

Michał Joachimczak

Evolution of gene regulatory networks
and artificial embryogenesis in a

simulated 3D environment

PhD Dissertation

Supervisors:
dr hab. Borys Wróbel
Systems Modelling Laboratory,
 Institute of Oceanology, Polish Academy
of Sciences, Sopot

Evolutionary Systems Laboratory,
 Adam Mickiewicz University, Poznań
Institute of Neuroinformatics, University of
Zürich and ETHZ, Zürich

dr hab. inż. Wojciech Jędruch
Faculty of Navigation and Naval Weapons,
 Polish Naval Academy, Gdynia
Faculty of Electronics,
Telecommunications and Informatics,

 Gdańsk University of Technology

Gdańsk, 2012

GDANSK UNIVERSITY OF TECHNOLOGY
Faculty of Electronics,

Telecommunications and Informatics

Abstract

Development of a multicellular organism starts from a single, undifferenti-
ated cell and progresses through subsequent cell divisions. The behaviour
of each cell is a result of interactions between products of the genes en-
coded in the genome, signals from the environment (including signals sent
by other cells) and the laws of physics. Each cell contains a copy of the
same genome and thus its behaviour is determined by the same control-
ler, which can be described as a network of interactions, known as a gene
regulatory network. Even though they share the controller, cells can differ-
entiate and take different roles during the development. Most importantly,
nowhere in the genome specific information about the role of each cell is
stored, and genomes with information content of hundreds millions bits
encode the plan for building organisms with trillions of cells.

The work presented in this thesis belongs to the field of artificial embryo-
genesis, a subfield of Artificial Life, concerned with the investigation of the
properties of biological development and capturing its properties in silico,
both with the goal of its better understanding as well as for its potential
engineering applications. The limitations of direct genotype-phenotype
mappings in evolutionary computation mean that only relatively simple
designs can be created. Simulated developmental process is looked upon
as one of the solutions to the problem of efficiently encoding designs in a
manner that would be highly evolvable and would scale to large structures,
while at the same time display properties such as failure tolerance or even
ability of self repair.

The objective of this work is twofold. One is to investigate properties and
evolvability of biologically inspired multicellular development and artifi-
cial gene regulatory network in the context of their potential applications
such as automatically designed controllers and self assembling 3D struc-
tures. The other is to create a model that can be used to investigate how
genomes and morphologies evolve and that allows to perform simulation
experiments relevant to evolutionary developmental biology.

The thesis introduces a new model of biologically inspired multicellular
development that is controlled by a gene regulatory network and takes
place in a 3D environment, with cells interacting through simulated phys-
ical forces. The ability to evolve desired shapes and cell differentiation is
investigated. Properties of the evolution of development itself and prop-
erties of the evolved virtual embryos are examined. Features unselected

for, such as robustness to damage, are observed to emerge and are further
analysed.

An open ended system for the evolution of morphologies without an ob-
jective fitness function is further introduced. In such a system, there is
a continuous evolutionary pressure to generate novel morphologies. The
evolution of morphologies and gene regulatory networks over time is in-
vestigated and discussed.

The model of artificial gene regulatory network proposed in this thesis
is also analysed for its evolvability and applicability to control problems
using a range of signal processing tasks and on a problem of controlling
the behaviour of simulated animats.

Acknowledgements

I would like express my gratitude to my thesis advisers prof. Borys Wróbel
and prof. Wojciech Jędruch for their interest, support and numerous dis-
cussions which made this thesis possible. I would also like to thank prof.
Ksenia Pazdro, prof. Tymon Zieliński and prof. Ewa Kulczykowska for
the support I received from them during the PhD study. I wish to thank
my colleagues from the Laboratory of Genetics and Marine Biotechnology
for showing interest and being open minded about this interdisciplinary
work and for the encouraging atmosphere in the lab. Many thanks to my
friends at the institute for the good time spent together and for your sup-
port. Finally, I would like to thank my family for always encouraging my
education and inspiring my interest in science.

This dissertation was supported by the Polish Ministry of Science and Edu-
cation (project N519 384236). The computational resources used in this
work were obtained thanks also to the support of the project N303 291234,
the Tri-city Academic Computer Centre (TASK) and the Interdisciplin-
ary Centre for Molecular and Mathematical Modelling (ICM, University
of Warsaw; project G33-8).

Contents

List of Figures 11

List of Tables 15

The main thesis of this dissertation 17

Abbreviations 19

Publications 21

Extended abstract in Polish 23

1 Introduction 35
1.1 Thesis layout . 39
1.2 DNA: life’s digital encoding . 39
1.3 Biological genomes and gene regulation 41

1.3.1 From DNA to protein . 41
1.3.2 Gene regulation . 43
1.3.3 Gene regulatory networks . 45

1.4 Multicellularity and embryogenesis 46

2 Existing models of GRNs and embryogenesis 51
2.1 Models of gene regulatory networks 51
2.2 Artificial embryogeny . 57

3 The model of GRN and evolution 63
3.1 Genome . 63

3.1.1 Overall structure . 64
3.1.2 Genetic elements and affinity 65

3.2 Artificial Gene Regulatory Network 67
3.3 Genetic algorithm . 69

3.3.1 Initialization . 70
3.3.2 Selection . 70
3.3.3 Genetic operators . 71
3.3.4 Viability criteria . 72

3.4 Summary . 73

7

CONTENTS

4 Processing signals with regulatory networks 75
4.1 Experimental setup . 76

4.1.1 Fitness function . 76
4.1.2 Genetic algorithm and model settings 78

4.2 Internally induced oscillations . 78
4.3 Responding to external signals . 80

4.3.1 Doubling the oscillation frequency 80
4.3.2 Low pass filter . 83
4.3.3 Networks with signal memory: doubling the input pulse length 85
4.3.4 Doubling the number of the input spikes 87
4.3.5 Integrating information from two separate signals: serializing

pulses . 88
4.4 Evolvability . 90

4.4.1 Alternative fitness functions 90
4.4.2 Parameters of the model . 92

4.5 Discrete vs continuous dynamics . 93
4.6 Robustness to noise . 94
4.7 Summary . 97

5 Evolution of behaviour of GRN-controlled unicellular organisms 99
5.1 Animat model and environment . 99
5.2 Sensors and actuators . 100
5.3 Fitness function . 102
5.4 Genetic algorithm . 104
5.5 Foraging with a single type of food 104

5.5.1 Analysis of evolutionary history 106
5.6 Environment with food and poison 109

5.6.1 Analysis of evolutionary history 110
5.7 Summary . 112

6 Evolution of multicellular development 115
6.1 Developmental model . 116

6.1.1 Configuration of the genome model 116
6.1.2 Simulated physics . 118
6.1.3 Morphogens and diffusion . 119
6.1.4 Cellular actions: division, death and growth 120

6.2 Evolution of a desired 3D morphology 122
6.2.1 Fitness function . 122
6.2.2 Embryo viability criteria . 123
6.2.3 Settings for the genetic algorithm and development 123
6.2.4 Evolution of an ellipsoidal morphology 124
6.2.5 Evolution of an asymmetric morphology: a stem-cap shape . . 125
6.2.6 Knock-out experiments on the evolved stem-cap shape 127

8

CONTENTS

6.2.7 Change of the morphology over evolutionary time for the stem-
cap shape . 130

6.2.8 Evolving self-termination of division 131
6.3 Robustness to cellular damage . 132

6.3.1 Robustness during development 132
6.3.2 Embryo regrowth . 135

6.4 Evolution of 3D patterning . 138
6.4.1 GA settings and genome configuration 138
6.4.2 Fitness function . 139
6.4.3 French flag problem in 3D: the tricolour embryo 140
6.4.4 Four colour embryo . 144
6.4.5 Continuous colour representation 145
6.4.6 Three colour effectors . 145

6.5 Summary . 146

7 Open ended evolution of 3D morphologies 149
7.1 The Novelty Search algorithm . 150
7.2 Novelty Search for 3D Morphologies 152

7.2.1 Distance function . 152
7.3 Results . 153

7.3.1 Evolved morphologies . 154
7.3.2 Novelty search archive . 155
7.3.3 Evolutionary history . 156
7.3.4 Evolutionary time from the most recent common ancestor . . 160
7.3.5 Visualization of the phenotype search space 160
7.3.6 Repeatability . 163

7.4 Summary . 164

8 Summary and future work 167
8.1 Summary of contributions . 170
8.2 Future work . 170

A Software implementation 175
A.1 Parallelisation . 175
A.2 Analysis . 176

B Algorithms 177

C GA settings 183

Bibliography 187

9

CONTENTS

10

List of Figures

1 Struktura wirtualnego genomu oraz elementu genetycznego 28
2 Zestaw uczący użyty do uzyskania sieci podwajających częstotliwość

sygnału wejściowego wraz z odpowiedzią najlepszej sieci 29
3 Przykładowa trajektoria kontrolowanego przez wyewoluowaną sieć

genową wirtualnego organizmu . 30
4 Ewolucja trójwymiarowych morfologii oraz różnicowania się komórek 32
5 Przykładowe morfologie uzyskane w eksperymencie z otwartą ewolucją 33

1.1 Evolved novel antenna design for NASA ST5 mission 36
1.2 Avida, an open-ended alife system . 37
1.3 Framsticks, a body-brain coevolution system 38
1.4 Regulation of eukaryotic transcription 44
1.5 Fragment of a regulatory network of a purple sea urchin 46
1.6 The Hox genes of a fruit fly . 48
1.7 The pattern of expression of pair rule genes in the fruit fly embryo . . 49

2.1 Reil’s GRN encoding of a regulatory network 54
2.2 Banzhaf’s GRN encoding of a regulatory network. 55
2.3 Dynamics in Banzhaf’s networks encoded by random genomes. 56
2.4 3D embryos evolved for bilateral symmetry by Eggenberger Hotz. . . 59
2.5 Self organized French flag pattern by Knabe et al. 60
2.6 Example development of a 2D embryo in the Cellular Pots Model . . 61
2.7 Subsequent stages of development of 3D “French flag” by Chavoya . . 61

3.1 Overview of genome structure . 64
3.2 Internal structure of a genetic element. 65
3.3 The affinity curve used to compute affinity between products and

promoters . 66
3.4 The encoding of the regulatory network in a linear genome. 67
3.5 Simulated concentrations of transcription factors over time 69
3.6 Sexual recombination between genomes 72

4.1 Behaviour of the network generating a sine expression pattern for five
periods . 79

4.2 A pattern of concentration for which no valid solution was found . . . 80

11

LIST OF FIGURES

4.3 Training set and the behaviour of the best network evolved to double
the frequency of the input oscillations 81

4.4 Fitness improvement over generations during evolution of networks
doubling the frequency of input oscillations 81

4.5 Problem generalization by the network evolved to oscillate at double
of the input frequency . 82

4.6 Regulatory graph of the best obtained individual evolved to oscillate
at double of the input frequency . 83

4.7 Part I of the training set used to evolve a low pass filter and the
behaviour of the best network . 84

4.8 Part II of the training set used to evolve a low pass filter and the
behaviour of the best network . 84

4.9 Problem generalization by the network evolved to act as a low pass
filter . 85

4.10 Training set and the behaviour of the best individual in 10 evolution-
ary runs evolved to double the input pulse length 86

4.11 Problem generalization by the network evolved to double the input
pulse length . 86

4.12 Behaviour of the best individual evolved to double the input pulse
length with increased delay . 87

4.13 Fitness comparison for networks evolved to double the input pulse
length and respond with different delays 87

4.14 Behaviour of the best individual evolved to double the count of con-
centration spikes on its input . 88

4.15 Training set and the behaviour of the network evolved to count sub-
sequent or simultaneous spikes on its input 89

4.16 Fitness values of the best individuals obtained for each task 90
4.17 Comparison of evolvability with different versions of fitness function

in signal processing experiments . 91
4.18 Comparison of evolvability for 4 modifications of selected parameters

of the model . 93
4.19 Behaviour of the network evolved to double the input signal frequency

in which product build-up and degradation is not simulated 94
4.20 Comparison of the evolvability between original model and the version

in which product build-up and degradation is not simulated 95
4.21 Comparison of robustness to noise of networks evolved with and

without noise in gene expression . 96

5.1 The model of the simulated animat 100
5.2 An example map of scent intensity that is locally perceived by an-

imat’s sensors . 101
5.3 A common suboptimal solution in the fitness landscape of chemotax-

ing individuals: circular movement 103
5.4 The best individual navigating a map with a single type of food source105

12

LIST OF FIGURES

5.5 Fitness over generations for the problem with a single type of food
source . 105

5.6 Topologies of evolved GRNs controlling behaviour in a problem with
a single type of food source . 106

5.7 Genome size over generations for the problem with a single type of
food source . 107

5.8 Spread of genetic elements in the genomes over evolutionary time for
the problem with a single type of food source 107

5.9 Comparison of the distribution of genetic elements in initial and final
generation for the problem with a single type of food source 107

5.10 The number of generations from the most recent common ancestor in
an experiment with a single type of food source 108

5.11 Behaviour of the best individual from the final generation for the
problem with two switching types of food source 110

5.12 GRN topology of the best obtained animat for the problem with two
switching types of food source. 111

5.13 Trajectory of the best individual from generation 2600 for the problem
with two switching types of food sources 112

5.14 Fitness over generations for the problem with two switching types of
food source . 113

5.15 Genome size over generations for the problem with two switching
types of food source . 113

5.16 The number of nodes in the GRN during evolution for the problem
with two switching types of food source 113

6.1 A summary of cell interactions and internal state during development 116
6.2 Visualization of the simplified diffusion model 120
6.3 Vectors defining the orientation of a cell in space 121
6.4 Target shape and the best obtained morphology of an ellipsoidal embryo125
6.5 Fitness history in the experiments in evolving ellipsoidal morphology 125
6.6 Evolved developmental process of an ellipsoidal morphology 126
6.7 Target shape and the best obtained morphology of a stem-cap shape . 127
6.8 Fitness history in the experiments in evolving stem-cap shape 127
6.9 Evolved development of the stem-cap shape 128
6.10 Effects of gene knock-outs on the development of the stem-cap shape 129
6.11 The best matching shape in a population over generations for a stem-

cap shape . 130
6.12 Development of the ellipsoidal and the asymmetric morphology with

cell limit of disabled . 131
6.13 Illustration of the approach used to evaluate robustness to cellular

damage . 132
6.14 Robustness of the evolved ellipsoidal embryo to cellular damage at

various developmental stages . 133

13

LIST OF FIGURES

6.15 Robustness of the evolved stem-cap embryo to cellular damage at
various developmental stages . 133

6.16 The effect on the development of the stem-cap embryo of removing
cells when it reaches the size of 12 cells 135

6.17 An ellipsoidal morphology evolved with a fitness function promoting
ability of regrowth . 137

6.18 Evolving 3D French tricolour embryo 141
6.19 The development of the best obtained tricolour embryo 141
6.20 Concentrations of the colour effectors at the end of development in

the best obtained tricolour embryo 142
6.21 The orientations of division vectors at the end of development of the

best obtained tricolour embryo . 142
6.22 Self-generated gradients of positional information employing two dif-

ferent morphogens in the tricolour embryo 143
6.23 Robustness to cell removal of the best obtained tricolour embryo . . . 144
6.24 Evolved four colour embryos . 144
6.25 Evolved three colour embryos without colour thresholding 145
6.26 Three colour embryos evolved to use three distinct colour effectors . . 146

7.1 Comparison of novelty and fitness based search in a deceptive maze
problem . 151

7.2 Illustration of PCA based rotation for shift and rotation invariant
morphology comparison . 153

7.3 Maximum and average novelty value in the population during 5000
generations of novelty-driven genetic algorithm 155

7.4 Morphological diversity in the population in generation 5000 of novelty-
driven evolution . 156

7.5 A sample of novel individuals stored in the archive after 5000 gener-
ations of novelty-driven evolution . 157

7.6 Genome and active genome size during the evolutionary run. 158
7.7 Vertex and edge count in the regulatory network during novelty-

driven evolutionary run . 158
7.8 Select ancestors of a single individual from generation 5000 of novelty-

driven evolutionary run . 159
7.9 Time from the most recent common ancestor for the whole population

in the novelty-driven evolutionary run 160
7.10 Geometric representation (MDS) of the similarity between viable ran-

dom individuals that existed during evolution 162
7.11 Geometric representation (MDS) of the similarity between novel in-

dividuals that existed during evolution 163
7.12 A sample of morphologies obtained in a second run of novelty search

experiment . 164

A.1 GUI of the software platform used to perform the experiments 175

14

List of Tables

3.1 The classes and types of genetic elements defined in the model. 65
3.2 Summary of genetic operators implemented in the system 71

4.1 Types of genetic elements enabled in the experiments on evolving
GRNs for signal processing . 78

4.2 Essential GA parameters used in the experiments on evolving GRNs
for signal processing . 78

5.1 Types of genetic elements enabled in the experiments on evolving
GRNs for chemotaxis . 101

5.2 Essential GA parameters used in the experiments on evolving GRNs
for chemotaxis . 104

6.1 External factors available in the developmental model 117
6.2 List of effectors available in the developmental model. 117
6.3 Essential GA parameters used in the experiments on evolving GRNs

to control 3D development . 124
6.4 Types of genetic elements enabled in the experiments on evolving

GRNs to control 3D development . 124
6.5 Essential GA parameters used in the experiments on evolving GRNs

to control patterning of 3D embryos 138
6.6 Types of genetic elements enabled in the experiments on evolving

GRNs to control patterning of 3D embryos 139
6.7 Colour effectors and their effect on a cell used to evolve 3D French

tricolour embryos. 140

7.1 Essential GA parameters used in the experiments with the open ended
evolution of 3D morphologies . 154

7.2 Types of genetic elements enabled in the experiments with the open
ended evolution of 3D morphologies 154

C.1 Detailed GA parameters used in the signal processing experiments
described in Chapter 4 . 184

C.2 Detailed GA parameters used for evolution of chemotaxis in the ex-
periments described in Chapter 5 . 184

15

LIST OF TABLES

C.3 Parameters of the simulated physics used to simulate multicellular
development . 185

C.4 Detailed GA parameters used in the experiments on evolving GRNs
to control 3D development . 185

C.5 Detailed GA parameters used in the experiments on evolving GRNs
to control patterning of 3D embryos 186

C.6 Detailed GA parameters used in the experiments with open ended
evolution of 3D morphologies . 186

16

The main thesis of this

dissertation

1. The proposed model of artificial gene regulatory network coupled with a biolo-
gically inspired model of the genome constitutes a highly evolvable system that
can be used as an alternative to evolving dynamic neural networks.

2. Biologically inspired artificial gene regulatory networks can be evolved to con-
trol multicellular development in three dimensions with simulated physics, al-
lowing to obtain structures that self organize and display biological properties
such as robustness to damage.

3. The proposed model of gene regulatory network and development can be used to
investigate the evolution of morphology of living organisms by performing bio-
logically relevant simulation experiments that would be difficult or impossible
to perform using other approaches.

17

Abbreviations

alife artificial life

DNA deoxyribonucleic acid

evo-devo evolutionary developmental biology

GA genetic algorithm

GRN gene regulatory network

L-System Lindenmayer system

mRNA messenger RNA

RBN random boolean network

RNA ribonucleic acid

RNAP RNA polymerase

SMP symmetric multiprocessing

TBP TATA binding protein

TF transcription factor

tRNA transfer RNA

19

Publications

The main contributions of the presented thesis were the subject of the following peer
reviewed papers.

1. Joachimczak, M. and Wróbel, B. (2012a). Evolution of robustness to damage
in artificial 3-dimensional development. Biosystems. (in press)

2. Joachimczak, M. and Wróbel, B. (2009). Complexity of the search space in a
model of artificial evolution of gene regulatory networks controlling 3D multi-
cellular morphogenesis. Advances in Complex Systems, 12(3):347–369

3. Joachimczak, M. and Wróbel, B. (2012b). Open ended evolution of 3D multi-
cellular development controlled by gene regulatory networks. In Artificial Life
XIII: Proceedings of the 13th International Conference on the Simulation and
Synthesis of Living Systems, Cambridge, MA. MIT Press. (in press)

4. Joachimczak, M. and Wróbel, B. (2011a). Evolution of the morphology and
patterning of artificial embryos: Scaling the tricolour problem to the third di-
mension. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern,
F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B.,
Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Kampis,
G., Karsai, I., and Szathmáry, E., editors, Advances in Artificial Life. Darwin
Meets von Neumann: Proceedings of the 10th European Conference on Artificial
Life (ECAL 2009), volume 5777 of Lecture Notes in Computer Science, pages
35–43, Berlin - Heidelberg. Springer

5. Joachimczak, M. and Wróbel, B. (2010a). Evolving gene regulatory networks for
real time control of foraging behaviours. In Fellermann, H., Dörr, M., Hanczyc,
M. M., Laursen, L. L., Maurer, S., Merkle, D., Monnard, P.-A., Stoy, K., and
Rasmussen, S., editors, Artificial Life XII: Proceedings of the 12th International
Conference on the Simulation and Synthesis of Living Systems, pages 348–355,
Cambridge, MA. MIT Press

6. Joachimczak, M. and Wróbel, B. (2010b). Processing signals with evolving
artificial gene regulatory networks. In Fellermann, H., Dörr, M., Hanczyc,
M. M., Laursen, L. L., Maurer, S., Merkle, D., Monnard, P.-A., Stoy, K., and
Rasmussen, S., editors, Artificial Life XII: Proceedings of the 12th International
Conference on the Simulation and Synthesis of Living Systems, pages 203–210,
Cambridge, MA. MIT Press

21

PUBLICATIONS

7. Joachimczak, M. and Wróbel, B. (2008a). Evo-devo in silico: a model of a gene
network regulating multicellular development in 3D space with artificial phys-
ics. In Bullock, S., Noble, J., Watson, R., and Bedau, M. A., editors, Artificial
Life XI: Proceedings of the 11th International Conference on the Simulation
and Synthesis of Living Systems, pages 297–304, Cambridge, MA. MIT Press

8. Joachimczak, M. and Wróbel, B. (2008b). Evolution of 3D development con-
trolled by a gene regulatory network: The complexity of the search space and
evolvability. In Klemm, K., Merkle, D., and Olbrich, E., editors, 8th German
Workshop on Artificial Life: Proceedings of the GWAL-8, Leipzig, Germany,
pages 11–22, US. IOS Press

9. Joachimczak, M. and Wróbel, B. (2011b). Ewolucja sieci genowych kontrolują-
cych wirtualne organizmy jedno- oraz wielokomórkowe. In Obolewicz, P., Ku-
jawa, K., and Sacharuk, P., editors, ICT Young 1, Zeszyty Naukowe Wydziału
ETI Politechniki Gdańskiej, pages 179–184. (in Polish)

The models of the gene regulatory network and of the multicellular developmental
introduced in this thesis were also used as the basis for the following peer reviewed
papers.

1. Joachimczak, M. and Wróbel, B. (2012). Co-evolution of morphology and con-
trol of soft-bodied multicellular animats. In GECCO ’12: Proceedings of the
14th Annual Conference on Genetic and Evolutionary Computation. ACM. (in
press)

2. Joachimczak, M., Kowaliw, T., Doursat, R., and Wróbel, B. (2012). Brainless
bodies: Controlling the development and behavior of multicellular animats by
gene regulation and diffusive signals. In Artificial Life XIII: Proceedings of
the 13th International Conference on the Simulation and Synthesis of Living
Systems, Cambridge, MA. MIT Press. (in press)

3. Erdei, J., Joachimczak, M., and Wróbel, B. (2011). Ewolucja chemotaksji or-
ganizmów jednokomórkowych w dwuwymiarowym środowisku. In Obolewicz,
P., Kujawa, K., and Sacharuk, P., editors, ICT Young 1, Zeszyty Naukowe
Wydziału ETI Politechniki Gdańskiej, pages 173–178. (in Polish)

4. Wróbel, B., Joachimczak, M., Montebelli, A., and Lowe, R. (2012b). The
search for beauty: Evolution of minimal cognition in an animat controlled by
a gene regulatory network and powered by a metabolic system. In Proceed-
ings of the 12th International Conference on Simulation of Adaptive Behaviour,
From Animals to Animats 12 (SAB’12), Lecture Notes in Artificial Intelligence.
Springer-Verlag. (in press)

22

Extended abstract in Polish /

Rozszerzone streszczenie w języku

polskim

Poniżej zamieszczone zostało rozszerzone streszczenie rozprawy doktorskiej “Ewolu-
cja sieci genowych oraz embriogenezy w symulowanym, trójwymiarowym środowi-
sku” z podziałem na poszczególne rozdziały.

1. Wprowadzenie

Znane są tylko dwa procesy prowadzące do powstawania struktur zaprojektowanych
tak, by pełniły konkretne funkcje. Pierwszym jest ludzka kreatywność. Stojąc przed
problemem inżynieryjnym, jesteśmy w stanie zaproponować potencjalne rozwiąza-
nia, symulować je używając naszej wyobraźni, po czym ostatecznie je urzeczywistnić.
Bardzo złożone problemy możemy rozwiązywać rozbijając je na mniejsze i skupia-
jąc uwagę na odpowiednim w danym momencie poziomie abstrakcji. Co ważne,
dzięki modularnemu podejściu do projektowania możemy wielokrotnie wykorzysty-
wać wcześniejsze rozwiązania, bez potrzeby pełnego rozumienia każdego szczegółu.
Jako że olbrzymia część naszej działalności jako gatunku związana jest z tworze-
niem i projektowaniem, być może nie powinno dziwić, że przez niemal całą historię
istnienia cywilizacji, zawsze gdy byliśmy zafascynowani złożonością świata natural-
nego, zakładaliśmy, że musi stać za nią projektant i do tego taki, który jest od
nas o wiele bardziej uzdolniony. Minęło raptem 150 lat od momentu w którym,
dzięki pracom Darwina oraz Wallace’a, zrozumieliśmy, że istnieje drugi, całkowicie
naturalny proces, który prowadzi do powstawania struktur, które wyglądają na za-
projektowane. Złożoność projektów powstałych na drodze tego procesu nie tylko
przewyższa złożonością struktury, które do tej pory zaprojektował ludzki umysł -
on sam jest produktem tego właśnie procesu. Tym procesem jest ewolucja.

Chociaż sama idea mechanizmu ewolucji jest niezwykle piękna w swojej prosto-
cie, nasze rozumienie jej mechanizmów oraz implikacji przebyło długą drogę od 1858
roku, kiedy została zaproponowana. Z jednej strony bardzo dobrze rozumiemy teraz
jak dziedziczna informacja zakodowana jest w kwasach nukleinowych oraz pozna-
liśmy z dużą dokładnością historię życia na Ziemi. Z drugiej strony, postrzegamy

23

ROZSZERZONE STRESZCZENIE W JĘZYKU POLSKIM

teraz ewolucję jako proces niezależny od substratu: uniwersalny mechanizm, który
będzie zachodził zawsze, gdy spełnione zostaną określone warunki, czy to na innej
planecie, czy też w obrębie symulacji komputerowej. Te warunki to obecność replika-
torów, obiektów które mogą reprodukować się z okazjonalnymi modyfikacjami, oraz
środowisko, które ogranicza dostępne im zasoby. Zawsze, gdy te warunki zostaną
spełnione, replikatory, które niosą w sobie korzystne zmiany (mutacje), zaczynają w
kolejnych generacjach zdobywać przewagę nad ich niezmodyfikowanymi przodkami.
Jednak to, w jakim zakresie ewolucja będzie prowadziła do wzrostu złożoności, za-
leży od wielu czynników takich jak sposób kodowania dziedziczonych informacji.
Wpływa to na tzw. ewoluowalność, którą rozumie się jako zdolność do generowania
dziedzicznej różnorodności oraz pozyskiwania nowych funkcji, które poprawiają do-
stosowanie (Wagner, 2005). Kwestia tego jak można tworzyć sztuczne, ewoluowalne
systemy jest jednym z centralnych zagadnień tej pracy.

Sztuczne Życie (ang. Artificial Life) jest interdyscyplinarnym kierunkiem badań,
który rozwinął się połowie lat osiemdziesiątych XX wieku wraz z rosnącym zain-
teresowaniem komputerowym modelowaniem ewolucji i algorytmami ewolucyjnymi.
Głównym przedmiotem badań Sztucznego Życia jest proces ewolucji oraz zjawiska
emergentne, takie jak samoorganizacja w systemach złożonych z wielu jednostek w
oparciu o lokalne reguły, niezależnie czy jednostkami są cząsteczki, komórki czy or-
ganizmy. Wprowadzenie pracy zawiera przykłady najbardziej znanych środowisk i
modeli reprezentatywnych dla dziedziny Sztucznego Życia, takich jak Tierra, Avida,
Framsticks czy pływające organizmy Karla Simsa.

Badania przedstawione w obrębie rozprawy należą do tzw. Sztucznej Embrioge-
nezy (ang. artificial embryogenesis), poddziedziny sztucznego życia zajmującej się
badaniem i modelowaniem procesu rozwojowego organizmów wielokomórkowych.
Dzięki procesowi rozwojowemu organizm złożony z bilionów komórek (taki jak np.
nasze ciało) powstaje na drodze kolejnych podziałów z pojedynczej komórki, wyko-
rzystując informację genetyczną, której zawartość informacyjna wyraża się “jedynie”
w setkach megabajtów. Proces ten koduje więc finalną strukturę organizmu w sposób
niebezpośredni i wykazuje się przy tym niezwykłą ewoluowalnością, skalowalnością
oraz odpornością na zaburzenia zewnętrzne. Nie bez powodu więc proces rozwojowy
uważany za jeden kluczowych mechanizmów, który pozwala na pokonanie ograni-
czeń skalowalności wynikających z metod kodowania bezpośredniego stosowanych w
algorytmach ewolucyjnych (Tufte, 2008).

Przedstawiona praca ma dwa główne cele. Pierwszym jest opracowanie ewolu-
owalnego modelu procesu rozwojowego, kontrolowanego w sposób biologicznie re-
alistyczny, za pomocą sieci genowej zakodowanej niebezpośrednio w genomie, który
pozwala na ewolucję zadanych, trójwymiarowych morfologii. W obrębie pracy ba-
dana jest również ewoluowalność samej sieci genowej i możliwość zastosowania jej
do problemów innych niż kontrola procesu rozwojowego. Drugim celem pracy było
stworzenie biologicznie realistycznego modelu ewolucji procesu wielokomórkowego,
który pozwala na badanie tego, jak genomy, sieci genowe oraz morfologie wielo-
komórkowych organizmów ewoluują w czasie. Ten aspekt pracy wpisuje się w nurt
badań należących do ewolucyjnej biologii rozwoju (nazywanej skrótowo evo-devo, od

24

EXTENDED ABSTRACT IN POLISH

ang. evolutionary developmental biology). Modele komputerowe, chociaż posiadają
liczne ograniczenia, pozwalają na przeprowadzanie eksperymentów symulacyjnych,
które w przypadku eksperymentów biologicznych byłyby trudne lub wręcz niemoż-
liwe do wykonania.

Tezy pracy

1. Proponowany model sztucznej sieci genowej w połączeniu z biologicznie inspi-
rowanym modelem genomu stanowi wysoce ewoluowalny system, który może
być używany jako alternatywa dla ewolucji dynamicznych sieci neuronowych.

2. Biologicznie inspirowany model sztucznej sieci genowej może być zastosowany
do ewolucji wielokomórkowej embriogenezy zachodzącej w 3 wymiarach oraz
wykorzystującej symulowaną fizykę, pozwalając na otrzymywanie struktur, które
są zdolne do samoorganizacji oraz wykazują biologiczne własności, takie jak od-
porność na uszkodzenia.

3. Proponowany model sieci genowej oraz procesu rozwojowego może być wyko-
rzystywany do badania ewolucji morfologii organizmów żywych, pozwalając na
przeprowadzanie eksperymentów symulacyjnych, które byłyby trudne lub nie-
możliwe do wykonania przy zastosowaniu innych metod.

Wprowadzenie biologiczne

W obrębie pierwszego rozdziału przybliżone zostały podstawowe pojęcia oraz me-
chanizmy związane ze sposobem, w jakim organizmy żywe przechowują informację
genetyczną oraz jak ta informacja wpływa na zachowanie się komórek. Przedsta-
wiona została krótka historia odkryć, które doprowadziły do poznania natury kwa-
sów nukleinowych. Opisany zostały proces przepisywania informacji zawartej w
cząsteczce DNA na cząsteczkę mRNA (transkrypcja) oraz proces syntezy białka
w oparciu o cząsteczkę mRNA (translacja). Wprowadzona została koncepcja sieci
genowej jako opisu interakcji pomiędzy wzajemnie wpływającymi na swoją regula-
cję genami oraz opisane zostały mechanizmy interakcji czynników transkrypcyjnych
z DNA oraz ich wpływ na regulację ekspresji genów. Ostatnia część rozdziału 1
wprowadza podstawowe zagadnienia związane z procesem rozwojowym organizmów
wielokomórkowych (embriogenezą). Proces rozwojowy został przedyskutowany w
kontekście obserwowanych podobieństw (homologii) w strukturze budowy ciała or-
ganizmów, pomimo pozornych dużych różnic zewnętrznych. Organizmy wizualnie
tak odmienne jak np. nietoperz czy wieloryb w istocie posiadają ten sam plan bu-
dowy ciała. Jest to szczególnie widoczne na etapie rozwoju embrionalnego i było już
dostrzegane w czasach Darwina, stanowiąc silny argument za koncepcją pochodze-
nia organizmów od wspólnego przodka. Co więcej, morfologie organizmów wydają
się cechować wysoką modularnością: struktury takie jak np. palce są wielokrotnie
powtórzone i jednocześnie same składają się z serii mniejszych, powtórzonych ko-
ści. Organizmy mogą posiadać kończyny tak odmienne jak skrzydła i płetwy, ale

25

ROZSZERZONE STRESZCZENIE W JĘZYKU POLSKIM

w istocie kończyny te mają identyczną strukturę, różniąc się liczbami powtórzeń
elementów i ich wymiarami. Sugeruje to, że ewolucja w ogromnym stopniu operuje
poprzez wykorzystanie pewnych ustalonych schematów budowy, generując różnorod-
ność na drodze modyfikacji ich dosyć wysokopoziomowych parametrów, takich jak
liczba powtórzeń czy wymiary poszczególnych elementów morfologii. Mutacje pro-
wadzące do zmiany liczby palców kończyny mogą zaś wiązać się z bardzo niewielkimi
zmianami w genomie.

Postęp w naszym rozumieniu relacji między mutacjami w genomie a zmianami
w morfologii dokonał się dopiero stosunkowo niedawno, dzięki badaniom nad proce-
sem rozwojowym muszki owocowej (Drosophila melanogaster), które doprowadziły
do odkrycia genów homeotycznych (Hox). Geny Hox kodują pewien rodzaj czyn-
nika transkrypcyjnego (białka mającego powinowactwo do DNA). Zauważono, że
stanowią one rodzaj genetycznego zbioru narzędzi, które odgrywają kluczową rolę w
kontroli procesu rozwojowego. Mutacje w genach homeotycznych mają zwykle duże
konsekwencje dla wynikowej morfologii rozwijającego się organizmu. Przykładowo,
zmiana poziomu ekspresji jednego z genów Hox (distal-less) jest odpowiedzialna za
zaniknięcie kończyn u węży, a wprowadzając mutację w genie Antennapedia można
doprowadzić do wyrośnięcia w pełni uformowanej kończyny na głowie muszki owo-
cowej. Te i wiele innych odkryć, które dokonały się w przeciągu ostatnich 25 lat,
stały się fundamentem dla rozwoju nowej dziedziny: ewolucyjnej biologii rozwoju
(evo-devo). Dziedzina ta zajmuje się badaniem procesu rozwojowego w kontekście
ewolucyjnym oraz relacjami między zmianami w morfologii a zmianami w genach.

2. Przegląd modeli sieci regulacji genowych i embriogenezy

Rozdział 2 pracy zawiera krótki przegląd komputerowych modeli sieci genowych
oraz modeli procesu rozwojowego kontrolowanego przez sieci genowe. W ramach
omówienia modeli sieci genowych opisano podejście polegające na opisie interakcji
pomiędzy poziomami ekspresji genów za pomocą równań różniczkowych. Takie po-
dejście zwykle stosuje się w celu zamodelowania konkretnej sieci interakcji genowych
w oparciu o dane eksperymentalne. Następnie omówione zostały podejścia służące
badaniu bardziej ogólnych własności sieci genowych, nie zakładające z góry określo-
nej topologii sieci. Opisane zostały losowe sieci boolowskie (ang. random boolean
networks, RBNs), czyli rekurencyjne sieci o generowanych w sposób losowy topolo-
giach oraz losowych binarnych funkcjach przejścia wierzchołków. Przedyskutowano
własności ich dynamiki (chaotyczność, atraktory). Szerzej omówione zostały modele
bezpośrednio związane ze stosowanym w tej pracy, polegające na niebezpośrednim
kodowaniu sieci genowej w wirtualnym, linearnym genomie. W takich genomach
zwykle wyróżnić można fragmenty, które kodują wirtualne czynniki transkrypcyjne
oraz obszary regulatorowe. Czynniki transkrypcyjne, wchodząc w interakcje z ob-
szarami regulatorowymi, wpływają na poziomy ekspresji genów (zwykle kodowanych
w bezpośrednim sąsiedztwie tych obszarów regulatorowych). Z większością takich
modeli powiązany jest niebezpośredni sposób wyznaczania powinowactwa pomię-

26

EXTENDED ABSTRACT IN POLISH

dzy czynnikami transkrypcyjnymi a obszarami regulatorowymi, będący abstrakcją
strukturalnych podobieństw pomiędzy cząsteczką czynnika transkrypcyjnego a frag-
mentem cząsteczki DNA do którego się dowiązuje. Omówione zostały symulowane
eksperymenty polegające na analizie własności sieci powstałych z losowych genomów
oraz próby ewolucji genomów, które kodują sieci o zadanych własnościach (czy to
topologicznych, czy też o zadanej dynamice ekspresji genów lub funkcjonalności).

W następnej kolejności przedyskutowane zostały główne podejścia związane z
wykorzystaniem symulowanego procesu rozwojowego. Bardziej szczegółowo zostały
opisane modele, w których pożądane morfologie uzyskiwane są za pomocą algoryt-
mów ewolucyjnych, a sam proces rozwojowy kontrolowany jest przez sztuczne sieci
genowe. Model przedstawiony w niniejszej pracy należy właśnie do tego rodzaju
klasy modeli. Przedstawione zostały również niektóre próby zastosowania tych mo-
deli do rozwiązywania problemów inżynieryjnych, jak np. projektowanie morfologii
dla robota oraz użycie procesu rozwojowego jako metody kompresji.

3. Model sieci genowej oraz ewolucji

Rozdział 3 zawiera kompletny opis zaproponowanego w dysertacji, inspirowanego
biologicznie modelu genomu oraz sieci genowej. Model ten został zaprojektowany
tak, by stanowić abstrakcję najistotniejszych własności ewoluujących sieci geno-
wych. Przede wszystkim, topologia sieci zakodowana jest w sposób niebezpośredni
w genomie o nielimitowanej długości i liniowej strukturze. Geny kodują własno-
ści czynników transkrypcyjnych, które w czasie symulacji komórki mogą w sposób
specyficzny dowiązywać się do obszarów regulatorowych na genomie i kontrolować
poziom ekspresji genów. Sam proces dowiązywania się nie jest jednak symulowany
bezpośrednio. Zamiast tego, powinowactwo wirtualnych białek (czynników trans-
krypcyjnych) do obszarów regulatorowych danego genu reprezentowane jest jako
siła oddziaływania regulacyjnego pomiędzy dwoma genami, tj. jako waga krawędzi
w grafie sieci genowej. Czynniki transkrypcyjne w komórce reprezentowane są zaś
jako stężenia, wyrażone liczbą rzeczywistą od 0 do 1 i uaktualniane są w sposób
ciągły. Ich stężenia zmieniają się w oparciu o obliczoną w każdym kroku symulacji
wydajność syntezy danego produktu oraz jego degradacji. Topologia sieci genowej
wyznaczana jest na podstawie analizy zawartości genomu i nie zmienia się w czasie
życia symulowanej komórki.

Genom składa się z listy elementów o jednorodnej strukturze (Rys. 1), z których
każdy należy do jednej z trzech kategorii – produktów (G), promotorów oznaczają-
cych elementy regulacyjne (P) oraz elementów specjalnych (S), używanych do zako-
dowania wejść i wyjść sieci. W celu utworzenia grafu połączeń sieci genowej, genom
jest parsowany sekwencyjnie, przy czym za każdym razem, gdy napotkana zostanie
seria elementów regulatorowych (P) po której następuje seria genów (G), tworzona
jest jednostka regulacyjna stanowiąca wierzchołek w grafie sieci genowej. W trakcie
symulacji, jeśli ekspresji podlega jednostka regulacyjna w której zakodowanych jest
wiele produktów, wszystkie syntetyzowane są z taką samą wydajnością.

27

ROZSZERZONE STRESZCZENIE W JĘZYKU POLSKIM

element specjalny:

czynnik zewnętrzny (wejście) (0)

efektor (wyjście) (1)

promotor:

addytywny (2)

multiplikatywny (3)

gen:

czynnik transkrypcyjny (4)

morfogen (5)

G P S G P P G G G P G P G P P P P S G P P G P G P G P S G P G P G S G P G P

jednostka regulacyjna #1

geny koregulowane

jed. reg. #2 jed. reg. #3

pozycja

w przestrzeni

Rn

typ

x1

…

-1 lub 1 znak

x2

xn

0..5

Rysunek 1: Struktura wirtualnego genomu oraz elementów genetycznych. Ciąg promotorowych (P)
elementów genetycznych po którym następuje ciąg elementów będących produktami (G) interpreto-
wany jest jako jednostka regulacyjna, czyli wierzchołek w grafie sieci genowej. Elementy specjalne (S)
kodują wierzchołki odpowiadające ze przekazywanie sygnałów z zewnątrz i na zewnątrz wirtualnej
komórki.

Każdy element genetyczny przechowuje n liczb rzeczywistych (gdzie n jest para-
metrem modelu), interpretowanych jako współrzędne skojarzonego z nim punktu w
przestrzeni Rn. Odległość pomiędzy punktami określonymi przez produkt i promotor
pozwala wyznaczyć ich wzajemne powinowactwo (malejące wykładniczo z odległo-
ścią), które stanowi wagę krawędzi w sieci genowej. W celu uniknięcia grafu pełnego,
używana jest odległość odcięcia, powyżej której siła wiązania spada do zera. Taki
mechanizm stanowi abstrakcję procesu, w którym trójwymiarowa struktura kodowa-
nego przez gen czynnika transkrypcyjnego (białka) ma strukturalne dopasowanie do
konkretnego obszaru na DNA, i do którego dowiązana może promować lub hamować
ekspresję zakodowanych w jego sąsiedztwie genów.

Przedstawiona struktura genomu poddawana jest symulowanej ewolucji za po-
mocą algorytmu genetycznego. Ewolucja zaczyna się od wygenerowania populacji
losowych genomów. Stosowane są operatory genetyczne modelujące mutacje zacho-
dzące w biologicznych genomach, takie jak duplikacje całych fragmentów genomu
i delecje. Zmiany zachodzą również na poziomie pojedynczych elementów, gdzie
dochodzi do zmiany pozycji przypisanego do danego elementu punktu w Rn, co z
kolei prowadzi do zmiany powinowactwa, a więc wag krawędzi w sieci genowej. Od-
powiada to mutacjom punktowym zachodzącym w cząsteczce DNA. Opracowany
został również algorytm pozwalający na krzyżowane genomów, także o różnej dłu-
gości.

4. Ewolucja sieci genowych przetwarzających sygnały

W rozdziale 4 pracy ewoluowalność przedstawionego modelu sieci genowych pod-
dana została analizie. Polegała ona na postawieniu ewolucji za cel uzyskania sieci
genowych zdolnych generować zadany wzorzec zmian stężenia w czasie wybranego
czynnika transkrypcyjnego. Funkcją dostosowania algorytmu genetycznego był błąd
pomiędzy poziomem ekspresji czynnika uzyskanym na wyjściu sieci, a pożądaną od-
powiedzią w ustalonym okresie symulacji (rzędu 1000 kroków). Bazowa funkcja
obliczająca błąd wspierana była przez dodatkowe człony mające poprawić ewolu-
owalność.

W pierwszej kolejności uzyskane zostały sieci, w których stężenie czynnika oscy-

28

EXTENDED ABSTRACT IN POLISH

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

(a)

(b)

(c)

time [steps] time [steps]

Rysunek 2: Zestaw uczący par wejście (IN)/wyjście (OUT) zmian stężenia produktu w czasie,
użytych do uzyskania sieci podwajających częstotliwość sygnału wejściowego wraz z odpowiedzią
najlepszej sieci. Przerywana linia: oczekiwana poprawna odpowiedź.

luje według zadanego wzorca, bez żadnego zmiennego sygnału zewnętrznego. Na-
stępnie zbadano możliwość uzyskania algorytmem genetycznym sieci, które byłyby
w stanie w sposób ciągły reagować i przetwarzać zmieniający się w czasie sygnał
zewnętrzny, przekazywany do sieci jako sterowane zewnętrznie stężenie wirtualnego
czynnika transkrypcyjnego. Aby uzyskać sieci o pożądanych własnościach, zasto-
sowane zostały zbiory uczące w postaci par przykładowego sygnału wejściowego i
oczekiwanej odpowiedzi (Rys. 2). Pozwoliło to na uzyskanie sieci, które funkcjonują
jako filtr częstotliwości, reagują na czas trwania impulsu wejściowego czy pomna-
żają częstotliwość oscylacji zewnętrznego sygnału. Co ważne, zaobserwowano bardzo
dobrą zdolność do generalizacji: uzyskane na drodze ewolucji sieci nie odpowiadały
poprawnie wyłącznie na przypadki uczące, ale bardzo dobrze radziły sobie również z
przypadkami pośrednimi, spoza zbioru uczącego. Właściwość ta jest fundamentalna
dla większości potencjalnych zastosowań praktycznych sztucznych sieci genowych.

W rozdziale porównana została również ewoluowalność w zależności od rodzaju
użytej funkcji dostosowania oceniającej jakość uzyskanej sieci. Wykazano, że dodat-
kowe człony w funkcji dostosowania, mające pomóc w przeszukiwaniu przestrzeni
rozwiązań, w sposób statystycznie istotny poprawiają ewoluowalność. Porównane
zostały także dwie wersje modelu sieci genowej: model wykorzystujący zmieniające
się w sposób ciągły poziomy ekspresji genów oraz jego wersja, w której aktywność
jednostek regulacyjnych zmienia się w sposób natychmiastowy, wyłącznie w oparciu
o sygnały na wejściu węzła sieci, działając w ten sposób analogicznie do rekuren-
cyjnych sieci perceptronów (w których poszczególne węzły nie mają stanu). Na ba-
danym problemie, wersja wykorzystująca zmieniające się w sposób płynny poziomy
ekspresji genów okazała się generować sieci dające lepsze dopasowanie do pożądanej
funkcji docelowej. Sugeruje to potencjalny obszar zastosowań dla sztucznych sieci
genowych związany z przetwarzaniem i generowaniem ciągłych sygnałów.

W końcowej części rozdziału zbadany został wpływ szumu w poziomie ekspresji
genów na działanie sieci. Porównane zostały sieci ewoluowane bez szumu z sie-
ciami, które ewoluowały z szumem ekspresji genów. Chociaż każdy z rodzajów sieci
wykazywał się pewną tolerancją na zaburzenia działania swoich elementów, sieci
ewoluowane z szumem osiągały zbliżone poziomy dostosowania do tych ewoluowa-

29

ROZSZERZONE STRESZCZENIE W JĘZYKU POLSKIM

Rysunek 3: Przykładowa trajektoria kontrolowanego przez wyewoluowaną sieć genową wirtualnego
organizmu jednokomórkowego odnajdującego źródła energii (niebieskie kółka). Puste kółka ozna-
czają znalezione źródła energii. Mapa jest pokolorowana zgodnie z lokalną intensywnością sygnału
chemicznego (niebieski - niska, od zielony do żółty - średnia, czerwony - wysoka).

nych bez, były jednak kilkukrotnie bardziej odporne na szum. Dotyczyło to również
poziomu szumu ekspresji znacznie większego niż ten oryginalnie obecny podczas ich
ewolucji.

5. Ewolucja zachowania wirtualnych organizmów jednoko-

mórkowych kontrolowanych przez sieci genowe

W rozdziale 5 podjęto próbę zastosowania sieci genowych do sterowania zachowa-
niem wirtualnego organizmu, a więc wykorzystania sieci genowej jako kontrolera.
Organizmy umieszczane były w wirtualnym dwuwymiarowym środowisku, w którym
znajdują się punktowe źródła energii. Ich obecność mogła być wykrywana na pod-
stawie dyfundującego w otoczeniu „śladu zapachowego”, słabnącego z odległością od
źródła. Funkcja dostosowania nagradzała osobniki za ilość pozyskanej w zadanym
czasie energii. W toku eksperymentów zaobserwowano, że na przestrzeni kilkuset
generacji możliwe jest wyewoluowanie komórek zdolnych do chemotaksji: porusza-
jących się w stronę źródła sygnału dzięki detekcji rosnącego gradientu (Rys. 3).
Przeanalizowano również historię ewolucji sterujących najlepszymi animatami sieci
i zaobserwowano proces stopniowej optymalizacji ich struktury w czasie i usuwanie
nadmiarowych połączeń. Podjęta została również próba ewolucji kontrolerów dla
bardziej skomplikowanego problemu, który wymagał poszukiwania źródła energii i
unikania “toksycznych” źródeł oraz zamianę ról tych źródeł w czasie życia organi-
zmu. Wymuszało to więc ewolucję sieci, które zależnie od fazy życia symulowanego
organizmu prezentują całkowicie odmienne zachowanie dla tych samych sygnałów
chemicznych.

30

EXTENDED ABSTRACT IN POLISH

6. Ewolucja wielokomórkowego procesu rozwojowego

Rozdział 6 wprowadza opracowany w ramach tej dysertacji model procesu rozwo-
jowego zachodzącego w trójwymiarowym środowisku z symulowaną fizyką, w któ-
rym komórki dzielą się i przemieszczają się pod wpływem wzajemnego nacisku oraz
utrzymują strukturę dzięki siłom adhezyjnym. Każda z nich sterowana jest opisaną
w rozdziale 3 siecią genową, przy czym dodatkowo wprowadzono możliwość emito-
wania przez komórki dyfundujących w środowisku morfogenów oraz reagowania na
nie. Każda z komórek może w czasie swojego życia podejmować decyzję o podziale,
zmianie swojej orientacji w przestrzeni (decydującej o kierunku podziału) czy też
zaprogramowanej śmierci (apoptozie). Jest to jeden z pierwszych (a według mojej
wiedzy pierwszy) z modeli, w którym symulowany proces rozwojowy zachodzi w 3
wymiarach i komórki nie są umieszczone na sześciennej siatce, tylko poruszają się
dowolnie w przestrzeni, kontrolowane przez symulowaną fizykę oraz symulowaną sieć
genową.

Pierwsza seria przeprowadzonych eksperymentów polegała na uzyskaniu za po-
mocą algorytmu genetycznego sieci genowych tak sterujących podziałami komórek,
by powstała pożądana morfologia (Rys. 4ad,be). Przeanalizowana została histo-
ria ewolucji morfologii w czasie, począwszy od sferycznych struktur otrzymywanych
w pierwszych generacjach, do uzyskania zadanego kształtu. W celu poznania jak
geny wpływają na zmiany morfologii, przeprowadzona została seria symulowanych
eksperymentów polegających na inaktywacji genów. Zidentyfikowano geny, których
wyłączenie powoduje utratę całej struktury morfologicznej. Następnie przedyskuto-
wane zostało zagadnienie ewolucji embrionów, które potrafią same zakończyć swój
proces rozwojowy, bez ograniczeń w postaci sztywnego limitu liczby komórek lub
zasobów energetycznych.

W części 6.3 rozdziału zbadana została odporność wyewoluowanych embrionów
na uszkodzenia w czasie procesu rozwojowego. Na wybranych etapach rozwoju,
określonych jako osiągnięcie zadanej liczby komórek, losowo usuwane były komórki.
Następnie proces rozwojowy był kontynuowany, a dostosowanie tak otrzymanego
embrionu porównywane było z dostosowaniem embrionu, który przeszedł niezabu-
rzony proces rozwojowy. Zaobserwowano bardzo wysoką tolerancję na uszkodzenia -
utrata 25% a nawet 50% komórek była w większości regenerowana. Jako że embriony
nie były w czasie swojej ewolucji nagradzane za to w funkcji dostosowania, uzyskaną
wysoką odporność na uszkodzenia należy uznać za emergentną własność prezentowa-
nego modelu procesu rozwojowego. Nie zaobserwowano natomiast zdolności do od-
rastania usuniętych fragmentów embrionu w sytuacji, gdy proces rozwojowy już się
zakończył. Zmodyfikowano więc funkcję dostosowania tak, by nagradzała explicite
zdolność embrionów do regeneracji po zakończeniu procesu rozwojowego. Pozwoliło
to uzyskać embriony zdolne do odrastania utraconych fragmentów.

W części 6.4 zostało zademonstrowane, jak model może zostać użyty do jedno-
czesnej ewolucji morfologii oraz różnicowania się komórek. W tym celu klasyczny
w dwuwymiarowych modelach embriogenezy problem różnicowania się komórek na
3 obszary, znany jako problem flagi francuskiej, został przeniesiony do 3 wymiaru.

31

ROZSZERZONE STRESZCZENIE W JĘZYKU POLSKIM

(a) (b) (c)

(d) (e) (f)

Rysunek 4: Ewolucja trójwymiarowych morfologii oraz różnicowania się komórek. (a,b,c) - definicja
docelowego kształtu (małe sfery oznaczają voxele na poziomie których dokonywane jest porównywanie
uzyskanego kształtu z docelowym), (d,e,f) - wyewoluowane embriony (sfery reprezentują komórki).
W przypadku (c,f) jednocześnie ewoluowano zadany kształt oraz pożądane różnicowanie komórek
(trójwymiarowa wersja problemu flagi francuskiej).

Z powodzeniem uzyskano trójwymiarowe elipsoidalne embriony, w których komórki
różnicują się na trzy lub więcej obszarów (Rys. 4cf). Udawało się to nawet w sytu-
acji w której komórki nie miały do dyspozycji gradientu zewnętrznego czynnika na
podstawie którego mogłyby wyznaczać swoją pozycję. Zaobserwowano natomiast,
że ewoluowane w ten sposób embriony same wytwarzały lokalnie podwyższone stę-
żenia morfogenów, umiejscowione na przeciwnych krańcach embrionu, które mogły
być wykorzystywane jako sygnały do zróżnicowania się dla innych komórek.

7. Otwarta (ang. open ended) ewolucja wielokomórkowych

morfologii

W rozdziale 7 zaproponowana została nowatorska metoda pozwalająca na stworze-
nie systemu, w którym wielokomórkowe morfologie ewoluują w sposób otwarty, tj.
bez narzuconej z góry obiektywnej funkcji dostosowania, która premiowałaby kon-
kretne morfologie. W tym celu wykorzystany został algorytm poszukiwania nowości
(ang. novelty search), zaproponowany przez Lehmana i Stanleya (2008). Nagradza
on fenotypy (a więc w tym wypadku morfologie), które różnią się od tych, które
istniały dotychczas. Połączenie novelty search z opisanym w rozdziale 6 modelem
embriogenezy oraz tylko w niewielkim stopniu zmodyfikowanym algorytmem ge-
netycznym doprowadziło do powstania systemu, który nieustannie generuje nowe
morfologie i, podobnie jak biologiczna ewolucja, nie zmierza ku zadanemu celowi.
Co najciekawsze, uzyskane morfologie wykazywały się wizualnie o wiele większą zło-
żonością (Rys. 5) niż morfologie, które można było uzyskiwać za pomocą algorytmu
genetycznego (rozdział 6).

W rozdziale poddano analizie historię ewolucji wybranej morfologii, odnajdu-
jąc każdego z jej przodków. Chociaż różnice pomiędzy kolejnymi pokoleniami były

32

EXTENDED ABSTRACT IN POLISH

(a) Gen 121 (b) Gen 461 (c) Gen 1703 (d) Gen 3151

(e) Gen 3921 (f) Gen 3926 (g) Gen 4292 (h) Gen 4362

(i) Gen 4513 (j) Gen 4584 (k) Gen 4888 (l) Gen 5000

Rysunek 5: Przykładowe morfologie uzyskane w eksperymencie z otwartą ewolucją. Próbka morfo-
logii z zapisu historii symulowanej ewolucji trwającej 5000 generacji.

zwykle bardzo niewielkie, dalsi przodkowie potrafili być bardzo odmienni od anali-
zowanej końcowej morfologii. Jest to sytuacja bardzo odmienna od eksperymentów,
w których istniała obiektywna funkcja celu: w takich eksperymentach kolejne po-
kolenia musiały stawać się coraz bardziej podobne do oczekiwanego kształtu. W
rzeczywistości, droga prowadząca do uzyskania pożądanej morfologii może wyma-
gać “przejścia” przez formy pośrednie, które są dalekie od pożądanego kształtu.
Klasyczne algorytmy genetyczne pozwalają na to jedynie w bardzo ograniczonym
stopniu, nakładając silne ograniczenia na obszary w przestrzeni dostosowania, które
zostaną odwiedzone. Zaobserwowana różnica w złożoności morfologii, które można
uzyskać za pomocą otwartej ewolucji i klasycznego algorytmu genetycznego, jest
przykładem negatywnej presji jaką algorytm genetyczny z obiektywną funkcją celu
nakłada na eksplorację interesujących i potencjalnie niezbędnych do odkrycia pożą-
danego rozwiązania obszarów przestrzeni dostosowania.

W toku dalszych badań podjęta została próba wizualizacji relacji podobieństwa
pomiędzy morfologiami istniejącymi na różnych etapach ewolucji za pomocą skalo-
wania wielowymiarowego (MDS). Analiza pozwoliła wyróżnić 3 główne klastry ty-
pów morfologii oraz zaobserwować sposób, w jaki stopniowo eksplorowana jest prze-
strzeń możliwych do uzyskania kształtów. Przeprowadzona została również analiza
zmian rozmiaru genomu w czasie i zestawiona ze zmianami w samej sieci genowej.

Zaproponowana w rozdziale 7 metoda konstrukcji systemu otwartej ewolucji jest
uniwersalna i można ją zastosować również do innych modeli embriogenezy. Co
więcej, konieczne do wprowadzania zmiany w algorytmie genetycznym są stosun-
kowo niewielkie i sprowadzają się do zamiany funkcji dostosowania na funkcję oceny

33

ROZSZERZONE STRESZCZENIE W JĘZYKU POLSKIM

nowości. Proponowane podejście może więc być wykorzystane np. jako metoda po-
zwalająca na ocenę spektrum morfologii, jakie można uzyskać w innych modelach
symulowanej embriogenezy. Pozwala też na stworzenie bardziej biologicznie reali-
stycznego modelu ewolucji morfologii oraz sieci genowych niż środowisko, w którym
ewolucja zmierza do z góry określonego celu.

8. Podsumowanie

Rozdział 8 zawiera podsumowanie uzyskanych wyników oraz przedstawia propono-
wane kierunki dalszych badań. Przedstawiony w dysertacji inspirowany biologicznie
model sieci genowej okazał się cechować wysoką ewoluowalnością na szerokim spek-
trum problemów, do których został zastosowany. Zbadana została możliwość auto-
matycznego projektowania sieci genowych pełniących funkcje takie jak przetwarza-
nie w sposób ciągły zewnętrznych sygnałów oraz sterowanie w czasie rzeczywistym
wirtualnym animatem/robotem. Zaobserwowana została bardzo dobra zdolność do
generalizacji przedstawionych problemów, jak również odporność działania sieci na
zaburzenia w działaniu jej elementów, symulowana za pomocą szumu nakładanego
na stężenia produktów.

Wprowadzony w rozdziale 6 model procesu rozwojowego zachodzącego w trzech
wymiarach i kontrolowanego przez sieci genowe pozwala na ewolucję zadanych trój-
wymiarowych morfologii oraz wykazuje się emergentnymi własnościami, takimi jak
odporność procesu wzrostu wielokomórkowej struktury na zaburzenia oraz uszko-
dzenia w postaci utraty nawet znacznej części komórek. Zademonstrowano również
jak można uzyskać embriony, które są w stanie częściowo regenerować usuwane z
nich fragmenty nawet po zakończeniu rozwoju. Model pozwolił również na ewolu-
cję embrionów, których komórki różnicują się przestrzennie. Przedstawiono także
system, w którym morfologie nieustannie ewoluują, premiowane wyłącznie za posia-
danie formy odmiennej od tych, które występowały wcześniej. System ten umożliwia
stworzenie biologicznie realistycznego scenariusza, pozwalającego na badanie wła-
sności ewolucji morfologii oraz kontrolujących ich sieci genowych in silico, pozwala
także na ocenę zakresu morfologii jakie można uzyskiwać w tym i innych modelach
procesu rozwojowego.

Oprócz znaczenia przedstawionych badań dla biologii systemów oraz ewolucyjnej
biologii rozwoju, stanowią one eksplorację własności nowych metod niebezpośred-
niego kodowania w algorytmach ewolucyjnych. Modele obliczeń oparte o sztuczne
sieci genowe mogą być, podobnie jak sztuczne sieci neuronowe, wykorzystywane jako
ewoluowalne układy sterujące. W połączeniu z procesem rozwojowym mogą być zaś
wykorzystane do ewolucyjnego wytwarzania niepodlegających ograniczeniom ludz-
kiej intuicji, zdolnych do samonaprawy i samoorganizacji, modularnych konstrukcji,
takich jak np. złożone z wielu jednorodnych komponentów roboty. Zaprezento-
wany w pracy model procesu rozwojowego zademonstrował już swoją użyteczność
do tego celu w toku dalszych, trwających obecnie badań (Joachimczak et al., 2012;
Joachimczak and Wróbel, 2012).

34

Chapter 1

Introduction

Only two processes are known to generate complex and sophisticated designs. The
first one is human creativity. Faced with a problem to solve, our brains allow us
to propose potential solutions, visualize them and to ultimately implement them.
By decomposing the problem into smaller modules, we can focus our attention on
the appropriate level of abstraction. Importantly, using modular approach we can
reuse earlier designs, without a need to understand the detail of every component.
This way, we can build on top of existing solutions and create designs of increasing
complexity, far beyond full comprehension of a single designer. In that sense, almost
every non trivial human design is a product of the mind of its designer as well as
of the minds of all the people who contributed to the currently available tool set.
Given this powerful capability of our species, it is therefore perhaps not surprising
that for the most of the history of the civilization, whenever we were fascinated
by the complexity discovered in a natural world, we assumed that it could have
only been created by a designer and a one far superior to us. It was not until 150
years ago when we realized that a second, completely natural process can lead to
the emergence of such complexity. Its sophistication not only outcompetes that of
designs created by our minds but also authored the minds themselves. This process
is known as evolution.

Although the concept of evolution is beautifully simple and powerful at its core,
the understanding of its implications and mechanisms has gone a long way since it
was first proposed by Darwin and Wallace in 1858. We now fairly well understand the
molecular mechanisms that encode hereditary information in living organisms as well
as the history of life on Earth. At the same time, we have enriched our understanding
of the process of evolution and now see it as independent from the substrate: an
universal mechanism that is bound to occur whenever certain conditions are met,
be it on another planet or inside a computer simulation. These conditions are: the
presence of entities that replicate with occasional imperfections and an environment
with limited resources. Whenever these two conditions are met, the replicators
carrying changes (mutations) that allow them to better exploit available resources
will start to outcompete their ancestral type. However, the extent to which this
process can lead to an increasing complexity depends on many factors, such as how

35

1. INTRODUCTION

Figure 1.1: Evolved novel antenna design used on a satellite in NASA ST5 mission (Hornby et al.,
2010). Image source: http://www.nasa.gov.

the hereditary information is encoded. They influence what is known as evolvability
of a system, which is understood as its capability to generate heritable variation and
to acquire novel functions that increase adaptation (Wagner, 2005). The question
of how evolvable systems can be created is one of the main interests of this work.

Evolution in silico

The first computer simulations of evolution date to the early 50s, but it was primar-
ily John Holland’s work in the late 60s and 70s that popularized the concept of
evolution-inspired optimization method: a genetic algorithm (GA). The growing
availability of desktop computers and their ever growing speed increased the feasib-
ility of evolutionary algorithms and resulted in development of various evolution in-
spired methodologies such as genetic programming (Koza, 1992), evolution strategies
(see, e.g., Beyer and Schwefel, 2002) or neuroevolution (Stanley and Miikkulainen,
2002), to name a few. Although GAs are sometimes (rightly) criticized for their
computational cost and the need to adjust the algorithm and fitness function to
suit the problem for which, more often than not, no hard guidelines exist, they
have found their use in many domains. They have been demonstrated to produce
working designs that outcompete human designers in performance, but more import-
antly, also in creativity. Free from the limits imposed by human imagination and
paradigms, simulated evolution can tinker with designs that would be very unlikely
to be conceived by a human, as illustrated by a novel antenna design in Fig. 1.1. As
biologist Leslie Orgel jokingly stated in what is now known as Orgel’s Second Rule:
“evolution is cleverer than you are”.

36

http://www.nasa.gov

(a) (b)

Figure 1.2: Avida, an open-ended alife system, (a): the model of an organism and environment, (b):
example environment with each species coloured differently. Figures from Beckmann et al. (2007) and
http://kurzweilai.net (credit: Kaben Nanlohy, Michigan State University), respectively.

Artificial Life

Artificial Life (or alife, in short) is an interdisciplinary field that emerged from the
early computer models of evolution in the mid 80s. It now covers a broad range of
research endeavours unified by a common goal of understanding life and its evolution
through the use of models. This typically involves computer models, like the work
presented here, but also hardware, as is the case in robotics. It can also involve
biochemical systems, as is in the case of “wet” branches of alife. Of the principal
interest to alife is the process of evolution and emergent phenomena such as self-
organization among multiple agents, be it molecules, cells or organisms.

Some of the now classic and most recognized examples of alife projects include,
e.g., Tierra (Ray, 1992) and Avida (Adami et al., 1994). Both are artificial ecosys-
tems in which computer programs compete for limited resources (program memory
in Tierra, space on a 2D lattice in Avida) and evolve over time. They belong to the
open-ended artificial life systems, that is, there is no explicit fitness function and the
success of a given individual is only determined by the ability to successfully repro-
duce in its environment (Fig. 1.2). Such systems can be used to investigate otherwise
difficult to test evolutionary hypotheses. For example, Avida was just recently em-
ployed to model the origin of altruism (Clune et al., 2008) and the evolution of
mutation rates (Clune et al., 2010). Phenomena like parasitism were also observed
to quickly emerge in such simulated environments. Yet another well recognized
class of alife systems, the artificial chemistries, focuses on a lower level phenomena
on the borderline between physics and biology: the emergence of self-organization
(Chou and Reggia, 1997; Hutton, 2007; Jędruch and Barski, 1990; Sienkiewicz and
Jędruch, 2011). In these systems, each simulated agent represents a molecule, and
virtual molecules interact according to the rules of physics and chemistry present
in the environment. However, organization of virtual molecules into higher level
structures is not defined a priori in the system and emerges through these interac-
tions. Unfortunately, such low level simulations have enormous computational costs
and thus they focus on modelling the emergence of life rather than the process of

37

http://kurzweilai.net

1. INTRODUCTION

Figure 1.3: A swimming creature in Framsticks, a body-brain coevolution system by Komosinski
and Ulatowski (1999).

evolution itself. On the other side of the spectrum of levels of abstraction used
in alife modelling, whole agents consisting of multiple components (such as blocks
and joints) can be evolved together with their controllers. Some of these projects
have become icons of alife modelling, e.g., the co-evolution of body and brain in
Karl Sim’s (1994) 3D creatures, Framsticks (Fig. 1.3; Komosinski and Ulatowski,
1999) or creatures with complex neural vision systems living in an open ended 3D
environment PolyWorld (Yaeger, 1993).

Thesis context and objectives

The work presented in this thesis belongs to the field of artificial embryogeny, a
subfield of alife that focuses on modelling the process of multicellular development,
i.e., self organization of cells into an organism. To achieve biological plausibility, it
employs a model of the genome that indirectly encodes a gene regulatory network
(GRN), a network of interactions between genes that determines the behaviour of
each cell. The development itself is simulated in 3D and cells of the embryo interact
through a simulated physics.

The objective of this thesis is twofold. On one hand, it attempts to create an
evolvable model of GRN controlled multicellular development. Biological devel-
opment allows to encode information necessary to build a structure consisting of
trillions of cells (such as a human body) in a genome which has the information
content of only hundreds of megabytes. Developmental process can be seen as an
indirect method of encoding a phenotype which, in this case, is a self assembling
3D structure. The scalability and evolvability of this encoding is well demonstrated
by the enormous diversity and adaptability of multicellular life on Earth. At the
same time, the poor scalability of direct genotype to phenotype mappings have
long been recognized in evolutionary computation, and simulated developmental
processes are seen as one of the ways to overcome limitations of direct encodings

38

1.1 Thesis layout

(Tufte, 2008). This thesis explores evolvability and properties of a highly biologically
inspired model of development, together with investigating the evolvability of GRNs
(also indirectly encoded in the genome) and their applicability to control problems
other than multicellular development.

The second objective was to create a plausible model of evolution of multicellular
development that would allow to investigate how genomes, regulatory networks and
morphologies evolve and increase in complexity over time. Computer simulations
can allow to perform simulation experiments relevant to evolutionary developmental
biology (evo-devo) that would be otherwise difficult or impossible to conduct.

1.1 Thesis layout

The thesis consists of two introductory chapters. Chapter 1 (this) provides an
introduction and a brief overview of the relevant biological concepts that this work
models and abstracts, i.e., the genomes of biological organisms, regulatory networks
and evolution of development. Chapter 2 overviews the prior work on the simulation
of regulatory networks (GRNs) and models of artificial embryogenesis employing
GRNs. Chapter 3 introduces the model of the GRN and simulated evolution that is
the basis of this work. In Chapter 4, the evolvability and properties of the selected
approach is evaluated on a range of signal processing tasks. Chapter 5 attempts to
create a more biologically plausible setting for simulated GRN evolution and applies
GRNs to control real time behaviours of simulated unicellular organisms. Chapter 6
introduces the model of multicellular development and investigates the evolvability
of 3D embryos as well as their properties using the GRN model introduced in earlier
chapters. Chapter 7 demonstrates an open ended environment for evolution of
3D morphologies. The thesis concludes with a summary and discussion of future
directions.

The following sections of the introduction outline fundamental biological con-
cepts that are relevant for the presented work. By necessity, I will ignore many
of the intricacies of the discussed mechanisms which were the subject of important
discoveries in molecular biology over recent years. Instead, I will focus on the core
mechanisms presented from the perspective of computer science.

1.2 DNA: life’s digital encoding

The diversity of living forms on Earth, their range of scales and sheer complexity is
breathtaking. Life evolved to thrive in even the harshest conditions such as freezing
temperatures at the poles or enormous pressures and high temperatures surrounding
undersea hydrothermal vents, up to 5 kilometres below the surface, where the main
source of energy are chemicals and heat. But what is perhaps even more amazing
and a testament to the common ancestry is that all living organisms, no matter how
diverse, all depend on DNA to encode their genetic information.

39

1. INTRODUCTION

The concept of discrete units of heredity (i.e., genes) reaches to the 1860s works of
Gregor Mendel. Although his works were published right at the time when Theory
of Evolution was bringing a sudden paradigm shift to biology and was in desper-
ate need for the explanation of how traits can be passed from parents to offspring,
Mendel’s works remained mostly unnoticed by a larger scientific community. It re-
mained so until their rediscovery more than three decades later. At about the time
Mendel was performing his experiments on peas, Ernst Haeckel, one of key figures
of the evolutionary revolution, basing on microscopic observations, postulated that
cell nucleus carries hereditary information. However, it was not until 1884 when
one of his students, Oscar Hertwig, would confirm so experimentally. The next 50
years brought incremental discoveries such as the fact that genetic information is
stored in chromosomes as well as the discovery of nucleic acids, RNA and DNA.
Still, however, without understanding of their structure. Independently of the in-
creasing understanding of biochemical mechanisms of the cell, mathematical models
of evolution were being developed, leading to the formulation of what is now known
as a the modern synthesis. A proof to the generality of evolutionary principles, even
though it was developed without knowledge of molecular mechanisms, the modern
synthesis remains the currently accepted account of evolution 80 years later.

The understanding that DNA molecules carry the genetic information came in
1944, thanks to what is now known as the Avery-MacLeod-McCarty experiment.
The hunt was on to discover what actually constitutes this information. It culmin-
ated with the discovery of the doubly helical structure of the DNA molecule by
Watson and Crick in 1953 (awarded with the Nobel Prize). It was followed a few
years later by the discovery of how genetic information is encoded. It employs an al-
phabet of 4 nucleotides and the so called “genetic code” to encode protein sequences
in DNA.

However, understanding how the information is stored is very different from know-
ing how this information leads to the creation of an organism. Although we now un-
derstand the basic molecular mechanisms of DNA replication and protein assembly,
the larger scale view of how genes and their interactions lead to the formation of
a multicellular organism is still a subject of ongoing and exciting research. Hence,
even though we sequenced genomes of multiple organisms, including humans, under-
standing the meaning of this information will remain a challenge for many decades
to come.

On its highest level of organization, taxonomy divides life by the presence of
nucleus in their cells into Eukaryota (having a nucleus) and Prokaryota (lacking a
nucleus). Eukaryota are organisms that include, among others, plants and animals.
There are two groups of Prokaryota: Archaea and Bacteria, both taxons of equal
standing to eukaryotes. The smallest cells of eukaryotic organisms are an order of
magnitude larger than the smallest prokaryotic cells and differ in many aspects. For
example, DNA of prokaryotic organisms is typically organized into a single circu-
lar molecule, whereas eukaryotic DNA is organized in many linear, tightly packed
chromosomes residing inside a nucleus. Typically, most of DNA in prokaryotes en-
codes proteins (∼ 90%), whereas often less than 5% of eukaryotic genomes does so.

40

1.3 Biological genomes and gene regulation

The number of nucleotides in a genome for prokaryotic genomes is in 105−6 range
and in 107−9 range for eukaryotic genomes. To put it in terms of data storage, this
translates to ∼ 120kB (kilobytes) for the smallest known bacterial genomes and a
few megabytes for the largest known bacterial genomes, which is also the size of the
smallest known genomes of eukaryotes. Humans (and mammals in general) store
around 800MB in their genomes, but as tempting it would be to associate genome
size with the apparent complexity of organisms, the salamander’s genome is 40 times
larger than ours. Furthermore, some plants are known to have very large genomes
(∼ 50GB for the currently largest known plant genome, Pellicer et al., 2010), though
such enormous genomes often consist of several copies of an ancestral genome that
became repeatedly duplicated. The lack of correlation of apparent complexity of
an organism with its genome size is recognized as the C-value paradox (see, e.g.,
Gregory, 2001).

1.3 Biological genomes and gene regulation

DNA is a macromolecule in a form of a long chain of nucleotides. Each nucleotide
consists of a sugar and phosphate backbone and one of the 4 possible bases: aden-
ine (A), guanine (G), thymine (T) or cytosine (C). In its most common form, DNA
consists of two complementary strands, structured into a double helix and held by
weak hydrogen bonds between complementary pairs (A-T, G-C). The actual phys-
ical length of the molecule can be considerable and is in the range of centimetres
for human chromosomes. This gives around 2-3 metres of DNA that fits in a �1µm

nucleus of every cell. It is only possible thanks to the very dense packing that liter-
ally wraps DNA around proteins specialized for that purpose (histones), much like
“beads on a string”, which are further folded into a higher order helix.

The meaning of the term “gene” evolved over time with our increasing knowledge
of mechanisms of heredity and can easily become a source of confusion. In a most
general and accepted sense, a gene is a functional fragment of a genetic sequence.
However, many genes encode proteins and so, in the context of protein synthesis, the
term “gene” is synonymous with a fragment of a genome that encodes a sequence of
a protein, i.e., a “protein coding gene” (for a summary of different uses of the term
see, e.g., Gerstein et al., 2007). But in its most general sense, the term encompasses
not only protein coding genes, but any functional genetic sequences, for example,
regions of DNA that are important for gene regulation or fragments that undergo
transcription to RNA but do not result in proteins.

1.3.1 From DNA to protein

The read out of a genetic information leading to the synthesis of a protein is a
two step process. It consists of transcription and translation. First, the sequence
of a single gene determines the sequence of a messenger RNA molecule (transcrip-
tion), which is then used as a template for creation of a protein (translation). This
means that the information encoded in a genome is ultimately converted into protein

41

1. INTRODUCTION

molecules. The observation that information can only flow from DNA to proteins
but not from proteins to DNA is referred to as the central dogma of molecular bio-
logy. The essential features of transcription and translation are shared between both
prokaryotic and eukaryotic organisms, the details can however be quite different and
reflect the fact that the eukaryotic lineage added its own mechanisms on top of what
its bacterial ancestor would already have.

Transcription

Transcription results in the creation of a messenger RNA molecule (mRNA). Just
like DNA, mRNA is a chain of nucleotides but it is single stranded. The sequence
of mRNA is complementary to one strand of the DNA. In both eukaryotes and
prokaryotes the genomic DNA is double stranded. The strands are complement-
ary and have opposite directions. When nucleotides are bound together to form
nucleic acids, it is always the so called 3’ end that is being extended (the number
corresponds to a carbon atom in the sugar moiety, ribose or deoxirobose). It is
common to refer to regions as “downstream” (or in 3’ direction) and “upstream”
(5’ direction) of a site using the direction of a relevant strand. The process of tran-
scription is performed by an enzyme (a protein) called RNA polymerase (RNAP).
RNAP binds non specifically to DNA (in fact, many of RNAPs will do so in parallel
every second). Bound RNAP initiates a linear search for a region that will signal
the beginning of transcription, typically a particular sequence of nucleotides located
at very specific distances from each other. Upon finding it, RNAP will then start
synthesizing a complementary mRNA chain until another region signalling an end
of transcription is detected. To allow for physical access to nucleotides, the hydro-
gen bonds between two DNA strands are temporarily broken during the read out,
forming a moving “transcription bubble”. Even before the whole mRNA molecule
is synthesized, transcription starts in prokaryotes. In eukaryotes, it is necessary
first to transport mRNA out of the nucleus. Before it happens, most eukaryotic
mRNA undergoes a process called splicing. Splicing starts already before mRNA
synthesis is finished and involves removal of pieces of mRNA (so called introns).
The final mRNA molecule is spliced (hence the name) from the remaining pieces
(exons) one-by-one.

Translation

Translation results in the creation of a protein using mRNA transcript as a template.
Proteins are macromolecules consisting of a chain of amino acids (sometimes multiple
chains) and serve essential roles for the functioning of an organism. They function
as enzymes (i.e., they catalyse chemical reactions), regulate cellular processes and
transcription of genes. Proteins also have structural roles, forming the scaffolding
of cells. Organisms on Earth rely on only 20 different amino acids, limit to a
few exceptions: two other amino acids are used by some prokaryotic organisms.
The average length of a protein amino acid chain is about 500 amino acids, the
longest known is above 20 000. However, proteins do not maintain a linear structure,

42

1.3 Biological genomes and gene regulation

but already during the synthesis of the chain they undergo a process known as
folding, during which they obtain a complex 3D structure (conformation). It is the
conformation that determines the chemical properties. The folding occurs due to the
chemical properties of their interacting amino acids and can undergo spontaneously
through a process of energy minimization or with the help of additional proteins
(chaperones). Prediction of a native conformation of proteins based on their amino
acid sequences is currently one of the most important challenges and active research
areas of bioinformatics. It is of great relevance to medicine and drug design.

The order of amino acids is encoded directly by the sequence of nucleotides in
the mRNA molecule. This encoding is known as the genetic code: each triplet
of nucleotides (codon) represents a single amino acid. Since this gives 43 = 64

possible codons that need to encode 20 amino acids, the genetic code is redundant.
Furthermore, some of the codons are used to mark the beginning or the end of amino
acid chain assembly. Since an enormous number of such translation tables is possible,
the fact that essentially the same genetic code is shared between all living organisms
is a powerful evidence for the common ancestry of all life on Earth. There is also
recent evidence suggesting that the code is far from being random and underwent
evolution that optimized its robustness to mutations and fault tolerance, prior to
the existence of the common ancestor of all currently living organisms (Freeland
et al., 2003; Tlusty, 2007).

The process of translation is performed by a molecular complex called a ribosome.
Just as multiple RNAPs exist in each cell and work in parallel, so do multiple
ribosome molecules. They bind to mRNA molecules and assemble proteins using
mRNA as a template. To make it possible, adequate amino acids have to be delivered
to extend the amino acid chain after each new codon had been read out. This is
done with the use of transfer RNA (tRNA) molecules. tRNAs are RNA molecules
folded in a very particular 3D shape. On one end they expose an anticodon: a
triplet of bases that will match a particular codon in an mRNA molecule. Its
opposite side binds an amino acid that matches this particular codon. Hence, at
least 20 different types of tRNA have to exist (and are encoded in the genome), and
considerable numbers of such molecules have to be continuously present in a cell
to allow for protein synthesis. tRNA molecules attach to a ribosome bound to an
mRNA transcript and release their amino acid which joins the so far build chain.
The freed tRNA molecule is then ready to be reused and to bind another free flowing
amino acid.

1.3.2 Gene regulation

The process of critical importance for the workings of a cell and central for this work
is that of gene regulation (here, the word “gene” refers to genes encoding proteins).
Cells need to control what kinds of proteins are synthesized and in what amounts.
Also, for prokaryotic cells, synthesizing proteins that are currently not needed is a
non-negligible energetic cost. Gene regulation can occur on various levels, and for all
levels multiple mechanisms are already known, with the list likely to be extended.

43

1. INTRODUCTION

��
�����

��
�	
�

�
� ���

�
� �����
���
	�

��

��

��

�����
�	���

���
�

	

���

���

� �

�
���

�����	���	

���	 �����
	�

�	��	����

��	��	�

	�
��
��
	�

	�����	�

	�����	�

��
��
��

��
��
��

��
��
��

Figure 1.4: Regulation of eukaryotic transcription. Blue: basal factors, green: co-activators (drawing
by Jared Schneidman, reproduced from Tjian, 1995).

The lowest level is transcription: the rate of synthesis of a given protein can be
controlled by influencing the rate at which transcripts are created which can be,
e.g., done by interfering with RNAP binding to DNA. The rate of synthesis of a
protein itself can also be affected by active degradation of mRNA before they get
to be translated into a protein (one of the many mechanisms of post-transcriptional
regulation). The same applies to regulation at the level of translation. Proteins
can be actively degraded, become deactivated by inhibitor molecules, or require
activating molecules (which, again, can have different concentrations) to become
functional.

Since transcription is a first stage necessary for the synthesis of a protein, reg-
ulation at this level can be expected to be of a key importance. The principal
mechanism through which it occurs involves transcription factors (TFs). TFs are
proteins that have an affinity to DNA. By binding to sites located in the vicinity
of the protein coding regions, they can enhance or silence the transcription of this
region, ultimately influencing the synthesis rate of a protein. One of the classes of
eukaryotic TFs are TATA binding proteins (TBP). They identify a very particular se-
quence on DNA which signifies the start of a transcribed region: T-A-T-A. Together
with other TFs that bind to them, TBPs belong to so called basal factors, factors
that help recruit and position RNA polymerase before the coding region (Fig. 1.4).
Other TFs, known as activators, bind to enhancer sequences and through coactivat-
ors increase the probability of TBPs binding in a given region. TFs from yet another
class, repressors, bind specifically to sequences known as silencers and interfere with
formation of the RNAP complex. Hence, the interplay between various TFs and the
presence of specific sequences around the protein coding region (often upstream)
influences the rate of mRNA synthesis and is the basis of gene regulation logic.

The first complex regulatory circuit identified and now a classic textbook example

44

1.3 Biological genomes and gene regulation

of gene regulation is the lac-operon in Escherichia coli (a prokaryote). One of
the controlled genes encodes a protein (enzyme) that allows the cell to digest the
sugar lactose. However, the enzyme is produced if and only if lactose is detected
in the environment, and if glucose, a preferred energy source, is not present. In
all other cases, transcription is inhibited (see, e.g., Berg et al., 2002, for a detailed
explanation).

1.3.3 Gene regulatory networks

The network of interactions between environmental signals, proteins and gene ex-
pression can be depicted as a graph in which vertices represent products of genes
and edges represent regulatory interactions. A transfer function can be specified for
each node representing the logic behind regulation of the synthesis of a given gene
product. In practice, this logic is often limited to specifying whether an interaction
represented by an edge should be treated as inhibiting or enhancing. Even though
gene regulatory networks often hide complexities of many levels of possible regulat-
ory interactions behind a single edge in a graph, they are a useful level of abstraction
for understanding the logic behind processes that occur in cells. The hidden com-
plexity also reflects the fact that often we do not know and do not have an easy
way to determine how regulation occurs. Furthermore, from the point of view of
understanding how the system behaves, we are usually interested only in finding
out how concentrations of one protein will influence concentration of another. It
should therefore be not surprising that the past two decades have brought a rapidly
increasing interest in decoding the structure of regulatory networks.

Reconstructed regulatory networks of biological organisms can be very complex
(see Fig. 1.5 for an example), and it can be very laborious to decode them. Estab-
lishing the existence and the nature of each edge requires a series of independent
experiments and, sometimes, dozens of scientific papers. However, the recent pro-
gress of high throughput methods that allow to observe patterns of expression of
multiple genes over time enables less accurate but higher scale decoding based on
correlations in changes in expression levels. Our knowledge of regulatory networks is
still very incomplete, but it appears that regulatory networks exhibit a high degree
of modularity, and the global network of interactions consists of many modules that
evolved to control different processes. Hence, each such module can, to an extent,
be analysed and understood separately. Still, the actual extent to which our cur-
rent view of modularity of gene regulatory networks represents actual modularity in
their global structure, or is an artefact of our limited capabilities to decipher their
structure, is part of an ongoing debate.

It is expected that statistical properties of regulatory networks are not random
and have been shaped by selection pressures such as the need to be robust to damage
and interference as well as by the nature of mutations through which genomes evolve
(especially, the effects of gene duplications). Hence, there is a growing interest in
determining those global properties. This is being investigated both on biological
data as well as through modelling paradigms, of which this thesis is a part of.

45

1. INTRODUCTION

Figure 1.5: Fragment of the regulatory network controlling the initial stages of development of a
purple sea urchin (reproduced from Davidson et al., 2003).

For example, apart from being modular, it has been postulated that regulatory
networks are scale-free and have the small-world property (see, e.g., Barabási, 2009;
van Noort et al., 2004; Wuchty, 2001). Furthermore, certain motifs (subgraphs)
were postulated to be overrepresented depending on the functionality of a network
(Milo et al., 2002).

1.4 Multicellularity and embryogenesis

Multicellular life evolved from unicellular organisms more than once during the
history of life on Earth. Currently, more than twenty such evolutionary transitions
were identified in different lineages. The oldest is postulated to have occurred among
cyanobacteria, 3.5 billions years ago (Bonner, 1998), i.e., relatively quickly after the
appearance of life and almost 3 billions years before complex multicellular eukaryotic
organisms that we typically associate multicellular life with. Just recently, it has
been demonstrated that primitive multicellularity can evolve in the lab in just a
few dozens of generations, given an appropriate selection pressure (Ratcliff et al.,
2012). What are the benefits of being multicellular? For one, in many environments
there is an advantage of simply being bigger. Furthermore, being multicellular
allows for a higher level of functionality through cell specialization. This however
requires additional, much more sophisticated cell regulation that will allow cells to
differentiate and take on different roles, despite having the same genome and thus
the same controller (i.e., a regulatory network). Two cells with the same regulatory
network can only behave differently because the state of each cell is determined by its
current concentration of the proteins in the cytoplasm (especially, the transcription
factors). Hence, if due to some external factor (or even noise) a particular TF reaches

46

1.4 Multicellularity and embryogenesis

different concentrations in two cells, it can set each of them on a different regulatory
trajectory, further activating or deactivating different regions of regulatory network
through a cascade of interactions

Of principal interest, both because of its complexity and relevance to humans,
is the embryogenesis (i.e., multicellular development) of animals. All animals start
their life from a single cell and develop through successive cell divisions. Related
organisms that are visually quite different such as, e.g., a whale or a bat, display
remarkable similarities at their earlier stages of development, a phenomenon that
was recognized already at the times of Darwin and popularized by iconic (albeit
exaggerated to emphasize certain features) drawings of Ernst Haeckel. Also, at adult
forms, organisms display homologies (similarities stemming from common descent).
Features such as limbs share a common skeletal plan between all vertebrates and,
even more interestingly, are clearly modular in their structure. For example, each
digit in a limb consists of a number of smaller bones that usually differ only in
size. On the other hand, the number of digits can be different even between closely
related and otherwise visually similar species. In fact, a mutation that can change
the number of digits is not uncommon even among humans (the result is known as
polydactylia). This suggests that a relatively simple genetic change must be behind
it. Although such additional digit is usually degenerate, it is still not that rare for it
to be fully functional, i.e., connected by nerves, under the control of the brain and
providing sensation. All this shows that the process of development has a remarkable
level of modularity: some regions of DNA can influence how many digits will be
created and there is no need to specify how to connect each of them with nerves
and veins: these will be laid out accordingly to the number of digits being built. It
is thanks to this modularity that evolution can continuously discover and test slight
variations to existing forms through apparently relatively simple changes in the
genome: mutations can “tweak” the parameters of certain morphological features
by controlling the amount of growth of certain bones or overgrowth of tissue, even
repeating whole structures (see, e.g., West-Eberhard, 2003, for a comprehensive
introduction). This plasticity of evolution has been realized already at the times
of Darwin, but it was not until early 1980s when light had been shed on actual
genetic mechanisms governing the development, thanks to the research on a fruit fly
Drosophila melanogaster and the discovery of the homeotic (Hox) genes.

Hox genes encode a particular type of protein. These proteins all have char-
acteristic 60 amino acid domain (homedomain), and genes that encode them form
clusters on the genome. Interestingly, the relative order of Hox genes on the DNA
corresponds to their expression patterns along the axis of the developing organism
(Fig. 1.6). The mechanism that allows for this pattern of expression is not yet fully
understood. Hox proteins function as TFs, i.e., they bind to enhancers of other
protein coding genes to promote or inhibit their expression. Some of those genes
were identified as triggers that initiate pathways that lead to a formation of whole
morphological structures such as a limb. Hence, mutations to Hox genes can results
in spectacular and large scale mutations, such as mutations to Antennapedia gene,
which results in a fully formed legs growing in place of antennae on a fruit fly’s

47

1. INTRODUCTION

Figure 1.6: Two clusters of Hox genes on the fruit fly DNA and corresponding body
segments in which they are expressed (source: http://commons.wikimedia.org/wiki/File:
Hoxgenesoffruitfly.svg).

head. A testament to their importance, Hox genes were found to be remarkably
conserved across the animal kingdom. They are present both among invertebrate
and vertebrates (the latter having 4 Hox clusters). The level of similarity in lineages
that are more than 500 million years apart is so high that a chicken Hox protein
can replace the corresponding Hox protein in a fruit fly and will lead to a normal
development (Lutz et al., 1996).

Hox genes are currently recognized as a part of a larger developmental-genetic
toolkit: a repertoire of highly conserved TFs and morphogens that take part in lay-
ing out the body plan of an organism. By generating different overlapping spatial
patterns of their expression and through the regulatory logic, an embryo can be
divided into subregions of increasingly finer detail in which appropriate pathways
become activated. For example, TFs encoded by the so called pair-rule genes di-
vide the early fruit fly embryo into bands, closely related to future body segments
(Fig. 1.7). Whether some of the segments will turn into frontal or tail segments is
then determined by other transcription factors setting up the anterior-posterior axis
of the embryo. In the case of the fruit fly, the anterior-posterior axis is determined
by maternal factors that are predeposited in the egg, called Bicoid and Nanos.

The discovery of the developmental toolkit became a foundation for a new dis-
cipline called evolutionary developmental biology (evo-devo) and brought the 1995
Physiology and Medicine Nobel Prize to Eric F. Wieschaus and Edward B. Lewis for
their work on Hox genes. The high level control that the toolkit genes have over de-
velopment has great implications for how evolution of animal forms have progressed
and how novel features can appear. Mutations that result in changes of levels of
expressions of those genes or regions in which they are expressed can have impact
on large scale structures of an organism such as body segments or limbs. Whole
features can be reshaped or even added and removed. Mutations with results at
the segment level can be seen in particular among arthropods. The number of body

48

http://commons.wikimedia.org/wiki/File:Hoxgenesoffruitfly.svg
http://commons.wikimedia.org/wiki/File:Hoxgenesoffruitfly.svg

1.4 Multicellularity and embryogenesis

Figure 1.7: The pattern of expression of pair rule genes in the fruit fly embryo: the regions are
closely related to the body segments.

segments and the nature of protrusions underwent a variety of changes. Although
now different segments host different protrusions (e.g., wings, antennae or legs),
all of these differentiated from the same protrusion type in the common ancestor.
Despite large visual differences between lineages, arthropods share the same overall
segmented body plan and the same genetic toolkit. The effects of mutations in the
genetic toolkit were important as well for vertebrates and, for example, the loss of
limbs in snakes can be attributed to the reduction in expression of a particular Hox
gene (distal-less).

The rapidly growing science of evo-devo is currently reshaping our views on the
role of mutations to protein coding genes during evolution. What it suggests is that
evolution acts mostly on regulatory regions of DNA and provides variation within
a largely conserved set of protein coding genes and within highly constrained body
plans. It shows how duplications played a major role in the complexification of
the body plans and also provides a possible explanation why organism can differ
considerably despite overwhelming similarity of their DNA sequences (e.g., 99% of
similarity between human and chimpanzee sequences) as well as to the fact that
only 1.5% of the human DNA seems to encode proteins.

Interestingly, the discovery of the genetic toolkit provides also a new potential
explanation for the Big Bang of animal evolution known as the Cambrian Explosion,
a short (in the geological time scale) period of a few dozen millions years. It appears
that during this time, relatively simple soft tissue organic forms with hard structures,
which were fossilized, were replaced by a great diversity of life that included most
major phyla and existing animal body plans. Although probably the key trigger
were the changing environmental conditions that created new ecological niches, the
evidence suggests that the genetic toolkit emerged before the Cambrian explosion
and favourable conditions may have allowed evolution to quickly explore a variety
of body plans and variations of body segments and appendages. Nonetheless, the
issue of relative importance of mutations in regulatory regions and these to protein

49

1. INTRODUCTION

coding sequences is a matter of lively debate in the field of evo-devo (see, e.g.,
Haygood et al., 2007; Hoekstra and Coyne, 2007) and, for a popular introduction to
the concepts of evo-devo, the best selling “Endless forms most beautiful” (Carroll
et al., 2004).

50

Chapter 2

Existing models of GRNs and

embryogenesis

This chapter provides a short overview of a related work and focuses on existing
approaches to gene regulatory network modelling and to creating artificial devel-
opmental systems. In general (and that applies to all biologically inspired fields of
computation), there are two main reasons for the interest in creation of biologically
inspired systems. One is purely scientific and is fed by the desire to understand
the nature of biological processes and to reveal the rules that govern them. The
other is an engineering one: the hope is that biologically inspired techniques and
methodologies can be applied to practical problems, either now or in the foreseeable
future. Although humans can create machines of incredible complexity and power,
even the simplest biological organisms far exceed capabilities of human designed
systems when it comes to failure tolerance, ability to self repair and to function in
a wide spectrum of environmental conditions. By inspiring ourselves with solutions
and approaches discovered over 4 billions of years of evolution, we will hopefully be
able to construct artificial systems that share these properties.

2.1 Models of gene regulatory networks

The most general approach to model biological gene regulatory networks (and prob-
ably the most used in biological sciences) is to describe the relationships between
concentrations of different gene products as a set of ordinary differential equations
(ODEs) that represent the kinetics of product synthesis and degradation. The syn-
thesis rate is influenced by the binding of transcription factors to DNA, typically sim-
ulated with the use of models of enzymatic reactions, such as the Michaelis-Menten
kinetics. Since regulation of gene expression is known to occur on many levels and to
be influenced by a variety of mechanisms (mRNA transcription/degradation, RNA
interference, regulated protein degradation or protein modification, just to name a
few), ODEs can be constructed to describe interactions at the desired and poten-
tially very high level of realism. Naturally, because more complex models have more

51

2. EXISTING MODELS OF GRNS AND EMBRYOGENESIS

parameters and because many of those processes are still not known well enough to
be characterized kinetically, simpler models that hide many complexities in a single
relation are usually preferred. A regulatory network described in this way can then
be simulated using iterative ODE solver (e.g., using the Runge-Kutta method) or
be analysed as a complex dynamical system for which steady states, attractors and
natural cycles of oscillations can be determined. However, typically this type of
modelling approach is suitable for simulation of the dynamics of a known (or hypo-
thesized) and usually relatively small gene networks, for which the reaction constants
can be fitted to the existing experimental data (see, e.g., Alon, 2006; Bolouri, 2008,
for an introduction to GRN modelling in biology).

The approach discussed above, although allows for a high degree of realism,
assumes continuous levels of concentrations and is fully deterministic. In some
situations, especially when the numbers of involved molecular species are small, the
stochasticity associated with each reaction can considerably influence the behaviour
of a system. In such a case, a stochastic simulation can be used. An ODE based
model can be converted into a stochastic model by assuming initial numbers of each
molecular species and simulating the system, e.g., using the Gillespie algorithm
(1977). This allows to directly compare the results of stochastic simulations with
deterministic solutions to find out whether the observed behaviour of a system is
robust in the presence of noise or with low molecule counts.

Quite often, a much simpler model can explain observed interactions: a Boolean
network. In this case, the regulatory network is modelled as a directed graph in
which vertices represent genes and a link between vertices represents regulatory
interaction between genes. The defining feature is that each vertex in every time
step can be in a binary state of either activity or non activity. A Boolean transfer
function is associated with every vertex and is used to calculate its state in the
next time step, based on the states of its predecessors (nodes that link to it). This
means that all types of regulation known from molecular biology are reduced to a
simple binary presence of a factor or a lack of thereof. Although greatly simplified in
comparison to dynamics described by ODEs, Boolean networks have been frequently
demonstrated to be a useful parsimonious model describing interactions in simple
genetic circuits.

Probably the most studied and influential type of Boolean networks are random
boolean networks (RBNs), proposed more than 40 years ago by Kauffman (1969,
1993). Their connectivity as well as transfer functions of each node are initialized
randomly. Then, during simulation, the state of all nodes is updated synchronously.
Since the number of states in a network of size N is finite (2N), such networks are
guaranteed to revisit an earlier state and repeat their behaviour. However, the length
of such repeating cycle is typically orders of magnitude lower than 2N . In such cases,
networks are said to have entered an attractor which can either be a single steady
state (a point attractor) or repeating series of states (a cycle attractor). Kauffman
investigated how the networks respond to perturbation by randomly changing the
state of a single node. He observed that depending on the average number K of
inputs to a node, the perturbations would tend to quickly die out in the networks (an

52

2.1 Models of gene regulatory networks

ordered behaviour, K < 2), affect a limited number of nodes (a critical behaviour,
K ∼ 2) or propagate through the whole networks (a chaotic behaviour, K > 2).
He then suggested that regulatory networks of living organisms evolved to function
on the borderline of chaos and order (K ∼ 2) as this allows for both stability
and potential for evolutionary improvements. Whether this is a case for biological
networks should be still considered an open question, but some evidence to support
this hypothesis exists (Shmulevich et al., 2005).

Due to their simplicity and elegance, random boolean networks were a subject
of extensive research over the years and a number of variations on the original
concept was proposed. For example, random networks with asynchronous state
updates were proposed in which genes do not all update at the same time and in
which next node to be updated is chosen randomly (Harvey and Bossomaier, 1997).
Such networks become non deterministic and are no longer guaranteed to have a
cycle attractor. A deterministic variant of asynchronously updating networks has
also been developed (Gershenson, 2003). Other investigated variants include more
complex state representations for the nodes (multi-state), addition of stochasticity
and various approaches to generate topologies in order to obtain certain statistical
properties (e.g., scale-free networks, Serra et al., 2004).

The approaches discussed so far either assume a predefined network topology
(based on experimental data) or rely on generating networks with topological prop-
erties that are specified a priori (e.g., with a certain degree distribution), and then
investigate their average properties. As such, they allow to infer only in a limited
manner how regulatory networks evolved over time and how evolution shapes their
global properties. This is especially important if one considers that we only have the
ability to reconstruct small fragments of biological networks and it is possible that
the global properties of the networks are different from those of their sub networks
known from experimental data (Stumpf et al., 2005). Thus, to investigate how gene
networks evolve, grow in complexity and obtain their properties, a different type of
modelling approach is used, one in which regulatory networks are allowed to change
over time under a simulated evolutionary process. The topologies of such networks
can be encoded directly, as a connectivity matrix or a list (see, e.g., Azevedo et al.,
2006 and Leclerc, 2008 for recent examples of this approach used to test biological
hypotheses). However, a more realistic approach, the one that is also the focus of
this work, relies on an indirect encoding of a network in a model of a biological gen-
ome. In such a case, the topology of a regulatory network depends on the relations
between regulatory and protein-coding elements of a genome, mimicking the way
topology of a biological network emerges from interactions between TFs and DNA.

An example of a work that lies in between the approach based on directly encoding
the topology of a network and evolving artificial genomes is a system proposed by
Reil (1999). In his model, genomes encoding GRNs are generated randomly. Each
genome is represented by a sequence of randomly generated digits with a certain
length. Every sequence of 0101 (arbitrarily chosen) that occurs in a genome indicates
the promoter of a downstream gene, similarly to a TATA box found in eukaryotic
genomes (see Section 1.3.2). The sequence of N numbers that follows the promoter is

53

2. EXISTING MODELS OF GRNS AND EMBRYOGENESIS

Figure 2.1: Reil’s GRN encoding of a regulatory network in a string of digits (reproduced from Reil,
1999).

interpreted as a gene and can undergo expression (N = 6 in the original work). Each
gene that undergoes expression produces a product that has a sequence associated
with it, computed from the sequence of its coding gene, an abstraction of translation
of an mRNA into protein. Translation was modelled as a simple incrementation
of every digit. The topology of the network was determined by localizing all the
regions in the genome that have a sequence matching to a given product and then
forming a connection in the regulatory graph between this product and the product
encoded downstream from the matching sequence (Fig. 2.1). This simple mechanism
attempts to abstract the chemical affinity between proteins and specific DNA regions
to which proteins can bind to promote or interfere with expression of downstream
genes (sometimes dubbed as a “lock and key” mechanism). Whether a given product
would increase or inhibit expression of a given gene would depend on a last digit in its
sequence. Reil created random genome sequences and simulated boolean networks
that were encoded in them. He observed network behaviour on the edge of chaos. He
would also observe high robustness of such networks to perturbation of the state of
single nodes. Since those networks were not a product of evolution, their robustness
could be claimed to be a property of the chosen network encoding scheme.

A very similar model was more recently used by Quayle and Bullock (2006) to
compare the topologies of networks encoded in the random genomes with those that
were subjected to evolution. In the evolved networks, the authors observed degree
distributions that were different from those that would occur in random networks,
yet also different from scale-free networks (a property postulated for biological net-
works).

In his pioneering work, Jakobi (1995) proposed a more sophisticated mechanism
to determine the topology of the network based on a match between gene products
and regulatory regions on the genome. Virtual proteins were represented as circular

54

2.1 Models of gene regulatory networks

Figure 2.2: Banzhaf’s GRN encoding of a regulatory network (reproduced from Kuo et al., 2004).

strings using a 4 letter alphabet. The affinity between proteins and regulatory
regions was determined by a match between triplets of letters in proteins to the
sequences of the genome, thus introducing a layer of indirectness mimicking the
triplet based genetic code. In what was probably one of the earliest attempts both to
apply artificial regulatory networks to solve problems and to control developmental
process, Jakobi evolved networks that guided the divisions of cells that later formed
a simple neural network that would later control a simulated robot.

Banzhaf (2003), in a manner analogous to Reil, investigated the properties of
networks encoded in random genomes. However, instead of generating Boolean
networks, he allowed for continuous changes in gene expression levels and encoded
networks in a binary sequence. In his model, predefined 8-bit sequence would mark
a promoter in the genome, whereas products would be defined by three 32-bit words
that would follow, preceded by two words marking the binding sites to which other
products could bind (one with an enhancing effect, the other with inhibiting). The
affinity between products and binding sites could change gradually and was calcu-
lated by comparing sequence similarity of a product (32-bit number obtained from
160-bit gene) and a biding site (Fig. 2.2). Banzhaf analysed dynamics of continu-
ously changing expression levels in randomly generated genomes (Fig. 2.3). He also
investigated changes in network behaviour in response to random mutations in the
genome.

The same model was further employed by Kuo et al. (2004) to evolve regulatory
networks in which concentrations of certain proteins become stable or oscillate.
Authors have also analysed the frequencies of occurrence of three and four node
motifs in the evolved networks.

In yet another work based on the same model, Nicolau and Schoenauer (2009)
have shown that it is possible to evolve networks that have specific topological prop-
erties (such as scale free degree distribution) by explicitly rewarding these properties
in the fitness function. In a later work (Nicolau et al., 2010) the same model was
applied to the classical reinforcement problem: balancing of the pole.

Flamm et al. (2007) created a very “low level” model of gene regulatory network
and probably one of the most biologically realistic. The genes that were expressed

55

2. EXISTING MODELS OF GRNS AND EMBRYOGENESIS

ã ©I É Ì Èx Ä Êq Û W Îx Îq Æb Êx Ä Îd Èq cd Ẁ ÈE Ï Éy Yb ÏD Ä YV Èq Ê Ẁ Èq Ðµ Éy Yà Î% Êx Ä Ûè Ẁ ÐÑ Y ÐÑ Y Èq cà Äd Îq Ðµ Û̈ åb Çµ Ä é Õ¡

'

9
'

$¢ îy Õ

Êq Ä Îx Æb Çµ Èq Ðµ Yb Åd Ðµ Ÿ ÏD Éy Û̈ åI Ä Èx ÐÑ Èx Ðµ Éy Yd ÒI Ä Èv Ì© ÄD Ä Yí Îx Ðµ Èq Ä Îi ek É Ê" åb Êq É Èq Ä Ðµ Yb Î S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

C
on
ce
nt
ra
tio
n

Time

Protein 1
Protein 2
Protein 3
Protein 4
Protein 5
Protein 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

C
on
ce
nt
ra
tio
n

Time

Protein 1
Protein 2
Protein 3
Protein 4
Protein 5
Protein 6

¢ ¡¤ £I £ ¢à ¦ ¦ ¤1 d g ¥ ¤b hx sq hx wy t% g w r u rD " v v tv h uE E sq h4 rD ¡ 4 h g ¬y 5 t ¤1 d g ¥ ¤b hx sq hq wy t ¢ hq wV uE h4 4 °§ ¦I hx ì t4 ´ §

gy r u p¶ hx wV h g ¦µ w D wy ¡ ¡ w h4 rD s «E v q ¡ ¡ r tv D s% tk pb h7 D ¦ gy wV r u 4 4 °e 1̈ ¢D ®y t4 2 D ¤ rD w g v uE t ® gy h4 hx D py h

uE hq wy ti 4 wV hx wy t sq r t wV 4 °

¢ ¡¤ £I © Ï b ¦ ¤1 " t ® hx s© gy wV r u 4 4 ° ¦I hq t4 y h4 tv t h4 uE hx wy t1 ¡ wy tv 7 r" pb D ¡ wy t¦ r tv t sq r 4 tv D s¦ ¦ ¤1 hx ¡ b y wV gy hx s© ¤1 r °

1̈ ¢D ®y t4 ´ tv hq wV gy h4 g t sq r wV t w³ py ® r v h" ¤1 t ®d wV hi py sq tv hx ¡ ẅ r ®y h4 ¡ w ¢F ®y ¢D ®̈ rD ¡ h4 ¦ D e D w 4 hx wy t sq rD h

t wd t ® hx ẅ v ¤1 tv ®y ¡ wV ¢% t ®V h" v tv r tv h" tv E h4 py sq h4 v D wè D e r wV t ®V hq s" ¢ hq wV h °

ý ed Ì© Äi Çµ ÉV Éy Í7 W È1 Èq cà Ä© Ùb ËV Yd Ẁ Û̈ Ðµ Ï Î É̀ e Ï É Yb Ï Ä YV Èx Ê W Èx Ðµ Éy Y Ï cI W Yb Å Ä Î1 É e åb Êq É Èq Ä Ðµ Yb Î Õ Îx È Ẁ Êq Èq Ðµ Yb Å ek Êx Éy Û

W7 Îx È Ẁ Èq Ä7 É̀ e2 Ä æV Æd Ẁ Çe Ï É Yb Ï Ä YV Èq Ê4 W Èx ÐÑ É Y Èq cd Ẁ È" Êq Ä ©d ÄD Ï Èq Î7 Èx cb ÄE Yd W Èx Ðµ Úy ÄE Çµ É Ìi Þë Çµ Ä Ú Ä Çd ÄD é åà Êq Ä Îx Îq Ðµ Éy Y5 É̀ e© W Çµ Ç

Åy Ä Yà Ä Î Õ Ìi Äd Ï Ẁ Yí É Òb Îq Ä Êx Úy Äd Èx cd W ÈE Îq É Û̈ Ä7 åà Êq Éy Èx Ä Ðµ Yb Î7 Ðµ Yb Ï Êx Ä W Îx Äd Èq cb ÄD ÐÑ ÊF ÇÑ ÄD Úy Ä Ç¦ É̀ e© Ï É Yb Ï Ä YV Èq Ê4 W Èx ÐÑ É Ye Õ

Èq cb ÄD Y eë W Çµ Çd Ẁ Å W Ðµ Ye Õ̀ Ì" ÐÑ Èx c% Æà Îq Æd Ẁ ÇÑ Çµ Ë Éy Yb Ä" ÒI Ä Ðµ Yb Å7 Çµ Ä4 e È¦ É Úy Ä Ê Sy ú" cV Æb Î Õ W± Èv Ë åà ÐÑ Ï W Çb Ùb ËV Yd Ẁ Û̈ Ðµ Ïi Îq ËV Îq Èx Ä Û

Òd ÄD cd W ÚV ÐÑ É Ê̈ Ï Ẁ Y ÒI Ä Îq Ä Ä Ý ÕA Ìi Ä Çµ ÇE Í Yà É Ì" Y W Î

H

åd É Ðµ Y È W Èx Èq Ê Ẁ Ï Èq É Ê

H

Ðµ YØ Ùà Ë YI W Û̈ Ðµ Ï Ẁ Ç" Îq ËV Îq Èx Ä Û̈ Î

Èq cb ÄD Éy Êq Ë Óµ î ×q S

b É Ê© Ùb Ðÿ þ Ä Êq ÄD Y È Ê Ẁ Yb Ùb Éy Û Åy Ä Yb É Û̈ Ä ÎE ù Ùà Ð þ Ä Êx Ä YV ÈA YV Æb Ûd ÒI Ä Ê© É̀ e¦ Åy Ä Yb ÄD Î Õb Û W Èx Ï cà ÐÑ Yà Å7 Ä Èq Ï ü" Èq cà Ä

Ùb ËV Yd W Û³ Ðµ Ï Î7 Ðµ Îd Êq Ä Û W Êx Íy W Òb Çµ Ë Ùb Ðÿ þ Ä Êx Ä YV È Si ú" cb Ä Êq Ä W Êq Ä Ï W Îx Ä Î̈ É̀ ē Çµ Éy Yb Å Ä Ê̈ W Yà Ù Îx cb Éy Êx Èq Ä Ê³ Èq Ðµ Û̈ Ä

Figure 2.3: Example dynamics observed by Banzhaf in networks encoded by random genomes
(reproduced from Banzhaf, 2003).

were converted to virtual mRNA molecules that would have a secondary structure
(generated using an RNA folding algorithm used to predict the folding of real RNA).
Such molecules would then bind to DNA with their exposed parts. Furthermore,
the system would simulate cellular metabolism by allowing for chemical interactions
between molecules to occur.

One of the most original and indirect methods to model affinity between proteins
and DNA molecule in a GRN was proposed by Bentley (2003). The affinity was
determined by calculating the similarity between square subsets of the Mandelbrot
set, encoded in the interacting elements. Each promoter or genetic product would
encode 3 real values determining the position in the Mandelbrot set and the size
of its square subset (thus, the scale). Affinity was calculated by comparing the
subsets after they were discretised. Bentley (2004a,b) employed the idea of “fractal
proteins” to evolve gene regulatory networks that stabilize on certain levels of gene
expression and to evolve simple robotic controllers.

Quick et al. (2003) proposed another genome and GRN model named BioSys and
used virtual cells as simple control devices. The networks were evolved to control a
virtual thermostat (a metaphor of cellular homoeostasis) and phototaxis of a simple
robot. Concentrations of select transcription factors were interpreted as the output
of a network and input signals were provided as externally driven concentrations of
select factors. The model employed a genome represented as a string of 1s and 0s.
Fixed size of the genome was assumed. Each transcription factor was encoded by 3
bits, thus allowing for existence of 8 types of virtual proteins. Each gene could be
preceded by a fixed number of regulatory regions. Furthermore, a special part of
the genome would contain constants such as decay rates for each protein type (via
a look-up table).

BioSys model was later extended into xBioSys by Knabe et al. (2006). Genes were
allowed to come in two types: one that was expressed only when it was promoted
by the binding factors or one that was expressed by default (and could be further
regulated). The type was determined by an additional bit field in every sequence
encoding a gene. Furthermore, the genome encoded some of the properties global
for the whole cell: degradation coefficients for each protein type, global affinity

56

2.2 Artificial embryogeny

constant (common for all proteins) and global saturation level for the proteins. This
type of genetic encoding was subjected to evolution in order to obtain networks
that act as biological clocks, i.e., genetic circuits in which concentrations of certain
products oscillate, stimulated by an external, periodic signal. The ability to sustain
oscillations without periodic signal and robustness to noisy signal was investigated.
Knabe et al. (2006) observed a very high degree of tolerance. In a later work (Knabe
et al., 2008a), the model was employed to determine whether networks of different
functionalities have measurably different prevalence of structural motifs. Networks
were evolved to perform either a single function or two functions (as a model of
cell’s ability to differentiate and to obtain networks that are modular). The results,
however, did not show a measurable difference in motif distributions among the two
types of networks.

Taylor (2004) employed a model of gene regulatory network very similar to the
BioSys model to evolve real-time controller for a team of underwater robots. The
GRN controller was successfully evolved to solve the task of robots grouping to-
gether.

2.2 Artificial embryogeny

The field of artificial embryogeny draws its inspirations from the process of mul-
ticellular development and focuses on modelling or abstracting it. Often, but not
necessarily, in the scope of evolutionary computation. The interest in such ap-
proaches comes from the immense scalability of biological development which can
drive growth of an organism that consists of trillions of cells. Development dis-
plays remarkable failure tolerance and robustness to perturbations. The ability to
encode such tremendously complex structures in genomes that consist from only
thousands of protein coding genes is an ultimate example of the power of indirect
encoding. Nowhere in the genome locations of cells are specified and the organism
unfolds through a process of mutual feedback between genetic control and the laws
of physics. In result, small modifications to the timing of genetic events (hetero-
chrony) or concentrations of growth factors can lead to certain parts of an organism
changing in size, with all related structures (veins, nerves) adjusting accordingly.
Such properties are one of the reasons of inherent evolvability and scalability of the
developmental process, demonstrated by the history and the current diversity of
life on Earth. Interestingly, forms morphologically such diverse as a whale, a bat
and a mouse have a similar body plan and very similar genomes (see also p. 46).
Even though superficially very different, their fins, wings and hands are homolog-
ous. The past two decades brought an increasing understanding of the relationships
between genes, development and evolution, so it should come as no surprise that
artificial developmental systems have been experiencing a surge of interest. From
the engineering standpoint they are seen as one of the most promising ways to over-
come the poor scalability of direct genotype-phenotype mappings in evolutionary
computation.

57

2. EXISTING MODELS OF GRNS AND EMBRYOGENESIS

In their comprehensive review of the state of the field, Stanley and Miikkulainen
(2003) divide existing approaches into two main branches: grammatical and cell
chemistry models. The first branch relies on a higher level abstraction of develop-
ment and employs some algorithm that is used to iteratively grow a structure by
incrementally adding new components. A classical example of such system are L-
Systems, proposed more that 40 years ago by Lindenmayer (1968). In an L-system,
rewriting rules allow to iteratively construct a shape, by subsequently replacing ele-
ments with their more detailed versions, yielding plant-like morphologies. In overall,
evolving developmental systems based on grammatical approaches turned out to be a
very fruitful avenue of research that allowed to create some of the most recognizable
Artificial Life systems such as Sim’s (1994) 3D swimming creatures or Framsticks
by Komosinski and Ulatowski (1999), to name a few. One of the reasons of their
high success is that their capture some of the essential elements of the development:
modularity and reuse of genetic material, while still having very small computational
cost.

However, it is the other branch of artificial embryogenesis systems that is the fo-
cus of the interest of this thesis: the cell chemistry systems. The inspiration for this
approach dates to the seminal paper by Alan Turing (1952) in which he introduced
a reaction-diffusion model. The model showed how local interactions between uni-
formly distributed and reacting substances can, by amplifying random fluctuations,
lead to the emergence of patterns that are similar to those found on shells and in
animal coatings. Although proposed for chemical reactions, it is general in a sense
that it applies to emergence of a pattern via local rules with higher level entities,
such as cells. Cell chemistry based models of artificial embryogenesis try to tap
into this emergent complexity coming from local interactions: cells in a developing
embryo communicate using chemical signals (morphogens) that diffuse from cell to
cell or on a grid and this, together with internal rules governing the behaviour of
each cell, can lead to self organization. Cell chemistry models themselves cover a
broad range of approaches that differ by their choice of interacting elements (cells
of various shapes, cells on a grid, blocks) and the method used to control the beha-
viour of the elements. Since this thesis focuses on the gene regulatory network based
approaches, a following short review discusses developmental systems in which basic
entities (typically, cells) are driven by GRN inspired controllers. In such systems,
each cell is a separate entity and can take actions such as division or differentiation.
Each cell is controlled by a copy of the same gene regulatory network, and what al-
lows cells to take different actions are differences in the state of each cell, determined
by the concentrations of TFs.

Eggenberger Hotz (1997), in his pioneering work, which was one of the main
inspirations for this thesis, proposed a 2D/3D developmental system with cells driven
by GRN. In his model, each product and promoter has an associated real number.
The affinity between product and promoter is defined by the difference between the
associated numbers, whereas the genome itself consists of groups of product coding
genes preceded by regulatory areas. Artificial cells divide on a grid and are able
to emit morphogens: signalling molecules that influence actions of other cells. This

58

2.2 Artificial embryogeny

Figure 2.4: 3D embryos evolved for bilateral symmetry (reproduced from Eggenberger Hotz, 1997).

allowed him to evolve genomes generating planar patterns that resemble those found
on butterfly wings. In the 3D version of his model (Eggenberger Hotz, 2004), he
evolved simple elongated shapes using symmetry as a fitness function (Fig. 2.4). He
also emphasized the importance of the interplay between the genome and the physics
and allowed the cells to flex the grid using their adhesion (Eggenberger Hotz, 2003b).
One of the more interesting features of this model was the emergence of regenerative
capabilities allowing the embryos to regrow their removed parts (Eggenberger Hotz,
2003a).

Bongard (2002) employed a GRN model similar to that of Reil (1999) (see p. 53 of
this thesis) to grow bodies of virtual organisms. Instead of GRN controlling the cells,
Bongard used higher level modules: in his model, the bodies consist of cylindrical
segments connected by actuating joints. Apart from controlling the growth of the
segments, regulatory network encodes the structure of simple neural network. After
the growth phase is finished, the neural network takes control over the organism.
Initially, Bongard was able to obtain only very simple forms of locomotion. In a
later work using similar approach (Bongard and Pfeifer, 2003), the authors evolved
morphologies that consisted of spheres of various size. They were able to evolve
animats that were capable of efficient locomotion and performing simple tasks such
as block pushing.

Kumar and Bentley (2003) devised another early model of GRN-driven develop-
mental process, named EDS (evolutionary developmental system). Their model of
the genome consists of two parts. One encodes the properties of 8 types of proteins
that exist in the system (synthesis and degradation rate, diffusibility). The other is
a list of genes, each consisting of cis-region (regulatory) and protein coding region.
Each gene encodes a single protein and can contain multiple cis elements, so that the
expression of a given gene can be controlled by multiple proteins. Depending on the
concentrations of the proteins, cells divide or differentiate (change colour). Each cell
contains multiple receptors on its surface through which it can detect morphogens
diffusing from other cells. The direction of cell division is determined by the axis
of division which is allowed to take a couple of discrete orientations in relation to
the grid. Using a genetic algorithm, the authors evolved simple spherical or cubical
forms.

Knabe et al. (2008b) used their earlier devised GRN model, xBioSys (Knabe
et al., 2006, see also p. 56 of this thesis), to evolve developmental process on a
two dimensional grid. To represent a multicellular embryo, the authors employed

59

2. EXISTING MODELS OF GRNS AND EMBRYOGENESIS

Figure 2.5: Self organized French flag pattern (left) and concentration of an underlying morphogen
gradient (right) (reproduced from Knabe et al., 2008b).

the Cellular Pots Model (Glazier and Graner, 1993), a cellular automaton in which
each embryo cell consists of multiple cells on the grid, bounded by a virtual cell
membrane. Cells can secrete morphogens that diffuse on the grid and can be sensed
by other cells as an average concentration from all of the grid cells that belong to this
cell. Authors employed their system to evolve French flag embryos, i.e., the embryos
in which cells form three differentiated regions on a rectangular area, each cell type
represented with a different colour (Fig. 2.5). The structure of the embryos would self
organize without any maternal gradients, thanks to the intercellular communication,
generating asymmetric morphogen gradient. Authors have also investigated how an
already evolved network can be evolutionarily adapted to a slightly modified target
pattern with different stripe widths in just a few generations.

Schramm et al. created a developmental model (Schramm et al., 2011; Schramm
and Sendhoff, 2011) with a GRN inspired by the work of Eggenberger Hotz (1997)
to simulate development of a 2D multicellular organisms that are later evaluated
for their ability to swim in a fluid-like environment. All cells in a developed embryo
are connected by virtual springs and the cells on the outline of the body are able
to modify the resting length of the two springs that connect them with neighbour-
ing external cells. In one of the works (Schramm et al., 2011), the resting length
oscillated according to the globally set frequency and with phase shift that was
subjected to evolution. However, the controller that defined how cells contract was
encoded in a separate chromosome, different from the one controlling the develop-
mental process. The fitness function was a combination of a reward received for the
elongation of the shape and the distance the virtual organism was able to travel in
the simulated fluid. The authors obtained elongated organisms which would move
using realistically looking undulating movements. In a later work (Schramm and
Sendhoff, 2011), cells were allowed to differentiate into pattern generating neurons.
In a related publications, the authors have also investigated evolved regulatory net-
works for the presence of motifs that are overrepresented (Schramm et al., 2010),
but without conclusive results.

A very interesting result from the point of view of the complexity of generated
morphologies was obtained by Hogeweg (1999, 2000). Her model of an organism
is based on the Cellular Pots Model (as is the later work by Knabe et al., 2008b).

60

2.2 Artificial embryogeny

Figure 2.6: Example development of a 2D embryo in the Cellular Pots Model (reproduced from
Hogeweg, 1999).

The genome encodes a Boolean network and, interestingly, the fitness function is
not based on obtaining certain morphology but on maximising the distance between
attractors reached by GRN in every cell, in a spirit of Kauffman’s interpretation
that cellular differentiation is an effect of cells reaching different attractors. This,
by itself, led to the emergence of many processes important in biological development
such as cellular re-differentiation, migration, bulging or cell death.

Recently, Andersen et al. (2009) investigated the robustness of virtual embryos
to the removal of large fractions of cells. They used their own model of gene regu-
latory network with morphogens diffusing to neighbouring cells. The developmental
process took place on 3D grid. The fitness function was based on a similarity of the
obtained embryo to the target shapes: hollow sphere (50 cells), cuboid (128 cells)
and a hollow cube (74 cells). Obtained embryos were observed to have a high degree
of capability of self-repair after cell ablation, even though they were not selected for
it during evolution.

Beurier et al. (2006) proposed a controller that was encoded in a manner more
loosely inspired by gene regulatory. The genome would consist of regulatory ele-
ments, homeotic, behavioural and segmenting. It was demonstrated to evolve de-
velopment of French and Japanese flags on a uniform grid.

In a more recent application of Banzhaf’s model (2003), Chavoya et al. (2010)
used it to evolve three dimensional, cubic embryos that differentiated into three
layers on a 3D grid, hence creating his extension of the French flag problem into the
3rd dimension (Fig. 2.7). He would then analyse how patterns of gene expression
changed over time during development.

In a novel and very interesting application of an artificial developmental system

Figure 2.7: Subsequent stages of development of 3D “French flag” (reproduced from Chavoya et al.,
2010).

61

2. EXISTING MODELS OF GRNS AND EMBRYOGENESIS

controlled by a GRN, Trefzer et al. (2010) evolved genomes that controlled the de-
velopmental process that results in formation of a desired image, effectively treating
the GRN and development as an image compression method. They were able to
achieve compression ratios comparable and often higher than that of the JPEG
algorithm.

62

Chapter 3

The model of GRN and evolution

This chapter introduces the model of the artificial genome, the artificial gene reg-
ulatory network (GRN) and the genetic algorithm that is used in this thesis to
simulate the evolution of genetic control and multicellular development. The gen-
ome indirectly encodes the topology of the GRN. The decoded GRN represents the
graph of interactions between virtual TFs and is used to simulate the behaviour of
an artificial cell. It is however the artificial genome that is subjected to evolution.

3.1 Genome

The model of the genome and its evolution employed in this thesis was designed to
capture the most essential features of evolving, biological genomes. The artificial
genome is defined as a sequence of genetic “elements”, which can function either as
regulatory regions or encode products that will be produced by a virtual cell. Each
genetic element consists of N real numbers, hence the genome can be represented
as a vector of size cN , where c is the number of genetic elements.

The genome encodes an artificial gene regulatory network: a network of inter-
actions between genes. Each vertex of gene regulatory network (GRN) represents
a product (or a set of) that can exist with some concentration in a cell. The edge
between vertices A and B means that gene A regulates gene B, that is, the concen-
tration of A influences (positively or negatively) the synthesis rate of B. The actual
connectivity of the network is encoded indirectly and is decoded by determining the
affinities between elements encoded in the genome. The topology of the network
remains static during the lifetime of a cell and is decoded from the genome before
the GRN simulation is started. An important feature of the encoding employed in
this work is that neither the size of the genome, nor the size and the topology of the
network are fixed. Both the number of vertices and the number of distinct types
of products (i.e., types of TFs having different binding properties) that cells can
produce is limited only by the size of the genome itself and subjected to evolution.

63

3. THE MODEL OF GRN AND EVOLUTION

a special element (S):

external factor or

effector

a promoter (P):

additive

multiplicative

a gene (G):

transcription factor or

morphogen

G P S G P P G G G P G P G P P P P S G P P G P G P G P S G P G P G S G P G P

reg. unit #1

co-regulated genes

reg. unit #2 reg. unit #3

Figure 3.1: Overview of genome structure. A series of genetic elements marked as promoters (P)
followed by products (G) forms regulatory units. Special elements (S) encode input and output nodes
of the network, but do not belong to regulatory units.

3.1.1 Overall structure

Genetic elements that form the genome fall into three classes: “products” (encod-
ing virtual proteins), regulatory elements (or “promoters”, regions to which virtual
proteins bind) and “special” elements, which are used to encode inputs and outputs
of the network. The core assumption is that products can have certain affinity to
promoters and will bind to them with an effect dependent on their concentration.
However, the binding of TFs to regulatory elements is not simulated explicitly and
is abstracted as weights in the regulatory graph.

Products represent the abstraction of DNA sequences coding for proteins that
can regulate expression of other genes (TFs). Although proteins in a biological
organism play a role in processes other than gene regulation, in the model presented
here, with the exception of elements belonging to the class “special”, all products
of the genome serve a regulatory purpose.

In a version of the model that allows for multicellular development (Chapter 6,
p. 115) a second type of product is also used: a morphogen. Morphogens in the
system behave in a manner analogous to ordinary TFs, but they diffuse outside the
cell in which they are produced and can bind to regulatory elements of other cells,
hence allowing cells to react to the presence of other cells or even to communicate.

Fig. 3.1 provides an overview of the genome structure. To determine the topology
of a regulatory graph, the genome is parsed sequentially and a “regulatory unit” (a
vertex in the graph) is created whenever a contiguous series of P elements (pro-
moters) is followed by a contiguous series of G elements (genes encoding products).
“Special” elements (S) are ignored during the initial scan for regulatory units and
can be freely interspersed among products and promoters: they are connected to
the network at a later step. Since one regulatory unit of the GRN can be composed
of multiple promoters and multiple products, any two nodes in the graph can be
connected by several edges. Products that happen to exist at the very beginning of
the genome and promoters at its very end become non-active. Furthermore, each
regulatory unit occurs directly after the previous one so, apart from “special” ele-
ments, there can be no other elements between them. However, many non-functional
elements can exist in the genome: not all regulatory units have to connect to the rest
of the network. The presence of genome fragments that do not perform any function

64

3.1 Genome

Table 3.1: The classes and types of genetic elements defined in the model.

Class Type Description

Promoters
Additive Inputs of regulatory units, their effects sum up
Multiplicative or multiply, respectively (see Eq. 3.4)

Genes
Transcription factor Influences promoters inside the same cell
Morphogen Diffuses from the cell and influences promoters of other

cells

Special
External factor Input for the GRN (signals from the environment)
Effector Output of the GRN

is considered to be advantageous from the point of view of evolvability, since such
regions are free from selection pressure and can accumulate mutations over time.
Explicit “pseudogene” elements can also be easily added to the system, so that a
product or promoter can, by a simple mutation of its type, become inactive. Such
elements were used in a paper based on the model discussed here (Joachimczak and
Wróbel, 2009).

3.1.2 Genetic elements and affinity

All genetic elements share the same structure, shown in Fig. 3.2. The “type” field
defines to which of the three classes of elements it belongs. It is simply an integer
value indicating the type of an element. More than a single type can belong to a
given class (e.g., different types of promoters can exist). The actual set of types of
elements depends on the experiment (for example, there is no use for morphogens in
experiments with single cells and not all types of regulatory elements are necessary).
Table 3.1 sums up all the types of elements employed in the system.

position in n-dimensional space

type modifier x1 x2 x3 xn
…

controls the sign of

interaction

Figure 3.2: Internal structure of a genetic element. In this thesis, the associated position was always
in 2D space.

The essential part of each element is a sequence of n real numbers that represents
coordinates in Rn space. The position of the point associated with an element can be
understood as an abstraction of 3D structure of a protein or nucleic acid and is used
to calculate the affinity between products and regulatory elements (i.e., the weights
of connections in the GRN). In particular, the degree of affinity between a product
G and a promoter site P is a function of the Euclidean distance between the points
in Rn space they encode. A distance of zero between the two points creates a GRN
edge with the maximum allowed weight (set to 10), while a greater distance results
in a smaller weight according to a decreasing exponential function. To prevent full

65

3. THE MODEL OF GRN AND EVOLUTION

 2

 4

 6

 8

 10

 0 1 2 3 4 5

af
fin

ity

distance

β = 1

β = 10

Figure 3.3: Two examples of different deflections of the affinity curve used to convert distance
between points in R2 associated with genetic elements into the weights in regulatory graph. Depending
on experiment, β = 1 or β = 10 was used.

connectivity in the regulatory graph, a cut off value of 5 is used. The maximum
distance of interaction is an element of biological realism. Without it, elements
far away from each other could, in principle, still interact. Also, its introduction
allows to reduce the computation cost, as otherwise all possible connections in the
GRN would exist. Furthermore, a maximum value for affinity prevents biologically
unrealistic effects where very small concentrations of modelled substances could have
huge effects. The absolute level of the affinity between the two elements G and P is
calculated as follows

wP,G =

{
dP,G ≤ 5 : β · 2(5−dP,G)

10dP,G+β

dP,G > 5 : 0
(3.1)

where dP,G is the Euclidean distance between the points associated with the elements
P and G, β is a parameter of the system and allows to control how quickly the weight
diminishes with the increasing distance (see Fig. 3.3). The“modifier” fields in the
two interacting genetic elements are used to determine whether the connection has
positive or negative weight. The “modifier” can be either 1 or -1 and the sign of
the weight is equal to the product of the modifiers (i.e., it is negative if the values
differ).

The dimensionality n of the space of coordinates is a property of the whole sys-
tem and in all of the evolutionary experiments presented in this work n = 2 was
used. This allows to visualize all genetic elements and the paths they follow during
evolution on a plane. A higher number of dimensions allows for more neutral muta-
tions to coordinates of elements and neutrality of the search space has frequently
been postulated as important for evolvability (Galván-López and Poli, 2006; Ship-
man et al., 2000). However, more dimensions also result in an increased search
space. The influence of the dimensionality of genetic elements on evolvability in the
presented model was analysed in depth elsewhere (Joachimczak and Wróbel, 2008b,
2009). In brief, no advantage nor disadvantage of a higher number of dimensions
was detectable under typical experimental conditions. However, if the evolutionary
algorithm was severely handicapped by removing more complex types of mutations,
the additional dimensions were detectably detrimental.

66

3.2 Artificial Gene Regulatory Network

Sin (0,0) 1

Sout (10,10) -1

Padd (0,1) 1

Padd (10,0.5) 1

GTF (10,10) -1

Padd (0,-4) 1

Padd (10,2) -1

GTF (10,0) -1

R
eg

. u
n

it #
1

R

eg
. u

n
it #

2

0

1

2

3

4

5

6

7

(a)
−5 0 5 10

−
5

0
5

10

●
●

●

●

2 3

6

5

●

●

4 (TF),
Sout

7 (TF)Sin

(b)

2 3
Reg. unit #1

4

Sout

10.00

5 6
Reg. unit #2

7

-6.00

2.00

Sin

4.00

0.40

(c)

Figure 3.4: The encoding of the regulatory network in a linear genome. (a) example of simple
genome consisting of 8 genetic elements, elements carry coordinates in R2. (b) representation of
genetic elements on the surface with the areas of connectivity of promoters. (c) the resulting topology
of the regulatory network.

3.2 Artificial Gene Regulatory Network

The artificial regulatory network is represented as a multidigraph, in which each
node represents a regulatory unit and each edge has an associated weight and a pro-
moter which it regulates (which can be either additive or multiplicative). After the
connectivity has been determined, it remains static during the simulated life of a cell
(and shared among cells in multicellular embryos), and only product concentrations
change over time.

Figure 3.4 illustrates the process of creation of the regulatory graph from a se-
quence of genetic elements. In the first step (Fig. 3.4a) regulatory units are identi-
fied. Then, the affinities between products and promoters are computed based on
locations of their associated points in Rn (Eq. 3.1). If a gene encoding a product
belonging to a given regulatory unit is found inside the interaction distance of a pro-
moter in another (or the same) regulatory unit (Fig. 3.4b), an edge is added with
a weight equal to the computed affinity. Finally, special elements (encoding inputs
and outputs, Sin and Sout in Fig. 3.4) are connected to the regulatory network after
regulatory units have been identified. The complete algorithm is provided in the
form of a pseudo code in the Appendix (Listing 1, p. 178).

External factors (inputs) act on the network just like any other TF does. That
is, they form connections to regulatory units if they have some affinity to their pro-
moters. The only difference is that during simulation of a cell, the concentration of
an external factor is driven externally and the network cannot influence it. Effect-
ors (outputs) act as special transcription factors whose concentration can be read
externally from the network (e.g., to signal cellular division). The concentration of
this special TF is controlled as it was a product of a special regulatory unit with a
single additive promoter whose coordinates are taken from the genetic element that
encodes this particular effector. By design decision, the concentration of a cellular
effector cannot influence other regulatory units in the regulatory network, nor it can

67

3. THE MODEL OF GRN AND EVOLUTION

be influenced directly by an external factor.
For experiments where multiple different external factors and effectors are defined,

the exact function of each special genetic element (i.e., an element having the type
field equal to “effector” or “external factor”) depends on its order of occurrence in
the genome. For example, in an experiment in which 2 effectors are defined: cell
division and cell apoptosis (death), the first genetic element of type “effector” will
be interpreted as a signal for division, the second as a signal for apoptosis, and any
further such element will simply be ignored and remain non-functional.

During the simulation of a cell, the concentration associated with each node in
the regulatory graph is synchronously updated in discrete time steps. Since a single
regulatory unit can contain multiple products, all have the same concentration. Such
products can be interpreted either as multiple proteins with identical concentrations
or as a single transcription factor with multiple DNA-binding domains.

The change of the concentration L during a single simulation time step is cal-
culated as a sum of sigmoidal term and degradation term, as follows (the units are
omitted):

∆L = (
1− e−A

1 + e−A
− L)∆t (3.2)

where ∆t is an integration time step in the Euler method, L is the current concentra-
tion (restricted to the interval [0, 1]), and A is the activation level of the regulatory
unit (Eq. 3.4). The sigmoidal term above is equal to the hyperbolic tangent (tanh A

2
).

For the experiments discussed in this work, ∆t equal to 0.05 or 0.1 was used.
To calculate the activation level A of a regulatory unit, the activity of all its

promoters is first computed:

pi =
K∑
k=1

Lkwk,i . (3.3)

where pi is the activity of a given promoter, K is the total number of binding factors
in the genome, Lk denotes the perceived level of the factor k, and wk,i is the chemical
affinity (weight of the connection in the regulatory graph) between the factor Lk and
the promoter pi. From that, the activation of the whole regulatory unit is calculated:

A =
I∏
i=0

pm,i

J∑
j=1

pa,j (3.4)

where I and J denote the number of multiplicative and additive promoters (respect-
ively), while pm,1..i and pa,1..j describe their activations (Eq. 3.3). The presence of a
multiplicative promoter in a regulatory unit results in a strict requirement for the
presence of a product with an affinity to it, otherwise the unit is not expressed. The
“all-or-nothing” regulation is quite common in biological systems and is difficult to
incorporate when only additive units are used (such as in classical perceptron neural
networks). The actual indexing of promoters starts from 1, pm,0 is reserved for the
identity element of multiplication (pm,0 = 1). The pseudo code of the algorithm

68

3.3 Genetic algorithm

0

1

0 200 400 600 800 1000 1200

TF #4

time [steps]

0

1

0 200 400 600 800 1000 1200

TF #7

time [steps]

0

1

0 200 400 600 800 1000 1200

OUT

time [steps]

(a)

(b)

(c)

time [steps]

Figure 3.5: Simulated concentrations of transcription factors over time (ab) and the concentration
of output cellular effector Sout (c) in the example network (Fig. 3.4) during 1200 simulation steps.

used to update the GRN is provided in the Appendix (Listing 2, p. 179).
The functionality of the example network seen in Fig. 3.4c can be easily inferred

from its structure. The external input signal Sin set to the constant maximum level
of “1” is weakly connected to regulatory unit 2 and strongly connected to regulatory
unit 1. When the simulation starts, Sin will cause the transcription factor encoded
by element #4 to be highly expressed and to start quickly accumulating over time
(Fig. 3.5a). At the same time, its weak connection to regulatory unit 2 will cause
transcription factor #7 to be expressed at a non zero level (Fig. 3.5b). Since this
TF binds back to the second promoter and regulates its own expression, a positive
feedback loop will ultimately cause it to reach high concentration. Since TF #7
downregulates expression of TF #4, the latter will at some point start to degrade,
until it is no longer expressed, resulting in a “single pulse” pattern. A similar pattern
will be repeated by the output node, which is directly regulated by the concentration
of TF #4 (Fig. 3.5c).

3.3 Genetic algorithm

All experiments with simulated evolution presented in this thesis employ a version of
a genetic algorithm. For real valued genome representations, often a more formally
defined method is used, the evolution strategy (Beyer and Schwefel, 2002), with
an important feature of self-adapting mutation pressure. Similarities exist in the
way coordinates in genetic elements are mutated in the presented model and in the
evolution strategy. However, since the goal of the presented model was to create
a plausible model of evolving genomes, full control over what kind of mutations
exist in the system was considered essential, hence the use of a more openly defined
concept of a genetic algorithm.

The genetic algorithm employed in this thesis uses a fixed population size (either
100 or 300 individuals). If elitism is enabled, a new generation is created by copying

69

3. THE MODEL OF GRN AND EVOLUTION

a few best individuals (typically 5) without mutation. Remaining individuals are
created by mutating selected individuals in the current generation (asexual repro-
duction). If sexual reproduction is enabled, a fixed number of individuals will be
created through multi-point crossover between two genomes of (usually) different
sizes and with additional mutations added. Sexual crossover for diverse popula-
tion is a highly deleterious mutational operator, and so, no more than 50% of the
population would be created sexually.

Although elitism protects best genomes found so far, if neutral mutations occur
in an elite genome, it will be replaced by its mutated version. In this way, even
without fitness improvement, elite genomes can accumulate mutations over gener-
ations, wandering through the neutral space of solutions (hence, elitism protects
the phenotypes, not genotypes). The random wander through neutral regions in
search space is postulated to improve evolvability, as it allows to discover paths to
new unexplored areas in fitness landscapes (Galván-López and Poli, 2006; Shipman
et al., 2000).

3.3.1 Initialization

An initial generation is formed from a population of randomly created individuals.
Each genome is created by inserting elements representing all possible effectors and
external factors at the beginning of the genome and a certain number of regulatory
units (from 1 to 15 in this thesis). Each unit consists of a single promoter and
product or a small, randomized number of each. The coordinates associated with
genetic elements are randomized by moving from the point (0, 0) by a distance
drawn from the uniform distribution and in a random direction. A number of
special elements with a type set to “effector” equal to the number of defined cellular
effectors in the experiment is placed at the beginning of the genome, so each possible
output has one node associated with it (although it may still be disconnected from
the network). The same is done for all possible external factors (input nodes).

3.3.2 Selection

To select candidate genomes for mutation and crossover, tournament selection is used
(see, e.g., Mitchell, 1998). Tournament selection operates by choosing k individuals
from the population randomly and then choosing n-th best individual among them
with a probability p(1−p)n−1 (with the best one having a chance of p to be selected).
Larger tournament sizes and lower values of p decrease selection strength. In the
simplest scenario used in most of presented experiments, a binary selection was used
(k = 2, p = 1), meaning that a pair of individuals was always chosen randomly and
the best of the two would enter new generation after mutation or crossover.

One of the reasons to use tournament selection instead of fitness proportional
methods, such as roulette-wheel selection, is that it does not require any additional
fitness scaling to compensate for the non-linearity of the fitness function. To prevent
rapid loss of initial genetic diversity, it is also possible to set selection probability

70

3.3 Genetic algorithm

Table 3.2: Summary of genetic operators implemented in the system. Depending on the experiment,
a subset of these would be chosen and probability of each would be set independently.

Scope Operator Description

Element

Position
change

moves the element-associated point in a random direction by a dis-
tance drawn from a normal distribution

Type change randomly changes the type of element, probabilities of occurrence of
each type are set on the level of experiment

Modifier sign
change

switches all the interactions of this element from inhibition to activ-
ation or vice versa

Insertion creates and inserts a new random element at random position

Genome
Deletion removes a group of genetic elements
Duplication copies and inserts a group of genetic elements at random position
Recombination multipoint crossover between two individuals

to a lower initial value and increase it over time, a method used in some of the
discussed experiments.

3.3.3 Genetic operators

Genetic operators are designed to work on the level of genetic elements rather than
single bits or real numbers, because a genetic element is the basic unit of heredity
in the presented model. Table 3.2 lists the genetic operators defined in the system.
Whenever a genome was selected to be passed to a new generation genetic operators
were applied with probabilities specific to a particular evolutionary run or a set of
runs. Depending on the scope of an operator, the probability of a mutation would
be defined at the level of a whole genome or at the level of a single genetic element
(i.e., each genome or genetic element in every genome would mutate with a certain
probability).

Duplications and deletions

Duplications and deletions were performed by selecting a group of elements from a
random position in the genome and either copying it to a random location (duplic-
ation) or removing it (deletion). The probability for duplications and deletions was
controlled separately (although usually the same probability was used). The length
of a selected group of elements was drawn from the geometric distribution. Depend-
ing on the experiment, two approaches were used to decide whether to activate a
genetic operator. In the first approach, the probability of each type of event occur-
ring was defined for each genome. A random number was drawn from the range
[0,1] and if it was lower than the defined mutation probability p, duplication (or
deletion) was applied. The number was then drawn again, so that multiple events
could occur. The process was however stopped as soon as the drawn number was
higher than p.

In the second approach, the number of mutation events occurring per single
genome was directly proportional to its size, i.e., on average, for a genome two times
larger, the number of duplications or deletions would be two times higher. However,

71

3. THE MODEL OF GRN AND EVOLUTION

Figure 3.6: Sexual recombination between two genomes of different size: two examples of possible
scenarios of multipoint crossover between parents using the algorithm provided in the Listing 3, p. 180.

in both approaches, the average number of duplications or deletions occurring per
each mutated genome was kept below 1. The latter approach was used only in the
experiments discussed in Chapter 5.

Recombination

To allow for sexual recombination between genomes of potentially different lengths,
a multi point crossover was used to create a single individual from the two parents
(see Fig. 3.6). For each of the two parents, a pointer to the current genetic element
was initialized to point to the first element. Then, the new genome was created
by repeatedly fetching genetic elements from the currently selected parent, with a
small probability of switching to the other parent. The pointer to the active element
would then be incremented for either both of the parents or just the one used to
supply previous genetic element. The Listing 3 on p. 180 of the Appendix provides
the pseudo code of the full algorithm.

3.3.4 Viability criteria

In many of the evolutionary runs, “viability” criteria were defined, with the goal
of assisting the search algorithm by cutting off access to irrelevant areas of the
search space. Non-viable phenotypes would not take part in the creation of a new
generation and thus be removed from the gene pool immediately. For example, in
some experiments in multicellular development (Chapter 6), a phenotype is defined
as viable only if it has at least two cells at the end of development. This prevents
genomes that lost the capability to divide from passing their damaged genotypes to
a new generation.

If enabled, viability criteria would also be used during the creation of an initial
population. In such a case, genomes were repeatedly generated randomly, until a
viable individual was found. This however puts a limit on the acceptable strength
of viability criteria, as it must be possible to create a viable individual randomly
in a reasonable number of attempts. Multiple retries were allowed, so that for a
more demanding criteria it could take up to a few thousands of randomly generated
genomes before a viable individual was found. This process was however many
times faster than typical evaluation due to various optimizations that were enabled.
For example, if the cell division effector is unconnected in a regulatory graph, it is
already known before simulating the cell behaviour, that the phenotype will never
have more than one cell.

72

3.4 Summary

3.4 Summary

The simulations described in this thesis are based on a new model of biologically in-
spired artificial genome indirectly encoding the structure of gene regulatory network.
The approach presented in this thesis allows linear genomes to encode networks of
arbitrary size and topology. Regulatory units can have an unconstrained number of
binding sites and can encode arbitrary number of products. The number of types
of TFs (or morphogens) is also unconstrained. The affinity between product and
promoter is calculated as a function of Euclidean distance between points in Rn

associated with each of them.
The concentrations of TFs are stored as real values constrained to [0, 1] and

change over time continuously by increasing their synthesis rate or actively degrading
them. TFs are also subjected to spontaneous exponential degradation. The process
of TFs binding to promoters is not simulated explicitly. Instead, a genome is decoded
into a regulatory graph (GRN) whose topology remains static during the lifetime of
a cell. Regulatory influence (affinity) is represented as a weight of an edge in this
graph. During the simulation, the concentrations of TFs (represented as nodes in
the graph) are updated, but the weights in the regulatory network remain fixed.

Products binding to a regulatory region can work either additively to increase
the rate of production or multiplicatively. In the latter mode, a presence of a
product binding to a multiplicative promoter is necessary to activate the synthesis
and amplifies it proportionally to the activation of such promoter. Genomes are
evolved using biologically inspired mutational operators: duplications and deletions
of their fragments, and by introducing small changes to the coordinates stored in
each genetic element, thus allowing for smooth modifications of the affinities between
products and promoters.

In the following chapters, evolvability and applicability of the introduced model
of gene regulatory network to computational tasks and to control problems will
be evaluated. Finally, the model is applied to control artificial embryogenesis in
3D, where starting from a single cell, a multicellular morphology emerges through
subsequent cell divisions, with all cells sharing the same genome (and thus GRN).

73

3. THE MODEL OF GRN AND EVOLUTION

74

Chapter 4

Processing signals with regulatory

networks

In this chapter, the evolvability of the introduced artificial GRN model is invest-
igated. The evolutionary algorithm is challenged with the task of finding genomes
capable of performing computational tasks of increasing difficulty.

Biological GRNs can be thought of as life’s computers, organizing all processes
that occur inside every cell and performing computation long before the evolution
of the nervous system. They are well known for their robustness to external in-
terference and to damage caused by mutations. Hence, the evolved properties of
such networks and their applicability for control of artificial and synthetic systems
are of great interest for both the Artificial Life and the Systems/Synthetic Biology
research community. On one hand, artificial GRNs can be considered a promising
computational model and an alternative to, e.g., neural networks. This stimulates
the interest in exploration of evolvability of various genome encodings and trade-offs
between biological realism and computational efficiency (see section 2.1, p. 51) On
the other hand, there is a growing interest in the design of synthetic (that is “wet”)
regulatory networks that are capable of computation. Synthetic GRNs in which
gene expression oscillates with a desired period or which can count subsequent ex-
ternal signals (Elowitz and Leibler, 2000; Friedland et al., 2009) have recently been
constructed and represent important milestones in the rapidly developing field of
synthetic biology. The hope is that synthetic networks engineered to produce pro-
teins or mRNAs in a desired and intelligent manner will soon find their use for
therapeutic and industrial purposes.

The results discussed in this chapter demonstrate how a genetic algorithm (GA)
can be used to evolve artificial gene regulatory networks in which expression of
certain genes follows a desired target pattern. In most of the experiments, the tar-
get pattern depends on external stimuli to the network, requiring either a certain
response or continuous computation performed on the external signal. From a bio-
logical point of view, such input can be understood as a concentration of a chemical
substance in the environment.

75

4. PROCESSING SIGNALS WITH REGULATORY NETWORKS

4.1 Experimental setup

The training set was defined as a set of input concentration patterns that were
presented to each individual (genome decoded into GRN) at each evaluation during
the GA, paired with the target concentration pattern. The networks were simulated
for a predefined period of time and the fitness function would compare the pattern
generated by the networks with the desired response. If the training set consisted
of multiple input/output pairs, the networks were reset to their initial state before
they were stimulated with a next input pattern. Unless specified otherwise, artificial
evolution was always repeated (using different random seed) in 10 independent runs
and the behaviour of the best network obtained in all of the 10 runs is presented
overlaid on the training set (i.e., input and desired output pairs). Furthermore, the
quality of the obtained solutions and the level of generalization was investigated for
obtained individuals.

4.1.1 Fitness function

The goal of simulated evolution was to obtain networks that generate desired ex-
pression dynamics in response to particular dynamics of the input signal and so,
the fitness function had to capture the discrepancy between obtained and desired
response. The most straightforward approach (used, e.g., by Knabe et al., 2006)
would be to minimize the total error:

ferr =
L−1∑
t=0

|ot − dt| (4.1)

where ot and dt are the desired and obtained expression levels at the time t (altern-
atively, a squared error can be used) and L is the number of steps the network is
simulated. This approach was found to work during initial experiments. However,
sometimes it generated solutions that would have relatively low error value (i.e.,
high fitness) despite being far from what the designer of the target pattern had in
mind. Discrepancy between an objective fitness measure and perceived usefulness
of an obtained solution is a problem shared among all fitness driven optimization
methods and reflects the fact that a fitness function is often only a crude approx-
imation of the actual concept of fitness that an engineer has in mind. To give an
example, if the desired behaviour of the network would be to generate two consecut-
ive spikes in concentration of an artificial protein, the actual timing of the onset of
their occurrence may not be important for the designer, whereas the above fitness
function rewards only precise timing. In such a case, evolvability could most likely
be improved by embedding additional information into the fitness measure based on
the knowledge about relevant features of the desired pattern. In the example dis-
cussed, a modified fitness function that selects minimal error value among possible
delays would better reflect the intention of the designer. It is a common property
of optimization methods that as long as the search space is not random, the search

76

4.1 Experimental setup

algorithm can always be improved by incorporating additional knowledge about the
problem into the search process.

Two such modifications were introduced to the above fitness function (Eq. 4.1),
in a form of additional terms, to better suit the nature of the problems presented in
this chapter. The first one was based on the observation that the proper response of
a network would frequently involve responding with a desired number of oscillations,
i.e., the important information was contained in the number of concentration pulses,
not their exact shapes. For this reason, an additional term was added that explicitly
rewards the correct number of oscillations in the response.

The second modification stems from the fact that for the problems presented in
this thesis, the relevant part of the response is the part where non zero concentration
of the cellular effector interpreted as the output of the system is expected. Since
such a response lasts only for a short time compared with the whole length of the
response window, a higher weight was assigned to the “active” part of the response
(the part with expected expression above 0). The justification for adding such term
comes from the fact that, by the nature of the system, producing some non zero
concentration of TF requires more genetic components than keeping it at zero. This
creates a bias towards the simplest solution of producing no response at all. Such a
simple solution manifested itself in experiments where the final score is a trade-off
between error values obtained from many test cases. Thus, a term was added to
the fitness function that assigns higher weight to those time steps in the windows of
desired response that require concentration greater than zero.

The adjusted fitness function used in the experiments described in this chapter
was:

f = µ
L−1∑
t=p

|ot − dt|(1 + kdt)
1

2− S
∈ [0, 1] (4.2)

where L is the lifetime of the GRN (between 600 and 1500 time steps, depending
on the experiment) and the term (1 + kdt) provides higher weight to the time steps
where non zero concentration is expected (k = 1 was used in experiments discussed).
p is the propagation time after which the activity of the output is evaluated (set to
50 time steps). This accounts for the fact that there will always be some latency in
the network’s response. µ is a normalizing term:

µ =
1

L−1∑
t=p

max(1− dt, dt)(1 + kdt)

The final term (1
2−S) in Eq. 4.2 promotes the correct number of oscillations. S

becomes equal to 0 when there is a match in the number of oscillations. It becomes
1 when no oscillations are found in the target pattern or there are more than two
times then desired. For intermediate cases, S was equal to |Nobtained−Ndesired|

Ndesired
. The

number of oscillations was defined as the number of events when the concentration
crossed the level of 0.5 (i.e., dt−1 < 0.5 and dt ≥ 0.5 or dt−1 ≥ 0.5 and dt < 0.5), with

77

4. PROCESSING SIGNALS WITH REGULATORY NETWORKS

Table 4.1: Types of products and promoters enabled in the experiments on evolving GRNs for signal
processing and the interpretations of subsequent input and output elements.

Promoter types Product types External factors Effectors
additive transcription factor “1” (fixed high concentration) signal output
multiplicative input 1 (depends on the experiment)

input 2 (depends on the experiment)

Table 4.2: Essential GA parameters used in the experiments on evolving GRNs for signal processing.
Additional parameters are provided in the Appendix (Table C.1, p. 184).

Parameter Value
Population size 300
Elite individuals 5
Asexually created individuals 195
Individuals through crossover 100
Initial population randomized genomes, 5 regulatory units each
Termination condition no improvement for 500 generations
Selection tournament, k = 10, p = 0.3

a minimum distance between such events set to 10 time steps, to prevent counting
trivial fluctuation around the level of 0.5.

For experiments where multiple training input-output pairs were used, the final
fitness was an average of error for every tested pair of stimulus and response.

Section 4.4.1 (p. 90) investigates whether additional terms added to the fitness
function (Eq. 4.2) indeed provide a benefit over the simpler version (Eq. 4.1).

4.1.2 Genetic algorithm and model settings

The overview of the GA employed in the simulations described in this thesis was
introduced in section 3.3 (p. 69). In the experiments discussed in this chapter,
a subset of available types of genetic elements was used (Table 4.1). An external
signal was provided through an externally driven concentration of the external factor,
called Input 1, with additional Input 2 used in some experiments. The concentration
of cellular effector Signal output was interpreted as the output of the network.

Genetic algorithm (Table 4.2) was configured to stop when no improvement in fit-
ness of the best individual was observed for 500 generations. This typically resulted
in runs lasting for a few thousands generations.

4.2 Internally induced oscillations

Genetic oscillators are known to perform vital functions (organizing, e.g., the cell
cycle and serving as various biological clocks). The concept of oscillations in simu-
lated GRNs was central already to their very first RBN-based models (see section 2.1,
p. 52). However, so far a limited number of works focused on evolving oscillating
regulatory networks with continuous product concentrations (see, e.g., Knabe et al.,
2006; Kuo et al., 2004, for some recent examples). Such genetic oscillators can be

78

4.2 Internally induced oscillations

0

1

0 100 200 300 400 500 600

OUT

time [steps]time [steps]

Figure 4.1: Behaviour (concentration of the “signal output” effector over time) of the network that
generates a sine wave expression pattern lasting for five periods (the best network in 10 independent
runs); dashed line: the desired response.

driven by external periodic stimuli and can also be sustained internally when such
stimuli are removed (although usually with the accuracy degrading over time).

In the example discussed in this section, the external periodic input was not
enabled to test if the desired dynamics can be initialized and sustained entirely by
the gene regulatory network itself. The only input to the system was the constant
high concentration of external factor “1”, necessary to bootstrap any subsequent
activity (gene expression) in the network. It was found that networks generating
sine waves of various frequencies are very easy to obtain and correct frequency and
phase was observed in all 10 independent runs. Although the worst runs resulted
in a reduced amplitude of oscillations, the phase and frequency were always correct.
Furthermore, the oscillations were observed to be stable and persisted even beyond
network’s evaluation time.

In an attempt to create a more challenging task, the target expression pattern
was set to a sine wave that was expected to start at t = 150 and to end after 5
periods. A synthetic version of such a network could, e.g., work as an element of
an intelligent drug delivery system, releasing a certain dose over 5 consequent days
and then disabling itself. Figure 4.1 demonstrates the best individual obtained in
10 runs (see Fig. 4.16, p. 90 for a summary of fitness function values obtained for
all problems). This problem turned out to be more challenging for the GA and
only one in ten runs resulted in the desired behaviour. All other runs ended with
individuals in which oscillations would start at the desired time, but would never
terminate. However, since the part of the lifetime of the individual when oscillations
are switched off was only a small component of the calculated error, it is reasonable
to expect higher yield of desired solutions if the fitness function was modified to put
higher emphasis on the final period of inactivity.

Another conceptually simple pattern tested, an oscillation with frequency de-
creasing over time (Fig. 4.2), did not result in a valid solution in any of the 10
repeated evolutionary runs. Despite further attempt to repeat the experiment with
lifetime of an individual extended to cover more oscillations, networks would just
remain locked to some single average frequency. Thus, in this case, the apparent
ease with which GRNs generate oscillating patterns leads to a difficulty in obtaining
a pattern where frequency has to change over time.

79

4. PROCESSING SIGNALS WITH REGULATORY NETWORKS

0

1

0 500 1000 1500

OUT

time [steps]time [steps]

Figure 4.2: A pattern of concentration for which no valid solution was found. Behaviour of the best
obtained network is shown; dashed line: the desired response.

4.3 Responding to external signals

In the following experiments, networks were evolved to generate certain expres-
sion patterns in response to continuous signals from the environment. Signal was
provided as a concentration of an external factor (or two in some experiments) that
was externally driven. Such an external factor can bind to promoters of genes ex-
actly in the same manner as any other TFs produced by the cells (section 3.2),
with the exception that it could not directly control the concentration of the output
protein (see the model description, p. 67). This was a design decision enforcing
some minimal complexity of the signal processing: any information that reaches
the output of the system has to pass through at least a single internal node of the
regulatory graph.

To facilitate evolution of general solutions, each genome was evaluated on a set
of pairs of input and desired output (a training set). The GA was set to minimize
averaged fitness function value (Eq. 4.2) over all test cases. To evaluate generality
of the obtained solutions and test for overfitting, evolved networks were also tested
against stimuli not present in the training set.

4.3.1 Doubling the oscillation frequency

In this problem, networks were expected to double the frequency of input oscillations
(sine wave) and do so regardless of the frequency. The training set consisted of
three training examples: 2 different frequencies of sine-like curve and an additional
example with no input signal, requiring a silent response (Fig. 4.3). The silent input
was introduced to facilitate evolution of networks that activated only when some
external signal was provided.

Valid solutions (understood as displaying the desired behaviour) appeared already
in the first few hundreds generations and continued to be refined over the rest of
their much longer evolutionary history (Fig. 4.4). The best individuals obtained in
all of the 10 independent evolutionary runs display desired behaviour on the training
set (Fig. 4.3).

The best networks were found to generalize the problem, i.e., they would double
any intermediate frequencies as well as those lower or higher than found in the
training set (Fig. 4.5). Obtaining the proper behaviour for frequencies much lower
than those present in the training set posed no problem (and for the best individuals,
there seemed to be no minimum frequency, Fig. 4.5a). Generalization for frequencies
above those present in the training set turned out to be more challenging, with

80

4.3 Responding to external signals

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

(a)

(b)

(c)

time [steps] time [steps]

Figure 4.3: Training set and the behaviour of the best network evolved to double the frequency
of the input oscillations. The best solution in 10 evolutionary runs, obtained after 6191 generations,
f = 0.01783 is shown. Dashed line: the desired response.

1 10 100 1000 10000

0.
0

0.
1

0.
2

0.
3

0.
4

Generation

F
itn

es
s

va
lu

e

Figure 4.4: Fitness improvement over generations during evolution of networks doubling the fre-
quency of the input oscillations (10 independent repetitions). In the experiments described in this
chapter, lower values of the fitness function correspond to higher fitness. Note the logarithmic X axis.

networks tolerating usually no more than around 20-40% higher frequency, gradually
making the spikes less pronounced as the frequency increases (Fig. 4.5b).

Poorer generalization for higher frequency signals is to be expected if one con-
siders that maximum oscillation frequency of evolved networks is ultimately limited
by how quickly concentration of a single product can build up and be degraded in
the system (Eq. 3.2, p. 68). In practice, the limit will be even lower because of the
latencies introduced by multiple genes involved in generating the response. To find
out if the discussed experiment was indeed close to such limit, the training set was
modified to employ two times lower frequencies of both the training stimuli and of
the matching response. Interestingly, the networks would properly generalize very
low frequencies, but again fail to respond to frequencies higher than the highest
frequency in their training set. This was despite networks obtained in the previous
experiment being able to generate frequencies this high. This means that, in this
case, the frequency limit does not stem from limits on the speed of product accu-

81

4. PROCESSING SIGNALS WITH REGULATORY NETWORKS

0

1

0 5000 10000 15000

IN

0

1

0 5000 10000 15000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

(a)

(b)

(c)

time [steps] time [steps]

Figure 4.5: Problem generalization by the network evolved to oscillate at double of the input
frequency (same individual as in Fig. 4.3): (a) the network behaves correctly for an input with 16x
times lower frequency than in the training set, but fails to generalize for inputs with higher frequency
(b). The response for the input signal in panel (c) hints on the way in which the output is calculated.
Dashed lines in (a-b): the desired response.

.

mulation and degradation present in the system but rather results from networks
adjusting their dynamics to the range of frequencies found in the training set. This
is the case for the high frequency in particular, but the effect of this adjustment can
also be observed for lower frequencies. When the input frequency is lowered, the
output product starts to accumulate and degrade noticeably too fast (compare the
difference in steepness of the slopes in Fig. 4.3c and Fig. 4.5a).

Evolved networks were further tested for their capability to adjust to changing
input frequency “on the fly” rather than to maintain the frequency induced at
the beginning. Indeed, the best networks would continuously match the output
frequency to double that of the input. Given that for the training set the input
frequency was constant over time, the ability to adjust dynamically demonstrates
good generalization properties. However, this was not the case for some of the less fit
individuals which would lock their output frequency to the double of the frequency
observed initially on their input and would ignore any further change in the input
frequency.

The analysis of the topologies of the evolved networks revealed that they have a
very high density of connections. This makes inferring how they process information
difficult (see example network on Fig. 4.6). However, a hint on the inner mechanics
can be obtained by testing network behaviour for different stimuli. Figure 4.5c
presents the response of this network when stimulated with trapezoid waveform of
variable duty cycle. This shows that this particular network evolved to solve the
problem by reacting to the raising and falling slopes of the signal, producing a spike
in TF concentration for each.

82

4.3 Responding to external signals

"IN1"

"signal"

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 4.6: Regulatory graph of the best obtained individual evolved to oscillate at double of the
input frequency (network of an individual seen in Fig. 4.3 and 4.5). Obtained networks were found to
be very dense, only 20% of the strongest connections in this networks is shown (disconnected nodes
are not drawn). Green node: signal input, red: output. Connections with positive weights are red,
with negative are blue.

.

4.3.2 Low pass filter

Filtering high input frequency can be expected to be a problem well suited for
regulatory networks, as the limited speed of accumulation and degradation of TF
should tend to smooth out any high frequency changes just as a capacitance in an
RC filter does. In this task, networks were selected for their ability to regenerate
sinusoidal input oscillation, but only if its frequency was below certain threshold,
thus implementing a form of a low pass filter.

For an initial experiment, 5 training input/output pairs were used (Fig. 4.7), two
with frequencies below a threshold, two with above and one with no input signal
(and requiring no response). GA was successful in finding individuals that would
properly react to training pairs and also generalize for frequencies higher and lower
than those in the training set. However, providing the evolved network with a sum
of two sinusoids (one having a frequency above the filtering threshold) would result
in blocking the output completely (not shown). This suggests that such networks
filter the signal simply by detecting a quickly rising slope of the input and blocking
the output if the slope raises too quickly.

In an attempt to evolve a more general solution, the training set was extended by
4 additional training examples (Fig. 4.8). They consist of inputs with two sine waves
combined and require the network to filter out just the higher frequency component.
Thus, ultimately, the networks were evaluated on 9 I/O pairs, shown in figures 4.7
and 4.8, and the behaviour of the best individual obtained in 10 evolutionary runs
is overlaid on the both figures. When this network was tested on input patterns not
present in the training set, although imperfect (Fig. 4.9a), some level of generaliz-

83

4. PROCESSING SIGNALS WITH REGULATORY NETWORKS

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

(a)

(b)

(c)

(d)

(e)

time [steps] time [steps]

Figure 4.7: Part I of the training set used to evolve a low pass filter, with the behaviour of the best
network from 10 independent runs overlaid (obtained in generation 8839,f = 0.02659). Dashed line:
the desired response.

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

(a)

(b)

(c)

(d)

time [steps] time [steps]

Figure 4.8: Part II of the training set used to evolve a low pass filter, with the behaviour of the
network seen in Fig. 4.7 overlaid. Dashed line: the desired response.

84

4.3 Responding to external signals

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 500 1000 1500 2000 2500 3000

IN

0

1

0 500 1000 1500 2000 2500 3000

OUT

time [steps]

(a)

(b)

time [steps] time [steps]

Figure 4.9: Problem generalization by the network evolved to act as a low pass filter (same individual
as seen in Fig. 4.7, 4.8): (a) response to a combination of two sine stimuli, one above filtering threshold
(dashed line in shows the ideal response), (b) the network reacts to the change in input frequency “on
the fly”.

ation could be seen as the high frequency component is largely filtered (and, given
limited time for a response, perfect filtering would not be possible). Furthermore,
the network is capable of adjusting its output to the changing frequency of the input
signal “on the fly” (Fig. 4.9b), thus generalizing the problem in a desired manner,
even though such scenario was not present in the training set.

4.3.3 Networks with signal memory: doubling the input pulse length

The problems described in previous sections (i.e., 4.2, 4.3.1 and 4.3.2) did not require
explicit memory of the input signal. In this task, networks were evolved to respond
with a square pulse twice the length of the square pulse on the input after 50 simu-
lation time steps, hence requiring them to sustain some memory of its length. Four
training pairs were used (Fig. 4.10). Desired behaviour was observed in all of the
best networks from 10 evolutionary runs, suggesting that this is not a difficult prob-
lem. The best individual shown in Fig. 4.10 was also found to generalize the problem
by properly responding to the pulses occurring on its input at any time and respond
accurately to signals of intermediate lengths, as well as 50% shorter (Fig. 4.11).
Pulses longer than present in the training set would lead to responses shorter than
desired (Fig. 4.11d), exposing the leaky nature of the GRN-based memory.

When the network was stimulated with a pulse that had just half the height of
those in the original training set (Fig. 4.11e), the length of the output pulse would
be close to that of the input stimuli. This suggests that the network evolved to
rely on some form of a simple integrator (e.g., by slowly building up concentrations)
rather than, e.g., rely on detection of the raising and falling edge of the input signal.

To evaluate sustainability of this type of memory, the evolution was simulated
with a modified training set in which the desired output, instead of being expected
to start appearing 50 time steps after the input, was expected to appear 350 time
steps later (Fig. 4.12). This required storing the memory of the length of the input
pulse for a longer time. Although the best individual would still demonstrate the
desired behaviour, obtained networks were less accurate and on average evolvability
was worse, clearly demonstrating the increasing difficulty of storing information

85

4. PROCESSING SIGNALS WITH REGULATORY NETWORKS

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

(a)

(b)

(c)

(d)

time [steps] time [steps]

Figure 4.10: Training set and the behaviour of the best individual in 10 evolutionary runs evolved
to double the input pulse length (obtained in generation 7195, f = 0.01465): dashed line shows the
desired ideal response (note that a perfectly square response would be impossible to obtain).

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

(a)

(b)

(c)

(d)

(e)

time [steps] time [steps]

Figure 4.11: Problem generalization by the network evolved to double the input pulse length (same
individual as in Fig. 4.10). Dashed line (a-d) shows the desired, ideal response.

86

4.3 Responding to external signals

0

1

0 200 400 600 800 1000 1200 1400

IN

0

1

0 200 400 600 800 1000 1200 1400

OUT

time [steps]

0

1

0 200 400 600 800 1000 1200 1400

IN

0

1

0 200 400 600 800 1000 1200 1400

OUT

time [steps]

0

1

0 200 400 600 800 1000 1200 1400

IN

0

1

0 200 400 600 800 1000 1200 1400

OUT

time [steps]

(a)

(b)

(c)

time [steps] time [steps]

Figure 4.12: Behaviour of the best individual from 10 independent runs evolved to double the input
pulse length, but with an increased delay of the response.

0.
00

0.
02

0.
04

0.
06

0.
08

F
itn

es
s

va
lu

e

Response delay: 50 Response delay: 350

Figure 4.13: Comparison of fitness function values (lower is better) of the best networks evolved
to double the input pulse length for a response delay of 50 and 350 time steps. The box plots show
the median and quartiles for 10 best networks obtained in 10 independent evolutionary runs for each
delay. Whiskers extend to the most extreme data point which is no more than 1.5IQR from the box
(here, a maximum and a minimum).

in concentrations for longer times. Figure 4.13 compares fitnesses obtained in 10
repetitions of each type of experiment.

4.3.4 Doubling the number of the input spikes

The problems described in this and the following section (4.3.5) were conceived to
test if it is possible to evolve GRNs that would be able to react to subsequent spikes
in concentration (a sharp increase followed by a sharp decrease) and also present
response as a consecutive spikes. This type of desired response is not well suited for
GRNs since a single spike, despite carrying a single bit of information (i.e., spike or
no spike), involves two processes: building up of the concentration of a product and
then degrading it. Thus, the main purpose of defining the problems in this manner
was to present the GA with more challenging tasks. Encoding information in pulses
may also superficially resemble the type of processing performed by spiking neural

87

4. PROCESSING SIGNALS WITH REGULATORY NETWORKS

0

1

0 200 400 600 800

IN

0

1

0 200 400 600 800

OUT

time [steps]

0

1

0 200 400 600 800

IN

0

1

0 200 400 600 800

OUT

time [steps]

0

1

0 200 400 600 800

IN

0

1

0 200 400 600 800

OUT

time [steps]

(a)

(b)

(c)

0

1

0 200 400 600 800

IN

0

1

0 200 400 600 800

OUT

time [steps]

(d)

time [steps] time [steps]

Figure 4.14: Behaviour of the best individual from 10 evolutionary runs evolved to double the count
of concentration spikes on its input (obtained in generation 2794, f = 0.02583): (abc) training set
with output obtained and desired, dashed line shows the desired response (d) testing for generality:
the network responds with less spikes than desired when a higher number of spikes is presented on
the input.

networks. However, in the case of spiking neural networks each spike represents
changes of voltage across the membrane (which is caused by changes of ion con-
centration in the cell relative to the outside), whereas for regulatory network, each
spike corresponds to a change of concentration of a protein resulting from a positive
regulation followed by active degradation.

The first of the discussed problems required networks to respond to a series of
pulses with the double of their number. The best solution obtained in 10 independent
runs doubles the number of pulses for the training set as required (Fig. 4.14a-c).
However, the response for the three pulses is imperfect (Fig. 4.14c). Note that,
although the TF is not degraded completely, the concentration falls below 0.5, most
likely an effect of a strong pressure to gain a reward provided by the additional term
in the fitness function (section 4.1.1, p. 76). The best networks in most of the other
runs would perform poorer, suggesting overall difficulty of this task.

Finally, the level of generalization of the problem was evaluated by stimulating
the network with 4 consecutive pulses (Fig. 4.14d). The problem was not correctly
generalized. The network would respond with only 7 pulses instead of the expected
8.

4.3.5 Integrating information from two separate signals: serializing pulses

The following problem was designed to test the capability of GRN to integrate in-
formation from two inputs rather than a single one. For this purpose, a second

88

4.3 Responding to external signals

0

1

0 100 200 300 400 500

IN1

0

1

0 100 200 300 400 500

IN2

0

1

0 100 200 300 400 500

OUT

time [steps]

0

1

0 100 200 300 400 500

IN1

0

1

0 100 200 300 400 500

IN2

0

1

0 100 200 300 400 500

OUT

time [steps]

0

1

0 100 200 300 400 500

IN1

0

1

0 100 200 300 400 500

IN2

0

1

0 100 200 300 400 500

OUT

time [steps]

0

1

0 100 200 300 400 500

IN1

0

1

0 100 200 300 400 500

IN2

0

1

0 100 200 300 400 500

OUT

time [steps]

0

1

0 100 200 300 400 500

IN1

0

1

0 100 200 300 400 500

IN2

0

1

0 100 200 300 400 500

OUT

(a)

(b)

(c)

(d)

(e)

0

1

0 500 1000 1500

IN1

0

1

0 500 1000 1500

IN2

0

1

0 500 1000 1500

OUT

time [steps]

(f)

time [steps] time [steps] time [steps]

Figure 4.15: Behaviour of the best individual in 10 evolutionary runs evolved to count subsequent
or simultaneous spikes on its input (obtained in generation 2068, f = 0.01394): (a-e) the training set
with the output obtained and desired, (f) testing for generality.

external factor was enabled in the system, responsible for the second external input.
The task was to respond with the number of output pulses equal to the number
of pulses on both inputs observed within a certain time window. This can also
be considered a form of simple GRN-based adder that presents response as sub-
sequent spikes in concentration. Again, this is not the type of information encoding
which is best suited for GRN-based processing: an adder operating on the levels of
concentrations, rather than spikes, would be much easier to construct or evolve.

Nonetheless, a relatively high match to the desired response was obtained on
the training set (Fig. 4.15a-e). The best individual not only properly serializes the
pulses but also is general and works in a continuous manner: given sufficient time
separation between the pulses, it can summarize correctly (Fig. 4.15f).

89

4. PROCESSING SIGNALS WITH REGULATORY NETWORKS

●
●

●

●

0.
00

0.
04

0.
08

0.
12

F
itn

es
s

va
lu

e

Sinusoid
on/off

(section 4.2)

Frequency
doubler

(section 4.3.1)

Low pass
filter

(section 4.3.2)

Double pulse
time

(section 4.3.3)

Multiply
spikes

(section 4.3.4)

Adding
spikes

(section 4.3.5)

Figure 4.16: Fitness values of individuals obtained for each task. The box plots show the median
and quartiles for the best 10 networks each obtained in an independent evolutionary run for each type
of problem. Whiskers extend to the most extreme data point which is no more than 1.5IQR from the
box. Circles indicate outliers.

4.4 Evolvability

The fitness values of the best individuals obtained in 10 independent repetitions of
each discussed problem allow to partially infer the difficulty of each task (Fig. 4.16).
However, the measure is a very imperfect one. The quality of solutions obtained
for a given problem highly depends on the choice of the training set. Furthermore,
because of the complexities of the fitness function discussed in section 4.1.1 (p. 76),
the very formulation of the function influences the problem difficulty. It is perhaps
the variance that represents the difficulty better than actual fitness value, as its
low value suggests that the solution was easily discoverable by GA (as long as each
run indeed did result in a desired solution). For example, both low fitness function
values (i.e., the high quality solutions) and very low variance obtained for networks
doubling the input frequency or doubling time of the pulses indicate the relative
simplicity of these tasks.

4.4.1 Alternative fitness functions

The impact of the additional terms of the fitness function discussed in section 4.1.1
was investigated to find out whether such more complex function does indeed im-
prove evolvability. An experimental setup used to evolve networks doubling the
input signal frequency (section 4.3.1, p. 80) was selected for its simplicity and re-
latively low standard deviation of the end results of experiments (Fig. 4.16). To
improve control over experimental conditions, genetic algorithm was set to run only
for 2000 generations, instead of running as long as improvements were observed.
Because of variation in fitnesses of obtained individuals in each independent run,
each experiment was repeated 40 times.

Four experiments were performed, each using a different version of the fitness
function listed below (refer to Eq. 4.2, p. 77 for the explanation of each term):

90

4.4 Evolvability

●●

●●●●

●
●

●

●

●

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

F
itn

es
s

(r
aw

 e
rr

or
 v

al
ue

)

Raw error value
(1st function)

Rewards
 spike count

(2nd function)

Rewards
high expression
(3rd function)

Rewards both
(4th function)

Figure 4.17: Comparison of evolvability with different versions of fitness function in signal processing
experiments. The box plots show the median and quartiles for the unadjusted fitness value (1st
function) of 40 best networks obtained in 40 independent evolutionary runs using each type of fitness
function. Whiskers extend to the most extreme data point which is no more than 1.5IQR from the
box. Circles indicate outliers. The notch marks 95% confidence interval for the median.

1. simple unadjusted error function: µ1

L−1∑
t=p

|ot − dt|

2. error function that assigns higher weight to time points with a higher desired

concentration level (k = 1): µ2

L−1∑
t=p

|ot − dt|(1 + kdt)

3. error function that rewards correct number of oscillations: µ1

L−1∑
t=p

|ot − dt| 1
2−S

4. error function that rewards for both of the above: µ2

L−1∑
t=p

|ot − dt|(1 + kdt)
1

2−S

(the default one used for the experiments discussed in this chapter, Eq. 4.2)

where µ1, µ2 are normalizing terms:

µ1 =
1

L−1∑
t=p

max(1− dt, dt)
, µ2 =

1
L−1∑
t=p

max(1− dt, dt)(1 + kdt)

Although the GA in each of the four experiments would rely on a different definition
of fitness, to allow for comparison between experiments, the fitnesses of the final
individuals obtained in each of the repeated experiments were recalculated using
the unadjusted error function (the first equation).

The comparison (Fig. 4.17) suggests that a more complex fitness function im-
proves evolvability. To see if the average errors obtained with the adjusted function
are indeed significantly different from those obtained with the unadjusted function,
a Wilcoxon rank-sum test was performed on the results of 1st (unadjusted) and 4th
experiment (adjusted). The test provides strong evidence that the adjusted function

91

4. PROCESSING SIGNALS WITH REGULATORY NETWORKS

(4th setting) improves evolvability in the presented problem (p < 10−10, Wilcoxon
rank-sum test, two tailed). Despite small apparent (Fig. 4.17) improvement in aver-
age value between 2nd and 1st setting, as well as between 4th and 3rd, the test did
not provide evidence for the relevance of spike counting term for this task. However,
this term would more likely be helpful in problems discussed in sections 4.3.4 and
4.3.5. In overall, the results suggest that adjusting the fitness function by incorpor-
ating additional knowledge about the GRN did allow for a more effective search and
was most likely helpful in the experiments presented in this chapter.

4.4.2 Parameters of the model

Every model of artificial GRN is a compromise between biological realism and com-
putational efficiency. Many features of the model depend on intuition driven choice
of selection schemes, the sizes of populations or numerous other parameters, e.g., the
constant that determines how the weight of a connection in the GRN is scaled with
the distance between coordinates of genetic elements. Comprehensive exploration
of the parameter space would be computationally prohibitive and it would be still
difficult to draw definite conclusions on superiority of a particular setting, unless
evidence from a representative sample of possible problems was gathered.

This subsection presents the results of comparison of the impact on evolvability
of the three features of the model: the presence of multiplicative promoters (Eq. 3.4,
p. 68), the selection scheme and the constant that controls how the distance between
genetic elements translates into weights (Eq. 3.1, p. 66). Four settings were com-
pared:

1. the original configuration (as used in experiments discussed so far)

2. the configuration in which multiplicative promoters are disabled

3. the configuration in which deflection of the affinity curve is modified (β = 10,
instead of β = 1 used in experiments discussed so far, see Fig. 3.3, p. 66 for
visualization)

4. the configuration in which binary tournament selection (k = 2, p = 1) was used
instead of multiple individuals based tournament (k = 10, p = 0.3)

An experimental scheme for comparison was identical to the one described in the
previous section (however, the usual, adjusted fitness function was used). There is
no visible difference between the quality of obtained solutions for the modifications
of the discussed parameters (Fig. 4.18). Indeed, no statistical evidence was found to
suggest that any of the above modifications results in a different average of fitnesses
of the best individuals obtained in multiple runs compared to the original setup
(p > 0.05, two-tailed Wilcoxon rank test). Although one can reasonably assume
that some differences in evolvability do exist, the lack of statistical significance
indicates that the measured effect must be small and that the system is not very
sensitive to these parameters. It also suggests that the multiplicative promoters are

92

4.5 Discrete vs continuous dynamics

●

●
●

●
●●

●

●
●
●

●

●

●

●

●

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

F
itn

es
s

va
lu

e

Default
setting

Multiplicative promoters
disabled

Selection:
 binary tournament

Modified affinity
curve (β=10)

Figure 4.18: Comparison of evolvability for 4 modifications of selected parameters of the model.
The box plots show the median and quartiles for fitness values (lower is better) of 40 best networks
obtained in 40 independent evolutionary runs for each experimental setting. Whiskers extend to the
most extreme data point which is no more than 1.5IQR from the box. Circles indicate outliers. The
notch marks 95% confidence interval for the median.

not necessarily useful and thus, their use was limited in the later chapters for the
sake of simplicity.

4.5 Discrete vs continuous dynamics

The overall structure of the artificial GRN represented as graphs with nodes per-
forming computation bears strong similarity to perceptron-based neural networks
with recurrent topologies, for example those evolved using the recently popular
NEAT model (Stanley and Miikkulainen, 2002). However, two key differences exist
between typical evolved perceptron networks and GRNs described in this work.

The main difference is that each regulatory node has a state that represents the
current concentration of its associated TF and can only be changed by increasing
the synthesis or degradation, whereas perceptrons are stateless (i.e., the output at
the time t + 1 depends only on signals on its inputs at the time t). Such internal
dynamics on one hand limits the reaction time of the network, but on the other
may facilitate generation and processing of signals that always change gradually.
The second difference is the indirect, genetic representation that assumes a linear
and biologically inspired genome, rather than some form of a direct representation
of the connectivity graph. This allows artificial evolution to shape the structure of
networks in a manner more closely resembling the evolution of regulatory networks.

The no free lunch theorem (Wolpert and Macready, 1997) suggests that optim-
ization strategy will outperform others if it is specialized for the problem to which
it is applied. This suggests that one should not expect regulatory networks to out-
perform other biologically inspired computational models, but rather to have an
advantage for a certain class of problems.

93

4. PROCESSING SIGNALS WITH REGULATORY NETWORKS

0

1

0 200 400 600 800 1000

IN

0

1

0 200 400 600 800 1000

OUT

time [steps]time [steps] time [steps]

Figure 4.19: Behaviour of the network evolved to double the input signal frequency in which
product build-up and degradation is not simulated. The best individual obtained in 10 independent
runs (generation 1544, f = 0.05091) is shown. Dashed line: the desired response.

To test if continuous changes in product concentrations are indeed beneficial for
the presented set of problems, the model was modified so that the concentration
of a product was determined only by the activation of associated promoters in the
previous time step. This means that the nodes in the regulatory graph became
stateless and capable of changing their activation by any amount in a single time
step. More precisely, the function of the activity of all promoters (Eq. 3.2, p. 68),
instead of being treated as a current product synthesis level (with the range [−1, 1]),
would be shifted right and scaled to [0, 1] so that it could be treated as a new
concentration level for the given time step. In such a configuration, the computation
performed by the GRN becomes similar to that of recurrent networks of perceptron-
like neurons, with the original method of network encoding maintained.

Networks were evolved to double the frequency of input oscillation, using exactly
the same configuration of the system as in the original evolutionary run discussed
in section 4.3.1 (p. 80). The best individual employing stateless nodes obtained in
10 individual runs (Fig. 4.19) does generalize the problem by correctly responding
to frequencies not present in the training set, but it is measurably (Fig. 4.20) and
visually worse than individuals obtained with the standard model setting in the
original experiment using Eq. 3.2 (compare Fig. 4.19 with Fig. 4.3c, p. 81).

This result reinforces the initial hypothesis that inherent smoothness of regulatory
nodes in the standard setting gives it an advantage in generating gradually changing
outputs. One can also expect that such continuous changes in concentrations make it
easier to handle noisiness of gene expression and noisiness of environmental signals,
both in artificial and biological regulatory networks.

4.6 Robustness to noise

Noise is inherent in all biological systems. The numbers of molecules that are in-
volved in regulation of a particular gene can often be relatively small (typically in the
order of thousands, can be even as low as 10) with all reactions occurring in crowded
cellular environment and subjected to thermal noise (Maheshri and O’Shea, 2007).
Noise is also considered to be a significant source of phenotypic variation among
cells (Blake et al., 2003; Munsky et al., 2012). Apart from intrinsic noise of cellular
expression, variability of external environment further contributes to stochasticity
of cell behaviour. Thus, all regulatory networks are constrained by multiple sources
of randomness and evolved mechanisms that allow them to cope with it, such as,

94

4.6 Robustness to noise

0.
00

0.
04

0.
08

0.
12

F
itn

es
s

va
lu

e

Continuous expression Discrete changes

Figure 4.20: Comparison of the evolvability between original model and the version in which product
build-up and degradation is not simulated. The box plots show the median and quartiles for fitness
values of 10 best networks obtained in 10 independent evolutionary runs for each experimental setting.
Whiskers extend to the most extreme data point which is no more than 1.5IQR from the box (here,
a maximum and a minimum).

for example, negative feedback loops in regulatory graphs or multi-site regulation
(Bolouri, 2008). Transcriptional noise can also be used for cells’ advantage and it is
known to be exploited to generate diversity, e.g., among viruses (Arkin et al., 1998).

In the experiments presented so far, elements of the regulatory networks were not
affected by random noise. Also, concentrations were represented as real numbers,
thus even for very low concentrations, there was no negative effect of signal-to-noise
ratio being reduced due to small numbers of molecules.

To simulate the effects of intrinsic gene expression noise, small random numbers
were added to the calculated synthesis rates of each product. The original concen-
tration update method (Eq. 3.2, p. 68) was modified, so that in every time step the
change in expression included not only the produced and degraded product, but also
a random component R:

∆L = (
1− e−A

1 + e−A
− L)∆t+R (4.3)

where R was drawn from a normal distribution.

Two types of experiments were performed. In the first one, networks were evolved
without noisy synthesis rates, just as in experiments described previously. Then,
the robustness of the networks to noise was analysed by re-evaluating their fitness
after the noise in synthesis rates was enabled. This allowed to observe how their
fitness degrades depending on the level of noise.

In the second experiment, networks were evolved already with noisy synthesis
rates (sd(R) = 0.01) and tested for performance as well as robustness to noise
higher than the one used during evolution.

The setup for the experiments was identical to that used for experiments com-
paring different versions of the fitness function (section 4.4.1), i.e., the problem
of doubling input signal frequency was chosen and experiments were repeated 40
times. Then, the best networks obtained in 40 runs were re-evaluated with either
noise disabled or random noise added to synthesis rates with sd(R) = 0.01 and

95

4. PROCESSING SIGNALS WITH REGULATORY NETWORKS

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

0.
0

0.
1

0.
2

0.
3

0.
4

F
itn

es
s

va
lu

e

Evolved
without noise

sd(R)=0

Evolved
without noise
sd(R)=0.01

Evolved
without noise
sd(R)=0.02

Evolved
with noise
sd(R)=0

Evolved
with noise
sd(R)=0.01

Evolved
with noise
sd(R)=0.02

Figure 4.21: Comparison of robustness to noise of networks evolved without and with (sd(R) = 0.01)
noise in gene expression. The box plots show the median and quartiles for fitness values of 40 best
networks obtained in 40 independent evolutionary runs for each experimental setting. Whiskers extend
to the most extreme data point which is no more than 1.5IQR from the box. Circles indicate outliers.
The notch marks 95% confidence interval for the median.

sd(R) = 0.02. Because of the stochasticity in fitness evaluation, each network was
evaluated 10 times and the average was used as a measure of its fitness value.

As soon as the noise in synthesis rates was enabled for the first experiment (evol-
ution without noise), the error between the desired and generated output increased,
even more so for higher levels of noise (Fig. 4.21). For the networks that evolved
already with noisy elements, the error values are slightly higher than those of the
best networks obtained in a noiseless setting. This was expected, since these net-
works would no longer be capable of producing perfectly smoothed sinusoidal output.
However, even if the noise is disabled, their performance remained largely unchanged
and is still slightly worse than that of noiseless networks. Nonetheless, the error is
not increased much, indicating that the networks evolved to be robust to noisiness of
their internal elements. Notably, under the same level of noisiness (sd(R) = 0.01),
networks evolved with no noise considerably deteriorated in performance. The net-
works evolved with noise are also much more tolerant to noise amplitude that is
twice higher than that used during their evolution. In other words, they were much
more robust than the networks evolved in the default experimental setting.

To sum up, the noisiness of synthesis rates resulted in networks that are slightly
worse in performance, but evolved mechanisms that allow them to greatly reduce
the negative effects of noise. As soon, as noise was added to the system, they easily
outperformed networks evolved without noise.

96

4.7 Summary

4.7 Summary

The goal of this chapter was to investigate the capability of the model introduced in
Chapter 3 to evolve artificial regulatory networks that can generate desired patterns
of gene expression or perform various forms of computation on continuously changing
external signals, provided as externally driven concentrations of chemical substances.
A number of problems was introduced, ranging from simple oscillators to a network
that can perform additions. Generality of each solution was analysed and GRNs
were found to easily generalize presented problems and perform computation on the
information encoded as timing of events or in levels of concentration.

Various versions of the fitness function used to evolve GRNs were investigated
and it was shown how the fitness function can be tuned to improve evolvability
of GRNs, by incorporating intuition about the nature of the fitness landscape and
potential local minima.

The impact of selected features and free parameters of the model on evolvability
was investigated with no statistically significant effect found. In general, for model
parameters that are selected by intuition (such as the deflection of the affinity curve),
this is a desirable property, as it means the system works similarly across the range of
parameters. On the other hand, for certain additional features, such as multiplicative
promoters, the lack of evidence in favour of them can be used against it, as a simpler
version of the model should be preferred. For this reason, the use of multiplicative
regulatory elements was limited in the later chapters.

The structure of artificial gene regulatory network is in many ways similar to a
recurrent neural network and can be considered to be a computational alternative
to it. However, typically, neural networks employ stateless nodes (nodes whose state
in the time t + 1 depends only on the state of its input at the time t and not on
the current concentration of a factor associated with this node), though continuous
state recurrent neural networks have also been proposed (Beer, 1995; McClelland and
Rumelhart, 1988) and would be a much closer computational equivalent of GRNs.
The state of the nodes in GRNs is usually represented as a concentration which takes
time to build up or reduce. Still, some of GRN models used in other works employ
stateless nodes, e.g., Eggenberger Hotz (1997); Joachimczak and Wróbel (2008a).
Stateless nodes are also a norm in models devised from RBNs. The results in this
chapter show how the continuously variable state of each node can be advantageous
in certain problem domains, such as those requiring processing continuous signals.
This could mean that GRNs could find its usage, e.g., in evolutionary robotics, where
their inherent smoothness of actuation and input processing would be a desirable
property.

Another investigated property of GRNs was robustness to noisy TF concentra-
tions. The networks were found to tolerate certain amount of noise which can be
attributed to their high overall redundancy as well as noise being smoothed out
by the integrating property of each node. It was found that if the networks were
evolved already under assumption that TF concentrations are noisy, they were still
able to solve presented problem, but evolved to be many times more robust to higher

97

4. PROCESSING SIGNALS WITH REGULATORY NETWORKS

noise levels. Hence, adding simulated noise to concentrations can be a simple way
to evolve controllers that are robust to both imperfections of their components as
well as that of input signals.

98

Chapter 5

Evolution of behaviour of

GRN-controlled unicellular

organisms

In this chapter, the applicability of evolving artificial gene regulatory networks to a
control problem is investigated. Networks are evolved to control the behaviour of a
simulated animat in an artificial environment. GRNs are expected to process sensory
information (concentrations of chemicals) and respond with changing concentrations
of external factors that influence animat’s actuators.

Compared to the signal processing tasks discussed in Chapter 4, an artificial
environment with simulated physics provides a more biologically plausible setting
to investigate the evolution of GRNs. It allows for interactions between physical
properties of the system and gene regulation. For example, the physical laws con-
trolling the movement of the objects in the system are itself a form of computation
and can be exploited by regulatory networks for their own computational needs.
The interplay of physics and regulatory networks can be expected to generate more
sophisticated behaviours for given network complexity (Eggenberger Hotz, 2003b)
and is also an essential element of multicellular model introduced in Chapter 6.

5.1 Animat model and environment

Animats forage in an open 2D environment with simple Newtonian physics and
simulated fluid viscosity in which energy sources are distributed. Each animat is a
rigid circular object with a fixed diameter and a fixed mass and is equipped with two
identical sensors located symmetrically on the front (Fig. 5.1). The sensors perceive
concentration of a chemical signal present in the environment and the difference
between left and right sensor can be used to extract information about the gradient.
To allow the animat to move in the environment, two actuators AL, AR are present
at the sides of the animat’s body. When any of them is active, a force is applied to
the animat, causing it move. The force associated with each of the actuators is not

99

5. EVOLUTION OF BEHAVIOUR OF GRN-CONTROLLED ORGANISMS

Figure 5.1: The model of the simulated animat. Sensors (SL, SR) of
chemical signal (food scent) are placed on the front. Thrust generating
actuators are on the back. When activated, an amount of force FAL, FAR

proportional to actuator activity is applied.

SL SR

FARFAL

directed toward the centre of the animat, so the animat will turn if the activations
of actuators differ. If only a single actuator is active, the animat moves in a loop.
Hence, every turn an animat can take has a minimum curvature, dependent on its
speed. Such actuators can be considered to be a simple model of thrust generating
flagella. This type of actuation is also one of the simplest methods of locomotion
in 2D environment and is very similar to the wheels driven Khepera mobile robot
(Mondada et al., 1999), a cheap and popular platform that greatly contributed to
the early development of the field of evolutionary robotics.

Switching the actuators off results in a motion continued due to inertia, until the
fluid drag stops the animat. Steering the animat toward a particle requires not only
orienting towards the food source, but also properly dealing with inertia while taking
turns. In fact, at the early stages in many evolutionary runs, animats were observed
to frequently overshoot the target by performing turns with too high speed.

The state of the animat at a given time step is represented by its position, direc-
tion, velocity ~v and the speed of angular rotation. Animats are subjected to a fluid
drag Fd = cdd|~v|2, where d is the diameter of an animat and cd is the drag coefficient.
Since this type of drag acts only when an animat moves against the fluid, it does
not act on animat’s rotation. To prevent endless spinning, an additional rotation
drag force (torque) is present in the system and acts against rotation of the animat.

Each food or poison particle is a point source of a chemical signal, which in-
stantly diffuses into environment, generating a field of scent. The scent coming
from a particle is proportional to the inverse of the distance to the source. The
fields generated by all particles sum up and can be presented as a map of scent
intensity (Fig. 5.2).

Whenever an animat gets in direct contact with a particle, the particle is con-
sumed and removed from a map, together with the field of scent it generates (for the
sake of simplicity, this happens immediately and temporal effects of diffusion are not
simulated). Since only a scalar value representing scent intensity is perceived by the
sensors, the direction of the gradient has to be extracted by comparing the difference
between the two sensors and/or from the change over time during movement.

5.2 Sensors and actuators

The information from the sensors to GRN and from GRN to actuators is passed
exactly in the same manner as input and output signals described in Chapter 4, i.e.
through external factors and effectors defined in the genome (Table 5.1).

The only information about the environment that can be sensed by the animat
comes from its two sensors SL and SR. As the TF concentrations in the employed
GRN model are in the range [0, 1], whereas the strength of scent in the environ-

100

5.2 Sensors and actuators

Figure 5.2: A fragment (the environment is open) of an example map of scent intensity that is
locally perceived by animat’s sensors. All food particles visible on this map have the same value
and emit scent with the same strength. Colour map was normalized with blue representing zero, red
maximum and green intermediate values of perceived scent levels.

ment can be arbitrarily high, some form of preprocessing of sensory information is
necessary. The initial approach employed was to provide GRN with concentrations
of input products S1 and S2 that would correspond directly to the values of SL and
SR but were restricted to [0, 1] with a sigmoidal function. In principle, this could
have allowed for the evolution of simple controllers with sensors and actuators cross
wired in the regulatory network, similarly to the controllers of Braitenberg vehicles
(Braitenberg, 1986).

Table 5.1: Types of products and promoters enabled in the experiments on evolving GRNs for
chemotaxis and the interpretations of subsequent input and output elements. S3, S4, S5 where enabled
only in the experiments with poisonous substances (section 5.6).

Promoter types Product types External factors Effectors
additive transcription factor “1” (fixed high concentration) AL (left actuator)

S1 (a function of SR − SL) AR (right actuator)
S2 (a function of SR + SL)
S3, S4 (same as above for
the second type of food)
S5 (signals the need to
switch to a new food source)

However, initial experiments have shown that such signal preprocessing leads to
very poor evolvability. The reason is that the diameter of the animat is very small
compared to the steepness of the gradients in the environment, so both sensors
perceive the scent at a very similar level. Unless the animat is very close to a food
particle, the difference in signal levels is often less than 1%, making the use of this
difference difficult. Although some animats capable to climb up the scent gradients
were observed, their overall performance was poor. Similar reasoning explains why
some bacteria (e.g., E. coli) employ only a single sensor and actuator and randomly

101

5. EVOLUTION OF BEHAVIOUR OF GRN-CONTROLLED ORGANISMS

change the direction of motion: their size is too small to observe the gradients by
measuring concentrations on each side of the cell. However, an order of magnitude
larger eukaryotic cells are known to be able to detect gradients by employing sensors
located on opposing sides of their cell (Alon, 2006).

Because the initial experiments did not result in high performance, the way in
which sensory information is provided was modified. Instead of passing the value
of activation SL and SR through a sigmoidal function, in the remaining simulations
described in this chapter, the sensory information was presented to GRN through
external factors whose concentration was determined by a sigmoidal function of a
difference between SL and SR:

S1 =
1

1 + e−α(SR−SL)
(5.1)

where α controls the steepness of the function, i.e., the amount by which small
differences between SL and SR are amplified (α = 10 was used). If SL is equal to
SR, the concentration of S1 is 0.5. The concentration approaches 1 or 0 depending
on the difference between SL and SR.

Although using just S1 was enough to evolve animats that actively search for
particles, this way of providing sensory information does not allow to immediately
infer the distance from the source. Because efficient turning requires taking the
distance into account and the detection of direction of motion relative to the source,
a second input product was introduced, with concentration dependent on the overall
level of food scent at the animat location:

S2 =
2

1 + e−β(SR+SL)
− 1 (5.2)

where β = 1 was used.

The thrust force generated by two actuators on the back of the animat is pro-
portional to the concentration of a product associated with the effectors AL and
AR.

5.3 Fitness function

Each GRN was required to control an animat in its environment for a predefined
number of simulation steps. A fixed number of food particles was deposited in the
environment by drawing their positions from uniform distribution over the square
area of size 45 (with animat diameter equal to 1). Fitness function was constructed to
reward the amount of food gathered by an animat from its environment. An animat
would start at the centre of the square area with randomized food particles, with
the stored energy level of 0 and each consumed particle would increase this level by
1. The costs of movement were not taken into account in the following experiments.

102

5.3 Fitness function

START

STOP

Figure 5.3: A common suboptimal solution in the fitness landscape of chemotaxing individuals:
targeting food particles by performing circular motion. Despite low average speed, it can be quite
effective at gathering particles. Particles consumed during lifetime are drawn as empty circles.

The genetic algorithm was set to minimize the following fitness function:

ffitness = (1− food

foodmax
) · b (5.3)

The b term provides additional reward (bonus) to individuals that were observed
to change the direction of their movement at least once during their lifetime (for
them, b was set to 0.9, otherwise it was equal to 1). The term was introduced after
preliminary experiments when it was observed that the best animats would often
evolve the same suboptimal behaviour that relied on circling towards food particles
by always performing solely left or right turns (Fig. 5.3). The corresponding hill in
the fitness landscape (here in an intuitive sense: more fit solutions occupying higher
ground) is very easy to find and climb, but difficult to escape from: simply circling
around a map allows to find some food particles by chance and the behaviour can be
further optimized by evolving control over the diameter of the loop with only a single
actuator (tightening the loops when the scent level increases). Thus, additional
reward helps GA escape from this local optima and evolve more efficient control by
promoting activity of the both actuators early on. Even so, as will be shown later,
circling behaviour remains a strong attractor for the genetic algorithm.

Another issue that had to be addressed was map randomization. If the same
map was used during the whole run of genetic algorithm, individuals overfit to this
map would evolve. Such individuals would simply follow trajectories optimized for
a particular map and fail or present greatly reduced fitness on any other map. To
increase evolutionary pressure on general solution to the presented problem, each
animat was evaluated on a randomized map: the number of particles would remain
fixed, but their locations were always random. One side effect of this approach is
that the fitness value is no longer deterministic and differs whenever it is recalculated

103

5. EVOLUTION OF BEHAVIOUR OF GRN-CONTROLLED ORGANISMS

Table 5.2: Essential GA parameters used in the experiments on evolving GRNs for chemotaxis.
Additional parameters are provided in the Appendix (Table C.2, p. 184)

Parameter Value
Population size 300
Elite individuals 0
Asexually created individuals 300
Individuals through crossover 0
Initial population randomized genomes, 5 regulatory units each
Termination condition 5000 generations
Selection binary tournament (k = 2, p = 1)

for the same genome. To reduce the effect of pure chance on fitness, each animat
was evaluated on 4 random maps, and the average obtained fitness (favg) was used
by the GA.

5.4 Genetic algorithm

Table 5.2 provides a summary of essential parameters used in the following exper-
iments. The initial population was randomized just as in signal processing exper-
iments (see Table C.2, p. 184 of the Appendix for details). Binary tournament
selection (select two individuals from the population, keep the better one) was used.
Elitism was disabled, so that the networks would not only need to optimize their
fitness but also would have to evolve a level of robustness to mutations, hence cre-
ating a more biologically realistic evolutionary pressure. At the same time, the
probability of deletions and duplications was set to be about an order of magnitude
lower than in experiments in evolving signal processing networks (Chapter 4), since
without elitism, any good solution could be too easily lost due to high mutations
rates. Furthermore, recombination between genomes was disabled. This created
conditions in which genetic elements could not be created de novo and all genetic
elements in any individual were a result of duplication and divergence of elements
from initial random genomes.

5.5 Foraging with a single type of food

In the first of the two presented experimental settings, the environment was created
by placing 20 food particles at random locations. Then, each evaluated individual
was simulated for 2000 time steps of its GRN activity. The scale of the physical
environment was set so that the typical time necessary to cover the distance between
furthest food particles, assuming both actuators were fully activated, would be in the
range of 300 time steps. Because about 25 steps are needed for any TF to degrade
from its full concentration (1) to 0.1, latencies in information processing in the GRN
can noticeably impact reaction time in the physical simulation. This could be easily
controlled by changing the ratio of GRN simulation steps to physics simulations steps
(here 1:1), but the settings were chosen to introduce some evolutionary pressure on
faster network reaction times.

104

5.5 Foraging with a single type of food

START

STOP

Figure 5.4: The best individual obtained in 10 evolutionary runs navigating a map with a single
type of food source. Consumed particles are drawn as empty circles. Visualization of initial scent
intensity on this map was earlier shown in Fig. 5.2.

Out of 10 independent evolutionary experiments (each using a different random
seed), 7 runs resulted in solutions capable to gather around 75-95% food particles
from the map (fitnesses between 0.05 and 0.25). The individuals obtained in remain-
ing 3 runs would also target food sources, but do so by moving in loops that tighten
near the food source (as in Fig. 5.3). This allowed them to consume around 30-40%
food particles from the map. This behaviour is an example of the local optima in
the fitness landscape discussed earlier (section 5.3).

0 1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

1
best
average
10% best

generation

f
a
v
g

Figure 5.5: Fitness over generations for the problem with a single type of food source. The graph
shows the history of the evolutionary run that resulted in the best performing individual out of 10
(its behaviour is shown in Fig. 5.4). Best and average fitness in every generation is shown and an
average for 10% of the best individuals. Data points sampled every 10th generation.

105

5. EVOLUTION OF BEHAVIOUR OF GRN-CONTROLLED ORGANISMS

"1"

"S1"

"S2"

"AL"

"AR"
5

6

7

(a)

"1"

"S1"

"S2"

"AL"

"AR"

5

6

7

8 9

10

11

(b)

Figure 5.6: Topologies of evolved GRNs controlling behaviour in a problem with a single type of
food source. (a) GRN of the best animat (generation 5000), (b) its ancestor in generation 3000.
Multiple links between nodes have been reduced to a single line, red edges have positive weights, blue
have negative.

5.5.1 Analysis of evolutionary history

In the 10 independent evolutionary runs, the capability to move towards food
source was observed to evolve relatively early, during first few hundred generations
(Fig. 5.5). Further evolution resulted in increasing the initially very slow speed of
locomotion and improved targeting. The navigation of the best obtained individual
is highly efficient (Fig. 5.4)1, although it moves at around 60% of maximum speed
and sometimes overshoots its target. However, this an expected trade-off given the
inertia introduced by physics and latencies of the regulatory network (limited speed
of product synthesis/degradation).

Visualization of the evolved regulatory network of this individual (Fig. 5.6a)
shows a simple and largely symmetric topology with only 3 internal nodes. The
GRN uses both the directional information (S1) and the current level of scent con-
centration (S2). The use of the latter is not critical for navigation: it was often seen
disconnected in less fit solutions. Indeed, the ancestor of this individual from gen-
eration 3000 that was obtained by tracing the full evolutionary history of the final
individual (Fig. 5.6b) does not make use of S2 (it is disconnected from its GRN).
It is very likely that the incorporation of this additional information was one of the
sources of later improvement in navigation: notice that all connections from S2 in
Fig. 5.6a are inhibitory, hence most likely result in speed being reduced when close
to a food particle.

During 2000 generations that separate the two individuals, the network has be-
come smaller and less dense. That happened despite the size of the genome growing
by around 70% (Fig. 5.7). Analysis of all mutations that occurred on the evolu-
tionary path between the two individuals revealed that the number of duplications
and deletions that occurred during that time was similar (6 and 5, respectively).
However, the duplications were much longer (an average of 8.3 genetic elements,
std dev: 3.4) with deletions having an average length of 2.3 (std dev: 2.1), despite

1Supplementary videos of animat behaviors are available at: http://www.evosys.org/alife12chemotaxis/

106

http://www.evosys.org/alife12chemotaxis/

5.5 Foraging with a single type of food

0 1000 2000 3000 4000 5000

50

100

150

200
best

average

10% best

generation

ge
no

m
e

si
ze

Figure 5.7: Genome size over generations for the problem with a single type of food source. The
graph shows the history of evolutionary run that resulted in the best performing individual out of
10 (with fitness history shown in Fig. 5.5). Genome size for the best individual, an average of all
individuals and an average of 10% most fit individuals in a population is shown. Data points sampled
every 10th generation.

●●
●●●●

●●●●●●●
●●●●●

●●●●●●●●●●●●●●
●●●

●●●●●●
●●
●●●

●●●●●●●●
●
●●●●●

●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●
●●
●●●●●●●●●

●●●●●●●●●
●●●

●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●
●●●

●
●●●

●●●
●●●

●
●●●●●●●

●●●●●●●●
●●●

●●
●●
●●●●●●●●●

●●
●●●●●●

●●●●
●●
●
●●
●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●

●
●●●

●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●

●●●●
●●
●●●●●●●●●●●●●●

●●
●●●●

●●●
●●●

●●
●●
●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●

●●●●

0 1000 2000 3000 4000 5000

2

4

6

8

10

12

generation

di
st

an
ce

Figure 5.8: Spread of genetic elements in the genomes over evolutionary time for the problem with
a single type of food source. Average distance from (0, 0) of all genetic elements in all genomes in
the population is plotted. The graph shows the history of evolutionary run that resulted in the best
performing individual out of 10 (with fitness history shown in Fig. 5.5).

●

●●

●

●

●

●

●●●

●

●

●●

●

● ●

●

●

●

●
● ●●●

●

●
●

●

●●

●●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●

● ●
●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

● ●

●●

●
●

●●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
● ●

●

●●

●

●

●●

●

●

●

●

●●
●●

●
●

●

●●

●

●
●
●

●

●
●

●●

●
●●

●
●●

●

●

●
●● ●

●

●

●●
●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●●

●
●

●●

●

●●

●

●

●
●

●

●●

●

●

●●

●
●

●
●

●

●●●
●

●

●
● ●●

●

●

●

●

●

●

●
●

●
●●

●

●
● ●

●

●●●
●

●

● ●● ●
●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●●●

●

●

●
●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●
●●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●●

● ●
●

●

●

● ●

●

●
●

●

●
●

● ●●

●
●●

●
● ●

●

●
●●●

●●●

● ●

●●

● ●●

●
●

●

●
●

●
●

●
●

●●
●●

●

●

●●
●●

●

●

●

●

●

● ●

●

●

●
●

●
●

●● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●●
●

●

●

●

●

●
●●

●

●●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●●

●

●●

●
●
●

●

●

●

●
●

●

●●

●

●

●●

●●
●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●● ●

●

●

●●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●
●

● ●

●

●
●

●●●
●

●
● ●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●●
●

●
●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●
●

●
● ●

●
●●●

●

●
●●

●

●

●

●

●

● ●
●

●

●

●

● ●

●
●

●
●● ●●●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●

●

● ●
●

●
●

●

●

●

●
●

●●

●

● ●

●

●
●

●

●●
●

●

●
●●

●
●

●
●

●●
●

●

●

●

●●

● ●

●

●
●

● ●

●

●

●●

●
●

●

●
●

●●
● ●

●●
●

●

●
●

●

●
●

●

●

●●

●

● ●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●●
●

●
●●

●●

●
●

●

●
●

●

●
●

●

● ●

● ●●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

● ●●

●
●
●

●

●
●●

●●

●●
●

● ●
●

●
● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

● ●●

●

●

●

●

●
●

●●●

●

●

●

●

●●
●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●

● ●

●

●
●

●

●
● ●

●

●

●
●●●

●

●●

●●●

●

●

●●
●●

●

●
●

●
●

●

● ●●●
●

●
●

● ●
●

● ●
●

●

●
●●

●

●●

●

●
●

●
●

●●●

●
●

●●
●

● ●

●

●

●

●●
●

●

● ●
●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●●
●

●
●

●

●

●
● ●

●

●
●

●
●

●

●

●●

●

●●

●●●●
●●

●●

●● ●

●

●●
●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●●
●

●
●

●

●

●●

●

●●
●

●
●●

●● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●● ●
●
●

●

●
●

●
●●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●●●

●

●

●
●● ●●

●

●
●

●●

●
●

●

●

●

●
●

●●

●●

●

●

● ●
●

●

●

●

●●
●

●

●
●●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●●
●

●
●● ●

●

●●

●

●

●

●

●

●

●

●
●

●● ●●

●
●

●●
●

●

●

●

●

●

●

●

●●●●
●

●
●●

●

●

●

●

●

●

● ●
●

●●●●

●
●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

● ●
●

●

● ●

●

●
●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
● ●

●

●

●

●
●
●

●

●
●

●

●
●

●
●

●

●
●

●

●
● ●●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
● ●●

●

●

●

●

●

●●
●

●

● ●

●

●●

●
●

●
●

●

●
●

●

●●

●

●

● ●

●

●

●
●

●

●●●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●● ●●●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●
● ●

●

●
●

●

●

●

●
●

●
●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●
●●

●

●

●

●

●

●
●

●●●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

●
●

●

●● ●●●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●
●

●
●

●
●●

●
●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●
● ●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

● ●●
●

●

●

●
●

●
●

●
● ●

●●

● ●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●
●

●

●●
●●

●

● ●

●● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●●

● ●

●

●
●

●

●
● ●

●
●

●

●

●●
●

● ●
●

●

●

●

●●

●

●

●

●

● ● ●
●

●

●

●

● ●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●
●●

●

●

●

●
●●

● ●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●●
●

●

●

●

● ●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

● ●●
●

●

●

● ●

●

●

● ●●
●

●●
●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
● ●●

●

●
●

●

● ●

●●

●

●

● ●

●●

● ●
●

●

●
●

●

●
●●

●

●
●

●

●
●

●

●●

● ●

●●

●
●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●●
●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
● ●

●
●

●
●

●

●●

●●
● ●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●● ●
●

●

●

●
●●

●

●●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●●

●
●

●
● ●●

●
●

●

●●

●
●●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●●
●

●

●
● ●●

●

●
●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●●

●●

●

●

●

●

●

●

●
● ●

●●

●
●

●●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●●

● ●
●

●
●
●
●

●

●

●

●
●

●● ●

●
●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●●
●

●

●

●● ●

●
●

●
●
●

● ●●

●

●
●

●●●
●

● ●●

●

●

●
●

●

●

● ●
● ●●

● ● ●
● ●

●

●
●

● ●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

● ● ●

●

●
●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

● ●
●

●

● ●

●

●●

●

●●

● ●●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●

●●
●
●

●
●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●
●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●●● ●
●

●
●

●

●

●

●
●●

●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●
●
● ●

●

●●

●●
●

●

●
●●

●●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
● ● ●

●
●

●

●
●

●

●

●

●
●

● ●

●●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●
●

●

●

●
●

●

●

●

●●
●●
●
●

●

●

●

●
●

●
●

●
●

●
●

●

●●
●

●

●

●

●●

●

●
●

●

●
● ●

● ●
●

●

●

●

● ● ●
● ●

●

●

●

●
●

● ●●●●● ●

●

●

●●

●

●

●

● ●●
● ●●●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

● ●

●
● ●

●
●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●

●

●
●

●

●

●
●

●
●

●
● ●

●

●●
●●

●

●
●

●●●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●
●

●●
●

● ●
●

●

●
●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●● ●

●

●

● ●● ●

●

●
● ●

●

● ●

●

●

●

●
●

●
●●

●
●●

●

●
●

●

●● ●
●

●

●

●

● ●

●
●

●
●

●

●●

●
●

●
●

●

●
●

● ●

●

●

●

●

● ●

●
●

●
● ●

●

●●

●

●

● ●
●

●

●

●●

●

●

●

●
●

●

●

●
●●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

● ●● ● ●

●

●

●

●
●
●

●

●

●
●

●
●

●

●
●

●
●●

●

●

● ●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●●

●
●

●
●

● ●

●
●

●

●
●● ●

●
●

●
●

●
●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●●
● ●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

● ●
●

●

●●

●

●
●

●

●

●
●
●

●
●

●

●●
● ●●

●

●

●

●●

● ●

●
●

●
●

●

●● ●
●

●

●

●

● ●●
●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●●

●
●

●

●

● ●
●

●

●

●

●
●

●
●

● ●●●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

● ●

●

●●

●
●●

●

●

●
● ●

●

●

●
●●

●

●●
●

●
●

●

●
●

●

● ●

●

●●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

● ●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

● ●●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●●
●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●
●

●

●

●
●

●●
●

●

● ●

● ●

●

●

●

●●

●

●

●●● ●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●

●
●●
●

●
●

●●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
●

●●

●
●

●

●

● ●
● ● ●

●● ●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●● ●
●

●

● ●

●

●
●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●
●●

●

●

●
●

●
●

●

●

● ●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●● ●●

●

●
●

●

●
●

●

● ●
●

● ●

●

●
●

● ●

●

●● ●
●

●

● ●●

●

● ●

●

●

●
●

●

●
●●

●

●
●

●
●

●

●

●

●
●●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●
●

●
●

●

●
●

●

●
●
●

●
●

●
●

●

●●●

●

●

●

●●●
●

●

●
●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●●

●
●●

●●

●

●

●
●

●

●

●

● ●

●

●
●●

●●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●●
●

●
●

●
●

●

●

●
●●●

●
●

●

●

●
●●

●
●

●●

●
●
●

●
●

●
●●

●
●

●

●

●
●

●

●●

●
●●

●

●

●

●
●

● ●
●●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

● ●

●●●●

●

●

●●

●
●

● ●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●●
●

●

●
●

● ●

● ●
●
●●

●
●

●

●

●
●●

●

●

●●
●

●

●

●

●

●
●

● ●
●

●

●●
●

●
●

●●●

●

●

●●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
● ●

●●
● ●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●●
●

●

●

●●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●●●

●

●

● ●
●

●●
● ●● ●

●
●

●

●

●
●●

●

● ●
●

●

●
●

●
●

●
●●

●

●

● ●

●
●●

●

●

●

●

●

●
● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●
●

●

●●

●

●

●

●●

● ●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●●
●

●
● ●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
● ● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●
●●

●
●

●

●
● ●

●
●

●

●

● ●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●
●

●● ●

●

●
●

●●

●
●

●

●

●
●

●●
● ●

●

● ●

●

●●

●

●

●
●●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

● ●
●●

●●
●●

●

●●

●
●
●

●

●
●

●
●●

●●

●

●●

●
●

●●
●●●

● ●

●

●
● ●

●●

● ●
●

●

●

●

●

●

●
●

●●
●

●
●
●●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

● ●

●

●●●
●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

● ●

●●●
●

●

●

●

●
●

●

●

●
●●●

●

●
● ●●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●

●

●

●

●
● ●● ●

●

● ●●

●
●

● ●

●

●

●
●

●

●

●
●

●
●●

●

●

●
●

●
● ●

●

● ●
●

●

●●

●

●
●

●
●●

●

●
● ●

●●
●

●

●
●

●
●

●
●

●

●●
●

●

●

● ●●

● ●
●

●

● ●
●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●
●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●
●

●

●●

●

●●

●

●
●

●●

●

●

●

●
●

●
●
●

●

●

●
●

●

● ●
●

●●

●● ●
●●●

●

●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●

● ●
●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●● ●●

●

●● ●

●
●

●

●

●
●

●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●●

●

●●

●●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●●

●
● ●

●

●●

●

●

●●

●
●●

●● ● ●
●●●●

●
●●

●
●

●●
●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●

● ●
●

●●

●

●

●

●●●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●● ●

●
●

●

●

● ●●
●

●

●

●

●

●

●
●

●
●

●
●● ●
●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●
●

●

●●

●

● ●
●

●

●

●
●●

● ●

●

●

●●
●●

●
●

●

● ●

●

●
●

●

●

●
●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

● ●

●●
●

● ●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●●●
●●

●

●● ●
● ●

●
●

●

●●
●

●

●
● ●

●

●

●

●
●

●●

●

●
●

●
●

●

●
●

●

●●

●

●● ●

●

●
●

●

●

●
●●

● ●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●●
●

●

●
●

●

●
●

●●

●● ●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●● ●

● ●

●
●

●

●●

●
●●

●

● ●

●

●

●
●

●

● ●●

●
●

● ●
●

●

●

●

●

●

●●
● ●

●

●

●●
●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●●

● ●

●
●

●

●●

●
●

●
●

●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●● ● ●

●

●
●

●
●
●

●● ●

●
●

●

●●
●

●
●

●
●

●

●
●

●

●
●

●
●

● ●
●

●

●●●●

●

●

●

●
●

●

● ● ●
●

●●●

●

●

●

●
●
●●●

●●●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

● ●● ●

●
●

●
●

●

●

● ●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●● ●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●
●●●● ●

●

●

●

●●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

● ●●
●

●
●

●

●

● ●
●

●
●●

● ●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●●
● ●

●●

●

●

● ●
●

●●

●

●
●

●

●

●●
●●

●

●

●
●

●

● ●●

●

●

●

●

●
●
●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●
●

●

●
●

●●
●

●
●
●

●

●

●
●

●
●

●
●

●

●●

●

●
● ●

●

●● ●

●

●● ●
●

●

●
●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●● ●

● ●

●

●●

●●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●●

●

●

●●
●

● ●

●

●

●

●

●

●●
●

●

●

●●●

●●

●

●●

● ●

●

●●

●

●
●●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

● ●
● ●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●●
●

●

●●
●●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

● ●

●●●

●

●

●

●

●●

●

●

● ●

●●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
● ●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●
●
●●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●
● ● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●
●
●

●
●●

●●
●

●

●

●

●

● ●●●

●

●

●●
●

●●
●

●●
●

●

●

●

● ●

●

●●

●

●

●
●

●●
●

●

●

●

●
●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●
●

●
●●

● ●●

●

● ●

●
●

●

●●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●
●

●
●

● ●

●
●● ●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●
●● ●

●
● ●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●●
● ●
●

●

●
●

●

●
●

●

●● ●
●

● ●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●● ●
●● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

● ●
●
●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

● ●●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●

● ●
●

●

● ●●
●●

●

●

●●

●

●
●

●

●
● ●●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●●●●

●
● ●

●

● ●
●

●

●

●
●●

●

● ●
●

●

●

●

● ●

● ●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●●
● ●●

●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●● ●

●
●

●

●
●

●

●

●

●
●●

● ●
●

●

●
●

●

●

●

● ●

●

●
●

●

● ●

●

●

● ●
●

●●

●

●
●●
●●

●

●

●

●
●

● ●
●

●
● ●

●

●
●

●●
●

● ●

●

●●

●

●

●

●

●
●

●
●

●
● ●

●
●●
●●

●

●●
●

● ●●

●●
●

●●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●●

●

●
●

●●

●
●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●
●

● ●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●●

●
●

●

●

●
● ●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

● ●

●

●

●
●

●
●

●

●

●
● ●

●

●

●

●

●●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●
● ●●

●
●

●

●

●
●

●
●●

●

●

●

●
●

●

●●

●
●●●

●
●

●

●●

●
●

●●
●

●

●

●

●
●

●

●
●

● ●
●●

●●

●●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●
●

●

●

●

●●

●

●
●●

●
●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●●

●
●

●

●

●
●

●●● ●
●

●

●

●
●

●

●

● ●● ●
●

●

●

●

●● ●

●

●

●●

●●

●

●●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●
● ●

●

●
●

●

● ●

●

●●

●

●●
●

●

●

●

●
● ●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●
●

●

●●

●

●

● ●
●

●

●

●

●

●

● ●●
●●●

●●

● ●

●●

●

●

●

●

●

● ●
●

●
● ●

●

●

● ●
●

●●

●
●

●

●

● ●
●

● ●
●

● ●
●

●

●

●
●

●
●

●
●●

●
●

●

●
●

●●

●
●

●
● ●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●●● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●
●

●●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

●
●●

●●● ●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●●

●
●

●

●

●

●

●

●
●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●●● ●●

●

●
●

●●

●
●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●●●

● ●
●

●

●

●

● ●
●

●●●

●

●

●
●

● ●

●

● ●
● ●

●

●

●

●

●●

●

●
●●

●

●

●
● ●

●
●

● ●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●●●

●

●●●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

● ●

● ●●

●

●

●

●
●

●

● ●
●●

●

●

●

●●

●

●●

●●

●
●

●

●
●

●

●
●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●
●
●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●●
●

●

●

●

●
●

●●

●

●

●

●

●●●

● ● ●●

● ●

●
●

●

●●

●

●

●

●●●

●
●

● ●

●

●●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●●●

●

●●●
●

●

●●

●

●

●

●

●

●
● ●

●
●

●

●

●

● ● ●● ●

●
●

●

●
●

●

●

●
●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●

● ●

●
●

●

●

●

●

●

●

●
●

●

● ● ●● ●

●

●●
●

●
●●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●●
●

●

●●
●
●●

●

●

●
●

●
●●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●
●

●●

●

● ●

●
●

● ●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●
●

●

● ●
●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

● ●●●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●
●●●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●●

●●
●

●●
●

●
●

●

●
● ●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

● ●

●

●
●

●
●

●

●

●

● ●●

●

●

●

●
●●●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
● ●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

● ●

●

●●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●●

●

●●

●
●●

●●

●

●●
●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●●

●

●●
●

●

●

●

●

●
●●

●
●

●

●●

●

●

●

●
●

●

●
●
●

● ●
●

●
●

●
●

●

●

●

●●

●

●

●●

●

●
● ●●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●●

●

●

●

●
●●●

● ●
●

●

● ●

●

●
● ●

●
●

●
●

●

●●●● ●
●

●

●

●

● ●
● ●

●

●

●
●

●

●●
●●

●

●
●

●
●

●

●
●

●

●

●

●
● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●● ●

●

●

●

●
●

●

●

● ●

●
●

●
●

●
●

●
●

●

●●●

●
●

●●
●

●
●

●●
●

● ●

●
● ●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●● ●●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●
●

●

● ●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
● ●
●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●●

●●

● ●●
●●

●

●

●
●

●

●
●

●

●
●●

●
● ●

●

●

●●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
● ●

●

●

● ●

●
●

●
●●

●

●

●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●●
● ●●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●
● ●

●●●
●

●

●

●
●

●
●

● ●

●● ●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●
●●

●

●
● ●

●

●
●

● ●
●● ●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●
● ●

●
●

●

●
●

●●

●

●

●

●
●

●
●

●

●
●

●

● ●
●

●

●

●

●

●●

●

● ●

●

● ● ●●

●

●

●

●
●

●
● ●

●

●
●

●

●

●
●●

●

●
●
●●

●●

●
●

●
●

●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●
●●●

●

●

●

●●
●● ●

●
●
●

●

●
●●

●
●

●

●
●

●

●
●

●
●

●

●
●●

●

●
●●

●
●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●● ●

●●
● ●

●

●

●

●

●

●●

●

●
●

●●

● ●

● ●

●

●●

●
●

●

●

●
●●

●

●●●

●

●
●

●

●
●

●

●
●

●

●

●
●

● ● ●

●

●

●

●
●

●
●

●

● ●

●
● ●

●
●

●

● ●

●

●
●●

●

●

●

●●
●

●

● ●

●
●

● ●
●

●

●

●

●

●

●

● ●●

●

●
●

●

● ●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●
●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●
●●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

● ●
●

●

●

●
●

●

●

●
●●

●
●●

●

●

●

●

● ●●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●●
● ●

●
●●

●
●●

● ●
●

●●

●

●
●

●

●
●

●

●

●

●

●●

●●

●

●

●

● ●
●

●

●●

●

●●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●
●

●
●

●

●

●

●●●●

●

●

●

●●

●●
●

●
●

●

●
●

●

●

●
●

●●

●●● ●
●

●

●

●

●●●
●

●

●
●
●

●

●

●●

●●●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

● ●

●

●

●
●●

●
●●

●

●●

●
●

●

●
●● ●

●

● ●
●

●●

●

●

● ●

●
● ●

●●●
●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●●

●
●

● ●●
●

● ●

●

●

●

●

●●●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●●
●

●
●

●

●●

●

●
●●
●

●
●

●

●

●●●
●

●

●

●●
●

●●●

●

●
●

●

●
●

●

●

●
●●

●
● ●● ●●

●

●

●

●●

●●

●

●

●●

●

●
●●

●

●●
●●

●

●
●

● ●

●

●
● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●●●

●
●

●

●

●
●●

●

●

●

●

●
●

● ●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

● ●
●●●

●
●

●●
●

●

●
●●

●

●
●●

●
●
●

●

●

●

●

●

●

●
●

●

●
●●

●●●
●

●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●●

●
●

●
●

●
●

●
●

●
●

●

●
●●

●

●

●

●
●

●

●

● ●
●●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●
● ●

●

●

● ●

●
●

●
●

●
●

●

●●

●
●

●

●
●

●●●

●

●

●

●
●

●●

●
●●

●

●●

●●

● ●

●●
●

●

●

●

●
●

●

●

●

● ●●

● ●

●

●

●
●

●

●

● ●
●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●●●
●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
● ●

●●
●

● ●
●

●

●

●

●●●● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

● ●

●
●

●

●
●

● ●
●

●

●
●

●

●
●

●●

●

● ●●

●
●●

● ●

●

●

●

●
●

●

●●

●
●

●● ●

●

●

●
●

●

●

● ●
●

●

●

●
●

● ●●●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●
●

●●

●●

●

●

●

●

●
●●

●●● ●
●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●●
●

●

●

●
●

●●

●

●

●
●

●

●
●●

●
●

●
●

● ●

●

●●●

●

●●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●
●

●

● ●

●
●
●

●

●●

●

●

●

●

●●
●

●
●

●

● ●

●

●

●

●
●

●
●

●●

●
● ●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●
●

●

●●● ●

●●

−50 0 50

−40

−20

20

40

●
● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●
●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

● ●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

●

●

●

●
●● ● ● ●●

●

●

●

●

●

●

●

●

● ●●

●●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●
●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

● ●●
● ●●●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

● ●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●
●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

● ●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

● ●●
● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

● ●●
● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●
●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●
●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

●

●

●

●
●● ● ● ●●

●

●

●

●

●

●

●

●

● ●●

●●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●
●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

● ●●
● ●●

●
●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●
●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●
●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

● ●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●● ● ●

●

●

●

●

●

●

●

●

●
● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●

●

●

●

●

●

●

●

●

●
● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

● ●●
● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
● ●

●

●

● ●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●
●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●
●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●

●

●

●

●

●

●

●

●

●
● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
● ●

●●●

●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

●
●●

●
●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

●

●

●

●
●● ● ● ●●

●

●

●

●

●

●

●

●

● ●●

●●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●
●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●
●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

●

●

●

●
●● ● ● ●●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●
●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

● ●●
● ●● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●●

●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●
●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

● ●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●● ● ●●
● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

●
●●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ●

●

●
●

●

●

●
●● ● ● ●●

●

●

●

●

●

●

●

●

● ●●

●●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●
●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●● ● ●●
● ●●●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

● ●●
● ●●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●
●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●●

●●●●

●
●

●

●

●

●

●

●

●

●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●● ●
●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●

●

● ●●
● ●●

●
●

●

●

● ●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

●

●

●

●
●● ● ● ●●

●

●

●

●

●

●

●

●

● ●●

●●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●
●●●

●●

●
●

●

●

●

●

● ●
●● ● ●●

● ●● ●

●

●

●

● ●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●
●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●● ● ●
●

● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●●●●

●●

●
●

●

●

●

●

●

●
●● ● ●●

● ●●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●●

●
●

−100 −50 0 50

−40

−20

20

40

Figure 5.9: Comparison of the distribution of genetic elements from all individuals in first generation
(left) and last generation (right) for the problem with a single type of food source. Dots represent
locations in R2 of all genetic elements in the gene pool. Same evolutionary run as in Fig. 5.8.

107

5. EVOLUTION OF BEHAVIOUR OF GRN-CONTROLLED ORGANISMS

0 1000 2000 3000 4000 5000

0

100

200

300

400

generation

ge
ne

ra
ti

on
s

to
M

R
C

A

Figure 5.10: The number of generations from the most recent common ancestor (MRCA) for the
entire population in each generation of the experiment with a single type of food source. Average:
148.7. The graph shows the history of evolutionary run that resulted in the best performing individual
out of 10 (with fitness history shown in Fig. 5.5).

their randomized length being drawn from the same geometric distribution with an
expected value of 10. The optimized structure of the final network is thus most
likely not due to deletions but results from the coordinate mutations that occur to
genetic elements over time.

Two processes are likely to stimulate optimization of an initially dense network.
First, given latencies of product degradation and accumulation, it is advantageous to
have a shorter signal path between sensors and actuators. The second process is the
genetic drift caused by small coordinate mutations of genetic elements. Each such
mutation results in a small change to weights of affected connections in regulatory
network (and in biology is analogous to single nucleotide mutations in regulatory
regions of DNA to which TFs bind). Small mutations have higher likelihood of
remaining neutral or having an effect not significant enough to be picked up by
positive or purifying selection. Over time, this leads to genetic elements spreading
in the coordinates space (Fig. 5.8 and Fig. 5.9). Hence, unless their position is
sustained by evolutionary pressure, all genetic elements perform a random walk in
coordinate space, with elements that contribute little to the fitness drifting slowly
beyond the interaction distance and reducing the overall density of the network.
Similar process is known to occur during biological evolution: neutral mutations in
duplicated genes or regulatory regions (now free from selection pressure) will lead
to removal of redundant connections from biological GRNs.

Analysis of the number of generations separating all 300 individuals in a given
generation from their most recent common ancestor (Fig. 5.10) reveals that it exis-
ted on average about 150 generations earlier. This means that all individuals in the
final generation represent only a single successful lineage, rather than multiple in-
dependently evolving and competing lineages, and whenever mutation results in an
improved individual, its descendants quickly take over the whole population. This
suggests high homogeneity of the population and is further reinforced by the obser-
vation that the average of any measured genome parameter usually closely follows
the value for the best individual.

108

5.6 Environment with food and poison

5.6 Environment with food and poison

In order to create a more challenging environment for simulated evolution, a second
type of food was introduced. In this scenario, one type of food would initially be
edible and the other poisonous. At some point, their roles would swap. Consuming
poison particles decreases the stored energy level and going below 0 is lethal for an
animat. The switch occurs after a certain number of particles is stored internally by
an animat, and the event is signalled with another input of the GRN. The purpose
of such problem design was to see if it is possible to evolve GRNs that display
radically different behaviour for the same sensory signals, depending on a single
external switch. Whether this could be achieved is interesting from the point of
view of scalability of GRN driven control to more complex environments, where
different behaviours are required based on the same sensory data.

To allow sensing of the second type of food, a pair of two additional external
factors S3 and S4 was added. They would behave in the same manner as S1 and
S2 (equations 5.1 and 5.2), but react only to the second type of particles. The
environment was randomly filled with 30 food particles of one type (blue) and 30 of
the second type (red, initially poison). Each consumed food particle would increase
energy level by 1, whereas each poisonous particle would decrease it by 1. Animat
whose energy dropped below zero was immobilized. The poison would change into
food and vice versa after the energy level reached 5 particles. Hence, the life of
each individual became split into two phases: first, when it would have to gather
blue particles while avoiding collecting red ones, and a second phase, when it would
have to collect red ones and avoid blue ones. The higher density of particles (total
of 60) compared to previous experiment (20) was found to be necessary for poison
avoidance to evolve: if poisonous particles were too sparse, accidental consumption
was too rare to negatively affect the fitness and the avoidance behaviour did not
evolve.

The information about the need to switch behaviour was provided with another
external input S5. The concentration of S5 would switch from 0 to 1 as soon as the
stored energy level reached 5. Providing this signal was necessary, as the animats
do not have any knowledge of their actual stored energy level and thus do not know
when they should start looking for a new food source. A preliminary run of genetic
algorithm without this signal resulted in animats that would move slowly in the
environment, so that they would collect only about 5 food particles during their
lifetime.

Ten independent evolutionary runs were performed, using the same GA config-
uration as in section 5.5, but with the lifespan of individuals extended to 7000 time
steps to allow for collection of a larger amount of particles. Three runs resulted
in best individuals with favg between 0.19 and 0.26, thus extracting around 75%
of accessible energy on the map. The animats show the desired behaviour, that
is, they seek the first food source and switch to the second as soon as S5 becomes
1. Another 3 runs resulted in individuals that gather only the blue particles and
then stop. The remaining 4 runs resulted in individuals that gather around 50% of

109

5. EVOLUTION OF BEHAVIOUR OF GRN-CONTROLLED ORGANISMS

STOP

START

SWITCH

Figure 5.11: Behaviour of the best individual from the final generation (5000) for the problem with
two switching types of food source. The switch between which food type is poisonous occurred after 5
blue particles were consumed. Consumed particles are marked as empty circles. The best individual
obtained in 10 independent runs is shown.

food by efficiently collecting the blue particles and then gathering the red ones in a
circular motion (Fig. 5.13), a manifestation of the attractor in the fitness landscape
discussed earlier (see Fig. 5.3, p. 103).

5.6.1 Analysis of evolutionary history

Close inspection of the behaviour of the best individual obtained in 10 experiments
(Fig. 5.11) reveals that it actively avoids red food particles while searching for the
blue ones. However, after the behaviour switch is signalled, although it now actively
seeks red particles, it consumes any blue ones that accidentally come its way. The
difficulty to obtain additional avoidance behaviour in the second phase most likely
can be explained by the fact that much lower evolutionary pressure exist for it.
Accidental consumption of red particles at the beginning of animat’s life (when it
has energy of 0) is lethal. However, in the second phase, with energy level above 5,
accidental consumption of blue particles does not lead to death. Thus, seeking only
red particles and ignoring accidental consumption of now poisonous blue ones still
leads to high fitness.

The analysis of the topology of the regulatory network also reveals that informa-
tion from all externally provided signals (S1−S5) is used (Fig. 5.12). The history of
improvements in best and average fitness over generations shows that evolution was
less gradual for this problem, with clearly visible stages (Fig. 5.14). Similar pattern
was also observed in the remaining runs, although, naturally, the lengths of those
stages would vary considerably. Inspecting the best individual at the first plateau
(generation 2600) reveals that it is capable of seeking blue particles, while already

110

5.6 Environment with food and poison

"1"

"S1"

"S2"

"S3"

"S4"

"S5"

"AL"

"AR"

8
9

10

11

12

Figure 5.12: GRN topology of the best obtained animat for the problem with two switching types
of food source. The behaviour of this individual is shown in Fig. 5.11. Multiple links between nodes
have been reduced to a single line, red edges have positive weights, blue have negative.

actively avoiding red ones. However, after the signal to switch behaviour is activ-
ated, it only performs circular motion collecting particles at random (Fig. 5.13).
This behaviour, on average, still results in a net gain of energy as there are now
slightly more particles of the edible type of food left on the map. The best indi-
vidual from generation 3100 is already capable of actively seeking the second type
of food source, but does so very slowly. The third plateau in fitness is reached by
successively improving the speed of navigation in the second phase of life.

The large improvement in fitness that occurred between generation 2900 and 3900
(Fig. 5.14) corresponds to an earlier minor increase in genome size (Fig. 5.15). The
duplications that caused it did not create new nodes and the number of nodes would
not change much during the evolution, dropping in the beginning and then increas-
ing by one around every thousand of generations (Fig. 5.16). Hence, the duplications
would result in the addition of new connections between regulatory units and mostly
secondary to the already existing ones, thus changing the strength of the influence
between the units that are connected. However, the fact that gene duplications res-
ult mostly in creation of new edges in a graph should not be surprising. To create
a new connection, it is enough to duplicate a single product or promoter, whereas
the creation of a new node requires creation of a pair of subsequent genetic elements
encoding promoter and a product (see section 3.1.1, p. 64). Interestingly, observed
two episodes of quick improvement in fitness cannot be causally linked with duplica-
tions observed during that time (arrows in Fig. 5.15), because these duplications did
not directly precede these episodes. The duplications occurred either during these
episodes or during the plateaus that separate them. This suggests that although
duplications most likely provided the genetic resource for later improvement, the
actual improvements occurred when already existing and possibly recently added
genetic elements were acquiring new functions.

111

5. EVOLUTION OF BEHAVIOUR OF GRN-CONTROLLED ORGANISMS

START

SWITCH

Figure 5.13: Trajectory of the best individual from generation 2600 for the problem with two switch-
ing types of food sources from the evolutionary run that resulted in the best performing individual (its
behaviour shown in Fig. 5.11). After seeking blue particles, the animat switches to circular motion
strategy, similar to that observed in the previous experiment (compare with Fig. 5.3). Consumed
particles are drawn as empty circles.

5.7 Summary

The results of this chapter demonstrate how the model of regulatory network en-
coded in linear genomes can be applied to a control problem and used to evolve
behaviours of an animat in a simulated physical world. The evolution would start
with random genomes, growing over time through duplication of chunks of the gen-
ome and further divergence of duplicated elements. The evolvability was investigated
by introducing a more complex foraging problem, when more than a single navig-
ating behaviour would have to be presented by an animat and different behaviours
would have to be employed for the same sensory input, depending on a single switch.
This means that more complex tasks, including obstacle avoidance and foraging for
multiple different resources, e.g., food and water, are possible (and, in fact, the lat-
ter was recently successfully demonstrated in a later work, Wróbel et al., 2012b). A
more biologically realistic setting for the evolution of regulatory networks introduced
in this chapter was used to investigate how the genomes and networks evolve and
self optimize over evolutionary time. The system also served as a test bed for the
creation of an open ended alife system, in which multiple individuals will compete
for resources and which is currently under development (Erdei et al., 2011).

One of the unexpected results of the current configuration of the model was
that the concentrations of TFs in the final generation turned out to be kept at
low levels, mostly below 0.3. This may have been one of the approaches chosen
by evolution to reduce the latencies in processing with genetic elements. Although
the drop of TF concentration over time is exponential and so the relative drop in
time δt is independent on product concentration, the synthesis rate and increased
degradation resulting from gene regulation has a fixed maximum efficiency. This
means that the effect of relative change of concentration of a given TF coming from
regulation is larger when the concentration is low. Performing the computation using
low concentrations allows thus to react faster to changing environmental signals.

112

5.7 Summary

0 1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

1
best
average
10% best

generation

f
a
v
g

Figure 5.14: Fitness over generations for the problem with two switching types of food source. Three
stages corresponding to improved behaviour are seen. The graph shows the history of evolutionary
run that resulted in the best performing individual out of 10 (its behaviour is shown on Fig. 5.11).
Best and average fitness in every generation is shown and an average for 10% best individuals. Data
points sampled every 10th generation.

0 1000 2000 3000 4000 5000

20

40

60

80

100
best
average
10% best

generation

ge
no

m
e

si
ze

?

?
?

Figure 5.15: Genome size over generations for the problem with two switching types of food source.
Arrows mark three larger duplications. The graph shows the history of the same run as in Fig. 5.14.
Best and average fitness in every generation is shown and an average for 10% best individuals. Data
points sampled every 10th generation.

0 1000 2000 3000 4000 5000

5

10

15

best
average
10% best

generation

nu
m

b
er

of
ve

rt
ic

es

Figure 5.16: The number of nodes in the GRN during evolution for the problem with two switching
types of food source. The graph shows the history of the same run as in Fig. 5.14. Best and average
fitness in every generation is shown and an average for 10% best individuals. Data points sampled
every 10th generation.

113

5. EVOLUTION OF BEHAVIOUR OF GRN-CONTROLLED ORGANISMS

Certainly, this must be used to some extent by biological systems as well, but in
a real world, lowering concentration will result in decreased signal-to-noise ration.
Thus, for biological regulatory networks with noisy gene expressions, a trade off
has to be made, which was not a case in the presented experiments. It would
be interesting to investigate how addition of intrinsic noise of gene expression will
affect the way evolved networks process and encode information and balance the
signal-to-noise ratio.

114

Chapter 6

Evolution of multicellular

development

This chapter presents the results of application of the model of gene regulatory
network described in Chapter 3 to the control of 3D artificial embryogenesis.

Most of the models of artificial embryogenesis existing prior to this work rely on
the assumption that each cell of a developing embryo is placed on a uniform grid,
with some notable exceptions, such as the works based on Cellular Pots Model (such
as Hogeweg, 1999, 2000; Knabe et al., 2008b), in which a cell of the embryo consists
of multiple grid cells. The representation of a cell of a virtual embryo with a single,
filled cell of a grid means that each cell is represented as a square or a hexagon in 2D
or a cube in 3D. The actual shape of cells is not usually relevant: the type of the grid
influences only the number of neighbours of each cell, which translates into the degree
of freedom for placement of new cells during division as well as cell movement. The
use of a grid is a popular modelling approach because it has numerous computational
advantages. Grids are efficient to simulate since interactions between cells (such as
the diffusion of substances between them) occur locally, between clearly defined grid
neighbours. Also, typically, in grid based models, the embryo is not allowed to move
in relation to the grid, as this would remove most of the computational advantages.
Furthermore, as the main decision that each dividing cell has to perform is the
direction in which the daughter cell will be placed, the limited number of possible
locations simplifies the simulated development both computationally and from the
point of view of the evolutionary search space.

On the other hand, the use of a grid creates a system that, from the very start,
is far from biological realism. Immobile cells remove one of the key features of the
developmental process, that is the physical interactions between cells in a developing
embryo, their movement and reorientation in space, as well as their ability to vary in
size and shape. Naturally, allowing for these effects comes at higher computational
costs.

115

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

GRN

Components of cell’s state:

- state of the GRN (current concentrations)

- radius (set upon division)

- mass (set upon division)

- internal orientation vectors 𝑯,𝑳,𝑼 (set upon division)

- position in space (set upon division, controlled by physics)

- velocity (controlled by physics)

External factors:

- „1” (fixed high concentration, does not depend on

cell’s location)

- perceived concentrations of maternal morphogens

(up to 4), depend on cell’s location

Morphogens:

- perceived concentrations of morphogens produced

by other cells (depend on the distance from sources)

Effectors:

- divide (optionally modify the radius

and internal orientation of a new cell)

- perform apoptosis (i.e, die)

Figure 6.1: A summary of cell interactions with environment and properties of cell that constitute
its state during development.

6.1 Developmental model

One of the goals of the work described in this chapter was to free the develop-
mental process from the restrictions of a grid and to represent cells as objects in
a continuous three dimensional space, interacting through simulated physics. In
the developmental model introduced in this chapter, cells are represented as elastic,
spherical objects which can (if desired) vary in size. Their motion is controlled by
simple Newtonian physics with simulated fluid drag.

Developmental process starts from a single cell. Each cell is controlled by a gene
regulatory network. When a cellular effector (i.e., a special transcription factor)
crosses a predefined threshold of concentration, a cell will divide. The daughter
cell will inherit the exact copy of the genome from the mother, together with the
current state of regulatory network (that is, the concentrations of all TFs at the
time of division). Cells can, however, differentiate from each other because the
physical state of the daughter cell (that is its orientation and position in 3D space)
can be different and leads to perceiving different signals from the environment.
Finally, apart from producing TFs that regulate cell behaviour, cells can produce
morphogens that diffuse into the environment. Morphogens can bind to promoters
in other cells and influence their behaviour. Cells are also capable of performing
apoptosis (i.e., programmed cell death) if the concentration of the corresponding
effector crosses a predefined threshold.

The following sections provide the details of the developmental model. An initial
outline of what constitutes the state of a cell and its input and output signals is
provided in Fig. 6.1.

6.1.1 Configuration of the genome model

To facilitate multicellular development, new types of effectors and external factors
were introduced to the model of the genome presented in Section 3.1.2 (p. 65). The
external factors can now include up to 4 maternal morphogen gradients (Table 6.1).
They represent substances (maternal factors) that are predeposited in the environ-
ment in which the embryo starts to develop (e.g., the egg). Such substances are
known to be essential for the development of many organisms and their role was
particularly well studied in the development of the Drosophila melanogaster (the

116

6.1 Developmental model

Table 6.1: External factors (inputs of the GRN) available in the developmental model.

External factor Description
“1” a product that is perceived at the constant level of 1
P1, P2, P3, P4 morphogen gradients behaving as if they were morphogens diffusing from 4

fixed locations in space. Cells perceive them as products whose concentration
falls off with the distance from the source. Exact location of each maternal
morphogen source is defined at the beginning of the experiment and remains
fixed during evolution

Table 6.2: List of effectors (outputs of the GRN) available in the developmental model.

Effector Description
Divide if above a preset threshold, a cell divides
Die if above a preset threshold, a cell dies and is removed from an embryo
Change radius increases the radius of a daughter cell beyond the default value upon division
αH , αU , αL 3 effectors controlling the amount by which internal cell orientation is rotated

in the daughter cell after division

common fruit fly), where their gradients determine the polarity of the egg and the
embryo (see, e.g., Carroll et al., 2004). By sensing the concentration of such sub-
stance, a cell can determine its approximate location in space. The diffusion of
maternal morphogens in the presented system is not simulated explicitly. Instead,
they are assumed to form a static gradient of concentration in space and are per-
ceived by cells simply as an external factor whose concentration falls off with the
distance from a predefined point in 3D space (the “source” of this morphogen).

The new cellular effectors are related to the actions that can be taken by cells
(Table 6.2) and their detailed explanation is provided in section 6.1.4. Depending on
the experiment, actions that are not essential to development, such as modification
of cell size or apoptosis, could be disabled.

To allow for communication between cells, a new type of genetic elements was
introduced: morphogens. They are treated as gene products, i.e., similarly to tran-
scription factors. A single promoter followed by a single morphogen in the genome
can form a regulatory unit and thus a node in a regulatory graph (see Fig. 3.1,
p. 64). Just like TFs, each morphogen has a concentration (from 0 to 1) associated
with a cell in which it is produced. However, contrary to TFs, the range of action
of morphogens extends beyond the cell they are produced in: they diffuse into the
environment and can influence promoters of other cells. The process of diffusion
is simulated in a simplified manner, and morphogen molecules are not simulated
explicitly. Instead, cells perceive morphogens as products, whose concentrations di-
minish with a distance from the cells they are produced in. If multiple sources of a
morphogen exist, their effect on promoters sums up. A more detailed explanation
is provided in section 6.1.3. Since morphogens are encoded in the same manner as
TFs, it is left up to the evolution how many and whether any at all will be used by
the embryo.

117

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

6.1.2 Simulated physics

As mentioned earlier, cells are represented as spheres and can vary in size within a
single embryo. Each cell has associated real-valued coordinates in 3D space, a radius,
a mass and velocity. At every time step of physics simulation, force vectors acting
upon cells are calculated and their sum is used to obtain cell accelerations according
to Newtonian laws. Accelerations are used to update velocities and velocities are
used to update cell positions. The next time step of simulation is calculated using
the Runge-Kutta 4th order integrator, due to its higher precision and increased
stability of the physics over the classical Euler’s method (see, e.g., discussion in
Bourg, 2001).

Three types of forces act on the cells during development: repulsive force, adhes-
ive force and fluid drag. The repulsive force is calculated whenever two cells overlap
with each other, i.e., when the distance between their centres is smaller than the
sum of their radii. The force acts on both cells in the direction defined by their
centres (with an opposite sign for each cell), pushing the cells away, with the value
proportional to the square of the overlap, formally:

Fr =

{
0, if ||P1 − P2|| ≥ r1 + r2

cr (||P1 − P2|| − r1 − r2)2, if ||P1 − P2|| < r1 + r2
(6.1)

where P1, P2 are of positions cells’ centres in 3D space, r1, r2 are their radii and cr
is the repulsion coefficient (cr = 5 was used).

To maintain coherent structure of the embryo and prevent cells from disconnect-
ing from the embryo, an adhesive force acts between cells. The adhesive force, like
the repulsive force, acts along the direction of cell centres, but has an opposite sign.
It is only non zero for any pair of cells whose surfaces are within small interaction
distance equal to da ·min(r1, r2) and only when cells do not overlap.

Fa =

0, if ||P1 − P2|| − r1 − r2 ≥ damin(r1, r2)

0, if ||P1 − P2|| − r1 − r2 ≤ 0

ca (||P1 − P2|| − r1 − r2 − damin(r1, r2))
2, otherwise

(6.2)

where ca is an adhesion coefficient (ca = 1 was used). Adhesive force was active as
long as the cells remained within 1/4 of the radius of the smaller cell (da = 0.25).

To prevent erratic cell movements as well as oscillations caused by interactions of
the repulsive and the adhesive force, all motion is dampened with a drag force that
is proportional to the velocity of a cell. It can be thought of as an effect of fluid
viscosity:

Fd = ck||~v|| (6.3)

where ck controls viscosity of the fluid (ck = 1 was used). The force acts in the
direction opposite to the cell’s velocity ~v (~Fd = −Fd ~v

||~v||).
A summary of the above and remaining essential parameters related to physics

is provided in the Appendix (Table C.3, p. 185). The visualizations of resulting

118

6.1 Developmental model

dynamics of cellular motion are provided in results section (see, e.g., Fig. 6.6, p. 126).

6.1.3 Morphogens and diffusion

The typical approach to simulate diffusion of substances in 3D space is to divide
the space into regions, either uniform (cubical regions) or non uniform (e.g., using
structures such as octrees), and then to iteratively simulate the flow of substances
between adjacent regions of space (e.g., using the Fick’s laws of diffusion). The
precision of the simulation depends on the resolution of a grid, which is a trade-
off between computational cost and desired accuracy of the simulation. Since the
development in the presented model does not occur on a grid to avoid introducing
grid just for the purpose of simulating diffusion, an alternative, simplified approach
is used. It assumes that perceived concentration of a morphogen in a given position
in space depends on the distance from a source cell and the concentration of this
morphogen in this cell. To prevent information from propagating instantaneously
in the system, a historic value of morphogen level at the source is used. Each
morphogen source stores a complete history of its morphogen concentrations in
previous time steps. The longer the distance, the older the value used (see the
visual explanation in Fig. 6.21). Formally, the concentration of the morphogen m

that is perceived by the cell c at the simulation time step t is:

Lc,m(t) =
I∑
i=1

li,m(t− bDi,c

ds
c) 1

1 +Di,c

(6.4)

where I denotes the number of cells of a developing embryo (potential producers
of m), Di,c is the distance from the cell c to the source cell i in 3D space of the
developing organism, and li,m(t) is the concentration of the morphogen m in the
source cell at the time t. The value of li,m is delayed in time: the past concentra-
tion from the simulation time step t − bDi,c

ds
c is used, where ds is the distance the

information about morphogen propagates in a single simulation step (ds = 0.1 in
the experiments in this thesis).

Although such approach does not conserve mass and thus does not simulate diffu-
sion realistically from the physical point of view, it has the essential spatiotemporal
properties of diffusion, i.e., the perceived concentration is decreasing with the dis-
tance from the source and information about changes in concentration propagates
through the system with a limited speed. In this way, it is similar, e.g., to the
propagation of sound waves at large distances. It was chosen because of its rel-
atively low simulation cost for small numbers of cells: the computational cost is
proportional to the number of locations in space where concentrations are being
read (i.e., the number of cells) and to the number of sources producing the morpho-
gen (also the number of cells), thus has the computational complexity O(n2) (where
n is the number of cells). This means that for small numbers of cells (in the order of
hundreds) it will still be relatively fast compared to simulating a uniform diffusion

1Video of this figure is available at: http://youtu.be/l5_fBCR7ncM

119

http://youtu.be/l5_fBCR7ncM

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

Figure 6.2: Visualization of the simplified diffusion model. Diffusion is modelled without the use of
a grid, by using past values of morphogen expressions. In this example, an outburst of morphogen
production in the far right region of the embryo, followed by its degradation soon after, resulted in
a ring (red) of increased concentration travelling away from the source. Lines show the direction of
the gradient, their colour shows the perceived concentration of this morphogen (blue - low, green to
yellow - intermediate, red - high).

grid which, given moderate spatial resolution of 100, in 3D would already result in
a need to update 1 million grid cells every time step. However, since the cost of a
grid based system is less sensitive to the number of cells in the embryo, it should be
preferred if the model is scaled up to much higher numbers of cells.

6.1.4 Cellular actions: division, death and growth

For the development to occur, each cell has to perform discrete actions such as
division, based upon continuously changing product concentrations. Each action
has a constant threshold (defined at the level of experiment) associated with it and
is performed after the threshold concentration of corresponding effector (Table 6.2)
is reached.

Cell division

When the effector responsible for division crosses a threshold, a cell divides. At this
moment, a new cell is added to the system, containing a copy of the GRN, together
with its current state, i.e., the concentrations of all products in the mother cell.

Each cell maintains a vector representing its orientation (~H) that determines
direction of cellular division. At division, a daughter cell is placed in the direction
~H from the mother, at the distance of 1

3
of mother’s radius. This means that initially

120

6.1 Developmental model������ �� ����
Figure 6.3: A vector ~H along with the two auxiliary perpendicular vectors for up and left (~U , ~L)
define the internal orientation of a cell in 3D space. Cells divide in the direction of ~H and can modify
their internal orientation by rotating around any of these vectors.

the daughter overlaps with the mother and, in the following time steps after division,
the forces of simulated physics will push them away, until equilibrium between the
adhesive and repulsive force is reached. If the area in which the daughter cell is being
placed is occupied by other cells, physical forces will continue to push away the cells
until they no longer overlap. To prevent another division in the very next time step
(since both cells now have the level of division effector above the threshold), the
concentration of the effector responsible for division is set to 0 in both cells.

To allow cells to control the direction towards which they divide, a method of
incrementally modifying orientation of a 3D vector is used. It is based on one of the
approaches used in 3D L-systems for modelling plant development (Prusinkiewicz
and Lindenmayer, 1996). Orientation is represented by three perpendicular unit
vectors ~H, ~L, ~U indicating the heading, the direction to the left and the direction
up of the internal orientation of a cell (Fig. 6.3). A cell can modify its internal
orientation by rotating around each of the three vectors. This way, the rotations
are always relative to the current internal orientation and do not depend on the
absolute coordinate system. The angle of rotation is controlled by 3 cellular effect-
ors (Table 6.2), whose concentrations are translated into an angle between [0, 2π].
Rotation of the current cell orientation by angles αH , αL, αU is expressed by the
equation:

[~H ′ ~L′ ~U ′] = [~H ~L ~U] RH RL RU (6.5)

where RH , RL and RU are rotation matrices for rotation about three vectors by
angles αH , αL, αU respectively:

RH =

1 0 0

0 cosαH − sinαH
0 − sinαH cosαH

RL =

cosαL 0 − sinαL
0 1 0

sinαL 0 cosαL

121

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

RU =

 cosαU sinαU 0

− sinαU cosαU 0

0 0 1

Cell death (apoptosis)

When a cellular effector responsible for cell death (Table 6.2) crosses a threshold,
the cell is removed from the system. Apoptosis was allowed only in some of the
simulation experiments.

Cellular growth

The number of cells necessary to fill a desired shape in 3-dimensional development is
proportional to the volume of the shape and increases with the cube of its size. The
ability to enlarge some cells can thus be an efficient way to grow larger structures
using smaller number of cells.

If the cellular effector responsible for cellular growth is enabled in the system, cells
are able to influence the size of a cell created after division. Its radius is calculated
according to:

rm = rd · (1 + kEs) (6.6)

where rd is the default cell radius (see Table C.3 in the Appendix), Esε[0, 1] is the
concentration of cellular growth effector and k is the maximum cell expansion factor
(values of k = 1 and k = 2 were used in this thesis).

6.2 Evolution of a desired 3D morphology

This section presents the results and the approach used to evolve genomes that can
control multicellular development, so that it leads to the creation of desired 3D
morphologies.

6.2.1 Fitness function

The simple and intuitive way to compare how closely a given multicellular morpho-
logy matches a target shape is to count how many cells fit inside the desired shape,
penalising for each cell outside the shape (as used, e.g., by Kumar and Bentley,
2003). The desired shape can be defined mathematically, for example, as a union of
various primitives. This approach works well when cells are placed on a grid, but
can have undesired consequences if cells are allowed to overlap, even temporarily,
and when a fixed number of developmental steps is used (as is the case of the system
described in this thesis). If cells divide at the very last time step of the develop-
ment, the morphology will change only minimally (since the simulation would be
stopped before the physics pushes the cells away). This allows to potentially double
the number of cells inside a target shape, without changing the morphology. This
is something likely to be exploited by evolution unless additional care is taken, for

122

6.2 Evolution of a desired 3D morphology

example, stipulating that a certain number of physics simulation steps always oc-
curs after the last cellular divisions or by making it impossible to improve fitness by
overlapping cells.

The approach used in this thesis is based on the division of a cuboid in 3D space
that embeds the target shape into cubical voxels. Each voxel is marked either as
belonging to the shape or external to it. The morphology of an obtained embryo
is voxelized in the same manner, and the number of matching voxels is interpreted
as similarity. By assigning higher weight to some of the voxels in the target shape,
it is possible, in principle, to improve evolvability of some of the morphologies that
otherwise do not evolve easily (e.g., connecting parts of some structure that account
for only a minor fraction of the volume). For the experiments presented in this thesis,
the size of the voxels was chosen to be 1

3
of the diameter of the smallest possible

cell. Formally, the fitness fm ∈ [0, 1] for an obtained morphology is maximized by
the GA and defined as:

fm(D,M) = max(0,
1

sxsysz

sx−1∑
x=0

sy−1∑
y=0

sz−1∑
z=0

rxyz) (6.7)

where sx,sy,sz are the dimensions of the cuboid in which the target shape is em-
bedded, D is the target shape (Dxyz = 1 for voxels that belong to the shape, 0
otherwise), M is the obtained embryo shape (Mxyz = 1 for occupied voxels), and
finally, rxyz is the reward for a given voxel:

rxyz(D,M) =

1 if Dxyz = Mxyz = 1 (match)

0 if Dxyz = 1 and Mxyz = 0 (undergrowth)

−1 if Dxyz = 0 and Mxyz = 1 (overgrowth)

(6.8)

6.2.2 Embryo viability criteria

In many situations it is helpful to introduce certain minimal requirements on the
embryos (see also section 3.3.4, p. 72). In the evolutionary runs described in this
chapter, embryos were required to finish their development with at least two cells.
Embryos in which cells never divide are not good candidates for further evolution
and may not even have the necessary effector gene. A penalty fitness 0 is assigned
to such individuals, and they are not used during the creation of a new generation.
Additional criteria are also introduced later to obtain embryos that self terminate
their development (section 6.2.8, p. 131).

6.2.3 Settings for the genetic algorithm and development

The limit of cells in the embryo was set to 150 and divisions would no longer occur
after the limit was reached (but the physics and the dynamics of the regulatory
network would still be simulated). Development was simulated for 500 time steps
during which both the physics and the state of the regulatory network were updated.

123

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

Table 6.3: Essential GA parameters used in the experiments on evolving GRNs to control 3D
development. Additional parameters are provided in the Appendix (Table C.4, p. 185).

Parameter Value
Population size 100
Elite individuals 5
Asexually created individuals 85
Individuals through crossover 10
Initial population randomized genomes, 5 regulatory units each
Termination condition no improvement for 500 generations
Selection binary tournament, with increasing selection pressure (k = 2,

p increasing linearly from 0.6 to 1 during first 2000 generations)
Cell limit during development 150
Developmental time steps 500

Table 6.4: Types of products and promoters enabled in the experiments on evolving GRNs to control
3D development and the interpretation of subsequent input and output elements.

Promoter types Product types External factors Effectors
additive transcription factor “1” (fixed high concentration) divide (threshold 0.8)

morphogen maternal morphogen at (8,0,0) rotation RH

rotation RL

rotation RU

GA settings were similar to those used in the previous chapters (Table 6.3), although
a smaller population was used due to a higher computational cost of the experiments.
Binary tournament selection was used in which the probability of selection was
increasing over time to protect initial genetic diversity. A single maternal gradient
was enabled, with a maximum of concentration at (8, 0, 0) (this position in space
corresponds to the tip of the right pointing axis arrow in Fig. 6.4). Apoptosis and
modification of cell size were disabled (see Table 6.4 for a summary of types of
genetic elements enabled in this experiment).

6.2.4 Evolution of an ellipsoidal morphology

In an initial experiment, an attempt was made to evolve a symmetric, ellipsoidal
morphology (Fig. 6.4a). The development would start from the first cell located at
the centre of the coordinate system shown. Ten evolutionary runs with the same
parameters were executed. Largely owing to the simplicity of the target morpho-
logy, all of the obtained embryos visually resembled the target shape. The least fit
embryos were more spherical. The best individual obtained in 10 runs (Fig. 6.4b)
reached the fitness of 0.6, with a clearly ellipsoidal morphology. The evolutionary
runs lasted around 1000−3000 generations (Fig. 6.5) and started with spherical em-
bryos that were result of random genome initialization (with fitnesses around 0.35).
In all runs, the quick improvement occurring during the first 200-300 generations is
followed by a slower improvement in later generations.

The developmental process of the best obtained individual was investigated (Fig. 6.6).
Initially, cells divide in a straight line, while the effectors responsible for rotation
during division are not yet expressed. During that time, the cells remain com-

124

6.2 Evolution of a desired 3D morphology

(a) (b)

Figure 6.4: Target shape and the best obtained morphology of an ellipsoidal embryo: (a) voxelized
target morphology, each voxel is drawn as a small, blue sphere, (b) the best matching morphology
obtained in 10 independent evolutionary runs, each green sphere represents a cell. Development starts
with initial cell located at the centre of the coordinate system.

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0 500 1000 1500 2000 2500

generation

fit
ne

ss

Figure 6.5: History of fitness of the best individual in a population for 10 independent runs evolving
ellipsoidal morphology. Each GA run lasted until no improvement for 500 generations was observed.

pressed, because cell divisions occur faster than they are pushed away from each
other. Then, on the left side of the embryo, new cells start to divide to the side of
the line (Fig. 6.6d). Next, a wave of cellular divisions propagates towards the right
side of the embryo. During the remaining 150 time steps of development, physical
forces equilibrate the structure of the embryo and cells reduce their overlap.

6.2.5 Evolution of an asymmetric morphology: a stem-cap shape

For a second series of evolutionary runs a more complex morphology was spe-
cified with left-right asymmetry, consisting of an elongated stem ending with a cap
(Fig. 6.7a). As the initial cell is located in the middle of the structure, the embryos
had to grow in both directions, asymmetrically. Similarly to simulation for the el-
lipsoidal target in the previous section, GA was running between 1000 and 4000
generations and fitnesses rapidly improved in a first few hundreds of generations
(Fig. 6.8).

Most of the 10 runs ended with individuals evolving only the cap of the structure,

125

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

(a) t=0 (b) t=100 (c) t=200

(d) t=270 (e) t=260 (f) t=280

(g) t=285 (h) t=290 (i) t=295

(j) t=300 (k) t=310 (l) t=320

(m) t=340 (n) t=420 (o) t=500

Figure 6.6: Evolved developmental process of an ellipsoidal morphology. Frames show consecutive
stages in the development of the best individual from 10 independent evolutionary runs (same embryo
as in Fig. 6.4b)

with stem either non existent or poorly pronounced. However, the best individual
consists of both stem and a cap and reached the fitness of 0.58. The final stage of
its development is shown next to the target shape in Fig. 6.7b.

Similarly to the development of the ellipsoidal embryo (section 6.2.4), develop-
ment of this best stem-cap individual initially proceeds with cells dividing in a line
(Fig. 6.9) until, at the stage of 14 cells, the cells at one extreme of the embryo start
to reorient during division to form a cap. Some of the cells that formed the stem at
the very beginning divide further to the side.

Closer inspection of this individual reveals that the genome has grown from 5
regulatory units found in initial, random individuals, to 13 regulatory units. At
that time, the number of genetic elements increased from an average of 18 in the
initial population to 57 in the best individual. All new regulatory units formed

126

6.2 Evolution of a desired 3D morphology

(a) (b)

Figure 6.7: Target shape and the best obtained morphology of a stem-cap shape: (a) voxelized target
morphology, each voxel is drawn as a small blue sphere, (b) the best matching embryo obtained in 10
independent evolutionary runs, each green sphere represents a cell. Development starts with initial
cell located at the centre of the coordinate system.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0 1000 2000 3000 4000

generation

fit
ne

ss

Figure 6.8: History of fitness of the best individual in a population for 10 independent runs evolving
a stem-cap shape. Each GA run lasted until no improvement for 500 generations was observed.

through duplications of existing genetic elements, either through the operator of
gene duplications or via sexual recombination with another individual.

6.2.6 Knock-out experiments on the evolved stem-cap shape

In principle, the maternal concentration gradient predeposited in the environment
and emitted from a single point in space provides enough spatial information for
cells to form the presented stem-cap shape. Cell could however also produce their
own morphogens, if the genome encoded them. Apart from having some small
probability of being present in initial random genomes (Table C.4 in the Appendix),
genetic elements encoding morphogens could appear through a mutation of a type.
This means that element that encoded a TF could mutate into a morphogen and
start to diffuse outside of a cell, while retaining its original affinities to the same
regulatory regions.

127

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

(a) t=0 (b) t=100 (c) t=200

(d) t=250 (e) t=300 (f) t=320

(g) t=340 (h) t=360 (i) t=380

(j) t=400 (k) t=420 (l) t=440

(m) t=460 (n) t=480 (o) t=500

Figure 6.9: Evolved development of the stem-cap shape. Frames show consecutive stages in the
development of the best individual from 10 independent evolutionary runs (the same embryo as seen
in Fig. 6.7)

The genome of the investigated individual was found to encode 6 morphogens
that were produced during development. To find out how both maternal gradient
and these self-produced morphogens influence the development of an obtained em-
bryo, a series of knock out experiments was performed. This type of experiments
corresponds to the approach used in molecular genetics, where a given gene is inac-
tivated to elucidate the role of its product in a particular process. In the case of the
model presented in this thesis, one can easily render certain genetic element inactive,
by setting its associated coordinates to a very large value (so that its product can
no longer bind to anything) and then simulating the developmental process again.

When the maternal morphogen gradient was disabled, the development would

128

6.2 Evolution of a desired 3D morphology

(a) Maternal gradient
inactivated

(b) MPG 2 inactive (c) MPG 3 inactive

(d) MPG 4 inactive (e) cap-less inactive (f) perceived con-
centration of cap-
less

Figure 6.10: Effects of gene knock-outs on the development of the evolved stem-cap shape. (a) shows
the effect of removing the maternal morphogen gradient, (bcdef) show the effects of inactivation of
different morphogens produced by this embryo (g) demonstrates the concentration of cap-less in the
cells of normally developed embryo (blue - zero, green - low, yellow and red - high).

result in forming a mostly spherical clump of cells (Fig. 6.10a). This suggests that
it was essential to the breaking of embryo’s symmetry. Since this maternal gradient
was most likely the only source of asymmetry in the environment at the beginning
of evolution (before self produced morphogen gradients could emerge), it is perhaps
not surprising that it evolved to be central for the development.

The effects of inactivating self produced morphogens were investigated next. One
morphogen (MPG 1), despite being expressed, was found to be completely neutral
(there was no phenotypic effect of a knock out). The loss of another two morpho-
gens (MPG 2 and 3) results in a much less pronounced “cap” in the structure
(Fig. 6.10bc). Inactivation of another morphogen (MPG 4) results in a slightly de-
graded shape, but still consisting of a clearly defined stem and a cap (Fig. 6.10d).
Thus, although the morphogens are not essential for the development, they evolved
to assist in improving the shape of the embryo. However, when the 5th morphogen
was inactivated, a cap structure would fail to develop almost entirely (Fig. 6.10e).
Following the convention for naming biological genes, the gene coding for this
morphogen was named cap-less. Interestingly, when its perceived concentration
in the cells was overlaid on the structure of the normally developed embryo, cap-less
was found to be mostly influencing the cells in the cap of the structure (Fig. 6.10f).
A similar relation between a morphological structure and a gene encoding a morpho-
gen was also observed in an independent set of experiments based on the version of
the presented model. There, a dose effect was also observed: a higher concentration
would lead to a more pronounced structure (Joachimczak and Wróbel, 2008a).

However, it should be noted that the fact that cap-less can be demonstrated
to be necessary for development of the morphological structure, does not imply a
causal relationship between presence of the cap-less product in the cells and the
formation of the cap. Instead, cap-less should be seen as one of many genes that
are involved in the formation of the cap which, when disabled, will result in the
partial or full degradation of the structure. The situation in biological development

129

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

(a) Generation 0
(initial)

(b) Generation 600 (c) Generation 700 (d) Generation 800

(e) Generation 900 (f) Generation 952 (g) Generation 953 (h) Generation 1000

(i) Generation 1035 (j) Generation 1036 (k) Generation 1400 (l) Generation 2003

Figure 6.11: The best matching shape in a population over generations during evolution of the
stem-cap shape.

is analogous and, unfortunately, often misrepresented by popular media eager to
associate complex traits with single genes (e.g., announcing the discovery of the
“obesity gene” or the “intelligence gene”).

6.2.7 Change of the morphology over evolutionary time for the stem-cap

shape

To see how the morphology changes during evolution, best individuals from pop-
ulations at various periods of evolutionary history were sampled. The most fit
individuals that existed at a given generation are not necessarily direct ancestors of
the best obtained morphology, but they are closely related to the direct ancestors,
and so, can be expected to be representative for their morphology. By the same
reasoning, fossils provide us with an insight into how ancestors of existing animals
could have looked like, despite the fact that we cannot hope to find fossils of the
actual ancestors.

The analysis shows (Fig. 6.11) that evolution started from a highly flattened,
ellipsoidal shape which, over subsequent generations, progressively shifted its centre
of weight towards the final location of the cap. At the same time, the structure
would continue to elongate its stem.

130

6.2 Evolution of a desired 3D morphology

(a) (b)

Figure 6.12: Development of the ellipsoidal (a) and the asymmetric morphology (b) with a cell limit
of 150 disabled. Termination of growth did not evolve and cells would continue divisions as long as
the development was simulated.

6.2.8 Evolving self-termination of division

For the experiments with both target shapes, cellular divisions were set to stop
when the embryo reached the size of 150 cells. In all runs, evolved embryos were
found to rely on this hard limit to terminate their development. That is, if the limit
was removed, divisions would continue to occur, most likely leading to an unlimited
growth (Fig. 6.12).

To test if it is possible to obtain embryos self terminating their development,
viability criteria were extended to penalize embryos with the maximum possible
number of cells. This limit was increased to 400 cells, and whenever individual
grew up to 400 cells, it was considered non viable, i.e., it was not used to generate
new generation (see also section 3.3.4, p. 72). As expected, such runs resulted in
obtaining embryos that did not reach 400 cells during their development and thus
did not rely on the hard limit of embryo size.

However, closer inspection of obtained embryos revealed that if the development
is continued beyond the original length of the simulation (i.e., 500 time steps),
divisions continue to occur, soon reaching the hard limit. What happens is that
instead of evolving a genetic mechanism that would stabilize and reduce production
of TFs activating the division effector, evolution tends to find solutions that have
a slow, but steady division rate, so that the hard limit is never reached during the
fixed time of the simulation of development. This is one of many examples of how
evolution is likely to find the simplest and the “cheapest” solution within provided
constraints.

In order to obtain individuals that are truly capable of self terminating their
development, viability criteria had to include an additional condition. The develop-
mental process was extended from 500 to 600 time steps, but if divisions or apoptosis
occurred during the last 100 time steps of development, the individual would be con-
sidered non viable. This ensured that all viable embryos were capable of stopping
their division for at least 100 time steps and not simply because of the exploitation
of the hard limit.

The experimental setting with the ellipsoidal target (section 6.2.4) was reused
but with the two additional viability criteria described above. All 10 runs resulted
in individuals that terminate their development before 500th time step. To test if
solutions are indeed stable, the development was simulated for another 1200 steps (3

131

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

normal development

32 cells removed randomly

64 cell stage

Figure 6.13: Illustration of the approach used to evaluate robustness to cellular damage.

times longer than their original lifetime). Cell divisions were observed after the final
developmental step 600 only in 1 of the 10 best individuals obtained in independent
runs.

This result suggests that the two proposed viability criteria are an effective way
to evolve self termination of the development. Importantly, both criteria have to be
enabled, as none of them is sufficient by itself.

6.3 Robustness to cellular damage

Robustness to perturbations such as mutations or damage is one of the principal
reasons of interest in developmental systems (Stanley and Miikkulainen, 2003) and,
with the aim of better understanding which properties of such systems contribute
to their resilience, has been investigated in multiple existing developmental systems
(see, e.g., Andersen et al., 2009; Eggenberger Hotz, 2003a; Miller, 2004; Streichert
et al., 2003, for some recent examples). Biological embryos are known to develop
properly in a wide range of variations of external environment and can tolerate
various levels of cellular damage. For example, removing a single cell during ini-
tial stages of development typically has negligible effects on further development.
Multicellular organisms are also capable of self-repair even after the development
had been completed, with some higher animals (e.g., newts) capable of regrowing
a lost limb. Hence the hope that by recreating some of the elements of biological
development in silico, we can design systems that are robust to damage and capable
of self-repair.

6.3.1 Robustness during development

To investigate how robust are the embryos evolved using the introduced embryogen-
esis model, cellular damage was applied at various stages of the development. After
the number of cells in the embryo reaches a threshold (e.g., 64), a percentage of ex-
isting cells is removed randomly and the development is continued (see Fig. 6.13 for
visual explanation). The damaged embryo is then compared to that obtained during
unperturbed development, and its quality is represented as a fraction of its fitness

132

6.3 Robustness to cellular damage

●

●

no 4 8 12 16 32 48 64 96 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

developmental stage (number of cells)

re
la

tiv
e

fit
ne

ss

damage

(a)

●●● ●

●
●

●

●

no 2 4 8 12 16 32 48 64 96 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

developmental stage (number of cells)

re
la

tiv
e

fit
ne

ss

damage

(b)

Figure 6.14: Robustness of the evolved ellipsoidal embryo to cellular damage at various develop-
mental stages. (a) effect of removal of 25% cells, (b) effect of removal of 50% cells. Fitness is relative
to the fitness obtained in unperturbed development. The box plots show the median and quartiles for
the relative fitnesses obtained in 40 independent developments with random cell removal. Whiskers
extend to the most extreme data point which is no more than 1.5IQR from the box. Circles indicate
outliers.

.

●

●

●

●●

no 4 8 12 16 32 48 64 96 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

developmental stage (number of cells)

re
la

tiv
e

fit
ne

ss

damage

(a)

●●

●

●
●●

●

●

no 2 4 8 12 16 32 48 64 96 128

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

developmental stage (number of cells)

re
la

tiv
e

fit
ne

ss

damage

(b)

Figure 6.15: Robustness of the evolved stem-cap embryo to cellular damage at various developmental
stages. (a) effect of removal of 25% cells, (b) effect of removal of 50% cells. The box plots show the
median and quartiles for the relative fitnesses obtained in 40 independent developments with random
cell removal. Whiskers extend to the most extreme data point which is no more than 1.5IQR from
the box. Circles indicate outliers.

.

over the original fitness. As cells were selected randomly during the removal, the
process was repeated 40 times for each developmental stage to measure the average
effect.

The ellipsoidal and asymmetric embryos described in sections 6.2.4 and 6.2.5
were evaluated for the effects of random cell removal at the stages of 2, 4, 8, 16,
64, 96 and 128 cells (the development would continue up to the limit of 150 cells).
Embryos were tested for their robustness to removal of either 25% or 50% cells at
every stage.

Considering that removal of 25% cells results in a considerable damage to the
embryo, the development of the ellipsoidal embryo is clearly very robust (Fig. 6.14a),

133

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

being able to usually regain close to 90% of the original fitness for most of the
developmental stages. Only after reaching the size of 128 cells, further loss of ability
to regrow is seen.

The robustness to removal of 50% of the cells at each stage is only slightly lower
(Fig. 6.14b). The ability to restore the structure is very high, with the removal of one
of the two initial cells having the smallest effect on development. Interestingly, the
embryos consisting of 16 cells seem to be less resilient to cell removal than further
developmental stages, indicating that this is a more sensitive stage. One likely
interpretation is that cells at this stage have to break from the development that
initially occurs in a line. Damaging the cells that are essential to this reorientation
has higher impact on fitness. Still, the embryos are capable of regaining more than
80% of their original fitness (Fig. 6.14b). Nonetheless, such high robustness to
damage can be attributed partly to the simplicity of the target shape: obtaining
an ellipsoidal shape does not require precise control during development and mostly
relies on physics that pushes cells away from each other.

When robustness of development of an asymmetric embryo was analysed in the
same manner it was found to be less resilient to damage than the ellipsoidal embryo
(Fig. 6.15). However, it is still surprisingly robust. It is able to restore around 85%
of the original fitness when 25% cells are removed. The development clearly appears
to go through a bottleneck during which the impact of cell removal is much higher
than during initial and later stages of development. This is most pronounced at the
stage of 12 cells and can be observed both for removal of 25% and 50% cells.

Further investigation of the issue shows that at this stage of development cells
were still dividing in a line (Fig. 6.9a-c, p. 128). Divisions occur only in the left-
most cells, towards the side where the cap will be formed later. By manually and
selectively removing cells in the embryos of size 12, it was observed that removal of
rightmost cells does not influence fitness much. The remaining cells do not divide
any more and remain to be part of the stem of the final structure, but a shortened
stem does not influence fitness considerably as it amounts to only a small fraction
of the volume. However, the leftmost cells drive the divisions that result in the
bulge. Removal of a single such cell was not found to have a large impact on fit-
ness, but removal of 3 or 4 cells is enough to delay the development of the bulge so
that it never forms during the allowed simulation window or forms only partially.
This explains the observed developmental period of increased sensitivity to cellular
damage. At the early stages of development, the divisions are driven by a small
fraction of leftmost cells, similarly to a meristem in plant growth (see, e.g., Evert
and Eichhorn, 2004). Removal of a single cell does not influence the development,
but if due to random removal too many leftmost cells are lost, the embryo will no
longer form the cap of the structure (Fig. 6.16).

All of the individuals described in this chapter evolved and developed in the ab-
sence of any developmental stochasticity, but they are still very robust to cellular
damage. If the randomness was inherent to the development, some level of robust-
ness would be expected to emerge, just as randomness in gene expression leads to
the evolution of networks more robust to noise (section 4.6, p. 94). This means that

134

6.3 Robustness to cellular damage

(a) (b)

Figure 6.16: The effect on the development of the stem-cap embryo of removing cells when it reaches
the size of 12 cells (at this point in development, cells are still aligned in a line). The final stage of
development is shown after 3 leftmost cells were removed (a) or 4 leftmost cells (b).

the robustness shown above does not stem from the fact that embryos had to be
robust to environmental variation and can be considered to be an emergent feature
of the evolving, developmental system, independent of environmental stochasticity.
One suggested explanation for the emergence of fault tolerance is believed to be
mutational robustness. Under the mutational pressure, genomes have to develop
certain level of robustness in response to genetic mutations and as a side effect,
this gives them certain level of robustness to environmental perturbations as well
(Federici and Ziemke, 2006). Preliminary results for embryos evolved with noise in
gene expression (using the method discussed in section 4.6, p. 94) suggest that such
embryos display an even increased robustness to cellular damage as a side effect
(Joachimczak and Wróbel, 2012a).

6.3.2 Embryo regrowth

Although robustness to cellular damage during development was observed to be an
emergent feature of the model described in this thesis, fully developed embryos were
not observed to display the ability to regrow removed parts of their structure. One
reason for this is the lack of genetic control of growth termination in the embryos
discussed in the section 6.2.8. In these embryos, typically a large fraction of cells
would have their division effectors above the threshold at the end of development, but
these cells would not divide because of the hard limit set on the number of allowed
cells in the embryo. When a group of cells is locally removed from an embryo (rather
than randomly, as in section 6.3.1), cells will immediately start dividing again, but
there is no reason why this should happen locally at the site where cells were just
removed: any cell in the embryo that was ready to divide can now do so.

The situation is different for embryos that evolved self termination of development
(section 6.2.8). These embryos either do not respond at all to damage or initiate
regrowth in the whole structure, sometimes even falling into uncontrolled growth.
Such uncontrolled growth most likely occurs in embryos in which self-termination
depends on the concentrations of self produced morphogens. As soon as a large
enough fraction of cells is removed, the inhibiting effect of those morphogens van-
ishes, and divisions continue until enough cells produce this morphogen and stop
the process again. However, even for the simplest embryos, divisions are not likely
to result in restoration of ellipsoidal morphology.

To allow for local regrowth to occur, a given cell has to be able to detect a need
to do so. This information, to some extent, is provided by the change in concen-

135

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

trations of morphogens in its surrounding, but due to the lack of observed regrowth
ability, in another series of experiments, an additional, more explicit external signal
was provided to each cell. This signal carries the information about the number of
neighbours in cell’s surrounding. A cell that has direct contact with 8 other cells
would perceive a maximum concentration of this external signal (i.e., 1). More pre-
cisely, the external factor would have a concentration of k

8
, where k is the number

of adjacent cells. This way, cells were able to obtain accurate information about
their direct surroundings and could detect the number of lost neighbours after re-
moval. Unfortunately, adding this external factor did not result in embryos capable
of regrowing lost fragments.

It is possible that local regrowth does not evolve if embryos are not rewarded
for it. To test if this is a case, the ability of regrowth was made an explicit part
of the fitness function. The target shape was set to an ellipsoidal morphology, but
each embryo was now evaluated 3 times. In the first evaluation, the development
is unperturbed and is simulated for 800 time steps. The morphology of the embryo
is then compared to that of the target shape twice. First at the time step 400 and
for a second time at the time step 800. During the second evaluation, slightly more
that the right half of the embryo is removed at the time step 410. Development is
allowed to continue unperturbed until the time step 800. The shape of the embryo
at the time steps 400 and 800 is compared to the target. The third evaluation
is analogous to the second, but the leftmost part is removed. Finally, the fitness
value of an individual is calculated as a weighted average of the shape similarity in
the 6 evaluations, with the 2 evaluations that follow cell removal having twice the
weight. The reason for this higher weight was to put higher pressure on regrowth,
as of the 6 comparisons to the target shape, only two would actually depend on
the ability to regrow lost fragment. Another approach could be to simply compare
the morphology of the embryo 3 times, each at the final developmental step 800.
However, this was found to be easily exploited by evolution. Embryos evolved using
this approach were found to develop very slowly, so that when half of the embryo is
removed at simulation step 410, the embryo is still very small and only a few cells
are removed. Only after simulation step 410, embryos continued to develop to their
full size, sidestepping the effect of cell loss.

The new setup proved to be more successful, but only 1 in 10 runs resulted in
an individual able to partially regrow after either its left or right part was removed.
The remaining individuals can regrow only one of their sides, but not both. The
best individual self terminates the development around time step 300 and remains
stable up to step 800 (Fig. 6.17a). When the left part of this embryo is “sliced off”
(Fig. 6.17a-f), the regrowth starts to occur very quickly, in around 20 time steps.
Only the cells that were located next to the lesion divide. The final stage of the
embryo after developing with the damage to the left part does not fully resemble
the original, but a large part of the structure is regrown. The development of this
individual is less robust to damage to the right side (Fig. 6.17g-l). The regrowth
starts a bit later, about 90 time steps after the lesion. Similarly to the situation
after damage to the left, the cells divide only locally, as is desired, but the end result

136

6.3 Robustness to cellular damage

(a) t=400 (b)
t=410

(c)
t=440

(d) t=470 (e) t=490 (f) t=800

(g) t=400 (h)
t=410

(i) t=510 (j) t=540 (k) t=590 (l) t=800

Figure 6.17: An ellipsoidal morphology evolved with a fitness function promoting ability of regrowth,
responding to a removal of left part of the structure (a-f) and right part of the structure (g-l).

is more spherical.
The initiation of regrowth in the best individual obtained in 10 runs has to depend

entirely on the ability of cells to detect when, and where the damage occurred. Since
under this experimental setting cells are not provided with explicit information about
their neighbours (as discussed earlier), the only way they can detect the change in
the structure of the embryo is through the change in concentrations of morphogens.
When cells are removed, concentrations change and the GRNs in adjacent cells have
to react to this change.

The quality of self repair obtained in the presented experiments is far from perfect,
but demonstrates that it is indeed possible to evolve capability to regrow fragments
of the embryo, if the embryos are rewarded explicitly in the fitness function. The
growth occurs locally, at the site where the cell lesion is applied. The fitness func-
tion had to be constructed carefully, to avoid evolution of simplified and undesired
solutions. It is possible that further tweaking of the parameters would result in im-
proved robustness to this type of damage. However, the experience so far suggests
that the main obstacle for improved evolvability may be the need to detect when
and where the lesion occurs, based solely on changes of morphogen concentrations.
Perhaps the results could be considerably improved if this information was provided
in a more explicit manner. This could be done, for example, by providing cells with
additional external factor that would signal that a damage has occurred to cells
adjacent to the lesion. Such signals indeed exist in living organisms and are sent
(chemically) by cells in the tissues that are located at the site of tissue damage,
signalling the need to activate regrowth.

137

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

6.4 Evolution of 3D patterning

In the evolutionary runs described in this section the capability of the introduced
developmental model to evolve both 3D morphology and cellular differentiation is
investigated. The cells are allowed to differentiate by changing their colour. The
colour of a cell results from the increased concentrations of new type of pigment-like
effectors. The fitness function is designed to reward reaching a desired morphology
as well as a desired colour pattern.

6.4.1 GA settings and genome configuration

The model was extended by three new types of effectors responsible for colouring
a cell: red, blue and green. When the concentration of these effectors becomes non
zero, a cell becomes coloured. The exact interpretation of their concentrations as a
colour depends on the experiments and a few different approaches are investigated.
In the first experiment (section 6.4.3) only the red and the blue effector is enabled,
and their effect is thresholded, i.e., the cell becomes coloured only if the effector has
a concentration above 0.5. This leads to 4 possible colour states for each cell. When
none of the effectors crosses the threshold the cell is marked as colourless (white). If
only one effector crosses the threshold, the cell is coloured accordingly. When both
the red and the blue cross their threshold, the cell becomes pink.

Alternative scenarios in which effectors are not thresholded (so a cell can display
intermediate levels of red and blue or their mix) or when a third effector, green is
enabled, are explored in sections 6.4.4, 6.4.5, 6.4.6.

Of the external factors listed in the Table 6.1 (p. 117) only the signal “1” was
kept. In particular, maternal morphogen gradients were not used to see whether
the embryos can still differentiate their cells based only upon morphogens that are
endogenous. The GA used in the evolutionary runs presented in this section reused
most of the settings used for experiments in Chapter 4, e.g., it allowed for both
additive and multiplicative promoter types (see Table 6.5 and 6.6 for a summary of
the settings).

Table 6.5: Essential GA parameters used in the experiments on evolving GRNs to control patterning
of 3D embryos. Additional parameters are provided in the Appendix (Table C.5, p. 186).

Parameter Value
Population size 300
Elite individuals 5
Asexually created individuals 195
Individuals through crossover 100
Initial population randomized genomes, 5 regulatory units each
Termination condition no improvement for 500 generations
Selection tournament (k = 10, p = 0.3)
Cell limit during development 200
Developmental time steps 300

138

6.4 Evolution of 3D patterning

Table 6.6: Types of products and promoters enabled in the experiments on evolving GRNs to control
patterning of 3D embryos and the interpretation of subsequent input and output elements.

Promoter types Product types External factors Effectors
additive transcription factor “1” divide (threshold 0.8)
multiplicative morphogen die (threshold 0.8)

cell radius
red pigment
blue pigment
green pigment (depends on the ex-
periment)
rotation RH

rotation RL

rotation RU

6.4.2 Fitness function

The fitness function was derived from the function used for the evolution of 3D
morphology (Eq. 6.7, p. 123). It relies on the comparison of a voxelized definition
of the target shape with a voxelized phenotype of a developed individual. However,
since the goal of the evolutionary simulations described in this section is to simul-
taneously evolve desired morphology and patterning, the fitness function is designed
to reward for both the correct morphology as well as patterning.

The reward for the expression of colour effectors in a particular voxel is computed
so that only expressing the right colour effector and silencing effectors for other
colours results in a maximum reward. The exact form of this equation depends
on the number of allowed colour effectors and the choice of colour coding. In the
first experiment (section 6.4.3) with 2 colour effectors (red and blue), the following
equation is used:

fcol(D,M,R,B) = max(0,
1

sxsysz

sx−1∑
x=0

sy−1∑
y=0

sz−1∑
z=0

(rxyz + cpcxyz)

2
) ∈ [0, 1] (6.9)

cxyz(Dxyz, Rxyz, Bxyz) =

(Rxyz + 1−Bxyz)/2, if Dxyz is red

(Bxyz + 1−Rxyz)/2, if Dxyz is blue

1− (Rxyz +Bxyz)/2 if Dxyz is white

0, if Dxyz is empty

∈ [0, 1]

(6.10)
where D is the desired, voxelized target pattern of size sx×sy×sz, M is the obtained
morphology (Mxyz = 1 if a voxel is filled by some cell), whereas R and B are the
thresholded levels of red and blue effectors in a cell that occupies a given voxel.
For example, if the concentration of the red effector in the cell is above 0.5, Rxyz

becomes 1, otherwise it is 0, and the concentration of this effector does not influence
cell’s colour. rxyz is the reward for a correctly occupied voxel (Eq. 6.8) and cxyz
is the reward for expressing colour effectors at a desired level. Half of the possible

139

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

total reward can be reached by correctly filling the target morphology with their
cells, but an additional increase requires the expression of the right colour genes.

Since the fitness function rewards both the morphology and the correct pattern-
ing, it is possible for two coloured individuals to have a higher fitness than a three-
coloured one as long as their morphology matches the target shape more closely.
This, however, can be deceptive for the search algorithm and GA can become stuck
in a local maximum in which individuals have a highly fit morphology, but do not
have the genetic circuity allowing them to produce all colours. For this reason, the
term cp was added to promote expression of colours early on during evolution. For
any individual that would have at least one red, blue and white cell, no matter
where, cp was equal to 1. For individuals with cells in two different colours cp was
equal to 0.5. For individuals with just one colour cp was equal to 0.33. This ap-
proach was found to improve evolvability by highly rewarding existence of at least
some ability to differentiate into different colours. Without it, the embryos would
often evolve to have only cells with one colour. A similar approach was used in by
Knabe et al. (2008b).

6.4.3 French flag problem in 3D: the tricolour embryo

One of the popular toy problems used to test the evolvability of a developmental
system in the field of artificial embryogenesis is the so-called French flag problem. In
this task, the embryo develops to recreate a pattern of 2D French tricolour, i.e., the
cells have to differentiate into three spatially segregated types (see e.g., Chavoya and
Duthen, 2008; Fontana, 2008; Knabe et al., 2008b; Miller, 2004, for recent examples).
The French flag model itself derives from an explanation, proposed more than 40
years ago by Wolpert (1968), of how signalling molecule (a morphogen), emitted
from a localized source in the tissue, allows the cells to differentiate spatially based
on detecting levels of its concentration.

To evaluate the ability of the presented system to evolve cellular patterning, the
two dimensional French flag problem was scaled up to the third dimension. The
target morphology was an ellipsoid and the cells had to differentiate into regions
with three different colours (Fig. 6.18a). Two colour effectors were enabled, and
their effect on a cell was thresholded (Table 6.7). As in the previous sections, each
experiment was repeated 10 times, and the best obtained embryo was investigated.
Of the 10 runs, three resulted in individuals with three colours. Remaining runs

Table 6.7: Colour effectors and their effect on a cell used to evolve 3D French tricolour embryos.
Thresholded value of concentration determines its effect on colour (and is used when calculating the
fitness).

Colour effectors
Cell colour

red blue
≥ 0.5 ≥ 0.5 pink
≥ 0.5 < 0.5 red
< 0.5 ≥ 0.5 blue
< 0.5 < 0.5 white

140

6.4 Evolution of 3D patterning

(a) (b)

Figure 6.18: Evolving 3D French tricolour embryo. (a) voxelized target pattern (small spheres
represent voxels) (b) best embryo obtained in 10 independent evolutionary runs (spheres are cells).

(a) t=0 (b) t=50 (c) t=100 (d) t=150

(e) t=200 (f) t=210 (g) t=220 (h) t=230

(i) t=240 (j) t=260 (k) t=280 (l) t=300

Figure 6.19: Snapshots of developmental stages for the best obtained tricolour embryo (shown in
6.18b).

would become stuck in a local maxima in which embryos differentiated only into
two colours or remained white, but had a matching morphology.

The best individual in 10 runs (Fig. 6.18b) appeared in generation 1944 and
reached the fitness 0.792. This individual develops in a manner similar to the one
discussed in section 6.2.4, with cells initially dividing in a line and later starting to
divide slightly to the side (Fig. 6.191). All cells begin as white, i.e., initially none of
the colour effectors crosses the threshold concentration. First coloured cells appear
halfway through the development (t = 150) and are red. Blue cells appear around
the time step 230. For some of the cells, their colour changes more than once during
development.

The blue effector remains only slightly above the threshold of 0.5 and is produced
only in the cells that are indeed blue (compare Fig. 6.20a and Fig. 6.18b). In
contrast, the red effector evolved to have its concentration increasing continuously,
starting from the white region of the embryo (Fig. 6.20b). Since the red effector
appears not to be expressed at all in the region of the embryo where the blue effector
is expressed, this suggests that a mechanism of mutual exclusion may have evolved

1Videos of the results presented in this chapter can be found at http://www.evosys.org/ecal09patterning

141

http://www.evosys.org/ecal09patterning

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

(a) (b)

Figure 6.20: Concentrations of the colour effectors at the end of development in the best obtained
tricolour embryo. (a) concentration of the blue effector (b) concentration of the red effector. Blue
colour represent zero concentration, red maximum, green-yellow intermediate values.

Figure 6.21: The orientations of division vectors at the end of development of the best obtained tri-
colour embryo. Small variations to orientations of divisions generate an elongated shape by exploiting
the physics of the system. Small spheres represent cells’ centres.

between both colour effectors. Precise analysis of the topology of the GRN turned
out to be difficult due to its size (43 regulatory units), but simply looking on the
connections with the highest absolute weight to each of the effectors revealed that
both are most strongly influenced by the same TF. However, the connection to the
red effector is highly excitatory (weight 1.56), whereas the blue one is inhibitory
(weight -2.24).

The morphology of the investigated individual forms in the manner analogous
the ellipsoidal embryos discussed in the earlier section (6.2.4) and does not pose a
challenge for the evolutionary algorithm. This is largely because of the ability of
the developmental process to exploit the artificial physics. A close inspection of how
cells change orientations of their division vectors reveals that cells apply only minor
variations to their orientation. This is enough for cells to start to divide slightly to
the side of the embryo and to allow repulsive forces to take it from there (Fig. 6.21).
This illustrates how both in artificial and biological systems the complexity, which
would have to be otherwise present in the genome, is replaced by simple exploitation
of the laws of physics.

Since the embryos were intentionally disallowed to rely on maternal morpho-
gen gradients predeposited in the environment, the genome was investigated for
the presence of genes coding for morphogens. Two morphogens with clear asym-
metric production centred in the posterior and anterior of the embryo could be
identified (Fig. 6.22). Although this is not the only possible solution for generating
anterior/posterior axis (a single morphogen at one extreme of the embryo would
suffice, in principle), all analysed individuals were found to have differential produc-
tion of at least two morphogens. The presence of these morphogens is necessary for
the proper development and for inducing the cell colour, but they are not sufficient
by themselves and instead remain part of a dense network of interactions (as was in

142

6.4 Evolution of 3D patterning

Figure 6.22: Self-generated gradients of positional information in the best obtained tricolour embryo
employing two different morphogens (left and right column). Upper row: the concentrations of
morphogens in every cell (blue-low, red-high) for each of these morphogens, Bottom row: normalized
morphogen density maps in the space surrounding the embryo. Only the gradients for two selected
morphogens are shown in the figure, two other morphogens with similar, localized expression were
found.

the case of a cap-less gene, p. 129).

One of the problems identified in the initial experiments that was not an issue in
experiments which focused solely on evolution of the morphology was the stability
of the patterns. When evaluated by their similarity with the target pattern after 300
steps, the morphology would remain stable, but the colour pattern not necessarily
so. Typically, the pattern would sweep through the embryo (driven by diffusing
waves of morphogens) or oscillate. Thus, to obtain the investigated individual an
average of originally proposed fitness function (Eq. 6.9) over multiple time steps was
used (at times 250, 260, 270, 280, 290 and 300). Evolution with such fitness function
resulted in more stable patterns, though in most of the cases the pattern would still
degrade if development was allowed to continue beyond its default lifetime of 300
steps. Note however, that it is a common feature of living systems to degrade if their
lifespan is extended beyond what they were selected for by evolution. The yield of
individuals with stable patterns is expected to raise as the selection pressure on
stability is increased (by, for example, requiring the pattern to remain stable for a
longer period of time).

In another series of experiments, the stabilizing role of the maternal concentra-
tion gradients present in the environment of the developing embryo was investigated.
Two maternal gradients with sources external to the embryo and located at its two
extremes were added. They can be considered analogous to the gradients of Bic-
oid and Nanos morphogens determining the anterior/posterior axis in Drosophila
melanogaster (the fruit fly) egg before the development starts (see, e.g., Carroll et al.,
2004). In simulations performed in this work, such gradients greatly increased the

143

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

(a)

(b)

(c)

Figure 6.23: Robustness to cell removal of the best obtained tricolour embryo: the effects of removing
a single cell from the embryo at the 2- (a), 4- (b), or 8-cell stages (c) of development; in (c) only half
of possible cases is shown.

yield of stable individuals, but only if the cells were additionally prevented from
producing their own morphogens (which made these maternal factors the only in-
ducers of differential expression). This suggests the dominant role of self-produced
morphogens, which in this case can be most likely explained by the diffusion model
used. In the current setting, the influence of morphogens on regulation in a partic-
ular cell can be much higher than that of maternal gradients, because the effect of
multiple sources (cells) sums up.

The robustness to damage of the presented individual was also briefly investigated
by removing single cells at the initial stages of development (when the embryo size
was 2, 4 and 8 cells). Although the morphology would remain ellipsoidal, the removal
of cells would often result in a shifted colour pattern, yielding low objective fitness.
However, by investigating the individuals that were damaged during development
visually, one can observe that despite the shifts, three-striped patterning is usually
maintained (Fig. 6.23).

6.4.4 Four colour embryo

To test the limits of the current setup, a more challenging target shape was defined:
an embryo with 4 colour stripes. The overall configuration of the system remained
identical with the previous experiment (section 6.4.3), but the target shape was
modified (Fig. 6.24a). In 10 independent evolutionary runs, only a partial success
was achieved, with blue stripe reduced to a single or just a few cells in the two best
obtained individuals (Fig. 6.24bc).

(a) (b) (c)

Figure 6.24: Four colour embryos evolved using the same setup as for the French flag embryo: (a)
the target pattern, (b,c) two best individuals obtained in 10 independent evolutionary runs.

144

6.4 Evolution of 3D patterning

(a) (b) (c)

Figure 6.25: Three colour embryos evolved without colour thresholding: (a) target pattern, (b,c)
two best individuals obtained in 10 independent evolutionary runs.

6.4.5 Continuous colour representation

The popular approach to generate coloured embryos in an artificial developmental
system assumes that a cell changes colour only after a certain factor had crossed a
predetermined threshold (employed, e.g., in Chavoya and Duthen, 2008; Fontana,
2008; Knabe et al., 2008b; Miller, 2004). This is aesthetically pleasing as it al-
ways yields clearly defined colours, but it also makes generation of sharp transition
between bordering regions of different colours much easier. To see if the system can
evolve patterning without colour thresholding, the same setup was used to repeat
the experiment, but with the colour thresholding disabled. The equation for colour
reward (Eq. 6.10) remained valid, with the only difference that Rxyz and Bxyz would
now take values from the interval [0, 1] directly corresponding to the concentrations
of the red and blue effectors. The colour of every cell was determined by converting
the concentrations into RGB values and was equal to: RGB(red,0,blue).

Evolution under those assumptions turned out to be a harder problem. This
is understandable if one considers that it was now necessary for every cell to not
only reach a certain threshold of colour effector concentration, but also to maximize
(or fully repress) it. Rather surprisingly, evolutionary runs (terminated after 500
generations without improvement) took much longer, taking even up to 30 000
generations (compared to about 3 000 in the experiments with thresholding). This
indicates that the fitness landscape of this problem is actually much less rugged and
provides many more opportunities to fine-tune individuals. However, even the two
best individuals obtained in 10 runs would fail to maximize concentration of the red
effector (Fig. 6.25).

6.4.6 Three colour effectors

In this setup, a third type of colour effector was enabled which, when expressed,
would produce green colour of a cell. As in the experiment discussed in section 6.4.3,
colour effectors are thresholded, i.e., a cell gains the colour only if the given effector
has concentration above 0.5. Because cells could produce 3 types of colour effectors,
they could take 8 different colour combinations (instead of 4). Colouring was based
simply on the RGB combination of the effectors, which means that if none crosses
the threshold a cell is black and when all cross the threshold, a cell becomes white.
The target pattern (Fig. 6.26a) was defined so that cells in every area have to express
only a single colour effector and repress the two others. The colour reward used in

145

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

(a) (b) (c)

Figure 6.26: Three colour embryos evolved to use three distinct colour effectors: (a) target pattern,
(b,c) two best individuals obtained in 10 independent evolutionary runs.

the fitness function had to be modified accordingly and took the following form:

cxyz(D,R,G,B) =

(Rxyz+(2−Gxyz−Bxyz)/2

2
, if Dxyz is red

(Gxyz+(2−Rxyz−Bxyz)/2

2
, if Dxyz is green

(Bxyz+(2−Gxyz−Rxyz)/2

2
, if Dxyz is blue

0, if Dxyz is empty

∈ [0, 1] (6.11)

where R,G and B contain the corresponding thresholded colour components for each
voxel at position (x, y, z). cxyz becomes 1 if a single colour crosses the threshold in
match with the target, whereas the other two remain below the threshold. If all
effectors cross the threshold, the colour reward is equal to 0.5. If the desired effector
does not cross the threshold, but the two others incorrectly do, the colour reward
is 0. Due to higher problem difficulty, lower quality of patterning was achieved,
but indeed, the best two individuals would evolve approximately correct patterning
(Fig. 6.26bc).

6.5 Summary

The chapter introduced a novel model of multicellular development controlled by
gene regulatory networks. The development occurs in 3D environment with simu-
lated physics and contrary to most existing developmental systems, the model does
not rely on placing cells on a grid and allows them to move freely and interact
through physical forces. The evolvability of the model was demonstrated by chal-
lenging the genetic algorithm with a task of evolving simple 3D structures such as an
ellipsoid or an asymmetric shape, wider on one end. Providing the developing cells
with an environment in which simple physics is simulated allowed them to exploit it
and to simplify some of the genetic machinery that would be otherwise necessary to
create the desired morphologies. After introducing cellular differentiation to the sys-
tem, it was also demonstrated how the model can be used to simultaneously evolve
morphology and patterning of virtual embryos, in what is likely to be a first repor-
ted version of the 3D French flag problem. When available, the embryos would rely
on maternal morphogen gradients to define their morphology. However, even when
maternal factors were not present, by using only morphogens produced by cells, the
embryos were successful in developing into desired morphology and patterning and
generated their own gradients of morphogen concentrations.

146

6.5 Summary

Since the system allows for full control over which genes are active, as well as
allows to trace full evolutionary histories of evolved individuals, it can be used
as a research platform to investigate the evolution of morphology and its relation
with evolution of gene regulatory networks, essentially allowing to perform evo-devo
experiments in silico. Examples of knock-out experiments that allowed to determine
genes associated with certain morphological features were demonstrated.

It was further demonstrated how an ability to self-terminate development can be
evolved in such embryos, by incorporating additional term in the fitness function.

Interestingly, even though not evolved to be resilient to damage, the embryos
were found to be highly robust to random removal of even large fractions of cells
during their development. These results show how robustness to physical damage
is an emergent property of a developmental system. Furthermore, by promoting
the ability to self-repair in the fitness functions, fully grown embryos capable of
regrowing removed parts were obtained.

147

6. EVOLUTION OF MULTICELLULAR DEVELOPMENT

148

Chapter 7

Open ended evolution of 3D

morphologies

The experiments presented in chapters 4-6 relied on the existence of the objective
definition of a quality of a phenotype (i.e., the fitness function), which would guide
the search algorithm towards the better quality solutions. However, this is not how
biological evolutionary process works. Biological evolution progresses without a goal
beyond replication of individuals or their genes. If it would be possible to observe
ancestors of any given organism existing today, one would not see a continuum of
forms more and more adapted to the current environment. Instead, one would see
individuals that lived in different environments and that were shaped by different
evolutionary pressures. Most importantly, every ancestor would appear to be highly
adapted to the environment it happened to live in. The complex and intertwined
history of all living organisms is one of the main sources of life’s incredible complexity
and variation. It has been a Holy Grail of artificial life systems to recreate this
complexity in silico. Artificial life systems that attempt to do so are referred to as
open ended evolution systems (see, e.g., Adami et al., 1994; Channon and Damper,
2000; Ray, 1992; Yaeger, 1993, for some examples of such systems).

The problem that any optimization method has to face is the fact that fitness
landscape can have many local maxima. What may initially seem a good way to
improve existing solution may (and usually will) turn out to be an evolutionary dead
alley. The defining feature of evolutionary algorithms is the use of a population of
solutions in an attempt to deal with local optima. Even though a single individual
may be trapped in such an optimum, other individuals can explore other areas of
the fitness landscape. Finding the balance between exploitation of the local gradient
towards improvement and the amount of exploration performed in other areas of the
search space has been for years the subject of research in the field of evolutionary
computation. Many problem specific algorithms and various genome encodings have
been and are continuously proposed to address it. Still, many real life optimization
problems exhibit fitness landscapes that are so complex that genetic algorithms
perform very poorly. This is especially the case for problems where fitness landscapes

149

7. OPEN ENDED EVOLUTION OF 3D MORPHOLOGIES

are deceptive, i.e., finding the optimal solution would require the search to proceed
in a different direction than directly towards the best solution for extended periods
of time.

7.1 The Novelty Search algorithm

The novelty search algorithm, proposed by Lehman and Stanley (2008) is an ev-
olutionary algorithm that attempts to solve optimization problems by employing
a radical idea of abandoning the fitness function. The fitness function in the ori-
ginal evolutionary algorithm is replaced with a measure of phenotypic novelty. The
algorithm favours those individuals in the population that have the most novel
phenotypes. This is done even when it is possible to formulate a well defined fitness
function. However, in a deceptive search space, attempting to optimize the fitness
poses a risk of solutions getting trapped in a local suboptima. The method of Leh-
man and Stanley proposes to focus on exploring novel areas of the search space
rather than on heading directly towards the solution. This is achieved by assigning
a higher score not to highly fit individuals, but to solutions that are different from
those that have already been found. Perhaps surprisingly, novelty search does not
result in a blind walk through the space of solutions. The method has been shown
to outperform classical fitness based-search for problems such as guiding a robot
through a labyrinth and evolving bipedal locomotion (Lehman and Stanley, 2011).
Several methods that help evolutionary search by promoting genetic diversity (e.g.,
by rewarding individuals for having genomes different from those of other individu-
als) were previously proposed (see, e.g., Mahfoud, 1995; Sareni and Krahenbuhl,
1998). However, compared with other methods of sustaining diversity in the popu-
lation of solutions, novelty search focuses entirely on the diversity of the phenotypes,
not on the diversity of the genotypes.

The core of the novelty search algorithm is the measure of phenotypic novelty
which requires a measure of distance between any two phenotypes. For an algorithm
to function, a method must exist, that will allow to calculate the distance between
any two phenotypes. First, a matrix of distances between phenotypes of individuals
in the population is calculated. If a given individual is very similar to others, its
average distance to its closest neighbours will also be small. Novel individuals will
tend to be located further from the others, thus having higher average distance.
Lehman and Stanley (2011) define the measure of novelty as the average distance
of an individual x from its k-nearest neighbours. Thus, novelty is a measure of
sparseness of the phenotypic space surrounding the individual:

ρ(x) =
1

k

k∑
i=0

dist(x, µi) (7.1)

where µi is the i -th nearest individual in the behaviour space with respect to the
distance metric dist and k is the number of nearest individuals used to compute

150

7.1 The Novelty Search algorithm

(a) (b)

Figure 7.1: Comparison of novelty-based (a) and fitness-based (b) search in a deceptive maze
problem. Points represent final positions of the robots trying to escape the maze in subsequent
generations. Reproduced from Lehman and Stanley (2011).

sparseness of the phenotypic space surrounding individual x.

The candidates used to compute the distance are recruited from the current pop-
ulation as well as from the past. The latter is important. Otherwise, the evolving
population could backtrack in the search space, rediscovering phenotypes found
earlier. However, computing distance from all the past individuals can be compu-
tationally prohibitive. This is why only a selection of past individuals is used. This
selection is known as the archive. Whenever a considerably novel phenotype (i.e.,
with novelty above a threshold) is discovered, it will be copied to the archive, and
it will remain there as a representative of its type. Furthermore, setting a valid
threshold for adding individuals to an archive is domain-specific and it can change
during evolution. The method proposed by Lehman and Stanley (2011) uses an
adaptive algorithm. The threshold is increased if too many individuals are added
within given number of generations and lowered if no new individuals are added for
an extended period of time. In one of the examples investigated by Lehman and
Stanley (2011), robots that can guide through a deceptive labyrinth were evolved
using the novelty-based and fitness-based evolution (Fig. 7.1). The distance function
between phenotypes in a novelty-based evolution was the Euclidean distance between
the positions of robots at the final steps of their lifetime. As can be observed, fitness
based approach (Fig. 7.1a) gets trapped in a deceptive local suboptimal solution,
whereas novelty based search successfully explores the space of possible robot be-
haviours until it finds the solution (Fig. 7.1b). In this particular toy problem, the
novelty search algorithm benefits from the closed environment as the walls stop it
from exploring the infinite space outside of the labyrinth. As authors point out, for
some domains it may be necessary to constrain the space of possible solutions.

151

7. OPEN ENDED EVOLUTION OF 3D MORPHOLOGIES

7.2 Novelty Search for 3D Morphologies

The novelty search algorithm presents an interesting opportunity to create an open-
ended system for evolving 3D morphologies. On one hand, this creates a system with
more realistic evolutionary pressures. On the other, it can be seen as a generic way
of exploring what kind of morphologies are reachable in a given artificial embryogeny
system. The necessary changes to the system are limited to redefining the way fitness
value of each individual is computed by replacing it with the calculation of novelty
value (Eq. 7.1), based on a definition of distance function for two morphologies. The
developmental model and the genetic algorithm remain unchanged.

7.2.1 Distance function

To assess the novelty of each new phenotype, a voxel based approach was used,
similar to the approach used for fitness-directed shape evolution (Chapter 6). Equa-
tion adapted from Eq. 6.7 (p. 123) was used to calculate the distance between two
individuals A,B by counting the number of voxels that are different between the
two discretized shapes:

dm(Axyz, Bxyz) =
1

sxsysz

sx−1∑
x=0

sy−1∑
y=0

sz−1∑
z=0

|Axyz −Bxyz| (7.2)

where sx,sy,sz are dimensions of the cuboid containing the shapes, and Axyz, Bxyz ∈
{0, 1} is the voxel state at position x, y, z (1 is filled, 0 is empty). sx, sy, sz are set at
the beginning of an evolutionary run and have to be sufficiently large to encompass
a large spectrum of possible morphologies. This also means that a typical calculated
value of dm will tend to be small, as the volume of each morphology is much smaller
than that of the cuboid. However, this does not affect the novelty search algorithm,
because it relies only on the relative distances between phenotypes.

One of the limitations of voxel-based comparison of morphologies is that it is
sensitive to rotations and shifts. This is not a serious problem for goal directed
evolution, but could be easily exploited by evolution searching for novel individuals.
For example, novel individuals could be formed by introducing small rotation at the
initial stage of development. This is considered undesirable, so a further refinement
to the distance function based on the Principal Component Analysis was used.

The goal of the Principal Component Analysis (PCA) is to rotate and shift the
original coordinate system for a given set of n-dimensional observations so that
the variance of the first coordinate is maximized in the new coordinate system,
then the variance of the second coordinate, and so on. In the refined method of
fitness calculation, PCA is applied to a set of cell positions, which results in a shape
rotated so that the X axis is aligned with the longest axis of the embryo (Fig. 7.2).
Realigning all morphologies before comparison removes the effects of rotations and
shifts. However, it has its limitations. For example, if two very similar shapes that
are elongated in different directions are compared, PCA will rotate them completely

152

7.3 Results

x

y

x’

y’

x’

y’

x

y

x’

y’

x’

y’

Figure 7.2: Illustration of PCA based rotation for shift and rotation invariant morphology com-
parison. Upper and bottom row: two identical but shifted and rotated multicellular morphologies
become aligned and rotated so they can be directly compared. The PCA-based algorithm operates
on a vector of cell positions and ignores cell sizes.

differently, even though the difference between the shapes may be minimal. To
avoid this type of effects, PCA was only used as a secondary mechanism for shape
comparison. The shapes were compared two times, with and without PCA rotation.
The minimum difference between the two comparisons was chosen as a distance
between morphologies:

dist(A,B) = min(dm(A,B), dm(PCA transform(A),PCA transform(B)) (7.3)

A limitation of this distance measure is that PCA does not give directions for prin-
cipal axes. Ideally, both the shapes as well as their mirrored versions should be
compared. This was not implemented for the sake of simplicity and under expect-
ation that if it ever becomes an issue, the archive may be populated with mirrored
versions of similar morphologies. The full algorithm used to calculate novelty values
for all individuals in a population is presented as a pseudo code in the Appendix
(Listing 4, p. 181).

7.3 Results

The experimental setup assumes similar physical properties of the development to
those used in the earlier experiments on the evolution of shape and morphology.
Embryos are allowed to develop for 400 time steps, with a hard limit on the number
of cells set to 100. The minimal viability criteria are: at least one cell and termin-
ation of divisions in 300 time steps, so that for the remaining 100 time steps the
structure has the time to equilibrate. Genomes in initial populations are initialized
with a single regulatory unit, consisting of a single promoter and a single product,
so that complexification of the networks could be more easily observed (in evolu-
tionary simulations described in chapters 4-6, genomes were initialized with 5 or
more regulatory units). Furthermore, sexual crossover is not used. Although the

153

7. OPEN ENDED EVOLUTION OF 3D MORPHOLOGIES

Table 7.1: Essential GA parameters used in the experiments with the open ended evolution of 3D
morphologies. Additional parameters are provided in the Appendix (Table C.4, p. 186).

Parameter Value
Population size 300
Elite individuals 0
Asexually created individuals 300
Individuals through crossover 0
Initial population randomized genomes, 1 regulatory units each
Termination condition 5000 generations
Selection binary tournament (k = 2, p = 0.75)
Cell limit during development 100
Developmental time steps 400

Table 7.2: Types of products and promoters enabled in the experiments with the open ended
evolution of 3D morphologies and the interpretation of subsequent input and output elements.

Promoter types Product types External factors Effectors
additive transcription factor “1” (fixed high concentration) divide (threshold 0.8)

morphogen 4 maternal morphogen
sources at (0,0,10),
(9.43,0,-3.33),
(-4.71,8.16,-3.33),
(-4.71,-8.16,-3.33)

die (threshold 0.5)
rotation RH

rotation RL

rotation RU

crossover was observed to improve evolvability in earlier experiments (Chapter 6),
it is disabled here so that the full evolutionary history of an individual in the final
generation can be traced backwards to a single ancestral individual in generation 0.
The population size is set to 300 individuals, there is no elitism and GA runs for
5000 generations (see summary in Table 7.1). Four maternal morphogen gradients
were enabled, with sources equidistant from the centre of coordinate system and
from each other (Table 7.2).

One thing that should be emphasized about the approach used in this chapter,
is that this is not a random search through a space of possible genotypes. Such
search would result mostly in individuals incapable of division. Those, for which
multicellular development occurs, would most often form either clumps of cells or
some degenerate shapes (such as cells growing in a line). The novelty algorithm
searches the space of possible phenotypes, i.e., of possible morphologies. Each novel
morphology becomes favoured by the genetic algorithm and increases in frequency
in the population. In result, this reduces the novelty of this particular morphology
and so it will soon be replaced by other, previously unknown morphologies. This
creates an artificial embryogenesis system in which there is a constant pressure to
innovate.

7.3.1 Evolved morphologies

Figure 7.3 presents the novelty history of the evolving population over 5000 gener-
ations. The average level of novelty value in the population raises quickly during
the first 500 generations and then remains relatively stable over time (although ex-

154

7.3 Results

0.02

0.04

0.06

0.08

0.1

0 1000 2000 3000 4000 5000

generation

no
ve

lt
y

Figure 7.3: Maximum (red) and average (green) novelty value in the population during 5000 gener-
ations of novelty-driven genetic algorithm (measured every 100 generations). Bars indicate standard
deviation for novelty in the population.

periments running over 30 000 generations suggest that the average level of novelty
slowly increases). As opposed to the evolution directed by an objective fitness func-
tion, a stable level of novelty does not mean stagnation in the evolving population.
New forms are continuously being discovered. If stagnation ever occurred, it would
be observed as novelty level decreasing over time. The proposed approach creates an
artificial evolution system in which all the genomes take part in the Lewis Carroll’s
Red Queen’s Race, where “it takes all the running you can do to keep in the same
place”.

A visual inspection of the morphologies generated by genomes in the final popu-
lation reveals the level of morphological diversity that exists at this time (Fig. 7.4).
Multiple distinct forms exist together with their recognizable variations. Many indi-
viduals have appendages and display some level of symmetry. The range of apparent
morphological complexity of these morphologies far outreaches the complexity of the
shapes that were achievable using goal oriented evolution in experiments using the
GA (sections 6.2 and 6.4).

7.3.2 Novelty search archive

The novelty search archive is an essential part of the novelty search algorithm and
stores past individuals. Individuals in the current population are compared not
only to themselves, but also to already “extinct” individuals. The archive consists
of individuals that were added either because they were novel at the time or, at
random. The probability of random addition was set to p = 5 · 10−4 and applied
only to individuals meeting viability criteria. The reason for adding an individual
to the archive was also stored, so that each type could be later easily filtered. This
resulted in the archive with 1088 individuals at generation 5000. 432 of them were
added because their novelty was above the threshold at that time.

The analysis of the novel individuals stored in the archive shows that evolu-
tion started with visually simple morphologies (spherical clumps of cells or mats,

155

7. OPEN ENDED EVOLUTION OF 3D MORPHOLOGIES

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7.4: Morphological diversity in the population in generation 5000 of novelty-driven evolution
(a sample of visually interesting individuals from a population of 300).

Fig. 7.5). At that time, genotypes were still small because the evolution started
with random genomes consisting of single regulatory unit, basically allowing only
for division. As the evolution progressed, more complex morphologies appeared,
with protrusions in various directions, as well as more complex 2D shapes. The
latter are likely degenerate structures in which a genetic element allowing to divide
away from one plane was lost or damaged. Many of the morphologies look similar,
suggesting that once appendages evolve, small adjustments to genes controlling their
development result in a continuous stream of variation.

7.3.3 Evolutionary history

Since initial genomes consist of a single regulatory unit, morphological innovations
would not be possible without genetic duplications, and the results show that, in-
deed, genomes grow over time (Fig. 7.6a). The number of non functional elements
(such as TFs that do not bind to anything or promoters to which nothing can bind)
remains at the level of 15-30% (Fig. 7.6b). Thus, the lengthening of the genome
means also the growth of the number of vertices and the number of edges in the
GRN (Fig. 7.7). The increase was not uniform over time. For example, between
generation 3700 and 4600 the average size of the genome decreased twofold and
also resulted in comparable decrease in the average number of connections in the
networks. Then, the genomes would start growing again, and they regained most
of their previous size in just 400 generations. However, this time the growth was
mostly due to accumulation of disconnected (“junk”) genetic elements: the size of
the regulatory graph did not increase as much as the size of the genome did (compare
Fig. 7.6a and Fig. 7.7).

Because the sexual crossover was disabled, a single individual can easily be traced
backwards to the individual in the initial generation from which it evolved, together
with all the mutations that it had accumulated over time. This allows to observe
how mutations influenced morphology and also to trace all mutations in the lineage

156

7.3 Results

(a) Gen 2 (b) Gen 43 (c) Gen 64 (d) Gen 144

(e) Gen 201 (f) Gen 288 (g) Gen 481 (h) Gen 1161

(i) Gen 1352 (j) Gen 2745 (k) Gen 3077 (l) Gen 3772

(m) Gen 4105 (n) Gen 4337 (o) Gen 4337 (p) Gen 4552

(q) Gen 4821 (r) Gen 4910 (s) Gen 4991 (t) Gen 4991

Figure 7.5: A sample of novel individuals stored in the archive after 5000 generations of novelty-
driven evolution.

that contributed to the final state. To allow for such an analysis, all individuals
that existed during the evolutionary run were stored, together with the identifiers
of their parents. Many of the ancestors would not contain any mutations, so only
individuals that actually contained some changes in the genome were considered
(many had the same phenotype, because many changes to the genome are neutral).

An analysis of the lineage of the individual that had the highest value of novelty
in generation 5000 (Fig. 7.4a, Fig. 7.8t) was performed. It was found to have 2083
genetically different ancestors. The evolution started from a spherical embryo, and
complexification of the structure consisted of adding appendages and modifying

157

7. OPEN ENDED EVOLUTION OF 3D MORPHOLOGIES

0 1000 2000 3000 4000 5000

10

20

30

40

50

60

70

generation

ge
no

m
e

si
ze

(a)

0 1000 2000 3000 4000 5000

10

20

30

40

50

60

70

generation

ac
ti

ve
ge

no
m

e
si

ze

(b)

Figure 7.6: Genome and active genome size during the evolutionary run. Panel (a) shows the
genomes size, (b) the size of the active part of the genome. The red line corresponds to the individual
with the highest novelty in a given generation, the green line to the average, bars indicate standard
deviation. The values were determined every 100 generations.

0 1000 2000 3000 4000 5000

5

10

15

20

generation

ve
rt

ex
co

un
t

(a)

Edge count

0 1000 2000 3000 4000 5000

50

100

150

generation

ed
ge

co
un

t

(b)

Figure 7.7: Vertex (a) and edge (b) count in the regulatory network during novelty-driven evolu-
tionary run. Note that inputs and outputs also constitute vertices, thus the initial number of vertices
is 1 (single regulatory unit) plus inputs and outputs. The red line corresponds to the individual with
the highest novelty value in a given generation, the green line to the average, bars indicate standard
deviation. The values were determined every 100 generations.

their directions (Fig. 7.8). Typically, morphological changes between parent and
offspring were small. Individuals separated by a few hundred generations are still
recognizable as variations of the same morphology and often share distinct structural
features. This shows that the morphologies do not explore the phenotype space in
large random jumps. Instead, evolution usually progresses by small variations to
the phenotype.

Even though evolution progressed in small steps, the history of the chosen indi-
vidual contains morphologies that are very different from its final morphology. If an
attempt was made to evolve the same morphology using an objective function based
on similarity to this final shape (as in Chapter 6), the GA would stand a poor chance
of approximating this particular target. Even though the morphologies of ancestors
were dissimilar from the final individual and would have very low fitnesses, they were
important stages in the evolutionary history of this individual. An experiment con-
ceptually related to this discussion was recently performed by Woolley and Stanley
(2011) using an online, human driven image evolution system PicBreeder (Secretan

158

7.3 Results

(a) Gen 0 (an-
cestor 0)

(b) Gen 146
(50)

(c) Gen 292 (75) (d) Gen 335 (85)

(e) Gen 416 (100) (f) Gen 715 (200) (g) Gen 1063 (300) (h) Gen 1741 (500)

(i) Gen 2020 (600) (j) Gen 2281 (700) (k) Gen 2686 (900) (l) Gen 3052 (1100)

(m) Gen 3436 (1300) (n) Gen 3835 (1500) (o) Gen 4035 (1600) (p) Gen 4240 (1700)

(q) Gen 4423 (1800) (r) Gen 4629 (1900) (s) Gen 4856 (2000) (t) Final genome
(2083)

Figure 7.8: Select direct ancestors of a final individual with the highest value of novelty in generation
5000. Labels show generation number and a the subsequent number in a chain of mutated genomes.
The individual shown in (t) is the same morphology as in Fig. 7.4a, but presented from a different
point of view.

159

7. OPEN ENDED EVOLUTION OF 3D MORPHOLOGIES

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000
Generation

Figure 7.9: Time from the most recent common ancestor for the whole population in every generation
in the novelty-driven evolutionary run.

and Beato, 2008). Patterns were evolved using human selection, but an attempt to
evolve such human selected patterns de novo using a GA was unsuccessful.

7.3.4 Evolutionary time from the most recent common ancestor

The distance from the most recent common ancestor for the whole population in
every generation was traced to provide an insight into the level of diversification of
the evolving lineages (Fig. 7.9). For example, in the 230th generation, the distance
has a value of ∼ 140, which means that all individuals in this and all following
generations derive from a single individual that existed around generation 90 and
none of the remaining 299 individuals in that generation had left any surviving des-
cendants. The longest evolutionary time from a common ancestor for the whole
population exceeded 600 generations on two occasions (Fig. 7.9). The average time
(233.9 generations) suggests that certain new individuals had considerable compet-
itive advantage over the rest of the population and their descendants took over the
whole population relatively quickly.

7.3.5 Visualization of the phenotype search space

Multidimensional scaling (MDS) was applied to the individuals stored in the archive
during evolutionary run to visualize how the space of possible phenotypes is explored
over time. MDS (Cox and Cox, 2000) is a statistical technique used in exploratory
data analysis which allows to visualize dissimilarities between data samples. It can
also be used to visualize the results of a cluster analysis. MDS takes a matrix of dis-
tances (dissimilarities) between N data samples as an input and assigns each sample
a point in K-dimensional space (K < N) so that the distances between associated
points match the distances between samples in the original distance matrix with
a minimum error. Thus, MDS is capable of generating a geometric interpretation
of multivariate data, attempting to minimize the error introduced by the reduction
of data dimensionality. The implementation available in the statistical package R

160

7.3 Results

(R 2.13, 2011, function cmdscale) was used to perform classical multidimensional
scaling of a data matrix, also known as principal coordinates analysis (Gower, 1966).

The function used as the distance measure between any two individuals for nov-
elty search algorithm (Eq. 7.3) was also used to compute the distance matrices for
MDS. Because of the number of individuals in evolutionary histories is very large
(300x5000=1.5 million), only individuals found in the novelty search archive were
selected for analysis. Because individuals added to the archive by chance alone rep-
resent an unbiased sample of viable individuals from the whole history of evolution,
they allow to visualize the spectrum of morphologies existing in an evolutionary run.
The MDS analysis of all 656 individuals of this type was performed (Fig. 7.10).

Reducing something as complex as morphology to a single point in 2D represents
a huge loss of information. Nonetheless, strong patterns in the data are apparent:
three major clusters of morphologies can be observed and visual comparison of
random pairs of neighbouring points confirms that they have similar morphologies.

Unless the search through the space of possible phenotypes is very chaotic and
small changes to the genotype result in radical changes to the phenotype, one can
expect that individuals that appeared close in time are also similar phenotypically
and thus located closer to each other in Fig. 7.10. This is indeed the case: individuals
seem to be surrounded by individuals that appeared close in time (coloured similarly
in Fig. 7.10). Still, many individuals from later generations were similar to those
from earlier evolutionary periods. It is possible that mutations and the loss of genes
in later individuals results in degenerate (e.g., spherical) morphologies, similar to
genetically simpler ancestors. Such an appearance of new individuals revisiting areas
of the search space with less complex morphologies is expected. In addition, many
of the original forms (“body plans”) emerge early on, and later generations build
upon variations of them, not unlike what is thought to have happened during the
evolution of life on Earth.

It seems that the most salient small cluster of individuals (Fig. 7.10, cluster A)
consists predominantly of individuals formed earlier in evolutionary history (blue
and green in Fig. 7.10). Inspection of morphologies in that cluster revealed that
it groups flat morphologies (consisting of a single layer of cells). Most of them are
circular, but some interesting variations are also present. Closeness of the points
suggests that this is a degenerate lineage that does not allow for much variation
between phenotypes. Some new individuals were added to this cluster at the late
stages of evolution (red points), perhaps because a loss of genes allowing to reorient
divisions in the 3rd dimension is an event that happens in many later lineages and
will result in a novel flat shape.

Intermediate morphologies can be found between the three clusters (Fig. 7.10).
Large part of the individuals from initial generations remain close to each other
(Fig. 7.10, cluster B, dark blue). This cluster was found to group spherical individu-
als (also some from later generations) and the further from the centre of its weight,
the more pronounced are the protrusions. The more dispersed cluster C groups
a variety of morphologies with appendages, many of them from middle (greenish
points) and late (reddish) stages of evolutionary history.

161

7. OPEN ENDED EVOLUTION OF 3D MORPHOLOGIES

−
0.05

−
0.04

−
0.03

−
0.02

−
0.01

0.00
0.01

0.02

−0.01 0.00 0.01 0.02

2

5

6 11
18

18

21
2637

51

56

59
59

63

72

78

78

85

90

98
10
2
120

1
23
1
27

13
6

148

150

156

163

1
68

169

181

184

192

195

1
96

203

20
4

21
1

231

2
32

243

250

257

258

258

263

2
80

283

286

288

2
89

306

314
335

351

35
7

3
74

375

377

380

382

402

409

414

416

437
464

474

480

486

506

511

51
4

54
3

576

586

595

6
00

615
622

633

6
42

647 6
60

661

668
67
7

679

679 683

708

725

73
1

732

743

777

780

782
789

79
9

799

803

80
8

808

812

815

826

829

830

830

833

835

840

8
41

85
7

858

875

8
80

8
81

901

901

928

932

936

947

959 96
4

992

1
003

100
5

10
13

102
0

102
2

1023

1
030

10
42

1
052

1
078

107
9

1088

10
94

1110

1110

1124

1125

11
29

11
42

1
145

1
160

11
61

1
169

1171

118
2

123
2

12
34

1238
1271

127
1

1
272

127
8

1
282

1284

129
8

132
1

132
413
25

1328

1332

133
4

1
341

1351

1
357

13
63

13
64

137
4

138
2

1392

139
5

143
3

1442

1
443

145
8

14
65

1
472

1484 1
496

15
03

1506

150
8

1517
152

2

1531
1548

1550

155
1

1554

157
3

15
75

1
577

1580

158
9

1
590

1597

1599

1
612

162
2

162
9

1663

1672

167
5

1678

1680

1689

1700

1709

1719

1724

1746

1757

1770

1770

17
90

1
793

1802

180
4

1
807

181
1

1812

1820
1824

183
0

1839

1847
18
52

185
5

1860
187

5

188
5

188
7

18
93

1
899

1
902

1910

1917

191
7

19
32

194
0

1
942

19
46

19
51

1960

196
7

1967

1967

1978

1982 198
5

1987

2016

2
027

2027

2036

203
6

205
3

2054

207
0

20
80

2083

208
8

208
9

209
4

2118

2138

2
147

2152

21
75

217
8

217
9

218
1

2186

2
213

221
6

2216

223
1 2231

223
8

224
9

2
252

2261

2263

2268

226
9

2291

2295

2
302

2318

2320

2325

233
1

2332

233
5

2335

234
1

234
7

2350

23
70

2375

237
8

2385

2396

240
5

240
9

242
5

243
8

244
0

244
7

2463

2
467

2481

2496

249
7

249
9

2500

250
4

25
10

2519

252
9

254
0

2543

2546

254
9

2567

2570

258
1

2
582

2598

259
8

2605

2607

2
610

261
3

261
5

2618
2
619

26
23

263
4

263
4

263
5

2
641

2
654

265
9

266
3

26
76

2683

268
5

2696

270
8

27
12

2
713

271
5

2
716

27
18

2718

2722
27
27

274
3

274
5

275
6

2756

27
632778

2785

2786

278
8

2791

2799

280
1

2
811

2833

284
4

28
49

2855

285
8

286
0

2865

286
7

287
4

2914

292
2

292
3

292
5

293
5

29
41

294
3

2947

2971

2982

298
5

298
8

299
0

29
90

29
98

3011

301
5

3
017

30
21

303
0

303
2

3033
3033

307
2

307
6

3086

3087

30
98

3100

31
04

3115

3116

3118

3131

315
2

3
158

3158

315
8

316
1

316
6

317
4

317
7

3188
319

2

320
2

3205

3226

3227

325
8

325
8

327
53277

328
0

32
81

328
4

328
9

3305

330
8

3
308

3338

3342 334
4

334
6

335
0

339
2

3397

341
7

341
7

342
6

344
6

3449

345
4

3455

345
7

3459

3
459

34
60

3461

3
500

351
9

35
25

3530

3545

3551

3552

3557

3557

35
57

3559

3
560

357
0

35
72

3587

360
6

3617

362
0

3632

364
2

367
6

367
6

3
690

369
4

3700

371
2

3715

3
719

372
4

37
27

3740

37
42

374
4

3
764

3
766

376
7

377
0

377
6

37
83

3787

379
7

3798
380

3

380
8

382
4

3830

3836

385
4

3
859

386
0386
7

3882

38
84 39
12

3930

3
931

3
954

3
986

398
6

398
6

39
95

402
0

4
022

4031

403
3

403
6

4048
4069

4
079

4
092

409
7

40
99

41
12

41
24

412
8

4
132

4135

4136

41
51

415
9

418
3

4184

41
84

419
0

4
191

419
8

420
0

4203

421
6

4218

42
18

4220
424

9
4
257

425
7

425
8

426
0

426
5

4
302

430
9

431
4

43
22

433
1

4335
433

9

4344

4
344

434
9

435
3

436
2

436
3

437
2
437

7

43
85

440
2

4409

441
7

442
2

4435

445
1

447
7

448
1

4
488

4494

4
501

4512

452
1

453
4

453
4

4
534

453
7

453
9

4553

4
556

4578

4580

458
6

458
7

4592

459
6

45
98

4599

46
01

4616

461
8

462
7

463
0

464
9

4653

465
4

466
7

4673

46
75

4692

4693

46
98

4704

4716

4720

472
6

4737

4
739 4
752

47
55

4762

477
2

4786

479
1

4798

47
99

48
00

4
814

482
0

4831

483
4

484
5

487
1

4878
488

0 4880

4885490
2

4
904

49
14

4933

494
7

496
8

4972

4995

A

C

B

F
igu

re
7.10:

G
eom

etric
representation

(obtained
through

M
D

S)
of

the
sim

ilarity
b

etw
een

656
viable

random
individuals

that
existed

during
evolution.

E
ach

data
p

oint
is

lab
elled

w
ith

generation
num

b
er

ofthe
given

individualand
colour

corresp
onding

to
the

generation
it

com
es

from
.

Individuals
sam

pled
from

initialgenerations
are

blue,those
from

the
finalgenerations

are
red

and
individuals

that
existed

around
2000-3000th

generation
are

green.
M

orphology
of

selected
individuals

is
overlaid

on
the

graph.
A

pproxim
ate

clusters
A

,B
and

C
w

ere
determ

ined
visually.

162

7.3 Results

−0.06 −0.04 −0.02 0.00 0.02

−
0.
03

−
0.
02

−
0.
01

0.
00

0.
01

0.
02

2
22

223
3

4

4343

64

6767
72
93
105105105

105
105

144

144

148
148

148

201201201
201

201

265

283285

288
288288

288

288

342 342
342

342

392

393402
402402402402

478
481

481

481

481

481

541541541

541
541

621

621
621

621621

681

682

682

682

682

752

752

752752 752

801

801
801
801801

871

871871871

871941

941

941

941

941

1011

1011

101110111011

1082

1083 1083

1084

1084

1154

1159

1161

1161

1161

1161
1161

1222

1222

1222

1222

1222

1302

1303

1303

1303 1303

1352

1353

1353

13541354

1421

1421

1421

1421

14211471

1471

1471

1471

1471

1531

1532

1532

1532
1532

1532

15811581

1581

1581

1581

16541654

16541654

1654

1741

1741

1741

1741

1741

1811

18111812

18141814

18141814

1881

1881

1881

1881

1881

1948

195319611961

1961

1961

1961

2031

2031

2032
2032

2032

2101

2101

2101

2101

2101

2142 2142

2142

2142

2142

22212222

2222

22222222

2296

2303

2308

2311
23112311

2382

2382238223822382

2461

2461
2461

2461

2461

2532

2532

25322532

2532

2601

2601

2601

2601

2601

2672

2672

26722672

2672

2741
2745

2745

2745

2755

2756

2756
27562756

27562756
2825

2831
28312831

2871

28712871

2879

2881

2881

2881

2881

2921

2921

2931

2931

2931

2931
2931

2999

2999

2999

2999

3011
301230123012

3012

3077

3077
3077
3077

3077

3162

3162

3162

3162

3162

3234

3235323532353237

32733273

3274

328132813281

3281

32813281

3343

3345
3345334533453345

3421

3421

342134213421

34863486

3486

3486

3498
349834983498

3537

3542

3543

3543

3543
3613

3620
3620

3620

3620

3620

3683

3683

3683

3683

3683

3755

3756

3766

37663766
3772

3772

3772

3772

3772

3831

3835

3841

3841

3841

3841

3841

3881

3881

3881
3881

3881

3951

3954

3954

3954

3954

4029402940294035
4035

4035

4035

4035

4105410541054105

4112

41884188419041904191

4201

4201
4201

4201

4201

4266

4266

4269
4269

4275

4327

4329 4337

4337433743374337

4401

4401

4403

4403

44034403

4403

44774477

4477

44774477

4552

45534559

4559455945594559

4601

4601

4601

4601

4601

467146714671

4672

4672

4741

4742

4742

4742

4742

4821

4821

4821

4821

4821

4910
4910

4910

4910

4910

4991

4991

4991
4991

4991

A B

Figure 7.11: Geometric representation (obtained through MDS) of the similarity between 432 in-
dividuals added to the novelty archive because of their novelty level exceeding the threshold. Each
data point is labelled with generation number of the given individual and colour corresponding to the
generation it comes from. Approximate clusters A and B were determined visually.

To determine how the subset of novel individuals from the archive differs from the
subset of individuals added by chance, an MDS on these individuals was performed
in the same manner. Two salient clusters are evident (Fig. 7.11). Cluster A again
groups the flat individuals. The second cluster (B) has many individuals from the
initial generations in its centre (blue points) whereas its outer areas are populated
with more recent morphologies (green and red). This may be interpreted as the
visualization of evolution progressing by exploring new areas of the phenotype space
over time.

7.3.6 Repeatability

Each experiment with novelty search using different random seed would result in
a different evolutionary trajectories in which a different set of morphologies was
discovered. Some similarities between the runs can however be observed: typically,
evolution would start with spherical or flat embryos and then discover some forms
of appendages (Fig. 7.12). Then, a variety of morphologies is generated, with ap-
pendages growing in different directions, bending and twisting. Such appendages
were also observed to increase or decrease in number, while the overall morphology
remained unchanged. This shows how evolution can act on larger morphological fea-
tures. The crown-like morphologies with two, three or four appendages have been
observed in many other runs and seem to be a recurring form in repeated experi-
ments. In contrast to the earlier discussed run, evolution was observed to employ
apoptosis as a way to generate new solutions, resulting in individuals that remove
their centres at the end of development (Fig. 7.12ef).

163

7. OPEN ENDED EVOLUTION OF 3D MORPHOLOGIES

(a) Gen 121 (b) Gen 461 (c) Gen 1703 (d) Gen 3151

(e) Gen 3921 (f) Gen 3926 (g) Gen 4292 (h) Gen 4362

(i) Gen 4513 (j) Gen 4584 (k) Gen 4888 (l) Gen 5000

Figure 7.12: A sample of novel morphologies stored in the archive at the end of experiment repeated
with different seed of random generator. (ef): in some of the individuals apoptosis would occur during
development.

7.4 Summary

The apparent complexities of morphologies that could be obtained using open ended
evolution were found to be clearly higher than that of morphologies obtainable using
an objective fitness function in Chapter 6. The system was observed to explore the
phenotype space in small steps, with mutations typically resulting in small changes
to the phenotypes. However, by retracing the evolutionary history of a particular
individual, it could be seen how its further ancestors could be very different from
it. This is very similar to what is observed in biological evolution. The difference
between complexities of morphologies in this chapter and in Chapter 6 illustrate
the high deleterious effects of attempting to evolve complex morphologies using an
objective function: trying to directly evolve a more complex morphology can mean
that evolutionary milestones necessary to reach it may never be found.

Furthermore, the results obtained in this chapter demonstrate how the novelty
search algorithm can be used to create an open ended evolution system for 3D mor-
phologies, in which a constant evolutionary pressure for new shapes exists. This
can be seen as a way to explore the space of achievable phenotypes for a given
developmental model as well as to observe any inherent biases towards particular
morphologies. Importantly, the presented approach could by applied to other exist-
ing developmental systems.

At the same time, the results show how a fitness driven developmental system,
with minor variations to the code, can be transformed into an open ended evolu-

164

7.4 Summary

tion system. This allows to create a much more biologically plausible setting for
performing biologically inspired experiments related to investigation of the relations
between evolution of genomes, regulatory networks and morphologies.

The analysis performed in this chapter also demonstrated how the MDS algorithm
can be used to visualize the exploration of new areas of the phenotype space over
time, providing a new way of visualizing the progress of evolution in an open ended
alife system.

165

7. OPEN ENDED EVOLUTION OF 3D MORPHOLOGIES

166

Chapter 8

Summary and future work

The objective of this thesis was twofold. One was to investigate properties of the
biologically inspired model of development and gene regulatory networks (GRNs)
in the context of their potential practical applications. The limitations of direct
genotype-phenotype mappings mean that only relatively simple structures/designs
can be created using such an approach. Hence, the field of evolutionary computation
is on a constant lookout for new, indirect encodings that will allow to automatically
create more sophisticated designs or designs with certain desirable properties (such
as failure tolerance). To achieve that, the field frequently looks towards biological
inspirations. This thesis investigated the applicability of the GRN model to control
problems and found it to exhibit a high degree of evolvability. The computational
cost and overall evolvability of artificial GRNs and genotype-like encodings makes
them still a less likely choice than better understood optimization methods such as
neural networks (evolved or trained) for typical engineering problems, but we are
only starting to understand the properties and potential of this type of approaches.
It is a matter of time until they find their niches for which their advantages will
outweigh higher computational costs. The proposed model of development in 3D
controlled by GRN was found to be capable of evolving non trivial morphologies.
Such morphologies are encoded in a very indirect way and emerge through an or-
chestrated effort of genes interacting with each other, cell-to-cell communication and
laws of physics embedded in the environment. Although algorithmic generation of
an incremental assembly for arbitrary structures consisting of uniform components
would be relatively straightforward, it is the indirectness associated with biologically
inspired development that makes such approach interesting. It involves compression
of information and self organization through local processes and this, as was demon-
strated in Chapter 6, can result in structures that exhibit features that were not
selected for, such as high failure tolerance.

The other objective of this thesis was to design and create an evolvable computer
model of GRN controlled multicellular development that can be used to investigate
how genomes and morphologies evolve, thus allowing to perform experiments in silico
that would be relevant to evolutionary developmental biology (evo-devo). Although
multiple prior models of embryogenesis exist, this work attempted to create a model

167

8. SUMMARY AND FUTURE WORK

that would be more biologically plausible and would lift some of the limitations found
in earlier approaches. In the model introduced in this thesis, the development occurs
in 3D. Cells do not occupy discrete positions on a uniform grid and can move freely
in a continuous space and interact through a simulated physics. The fully grown 3D
embryo is a result of processes that occur at multiple levels of abstraction. At the
lowest level, TFs interact with regulatory regions on the artificial DNA. The network
of their interactions is represented as a graph of regulation, i.e., GRN. GRN controls
the action of each cell. Each cell takes an independent decision whether to divide, die
or reorient its axis of division or whether to emit morphogens which can be sensed
by other cells. Cells interact in a simulated physical environment and form a 3D
structure thanks to the adhesive forces between them. Finally, at the highest level
of evolution, genomes are mutated using biologically plausible mutation operators
and their populations evolve guided by a fitness function.

The introductory part of this thesis consisted of an overview of the essential
biological concepts this work attempted to model and abstract. It focused on the
encoding of genetic information in living organisms and the mechanisms of gene reg-
ulation, captured by the concept of the GRN. It also provided a brief introduction
to the recent discoveries of the evolutionary developmental biology that shed light
on how genes control the multicellular development and how small changes to the
genome can result in large, but organized changes in the morphology. Chapter 2
provided an overview of other existing models of GRNs and of multicellular develop-
ment on which this work builds upon and extends. Chapter 3 introduced the model
of the genome and the GRN. The essential feature of the virtual genome is that it
is based on an abstraction of biological regulatory and product coding regions and
it allows to encode an arbitrary topology of the GRN in a genome which does not
have a fixed size and can grow and shrink during evolution.

The ability of the proposed model to evolve GRNs that perform specific tasks
was investigated in Chapter 4. GRNs were evolved to produce specific patterns of
gene expression over time and to react to stimuli provided as an externally enforced
concentration of a product. Networks were evolved to process and respond to in-
formation encoded in the concentration of the input signal, its frequency and timing
of the stimuli. Investigation of the degree of generalization found that most of the
obtained networks generalized the presented problems and avoided overfitting to the
training set, a property crucial for any method of automatic controller design. The
quality of the solutions evolved using different versions of the fitness functions was
investigated and it was demonstrated how the evolvability can be improved with
additional terms in the fitness function that compensate for certain biases of the
GRN. An attempt to investigate how the evolved solutions function by visualizing
the topologies of their GRNs proved difficult, as the networks evolved to be very
dense and highly interconnected. Nonetheless, an insight into how the solutions
work could be gained by investigating how the networks react to different stimuli.
Finally, the networks were shown to exhibit a degree of tolerance to the inherent
noise of real gene expression, simulated as a Gaussian noise added to the product
concentrations. Functional networks with increased tolerance to high levels of noise

168

were obtained by evolving them with lower noise levels.

Chapter 5 built on top of the initial attempt to evolve GRNs that can process sig-
nals and applied it to the evolution of foraging behaviours of unicellular organisms.
The purpose of this chapter was to evaluate GRNs as real time controllers and to
create a more biologically plausible scenario of their evolution: organisms trying to
survive in a simulated environment. A more complex version of the problem was also
investigated, in which networks would have to present different behaviours based on
the same signals from sensors. The evolution of network topology was investigated
and a reduction of network density over time was observed. These experiments
served as a test bed for an open ended evolution system in which unicellular organ-
isms compete for resources and evolve. Such a system is currently being developed
and is based on the GRN model proposed in this thesis (Erdei et al., 2011).

Chapter 6 introduced the model of multicellular development, controlled by the
model of GRN introduced earlier. During development, each cell would have the
same genome and GRN, but would make independent decisions on its behaviour
based upon its environment which included detection of maternal gradients and
morphogens from other cells as well as based on its current state (concentrations of
its TFs). It was demonstrated how, by using an objective fitness function compar-
ing the embryo with an expected shape, embryos with desired morphologies can be
evolved. The embryos were investigated using gene knock-out experiments to de-
termine how the morphology is influenced by morphogens and correlations between
the loss of a gene and a loss of a morphological feature were observed (also investig-
ated in Joachimczak and Wróbel, 2008a). The embryos were investigated for their
robustness to cellular damage during development and were found to present a very
high degree of tolerance, capable of regaining most of their fitness even if 50% of the
cells were being removed. It was also demonstrated how embryos capable of regrow-
ing their fragments after lesions could be evolved. Section 6.4 demonstrated how
the model can be used to evolve morphologies with differentiated cells, by evolving
shapes with desired multi-colour patterning. Even without the presence of maternal
gradients, the cells were able to self organize and develop patterns using only endo-
genous morphogens. Furthermore, it was shown how the morphologies are obtained
thanks to cells exploiting physics of the system.

The final Chapter 7 proposed a novel method to create an open ended evolution
environment from an existing artificial embryogenesis system, with only relatively
small changes to the code. Open ended evolution was found to result in a range of
morphologies that have much higher apparent complexities than the morphologies
achievable in experiments with an objective fitness function (Chapter 6). Evolution-
ary histories of selected individuals were investigated by retracing their ancestors
through evolutionary time. The exploration of the phenotype space was analysed
with the use of multidimensional scaling (MDS). The evolution was observed to
proceed through relatively small changes to the phenotypes and continuously dis-
covering new areas of the phenotype space. Such properties are very desirable from
the point of view of evolvability.

169

8. SUMMARY AND FUTURE WORK

8.1 Summary of contributions

This thesis contributes to our understanding of evolvability of artificial GRNs and
the range of problems it can be applied to and pushes the boundary of what can
be done using highly biologically inspired approach to artificial embryogenesis. It
shows how GRNs can be used to evolve circuits that process continuous signals and
control simple robots and finds that they display very good generalization proper-
ties. It shows the inherent robustness associated with this method of control and
demonstrates how evolvability is improved by incorporating the knowledge of some
of the biases associated with this model of computation into the fitness function.
The thesis introduces a new model of GRN controlled multicellular development
that does not need to occur on a grid and happens in a continuous space with cells
interacting through simulated physical forces. The model is a compromise between
realism and computational tractability and allows to investigate the evolution of
development in silico, giving full access to the history of evolution and changes that
occur in genomes, GRNs and morphologies. It furthers our understanding of de-
velopment and its inherent features that emerge even if they are not selected for,
such as very high robustness to damage and self organization relying on intercellular
communication. It shows how the fitness function can be modified to evolve mul-
ticellular structures that have desired properties such as self termination of growth
or ability to regrow their parts.

Finally, the thesis proposes an open ended system for evolution of 3D morpho-
logies which can be used to explore the space of possible phenotypes in this and
other developmental models. It can also be used as a platform to study evolu-
tion of development, since it applies continuous evolutionary pressure to evolve new
morphologies.

Revisiting the original thesis presented at the beginning of this work (p. 17), the
evolvability of the proposed GRN model has been demonstrated on multiple types
of problem in chapters 4, 5 and 6. The model of three dimensional development in a
grid-less setting was found to display a high degree of evolvability and demonstrated
very desirable emergent properties such as robustness to damage (Chapter 6). It
was then extended into an open ended system that allows to investigate general
properties of evolving genomes and morphologies (Chapter 7).

8.2 Future work

The experiments performed in this thesis provide only an introductory overview
of what can be achieved using computation inspired by biological genomes, reg-
ulatory networks and development. Many directions of further research can be
envisioned, both focusing on the practical applications and on relevance for under-
standing biology.

For example, the experiments in evolving signal processing GRNs (Chapter 4)
focused on the evolvability of a single GRN interfacing the external world through
special TFs. It would be interesting to investigate whether employing ensembles

170

8.2 Future work

of GRNs (multiple cells sharing the GRN or a developing embryo) would have an
improved evolvability and would allow to solve more complex tasks. Would the
division of labour and specialization among the cells emerge? It remains an open
question whether allowing evolution more fine grained control on the properties of
TFs, such as their degradation rates (by encoding additional values for every genetic
element) is helpful (some GRN models indeed allow that, e.g., Knabe et al., 2006).
Would it improve evolvability to explicitly implement higher levels of regulation that
exist in cells, such as protein-protein interactions? Furthermore, the current model
of TFs binding to the promoters does not involve any competition for the binding
sites. Although high concentration of a TF will currently lead to the saturation of
its effect owing to the use of a sigmoidal activation function, there is no effect of
increased number of the binding sites (which would reduce the effect a given TF
per site). This has implications on the effects of gene duplications and it should be
investigated how this influences the evolvability of the system.

Hardware implementation of the GRN would allow to increase the speed of evolu-
tion by orders of magnitude. In fact, systems allowing for hardware accelerated evol-
ution of neural networks solving problems similar to the ones discussed in Chapter 4
have been built in the past, one example being the CAM-Brain Machine (de Garis
and Brain Builder Group, 1999; de Garis et al., 2000). Recent advancements in
low powered and highly parallel computing only revived the interest in hardware
implementations of neural networks (see, e.g., Indiveri et al., 2011, and references
therein) and often the same or similar hardware could be used to simulate GRNs.

On the other hand, the function performed by each node in the regulatory graph
could be modified, so that it behaves as a neuron and thus the genome would encode
topology of a neural network. Although not biologically plausible, this would allow
to compare the evolvability of this method of encoding network topologies with other
types of indirect encodings. It was recently demonstrated that networks of adaptive
exponential integrate-and-fire neurons (Adex, Brette and Gerstner, 2005) and leaky
integrate-and-fire with fixed threshold neurons (Dayan and Abbott, 2001) can be
evolved using the discussed genetic encoding and can generate desired output spike
trains in response to a specific spike train stimuli (Wróbel et al., 2012a).

A completely opposite direction would be to focus on increasing the biological
realism of the GRN model, so that it could be used to automatically design syn-
thetic (“wet”) GRNs having certain properties. The interest in creating bacterial
cells performing desired functions is currently on the rise (see, e.g., Elowitz and
Leibler, 2000; Friedland et al., 2009) and potential therapeutic and bioengineering
applications could be revolutionary.

The developmental model introduced in chapter Chapter 6, although one of the
very few (if not the only) that is capable of evolving morphologies in 3D without the
use of a grid, has many limitations which should be addressed in a later work. For
one, the grid-less diffusion model does not conserve mass, and thus provides only
simple cell-cell communication, without being biologically plausible. It could be
improved by assuming that morphogens diffuse on a grid, but the grid does not have
to be uniform and can adapt its resolution depending on the local gradient steepness

171

8. SUMMARY AND FUTURE WORK

(e.g., using octrees). Alternatively, cells can be assumed to transfer morphogens only
to their adjacent neighbours determined either by the distance or using some other
neighbourhood criteria (e.g., Voronoi neighbours). Furthermore, lifting the current
assumption of spherical cell representation would pave a way for a whole new range
of phenomena essential for biological development that relies on elastic properties
of cells. Simulation of a more complex physics would have higher computational
cost but the experience with the current version of the system shows that physics
simulation amounts to only a small fraction of the computational costs: it is the
need to update the state of the GRN with hundreds of connections and do so for
every cell in the system that is the most computationally expensive.

Yet another interesting research direction for the current developmental model
would be to improve the capability of the embryos to regrow their parts after le-
sions. Results obtained in this work are promising and suggest that incorporating
more explicit signals of cellular damage would be helpful to improve this ability.
Furthermore, the networks evolved with expression noise in Chapter 4 were found
to exhibit much higher robustness to noise than their counterparts evolved without
noise. Would the developmental process evolved with expression noise result in em-
bryos that are more robust both to noise and cellular damage as a side effect? The
first results suggest that it is indeed so (Joachimczak and Wróbel, 2012a).

If the cells were allowed to differentiate into neurons of various properties, the
system would allow for evolution of developmental neural networks. Although many
methods exist to evolve the structure of a neural net, the common problem of all
evolutionary design methods is the issue of scalability. None of the existing meth-
ods allows to evolve structures of complexity comparable even with that of a neural
structures of a common fly. But we know that structures like the brain are created
through a developmental process and we know that the encoding of their struc-
ture is very indirect. Nowhere in the genome there is a list of connections between
neural cells, for the simple reason of the genome being orders of magnitude smaller
in information content than the brains are. Hence, artificial development is looked
upon as one of the approaches which, thanks to the efficiency of indirect encod-
ing and modularity, will allow us to automatically design artificial brains of much
higher complexities than are currently possible. Thus, an important area of further
research would be to investigate the cells’ ability to differentiate into neurons and
evaluate various possible methods of organizing the connectivity between differenti-
ated neurons.

One of the goals of the current system is to ultimately add another level of
realism and allow multicellular structures to move in a simulated environment, as
was evaluated for single cells in Chapter 5. The early implementation of such a
system in 2D, based on the developmental model presented in Chapter 6, yielded
very exciting results in which morphologies and controllers for multicellular soft-
bodied robots were successfully evolved. The system was able to discover a wide
range of modes of locomotion and morphologies, such as undulating elongated indi-
viduals and, most interestingly, individuals that grow primitive, fin-like appendages
(Joachimczak et al., 2012; Joachimczak and Wróbel, 2012).

172

8.2 Future work

Finally, the open ended system proposed in Chapter 7 was designed to create a
more biologically plausible platform for simulating the evolution of artificial genomes
and morphologies. It would be interesting to investigate how statistical properties
of regulatory networks change during evolution, for example, their degree distribu-
tions, modularity or clustering coefficients. Are some network motifs overrepres-
ented? (see, e.g., Alon, 2007) It would be interesting to pursue some of the main
evo-devo questions, such as whether the changes in morphologies that happened
during evolutionary histories occurred mostly due to changes to gene regulation or
due to addition of new genetic elements. Are mutations to older genes more detri-
mental than those to more recent ones? Does the phenomenon of terminal addition
occur during evolution of development (better known as the haeckelian principle of
ontogeny recapitulating phylogeny)? Finally, an even more realistic system based
on the current one can be envisioned to simulate evolution of development in a more
alife setting, in which morphologies compete for some limited resource. For example,
virtual, multicellular plants could be grown to collect sunlight shining from the top,
thus igniting the competition for height, but at the cost of stability and robustness
to side forces, such as simulated wind.

Although the speed growth for a single CPU core have abruptly slowed down
in recent years, the speed of CPUs continues its exponential growth, though now
mostly thanks to symmetric multiprocessing (SMP) performed by the increasing
number of cores on a single chip. This trend will increase the relevance of highly
parallelisable methods of optimization such as evolutionary computation, as well as
the importance of highly parallel methods of computing that are robust to inter-
ference and failures of its components. This means an increased demand for more
evolvable indirect genotype-phenotype encodings that can scale to larger structures,
such as the methods inspired by biological development and regulatory networks
described in this work.

173

8. SUMMARY AND FUTURE WORK

174

Appendix A

Software implementation

The software platform used to obtain the results described in this thesis has been
developed in C++ with Standard Template Library (STL). The code was written
in a cross-platform manner and the platform relies on wxWidgets cross platform
toolkit (wxWidgets 2.9.3, 2011). OpenGL was used for rendering of 3D embryos
and virtual 2D worlds in which foraging animats evolve.

The main application allows to configure and execute the GA and view its pro-
gress. It also allows to investigate any individual, its genome, regulatory network,
and developmental process. It also allows to observe gene expressions changing in
real time, as well as to visualise expressions in all cells and gradients of morphogens
in 3D (Fig. A.1).

Figure A.1: GUI of the software platform designed to perform the experiments discussed in this
thesis. Main window is visible, as well 3D view of a developed embryo, genome view and history of
activation of a selected regulatory element.

A.1 Parallelisation

The most CPU intensive part of the simulation (evaluation of the newly created
population of genomes) is parallelised to fully exploit the SMP paradigm that is
nowadays increasingly common in the form of multi core CPUs. The main thread
spawns worker threads in a number equal to detected CPUs. Each thread evaluates

175

A. SOFTWARE IMPLEMENTATION

a single genome (computes the fitness). Worker threads that have completed their
work request genomes from the pool of genomes that have not been evaluated yet.
Furthermore, some of the CPU intensive loops (such as generation of an initial pop-
ulation) rely on OpenMP, a lightweight and convenient thread model that became
increasingly available in compilers during the existence of the project.

A console version of the main application (sharing its code, but lacking the GUI)
has been prepared for use on computer clusters. It employs MPI to distribute the
workload using a master-slave model. The master process stores the current state
of the GA and the configuration of the experiment. Whenever a new generation
is created, the master distributes the genomes for evaluation among all available
slave processes. Because evaluation times can easily vary by at least an order of
magnitude (especially for simulated embryogenesis, which can not occur at all or
stop prematurely), slave processes request additional work as soon as they have
completed their initial assignment. The cost of communication remains very low,
because each genome is sent in a binary format in messages that are typically less
than 5KB in size. The results described in this thesis have been obtained on the
two largest Polish clusters, Galera (Tri-city Academic Computer Centre, TASK)
and Halo2 (Interdisciplinary Centre for Molecular and Mathematical Modelling,
University of Warsaw).

The main process stores the full history of the evolution in files which can be
later analysed. Files generated by the GUI and cluster version of the software are
fully interchangeable.

Some of the experiments described in this thesis relied heavily on random number
generation. This applied especially to the experiments with noisy gene expression
(section 4.6). In these experiments, random number generation becomes a consider-
able cost. Furthermore, the default random number generator present in the C++
standard library is not thread safe. Synchronizing access to it using locks would
be very expensive. Because of these concerns, a much faster algorithm, Mersenne
twister (Matsumoto and Nishimura, 1998) was used to generate random numbers
with the use of SFMT library (2007). Since this library is also not thread safe, a
wrapper class was created. Each thread requests access to random numbers through
this class and the class synchronizes their access. To reduce the cost of locking, each
thread has a local cache of hundreds of random numbers, and new batch of random
number is generated once this cache is exhausted.

A.2 Analysis

Files storing the history of all individuals existing during an evolutionary run were
parsed using scripts written in R, an open source software package for statistical
analysis (R 2.13, 2011). Most of the graphs presented in this thesis were prepared in
R. iGraph library for R (Csárdi and Nepusz, 2010) was used for drawing regulatory
networks and analysing their properties.

176

Appendix B

Algorithms

In this section, the pseudo code for decoding a genome into GRN, simulation of
GRN and genome recombination discussed in Chapter 3 is presented.

177

B. ALGORITHMS

Algorithm 1: The algorithm for decoding a genome into a GRN graph.
Input: Nin,Nout the numbers of defined external factors and effectors, respectively

L a list of genetic elements
Output: graph G representing the GRN and the array with information about the types of

promoters and products associated with every vertex

/* STEP 1: locate regulatory units in L */
move first Nin elements found in L with type external factor to a list Linputs;
move first Nout elements found in L with type effector to a list Loutputs;
remove remaining elements with type external factor or effector from L;
/* L contains now only elements belonging to the classes of product or promoter */

remove from L all elements from class product that are before the first element of class promoter;
remove from L all elements from class promoter that are after the last element of class product;

/* L consists now only of a series of regulatory blocks */
foreach group of promoters followed by products in L do

add a vertex v to graph G; associate genetic elements from this group with the vertex v;

/* STEP 2: determine the connectivity in G */
foreach vertex vdst in G do

foreach promoter r associated with vdst do
foreach vertex vsrc in G do

foreach product p associated with vsrc do
w=compute affinity(r,p); /* uses Eq. 3.1, p. 66 */
if w!=0 then

add an edge to graph G from vertex vsrc with weight w to vertex vdst;
store that it connects through promoter r; /* this information is only
needed when multiplicative promoters are enabled */

/* STEP 3: connect inputs and outputs of G */
foreach element i in Linputs do

add a vertex vin to graph G; /* create input node */
mark n-th input vertex as n-th external factor;/* each subsequent input node receives the
signal from the subsequent type of external factor defined in the experiment */
foreach vertex vdst in G do

foreach promoter r associated with vdst do
w=compute affinity(r,i);
if w!=0 then

add an edge to graph G from vertex vin with weight w to vertex vdst;
store that it connects through promoter r;

foreach element o in Loutputs do
add a vertex vout to graph; G /* create output node */
mark n-th output vertex as n-th cellular effector; /* each subsequent output node
corresponds to subsequent type of cellular effector */
foreach vertex vsrc in G do

foreach product p associated with vsrc do
w=compute affinity(p,o);
if w!=0 then

add an edge to graph G from vertex vsrc with weight w to vertex vout;

178

Algorithm 2: Pseudo code for updating the state (concentrations) in a GRN with every
time step.

Input: regulatory graph G, information about genetic elements associated with its vertices, edge
weights W [], concentrations C[] associated with each node at the time t, time step dt

Output: updated concentrations NC[] for time step t+ 1

/* STEP 1: update the state of the external factors (input nodes) */
foreach input vertex vin in G do

assign the concentration of subsequent external factor to each subsequent vertex vin; /* there
are at most as many input nodes as external factor types defined */

/* STEP 2: update the state of all normal nodes in the graph */
foreach non i/o vertex vdst in G do

aadd = 0; /* total activation of additive promoters for this vertex */
amul = 1; /* total activation of multiplicative promoters */
foreach promoter r that belongs to vdst do

ra = 0; /* activation of the promoter r */
foreach vertex vsrc in G that connects to promoter r with the edge e do

ra = ra + C[vsrc] ∗W [e]; /* add to activation of promoter r, Eq. 3.3, p. 68 */

/* handle activations of each promoter type separately for Eq. 3.4, p. 68 */
if is multiplicative(r) then amul = amul ∗ ra else aadd = aadd + ra;

atotal = aadd ∗ amul; /* total activation of the vertex vdst, Eq. 3.4, p. 68 */

/* compute the new concentration of vdst using Eq. 3.2, p. 68 */
NC[vdst] = C[vdst] + (tanh(atotal/2)− C[vdst]) ∗ dt;

/* STEP 3: update the state of cellular effectors (output nodes) */
foreach output vertex vout in G do

a = 0; /* total activation of this vertex */
foreach vertex vsrc in G that connects to vout through edge e do

a = a+ C[vsrc] ∗W [e];

/* compute the new concentration for output vertex using Eq. 3.2, p. 68 */
NC[vout] = C[vout] + (tanh(a/2)− C[vout]) ∗ dt

179

B. ALGORITHMS

Algorithm 3: Pseudo code of the algorithm used to perform a multi point cross over.
Input: P1,P2 - arrays of genetic elements in parent 1 and parent 2

function randomizeAction() draws a random integer in [0..4] with relative probabilities
equal to 5,5,1,1,30, respectively

Output: R - a list of genetic elements of the recombined genome

c1=0;c2=0; /* IDs of currently selected genetic elements in P1 and P2 */
a=0; /* current action ID, a ∈ [0..3] */
finished=FALSE; /* termination flag */

repeat
ra=randomizeAction(); /* randomize current action, 4 means no change */
if ra<4 then a=ra;

/* make sure we are not trying to read beyond the genome */
if a in {0, 2} and c1 == size(P1) then finished=TRUE;
if a in {1, 3} and c2 == size(P2) then finished=TRUE;

/* perform currently selected action */
if finished == FALSE then

switch a do
case 0

R ← P1[c1]; /* insert a single genetic element from P1 to R */
c1=c1 + 1; c2=c2 + 1; /* increment current IDs for both parents */
break;

case 1
R ← P2[c2]; /* insert a single genetic element from P2 to R */
c1=c1 + 1; c2=c2 + 1; /* increment current IDs for both parents */
break;

case 2
R ← P1[c1]; /* insert a single genetic element from P1 to R */
c1=c1 + 1; /* increment current IDs for P1 only */
break;

case 3
R ← P2[c2]; /* insert a single genetic element from P2 to R */
c2=c2 + 1; /* increment current IDs for P2 only */

until finished == TRUE;

180

Algorithm 4: Pseudo code for the calculation of novelty in a population of individuals during
open ended evolution of 3D morphology (Chapter 7).

Input: population P , current state of the archive A, novelty threshold of adding individual to the
archive at, the number of individuals nr added in past 10 generations with novelty above at

Output: novelty value fn for each individual in P , updated archive A, at, nr

/* PCA transform(p) rotates and shifts phenotype p using PCA */
/* cmpShapes(p1, p2) calculates distance dm between phenotypes p1,p2 using Eq. 7.2,
p. 152 */

/* findNearest(p, S, k) returns k nearest individuals in set S from individual p */
/* avgDistance(p, S) returns the average distance of individual p from individuals in
set S */

/* STEP 1: calculate the distance between every phenotype in P and in P ∪A */
for i = 0 to size(P)− 1 do /* for each individual in P */

for j = i to size(P)− 1 do /* calculate distance from every other phenotype in P */
dm1=cmpShapes(P [i], P [j]);
dm2=cmpShapes(PCA transform(P [i]), PCA transform(P [j]));
dpopulation[i][j]=dpopulation[j][i]=min(dm1, dm2);

for k = 0 to size(A)− 1 do /* calculate distance from every individual in A */
dm1=cmpShapes(P [i], A[k]);
dm2=cmpShapes(PCA transform(P [i]), PCA transform(A[k]));
darchive[i][k]=min(dm1, dm2);

/* STEP 2: calculate novelty using the computed distances, functions findNearest and
avgDistance rely on distances stored in dpopulation and darchive */

for i = 0 to size(P)− 1 do /* calculate novelty fn for each individual in P */
N=findNearest(P [i], P ∪A \ P [i], 15); /* insert 15 nearest into setN */
fn[i]=avgDistance(P [i], N); /* calculate average distance from N */
if fn[i] > at then A← P [i]; /* insert a highly novel individual to the archive A */
else

if rand01() > at then A← P [i]; /* insert a random individual to the archive A */

/* update the count of recently added novel individuals and threshold at */
nr=countNovel(A, 10); /* counts novel inviduals in A from past 10 generations */
if nr > 10 then at=at ∗ 1.2; /* raise or lower the thrershold */
else if nr < 1 then at=at ∗ 0.95;

181

B. ALGORITHMS

182

Appendix C

GA settings

This appendix lists detailed settings used to control the GA, which were omitted in
the main text.

183

C. GA SETTINGS

Table C.1: Detailed GA parameters used in the signal processing experiments described in Chapter 4.

Settings for genome level mutations (event probabilities per genome)
Probability of duplication 0.1
Probability of deletion 0.2
p for the geometric distribution of length of duplication/deletion 0.1
(p is the probability of length not being extending by yet another element)
Settings for mutations at the level of a genetic element (probabilities per element)

Probability of element type change (see table below for probabilities) 0.005
Probability of element modifier sign change 0.005
Probability of element insertion of randomized element 0.005
Probability of element position change 0.05
Standard deviation of distance by which genetic element position is changed 1

Properties of randomized genomes in the initial population
Number of regulatory units 5
Initial locations of element positions located at the distance drawn from

N(0, 10) in random direction from (0, 0)
Number of promoters in a randomized regulatory unit drawn from N(3, 3), with minimum of 1
Number of products in a randomized regulatory unit drawn from N(3, 3), with minimum of 1

Relative probabilities for each type of element when the type field is randomized
Additive promoter 1
Multiplicative promoter 1
Transcription factor 1
External factor 0.1
Effector 0.1

Table C.2: Detailed GA parameters used for evolution of chemotaxis in the experiments described
in Chapter 5.

Settings for genome level mutations (probabilities per element, unlike in Tab.C.1)
Probability of duplication 10−4

Probability of deletion 10−4

p for the geometric distribution of length of duplication/deletion 0.1
(p is the probability of length not being extending by yet another element)
Settings for mutations at the level of a genetic element (probabilities per element)

Probability of element type change (see table below for probabilities) 5 · 10−4

Probability of element modifier sign change 5 · 10−4

Probability of element insertion of randomized element 0
Probability of element position change 0.005
Standard deviation of a distance by which genetic element position is changed 1

Properties of randomized genomes in the initial population
Number of regulatory units 5
Initial locations of element positions located at the distance drawn from

N(0, 10) in random direction from (0, 0)
Number of promoters in a randomized regulatory unit drawn from N(3, 3), with minimum of 1
Number of products in a randomized regulatory unit drawn from N(3, 3), with minimum of 1

Relative probabilities for each type of element when the type field is randomized
Additive promoter 1
Multiplicative promoter 0
Transcription factor 1
External factor 0.1
Effector 0.1

184

Table C.3: Parameters of the simulated physics used to simulate multicellular development described
in Chapter 6. Description of the physics is provided in section 6.1.2.

Parameter Value
Default cell diameter 0.8
Cell mass 1
Cell repulsion strength coefficient cr 5
Cell adhesion strength coefficient ca 1
Position of the initial cell (0,0,0)
Fluid drag force coefficient ck 5
Physics time per simulation step 0.05

Table C.4: Detailed GA parameters used in the experiments on evolving GRNs to control 3D
development described in Sections 6.2 and 6.3.

Settings for genome level mutations (event probabilities per genome)
Probability of duplication 0.02
Probability of deletion 0.04
p for the geometric distribution of length of duplication/deletion 0.1
(p is the probability of length not being extending by yet another element)
Settings for mutations at the level of a genetic element (probabilities per element)

Probability of element type change (see table below for probabilities) 0.005
Probability of element modifier sign change 0.005
Probability of element insertion of randomized element 0
Probability of element position change 0.005
Standard deviation of a distance by which genetic element position is changed 1

Properties of randomized genomes in the initial population
Number of regulatory units 5
Initial locations of element positions uniform distribution over a square area

with upper left corner at (-3.5,3.5) and
bottom right at (3.5,-3.5)

Number of promoters in a randomized regulatory unit 1
Number of products in a randomized regulatory unit 1

Relative probabilities for each type of element when the type field is randomized
Additive promoter 1
Multiplicative promoter 1
Transcription factor 1
Morphogen 0.2
External factor 0.1
Effector 0.1

185

C. GA SETTINGS

Table C.5: Detailed GA parameters used in the experiments on evolving GRNs to control patterning
of 3D embryos described in section 6.4.

Settings for genome level mutations (event probabilities per genome)
Probability of duplication 0.05
Probability of deletion 0.05
Duplication/deletion length position of first and last element chosen randomly
Settings for mutations at the level of a genetic element (probabilities per element)

Probability of element type change (see table below for probabilities) 0.005
Probability of element modifier sign change 0.005
Probability of element insertion of randomized element 0.005
Probability of element position change 0.01
Standard deviation of a distance by which genetic element position is changed 1
Probability of element being repeated during creation of mutated genome 0.005
Probability of element being lost during creation of mutated genome 0.01

Properties of randomized genomes in the initial population
Number of regulatory units 5
Initial locations of element positions located at the distance drawn from

N(0, 10) in random direction from (0, 0)
Number of promoters in a randomized regulatory unit drawn from N(3, 3), with minimum of 1
Number of products in a randomized regulatory unit drawn from N(3, 3), with minimum of 1

Relative probabilities for each type of element when the type field is randomized
Additive promoter 1
Multiplicative promoter 1
Transcription factor 1
Morphogen 0.2
External factor 0.1
Effector 0.1

Table C.6: Detailed GA parameters used in the experiments with open ended evolution of 3D
morphologies described in Chapter 7.

Settings for genome level mutations (event probabilities per genome)
Probability of duplication 0.05
Probability of deletion 0.05
p for the geometric distribution of length of duplication/deletion 0.5
(p is the probability of length not being extending by yet another element)
Settings for mutations at the level of a genetic element (probabilities per element)

Probability of element type change (see table below for probabilities) 0.005
Probability of element modifier sign change 0.005
Probability of element insertion of randomized element 0
Probability of element position change 0.01
Standard deviation of a distance by which genetic element position is changed 1

Properties of randomized genomes in the initial population
Number of regulatory units 5
Initial locations of element positions uniform distribution over a square area

with upper left corner at (-3.5,3.5) and
bottom right at (3.5,-3.5)

Number of promoters in a randomized regulatory unit 1
Number of products in a randomized regulatory unit 1

Relative probabilities for each type of element when the type field is randomized
Additive promoter 1
Multiplicative promoter 1
Transcription factor 1
Morphogen 0.1
External factor 0.1
Effector 0.1

186

Bibliography

Adami, C., Brown, C. T., and Kellogg, W. K. (1994). Evolutionary learning in the
2D artificial life system “Avida”. In Brooks, R. and Maes, P., editors, Proceedings
of Artificial Life IV: Proceedings of the 4th International Workshop on the Syn-
thesis and Simulation of Living Systems, pages 377–381, Cambridge, MA. MIT
Press.

Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Biological
Circuits. Chapman and Hall/CRC.

Alon, U. (2007). Network motifs: theory and experimental approaches. Nature
Reviews Genetics, 8(6):450–461.

Andersen, T., Newman, R., and Otter, T. (2009). Shape homeostasis in virtual
embryos. Artificial Life, 15(2):161–183.

Arkin, A., Ross, J., and McAdams, H. H. (1998). Stochastic kinetic analysis of
developmental pathway bifurcation in phage lambda-infected Escherichia coli cells.
Genetics, 149(4):1633–1648.

Azevedo, R. B. R., Lohaus, R., Srinivasan, S., Dang, K. K., and Burch, C. L. (2006).
Sexual reproduction selects for robustness and negative epistasis in artificial gene
networks. Nature, 440(7080):87–90.

Banzhaf, W. (2003). On the dynamics of an artificial regulatory network. In Goos,
G., Hartmanis, J., Leeuwen, J., Banzhaf, W., Ziegler, J., Christaller, T., Dittrich,
P., and Kim, J. T., editors, Advances in Artificial Life: Proceedings of the 7th
European Conference on Artificial Life (ECAL 2003), volume 2801 of Lecture
Notes in Artificial Intelligence, pages 217–227, Berlin - Heidelberg. Springer.

Barabási, A.-L. (2009). Scale-free networks: A decade and beyond. Science,
325(5939):412–413.

Beckmann, B. E., McKinley, P. K., and Ofria, C. (2007). Evolution of an adaptive
sleep response in digital organisms. In Advances in Artificial Life: Proceedings
of the 9th European Conference on Artificial Life (ECAL 2007), ECAL’07, pages
233–242, Berlin - Heidelberg. Springer-Verlag.

Beer, R. D. (1995). On the dynamics of small continuous-time recurrent neural
networks. Adaptive Behavior, 3(4):469–509.

187

BIBLIOGRAPHY

Bentley, P. J. (2003). Evolving fractal proteins. In Tyrrell, A. M., Haddow, P. C., and
Torresen, J., editors, Proceedings of the 5th International Conference on Evolvable
Systems: From Biology to Hardware (ICES 2003), volume 2606 of Lecture Notes
in Computer Science, pages 81–92, Berlin - Heidelberg. Springer.

Bentley, P. J. (2004a). Adaptive fractal gene regulatory networks for robot con-
trol. In Miller, J., editor, Workshop on Regeneration and Learning in De-
velopmental Systems in the Genetic and Evolutionary Computation Conference
(GECCO 2004).

Bentley, P. J. (2004b). Fractal proteins. Genetic Programming and Evolvable Ma-
chines, 5(1):71–101.

Berg, J. M., Tymoczko, J. L., and Stryer, L. (2002). Biochemistry. W. H. Freeman,
New York, NY, USA.

Beurier, G., Michel, F., and Ferber, J. (2006). A morphogenesis model for multia-
gent embryogeny. In Rocha, L. M., Yaeger, L. S., Bedau, M. A., Floreano, D.,
Goldstone, R. L., and Vespignani, A., editors, Artificial Life X: Proceedings of the
10th International Conference on the Simulation and Synthesis of Living Systems,
pages 84–90, Cambridge, MA. MIT Press.

Beyer, H. G. and Schwefel, H. P. (2002). Evolution strategies – comprehensive
introduction. Natural Computing, 1(1):3–52.

Blake, W. J., Kærn, M., Cantor, C. R., and Collins, J. J. (2003). Noise in eukaryotic
gene expression. Nature, 422(6932):633–637.

Bolouri, H. (2008). Computational Modelling Of Gene Regulatory Networks – A
Primer. Imperial College Press.

Bongard, J. (2002). Evolving modular genetic regulatory networks. In Proceedings
of the IEEE Congress on Evolutionary Computation (CEC 2002), volume 2, pages
1872–1877. IEEE Press.

Bongard, J. C. and Pfeifer, R. (2003). Evolving complete agents using artificial
ontogeny. In Hara, F. and Pfeifer, R., editors, Morpho-functional Machines: The
New Species, pages 237–258. Springer Japan, Tokyo.

Bonner, J. T. (1998). The origins of multicellularity. Integrative Biology: Issues,
News, and Reviews, 1(1):27–36.

Bourg, D. M. (2001). Physics for Game Developers. O’Reilly Media.

Braitenberg, V. (1986). Vehicles: Experiments in Synthetic Psychology. A Bradford
Book.

Brette, R. and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. Journal of Neurophysiology,
94(5):3637–3642.

188

BIBLIOGRAPHY

Carroll, S., Grenier, J., and Weatherbee, S. (2004). From DNA to Diversity: Mo-
lecular Genetics and the Evolution of Animal Design. Wiley-Blackwell.

Channon, A. D. and Damper, R. I. (2000). Towards the evolutionary emergence of
increasingly complex advantageous behaviours. International Journal of Systems
Science, 31(7):843–860.

Chavoya, A., Andalon-Garcia, I. R., Lopez-Martin, C., and Meda-Campaña, M. E.
(2010). Use of evolved artificial regulatory networks to simulate 3D cell differen-
tiation. Biosystems, 102(1):41–48.

Chavoya, A. and Duthen, Y. (2008). A cell pattern generation model based on an
extended artificial regulatory network. Biosystems, 94(1-2):95–101.

Chou, H.-H. and Reggia, J. A. (1997). Emergence of self-replicating structures in a
cellular automata space. Physica D: Nonlinear Phenomena, 110(3-4):252–276.

Clune, J., Goldsby, H. J., Ofria, C., and Pennock, R. T. (2010). Selective pressures
for accurate altruism targeting: evidence from digital evolution for difficult-to-test
aspects of inclusive fitness theory. Proceedings of the Royal Society B: Biological
Sciences, 278(1706):666–674.

Clune, J., Misevic, D., Ofria, C., Lenski, R. E., Elena, S. F., and Sanjuán, R. (2008).
Natural selection fails to optimize mutation rates for long-term adaptation on
rugged fitness landscapes. PLoS Computational Biology, 4(9):e1000187+.

Cox, T. F. and Cox, M. A. A. (2000). Multidimensional Scaling. Chapman and
Hall/CRC.

Csárdi, G. and Nepusz, T. (2010). iGraph library 0.5.4.
http://igraph.sourceforge.net/.

Davidson, E. H., McClay, D. R., and Hood, L. (2003). Regulatory gene networks and
the properties of the developmental process. Proceedings of the National Academy
of Sciences of the United States of America, 100(4):1475–1480.

Dayan, P. and Abbott, L. F. (2001). Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. The MIT Press.

de Garis, H. and Brain Builder Group (1999). Artificial embryology and cellular
differentiation. In Evolutionary Design by Computers, pages 281–295.

de Garis, H., Korkin, M., Gers, F., Nawa, E., and Hough, M. (2000). Building an
artificial brain using an FPGA based CAM-Brain Machine. Applied Mathematics
and Computation, 111(2-3):163–192.

Eggenberger Hotz, P. (1997). Evolving morphologies of simulated 3D organisms
based on differential gene expression. In Husbands, P. and Harvey, I., editors,
Proceedings of the 4th European Conference on Artificial Life (ECAL 1997), pages
205–213, Cambridge, MA. MIT Press.

189

BIBLIOGRAPHY

Eggenberger Hotz, P. (2003a). Exploring regenerative mechanisms found in flat-
worms by artificial evolutionary techniques using genetic regulatory networks. In
Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2003),
volume 3, pages 2026–2033. IEEE Press.

Eggenberger Hotz, P. (2003b). Genome-physics interaction as a new concept to
reduce the number of genetic parameters in artificial evolution. In Proceedings of
the IEEE Congress on Evolutionary Computation (CEC 2003), volume 1, pages
191–198. IEEE Press.

Eggenberger Hotz, P. (2004). Asymmetric cell division and its integration with other
developmental processes for artificial evolutionary systems. In Pollack, J., Bedau,
M. A., Husbands, P., Ikegami, T., and Watson, R. A., editors, Artificial Life IX:
Proceedings of the 9th International Conference on the Simulation and Synthesis
of Living Systems, pages 387–393, Cambridge, MA. MIT Press.

Elowitz, M. B. and Leibler, S. (2000). A synthetic oscillatory network of transcrip-
tional regulators. Nature, 403(6767):335–338.

Erdei, J., Joachimczak, M., and Wróbel, B. (2011). Ewolucja chemotaksji organ-
izmów jednokomórkowych w dwuwymiarowym środowisku. In Obolewicz, P., Ku-
jawa, K., and Sacharuk, P., editors, ICT Young 1, Zeszyty Naukowe Wydziału
ETI Politechniki Gdańskiej, pages 173–178. (in Polish).

Evert, R. F. and Eichhorn, S. E. (2004). Biology of Plants. W. H. Freeman.

Federici, D. and Ziemke, T. (2006). Why are evolved developing organisms also fault-
tolerant? In Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern,
F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B.,
Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Nolfi, S.,
Baldassarre, G., Calabretta, R., Hallam, J. C. T., Marocco, D., Meyer, J.-A.,
Miglino, O., and Parisi, D., editors, From Animals to Animats 9: Proceedings
of the 9th International Conference on Simulation of Adaptive Behaviour (SAB
2006), volume 4095 of Lecture Notes in Computer Science, pages 449–460, Berlin
- Heidelberg. Springer.

Flamm, C., Endler, L., Müller, S., Widder, S., and Schuster, P. (2007). A minimal
and self-consistent in silico cell model based on macromolecular interactions. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 362(1486):1831–
1839.

Fontana, A. (2008). Epigenetic tracking, a method to generate arbitrary shapes by
using evo-devo techniques. In Schlesinger, M., Berthouze, L., and Balkenius, C.,
editors, Proceedings of the 8th International Conference on Epigenetic Robotics:
Modeling Cognitive Development in Robotic Systems (EpiRob 2008).

Freeland, S. J., Wu, T., and Keulmann, N. (2003). The case for an error minimizing
standard genetic code. Origins of Life and Evolution of Biospheres, 33(4):457–477.

190

BIBLIOGRAPHY

Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G., and Collins, J. J. (2009).
Synthetic gene networks that count. Science, 324(5931):1199–1202.

Galván-López, E. and Poli, R. (2006). An empirical investigation of how and why
neutrality affects evolutionary search. In GECCO ’06: Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, pages 1149–1156,
New York, NY, USA. ACM.

Gershenson, C. (2003). Classification of random boolean networks. In Standish,
R. K., Bedau, M. A., and Abbass, H. A., editors, Artificial Life VIII:Proceedings
of the 8th International Conference on Artificial Life, pages 1–8, Cambridge, MA,
USA. MIT Press.

Gerstein, M. B., Bruce, C., Rozowsky, J. S., Zheng, D., Du, J., Korbel, J. O.,
Emanuelsson, O., Zhang, Z. D., Weissman, S., and Snyder, M. (2007). What
is a gene, post-ENCODE? History and updated definition. Genome Research,
17(6):669–681.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361.

Glazier, J. and Graner, F. (1993). Simulation of the differential adhesion driven
rearrangement of biological cells. Physical Review E, 47(3):2128–2154.

Gower, J. C. (1966). Some distance properties of latent root and vector methods
used in multivariate analysis. Biometrika, 53(3/4):325–338.

Gregory, T. R. (2001). Coincidence, coevolution, or causation? DNA content, cell
size, and the C-value enigma. Biological reviews of the Cambridge Philosophical
Society, 76(1):65–101.

Harvey, I. and Bossomaier, T. (1997). Time out of joint: Attractors in asynchronous
random boolean networks. In Husbands, P. and Harvey, I., editors, Proceedings of
the 4th European Conference on Artificial Life (ECAL 1997), pages 67–75.

Haygood, R., Fedrigo, O., Hanson, B., Yokoyama, K.-D., and Wray, G. A. (2007).
Promoter regions of many neural- and nutrition-related genes have experienced
positive selection during human evolution. Nature Genetics, 39(9):1140–1144.

Hoekstra, H. E. and Coyne, J. A. (2007). The locus of evolution: evo devo and the
genetics of adaptation. Evolution, 61(5):995–1016.

Hogeweg, P. (1999). Shapes in the shadow: evolutionary dynamics of morphogenesis.
Artificial Life, 6(1):85–101.

Hogeweg, P. (2000). Evolving mechanisms of morphogenesis: on the interplay
between differential adhesion and cell differentiation. Journal of Theoretical Bio-
logy, 203(4):317–333.

191

BIBLIOGRAPHY

Hornby, G., Lohn, J. D., and Linden, D. S. (2010). Computer-automated evolution
of an X-Band antenna for NASA’s Space Technology 5 mission. Evolutionary
Computation, 19(1):1–23.

Hutton, T. J. (2007). Evolvable self-reproducing cells in a two-dimensional artificial
chemistry. Artificial Life, 13(1):11–30.

Indiveri, G., Linares-Barranco, B., Julia, T., van Schaik, A., Etienne-Cummings,
R., Delbruck, T., Liu, S.-C. C., Dudek, P., Häfliger, P., Renaud, S., Schemmel,
J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saighi, S., Serrano-
Gotarredona, T., Wijekoon, J., Wang, Y., and Boahen, K. (2011). Neuromorphic
silicon neuron circuits. Frontiers in Neuroscience, 5.

Jakobi, N. (1995). Harnessing morphogenesis. In Holcombe, M. and Paton, R.,
editors, Proceedings of Information Processing in Cells and Tissues, pages 29–41.

Jędruch, W. T. and Barski, M. (1990). Experiments with a universe for molecular
modelling of biological processes. Biosystems, 24(2):99–117.

Joachimczak, M., Kowaliw, T., Doursat, R., and Wróbel, B. (2012). Brainless
bodies: Controlling the development and behavior of multicellular animats by
gene regulation and diffusive signals. In Artificial Life XIII: Proceedings of the
13th International Conference on the Simulation and Synthesis of Living Systems,
Cambridge, MA. MIT Press. (in press).

Joachimczak, M. and Wróbel, B. (2008a). Evo-devo in silico: a model of a gene
network regulating multicellular development in 3D space with artificial physics.
In Bullock, S., Noble, J., Watson, R., and Bedau, M. A., editors, Artificial Life XI:
Proceedings of the 11th International Conference on the Simulation and Synthesis
of Living Systems, pages 297–304, Cambridge, MA. MIT Press.

Joachimczak, M. and Wróbel, B. (2008b). Evolution of 3D development controlled by
a gene regulatory network: The complexity of the search space and evolvability.
In Klemm, K., Merkle, D., and Olbrich, E., editors, 8th German Workshop on
Artificial Life: Proceedings of the GWAL-8, Leipzig, Germany, pages 11–22, US.
IOS Press.

Joachimczak, M. and Wróbel, B. (2009). Complexity of the search space in a model
of artificial evolution of gene regulatory networks controlling 3D multicellular
morphogenesis. Advances in Complex Systems, 12(3):347–369.

Joachimczak, M. and Wróbel, B. (2010a). Evolving gene regulatory networks for
real time control of foraging behaviours. In Fellermann, H., Dörr, M., Hanczyc,
M. M., Laursen, L. L., Maurer, S., Merkle, D., Monnard, P.-A., Stoy, K., and
Rasmussen, S., editors, Artificial Life XII: Proceedings of the 12th International
Conference on the Simulation and Synthesis of Living Systems, pages 348–355,
Cambridge, MA. MIT Press.

192

BIBLIOGRAPHY

Joachimczak, M. and Wróbel, B. (2010b). Processing signals with evolving artificial
gene regulatory networks. In Fellermann, H., Dörr, M., Hanczyc, M. M., Laursen,
L. L., Maurer, S., Merkle, D., Monnard, P.-A., Stoy, K., and Rasmussen, S.,
editors, Artificial Life XII: Proceedings of the 12th International Conference on
the Simulation and Synthesis of Living Systems, pages 203–210, Cambridge, MA.
MIT Press.

Joachimczak, M. and Wróbel, B. (2011a). Evolution of the morphology and pat-
terning of artificial embryos: Scaling the tricolour problem to the third dimen-
sion. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F.,
Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan,
M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Kampis, G., Kar-
sai, I., and Szathmáry, E., editors, Advances in Artificial Life. Darwin Meets von
Neumann: Proceedings of the 10th European Conference on Artificial Life (ECAL
2009), volume 5777 of Lecture Notes in Computer Science, pages 35–43, Berlin -
Heidelberg. Springer.

Joachimczak, M. and Wróbel, B. (2011b). Ewolucja sieci genowych kontrolujących
wirtualne organizmy jedno- oraz wielokomórkowe. In Obolewicz, P., Kujawa, K.,
and Sacharuk, P., editors, ICT Young 1, Zeszyty Naukowe Wydziału ETI Poli-
techniki Gdańskiej, pages 179–184. (in Polish).

Joachimczak, M. and Wróbel, B. (2012). Co-evolution of morphology and control of
soft-bodied multicellular animats. In GECCO ’12: Proceedings of the 14th Annual
Conference on Genetic and Evolutionary Computation. ACM. (in press).

Joachimczak, M. and Wróbel, B. (2012a). Evolution of robustness to damage in
artificial 3-dimensional development. Biosystems. (in press).

Joachimczak, M. and Wróbel, B. (2012b). Open ended evolution of 3D multicellu-
lar development controlled by gene regulatory networks. In Artificial Life XIII:
Proceedings of the 13th International Conference on the Simulation and Synthesis
of Living Systems, Cambridge, MA. MIT Press. (in press).

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology, 22(3):437–467.

Kauffman, S. A. (1993). The Origins of Order: Self-Organization and Selection in
Evolution. Oxford University Press, USA.

Knabe, J. F., Nehaniv, C. L., and Schilstra, M. J. (2008a). Do motifs reflect evolved
function?—no convergent evolution of genetic regulatory network subgraph topo-
logies. Biosystems, 94(1-2):68–74.

Knabe, J. F., Nehaniv, C. L., and Schilstra, M. J. (2008b). Evolution and morpho-
genesis of differentiated multicellular organisms: autonomously generated diffusion
gradients for positional information. In Bullock, S., Noble, J., Watson, R., and
Bedau, M. A., editors, Artificial Life XI: Proceedings of the 11th International

193

BIBLIOGRAPHY

Conference on the Simulation and Synthesis of Living Systems, pages 321–328,
Cambridge, MA. MIT Press.

Knabe, J. F., Nehaniv, C. L., Schilstra, M. J., and Quick, T. (2006). Evolving bio-
logical clocks using genetic regulatory networks. In Rocha, L. M., Yaeger, L. S.,
Bedau, M. A., Floreano, D., Goldstone, R. L., and Vespignani, A., editors, Arti-
ficial Life X: Proceedings of the 10th International Conference on the Simulation
and Synthesis of Living Systems, pages 15–21. MIT Press/Bradford Books.

Komosinski, M. and Ulatowski, S. (1999). Framsticks: towards a simulation of a
nature-like world, creatures and evolution. In Nicoud, J.-D., Floreano, D., and
Mondada, F., editors, Proceedings of 5th European Conference on Artificial Life
(ECAL 1999), volume 1674 of Lecture Notes in Artificial Intelligence, pages 261–
265. Springer-Verlag.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by
Means of Natural Selection. A Bradford Book.

Kumar, S. and Bentley, P. J. (2003). Biologically inspired evolutionary development.
In Tyrrell, A. M., Haddow, P. C., and Torresen, J., editors, Proceedings of the 5th
International Conference on Evolvable Systems: From Biology to Hardware (ICES
2003), volume 2606 of Lecture Notes in Computer Science, pages 57–68, Berlin -
Heidelberg. Springer.

Kuo, P. D., Leier, A., and Banzhaf, W. (2004). Evolving dynamics in an artificial
regulatory network model. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg,
J. M., Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C.,
Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G.,
Yao, X., Burke, E. K., Lozano, J. A., Smith, J., Merelo-Guervós, J. J., Bullinaria,
J. A., Rowe, J. E., Tiňo, P., Kabán, A., and Schwefel, H.-P., editors, Parallel Prob-
lem Solving from Nature - PPSN VIII, volume 3242 of Lecture Notes in Computer
Science, pages 571–580, Berlin - Heidelberg. Springer.

Leclerc, R. D. (2008). Survival of the sparsest: robust gene networks are parsimo-
nious. Molecular Systems Biology, 4(1).

Lehman, J. and Stanley, K. O. (2008). Exploiting open-endedness to solve problems
through the search for novelty. In Bullock, S., Noble, J., Watson, R., and Bedau,
M. A., editors, ALIFE XI: Proceedings of the 11th International Conference on
Artificial Life, pages 329–336, Cambridge, MA. MIT Press.

Lehman, J. and Stanley, K. O. (2011). Abandoning objectives: Evolution through
the search for novelty alone. Evolutionary Computation, 19(2):189–223.

Lindenmayer, A. (1968). Mathematical models for cellular interaction in develop-
ment: Parts I and II. Journal of Theoretical Biology, 18:280–315.

Lutz, B., Lu, H. C., Eichele, G., Miller, D., and Kaufman, T. C. (1996). Rescue of
Drosophila labial null mutant by the chicken ortholog Hoxb-1 demonstrates that

194

BIBLIOGRAPHY

the function of Hox genes is phylogenetically conserved. Genes & Development,
10(2):176–184.

Maheshri, N. and O’Shea, E. K. (2007). Living with noisy genes: how cells function
reliably with inherent variability in gene expression. Annual review of biophysics
and biomolecular structure, 36(1):413–434.

Mahfoud, S. W. (1995). Niching Methods for Genetic Algorithms. PhD thesis,
University of Illinois at Urbana-Champaign.

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation, 8(1):3–30.

McClelland, J. L. and Rumelhart, D. E. (1988). Explorations in parallel distributed
processing: a handbook of models, programs, and exercises. MIT Press.

Miller, J. F. (2004). Evolving a self-repairing, self-regulating, french flag organism.
In Deb, K., editor, GECCO ’04: Proceedings of the 6th Annual Conference on
Genetic and Evolutionary Computation, volume 3102 of LNCS, pages 129–139,
Berlin - Heidelberg. Springer.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U.
(2002). Network motifs: Simple building blocks of complex networks. Science,
298(5594):824–827.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. A Bradford Book.

Mondada, F., Franzi, E., and Guignard, A. (1999). The Development of Khepera. In
Experiments with the Mini-Robot Khepera, Proceedings of the First International
Khepera Workshop, HNI-Verlagsschriftenreihe, Heinz Nixdorf Institut, pages 7–14.

Munsky, B., Neuert, G., and van Oudenaarden, A. (2012). Using gene expression
noise to understand gene regulation. Science, 336(6078):183–187.

Mutsuo Saito, M. M. and University, H. (2007). SIMD-oriented Fast Mersenne
Twister. http://www.math.sci.hiroshima-u.ac.jp/˜m-mat/MT/SFMT/.

Nicolau, M. and Schoenauer, M. (2009). On the evolution of scale-free topologies
with a gene regulatory network model. Biosystems, 98(3):137–148.

Nicolau, M., Schoenauer, M., and Banzhaf, W. (2010). Evolving genes to balance
a pole. In Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F.,
Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan,
M., Terzopoulos, D., Tygar, D., Vardi, M. Y., Weikum, G., Esparcia-Alcázar,
A. I., Ekárt, A., Silva, S., Dignum, S., and Şima Uyar, A., editors, EuroGP: 13th
European Conference on Genetic Programming, volume 6021 of Lecture Notes in
Computer Science, pages 196–207, Berlin - Heidelberg. Springer.

Pellicer, J., Fay, M. F., and Leitch, I. J. (2010). The largest eukaryotic genome of
them all? Botanical Journal of the Linnean Society, 164(1):10–15.

195

BIBLIOGRAPHY

Prusinkiewicz, P. and Lindenmayer, A. (1996). The algorithmic beauty of plants.
Springer-Verlag New York, Inc., New York, NY, USA.

Quayle, A. P. and Bullock, S. (2006). Modelling the evolution of genetic regulatory
networks. Journal of Theoretical Biology, 238(4):737–753.

Quick, T., Nehaniv, C. L., Dautenhahn, K., and Roberts, G. (2003). Evolving
embodied genetic regulatory network-driven control systems. In Banzhaf, W.,
Christaller, T., Dittrich, P., Kim, J. T., and Ziegler, J., editors, Advances in Arti-
ficial Life: Proceedings of the 7th European Conference on Artificial Life (ECAL
2003), pages 266–277.

R 2.13 (2011). http://www.r-project.org/.

Ratcliff, W. C., Denison, R. F., Borrello, M., and Travisano, M. (2012). Experi-
mental evolution of multicellularity. Proceedings of the National Academy of Sci-
ences of the United States of America, 109(5):1595–1600.

Ray, T. S. (1992). Evolution and optimization of digital organisms. In Billingsley,
K. R., Brown, H. U., and Derohanes, E., editors, Scientific Excellence in Super-
computing: The 1990 IBM Contest Prize Papers, pages 489–531, The University
of Georgia. The Baldwin Press.

Reil, T. (1999). Dynamics of gene expression in an artificial genome - implications for
biological and artificial ontogeny. In Floreano, D., Nicoud, J.-D., and Mondada, F.,
editors, Advances in Artificial Life: Proceedings of the 5th European Conference on
Artificial Life (ECAL 1999), volume 1674 of Lecture Notes In Computer Science,
pages 457–466, London, UK. Springer-Verlag.

Sareni, B. and Krahenbuhl, L. (1998). Fitness sharing and niching methods revisited.
IEEE Transactions on Evolutionary Computation, 2(3):97–106.

Schramm, L., Jin, Y., and Sendhoff, B. (2011). Emerged coupling of motor control
and morphological development in evolution of multi-cellular animats. In Kampis,
G., Karsai, I., and Szathmáry, E., editors, Advances in Artificial Life. Darwin
Meets von Neumann: Proceedings of the 10th European Conference on Artificial
Life (ECAL 2009), volume 5777 of Lecture Notes in Computer Science, pages
27–34, Berlin - Heidelberg. Springer.

Schramm, L., Martins, V. V., Jin, Y., and Sendhoff, B. (2010). Analysis of gene
regulatory network motifs in evolutionary development of multicellular organisms.
In Fellermann, H., Dörr, M., Hanczyc, M. M., Laursen, L. L., Maurer, S., Merkle,
D., Monnard, P.-A., Stoy, K., and Rasmussen, S., editors, Artificial Life XII:
Proceedings of the 12th International Conference on the Simulation and Synthesis
of Living Systems, pages 133–140, Cambridge, MA. MIT Press.

Schramm, L. and Sendhoff, B. (2011). An animat’s cell doctrine. In Lenaerts, T.,
Giacobini, M., Bersini, H., Bourgine, P., Dorigo, M., and Doursat, R., editors,
ECAL 2011: Proceedings of the 11th European Conference on the Synthesis and
Simulation of Living Systems, pages 739–746, Cambridge, MA. MIT Press.

196

BIBLIOGRAPHY

Secretan, J. and Beato, N. (2008). Picbreeder: evolving pictures collaboratively
online. In CHI ’08: Proceedings of the 26th Annual SIGCHI Conference on Human
Factors in Computing Systems, pages 1759–1768, New York, NY, USA. ACM.

Serra, R., Villani, M., and Agostini, L. (2004). On the dynamics of random boolean
networks with scale-free outgoing connections. Physica A: Statistical Mechanics
and its Applications, 339(3-4):665–673.

Shipman, R., Shackleton, M., and Harvey, I. (2000). The use of neutral genotype-
phenotype mappings for improved evolutionary search. BT Technology Journal,
18(4):103–111.

Shmulevich, I., Kauffman, S. A., and Aldana, M. (2005). Eukaryotic cells are dy-
namically ordered or critical but not chaotic. Proceedings of the National Academy
of Sciences of the United States of America, 102(38):13439–13444.

Sienkiewicz, R. and Jędruch, W. (2011). The universal constructor in the DigiHive
environment. In Kampis, G., Karsai, I., and Szathmáry, E., editors, Advances
in Artificial Life. Darwin Meets von Neumann: Proceedings of the 10th European
Conference on Artificial Life (ECAL 2009), volume 5778 of Lecture Notes in Com-
puter Science, pages 183–190, Berlin - Heidelberg. Springer.

Sims, K. (1994). Evolving virtual creatures. In Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’94,
pages 15–22, New York, NY, USA. ACM Press.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2):99–127.

Stanley, K. O. and Miikkulainen, R. (2003). A taxonomy for artificial embryogeny.
Artificial Life, 9(2):93–130.

Streichert, F., Spieth, C., Ulmer, H., and Zell, A. (2003). Evolving the ability of lim-
ited growth and self-repair for artificial embryos. In Banzhaf, W., Christaller, T.,
Dittrich, P., Kim, J. T., and Ziegler, J., editors, Advances in Artificial Life: Pro-
ceedings of the 7th European Conference on Artificial Life (ECAL 2003), volume
2801, pages 289–298.

Stumpf, M. P. H., Wiuf, C., and May, R. M. (2005). Subnets of scale-free networks
are not scale-free: Sampling properties of networks. Proceedings of the National
Academy of Sciences of the United States of America, 102(12):4221–4224.

Taylor, T. (2004). A genetic regulatory network-inspired real-time controller for a
group of underwater robots. In Groen, F., Amato, N., Bonarini, A., Yoshida, E.,
and Kröse, B., editors, Proceedings of the 8th Conference on Intelligent Autonom-
ous Systems (IAS-8), pages 403–412. IOS Press.

Tjian, R. (1995). Molecular machines that control genes. Scientific American,
272(2):54–61.

197

BIBLIOGRAPHY

Tlusty, T. (2007). A model for the emergence of the genetic code as a transition in
a noisy information channel. Journal of Theoretical Biology, 249(2):331–342.

Trefzer, M. A., Kuyucu, T., Miller, J. F., and Tyrrell, A. M. (2010). Image compres-
sion of natural images using artificial gene regulatory networks. In GECCO ’10:
Proceedings of the 12th Annual Conference on Genetic and Evolutionary Compu-
tation, GECCO ’10, pages 595–602, New York, NY, USA. ACM.

Tufte, G. (2008). Phenotypic, developmental and computational resources: scaling in
artificial development. In GECCO ’08: Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, pages 859–866, New York, NY, USA.
ACM.

Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transac-
tions of the Royal Society of London. Series B, Biological Sciences, 237(641):37–72.

van Noort, V., Snel, B., and Huynen, M. A. (2004). The yeast coexpression network
has a small-world, scale-free architecture and can be explained by a simple model.
EMBO reports, 5(3):280–284.

Wagner, A. (2005). Robustness and Evolvability in Living Systems (Princeton Stud-
ies in Complexity). Princeton University Press.

West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. Oxford
University Press, USA.

Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82.

Wolpert, L. (1968). The French Flag problem: A contribution to the discussion on
pattern development and regulation. In Waddington, C. H., editor, The Origin of
Life: Toward a Theoretical Biology, pages 125–133.

Woolley, B. G. and Stanley, K. O. (2011). On the deleterious effects of a priori
objectives on evolution and representation. In GECCO ’11: Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation, pages 957–
964, New York, NY, USA. ACM.

Wróbel, B., Abdelmotaleb, A., and Joachimczak, M. (2012a). Evolving spiking
neural networks in the GReaNs (Gene Regulatory evolving artificial Networks)
plaftorm. In EvoNet2012: Evolving Networks, from Systems/Synthetic Biology to
Computational Neuroscience (Artificial Life XIII Workshop). (in press).

Wróbel, B., Joachimczak, M., Montebelli, A., and Lowe, R. (2012b). The search
for beauty: Evolution of minimal cognition in an animat controlled by a gene
regulatory network and powered by a metabolic system. In Proceedings of the 12th
International Conference on Simulation of Adaptive Behaviour, From Animals to
Animats 12 (SAB’12), Lecture Notes in Artificial Intelligence. Springer-Verlag.
(in press).

198

BIBLIOGRAPHY

Wuchty, S. (2001). Scale-free behavior in protein domain networks. Molecular Bio-
logy and Evolution, 18(9):1694–1702.

wxWidgets 2.9.3 (2011). http://www.wxwidgets.org/.

Yaeger, L. (1993). Computational genetics, physiology, metabolism, neural systems,
learning, vision, and behavior or polyworld: Life in a new context. In Langton,
C. G., editor, Artificial Life III, Vol. XVII of SFI Studies in the Sciences of
Complexity, Santa Fe Institute, pages 263–298. Addison-Wesley.

199

	List of Figures
	List of Tables
	The main thesis of this dissertation
	Abbreviations
	Publications
	Extended abstract in Polish
	1 Introduction
	1.1 Thesis layout
	1.2 DNA: life's digital encoding
	1.3 Biological genomes and gene regulation
	1.3.1 From DNA to protein
	1.3.2 Gene regulation
	1.3.3 Gene regulatory networks

	1.4 Multicellularity and embryogenesis

	2 Existing models of GRNs and embryogenesis
	2.1 Models of gene regulatory networks
	2.2 Artificial embryogeny

	3 The model of GRN and evolution
	3.1 Genome
	3.1.1 Overall structure
	3.1.2 Genetic elements and affinity

	3.2 Artificial Gene Regulatory Network
	3.3 Genetic algorithm
	3.3.1 Initialization
	3.3.2 Selection
	3.3.3 Genetic operators
	3.3.4 Viability criteria

	3.4 Summary

	4 Processing signals with regulatory networks
	4.1 Experimental setup
	4.1.1 Fitness function
	4.1.2 Genetic algorithm and model settings

	4.2 Internally induced oscillations
	4.3 Responding to external signals
	4.3.1 Doubling the oscillation frequency
	4.3.2 Low pass filter
	4.3.3 Networks with signal memory: doubling the input pulse length
	4.3.4 Doubling the number of the input spikes
	4.3.5 Integrating information from two separate signals: serializing pulses

	4.4 Evolvability
	4.4.1 Alternative fitness functions
	4.4.2 Parameters of the model

	4.5 Discrete vs continuous dynamics
	4.6 Robustness to noise
	4.7 Summary

	5 Evolution of behaviour of GRN-controlled unicellular organisms
	5.1 Animat model and environment
	5.2 Sensors and actuators
	5.3 Fitness function
	5.4 Genetic algorithm
	5.5 Foraging with a single type of food
	5.5.1 Analysis of evolutionary history

	5.6 Environment with food and poison
	5.6.1 Analysis of evolutionary history

	5.7 Summary

	6 Evolution of multicellular development
	6.1 Developmental model
	6.1.1 Configuration of the genome model
	6.1.2 Simulated physics
	6.1.3 Morphogens and diffusion
	6.1.4 Cellular actions: division, death and growth

	6.2 Evolution of a desired 3D morphology
	6.2.1 Fitness function
	6.2.2 Embryo viability criteria
	6.2.3 Settings for the genetic algorithm and development
	6.2.4 Evolution of an ellipsoidal morphology
	6.2.5 Evolution of an asymmetric morphology: a stem-cap shape
	6.2.6 Knock-out experiments on the evolved stem-cap shape
	6.2.7 Change of the morphology over evolutionary time for the stem-cap shape
	6.2.8 Evolving self-termination of division

	6.3 Robustness to cellular damage
	6.3.1 Robustness during development
	6.3.2 Embryo regrowth

	6.4 Evolution of 3D patterning
	6.4.1 GA settings and genome configuration
	6.4.2 Fitness function
	6.4.3 French flag problem in 3D: the tricolour embryo
	6.4.4 Four colour embryo
	6.4.5 Continuous colour representation
	6.4.6 Three colour effectors

	6.5 Summary

	7 Open ended evolution of 3D morphologies
	7.1 The Novelty Search algorithm
	7.2 Novelty Search for 3D Morphologies
	7.2.1 Distance function

	7.3 Results
	7.3.1 Evolved morphologies
	7.3.2 Novelty search archive
	7.3.3 Evolutionary history
	7.3.4 Evolutionary time from the most recent common ancestor
	7.3.5 Visualization of the phenotype search space
	7.3.6 Repeatability

	7.4 Summary

	8 Summary and future work
	8.1 Summary of contributions
	8.2 Future work

	A Software implementation
	A.1 Parallelisation
	A.2 Analysis

	B Algorithms
	C GA settings
	Bibliography

