RMI). Both the OO and AO designs of the
Health Watcher system were developed with modularity and changeability
principles as main driving design criteria.

AJHotDraw (ajhotdraw.sourceforge.net) is an aspect-oriented refactoring
of JHotDraw with regard to persistence, design policies contract enforcement and
undo command. It was started to experiment with the feasibility of adopting aspect-
oriented solutions in existing software and demonstrate the strategies proposed by
research of the Software Evolution Research Lab of Delft University of
Technology in the Netherlands. The aims, objectives and experience of the
AJHotDraw project are summarized by Marin et al. [2007].

Sullivan et al. [2005] encountered two types of development problems
when refactoring logging and event notification in HyperCast. First, the tight
coupling between aspects and method names prevented the development of aspects

in parallel with primary code refactoring, because the aspects could only be
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developed after inspecting the core concerns. Second, they found cases where
joinpoints were not accessible, because Aspect] supports specifying joinpoints at
the method call level and data member level, but not at the if or switch statement
level. Next, they re-implemented the base version using Aspect] and crosscutting
interfaces (XPI). What distinguishes that particular release, is the lack of
introductions used. In our experiment, we evaluate the improved version.

Prevayler was refactored using Aspect] and horizontal decomposition by
Godil & Jacobsen [2005]. The horizontal decomposition principles were proposed
by Zhang & Jacobsen [2004] to guide the AO refactoring and implementation of
complex software systems. The refactored code includes persistence, transaction,
query, and replication management [Katz, 2004].

By analyzing the domain, manual, configuration parameters, and source
code, Kistner et al. [2007] identified many parts of Berkeley DB that represented
increments in program functionality that were candidates to be refactored into
features. These features are implicit in the original code. They vary from small
caches to entire transaction or persistence subsystems. All identified features
represent program functionality, as a user would select or deselect them when
customizing a database system. From these features, they chose 38 and manually
refactored one feature after another (wwwiti.cs.uni-
magdeburg.de/iti_db/berkeley/). They used various OOP-to-AOP refactoring
techniques, including Extract Introduction, Extract Beginning and Extract End,
Extract Before/After Call, Extract Method, and Extract Pointcut [Késtner, 2007].

Storzer et al. [2006] refactored version 1.8.0 of HSQLDB
(sourceforge.net/projects/ajhsqldb/). They started with an accepted catalog of well-
known crosscutting concerns and then tried to find classes, methods or fields
related to the respective concerns. They used manual semantics-guided code
inspection supported by Feature Exploration and analysis tool to find a relevant
crosscutting code. They discovered and refactored many standard crosscutting
concerns, including Logging, Tracing, Exception Handling, Caching, Pooling and
Authentication/Authorization. When becoming familiar with the source code, they
also found some application specific aspects, for example trigger firing or checking
constraints before certain operations are performed [Storzer, 2007].

We also investigate the 23 GoF patterns (Table 6.3) which intensively
involve crosscutting concerns. Design paterns represent common software

problems and the solutions to those problems. For each pattern Hannemann &
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Kiczales [2002] developed an academic example that makes use of the pattern, and

implemented the example in both Java and Aspect]. The Aspect] implementations

are thought as illustrations of good AOP style and design [Monteiro & Fernandes,

2005]. The Java implementations correspond to the sample C++ implementations

in the GoF book [Gamma et al., 1995].

Table 6.3 Overview of the 23 GoF design patterns [Gamma et al., 1995]

Name

Intent

Builder

Separate the construction of a complex object from its
representation so that the same construction process can create

different representations.

Command

Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log

requests, and support undoable operations.

Iterator

Provide a way to access the elements of an aggregate object

sequentially without exposing its underlying representation.

Mediator

Define an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from
referring to each other explicitly, and it lets you vary their

interaction independently.

Proxy

Provide a surrogate or placeholder for another object to control

access to it.

Chain of
Responsibility

Avoid coupling the sender of a request to its receiver by giving
more than one object a chance to handle the request. Chain the
receiving objects and pass the request along the chain until an

object handles it.

Memento

Without violating encapsulation, capture and externalize an
object's internal state so that the object can be restored to this

state later.

State

Allow an object to alter its behavior when its internal state

changes. The object will appear to change its class.

Flyweight

Use sharing to support large numbers of fine-grained objects

efficiently.
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Factory Method

Define an interface for creating an object, but let subclasses
decide which class to instantiate. Factory Method lets a class

defer instantiation to subclasses.

Facade

Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the

subsystem easier to use.

Strategy

Define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary

independently from clients that use it.

Bridge

Decouple an abstraction from its implementation so that the two

can vary independently.

Composite

Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and

compositions of objects uniformly.

Template
Method

Define the skeleton of an algorithm in an operation, deferring
some steps to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the

algorithm's structure.

Decorator

Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for

extending functionality.

Prototype

Specify the kinds of objects to create using a prototypical

instance, and create new objects by copying this prototype.

Singleton

Ensure a class only has one instance, and provide a global point

of access to it.

Observer

Define a one-to-many dependency between objects so that when
one object changes state, all its dependents are notified and

updated automatically.

Interpreter

Given a language, define a represention for its grammar along
with an interpreter that uses the representation to interpret

sentences in the language.
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AbstractFactory

objects without specifying their concrete classes.

Provide an interface for creating families of related or dependent

Visitor

changing the classes of the elements on which it operates.

Represent an operation to be performed on the elements of an

object structure. Visitor lets you define a new operation without

Adapter

otherwise because of incompatible interfaces.

Convert the interface of a class into another interface clients

expect. Adapter lets classes work together that couldn't

Table 6.4 indicates the websites of the programs that are publicly available. The

source code of other programs was obtained from the authors.

Table 6.4 Websites of the analyzed programs

Name Source

Telestrada http://www .kevinjhoffman.com/icse2008/

Pet Store http://www.kevinjhoffman.com/icse2008/

Checkstyle http://eclipse-cs.sourceforge.net

Health Watcher http://www.comp.lancs.ac.uk/~greenwop/ecoop07/

JHotDraw http://www.jhotdraw.org,
http://ajhotdraw.sourceforge.net

HyperCast http://www.comm.utoronto.ca/hypercast/

Prevayler http://www.prevayler.org

Berkeley DB  Java | http://oracle.com/technology/products/berkeley-db,

Edition http://wwwiti.cs.uni-magdeburg.de/iti_db/berkeley/

HyperSQL Database http://hsqldb.org,

http://sourceforge.net/projects/ajhsqldb/

23 GoF design paterns

http://www.cs.ubc.ca/labs/spl/projects/aodps.html
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6.3 Experimental results: 11 real-world systems

Table 6.5 shows the obtained results for both size metrics (vocabulary size and
LOC) and both modularity metrics (CBOxo and LCOM). For all the employed
metrics, a lower value implies a better result. The fifth and sixth column presents
the mean values of the measures, over all modules per system. Rows labeled ‘A’
indicate the percentage difference between the OO and AO implementations
relative to each metric. A positive value means that the original version performs
better, whereas a negative value indicates that the refactored version exhibits better
results.

In the case of both CVS and EIMP, their refactored code is not publicly
available, so we based our analysis on the measurements carried out by Castor et
al. [2009]. However, since they do not consider all kinds of coupling, we cannot
present the exact CBO,o values. We can only say that coupling is greater for the
refactored systems.

Contradicting the general intuition that AOP makes programs smaller, the
refactored versions are larger with regard to the LOC metric in the six cases.
However, the increases are rather small and range between 1% and 4% (except for
Checkstyle).

The average coupling between modules is significantly higher in most of
the refactored versions. For the refactored versions of Prevayler and Health
Watcher, it is more than 30% higher than for the corresponding OO releases. Only
for HSQLDB, JHotDraw and HyperCast is the increase rather slight. Checkstyle is
the only system whose AO version exhibited a better outcome for coupling, with a
reduction of 3%. The higher coupling is the result of introducing new constructs
intrinsic for AOP. In a typical scenario during AO refactoring, the coupling
generated by explicit method call is replaced by the coupling generated by implicit
advice triggering. Moreover, Filho et al. found [Filho et al., 2006] that new
coupling was introduced when exception-handler aspects had to capture contextual
information from classes.

Although the obtained results were as expected due to the above presented
theoretical considerations, they contradict the outcomes achieved in several earlier
studies. The advocates of AOP claim that the refactored versions of Telestrada
[Filho et al., 2006; Castor et al., 2009], Pet Store [Filho et al., 2006; Castor et al.,
2009], CVS Core Plugin [Filho et al., 2006; Castor et al., 2009], EImp Plugin
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[Filho et al., 2006; Castor et al., 2009,] Health Watcher [Greenwood et al., 2007,
Soares et al., 2002], and Prevayler [Godil & Jacobsen, 2005] exhibit lower
coupling. However, they take into account only a subset of the dependencies that
generate coupling in AO systems. Hence, the coupling measured with their metrics

is underestimated.

Table 6.5 Results for Size, Coupling and Cohesion Metrics

I Il I \Y% V VI
VS LOC |[CBOxo|LCOM
0] 6) 233 | 3424 0,81 1,86
Telestrada | AO| 242(18)| 3350 0,95 2,17
A 4% -2% 18% 16%
0] 6) 345] 17798 2,32| 20,63
PetStore AO [ 382(37)| 17914 2,76 20,19
A 11% 1% 19% -2%
0] 6) 257 | 18876 576 71,31
CvVs AO | 261(4)| 19423 higher [ 73,90
A 2% 3% X 4%
0] 6) 123| 8708 1,84 1,53
Elmp AO 126(3)| 9041 higher 1,68
A 2% 4% X 10%
0] 6) 283 | 18083 7,61 16,01
Checkstyle | AO| 330(23)| 20101 741 22,67
A 17% 11% 3% 42%
Health oo 88| 6096 3,19 9,24
Watcher AO [ 103(12)| 5768 4,20 7,63
A 17% 5% | 32%| -17%
0] 0) 398 | 22724 3,57| 75,04
JHotDraw | AO | 438(31)[ 23167 3,66 65,70
A 10% 2% 3%| -12%
0] 6) 370| 50492 3,31| 67,24
Hypercast [AO | 391(7)| 51207 3,42 67,00
A 6% 1% 4% | -0,4%
0] 6) 167| 5043 1,87 9,31
Prevayler AO [ 168(55) 4179 2,56 7,01
A 1% -17%] 37%| -25%
0] 6) 340] 41651 4,38 [ 126,31
Berkeley DB | AO | 452(107)| 38770 4,73 78,21
A 33%| -6,9% 8% | -38%
0] 6) 402| 80736 4,11 [ 226,91
HSQLDB AO | 413(25)| 76210 4,12 | 247,30
A 3% -6%| 0,3% 9%

The Lack of Cohesion in Methods is the metric for which the impact of AOP has

remained unclear. For the refactored versions of Berkeley DB, Prevayler, Health
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Watcher and JHotDraw, the average LCOM is respectively 38%, 25%, 17%, and
12% lower than for the corresponding original versions. On the other hand, the
average LCOM grew by 42% in the refactored version of Checkstyle, 16% in
Telestrada, 10% in the EImp Plugin and 9% in HSQLDB. A partial explanation for
this increase is the large number of methods that were created to expose join points
(e.g. try-catch blocks in loops, etc.) that Aspect] can capture [Hoffman & Eugster,
2007]. As discussed in [Castor et al., 2009], these new methods are not part of the
implementation of the exception-handling concern but a direct consequence of
using aspects to implement this concern. The average LCOM varied (positively or
negatively) by less than 4% in the refactored versions of the remaining systems.

It is worth mentioning that most researchers compare aggregate coupling
and cohesion between an OO and AO version of the same system. Aggregate
coupling (cohesion) for a system is calculated as the sum of coupling (cohesion)
taken over all modules. Hence, it can be derived from Table 6.5 as multiplication
of the average value by vocabulary size. It should be also noted that the original
versions perform better with regard to the aggregate coupling and cohesion, since
the measures of vocabulary size grew in all cases, due to the introduction of
aspects. Nevertheless, aggregate coupling does not satisfy the second axiom of
Fenton & Melton [1990] for coupling measures. That axiom states that system
coupling should be independent from the number of modules in the system. If a
module is added and shows the same level of pairwise coupling as the already

existing modules, then the coupling of the system remains constant.

6.4 Experimental results: the 23 GoF design patterns

The CBOxo and LCOM (LCO in AOPmetrics) values were collected for each of
the 128 modules across the OO implementations and 179 modules across the AO
implementations. Table 6.6 presents the mean values of the metrics, over all
modules per pattern. The lower numbers are better. The sixth and seventh column
indicates the superior implementation with regard to the CBO,o and LCOM

metric, respectively.
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Table 6.6 Modularity metrics computed as arithmetic means.

I Il [ v Vv VI VI
OOP AOP winner
CBOxo | LCOM | CBOpo | LCOM | CBO,o | LCOM

Builder 0,75 2 1,80 2,20 OO 00
Command 0,711 0,14 1,58| 2,67 OO 00
Iterator 0,75| 0,25 1,40 1,80 OO 00
Mediator 0,86 0,14 1,13] 0,50 OO 00
Proxy 1,20 0 1,38] 0,13] OO 00
Chain 1,38 0,25 1,58 1,08] OO 00
Memento 0,67 0 0,75| 0,50] OO (0]
State 1,57| 0,14 1,86 0,43| OO 00
Flyweight 0,80 0 0,86| 0,14]| OO 00
FactoryMethod 0,50 0 1,38 0] OO -
Facade 0,80 0 1,83 0] OO -
Strategy 0,80 0 1,67 0| OO -
Bridge 0,71 0 1,38 0| OO -
Composite 0,75 4 1,42 4| OO -
TemplateMethod 0,75 0 1 0| OO -
Decorator 1,17 0 1,25 0| OO -
Prototype 0,67| 0,67 2,33 0] OO AO
Singleton 0,67 0,33 1,33 0] OO AO
Observer 1 5,60 1,701 2,11] OO AO
Interpreter 1,56 0,11 2,40 0] OO AO
AbstractFactory 0,90 0,1 1,18| 0,09| OO AO
Visitor 1,71 0,71 1,92 0,17| OO AO
Adapter 1 0 1 0 - -

There is no pattern whose AO implementation exhibits lower coupling. For 22
patterns, the OO implementations present lower coupling, and in one pattern the
values obtained for OOP and AOP are equal. With regard to cohesion, the OO
implementations are superior in 9 cases, while the AO ones in 6 cases. 8 patterns
exhibit the same cohesion in both implementations.

For a further analysis of the effects of AOP, we break the results for this paradigm
in two parts: (I) core concerns, and (II) crosscutting concerns (Table 6.7). Metrics
in each part are calculated as arithmetic means taken over: (I) all modules that
implement the core concerns for a given pattern (it means all interfaces and classes
except the Main class); (II) all aspects that comprise the pattern. Metrics in the first
part reflect the modularization of core concerns, while metrics in the second part
reflect the modularization of crosscutting concerns. The contribution of each part in
the overall coupling and cohesion is shown as a percentage. In order to make a fair
comparison between the two paradigms, Main classes were also excluded from the

OO implementations.
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The details of the computation are presented for the Observer pattern (see
Figure 5.2). The AO implementation of Observer encompass 4 modules that
implements core concerns (i.e. Point, Screen, Observer, Subject), 4 aspects (i.c.
ColorObserver, CoordinateObserver, ScreenObserver, ObserverProtocol), and a
Main class. The correspondence computations for the AO implementations are as
follows:
e for the core concerns (colums: IV, V, VI):

o core % =
the number of modules that implements core concerns 4
8

=0,5

the total number of modules minus one

o  CBOyp = (2+3+0+0)/4 = 1,25;

o LCOM = (9+0+0+0)/4 = 2,25;
e for the crosscutting concerns (colums: VII, VIII, IX):

o crosscutting % = 1— core % =0,5

o CBOyo = (2+2+1+0)/4 = 1,25;

o LCOM = (0+0+0+10)/4 = 2,5;

e overall results (colums: X, XI):

0 CBOux0=0,51,25+0,5-1,25=1,25;

o LCOM= O,§~2,25 + 0?5'2,5 =2,375;

It is worth noting that in the AO versions most of the “badness” is generally
accumulated within aspects. When comparing the CBO,o values for classes and
interfaces only, the AO implementations are better in 4 cases and worse in 10 out

of 23.
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Table 6.7 Modularity metrics — a detailed view.

I Il 11 Y V VI VIl VI IX X XI
OOP AOP
CBOxo | LCOM core crosscutting overall

% |CBOpo|LCOM| % |CBOao|LCOM|[CBO,, |LCOM
Builder 0| 2,67]|75% 1,00 3,67]25% 3,00 0 1,50 2,75
Command 0,33| 0,17]82% 0,89 0]18% 3,00| 16,00 1,27| 2,88
Iterator 0,67 0,33]75% 0,67 0,33]25% 3,00 8,00 1,25 2,25
Mediator 0,67 017]71% 0,60 0]29% 1,50| 0,67 0,86 0,19
Proxy 0,50 0]43% 1,00 0]57% 1,75 0,25 1,43| 0,14
Chain 1,14 0,29]82% 0,89 0]18% 3,5 6,5 1,36 1,17
Memento 0,50 0]171% 0,20 0]29% 1,50 2,00 0,58| 0,58
Flyweight 0,50 0]67% 0,50 0]33% 1,00 0,50 0,67 0,17
FactoryMethod 0 0]171% 0,80 0]29% 2,00 0 1,15 0
Facade 0,75 0]80% 1,50 0]20% 3,00 0 1,80 0
Strategy 0,25 0]60% 1,00 0]40% 1,50 0 1,20 0
Bridge 0,17 0]86% 0,50 0]14% 4,00 0 0,99 0
Adapter 0,33 0]167% 0,5 0]33% 1,00 0 0,67 0
State 1,67 0,17]83% 1,40 0,6117% 5,00 0 2,01 0,50
TemplateMethod 0 0]75% 0,33 0]25% 1,00 0 0,50 0
Decorator 0,60 0]33% 2,00 0]167% 1,00 0 1,33 0
Prototype 0| 1,00]|60% 1,67 0]40% 3,00 0 2,20 0
Singleton 0| 0,50]|60% 0,67 0]140% 2,00 0 1,20 0
Observer 0,75| 7,00|50% 1,25 2,25]150% 1,25 2,50 1,25| 2,38
Interpreter 0,88| 0,13]89% 1,38 0]111% 6,00 0 1,89 0
AbstractFactory 0,67 0,11]90% 0,89 0,11]10% 2,00 0 1,00| 0,10
Visitor 1,33| 0,83]82% 1,33 0,22]18% 3,50 0 1,72] 0,18
Composite 0| 5,33|82% 0,78 0]18% 3,50| 14,00 1,27 2,52

The problem with the arithmetic mean is that each of the modules contributes

equally to the final result. Intuitively, larger modules are more complex, so they

should contribute more. In addition, LCOM is not normalized, which means that

the cohesion measures of different modules (as they all have different numbers of

methods and attributes) should not be compared. Thus, weighted arithmetic means

were also calculated. The individual CBO and LCOM values are weighted by the

number of methods defined in the module, plus one. Table 6.8 presents the

averages calculated in this way. As it turns out, no pattern changes its group.
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Table 6.8 Modularity metrics computed as weighted arithmetic means.

OOP AOP winner
CBO |[LCOM|CBO |[LCOM| CBO |LCOM
Builder 0,53| 2,35 148| 367| OO 00
Command 0,89| 0,28| 2,06 9,70] OO 00
Iterator 0,74 0,26| 1,48| 244| OO 0]6)
Mediator 1,00/ 0,26f 1,15| 1,00 OO 00
Proxy 0,90 0] 1,52| 0,14 OO 00
Chain 1,33| 0,33 2,14| 246| OO 00
Memento 0,64 0 1 0,91 OO 00
State 1,83| 0,17]1,897| 041] OO 00
Flyweight 0,67 0] 0,94 0,18 0O 00
Composite 046| 492]| 2,29| 6,15 OO 00
FactoryMethod 0,33 0] 1,43 0] OO -
Facade 1 0] 1,80 0] OO -
Strategy 0,69| 0,00] 1,75 0] OO -
Bridge 0,50 0] 1,22 0] OO -
TemplateMethod | 0,40 0| 0,75 0| OO -
Decorator 1,13 0] 1,25 0] OO -
Prototype 0,33| 0,83 2,53 0] OO AO
Singleton 091| 0,36[ 1,50 0] OO AO
Observer 1,12 11,23 2,11| 4,89 OO AO
Interpreter 1,42 0,13] 2,40 0 OO AO
AbstractFactory | 1,22 0,17] 1,51 0,16] OO AO
Visitor 164 0,92] 2,24| 0,24] OO AO
Adapter 1 0 1 0 - -

6.5 Deeper insight into modularity

An established technique for analysing the dependencies among the modules of a
system is Dependency Structure Matrix (DSM). A DSM is a square matrix in
which the columns and rows are labelled with modules and a non-empty cell
models that the module on the row depends on the module on the column. The type
of dependency is represented by the value of the cell (the shortcuts are introduced
in Section 5.2.2). The CBO,o metric for a module can be calculated from a DSM
by counting non-empty cells in the row. To provide complex insight into
modularity, LCOM for each module is also presented. The differences in
modularity between OO and AO implementations is shown on the Observer pattern
[Hannemann & Kiczales, 2002].

The participants in the Observer pattern are subjects and observers. The

subject is an object which changes its state, and the observer is an object whose
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own invariants depend on the state of the subject. For example, let’s consider that
there is a subject — Point and one observer — Screen (Figure 6.3). Whenever the
Point object changes its position, the Screen object has to be updated. The intention
of the Observer pattern is to define a one-to-many dependency between a subject
and multiple observers, so that when the subject changes state, all its observers are
notified and updated automatically [Piveta & Zancanella, 2003]. Particular classes
can play one or both of the Subject and Observer roles. In the presented example,
Screen acts as Subject and Observer at the same time. The simplest way for a
subject to keep track of the observers it should notify is to store references to them
explicitly in the subject [Gamma et al., 1995]. When a subject wants to report a
state change to its observers, it calls its own notifyObservers method, which in turn
calls an update method on all observers in the list [Hannemann & Kiczales, 2002].
Since the notification of observers by the subject spreads across the domain
classes, it is a crosscutting concern. The main problem with the OO

implementation of this pattern is that it is hard to apply the pattern to an existing

design.
«interface» Point
Subject
+ addObserver(Observer) : void <] ______ o.bs.;ervers: HashSet
+ removeObserver(Observer) : void X !nt
+ notifyObservers() : void ({ollor:'t Color
A + Point(int, int, Color)
| + getX():int
| + getY():int
I + setX(int) : void
l + setY(int) : void
: + getColor() : Color
1 + setColor(Color) : void
. + addObserver(Observer) : void
Screen + removeObserver(Observer) : void
+ notifyObservers() : void
observers: HashSet
name: String
+ Screen(String)
+ display(String) : void
+ addObserver(Observer) : void
+ removeObserver(Observer) :void [ {> «interface»
+ notifyObservers() : void Observer
+ update(Subject) : void + update(Subject) : void

Figure 6.3 The structure of an instance of the Observer pattern in Java.

Hannemann & Kiczales [2002] developed an AO solution as shown at Figure 6.4.
The ObserverProtocol aspect provides the logic for notifying the observers, when a

subject changes its state. The empty interfaces Subject and Observer are marker
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interfaces that are used by inheriting subaspects to map the application classes to

their roles. E.g. ColorObserver assigns the Observer interface to the Screen class

and the Subject interface to the Point class. The observers for each subject are

stored in a global WeakHashMap that maps a subject to a list of observers. An

Observer object becomes registered to receive notifications from a Subject object

when it is passed to the addObserver(Subject, Observer) method. Passing it to the

removeQObserver(Subject, Observer) method ends the Observer object’s registration

to receive notifications.

«interface»

Subject

ObserverProtocol

«interface»

-perSubjectObservers: WeakHashMap

Point

#getObservers(Subject s): List

+addObserver(Subject s, Observer o0): void

- color:

- X int
- yoint

Color

+remoweObserver(Subject s, Observer 0): void

#updateObserver(Subject s, Observer o): void

Point
getX(

(int, int, Color)
):int

> #subjectChange(Subject s)

after(Subject s): subjectChange(s) {

+ o4+ o+ o+ o+ o+

getY():int

setX(int) : void
setY(int) : void
getColor() : Color
setColor(Color) : void

Iterator iter = getObservers(s).iterator();

while (iter.hasNext() ) updateObserver(s, ((Observer)iter.next()));

}

Figure 6.4 The structure of an instance of the Observer pattern in AspectJ.

A

\

Observer

Screen

- name: String

+ Screen(String)
+ display(String) : void

ColorObserver

#updateObserver(Subject s, Observer o): void J

> #subjectChange(Subject s): target(s)
&& call(void Point.setColor(Color))

ScreenObserver
\ #updateObserver(Subject s, Observer o): void J
‘\‘ > #subjectChange(Subject s): target(s) \
&& call(void Screen.display(String))
‘ Screen ‘ O— Subject ‘ Point ‘
‘ Screen ‘ O— Observer ‘ Screen ‘

F

O— Subject

O— Observer

PositionObserver

#updateObserver(Subject s, Observer o): void

> #subjectChange(Subject s): target(s) &&

( call(void Point.setX(int)) ||

call(void Point.setY(int)) );

\ Point |

‘ Screen ‘

O— Subject

O— Observer
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The after(Subject) advice is fired just after reaching the subjectChange(Subject)
pointcut. This pointcut describes the events that make the Subject’s state change
and has to be implemented in the concrete subaspect. The after advice gets the
Observers for the Subject, whose state was changed, and then calls the abstract
method updateObserver(Subject, Observer) on each Observer. This method has to
be implemented in the concrete subaspect. The Subject argument allows the
method to know what object originated the notification.

Figure 6.5 shows the dependency matrixes for this pattern. In the OO
implementation, the business logic and the pattern context are tangled within the
participant classes. As a result, Point and Screen have a poor cohesion. Moreover,
code for implementing the pattern is spread across all participants. In the AO
implementation, all code pertaining to the relationship between observers and
subjects is moved into aspects. Hence, the participant classes are entirely free of
the pattern context, and as a consequence they are much more cohesive. In the OO
version, a point directly informs its observers by sending a message to them. In the
AO version, even though Point does not have any reference to its observers, the
coupling has not disappeared. The coupling has changed its form from explicit
method call to implicit join-points matching. Whenever a point changes its state,
the relevant advice is triggered and the observers are notified. Since not all the
dependencies between the modules are explicit, an AO programmer has to perform

more efforts to get a mental model of the source code.

a) 00 implementation CcBO
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Figure 6.5 DSMs for the Observer pattern.
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6.6 Threats to validity

6.6.1 Construct validity'

Construct validity focuses on whether the measures used represent the intent of the
study. We identify several limitations within this category. Firstly, we narrow
software modularity to cohesion and coupling, despite of many other factors
assigned to it. Nevertheless, cohesion and coupling are the concepts that lie at the
heart of software modularity and are considered as main factors related to the
goodness of modularization [Meyer, 1989; Booch, 1994; Hitz & Montazeri, 1995;
Ponnambalam, 1997; Briand et al., 1999b; Briand et al., 2001].

Secondly, we could be criticised for applying metrics that are theoretically
flawed. Briand et al. [1998] demonstrate that LCOM is neither normalized nor
monotonic. The normalization condition requires that there is the upper limit of the
values that the measures can take. Monotonicity states that adding a method which
shares an attribute with any other method of the same module, must not increase
LCOM. If we drop the very rare case where the methods of a module do not
reference any of the attributes, the monotonicity anomaly disappears. The other
problem with LCOM is that it does not differentiate modules well [Basili, 1996].
This is partly due to the fact that LCOM is set to zero whenever there are more
pairs of methods which use an attribute in common than pairs of methods which do
not [Briand et al., 1998]. In addition, the presence of access methods artificially
decreases this metric. Access methods typically reference only one attribute,
namely the one they provide access to, therefore they increase the number of pairs
of methods in the class that do not use attributes in common [Briand et al., 1998].
The CBO metric also indicates inherent weakness. Briand et al. [1999a] illustrate
that merging two unconnected modules may affect the overall coupling.
Nevertheless, CBO as well as LCOM are widely applied and have been validated
in many empirical studies [Basili, 1996; Briand et al., 1999a; Briand et al., 1999b].

Thirdly, the applied metrics address only one possible dimension of
cohesion and coupling. Moreover, CBO implicitly assumes that all basic couples
are of equal strength [Hitz & Montazeri, 1995]. In addition, it takes a binary
approach to coupling between modules: two modules are either coupled or not.

Multiple connections to the same module are counted as one [Briand et al., 1999a].

! Although all references in this Section to CBO and LCOM apply to the original versions,
the considerations concluded are also valid for the extended versions.
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In our defence we would point out that the OO community has yet to arrive at a
consensus about the appropriate measurement of coupling and cohesion. The
interested reader is referred to [Hitz & Montazeri, 1995; Briand et al., 1998; Briand

et al., 1999a] where extensive surveys have been presented.

6.6.2 Internal validity

In our case internal validity concerns the question whether any observed effect was
caused only by the programming paradigms involved. As in every study of this
type, the experience, knowledge, skills, and insights of developers had an influence
on the code they produced. Since the programmers of the AO versions contributed
to the development of AOP, they might have done their very best to show that the
new paradigm is superior. However, since we show that AOP harms software
modularity, this weakness supports our conclusions. The causal effect of AOP on

software modularity was explained in Section 3.3.

6.6.3 External validity

The investigated cases can be thought of as a population of systems whose
implementations are publicly available in both Java and Aspect]. These systems
were developed by experienced practitioners from several countries from both
academia and industry. The multiple case design strengthens the external
generalizability of the findings. Nevertheless, the conclusions obtained from our
study are restricted to small- and medium-sized systems. Even so, we believe that
much the same results can be expected in large systems. Our experience indicates
that in case of large systems, when multiple advices apply to the same join point
and when different aspects influence each other, modularity is even harder to
achieve. The similar observation was reported by Késtner et al. [2007].

Finally, we could be criticised for generalizing findings from
Aspect] to AOP. In our defence, most of the claims about the superiority of
the AO modularization have been made in the context of Aspect]. We

should also emphasise that Aspect] is the only production-ready general

purpose AO language.
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6.7 Related work

There are few studies focusing on the quantitative evaluation of the AO
modularization. Sant’Anna et al. [2003] conducted a semi-controlled experiment to
compare the use of an OO approach (based on design patterns) and an AO
approach to implement Portalware (about 60 modules and over 1 KLOC), a multi-
agent system. Portalware is a web-based environment that supports the
development and management of Internet portals. The collected metrics show that
the AO version incorporates modules with higher coupling and lower cohesion.
Their coupling metric is broader than the original CBO in the sense that it
additionally counts modules declared in formal parameters, return types, throws
declarations and local variables. However, it is not complete, since it does not take
into account either the semantic dependencies, or the dependency that occurs when
an advice refers to a pointcut defined in other, non-ancestor module.

The same suite of metrics was used by Garcia et al. [2005] to compare the
AO and OO implementations of the Gang-of-Four design patterns. They performed
two studies, one on the original implementations from Hannemann & Kiczales and
the other on the implementations with introduced changes. These changes were
introduced because the H&K implementations encompassed few participant classes
to play pattern roles [Garcia et al., 2005]. Garcia and his team concluded that “the
use of aspects helped to improve the coupling and cohesion of some pattern
implementations.” However, such conclusion may be misleading, according to the
metrics they collected. The measures before the application of the changes exhibit
that only Composite and Mediator present lower coupling for the AO solutions.
The implementations of Adapter and State have the same coupling in both
paradigms. In the case of the other patterns, the OO solutions indicate lower
coupling. The superiority of OO solutions decreased a little after the changes were
introduced. Although the AO implementations of Observer, Chain of
responsibility, State and Visitor became better with respect to coupling than their
OO counterparts, there are still 16 patterns for which the OO implementations
provide superior results. With regard to cohesion, the OO implementations were
also superior in most cases. They analyzed the absolute (aggregate) values.

Other studies can be classified into 2 groups. In the first group [Filho et al.,
2006; Greenwood et al., 2007; Madeyski & Szata, 2007; Figueiredo et al., 2008;

Castor et al., 2009], new kinds of coupling introduced by pointcuts are not
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considered at all. In the second group [Tsang et al., 2004; Hoffman & Eugster,
2007], the coupling introduced by a pointcut is considered only if a module is
explicitly named by the pointcut expression.

Figueiredo et al. [2008] designed and implemented seven change scenarios
for MobileMedia. MobileMedia is a software product line for applications (about 3
KLOC) that manipulate photo, music, and video on mobile devices. The absolute
(aggregate) values collected to the coupling and cohesion metrics have favored the
0O version for every release. After dividing these values by the number of
modules, it turns out that AO versions are superior.

Greenwood et al. [2007] chose the Health Watcher system as the base for
their study. Their evaluation focused upon ten releases of the system, which
underwent a number of typical maintenance tasks, including: refactorings,
functionality increments, extensions of abstract modules and more complex system
evolutions. Some of the crosscutting concerns were “aspectized” from the first
release, while others were modularized as new HW versions were released. They
found that modularity was improved with AOP. The average “coupling” as well as
cohesion were enhanced by 17% in the initial version, and by 23% and 21% in the
10th release.

Madeyski & Szata [2007] examined the impact of AOP on software
development efficiency and design quality in the context of a web-based
manuscript submission and a review system (about 80 modules and 4 KLOC).
Three students took part in their study. Two of them developed the system (labeled
as OO1 and O02) using Java, whilst one implemented the system using Aspect].
The observed results show that the AO version is 24% better than the others with
regard to average “coupling” and it is 60% (3%) better than OO1 (002) with
regard to average cohesion.

Filho et al. [2006; Castor et al., 2009] refactored to AOP four systems:
Telestrada, Pet Store, CVS, and Elmp. The average “coupling” was decreased by
6%, 9%, and 1% for the first three systems and increased by 2% for the last system.
Nevertheless, Filho et al. [2006] were aware that their study missed some coupling
dependencies introduced by AOP: “a closer examination on the code (...) reveals a
subtle kind of coupling that is not captured by the employed metrics.” The
Telestrada and Pet Store systems were also used by Hoffman & Eugster [2007]. In
their study, Hoffman & Eugster calculated two coupling metrics, namely CBM and
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CIM. However, since CBM and CIM are not simply additive, the results are
difficult to interpret.

Tsang et al. [2004] compared AO vs. OO solutions in the context of real
time traffic simulator. They found that aspects improved modularity by reducing
“coupling” and cohesion. They considered aspects coupled to classes only if the
aspects explicitly named the classes. “For instance, if we have the joinpoint call(*
*(..)), then the aspect is not coupled to any classes. However, if we have the
joinpoint call(void Test.methodName(..)), then the aspect is coupled to Test.” In
the conclusion of their work, they recommend the use of wildcards to maximize
modularity improvements. Following this reasoning, one could recommend to
replace the previous pointcut by call(void Test.methodNam™*(..)), where ‘*’ instead
of ‘e’ eliminates “coupling”.

Kouskouras et al. [2008] built an emulator of a telecommunications
exchange, allowing the user to configure it with commands and to emulate simple
calls between subscribers. They developed three different implementation
alternatives. The first one follows a naive solution in Java, the second makes use of
the Registry pattern and the third applies Aspect] to implement the same pattern.
Next, they extended each implementation with several new commands and
parameters. They applied the Martin’s metrics suite to assess and compare design
alternatives. Since they made the source code available for us, we could apply our
metrics. The AO implementation is 7% worse than the improved OO
implementation with regard to average coupling and it is 1% better with regard to

average cohesion.

6.8 Summary

This chapter presented a quantitative study in which we compared OO and AO
implementations of 11 real-life systems and the 23 GoF design patterns with
respect to modularity. The evaluation was performed using CBOao that we
proposed in the previous Chapter and LCOM that was adapted to AOP by Ceccato
& Tonella [2004]. We found that the OO implementations of 10 real-life system
exhibited lower coupling. We also found that there was no pattern whose AO
implementations exhibited lower coupling, while 22 patterns presented lower

coupling in the OO implementations. With the help of Dependency Structure
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Matrix we analyzed in detail the coupling dependencies between modules of the

Observer pattern. The impact of AOP on cohesion remains unclear.
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Chapter 7. Impact of aspect-oriented
programming on systems
evolution and software reuse

There are two ways of constructing a software design. One
is to make it so simple that there are obviously no
deficiencies; the other is to make it so complicated that there
are no obvious deficiencies. The first method is far more
difficult.

Hoare, 1981

The aim of this chapter is twofold. First, to compare AO and OO software with
respect to evolvability and reusability. Second, to investigate the possibilities of
applying Aspect] with generics and reflective programming to improve

implementations of the GoF design patterns.

7.1 Development of a producer-consumer system

7.1.1 Research methodology

The difficulty of performing evolvability and reusability evaluation in AOP is that
there are not yet industrial maintenance reports for AO software projects available
for analyses. Thus, we have to simulate maintenance tasks in a quasi-controlled
experiment. Then, we can measure how much effort is required to evolve the
system and how much of the existing code is reused in the consecutive releases.
The goal of our experiment is to compare AO and OO implementations of a
producer-consumer system that undergoes five functionality increments (Figure
7.1). To measure software evolvability and reusability we use the metrics that we

proposed in Chapter 5.

GOAL

How easy isit REuce

Purpose comparison » to reuse » Lavel
Issue software evolvability and reusability Ui il Eris

00 and AO implementations of a
Object queue data structure, that undergoes How easy isit Atomic

five functionality increments » to evolve » Change

X X T the system?

Viewpoint software maintainers

107



CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

Figure 7.1 GQM diagram of the study.

7.1.2 The producer-consumer system
In a producer-consumer system two processes (or threads), one known as the
“producer” and the other called the “consumer”, run concurrently and share a
fixed-size buffer. The producer generates items and places them in the buffer. The
consumer removes items from the buffer and consumes them. However, the
producer must not place an item into the buffer if the buffer is full, and the
consumer cannot retrieve an item from the buffer if the buffer is empty. Nor may
the two processes access the buffer at the same time to avoid race conditions. If the
consumer needs to consume an item that the producer has not yet produced, then
the consumer must wait until it is notified that the item has been produced. If the
buffer is full, the producer will need to wait until the consumer consumes any item.
We assume to have an implementation of a cyclic queue as shown in
Figure 7.2. The put(..) method stores one object in the queue and get() removes the
oldest one. The nextToRemove attribute indicates the location of the oldest object.
The location of a new object can be computed using nextToRemove, numltems
(number of items) and buflength (queue capacity). We also have an

implementation of a producer and a consumer.

-buffer
Consurmer Quee
+  Consumer[Gueue] #  buf: Object ([1)
+ consume(lnteger] : woid # numltemns: int
+ runf]: woid # nextToRemove: int
Producer buffer +  Glueue(int]
- - + isFulll]: boclean
tmes: ink + isEmpty[]: boclean
+  size(]:ink
+  Producer[GQueue, int) +  put[Object] : boalean
+  produce(] :int + qet[]: Object
+runf]: woid

Figure 7.2 An initial implementation.

The experiment encompasses five maintenance scenarios which deal with the
implementation of a new requirement. We have selected them because they

naturally involve the modification of modules implementing several concerns.

7.1.3 Maintenance scenarios
Stage I: adding a synchronization concern
To use Queue in a consumer-producer system an adaptation to a concurrent

environment is required. A thread has to be blocked when it tries to put an element
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into a full buffer or when it tries to get an element from an empty queue. In
addition, both put(..) and get() methods have to be executed in mutual exclusion.
Thus, they have to be wrapped within synchronization code when using Java
(Listing 7.1). Since the code supporting the secondary concern (i.e.
synchronization) may throw an exception, there is also a technical concern of error
handling. The core concern here is associated with adding and removing item from
the buffer. The presented implementation tangles the code responsible for the core
functionality with the code responsible for handling errors and for cooperating
synchronization. Moreover, the implementation of both secondary concerns are
scattered through the accessor methods. As a result, the put(Object) and get()

methods contain similar fragments of code.

public class Buffer extends Queue ({
public Buffer (int n) { super(n); }

public synchronized boolean put (Object x) {
while ( isFull() )
wait () ;
i} catch (InterruptedException e) {
System.out.println(e); } “\\\\\\\\\\
super.put (x) ;
notifyAll () ; lerror handling concern
return true; synchronization concern
}
public synchronized Object get() {
while ( isEmpty () )r

wait () ;
i} catch (InterruptedException e) {
System.out.println(e); }

Object tmp = super.get();
notifyAll () ;
return tmp;

}
Listing 7.1 A new class for Stage I

Lexical separation of concerns can be achieved by using AO constructs (Listing
7.2). The secondary concerns are implemented in ErrorHandler and
SynchronizedQueue. SynchronizedQueue::waiting() is a hook method to introduce
an explicit extension point. This joinpoint is used by ErrorHandler to wrap wait()
invocation. Despite of lexical separation, SynchronizedQueue is explicitly tied to
the Queue class, and so cannot be reused in other contexts. Moreover, Queue is
oblivious of SynchronizedQueue. This makes it difficult to know what changes to

Queue will lead to undesired behavior.

public aspect ErrorsHandler ({
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protected pointcut waiting():
execution (void SynchronizedQueue.waiting());

void around(): waiting() {
try {
proceed () ;
} catch (InterruptedException e) {
System.out.println(e);
}
}

declare soft: InterruptedException:waiting();

public aspect SynchronizedQueue pertarget(instantiation()) {
protected pointcut instantiation(): target (Queue);
protected pointcut call get () :execution (Object Queue.get());

protected pointcut call put (Object x):
execution( boolean Queue.put (Object) ) && args(x);

protected void waiting() { wait(); }

Object around(Queue qg): call get() && target(q) {
synchronized (this) ({

while( g.isEmpty () ) waiting();
Object tmp = proceed(q);
notifyAll (); return tmp;

}
}

boolean around(Queue g, Object x):call put(x) && target(q) {

synchronized (this) ({

while (g.isFull()) waiting();
proceed (g, x) ;
notifyAll(); return true;

}

}
Listing 7.2 New aspects for Stage I
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Stage II: adding a timestamp concern

After implementing the buffer a new requirement has occurred — the buffer has to
save current time associated with each stored item. Whenever an item is removed,
the time how long it was stored should be printed to standard output. A Java
programmer may use inheritance and composition as reuse techniques (Listing
7.3). The problem is that three different concerns are tangled within put/get and so
these concerns cannot be composed separately. It means that e.g. if a programmer
wants a queue with timing he cannot reuse the timing concern from TimeBuffer; he

has to reimplement the timing concern in a new class that extends Queue.

public class TimeBuffer extends Buffer {
protected Queue delegateDates;

public TimeBuffer (int capacity) {
super (capacity);
delegateDates = new Queue (capacity);

}

public synchronized boolean put (Object x) {
super.put (x) ;
delegateDates.put (
new Long (System.currentTimeMillis()) );
return true;

}

public synchronized Object get () {
Object tmp = super.get();

Long date = (Long) delegateDates.get();
long curr = System.currentTimeMillis() ;
System.out.println (curr - date.longValue());

return tmp;

}
Listing 7.3 The TimeBuffer class

A slightly better solution seems to be using AOP and implementing the timing as
an aspect (Listing 7.4). Unless explicitly prevented, an aspect can apply to itself
and can therefore change its own behavior. To avoid such situations, the
instantiation pointcut is guarded by !cflow(within(Timing)). Moreover, the
instantiation pointcut in SynchronizedQueue has to be updated. It must be the same
as in Timing. This can be done only destructively, because Aspect] does not allow

for extending concrete aspects.
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public privileged aspect Timing pertarget( instant () ) {
protected Queue delegateDates;

protected pointcut instant():
target (Queue) &&! cflow( within(Timing) );

protected pointcut init (Queue q) :
execution( Queue.new(..) ) && target(q);

protected pointcut execution get():
execution( Object Queue.get () );

protected pointcut execution put():
execution( boolean Queue.put (Object) );

after (Queue qg): init(qg) {
delegateDates = new Queue (g.buf.length);
}

after () : execution get () {
Long date = (Long) delegateDates.get();
System.out.println (
System.currentTimeMillis () - date.longValue() );
}
after(): execution put() {

delegateDates.put (new Long (System.currentTimeMillis()));
}
}

Listing 7.4 The Timing aspect.

Stage I11: adding a logging concern

The buffer has to log its size after each transaction. The OO mechanisms like
inheritance and overridden allow a programmer for reusing TimeBuffer (Figure
7.3). The only problem is that four concerns are tangled within put/get. A module
that addresses one concern can generally be used in more contexts than one that

combines multiple concerns.

TimeBuffer

i

LogTimeBuffer

+ LogTimeBuffer(int)

# log(String) : void
«synchy»

+ put(Object) : boolean
+ get() : Object

Figure 7.3 A new class for Stage I11

The AO solution is also noninvasive and it reuses the modules from the earlier

stages. It just requires defining a new aspect (Listing 7.5). When advice
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declarations made in different aspects apply to the same join point, then by default
the order of their execution is undefined. Thus, the declare precedence statement is
used to force timing to happen before logging. The bufferChange pointcut
enumerates, by their exact signature, all the methods that need to captured. Such
pointcut definition is particularly fragile to accidental join point misses. An
evolution of the buffer will require revising the pointcut definition to explicitly add

all new accessor methods to it.

public aspect Logging {
declare precedence : Logging, Timing;

pointcut bufferChange(): !cflow(within(Timing)) &&
(execution (* Queue.get()) || execution (* Queue.put(..)) );

after (Queue g): bufferChange () && target(q) ({
System.out.println ("buffer size: " + g.size());
}
}

Listing 7.5 The Logging aspect

Stage I'V: adding a new getter

The buffer has to provide a method to get “N” next items. There is no efficient
solution of this problem neither using Java nor Aspect]. In both cases, the
condition for waiting on an item has to be reinforced by a lock flag. A lock flag is
set when some thread initiates the “get N transaction by getting the first item. The
flag is unset after getting the last item. In Java (Listing 7.6), not only does the
synchronization concern has to be reimplemented but also logging. The reason is
that in LogTimeBuffer logging is tangled together with synchronization, so it
cannot be reused separately. The duplicate implementation might be a nightmare

for maintenance.
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public class EnhancedLogTimeBuffer extends TimeBuffer {
protected boolean lock;

public EnhancedLogTimeBuffer (int capacity) {
super (capacity);

}
protected void lock (boolean b) { lock = b; }

protected boolean islock() { return lock; }

protected void log (String s) {
System.out.println(s);

}

public synchronized boolean put (Object x) {
super.put (x) ;
log ("buffer size: "+sizel());
return true;

}

public synchronized Object get () {
while ( isEmpty () ||isLock() ) try {
wait ()
} catch (InterruptedException e) {}
Object tmp = super.get();
log("buffer size: "+size());
return tmp;

}
public synchronized Object[] get(int n) {
while ( isEmpty () ||isLock() ) try {

wait ()
} catch (InterruptedException e) {}
lock (true) ;
Object[] tmp = new Object[n];
for (int i=0; i<n; 1i++) {
tmp[i] = super.get();
}
lock (false) ;
log ("buffer size: "+size());
return tmp;

}
Listing 7.6 A new class for Stage IV

In Aspect], although synchronization is implemented in a separate module, it also
cannot be reused in any way because an aspect cannot extend another concrete
aspect. Thus, all code corresponding to the synchronization concerns has to be
reimplemented (Listing 7.7). A new method to get N items and locking mechanism

are introduced to Queue by means of inter-type declaration.
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public aspect EnhancedSynchronizedQueue pertarget (instant ()) {
private boolean Queue.lock = false;
public void Queue.lock (boolean b) { lock = b; }
public boolean Queue.isLock() { return lock; }

public synchronized Object[] Queue.get (int n) {
while ( isEmpty () ||isLock() ) waiting();
lock (true) ;
Object[] tmp = new Object[n];
for (int i=0; i<n; i++) {

while ( isEmpty () ) waiting();
tmp[i] = get();

}

lock (false) ;

return tmp;

}
private void Queue.waiting() { wait(); }
protected void waiting() { wait(); }

protected pointcut instant():
target (Queue) && !cflow( within(Timing) );

protected pointcut call get(): call (Object Queue.get()) &&
'cflow( withincode (* Queue.get (int)) );

Object around(Queue qg):call get() && target(q) {
synchronized (this) ({
while (g.isEmpty () | |g.isLock()) waiting();
Object tmp=proceed (q) ;
notifyAll(); return tmp;
}
}

declare precedence
EnhancedSynchronizedQueue, Logging, Timing;
/.
}

Listing 7.7 A new aspect for Stage IV

In addition, destructive changes in the Logging::bufferChange() pointcut are
required (Listing 7.8). Otherwise logs would be reported n times in response
to the get(int n) method, instead of just once after completing the
transaction. This is due to that get(int n) uses get() for retrieving every
single item from the buffer. Furthermore, the ErrorsHandler::waiting()

pointcut also needs adjusting to the new decomposition.
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public aspect Logging {

pointcut bufferChange() :
'cflow( within(Timing) ) &&
!cflow( withincode (* Queue.get (int)) ) &&
( execution( * Queue.get(..) ) ||
execution( * Queue.put(..) ) )
/...
}

public aspect ErrorsHandler ({

protected pointcut waiting() :
execution ( void EnhancedSynchronizedQueue.waiting () )
| | execution( void Queue.waiting() );

/..

Listing 7.8 Modifications in the pointcuts

Stage V: Removing logging and timestamp

A programmer needs the enhanced buffer from Stage IV, but without the logging
and timing concerns. In Java, he once again has to reimplement the get(int) method
and much of the synchronization concerns (Listing 7.9). All to do in the AO

version is to remove Logging and Timing from the compilation list.

public class EnhancedBuffer extends Buffer {
protected boolean lock;

public EnhancedBuffer (int capacity) {
super (capacity);

}

protected void lock (boolean b) { lock = b; }
protected boolean isLock () { return lock; }
public synchronized Object get() {
while ( isEmpty ()| |isLock() ) try {
wait ()

} catch (InterruptedException e) {}
return super.get();
}
public synchronized Object[] get(int n) {
while ( isEmpty () | |isLock() ) try {
wait () ;
} catch (InterruptedException e) {}
lock (true) ;
Object[] tmp = new Object[n];
for (int i=0; i<n; i++) {
tmp[i] = super.get();
}
lock (false) ;
return tmp;

}
Listing 7.9 A new class for Stage V
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7.1.4 Empirical results

Table 7.1 presents the number of Atomic Changes and Reuse Level for both
releases for every stage. The measures were collected manually. Lower values are
better for Atomic Changes but worse for Reuse Level. AOP manifests superiority
at Stage III and V, while OOP in the rest of the cases. At Stage III we have
implemented a logging concern which is one of the flagship examples of AOP
usage. At this Stage, the OO version requires significantly more atomic changes
and new lines of code than its AO counterpart. At Stage V, the maintenance tasks
are focused on detaching some concerns instead of implementing new ones. The

AO solution has turned out to be more pluggable.

Table 7.1 Number of Atomic Changes and Reuse Level per stage.

Atomic Changes| Reuse Level
Stage

ooP AOP OooP AOP

[) Adding a synchronization concern 7 19 0,71 0,66
II) Adding a timestamp concern 8 19 0,85 0,67
[lI) Adding a logging concern 9 6 0,88 0,95
IV) Adding a new getter 9 16 0,73 0,58
V) Removing logging and timestamp 5 3 0,74 1,00

7.1.5 Lessons learned

In an AO system, one cannot tell whether an extension to the base code is safe’
simply by examining the base code in isolation. All aspects referring to the base
code need to be examined as well. In addition, when writing a pointcut definition a
programmer needs global knowledge about the structure of the application. E.g.
when implementing the Timing aspect, a programmer has to know that the current
implementation of the synchronization concern affects each Queue structure, while
the timing concern requires a non-blocking Queue.

Moreover, when a system includes multiple aspects, they can begin to
affect each other. At Stage III, we have had to explicitly exclude logging the state
of the queue that is used by the Timing aspect. Furthermore, we have observed the
problem of managing interactions between aspects that are being composed. When

advice declarations made in different aspects affect the same join point, it is

% in the sense that it does not break the aspect code
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important to consider the order in which they execute. Indeed, a wrong execution
order can break the program. In our experiment, we have used precedence
declarations to force timing to happen before logging and to force both of them to
happen within the synchronization block.

In most cases, aspects cannot be made generic, because pointcuts as well as
advices encompass information specific to a particular use, such as the classes
involved, in the concrete aspect. As a result, aspects are highly dependent on other
modules and their reusability is decreased. E.g. at Stage I, the need to explicitly
specify the Queue class and the two synchronization conditions means that no part
of the SynchronizedQueue aspect can be made generic. In addition, we have
confirmed that the reusability of aspects is also hampered in cases where “join
points seem to dynamically jump around”, depending on the context certain code is
called from [Beltagui, 2003]. Moreover, the variety of pointcut designators makes
pointcut expressions cumbersome (see EnhancedSynchronizedQueue::call get()).

Some advocates of AOP believe that appropriate tools can deal with the
problems of AOP we encountered. We think that they should reject AOP at all,
since some research [Robillard & Weigand-Warr, 2005] “shows” that OOP with a

tool support solves the problem of crosscutting concerns:)

7.1.6 Threats to Validity

Construct validity

Construction threats lie in the way we define our metrics. Evolvability and
reusability like other quality factors are difficult to measure. Our dependent
variables are based on previous studies performed by Zhang et al. [2008], Ryder &
Tip [2001] and Frakes [1993]. It is possible that other metrics will be better fitted
for the purpose of our study.

Internal validity

Internal validity of our experiment concerns the question whether the effects were
caused only by the programming paradigm involved, or by other factors. The
experiment has been carried out by the author during his research for the
achievement of a Doctor of Philosophy Degree. As the author does not have any
interest in favour of one approach or the other, we do not expect it to be a large
threat. Nevertheless, other programmers could have chosen the different strategies
for implementing secondary concerns.

External validity

118



CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

Synchronization, logging, and timing present the typical characteristics of
crosscutting concerns and as such they are likely to be generalizable to other
concerns. Unfortunately, the limited number of maintenance tasks and size of the
program make impossible the generalization of our results. However, the academic
setting allows us to present the whole programs in detail and to put forward some

advantages and limitations of AOP.

7.1.7 Related work

Coady & Kiczales [2003] compared the evolution of two versions (C and AspectC)
of four crosscutting concerns in FreeBSD. They refactored the implementations of
the following concerns in v2 code: page daemon activation, prefetching for mapped
files, quotas for disk usage, and tracing blocked processes in device drivers. These
implementations were then rolled forward into their subsequent incarnations in v3
and v4 respectively. In each case they found that, with tool support, the AO
implementation better facilitated independent development and localized change.
In three cases, configuration changes mapped directly to modifications to pointcuts
and makefile options. In one case, redundancy was significantly reduced. Finally,
in one case, the implementation of a system-extension aligned with an aspect was
itself better modularized.

Bartsch & Harrison [2008] conducted an experiment in which 11 students
were asked to carry out maintenance tasks on one of two versions (Java and
Aspect]) of an online shopping system. The results did seem to suggest a slight
advantage for the subjects using the OO version since in general it took the subjects
less time to perform maintenance tasks and it averagely required less line of code
to implement a new requirement. However, the results did not show a statistically
significant influence of AOP at the 5% level.

Sant’Anna et al. [2003] conducted a