
GDANSK UNIVERSITY OF TECHNOLOGY
Faculty of Electronics,

Telecommunications and Informatics

Adam Przybyłek

Analysis of the impact of aspect-
oriented programming on source code

quality

PhD Dissertation

Supervisor:
prof. Janusz Górski
Faculty of Electronics,

Telecommunications and Informatics
Gdansk University of Technology

Gdańsk, 2011

Acknowledgment

The work leading to this doctoral thesis has been carried out for four years by me

as a research assistant at the Department of Business Informatics, University of

Gdańsk. During these four years, a lot of people influenced my dissertation, for

which I would like to express thanks.

The head of my department, Stanisław Wrycza, introduced me to the world

of being a scientist. I will always be grateful to him for teaching me how to do

research and how to work on papers. I learned many invaluable truths from him

about academic community. He also supported me in the university. In the face of

numerous organizational problems, he always came up with a practical solution.

He always believed in my abilities and gave me independence in my research. He

also commented and adviced on drafts of this dissertation. However, as soon as my

dissertation went beyond his research area, he introduced me to Janusz Górski.

Janusz Górski gave me the opportunity for continuing my studies under his

supervision. I owe him many hints, constructive critique and comments that greatly

improved the quality of my dissertation. He also helped me to solve some

administrative problems.

Michał Przybyłek sparked my interest in AOP. Numerous discussions with

him helped me refine my style in scientific thinking, working, and writing. His

inspiring criticism of my work and his attachment to detail and perfection

significantly improved my research.

Barbara Kitchenham, Leszek Maciaszek and Mieczysław Owoc advised

and guided me in research methods. James Noble, David Ungar and the anonymous

reviewers of my papers gave me insightful comments. I would also like to thank

many scientists, who I had the honor to meet at conferences and discussed my

work.

I am also grateful to those researchers who shared the results of their work

with me: Alexander Chatzigeorgiou, Eduardo Figueiredo, Phil Greenwood, Stefan

Hanenberg, Kevin Hoffman, Konstantinos Kouskouras, Freddy Munoz, and Júlio

Taveira.

The Reengineering Forum (REF) industry association gave me a grant

from the John Jenkins Memorial Fund to cover the total cost of my participation in

CSMR'11. It would not have been possible without the effort and personal

engagement of Elliot Chikofsky, Jens Knodel, and Andreas Winter.

 2

Finally, thanks go to the Organizing Committee of TOOLS’11 for giving

me an opportunity to attand the conference for free as a student-volunteer.

Abstract

The aim of this dissertation is to investigate the impact of AOP on software

modularity, evolvability and reusability in comparison to OOP. In our case study,

we compared OO and AO implementations of 11 real-life systems and the 23 GoF

design patterns. We also conducted a controlled experiment in which an example

program having two implementations (AOP and OOP) was subjected to subsequent

increments with the aim to investigate consequences of these increments on

program evolvability and reusability. In addition we explored the existing AO

implementations of the GoF design patterns according to applying generics and

reflective programming. The results of our research demonstrate that AOP has not

obvious advantages over OOP as far as modularization is concerned. We also

demonstrated that there are limited situations where a reasonable aspect-oriented

implementation improves software evolvability and reusability.

Streszczenie

Celem rozprawy jest ocena wpływu paradygmatu aspektowego na: modularność,

możliwość dalszego rozwoju oraz ponowne użycie oprogramowania. Jako punkt

odniesienia do oceny paradygmatu aspektowego wybrano paradygmat obiektowy.

W ramach pracy przeprowadzono studium przypadków, w którym zbadano

implementacje obiektowe oraz aspektowe 11 rzeczywistych systemów i 23

wzorców projektowych. Ponadto zrealizowano kontrolowany eksperyment, w

ramach którego stworzono prosty system, który następnie został poddany

inkrementalnym modyfikacjom polegającym na realizacji nowych wymagań. Na

każdym etapie zaimplementowano zarówno wersję obiektową jak i aspektową.

Zaproponowano również nowe implementacje wzorców projektowych przy

wykorzystaniu paradygmatu aspektowego. Przeprowadzane badania wykazały, że

paradygmat aspektowy wbrew powszechnym poglądom nie poprawia

modularyzacji oprogramowania. Niemniej, zaobserwowano sytuacje, w których

implementacja aspektowa zapewniła lepszą modyfikowalność oraz możliwość

ponownego wykorzystania oprogramowania.

 3

Table of Contents

Acknowledgment..2
Abstract...3
Table of Contents..4
List of abbreviations ...6
List of figures..7
List of tables ...8
List of listings ...9

Chapter 1. Introduction .. 10

1.1 Overview ...10
1.2 Problem statement ...12
1.3 Justification for the importance and the relevance of the research13
1.4 Research approach ...15
1.5 Research methods ..16
1.6 Related work..21
1.7 Dissertation outline..23

Chapter 2. Software modularity... 25

2.1 Criteria for software modularity ..25
2.2 From structured to object-oriented programming..................................29
2.3 Tyranny of the dominant decomposition ...32
2.4 Impact on maintainability and reusability ...35
2.5 Weaknesses of object-oriented programming – running examples37
2.6 Summary..40

Chapter 3. Aspect-oriented programming .. 42

3.1 Basic concepts ...42
3.2 Running examples ...44
3.3 Aspects vs Modularization ..45
3.4 Composition Filters - an alternative approach.......................................54
3.5 Summary..56

Chapter 4. AoUML: a proposal for aspect-oriented modelling............. 57

4.1 Introduction ...57
4.2 Motivation for our proposal...58
4.3 Research methodology...59

 4

4.4 Our extension to the UML metamodel ..60
4.5 The AoUML package ..62
4.6 Illustrative examples..67

Chapter 5. Adaptation of object-oriented metrics.................................. 73

5.1 Software measurement...73
5.2 Modularity metrics...74
5.3 Evolvability and reusability metrics ..79
5.4 Summary..80

Chapter 6. Impact of aspect-oriented programming on software

modularity .. 82

6.1 Research methodology...82
6.2 Selected programs..84
6.3 Experimental results: 11 real-world systems ...91
6.4 Experimental results: the 23 GoF design patterns93
6.5 Deeper insight into modularity ..97
6.6 Threats to validity ..101
6.7 Related work..103
6.8 Summary..105

Chapter 7. Impact of aspect-oriented programming on systems

evolution and software reuse .. 107

7.1 Development of a producer-consumer system.....................................107
7.2 Revision of the Gang-of-Four design patterns.....................................122
7.3 Summary..130

Chapter 8. Summary ... 131

8.1 Conclusions ...131
8.2 Contributions ...132
8.3 Evaluation of the results ..134
8.4 Epilog...137

References... 139

Appendix I: Extended abstract (Polish)... 156

 5

List of abbreviations

AO – Aspect-Oriented

AOSD – Aspect-Oriented Software Development

AOP – Aspect-Oriented Programming

API – Application Programming Interface

CBO – Coupling Between Object classes

CF's – Composition Filters

CK – Chidamber & Kemerer

DML – Data Manipulation Language

GQM – Goal-Question-Metric

GoF – Gang-of-Four

IEEE – Institute of Electrical and Electronics Engineers

IDE – Integrated Development Environment

JDBC – Java DataBase Connectivity

JVM – Java Virtual Machine

LCOM – Lack of Cohesion in Methods

LOC – Lines of Code

MOF – Meta Object Facility

OMG – Object Management Group

OO – Object-Oriented

OOP – Object-Oriented Programming

UML – Unified Modeling Language

SoC – Separation of Concerns

VS – Vocabulary Size

 6

List of figures

Figure 1.1 The Goal Question Metric approach [Basili & Weiss, 1984; Solingen &

Berghout, 1999] ..18
Figure 2.1. Abstract concern space ...33
Figure 2.2. Arbitrariness of the decomposition hierarchy.......................................34
Figure 2.3. The Matrix class ...37
Figure 2.4 A typical usage scenario for accessing a database.................................39
Figure 3.1 Build process with AspectJ..43
Figure 3.2 The Composition Filters model ...54
Figure 4.1 The AoUML package. ...61
Figure 4.2 Dependencies between packages. ..62
Figure 4.3 Aspect representation...63
Figure 4.4 The Singlaton pattern...68
Figure 4.5 The Visitor pattern. ..70
Figure 5.1 Examples of coupling dependencies..77
Figure 6.1 Activity Diagram for our study..83
Figure 6.2 GQM diagram of the study. ...84
Figure 6.3 The structure of an instance of the Observer pattern in Java.98
Figure 6.4 The structure of an instance of the Observer pattern in AspectJ.99
Figure 6.5 DSMs for the Observer pattern..100
Figure 7.1 GQM diagram of the study. ...108
Figure 7.2 An initial implementation. ...108
Figure 7.3 A new class for Stage III ...112
Figure 7.4 The Decorator pattern. ...125
Figure 7.5 The Proxy pattern. ...127
Figure 7.6 The Prototype pattern. ...128
Figure 8.1 Evolution of new technology [Bezdek, 1993]138

 7

List of tables

Table 1.1 Design-Science Research Guidelines [Hevner et al., 2004]....................20
Table 2.1 Impact of coupling and cohesion on reusability and maintainability......36
Table 3.1 Classification of invasiveness patterns [Munoz et al., 2008]..................50
Table 4.1 The AoUML project..59
Table 5.1 The CBOAO and LCOM values for the Observer pattern........................79
Table 6.1 Metric Definitions ...83
Table 6.2 Overview of the selected systems ...84
Table 6.3 Overview of the 23 GoF design patterns [Gamma et al., 1995]..............88
Table 6.4 Websites of the analyzed programs...90
Table 6.5 Results for Size, Coupling and Cohesion Metrics92
Table 6.6 Modularity metrics computed as arithmetic means.94
Table 6.7 Modularity metrics – a detailed view..96
Table 6.8 Modularity metrics computed as weighted arithmetic means.97
Table 7.1 Number of Atomic Changes and Reuse Level per stage.......................117
Table 7.2 Atomic changes and Reuse Level in MobileMedia.122
Table 7.3 Developing new solutions...123
Table 8.1 Mapping from the publications to the chapters.....................................137

 8

List of listings

Listing 2.1 The Matrix::swap() method with time logging.....................................37
Listing 2.2 Logging in the subclass...38
Listing 2.3 LogStatement class definition...40
Listing 3.1 The TimeLogging aspect ..44
Listing 3.2. DMLmonitoring aspect definition ...45
Listing 3.3 The LogStatementCF class using CF’s...55
Listing 4.1 The AO implementation of the Singleton pattern.................................68
Listing 4.2 VisitorProtocol.aj and Visiting.aj ...71
Listing 4.3 SummationVisitor.java ...71
Listing 5.1 The C_by dependency ..78
Listing 5.2 The I_by dependency..78
Listing 7.1 A new class for Stage I ...109
Listing 7.2 New aspects for Stage I ..110
Listing 7.3 The TimeBuffer class..111
Listing 7.4 The Timing aspect. ...112
Listing 7.5 The Logging aspect...113
Listing 7.6 A new class for Stage IV ..114
Listing 7.7 A new aspect for Stage IV ..115
Listing 7.8 Modifications in the pointcuts ..116
Listing 7.9 A new class for Stage V..116
Listing 7.10 The wrap method ..125
Listing 7.11 A use of the Decorator pattern. ...126
Listing 7.12 The PrototypeProtocol aspect ...129

 9

CHAPTER 1. INTRODUCTION

1 Introduction

CChhaapptteerr 11.. IInnttrroodduuccttiioonn
Begin with the end in mind.

Stephen Covey, 1989

The aim of this chapter is to state the research problem, to outline the scope of the

research, to present the research methods chosen, and to discuss the related work.

1.1 Overview

The evolution of software development techniques has been driven by the need to

achieve a better separation of concerns (SoC). A concern is a specific requirement

or an interest which pertains to the system’s development. The term SoC was

coined by Dijkstra [1974] and it refers to the ability to decompose and organize

system into manageable modules, which have as little knowledge about the other

modules of the system as possible Parnas [1972]. In practice, this principle actually

corresponds with finding the right decomposition of a problem [De Win et al.,

2002]. SoC is closely related to software modularity. The IEEE Standard Glossary

of Software Engineering Terminology [1990] defines modularity as the degree to

which a software system is composed of discrete modules such that a change to one

module has minimal impact on other modules. While software engineering gurus

vary in their definitions of modularity, they tend to agree on the concepts that lie at

its heart; the notion of loose-coupling and high-cohesion [Yourdon & Constantine,

1979; Meyer, 1989; Coad & Yourdon, 1991; Booch, 1994; Fenton & Pfleeger,

1997; MacCormack et al., 2007]. Modularity is considered a fundamental

engineering principle since it allows [Baldwin et al., 2000; Brito e Abreu et al.,

2002]:

• to develop and test different parts of the same system in parallel by

different programmers;

• to break down the problem of understanding a complex system into the

independent problems of understanding each module individually;

• to reuse existing parts in different contexts;

• to reduce the propagation of side effects when changes occur.

 10

CHAPTER 1. INTRODUCTION

Concerns can be mapped easily to different modules, if they are functional in

nature [Beltagui, 2003]. Such concerns are called core concerns. Kiczales et. al.

[1997] found that many systems contain also other kind of concerns, like logging,

authentication, error handling, and data persistence, that cannot be represented as

first-class entities in the underlying programming language. These are known as

crosscutting concerns. They usually play a supporting role and capture non-

functional requirements or technical-level issues that affect a system as a whole

[Przybylek, 2007]. When they are implemented using a traditional language, their

code spreads throughout the system. The reason is that traditional languages

provide only one dimension along which systems can be decomposed. This

limitation is known as the tyranny of the dominant decomposition [Tarr et al.,

1999] and it states that concerns which do not match to the dominant

decomposition must be implemented together with core concerns.

The symptoms of implementing crosscutting concerns in procedural or

object-oriented (OO) languages are code scattering and code tangling. Code

tangling occurs when a module implements multiple concerns. Code scattering

occurs when similar pieces of code implements the same concern, appear in

multiple modules in the program.

Code tangling and scattering run into problems significant enough for

practitioners to begin questioning clasical programming paradigms. To achieve

more advanced separation of concerns these questioners have proposed a number

of approaches such as composition filters, subject-oriented programming, feature-

oriented programming and aspect-oriented programming (AOP). The most

prominent and recognizable of these is AOP.

AOP introduces a new unit of modularity, an aspect, to implement

crosscutting concerns. Although AOP allows programmers to avoid the phenomena

of code tangling and scattering it comes with its own set of problems. The

distinguishing characteristic of AO languages is that they provide quantification

and obliviousness [Filman & Friedman, 2000]. Quantification is the idea that one

can write unitary and separate statements that have effect in many, non-local places

in a program [Filman, 2001]. Obliviousness states that the places these

quantifications apply do not have to be specifically prepared to receive these

enhancements [Filman, 2001]. Quantification and obliviousness may cause

problems such as difficulties in modular reasoning [Leavens & Clifton, 2007;

Figueiredo et al., 2008]. Furthermore, several new kinds of dependencies are

 11

CHAPTER 1. INTRODUCTION

introduced by the AO constructs to allow for the alteration both of the structure,

control and data flow of the modules of the system. These dependencies can make

higher the complexity of the code affecting its comprehension [Bernardi & Lucca,

2010]. Hence, AOP by preventing code tangling and scattering improves the

comprehensibility of source code in one dimension, and at the same time by

introducing quantification, obliviousness, and new kinds of dependencies decreases

it in the other dimension. The question is whether the possible gains are worth the

confusion it causes.

1.2 Problem statement

Every new technology begins with naive euphoria – the claims of what it can do

are exaggerated [Bezdek, 1993]. As a technology grows in strength and moves

beyond the embryonic stage, a battle over its acceptance starts. In 2005, Steimann

stated the question:

“Does aspect orientation really have the substance necessary to found a new

software development paradigm, or is it just another term to feed the old

buzzword-permutation based research proposal and PhD thesis generator?”

Paradigms gain their status because they are more successful than their competitors

in solving a few problems that the group of practitioners has come to recognize as

acute [Kuhn, 1962]. AOP emerged in 1997 [Kiczales et. al., 1997] as a paradigm to

implement the concerns that cannot be modularized either in procedural

programming or in OOP because of the limited abstractions of the underlying

programming languages. Nowadays, with its growing popularity, practitioners are

beginning to wonder whether they should start looking into it.

Several studies [Figueiredo et. al., 2008; Filho et. al., 2006; Garcia et. al.,

2005; Greenwood et. al., 2007; Sant’Anna et. al., 2003; Soares et. al., 2002]

suggest that AOP is successful in modularizing crosscutting concerns.

Unfortunately, these studies either are based on intuition and gut feelings, rather

than scientific evidence; or wrongly identify modularization with the lexical SoC

offered by AOP; or wrongly measure coupling in AO systems. Since we have

found indications of the contrary [Przybylek, 2010a, 2010b, 2011b], we argue for

the following thesis:

 12

CHAPTER 1. INTRODUCTION

I. Aspect-oriented programming allows for lexical separation of

crosscutting concerns, but it violates the fundamental principles

of modular design, such as low coupling, information hiding,

and explicit interfaces.

Since modularity is a low-level quality attribute that influences high-level quality

attributes [Fenton & Pfleeger, 1997], we have also tried to assess the extent to

which AOP promotes software reuse and systems evolution. This area of research

within the AOP community is somewhat restricted by the lack of available AOP-

based projects that include adequate maintenance/reuse documentation.

Nevertheless, we have observed the superiority of AOP in some narrow scope that

is valuable enough to define the second part of our thesis as:

II. There are limited situations where a reasonable aspect-oriented

implementation improves software evolvability and reusability.

The overall aim of this research is to investigate the impact of AOP on source code

quality.

1.3 Justification for the importance and the

relevance of the research

The goals of software engineering research include reducing the cost of software

development and evolution, reducing the time-to-market, and improving software

quality. To a significant degree, outcomes in all of these dimensions depend on

design structure [Cai, 2006]. The term structure is used in this dissertation in the

same broad sense defined by Ossher [1987]: “Any system consists of parts such as

modules, procedures, classes and methods. The structure of the system is the

organization and interactions of those parts.” In particular, developers seek to

modularize their systems to better accommodate expected changes, have parts that

can be developed and evolved independent from each other, and to ease the

understanding of complex designs through abstraction of details hidden within

modules [Cai, 2006].

 13

CHAPTER 1. INTRODUCTION

After a decade of research, AOP is still an active topic of discussion in the

research community. On the one hand, AOP is glorified and considered as a

milestone in programming language development:

• AOP “is a recent technology for handling crosscutting concerns in a structured

and modular manner” [Hohenstein & Jäger, 2009];

• AOP offers a way to separate concerns and to ensure a good

modularization [Guyomarc'h et al., 2005];

• “AOP is a programming paradigm that increases modularity” [Hovsepyan et

al., 2010];

• “Given the power of AspectJ to modularize the un-modularizable, I think it’s

worth using immediately” [Lesicki, 2002];

• AO software “is supposed to be easy to maintain, reuse, and evolution”

[Zhao, 2004];

• AOP “increases understandability and eases the maintenance burden, because

modules tend to be more cohesive and less coupled” [Lemos et. al., 2006].

On the other hand, “disciples of Dijkstra” believe that “AO programs are ticking time

bombs, which, if widely deployed, are bound to cause the software industry irreparable

harm” [Dantas & Walker, 2006]. However, both viewpoints are not backed up by

empirical evidence.

In addition, some significant vendors of software like IBM, Motorola,

Siemens, and SAP are interested in understanding, evaluating, and applying aspect-

oriented techniques. SAP scientists presented a road map to adopting Aspect-

Oriented Software Development (AOSD) at SAP for productive use [Pohl et al.,

2008]. Siemens developed a large-scale hospital information system (Soarian) that

supports seamless access to patient medical records and the definition of

workflows for health provider organizations. Aspect were used to implement

architecture validation, caching, auditing, and performance monitoring [Rashid et

al., 2010].

AOP is also the subject of interest at the most prestigious conferences in

software engineering, like OOPSLA, ACM SAC, ICSE, and ECOOP. The Program

Committee of the ACM SAC 2010 put forward the question whether the use of AOP

is double-edged? In the “Call for Papers” for the OOPSLA’08 Workshop on

Assessment of Contemporary Modularization Techniques we read:

 14

CHAPTER 1. INTRODUCTION

A number of new modularization techniques are emerging to cope with
the challenges of contemporary software engineering, such as AO
Software Development, Feature-Oriented Programming, and the like.
The effective assessment of such technologies plays a pivotal role in (i)
understanding of their costs and benefits when compared to conventional
development techniques, and (ii) their effective transfer to mainstream
software development. The main goal of this workshop is to put together
researchers and practitioners with different backgrounds in order to
discuss open issues on the assessment of contemporary modularization
techniques, such as:

• How do new modularization techniques affect working practices
and help with software development and evolution? What
guidelines can be established from assessment results to improve
working practices?

• What is the impact of using conventional quantitative metrics to
assess software modularity? Are they effective enough to assess
contemporary modularity techniques? How can we validate
assessment mechanisms?

• What are the potential paths leading to more effective
modularization techniques?

• How can we compare these modularization techniques?

This dissertation provides contributions to answering some of the above questions.

1.4 Research approach

The philosophical stance on which this research is based is critical-positivist.

Positivists view objective truth as possible, i.e. that there exists some absolute truth

about the issues of relevance, even if that truth is elusive, and that the role of

research is to come ever closer to it [Seaman, 1999]. Objective knowledge about

the real world can be achieved from the empirical knowledge accumulated through

perceptual experience [Becker & Niehaves, 2007]. Positivists are reductionist, in

that they study things by breaking them into simpler parts. This corresponds to

their belief that scientific knowledge is built up incrementally from verifiable

observations, and inferences based on them [Easterbrook et al., 2007]. Research

methods privileged by positivist are based on the assumption that the

measurements of empirical phenomena can be accurate and precise [Cecez-

Kecmanovic, 2007]. Positivists prefer methods that start with precise theories from

which verifiable hypotheses can be extracted, and tested in isolation. Hence,

 15

CHAPTER 1. INTRODUCTION

positivism is most closely associated with the controlled experiment, however, case

studies are also frequently conducted with a positivist stance. [Easterbrook et al.,

2007].

The fundamental issue of critical research is that it aims to change the

status quo [McGrath, 2005; McAulay et al., 2002]. The critical approach is focused

on what is wrong with the world rather than what is right [Walsham, 2005]. It is a

different perspective on the analysis that can add up to critical-positivist or critical-

interpretivist research [Niehaves & Stahl, 2006]. Critical theorists often use case

studies to draw attention to things that need changing [Easterbrook et al., 2007].

The critical-positivist researcher tries to falsify the predictions of the

scientific theory. He usually believes that it is more productive to refute theories

than to prove them. It is enough to indicate one observation that contradicts the

prediction of a theory to falsify it.

1.5 Research methods

The main research method employed in our research is case study. A case study is

an empirical inquiry that investigates a contemporary phenomenon within its real-

life context [Yin, 2003]. Case studies offer in-depth understanding of how and why

certain phenomena occur, and can reveal the mechanisms by which cause-effect

relationships occur. A case study can be applied as a comparative research strategy,

comparing the results of using one approach to the results of using another

approach [Wohlin et al., 2000]. Case studies can be classified according to the

number of cases, as single or multiple cases [Yin, 2003]. A case study is multiple

when it involves the examination of more than one similar case. Since a multiple

case study does not rely on a sample, the cases investigated do not offer a basis for

statistical generalizations, but they are generalizable to theoretical propositions

(analytic generalization) [Yin, 2003]. A multiple case design usually offers greater

validity [Easterbrook et al., 2007]. Analytic conclusion independently arising from

several cases will be more powerful than those coming from a single case alone.

The context of these cases are likely to differ to some extent. If common

conclusions can still be derived from all the cases, they will have immeasurably

expanded the external generalizability of the findings, again compared to those

from a single case alone [Yin, 2003].

 16

CHAPTER 1. INTRODUCTION

A case study can involve the examination of more than one unit of

analysis. This occures when, within a single case, attention is also given to a

subunit or subunits [Yin, 2003]. The unit of analysis defines what the “case” is and

it is related to the way the study question is defined [Trindade, 2005]. In software

engineering, the unit of analysis might be a project, a particular episode or event, a

specific work product, etc. [Easterbrook et al., 2007]. A case study with subunits of

analysis is called embedded [Yin, 2003].

We also do experimentation using the quasi-controlled experiment method.

A controlled experiment is a scientific investigation that takes place in a setting

especially created by the researcher [Boudreau et al., 2001]. With this research

method, the researcher manipulates one or more independent variables to measure

their effect on one or more dependent variables [Basili et al., 1999]. Each

combination of values of the independent variables is a treatment. In its simplest

form, an experiment has just two treatments representing two levels of a single

independent variable (e.g. using OOP vs. using AOP) [Easterbrook et al., 2007].

Experimentation is invaluable in assessing how effective or how promising

techniques, paradigms and methodologies are in contrast to other approaches. True

experimental research is characterized by manipulation of an independent variable

combined with random assignment of participants to groups [Hancock &

Algozzine, 2006]. An alternative to true experimental designs are quasi-

experimental designs in which experimental rigor so far as manipulation, control,

or randomization is not feasible, but the comparison of treatment versus

nontreatment conditions is approximated, and the compromises and limitations are

stated, understood, and taken into account in all conclusions and interpretations

[Mauch & Birch, 2003].

Moreover, we use the Goal Question Metric (GQM) approach when we

define measurement systems to be used in our empirical studies. GQM is a top-

down approach to establish a goal-driven measurement system on three levels

(Figure 1.1). It is particularly useful for assessing new software engineering

technologies (e.g. what is the impact of the technique X on the productivity of the

projects?) [Basili et al., 1994]. The GQM approach was originally developed by

Basili & Weiss in the early '80s for evaluating defects and monitoring

achievements for a set of projects in the NASA Goddard Space Flight Center

environment [Basili & Weiss, 1984; Basili et al., 1994; Solingen & Berghout,

1999]. Today, it is in widespread use for creating and establishing measurement

 17

CHAPTER 1. INTRODUCTION

programs throughout the software industry [Basili et al., 2007]. GQM is typically

described as a six-step process where the first three steps are about using business

goals to drive the identification of the right metrics and the last three steps are

about gathering the measurement data and making effective use of the

measurement results to drive decision making and improvements.

D
E
F
I
N
I
T
I
O
N

GQM begins by identifying
measurement goals, which often start
out with a set of quality factors, like
reliability, maintainability, reusability,
and so on.

Conceptual level

Operational level
The goal is refined into questions, that break
down the issue into its major components.
In many instances, questions may need to be
broken out into many sub‐questions to
express the goal in a quantifiable way. By
answering the questions, one should be able
to conclude whether the goal is reached.

Quantitative level
Each question is refined into metrics
that should provide all the quantitative
information to answer the question in a
satisfactory way. The same metric can
be used in order to answer different
questions under the same goal.

Goal 1 Goal 2

Q1 Q2 Q3

M1 M2 M3 M4

I
N
T
E
R
P
R
E
T
A
T
I
O

N

Figure 1.1 The Goal Question Metric approach [Basili & Weiss, 1984; Solingen
& Berghout, 1999]

Applying the GQM involves [Basili, 1992; Solingen & Berghout, 1999]:

1. Develop measurement goals for productivity and quality.

2. Generate questions which collectively represent an operational definition

of the goal.

3. Specify the measures needed to be collected to answer those questions and

track process and product conformance to the goals.

4. Develop mechanisms for data collection.

 18

CHAPTER 1. INTRODUCTION

5. Collect, validate and analyze the data in real time to provide feedback to

projects for corrective action.

6. When GQM is implemented to support an organization-wide improvement

process, analyze the data in a postmortem fashion to make

recommendations for future improvements. The experiences and lessons

learned from the study are packaged in the form of policies, procedures

and best practices.

In addition, the action research method is apply to conduct our supporting research

(developing graphical notation for visualizing AspectJ code). In this method, the

researcher attempts to solve a real-world problem while simultaneously studying

the experience of solving the problem [Davison et al., 2004]. He becomes a part of

the research - to be affected by and to affect the research [Milton, 1985]. A

precondition for action research is to have a problem owner willing to collaborate

to both identify a problem, and engage in an effort to solve it. In some cases, the

researcher and the problem owner may be the same person [Easterbrook et al.,

2007]. Action research seems to be an ideal research method for the Information

Systems field [Avison et al., 2001], especially in those domains where the

researcher can be actively involved and benefits for the organization and research

community can be expected; where obtained knowledge can be immediately

applied and the research process links theory and practice in a cyclical process

[Baskerville & Wood-Harper, 1996]. Two key criteria for judging the quality of

action research are whether the original problem is authentic (i.e. whether it is a

real and important problem that needs solving), and whether there are authentic

knowledge outcomes for the participants [Easterbrook et al., 2007].

To conduct action research we follow the design-science paradigm.

Design-science has its roots in engineering and the sciences of the artificial

[Simon, 1996]. It seeks to extend the boundaries of human and organizational

capabilities by creating new and innovative artifacts [Hevner et al., 2004]. Such

artifacts include - but certainly are not limited to - algorithms (e.g. for information

retrieval), human/computer interfaces and system design methodologies or

languages [Orlikowski & Iacono, 2001]. IT artifacts are commonly categorized as

constructs, models, methods (algorithms and practices), and instantiations

(implemented and prototype systems) [Hevner et al., 2004; March & Smith, 1995].

Constructs provide the language in which problems and solutions are defined and

communicated [Schön, 1983]. The entity-relationship model, for example, is a set

 19

CHAPTER 1. INTRODUCTION

of constructs for representing the type of information that is to be stored in a

database. Models aid problem and solution understanding. They use constructs to

represent a real world situation and to explore the effects of design decisions and

changes on the real world. [Simon, 1996]. Methods provide guidance on how to

solve problems. They can range from formal, mathematical algorithms that

explicitly define the search process to informal, textual descriptions of "best

practice" approaches [Hevner et al., 2004]. Instantiations show that constructs,

models, or methods can be implemented in a working system. They are usually in

the form of software tools aimed at improving the process of information system

development.

Hevner et al. [2004] developed seven guidelines (Table 1.1) for conducting

and evaluating good design-science research. Researchers, reviewers, and editors

must use their creative skills and judgment to determine when, where, and how to

apply each of the guidelines in a specific research project [Hevner et al., 2004].

Table 1.1 Design-Science Research Guidelines [Hevner et al., 2004]

No Guideline Description

1 Design as an
Artifact

Design-science research must produce a purposeful artifact
in the form of a construct, a model, a method, or an
instantiation.

2 Problem
Relevance

The objective of design-science research is to develop
innovative artifacts to important and relevant problems.

3 Design
Evaluation

The utility, quality, and efficacy of a design artifact must
be rigorously demonstrated via well-executed evaluation
methods.

4 Research
Contributions

Effective design-science research must provide clear
contributions in the areas of the design artifact, design
construction knowledge, and/or design methodologies.

5 Research Rigor The artifact itself must be rigorously defined, formally
represented, coherent, and internally consistent.

6 Design as a
Search Process

Design is essentially an iterative search process to discover
an effective solution to a problem. Problem solving can be
viewed as utilizing available means to reach desired ends
while satisfying laws in the problem environment [Simon,
1996]. Means are the set of actions and resources available
to construct a solution. Ends represent goals and
constraints on the solution. Laws are uncontrollable forces
in the environment.

7 Communication
of Research

Design-science research must be presented effectively both
to a technical audience and to a managerial audience.

 20

CHAPTER 1. INTRODUCTION

1.6 Related work

Work that are mostly related to ours are distributed in four categories: (I) studies

that propose coupling metrics for aspects; (II) studies that evaluate the impact of

AOP on software modularity; (III) studies that evaluate the impact of AOP on

software maintainability and reusability; and (IV) studies that extend UML to

support AOM.

Numerous coupling metrics for AO software have been proposed up to

now. However, they cannot by used to compare the OO and AO implementations.

Zhao [2004], Ceccato & Tonella [2004], Shen & Zhao [2007], and Burrows et al.

[2010a; 2010b] proposed fine-grained metrics that separate the coupling

contributions of individual AOP mechanisms. Since these metrics measure only a

specific kind of coupling, they cannot by used to compare the OO and AO

implementations. Our metric quantifies the overall coupling of a given module.

The most closely related coupling metric to ours is the one defined by Sant’Anna et

al. [2003]. Nevertheless, their metric does not cover all the significant kinds of

coupling dependencies in AO software.

There are many studies focusing on a metrics-based comparison among

OO and AO modularization. They differ from our research in study settings.

Firstly, Garcia et al. [2005], Filho et al. [2006], Hoffman & Eugster [2007],

Figueiredo et al. [2008], and Castor et al. [2009] interpret the tally of the metrics’

values associated with all the modules for a given implementation, while we

interpret the average of the metrics’ values.

Secondly, other researchers apply coupling metrics that are invalid to

compare between OO and AO implementations. Sant’Anna et al. [2003] and

Garcia et al. [2005] do not take into account so-called “semantic dependencies”

(see Chapter 5). Other studies can be classified into two groups. In the first group

[Filho et al., 2006; Greenwood et al., 2007; Madeyski & Szała, 2007; Figueiredo et

al., 2008; Castor et al., 2009], new kinds of coupling introduced by pointcuts are

not considered at all. In the second group [Tsang et al., 2004; Hoffman & Eugster,

2007], the coupling introduced by a pointcut is considered only if a module is

explicitly named by the pointcut expression.

In addition, Sant’Anna et al. [2003], Garcia et al. [2005], Filho et al.

[2006], Greenwood et al. [2007], Figueiredo et al. [2008], and Castor et al. [2009]

measure code tangling and code scattering using Concern Diffusion metrics

 21

CHAPTER 1. INTRODUCTION

[Sant’Anna et al., 2003]. They find that AO implementations performed better than

their OO equivalents. Since avoiding code tangling and code scattering is the

cornerstone of AOP, their observations are predictable and inevitable. In our study

we take as given that AOP improves lexical SoC and do not investigate it.

There are also several studies that quantitatively evaluate the impact of

AOP on software maintainability and reusability. They differ from our research

mainly in the way they measure the quality attributes. Kulesza et al. [2006]

evaluate the OO and AO implementations of a Web information system before and

after maintenance activities. They apply a suite of metrics for separation of

concerns, coupling, cohesion and size. In our opinion, this suite measures software

modularity instead of maintainability. Sant’Anna et al. [2003] simulate seven

maintenance/reuse scenarios on a multi-agent system. For each scenario, the

difficulty of maintainability and reusability is defined in terms of structural

changes to the artifacts in the AO and OO implementations, such as number of

modules, operations, and lines of code that were added, changed, or copied. Similar

metrics suite is used by Figueiredo et al. [2008] to evaluate the stability of software

product lines (SPL) that undergoes seven change scenarios. Figueiredo et al. [2008]

measure the number of modules, operations, and lines of code that were added,

removed or changed during each scenario. In our research, we use one metric to

evaluate evolvability and one to evaluate reusability. We consider atomic changes

as the indicators of maintenance tasks. The more atomic changes occur between

two software versions, the less evolvable the software is. Our reusability metric

bases on the ratio of reused LOC to the total number of LOC in a program. Bartsch

& Harrison [2008] measure how much time it takes to perform maintenance tasks

on an online shopping system. The results appeared to slightly favor the OO

implementation over the AO implementation. Their approach to measure

maintainability can be viewed as complementary to ours.

There are also empirical studies in AOP rest on qualitative investigation

[Hanenberg & Unland, 2001; Koppen & Störzer, 2004; Griswold et al., 2006;

Kästner et al., 2007; Munoz et al., 2008; Mortensen, 2009; Taveira et al., 2009;

Taveira et al., 2010]. Our dissertation is a continuation of their work and further

explores the impact of AOP on software evolvability and reusability. Hannemann

& Kiczales [2002] developed AO implementations of the 23 Gang-of-Four (GoF)

design patterns. For 12 out of all 23 patterns, they find reusable implementations.

We build on their implementations as a starting point. Our research goes a step

 22

CHAPTER 1. INTRODUCTION

further and shows how AO solutions can take advantage of generics and reflective

programming. Using these techniques, we provide a highly reusable

implementation of the Decorator, Proxy, and Prototype pattern.

Although we think aspects are best modeled with a new set of UML

elements, several extensions exist as UML profiles [Evermann, 2007; Fuentes &

Sanchez, 2007; Gao et al., 2004; Groher & Baumgarth, 2004; Groher & Schulze,

2003; Mosconi et al., 2008; Stein et al., 2002a; Stein et al., 2002b; Zakaria et al.,

2002]. Our research draws inspirations from the work that bases on a heavy-weight

extension mechanism [Lions et al., 2002; Hachani, 2003a; Hachani, 2003b; Kande,

2003; Yan et al., 2004]. Our extension is built on top of UML 2.2. This opposes

with the proposals that base on the UML 1.x metamodel [Lions et al., 2002;

Hachani, 2003a; Hachani, 2003b]. Moreover, differently from Hachani [2003a;

2003b], we do not modify the UML metamodel in any way. Furthermore, in

contrast to [Hachani, 2003a; Hachani, 2003b; Yan et al., 2004] our metamodel

provides dedicated icons for new elements.

1.7 Dissertation outline

Chapter 2 lays the foundations for understanding the central ideas of this

dissertation. It focuses on concepts related to separation of concerns and

modularization. This Chapter also gives an introduction to the problem of

implementing crosscutting concerns in OO languages. The limitations of OO

languages are explained and illustrated by two scenarios of adapting software to

new requirements.

Chapter 3 illustrates how aspects can lexically separate the implementation of

different concerns. It presents the state-of-the-art in implementing crosscutting

concerns. The basic concepts of AOP and Composition Filters are explained and

illustrated by two scenarios introduced in the previous Chapter. Section 3.3

provides a discussion on the AO modularization. It also highlights the emerging

research efforts in restoring modular reasoning to AOP. An earlier version of this

Section appeared in the proceedings of ICSOFT'10 [Przybyłek, 2010c].

Chapter 4 gives the definition of a new modelling language named AoUML that

we elaborated to incorporate aspects into class diagram. AoUML is an extension to

 23

CHAPTER 1. INTRODUCTION

the UML metamodel. It is used in the next Chapters to visualize the presented

source code. This Chapter is based on our IMCSIT'08 paper [Przybyłek, 2008a].

Chapter 5 introduces metrics that we intend to apply to compare the paradigms

with regards to software modularity, evolvability, and reusability. It also explains

semantic dependencies in AO software to give a rationale for our coupling metric.

The metrics discussed are derived from their OO counterparts. They are used in the

next Chapters in our evaluation studies.

Chapter 6 presents a metrics-based comparison among AO and OO software with

respect to coupling and cohesion. We evaluate the 23 GoF design patterns and 11

real-world systems. The major findings of the chapter were published in the

proceedings of ENASE’10 [Przybyłek, 2010a] and ETAPS’11 [Przybyłek, 2011b].

Chapter 7 is divided into two parts, that were earlier published in the proceedings

of BIR'08 [Przybyłek, 2008], ICSOFT’10 [Przybyłek, 2010b], and TOOLS’11

[Przybyłek, 2011c]. The first part of the Chapter presents a quasi-controlled

experiment comparing evolvability and reusability between OO and AO

implementations in 5 subsequent versions of the producer-consumer program. The

second part of the Chapter explores the possibilities for improving implementations

of the GoF design patterns using AspectJ with generics and reflective

programming.

Chapter 8 summarizes the dissertation.

 24

CHAPTER 2. SOFTWARE MODULARITY

2 Software modularity

CChhaapptteerr 22.. SSooffttwwaarree mmoodduullaarriittyy
I have a small mind and can only comprehend one thing at a time.

Dijkstra, 1972

The aim of this chapter is to review the approaches employed so far to modularize

concerns, and to illustrate the need for new decomposition/composition

mechanisms.

2.1 Criteria for software modularity

The evolution of programming languages is driven by the perennial quest for better

separation of concerns (SoC). Subroutines, which encaptulated a unit of

functionality, were invented in the early 1950s and all subsequent program

structuring mechanisms such as procedures and classes, have been designed to

provide better mechanisms for realising the SoC [Sommerville, 2010]. The term

SoC was coined by Dijkstra [1974] and it means “focusing one's attention upon some

aspect” to study it in isolation for the sake of its own consistency; it does not mean

completely ignoring the other ones, but temporarily forgetting them to the extent

that they are irrelevant for the current topic. In the context of systems development,

this term refers to the ability to decompose and organize the system into

manageable modules, which can be developed and maintained in relative isolation.

Dijkstra [1976] and Parnas [1972] suggested, that the best way to achieve

SoC is through modularisation. Modularization is the process of decomposing a

system into logically cohesive and loosely-coupled modules that hide their

implementation from each other and present services to the outside world through a

well-defined interface [Parnas, 1972; Yourdon & Constantine, 1979; Booch, 1994].

Cohesion is the “intramodular functional relatedness” and describes how tightly

bound the internal elements of a module are to one another, whereas coupling is

“the degree of interdependence between modules” [Yourdon & Constantine, 1979].

Modularization makes it possible to reason about every module in isolation, such

 25

CHAPTER 2. SOFTWARE MODULARITY

that when a small change in requirements occurs, it will be possible to go to one

place in code to make the necessary modifications [Cline, 1998].

Modularization is closely related to composition and decomposition

mechanisms in programming languages. Software composition and the reverse

notion of software decomposition are about the partitioning of a software system

into smaller parts (decomposition) and the assembly of software systems in terms

of these smaller parts (composition) [Ostermann, 2003]. Thus, in practice,

modularization corresponds with finding the right decomposition of a problem [De

Win et al., 2002].

Herein, the term module is used as a generalization of procedure, function,

class, interface, and aspect. A module consists of two parts: an interface and a

module body (implementation). An interface presents the services provided by a

module. It separates information needed by a client from implementation details. It

represents a boundary across which control flow and data are passed. A module

body is the code that actually realizes the module responsibility. It hides the design

decisions and should not be accessible from outside the module. A programmer

should be able to understand the responsibility of a module without understanding

the module’s internal design [Parnas, 1984]. The interface specification should be

weaker than the implementation so that an interface allows multiple possible

implementations and hence leaves room for evolution that does not invalidate the

interface [Ostermann et al., 2011].

An interface as presented above is often termed provided interface. A

module can also stipulate a so-called required interface, which is another module’s

provided interface. A required interface specifies the services that an element needs

from some other modules in order to perform its function and fulfill its own

obligations.

One of the first mentions of the importance of interfaces appeared in a

1970 textbook on systems development by Gouthier & Pont [1970]: “At

implementation time each module and its inputs and outputs are well-defined, there is

no confusion in the intended interface with other system modules.“ Since then, this

issue has been repeatedly headlined. Raymond advertizes [Raymond, 2003]: “The

only way to write complex software that won't fall on its face is to build it out of

simple modules connected by well-defined interfaces, so that most problems are local

 26

CHAPTER 2. SOFTWARE MODULARITY

and you can have some hope of fixing or optimizing a part without breaking the

whole.”

The interface and implementation parts are also called public and private,

respectively. The users of a module need to know only its public part [Riel, 1996].

An interface serves as a contract between a module and its clients. Such contract

allows the programmer to change the implementation without interfering with the

rest of the program, so long as the public interface remains the same [Riel, 1996].

Parnas [1984] postulates that “It should be possible to change the implementation of

one module without knowledge of the implementation of other modules and without

affecting the behavior of other modules. [...] Except for interface changes, programmers

changing the individual modules should not need to communicate.”

The paradigm that has made a significant contribution to improving

software modularity is structured programming. Its origins date back to 1968, when

the famous letter "GoTo statement considered harmful" [Dijkstra, 1968] was sent

by Dijkstra to the Communications of the ACM. In this letter, Dijkstra calls for the

abolishment of GoTo from high-level languages. He states that “the unbridled use of

the GoTo statement has an immediate consequence that it becomes terribly hard to find

a meaningful set of coordinates in which to describe the process progress” (i.e. the state

of the program). Next, Dijkstra presents the following program flow structures:

sequence, selection, repetition and procedure call. When composing a program

using these structures, the contents of the call stack and loop iteration stack are

sufficient to determine the state of the program. Hence those contents make up a

coordinate system according to which any trace of a program can be represented.

Other issues advocated by structured programming are: splitting a program

into subsections with a single point of entry and exit, reducing reliance on global

variables and information hiding.

The use of global variables is usually considered bad practice. Wulf &

Shaw [1973] in their article “Global variable considered harmful” argue that global

variables “force upon the programmer the need for a detailed global knowledge of the

program which is not consistent with his human limitations”. Since any code

anywhere in a program can change the value of the variable at any time,

understanding the use of the variable may entail understanding a large portion of

the program.

 27

CHAPTER 2. SOFTWARE MODULARITY

Designing a module so that implementation details are hidden from other

modules is called information hiding and was proposed by Parnas. In his paper,

Parnas [1972] argues that the primary criteria for system modularization should

focus on hiding critical design decisions (i.e. difficult design decisions or design

decisions which are likely to change). Similar postulates were later put forward in

the context of OOP: “The main idea is to organize things so that when changes to the

concept or abstraction occur (as is inevitable), it will be possible to go to one place to

make the necessary modifications” [Cline, 1998]. In the programming community,

information hiding has become such an undisputed dogma of modularity that

Brooks [1995] even felt that he had to apologize to Parnas for questioning it

[Ostermann et al., 2011].

Parnas [1972] also enumerates the benefits expected of modularization: (1)

managerial – development time should be shortened because separate groups

would work on each module with little need for communication; (2) product

flexibility – it should be possible to make drastic changes to one module without a

need to change others; (3) comprehensibility – it should be possible to study the

system one module at a time. The whole system can therefore be better designed

because it is better understood. This comprehensibility is often termed modular

reasoning. Clifton & Leavens clarify [2003] that a language supports modular

reasoning if the actions of a module M written in that language can be understood

based solely on the code contained in M along with the signature and behavior of

any modules referred to by M. A module M refers to N if M explicitly names N, if

M is lexically nested within N, or if N is a standard module in a fixed location

(such as Object in Java).

Meyer [1989] summarizes the research on software modularity by

enumerating the essential requirements for modular design: (1) decomposability -

means that a system can be and is decomposed into a set of cohesive and loosely

coupled modules; (2) composability - demands that every module may be freely

combined with each other to produce new systems, possibly in an environment

quite different from the one in which they were initially developed; (3)

understandability - means that each single module is understandable on its own; (4)

continuity - describes that a small change in requirements leads to a small change

in limited parts of the system and does not affect the architecture; (5) protection -

demands that the effect of errors be limited to one little part of a system. Meyer

[1989] also postulates five rules which we must observe to ensure modularity: (1)

 28

CHAPTER 2. SOFTWARE MODULARITY

Direct Mapping - the modular structure devised in the process of building a

software system should remain compatible with any modular structure devised in

the process of modeling the problem domain; (2) Few Interfaces - every module

should communicate with as few others as possible; (3) Small Interfaces - if two

modules communicate, they should exchange as little information as possible; (4)

Explicit Interfaces - whenever two modules A and B communicate, this must be

obvious from the text of A or B or both; (5) Information Hiding - the designer of

every module must select a subset of the module’s properties as the official

information about the module, to be made available to authors of client modules.

2.2 From structured to object-oriented programming

The term structured programming was coined to describe a style of programming

that merges the ideas proposed in the late 1960s and early 1970s by:

• Dijkstra: SoC, layered architecture, structured control constructs;

• Wirth: stepwise refinement, modular programming;

• Parnas: information hiding, modular programming;

• Hoare: designing data structures;

• Knuth: local variables, literate programming.

In the past, the structured paradigm proved to be successful for tasks, such as

controlling petroleum refining facilities and providing worldwide reservation

systems. However, as software grew in size, inadequacies of the structured

techniques started to become apparent, and the OOP was proposed by Dahl and

Nygaard as a better alternative. Since the late 1980s OOP has been the mainstream

of software development.

OOP was created from a desire to close correspondence between objects in

the real world and their counterparts in software. The object-oriented purism comes

from the dogma that everything should be modeled by objects, because human

perception of the world is based on objects. An object is a software entity that

combines both state and behavior. An object’s behavior describes what the object

can do and is specified by a set of operations. The implementation of an operation

is called a method. The way that the methods are carried out is entirely the

responsibility of the object itself [Schach, 2007] and is hidden from other parts of

the program (Larkin & Wilson 1993). An object performs an operation when it

 29

CHAPTER 2. SOFTWARE MODULARITY

receives a message from a client. A message is a request that specifies which

operation is desired. The set of messages to which an object responds is called its

message interface [Hopkins & Horan, 1995]. An object's state is described by the

values of its attributes (i.e. data) and cannot be directly accessed from the outside.

The attributes in each object can be accessed only by its methods. Because of this

restriction, an object’s state is said to be encapsulated. The advantage of

encapsulation is that as long as the external behavior of an object appears to remain

the same, the internals of the object can be completely changed [Hunt, 1997]. This

means that if any modifications are necessary in the implementation, the client of

the object need not be affected.

In OO software development, a system is seen as a set of objects that

communicate with each other by sending messages to fulfil the system

requirements. The object receiving the message may be able to perform the task

entirely on its own (i.e. access the data directly or use its other method as an

intermediary). Alternatively, it may ask other objects for information, or pass

information to other objects [Hopkins & Horan, 1995].

The most popular model of OOP is a class based model. In this model, an

object’s implementation is defined by its class. The object is said to be an instance

of the class from which it was created. A class is a blueprint that specifies the

structure and the behaviour of all its instances. Each instance contains the same

attributes and methods that are defined in the class, although each instance has its

own copy of those attributes.

OO languages offer two primary reuse techniques: inheritance and

composition. Software reuse refers to the development of software systems that use

previously written modules. Inheritance allows for reusing an existing class in the

definition of a new class. The new class is called the derived class (also called

subclass). The original class from which the new class is being derived is called the

base class (also called superclass). All the attributes and methods that belong to the

base class automatically become part of the derived class [Cline et al., 1998]. The

subclass definition specifies only how it differs from the superclass [Larkin &

Wilson, 1993]; it may add new attributes, methods, or redefine (override) methods

defined by the superclass.

An object of a derived class can be used in every place that requires a

reference to a base class [Cline et al., 1998]. It allows for dispatching a message

depending not only on the message name but also on the type of the object that

 30

CHAPTER 2. SOFTWARE MODULARITY

receives the message. Thus, the methods that matches the incoming message is not

determined when the code is created (compile time), but is selected when the

message is actually sent (run time) [Hopkins & Horan, 1995]. An object starts

searching the methods that matches the incoming message in its class. If the

method is found there, then it is bound to the message and executed, and the

appropiate response returned. If the appropiate method is not found, then the search

is made in the instance’s class’s immediate superclass. This process repeats up the

class hierarchy until either the method is located or there is no further superclass

[Hopkins & Horan, 1995]. The possibility that the same message, sent to the same

reference, may invoke different methods is called polymorphism.

A new class can be composed from existing classes by composition.

Composition is the process of putting an object inside another object (the

composite) [Cline et al., 1998]. A composite can delegate (re-direct) the requests it

receives to its enclosing object. Composition models the has-a relationship. It is

claimed that composition is more powerful than inheritance, because (1)

composition can simulate inheritance, and (2) composition supports the dynamic

evolution of systems, whereas inheritance relations are statically defined relations

between classes [Bergmans, 1994].

Inheritance is also called “white box” reuse, because internals of a base

class are visible to its extensions. In contrast, composition is called “black box”

reuse, because the internals of the enclosed object are not visible to the enclosing

object (and vice-versa) [Oprisan, 2008]. With composition, an enclosing object can

only manipulate its enclosed object through the enclosed object's interface.

Because composition introduces looser coupling between classes it is preferable to

inheritance.

Developing high quality software requires knowledge usually learned only

by experience [Gamma et al., 1995; Albin-amiot & Guéhéneuc, 2001]. Experience

acquired in projects that have worked in the past allows a designer to avoid the

pitfalls of development [Kuhlemann, 2007]. Over the years, the wisdom about OO

software development had been accumulated into what are known as design

patterns and then catalogued by Gamma et al. in what is known as the “Gang of

Four” book [Gamma et al., 1995].

A design pattern is a general solution that addresses a recurring problem

encountered in software development [Hannemann & Kiczales, 2002]. It

constitutes a set of guidelines that describe how to accomplish a certain task in a

 31

CHAPTER 2. SOFTWARE MODULARITY

specific design situation [Pressman, 2005]. A design pattern also identifies classes

that play a role in the solution to a problem and describes their collaborations and

responsibilities. However, with OO techniques, only the solutions of the patterns

are considered reusable. As a consequence the programmer still has to implement

the patterns for each application he is constructing [Borella, 2003].

2.3 Tyranny of the dominant decomposition

When solving a simple problem, the entire problem can be tackled at once.

For solving a complex problem, the basic principle should be divided into easier to

comprehend pieces, so that each piece can be conquered separately [Jalote, 2005].

Programming languages provide mechanisms that allow the programmer to break a

system down into modules of behavior or function, and then compose those

modules in different ways to produce the overall system [Kiczales et al., 1997].

Although the exact nature of the decomposition unit differs between the structured

and OO paradigm, in each case, it feels comfortable to talk about what is

encapsulated as a functional unit of the overall system [Kiczales et al., 1997].

Therefore, both decomposition techniques can be generally treated as functional

decomposition.

The manner in which a system is physically divided into modules can

affect significantly the structural complexity and quality of the resulting system

[Parnas, 1972; Yourdon & Constantine, 1979]. Dahl, Dijkstra & Hoare [1972]

explain that “good decomposition means that each module may be programmed

independently and revised with no, or reasonably few, implications for the rest of the

system.” Yourdon & Constantine suggest [Yourdon & Constantine, 1979] to

decompose a system so that (1) highly interrelated parts of the system should be in

the same module; (2) unrelated parts of the system should reside in different

modules. According to Yourdon & Constantine [1979] “What we are striving for is

loosely coupled system - that is, a system in which one can study (or debug, or maintain)

any one module without having to know very much about any other modules in the

system.” Although the different modules of one system cannot be entirely

independent of each other, as they have to cooperate and communicate to solve the

 32

CHAPTER 2. SOFTWARE MODULARITY

larger problem, the design process should support as much independence as

possible [Jalote, 2005].

Implementation and maintenance costs generally will be decreased when

each piece of the system corresponds to exactly one small, well-defined piece of

the problem, and each relationship between a system's pieces corresponds only to a

relationship between pieces of the problem [Yourdon & Constantine, 1979].

Kiczales et al. [1997] found that the abstractions offered by functional

decomposition are insufficient to express crosscutting concerns in a modular way.

In his PhD dissertation, Ostermann [2003] ilustrates this problem graphically on

abstract concern space (Figure 2.1). Each figure represents a particular concern of a

software system. There are three options for organizing this space: by size, by

shape, or by color. Each of these decompositions is equally reasonable, but they are

not hierarchically related [Ostermann, 2003].

Figure 2.1. Abstract concern space

With a functional decomposition, one fixed classification sequence has to be

choosen. In Figure 2.2, the classification sequence is color, shape, size. The

problem with such a fixed classification sequence is that only the first element of

the list is localized whereas all other concerns are tangled in the resulting

hierarchical structure [Mezini & Ostermann, 2004]. Figure 2.2 illustrates this with

the concern “circle”, whose definition is scattered around the color-driven

decomposition [Ostermann, 2003]. Only the color concern is cleanly separated into

white, grey, and black, but even this decomposition is not satisfactory because the

color concern is still tangled with other concerns [Mezini & Ostermann, 2004].

 33

CHAPTER 2. SOFTWARE MODULARITY

Figure 2.2. Arbitrariness of the decomposition hierarchy

The presented problem is known as the tyranny of the dominant

decomposition and it means that traditional programming languages generally

support only a single “dominant” decomposition at a time. This dominant

decomposition satisfies some important needs, but usually at the expense of others

[Tarr et al., 1999]. In the result, no matter how well a system is decomposed, the

implementation of crosscutting concerns will cut across the chosen decomposition

[Mens et al., 2004] causing code tangling and code scattering. Code tangling

occurs when a module implements multiple concerns. Code scattering occurs when

similar pieces of the implementation of one concern appear in multiple modules in

the program. Tangling and scattering negatively affect source code quality. For

example, tangling reduces comprehensibility, as one has to know which statements

belong to which concern, and this may not always be obvious [Durr, 2008].

Moreover, whenever a concern needs to be changed, a developer has to localize the

code that implements it. This may possibly require him to inspect many different

modules, since the code may be scattered across several of them [Bruntink et al.,

2004]. Furthermore, tangling reduces maintainability, because updating one

 34

CHAPTER 2. SOFTWARE MODULARITY

concern may break surrounding code related to other concerns. Tangling also

makes it harder to reuse a module, since the module addresses several concerns,

and a software designer may wish not to reuse all of them at the same time

[Havinga, 2009].

2.4 Impact on maintainability and reusability

Composing systems from existing modules rather than building from scratch has

been one of the main goals of the software engineering since its beginning in the

1960s [McIlroy, 1968]. Reusability is the ease with which existing modules can be

used in new context [Peters & Pedrycz, 2000]. Using previously written modules as

building blocks allows programmers to simplify the construction of software, since

the traditional phases of development are replaced with processes of module search

and selection [Andrews et al., 2002]. Such approach reduces the development time

and costs, downgrades the risk of new projects, and improves the software quality.

One of the obstacles to a massive application of software reuse in industrial

environments is that creating reusable software modules requires a huge initial

investment which is not rapidly amortized.

When development of a software product is complete and it is released to

the market, it enters the maintenance phase of its life cycle [Kan, 2002]. Software

maintainability is the ease with which a software product can be modified after

delivery [IEEE, 1990; Pressman, 2005]. ISO/IEC [1999] defines four categories of

maintenance: perfective, adaptive, corrective, and preventive. As software is used,

the user usually requests additional features and capabilities [Lewis, 2004].

Perfective maintenance extends the software beyond its original requirements.

Over time, the original environment (terminal devices, operating system, laws,

regulations, business rules, external product characteristics) for which the software

was developed is likely to change. Adaptive maintenance accommodates the

software to its external environment [Pressman, 2005]. It has been estimated that

80% of the software maintenance effort is devoted to software evolution (adaptive

and perfective maintenance) [Pigoski, 1997].

Even with the best quality assurance activities, it is likely that the delivered

software contains some latent defects that were not detected during testing.

Corrective maintenance repairs these defects. Computer software deteriorates due

 35

CHAPTER 2. SOFTWARE MODULARITY

to change, and because of this, preventive maintenance, often called software

reengineering, must be conducted to enable the software to operate effectively and

to make subsequent maintenance easier. In essence, preventive maintenance refers

to enhancements to software modularity or understandability. It may also include

the study of a system to detect and correct latent faults in the software product

before they become effective faults [ISO/IEC, 1999].

Software maintenance has been recognized as the most costly and difficult

phase in the software life cycle [Li & Henry, 1995]. Studies and surveys over the

years have indicated that software changes typically consume 40% to 80% of

overall software development costs [Lientz, 1978; Zelkowitz, 1978; Boehm, 1981;

Meyers, 1988; Yourdon, 1992; Hatton, 1998; Glass, 2002; Pressman, 2005].

Hewlett-Packard estimates that 60% to 80% of its R&D personnel are involved in

maintaining existing software, and that 40% to 60% of software budget are directly

related to maintenance [McKee, 1984; Coleman et al., 1994].

Software modularity, maintainability and reusability are closely related.

Much academic work asserts a relationship between the design of a system and the

manner in which this system evolves over time [MacCormack et al., 2007]. In

particular, modularity creates “options” to adapt a design to meet unforeseen future

requirements [Baldwin & Clark, 2000]. Moreover, the more connections between

modules, the more dependent they are and the harder it is to reuse them in different

contexts. Table 2.1 enumerates work that documented these relationships.

Table 2.1 Impact of coupling and cohesion on reusability and maintainability

 reusability maintainability
coupling [Hitz & Montazeri,

1995; Bowen et al.,
2007]

[Hitz & Montazeri, 1995; Chaumun et al., 2000;
Bowen et al., 2007; MacCormack et al., 2007;
Breivold et al., 2008]

cohesion [Bieman & Kang,
1995; Bowen et al.,
2007]

[Bowen et al., 2007; Perepletchikov et al., 2007]

 36

CHAPTER 2. SOFTWARE MODULARITY

2.5 Weaknesses of object-oriented programming –

running examples

2.5.1 Example 1 - mathematics software
Consider some mathematics software that is implemented in Java. It consists of

many classes and Matrix (Figure 2.3) is one of them. The core concern here is to

support mathematical operations. Let's assume that we have a new requirement.

We would like to log every method call in the system and how long it takes to

execute the method.

Figure 2.3. The Matrix class

One of the possible ways of OO solution requires embedding the logging code in

every method. For example, Listing 2.1 shows how the swap method is

instrumented to mesure its execution time.

public class Matrix {
 //...
 protected void swap(int i, int j) {
 long start = System.currentTimeMillis();
 double[] temp = data[i];
 data[i] = data[j];
 [j] = temp; data
 long end = System.currentTimeMillis();
 long time = end - start;
 System.out.println("void Matrix.swap(int,int) - "+ time);
 }
 //...
}

Listing 2.1 The Matrix::swap() method with time logging

 37

CHAPTER 2. SOFTWARE MODULARITY

The code associated with the logging concern is shown as shaded code. Such

instrumentation is very invasive and breaks the open-closed principle, which states

that modules should be open for extension, but closed for modification. Moreover,

the log statements are tangled with the operation’s core logic and the similar code

is scattered across every method in the system.

An alternative approach is to define a new class that extends Matrix and

then to wrap each super method call with log statements (Listing 2.2). Moreover,

every place in the code where Matrix is instantiated must be replaced by

LogMatrix. While this approach limits code tangling, code scattering is still

present. Parts of the implementation of logging are replicated in several places.

Keep in mind that the application contains hundreds of classes and a new log class

is needed for every original class.

public class LogMatrix extends Matrix {
 //...
 protected void swap(int i, int j) {
 long start = System.currentTimeMillis();
 super.swap(i,j);
 long end = System.currentTimeMillis();
 long time = end - start;
 System.out.println("void Matrix.swap(int,int) - "+ time);
 }
 public LogMatrix transpose() {
 long start = System.currentTimeMillis();
 LogMatrix m = new LogMatrix(super.transpose());
 long end = System.currentTimeMillis();
 long time = end - start;
 System.out.println("Matrix Matrix.transpose() - "+ time);
 return m;
 }
 //...
}

Listing 2.2 Logging in the subclass

2.5.2 Example 2 – Learning Management System
A learning management system (LMS) is deployed at a college. It is suspected that

unauthorised persons know lecturers' passwords and have modified data in the

system. As a result, it has been decided that all data-changing SQL statements have

to be watched. In order to do this, it has been proposed that the existing application

be extended by logging every DML statement that modifies the records, together

with the date of the incident, the database username, and the login name.

The application uses JDBC to access its database (Figure 2.4). The key

elements of JDBC API (in terms of the example presented) are the Connection

 38

CHAPTER 2. SOFTWARE MODULARITY

interface, the Statement interface and the DriverManager class. DriverManager

manages all the details involved in establishing the connection to a specified

database. The established connection is returned by

DriverManager::getConnection(..) which is a static method. In a typical application

scenario, the next step is creation of a Statement object. The

Connection::createStatement() method is called upon to do this. The Statement

object is associated with an open connection and used to send SQL statements to

the database. DML statements such as INSERT, UPDATE, DELETE are usually

executed using Statement::executeUpdate(..).

Figure 2.4 A typical usage scenario for accessing a database

An OO solution is based on a delegation model. The LogStatement class is

responsible for tracing SQL queries (Listing 2.3). It implements the Statement

interface and aggregates the statement object. All messages specified by the

Statement interface are delegated to the statement object. Those which are able to

modify records (i.e. execute, executeUpdate) are redefined in order to implement

tracing. Moreover, to fulfil the new requirement, every object returned by

Connection::createStatement() has to be wrapped with LogStatement.

LogStatement implements 40 methods. Of these 1 is a constructor, 29 methods are

used for forwarding only, 8 methods call the log method and then forrward the

original message to Statement object, and 2 methods implement logging. It is

apparent that logging is scattered through and tangled with the business logic.

 39

CHAPTER 2. SOFTWARE MODULARITY

public class LogStatement implements Statement {
 private Statement delegate;
 public LogStatement(Statement st) {
 delegate = st;
 }
 private boolean isDML(String sql) {
 String tmp = sql.toUpperCase();
 return tmp.indexOf("UPDATE")>=0 ||
 tmp.indexOf("INSERT")>=0 || tmp.indexOf("DELETE")>=0;
 }
 private void log(String sql) throws SQLException {
 String dbUser =
 delegate.getConnection().getMetaData().getUserName();
 String login = User.getCurrentUser().getLogin();
 System.out.println(
 new Date() + "; " + login + "; " + dbUser + "; " + sql);
 }
 public void cancel() throws SQLException {
 delegate.cancel();
 }
 public boolean execute(String sql) throws SQLException {
 if (isDML(sql)) log(sql);
 return delegate.execute(sql);
 }
 public boolean execute(String sql, int autoGeneratedKeys)
 throws SQLException {
 if DML(sql)) log(sql); (is
 return delegate.execute(sql, autoGeneratedKeys);
 }
 public boolean execute(String sql, int[] columnIndexes)
 throws SQLException {
 if (isDML(sql)) log(sql);
 return delegate.execute(sql, columnIndexes);
 }
 public boolean execute(String sql, String[] columnNames)
 throws SQLException {
 if (isDML(sql)) log(sql);
 return delegate.execute(sql, columnNames);
 }
 public int executeUpdate(String sql) throws SQLException {
 if (isDML(sql)) log(sql);
 return delegate.executeUpdate(sql);
 }
 //other methods specified by the Statement interface
}

Listing 2.3 LogStatement class definition

2.6 Summary

Modularity is a key concept that programmers wield in their struggle against the

complexity of software systems. Although modules have taken many forms over

the years from functions and procedures to classes, no form has been capable of

 40

CHAPTER 2. SOFTWARE MODULARITY

expressing a crosscutting concern in a modular way. The term crosscutting concern

refers to an aspect of the system that cannot be cleanly modularized because of the

limited abstractions offered by the underlying programming language. In a

traditional environment, implementing crosscutting concerns usually results in

code scattering and code tangling. The presented examples illustrate that a

crosscutting concern cannot be directly implemented by dedicated classes. Instead,

its implementation usually spreads over the whole system and cuts across the

implementation of all other concerns. Maintaining a crosscutting concern means

modifying each fragment of the scattered code realizing that concern. Therefore,

increasing the maintenance cost and error proneness [Eaddy et al., 2008; Munoz et

al., 2008]. This chapter is partly based on work published in [Przybyłek, 2007] and

[Przybyłek, 2009].

 41

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

3 Aspect-oriented programming

CChhaapptteerr 33.. AAssppeecctt--oorriieenntteedd pprrooggrraammmmiinngg
If the only tool you have is a hammer, then everything looks like a nail.

The aim of this chapter is to outline the background material necessary to

understand the state-of-the-art in implementing crosscutting concerns, and to

provoke thoughts about the concepts behind AOP.

3.1 Basic concepts

AOP dates back to 1997, when it grew out of the research work undertaken by

Kiczales et al. [1997] at Xerox PARC (Palo Alto Research Center). AOP appeared

as a reaction to the problem of dominant decomposition. The aim of AOP is to

improve SoC by providing a new unit of decomposition called an aspect and new

ways of composition. Aspects allow the secondary concerns to be implemented in

self-contained modules. The composition of aspects and classes is implemented

through new programming mechanisms, such as pointcuts, advices and

introductions.

Traditionally, many aspect languages have been implemented as an

extension to existing languages. This, in most cases, leads to a conceptual

distinction between the “aspect code” and the “base code” [Havinga, 2009]. Once

implemented, both base code and aspect code are combined together to produce a

final system [Burrows et al., 2010]. The process of actually inserting the aspect

code into the code of other modules at the appropriate points is known as weaving.

Weaving is typically performed at compile-time.

AspectJ was the first AO language and remains the most complete and

successful AOP implementation available to date, with AJDT as a production ready

IDE. When AspectJ reached a level of stability, it was relocated from Xerox PARC

into the arms of the open source community. AspectJ is now maintained as an

Eclipse Technology project. Since AspectJ is becoming a de facto standard, we

have chosen it as a referral language in this dissertation. AspectJ is implemented as

 42

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

a weaver that extends the Java compiler. It produces bytecode that runs inside the

JVM just like any other java class. Figure 3.1 explains the weaving process.

source code

AspectJ compiler

bytecode

base code

aspect code JVM

Figure 3.1 Build process with AspectJ

In AspectJ, an aspect can, like a class, realize interfaces, extend other module and

declare attributes and operations. In addition, it can declare advices, pointcuts, and

inter-type declarations. A pointcut is a language construct designed to specify a set

of join-points and obtain the context surrounding the join-points as well. A

joinpoint is an identifiable location in the program flow where the implementation

of a crosscutting concern can be plugged in. Typical examples of joinpoints include

a throw of an exception, a call to a method, and an object instantiation. An advice

is a method-like construct used to define an additional behaviour that has to be

inserted at all joinpoints picked out by the associated pointcut. An advice is

implicitly triggered when specific events (e.g. a method call or a field access) occur

during the program execution. The body of an advice is the implementation of a

crosscutting concern. An advice is able to access values in the execution context of

the pointcut. Depending on the type of advice, whether “before”, “after” or

“around”, the body of an advice is executed before, after or in place of the selected

joinpoints. An around advice may cancel the captured call, may wrap it or may

execute it with the changed context. An inter-type declaration is used to crosscut

the static-type structure of classes and their hierarchies. It allows a programmer to

add attributes and methods to an established class, from outside the original class

definition. Inter-type declarations can also declare that other types implement new

interfaces or extend a new class. The reader interested in a comprehensive

explanation of AspectJ is referred to [Laddad, 2003; Colyer et al., 2004; Miles,

2004; Gradecki & Lesiecki, 2003].

 43

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

3.2 Running examples

3.2.1 Example 1 - mathematics software
In the OO implementation, logging was scattered through every method in the

system (see Listing 2.2). All we have to do in AOP is to define a single aspect that

implements the new requirement (Listing 3.1). The eachMethod() pointcut uses

wildcards to capture all method executions regardless of their name, regardless of

the name of the class on which the method is defined, and regardless of the return

type. The around() advice is activated whenever the eachMethod() pointcut

captures something. The logging code is injected around the execution of each

method. AspectJ provides the proceed() statement to execute the original method.

The thisJoinPoint pseudo-variable is used to expose a context from the join-point

that triggers the advice.

public aspect TimeLogging {

 pointcut eachMethod(): execution(* *.*(..));

 Object around(): eachMethod() {
 long start = System.currentTimeMillis();
 Object tmp = proceed();
 long end = System.currentTimeMillis();
 long time = end - start;
 // we take the signature of the original method
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println(sig +" - "+ time);
 return tmp;
 }
}

Listing 3.1 The TimeLogging aspect

3.2.2 Example 2 – learning management system
The OO implementation tangled the secondary concern with the core logic (see

Listing 2.3). A better solution can be obtained by using AOP and implementing a

new functionality as an aspect (Listing 3.2). The fundamental difference between

the OO and AO solution is lexical separation of the tracing code. The joinpoints at

which tracing should be injected are specified as the places where the update

methods are called.

 44

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

public aspect DMLmonitoring {

 pointcut DMLexecute(String sql, Statement st): target(st)
 && call(* Statement.execute*(..)) && args(sql,..);

 after(String sql,Statement st) returning (Object o):
 DMLexecute(sql,st) {
 String login = User.getCurrentUser().getLogin();
 String dbUser = "";
 try {
 dbUser=st.getConnection().getMetaData().getUserName();
 } catch (SQLException e) {};
 String tmp = sql.toUpperCase();
 if(tmp.indexOf("UPDATE")>=0 || tmp.indexOf("INSERT")>=0
 || tmp.indexOf("DELETE")>=0) System.out.println(
 new Date()+"; "+login+"; "+dbUser+"; "+sql);
 }
}

Listing 3.2. DMLmonitoring aspect definition

3.3 Aspects vs Modularization

3.3.1 AOP promotes unstructured programming
Constantinides et al. [2004] show that AOP has some of the problems associated

with the GoTo statement. In particular, it does not allow for creating a coordinate

system for the programmer. Since an advice can plug into just about any point of

execution of a program, one can never know the previous (or following) statement

of any statement [Steimann, 2006]. An advice is even worse than GoTo as the

GoTo statement transfers control flow to a visible label, while an advice does not.

As a result, just looking at the source code of the base module is not enough to

deduce a variable value – an advice might have changed it invisibly for the

programmer. Constantinides et al. compare Advice to the ComeFrom statement,

which was proposed as a way to avoid GoTo – of course only as a joke

[Constantinides et al., 2004].

3.3.2 AOP breaks information hiding
A well designed module hides its implementation details from other modules. Prior

to AOP, public interfaces together with private implementations guaranteed that

changing a module’s implementation would not break other modules as long as the

interface would be kept the same. Since AOP this is no longer true. Aspects have

the ability to interject functionalities at any joinpoint in the entire program,

 45

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

effectively bypassing class interfaces. Aldrich [2005] tightens this problem by

restricting quantification, in that internal communication events (e.g., private calls

within a module) cannot be advised by external clients.

In addition, an aspect can access the private members of any module by

using the privileged modifier. In turn, it leads to a globalization of the data

contained in modules. Hence, the conclusion drawn by Wulf & Shaw [1973] – that

in the presence of global variables a programmer needs “a detailed global knowledge

of the program” – is therefore also true for the presence of aspects [Steimann,

2006]. Moreover, the ability of aspects to access unrestrictedly the base code can

invalidate some important properties of the system by modifying the program flow

or leaving protected data structures in an inconsistent state [Munoz et al., 2007].

3.3.3 AOP leaves interfaces implicit
Steimann [2006] tries to apply the idea of provided/required interfaces to AOP. On

the one hand, the aspect provides a particular service through which it extends the

base module; therefore it should specify the provided interface. However, the

matching required interface of the base module remains implicit – the base module

does not specify that it needs something. On the other hand, the base module

provides a set of program elements, which are required by the aspect to perform its

function. Although the aspect depends on these elements, the base module comes

without an explicit counterpart interface specification: its provided interface is

implicit. Seen either way, the base module specifies no interfaces that could be

matched with those of its aspects [Steimann, 2006]. The lack of interfaces makes

aspects vulnerable to any changes in the classes to which they apply [Ongkingco et

al., 2006]. For the programmer of the base module, this means that everything

accessible for aspects should be kept constant. Otherwise, aspects can break down

as classes evolve. Ferrari et al. [2010] measured the impact of the obliviousness

property on the fault-proneness of the evaluated systems. They found that the lack

of awareness between base and aspectual modules tends to lead to incorrect

implementations.

The efforts of introducing an explicit interface between aspects and base

modules were originated by Gudmundson & Kiczales (G&K) and then continued

by Aldrich. Gudmundson & Kiczales [2001] notice that the signature (a name and

parameterization) of a pointcut can convey the abstract responsibility captured by

the pointcut definition. As such pointcuts provide a basis for a new kind of

 46

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

interface, which Gudmundson & Kiczales call the pointcut interface. A pointcut

interface consists of a collection of named pointcuts and is exported by the base

module, which can be a class or a package. The pointcut definition is kept within

the module that exports the interface, so anyone looking at the definition would

also be looking at the implementation of the base module. By having the exported

pointcut, the programmer is aware that the base module may be influenced by

aspects. Preserving the pointcut interface guarantees that upgrades to the base

module will not disturb the dependent aspects.

Aldrich [2005] introduces a new modularization unit - Open Module - that

“is intended to be open to extension with advice but modular in that the

implementation details of a module are hidden”. In this approach, modules (the word

"module" here bearing a meaning distinct from common usage) have to export

these join points that can be captured by the aspects that are external to the module.

Since an advice queries exported pointcuts in order to achieve its function, the

pointcuts can be thought of as a provided interface, while its counterpart in the

advice header as a required interface. In addition, all calls to interface methods

from outside the open module can also be advised. This property is important

because many aspects rely only on calls to interface methods, so exporting

pointcuts for all of these calls would be cumbersome. The main drawbacks of Open

Modules are: (1) Explicitly exposing an interface pointcut means a loss of some

obliviousness; (2) The programmer of the base module must anticipate that clients

might be interested in the internal event; (3) The programmer has to hide out some

implementation details of the designed module to make the module open for

advising; (4) When pointcuts are defined within base modules, many join points

that have to be advised in the same way cannot be captured by quantified pointcuts,

e.g., using wild-card notations. A separate pointcut is required for each base

module.

Leavens & Clifton [2007] introduce a required interface in the base module

by explicitly naming the aspects that may affect the module behaviour. Then,

aspects can only be applied to the modules that reference them. Explicit acceptance

of an aspect can be expressed by an annotation.

Hoffman & Eugster [2007] extend AspectJ with explicit join points (EJPs).

EJPs introduce a new type of join point, which is explicitly declared by the

programmer within aspect, has a unique name and signature. Base code then

explicitly references these join points where crosscutting concerns should apply.

 47

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

The idea of EJPs is to represent cross-cutting concerns via explicit interfaces that

act as mediators between aspects and base code.

The placement of interface between the aspect and the base code breaks the

obliviousness property of aspects and make the base code aware about the

existence of aspects [Munoz et al., 2007]. In addition, as was pointed out by

Steimann [2006], both the above solutions not only make advice activation almost

indistinguishable from guarded subroutine calling but also they re-introduce the

scattering that AOP was to avoid. For instance, with tracing as a crosscutting

concern, annotating every method whose execution is to be traced is just as

annoying as adding the tracing code on site [Steimann, 2006]. Thus, the use of

annotations has potential scaling problems. In addition, this technique is invasive

for base modules and unfeasible in case base modules are third party components.

Sullivan et al. [2005] suggest the introduction of design rules that govern

how code has to be written to expose specific points in program execution. These

rules are documented in so called “crosscutting interface” (XPI) specifications that

base code designers “implement” and that aspects may depend upon. Once these

interfaces are defined, designers can develop aspect and base code independently

[Sullivan et al., 2005]. However, as Steimann [2006] points out, “specification of

the XPI requires an a priori decision what the crosscutting behavior of a system is”. To

address this, Sullivan et al. designed their XPIs by asking the question [Sullivan et

al., 2005] - “what constraints on the code would shape it to make it relatively easy to

write the aspects at hand, as well as support future aspects?” Although XPIs do not

define a concrete interface, they also violate obliviousness by defining a coordinate

coding style between aspects and base code [Munoz et al., 2007]. As mentioned in

Chapter 1, obliviousness requires that the underlying system does not make

assumptions of any kind about the possible aspects that may be applied [Katz,

2004].

3.3.4 AOP makes modular reasoning difficult
Aspects are most effective when the code they advise is oblivious to their

presence [Filman, 2001]. In other words, aspects are effective when programmers

of the underlying system does not have to prepare any hooks or annotations

[Dantas & Walker, 2006]. However, obliviousness also implies that a base module

has no knowledge of which aspects modify it where or when [Steimann, 2006]. It

 48

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

conflicts with the ability to study the system one module at a time. When studying

some module, one needs to consider all aspects that can possibly interfere and

change the module's logic [Recebli, 2005]. The need of global analysis is a sign of

being unmodular.

A proposal to maintain modular reasoning was put forward by Clifton &

Leavens [2002] (C&L) and then continued by Dantas & Walker [2006] and Recebli

[2005]. Not all violations of encapsulation by aspects are harmful – otherwise AOP

would be useless [Recebli, 2005]. C&L [2002] propose to divide aspects into two

categories, assistants and spectators, which provide complementary features.

Assistants have the full power of AspectJ’s aspects, but to maintain modular

reasoning it is required that assistants are explicitly accepted by a module (see

Section 3.3.2). Spectators are constrained to not modify the behavior of the

modules that they advise. In concrete terms, a spectator may only mutate the state

that it owns and it must not change the control flow to or from an advised method.

In addition to mutating the owned state, it seems reasonable to allow spectators to

change accessible global state as well, since a Java module cannot rely on that state

not changing during an invocation (modulo synchronization mechanisms) [Clifton

& Leavens, 2002]. The claim is that spectators are safe to ignore in reasoning about

the base-code as they do not influence its specification. Nevertheless, when

problems arise, a programmer must examine both the base and relevant aspect code

to identify a bug. Moreover, the C&L’s approach breaks the obliviousness property

in a such way that the base code is aware about specific aspect advising it.

Recebeli [2005] proposes the notion of aspects purity to reduce the harm

that aspects can do. A pure aspect is one that promises not to alter the behaviour of

specified set of modules, only possibly adding something new. Nevertheless, pure

aspects only assure harmless when aspects have pure intentions, but giving no

assurance with other aspects.

Munoz et al. [2008] propose a framework for specifying the expected

interactions between aspect and the base program. Aspects are specified with the

invasiveness patterns they realize (Table 3.1), and the base program with assertions

allowing or forbidding invasiveness patterns. In AspectJ, aspects crosscut the base

program at two levels. At method level advices manipulat the method’s behavior

and at module level inter-type declarations modify the program structure.

 49

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

Table 3.1 Classification of invasiveness patterns [Munoz et al., 2008]

classification
element description invasiveness

level

Augmentation

After crosscutting, the body of the
intercepted method is always executed.
The advice augments the behavior of the
method it crosscuts with new behavior that
does not interfere with the original
behavior. Examples of this kind of advices
are those realizing logging, monitoring,
traceability, etc.

method

Replacement

After crosscutting, the body of the
intercepted method is never executed. The
advice completely replaces the behavior of
the method it crosscuts with new behavior.
This kind of advices eliminate a part of the
base program.

method

Conditional
replacement

After crosscutting, the body of the
intercepted method is not always executed.
The advice conditionally invokes the body
of the method and potentially replaces its
behavior with new behavior. Examples of
this kind of advices are advices realizing
transaction, access control, etc.

method

Multiple

After crosscutting, the body of the
intercepted method is executed more than
once. The advice invokes two or more
time the body of the method it crosscuts
generating potentially new behavior.

method

Crossing

After crosscutting, the advice invokes the
body of a method (or several methods) that
it does not intercepts. The advice have a
dependency to the class owning the
invoked method(s).

method

Write

After crosscutting, the advice writes an
object field. This access breaks the
protection declared for the field and can
modify the behavior of the underlying
computation.

method

 50

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

Read

After crosscutting, the advice reads an
object field. This access breaks the
protection declared for the field and can
potentially expose sensitive data.

method

Argument
passing

After crosscutting, the advice modifies the
argument values of the method it
crosscuts and then invokes the body of the
method. The body of the method always
executes at least once.

method

Hierarchy
The aspect modifies the declared class
hierarchy. For example, the aspect adds a
new parent interface to an existing one.

module

Field addition

The aspect adds new fields to an existing
class declaration. These fields depending
on their protection can be acceded by
referencing an object instance of the
affected class.

module

Operation
addition

The aspect adds new methods to an
exiting class declaration. These methods
depending on their protection can be
acceded by referencing an object instance
of the affected class.

module

Munoz et al. [2008] also developed a tool support for their framework. This tool

analyzes aspects to infer which invasive pattern they realize. It can also statically

check that the aspects conform to the specification of the base program. The

violation of the specification is used to alert developers about the risk introduced

by unexpected interactions. This assists developers reviewing the harmful code and

to reason about its interaction with the base program. Since the Munoz’s approach

requires a huge amount of work for formalising all the specifications, it seems too

complex to be practical and scalable to the real world.

3.3.5 AOP breaks the contract between a base module and
its clients

In the presence of aspects, clients of a base module can no longer trust that the

provided service meets its specification. Each service can be affected by an advice.

Dantas & Walker introduce [Dantas & Walker, 2006] the notion of harmless

advice, which is similar to the notation of spectators (see Section 3.3.4). Unlike an

 51

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

ordinary advice, a harmless advice is not allowed to influence the the underlying

computations. Therefore, programmers may ignore harmless advices when

reasoning about the partial correctness properties of their programs. Although

harmless advices are useful for many common crosscutting concerns including:

logging, tracing, profiling, invariant checking and debugging, they limit the power

of AOP by forbidding aspects to be invasive.

Lagaisse et al. [2004] propose aspect integration contracts (AICs) to

specify the permitted interference between an aspect and a base module. AICs

specify the permitted interference between an aspect and the base code. AiC are

composed of the “aspect requirements” specifications (what aspects require from

the base code), “aspect functionalities and effects” specifications (what aspect do

with the base code), and the “permitted interference” specification (what aspect can

do with the base code). Although AICs seem to be a reasonable limitation of the

expressive power of AOP, they require too much of work from the programmers.

3.3.6 AOP escalates coupling
Similar to how OO languages rely on symbolic referencing (e.g. method calls by

name), most AO languages in use today rely on referencing more complex

structural properties of the program such as naming conventions and package

structure [Wampler, 2007]. These structural properties are used by pointcuts to

define intended conceptual properties about the base program [Kellens et al.,

2006]. It means that pointcuts impose “design rules“ that developers of the base

program must adhere to in order to prevent unintended join point captures or

accidental join point misses [Sullivan et al., 2005]. Design rules introduce tight

coupling between the pointcut definition and the base program’s structure. If a

change occurs in any base module, all aspects need to be reviewed whether they

are still working. This phenomenon is called the fragile pointcut problem.

Furthermore, AO constructs introduce semantic coupling (see Section 5.2.3) that

does not exist in OO systems.

Kellens et al. [2006] address the fragile pointcut problem by declaring

pointcuts in terms of a conceptual model of the base program, rather than defining

them directly in terms of how the base program is structured. As such, they

transformed the fragile pointcut problem into the problem of keeping a conceptual

model of the program synchronised with that program, when the program evolves.

 52

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

3.3.7 Impact on maintainability and reusability
AOP has been proven to be effective in lexically separating different concerns of

the system [Sant’Anna et al., 2003]. However, the influence of AOP on other

quality attributes is still unclear. On the one hand, replacing code that is scattered

across many modules by a single aspect can potentially reduce the number of

changes during maintenance [Mortensen, 2009]. In addition, modules may be

easier to reuse, since they implement single concerns and do not contain tangled

code.

On the other hand, constructs such as pointcuts and advices can make the

ripple effects in AO systems far more difficult to control than in OO systems.

Current AO languages rely on referencing structural properties of the program such

as naming conventions and package structure. These structural properties are used

by pointcuts to define intended conceptual properties about the program. The

obliviousness property of AspectJ implies that the underlying system does not have

to prepare any hooks, or in any way depend on the intention to apply an aspect over

it [Katz, 2004]. Thus, maintenance changes that conflict with the assumptions

made by pointcuts introduce defects [Mortensen, 2009]. This phenomenon is called

the pointcut fragility problem [Dijkstra, 1968]. It occurs when a pointcut

unintentionally captures or misses a given join point as a consequence of seemingly

safe modifications to the base code [Koppen et al., 2004; Mortensen, 2009].

Kästner et al. [2007] reported such silent changes during AO refactoring.

Obliviousness also leads to programs that are unnecessarily hard to

understand [Griswold et al., 2006]. Since not all the dependencies between the

modules in AO systems are explicit, an AO maintainer has to perform more effort

to get a mental model of the source code [Storey et al., 1999]. Creating a good

mental model is crucial to understand the structure of a system before attempting to

modify it [Mancoridis et al., 1998]. Studies of software maintainers have shown

that 30% to 50% of their time is spent in the process of understanding the code that

they have to maintain [Fjeldstad & Hamlen, 1983; Standish, 1984; Glass, 2002].

Moreover, incremental modifications and code reuse are not directly

supported for the new language features of AspectJ [Hanenberg & Unland, 2001].

In particular, concrete aspects cannot be extended, advice cannot be overridden,

and concrete pointcuts cannot be overridden. Hanenberg & Unland proposed four

rules of thumb [Hanenberg & Unland, 2001], which allow one to build reusable

 53

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

and incrementally modifiable aspects. However, increased complexity is the price

that has to be paid for it.

3.4 Composition Filters - an alternative approach

Composition Filters (CF’s) was defined by Aksit & Tripathi [1988] and originally

implemented in the Sina language. The Composition Filters model can be thought

of as the conventional OO model in which an object can be surrounded by input

and output filters. Filters extend the message passing mechanism by manipulating

incoming and outgoing messages. Incoming messages have to pass through the

input filters until they are dispatched and the outgoing through the output filters

until they are sent outside the object [Czarnecki & Eisenecker, 2000; Bergmans &

Aksit, 2001]. Dispatching here means either to start searching of a local method, or

to delegate the message to another object. The filters together compose the

enhanced behaviour of the object, possibly in terms of other objects. The resulting

model and its elements are shown in Figure 3.2.

Figure 3.2 The Composition Filters model

A filter definition consists of a filter type and filter guards. It has the following

form:

filter filterType {
 condition => selector1, selector2, ..., selectorN;
 //filter guard 1
 ...
 //filter guard 2
}

A selector is mainly used for matching messages. In addition it may modify certain

parts of messages or indicate the targget object to which the message should be

 54

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

redirected. When the selector on the left hand matches, no further selectors should

be considered. A guard matches the message if (1) the condition evaluates to true,

and (2) the message matches one of the selectors. As soon as the first guard is

matched, the message is said to be accepted by the filter. A filter rejects a message

if none of the filter guards matches the message. The filter type determines the

semantics associated with acceptance and rejection of messages [Bergmans, 1994;

Bergmans & Aksit, 2001]. In other words, it determines how to handle the

messages after the matching process.

The running example of CF's is shown using scenerio 2 (Learning

Management System) from Chapter 2.5.2. The presented source code is written in a

simplified version of CF's (Listing 3.3).

public class LogStatementCF implements Statement {
 private Statement delegate;
 public LogStatementCF(Statement st) { delegate = st; }
 private boolean isDML(String sql) {
 String tmp = sql.toUpperCase();
 return tmp.indexOf("UPDATE")>=0 ||
 tmp.indexOf("INSERT")>=0 || tmp.indexOf("DELETE")>=0;
 }
 private void log(String sql) {
 String login = User.getCurrentUser().getLogin();
 String dbUser = "";
 try {
 dbUser=st.getConnection().getMetaData().getUserName();
 } catch (SQLException e) {};
 System.out.println(
 new Date() + "; " + login + "; " + dbUser + "; " + sql);
 }
 public boolean execute(String sql) throws SQLException {
 if (isDML(sql)) log(sql);
 return delegate.execute(sql);
 }
 //other execute(..) methods
 public int executeUpdate(String sql) throws SQLException {
 if (isDML(sql)) log(sql);
 return delegate.executeUpdate(sql);
 }
 //other executeUpdate(..) methods
 filter Dispatch { true => this.*, delegate.* };
}

Listing 3.3 The LogStatementCF class using CF’s

An arriving message is evaluated according to the Dispatch filter. When a Dispatch

filter rejects a message, an exception is raised. In case of acceptance, the message

is dispatched to the object that corresponds to the target of the matching selector

[Bergmans, 1994]. In our example, an object starts searching the method that

 55

CHAPTER 3. ASPECT-ORIENTED PROGRAMMING

matches the incoming message in its class. If the method is not found, then the

search is continued in the Statement class.

The difference between the OO and CF’s solution is that the latter does not

need to define 29 methods for delegating messages to Statement object, because

the delegation is achieved by the Dispatch filter. However, it should be noticed that

the CF’s implementation is not free from code tangling.

3.5 Summary

The essential problem with OOP is the lack of proper mechanisms to separate the

implementation of crosscutting concerns from the implementation of core

concerns. This limitation can be overcome by AOP and CF’s. Each of these

paradigms builds on all the advantages of the OO paradigm and overcomes some

OO weaknesses. However, no programming paradigm is without its own set of

problems and pitfalls. In Section 3.3 we have explained the current problems that

present a major threat against a mainstream adoption of AOP. Aspects make the

source code hard to understand, break encapsulation, and increase coupling. On the

other hand, CF’s extends the OO paradigm in a natural way, but is less powerful

than AOP. Comparing to AOP, CF’s improves delegation-based reuse and allows

one to avoid composition anomalies. We took an overview of CF's, because it is an

interesting alternative to AOP. However, since CF’s is less powerful than AOP and

is still a theoretical concept unsupported by mainstream programming languages,

we do not investigate it further in this dissertation. The earlier version of Section

3.3 was originally published in [Przybyłek, 2010c], while other sections of this

Chapter are partly based on work published in [Przybyłek, 2007] and [Przybyłek,

2009].

 56

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

4 AoUML: a proposal for aspect-oriented modelling

CChhaapptteerr 44.. AAooUUMMLL:: aa pprrooppoossaall ffoorr aassppeecctt--
oorriieenntteedd mmooddeelllliinngg

One picture is worth ten thousand words.

Barnard, 1927

The aim of this chapter is to define a notation which we will use to visualize the

source code presented in the next Chapters.

4.1 Introduction

A software design coordinates well with a programming language when the

abstraction mechanisms provided at both levels correspond to each other [Piveta &

Zancanella, 2003]. Misalignment of design and code results in weak traceability

and poor comprehensibility. The wide acceptance of AOP in academia has led to

growing interest in aspect-oriented (AO) modelling languages. Since AOP is

usually built on top of OOP, it seems natural to adapt UML to aspect-oriented

modelling (AOM). Although UML was not designed to provide constructs to

describe aspects, its flexible and extensible metamodel enables it to be adapted for

domain-specific modelling [OMG, 2009a]. The progression of the AO paradigm,

from implementation to design, is very similar to the evolution of the object-

oriented and structured paradigms moving from the implementation level to the

design level. The movement of the paradigm up the stages of the software lifecycle

aid in reducing the semantic gap between each development phase [Gray, 2002].

UML has two ways of extending its language, one is by elaborating a Meta

Object Facility (MOF) metamodel and another is by constructing a UML profile. A

UML profile is a predefined set of stereotypes, tagged values, constraints, and

graphical icons which enable a specific domain to be modelled. It was defined to

provide a light-weight extension mechanism [OMG, 2009a]. The term “light-

weight” means that the extension does not define new elements in the UML

metamodel. The intention of profiles is to give a straightforward mechanism for

adapting the UML metamodel with constructs that are specific to a particular

domain [OMG, 2009a]. The advantages of choosing the light-weight extension

 57

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

mechanism are that models can be defined by applying a well-known notation and

that this method is generally supported by UML tools. On the other hand, the

drawbacks are that, since stereotypes are extensions to the existing elements,

certain principles of the original elements must be observed, and consequently

expressiveness is limited. Elaborating an MOF metamodel is referred to as heavy-

weight extension and is harder than constructing a profile. It also has far less tools

support. However, the metamodel constructed can be as expressive as required.

Another drawback of the heavy-weight mechanism is the introduction of

interdependency between specific versions of UML and its extensions. If UML

changes in any way, its extensions may also have to change.

In the last decade, numerous UML’s extensions to support AOM have been

presented (see [Schauerhuber et al., 2007]). However, none of them has become an

acceptable standard. Researchers have usually concentrated on providing UML

profiles, while less attention has been given to constructing heavy-weight

extensions.

The remainder of this Chapter is organized as follows. In the next Section,

the motivation for our proposal is explained. Section 4.3 describes the research

methodology. In Section 4.4, a general overview of our extension to the UML

metamodel is given. Then, in Section 4.5, the details of each meta-class are

introduced. In Section 4.6, in turn, we give two examples of using our proposal.

Finally, the last section summarizes our work.

4.2 Motivation for our proposal

The motivation behind our proposal is to integrate the best practices of the

existing AO extensions – particularly the following: [Clarke & Banaissad, 2005;

Evermann, 2007; Hachani, 2003b; Jacobson & Ng, 2005; Kande, 2003; Kande et

al., 2002; Lions et al., 2002; Sapir et al., 2002; Stein et al., 2002a; Stein et al.,

2002b] – to define an MOF metamodel that supplements UML with means to

visualize AspectJ programs. The existing extensions are not satisfactory for

different reasons. Evermann [2007], Fuentes & Sanchez [2007], Gao et al. [2004],

Groher & Baumgarth [2004], Groher & Schulze [2003], Mosconi et al. [2008],

Stein et al. [2002a], Stein et al. [2002b], Zakaria et al. [2002] stereotype the class

element as <<aspect>> and the method element as <<advice>>, although an aspect

 58

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

is not a class, nor is an advice a method. While such stereotyping was acceptable

until UML 1.5, it can no longer be used; the 2.0 release requires semantic

compatibility between a stereotyped element and the corresponding base element.

The most valuable heavy-weight extensions were elaborated by Hachani

[2003b] and Yan et al. [2004]. The main drawback of both metamodels is the lack

of graphical representation for new modelling elements. Moreover, both

metamodels contain too much implementation detail and so seem to overwhelm the

designer. The Hachani's proposal is specified more strictly and in a more formal

fashion but needs updating, because it extends UML 1.4. The other drawback of his

proposal is that it modifies the UML metamodel.

Efforts [Aldawud et al., 2003; France et al., 2003; Hachani, 2003a; Reina

et al., 2004] to create a generic metamodel which could be fitted to every AO

implementation have been unsuccessful, because a metamodel of this kind

introduces an impedance mismatch between the design constructs and the language

constructs. The conceptual differences between aspect implementations such as

AspectJ, JAsCo, Spring, AspectWerkz are significant and cannot be captured

effectively in a single metamodel. Moreover, generalization at the design level

would be counter-productive at a time when AspectJ is squeezing out other

technology at the implementation level.

4.3 Research methodology

In developing our notation, we follow the guidelines developed by Hevner et al.

[2004]. Table 4.1 discusses the realization of these guidelines in our work. Not the

all guidelines are completely fulfilled in this project. Indeed, Hevner et al. advise

against mandatory use of them.

Table 4.1 The AoUML project

No Guideline Realization

1 Design as an
Artifact

The result of this research is a modelling language named
AoUML, which is a construct in Simon’s terminology
[Simon, 1996]. AoUML extends UML to support AOM.
The capture of aspects in the design phase simplifies the
AO software development. It helps to better understand and
document the design.

 59

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

2 Problem

Relevance
The relevance of modeling techniques in software
development is well demonstrated. While AOP has been
and remains one of the most visible research streams in the
software engineering field, there is still no clear standard
for AOM. AoUML bridges the gap between design and
implementation in AOSD.

3 Design
Evaluation

The utility of the artifact is demonstrated on several
examples.

4 Research
Contributions

The contribution of this research is the artifact itself, that
enriches UML with constructs for modeling aspects.
AoUML provides traceability to aspect-oriented code and
in consequence allows developers to keep the consistency
among design and implementation.

5 Research Rigor AoUML is defined as a MOF metamodel in a way
consistent with UML. Its specification uses the class
diagram, and natural language.

6 Design as a
Search Process

AoUML is designed by integrating the best features of the
existing notations.

7 Communication
of Research

Section 4.5 motivates a technical audience, while Section
4.6 primarily focuses on a designer audience.

4.4 Our extension to the UML metamodel

The elaborated extension is described by using a similar style to that of the UML

metamodel. As such, the specification uses a combination of notations:

• UML class diagram – to show what elements exist in the extension and

how the elements are built up in terms of the standard UML constructs;

• natural language – to describe the semantic of the meta-classes introduced.

The proposed extension introduces a new package, named AoUML, which contains

elements to represent the AO concepts, such as: aspect, pointcut, advice,

introduction, parent declaration, soft, custom compilation message and

crosscutting dependency (Figure 4.1). The proposal reuses elements from the UML

2.2 infrastructure and superstructure specifications by importing the Kernel

package. Figure 4.2 shows the dependencies between the UML Infrastructure

[OMG, 2009a), the UML Superstructure (OMG, 2009b) and the AoUML package.

 60

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

Figure 4.1 The AoUML package.

A
sp

ec
t

in
st

an
tia

tio
n:

 A
sp

ec
tK

in
d

is
P

riv
ile

ge
d:

 b
oo

le
an

pr
ec

ed
en

ce
:

S
tri

ng

A
dv

ic
e

bo
dy

:
S

tri
ng

ad
vi

ce
T

yp
e:

 A
dv

ic
eK

in
d

«e
nu

m
er

at
io

n»
A

dv
ic

eK
in

d

«e
nu

m
»

be
fo

re
af

te
r

ar
ou

nd
af

te
r r

et
ur

ni
ng

af
te

r t
hr

ow
in

g

K
er

ne
l::

Ty
pe

P
oi

nt
cu

t

po
in

tc
ut

E
xp

re
ss

io
n:

 S
tri

ng
is

A
bs

tra
ct

:
bo

ol
ea

n

K
er

ne
l::

R
ed

ef
in

ab
le

E
le

m
en

t

K
er

ne
l::

Fe
at

ur
e

C
ro
ss
cu
tti
ng
Fe
at
ur
e

K
er

ne
l::

C
la

ss
ifi

er

P
ar

en
tD

ec
la

ra
tio

n

de
cl

ar
at

io
nT

yp
e:

 D
ec

la
ra

tio
nK

in
d

«e
nu

m
er

at
io

n»
D

ec
la

ra
tio

nK
in

d

«e
nu

m
»

im
pl

em
en

ts
ex

te
nd

s

S
tr
uc
tu
ra
lC
ro
ss
cu
tti
ng
Fe
at
ur
e

ta
rg

et
T

yp
eP

at
te

rn
:

S
tri

ng
K

er
ne

l::
P

ar
am

et
er

In
tr

od
uc

tio
n

m
em

be
rT

yp
e:

 M
em

be
rK

in
d

bo
dy

:
S

tri
ng

«e
nu

m
er

at
io

n»
M

em
be

rK
in

d

«e
nu

m
»

co
nc

re
te

 m
et

ho
d

ab
st

ra
ct

 m
et

ho
d

co
ns

tru
ct

or
at

tri
bu

te

K
er

ne
l::

P
ro

pe
rt

y

K
er

ne
l::

O
pe

ra
tio

n

«e
nu

m
er

at
io

n»
A

sp
ec

tK
in

d

«e
nu

m
»

si
ng

le
to

n
pe

rT
hi

s
pe

rT
ar

ge
t

pe
rC

Fl
ow

pe
rC

Fl
ow

B
el

ow

K
er

ne
l::

R
el

at
io

ns
hi

p
C

ro
ss

cu
t

C
us

to
m

C
om

pi
la

tio
nM

es
sa

ge

m
es

sa
ge

:
S

tri
ng

ex
ce

pt
io

nT
yp

e:
 E

xc
ep

tio
nK

in
d

«e
nu

m
er

at
io

n»
E

xc
ep

tio
nK

in
d

«e
nu

m
»

er
ro

r
w

ar
ni

ng

S
of

t

ty
pe

:
E

xc
ep

tio
n

E
xe
cu
te
dA
tP
oi
nt
cu
tC
ro
ss
cu
tti
ng
Fe
at
ur
e

0.
.*

at
ta

ch
ed

P
oi

nt
cu

t
1

ow
ne

dP
ar

am
et

er
0.

.*

0.
.1

ow
ne

d
O

pe
ra

tio
n

0.
.*

0.
.1

0.
.*

pa
re

nt
1.

.*

cr
os

sc
ut

tin
g

0.
.*

as
pe

ct 1
in

tro
du

ce
dM

em
be

r
1

0.
.1

0.
.*

re
tu

rn
T

yp
e

0.
.1

0.
.1

ow
ne

dA
ttr

ib
ut

e
0.

.*
0.

.*
ra

is
ed

E
xc

ep
tio

n

0.
.*

ow
ne

dC
ro

ss
cu

tti
ng

Fe
at

ur
e

0.
.*

de
cl

ar
er

0.
.1

cr
os

sc
ut

0.
.*

ba
se

E
le

m
en

t
1

0.
.1

in
st

an
tia

tio
nP

oi
nt

cu
t

0.
.1

de
cl

ar
er

0.
.1

ow
ne

dP
oi

nt
cu

t
0.

.*

ow
ne

dP
ar

am
et

er
0.

.*

0.
.*

 61

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

Infrastructure::Core

Primitiv eTypes

Superstructure::Classes

Kernel

Constructs

AoUML

+ Advice
+ AdviceKind
+ Aspect
+ AspectKind
+ Crosscut
+ CrosscuttingFeature
+ CustomCompilationMessage
+ DeclarationKind
+ ExceptionKind
+ ExecutedAtPointcutCrosscuttingFeature
+ Introduction
+ MemberKind
+ ParentDeclaration
+ Pointcut
+ Soft
+ StructuralCrosscuttingFeature

«merge»

«import»

«merge»

«import»

Figure 4.2 Dependencies between packages.

4.5 The AoUML package

4.5.1 Aspect
Semantics

An Aspect is a classifier that encapsulates the behaviour and structure of a

crosscutting concern. It can, like a class, realize interfaces, extend classes and

declare attributes and operations. In addition, it can extend other aspects and

declare advices, introductions and parent declarations.

Attributes:

• isPrivileged – if true, the aspect code is allowed to access private members

of the target classifier as a "friend"; the default is false.

• instantiation – specifies how the aspect is instantiated; the default is a

singleton.

• precedence – declares a precedence relationship between concrete aspects.

Associations:

• ownedPointcut – a set of pointcuts declared within the aspect.

• instantiationPointcut – the pointcut which is associated with a per-clause

instantiation model.

 62

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

• ownedCrosscuttingFeature – a set of crosscutting features owned by the

aspect.

• ownedAttribute – a set of attributes owned by the aspect.

• ownedOperation – a set of operations owned by the aspect.

Notation

The aspect element looks similar to the class element but has additional sections

for pointcuts and crosscutting feature declarations. Figure 4.3 provides a graphical

representation for aspects.

Figure 4.3 Aspect representation.

 63

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

4.5.2 CrosscuttingFeature
Semantics

A CrosscuttingFeature is an abstract meta-class to generalize „pointcut-

determinable” and structural features.

Associations:

• declarer – the aspect that owns this crosscutting feature.

4.5.3 StructuralCrosscuttingFeature
Semantics

A StructuralCrosscuttingFeature affects the structure of the classifier specified by

the targetTypePattern expression.

Attributes:

• targetTypePattern – a pattern expression to match classes, interfaces or

aspects which are affected by the crosscutting feature.

4.5.4 Introduction
Semantics

An Introduction allows designers to add new attributes or methods to

classes, interfaces or aspects.

Attributes:

• memberType – specifies the kind of the inter-type member

declaration.

Associations:

• introducedMember – the new member which has to be added to the

target classifier.

4.5.5 ParentDeclaration
Semantics

A ParentDeclaration allows designers to add super-types to classes, interfaces or

aspects.

Attributes:

• declarationType – specifies the kind of the declaration.

 64

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

Associations:

• parent – the type implemented or extended by the target classifier.

4.5.6 ExecutedAtPointcutCrosscuttingFeature
Semantics

An ExecutedAtPointcutCrosscuttingFeature is woven with the base code at the

places specified by the attached pointcut.

Associations:

• attachedPointcut – refers to the pointcut that defines a set of join-points at

which the feature affects the base code.

4.5.7 Advice
Semantics

An advice affects the execution behavior of the base program by inserting its body

at each join-point picked out by the attached pointcut. In addition, it has access to

values in the execution context of the pointcut.

Attributes:

• adviceType – specifies when the advice’s body is executed relative to the

join-points picked out.

• body – the code of the advice.

Associations:

• ownedParameter – an ordered list of parameters to expose the execution

context.

• raisedException – a set of checked exceptions that may be raised during

execution of the advice.

• returnType – specifies the return result of the operation, if present (the

“before” and “after” advice cannot return anything).

4.5.8 Pointcut
Semantics

A Pointcut is designed to specify a set of join-points and obtain the context

surrounding the join-points as well. Join-points are well-defined places in the

program flow where the associated advice must be executed. The purpose of

 65

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

declaring a pointcut is to share the pointcut expression in many advices or other

pointcuts.

Attributes:

• isAbstract - if true, the Pointcut does not provide a complete declaration;

the default value is false.

• pointcutExpression – if a pointcut is not abstract, it specifies a set of join-

points; it has the same form as in AspectJ.

Associations:

• ownedParameter – an ordered list of parameters specifying what data is

passed from runtime context to the associated advice.

• advice – an advice that executes when the program reaches the join points.

Notation

The pointcut signature is as follows:
[visibility-modifier] pointcutName([parameters]):
 PointcutExpression

4.5.9 CustomCompilationMessage
Semantics

A CustomCompilationMessage specifies that particular join-points should never be

reached. If the join-points picked out by the attached pointcut are reached, then

either an error or warning will be signaled. It allows enforcing constraints such as

coding standards and architectural rules.

Attributes

• message – the string the compiler will print if it encounters a match for the

attached pointcut.

• exceptionType – error or warning; the only difference between error and

warning is that errors will stop the compilation

4.5.10 Soft
Semantics

A Soft specifies that a particular kind of exception, if thrown at a join point, should

bypass Java's usual static exception checking system and instead be thrown as an

org.aspectj.lang.SoftException, which is subtype of RuntimeException and thus

does not need to be declared.

 66

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

Attributes:

• type – refers to the type of exception to soften.

4.5.11 Crosscut
Semantics

A Crosscut is a directed relationship from the aspect that specifies crosscutting

concerns to one or more classifier, where the additional structure and/or behaviour

will be combined.

Associations:

• baseElement – refers to the classifier that is crosscut.

• aspect – refers to the aspect that affects the classifier.

4.6 Illustrative examples

4.6.1 The Singleton pattern
The aim of Singleton is to ensure that only one instance of a class is created. All

requests to create a new object are redirected to that one and only instance. The

Singleton pattern ensures that only one instance of a class is created. All requests to

create a new object are redirected to that one and only instance. The AO

implementation of this pattern (Listing 4.1) was proposed by Hannemann &

Kiczales [2002]. The coresponding AoUML diagram is shown at Figure 4.4. The

protectionExclusions pointcut indicates what classes can access the Singleton's

constructor (if any). Its implementation (may be left empty) is provided by

concrete sub-aspects. The around advice protects the Singleton's constructor (lines

7–11). It creates the unique instance on demand and returns it instead of a new

object. The concrete sub-aspect of SingletonProtocol defines what classes are

Singleton (line 13).

 67

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

Figure 4.4 The Singlaton pattern.

public abstract aspect SingletonProtocol {

 private Hashtable singletons = new Hashtable(); //2

 public interface Singleton {} //3

 protected abstract pointcut protectionExclusions(); //4

 private pointcut constructors(): //5
 call((Singleton+).new(..)) && !protectionExclusions();//6

 Object around(): constructors() { //7
 Class type =
 thisJoinPoint.getSignature().getDeclaringType(); //8
 if (singletons.get(type) == null) { //9
 singletons.put(type, proceed()); //10
 }
 return singletons.get(type); //11
 }
}

public aspect SingletonInstance {

 declare parents: Printer implements Singleton; //13

 protected pointcut protectionExclusions(): //14
 call((PrinterSubclass+).new(..)); //15
}

Listing 4.1 The AO implementation of the Singleton pattern

 68

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

4.6.2 The Visitor pattern
The intent of the Visitor pattern is to represent an operation to be performed on the

elements of a tree structure. Visitor lets programmers define a new operation

without modifying the classes of the elements on which it operates. Following the

concept of SoC, the Visitor pattern allows to distinguish between the structure and

its processing. Both concerns are implemented by two separate class hierarchies.

Without the Visitor pattern, all the methods pertaining to the same kind of

functional behavior would be spread over the structure hierarchy. With the Visitor

pattern they are encapsulated into a single visitor class, which can be freely added

or deleted from the system.

The first AO implementation of the Visitor pattern was presented by

Hannemann & Kiczales [2002]. However, their implementation has a few

imperfections. (1) The visit methods are distinguished via the name (i.e. visitLeaf,

visitNode); a better practice is to use overloading and to distinguish the methods

via the type of their parameter. (2) They use instanceof operator which is not a

good programming practice. (3) They use confusing names of classes and

interfaces. Our solution improves the above deficiencies.

H&K [2002] apply the Visitor pattern to operate on a binary tree. Their

binary tree either: (a) is a leaf which consists a value, or (b) is a node which

consists of a left binary tree, and a right binary tree. Figure 4.5 is the AoUML class

diagram of the example.

The Visitor interface is implemented by all classes representing operations

on the elements of the tree structure. It declares one operation for the type of each

element in the structure. Every operation accepts as a parameter an object of the

class it deals with. There are two concrete visitors: SummationVisitor (Listing 4.3)

and TraversalVisitor. They provide the context for the algorithm and store the

accumulated results as local state. The former collects the sum of all leaf values in

the tree, whereas the later displays the tree. Adding a new behavior can be achieved

by creating a new class that implements the Visitor interface.

Processing the tree starts when the visitor object is applied to the root node,

using the accept method. This accept method invokes a visit method (Listing 4.2,

Lines 10, 12) of the overgiven visitor using itself as the parameter. If the passed

parameter is type of BinaryTreeLeaf it is proceeded directly (Listing 4.3, Line 7-9).

If it is type of BinaryTreeNode, before or after processing it, the visitor object

 69

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

applies itself to the left and right subtree by invoking their accept method and thus

the whole tree structure is traversed recursively (Listing 4.3, Line 3-6).

«interfejs»
Interfejs4
«interface»

#Leaf
«interfejs»
Interfejs4
«interface»
#Node

BinaryTree Visitable

BinaryTreeNode Node

BinaryTreeLeaf Leaf

Visiting

«interface»
+Visitor

+visit(Node node): void
+visit(Leaf leaf): void

«interfejs»
Interfejs4
«interface»

+Visitable

VisitorProtocol

public void Node.accept(Visitor visitor) {
 visitor.visit(this);
}
public void Leaf.accept(Visitor visitor) {
 visitor.visit(this);
}
public void Visitable.accept(Visitor visitor){}

+visit(VisitorProtocol.Node node): void
+visit(VisitorProtocol.Leaf leaf): void
+getSum(): int

SummationVisitor
#sum: int = 0

+visit(VisitorProtocol.Node node): void
+visit(VisitorProtocol.Leaf leaf): void
+getTree(): String

TraversalVisitor
#result: String = ""

«interfejs»
Interfejs7
«interface»

BinaryTree

+BinaryTreeLeaf(int value)
+getValue(): int

BinaryTreeLeaf
#value: int = 0

+BinaryTreeNode(BinaryTree left, BinaryTree right)
+getLeft(): BinaryTree
+getRight(): BinaryTree

BinaryTreeNode

#left: BinaryTree
#right: BinaryTree

Figure 4.5 The Visitor pattern.

The Visiting aspect assigns the application classes, i.e. BinaryTreeNode and

BinaryTreeLeaf, to implement the interfaces Node and Leaf respectively (Listing

4.2, Lines 15-16). These interfaces implement the accept methods via

VisitorProtocol (Listing 4.2, Lines 9-12). Each accept method is used to pass the

current tree to a visitor.

 70

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

public abstract aspect VisitorProtocol {

 protected interface Visitable {} //2
 protected interface Node extends Visitable {} //3
 protected interface Leaf extends Visitable {} //4

 public interface Visitor { //5
 public void visit(Node node); //6
 public void visit(Leaf leaf); //7
 }

 public void Visitable.accept(Visitor visitor) {} //8

 public void Node.accept(Visitor visitor) { //9
 visitor.visit(this); //10
 }

 public void Leaf.accept(Visitor visitor) { //11
 visitor.visit(this); //12
 }
}

public aspect Visiting extends VisitorProtocol {

 declare parents: BinaryTree implements Visitable; //14
 declare parents: BinaryTreeNode implements Node; //15
 declare parents: BinaryTreeLeaf implements Leaf; //16
}

Listing 4.2 VisitorProtocol.aj and Visiting.aj

public class SummationVisitor implements
 VisitorProtocol.Visitor { //1
 protected int sum = 0; //2
 public void visit(VisitorProtocol.Node node) { //3
 BinaryTreeNode btnode = (BinaryTreeNode) node; //4
 btnode.getLeft().accept(this); //5
 btnode.getRight().accept(this); //6
 }
 public void visit(VisitorProtocol.Leaf leaf) { //7
 BinaryTreeLeaf btleaf = (BinaryTreeLeaf) leaf; //8
 sum += btleaf.getValue(); //9
 }
 public int getSum() { return sum; }
}

Listing 4.3 SummationVisitor.java

4.6.3 Summary
The evolution of the AO paradigm is progressing from programming towards the

design phase. AoUML enriches UML with constructs for visualizing AspectJ code.

Although it takes inspiration from previous work [Evermann, 2007; Hachani,

2003b; Lions et al., 2002; Yan et al., 2004], it is one more step towards closing the

gap between development phases. It makes the system model more consistent with

the system implementation. In contrast to [Evermann, 2007; Hachani, 2003a;

 71

CHAPTER 4. AOUML: A PROPOSAL FOR ASPECT-ORIENTED MODELLING

Hachani, 2003b; Yan et al., 2004] AoUML provides dedicated icons for new

elements. Graphical representation improves the understanding of models.

Moreover, our proposal allows all aspect-related concepts to be specified in

metamodel terms, so that no textual specification or notes are necessary. This

means that automatic verification of the created models is simplified. Furthermore,

AoUML does not modify the UML metamodel in any way. The earlier version of

this Chapter was originally published in [Przybyłek, 2008a].

 72

CHAPTER 5. ADAPTATION OF OBJECT-ORIENTED METRICS

5 Adaptation of object-oriented metrics

CChhaapptteerr 55.. AAddaappttaattiioonn ooff oobbjjeecctt--oorriieenntteedd
mmeettrriiccss

When you can measure what you are speaking about, and
express it in numbers, you know something about it; but
when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meagre and unsatisfactory
kind; it may be the beginning of knowledge, but you have
scarcely in your thoughts advanced to the state of Science,
whatever the matter may be.

Kelvin, 1883

The aim of this chapter is to introduce the AO metrics, which are the basis for the

empirical studies conducted in the next Chapters.

5.1 Software measurement

To assess with some objectivity the quality of a design, we need to quantify design

properties. Software engineers need quantitative assessment techniques to evaluate

design alternatives. Measurement is fundamental to any engineering discipline and

software engineering is no exception [Balasubramanian, 1996]. Measurement is “the

act or process of assigning a number or category to an entity to describe an attribute of

that entity” [IEEE, 1998] and is conducted by using metrics. IEEE Standard 1061

[1998] defines a software quality metric as “a function whose inputs are software

data and whose output is a single numerical value that can be interpreted as the degree

to which software possesses a given attribute that affects its quality.” In this

dissertation software metrics are used as an objective means to compare the quality of

software systems developed using two different paradigms.

 73

CHAPTER 5. ADAPTATION OF OBJECT-ORIENTED METRICS

5.2 Modularity metrics

5.2.1 Existing OO metrics
Software engineering gurus consider modularity as a key principle when

comparing design alternatives [Eick et al., 2001]. For years, they have proposed

various programming techniques to improve software modularity. The dogma is

that good modularization should exhibit high cohesion and low coupling [Anquetil

& Laval, 2011]. This pair of attributes was firstly suggested to measure software

modularity by Yourdon & Constantine [1979] as part of their structured design

methodology and then it was adapted to the OO paradigm by Coad & Yourdon

[1991], Booch [1994], and Meyer [1989]. It was also used by Tsang et al. [2000] to

assess modularity in AO software. Furthermore, several empirical studies [Briand

et al., 1999; Briand et al., 2001; Hitz & Montazeri, 1995; Ponnambalam, 1997]

confirm that improvements in coupling and cohesion are linked to improved

modularity.

Despite coupling and cohesion having been concepts in software design for

almost 50 years, we still do not have widely-accepted metrics for them. However

the most referenced and well-known are CBO (Coupling Between Object classes)

and LCOM (Lack of Cohesion in Methods), defined by Chidamber & Kemerer

(CK) in their metrics suite [Chidamber & Kemerer, 1994]. The CK suite is widely

used for OO assessment; among other things, it was chosen by the Software

Assurance Technology Center at NASA Goddard Space Flight Center. CBO is a

count of the number of other modules to which a module is coupled. Two modules

are coupled when methods declared in one module use methods or instance

variables of the other module [Chidamber & Kemerer, 1994]. LCOM is the degree

to which methods within a module are related to one another. It is measured as the

number of pairs of methods working on different attributes minus pairs of methods

working on at least one shared attribute (zero if negative).

CBO and LCOM complement each other, and because of their dual nature,

they are useful only when analyzed together. Attempting to optimize a design with

respect to CBO alone would trivially yield to a single giant module with no

coupling. However, such an extreme solution can be avoided by considering also

the antagonistic attribute LCOM (which would yield inadmissibly high values in

the single-module case) [Hitz & Montazeri, 1995].

 74

CHAPTER 5. ADAPTATION OF OBJECT-ORIENTED METRICS

5.2.2 Existing AO metrics
Since AOP introduces several new kinds of interactions among modules, existing

OO measures cannot be directly applied to AO software. The efforts to make the

CK metrics suite applicable to AO software were originated by Sant’Anna et al.

[2003] and continued by Zhao [2004], Ceccato & Tonella [2004], Shen & Zhao

[2007], and Burrows et al. [2010a; 2010b]. The general suggestion is to treat

advices as methods and to consider introductions as members of the aspect that

defines them. Although this suggestion is enough to adapt LCOM, the adjustment

of CBO requires further explanation. Ceccato & Tonella [2004] defined five

metrics to measure different kinds of coupling:

• CMC (Coupling on Method Call) is a number of modules declaring

methods that are possibly called by a given module;

• CFA (Coupling on Field Access) is a number of modules declaring fields

that are accessed by a given module;

• CAE (Coupling on Advice Execution) is a number of aspects containing

advices possibly triggered by the execution of operations in a given

module;

• CIM (Coupling on Intercepted Modules) is a number of modules explicitly

named in the pointcuts belonging to a given aspect;

• CDA (Crosscutting Degree of an Aspect) is a number of modules affected

by the pointcuts and by the introductions in a given aspect.

Zhao [2004] complemented the Ceccato & Tonella’s work by specifying the

coupling dependencies in a formal way. Full definition of the Zhao’s metrics can

be found in the original study. One other AOP-specific coupling metric, named

BAC (Base-Aspect Coupling), was defined by Burrows et al. [2010a]. BAC is a

number of join points shadowed from an aspect via advice plus the number of

module hierarchy changes from an aspect via intertype declarations, declare soft

statements and declare parents statements. Shen & Zhao [2007] and Burrows et al.

[2010b] created several fine-grained coupling metrics by splitting the Ceccato &

Tonella’s metrics into their component elements. These metrics quantify specific

coupling properties of AOP.

Since the metrics proposed by Zhao [2004], Ceccato & Tonella [2004],

Shen & Zhao [2007], and Burrows et al. [2010a; 2010b] measure only a specific

kind of coupling, they may be used to assess the impact of individual AO

mechanisms on high-level quality attributes. Nevertheless, they cannot by used to

 75

CHAPTER 5. ADAPTATION OF OBJECT-ORIENTED METRICS

compare the OO and AO implementations. An AO counterpart to be comparable

with CBO must measure multiple kinds of coupling together. The metric that

satisfies this requirement is CBC (Coupling between Components) defined by

Sant’Anna et al. [2003]. It is broader than the original CBO in the sense that it

additionally counts modules declared in formal parameters, return types, throws

declarations and local variables. CBC considers most of the new kinds of coupling

dependencies in AO software: accesses to aspect methods and attributes defined by

introduction, and the relationships between aspects and classes or other aspects

defined in the pointcuts. However, it is not complete, since it takes into account

only syntactic dependencies. Syntactic dependency occurs when there is a direct

reference between modules, e.g. aggregation.

5.2.3 Proposed coupling metric – CBOAO
Coupling is a more complex attribute in AO systems, because new programming

constructs introduce novel kinds of coupling dependencies. Since some of them

occur without explicit references in the code, they are not so easy to realize.

Ribeiro et al. [2007] call them semantic dependencies. We propose a metric, named

CBOAO, that takes into account this subtle coupling.

CBOAO considers a module X to be coupled to Y if (in parentheses, we

provide abbreviations for the dependencies):

• X accesses attributes of Y (A);

• X calls methods of Y (M);

• X potentially captures messages to Y (C);

• Messages to X are potentially captured by Y (C_by);

• X declares an inter-type declaration for Y (I);

• X is affected by an inter-type declaration declared in Y (I_by);

• X uses pointcuts of Y, excluding the case where Y is an ancestor

of X (P).

The C_by and I_by dependencies are semantic and are consequences of C and I

respectively. Figure 5.1 illustrates coupling dependencies in a simple program.

 76

CHAPTER 5. ADAPTATION OF OBJECT-ORIENTED METRICS

Changes_in_shape

pointcut changes(): EnhancedCircle.shapeChanged()
 || EnhancedRectangle.shapeChanged();

before(): changes() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println(sig);
 }

EnhancedCircle

shapeChanged():
 execution(void Circle.setRadius(double));

Circle2String(): execution(String Circle.toString());

String around(Circle c): Circle2String() && target(c) {

 s = "c("+c.x+","+c.y+"), r=" + c.getRadius();
 return s;
}

public int Circle.x;

public int Circle.y;

public void Circle.moveTo(int x, int y) {
 this.x = x;
 this.y = y;
}

Circle(r:double)

setRadius(r:double) : void

getRadius(): double

getArea(): double

toString(): String

radius: double

Circle

P

C

C_by

M

I

I_by
I

I_by

C_by

C

Figure 5.1 Examples of coupling dependencies.

A coupling dependency is represented by a labelled arrow from module X to module Y.
The source of the arrow is the construt in X that generates coupling. The target is a module
Y to which module X is coupled.

To construct our metric, we extrapolated the original CBO definition according to

the question that underlies coupling: “How much of one module must be known in

order to understand another module?” [Yourdon & Constantine, 1979]. The syntactic

dependencies (i.e. A, M, C, I, P) occurring in our metric do not raise any doubts

even among proponents of AOP [Sant’Anna et al., 2003; Garcia et al., 2005]. Thus,

we only need to demonstrate that for understanding a given module X, we have to

analyze Y if the C_by or I_by dependency exists between X and Y.

Let us consider two modules X and Y1 as shown in Listing 5.1. Assume

that the inc(5) message has been sent to an instance of X. If we analyze X without

considering the C_by dependency from X to Y1, we will deduce (following

 77

CHAPTER 5. ADAPTATION OF OBJECT-ORIENTED METRICS

program control flow) that the result is 6. However, the result is actually 11, and

analyzing Y1 is necessary to compute it correctly.

public class X {
 public int inc(int x) {
 return ++x;
 }
}

public aspect Y1 {
 int around(int i): execution(int X.inc(int)) && args(i) {
 return proceed(2*i);
 }
}

Listing 5.1 The C_by dependency

Now, suppose that two new modules Y2 and SubX were added as shown in Listing

5.2. Assume that the same message (inc(5)) has been sent to an instance of SubX.

Once again, if we analyze X without considering the I_by dependency from SubX

to Y2, we will deduce an incorrect result. The correct is 20.

public aspect Y2 {
 public int subX.inc(int x) {
 return x+10;
 }
}

public class SubX extends X {}

Listing 5.2 The I_by dependency

5.2.4 Coupling and cohesion at the system level
CBMAO and LCOM are module level metrics. Nevertheless, we intend to compare

systems. Thus, we need to lift the values of the module level to the system level.

This lifting can be done by aggregating. There are a number of different

aggregation functions such as average, sum, max and min. The sum is not useful

because the size of an application would affect the measurement results, while

modularity is orthogonal to size. The max and min function would make the result

based on only one module [Rentrop, 2006]. In this research we use the average

aggregation function to lift metric values to the system level.

We present the details of the computation on the Observer pattern

[Hannemann & Kiczales, 2002]. Table 5.1 shows the values for both metrics for

each module. The correspondence computations are as follows:

• for the OO implementation: CBOAO = (2+1+2+0+0)/5 = 1;

LCOM = (0+24+4+0+0)/5 = 5,6

 78

CHAPTER 5. ADAPTATION OF OBJECT-ORIENTED METRICS

• for the AO implementation: CBOAO = (2+2+1+0+5+2+3+0+0)/9 = 1,7;

LCOM = (0+0+0+10+0+9+0+0+0)/9 = 2,1

a) OO implementation

module name module kind CBOAO LCOM
Main class 2 0
Point class 1 24
Screen class 2 4
ChangeObserver interface 0 0
ChangeSubject interface 0 0

b) AO implementation

module name module kind CBOAO LCOM
ColorObserver aspect 2 0
CoordinateObserver aspect 2 0
ScreenObserver aspect 1 0
ObserverProtocol aspect 0 10
Main class 5 0
Point class 2 9
Screen class 3 0
Observer interface 0 0
Subject interface 0 0

Table 5.1 The CBOAO and LCOM values for the Observer pattern

5.3 Evolvability and reusability metrics

Evolvability and reusability are quality characteristics that we cannot measure

directly. The amount of reuse is usually measured by comparing the number of

reused “items” with the total number of “items” [Frakes, 1993], where items

depend on the granularity chosen, e.g. lines of code (LOC), function, or class.

Since we are going to measure code reuse, we have chosen the granularity of LOC,

yet we count only these reused lines that are part of the modules reused by

applying the composition mechanisms of the underlying programming language.

Thus, the proposed reuse level metric is defined as:

Reuse Level = LOC_of_reused_modules / total_LOC_in_system

The evolution metric we use is based on previous studies performed by

Zhang et al. [2008] and Ryder & Tip [2001]. In their work, the difficulty of

evolvability is defined in terms of atomic changes to the modules in a program. At

 79

CHAPTER 5. ADAPTATION OF OBJECT-ORIENTED METRICS

the core of this approach is the ability to transform source code edits into a list of

atomic changes, which captures the semantic differences between two releases of a

program. Zhang et al. [2008] presented a catalog of atomic changes for AspectJ

programs. For the purpose of our study, we have slightly modified their catalog.

Firstly, we consider deleting a non-empty element as an atomic change. Secondly,

we use the term “module” as a generalization of class, interface, and aspect.

Our evolution metric breaks source code edits into a list of the following

atomic changes:

• add an empty module,

• delete a module,

• add a field,

• delete a field,

• add an empty method,

• delete a method,

• change body of method,

• add an empty advice,

• delete an advice,

• change an advice body,

• add a new pointcut,

• change a pointcut body,

• delete a pointcut,

• introduce a new field,

• delete an introduced field,

• change an introduced field

initializer,

• introduce a new method,

• delete an introduced

method,

• change an introduced

method body,

• add a hierarchy declaration,

• delete a hierarchy

declaration,

• add an aspect precedence,

• delete an aspect

precedence,

• add a soften exception

declaration,

• delete a soften exception

declaration.

5.4 Summary

The advent of a new paradigm requires software engineers to define new metrics to

measure the quality of programs in this paradigm. In this chapter we reviewed the

existing AO metrics. We found that the existing metrics are invalid for evaluating

coupling in AO systems, since they do not take into account semantic dependencies

between the system modules. Next, we presented all the ways by which modules

 80

CHAPTER 5. ADAPTATION OF OBJECT-ORIENTED METRICS

can be coupled to each other within AO systems. A new coupling metric (CBOAO)

was defined on the base of these coupling dependencies. CBOAO was earlier

presented and discussed in scientific forums at ENASE’10 [Przybyłek, 2010a] and

ETAPS’11 [Przybyłek, 2011b]. We also proposed metrics for assessing software

evolvability and reusability. These metrics were originally introduced in

[Przybyłek, 2011c].

 81

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

6 Impact of aspect-oriented programming on software modularity

CChhaapptteerr 66.. IImmppaacctt ooff aassppeecctt--oorriieenntteedd
pprrooggrraammmmiinngg oonn ssooffttwwaarree
mmoodduullaarriittyy
Measure all that is measurable and attempt to make
measurable that which is not yet so.

Galileo

The aim of this chapter is to perform a metrics-based comparison among AO and

OO software with respect to modularity.

6.1 Research methodology

The aim of this research is to compare AO and OO systems with respect to

software modularity from the viewpoint of the developer. The research method

employed is Multiple Embedded Case Study. The units of analysis are the 23

Gang-of-Four (GoF) design patterns [Gamma et al., 1995] and 11 real-world

systems. Because every individual case involves the examination of two subunits

of analysis (OO and AO implementation), our study is called embedded. The

process of conducting our study is illustrated using Activity Diagram in Figure 6.1.

The assessment of both OO and AO implementations bases on the

application of metrics that quantify two fundamental modularity attributes, namely

coupling and cohesion. In addition, the analysis of real-world systems is

supplemented by size metrics. Table 6.1 overviews the employed metrics and

associates them with the attributes measured by each one of them. Detailed

description of the coupling metric is provided in Chapter 5.2.2. Figure 6.2

illustrates our measurement system.

 82

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

gathering source code of the
systems that hav e been

implemented in both Jav a and
AspectJ

extending the AOPmetrics tool
(adding the CBO metric that

considers A, M, I, I_by, and P
dependencies)

using AOPmetrics to collect
data and to generate EXCEL

report

manually rev ising the CBO
v alues (considering C and

C_by dependencies)

calculating av erage
v alues

defining the study in terms of GQM

[OO implementation]

[AO implementation]

Figure 6.1 Activity Diagram for our study.

Table 6.1 Metric Definitions

Attributes Metrics Definitions
Vocabulary
Size

Number of modules (classes, interfaces, and
aspects) of the system Size

Lines of Code Number of lines in the text of the system's
source code

Coupling
Between Object
classes

Number of other modules to which a
module is coupled

Modularity Lack of
Cohesion in
Methods

Number of pairs of methods/advices
working on different attributes minus pairs
of methods working on at least one shared
attribute (zero if negative)

 83

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

GOAL

Purpose comparison

Issue software modularity

Object
OO and AO implementations
of the same systems

Viewpoint software developers

What is the average
coupling for each
implementation?

What is the average
cohesion for each
implementation?

CBO

LCOM

Figure 6.2 GQM diagram of the study.

The data were collected for each module (class, interface or aspect) of each system

using the extended version of the AOPmetrics tool [Stochmiałek, 2006]. We

extended AOPmetrics (available at: http://przybylek.wzr.pl/AOP/) to support the

CBOAO metric as defined in the previous Chapter, except for capturing C and

C_by. This is due to some inherent bugs in AOPmetrics [Przybyłek, 2010]. Hence,

the CBOAO measures were recalculated manually using the Cross Reference View

provided by the AJDT Eclipse plugin. The results are presented separately for

design patterns (academic examples) and real-world systems.

6.2 Selected programs

Our study uses systems from different domains and of varying sizes (Table 6.2).

All of the real-world systems were originally implemented in Java and, afterwards,

were refactored using AspectJ, so that the code responsible for some crosscutting

concerns was moved to aspects. In each case, code refactoring was done by

proponents of AOP to present the benefits of AOP over OOP.

Table 6.2 Overview of the selected systems

Name Description

Telestrada A traveler information system being developed for a Brazilian

national highway administrator. It allows its users to register and

visualize information about Brazilian roads.

Pet Store A demo for the J2EE platform that is representative of existing e-

commerce applications.

 84

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

CVS Core An Eclipse Plugin that implements the basic functionalities of a CVS

client, such as checkin and checkout of a system stored in a remote

repository.

EImp An Eclipse Plugin that supports collaborative software development

for distributed teams.

Checkstyle An Eclipse Plugin to help programmers write Java code that adheres

to a coding standard. The plugin does this by inspecting the Java

source code and pointing out items that deviate from a defined set of

coding rules.

Health

Watcher

A web-based information system that was developed by Soares et al.

[2002] for the healthcare bureau of the city of Recife, Brazil. The

system aims to improve the quality of services provided by the

healthcare institution, allowing citizens to register complaints

regarding health issues, and the healthcare institution to investigate

and take the required actions. It involves a number of recurring

concerns and technologies common in day-to-day software

development, such as GUI, concurrency, RMI, Servlets and JDBC.

JHotDraw A framework for technical and structured 2D graphics. Its design

relies heavily on some well-known design patterns. JHotDraw's

original authors are Gamma & Eggenschwiler.

HyperCast Software for developing protocols and application programs for

application-layer overlay networks. It supports a variety of overlay

protocols, delivery semantics and security schemes, and has a

monitor and control capability. It was developed at the University of

Virginia in cooperation with the Microsoft Corporation.

Prevayler An object persistence library for Java. It is an implementation of the

Prevalent System design pattern, in which business objects are kept

live in memory and transactions are journaled for system recovery.

Business object must be serializable, i.e., implement the

java.io.Serializable interface, and deterministic, i.e., given an input,

the object’s methods must always return the same output.

 85

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

Berkeley DB

Java Edition

A database system that can be embedded in other applications as a

fast transactional storage engine. It stores arbitrary key/data pairs

as byte arrays and supports multiple data items for a single key.

Berkeley DB provides the underlying storage and retrieval system

of several LDAP servers, database systems and many other

applications.

HyperSQL

Database

A relational database management system. It offers a small and fast

database engine which supports both in-memory and disk-based

tables. HSQLDB is currently being used as a database and

persistence engine in many projects, such as Mathematica and

OpenOffice.

In the first five systems (i.e. Telestrada, Pet Store, CVS Core, EImp, Checkstyle),

aspects were used to implement exception handling [Filho et al., 2006; Castor et

al., 2009; Taveira et al., 2009]. Exception-handling is known to be a global design

issue that affects almost all system modules, mostly in an application-specific

manner.

For the next system (Health Watcher) [Soares et al., 2002; Greenwood et

al., 2007] refactoring went beyond exception handling, including in addition

concerns such as data persistence, concurrency and distribution (basic remote

access to system services using Java RMI). Both the OO and AO designs of the

Health Watcher system were developed with modularity and changeability

principles as main driving design criteria.

AJHotDraw (ajhotdraw.sourceforge.net) is an aspect-oriented refactoring

of JHotDraw with regard to persistence, design policies contract enforcement and

undo command. It was started to experiment with the feasibility of adopting aspect-

oriented solutions in existing software and demonstrate the strategies proposed by

research of the Software Evolution Research Lab of Delft University of

Technology in the Netherlands. The aims, objectives and experience of the

AJHotDraw project are summarized by Marin et al. [2007].

Sullivan et al. [2005] encountered two types of development problems

when refactoring logging and event notification in HyperCast. First, the tight

coupling between aspects and method names prevented the development of aspects

in parallel with primary code refactoring, because the aspects could only be

 86

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

developed after inspecting the core concerns. Second, they found cases where

joinpoints were not accessible, because AspectJ supports specifying joinpoints at

the method call level and data member level, but not at the if or switch statement

level. Next, they re-implemented the base version using AspectJ and crosscutting

interfaces (XPI). What distinguishes that particular release, is the lack of

introductions used. In our experiment, we evaluate the improved version.

Prevayler was refactored using AspectJ and horizontal decomposition by

Godil & Jacobsen [2005]. The horizontal decomposition principles were proposed

by Zhang & Jacobsen [2004] to guide the AO refactoring and implementation of

complex software systems. The refactored code includes persistence, transaction,

query, and replication management [Katz, 2004].

By analyzing the domain, manual, configuration parameters, and source

code, Kästner et al. [2007] identified many parts of Berkeley DB that represented

increments in program functionality that were candidates to be refactored into

features. These features are implicit in the original code. They vary from small

caches to entire transaction or persistence subsystems. All identified features

represent program functionality, as a user would select or deselect them when

customizing a database system. From these features, they chose 38 and manually

refactored one feature after another (wwwiti.cs.uni-

magdeburg.de/iti_db/berkeley/). They used various OOP-to-AOP refactoring

techniques, including Extract Introduction, Extract Beginning and Extract End,

Extract Before/After Call, Extract Method, and Extract Pointcut [Kästner, 2007].

Störzer et al. [2006] refactored version 1.8.0 of HSQLDB

(sourceforge.net/projects/ajhsqldb/). They started with an accepted catalog of well-

known crosscutting concerns and then tried to find classes, methods or fields

related to the respective concerns. They used manual semantics-guided code

inspection supported by Feature Exploration and analysis tool to find a relevant

crosscutting code. They discovered and refactored many standard crosscutting

concerns, including Logging, Tracing, Exception Handling, Caching, Pooling and

Authentication/Authorization. When becoming familiar with the source code, they

also found some application specific aspects, for example trigger firing or checking

constraints before certain operations are performed [Störzer, 2007].

We also investigate the 23 GoF patterns (Table 6.3) which intensively

involve crosscutting concerns. Design paterns represent common software

problems and the solutions to those problems. For each pattern Hannemann &

 87

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

Kiczales [2002] developed an academic example that makes use of the pattern, and

implemented the example in both Java and AspectJ. The AspectJ implementations

are thought as illustrations of good AOP style and design [Monteiro & Fernandes,

2005]. The Java implementations correspond to the sample C++ implementations

in the GoF book [Gamma et al., 1995].

Table 6.3 Overview of the 23 GoF design patterns [Gamma et al., 1995]

Name Intent

Builder Separate the construction of a complex object from its

representation so that the same construction process can create

different representations.

Command Encapsulate a request as an object, thereby letting you

parameterize clients with different requests, queue or log

requests, and support undoable operations.

Iterator Provide a way to access the elements of an aggregate object

sequentially without exposing its underlying representation.

Mediator Define an object that encapsulates how a set of objects interact.

Mediator promotes loose coupling by keeping objects from

referring to each other explicitly, and it lets you vary their

interaction independently.

Proxy Provide a surrogate or placeholder for another object to control

access to it.

Chain of

Responsibility

Avoid coupling the sender of a request to its receiver by giving

more than one object a chance to handle the request. Chain the

receiving objects and pass the request along the chain until an

object handles it.

Memento Without violating encapsulation, capture and externalize an

object's internal state so that the object can be restored to this

state later.

State Allow an object to alter its behavior when its internal state

changes. The object will appear to change its class.

Flyweight Use sharing to support large numbers of fine-grained objects

efficiently.

 88

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

Factory Method Define an interface for creating an object, but let subclasses

decide which class to instantiate. Factory Method lets a class

defer instantiation to subclasses.

Facade Provide a unified interface to a set of interfaces in a subsystem.

Facade defines a higher-level interface that makes the

subsystem easier to use.

Strategy Define a family of algorithms, encapsulate each one, and make

them interchangeable. Strategy lets the algorithm vary

independently from clients that use it.

Bridge Decouple an abstraction from its implementation so that the two

can vary independently.

Composite Compose objects into tree structures to represent part-whole

hierarchies. Composite lets clients treat individual objects and

compositions of objects uniformly.

Template

Method

Define the skeleton of an algorithm in an operation, deferring

some steps to subclasses. Template Method lets subclasses

redefine certain steps of an algorithm without changing the

algorithm's structure.

Decorator Attach additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to subclassing for

extending functionality.

Prototype Specify the kinds of objects to create using a prototypical

instance, and create new objects by copying this prototype.

Singleton Ensure a class only has one instance, and provide a global point

of access to it.

Observer Define a one-to-many dependency between objects so that when

one object changes state, all its dependents are notified and

updated automatically.

Interpreter Given a language, define a represention for its grammar along

with an interpreter that uses the representation to interpret

sentences in the language.

 89

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

AbstractFactory Provide an interface for creating families of related or dependent

objects without specifying their concrete classes.

Visitor Represent an operation to be performed on the elements of an

object structure. Visitor lets you define a new operation without

changing the classes of the elements on which it operates.

Adapter Convert the interface of a class into another interface clients

expect. Adapter lets classes work together that couldn't

otherwise because of incompatible interfaces.

Table 6.4 indicates the websites of the programs that are publicly available. The

source code of other programs was obtained from the authors.

Table 6.4 Websites of the analyzed programs

Name Source

Telestrada http://www.kevinjhoffman.com/icse2008/

Pet Store http://www.kevinjhoffman.com/icse2008/

Checkstyle http://eclipse-cs.sourceforge.net

Health Watcher http://www.comp.lancs.ac.uk/~greenwop/ecoop07/

JHotDraw http://www.jhotdraw.org,

http://ajhotdraw.sourceforge.net

HyperCast http://www.comm.utoronto.ca/hypercast/

Prevayler http://www.prevayler.org

Berkeley DB Java

Edition

http://oracle.com/technology/products/berkeley-db,

http://wwwiti.cs.uni-magdeburg.de/iti_db/berkeley/

HyperSQL Database http://hsqldb.org,

http://sourceforge.net/projects/ajhsqldb/

23 GoF design paterns http://www.cs.ubc.ca/labs/spl/projects/aodps.html

 90

http://www.kevinjhoffman.com/icse2008/
http://www.kevinjhoffman.com/icse2008/
http://eclipse-cs.sourceforge.net/
http://www.comp.lancs.ac.uk/%7Egreenwop/ecoop07/
http://www.jhotdraw.org/
http://ajhotdraw.sourceforge.net/
http://www.comm.utoronto.ca/hypercast/
http://www.prevayler.org/
http://oracle.com/technology/products/berkeley-db
http://wwwiti.cs.uni-magdeburg.de/iti_db/berkeley/
http://hsqldb.org/
http://sourceforge.net/projects/ajhsqldb/
http://www.cs.ubc.ca/labs/spl/projects/aodps.html

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

6.3 Experimental results: 11 real-world systems

Table 6.5 shows the obtained results for both size metrics (vocabulary size and

LOC) and both modularity metrics (CBOAO and LCOM). For all the employed

metrics, a lower value implies a better result. The fifth and sixth column presents

the mean values of the measures, over all modules per system. Rows labeled ‘Δ’

indicate the percentage difference between the OO and AO implementations

relative to each metric. A positive value means that the original version performs

better, whereas a negative value indicates that the refactored version exhibits better

results.

In the case of both CVS and EIMP, their refactored code is not publicly

available, so we based our analysis on the measurements carried out by Castor et

al. [2009]. However, since they do not consider all kinds of coupling, we cannot

present the exact CBOAO values. We can only say that coupling is greater for the

refactored systems.

Contradicting the general intuition that AOP makes programs smaller, the

refactored versions are larger with regard to the LOC metric in the six cases.

However, the increases are rather small and range between 1% and 4% (except for

Checkstyle).

The average coupling between modules is significantly higher in most of

the refactored versions. For the refactored versions of Prevayler and Health

Watcher, it is more than 30% higher than for the corresponding OO releases. Only

for HSQLDB, JHotDraw and HyperCast is the increase rather slight. Checkstyle is

the only system whose AO version exhibited a better outcome for coupling, with a

reduction of 3%. The higher coupling is the result of introducing new constructs

intrinsic for AOP. In a typical scenario during AO refactoring, the coupling

generated by explicit method call is replaced by the coupling generated by implicit

advice triggering. Moreover, Filho et al. found [Filho et al., 2006] that new

coupling was introduced when exception-handler aspects had to capture contextual

information from classes.

Although the obtained results were as expected due to the above presented

theoretical considerations, they contradict the outcomes achieved in several earlier

studies. The advocates of AOP claim that the refactored versions of Telestrada

[Filho et al., 2006; Castor et al., 2009], Pet Store [Filho et al., 2006; Castor et al.,

2009], CVS Core Plugin [Filho et al., 2006; Castor et al., 2009], EImp Plugin

 91

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

[Filho et al., 2006; Castor et al., 2009,] Health Watcher [Greenwood et al., 2007;

Soares et al., 2002], and Prevayler [Godil & Jacobsen, 2005] exhibit lower

coupling. However, they take into account only a subset of the dependencies that

generate coupling in AO systems. Hence, the coupling measured with their metrics

is underestimated.

Table 6.5 Results for Size, Coupling and Cohesion Metrics

I II III IV V VI
 VS LOC CBOAO LCOM

OO 233 3424 0,81 1,86
AO 242(18) 3350 0,95 2,17Telestrada
Δ 4% -2% 18% 16%

OO 345 17798 2,32 20,63
AO 382(37) 17914 2,76 20,19PetStore
Δ 11% 1% 19% -2%

OO 257 18876 5,76 71,31
AO 261(4) 19423 higher 73,90CVS
Δ 2% 3% x 4%

OO 123 8708 1,84 1,53
AO 126(3) 9041 higher 1,68EImp
Δ 2% 4% x 10%

OO 283 18083 7,61 16,01
AO 330(23) 20101 7,41 22,67Checkstyle
Δ 17% 11% -3% 42%

OO 88 6096 3,19 9,24
AO 103(12) 5768 4,20 7,63Health

Watcher
Δ 17% -5% 32% -17%

OO 398 22724 3,57 75,04
AO 438(31) 23167 3,66 65,70JHotDraw
Δ 10% 2% 3% -12%

OO 370 50492 3,31 67,24
AO 391(7) 51207 3,42 67,00Hypercast
Δ 6% 1% 4% -0,4%

OO 167 5043 1,87 9,31
AO 168(55) 4179 2,56 7,01Prevayler
Δ 1% -17% 37% -25%

OO 340 41651 4,38 126,31
AO 452(107) 38770 4,73 78,21Berkeley DB
Δ 33% -6,9% 8% -38%

OO 402 80736 4,11 226,91
AO 413(25) 76210 4,12 247,30HSQLDB
Δ 3% -6% 0,3% 9%

The Lack of Cohesion in Methods is the metric for which the impact of AOP has

remained unclear. For the refactored versions of Berkeley DB, Prevayler, Health

 92

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

Watcher and JHotDraw, the average LCOM is respectively 38%, 25%, 17%, and

12% lower than for the corresponding original versions. On the other hand, the

average LCOM grew by 42% in the refactored version of Checkstyle, 16% in

Telestrada, 10% in the EImp Plugin and 9% in HSQLDB. A partial explanation for

this increase is the large number of methods that were created to expose join points

(e.g. try-catch blocks in loops, etc.) that AspectJ can capture [Hoffman & Eugster,

2007]. As discussed in [Castor et al., 2009], these new methods are not part of the

implementation of the exception-handling concern but a direct consequence of

using aspects to implement this concern. The average LCOM varied (positively or

negatively) by less than 4% in the refactored versions of the remaining systems.

It is worth mentioning that most researchers compare aggregate coupling

and cohesion between an OO and AO version of the same system. Aggregate

coupling (cohesion) for a system is calculated as the sum of coupling (cohesion)

taken over all modules. Hence, it can be derived from Table 6.5 as multiplication

of the average value by vocabulary size. It should be also noted that the original

versions perform better with regard to the aggregate coupling and cohesion, since

the measures of vocabulary size grew in all cases, due to the introduction of

aspects. Nevertheless, aggregate coupling does not satisfy the second axiom of

Fenton & Melton [1990] for coupling measures. That axiom states that system

coupling should be independent from the number of modules in the system. If a

module is added and shows the same level of pairwise coupling as the already

existing modules, then the coupling of the system remains constant.

6.4 Experimental results: the 23 GoF design patterns

The CBOAO and LCOM (LCO in AOPmetrics) values were collected for each of

the 128 modules across the OO implementations and 179 modules across the AO

implementations. Table 6.6 presents the mean values of the metrics, over all

modules per pattern. The lower numbers are better. The sixth and seventh column

indicates the superior implementation with regard to the CBOAO and LCOM

metric, respectively.

 93

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

Table 6.6 Modularity metrics computed as arithmetic means.

I II III IV V VI VII
OOP AOP winner

 CBOAO LCOM CBOAO LCOM CBOAO LCOM
Builder 0,75 2 1,80 2,20 OO OO
Command 0,71 0,14 1,58 2,67 OO OO
Iterator 0,75 0,25 1,40 1,80 OO OO
Mediator 0,86 0,14 1,13 0,50 OO OO
Proxy 1,20 0 1,38 0,13 OO OO
Chain 1,38 0,25 1,58 1,08 OO OO
Memento 0,67 0 0,75 0,50 OO OO
State 1,57 0,14 1,86 0,43 OO OO
Flyweight 0,80 0 0,86 0,14 OO OO
FactoryMethod 0,50 0 1,38 0 OO -
Facade 0,80 0 1,83 0 OO -
Strategy 0,80 0 1,67 0 OO -
Bridge 0,71 0 1,38 0 OO -
Composite 0,75 4 1,42 4 OO -
TemplateMethod 0,75 0 1 0 OO -
Decorator 1,17 0 1,25 0 OO -
Prototype 0,67 0,67 2,33 0 OO AO
Singleton 0,67 0,33 1,33 0 OO AO
Observer 1 5,60 1,70 2,11 OO AO
Interpreter 1,56 0,11 2,40 0 OO AO
AbstractFactory 0,90 0,1 1,18 0,09 OO AO
Visitor 1,71 0,71 1,92 0,17 OO AO
Adapter 1 0 1 0 - -

There is no pattern whose AO implementation exhibits lower coupling. For 22

patterns, the OO implementations present lower coupling, and in one pattern the

values obtained for OOP and AOP are equal. With regard to cohesion, the OO

implementations are superior in 9 cases, while the AO ones in 6 cases. 8 patterns

exhibit the same cohesion in both implementations.

For a further analysis of the effects of AOP, we break the results for this paradigm

in two parts: (I) core concerns, and (II) crosscutting concerns (Table 6.7). Metrics

in each part are calculated as arithmetic means taken over: (I) all modules that

implement the core concerns for a given pattern (it means all interfaces and classes

except the Main class); (II) all aspects that comprise the pattern. Metrics in the first

part reflect the modularization of core concerns, while metrics in the second part

reflect the modularization of crosscutting concerns. The contribution of each part in

the overall coupling and cohesion is shown as a percentage. In order to make a fair

comparison between the two paradigms, Main classes were also excluded from the

OO implementations.

 94

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

The details of the computation are presented for the Observer pattern (see

Figure 5.2). The AO implementation of Observer encompass 4 modules that

implements core concerns (i.e. Point, Screen, Observer, Subject), 4 aspects (i.e.

ColorObserver, CoordinateObserver, ScreenObserver, ObserverProtocol), and a

Main class. The correspondence computations for the AO implementations are as

follows:

• for the core concerns (colums: IV, V, VI):

o core % =

5,0
8
4

oneminusmodulesofnumber totalthe
 concerns core implements that modules ofnumber the

==

o CBOAO = (2+3+0+0)/4 = 1,25;

o LCOM = (9+0+0+0)/4 = 2,25;

• for the crosscutting concerns (colums: VII, VIII, IX):

o crosscutting % = 1 – core % = 0,5

o CBOAO = (2+2+1+0)/4 = 1,25;

o LCOM = (0+0+0+10)/4 = 2,5;

• overall results (colums: X, XI):

o CBOAO = 0,5·1,25 + 0,5·1,25 = 1,25;

o LCOM = 0,5·2,25 + 0,5·2,5 = 2,375;

It is worth noting that in the AO versions most of the “badness” is generally

accumulated within aspects. When comparing the CBOAO values for classes and

interfaces only, the AO implementations are better in 4 cases and worse in 10 out

of 23.

 95

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

Table 6.7 Modularity metrics – a detailed view.

I II III IV V VI VII VIII IX X XI
 OOP AOP
 core crosscutting overall

CBOAO LCOM
% CBOAO LCOM % CBOAO LCOM CBOAO LCOM

Builder 0 2,67 75% 1,00 3,67 25% 3,00 0 1,50 2,75
Command 0,33 0,17 82% 0,89 0 18% 3,00 16,00 1,27 2,88
Iterator 0,67 0,33 75% 0,67 0,33 25% 3,00 8,00 1,25 2,25
Mediator 0,67 0,17 71% 0,60 0 29% 1,50 0,67 0,86 0,19
Proxy 0,50 0 43% 1,00 0 57% 1,75 0,25 1,43 0,14
Chain 1,14 0,29 82% 0,89 0 18% 3,5 6,5 1,36 1,17
Memento 0,50 0 71% 0,20 0 29% 1,50 2,00 0,58 0,58
Flyweight 0,50 0 67% 0,50 0 33% 1,00 0,50 0,67 0,17
FactoryMethod 0 0 71% 0,80 0 29% 2,00 0 1,15 0
Facade 0,75 0 80% 1,50 0 20% 3,00 0 1,80 0
Strategy 0,25 0 60% 1,00 0 40% 1,50 0 1,20 0
Bridge 0,17 0 86% 0,50 0 14% 4,00 0 0,99 0
Adapter 0,33 0 67% 0,5 0 33% 1,00 0 0,67 0
State 1,67 0,17 83% 1,40 0,6 17% 5,00 0 2,01 0,50
TemplateMethod 0 0 75% 0,33 0 25% 1,00 0 0,50 0
Decorator 0,60 0 33% 2,00 0 67% 1,00 0 1,33 0
Prototype 0 1,00 60% 1,67 0 40% 3,00 0 2,20 0
Singleton 0 0,50 60% 0,67 0 40% 2,00 0 1,20 0
Observer 0,75 7,00 50% 1,25 2,25 50% 1,25 2,50 1,25 2,38
Interpreter 0,88 0,13 89% 1,38 0 11% 6,00 0 1,89 0
AbstractFactory 0,67 0,11 90% 0,89 0,11 10% 2,00 0 1,00 0,10
Visitor 1,33 0,83 82% 1,33 0,22 18% 3,50 0 1,72 0,18
Composite 0 5,33 82% 0,78 0 18% 3,50 14,00 1,27 2,52

The problem with the arithmetic mean is that each of the modules contributes

equally to the final result. Intuitively, larger modules are more complex, so they

should contribute more. In addition, LCOM is not normalized, which means that

the cohesion measures of different modules (as they all have different numbers of

methods and attributes) should not be compared. Thus, weighted arithmetic means

were also calculated. The individual CBO and LCOM values are weighted by the

number of methods defined in the module, plus one. Table 6.8 presents the

averages calculated in this way. As it turns out, no pattern changes its group.

 96

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

Table 6.8 Modularity metrics computed as weighted arithmetic means.

 OOP AOP winner
 CBO LCOM CBO LCOM CBO LCOM
Builder 0,53 2,35 1,48 3,67 OO OO
Command 0,89 0,28 2,06 9,70 OO OO
Iterator 0,74 0,26 1,48 2,44 OO OO
Mediator 1,00 0,26 1,15 1,00 OO OO
Proxy 0,90 0 1,52 0,14 OO OO
Chain 1,33 0,33 2,14 2,46 OO OO
Memento 0,64 0 1 0,91 OO OO
State 1,83 0,17 1,897 0,41 OO OO
Flyweight 0,67 0 0,94 0,18 OO OO
Composite 0,46 4,92 2,29 6,15 OO OO
FactoryMethod 0,33 0 1,43 0 OO -
Facade 1 0 1,80 0 OO -
Strategy 0,69 0,00 1,75 0 OO -
Bridge 0,50 0 1,22 0 OO -
TemplateMethod 0,40 0 0,75 0 OO -
Decorator 1,13 0 1,25 0 OO -
Prototype 0,33 0,83 2,53 0 OO AO
Singleton 0,91 0,36 1,50 0 OO AO
Observer 1,12 11,23 2,11 4,89 OO AO
Interpreter 1,42 0,13 2,40 0 OO AO
AbstractFactory 1,22 0,17 1,51 0,16 OO AO
Visitor 1,64 0,92 2,24 0,24 OO AO
Adapter 1 0 1 0 - -

6.5 Deeper insight into modularity

An established technique for analysing the dependencies among the modules of a

system is Dependency Structure Matrix (DSM). A DSM is a square matrix in

which the columns and rows are labelled with modules and a non-empty cell

models that the module on the row depends on the module on the column. The type

of dependency is represented by the value of the cell (the shortcuts are introduced

in Section 5.2.2). The CBOAO metric for a module can be calculated from a DSM

by counting non-empty cells in the row. To provide complex insight into

modularity, LCOM for each module is also presented. The differences in

modularity between OO and AO implementations is shown on the Observer pattern

[Hannemann & Kiczales, 2002].

The participants in the Observer pattern are subjects and observers. The

subject is an object which changes its state, and the observer is an object whose

 97

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

own invariants depend on the state of the subject. For example, let’s consider that

there is a subject – Point and one observer – Screen (Figure 6.3). Whenever the

Point object changes its position, the Screen object has to be updated. The intention

of the Observer pattern is to define a one-to-many dependency between a subject

and multiple observers, so that when the subject changes state, all its observers are

notified and updated automatically [Piveta & Zancanella, 2003]. Particular classes

can play one or both of the Subject and Observer roles. In the presented example,

Screen acts as Subject and Observer at the same time. The simplest way for a

subject to keep track of the observers it should notify is to store references to them

explicitly in the subject [Gamma et al., 1995]. When a subject wants to report a

state change to its observers, it calls its own notifyObservers method, which in turn

calls an update method on all observers in the list [Hannemann & Kiczales, 2002].

Since the notification of observers by the subject spreads across the domain

classes, it is a crosscutting concern. The main problem with the OO

implementation of this pattern is that it is hard to apply the pattern to an existing

design.

«interface»
Observer

+ update(Subject) : void

«interface»
Subject

+ addObserver(Observer) : void
+ removeObserver(Observer) : void
+ notifyObservers() : void

Point

- observers: HashSet
- x: int
- y: int
- color: Color

+ Point(int, int, Color)
+ getX() : int
+ getY() : int
+ setX(int) : void
+ setY(int) : void
+ getColor() : Color
+ setColor(Color) : void
+ addObserver(Observer) : void
+ removeObserver(Observer) : void
+ notifyObservers() : void

Screen

- observers: HashSet
- name: String

+ Screen(String)
+ display(String) : void
+ addObserver(Observer) : void
+ removeObserver(Observer) : void
+ notifyObservers() : void
+ update(Subject) : void

Figure 6.3 The structure of an instance of the Observer pattern in Java.

Hannemann & Kiczales [2002] developed an AO solution as shown at Figure 6.4.

The ObserverProtocol aspect provides the logic for notifying the observers, when a

subject changes its state. The empty interfaces Subject and Observer are marker

 98

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

interfaces that are used by inheriting subaspects to map the application classes to

their roles. E.g. ColorObserver assigns the Observer interface to the Screen class

and the Subject interface to the Point class. The observers for each subject are

stored in a global WeakHashMap that maps a subject to a list of observers. An

Observer object becomes registered to receive notifications from a Subject object

when it is passed to the addObserver(Subject, Observer) method. Passing it to the

removeObserver(Subject, Observer) method ends the Observer object’s registration

to receive notifications.

Screen

Point

- x: int
- y: int
- color: Color

- name: String+ Point(int, int, Color)
+ getX() : int
+ getY() : int
+ setX(int) : void
+ setY(int) : void
+ getColor() : Color
+ setColor(Color) : void

+ Screen(String)
+ display(String) : void

Figure 6.4 The structure of an instance of the Observer pattern in AspectJ.

 99

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

The after(Subject) advice is fired just after reaching the subjectChange(Subject)

pointcut. This pointcut describes the events that make the Subject’s state change

and has to be implemented in the concrete subaspect. The after advice gets the

Observers for the Subject, whose state was changed, and then calls the abstract

method updateObserver(Subject, Observer) on each Observer. This method has to

be implemented in the concrete subaspect. The Subject argument allows the

method to know what object originated the notification.

Figure 6.5 shows the dependency matrixes for this pattern. In the OO

implementation, the business logic and the pattern context are tangled within the

participant classes. As a result, Point and Screen have a poor cohesion. Moreover,

code for implementing the pattern is spread across all participants. In the AO

implementation, all code pertaining to the relationship between observers and

subjects is moved into aspects. Hence, the participant classes are entirely free of

the pattern context, and as a consequence they are much more cohesive. In the OO

version, a point directly informs its observers by sending a message to them. In the

AO version, even though Point does not have any reference to its observers, the

coupling has not disappeared. The coupling has changed its form from explicit

method call to implicit join-points matching. Whenever a point changes its state,

the relevant advice is triggered and the observers are notified. Since not all the

dependencies between the modules are explicit, an AO programmer has to perform

more efforts to get a mental model of the source code.

Figure 6.5 DSMs for the Observer pattern.

 100

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

6.6 Threats to validity

6.6.1 Construct validity1
Construct validity focuses on whether the measures used represent the intent of the

study. We identify several limitations within this category. Firstly, we narrow

software modularity to cohesion and coupling, despite of many other factors

assigned to it. Nevertheless, cohesion and coupling are the concepts that lie at the

heart of software modularity and are considered as main factors related to the

goodness of modularization [Meyer, 1989; Booch, 1994; Hitz & Montazeri, 1995;

Ponnambalam, 1997; Briand et al., 1999b; Briand et al., 2001].

Secondly, we could be criticised for applying metrics that are theoretically

flawed. Briand et al. [1998] demonstrate that LCOM is neither normalized nor

monotonic. The normalization condition requires that there is the upper limit of the

values that the measures can take. Monotonicity states that adding a method which

shares an attribute with any other method of the same module, must not increase

LCOM. If we drop the very rare case where the methods of a module do not

reference any of the attributes, the monotonicity anomaly disappears. The other

problem with LCOM is that it does not differentiate modules well [Basili, 1996].

This is partly due to the fact that LCOM is set to zero whenever there are more

pairs of methods which use an attribute in common than pairs of methods which do

not [Briand et al., 1998]. In addition, the presence of access methods artificially

decreases this metric. Access methods typically reference only one attribute,

namely the one they provide access to, therefore they increase the number of pairs

of methods in the class that do not use attributes in common [Briand et al., 1998].

The CBO metric also indicates inherent weakness. Briand et al. [1999a] illustrate

that merging two unconnected modules may affect the overall coupling.

Nevertheless, CBO as well as LCOM are widely applied and have been validated

in many empirical studies [Basili, 1996; Briand et al., 1999a; Briand et al., 1999b].

Thirdly, the applied metrics address only one possible dimension of

cohesion and coupling. Moreover, CBO implicitly assumes that all basic couples

are of equal strength [Hitz & Montazeri, 1995]. In addition, it takes a binary

approach to coupling between modules: two modules are either coupled or not.

Multiple connections to the same module are counted as one [Briand et al., 1999a].

1 Although all references in this Section to CBO and LCOM apply to the original versions,
the considerations concluded are also valid for the extended versions.

 101

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

In our defence we would point out that the OO community has yet to arrive at a

consensus about the appropriate measurement of coupling and cohesion. The

interested reader is referred to [Hitz & Montazeri, 1995; Briand et al., 1998; Briand

et al., 1999a] where extensive surveys have been presented.

6.6.2 Internal validity
In our case internal validity concerns the question whether any observed effect was

caused only by the programming paradigms involved. As in every study of this

type, the experience, knowledge, skills, and insights of developers had an influence

on the code they produced. Since the programmers of the AO versions contributed

to the development of AOP, they might have done their very best to show that the

new paradigm is superior. However, since we show that AOP harms software

modularity, this weakness supports our conclusions. The causal effect of AOP on

software modularity was explained in Section 3.3.

6.6.3 External validity
The investigated cases can be thought of as a population of systems whose

implementations are publicly available in both Java and AspectJ. These systems

were developed by experienced practitioners from several countries from both

academia and industry. The multiple case design strengthens the external

generalizability of the findings. Nevertheless, the conclusions obtained from our

study are restricted to small- and medium-sized systems. Even so, we believe that

much the same results can be expected in large systems. Our experience indicates

that in case of large systems, when multiple advices apply to the same join point

and when different aspects influence each other, modularity is even harder to

achieve. The similar observation was reported by Kästner et al. [2007].

Finally, we could be criticised for generalizing findings from

AspectJ to AOP. In our defence, most of the claims about the superiority of

the AO modularization have been made in the context of AspectJ. We

should also emphasise that AspectJ is the only production-ready general

purpose AO language.

 102

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

6.7 Related work

There are few studies focusing on the quantitative evaluation of the AO

modularization. Sant’Anna et al. [2003] conducted a semi-controlled experiment to

compare the use of an OO approach (based on design patterns) and an AO

approach to implement Portalware (about 60 modules and over 1 KLOC), a multi-

agent system. Portalware is a web-based environment that supports the

development and management of Internet portals. The collected metrics show that

the AO version incorporates modules with higher coupling and lower cohesion.

Their coupling metric is broader than the original CBO in the sense that it

additionally counts modules declared in formal parameters, return types, throws

declarations and local variables. However, it is not complete, since it does not take

into account either the semantic dependencies, or the dependency that occurs when

an advice refers to a pointcut defined in other, non-ancestor module.

The same suite of metrics was used by Garcia et al. [2005] to compare the

AO and OO implementations of the Gang-of-Four design patterns. They performed

two studies, one on the original implementations from Hannemann & Kiczales and

the other on the implementations with introduced changes. These changes were

introduced because the H&K implementations encompassed few participant classes

to play pattern roles [Garcia et al., 2005]. Garcia and his team concluded that “the

use of aspects helped to improve the coupling and cohesion of some pattern

implementations.” However, such conclusion may be misleading, according to the

metrics they collected. The measures before the application of the changes exhibit

that only Composite and Mediator present lower coupling for the AO solutions.

The implementations of Adapter and State have the same coupling in both

paradigms. In the case of the other patterns, the OO solutions indicate lower

coupling. The superiority of OO solutions decreased a little after the changes were

introduced. Although the AO implementations of Observer, Chain of

responsibility, State and Visitor became better with respect to coupling than their

OO counterparts, there are still 16 patterns for which the OO implementations

provide superior results. With regard to cohesion, the OO implementations were

also superior in most cases. They analyzed the absolute (aggregate) values.

Other studies can be classified into 2 groups. In the first group [Filho et al.,

2006; Greenwood et al., 2007; Madeyski & Szała, 2007; Figueiredo et al., 2008;

Castor et al., 2009], new kinds of coupling introduced by pointcuts are not

 103

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

considered at all. In the second group [Tsang et al., 2004; Hoffman & Eugster,

2007], the coupling introduced by a pointcut is considered only if a module is

explicitly named by the pointcut expression.

Figueiredo et al. [2008] designed and implemented seven change scenarios

for MobileMedia. MobileMedia is a software product line for applications (about 3

KLOC) that manipulate photo, music, and video on mobile devices. The absolute

(aggregate) values collected to the coupling and cohesion metrics have favored the

OO version for every release. After dividing these values by the number of

modules, it turns out that AO versions are superior.

Greenwood et al. [2007] chose the Health Watcher system as the base for

their study. Their evaluation focused upon ten releases of the system, which

underwent a number of typical maintenance tasks, including: refactorings,

functionality increments, extensions of abstract modules and more complex system

evolutions. Some of the crosscutting concerns were “aspectized” from the first

release, while others were modularized as new HW versions were released. They

found that modularity was improved with AOP. The average “coupling” as well as

cohesion were enhanced by 17% in the initial version, and by 23% and 21% in the

10th release.

Madeyski & Szała [2007] examined the impact of AOP on software

development efficiency and design quality in the context of a web-based

manuscript submission and a review system (about 80 modules and 4 KLOC).

Three students took part in their study. Two of them developed the system (labeled

as OO1 and OO2) using Java, whilst one implemented the system using AspectJ.

The observed results show that the AO version is 24% better than the others with

regard to average “coupling” and it is 60% (3%) better than OO1 (OO2) with

regard to average cohesion.

Filho et al. [2006; Castor et al., 2009] refactored to AOP four systems:

Telestrada, Pet Store, CVS, and EImp. The average “coupling” was decreased by

6%, 9%, and 1% for the first three systems and increased by 2% for the last system.

Nevertheless, Filho et al. [2006] were aware that their study missed some coupling

dependencies introduced by AOP: “a closer examination on the code (...) reveals a

subtle kind of coupling that is not captured by the employed metrics.” The

Telestrada and Pet Store systems were also used by Hoffman & Eugster [2007]. In

their study, Hoffman & Eugster calculated two coupling metrics, namely CBM and

 104

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

CIM. However, since CBM and CIM are not simply additive, the results are

difficult to interpret.

Tsang et al. [2004] compared AO vs. OO solutions in the context of real

time traffic simulator. They found that aspects improved modularity by reducing

“coupling” and cohesion. They considered aspects coupled to classes only if the

aspects explicitly named the classes. “For instance, if we have the joinpoint call(*

*(..)), then the aspect is not coupled to any classes. However, if we have the

joinpoint call(void Test.methodName(..)), then the aspect is coupled to Test.” In

the conclusion of their work, they recommend the use of wildcards to maximize

modularity improvements. Following this reasoning, one could recommend to

replace the previous pointcut by call(void Test.methodNam*(..)), where ‘*’ instead

of ‘e’ eliminates “coupling”.

Kouskouras et al. [2008] built an emulator of a telecommunications

exchange, allowing the user to configure it with commands and to emulate simple

calls between subscribers. They developed three different implementation

alternatives. The first one follows a naive solution in Java, the second makes use of

the Registry pattern and the third applies AspectJ to implement the same pattern.

Next, they extended each implementation with several new commands and

parameters. They applied the Martin’s metrics suite to assess and compare design

alternatives. Since they made the source code available for us, we could apply our

metrics. The AO implementation is 7% worse than the improved OO

implementation with regard to average coupling and it is 1% better with regard to

average cohesion.

6.8 Summary

This chapter presented a quantitative study in which we compared OO and AO

implementations of 11 real-life systems and the 23 GoF design patterns with

respect to modularity. The evaluation was performed using CBOAO that we

proposed in the previous Chapter and LCOM that was adapted to AOP by Ceccato

& Tonella [2004]. We found that the OO implementations of 10 real-life system

exhibited lower coupling. We also found that there was no pattern whose AO

implementations exhibited lower coupling, while 22 patterns presented lower

coupling in the OO implementations. With the help of Dependency Structure

 105

CHAPTER 6. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SOFTWARE MODULARITY

Matrix we analyzed in detail the coupling dependencies between modules of the

Observer pattern. The impact of AOP on cohesion remains unclear.

 106

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

7 Impact of aspect-oriented programming on systems evolution and software reuse

CChhaapptteerr 77.. IImmppaacctt ooff aassppeecctt--oorriieenntteedd
pprrooggrraammmmiinngg oonn ssyysstteemmss
eevvoolluuttiioonn aanndd ssooffttwwaarree rreeuussee
There are two ways of constructing a software design. One
is to make it so simple that there are obviously no
deficiencies; the other is to make it so complicated that there
are no obvious deficiencies. The first method is far more
difficult.

Hoare, 1981

The aim of this chapter is twofold. First, to compare AO and OO software with

respect to evolvability and reusability. Second, to investigate the possibilities of

applying AspectJ with generics and reflective programming to improve

implementations of the GoF design patterns.

7.1 Development of a producer-consumer system

7.1.1 Research methodology
The difficulty of performing evolvability and reusability evaluation in AOP is that

there are not yet industrial maintenance reports for AO software projects available

for analyses. Thus, we have to simulate maintenance tasks in a quasi-controlled

experiment. Then, we can measure how much effort is required to evolve the

system and how much of the existing code is reused in the consecutive releases.

The goal of our experiment is to compare AO and OO implementations of a

producer-consumer system that undergoes five functionality increments (Figure

7.1). To measure software evolvability and reusability we use the metrics that we

proposed in Chapter 5.

GOAL

Purpose comparison

Issue software evolvability and reusability

Object
OO and AO implementations of a
queue data structure, thatundergoes
five functionality increments

Viewpoint software maintainers

How easy is it
to reuse

the existing code?

How easy is it
to evolve

the system?

Reuse
Level

Atomic
Changes

 107

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

Figure 7.1 GQM diagram of the study.

7.1.2 The producer-consumer system
In a producer-consumer system two processes (or threads), one known as the

“producer” and the other called the “consumer”, run concurrently and share a

fixed-size buffer. The producer generates items and places them in the buffer. The

consumer removes items from the buffer and consumes them. However, the

producer must not place an item into the buffer if the buffer is full, and the

consumer cannot retrieve an item from the buffer if the buffer is empty. Nor may

the two processes access the buffer at the same time to avoid race conditions. If the

consumer needs to consume an item that the producer has not yet produced, then

the consumer must wait until it is notified that the item has been produced. If the

buffer is full, the producer will need to wait until the consumer consumes any item.

We assume to have an implementation of a cyclic queue as shown in

Figure 7.2. The put(..) method stores one object in the queue and get() removes the

oldest one. The nextToRemove attribute indicates the location of the oldest object.

The location of a new object can be computed using nextToRemove, numItems

(number of items) and buf.length (queue capacity). We also have an

implementation of a producer and a consumer.

Figure 7.2 An initial implementation.

The experiment encompasses five maintenance scenarios which deal with the

implementation of a new requirement. We have selected them because they

naturally involve the modification of modules implementing several concerns.

7.1.3 Maintenance scenarios
Stage I: adding a synchronization concern

To use Queue in a consumer-producer system an adaptation to a concurrent

environment is required. A thread has to be blocked when it tries to put an element

 108

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

into a full buffer or when it tries to get an element from an empty queue. In

addition, both put(..) and get() methods have to be executed in mutual exclusion.

Thus, they have to be wrapped within synchronization code when using Java

(Listing 7.1). Since the code supporting the secondary concern (i.e.

synchronization) may throw an exception, there is also a technical concern of error

handling. The core concern here is associated with adding and removing item from

the buffer. The presented implementation tangles the code responsible for the core

functionality with the code responsible for handling errors and for cooperating

synchronization. Moreover, the implementation of both secondary concerns are

scattered through the accessor methods. As a result, the put(Object) and get()

methods contain similar fragments of code.

public class Buffer extends Queue {

 public Buffer(int n) { super(n); }

 public synchronized boolean put(Object x) {
 while (isFull()) try {
 wait();
 } catch (InterruptedException e) {
 System.out.println(e); }
 super.put(x);
 notifyAll(); error handling concern
 return true; synchronization concern
 }
 public synchronized Object get() {
 while (isEmpty()) try {
 wait();
 } catch (InterruptedException e) {
 System.out.println(e); }
 Object tmp = super.get();
 notifyAll();
 return tmp;
 }
}

Listing 7.1 A new class for Stage I

Lexical separation of concerns can be achieved by using AO constructs (Listing

7.2). The secondary concerns are implemented in ErrorHandler and

SynchronizedQueue. SynchronizedQueue::waiting() is a hook method to introduce

an explicit extension point. This joinpoint is used by ErrorHandler to wrap wait()

invocation. Despite of lexical separation, SynchronizedQueue is explicitly tied to

the Queue class, and so cannot be reused in other contexts. Moreover, Queue is

oblivious of SynchronizedQueue. This makes it difficult to know what changes to

Queue will lead to undesired behavior.

public aspect ErrorsHandler {

 109

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

 protected pointcut waiting():
 execution(void SynchronizedQueue.waiting());

 void around(): waiting() {
 try {
 proceed();
 } catch (InterruptedException e) {
 System.out.println(e);
 }
 }

 declare soft: InterruptedException:waiting();
}

public aspect SynchronizedQueue pertarget(instantiation()) {

 protected pointcut instantiation(): target(Queue);

 protected pointcut call_get():execution(Object Queue.get());

 protected pointcut call_put(Object x):
 execution(boolean Queue.put(Object)) && args(x);

 protected void waiting() { wait(); }

 Object around(Queue q): call_get() && target(q){
 synchronized(this) {
 while(q.isEmpty()) waiting();
 Object tmp = proceed(q);
 notifyAll(); return tmp;
 }
 }

 boolean around(Queue q, Object x):call_put(x) && target(q){

 synchronized(this) {
 while (q.isFull()) waiting();
 proceed(q,x);
 notifyAll(); return true;
 }
 }
}

Listing 7.2 New aspects for Stage I

 110

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

Stage II: adding a timestamp concern

After implementing the buffer a new requirement has occurred – the buffer has to

save current time associated with each stored item. Whenever an item is removed,

the time how long it was stored should be printed to standard output. A Java

programmer may use inheritance and composition as reuse techniques (Listing

7.3). The problem is that three different concerns are tangled within put/get and so

these concerns cannot be composed separately. It means that e.g. if a programmer

wants a queue with timing he cannot reuse the timing concern from TimeBuffer; he

has to reimplement the timing concern in a new class that extends Queue.

public class TimeBuffer extends Buffer {

 protected Queue delegateDates;

 public TimeBuffer(int capacity) {
 super(capacity);
 delegateDates = new Queue(capacity);
 }

 public synchronized boolean put(Object x) {
 super.put(x);
 delegateDates.put(
 new Long(System.currentTimeMillis()));
 return true;
 }

 public synchronized Object get() {
 Object tmp = super.get();
 Long date = (Long) delegateDates.get();
 long curr = System.currentTimeMillis();
 System.out.println(curr - date.longValue());
 return tmp;
 }
}

Listing 7.3 The TimeBuffer class

A slightly better solution seems to be using AOP and implementing the timing as

an aspect (Listing 7.4). Unless explicitly prevented, an aspect can apply to itself

and can therefore change its own behavior. To avoid such situations, the

instantiation pointcut is guarded by !cflow(within(Timing)). Moreover, the

instantiation pointcut in SynchronizedQueue has to be updated. It must be the same

as in Timing. This can be done only destructively, because AspectJ does not allow

for extending concrete aspects.

 111

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

public privileged aspect Timing pertarget(instant()) {

 protected Queue delegateDates;

 protected pointcut instant():
 target(Queue) &&! cflow(within(Timing));

 protected pointcut init(Queue q):
 execution(Queue.new(..)) && target(q);

 protected pointcut execution_get():
 execution(Object Queue.get());

 protected pointcut execution_put():
 execution(boolean Queue.put(Object));

 after(Queue q): init(q) {
 delegateDates = new Queue(q.buf.length);
 }

 after(): execution_get() {
 Long date = (Long) delegateDates.get();
 System.out.println(
 System.currentTimeMillis() - date.longValue());
 }

 after(): execution_put() {
 delegateDates.put(new Long(System.currentTimeMillis()));
 }
}

Listing 7.4 The Timing aspect.

Stage III: adding a logging concern

The buffer has to log its size after each transaction. The OO mechanisms like

inheritance and overridden allow a programmer for reusing TimeBuffer (Figure

7.3). The only problem is that four concerns are tangled within put/get. A module

that addresses one concern can generally be used in more contexts than one that

combines multiple concerns.

TimeBuffer

LogTimeBuffer

+ LogTimeBuffer(int)
log(String) : void
«synch»
+ put(Object) : boolean
+ get() : Object

Figure 7.3 A new class for Stage III

The AO solution is also noninvasive and it reuses the modules from the earlier

stages. It just requires defining a new aspect (Listing 7.5). When advice

 112

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

declarations made in different aspects apply to the same join point, then by default

the order of their execution is undefined. Thus, the declare precedence statement is

used to force timing to happen before logging. The bufferChange pointcut

enumerates, by their exact signature, all the methods that need to captured. Such

pointcut definition is particularly fragile to accidental join point misses. An

evolution of the buffer will require revising the pointcut definition to explicitly add

all new accessor methods to it.

public aspect Logging {

 declare precedence : Logging, Timing;

 pointcut fferChange(): !cflow within Timing)) && bu ((
 (execution(* Queue.get()) || execution(* Queue.put(..)));

 after(Queue q): bufferChange() && target(q) {
 System.out.println("buffer size: " + q.size());
 }
}

Listing 7.5 The Logging aspect

Stage IV: adding a new getter

The buffer has to provide a method to get “N” next items. There is no efficient

solution of this problem neither using Java nor AspectJ. In both cases, the

condition for waiting on an item has to be reinforced by a lock flag. A lock flag is

set when some thread initiates the “get N” transaction by getting the first item. The

flag is unset after getting the last item. In Java (Listing 7.6), not only does the

synchronization concern has to be reimplemented but also logging. The reason is

that in LogTimeBuffer logging is tangled together with synchronization, so it

cannot be reused separately. The duplicate implementation might be a nightmare

for maintenance.

 113

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

public class EnhancedLogTimeBuffer extends TimeBuffer {

 protected boolean lock;

 public EnhancedLogTimeBuffer(int capacity) {
 super(capacity);
 }

 protected void lock(boolean b) { lock = b; }

 protected boolean isLock() { return lock; }

 protected void log(String s) {
 System.out.println(s);
 }

 public synchronized boolean put(Object x) {
 super.put(x);
 log("buffer size: "+size());
 return true;
 }

 public synchronized Object get() {
 while (isEmpty()||isLock()) try {
 wait();
 } catch (InterruptedException e) {}
 Object tmp = super.get();
 uffer size: "+size()); log("b
 return tmp;
 }

 public synchronized Object[] get int n) { (
 while (isEmpty()||isLock()) try {
 wait();
 } catch InterruptedException e) {} (
 lock(true);
 Object[] tmp = new Object[n];
 for(int i=0; i<n; i++) {
 tmp[i] = super.get();
 }
 lock(false);
 log("buffer size: "+size());
 return tmp;
 }
}

Listing 7.6 A new class for Stage IV

In AspectJ, although synchronization is implemented in a separate module, it also

cannot be reused in any way because an aspect cannot extend another concrete

aspect. Thus, all code corresponding to the synchronization concerns has to be

reimplemented (Listing 7.7). A new method to get N items and locking mechanism

are introduced to Queue by means of inter-type declaration.

 114

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

public aspect EnhancedSynchronizedQueue pertarget(instant()){

 private boolean Queue.lock = false;

 public void Queue.lock(boolean b) { lock = b; }

 public boolean Queue.isLock() { return lock; }

 public synchronized Object[] Queue.get(int n) {
 while (isEmpty()||isLock()) waiting();
 lock(true);
 Object[] tmp = new Object[n];
 for(int i=0; i<n; i++) {
 while (isEmpty()) waiting();
 tmp[i] = get();
 }
 lock(false);
 return tmp;
 }

 private void Queue.waiting() { wait(); }

 protected void waiting() { wait(); }

 protected pointcut instant():
 target(Queue) && !cflow(within(Timing));

 protected pointcut call_get(): call(Object Queue.get()) &&
 !cflow(withincode(* Queue.get(int)));

 Object around(Queue q):call_get() && target(q) {
 synchronized(this) {
 while(q.isEmpty()||q.isLock()) waiting();
 Object tmp=proceed(q);
 notifyAll(); return tmp;
 }
 }

 declare precedence :
 EnhancedSynchronizedQueue, Logging, Timing;
 //...
}

Listing 7.7 A new aspect for Stage IV

In addition, destructive changes in the Logging::bufferChange() pointcut are

required (Listing 7.8). Otherwise logs would be reported n times in response

to the get(int n) method, instead of just once after completing the

transaction. This is due to that get(int n) uses get() for retrieving every

single item from the buffer. Furthermore, the ErrorsHandler::waiting()

pointcut also needs adjusting to the new decomposition.

 115

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

public aspect Logging {

 pointcut bufferChange():
 !cflow(within(Timing)) &&
 !cflow(withincode(* Queue.get(int))) &&
 (execution(* Queue.get(..)) ||
 execution(* Queue.put(..)));
 //...
}

public aspect ErrorsHandler {

 protected pointcut waiting():
 execution(void EnhancedSynchronizedQueue.waiting())
 || execution(void Queue.waiting());
 //...
}

Listing 7.8 Modifications in the pointcuts

Stage V: Removing logging and timestamp

A programmer needs the enhanced buffer from Stage IV, but without the logging

and timing concerns. In Java, he once again has to reimplement the get(int) method

and much of the synchronization concerns (Listing 7.9). All to do in the AO

version is to remove Logging and Timing from the compilation list.

public class EnhancedBuffer extends Buffer {

 protected boolean lock;

 public EnhancedBuffer(int capacity) {
 super(capacity);
 }

 protected void lock(boolean b) { lock = b; }

 protected boolean isLock() { return lock; }

 public synchronized Object get() {
 while (isEmpty()||isLock()) try {
 wait();
 } catch (InterruptedException e) {}
 return super.get();
 }
 public synchronized Object[] get(int n) {
 while (isEmpty()||isLock()) try {
 wait();
 } catch (InterruptedException e) {}
 lock(true);
 Object[] tmp = new Object[n];
 for(int i=0; i<n; i++) {
 tmp[i] = super.get();
 }
 lock(false);
 return tmp;
 }
}

Listing 7.9 A new class for Stage V

 116

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

7.1.4 Empirical results
Table 7.1 presents the number of Atomic Changes and Reuse Level for both

releases for every stage. The measures were collected manually. Lower values are

better for Atomic Changes but worse for Reuse Level. AOP manifests superiority

at Stage III and V, while OOP in the rest of the cases. At Stage III we have

implemented a logging concern which is one of the flagship examples of AOP

usage. At this Stage, the OO version requires significantly more atomic changes

and new lines of code than its AO counterpart. At Stage V, the maintenance tasks

are focused on detaching some concerns instead of implementing new ones. The

AO solution has turned out to be more pluggable.

Table 7.1 Number of Atomic Changes and Reuse Level per stage.

Atomic Changes Reuse Level
Stage

OOP AOP OOP AOP

I) Adding a synchronization concern 7 19 0,71 0,66

II) Adding a timestamp concern 8 19 0,85 0,67

III) Adding a logging concern 9 6 0,88 0,95

IV) Adding a new getter 9 16 0,73 0,58

V) Removing logging and timestamp 5 3 0,74 1,00

7.1.5 Lessons learned
In an AO system, one cannot tell whether an extension to the base code is safe2

simply by examining the base code in isolation. All aspects referring to the base

code need to be examined as well. In addition, when writing a pointcut definition a

programmer needs global knowledge about the structure of the application. E.g.

when implementing the Timing aspect, a programmer has to know that the current

implementation of the synchronization concern affects each Queue structure, while

the timing concern requires a non-blocking Queue.

Moreover, when a system includes multiple aspects, they can begin to

affect each other. At Stage III, we have had to explicitly exclude logging the state

of the queue that is used by the Timing aspect. Furthermore, we have observed the

problem of managing interactions between aspects that are being composed. When

advice declarations made in different aspects affect the same join point, it is

2 in the sense that it does not break the aspect code

 117

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

important to consider the order in which they execute. Indeed, a wrong execution

order can break the program. In our experiment, we have used precedence

declarations to force timing to happen before logging and to force both of them to

happen within the synchronization block.

In most cases, aspects cannot be made generic, because pointcuts as well as

advices encompass information specific to a particular use, such as the classes

involved, in the concrete aspect. As a result, aspects are highly dependent on other

modules and their reusability is decreased. E.g. at Stage I, the need to explicitly

specify the Queue class and the two synchronization conditions means that no part

of the SynchronizedQueue aspect can be made generic. In addition, we have

confirmed that the reusability of aspects is also hampered in cases where “join

points seem to dynamically jump around”, depending on the context certain code is

called from [Beltagui, 2003]. Moreover, the variety of pointcut designators makes

pointcut expressions cumbersome (see EnhancedSynchronizedQueue::call_get()).

Some advocates of AOP believe that appropriate tools can deal with the

problems of AOP we encountered. We think that they should reject AOP at all,

since some research [Robillard & Weigand-Warr, 2005] “shows” that OOP with a

tool support solves the problem of crosscutting concerns:)

7.1.6 Threats to Validity
Construct validity

Construction threats lie in the way we define our metrics. Evolvability and

reusability like other quality factors are difficult to measure. Our dependent

variables are based on previous studies performed by Zhang et al. [2008], Ryder &

Tip [2001] and Frakes [1993]. It is possible that other metrics will be better fitted

for the purpose of our study.

Internal validity

Internal validity of our experiment concerns the question whether the effects were

caused only by the programming paradigm involved, or by other factors. The

experiment has been carried out by the author during his research for the

achievement of a Doctor of Philosophy Degree. As the author does not have any

interest in favour of one approach or the other, we do not expect it to be a large

threat. Nevertheless, other programmers could have chosen the different strategies

for implementing secondary concerns.

External validity

 118

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

Synchronization, logging, and timing present the typical characteristics of

crosscutting concerns and as such they are likely to be generalizable to other

concerns. Unfortunately, the limited number of maintenance tasks and size of the

program make impossible the generalization of our results. However, the academic

setting allows us to present the whole programs in detail and to put forward some

advantages and limitations of AOP.

7.1.7 Related work
Coady & Kiczales [2003] compared the evolution of two versions (C and AspectC)

of four crosscutting concerns in FreeBSD. They refactored the implementations of

the following concerns in v2 code: page daemon activation, prefetching for mapped

files, quotas for disk usage, and tracing blocked processes in device drivers. These

implementations were then rolled forward into their subsequent incarnations in v3

and v4 respectively. In each case they found that, with tool support, the AO

implementation better facilitated independent development and localized change.

In three cases, configuration changes mapped directly to modifications to pointcuts

and makefile options. In one case, redundancy was significantly reduced. Finally,

in one case, the implementation of a system-extension aligned with an aspect was

itself better modularized.

Bartsch & Harrison [2008] conducted an experiment in which 11 students

were asked to carry out maintenance tasks on one of two versions (Java and

AspectJ) of an online shopping system. The results did seem to suggest a slight

advantage for the subjects using the OO version since in general it took the subjects

less time to perform maintenance tasks and it averagely required less line of code

to implement a new requirement. However, the results did not show a statistically

significant influence of AOP at the 5% level.

Sant’Anna et al. [2003] conducted a quasi-controlled experiment to

compare the use of OOP and AOP to implement Portalware (about 60 modules and

over 1 KLOC). Portalware is a multi-agent system (MAS) that supports the

development and management of Internet portals. The experiment team (3 PhD

candidates and 1 M.Sc. student) developed two versions of the Portalware system:

an AO version and an OO version. Next, the same team simulated seven

maintenance/reuse scenarios that are recurrent in large-scale MAS. For each

scenario, the difficulty of maintainability and reusability was defined in terms of

structural changes to the artifacts in the AO and OO systems. The total lines of

 119

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

code, that were added, changed, or copied to perform the maintenance tasks,

equaled 540 for the OO approach and 482 for the AO approach.

Kulesza et al. [2006] present a quantitative study that assesses the positive

and negative effects of AOP on typical maintenance activities of a Web

information system.They compared the AO and OO implementations of a same

web-based information system, called HealthWatcher (HW). The main purpose of

the HW system is to improve the quality of services provided by the healthcare

institution, allowing citizens to register complaints regarding health issues, and the

healthcare institution to investigate and take the required actions. In the

maintenance phase of their study, they changed both OO and AO architectures of

the HW system to address a set of 8 new use cases. The functionalities introduced

by these new use cases represent typical operations encountered in the maintenance

of information systems. Although they claim that the AO design has exhibited

superior reusability through the changes, there is no empirical evidence to support

this claim. The collected metrics show only that aspects contributed to: (1) the

decrease in the lines of code, number of attributes, and cohesion; (2) the increase in

the vocabulary size and lexical separation of crosscutting concerns. They also tried

to evaluate coupling using the Sant’Anna’s metric [2003], but in Chapter 5.2.1 we

have argued why this metric is invalid to compare between OO and AO

implementations. An additional interesting observation from Kulesza’s study

[2006] is that more modules were needed to be modified in the AO version,

because it requires changing both the classes along the layers to implement the use

case functionality and the aspects implementing the crosscutting issues.

Munoz et al. [2008] showed that aspects offer efficient mechanisms to

implement crosscutting concerns, but that aspects can also introduce complex

errors in case of evolution. To illustrate these issues, they implemented and then

evolved a chat application. They found that it is very hard to reason about the

aspects impact on the final application.

Kouskouras et al. [2008] built an emulator of a telecommunications

exchange, allowing the user to configure it with commands and to emulate simple

calls between subscribers. They developed three different implementation

alternatives. The first one follows a simplistic solution applying OOP. The second

makes use of the Registry pattern. The third applies AOP to implement the

Registry pattern. Next, they investigated the behavior of the designs at a specific

extension scenario. The extension scenario involved the addition of several new

 120

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

commands and parameters. Since they made the source code available for us, we

could apply our metrics. The differences in Atomic Changes as well as Reuse

Level between various versions of the system were less than 3%. Every version

turned out to be very extensible and reusable. Almost all of the modules that were

developed in the base release, were reused in the next release. Moreover, the

atomic changes were not invasive because they mostly focused on creating new

modules instead of modifying the existing ones.

Mortensen et al. [2010] examined the benefits of refactoring three legacy

applications developed by Hewlett-Packard. They followed the evolution of the

applications across several revisions. The modifications needed to evolve these

systems required changes to fewer software items in the refactored systems when

compared to the original. The reduction of the average number of modules and files

changed between revisions was 4% and 3% respectively.

Taveira et al. conducted two studies to check if AOP promotes greater

reuse of exception handling code than a traditional, OO approach. In the first study

[Taveira et al., 2009], they assessed the suitability of AOP to reuse exception

handling code within applications. They refactored three medium-size applications

implemented originally in Java. Aspects were used to implement the exception

handlers. Though AOP promoted a large amount of reuse of error handling code,

the overall size of the refactored systems did not decrease due to the code overhead

imposed by AspectJ. The number of handlers was sensibly lower in the refactored

versions but the amount of error handling code was much higher. In the second

study [Taveira et al., 2010], they refactored seven medium-size systems to assess

the extent to which AOP promotes inter-application reuse of exception handling

code. They found out that reusing error handling across applications is not possible

in most of the cases and requires some a priori planning. Only extremely simple

handlers could be reused across applications.

The experiment closest to ours is the one conducted by Figueiredo et al.

[2008] in which they quantitatively and qualitatively assess the positive and

negative impacts of AOP on a number of changes applied to MobileMedia.

MobileMedia is a software product line for applications with about 3 KLOC that

manipulate photo, music, and video on mobile devices. The original release was

available in both AspectJ and Java (the Java versions use conditional compilation

as the variability mechanism). Then, a group of five post-graduate students was

responsible for implementing the successive evolution scenarios of MobileMedia.

 121

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

Each new release was created by modifying the previous release of the respective

version. A total of seven change scenarios were incorporated. The scenarios

comprised different types of changes involving mandatory, optional, and

alternative features, as well as non-functional concerns. Figueiredo et al. found that

AOP usually does not cope with the introduction of mandatory features. The AO

solution generally introduced more modules and operations. A direct result of more

modules and operations is the increase in LOC. Moreover, depending on the

evolution scenario, AspectJ pointcuts were more fragile than conditional

compilation. In order to compare their and our results, we have derived the

simplest form of Reuse Level and Atomic Changes (Table 7.2) from their

measures. Atomic Changes has been limited to counting operations only, while

Reuse Level has been calculated as: number_of_reused_LOC / LOC. In general,

the measures demonstrate that there is no winner with respect to Reuse Level. The

AO solution is significantly better only at Stage VII. With regard to Atomic

Changes, the OO implementations are superior for every release.

Table 7.2 Atomic changes and Reuse Level in MobileMedia.

release► II III IV V VI VII VIII
OO 0,73 0,86 0,96 0,48 0,75 0,01 0,76Reuse

Level AO 0,62 0,82 0,93 0,55 0,76 0,29 0,74
OO 120 68 20 111 88 335 149Atomic

Changes AO 150 90 22 134 102 437 175

7.2 Revision of the Gang-of-Four design patterns

7.2.1 Introduction
A critical challenge for software developers is to utilize design experience and

reuse existing software when building new systems. Design patterns have proved

effective in helping to address these issues. However, the solutions proposed in the

original design pattern literature [Gamma et al., 1995] are shaped by techniques as

well as language deficiencies from OOP. OO implementations of the design

patterns are not themselves reusable software entities. Moreover, applying a certain

design pattern typically means embedding them invasively into the program

[Kniesel et al., 2004]. With the rise of AOP, new abstractions have occured that

suggest it is time for these solutions to be revised.

 122

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

Hannemann & Kiczales [2002] (H&K) developed AspectJ

implementations of the 23 Gang-of-Four (GoF) patterns. However, AspectJ didn’t

support generics (generic types), when they were doing their research. Generic

types let programmers define a type without specifying all the other types it uses.

The unspecified types are supplied as parameters at the point of use. Generics were

added to AspectJ in 2005. With the advent of this technique, a new support for

more reusable implementations have occured. Hence, the solutions that have been

presented so far should be revisited and reconsidered. In this research the existing

AO implementations are examined according to applying generics and reflective

programming.

7.2.2 Research methodology
In developing our solutions, we follow the guidelines developed by Hevner et al.

[2004]. Table 7.3 discusses the realization of these guidelines in our work.

Table 7.3 Developing new solutions

No Guideline Realization

1 Design as an
Artifact

The results of this research are new solutions and
implementations of three design patterns. They are
methods in Simon’s terminology [Simon, 1996].

2 Problem
Relevance

The relevance of design patterns in software
development is well known [Gamma et al., 1995].
While efforts to use AspectJ to implement GoF
patterns have been made, no one has tried to use
AspectJ with generics or reflective programming.

3 Design
Evaluation

The utility of the artifacts are demonstrated on
examples.

4 Research
Contributions

The contribution of this research is presented in
Section 7.2.5.

5 Research Rigor The artifacts are formally represented in AspectJ.

6 Design as a
Search Process

We reviewed all 23 GoF patterns. It turned out that
only Decorator and Proxy took advantages of
generics, while applying reflective programming
was beneficial for Prototype.

7 Communication
of Research

Sections 5.2.3 – 5.2.5 motivates a developer
audience.

 123

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

7.2.3 The Decorator pattern
The intent of the Decorator pattern is to perform additional actions on individual

objects [Gamma et al., 1995; Borella, 2003]. The additional actions and the

decorated objects are selected at runtime. An alternative for this pattern is

inheritance. However, the Decorator pattern has several advantages over

subclassing. First, additional actions can be added and removed at runtime and per

object. Second, combining independent extensions is easy by composing decorator

objects. With subclassing every combination of extensions results in a new

subclass and this can cause an explosion of subclasses.

There are many variations of the Decorator pattern, but in this paper the

one used is that defined by Borella [2003]. The first AO approach to this pattern

was presented by Hannemann & Kiczales [2002]. Their solution has three

limitations [Borella, 2003]. Firstly, it does not allow for dynamic attaching and

dynamic detaching of decorators. Secondly, it is not possible at runtime to define

an order of activation among decorators. Thirdly, after inserting the decorator

aspect in the system, all instances of the intended class are decorated.

Other solutions were proposed by Monteiro & Fernandes [2004] and

Hachani & Bardou [2002] but these do not add anything new and so need not be

considered. A significant contribution to implementing the Decorator pattern was

made by Borella [2003]. He uses a per-target instantiation model to decorate only a

subset of the instances of a class. His solution enables decorators to be composed

dynamically. The order of activation of each decorator is given at runtime.

The Borella solution has two main imperfections. Firstly, the around advice

and the wrap method are not generic, and depend on the type of the decorated

object. Secondly, the decorator classes could directly implement the Decorator

interface. Introducing the Decorator interface via the parent declaration

unnecessarily complicates the solution.

Figure 7.4 presents our solution to the Decorator pattern.

WrapperProtocol<E> describes the generic structure and behaviour that is

determined by the pattern and it does not define any application specific behaviour.

This solution reduces the non-reusable parts of the implementation. The around

advices are responsible for intercepting objects which should be decorated and

passing them to the wrap(E e) method as argument. This method iterates through

all the registered decorators and gives them its argument to decorate (Listing 7.10).

 124

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

After decoration, the argument is returned. A concrete decoration process is

implemented in the StarDecorator and DollarDecorator classes.

Figure 7.4 The Decorator pattern.

public E wrap(E e) {
 for (Decorator<E> dec: decorators.values())
 e=dec.decorate(e);
 return e;
}

Listing 7.10 The wrap method

The joinpoints at which the object to decorate should be captured are specified by

the returned_object and object_passed_as_argument pointcuts. Thus it is possible

to decorate the object, which is passed as an argument or returned as a result of a

method call. The definitions of both pointcuts are empty, so at least one of them

should be overridden in a subaspect.

The concrete subaspect, which knows what type of object is captured and

in which context, has to be derived from WrapperProtocol<E> by giving a bound

type to the E parameter. One of such subaspects is StringWrapper that binds the E

parameter with String. StringWrapper intercepts requests to the getNextWord()

 125

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

method and performs a decoration on the object returned by this method. An

example of the use of StringWrapper is shown in Listing 7.11.

In order to decorate a specific object, the instance of StringWrapper that is

associated with this object is retrieved (Line 2). Zero or more decorators are then

attached to this instance (Lines 3 and 4). Without any decorator, the getNextWord()

method would return "AA". However, the wrapper object has registered (Lines 3

and 4) the StarDecorator and DollarDecorator instances, which wrap the returned

object with "***" and "$$$" respectively. As a result, the "*** $$$ AA $$$ ***"

string is printed on the screen (Line 6).

public class testDecorator {

 public static void main(String[] args) {
 WordPrinter w = new WordPrinter(); //1
 StringWrapper wrapper = StringWrapper.aspectOf(w); //2
 wrapper.addDecorator(new StarDecorator(), 2); //3
 wrapper.addDecorator(new DolarDecorator(), 1); //4
 w.setWord(0,"XXX"); //5
 System.out.println(w.getNextWord()); //6
 }
}

Listing 7.11 A use of the Decorator pattern.

7.2.4 The Proxy pattern
The proxy pattern allows the developer to provide a surrogate object in place of the

actual object in case access to the real object needs to be delegated or controlled.

The following are some of the more common uses for proxies [Grand, 2002]:

• Represent an object that is complex or time consuming to create with a

simpler one.

• Create the illusion that an object on a different machine is an ordinary local

object.

• Control access to a service-providing object based on a security policy.

• Create the illusion that a service object exists before it actually does.

The structure of this pattern, that uses generics, is shown on Figure 7.5.

ProxyProtocol<Subject> is a reusable part of the implementation. Subject is a

parameter. The client binds this parameter with the type of the object to be

“proxied”. The requestsToSubjectByCaller pointcut intercepts calls to the subject.

If a call is proxy protected, the handleProxyProtection method is called instead of

the original method. The isProxyProtected method checks whether the request

should be handled by the proxy or not. By default it returns true. The

 126

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

handleProxyProtection method provides an alternative return value if a call is

proxy protected. The default implementation returns null. Concrete subaspects are

forced to implement the requests pointcut. This pointcut defines which requests

need to be handled by the proxy.

Figure 7.5 The Proxy pattern.

7.2.5 The Prototype pattern
The Prototype pattern allows an object to create a copy of itself without knowing

its direct class. This pattern can avoid expensive “creation from scratch”. The most

important requirement for objects to be used as prototypes is that they have a

method, typically called copy, that returns a new object that is a copy of the

original object. How to implement the copy operation for the prototypical objects is

another important implementation issue. There are two basic strategies for

implementing the copy operation [Grand, 2002]:

• Shallow copying means that the attributes of the cloned object contain the

same values as the attributes of the original object and that all object

references indicate the same objects.

• Deep copying means that the attributes of the cloned object contain the

same values as the attributes of the original object, except that attributes

 127

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

that refer to objects refer to copies of the objects referred to by the original

object. In other words, deep copying also copies the objects that the object

being cloned refers to. Implementing deep copying can be tricky. You will

need to be careful about handling any circular references.

Shallow copying is easier to implement because all classes inherit a clone method

from the Object class that does just that. However, unless an object’s class

implements the Cloneable interface, the clone method will throw an exception and

will refuse to work. This work presents the first strategy with some modification

(Figure 7.6).

Figure 7.6 The Prototype pattern.

The PrototypeProtocol aspect attaches a default copy() method on all Prototype

participants. The implementation of that method is (1) to find the nearest clone()

method up the class hierarchy, (2) to invoke it, and (3) to return the result (Listing

7.12). The searching process starts with the runtime class of the object to which the

copy() request was sent. If that class does not define the clone method, then the

search is made in its superclass. In the worst case, the search repeats until the

Object class is reached. MyPrototypes assigns the Prototype interface to Car.

 128

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

privileged public aspect PrototypeProtocol {
 public interface Prototype extends Cloneable{}

 public Object Prototype.copy() {
 Object copy = null;
 Method cloneMethod=null;
 try {
 Class thisClass = ((Object) this).getClass();
 cloneMethod = theNearestCloneMethod(thisClass);
 cloneMethod.setAccessible(true);
 copy = cloneMethod.invoke(this, null);
 } catch(Exception ex) {
 System.out.println(ex);
 }
 return copy;
 }

 protected static Method theNearestCloneMethod(
 Class startClass) {
 Method cloneMethod=null;
 do {
 try {
 cloneMethod =
 startClass.getDeclaredMethod("clone", null);
 } catch(NoSuchMethodException ex) {
 startClass = startClass.getSuperclass();
 }
 } while(cloneMethod == null);
 return cloneMethod;
 }
}

Listing 7.12 The PrototypeProtocol aspect

7.2.6 Discussion
This research presents how AO implementations of the Decorator and the Proxy

pattern can be improved using generics. Parametrized aspects, which serve as

protocols, were created for both patterns. For Decorator not only implementation

but also a new solution was developed. The solution is simpler then the one

proposed by Borella, whereas the implementation is much more reusable. The only

thing a programmer has to implement is two pointcuts. For the Proxy pattern,

Hannemann & Kiczales’s solution was used, and only the implementation was

adapted. Moreover, AOP was combined with reflective programming to provide a

default implementation for cloning in the Prototype pattern. All the implemented

patterns can be plugged or unplugged without any changes in the existing modules.

We also confirm the observation of Bartsch & Harrison [2007] that the question of

which implementation to prefer is a trade-off between a higher cognitive

complexity and the reusability of the abstract pattern protocol.

 129

CHAPTER 7. IMPACT OF ASPECT-ORIENTED PROGRAMMING ON SYSTEMS EVOLUTION AND
SOFTWARE REUSE

7.2.7 Related work
First attempts to reshape design pattern solutions based on AOP were initiated by

Hannemann & Kiczales [2002] (H&K) and then continued by Hachani & Bardou

[2002], Borella [2003], Monteiro & Fernandes [2004], and Denier, Albin-Amiot &

Cointe [2005]. H&K implemented the 23 GoF design patterns in two layers. One

abstract layer defined a pattern protocol, i.e. an abstract aspect which localizes all

code that belongs to an abstract view of a pattern [Bartsch & Harrison, 2007]. This

view defines the basic logic of a pattern and can be reused in different instances of

the same pattern [Hannemann & Kiczales, 2002]. The assignment of classes to the

roles is done in the aspect that defines a specific pattern instance (concrete layer).

For several patterns, H&K found reusable implementations.

7.3 Summary

The first part of the Chapter presented a quasi-laboratory experiment in which we

compared the evolution of a simple program that underwent five maintenance

scenarios. The superiority of AOP was observed only when detaching secondary

concerns and when implementing logging, which is a flagship example of AOP

usage. OOP fared better in implementing secondary concerns in three out of four

scenarios. Moreover, by reviewing other research, we showed that the claims that

AOP improves software maintability and reusability are not backed up by any

convincing evidence.

In the second part of the Chapter we presented the results of exploring the

existing AO implementations according to applying generics and reflective

programming. It was found that Decorator and Proxy are suitable to use with

generics, while Prototype is suitable to use with reflection. In each case, the applied

programming techniques enhanced reusability of not only the application core part

but also the design pattern part.

The scope of our research was too limited to draw any definitive

conclusions about the impact of AOP on software evolvability and reusability. We

can only say that there are limited situations where a reasonable AO

implementation improves software evolvability and reusability.

 130

CHAPTER 8. SUMMARY

8 Summary

CChhaapptteerr 88.. SSuummmmaarryy
The search for truth is more precious than its possession.

Albert Einstein

8.1 Conclusions

In the scientific community, AOP has been often claimed to improve software

modularity compared to OOP. However, this dissertation denies it on empirical

(Chapter 6) as well as theoretical (Section 3.3) grounds. We have demonstrated that

AOP is in a contrary to the principles of modularity established by Parnas, Dijkstra,

Yourdon, Constantine, Meyer and other greats of the past. Thus, we formulated the

first part of our thesis statement as:

III. Aspect-oriented programming allows for lexical separation of

crosscutting concerns, but it violates the fundamental

principles of modular design, such as low coupling,

information hiding, and explicit interfaces.

Another promise of AOP is to improve software evolvability and reusability. Since

high-level quality attributes are even more important for software developers, we

have also made efforts to assess the extent to which AOP promotes software reuse

and systems evolution (Chapter 7). Unfortunately, this area of research within the

AOP community is somewhat restricted by the lack of available AOP-based

projects that include adequate maintenance/reuse documentation. Thus, we have

been able to conduct only preliminary research in a laboratory environment. This

research consists of two parts. In the first part, we have performed a quasi-

controlled experiment in which OOP has generally fared better in implementing

crosscutting concerns. In the second part, we have reviewed the GoF design

patterns from the perspective of applying AspectJ with generics and reflective

programming. We have found more reusable implementation for Decorator, Proxy,

and Prototype in comparison to their OO counterparts. Although we have

complemented the existing knowledge on AOP we cannot draw any definitely

conclusions about the impact of AOP on software evolvability and reusability, due

 131

CHAPTER 8. SUMMARY

to the limited scope of our research. Nevertheless, our observations support the

second part of our thesis statement:

IV. There are limited situations where a reasonable aspect-

oriented implementation improves software evolvability and

reusability.

8.2 Contributions

8.2.1 Evaluating the impact of AOP on software modularity
We have discussed the novel kinds of coupling dependencies introduced by AOP

and proposed the CBOAO metric. CBOAO can be applied to AO as well as OO

software and generates comparable results. At the same time, we have argued that

since the existing coupling metrics for AOP do not cover all the possible kinds of

coupling dependencies, the results obtained with these metrics are underestimated.

To know the real results, we have re-evaluated the existing systems.

We have compared OO and AO implementations of 11 real-life systems

and the 23 GoF design patterns. In only one case we have found evidence that the

AO implementation results in lower coupling than its OO counterpart. We are the

first who experimentally demonstrated this effect. The impact of AOP on cohesion

remains unclear.

Since our metrics do not cover all aspects of software modularity, we have

also surveyed other criteria and found that AOP is fundamentally at odds with the

basic principles on which software engineering has depended for the last 50 years.

In Section 3.3 we argue that:

• AOP promotes unstructured programming

• AOP breaks information hiding

• AOP leaves interfaces implicit

• AOP makes modular reasoning difficult

• AOP breaks the contract between a base module and its clients

• AOP escalates coupling

We have also examined the studies that propose to reduce obliviousness as a trade-

off for an increase in modularity. We have found that in these approaches AOP

 132

CHAPTER 8. SUMMARY

loses its ability to add new features to the code without having to intrusively

modify the code.

8.2.2 Exploring the possibilities of AOP in the context of
software reuse and evolvability

We have performed some initial experiments on software reuse and evolution.

Firstly, we have compared OOP with AOP on a small program that undergoes five

functionality increments. The superiority of AOP has been observed only when

detaching crosscutting concerns and when implementing logging, which is a

flagship example of AOP usage. OOP has fared better in implementing

crosscutting concerns in three out of four scenarios. The lessons learned from this

study are as follows. In a AO system, one cannot tell whether an extension to the

base code is safe simply by examining the base program in isolation. All pointcuts

referring to the base program need to be examined as well. In addition, when

writting a pointcut definition a programer needs a global knowledge about the

structure of the application. This is due to the fact that pointcuts try to define

intended conceptual properties about the base program, based on structural

properties of the program. As a consequence it may lead to the pointcut fragility

problem that causes ripple effects during system evolution. In most cases, aspects

cannot be made generic, because pointcuts as well as advices encompass

information specific to a particular use, such as the classes involved, in the

concrete aspect. As a result, aspects are highly dependent on other modules and

their reusability is decreased. Futhermore, we have confirmed that the reusability

of aspects is also hampered in cases where “join points seem to dynamically jump

around”, depending on the context certain code is called from.

Secondly, we have explored the existing AO implementations of the GoF

patterns according to applying generics and reflective programming. We have

found that Decorator and Proxy are suitable to use with generics, while Prototype is

suitable to use with reflection. In each case, the applied programming techniques

enhanced reusability of not only the application core part but also the design

pattern part. Moreover our solutions make an application independent of the design

patterns which can be plugged or unplugged depending on the presence or absence

of aspects. The impact of the AO solutions on software maintainability is not

obvious. On the one hand, localizing pattern related code might be a step towards

increasing the maintainability of design patterns [Bartsch & Harrison, 2007]. On

 133

CHAPTER 8. SUMMARY

the other hand, a higher cognitive complexity of the AO implementations decreases

comprehensibility of design patterns.

8.2.3 Elaborating an extension to the UML metamodel for
Aspect Oriented Modeling

We have presented an approach to integrate aspect orientation with the current

state-of-the-art in modelling languages. The elaborated metamodel (AoUML)

enriches UML with constructs for visualizing aspects. Thus we have improved the

traceability from design to implementation by reducing the semantic gap between

these development phases. We have useed AoUML in other parts of our

dissertation.

8.3 Evaluation of the results

The work presented in this dissertation has been published in the proceedings of

nine international conferences and one book’s chapter. Each of the publication is

summarised below:

• [Przybyłek, 2007] gives an introduction to the problem of implementing

crosscutting concerns in OO languages. The limitations of OO languages

are explained and illustrated by 3 scenarios of adapting software to new

requirements. Then, the paper presents the state-of-the-art in

implementing crosscutting concerns. The basic concepts of AOP and CF’s

are explored and applied to the scenarios to avoid code scattering and code

tangling. Finally, the paper suggests programming guidelines that assist

programmers in deciding when to use what paradigm.

• [Przybyłek, 2009] is an extension of [Przybyłek, 2007]. It surveys SoC and

modularization techniques from the days of structured programming to

post-OO paradigms of today's academic research. It also explains the

„tyranny of the dominant decomposition” problem and the limitations of

mainstream languages associated with it. Then, it outlines new

programming constructs offered by AOP and CFs to avoid these

limitations. Finally, the paper discusses the lessons learned from

developing software in the post-OO paradigms. It suggests areas of future

work related to post-OO paradigms.

 134

CHAPTER 8. SUMMARY

• [Przybyłek, 2008a] focuses on the design phase. It presents a new

modelling language named AoUML that we elaborated to incorporate

aspects into class diagram. AoUML is an extension to the UML

metamodel. Its specification is described by using a similar style to that of

the UML metamodel. First, an overview class diagram is introduced to

show the constructs that was included in the extension and how these

constructs are built up in terms of the standard UML constructs. Then, the

semantics and syntax are described in detail using natural language. The

practical applicability of AoUML is demonstrated by visualizing three GoF

design patterns.

• [Przybyłek, 2010c] discusses whether AOP makes software more modular.

First, we briefly review the literature of software engineering related to

modularity and SoC techniques. Next, we show that AOP is in conflict

with the well-established principles of modular design that Parnas, Dijkstra

and other greats of the past laid out and on which software engineering has

depended for the last 50 years.

• [Przybyłek, 2010a] presents a systematic case study in which we compare

OO and AO implementations of the 23 GoF design patterns with respect to

modularity. We advocate for measuring modularity with the help of

coupling and cohesion. The evaluation is performed applying the CBO and

LCOM metrics from the CK suite, which we adapt to measure AO

software. We argue that the existing metrics are invalid for evaluating

overall coupling in AO systems, since they do not take into account

semantic dependencies between the system modules. We also describe

some bugs in the tool that is widely used to evaluate AO software. We

have fixed and extended this tool to collect our metrics. Finally, we present

the results of our experiment. We found that there is no pattern whose AO

implementations exhibits lower coupling, while 22 patterns present lower

coupling in the OO implementations. With the help of Dependency

Structure Matrix we analyze in detail the coupling dependencies between

modules of the Observer pattern. With regard to cohesion the OO

implementations are superior in 9 cases, while the AO ones in 6 cases. 8

patterns exhibit the same cohesion in both implementations.

• [Przybyłek, 2011b] expands our earlier work on software modularity. We

compare two versions (Java and AspectJ) of 10 real-life systems. The

 135

CHAPTER 8. SUMMARY

obtained results confirm our previous findings. We found that there is no

evidence that AOP promotes better modularity of software than OOP. The

OO implementation of every system exhibits lower coupling. With regard

to cohesion the OO implementations are superior in 4 cases, while the AO

ones in 6 cases. We also further explain semantic dependencies in AO

software to give a rationale for our coupling metric.

• [Przybyłek, 2008b] examines whether the existing implementations of the

Decorator pattern can be improved using AspectJ and generics. In the first

part of the paper we review the solutions to the Decorator pattern presented

by Hannemann & Kiczales and Borella. It turns out that their solutions

have some limitations and imperfections. In the second part of the paper

we develop a reusable implementation of the Decorator pattern that can be

easily (un)plugged into code.

• [Przybyłek, 2010b] is a continuation of [Przybyłek, 2008b] and further

explores the possibilities for improving implementations of the GoF design

patterns. It was found that not only Decorator, but also Proxy can take

advantage by using generics. In addition, reflective programming was

employed for Prototype to provide a default implementation for cloning. In

each case, the obtained implementation is highly reusable.

• [Przybyłek, 2011c] describes a quasi-laboratory experiment in which we

compare the evolvability and reusability of OO and AO implementations

of a classical producer-consumer system that undergoes five maintenance

scenarios. We have found that in general the OO implementations have

exhibited superior results through the maintenance tasks. Nevertheless,

more industrial data needs to be investigated before more definitive

conclusions can be drawn about the impact of AOP on software

evolvability and reusability.

• [Przybyłek, 2011a] presents the proposal of our dissertation.

Table 8.1 shows how the publications are mapped into the chapters of the

dissertation.

 136

CHAPTER 8. SUMMARY

Table 8.1 Mapping from the publications to the chapters

publication chapters

[Przybyłek, 2007] 2, 3

[Przybyłek, 2008a] 4

[Przybyłek, 2008b] 7.2

[Przybyłek, 2009] 2, 3

[Przybyłek, 2010a] 6

[Przybyłek, 2010b] 7.2

[Przybyłek, 2010c] 3.3

[Przybyłek, 2011a] 1, 8

[Przybyłek, 2011b] 6

[Przybyłek, 2011c] 7.1

8.4 Epilog

In any community of scientists, there are some individuals who are bolder than

most. Occasionally they generate a rival to the established paradigm [Kuhn, 1962].

That was in 1997, when Kiczales et al. [1997] presented AOP. As most promising

new paradigms, AOP started with hype (see Figure 8.1). Hype is a natural

handmaiden to overpromise, and most technologies build rapidly to a peak of hype.

Following this, there is almost always an overreaction to ideas that are not fully

developed [Bezdek, 1993]. AOP is currently at this stage (have already been some

criticisms published [Tourwe et al., 2003; Constantinides et al., 2004; Steimann,

2006]) and to go further it needs more critical reviews by disciples of Dijkstra. The

criticism leads to a crash of sorts, followed by a period of wallowing in the depths

of cynicism. Many new technologies evolve to this point, and then fade away. The

ones that survive do so because someone finds a good use (= true user benefit) for

the basic ideas [Bezdek, 1993].

 137

CHAPTER 8. SUMMARY

Figure 8.1 Evolution of new technology [Bezdek, 1993]

It is likely that OOP will not be the last programming paradigm developed in the

history of software engineering. Something will supersede OOP, just as OOP has

superseded procedural programming. Whether AOP will become a subsidiary

technique to implement just a few crosscutting concerns like logging, tracing,

debugging, etc. or its anomalies will be resolvable and it will become a mainstream

paradigm is impossible to predict. One thing is certain, the potential transfer of

AOP to the mainstrem of the software development dependents on our ability to

discover the AOP’s pitfalls. Thus, the dissertation is one more step towards closing

AOP to the “asymptote of reality”.

 138

REFERENCES

9 References

RReeffeerreenncceess
[Aksit & Tripathi, 1988] Aksit, M., Tripathi, A.: Data Abstraction Mechanisms in
Sina. ACM Sigplan Notices, vol. 23(11), pp. 267-275, 1988

[Albin-amiot & Guéhéneuc, 2001] Albin-amiot, H., Guéhéneuc, Y.: Design
Patterns: A Round-trip. In: 15th European Conference on Object-Oriented
Programming (ECOOP'01), Budapest, Hungary, 2001

[Aldawud et al., 2003] Aldawud, O., Elrad, T., Bader, A.: UML Profile for
Aspect-Oriented Software Development. In: 3rd Workshop on Aspect-Oriented
Modeling with UML at AOSD'03, Boston, MA, 2003

[Aldrich, 2005] Aldrich, J.: Open Modules: Modular Reasoning about Advice. In:
Proceedings of the 19th European Conference on Object-Oriented Programming
(ECOOP'05), Glasgow, UK, 2005

[Andrews et al., 2002] Andrews, A., Ghosh, S., Man Choi, E.: A Model for
Understanding Software Components. In: IEEE International Conference on
Software Maintenance (ICSM'02), Montreal, Canada, 2002

[Anquetil & Laval, 2011] Anquetil, N., Laval, J.: Legacy Software Restructuring:
Analyzing a Concrete Case. In: 15th European Conference on Software
Maintenance and Reengineering (CSMR'11), Oldenburg, 2011

[Avison et al., 2001] Avison, D.E., Baskerville, R., Myers, M.: Controlling action
research projects. Information Technology & People, 14 (1), pp. 28-45, 2001

[Balasubramanian, 1996] Balasubramanian, N.V.: Object oriented metrics. In:
3rd Asia-Pacific Software Engineering Conference (APSEC'96), Seoul, South
Korea, 1996

[Baldwin & Clark, 2000] Baldwin, C.Y., Clark, K.B.: Design Rules, vol. 1, The
Power of Modularity. MIT Press, Cambridge, 2000

[Bartsch & Harrison, 2008] Bartsch, M., Harrison, R.: An exploratory study of
the effect of aspect-oriented programming on maintainability. Software Quality
Journal, vol. 16(1), 23-44, 2008

[Bartsch & Harrison, 2007] Bartsch, M., Harrison, R.: Design Patterns with
Aspects: A Case Study. In: Writing Group at EuroPLoP'07, Irsee Monastery,
Germany, 2007

[Basili et al., 1996] Basili, V.R., Briand, L.C., Melo, W.L.: A Validation of
Object-Oriented Design Metrics as Quality Indicators. IEEE Transactions on
Software Engineering vol. 22(10), pp. 751-761, 1996

[Basili et al., 1994] Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question
Metric Approach. In: Encyclopedia of Software Engineering, pp. 528-532, John
Wiley & Sons, Inc., New York, 1994

[Basili et al., 2007] Basili, V.R., Heidrich, J., Lindvall, M., Munch, J., Regardie,
M., Trendowicz, A.: GMQ + Strategies - Aligning Business Strategies with
Software Measurement. In: Proceedings of the 1st International Symposium on
Empirical Software Engineering and Measurement (ESEM'07), Madrid, Spain,
2007

 139

REFERENCES

[Basili et al., 1999] Basili, V.R., Shull, F., Lanubile, F.: Building Knowledge
through Families of Experiments. In: IEEE Transactions on Software Engineering,
vol. 25(4), pp. 456-473, July 1999

[Basili & Weiss, 1984] Basili, V.R., Weiss, D.: A Methodology for Collecting
Valid Software Engineering Data. In: IEEE Transactions On Software Engineering,
pp. 728-738, Nov. 1984

[Basili, 1992] Basili, V.R.: Software Modeling and Measurement: The
Goal/Question/Metric Paradigm. Technical Reports, University of Maryland, 1992

[Baskerville & Wood-Harper, 1996] Baskerville, R.L., Wood-Harper, A.T.: A
critical perspective on action research as a method for information systems
research. Journal of Information Technology, 11 (3), pp. 235-246, 1996

[Becker & Niehaves, 2007] Becker, J., Niehaves, B.: Epistemological perspectives
on IS research: a framework for analysing and systematizing epistemological
assumptions. Information Systems Journal, vol. 17, pp. 197-214, 2007

[Beltagui, 2003] Beltagui, F.: Features and Aspects: Exploring feature-oriented
and aspect-oriented programming interactions. Technical Report No: COMP-003-
2003; Computing Department, Lancaster University, Lancaster, 2003

[Bergmans & Aksit, 2001] Bergmans, L., Aksit, M.: Composing crosscutting
concerns using composition filters. Commun. ACM, vol. 44(10), pp. 51-57, 2001

[Bergmans, 1994] Bergmans, L.: Composing Concurrent Objects - Applying
Composition Filters for the Development and Reuse of Concurrent Object-Oriented
Programs. PhD thesis, University of Twente, 1994

[Bernardi & Lucca, 2010] Bernardi, M.L., Lucca, G.A.: A metric model for
aspects' coupling. In: Workshop on Emerging Trends in Software Metrics at
ICSE'10, Cape Town, South Africa, 2010

[Bezdek, 1993] Bezdek, J.C.: Fuzzy models - what are they, and why. IEEE
Transactions on Fuzzy Systems, vol. 1(1), pp. 1-6, 1993

[Bieman & Kang, 1995] Bieman, J. M., Kang, B.: Cohesion and reuse in an
object-oriented system. SIGSOFT Softw. Eng. Notes vol. 20, Issue SI, pp. 259-
262, 1995

[Boehm, 1981] Boehm, E.: Software Engineering Economics. Prentice-Hall, 1981

[Booch, 1994] Booch, G.: Object-oriented Analysis and Design with Applications.
Benjamin-Cummings, Redwood City, California, 1994

[Borella, 2003] Borella, J.: Design Patterns Using Aspect-Oriented Programming.
MSc thesis, IT University of Copenhagen, 2003

[Boudreau et al., 2001] Boudreau, M.C., Gefen, D., Straub, D.: Validation in IS
Research: A State-of-the-Art Assessment. MIS Quarterly, Vol. 25, No. 1, pp. 1-16,
2001

[Bowen et al., 1983] Bowen, T.P., Post, J.V., Tai, J., Presson, P.E., Schmidt, R.L.:
Software Quality Measurement for Distributed Systems. Guidebook for Software
Quality Measurement. Technical Report RADC-TR-83-175 Volume 2, July 1983

[Breivold et al., 2008] Breivold, H.P., Crnkovic, I., Land, R., Larsson, S.: Using
Dependency Model to Support Software Architecture Evolution. In: 23rd
IEEE/ACM International Conference on Automated Software Engineering,
L'Aquila, Italy, 2008

 140

REFERENCES

[Briand et al., 1998] Briand, L.C., Daly, J.W., Wüst, J.: A Unified Framework for
Cohesion Measurement in Object-Oriented Systems. Empirical Software
Engineering vol. 3(1), pp. 65-117, 1998

[Briand et al., 1999] Briand, L.C., Daly, J.W., Wüst, J.: A Unified Framework for
Coupling Measurement in Object-Oriented Systems. IEEE Transactions on
Software Engineering vol. 25(1), pp. 91-121, 1999

[Briand et al., 1999] Briand, L.C., Morasca, S., Basili, V.R.: Defining and
Validating Measures for Object-Based High-Level Design. IEEE Transactions on
Software Engineering vol. 25(5), pp. 722-743, 1999

[Briand et al., 2001] Briand, L.C., Wüst, J., Lounis, H.: Replicated Case Studies
for Investigating Quality Factors in Object-Oriented Designs. Empirical Software
Engineering, vol. 6(1), pp. 11-58, 2001

[Brichau et al., 2000] Brichau, J., De Meuter, W., De Volder, K.: Jumping
Aspects. In: Workshop on Aspects and Dimensions of Concerns at ECOOP'00,
Sophia Antipolis and Cannes, France, 2000

[Brito e Abreu et al., 2002] Brito e Abreu, F., Poels, G., Sahraoui, H.A., Zuse, H.:
Quantitative Approaches in Object-Oriented Software Engineering. Kogan Page,
Paris, 2002

[Brooks, 1995] Brooks, F.P.: The mythical man-month: After 20 years. IEEE
Software vol. 12, pp. 57-60, 1995

[Bruntink & Deursen, 2004] Bruntink, M., Deursen, A. van, Engelen, R. van,
Tourwe, T.: An Evaluation of Clone Detection Techniques for Identifying Cross-
Cutting Concerns. In: International Conference on Software Maintenance (ICSM
2004). IEEE Computer Society, pp. 200-209, 2004

[Burrows et al., 2010] Burrows, R., Ferrari, F., Garcia, A., Taiani, F.: An
empirical evaluation of coupling metrics on aspect-oriented programs. In:
Workshop on Emerging Trends in Software Metrics at ICSE'10, Cape Town, South
Africa, 2010

[Burrows et al., 2010] Burrows, R., Ferrari, F., Lemos, O., Garcia, A., Ta?ani, F.:
The Impact of Coupling on the Fault-Proneness of Aspect-Oriented Programs: An
Empirical Study. In: 21st IEEE International Symposium on Software Reliability
Engineering (ISSRE'10), San Jose, CA, 2010

[Cai, 2006] Cai, Y.: Modularity in Design: Formal Modeling and Automated
Analysis. PhD thesis, University of Virginia, Charlottesville, VA, 2006

[Castor et al., 2009] Castor, F., Cacho, N., Figueiredo, E., Garcia, A., Rubira,
C.M., de Amorim, J.S., da Silva, H.O.: On the modularization and reuse of
exception handling with aspects. Softw. Pract. Exper. vol. 39(17), pp. 1377-1417,
2009

[Ceccato & Tonella, 2004] Ceccato, M., Tonella, P.: Measuring the Effects of
Software Aspectization. In: 1st Workshop on Aspect Reverse Engineering, Delft,
Netherlands, 2004

[Cecez-Kecmanovic, 2007] Cecez-Kecmanovic, D.: Critical Research in
Information Systems: The Question of Methodology. In: 15th European
Conference on Information Systems (ECIS'07), St. Gallen, Switzerland, 2007

 141

REFERENCES

[Chaumun et al., 2000] Chaumun, M. A., Kabaili, H., Keller, R. K., Lustman, F.,
Saint-Denis, G.: Design Properties and Object-Oriented Software Changeability.
In: 13th Conference on Software Maintenance and Reengineering, Kaiserslautern,
Germany, 2000

[Chidamber & Kemerer, 1994] Chidamber, S.R., Kemerer, C.F.: A Metrics Suite
for Object Oriented Design. IEEE Trans. Softw. Eng. 20(6) , pp. 476-493, Jun.
1994

[Clarke & Banaissad, 2005] Clarke, S., Banaissad, E.: Aspect-Oriented Analysis
and Design: The Theme Approach. Upper Saddle River: Addison-Wesley, 2005

[Clifton & Leavens, 2003] Clifton, C., Leavens, G.T.: Obliviousness, Modular
Reasoning, and the Behavioral Subtyping Analogy. In: Software-engineering
Properties of Languages for Aspect Technologies (SPLAT'03), Boston, MA, 2003

[Clifton & Leavens, 2002] Clifton, C., Leavens, G.T.: Spectators and Assistants:
Enabling Modular Aspect-Oriented Reasoning. Technical Report 02-10, Iowa State
University, 2002

[Clifton, 2005] Clifton, C.: A design discipline and language features for modular
reasoning in aspect-oriented programs. Phd thesis, Department of Computer
Science, Iowa State University, USA, 2005

[Cline et al., 1998] Cline, M., Lomow, G., Girou, M.: C++ FAQs. Addison
Wesley, 1998

[Coad & Yourdon, 1991] Coad, P., Yourdon, E.: Object-Oriented Analysis.
Prentice Hall, 1991

[Coady & Kiczales, 2003] Coady, Y., Kiczales, G.: Back to the future: a
retroactive study of aspect evolution in operating system code. In: 2nd Inter. Conf.
on Aspect-oriented software development (AOSD'03), Boston, Massachusetts,
2003

[Coleman et al., 1994] Coleman, D., Ash, D., Lowther, B., Oman, P.: Using
metrics to evaluate software system maintainability. IEEE Computer, vol. 27(8),
pp. 44-49, 1994

[Colyer et al., 2004] Colyer, A., Clement, A., Harley, G., Webster, M.: Eclipse
AspectJ: Aspect-oriented Programming with AspectJ and the Eclipse AspectJ
Development Tools. Addison Wesley Professional, Reading MA, 2004

[Constantinides et al., 2004] Constantinides, C., Scotinides, T., Störzer, M.: AOP
considered harmful. In: 1st European Interactive Workshop on Aspect Systems
(EIWAS), 2004

[Czarnecki & Eisenecker, 2000] Czarnecki, K., Eisenecker, U.: Generative
Programming: Methods, Techniques, and Applications, Addison-Wesley, Boston,
MA, 2000

[Dahl et al., 1972] Dahl, O.J., Dijkstra, E.W., Hoare, C.A.: Structured
Programming. Academic Press Ltd., 1972

[Dantas & Walker, 2006] Dantas, D.S., Walker, D.: Harmless advice. In
Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM, pp.383-396, New York, 2006

[Davison et al., 2004] Davison, R.M., Martinsons, M.G., Kock, N.: Principles of
Canonical Action Research. Information Systems Journal 14(1), pp. 65-86, 2004

 142

REFERENCES

[De Win et al., 2002] De Win, B., Piessens, F., Joosen, W., Verhanneman, T.: On
the importance of the separation-of-concerns principle in secure software
engineering. In: ACSA Workshop on the Application of Engineering Principles to
System Security Design, Boston, Massachusetts, 2002

[Denier et al., 2005] Denier, S., Albin-Amiot, H., Cointe, P.: Expression and
Composition of Design Patterns with Aspects. In: 2nd French Workshop on
Aspect-Oriented Software Development (JFDLPA'05), Lille , France, 2005

[Dijkstra, 1976] Dijkstra, E.W.: A Discipline of Programming. Prentice Hall,
Englewood Cliffs, 1976

[Dijkstra, 1968] Dijkstra, E.W.: GoTo statement considered harmful.
Communications of the ACM, vol 11(3), pp. 147-148, 1968

[Dijkstra, 1974] Dijkstra, E.W.: On the role of scientific thought. Netherlands,
1974,
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html

[Durr, 2008] Durr, P.E.A.: Resource-based Verification for Robust Composition
of Aspects. PhD thesis, University of Twente, 2008

[Eaddy et al., 2008] Eaddy, M., Zimmermann, T., Sherwood, K.D., Garg, V.,
Murphy, G.C., Nagappan, N., Aho, A.V.: Do Crosscutting Concerns Cause
Defects? In: IEEE Transactions on Software Engineering, vol. 34, pp. 497-515,
2008

[Easterbrook et al., 2007] Easterbrook, S.M., Singer, J., Storey, M.A., Damian,
D.: Selecting Empirical Methods for Software Engineering Research. In F. Shull, J.
Singer and D. Sj?berg(eds) Guide to Advanced Empirical Software Engineering,
Springer, 2007

[Eick et al., 2001] Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S.,; Mockus, A.:
Does Code Decay? Assessing the Evidence from Change Management Data. In:
IEEE Trans. Softw. Eng., vol. 27(1), pp. 1-12, January 2001

[Evermann, 2007] Evermann, J.: A meta-level specification and profile for
AspectJ in UML. Journal of Object Technology, vol. 6(7), Special Issue: Aspect-
Oriented Modeling, pp. 27-49, 2007

[Fenton & Melton, 1990] Fenton, N.E., Melton, A.: Deriving Structurally Based
Software Measures. J. Syst. Software, vol. 12, pp. 177-187, 1990

[Fenton & Pfleeger, 1997] Fenton, N.E., Pfleeger, S.L.: Software Metrics: A
Rigorous and Practical Approach. Publishing Company, Boston, 1997

[Ferrari et al., 2010] Ferrari, F., Burrows, R., Lemos, O., Garcia, A., Figueiredo,
E., Cacho, N., Lopes, F., Temudo, N., Silva, L., Soares, S., Rashid, A., Masiero, P.,
Batista, T., Maldonado, J.: An exploratory study of fault-proneness in evolving
aspect-oriented programs. In: 32nd ACM/IEEE International Conference on
Software Engineering (ICSE '10), Cape Town, South Africa, 2010

[Figueiredo et al., 2008] Figueiredo, E., Cacho, N., Sant'Anna, C., Monteiro, M.,
Kulesza, U., Garcia, A., Soares, S., Ferrari, F., Khan, S., Castor Filho, F., Dantas,
F.: Evolving software product lines with aspects: An empirical study on design
stability. In: 30th International Conference on Software Engineering (ICSE'08),
Leipzig, Germany, 2008

 143

REFERENCES

[Filho et al., 2006] Filho, F.C., Cacho, N., Figueiredo, E., Maranh?o, R., Garcia,
A., Rubira, C.M.: Exceptions and aspects: the devil is in the details. In:
Proceedings of the 14th ACM SIGSOFT international Symposium on Foundations
of Software Engineering, Portland, Oregon, 2006

[Filman & Friedman, 2000] Filman, R.E., Friedman, D.P.: Aspect-oriented
programming is quantification and obliviousness. In: Workshop on Advanced
Separation of Concerns at OOPSLA'00, Minneapolis, MN, 2000

[Filman, 2001] Filman, R.E.: What is Aspect-Oriented Programming, revisited. In:
Workshop on Multi-Dimensional Separation of Concerns at ECOOP'01, Budapest,
Hungary, 2001

[Fjeldstad & Hamlen, 1983] Fjeldstad, R., Hamlen, W.: Application program
maintenance-report to to our respondents. In: Tutorial on Software Maintenance,
pp. 13-27. Parikh, G. & Zvegintzov, N. (Eds.). IEEE Computer Soc. Press, 1983

[Frakes, 1993] Frakes, W.: Software Reuse as Industrial Experiment. In: American
Programmer, vol. 6(9), pp. 27-33, 1993

[France et al., 2003] France, R., Georg, G., Ray, I.: Supporting Multi-Dimensional
Separation of Design Concerns. In: 3rd Workshop on Aspect-Oriented Modeling
with UML at AOSD'03, Boston, MA, 2003

[Fuentes & Sanchez, 2007] Fuentes, L., Sanchez, P.: Towards Executable Aspect-
Oriented UML Models. In: 10th International Workshop on Aspect-Oriented
Modeling at AOSD'07, Vancouver, Canada, 2007

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
Boston, MA, 1995

[Gao et al., 2004] Gao, S., Deng, Y., Yu, H., He, X., Beznosov, K., Cooper, K.:
Applying Aspect-Orientation in Designing Security Systems: a Case Study. In:
16th International Conference on Software Engineering (SEKE'04), Banff, Canada,
2004

[Garcia et al., 2005] Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U.,
Lucena, C., von Staa, A.: Modularizing design patterns with aspects: a quantitative
study. In: Proceedings of the 4th international Conference on Aspect-Oriented
Software Development (AOSD'05), Chicago, Illinois, 2005

[Gauthier & .Pont, 1970] Gauthier, R., .Pont, S.: Designing Systems Programs.
Prentice-Hall, Englewood Cliffs, N.J., 1970

[Glass, 2002] Glass, R.L.: Facts and Fallacies of Software Engineering. Addison
Wesley, 2002

[Godil & Jacobsen, 2005] Godil, I., Jacobsen, H.: Horizontal decomposition of
Prevayler. In: The 2005 Conference of the Centre For Advanced Studies on
Collaborative Research, Toronto, Canada, 2005

[Gradecki & Lesiecki, 2003] Gradecki, J.D., Lesiecki, N.: Mastering AspectJ:
Aspect-Oriented Programming in Java. Wiley, Canada, 2003

[Grand, 2002] Grand, M.: Patterns in Java, Volume 1: A Catalog of Reusable
Design Patterns Illustrated with UML. John Wiley & Sons, 2002

[Gray, 2002] Gray, J.: Aspect-Oriented Domain-Specific Modeling: A Generative
Approach Using a Meta-weaver Framework. PhD thesis. Vanderbilt University,
Nashville, TN, 2002

 144

REFERENCES

[Greenwood et al., 2007] Greenwood, P., Bartolomei, T.T., Figueiredo, E., Dósea,
M., Garcia, A.F., Cacho, N., Sant'Anna, C., Soares, S., Borba, P., Kulesza, U.,
Rashid, A.: On the Impact of Aspectual Decompositions on Design Stability: An
Empirical Study. In: 21st European Conference on Object-Oriented Programming
(ECOOP'07), Berlin, Germany, 2007

[Griswold et al., 2006] Griswold, W.G., Sullivan, K., Song, Y., Shonle, M.,
Tewari, N., Cai, Y., Rajan,H.: Modular Software Design with Crosscutting
Interfaces. IEEE Software, vol. 23(1), pp. 51-60, 2006

[Groher & Baumgarth, 2004] Groher, I., Baumgarth, T.: Aspect-Orientation from
Design to Code. In: Workshop on Early Aspects at AOSD'04, Lancaster, UK, 2004

[Groher & Schulze, 2003] Groher, I., Schulze, S.: Generating Aspect Code from
UML Models. In: 3rd Workshop on Aspect-Oriented Modeling with UML at
AOSD'03, Boston, MA, 2003

[Gudmundson & Kiczales, 2001] Gudmundson, S., Kiczales, G.: Addressing
practical software development issues in AspectJ with a pointcut interface. In:
Advanced Separation of Concerns, 2001

[Guyomarc'h & Guéhéneuc, 2005] Guyomarc'h, J., Guéhéneuc, Y.: On the
Impact of Aspect-Oriented Programming on Object-Oriented Metrics. In:
Workshop on Quantitative Approaches in Object-Oriented Software Engineering at
ECOOP'05, Glasgow, UK, 2005

[Hachani & Bardou, 2002] Hachani, O., Bardou, D.: Using Aspect-Oriented
Programming for Design Patterns Implementation. In: Workshop Reuse in Object-
Oriented Information Systems Design, Montpellier, France, 2002

[Hachani, 2003] Hachani, O.: Aspect/UML: extending UML metamodel for
Aspect. Research report, France, 2003

[Hachani, 2003] Hachani, O.: AspectJ/UML: extending UML metamodel for
AspectJ. Research report, France, 2003

[Hancock & Algozzine, 2006] Hancock, D.R., Algozzine, R.: Doing Case Study
Research: A Practical Guide for Beginning Researchers. Teachers College Press,
New York, 2006

[Hanenberg & Unland, 2001] Hanenberg, S., Unland, R.: Using and Reusing
Aspects in AspectJ. In: Workshop on Advanced Separation of Concerns in Object-
Oriented Systems at OOPSLA'01, Tampa Bay, Florida, 2001

[Hannemann & Kiczales, 2002] Hannemann, J., Kiczales, G.: Design Pattern
Implementation in Java and AspectJ. In: 17th Conference on Object-Oriented
Programming Systems, Languages, and Applications, Seattle, 2002

[Hatton, 1998] Hatton, L.: Does OO sync with how we think? IEEE Software,
15(3), pp. 46-54, May/Jun 1998

[Havinga, 2009] Havinga, W.: On the design of software composition mechanisms
and the analysis of composition conflicts. PhD thesis, University of Twente, 2009

[Hevner et al., 2004] Hevner, A. R., March, S. T., Park, J., Ram, S.: Design
Science in Information Systems Research. MIS Quarterly, vol. 28(1), pp. 75-105,
2004

[Hitz & Montazeri, 1995] Hitz, M., Montazeri, B.: Measuring Coupling and
Cohesion in Object-Oriented Systems. In: 3rd International Symposium on Applied
Corporate Computing, Monterrey, Mexico, 1995

 145

REFERENCES

[Hoffman & Eugster, 2007] Hoffman, K., Eugster, P.: Bridging Java and AspectJ
through explicit join points. In: 5th international Symposium on Principles and
Practice of Programming in Java (PPPJ'07), Lisboa, Portugal, 2007

[Hohenstein & Jäger, 2009] Hohenstein, U.D., Jäger, M.C.: Using aspect-
orientation in industrial projects: appreciated or damned?. In: Proceedings of the
8th ACM international Conference on Aspect-Oriented Software Development
(AOSD'09), Charlottesville, Virginia, 2009

[Hopkins & Horan, 1995] Hopkins, T., Horan, B.: Smalltalk: An Introduction to
Application Development Using VisualWorks. Prentice Hall, 1995

[Hovsepyan et al., 2010] Hovsepyan, A., Scandariato, R., Van Baelen, S., Berbers,
Y., Joosen, W.: From aspect-oriented models to aspect-oriented code?: the
maintenance perspective. In: 9th international Conference on Aspect-Oriented
Software Development (AOSD'10), Rennes and Saint-Malo, France, 2010

[Hunt, 1997] Hunt, J.: Smalltalk and Object Orientation. Springer, 1997

[IEEE Std 610.12-1990, 1990] IEEE Std 610.12-1990, IEEE Standard Glossary of
Software Engineering Terminology, 1990

[IEEE Std. 1061, 1998] IEEE Std. 1061, Standard for a Software Quality Metrics
Methodology, revision. Piscataway, NJ, 1998

[ISO/IEC 14764-1999, 1999] ISO/IEC 14764-1999, Software Engineering-
Software Maintenance, 1999

[Jacobson & Ng, 2005] Jacobson, I., Ng, P.: Aspect-Oriented Software
Development with Use Cases. Upper Saddle River: Addison-Wesley, 2005

[Jalote, 2005] Jalote, P.: An Integrated Approach to Software Engineering.
Springer, New York, 2005

[Kan, 2002] Kan, S.H.: Metrics and models in software quality engineering.
Addison Wesley, Boston, 2002

[Kande et al., 2002] Kande, M.M., Kienzle, J., Strohmeier, A.: From AOP to
UML: Towards an Aspect-Oriented Architectural Modeling Approach. Technical
Report, Swiss Federal Institute of Technology Lausanne, Switzerland, 2002

[Kande, 2003] Kande, M.M.: A Concern-Oriented Approach to Software
Architecture. PhD thesis. Swiss Federal Institute of Technology, Lausanne,
Switzerland, 2003

[Kästner et al., 2007] Kästner, C., Apel, S., Batory, D. A Case Study
Implementing Features using AspectJ. In: 11th International Conference of
Software Product Line Conference (SPLC'07), Kyoto, Japan, 2007

[Katz, 2004] Katz, S.: Diagnosis of harmful aspects using regression verification.
In: Workshop on Foundations of Aspect-Oriented Languages at AOSD'04,
Lancaster, UK, 2004

[Kellens et al., 2006] Kellens, A., Mens, K., Brichau, J., Gybels, K.: Managing the
Evolution of Aspect-Oriented Software with Model-based Pointcuts. In: 20th
European Conference on Object-Oriented Programming (ECOOP'06), Nantes,
France, 2006

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., Griswold, W. G.: An Overview of AspectJ. In: 15th European Conference on
Object-Oriented Programming (ECOOP'01), Budapest, Hungary, 2001

 146

REFERENCES

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Cristina Lopes, C., Loingtier, J., Irwin, J.: Aspect-Oriented Programming. In:
LNCS, vol. 1241, pp. 220-242. Springer, Heidelberg, New York, 1997

[Kniesel et al., 2004] Kniesel, G., Rho, T., Hanenberg, S.: Evolvable Pattern
Implementations Need Generic Aspects. In: Workshop on Reflection, AOP and
Meta-Data for Software Evolution at ECOOP'04, Oslo, Norway, 2004

[Koppen & Störzer , 2004] Koppen, C., Störzer ,M.: PCDiff: Attacking the fragile
pointcut problem. In: European Interactive Workshop on Aspects in Software,
Berlin, Germany, 2004

[Kouskouras et al., 2008] Kouskouras, K.G., Chatzigeorgiou, A., Stephanides, G.:
Facilitating software extension with design patterns and Aspect-Oriented
Programming. In: J. Syst. Softw. vol. 81(10), pp. 1725-1737, October 2008

[Kuhlemann, 2007] Kuhlemann, M.: Design Patterns Revisited. School of
Computer Science University of Magdeburg, 2007

[Kuhn, 1962] Kuhn, T.S.: The Structure of Scientific Revolutions. University of
Chicago Press, 1962

[Kulesza et al., 2006] Kulesza, U., Sant'Anna, C., Garcia, A., Coelho, R., von
Staa, A., Lucena, C.: Quantifying the effects of aspect-oriented programming: A
maintenance study. In: 22nd IEEE International Conference on Software
Maintenance (ICSM '06), Dublin, Ireland, 2006

[Laddad, 2003] Laddad, R.: AspectJ in Action. Manning, 2003

[Lagaisse et al., 2004] Lagaisse, B., Joosen, W., De Win, B.: Managing semantic
interference with aspect integration contracts. In: 5th workshop on Software
engineering properties of languages and aspect technologies (SPLAT'07) at
AOSD'07, Vancouver, Canada, 2004

[Larkin & Wilson, 1993] Larkin, D., Wilson, G.: Object-Oriented Programming
and the Objective-C Language. Addison Wesley, 1993

[Leavens & Clifton, 2007] Leavens, G.T., Clifton, C.: Multiple concerns in
aspect-oriented language design: a language engineering approach to balancing
benefits, with examples. In: 5th Workshop on Software Engineering Properties of
Languages and Aspect Technologies (SPLAT'07), Vancouver, 2007

[Lemos et al., 2006] Lemos, O.A., Junqueira, D.C., Silva, M.A., Fortes, R.P.,
Stamey, J.: Using aspect-oriented PHP to implement crosscutting concerns in a
collaborative web system. In: 24th Annual ACM International Conference on
Design of Communication, Myrtle Beach, South Carolina, 2006

[Lesiecki, 2002] Lesiecki, N.: Improve modularity with aspect-oriented
programming. http://www.ibm.com/developerworks/library/j-aspectj/, 2002

[Lewis, 2004] Lewis, W.E.: Software Testing and Continuous Quality
Improvement. Auerbach, 2004

[Li & Henry, 1995] Li, W., Henry, S.: An empirical study of maintenance
activities in two object-oriented systems. Journal of Software Maintenance vol.
7(2), pp. 131-147, 1995

[Lientz et al., 1978] Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics
of application software maintenance. In: Commun. ACM, vol. 12, pp. 466-471,
June 1978

 147

REFERENCES

[Lions et al., 2002] Lions, J.M., Simoneau, D., Pilette, G., Moussa, I.: Extending
OpenTool/UML Using Metamodeling: an AOP Case Study. In: 2nd Workshop on
AOM with UML at UML'02, Dresden, Germany, 2002

[MacCormack et al., 2007] MacCormack, A., Rusnak, J., Baldwin, C.: The
Impact of Component Modularity on Design Evolution: Evidence from the
Software Industry. Harvard Business School Technology & Operations Mgt. Unit
Research Paper, vol. No. 08-038, 2007

[Madeyski & Szała, 2007] Madeyski, L., Szała, Ł.: Impact of aspect-oriented
programming on software development efficiency and design quality: an empirical
study. IET Software Journal, vol. 1(5), pp. 180-187, 2007

[Mancoridis et al., 1998] Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y.,
Gansner, E.R.: Using Automatic Clustering to Produce High-Level System
Organizations of Source Code. In: 6th international Workshop on Program
Comprehension (IWPC'98), Ischia, Italy, 1998

[March & Smith, 1995] March, S. T., Smith, G.: Design and Natural Science
Research on Information Technology. In: Decision Support Systems, no. 15(4), pp.
251-266, 1995

[Marin et al., 2007] Marin, M., Moonen, L., van Deursen, A.: An Integrated
Crosscutting Concern Migration Strategy and its Application to JHotDraw. In:
IEEE International Conference on Source Code Analysis and Manipulation
(SCAM'07), Paris, France, 2007

[Marot & Wuyts, 2010] Marot, A., Wuyts, R.: Composing aspects with aspects.
In: 9th International Conference on Aspect-Oriented Software Development
(AOSD'10), Rennes, France, 2010

[Mauch & Birch, 2003] Mauch, J.E., Birch, J.W.: Guide to the successful thesis
and dissertation (5th Edition). Marcel Dekker, Inc., New York, 2003

[McAulay et al., 2002] McAulay, L., Doherty, N., Keval, N.: The Stakeholder
Dimension in Information Systems Evaluation. Journal of Information Technology
, vol. 17, pp. 241-255, 2002

[McGrath, 2005] McGrath, K.: Doing critical research in information systems: a
case of theory and practice not informing each other. Information Systems Journal
15(2), pp. 85-101, 2005

[McIlroy, 1968] McIlroy, M.D.: Mass produced software components. In: The
NATO Software Engineering Conferences, pp. 138-155, Garmisch, Germany, 1968

[McKee, 1984] McKee, J.: Maintenance as a function of design. In: National
Computer Conference and Exposition (AFIPS'84), Las Vegas, Nevada, 1984

[Mens et al., 2004] Mens, T., Mens, K., Tourwé, T.: Software Evolution and
Aspect-Oriented Software Development, a cross-fertilisation. ERCIM special issue
on Automated Software Engineering, Vienna, Austria, 2004

[Meyer, 1989] Meyer, B.: Object-oriented Software Construction, Prentice Hall,
1989

[Meyers, 1988] Meyers, W.: Interview with Wilma Osborne: developers must
design in maintainability. IEEE Software vol. 5(3), pp. 104-105, 1988

[Mezini & Ostermann, 2004] Mezini, M., Ostermann, K.: Untangling
Crosscutting Models with Caesar. In: Filman, E.E., Elrad, T., Clarke, S., Aksit, M.
(Ed.): Aspect-Oriented Software Development. Addison Wesley, Canada, 2004

 148

REFERENCES

[Miles, 2004] Miles, R.: AspectJ Cookbook. O'Reilly, 2004

[Milton, 1985] Milton, J.A.: Research Methodologies and MIS Research. In:
Research Methods in Information Systems, E. Mumford et al. (Ed.), Elsevier
Science Publishers B.V., Amsterdam, Holland, pp. 103-117, 1985

[Monteiro & Fernandes, 2004] Monteiro, M.P., Fernandes, J.M.: Pitfalls of
AspectJ Implementations of Some of the Gang-of-Four Design Patterns. In:
Desarrollo de Software Orientado a Aspectos (DSOA'04), Málaga, Spain, 2004

[Mortensen et al., 2010] Mortensen, M., Ghosh, S., Bieman, J.: Aspect-Oriented
Refactoring of Legacy Applications: An Evaluation. In: IEEE Trans. Software
Engineering vol. 99, 2010

[Mortensen, 2009] Mortensen, M.: Improving Software Maintainability through
Aspectualization. PhD thesis, Department of Computer Science, Colorado State
University, CO, 2009

[Mosconi et al., 2008] Mosconi, M., Charfi, A., Svacina, J.: Applying and
Evaluating AOM for Platform Independent Behavioral UML Models. In: 7th
International Conference on Aspect-Oriented Software Development (AOSD'08),
Brussels, Belgium, 2008

[Munoz et al., 2007] Munoz, F., Barais, O., Baudry, B.: Vigilant usage of aspects.
In: Workshop on Aspects, Dependencies and Interactions at ECOOP'07, Berlin,
Germany, 2007

[Munoz et al., 2008] Munoz, F., Baudry, B., Barais, O.: Improving maintenance in
AOP through an interaction specification framework. In: 24th IEEE International
Conference on Software Maintenance, Beijing, China, 2008

[Munoz et al., 2008] Munoz, F., Baudry, B., Delamare, R., Le Traon, Y.: Inquiring
the usage of aspect-oriented programming: an empirical study. In: 25th
International conference on Software Maintentance (ICSM'09), Alberta, Canada,
2008

[Murphy & Schwanninger, 2006] Murphy, G., Schwanninger, Ch.: Guest Editors'
Introduction: Aspect-Oriented Programming. In: IEEE Software, vol. 23(1), pp. 20-
23, Jan./Feb. 2006

[Niehaves & Stahl, 2006] Niehaves, B., Stahl, B. C.: Criticality, Epistemology,
and Behaviour vs. Design - IS Research across different sets of paradigms. In: 14th
European Conference on Information Systems (ECIS'06), Göteborg, 2006

[Noda & Kishi, 2001] Noda, N., Kishi, T.: Implementing Design Patterns Using
Advanced Separation of Concerns. In: Workshop on Advanced SoC in OO
Systems at OOPSLA'01, Tampa Bay, Florida, 2001

[Object Management Group, 2009] Object Management Group, UML,
Infrastructure, V2.2. Document Number: formal/2009-02-04,
http://www.omg.org/spec/UML, 2009

[Object Management Group, 2009] Object Management Group, UML,
Superstructure, V2.2. Document Number: formal/2009-02-02,
http://www.omg.org/spec/UML, 2009

[Ongkingco et al., 2006] Ongkingco, N., Avgustinov, P., Tibble, J., Hendren, L.,
de Moor, O., Sittampalam, G.: Adding open modules to AspectJ. In: 5th
International Conference on Aspect-Oriented Software Development (AOSD'06),
Bonn, Germany, 2006

 149

REFERENCES

[Oprisan, 2008] Oprisan, A.: Aspect Oriented Implementation of Design Patterns
using Metadata. MSc thesis, University of Joensuu, 2008

[Orlikowski & Iacono, 2001] Orlikowski, W., Iacono, C.: Desperately Seeking the
"IT" in IT Research - A Call to Theorizing the IT Artifact. Information Systems
Research, no. 12(2), pp. 121-134, 2001

[Ossher, 1987] Ossher, H.: A Mechanism for Specifying the Structure of Large
Layered Systems. In: Shriver, B., Wegner, P. (eds.): Research Directions in Object-
Oriented Programming. MIT Press, Cambridge, MA, pp. 219-252, 1987

[Ostermann, 2003] Modules for Hierarchical and Crosscutting Models. PhD
thesis, Technische Universität Darmstadt, 2003

[Ostermann et al., 2011] Ostermann, K., Giarrusso, P.G., Kastner, Ch., Rendel,
T.: Revisiting Information Hiding: Reflections on Classical and Nonclassical
Modularity. In: 25th European Conference on Object-Oriented Programming
(ECOOP'11), Lancaster, UK, 2011

[Parnas et al., 1984] Parnas, D.L., Clements, P.C., Weiss, D.M.: The modular
structure of complex systems. In Proceedings of the 7th International Conference
on Software Engineering, Orlando, Florida, 1984

[Parnas, 1972] Parnas, D.L.: On the criteria to be used in decomposing systems
into modules. Communications of the ACM, vol. 15(12), pp. 1053-1058. ACM
Press, New York, 1972

[Perepletchikov et al., 2007] Perepletchikov, M., Ryan, C., Frampton, K.:
Cohesion Metrics for Predicting Maintainability of Service-Oriented Software. In:
7th International Conference on Quality Software (QSIC'07), Portland, Oregon,
2007

[Peters & Pedrycz, 2000] Peters, J.F., Pedrycz, W.: Software Engineering: An
Engineerng Approach. John Wiley & Sons, Inc., 2000

[Pigoski, 1997] Pigoski, T.M.: Practical Software Maintenance. Wiley Computer
Publishing, 1997

[Piveta & Zancanella, 2003] Piveta, E.K., Zancanella, L.C.: Observer Pattern
using Aspect-Oriented Programming. In: 3rd Latin American Conference on
Pattern Languages of Programming, Porto de Galinhas, Brazil, 2003

[Pohl et al., 2008] Pohl, Ch., Charfi, A., Gilani, W., Göbel, S., Grammel, B.,
Lochmann, H., Rummler, A., Spriestersbach, A.: Adopting Aspect-Oriented
Software Development in Business Application Engineering. In: 7th International
Conference on Aspect-Oriented Software Development (AOSD'08), Brussels,
Belgium, 2008

[Ponnambalam, 1997] Ponnambalam, K.: Characterization and Selection of Good
Object-Oriented Design. In: Workshop on OO Design at OOPSLA'97, Atlanta,
Georgia, 1997

[Pressman, 2005] Pressman, R.S.: Software Engineering: A Practitioner's
Approach. McGraw-Hill, New York, 2005

[Przybyłek, 2007] Przybyłek, A.: Post object-oriented paradigms in software
development: a comparative analysis. In: International Multiconference on
Computer Science and Information Technology (IMCSIT'07), Wisła, Poland, 2007

 150

REFERENCES

[Przybyłek, 2008a] Przybyłek, A.: Separation of crosscutting concerns at the
design level: An extension to the UML metamodel. In: International
Multiconference on Computer Science and Information Technology (IMCSIT'08),
Wisła, Poland, 2008

[Przybyłek, 2008b] Przybyłek, A.: The Decorator pattern revisited: an aspect-
oriented solution. In: 7th International Conference on Perspectives in Business
Informatics Research (BIR'08), Sopot, Poland, 2008

[Przybyłek, 2009] Przybyłek, A.: Beyond object-oriented software development.
In: (eds.) Hussain, M.A.: Advances in Computer Science and IT, In-Tech, 2009

[Przybyłek, 2010a] Przybyłek, A.: An empirical assessment of the impact of AOP
on software modularity. In: 5th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE'10), Athens, Greece, 2010

[Przybyłek, 2010b] Przybyłek, A.: Design Patterns with AspectJ, generics, and
reflective programming. In: 5th International Conference on Software and Data
Technologies (ICSOFT'10), Athens, Greece, 2010

[Przybyłek, 2010c] Przybyłek, A.: What is wrong with AOP? In: 5th International
Conference on Software and Data Technologies (ICSOFT'10), Athens, Greece,
2010

[Przybyłek, 2011a] Przybyłek, A.: Impact of aspect-oriented programming on
software modularity. In: Doctoral Symposium at 15th European Conference on
Software Maintenance and Reengineering (CSMR'11), Oldenburg, 2011

[Przybyłek, 2011b] Przybyłek, A.: Where the truth lies: AOP and its impact on
software modularity. In: Giannakopoulou, D., Orejas, F. (eds.) ETAPS 2011.
LNCS, vol. 6603, pp. 447-461. Springer, Heidelberg, 2011

[Przybyłek, 2011c] Przybyłek, A.: Systems Evolution and Software Reuse in
Object-Oriented Programming and Aspect-Oriented Programming. In: Bishop, J.,
Vallecillo, A. (eds.) TOOLS 2011. LNCS 6705, pp. 163-178. Springer, Heidelberg,
2011

[Rashid et al., 2010] Rashid, A., Cottenier, T., Greenwood, P., Chitchyan, R.,
Meunier, R., Coelho, R., Sudholt, M., Joosen, W.: Aspect-Oriented Software
Development in Practice: Tales from AOSD-Europe. IEEE Computer vol. 43(2),
pp. 19-26, Feb. 2010

[Rashid & Moreira, 2006] Rashid, A., Moreira, A.: Domain Models are NOT
Aspect Free. In: 9th International Conference on Model Driven Engineering
Languages and Systems (MoDELS'06), Genova, Italy, 2006

[Raymond, 2003] Raymond, E.S.: The Art of Unix Programming. Addison
Wesley, 2003

[Recebli, 2005] Recebli, E.: Pure aspects. MSc thesis, Oxford University, 2005

[Reina et al., 2004] Reina, A. M., Torres, J., Toro, M.: Towards Developing
Generic Solutions with Aspects. In: 5th Aspect-Oriented Modeling Workshop at
UML'04, Lisbon, Portugal, 2004

[Rentrop, 2006] Rentrop, J.: Software Metrics as Benchmarks for Source Code
Quality of Software Systems. MSc thesis, Universiteit van Amsterdam, 2006

 151

REFERENCES

[Ribeiro et al., 2007] Ribeiro, M., Dósea, M., Bonifácio, R., Neto, A.C., Borba, P.,
Soares, S.: Analyzing Class and Crosscutting Modularity with Design Structure
Matrixes. In: Proceedings of the 21th Brazilian Symposium on Software
Engineering (SBES'07), Joao Pessoa, Brazil, 2007

[Riel, 1996] Riel, A.J.: Object-oriented Design Heuristics, Addison-Wesley,
Boston, 1996

[Robillard & Weigand-Warr, 2005] Robillard, M.P., Weigand-Warr, F.:
ConcernMapper: simple view-based separation of scattered concerns. In:
Workshop on Eclipse technology eXchange at OOPSLA'05, San Diego, CA, 2005

[Ryder & Tip, 2001] Ryder, B.G., Tip, F.: Change impact analysis for object-
oriented programs. In: 3rd ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, Snowbird, Utah, 2001

[Sant'Anna et al., 2003] Sant'Anna, C., Garcia, A., Chavez, C. Lucena, C., von
Staa, A.: On the Reuse and Maintenance of Aspect-Oriented Software: An
Assessment Framework. In: 17th Brazilian Symposium on Software Engineering
(SEES'03), Manaus, Brazil, 2003

[Sant'Anna, 2008] Sant'Anna, C.N.: On the Modularity of Aspect-Oriented
Design: A Concern-Driven Measurement Approach. Phd thesis, Pontifical Catholic
University of Rio de Janeiro, Brazil, 2008

[Sapir et al., 2002] Sapir, N., Tyszberowicz, S., Yehudai, A.: Extending UML
with Aspect Usage Constraints in the Analysis and Design Phases. In: 2nd
Workshop on Aspect-Oriented Modeling with UML at UML'02, Dresden,
Germany, 2002

[Schach, 2007] Schach, S.R.: Object-Oriented and Classical Software Engineering,
McGraw-Hill, Singapore, 2007

[Schauerhuber, 2007] Schauerhuber, A. et.al.: A Survey on Web Modeling
Approaches for Ubiquitous Web Applications. Technical Report, Vienna
University of Technology, 2007

[Schön, 1983] Schön, D. A.: The Reflective Practitioner: How Professionals Think
in Action. New York: Basic Books, 1983

[Seaman, 1999] Seaman, C.B.: Qualitative Methods in Empirical Studies of
Software Engineering. IEEE Trans. Softw. Eng. 25(4), pp. 557-572, 1999

[Shen & Zhao, 2007] Shen, H., Zhao, J.: An evaluation of coupling metrics for
Aspect-Oriented software. In: Technical Report SJTU-CSE-TR-07-04, Center for
Software Engineering, SJTU, Shanghai, China, 2007

[Simon, 1996] Simon, H.A.: The Sciences of the Artificial (3rd ed.). Cambridge:
MIT Press, 1996

[Soares et al., 2002] Soares, S., Laureano, E., Borba, P.: Implementing
Distribution and Persistence Aspects with AspectJ. In: 17th ACM conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA'02), Seattle, Washington, 2002

[Sommerville, 2010] Sommerville, I.: Software engineering (9th Edition). Addison
Wesley, 2010

[Staijen, 2010] Staijen, T.: Graph-Based Specification and Verification for Aspect-
Oriented Languages. PhD thesis, Centre for Telematics and Information
Technology, Netherlands, 2010

 152

REFERENCES

[Standish, 1984] Standish, T.: An essay on software reuse. In: IEEE Transactions
on Software Engineering vol. 10(5), pp. 494-497, 1984

[Steimann, 2005] Steimann, F.: Domain Models Are Aspect Free. In: 8th
International Conference on Model Driven Engineering Languages and Systems
(MoDELS'05), Jamaica, 2005

[Steimann, 2006] Steimann, F.: The paradoxical success of aspect-oriented
programming. SIGPLAN Not. 41(10), pp. 481-497, Oct. 2006

[Stein et al., 2002] Stein, D., Hanenberg, S., Unland, R.: An UML-based Aspect-
Oriented Design Notation. In: Proceedings of the AOM with UML Workshop at
AOSD'02, Enschede, Netherlands, 2002

[Stein et al., 2002] Stein, D., Hanenberg, S., Unland, R.: Designing Aspect-
Oriented Crosscutting in UML. In: Proceedings of the AOM with UML Workshop
at AOSD'02, Enschede, Netherlands, 2002

[Stevens et al., 1974] Stevens, W., G., Myers, L. Constantine: Structured Design.
In: IBM Systems Journal, 13(2), pp. 115-139, 1974

[Stochmiałek, 2006] Stochmiałek, M.: AOPmetrics. http://aopmetrics.tigris.org,
2006

[Storey et al., 1999] Storey, M.D., Fracchia, F.D., Müller, H.A.: Cognitive design
elements to support the construction of a mental model during software
exploration. J. Syst. Softw. vol. 44(3), pp. 171-185, 1999

[Störzer et al., 2006] Störzer, M., Eibauer, U., Schöffmann, S.: Aspect Mining for
Aspect Refactoring: An Experience Report. In: Workshop on Towards Evaluation
of Aspect Mining at ECOOP'06, Nantes, France, 2006

[Störzer, 2007] Störzer, M.: Impact Analysis for AspectJ - A Critical Analysis and
Tool-based Approach to AOP. PhD thesis, School of Computer Science and
Mathematics, University of Passau, Germany, 2007

[Sullivan et al., 2005] Sullivan, K., Griswold, W., Song, Y., Chai, Y., Shonle, M.,
Tewari, N., Rajan, H.: On the criteria to be used in decomposing systems into
aspects. In: Symposium on the Foundations of Software Engineering joint with the
European Software Engineering Conference, Lisbon, Portugal, 2005

[Sullivan et al., 2005] Sullivan, K., Griswold, W., Song, Y., Chai, Y., Shonle, M.,
Tewari, N., Rajan, H.: Information hiding interfaces for aspect-oriented design. In:
10th European Software Engineering Conference Held Jointly with 13th ACM
SIGSOFT international Symposium on Foundations of Software Engineering,
Lisbon, Portugal, 2005

[Tarr et al., 1999] Tarr, P., Ossher, H., Harrison, W., Sutton, S.M.: N degrees of
separation: multi-dimensional separation of concerns. In: 21st International
Conference on Software Engineering (ICSE'09), Los Angeles, California, 1999

[Taveira et al., 2010] Taveira, J.C., Oliveira, H., Castor, F., Soares, S.: On Inter-
Application Reuse of Exception Handling Aspects. In: Workshop on Empirical
Evaluation of Software Composition Techniques at AOSD'10, Rennes, France,
2010

[Taveira, 2009] Taveira, J.C. et al.: Assessing Intra-Application Exception
Handling Reuse with Aspects. In: 23rd Brazilian Symposium on Software
Engineering (SBES'09), Fortaleza, Brazil, 2009

 153

REFERENCES

[Tourwé et al., 2003] Tourwé, T., Brichau, J., Gybels, K.: On the Existence of the
AOSD-Evolution Paradox. In: Workshop on Software-engineering Properties of
Languages for Aspect Technologies (SPLAT) at AOSD'03, Boston, Massachusetts,
2003

[Trindade Leite & Marks, 2005] Trindade Leite, F.C., Marks, A.: Case Study
Research in Agricultural and Extension Education: Strengthening the
Methodology. In: Journal of International Agricultural and Extension Education,
vol. 12(1), 2005

[Tsang et al., 2000] Tsang, S.L., Clarke, S., Baniassad, E.L.: Object Metrics for
Aspect Systems: Limiting Empirical Inference Based on Modularity. Technical
report, Trinity College, Dublin, 2000

[Tsang et al., 2004] Tsang, S.L., Clarke, S., Baniassad, E.L.: An evaluation of
aspect-oriented programming for java-based real-time systems development. In:
7th IEEE International Symposium on Object-oriented Real-time distributed
Computing (ISORC'04), Vienna, Austria, 2004

[Walker et al., 2003] Walker, D., Zdancewic, s., Ligatti, J.: A Theory of Aspects.
In: 8th ACM SIGPLAN International Conference on Functional Programming,
Uppsala, Sweden, 2003

[Walsham, 2005] Walsham, G.: Learning about Being Critical. Information
Systems Journal 15(2), pp. 111-117, 2005

[Wampler, 2007] Wampler, D.: Noninvasiveness and Aspect-Oriented Design:
Lessons from Object-Oriented Design Principles. In: 6th International Conference
on Aspect-Oriented Software Development (AOSD'07), Vancouver, British
Columbia, 2007

[Wirth, 1971] Wirth, N.: Program Development by Stepwise Refinement.
Commun. ACM 14(4), pp. 221-227, 1971

[Wirth, 1974] Wirth, N.: On the Composition of Well-Structured Programs. ACM
Comput. Surv. 6(4), pp. 247-259, 1974

[Wohlin et al., 2000] Wohlin, C., Runeson, P., Höst, M.: Experimentation in
software engineering: an introduction. Kluwer Academic, 2000

[Wulf & Shaw, 1973] Wulf, W., Shaw, M.: Global variable considered harmful.
SIGPLAN Notices 8:2, pp. 28-34, 1973

[Yan et al., 2004] Yan, H., Kniesel, G., Cremers, A.: A Meta Model and Modeling
Notation for AspectJ. In: 5th Workshop on Aspect-Oriented Modeling at UML'04,
Lisbon, Portugal, 2004

[Yin, 2003] Yin, R.K.: Case Study Research: Design and Methods. Sage
Publications, Inc., California, 2003

[Yourdon & Constantine, 1979] Yourdon, E., Constantine, L.L.: Structured
Design: Fundamentals of a Discipline of Computer Program and System Design.
Prentice-Hall, New York, 1979

[Yourdon, 1992] Yourdon, E.: Decline and Fall of the American Programmer.
Prentice Hall, 1992

[Zakaria et al., 2002] Zakaria, A. A., Hosny, H., Zeid, A.: A UML Extension for
Modeling Aspect-Oriented Systems. In: 2nd Workshop on Aspect-Oriented
Modeling with UML at UML'02, Dresden, Germany, 2002

 154

REFERENCES

[Zelkowitz, 1978] Zelkowitz, M.V.: Perspectives on software engineering. ACM
Comput. Surveys, vol. 10, pp. 197-216, June 1978

[Zhang & Jacobsen, 2004] Zhang, C., Jacobsen, H.: Resolving Feature
Convolution in Middleware Systems. In: 19th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 188-205,
Vancouver, Canada, 2004

[Zhang et al., 2008] Zhang, S., Gu, Z., Lin, Y., Zhao, J.: Change impact analysis
for AspectJ programs. In: 24th IEEE International Conference on Software
Maintenance, Beijing, China, 2008

[Zhao, 2002] Zhao, J.: Towards a Metrics Suite for Aspect-Oriented Software. In:
Technical Report SE-136-25, Information Processing Society of Japan, 2002

[Zhao, 200] Zhao, J.: Measuring Coupling in Aspect-Oriented Systems. In: 10th
International Software Metrics Symposium, Chicago, IL, 2004

 155

APPENDIX I: EXTENDED ABSTRACT (POLISH)

1 Appendix I: Extended abstract (Polish)

AAnnaalliizzaa wwppłłyywwuu ppaarraaddyyggmmaattuu
aassppeekkttoowweeggoo nnaa jjaakkoośśćć kkoodduu źźrróóddłłoowweeggoo

((rroozzsszzeerrzzoonnee ssttrreesszzcczzeenniiee))

A.1 Wprowadzenie

Jedną z istotnych motywacji rozwoju technik wytwarzania oprogramowania jest

dążenie do coraz lepszej separacji zagadnień. Terminu separacja zagadnień po raz

pierwszy użył Dijkstra [1974] na określenie izolacji poszczególnych zagadnień w

osobnych modułach w celu skoncentrowania uwagi tylko na jednym zagadnieniu w

danym momencie oraz lokalizacji przyszłych modyfikacji [Dijkstra, 1974].

Pionierzy inżynierii oprogramowania już w latach 70. przedstawiali separację

zagadnień jako wiodące kryterium modularyzacji oprogramowania [Parnas, 1972].

Modularność oznacza, że oprogramowanie składa się z luźno powiązanych

modułów o wysokiej kohezji (tzn. silnych związkach wewnętrznych), ukrytej

implementacji, udostępniających swe usługi poprzez dobrze wyspecyfikowane

interfejsy [Yourdon & Constantine, 1979; Meyer, 1989]. Parnas [1972] traktuje

modularyzację jako sposób na poprawę elastyczności i czytelności

oprogramowania przy jednoczesnym skróceniu czasu jego wytwarzania. Jako

korzyści z modularyzacji wymienia również możliwość dokonania znacznych

modyfikacji w wybranym module bez potrzeby modyfikacji innych oraz

możliwość studiowania systemu poprzez analizę pojedynczych modułów,

niezależnie od siebie. Z kolei Wirth [1971; 1974] pisze, że modularność

determinuje łatwość, z jaką oprogramowanie może być rozszerzone o nowe

wymagania lub dostosowane do zmian w środowisku uruchomieniowym.

Praktyka pokazała, że tradycyjne paradygmaty programowania nie radzą

sobie z separacją tzw. zagadnień przecinających (crosscutting concerns) [Tarr et

al., 1999]. Zagadnienia przecinające dotyczą kwestji technicznych takich jak

obsługa sytuacji wyjątkowych czy synchronizacja oraz wymagań

niefunkcjonalnych takich jak autoryzacja czy zapewnienie trwałości obiektów. W

tradycyjnych językach programowania implementacja takich zagadnień musi być,

z powodu braku odpowiednich abstrakcji programistycznych, zagnieżdżona w

 156

APPENDIX I: EXTENDED ABSTRACT (POLISH)

implementacji modułów będących rezultatem dekompozycji funkcjonalnej.

Prowadzi to do dwóch niepożądanych zjawisk – przeplatania oraz rozpraszania

kodu (code tangling and scattering). Przeplatanie kodu występuje, gdy

implementacje różnych zagadnień współistnieją w ramach jednego modułu.

Natomiast rozpraszanie występuje, gdy podobne fragmenty implementacji tego

samego zagadnienia pojawiają się w wielu modułach. W celu rozwiązania tych

problemów, Kiczales wraz z zespołem zaproponowali paradygmat aspektowy

[Kiczales et. al., 1997]. Pierwszym, a jednocześnie do dzisiejszego dnia najbardziej

popularnym językiem aspektowym jest AspectJ. Język ten został stworzony przez

zespół Kiczalesa [Kiczales et al., 2001] jako rozszerzenie Javy. Obecnie rozwijany

jest jako projekt Eclipse.

Paradygmat aspektowy (aspect-oriented programming) wprowadza nową

jednostkę dekompozycji – aspekt. Aspekt podobnie jak klasa może posiadać

atrybuty i metody. Dodatkowo, aby implementować zagadnienia przecinające,

aspekt może definiować rady (advices), punkty przecięcia (pointcuts), oraz

deklaracje między-typowe (inter-type declarations). Punkt przecięcia to

konstrukcja programistyczna służąca do specyfikacji zbioru punktów złączeń

(joinpoints) oraz ekstrakcji kontekstu punktu złączenia. Punkt złączenia to

identyfikowalna lokalizacja w programie, do której można się odwołać z poziomu

aspektu. Do typowych punktów złączeń należą: wywołanie oraz wykonanie

metody, odczytanie oraz zapisanie wartości atrybutu, rzucenie wyjątku. Rada to

sekwencja instrukcji, które zostaną wykonane we wszystkich punktach złączeń

wskazanych przez punkt przecięcia skojarzony z daną radą. AspectJ definiuje trzy

główne rodzaje rad: before, after i around. Są one aktywowane odpowiednio przed,

po lub zamiast punktu złączenia. Deklaracja między-typowa umożliwia zmianę

struktury klasy poprzez dodanie do niej z zewnątrz (spoza definicji klasy) nowych

atrybutów oraz metod. Ponadto można zmienić nadklasę danej klasy oraz

zadeklarować jakie interfejsy dana klasa implementuje.

W celu lepszego zrozumienia nowych konstrukcji rozważmy następujący

przykład. Mamy za zadanie dodać nowe zagadnienie do istniejącego

oprogramowania. Nowe zagadnienie polega na rejestrowaniu (logowaniu)

wykonania każdej metody w systemie i pomiarze czasu jej trwania. W

paradygmacie obiektowym, moglibyśmy zrealizować to zadanie poprzez

modyfikację każdej metody w następujący sposób: na początku metody odczytać i

zapamiętać czas systemowy; przed wyjściem z metody wysłać na standardowe

 157

APPENDIX I: EXTENDED ABSTRACT (POLISH)

wyjście różnicę między bieżącym czasem systemowym a czasem zapamiętanym.

Rozwiązanie to charakteryzuje się dwoma niekorzystnymi zjawiskami: (I)

implementacja zagadnienia logowania przeplata się z implementacją

podstawowego zagadnienia realizowanego przez metodę (jej efektu

funkcjonalnego); (II) implementacja zagadnienia logowania rozproszona jest po

wszystkich metodach w całym systemie. Innym sposobem jest stworzenie dla

każdej klasy odpowiadającej jej podklasy i przesłonięcie (override) każdej metody

w ten sposób, aby przed i po jej wykonaniu odczytać czas systemowy. Różnicę

czasu należy podobnie jak w poprzednim rozwiązaniu przesłać na standardowe

wyjście. Dodatkową uciążliwością tego rozwiązania jest potrzeba wprowadzenia

inwazyjnych modyfikacji w miejscach, gdzie tworzone są instancje klas

systemowych – należy utworzyć instancje klas implementujących logowanie.

Rozwiązanie to nadal charakteryzuje się rozproszeniem implementacji zagadnienia

logowania. Poniższy listing przedstawia implementację przedstawionego wyżej

problemu w AspectJ.

public aspect TimeLogging { //1
 pointcut eachMethod(): execution(* *.*(..)); //2
 Object around(): eachMethod() { //3
 long start = System.currentTimeMillis(); //4
 Object tmp = proceed(); //5
 long end = System.currentTimeMillis(); //6
 long time = en //7 d - start;
 Signature sig=thisJoinPointStaticPart.getSignature();//8
 System.out.println(sig +" - "+ time); //9
 return tmp; //10
 }
}

W wierszu 2 definiujemy punkt przecięcia eachMethod() jako wykonanie

dowolnej metody z dowolnej klasy. W wierszu 3 definiujemy radę skojarzoną z

uprzednio zdefiniowanym punktem przecięcia. Rada ta „przechwyci” próbę

wykonania dowolnej metody i w miejscu oryginalnej metody wykona własne

instrukcje. W wierszu 5 za pomocą specjalnej instrukcji AspectJ wykonujemy

oryginalną metodę. W wierszu 8 z kontekstu punktu złączenia odczytujemy

sygnaturę oryginalnej metody. Rozwiązanie to jest wolne zarówno od zjawiska

przeplatania jak i rozpraszania kodu gdyż sprowadza się do dodania nowego

modułu, bez potrzeby ingerencji w kodzie modułów już istniejących.

Paradygmat aspektowy przynosi jednak nowe problemy, nieznane

dotychczas w produkcji oprogramowania. Nowe konstrukcje wprowadzają nowe

typy zależności międzymodułowych, które mogą utrudnić analizę kodu. Ponadto

 158

APPENDIX I: EXTENDED ABSTRACT (POLISH)

języki aspektowe powinny posiadać dwie cechy [Filman & Friedman, 2000]:

kwantyfikowalność (quantification) oraz nieświadomość (obliviousness).

Kwantyfikowalność oznacza możliwość wskazania wielu nielokalnych miejsc w

kodzie, do których zostanie zastosowana pewna instrukcja. Nieświadomość

oznacza, że miejsca te nie muszą w żaden sposób być na to przygotowane.

Kwantyfikowalność oraz nieświadomość mogą powodować problemy z

modularnym wnioskowaniem [Leavens & Clifton, 2007; Figueiredo et al., 2008].

Istnieje zatem istotny z punktu widzenia inżynierii oprogramowania problem

badawczy – ocena bilansu korzyści i strat wynikających z stosowania paradygmatu

aspektowego.

A.2 Cel rozprawy
Podstawowym celem pracy jest ocena paradygmatu aspektowego z perspektywy

możliwości tworzenia lepszej jakości kodu. Jakość kodu będzie rozważana w

kategoriach: modularności, możliwości dalszego rozwoju (evolvability) oraz

możliwości ponownego użyciu (reusability). Jako punkt odniesienia do oceny

paradygmatu aspektowego wybrano paradygmat obiektowy, z dwóch względów:

(I) paradygmat obiektowy zajmuje obecnie dominującą pozycję w produkcji

oprogramowania; (II) paradygmat aspektowy czerpie z dorobku paradygmatu

obiektowego i stanowi jego rozszerzenie.

A.3 Teza rozprawy

Nowo proponowane paradygmaty zyskują znaczenie, jeżeli są efektywniejsze od

istniejących w rozwiązywaniu problemów, które uznano za wystarczająco istotne

[Kuhn, 1962]. Dotychczasowe publikacje w większości prezentują stanowisko, że

paradygmat aspektowy, ze względu na możliwość lepszej separacji zagadnień,

umożliwia lepszą modularyzację oprogramowania [Figueiredo et. al., 2008; Filho

et. al., 2006; Garcia et. al., 2005; Greenwood et. al., 2007; Sant’Anna et. al., 2003;

Soares et. al., 2002], a co za tym idzie lepszą utrzymywalność (maintainability)

oraz możliwość ponownego użycia [Beltagui, 2003; Sant'Anna et al., 2003; Mens

et al., 2004; Zhao, 2004; Lemos et. al., 2006]. Stanowisko to nie jest jednak

poparte przekonującymi dowodami naukowymi. Błędnie przyjmowane jest

 159

APPENDIX I: EXTENDED ABSTRACT (POLISH)

założenie, że separacja na poziomie leksykalnym (dobrze wspierana przez

paradygmat aspektowy) jest tożsama z separacją zagadnień w rozumieniu Dijkstry

i Parnasa.

Punktem wyjścia dla badań, których wyniki przedstawia niniejsza

rozprawa była krytyka powyższego założenia oraz związane z nią obserwacje

(przedstawione w [Przybylek, 2010a, 2010b, 2011b]), że konstrukcje

programistyczne proponowane przez paradygmat aspektowy mogą niekorzystnie

skutkować w zakresie modularności kodu programu.

Wyniki badań przedstawionych w niniejszej dysertacji argumentują na

rzecz następującej tezy:

I. Paradygmat aspektowy umożliwia separację zagadnień przecinających

na poziomie struktury kodu, narusza jednak podstawowe zasady

modularyzacji, takie jak: niskie skojarzenie międzymodułowe, ukrywanie

informacji, specyfikacja interfejsów.

Liczne badania [Bieman & Kang, 1995; Hitz & Montazeri, 1995; Chaumun et al.,

2000; Bowen et al., 2007; MacCormack et al., 2007; Perepletchikov et al., 2007;

Breivold et al., 2008] pokazują, że lepsza modularność przekłada się na lepszą

utrzymywalność oraz możliwość ponownego użycia oprogramowania. Wyniki te

dotyczą badań nad oprogramowaniem tworzonym w oparciu o paradygmat

strukturalny bądź obiektowy i nie ma pewności, czy te same prawidłowości

zachodzą dla paradygmatu aspektowego. Możliwość badań nad utrzymywalnością

i ponownym użyciem oprogramowania aspektowego jest ograniczona z powodu

braku danych pochodzących z rzeczywistych zastosowań paradygmatu

aspektowego w skali przemysłowej. W związku z tym przeprowadzono badania w

środowisku laboratoryjnym, ograniczając się do akademickich przykładów.

Badania te wykazały, że paradygmat obiektowy w większości przypadków okazał

się bardziej efektywny. Wykryto również kilka sytuacji, w których widoczna była

wyższość paradygmatu aspektowego. Skala tych badań była jednak zbyt wąska,

aby sformułować definitywne konkluzje. Otrzymane wyniki wystarczają jednak do

sformułowania dodatkowej tezy niniejszej rozprawy:

II. W ograniczonym zakresie możliwe jest zastosowanie programowania

aspektowego do poprawy modyfikowalności oraz możliwości ponownego

użycia oprogramowania.

 160

APPENDIX I: EXTENDED ABSTRACT (POLISH)

A.4 Znaczenie podjętego problemu

Istotnym obszarem inżynierii oprogramowania są badania ukierunkowane na

poprawę jakości oprogramowania z perspektywy programisty, w tym również

redukcję czasu oraz kosztów jego wytwarzania i utrzymania. Naukowcy poszukują

zatem sposobów na lepszą modularyzację systemów, aby ułatwić przyszłe

modyfikacje i zwiększyć możliwość ponownego użycia raz wytworzonych

modułów. Paradygmat aspektowy, gdyby spełnił związane z nim nadzieje, byłby

kolejnym krokiem milowym w rozwoju technik programowania.

Obecnie, paradygmat aspektowy jest tematem licznych dyskusji w

społeczności akademickiej. Zajął również trwała pozycję na prestiżowych

konferencjach naukowych, m.in. na SPLASH (dawniej OOPSLA), ICSE, ACM

SAC, ECOOP. Doczekał się także dedykowanej mu corocznej konferencji – AOSD

(http://aosd.net). Tematem przewodnim konferencji AOSD’12 będzie modularność

oprogramowania. Ponadto dostawcy oprogramowania tacy jak IBM, Motorola,

Siemens i SAP wyrazili chęć poznania i stosowania paradygmatu aspektowego.

Naukowcy SAP zaprezentowali nawet harmonogram adopcji paradygmatu

aspektowego [Pohl et al., 2008].

Uzasadnione jest więc stwierdzenie, że paradygmat aspektowy jest obecnie

w centrum zainteresowania środowisk badawczych zajmujących się technikami

budowy oprogramowania oraz budzi zainteresowanie przemysłu informatycznego.

A.5 Metody badawcze

Główną metodą badawczą wykorzystaną w niniejszej dysertacji jest studium

przypadków [Yin, 2003]. Jednostkami analiz są systemy informatyczne

posiadające zarówno implementację obiektową jak i aspektową. Obie

implementacje są porównywane pod względem skojarzenia (coupling) oraz kohezji

(cohesion) tworzących je modułów.

Kolejną zastosowaną metodą badawczą jest kontrolowany eksperyment

[Basili et al., 1999]. W środowisku laboratoryjnym wytworzono przykładowy

program, a następnie poddano go ewolucji poprzez inkrementalną implementację

nowych wymagań. W ramach tego procesu zbadano wpływ zastosowanego

 161

http://aosd.net/

APPENDIX I: EXTENDED ABSTRACT (POLISH)

paradygmatu (obiektowego i aspektowego) na możliwość rozwoju oraz ponowne

wykorzystanie oprogramowania.

Oba badania empiryczne (studium przypadków oraz eksperyment

kontrolowany) przeprowadzono posługując się podejściem GQM [Basili et al.,

1994] do zdefiniowania celów badawczych oraz kontroli zakresu badań.

W niniejszej rozprawie zastosowano także badania aktywne [Davison et

al., 2004; Easterbrook et al., 2007]. Badania te sformalizowano wykorzystując

paradygmat „design-science” [Hevner et al., 2004]. W ich wyniku:

• stworzono notację rozszerzającą UML o możliwości prezentacji aspektów

na diagramie klas; notacja ta została wykorzystana do wizualizacji kodu

AspectJ w rozdziale 5 oraz 7;

• zaproponowano nową implementację wybranych wzorców projektowych;

propozycje te ułatwiają użycie wzorców w różnych kontakstach.

A.6 Badania pokrewne

Prace najbardziej zbliżone do badań zaprezentowanych w niniejszej rozprawie

można podzielić na cztery kategorie: (I) propozycje metryk skojarzenia

międzymodułowego (coupling) odpowiednich dla paradygmatu aspektowego; (II)

badania oceniające wpływ paradygmatu aspektowego na modularność

oprogramowania; (III) badania oceniające wpływ paradygmatu aspektowego na

utrzymywalność oraz ponowne użycie oprogramowania; oraz (IV) prace

rozszerzające UML o możliwość modelowania aspektów.

Dotychczas powstało wiele metryk przeznaczonych do oceny skojarzenia

modułów w oprogramowaniu aspektowym. Jednakże wartości uzyskane z tych

metryk nie mogą być porównywane z wartościami uzyskanymi z metryk

obiektowych (w szczególności z metryki CBO zdefiniowanej przez Chidamber &

Kemerer [1994]). Zhao [2004], Ceccato & Tonella [2004], Shen & Zhao [2007],

and Burrows et al. [2010a; 2010b] zaproponowali metryki mierzące konkretny

rodzaj skojarzenia i dlatego nienadające się do bezpośredniego porównywania z

metryką CBO. Z kolei metryka zaproponowana przez Sant’Anna et al. [2003] nie

uwzględnia wszystkich rodzajów skojarzeń. W szczególności pomija tzw.

zależności semantyczne. Zaproponowana w niniejszej rozprawie metryka CBOAO

mierzy łączne skojarzenie modułu i jest odpowiednikiem metryki CBO.

 162

APPENDIX I: EXTENDED ABSTRACT (POLISH)

Istnieje wiele badań koncentrujących się na porównaniu modularyzacji

obiektowej z aspektową w oparciu o metryki skojarzenia i kohezji. Badania te

różnią się od prezentowanych w niniejszej rozprawie z kilku powodów. Garcia et

al. [2005], Filho et al. [2006], Hoffman & Eugster [2007], Figueiredo et al. [2008],

i Castor et al. [2009] porównują globalne wartości uzyskane z metryki skojarzenia

oraz kohezji, podczas gdy w rozprawie porównywane są wartości przeciętne.

Porównywanie wartości globalnych jest nieuprawnione, ponieważ wówczas im

większy system (więcej modułów) tym większa wartość metryk. Natomiast

modularność jest ortogonalna do rozmiaru systemu i w związku z tym metryki

skojarzenia oraz kohezji nie powinny być od rozmiaru zależne.

Sant’Anna et al. [2003] i Garcia et al. [2005] stosują metryki, które nie

uwzględniają zależności semantycznych, a więc pomijają bardzo istotny obszar

zależności międzymodułowych. Pozostałe badania empiryczne można podzielić na

dwie grupy. W pierwszej grupie [Filho et al., 2006; Greenwood et al., 2007;

Madeyski & Szała, 2007; Figueiredo et al., 2008; Castor et al., 2009] nie

uwzględniono nowych rodzajów zależności wprowadzanych przez punkty

przecięcia. W drugiej grupie [Tsang et al., 2004; Hoffman & Eugster, 2007]

skojarzenia wprowadzane przez punkty przecięcia są uwzględniane tylko wówczas,

gdy skojarzony moduł jest jawnie wymieniany w definicji punktu przecięcia.

Sant’Anna et al. [2003], Garcia et al. [2005], Filho et al. [2006],

Greenwood et al. [2007], Figueiredo et al. [2008] i Castor et al. [2009] mierzą

także przeplatanie i rozproszenie kodu używając metryk zdefiniowanych przez

Sant’Anna et al. [2003]. Otrzymane przez nich rezultaty świadczą, że

implementacje aspektowe są lepsze od ich obiektowych odpowiedników. Rezultaty

te były jednak przewidywalne i nieuniknione, ponieważ leksykalna separacja

zagadnień jest podstawą paradygmatu aspektowego.

Istnieje również wiele badań ilościowych oceniających wpływ

paradygmatu aspektowego na utrzymywalność oraz ponowne wykorzystanie

oprogramowania. Różnią się one od badań zaprezentowanych w niniejszej

rozprawie głównie stosowanymi metrykami. Kulesza et al. [2006] ocenia

obiektową i aspektową implementacje serwisu internetowego przed i po dokonaniu

scenariuszy zmian. Do oceny stosują metryki przeplatania i rozproszenia kodu,

skojarzenia, kohezji oraz rozmiaru. Metryki te mierzą modularność, a nie

utrzymywalność oprogramowania. Sant’Anna et al. [2003] symuluje scenariusze

zmian w systemie wielo-agentowym. Dla każdego scenariusza trudność

 163

APPENDIX I: EXTENDED ABSTRACT (POLISH)

modyfikacji oceniana jest liczbą modułów, operacji, oraz linii kodu, które zostały

dodane, zmienione lub skopiowane. Podobne podejście stosowane jest przez

Figueiredo et al. [2008] do oceny stabilności oprogramowania SPL (software

product lines), które przechodzi siedem scenariuszy zmian. W badaniach

zaprezentowanych w niniejszej rozprawie wykorzystano jedną metrykę do oceny

ewolucyjności (liczba atomowych zmian niezbędna do realizacji scenariusza) i

jedną do oceny możliwości ponownego użycia oprogramowania (stosunek linii

kodu wykorzystanych z poprzedniej wersji do całkowitej liczby linii kodu w

programie). Bartsch & Harrison [2008] mierzą ile czasu zajmuje wykonanie

scenariusza zmian na przykładzie sklepu internetowego. Takie podejście może być

uważane za uzupełniające w stosunku do prezentowanego.

Istnieją także badania jakościowe oceniające wpływ paradygmatu

aspektowego na utrzymywalność oraz ponowne wykorzystanie oprogramowania

[Hanenberg & Unland, 2001; Koppen & Störzer, 2004; Griswold et al., 2006;

Kästner et al., 2007; Munoz et al., 2008; Mortensen, 2009; Taveira et al., 2009;

Taveira et al., 2010]. Niniejsza rozprawa stanowi ich rozwinięcie i uzupełnienie.

Hannemann & Kiczales [2002] stworzyli aspektowe implementacje 23 wzorców

projektowych skatalogowanych przez Gamma et al. [1995]. Dla 12 wzorców

znaleźli implementację nadającą się do ponownego wykorzystania. W niniejszej

rozprawie przyjęto ich doświadczenia za punkt startowy i zastosowano AspecJ

wraz z typami generycznymi i programowaniem refleksyjnym. Używając tych

technik poprawiono implementację trzech wzorców.

W ostatniej dekadzie powstało wiele rozszerzeń UML umożliwiających

modelowanie aspektów. Propozycje zaproponowane przez [Evermann, 2007;

Fuentes & Sanchez, 2007; Gao et al., 2004; Groher & Baumgarth, 2004; Groher &

Schulze, 2003; Mosconi et al., 2008; Stein et al., 2002a; Stein et al., 2002b; Zakaria

et al., 2002] rozszerzają UML w oparciu o profile. Ich autorzy modelują aspekt

jako stereotypowaną klasę, a radę jako stereotypowaną metodę. Ponieważ UML od

wersji 2.0 wymaga semantycznej zgodności między typem stereotypowanym i

zbudowanym na jego podstawie typem nowym, takie podejście jest nieuprawnione,

ponieważ ani aspekt nie jest klasą, ani rada nie jest metodą. Rozszerzenie

proponowane w tej rozprawie czerpie z rozwiązań opartych na tworzeniu

metamodelu [Lions et al., 2002; Hachani, 2003a; Hachani, 2003b; Kande, 2003;

Yan et al., 2004]. W odróżnieniu od propozycji rozszerzających UML 1.x [Lions

et al., 2002; Hachani, 2003a; Hachani, 2003b], proponowane rozszerzenie bazuje

 164

APPENDIX I: EXTENDED ABSTRACT (POLISH)

na UML 2.2. W przeciwieństwie do propozycji modyfikujących istniejący

metamodel UML [Hachani 2003a; 2003b], proponowane rozszerzenie dodaje

wyłącznie nowe metaklasy. Z kolei w odróżnieniu od [Hachani, 2003a; Hachani,

2003b; Yan et al., 2004] proponowane rozszerzenie dostarcza dedykowaną notację

graficzną dla nowych konstrukcji wprowadzonych przez paradygmat aspektowy.

A.7 Wkład rozprawy w rozwój dziedziny

Poniżej omówiono główne obszary, w których wyniki zawarte w niniejszej

rozprawie wnoszą istotny wkład w rozwój dziedziny związanej z

zastosowaniem paradygmatu aspektowego do wytwarzania i rozwijania

oprogramowania.

A.7.1 Ocena wpływu paradygmatu aspektowego na
modularność oprogramowania

Wykazano, że stosowane dotychczas aspektowe metryki skojarzenia wyliczone dla

implementacji aspektowej nie mogą być porównywane z metryką CBO wyliczoną

dla implementacji obiektowej tego samego systemu. Wynika to z tego, że nie

uwzględniają one wszystkich rodzajów zależności skojarzenia (coupling

dependencies) wprowadzanych przez konstrukcje aspektowe. Na bazie krytyki

istniejących metryk oraz odwołując się do idei leżącej u podstaw metryki CBO

(jeżeli do zrozumienia modułu X niezbędne jest uprzednie przeanalizowanie

modułu Y to moduł X jest skojarzony z modułem Y), zaproponowano nową

metrykę skojarzenia CBOAO, która jest pełnym odpowiednikiem metryki CBO.

Następnie wykorzystano metrykę skojarzenia CBOAO oraz metrykę kohezji

LCOM (zaadoptowaną na potrzeby paradygmatu aspektowego przez Ceccato &

Tonella [2004]) do porównania modularności implementacji obiektowych z

implementacjami aspektowymi 11 rzeczywistych systemów (Tabela 1) oraz 23

wzorców projektowych (Rysunek 1).

 165

APPENDIX I: EXTENDED ABSTRACT (POLISH)

Tabela 1. Wartości metryk rozmiaru oraz modularności dla 11 rzeczywistych
systemów

I II III IV V VI
 VS LOC CBOAO LCOM

OO 233 3424 0,81 1,86
AO 242(18) 3350 0,95 2,17Telestrada
Δ 4% -2% 18% 16%

OO 345 17798 2,32 20,63
AO 382(37) 17914 2,76 20,19PetStore
Δ 11% 1% 19% -2%

OO 257 18876 5,76 71,31
AO 261(4) 19423 - 73,90CVS
Δ 2% 3% - 4%

OO 123 8708 1,84 1,53
AO 126(3) 9041 - 1,68EImp
Δ 2% 4% - 10%

OO 283 18083 7,61 16,01
AO 330(23) 20101 7,41 22,67Checkstyle
Δ 17% 11% -3% 42%

OO 88 6096 3,19 9,24
AO 103(12) 5768 4,20 7,63Health

Watcher
Δ 17% -5% 32% -17%

OO 398 22724 3,57 75,04
AO 438(31) 23167 3,66 65,70JHotDraw
Δ 10% 2% 3% -12%

OO 370 50492 3,31 67,24
AO 391(7) 51207 3,42 67,00Hypercast
Δ 6% 1% 4% -0,4%

OO 167 5043 1,87 9,31
AO 168(55) 4179 2,56 7,01Prevayler
Δ 1% -17% 37% -25%

OO 340 41651 4,38 126,31
AO 452(107) 38770 4,73 78,21Berkeley DB
Δ 33% -6,9% 8% -38%

OO 402 80736 4,11 226,91
AO 413(25) 76210 4,12 247,30HSQLDB
Δ 3% -6% 0,3% 9%

Kolumna III (Vocabulary Size) przedstawia liczbę modułów składających się na daną
implementację. Dodatkowo dla implementacji aspektowych podano w nawiasie liczbę
aspektów. Kolumna IV (Lines of Code) prezentuje liczbę linii kodu. Wiersze oznaczone
‘Δ’ zawierają procentową różnicę między wartością metryki dla implementacji obiektowej i
aspektowej. Pomimo, że dokładne wartości CBOAO nie są znane dla aspektowej
implementacji CVS i EImp, wartości te są wyższe niż w odpowiadającym im
implementacjach obiektowych.

W przypadku rzeczywistych systemów, tylko jedna implementacja aspektowa

charakteryzowała się mniejszym średnim skojarzeniem niż odpowiadająca jej

 166

APPENDIX I: EXTENDED ABSTRACT (POLISH)

implementacja obiektowa, podczas gdy dziesięć implementacji miało średnie

skojarzenie większe. Implementacje aspektowe wykazały się lepszą1 średnią

kohezją w sześciu przypadkach, podczas gdy obiektowe w pięciu.

W przypadku wzorców aspektowych przewaga paradygmatu obiektowego

była jeszcze bardziej widoczna (im krótsze słupki tym implementacja lepsza).

Tylko dla jednego wzorca średnie skojarzenie było identyczne dla obu

implementacji, natomiast dla pozostałych wzorców moduły w implementacjach

obiektowych były luźniej powiązane. Średnia kohezja była wyższa dla dziewięciu

implementacji obiektowych i dla sześciu aspektowych. Dla pozostałych ośmiu

wzorców obie implementacje miały identyczną średnią kohezję.

Rysunek 1. Wartości metryk modularności dla 23 wzorców projektowych.

1 lepsza oznacza wyższą kohezję, czyli taką, która ma mniejszą wartość LCOM

 167

APPENDIX I: EXTENDED ABSTRACT (POLISH)

Ponieważ zastosowane metryki nie wyczerpują wszystkich wymiarów

modularności przedyskutowano także inne kryteria. W efekcie uzasadniono, że

paradygmat aspektowy istotnie narusza podstawowe zasady modularyzacji

głoszone przez Parnasa, Dijkstrę oraz innych guru inżynierii oprogramowania. W

szczególności paradygmat aspektowy:

• promuje programowanie niestrukturalne;

• narusza enkapsulację;

• wprowadza interfejsy bez jawnej specyfikacji;

• utrudnia modularne wnioskowanie;

• prowadzi do naruszenia kontraktu między modułem bazowym a jego

klientami;

• eskaluje skojarzenia między modułami.

Przeanalizowano również propozycje nowych języków aspektowych, które starają

się przywrócić modularność kosztem redukcji nieświadomości (obliviousness). W

propozycjach tych podejście aspektowe traci jednak w dużej mierze możliwość

bezinwazyjnej modyfikacji istniejących modułów, a jednocześnie powraca problem

rozpraszania oraz przeplatania kodu.

A.7.2 Ocena wpływu paradygmatu aspektowego na
możliwości rozwoju oraz ponownego użycia
oprogramowania

W celu oceny wpływu paradygmatu aspektowego na możliwości rozwoju oraz

ponownego użycia oprogramowania przeprowadzono kontrolowany eksperyment,

w którym stworzono prosty system implementujący problem producenta-

konsumenta. Następnie system ten poddano inkrementalnym modyfikacjom

polegającym na realizacji nowych zagadnień przecinających. Na każdym etapie

stworzono zarówno wersję obiektową jak i aspektową. Okazało się, że

implementacja aspektowa jest lepsza tylko w przypadku odłączania pewnych

zagadnień przecinających oraz w przypadku implementacji zagadnienia logowania,

które jest sztandarowym przykładem zastosowania paradygmatu aspektowego.

Ocenę poszczególnych implementacji dokonano przy pomocy dwóch metryk.

Pierwsza metryka (AC – Atomic Changes) zliczała liczbę atomowych modyfikacji

niezbędnych do transformacji z jednej wersji oprogramowania do kolejnej. Druga

metryka (RL – Reuse Level) mierzyła stosunek linii kodu wykorzystanych z

poprzedniej wersji oprogramowania do całkowitej liczby linii kodu. Linie kodu

 168

APPENDIX I: EXTENDED ABSTRACT (POLISH)

uznawano za ponownie wykorzystane wyłącznie w przypadkach, kiedy ponownie

używano modułu, w którym zostały pierwotnie umieszczone. Rezultaty

eksperymentu przedstawia Tabela 2.

Tabela 2. Wartości metryk AC oraz RL dla poszczególnych scenariuszy

AC RL Scenariusz
OOP AOP OOP AOP

Dodanie zagadnienia synchronizacji 7 19 0,71 0,66
Dodanie znacznika czasu 8 19 0,85 0,67
Dodanie zagadnienia logowania 9 6 0,88 0,95
Dodanie nowych metod dostępowych 9 16 0,73 0,58
Usunięcie logowania oraz znakowania 5 3 0,74 1,00

Z przeprowadzonego eksperymentu uzyskano następujące doświadczenie. W

przypadku kodu aspektowego programista analizujący pewną klasę w izolacji, nie

jest w stanie stwierdzić, czy modyfikacja implementacji tej klasy (bez naruszania

interfejsu) narusza jakieś aspekty. Ponadto, definiując punkty przecięcia

programista musi posiadać globalną wiedzę o strukturze programu. Ponieważ

definicje punktów przecięcia opierają się na strukturalnych własnościach

programu, definicje te mogą stać się niepoprawne w trakcie dalszej ewolucji

programu. Ponadto, w większości przypadków aspekty nie mogą być generyczne,

ponieważ muszą zawierać informacje specyficzne dla konkretnego użycia, np.

modyfikowane klasy. Istotnie ogranicza to możliwość ponownego wykorzystania

raz zdefiniowanych aspektów.

Zbadano również możliwości poprawy aspektowych implementacji

wzorców projektowych zaproponowanych przez Hannemann & Kiczales [2002]

oraz Borella [2003]. Wykorzystując typy generyczne stworzono nową

implementację wzorca Dekorator, która niemal w całości może być wykorzystana

w różnych kontekstach. Jedynym zadaniem programisty pozostaje zdefiniowanie w

subaspekcie jakie zdarzenia mają powodować dekorację oraz wskazanie

dekorowanych obiektów. Zaproponowano także generyczną implementację wzorca

Proxy, jednak w tym przypadku korzyści w odniesieniu do implementacji

zaproponowanej przez Hannemann & Kiczales [2002] nie są aż tak znaczące.

Ponadto, stosując AspectJ wraz z programowaniem refleksyjnym stworzono

domyślną implementację klonowania dla wzorca Prototyp.

Wszystkie zaproponowane implementacje wzorców projektowych można

bezinwazyjnie włączyć do istniejącego oprogramowania, definiując w

subaspektach jedynie specyficzne informacje o uczestnikach wzorca.

 169

APPENDIX I: EXTENDED ABSTRACT (POLISH)

Wpływ paradygmatu aspektowego na utrzymywalność (maintainability)

nie jest oczywisty. Z jednej strony lokalizacja kodu związanego z danym wzorcem

w ramach aspektu może poprawić utrzymywalność. Z drugiej strony wyższa

złożoność poznawcza (cognitive complexity) utrudnia zrozumienie kodu.

Wyjaśnienie tych zależności wymaga dalszych szeroko zakrojonych badań

eksperymentalnych.

A.7.3 Rozszerzenie metamodelu UML na potrzeby
modelowania aspektów

Zaproponowano rozszerzenie metamodelu UML o elementy umożliwiające

dołączenie aspektów do diagramu klas. Nowe elementy specyficzne dla

paradygmatu aspektowego zdefiniowano w analogiczny sposób jak zdefiniowany

jest metamodel UML. Możliwość wizualizacji kodu aspektowego poprawia

śledzenie zależności (traceability) pomiędzy projektem oprogramowania a jego

implementacją. Zaproponowaną notację wykorzystywano do graficznej

reprezentacji programów będących przedmiotem badań.

A.8 Upubliczniony dorobek badań

Wyniki badań przedstawione w niniejszej rozprawie zostały już opublikowane na

dziewięciu międzynarodowych konferencjach oraz jako rozdział w książce. Tabela

3 wiąże te publikacje z poszczególnymi rozdziałami rozprawy.

Tabela 3. Pokrycie publikacjami rozdziałów rozprawy

Publikacja Rozdział
[Przybyłek, 2007] 2, 3
[Przybyłek, 2008a] 4
[Przybyłek, 2008b] 7.2
[Przybyłek, 2009] 2, 3
[Przybyłek, 2010a] 6, 5.2
[Przybyłek, 2010b] 7.2
[Przybyłek, 2010c] 3.3
[Przybyłek, 2011a] 1, 8
[Przybyłek, 2011b] 6, 5.2
[Przybyłek, 2011c] 7.1, 5.3

 170

APPENDIX I: EXTENDED ABSTRACT (POLISH)

A.9 Podsumowanie

Wśród badaczy paradygmatu aspektowego rozpowszechnione jest przekonanie, że

poprawia on modularność oprogramowania w odniesieniu do paradygmatu

obiektowego. Niniejsza dysertacja podważa to przekonanie zarówno na gruncie

teoretycznym (rozdział 3.3) jak i empirycznym (rozdział 6). Podstawą

przeprowadzonej krytyki jest odwołanie się do pojęcia separacji zagadnień w

rozumieniu Dijkstry i Parnasa oraz wykazanie, że nie może ono być utożsamione z

leksykalną separacją zagadnień. W obecnym ujęciu, paradygmat aspektowy

poprzez zapobieganie przeplataniu i rozpraszaniu kodu poprawia jedynie separację

leksykalną. Natomiast, jak to zademonstrowano w rozprawie, paradygmat

aspektowy narusza podstawowe zasady modularyzacji wypracowane przez

Parnasa, Dijkstrę, Yourdona, Constantine, Meyera oraz inne autorytety w inżynierii

oprogramowania.

W ten sposób wykazano pierwszą część tezy niniejszej rozprawy, która brzmi

następująco:

Paradygmat aspektowy umożliwia separację zagadnień przecinających

na poziomie struktury kodu, narusza jednak podstawowe zasady

modularyzacji, takie jak: niskie skojarzenie międzymodułowe,

ukrywanie informacji, specyfikacja interfejsów.

Panuje również przeświadczenie, że paradygmat aspektowy poprawia

utrzymywalność oraz możliwości ponownego użycia oprogramowania. Badania

eksperymentalne mające na celu weryfikację tego stwierdzenia (rozdział 7) ani

przeprowadzona analiza rezultatów badań innych naukowców (rozdział 7.1.7) nie

potwierdzają takiego stanowiska. W przeprowadzonym i opisanym w rozprawie

kontrolowanym eksperymencie, podczas implementacji nowych wymagań tylko w

jednym przypadku na cztery wersja aspektowa okazała się lepsza od obiektowej.

Jednak ograniczony rozmiar badań nie pozwala na stawianie definitywnych

konkluzji o wyższości któregokolwiek paradygmatu. Wystarczająco mocne

badania będą możliwe do zrealizowania dopiero wtedy, gdy paradygmat aspektowy

zostanie zaakceptowany przez przemysł. Niemniej, w warunkach laboratoryjnych

zaobserwowano także sytuacje (np. implementacja zagadnienia logowania,

implementacja niektórych wzorców projektowych), w których implementacja

aspektowa zapewniała lepszą modyfikowalność oraz możliwość ponownego

wykorzystania oprogramowania. Uzasadnia to drugą tezę tezy niniejszej rozprawy:

 171

APPENDIX I: EXTENDED ABSTRACT (POLISH)

W ograniczonym zakresie możliwe jest zastosowanie

programowania aspektowego do poprawy modyfikowalności oraz

możliwości ponownego użycia oprogramowania.

 172

	1 Introduction
	1.1 Overview
	1.2 Problem statement
	1.3 Justification for the importance and the relevance of the research
	1.4 Research approach
	1.5 Research methods
	1.6 Related work
	1.7 Dissertation outline

	2 Software modularity
	2.1 Criteria for software modularity
	2.2 From structured to object-oriented programming
	2.3 Tyranny of the dominant decomposition
	2.4 Impact on maintainability and reusability
	2.5 Weaknesses of object-oriented programming – running examples
	2.5.1 Example 1 - mathematics software
	2.5.2 Example 2 – Learning Management System

	2.6 Summary

	3 Aspect-oriented programming
	3.1 Basic concepts
	3.2 Running examples
	3.2.1 Example 1 - mathematics software
	3.2.2 Example 2 – learning management system

	3.3 Aspects vs Modularization
	3.3.1 AOP promotes unstructured programming
	3.3.2 AOP breaks information hiding
	3.3.3 AOP leaves interfaces implicit
	3.3.4 AOP makes modular reasoning difficult
	3.3.5 AOP breaks the contract between a base module and its clients
	3.3.6 AOP escalates coupling
	3.3.7 Impact on maintainability and reusability

	3.4 Composition Filters - an alternative approach
	3.5 Summary

	4 AoUML: a proposal for aspect-oriented modelling
	4.1 Introduction
	4.2 Motivation for our proposal
	4.3 Research methodology
	4.4 Our extension to the UML metamodel
	4.5 The AoUML package
	4.5.1 Aspect
	4.5.2 CrosscuttingFeature
	4.5.3 StructuralCrosscuttingFeature
	4.5.4 Introduction
	4.5.5 ParentDeclaration
	4.5.6 ExecutedAtPointcutCrosscuttingFeature
	4.5.7 Advice
	4.5.8 Pointcut
	4.5.9 CustomCompilationMessage
	4.5.10 Soft
	4.5.11 Crosscut

	4.6 Illustrative examples
	4.6.1 The Singleton pattern
	4.6.2 The Visitor pattern
	4.6.3 Summary

	5 Adaptation of object-oriented metrics
	5.1 Software measurement
	5.2 Modularity metrics
	5.2.1 Existing OO metrics
	5.2.2 Existing AO metrics
	5.2.3 Proposed coupling metric – CBOAO
	5.2.4 Coupling and cohesion at the system level

	5.3 Evolvability and reusability metrics
	5.4 Summary

	6 Impact of aspect-oriented programming on software modularity
	6.1 Research methodology
	6.2 Selected programs
	6.3 Experimental results: 11 real-world systems
	6.4 Experimental results: the 23 GoF design patterns
	6.5 Deeper insight into modularity
	6.6 Threats to validity
	6.6.1 Construct validity
	6.6.2 Internal validity
	6.6.3 External validity

	6.7 Related work
	6.8 Summary

	7 Impact of aspect-oriented programming on systems evolution and software reuse
	7.1 Development of a producer-consumer system
	7.1.1 Research methodology
	7.1.2 The producer-consumer system
	7.1.3 Maintenance scenarios
	7.1.4 Empirical results
	7.1.5 Lessons learned
	7.1.6 Threats to Validity
	7.1.7 Related work

	7.2 Revision of the Gang-of-Four design patterns
	7.2.1 Introduction
	7.2.2 Research methodology
	7.2.3 The Decorator pattern
	7.2.4 The Proxy pattern
	7.2.5 The Prototype pattern
	7.2.6 Discussion
	7.2.7 Related work

	7.3 Summary

	8 Summary
	8.1 Conclusions
	8.2 Contributions
	8.2.1 Evaluating the impact of AOP on software modularity
	8.2.2 Exploring the possibilities of AOP in the context of software reuse and evolvability
	8.2.3 Elaborating an extension to the UML metamodel for Aspect Oriented Modeling

	8.3 Evaluation of the results
	8.4 Epilog

	9 References
	preface.pdf
	GDANSK UNIVERSITY OF TECHNOLOGY
	PhD Dissertation
	Gdańsk, 2011

	abstract_PL jg.pdf
	1 Appendix I: Extended abstract (Polish)
	A.1 Wprowadzenie
	A.2 Cel rozprawy
	A.3 Teza rozprawy
	A.4 Znaczenie podjętego problemu
	A.5 Metody badawcze
	A.6 Badania pokrewne
	A.7 Wkład rozprawy w rozwój dziedziny
	A.7.1 Ocena wpływu paradygmatu aspektowego na modularność oprogramowania
	A.7.2 Ocena wpływu paradygmatu aspektowego na możliwości rozwoju oraz ponownego użycia oprogramowania
	A.7.3 Rozszerzenie metamodelu UML na potrzeby modelowania aspektów

	A.8 Upubliczniony dorobek badań
	A.9 Podsumowanie

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

