GDANSK UNIVERSITY OF TECHNOLOGY
Faculty of Electronics,

GDANSK UNIVERSITY . . .
OF TECHNOLOGY Telecommunications and Informatics

Zbigniew Paszkiewicz

Recommendation Method RMV
for Partner and Service Selection
In Virtual Organization Breeding Environments
Based on Process Mining Techniques

PhD Dissertation

Supervisor:
prof. Wojciech Cellary
Faculty of Informatics
and Electronic Economy
Poznan University of Economics

Gdansk, 2014

For Zosia, my parents and my brother Jakub
@

Acknowledgements

I wish first of all to thank in particular Professor Wojciech Cellary for many intellectually
challenging discussions that we have had on the topics related to this dissertation and for

keeping me going.

I would also like to thank Willy Picard for his invaluable remarks on this dissertation and his
encouraging comments. Without your involvement, this dissertation would have never been
written.

I would like to thank the members of the Department of Information Technology of the
Poznan University of Economics for their collaboration during these years.

Finally, thanks to my beloved fiancé Zosia for her love, patience, and support. At last, thanks
to my parents, brother and my friends because | have never been left alone with my work.

This work has been partially supported by
the Polish National Science Center. Grant no. DEC-2011/01/N/ST6/04205

Table of Contents

1. INEFOAUCTION L.ttt bbb nne s 9
2. Inter-Organizational Collaboration.............c.coceiiiiinii e 14
2.1, COllabOratiVe PrOCESSES.......cviieiiieriesiesie sttt 15
2.2. Virtual Organizations and their Breeding ENVIironmentscccccooeveneiencnennnn. 16
2.3. Partner Selection for Virtual Organizationscccceeeeieereeresieeseeie e e ee e 18
2.4, BaSiC DEFINITIONSoivieiiiiiiieiece ettt 19
3. Computer Support for Collaborative ProCesses.........ccocevvvevvevieiiieieeresiesieeeenns 23
3.1. Process-Aware INformation SYStEMS.........ccvviiieieiieienie et 23
3.2. Context-Aware Recommender SYSIEMS........cccvevvevieiierie e 29
4. PrOCESS IMIINING ...ttt 43
4.1, Operational SUPPOIT.........cciueiieie ettt teareesreene e 44
4.2, Process ReCOMMENUALIONSccuveiiiieiiiieiie e 47
4.3. Mining Behavioral Patterns in Collaboration.............cccccooveiiiiiiciecccc e 55
4.4, Event Log FOrmMalizationccoooiiiiiiiniiicieeeese e 57
5. Conceptual model of the RMV methodc.cooiieiiiie i 59
51. RMV Method REQUITEMENTScveiviiiiiiiiiiiiiieiiee e 59
5.2, RMV Method MOLIVALIONccuiiiiiieiesiesicsesee e e 60
5.3, RMV Method OULHNE.......c.ccieiiiie e 62
5.4. RMV Method FOrmal MOGEL..........cccoeiiiiiiiiiieee e 70
5.5. RMV Method Partner and Service Selection Technique...........cccccooviiniiniiinnnn. 81
5.6. RMV Method ParameteriZation.............ccoceivrierieieiienienesie s e seeens 118
5.7. RMV Method Computational Complexityccoeiiiiiiiiniiniiicieeee e 120
6. Integration of the RMV Method with the ErGo System.........cccccoocvvviviiinnnnns 125
6.1. RMV Method Prototype ArchiteCturecceoveiiiiiiieieseeeeeee e 125
6.2. ErGO SYStemM CONCEPLveiiiiieeciie ettt srre e nnee e neeas 127
6.3. ErGO APPHCAIIONSoviiiiiiieiiiieiee st 129
6.4. Integration of the RMV Method with the ErGo systemccccccevvvevveieiicieenns 134
6.5. RMV Method Real Case EValuationccooviieiieiieiisiese e 143
7. (©0] o Tod 01 o] 1 SRRSO RPTPTRPRRN 162
BIDIHOGIAPNY .. 167
TS a0 T [N =TSSR 177
I ES 0 0 1= o] LSS 179
TS 0 I € o TSSO 180
Appendix A. Service Protocols Formal Model ..o 181
Appendix B. RMYV Method Prototype Modules and CIassesccccocvvevieiieeiieciieennn. 188
Appendix C. Table of Symbols Used in DISSErtationcccoouereiinineinieneneenenen, 208
SEIESZCZENIE FOZPIAWY ...vvievie ettt ettt ettt et sttt e et e b e e s e et e e s ate e s ae e s abe e beeenbeesneeanteeaneas 213

1. Introduction

Usually, environment of an organization has significant impact on its success. Current trends:
globalization, development and proliferation of information technology, spread of social
media, development of electronic, knowledge-based economy and rising competition, are
followed by increased complexity, uncertainty, dynamism, turbulence and diversity of
organization operations. In such environment, complex production and service provision
at the global scale require a large set of resources and competences that one enterprise is
usually not able to provide. Thus, modern provision of services and delivery of products
require integration and collaboration of many diversified, specialized, autonomous units
offering access to complementary set of resources and competences.

As a generic organizational structure supporting collaboration of divers units, the concept of
Virtual Organizations (VO) has been coined. VO is “a network consisting of a variety of
actors, called VO members that are largely autonomous, geographically distributed, and
heterogeneous in terms of their operating environment, culture, social capital and goals,
which conduct processes including at least one VO collaborative process in order to carry out
a particular venture due to the demand from VO clients” (Camarinha-Matos, et al., 2008). VO
permits to deal with complexity, pursuit for agility, and takes advantages of broad use of
information technologies in economic and managerial operations. Partners collaborating
within a VO are organizations — enterprises, public administration units, and non-government
organizations — people, and information systems. The success of a VO strongly depends on
ability of all participating actors to efficiently and seamlessly collaborate. Good level of
collaboration is achieved by appropriate selection of services and collaborators. Due to
importance and complexity of partner and service selection problem, a number of computer
and organizational methods has already been proposed including the concept of
Virtual Organization Breeding Environment (VOBE). A VOBE is “an association of
organizations with the main goal of increasing preparedness of its members towards
collaboration in potential virtual organizations” (Camarinha-Matos, et al., 2008).
VOBE allows potential collaborators to prepare their future collaboration with other VOBE
members before a business opportunity occurs. A VOBE that consequently applies the
Service Oriented Architecture (OASIS Technical Committee, 2006) is referred to as Service-
Oriented Virtual Organization Breeding Environment (SOVOBE) (Picard, et al., 2010).

In SOVOBE, interaction among all the actors, virtual organizations and SOVOBE
infrastructure is performed with the use of services.

Complexity of organizational environment is followed by complexity of VO collaborative
processes guiding operations of VOs. Two main features of each VO collaborative process
are: unpredictability and emergence. The unpredictability aspect of VO collaborative
processes refers to the difficulty to plan in advance the further execution of
a VO collaborative process. The emergence aspect of VO collaborative processes refers to
the influence of VO collaborative process instance execution on itself, i.e., decisions made
during VO collaborative process instance execution impact the next activities. As a
consequence, VO collaborative processes are highly unstructured.

Proliferation of information technologies and ubiquitous access to the internet via fixed and
mobile devices are followed by increased number of processes that are performed by the use
of electronic means. The concept of Process-Aware Information Systems (PAISs) has been
proposed in (Dumas, et al., 2005) to encompass various information systems supporting
the lifecycle of any process. A PAIS is defined as “a software system that manages and
executes operational processes involving people, applications, and/or information sources on
the basis of process models” (Dumas, et al., 2005). Examples of PAISs include: production
workflow managements systems, ad-hoc workflow systems, and computer supported
collaborative work (CSCW) systems. PAISs support for process execution aims at finding
a balance between flexibility of process definition and guidance for human actions. Systems
that allow greater flexibility offer limited support for user guidance and vice versa. PAISs
providing both flexibility and guidance are missing. Moreover, in existing PAISs, guidance is
based on predefined process models that become quickly obsolete in dynamic organization
environment.

Modern PAISs log enormous amount of data providing detailed information about activities
and processes that have been executed. Such data are referred to as events. Event logs provide
valuable insight into process instance executions. Analysis of event logs may permit
to discover factors impacting efficient execution of process instances. Information about those
factors may be used to improve efficiency of future process instance executions. Efficient use
of information from event logs relies on ability to analyze PAISs’ data and draw business-
level conclusions concerning process execution success factors.

Discovery of knowledge from large amounts of data is the domain of data mining and
machine learning techniques. To capture the notion of process in data mining, the term
process mining has been coined. Process mining is “a set of techniques, tools, and methods
to discover, monitor and improve real business processes by extracting knowledge from event
data available in today's information systems” (Aalst, 2011). Traditionally, in process mining
research, one may distinguish two main areas of interest: on-line and off-line analysis. While
off-line analysis includes process discovery, process conformance checking and process
enhancement, on-line analysis encompasses process prediction, detection and
recommendation (Aalst, 2011).

10

On-line process mining recommendations provide an opportunity to efficiently support
processes executions in PAIS (Schonenberg, et al., 2008). The idea consists in analyzing past
and ongoing executions of process instances to discover real, actual process models and use
them to guide users by PAIS. Recommendation of activities based on event logs is a known
but still new and largely unexplored area of process mining.

Existing process mining recommendation methods are limited to structured processes with
known process models. Such methods cannot be applied to very large sets of unstructured,
emerging, unpredictable processes with unknown underlying process model. Moreover,
existing methods permit to discover only activity names and time characteristics. They do not
include important aspects relevant for partner and service selection such as information about
actors involved in the VO collaborative processes and the context of VO collaborative process
executions. The need for efficient process mining methods supporting execution of
unstructured processes guiding collaboration is confirmed in (Sinur & Jones, 2012):
“in processes where there are multiple ways of finishing a process instance to completion,
typical in semi- and unstructured processes, paths to success can be traced by automated
business process discovery. Success patterns can be mined, stored and presented to resources
as better practices, ranked by goals for future process participants. This will become more
important where collaboration is used to drive to completion. Case management, extreme
collaboration and social interactions are drivers for these kinds of process solutions.
Productive collaboration pairings and sources can be identified and leveraged for future
cases .

The main idea of the Recommendation Method for Virtual Organizations (the RMV method),
proposed in this dissertation, is automatic discovery of activity patterns and ad-hoc generation
of recommendations for VO collaborative process instances performed within a SOVOBE.
An activity pattern is a set of partially ordered activities performed by collaborators that
frequently occurs in many instances of VO collaborative processes.

In the RMV method, it is assumed that event logs of a PAIS satisfy the following
requirements:

1. Each event in the event log has attributes indicating actors involved in execution of
the activity instance comprising the event;

2. Each event has a distinguished set of attributes describing circumstances in which it
was recorded,;

3. Each completed VO collaborative process instance is described by a set of attributes,
including one that indicates the outcome of the VO collaborative process instance.

The RMV method consists of two main phases:

1. Identification of activity patterns and their contexts;
2. Recommendation formulation.

In the first phase, a set of activity patterns is identified. Each activity pattern contains
information about its contexts, partially ordered set of activities ordered according to temporal

11

dependencies, involved set of actors, and relations among actors. The second phase is
performed on request. In the second phase, activity patterns suited to a particular context of
arunning VO collaborative process are selected and recommended for inclusion in further
execution of the VO collaborative process instance. Once an activity pattern is selected, it is
instantiated before incorporation into VO collaborative process execution. Instantiation
is based on information stored in the activity pattern regarding actors and information
concerning SOVOBE members provided by SOVOBE services. Selection of the best
matching activity pattern from the set of recommended activity patterns and its instantiation is
performed in a collaborative way by a group of collaborators. Recommendations generated by
the RMV method are used by PAIS to guide user actions. As a consequence, PAIS provides
a support for both flexible definition of process models and user guidance, where the guidance
is based on discovered, real and actual activity patterns.

The thesis of this dissertation is the following:

The RMV method permits formulation of accurate recommendations leading to
selection of partners and services for collaboration within virtual organizations.

The reminder of this dissertation is organized as follows. In Section 2, an inter-organization
collaboration is characterized in detail. In particular, the theoretical foundations of inter-
organization collaboration formulated on the ground of economy and management are
presented. This section also explains the application of the Service Oriented Architecture at
inter-organization level and formalizes basic concepts referring to collaboration such as:
service, process, process model, collaborator and collaboration. Two important concepts of
Virtual Organization and Virtual Organization Breeding Environment are presented as
organizational structures supporting inter-organization collaboration. Finally, the problem of
partner and service selection for VO collaborative processes is presented.

Section 3 is devoted to computer support for execution of VO collaborative processes. First,
the concept of Process-Aware Information Systems (PAISs) is introduced that support
processes modeling, management and adaptation. PAISs are analyzed in terms of support they
provide to VO collaborative processes. Next, the concept of service protocols is presented as
an approach to modeling and adaptation of collaboration. Finally, context-aware
recommender systems are analyzed in terms of on-line support of VO collaborative processes
execution. The analysis is divided into two parts: (1) approaches to context modeling,
(2) methods of generating recommendations based on modeled context.

Section 4 outlines data analysis methods applicable to human behavior, including those based
on process mining. Special attention is paid to the concept of operational support based on
process mining and process mining recommendation methods. This section is concluded by
description of methods of data analysis, other than process mining, which aim at finding
patterns in data describing human behavior.

In Section 5, the concept of the RMV method together with its formal model is presented.
First, motivation behind the RMV method is explained in detail. The motivation is based on
the requirements of inter-organization collaboration, limitations of existing methods

12

in support of VO collaborative processes, and limitations of current process mining and data
analysis methods. The motivation is followed by the RMV method outline which is divided
into two parts: (1) general description of the method, and (2) description of the RMV method
key aspects. Formalization of the RMV method includes the following concepts:
collaborative process, VO, VO collaborative process context, collaborative process event log,
activity patterns, activity pattern recommendation, and activity pattern instantiation, as well
as the following operations: activity sequence pattern discovery, activity pattern
identification, recommendation formulation and activity pattern instantiation. The section is
concluded by description of the RMV method parameters and the RMV method
computational complexity.

Integration of the RMV method with a PAIS is presented in Section 6. First, the architecture
of the prototype implementation of the RMV method is presented. Then, the ErGo system
being an example of PAIS used in the construction sector is presented. The ErGo system
description includes its main applications: ErGo Organizations, ErGo Services, ErGo
Investments, and ErGo Investment Types. The prototype implementation of the RMV method
is integrated with all the ErGo applications. Moreover, the ErGo MatchMaker application is
added to the ErGo system as a part of the prototype. This section includes also evaluation of
the RMV method applied to real case data. The analysis is performed on data coming from
a delivery process performed in the warehouse of Epsilon company which is a medium sized
production company. Application of the RMV method has led to discovery of activity patterns
and formulation of nontrivial recommendations concerning complaints handling, work of
quality department employees, and handling of damaged pallets.

Section 8 concludes the dissertation.

In addition, three appendices are provided. Appendix A contains the formal model of service
protocols that are used as a part of formal representation of activity patterns. All the modules
and classes of the prototype implementation of the RMV method are presented
in Appendix B. Appendix C contains table of symbols used in the dissertation.

13

2. Inter-Organizational Collaboration

Organizations always perform their processes in a particular economic, legal, social, political
and technological environment which has impact on their success (Stoner, et al., 1999).
In (Porter, 2008), organization environment is defined as “all the forces, processes and other
entities — companies, public administration agencies, non-government organizations, etc. —
outside an organization that interact with the organization and can potentially affect the
organization’s performance”. Current trends: globalization, development and proliferation of
information technology, spread of social media, development of electronic, knowledge-based
economy and rising competition, are followed by increased complexity, uncertainty,
dynamism, turbulence and diversity of organization operations. Such environment is
a particular challenge for small organizations. Although many small organizations are flexible
and innovative, so they may adapt to transforming environment in a relatively easy and fast
way, they are volatile, they have limited capabilities to influence the market and to control
their environment and, finally, they have to compete with large global organizations that have
much more resources. To achieve market success, small organizations have to combine
strategies of specialization, differentiation and cost leadership throughout the value chain.
As a consequence, these strategies lead to collaboration by integration of various organization
efforts.

The main reason for collaboration among organizations is the need for competitive advantage.
The first theoretical framework that may be used to understand the fundamental need for
collaboration among organizations has been proposed by David Ricardo in his book
“Principles of Political Economy and Taxation” (Ricardo, 1817). David Ricardo indicated
the strategy of specialization as a way to boost efficiency of organization operation.
Specialization means concentration of an organization on operations where it has comparative
advantage and taking benefits from exchange of goods and services with other specialized
organizations. Ricardo has explained that this approach is effective even if an organization is
able to produce all the goods and services more efficiently than the other organizations. In the
theory of competitive advantage, Michael Porter proposed a value chain as an approach to
analysis of organization operations (Porter, 2008). A value chain is a set of activities related
to production processes, marketing, supply, client support, etc. which all together lead to
service provision or product delivery that has a value to a final customer. Basing on the value
chain concept, two organization strategies were proposed: cost leadership and differentiation.
An organization develops a cost advantage by reconfiguring its value chain to reduce costs of
as many stages of the chain as possible. Reconfiguration means making structural changes,
such as adding new production processes, changing distribution channels, or trying a different
sales approach. Differentiation stems from uniqueness and perceived value. An organization

14

focusing on activities it does best and creating innovative and unique products and services,
naturally rises above its competitors. An organization can achieve a differentiation advantage
by either changing individual value chain activities to increase uniqueness in the final product
or by reconfiguring the entire value chain. Barney (Barney, 1991) has proposed that “a firm is
said to have a competitive advantage when it is implementing a value creating strategy not
simultaneously being implemented by any current or potential player”. Focusing on the
resources and attributes which provide the competitive advantage to an organization has
a deep impact on its performance outcomes, and therefore, should be a fundamental aspect in
every business strategy. As a consequence, organizations should specialize to gain
a competitive advantage.

Focusing on competitive advantage leads to narrowing the areas of organization expertise and
operation. Meanwhile, the production and service provision currently require a large set of
skills and resources that a given organization is usually not able to handle efficiently. Thus,
modern value chains cover not one but a number of specialized organizations, integrated with
each other to perform activities defined within the value chain. Such collaboration creates an
opportunity for efficient, cost effective differentiation at each phase of the value chain. On the
other hand, efficient collaboration among autonomous organizations is difficult mainly due to
differences among them including geographic, legislative, and cultural differences, diverse
markets of products and services, frequent changes of customers and suppliers, as well as
modifications of law, technology and methods of work. This raises the question of
(1) the methods of modeling collaboration to achieve efficient computer support,
(2) organizational structures supporting collaboration. Collaborative processes have been
proposed to model inter-organizational collaboration, while Virtual Organizations and Virtual
Organization Breeding Environments have been intensively scrutinized organizational
structures supporting collaboration among organizations.

2.1. Collaborative Processes

The world economy is currently in an advanced stage of transformation from a goods-based
economy to a services-based economy in which value creation, employment, and economic
wealth depend more and more on the service sector (Spohrer & Maglio, 2008) (Demirkan, et
al., 2008) (Wall, 2007). Service Oriented Architecture (SOA) is one of the widely applied
paradigms with relevance to accounting, finance, supply chain management and operations,
as well as strategy and marketing. Thus, in modern approaches to management, SOA plays
a key role as a way to integrate heterogeneous information systems coming from different
organizations (Cellary & Strykowski, 2009) (Picard & Cellary, 2010). Typically, SOA
methods, Web services, associated tools and standards enable implementation of SOA
at infrastructural and technical levels. Recently, it has been stated that SOA does not have to
be limited to these levels only (Picard, et al., 2010). OASIS defines SOA as “a paradigm for
organizing and utilizing distributed capabilities that may be under the control of different
ownership domains” (OASIS Technical Committee, 2006). The concept of a service is
defined as follows: “a service is the mechanism by which needs and capabilities are brought
together”. These two definitions emphasize some characteristics of SOA applied to a set of
organizations which mutually collaborate to achieve common or compatible goals.
The service definition focuses exactly on the matching of the needs of users and the
capabilities of an organization or a set of organizations to answer these needs.

The terms traditionally used in SOA can be used to model the collaboration among
organizations in the following way. To achieve their goals, organizations perform activities

15

defined as closed pieces of work (Workflow Management Coalition, 1999). An activity may
be a piece of automated work performed by an information system, e.g., a web service for
creating invoices, a piece of work performed by a human, e.g., making a decision by a senior
executive, or a piece of work performed by an organization, e.g. constructing a residential
building. A set of partially ordered activities which realize an objective in a structured manner
is called a process (Workflow Management Coalition, 1999). A process instance is a single
enactment of a process. A process instance state is a representation of the internal conditions
defining the status of a process instance at a particular moment. A process model captures the
possibility to execute a given activity in a given state. Information systems, humans and
organizations involved in activities being a part of the process are called actors. A service is
an access to a competence of an actor, called service provider, to satisfy a need of another
actor, called service consumer, where the access is provided via a prescribed
interface (Picard, 2013). A service perceived by a service consumer corresponds to an activity
performed by a service provider. A collaboration arises when two actors alternately and
mutually play roles of service consumer and provider. Actors involved in collaboration are
called collaborators. A process is collaborative if some actors involved in it are collaborators.
The formalized definition of a collaborative process is presented in Section 5.4.1.

In the SOA approach, the organizational environment is referred to as a SOA ecosystem.
According to OASIS, a SOA ecosystem is defined as “a network of discrete processes and
machines that, together with a community of people, creates, uses, and governs specific
services as well as external suppliers of resources required by those services” (OASIS
Technical Committee, 2006). Although implementations of SOA at the inter-organizational,
infrastructural, and technical levels share many common concerns, such as orchestration of
services, reliability issues, and service instance selection, the SOA ecosystem at the inter-
organizational level has two specific characteristics: the heterogeneity and dynamism. In the
global economy, the SOA ecosystem is neither homogeneous nor static. Following Porter’s
Five Forces theory (Porter, 1979), SOA ecosystem heterogeneity comes from supplier power,
barriers to entry, rivalry among organizations, threat of substitute services and buyer power
which are different in different business domains. Also, organizations operating in
a SOA ecosystem are characterized by different readiness to personalize provided services,
level of computer support in service provision, business models, organizational culture, level
of formalization of collaboration and internal processes, geographical localization, ability to
adapt to SOA ecosystem changes, etc. Dynamics of a SOA ecosystem follow from constant
changes in the set of organizations, individuals and information systems operating in the SOA
ecosystem, changes in their operations and their results having impact on the whole
ecosystem. In a globalized economic environment, organizations are often competing
at the global scale. New organizations are created on a daily-basis, however, for instance
in the USA, more than 50% of them do not survive 5 years (U.S. Bureau of Labor Statistics,
2010). Therefore, new potential collaborators appear continuously, while many already
collaborating organizations disappear.

2.2. Virtual Organizations and their Breeding Environments

As a generic organizational structure supporting enactment of collaborative processes,
the concept of Virtual Organizations (VO) has been coined in (Camarinha-Matos, et al.,
2008). In this dissertation, Virtual Organization is defined as follows: “VO is a network
consisting of a variety of actors, called VO members, that are largely autonomous,
geographically distributed, and heterogeneous in terms of their operating environment,

16

culture, social capital and goals, which conduct processes including at least one
collaborative process in order to carry out a particular venture due to the demand from VO
clients ”. The formal definition of VO is presented in Section 5.4.1.

Partners collaborating within a VO are organizations — enterprises, public administration
units, and non-government organizations — people, and information systems (Cellary,
2006) (Drozdowski, et al., 2005). Theoretical foundations for virtual organizations have been
proposed in (Rabelo & Gusmeroli, 2008) and (Camarinha-Matos, et al., 2007). VO permits to
deal with complexity, pursuit for agility, and take advantages of broad use of information
technologies in economic and managerial operations (Cellary, 2009). In case of a VO,
a modification of a VO collaborative process may be triggered either by external events
occurring in VO environment or internal events that are strictly connected to the execution of
VO collaborative processes. Among others, modification may be followed by change in a set
of VO partners, modification of VO collaborative processes or even redefinition of the VO
goal. Modification of virtual organizations takes place during the whole VO operation.

Services available in a SOA ecosystem that can be incorporated into VO collaborative
processes are offered on markets of services having various forms and levels of formality. For
instance, the service market may take form of catalogs of organizations (Panorama Firm,
2012), service auctions (Oferia.pl, 2012), IT service parks (Petrie & Bussler, 2008), dynamic
business networks (Bichler & Lin, 2006), Web service ecosystem (Barros, et al., 2005), B2B
e-marketplaces (Abramowicz, et al., 2008) or public administration service
platforms (Ministry of Administration and Digitization, 2012). Within these markets, service
providers offer multiple services that can be dynamically and on-demand bind into VO
collaborative processes. Evolution in the area of service publication, discovery and usage
recently has shifted from tight coupling of intra-organizational systems to inter-organizational
loosely coupling of partners using well defined service level agreements to open market of
services with new models of licensing comprising abstract processes and dynamic service
selection and instantiation.

A concept of Virtual Organization Breeding Environment (VOBE, sometimes abbreviated to
VBE in the literature) has been proposed to support dynamic partner and service selection and
instantiation of VO. A VOBE is “an association of organizations with the main goal of
increasing preparedness of its members towards collaboration in potential virtual
organizations”’ (Camarinha-Matos, et al., 2008). VOBE allows potential collaborators to
prepare their future collaboration with other VOBE members before a business opportunity
occurs. Preparation is done by publication of available services and provision of other data
useful for identification of collaboration chances. VOBE supports its members by providing
an access to various services that can be used across virtual organization
lifecycle (Camarinha-Matos, et al., 2007):

e In the VO creation phase: VOBE provides access to information not publicly
available, such as information about the past performance of VOBE members; it also
provides a standardized description of partner profiles, competences and services;
it supports the potential partner search and selection; it provides methods and tools for
analysis and evaluation of present and future cooperation performance, as well as
necessary information for trust building among selected members;

e In the VO operation phase: VOBE supports communication and exchange of
documents, facilitates integration of heterogeneous information systems and manages
common infrastructure, provides guidelines for standardized data formats, data storage
facilities, information about changing environment of collaboration, information about

17

new collaboration opportunities, and permits to reuse artifacts elaborated by other
VOs (in particular business process models, or best practices);

e In the VO evolution phase: VOBE supports adaptation by redefinition of business
goals, searching for new partners, supporting negotiations, etc.;

e In the VO dissolution phase: VOBE inherits knowledge, i.e., it captures experience
gained during the operation of VOs for future reuse.

While the concept of VOBE is currently widely accepted, many doubts concern its
architecture and implementation. Existing VOBESs have been created in an ad hoc manner and
have an infrastructure allowing limited support for efficient integration of VOBE members on
both business and technical levels. Service-Oriented Virtual Organization Breeding
Environments (SOVOBES) have been proposed as VOBESs organized systematically on both
technical and organizational level around the concept of a service allowing SOVOBE
members to collaborate better (Picard, et al., 2010).

2.3. Partner Selection for Virtual Organizations

As mentioned in Section 2.2, both SOVOBE and VO operations are based on services
performed by organizations, people, and information systems, composed in potentially
complex VO collaborative processes. Success of a VO strongly depends on ability of all
participating partners to efficiently and seamlessly collaborate. Good level of collaboration
may be achieved by an appropriate selection of services and collaborators. Selected
collaborators need to be able to mutually communicate, synchronize, and cooperate to
efficiently realize a set of activities. Due to importance and complexity of the partner
selection problem, a number of computer supported methods has already been proposed.
Although, the newest methods address the aspect of service orientation, in the literature the
selection of services is usually separated from the concept of selection of partners. While
service selection is a concept investigated by the distributed systems community (especially
in terms of SOA), partner selection is mainly a subject of interest of the collaborative
networked organization community. Nevertheless, in most methods presented in the papers
coming from both communities, it is possible to distinguish two elements: first, an
information model captures and structures information about artifacts based on which
selection is performed. Second, various selection techniques have been proposed, focusing on
the selection context, scope of the selection and selection strategy.

Partner selection is strongly related with the idea of competence modeling (Gallon, et al.,
1995). Works on competence modeling aim at providing a structural description of
organizations with a special emphasis on competences, profiles, capacities, and resources
(Ermilova & Afsarmanesh, 2010) (Pepiot, et al., 2007). The concept of partner selection based
on organization and competence profiles have been published in (Ermilova & Afsarmanesh,
2007). In a competence-based approach, inclusion of service characteristics is
marginal (Ermilova & Afsarmanesh, 2010) or not present at all (Pepiot, et al., 2007).
In (Canfora, et al., 2005) and (Mueller, 2006), the selection of services is based on
an information model consisting of service descriptions. A service description usually
includes a wide range of technical, functional, non-functional and business characteristics of a
given service. In (Claro, et al., 2005) and (Jaeger & Miihl, 2007), opinions concerning
services and user feedback are taken into account. These works do not take advantage of the
concepts elaborated in the area of competence modeling, so proposed descriptions of service
providers are often not structured, consisting of a simple list of attributes. Moreover, while

18

the importance of social aspects in SOA has been noted recently (Swierzowicz & Picard,
2009) (Picard, 2009), existing approaches to inclusion of these aspects in partner selection are
still to be developed (Jarimo, 2009). As an example, (Ding, et al., 2003) have proposed
a simulation-optimization approach using genetic search for supplier selection, integrating
performance estimation, social aspects and genetic algorithm. However, the social relation
model encompasses only a simple social model for supply chains limited to only one relation
type, i.e. customer-supplier. A number of selection strategies have been proposed for partner
selection. The conclusion of the comparison of various popular approaches presented
in (Canfora, et al., 2005) and (Crispim & Sousa, 2007) is that genetic algorithms are the most
popular approach. The general guidelines for partner selection within the VOBE are presented
in (Rabelo & Gusmeroli, 2008) and (Camarinha-Matos, et al., 2007).

2.4. Basic Definitions

In this section, first, the concepts related to objects and classes of objects are defined. Next,
the main concepts related to organizations, processes and services in SOA are introduced.

Definition 2.1. (Attribute) An attribute a is a pair {(an, av,,), where an is the name of the
attribute and av is the value of the attribute. The value of an attribute may be a literal,
an attribute or a set of attributes.

Definition 2.2. (Attribute equality) An attribute a; is equal to an attribute q; if an; = an;
and avg,, = AVqp;- Formally, a;e a; = an; = an; and avg,, = Aqn;-

Definition 2.3. (Object) An object ob is a pair {(obn, as), where obn is a name of an object
and as is a set of attributes {a}.

Example 2.1. An object named ArchibaldTex is composed of the following set of
attributes:

e (Nationality, Canadian),

e (Profession, {Architect}),

e (No.realizations, 17). =

Definition 2.4. (Object Classifier) An object classifier ob is a set of attribute names ob =

{an}.

Definition 2.5. (Equality According to Classifier) Two objects are equal according to
classifier ob if they have the same attribute values associated with attribute names composing
object classifier ob.

Formally, an object ob; = {obn;,{a;}} is equal to object ob; = {obnj,{aj}} according to

ob
classifier ob, denoted ob;=ob;, iff Van, € ob,3 (al- = (an;, Avqy,) € ob; and a; =
(an;, avanj) € obj) any = an; = anj and avg,, = AWan;-
Example 2.2. All the objects having the same value of attributes named: Nationality and

Profession are considered equal according to classifier ob = {Nationality, Profession },
independently of how many other attributes they have. =

19

Definition 2.6. (Attribute Constraint) An attribute constraint a® is a pair (ac,9,.), where
ac is the name of the attribute constraint and 9, is a predicate.

Definition 2.7. (Satisfaction of Attribute Constraint) An attribute a = (an, av,,,) satisfies
an attribute constraint a®* = (ac,9,.), denoted a > a%, iff an = ac and 9,.(av,,) = true.

Definition 2.8. (Class) A class c is a pair {cn, as®), where cn is a name of a class and as® is
a set of attribute constraints as® = {a%}.

Example 2.3. An ExpiriencedArchitect® class is composed of the following set of attribute
constraints:

e (Profession, o{Architect}),

e (No.investments,> 15).=

An ExpiriencedDeveloper? class is composed of the following set of attribute constraints:
e (Profession, o{RealEstateDeveloper}),
e (No.investments,> 10).=

Definition 2.9. (Class Instance) An object ob = (obn,a = (an,av,,)) is an instance of
aclass ¢ = (cn, {a* = (ac,9,.)}), denoted ob o< c, iff V a* € c¢,3a € ob: a> a®.

Example 2.4. The ArchibaldTex object is an instance of the ExpiriencedArchitect® class,
because all the attribute constraints of the class are satisfied: ArchibaldTex is an architect
and his number of realizations, equal to 17, is higher than the required number, equal to 15.
Note that attribute nationality is not relevant for the ExpiriencedArchitect® class. =

Definition 2.10. (Activity) An activity v is a closed piece of work aiming at creation of new
objects, removal or modification of existing objects.

An activity may be a piece of automated work performed by an information system,
e.g., aweb service of creating invoices, or a piece of work performed by a human,
e.g., making a decision by a senior executive.

Let V* be the set of all the activities.

Definition 2.11. (Activity Description) An activity description vd is an object describing
an activity with the following minimum set of mandatory attributes having empty values:
e activityStart is a timestamp representing the starting time of activity
execution, and
e activityEnd is a timestamp representing the completion time of activity
execution.

Let VD* be the set of all the activity descriptions.

Definition 2.12. (Activity Instance) An activity instance vi is a single enactment of an
activity.

Let VI* be the set of all the activity instances.

Definition 2.13. (Activity Instance Description) An activity instance description vid is an
activity description where the values of mandatory attributes are non-empty.

Let VID* be the set of all the activity instance descriptions.

20

Definition 2.14. (Process) A process is a set of partially ordered activities which realize
an objective in a structured manner.

Definition 2.15. (Process Instance) A process instance is a single enactment of a process.

Definition 2.16. (Process Instance Description) A process instance description pid is
an object describing process instance.

If the process instance is completed, exactly one attribute describes its outcome. Other
instance attributes may include information concerning process instance type, purpose,
starting time, place of process instance execution, etc.

Definition 2.17. (Process Model) A process model % is a directed acyclic graph % =
(VD,E), where VDcVD* is the set of activity descriptions, and E is a set of arcs determining
the partial order of activity execution.

Definition 2.18. (Basic entity) A basic entity is a human or an information system.

Definition 2.19. (Organization) An organization is a set of at least two members, where
a member is either a basic entity or another organization, working within a particular structure
of relations in order to achieve a certain goal of this organization and having a plan to achieve
this goal. A goal of an organization may change, followed by the need of plan adaptation.

Formally, an organization o; is atriple (» , M;, R;), where:
l
e 7 isaplan to achieve goal g; of organization o;,
l
e M, is a set of members of organization o;, such that |M;| = 2,
e R, set of relations among members of organization o;, where R; + Q.

Let O denote the set of all the organizations O = {o}.

Definition 2.20. (Actor) An actor ar is a basic entity or an organization able to perform
an activity.

Let AR = {ar} denote the set of all the actors. Note that OcAR.

Definition 2.21. (Actor Description) An actor description ard is an object describing
an actor.

Definition 2.22. (Competence) A competence is an ability of an actor to perform a particular
set of activities.

Definition 2.23. (Need) A need of an actor is a demand for object creation, modification or
removal.

Definition 2.24. (Interface) An interface sq is a pair of sets of classes of objects sq =
(IN%, 0UT®).

Definition 2.25. (Service) A service s is an access to a competence of an actor, called service
provider, to satisfy a need of another actor, called service consumer. The access to
a competence is provided via a prescribed service interface sq,, where IN“ is a set of classes
of objects accessed by a subset of activities composing service provider competence, and
OUT“* is a set of classes of objects to be modified, created or removed during activities
execution to satisfy a service customer need.

21

Example 2.5. Consider two companies: HuntersComp and Analytix. Company
HuntersComp has a competence of finding highly qualified professionals in the labor
market. Finding a right professional requires execution of a set of activities
by HuntersComp. Company HuntersComp is a provider of a service EmployeeSearch.
Service EmployeeSearch offers an access to HuntersComp competence. =

The EmployeeSearch service has an interface sqempioyeesearcn = (IN%, OUT%), where IN*
is a 1-element set whose element is a class of position description PositionDescription® €
IN* having the following set of attribute constraints:
{(responsibilities, # @), (expirience, # @)}. PositionDescription® class states that
a position description object must provide a none empty list of responsibilities of an employee
and expected experience of an employee. An object being an instance of
PositionDescription® class must be provided by a service consumer during the service call.
OUT“ is a 1-element set whose element is a class of employee bio Bio® € OUT® having a set
of attribute constraints {(name,# @), (contact info,# @), (skills,+ @)}. The Bio* class
states that employee bio with his/her name, contact information and skills will be given to
a service consumer as a result of service EmployeeSearch execution.

Analytix is a HuntersComp’s client. Analytix’s need is to find a proper business analyst.
Analytix is a consumer of the service EmployeeSearch. Analytix requests service
execution and gives a HuntersComp company an object BusinessAnalyst having attributes
{(set of responsibilities, {communication with clients, leading IT projects,
managing group of junior analysts}), (experience, 10 years)}. BusinessAnalyst is
adescription of a business analyst position in Analytix. Note that
BusinessAnalyst o« PositionDescription®*. As a result of service execution,
HuntersComp returns object JohnSnowBio with attributes
{(full name, John Snow), (contact info, phone no. 507098314), (competences,
{knowledge of databases, knowledge of project management})} to Analytix. Note
that JohnSnowBio o« Resume?. =

22

3. Computer Support for Collaborative Processes

Efficient computer support for VO collaborative processes requires proper approaches to
modeling collaboration, supporting execution of VO collaborative processes and providing
guidance to collaborators in determining upcoming process activities that must be performed.
The main support is provided by Process-Aware Information Systems (PAISs) and
recommender systems.

3.1. Process-Aware Information Systems

3.1.1. Business Process Management

Business Process Management (BPM) is defined as “supporting business processes using
methods, techniques, and software to design, enact, control, and analyze operational
processes involving humans, organizations, applications, documents and other sources of
information” (Aalst, 2004) (Aalst, et al., 2003). In the literature concerning BPM, information
required to model and control a process has been classified according to various perspectives.
In (Aalst, et al., 2003), five perspectives have been presented:

e The functional perspective focuses on activities to be performed, their casual and
temporal dependencies,

e The process perspective focuses on the execution conditions for activities,

e The organization perspective focuses on the organizational structure of the population
that potentially executes activities,

e The information perspective focuses on data flow among activities,

e The operation perspective focuses on elementary operations performed by
applications and resources.

Traditionally, BPM literature describes the following six phases of the process
lifecycle (Reichert, 2011):

1. The process design phase, during which a process designer or a group of process
designers define a process model; the definition of a process model is based on a
process modeling language, e.g., BPMN!, EPC? providing appropriate constructs for
creating graphical representation of the model;

Business Process Modeling Notation, http://www.bpmn.org/
Event-driven Process Chain, http://www.ariscommunity.com/event-driven-process-chain

23

2

2. The process configuration phase, during which appropriate implementation of the
activities of the process are identified,;

3. The process implementation phase, during which values of the process parameters,

especially values of the parameters of its activities, are provided to tailor the process

instance to the addressed situation;

The process enactment phase, during which activity instances are executed,

The process monitoring and diagnosis phase, during which the execution of the

process instance is controlled, logged, and eventually audited,;

6. The process evolution phase, during which modifications are introduced in the process
instance and/or the process model.

ok~

Proliferation of information technologies and ubiquitous access to the internet by fixed and
mobile devices are followed by increased number of processes that are performed
by electronic means. The concept of Process-Aware Information Systems (PAISs) has been
proposed in (Dumas, et al., 2005) as a concept encompassing various information systems
supporting process lifecycles. A PAIS is defined as “a sofiware system that manages and
executes operational processes involving people, applications, and/or information sources
on the basis of process models” (Dumas, et al., 2005). PAISs include among others: workflow
management systems, Enterprise Resource Planning (ERP) systems and Customer
Relationship Management (CRM) systems. The main difference between more traditional
information systems and PAIS is the focus of the system. Information systems take a data-
driven approach, focusing purely on the tasks they have to perform. On the contrary, PAISs
look at the process they have to support. As a consequence, PAISs are able to support
organizations by providing insight in the status of both the process as a whole and activities
which are part of it. This enables organizations to monitor and communicate about their
current state and performance.

3.1.2. Characteristics of VO Collaborative Processes

Heterogeneity and dynamic nature of the SOA ecosystem is followed by complexity of
VO collaborative processes. Collaborators constantly gain knowledge through the analysis of
information concerning the organization environment. Moreover, collaborators learn from
each other both explicit and tacit rules governing the execution of collaborative processes.
As a consequence of instantly gained knowledge, collaborators change the way they perceive
processes, activities, semantics of the decisions being made, and the way these decisions have
been made. Due to usually long-lasting character of the VO collaborative processes, the set of
collaborators and their roles change, so the set of collaborators having the holistic vision and
understanding of collaborative processes realized in the whole VO may be small. Finally,
similar instances of VO collaborative processes—e.g. having a similar goal, involving
a similar set of collaborators, performed at the same time—may be interrelated, which means
that the course of execution of one VO process instance and its results may influence
the course of execution of another instance.

Traditional PAISs are built on clear separation of design-time and run-time phases. Process
design, implementation, and configuration phases are considered to be the design-time phases.
Process enactment, monitoring and diagnosis phases are considered to be the run-time phases.
Most PAISs enforce a strong precedence constraint on design-time and run-time: a process is
first modeled, and then executed, with a limited possibility to change the model at run-time.
This strong precedence is usually justified by two assumptions:

24

1. The process model is known before process execution, i.e., it is possible to design
a process model that is further instantiated and later on executed;
2. The business environment is rather static, which implies process repetition.

Processes meeting the above two assumptions are structured, i.e., repeatable and predictable.
Examples of such processes are production ones which can be well supported. To support
such processes, a number of methods and standards have been proposed in (Russell & Aalst,
2007) and in WS-BPEL (IBM & SAP, 2005), WS-Coordination (OASIS, 2007), WS-
Choreography (W3C, 2004) standards. Full automation is achieved at the expense of
possibility to provide change in a process model which cannot be made during process run-
time.

In case of VO collaborative processes, the above two assumptions are often not observed.
This causes the mismatch between a support provided by PAISs and highly dynamic business
environments. If a business environment is highly dynamic, it may be impossible to foresee
the process that has to be performed at a given moment. Two aspects of VO collaborative
processes have to be addressed to tackle their ad-hoc character:

1. The unpredictability aspect of VO collaborative processes refers to the difficulty to
plan in advance a partially ordered set of activities to reach the assumed goal,

2. The emergence aspect of VO collaborative processes refers to the influence of the
VO collaborative process instance execution on itself, i.e., decisions made during
process instance exaction condition a set of the next activities.

To precisely define problems related to VO collaborative process modifications during run-
time, the concepts of process flexibility and adaptation are used (Sadiq, et al., 2005).
Flexibility refers to the fact that execution of a VO collaborative process starts without its full
specification, i.e., the full set of activities to be performed and their ordering is not known
when the VO collaborative process execution starts, so specification of the model is made
atrun-time and may be unique to each VO collaborative process instance. Flexible
VO collaborative processes are characterized by a lack of ability to completely predict and
define a set of activities and ordering relationships among them. Adaptability is the possibility
of a VO collaborative process to adjust to exceptional circumstances that may or may not be
foreseen, and generally would affect one or a few VO collaborative process instances.
As the possibility of modification of VO collaborative process instances at run-time plays
a crucial role in a SOA ecosystem, a special attention should be put on computer methods
supporting VO collaborative process flexibility and adaptation. Currently, computer support
for adaptability and flexibility of processes is provided to various extent in many systems,
e.g., YAWL (YAWL Foundation, 2012), ADEPT (Reichert, et al., 2005), DECLARE (Pesic,
et al., 2007). A survey of current approaches is provided in (Picard, 2013).

In (Swenson, 2010), a problematic case of processes related with knowledge work has been
identified, e.g., emergency rescue, financial audit or bridge construction engineering, for
which a new approach is needed, referred to as Adaptive Case Management (ACM). In ACM,
it is impossible to predict the full course of process execution. However, it can be noted that
some sets of activities are highly probable to appear in particular circumstances. Still, it is
unknown whether the particular circumstances will appear. For instance, consider a process
describing a rescue action performed by a firefighter. The firefighter does not know how
a particular rescue action will develop, but he/she is trained to behave in a certain way
in particular circumstances. For example, when an electrical installation is on fire, he/she
performs a known set of activities related with this situation. Existence of reproducible,

25

typical human behavior patterns noted in (Swenson, 2010) is supported by findings described
in (Anderson, 2009). In cognitive psychology, these typical patterns are referred to as scripts.
A script describes some specific circumstances and a set of activities that is typical for these
circumstances. It has been shown that individuals are able to complete uncompleted or
erroneously reported scripts so that errors in the observed situations could be
corrected (Anderson, 2009). Similar findings can be observed in various fields.
In (Magnusson, 2004), it is stated that “behavior consists of patterns in time”. The authors
observe typical behaviors in team sport games like soccer. Some works even draws
a connection between behavior patterns and patterns found in DNA-sequences (Magnusson,
2005). In (Heierman & Cook, 2003) it is argued that identification of significant patterns
in human behavior can boost efficiency of operation of smart home infrastructure. Similar
observations are made in the area of interactive user interfaces (Davison & Hirsh, 1998)
(Hartmann & Schreiber, 2007). It has been shown that reproducible human behavior patterns
concern also groups of individuals while small alterations might exist for individuals coming
from different cultures and societies (Anderson, 2009). Processes analyzed by Swenson share
characteristics with VO collaborative processes.

The IT support for processes observed by Swenson is not yet provided. To systemize
classification of process in accordance with various levels of structuration, in (Aalst, 2011)
three levels of process structuration have been proposed:

1. Structured processes (also called Lasagnia-like processes) — during execution of
various process instances more than 80% of activities happen as captured in the
process model and stakeholders confirm the validity of the model; structured
processes have activities that are repeatable and all the activities have a well-defined
input and output;

2. Unstructured processes (also called Spagetti-like processes) — execution of process
instances is driven by experience, intuition, trail-and-error, rules-of-thumb, and vague
qualitative information; it is difficult to define pre- and post-conditions for activities;

3. Semi-structured processes — it is possible to sketch a general process model and major
parts of it are known in detail; conditions under which activities are performed are
known and some activities require human judgment; process instances can deviate
depending on actors decisions and the specific characteristics of the process instance
being executed.

Processes analyzed by Swenson and VO collaborative processes are in between semi- and
unstructured processes — it is possible to distinguish repeatable behaviors in generally
unpredictable and emerging process instances. In this dissertation such processes will be
referred to as quasi-structured processes.

3.1.3. Service Protocols

In (Picard, 2013), service protocols have been proposed as an approach to modeling
VO collaborative processes. The advantages of service protocols over other approaches to
VO collaborative process modeling have been listed in (Picard, 2013). In particular,
traditional approaches have the following disqualifying features:

e Static set of process actors: assignment of actors and services to the whole process;
this assignment cannot be modified at run-time;

e Singular service consumer: in the existing approaches, a single service consumer and
multiple service providers are assumed;

26

e Limited constraints: in the existing approaches, process models focus on the set of
activities and their partial ordering; the concept of role is used to limit the execution of
a given activity to actors with appropriate rights; the role definition is usually limited
to a label associated with a set of activities that may be performed,;

e Unsupported social aspects: although in the existing approaches the importance of
social aspects in VO collaborative processes has been largely studied, existing
methods of process modeling still lack support for relational constraints;

e One-time instantiation: in the existing approaches, the instantiation of a process is
done at once for the whole process and this assignment cannot be modified at run-
time.

A service protocol proposed in (Picard, 2013) consists of four elements: a process model,
a service-oriented summary of a process model, service network and a service network
schema. As mentioned in Section 2.4, a process model defines a set of partially ordered
activities to be performed during process execution. A service-oriented summary of a process
model is an association of each activity with a service description, where a service description
is a triplet defining the “who” (the service consumer), “what” (the service interface), and
“whose” (the service provider) part of the activity. A service-oriented summary of a process
model provides a representation of the activities of the associated process model in SOA
terms, independently of the process modeling language, e.g., BPEL3 or BPMN. In a service-
oriented summary of a process model, each activity of the process is associated with a service
represented by a service description. Information about service entities, i.e., service providers,
service interfaces, and service consumers, are captured in a service network. A service
network is a directed graph of service entities, i.e., service providers, service interfaces, and
service consumers. Service network aims at capturing properties and relations among service
entities. A service network is the source of service implementation used to instantiate service
protocol. A class of service entities is set of constraints which service entities being instances
of that class must observe. A class of arcs of a service network is a set of constraints that
the arcs being instances of that class must observe. Classes of arcs are called service
requirements. A service network schema is a graph composed of classes of service entities
and service requirements. A service network schema restricts the set of potential service
entities that may participate in a service protocol execution. The constraints should be taken
into account when selecting service entities, i.e., actors and service interfaces, during
instantiation of the collaborative process model. A service entity is an instance of a class of
service entities iff it satisfies all the constraints defined by the class of service entities. Finally,
a service protocol instance is a service protocol, where activity names and all the classes of
service entities defined in service network schema are known. The formal definition of
a service protocol is given in Appendix A.

A service protocol may be applied at four levels that differ mainly with regard to the
availability of information concerning the chosen service consumers, providers, and
interfaces:

1. At the abstract level, a service-oriented summary provides a service-oriented
representation of a process model, a service network schema provides constraints on
service entities and social requirements, and both the service oriented summary and
the service network schema are linked to associated service descriptions (from the
service-oriented summary) with classes of service entities (from the service network

3 Business Process Execution Language, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

27

schema); graphical representation of an abstract service protocol is presented in Fig.
3.1 (Picard, 2013);

At the prototype level, service entities of a service network are associated with both
service elements of the service-oriented summary and the classes of service entities of
the service network schema; at the prototype level, the service network provides only
a partial implementation of an abstract service protocol, as some elements of
the service-oriented summary and some classes of service entities of the schema may
not be associated with any service entity of the service network;

At the executable level, the service network associated with both the service-oriented
summary and the service network schema provides a complete implementation of an
abstract service protocol: all the service elements of the service-oriented summary and
all the classes of service entities of the schema are associated with service entities of
the service network;

At the instance level, an executable service protocol is enacted; at the instance level,
service entities defined at the executable level consume and provide services
modifying the state of the process model.

Abstract Service Protocol
Service-Oriented Summary

Process Model

e ey

_______ y
Service description 1 Service description 2 Service description 3

scl si1 sp1] {82 si2 sp2 | sc3 si3 sp3 |
< 7 1 - i

/ux /// \\\ ‘

Fig. 3.1. Abstract service protocol

The main characteristics of service protocols that facilitate modeling of VO collaborative
processes are:

Separation of activities implementation from the process model: a service protocol
include potential interactions among collaborators, however, the interactions are
decoupled from implementation of the activities performed by actors;
as a consequence, activities of a given process model may be implemented in different
ways, using different technologies, or different locations/hosts;

Modeling shared responsibility: in a service protocols, responsibility for execution of
activities is shared by different actors; service protocols express responsibility of
service consumers for invocation of services as well as responsibility of service
providers for the execution of services;

Constraints on actors: service protocols support the definition of constraints on actors,
both service providers and consumers; constraints on actors are then used as means to

28

define the obligations that an actor has to fulfill to participate in a VO collaborative
process; constraints on actors concern different aspects of actors such as their
competences to perform a given activity;

e Relational constraints: due to the importance of social aspects in collaborative
processes, social protocols support the definition of relational constraints between
actors; relational constraints concern activities that may be performed only by actors
with appropriate relations with other actors; computer support for VO collaborative
processes should treat relational constraints as an integral part of the model.

Although service protocols capture all the aspects relevant to description of VO collaborative
processes, the unpredictable and emerging character of VO collaborative process is only
partially addressed. The concept of service protocols is based on the assumption that the full
process is modeled before the process execution starts. Optionally, during execution, service
protocol is adapted to changing circumstances.

3.2. Context-Aware Recommender Systems

As follows from the research on customer decision making and human
collaboration (Lombardi, et al., 2009), behavior of actors involved in execution of
VO collaborative process instances largely depends on circumstances in which
the VO collaborative process instance execution takes place. For instance, utility of a
particular activity to an actor, or attractiveness of potential collaborators to an actor, depend
also on other aspects than characteristics of these activities and collaborators. In VO
collaborative processes, among others, evaluation of utility or attractiveness of an activity or
collaborators to an actor is influenced by the domain knowledge of the actor, time, and current
location. It has been proved that decision making, rather than being invariant, is contingent on
the circumstances of decision making (Bettman, et al., 1991). Social sciences demonstrate that
efficient collaboration is conditioned by social circumstances surrounding the act of
collaboration (Picard, 2013).

These observations lead to a conclusion that efficient computer support of VO collaborative
processes must include modeling and analysis of circumstances in which a VO collaborative
process instance is performed. The approaches to this problem are based on the notion of
context and context-aware systems.

3.2.1. Modeling Context of Collaboration

Notion of context has been studied in multiple disciplines. The Merriam-Webster dictionary
definition of context is “the interrelated conditions in which something exists or
occurs” (Merriam-Webster Online, 2013). The Free Dictionary defines context as
“the conditions and circumstances that are relevant to an event, fact, etc.” (Free Dictionary,
2013). More precise definitions of context come from the following main scientific areas: data
mining (Berry & Linoff, 1997), e-commerce personalization (Palmisano, et al., 2008),
ubiquitous and mobile context-aware systems (Schilit & Theimer, 1994),
databases (Stefanidis, et al., 2007), information retrieval (Jones, et al., 2005), marketing and
management (Bettman, et al., 1991), cognitive science and linguistics (Nardi, 1995). Each
discipline tends to take its own view that is suited for the particular application area or
research. In (Bazire & Brézillon, 2005), 150 different definitions of context were examined
from different research and application fields. Examined definitions make evident lack of
consensus on context definition. The provided analysis also proves the lack of consensus

29

concerning many essential aspects of a context, e.g., external or internal character of context,
static or dynamic nature of context. In the majority of works concerning context, the terms
‘user’, ‘task’, and ‘action’ are used as substitutes of ‘activity’, and ‘actor’ used in the area of
VO collaborative processes, including this dissertation.

When considering information systems, the most commonly cited definition of context is
the one formulated by Dey in (Abowd, et al., 1999) in the area of mobile computing and
ubiquitous systems: “context is any information that can be used to characterize the situation
of an entity, where an entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and applications
themselves”. In (Ramakrishnan & Gehrke, 2000), the Dey’s definition is discussed and
another one is proposed stressing the importance of context for user activity fulfillment:
“context is a set of circumstances surrounding a task that are potentially relevant for its
completion”. The definition is still very abstract and gives no guidelines on the actual
representation of context and its use in information system. Nevertheless, this definition is
adopted in this section. The formal definition of the context is presented in Section 5.4.2.

All information comprising the context is called contextual information. Contextual
information is provided by context sources. A context source can be a sensor and meter in
case of ubiquities computing, an information system, database, person, web site, etc.

The concept of conjunction of context and computing is not new (Jones, et al., 2005).
A context-aware system “adapts accordingly to location of use, the collection of nearby
people and objects as well as changes to those objects in time” (Adomavicius & Tuzhilin,
2008). The definition of context-aware system introduced by Dey in (Dey, 2001) puts
an emphasis on a role of such a system in supporting actor’s activities: “confext-aware system
IS a system that uses context to provide relevant information and/or services to the user,
where relevancy depends on the user’s task”. While this definition addresses only the aspect
of information presentation to an actor, Abowd et al. in (Abowd, et al., 1999) refined the
specification of context-aware system functionality. Three categories of context-aware system
are distinguished on the basis of provided functionality (Abowd, et al., 1999):

e Presentation of information and actions to a user — refers to information systems that
either present contextual information to the information system user, or use context to
propose appropriate selections of actions to the user;

e Automatic execution of actions — refers to information systems that trigger
a command, or reconfigure itself or other information systems on behalf of the
information system user according to changes in contextual information;

e Tagging of context to information for later retrieval — refers to information systems
that tag captured data with relevant contextual information for future analysis or use.

The use of context in information systems requires its formalization. Various approaches to
this problem have been presented in (McCarthy & Buvac, 1994) and (Akman & Surav, 1996).
In particular, various predicates expressed in logic-based languages formalize the notion of
relations among contexts, clarify concepts of context generalization, context hierarchy,
context paradox, situation theory, and operations on context. Among others, the works of
McCarthy, Guha, Buvac, Guinchigia, Shoham were compared in (Akman & Surav, 1996).

30

The following concepts concerning the context modeling are relevant for computer support of
VO collaborative processes and discussed further in this section:

e Representational and interactional views on context;
e Contextual information scope;
e Context abstractions;

e Context dynamics.

As follows from taxonomy provided in (Dourish, 2004), contexts can be classified into two
views: representational and interactional. In representational view, a context is described by
a predefined set of observable attributes, whose structure does not change significantly over
time. It is assumed in a representational view that the contextual attributes are identifiable and
known a priori and, hence, can be captured and used within the applications. Most of
approaches described in literature are based on the representational view on context (Anand &
Mobasher, 2007). On the contrary, in the interactional view it is assumed that the user’s
behavior is induced by an underlying context, but the context itself is not necessarily
observable. In the interactional view approach there is a bidirectional relationship between
activities and underlying context (Bettini, et al., 2010), i.e., context influences activities while
different activities give rise to different contexts.

Contextual information describes a certain aspect of context, such as time, location,
companion, purpose, etc. In literature, contextual information is referred to as context features
categories, types or aspects. The following contextual information was distinguished
in (Adomavicius, et al., 2005): user context, physical context, and computing context. Other
authors added other contextual information, such as time context, blood pressure, user
emotions, focus of attention. The scope of contextual information depends on context-aware
system domain. Contextual information can be obtained in three ways (Anand & Mobasher,
2007):

o Explicitly — directly approaching relevant people and other sources of contextual
information and explicitly gathering this information either by asking direct questions
or eliciting this information through other means;

e Implicitly — nothing needs to be done in terms of interaction with context-aware
system users or other context sources, the source of information is accessed directly
and the data are extracted from it;

e Inferring — context is derived using statistical or data mining methods; usually to infer
contextual information, it is necessary to build a predictive model and train it using
appropriate data; examples of used methods include Naive Bayes classifiers and
Bayesian Networks.

There are several approaches to determine the relevance of given contextual information for
various uses:

e Manually — using domain knowledge of the information system’s designer or a market
expert in a given application domain;

e Automatically — using one of many existing feature selection procedures such as
machine learning, data mining, or statistics (Koller & M, 1996) (Liu & Motoda, 1998).

In the representational view on context, contextual information need to be identified and
acquired before actual operations based on context analysis are performed. Decisions
concerning the scope of relevant and collected contextual information should be done at

31

the application design stage. In (Adomavicius & Tuzhilin, 2008) it is proposed that a wide
range of contextual information should be initially selected by the domain experts. Then, after
collecting the data, it is possible to apply various types of statistic test to identify which
contextual information is truly significant.

A context can be analyzed on several levels of abstractions. For instance, contextual
information referring to temperature might hold the value of ‘24 Celsius degrees’ as well as
the value ‘warm’, where such contextual information might originate from identical context
sources. The value ‘warm’ is at a higher level of abstraction than the value of ‘24 Celsius
degrees’. Authors of (Schilit & Theimer, 1994) use the notion of high-level context, low-level
context and raw data, to describe various context abstractions levels. Low-level context is used
synonymously for raw data directly output from context sources. The high-level context is
contextual information that is processed, i.e., it is aggregated, interpreted, calibrated, cleaned
from noise, etc. To provide seamless transition among various levels of context abstractions,
the concepts of aggregators and interpreters are proposed in the literature devoted to
architectures of context-aware systems. Aggregator is a component of a context-aware system
collecting multiple, distributed, but logically related pieces of contextual information into
a common repository. The need for aggregation comes in part from the distributed nature of
contextual information. Interpreter is a context-aware system component responsible for
rising up the level of abstraction of contextual information. An interpreter typically takes
contextual information from one or more context sources or aggregators and produces a hew
piece of contextual information.

To address the problem of context abstractions, the notion of situation was introduced
in (Akman & Surav, 1997). A situation is defined as “a limited portion of the world over
some location and time which can be picked out by a cognitive agent” (Akman & Surav,
1997). In (Dey, 2001), situation is defined as “a state of context sources, aggregators and
interpreters”, where state is information captured and stored in some point in time.
An approach to capturing situations in context-aware systems using clustering methods is
proposed in (Bettini, et al., 2010) and presented in Fig. 3.2 (Bettini, et al., 2010).

laudness laudness
A
" disco, leasure time
. I 1 , - N \
| [! |
L] L \ p
o* . ® Context o® PR
. . | [. - -
. interpretation Y '
L] | [P ™ ’
* L4 ' ‘e working ¢
™ L] v “a . e
sleeping Tt '
e ® e © '
L] L]
ot L] . [:
N A l
1 T
light intensity light intensity

Fig. 3.2. Creating context abstractions

In Fig. 3.2 the context interpretation step is presented using multidimensional coordinate
system. The idea is to represent a low level context feature by a vector in a multidimensional
coordinate system for every time interval. Each coordinate axis represents a normalized low-
level context feature. High level context is then a set of low-level contexts that is assigned
a label. A detailed discussion on various aspects of geometrical context representation, such
as overlapping of high-level contexts, can be found in (Padovitz, et al., 2004).

32

In (Adomavicius, et al., 2005), the authors address the notion of context abstractions by
building context hierarchies and formulating the concept of context generalization.

In (Adomavicius, et al., 2005) it is proposed that the contextual information is a set of
contextual dimensions K, each contextual dimension k in K being defined by a set of g
attributes k = (kq, k5, ..., k). Attributes have a hierarchical structure and capture particular
contextual information. The values taken by attribute k, define finer levels, while k, values
define coarser levels of contextual knowledge. This is a basis for a formal definition of
context generalization (Adomavicius, et al., 2005). Let ¢' = (¢, ..., c), Where ¢; refers to
a contextual information. Then ¢’ is generalization of context ¢ = (cy, ..., cx) iff in the
corresponding context hierarchy for every i = 1, ..., k, ¢; is higher in context hierarchy than
c;. Formally, V;_; , c¢; = c;. For example, assume three pieces of contextual information,
each one described with a hierarchy of possible values:

e Company: Girlfriend — Friends — NotAlone — AnyCompany
e Place: Theater - AnyPlace;
e Time: Sunday —» Weekend — AnyTime.

A number of generalizations of context ¢ = (Girlfirnd, Theater,Sunday) are possible,
among others including the following:

e (' = (Girlfriend, AnyPlace, Sunday);
e (' = (Friends, Theater, AnyTime);
¢' = (NotAlone, Theater, Weekend).

A multiple generalization of one context cause significant computational overload during
context analysis. The problem is complex as various levels of granularity have different
usefulness in various context-aware systems. For the time being, no generic approach to
appropriate context granularity selection was developed.

The dynamic aspect of the context is addressed in research on context prediction (Sigg, 2008).
A special emphasis here is put on the notion of time in context analysis. The main assumption
is that context is not static but changes over time gradually and semi-predictably (Brown &
Jones, 2002) (Greenberg, 2001). The knowledge of context change in history permits
extrapolation of context information and prediction of various aspects connected with context.
For the purpose of analysis of context change in time, the concept of context time series has
been proposed in (Sigg, 2008). A context time series are a non-empty, time-ordered set of
context elements with attached timestamps, where a context element is a non-empty set of
contextual information retrieved from context sources during one time interval. In (Brown &
Jones, 2002) the concept of context diary was introduced for storage of context information
over time.

The concepts of context, context aggregation, interpretation, generalization, etc., have been
applied to the area of inter-organizational collaboration quite recently. The application of
these concepts in this area is not yet mature. The notion of context appears in publications
addressing the problem of virtual organization formation (Tan, et al., 2008) (Do, et al., 2000)
(Gonga, et al., 2009). Examples of contextual information relevant to inter-organizational
collaboration are (Skopik, et al., 2010): desires, goals and needs of collaborators, ability of
service providers to satisfy service consumer requirements, or competences of interacting
parties. To enhance inter-organizational collaboration, context analysis is said to be crucial
for (Skopik, et al., 2010):

33

e Determination of collaboration patterns, for example delegation patterns, actor
preferences, and actor behavior;

e Selecting suitable collaboration partners and communication channels;

e Analysis of social relations that influence communication patterns.

In (Tan, et al., 2008), seventy eight papers were reviewed to find a common understanding of
VO collaborative process context and its relevant scope. The contextual information
was divided into seven categories: Role, Activity, Intent, History (Time-based), Social,
Emotional/Mental and Others. The contextual information concerning social aspects comes
out as very strong and important in (Do, et al., 2000) and (Gonga, et al., 2009). Social aspects
of collaboration refer to the nature of interaction between an actor and its human environment.
For instance, in (Picard, 2013), the author states that in context of human interactions and
inter-organizational interaction, social aspects may limit the choice of collaborators
by imposing some relations on interacting entities. In (OASIS Technical Committee, 2006),
the concept of execution context is proposed as an element of service-oriented architecture.
In SOA, the actors exchanging services must agree and acknowledge a consistent set of
agreements to successfully collaborate. The execution context is ‘the collection of consistent
set of agreements’. Furthermore, the execution context concerns “the totality of the
interaction — including the service provider, the service consumer and the common technical
infrastructure needed to mediate the interaction” (OASIS Technical Committee, 2006).
The execution context, specific for a VO collaborative process instance, evolves during
an execution of the VO collaborative process instance — the set of infrastructure elements,
the policies and agreements is changing.

3.2.2. Recommender Systems

As mentioned in Section 3.1.2, VO collaborative processes are knowledge intensive.
Observable explosion of the amount of data stored in information systems that is available to
actors involved in VO collaborative processes follows the Moore’s law*. Information concerns
other VO collaborative process instances, activities, actors, services, decision points,
VO collaborative process instance contexts, etc. One of the main challenges is to extract
knowledge from information stored in information systems. The problem of filtering and
selection of relevant information on behalf of information system user is addressed by
the concept of recommender systems.

Recommender Systems are “software tools and techniques providing suggestions for items to
be of use to a user” (Ricci, et al., 2011) Usually, recommender systems are targeted to
situations when users who lack sufficient experience, competence, time or ability to evaluate
overwhelming number of information items potentially suitable for their particular, complex
situation, preferences or purposes. Typically, execution of VO collaborative processes follows
these characteristics.

Below, evaluation of recommender systems in support of VO collaborative process instances
is presented, which encompasses:

e Overview of traditional recommender system elements: item, user model, and
transaction logs;

e Study and classifications of traditional two dimensional recommender systems and
their algorithms;

4 “The number of components in integrated circuits would double every year”, Gordon E. Moore

34

e Methods of including context in recommender system, i.e., data models and
algorithmic paradigms;

e Limitations of recommender system systems and methods of recommender system
evaluation.

recommender systems emerged as an independent research area in the mid-1990s. In recent
years, the interest in recommender systems has dramatically increased, mainly due to their
important role in highly rated internet sites as Amazon.coms, YouTubes, Netflix’,
Tripadvisors, Last.fme, and IMDb. In operation of every recommender system, three main
components are typically distinguished: items, user model, and recommendation transaction
log. Recommendations relate to various decision-making processes, such as which products to
buy, which music to listen to, which on-line news to read, or which activities to perform.

An item is a general term used to denote what the system recommends to its user. Examples
of items are: activity, restaurant, article, or movie. Typically, a recommender system is
tailored to provide suggestions for a specific type of items. In the most common case,
recommendations are presented as ranked lists of items. To rank items, recommender systems
try to predict suitability of items for a user, basing on his/her preferences and constraints.
To complete such a computational task, recommender systems collect user’s preferences,
which are either explicitly expressed, or are inferred by interpreting user actions. ltems may
be characterized by their value, cost and complexity (Ricci, et al., 2011). The value of an item
may be positive if the item is useful for the user, or negative if the item is not appropriate and
leads to wrong decision when selecting it. When a user is acquiring an item, he/she will
always incur cost, which includes: (1) the cognitive cost of searching for an item, (2) the real
monetary cost eventually paid for the item. If a selected item is relevant to a user, this cost is
dominated by the positive benefit of having acquired useful information. If the item is not
relevant, the net value of a recommendation is negative. Complexity of item varies from low
(books, videos) to high (cars, insurance, policies, jobs). Simple items can be repressed by
name or identifier, while highly complex ones can be represented by developed structures of
semantically annotated attributes. More complex is an item, higher is potential benefit of
recommendations, but also the difficulty of issuing a recommendation and possible
consequences of wrong recommendations. It is up to recommender system developer to
design recommender system mechanism to be suitable for a particular type of item
considering its value, cost and complexity characteristics.

Provision of recommendations is not limited to human individuals. Recommendations are also
formulated for groups, organizations and other information systems. In general, an entity
receiving recommendations from a recommender system is called recommendation system
user. The user model encodes recommender system user preferences and needs (Jannach, et
al., 2010). As literature focuses on recommendation systems devoted to human individuals,
many human user models have been developed. In (Fisher, 2001) the user model is extended
by information about relations existing among users, e.g. relations of trust, while
in (Taghipour, et al., 2007) users can also be described by data concerning their behavior.

Amazon, http://www.amazon.com/

YouTube, http://www.youtube.com/

Netflix, http://www.netflix.com/

Tripadvisor, http://pl.tripadvisor.com/

Last.fm, http://www.last.fm/

Internet Movie Database, IMDDb, http:/www.imdb.com/

© ® 9 o w

35

A recommendation transaction log is a “recorded interaction between a user and
the recommender system” (Ricci, et al., 2011). These recorded data are useful for
the recommendation generation algorithm that the recommender system is equipped with.
A recommendation transaction log contains a reference to the item selected by the user and
a description of the context (e.g., the user goal/query) for that particular recommendation.
If available, a recommendation transaction log also includes an explicit feedback the user
has provided, such as the rating of the selected item. In refined recommender systems, such
data collected during transactions is used for recommender system active learning aiming to
refine the recommendation generation algorithm (Ricci, et al., 2011).

Formally, a recommender system rating function is R: User X Item — Rating, where User
and Item are the domains of users and items, respectively, and Rating is a set of items totally
ordered according to item utility to a recommender system user (Fig. 3.3) (Adomavicius &
Tuzhilin, 2008).

The rating function R is usually defined as a function, where the initial set of ratings is
known. Once the function R is calculated for the whole two-dimensional User X Item space,
a recommender system recommends k highest-rated items for each user (cf. Fig. 3.3). Some
recommender systems do not fully calculate the utility before making a recommendation, but
they apply some heuristics to hypothesize that an item is useful to a user (Burke, 2007).

n
—ﬂ il
Data > 2D Recommender > Recommendations
UxIxR Uxl—-> R iy, i, i3, ...

Fig. 3.3. General components of the traditional recommendation process: data (input), two-dimensional
recommender system (function), and recommendation list (output)

Assuming that there is some available knowledge (zero knowledge is admissible) about a user
who is requesting a recommendation, knowledge about items, and other users who received
recommendations, the system will leverage this knowledge with an appropriate algorithm to
generate various utility predictions and hence recommendations. Different types of
recommender systems can be distinguished that vary in terms of used knowledge,
recommendation algorithm, final assemble of recommendations, forms of presentation of
recommendations to the user. Coherent classification of recommendation systems is presented
in (Burke, 2002). Six different classes of recommendation systems are:

1. Content-based (Pazzani & Billsus, 2007) — recommender system recommends items
that are similar to the ones that the user liked in the past, where the similarity of items
is calculated based on the features associated with the compared items; content-based
approach to recommendation has its roots in information retrieval and information
filtering research (Abramowicz, 2008);

2. Collaborative filtering (Schafer, et al., 2007) — recommender system recommends the
items to the user that other users with similar taste liked in the past, where
the similarity of two users is calculated based on the similarity in their rating histories;

3. Demographic (Mahmood & Ricci, 2007) — recommender system recommends items
based on the demographic profile of the user;

4. Knowledge-based (Bridge, et al., 2006) — recommender system recommends items
based on specific domain knowledge about how certain item features meet
recommender system users’ needs, preferences and requirements; two types of
recommender system are distinguished in this category: (1) case-based recommenders

36

determine recommendations on the basis of similarity metrics, (2) constraint-based
recommenders exploit predefined knowledge bases that contain explicit rules about
how to relate customer requirements with items;

5. Community-based (Arazy, et al., 2009) (Golbeckm, 2006) (Groh & Ehmig, 2007) —
recommender system recommends items based on the preferences of the user friends;
in some cases social-network data yields better recommendations than user model
profile similarity; adding social network data to traditional collaborative filtering
improves recommendation results; this approach is often referred to as social filtering;
the approach is currently intensively exploited by companies such as Google;

6. Hybrid recommender systems (Burke, 2007) — recommender system recommends
items based on combination of the other techniques; a hybrid system combining
techniques A and B tries to use the advantages of A to fix the disadvantages of B.

Hybrid recommender systems are those that combine two or more of the techniques described
above to improve recommendation performance, usually to deal with the cold-start problem of
handling new items or new users. Different types of hybrids has been identified and presented
in (Burke, 2002).

Each of recommender system, despite the class it belongs to, uses some kind of an algorithm
to make the rating function total. To this end, hundreds of algorithms have been developed.
In general, used algorithms are divided into two groups:

e Memory-based — ranking predictions are based on the entire collection of items
previously rated by the users; statistical methods are used that work better as
the available set of data gets bigger;

e Model-based — collection of ratings is used to learn the predictive probabilistic model
(i.e. decision trees, regression); the created model is later used for prediction of
unrated items for the user.

A description and analysis of various memory-based and model-based algorithms can be
found in (Adomavicius & Tuzhilin, 2005), (Herlocker, et al., 2004), (Popescul, et al., 2001),
(Sarwar, et al., 2001). In Tab. 3.1 (Adomavicius & Tuzhilin, 2005) only the most commonly
used techniques and algorithms in context-based, collaborative and hybrid systems are
enumerated.

Tab. 3.1. Techniques and algorithms used in various classes of recommender systems

Recommendation Recommendation Technique
Approach Memory-based Model-based
Content-based e TF-IDF (information retrieval) e Bayesian classifiers
e Clustering o Clustering
o Decision trees
__ o __Artificial neural networks
Collaborative e Nearest neighbor (cosine, correlation) o Bayesian classifiers
e Clustering e Clustering
o Graph theory o Atrtificial neural networks
e Linear regression
__ o __Probabilistic models
Hybrid e Linear combination of predicted ratings | e Incorporating one component as a part
e Various voting schemes of model for the other
¢ Incorporating one component as a part e Building one unifying model
of heuristic for the other

37

3.2.3. Context-Based Recommendations

Vast majority of the existing approaches to recommendation do not take into consideration
any contextual information. Traditional recommender systems do not put users and items into
a context when providing recommendations. In VO collaborative processes, evaluation of
utility of an activity or a collaborator to an actor is strongly influenced by context
(cf. Section 3.2.1).

Recommendation systems that use contextual information to improve accuracy of
recommendations are called Context-Aware Recommendation Systems (CARS). CARS deal
with modeling and predicting user tastes and preferences by incorporating available
contextual information into the recommendation processes. CARS are usually modeled as the
function R:User X Item X Context — Rating, where Context specifies the contextual
information.

The approach presented in (Herlocker & Konstan, 2001) serves as a successful illustration of
how additional relevant information can be incorporated into the standard collaborative
filtering approach. The importance of including and using contextual information
in recommendation systems has been demonstrated also in (Adomavicius, et al., 2005), where
authors present a multidimensional approach to recommendations. In (Oku, et al., 2006) it is
empirically proved that context-aware approach significantly outperforms the corresponding
non-contextual approach in terms of recommendation accuracy and user’s satisfaction with
recommendations.

Different approaches to contextual information application in recommendation processes are
classified into two groups (Abowd, et al., 1997):

1. Recommendation via context-driven querying and search;
2. Recommendation via contextual preference elicitation and estimation.

The context querying and search approach has been used by a wide variety of mobile and
tourist recommender systems (Abowd, et al., 1997) (Van Setten, et al., 2004) (Carolis, et al.,
2009). Recommender systems based on this approach typically use contextual information to
query or search a certain repository of items and present the best matching resources.
For instance, a restaurant recommender system may recommend best matching restaurant
basing on user’s current mood or interest provided explicitly, and additional information
collected implicitly describing the user’s environment, e.g., local time, weather, or current
location. User mood, interest, time, weather, and location form the context of
recommendation. The approach to recommendation based on contextual preference elicitation
and estimation is more recent trend in research, and practical applications (Panniello, et al.,
2009) (Yu, et al., 2006). This set of techniques attempt to model and learn user preferences,
e.g., by observing the interactions of this and other users with the systems or by obtaining
preference feedback from the user on various previously recommended items. To model
users’ context-sensitive preferences and generate recommendations, these techniques typically
either adopt existing collaborative filtering, content-based or hybrid recommendation methods
to context-aware recommendations, or apply various intelligent data analysis techniques.
Some practical examples of CARS, combine the techniques from both general approaches
into a single system. The UbiquiTO system (Cena, et al., 2006) implements a mobile tourist
guide and provides intelligent adaptation based not only on the specific contextual
information, but also on various rule-based and fuzzy set techniques to adapt the application
content based on user preferences and interest. The News@hand system (Cantador &
Castells, 2009) uses semantic technology to provide personalized news recommendation that

38

are retrieved using user’s concept-based queries or calculated according to a specific user’s or
user group’s profile.

Three different algorithmic paradigms for incorporating contextual information into
the recommendation process are discussed:

Pre-filtering (contextualization of recommendation input, Fig. 3.4a) — information about
the current context is used for selecting or constructing the relevant set of data records;
only the information that matches the current usage context is used to compute the
recommendations, e.g., the ratings for items evaluated in the same context;
recommendation can be performed using any traditional two-dimensional recommender
system on the selected data;

Post filtering (contextualization of recommendation output, Fig. 3.4b) — initially
the recommendation algorithm ignores the context information; the ratings are predicted
using any traditional two-dimensional recommender system on the entire data; the output
of the algorithm is then filtered to include only the recommendations that are relevant
in the analyzed context;

Contextual modeling (contextualization of recommendation function, Fig. 3.4c) — context
data are explicitly used in the prediction algorithm.

A.

B.

C.

Data Data Data
UxIxCxR UxIxCxR UxIxCxR
| c ——
L] Two-dimensional
recommender system Multi-dimensional
Contextualized data UxI>R recommender system
UxIxR — 9 H UxIxC-R
¥ | <] —
Two-dimensional | u -|.=>
recommender system Recommendations =
Uxl->R i1, g, i3, ...
B | v — e |
— — —

Contextual
recommendations

11,12, 13, ...

Contextual
recommendations

i1, i, i3, ...

Contextual
recommendations

i, ip, i3, ...

Fig. 3.4. Paradigms for incorporating context in recommender systems

In (Adomavicius, et al., 2005), the authors refer to pre-filtering approach as reduction based.
In practice, the use of context in pre-filtering approach can be perceived as formulation of
a query for selecting (filtering) relevant data to be used in further analysis. As an example, if
a recommendation should concern analysis of activities to be performed by a user on Sunday,
only the historical information concerning Sunday activities should be used. The example
presents exact pre-filtering. Also other pre-filters can be distinguished like generalized pre-
filer. Following the example, below the exact contextual pre-filer for activity recommendation
taking into account time is defined:

V(u,a,t) €U X AXT,(u,a,t) = Rjserxactivieyxrime (U @, Sunday)

_ pD[Time=Sunday](User,Activity,Rating)
- RUserxActivity (u, a),

39

where User, Activity and Time are the domains of users, activities and time, respectively. D is
a set of existing ratings. D contains records (user, activity, time, rating) for each known,
user-specified ratings. Moreover, [Time = Sunday] denotes simple contextual pre-filter and
D[Time = Sunday](User, Activity, Rating) denotes a rating dataset obtained from D by
selecting only the records where Time dimension has value Sunday and keeping only the
values from User and Activity dimensions.

Using the concept of hierarchy in context modeling (cf. Section 3.2.1), the concept of
generalized pre-filtering was introduced in (Adomavicius & Tuzhilin, 2008), where simple
filter [Time = Sunday], which represents the exact context of the rating (u, a, t), can be
replaced by generalized filter [Time € S;], where S, denotes some superset of context t. The
three-dimensional reduction can be generalized to reduction of n-dimensional space to m-
dimensional one, where m < n. To use reduction outputs in recommendation, frequently in
practice m = 2 is used. Due to the usual multiplicity of possible generalization of one context
(cf. Section 3.2.1), the important problem arises of selecting appropriate generalized filter.
Such selection can be performed based on expert knowledge or automatic selection methods
which still need to be developed or refined. When using the pre-filtering approach, one must
be aware of the tradeoff between having more relevant data for calculating an unknown rating
based only on ratings with the same or similar context and having fewer data points used for
this calculation (sparsity problem). This tradeoff leads to better recommendation efficiency of
pre-filtering approach in some domains and the general approach in others.

Contextual post-filtering ignores context information input data when generating
recommendations (Fig. 3.5) (Schilt, et al., 1994). Instead, when a recommendation list is
formulated, it is adjusted to user context. The idea behind adjustment of recommendation list
goes beyond simple filtering. The approaches based on heuristics and models consists of
analyzing contextual preference data for a given user in a given context to find specific item
usage patterns and then use these patterns (Schilt, et al., 1994).

Data —
UxIxCxR | cJ | u

1 7

| Item Usage Patterns

§

Traditional Contextual
Recommendations [————=> Item Adjustments [———=> Recommendations

11,12, 13, ... 11, 12, 13, ...

1
il

Fig. 3.5. Adjustment of recommendations in post-filtering

Heuristic post-filtering approaches focus on finding common item characteristics (attributes)
for a given user in a given context and use these attributes to filter out the recommendations
without having less than assumed number of common attributes. Alternatively, items are
ranked according to the number of supported attributes. Model-based approach to pre-filtering
also relies on filtering out or ranking items in a recommendation list, but such adjustments are
based on probability with which the user chooses a certain type of item in a given context.
The big advantage of both pre- and post-filtering approaches is that they do not require
development of any new recommendation techniques. Instead, traditional techniques
developed for two-dimensional recommender system can be used.

Contextual modeling approach uses contextual information in the recommendation function as
an explicit predictor of a user’s rating for an item. This approach takes advantage of such

40

techniques as decision trees, regression, probabilistic models, etc., or heuristic calculations
that incorporate contextual information. Comparison of various methods based on pre-
filtering, post-filtering and context modeling is presented in (Panniello, et al., 2009).
The comparison points out that the usefulness and efficiency of recommendations based on
these methods largely depends on a given application.

The concept of recommender systems is quite mature. Thus, the number of limitations and
challenges that the recommender systems must face is well defined. As the recommender
systems are specific for particular areas, the impact of various limitations on their
performance varies. The universal metrics have been proposed to evaluate and compare
recommender systems. Traditionally, four limitations of recommender systems are mentioned
in literature: (1) cold start problem, (2) sparsity problem, (3) limited content analysis, and
(4) overspecialization.

A cold start problem appears when a system has insufficient data concerning users or items
that are new in the system. In such situation, the system has no data to use in
the recommendation algorithm. This problem can be divided into two types: new user
problem, and new item problem. The new user problem refers to situation when not enough
information is available to build user model. To deal with this problem, it is essential to select
training points prior to any recommendation, to be rated by the user that will maximize
understanding of what the new user wants. A new item problem appears in collaborative
filtering approach to recommendation when recommendation mechanism would fail to
consider items which no-one in the community has rated previously. The cold start problem
is often reduced by adopting a hybrid approach between content-based matching and
collaborative filtering. New items would then be assigned a rating automatically, based on the
ratings assigned by the community to other similar items according to the items’ content-
based characteristics. In some approaches to collaborative filtering it is assumed that new
products which are inserted into the system are submitted to selected users for evaluation
which should result in quick improvement of prediction accuracy.

The sparsity problem comes from the observation that usually the number of items stored in
recommender system is extremely large. Even the most active users will only rate a small
subset of them, so even the most popular items have very few ratings. Thus, too few pairs of
users or items have sufficient number of ratings to form a similar group among them.
A limited content analysis appears when there is an insufficient amount of available
information describing items, i.e., small set of features can be analyzed in terms of similarity
among items or users.

Finally, the overspecialization problem leads to recommendation of too similar items.
Initially, the overspecialization problem concerned similarity in terms of item features. When
social filters started to be applied, overspecialization also concerns social relations — typically
people being in users’ social network like similar items (Pariser, 2011).

The challenges that are important when considering CARS to support VO collaborative
processes are (Ricci, et al., 2011) (Adomavicius & Tuzhilin, 2005) the following:

e Explanations formulation — challenge refers to formulation of user understandable
explanations accompanying recommendations justifying particular recommendations;
refined explanation mechanism should explain how the system works, allow users to
tell the system it is wrong, increase user confidence in the system, help users to make
good decisions, convince users to follow a recommendation, help users to make
decisions faster;

41

Exploration versus exploitation — challenge refers to the dilemma whether to keep
items that the system can now identify as good recommendations, given the data
currently available for the system or to further explore and complement user
preferences to build newer and possibly better recommendations in the future;

Time value — challenge refers to the fact that a given set of recommendations may not
be applicable forever but there could be a time interval when these items should be
recommended;

User activity interpretation — challenge refers to analysis of many activities performed
by the user operating the recommendation system that can be detected, analyzed and
used to build a better prediction model;

Scalability — challenge refers to the ability of CARS algorithms to deal with large and
real-world datasets;

Pro-activeness — challenge refers to functionality of CARS to provide
recommendations even if not explicitly requested by a user;

Conversational CARSs — a system may also request additional user preferences to
provide the user with better results; in the transaction model, the system collects
various requests-responses, and may eventually learn to modify its interaction strategy
by observing the outcome of the recommendation process;

Context usage — challenge refers to efficient use of contextual information in practice;

Active learning — challenge refers to applying active learning methods in CARSs to
learn more about user preferences to improve personalization of the recommending
process;

Optimum feature selection — challenge refers to efficient identification of relevant
features of users, items, and social relations that are used in recommendation
processes; challenge refers also to selection of appropriate information describing
context of recommendations, as well as to selection of the right context level of
abstraction and contextual filter used in multi-dimensional CARSs.

Several metrics have been developed to evaluate efficiency of a particular recommendation
system. Metrics allow various CARSs to be compared and problems in CARS
implementations to be detected. Typically the following metrics are used:

Accuracy — measure of the differences between values predicted by a CARS and the
values actually observed; a root-mean-square error is a frequently used measure of
accuracy;

Diversity — measure indicating the diversity among items recommended to a user; the
metric is used to diagnose possible overspecialization problem;

Coverage — measure of the percentage of requests for recommendation,
a recommender system is capable to make predictions;

Usefulness — measure of user satisfaction from receiving a recommendation;

Novelty — measure of the percentage of times an item recommended to a user has not
been recommended before; the metric is opposite to measuring the percentage of times
an item already known to a user is recommended.

42

4. Process Mining

The term process mining is used to describe “techniques, tools, and methods to discover,
monitor and improve real business processes by extracting knowledge from event logs
commonly available in today's information systems” (Aalst, 2011). The concept of process
mining is based on observation that creating a process model, as stated in the classical
business process management approach, is complicated and time-consuming. Moreover,
typically there are discrepancies between the actually executed processes and the envisioned
process models. Even more, ad-hoc processes cannot be modeled due to their unpredictability
and emergence, but once they are executed, the knowledge concerning the model of executed
process is still useful. Process mining is based on exploration of events generated by PAIS
during the execution of process instances. Exploration aims at discovering process models
describing actually executed process instances and facts associated with those models.

Modern PAISs log enormous numbers of events providing detailed information about the
activities that have been executed. A finite ordered sequence of events recorded for
a particular process instance is called a trace. Event log is a set of traces. The following
assumptions concerning events recorded in event logs must be satisfied: (1) each event refers
to one process activity instance, and (2) events are totally ordered, i.e., in a log, events are
recorded sequentially even though tasks may be executed in parallel. The formal definitions
of event, trace and event log are presented in Section 4.5. The role of event log in process
lifecycle is presented in Fig. 4.1. While design phases are based on models, run-time phases
are organized around the event log. Enactment of a process inserts data in event log. Process
mining can be used in monitoring, diagnosis and evolution phases.

Monitoring Evolution

and diagnosis \v .
k Enactment —> -(— Design
Event log

/.
Configuration and
Implementation

Fig. 4.1. Event log creation and analysis in process lifecycle

43

Traditionally, in the process mining research, one may distinguish two main areas of interest:
on-line analysis also referred to as operational support, and off-line analysis. On-line analysis
methods encompass process prediction, checking and recommendation. They are described in
detail in Section 4.1. Off-line analysis encompasses three groups of methods (Aalst, 2011):

* Process discovery — methods aiming at discovering process models describing
behavior recorded in event log; during a discovery no assumptions are made
concerning the resulting process model (Weijters & Aalst, 2001) (Aalst, et al., 2009);

» Process conformance checking — methods aiming at comparison of envisioned process
model with process instances recorded in an event; conformance checking is used to
check if process instances, whose execution is recorded in the log, conforms to the
model and vice versa (Aalst, 2011) (Rozinat & Aalst, 2008);

« Process enhancement — methods aiming at extension or improvement of an existing
process model using information about the process instances recorded in an event
log (Hornix, 2007).

Process mining covers different perspectives. The four most popular perspectives
include (Aalst, 2011):

1. Control-flow perspective focuses on ordering of activities;

2. Organizational perspective focuses on information about resources hidden in the event
log to classify people in terms of roles and organizational units or to show the social
network;

3. Case perspective focuses on properties of cases;

4. Time perspective is concerned with timing and frequency of events.

While majority of methods concentrate on one individual perspective, some methods aim at
finding correlations among various perspectives. This is referred to as multi-perspective
process mining.

Two types of process models and two types of data are distinguished and used in process
mining methods. A de jure process model is normative, i.e., it specifies how things should be
done or handled. For example, a process model used to configure a BPM system is normative
and forces people to work in a particular way (Aalst, 2011). A de facto model is descriptive.
Its goal is not to steer or control reality. Instead, de facto models aim at capturing reality.
Post-mortem event data refers to information about process instances that have completed.
Such data are used in off-line process mining. Pre-mortem event data refers to process
instances that are still going and have not yet completed. Such data are used to support the
process instance it refers to by validation of its enactment, prediction of further flow and
guidance in execution by provision of recommendations. Analysis of such data is performed
in on-line process mining. The prototypes of some off-line and on-line methods have been
implemented as a part of open-source process mining tool developed by academic community
called ProM (Aalst, et al., 2009).

4.1. Operational Support

Process mining techniques can be used to extract knowledge from event logs helping
organizations to gain insights into the operation of their business processes. When such
analysis is provided for information concerning ongoing process instances in an on-line
setting, it is commonly referred to as operational support. In (Aalst, 2009), the author outlines

44

the potential of operational support based on process mining. The methods for process
prediction, process checking and recommendation have been proposed.

On the contrary to traditional process mining techniques, operational support considers pre-
mortem event data. Operational support techniques analyze pre-mortem data and react to them
in on-line manner. As running process instances are considered, the concept of partial trace is
introduced as a trace corresponding to a process instance that is still running. The partial trace
describes the known past of the case, while the future of the case is not yet known.
Information stored in a partial trace supplemented by information concerning underlying
process model and traces of other similar process instances can be used to reason about the
ongoing process instance. To this end, three groups of methods have been proposed in (Aalst,
2011):

e Detection methods — comparison of de jure models with pre-mortem data with
the goal to detect deviations at run-time;

e Prediction methods — combining information about running process instance stored
in partial trace with discovered or hand-made process models to make predictions
about the future, e.g., the remaining flow time, the probability of success;

e Recommendation methods — combining information about running process instances
stored in a partial trace with discovered or hand-made process models to suggest to
actors suitable activities to be performed to meet objectives of predefined target
function, e.g., to minimize cost or time.

Detection has a lot in common with conformance checking but here an immediate response is
provided by a system when the deviation occurs. This response should take a form of
an action occurring in process-aware system or at least notification displayed by detection
mechanism to the user. Two approaches to detection of deviations at run-time are presented
in (Aalst, 2011): approach based on workflow net (WF-net) replay and approach based on
validation of LTL rules.

In the approach based on WF-net replay, existence of a WF-net is assumed describing the
desired normative behavior. Execution of every activity and resulting persistence of event
data are followed by verification of a particular trace against underlying WF-net. As far as
a partial trace can be replayed by WF-net, the process instances are perceived as to be
executed as envisioned. As soon as replaying an event log is not possible by WF-net, the alert
signals about the nature of deviation are issued, e.g., about some activity that was started
without being enabled.

The approach based on validation of LTL rules emerged from the works on DECLARE
workflow system (Montali, et al., 2010) (Aalst, et al., 2009). Declare is a constraint-based
workflow system that guides the execution of process instances by constraints that are
imposed on these instances. On the contrary to workflow procedural languages that aim
at defining control-flow perspective of the process specifying a set of possible actions,
in DECLARE “everything is possible unless explicitly forbidden” (Montali, et al., 2010).
Constraints in DECLARE use semantics based on LTL (Aalst, et al., 2005). The same
semantics is used in on-line detection. An example of an LTL constraint is: eventually activity
A is executed then activity B and C are executed. The constraint is represented formally as
<> ((activity == AN <> ((activity == BA <> (activity == C))))).

In general, a partial trace is violated if at least one of the constraints imposed on it is violated.
Insuch case, a deviation is detected and reported. A partial trace meets constraints if
all the constraints imposed on it are satisfied.

45

The concept of prediction is examined in (Aalst, 2011). Predictions are generated on the basis
of information stored in a partial trace and a predictive model. Supervised learning techniques
are used as a predictive model, e.g., regression analysis, or decision tree learning. In these
approaches, events comprising a partial trace and their relevant properties are mapped onto
predictor variables. The response variable is typically a key performance indicator or
a probability measure. Examples of predictions include: remaining flow time of process
instance, probability of meeting a legal deadline, total cost of process instance, probability of
occurrence of a particular activity. The predictive model is based on post-mortem data. It is
used for predictions of running process instances.

In (Aalst, et al., 2011) an approach is presented to predict the remaining flow time using
an annotated transition system. The method uses two inputs: (1) transition system, and
(2) an event log having events annotated with timestamps and two event transition types,
i.e. start, and complete. It is assumed that the event log fits the transition system,
i.e., all traces in the event log can be replayed by the transition system from the beginning to
the end. During a replay, each state in the transition system is annotated with a set of time
values: t, e, r, s, where t is the time the state is visited, e is the elapsed time since the start
when visiting the state, r is the remaining flow time, and s is the sojourn time calculated as
the difference between complete and start transactions of associated events. Assuming a large
event log, there may be hundreds or even thousands of annotations per state. For each state x

it is possible to create a multi-set Q1L°™*™™ of remaining flow times based on these

annotations. Similar multi-sets can be created for elapsed and sojourn times. Basing on these
multi-sets, all kinds of statistics can be computed, e.g., the mean remaining flow time for
agiven state, standard deviation, minimum, and maximum. Finally, such an annotated
transition system can also be used to predict the remaining time for a running case as
the mean remaining flow time of all earlier process instances in the same state. Hence,
the expected time of process instance completion can be derived. In the refined scenario, also
standard deviation of the historic samples in the multi-set can be used to estimate
the reliability of the prediction, e.g., with 90% confidence the remaining flow time is
predicted to be between 40 and 45 days (Aalst, et al., 2011). The approach based on an
annotated transition system is not restricted to predicting the remaining flow time (Aalst,
2011). For example, suppose that somebody is interested whether the activity g or h will
occur. To make such prediction, annotation of states should include information about known
outcomes for completed process instances in post-mortem data. For example, annotation of

state x as Qf'h ={0,1,1,1...} is created during replay by adding “0” for each visit of

a process instance that includes activity g or “1” activity h. Average value of Q;?'h is a
predictor of the probability that a case visiting state x will be followed by activity g. In this
approach based on process mining, the prediction is based on the state of the running process
instance rather than some static attribute. Classical data mining approaches (e.g., based on
regression or decision trees) typically use static attributes of a case rather than state
information.

The approaches to recommendations based on process mining are discussed in detail in
Section 4.2.

As three groups of methods, i.e. detection, prediction and recommendation, are envisioned for
operational support, it must be noted that some methods from off-line analysis can be simply
applied to analysis of partial traces, e.g., process discovery can also be applied to running
process instances. In (Aalst, et al., 2010), the authors present a framework for operational

46

support using process mining (Fig. 4.2) and detail a coherent set of approaches that focus on
time information.

Operation Process-Aware
Support System Request Information
System

User

User

1

Annotations

Detection

TOS Client

TOS Service

Extending /‘\

Transition
System

Discovering/\

Predicting

Recommending

Fig. 4.2. Architecture of a system providing operational support based on time information
in event logs

The proposed Time-based Operational Support (TOS) Service (Fig. 4.2) uses the transition
system and other information, e.g. time annotations, to generate information about active
process instances. Such information concerning active process instances is generated on
request of a TOS Client. The TOS Client is rather not standalone software but an integrated
part of a PAIS. Together with a request, the TOS Client sends the partial trace and currently
enabled tasks of the running process instances. In response, the TOS Service generates
various types of information about the current process instance. In implementation described
in (Aalst, et al., 2010), the TOS Service performs at least one of three actions: (1) checks if
the elapsed time of the current case is within certain boundaries of elapsed time that past
process instances had in the same state, (2) predicts the remaining execution time based on the
past process instances, (3) recommends the enabled activities that, in the past, led to minimum
execution times. The presented approach to provision of an on-line support can be
generalized. It need not to be limited to time-based support.

4.2. Process Recommendations

The general approach to recommendations based on process mining is presented in Fig.
4.3 (Aalst, 2011). The approach outlines the problem of recommendation as an extension of
the prediction problem. In case of recommendations, in addition to the partial trace of the
running case used in prediction methods, the set of items, i.e., enabled activities that
constitute a decision space is also used.

Request Enabled

i activities
ety Process-Aware | P)
etor=> Operational

_
Information . Support System w
<Suggestion— System X (85:6 certainty) pp Y Learn

70 rtaint
y (70% certainty) recémmendation

Event log

Fig. 4.3. General approach to recommendations based on process mining

47

The set of enabled activities is created on the basis of a process model that is either hand-
made or discovered. For instance, for a partial trace presented in Fig. 4.4 and for activity
Check that was executed as the last from the partial trace, the set of enabled activities is:
{Inspect, Advertise, Process}.

Inspect

@ Advertise

Decide ‘—@

©

Inspect

Process

Fig. 4.4. Discovered process model represented as a transition system and
a set of enabled activities for activity e

Best matching activity from decision space is chosen according to used rating function. In the
presented approach, typically recommendation aims at minimizing the remaining flow time,
total process instance cost, etc. Thus, creating a recommendation is closely related to
predicting the corresponding performance indicator. Having an already executed partial trace
7, one may identify the set of enabled activities {a,, a,, ..., a;}. The partial trace is extended
by each of possible enabled activities leading to creation of a number of k partial traces
T, =T U q; fori € (1, k). Each of k partial traces is then evaluated using prediction approach
described in Section 4.1, i.e. two steps are performed: (1) a new trace is created by extending
the partial trace of the running process instance, (2)the new trace t; is replayed
in the transition system to identify the state to be assigned to activity a;. Then partial traces
are ranked and selected according to predicted values. In a similar way, the decision space and
the recommendation problem may concern resources instead of activities. The problem then is
to recommend the resource for the next activity that optimizes the value of a rating function.

A particular implementation of the approach is presented in (Aalst, et al., 2010), where time
annotations created during transition system replay are used for creating recommendations
concerning activities that optimize the completion time of the process instances. The ranking
function based on calculation of average remaining times is used. The method is implemented
as a ProM plugin. The user interface of implemented plugin is presented in Fig. 4.5 (Aalst, et
al., 2010). Together with the name of a particular activity to be executed as the next one,
additional statistics are provided justifying the recommendation given to the user.

case data ¢) Time Annotation Provider
it 125698h569 o = predict
I;;eve"enml 26-10-2009 ¢ 3 recommend
te event “advertis ART" to fin 5d 6

name: check START ¢ [Execute event “advertise START" to finish in 35d 6h
timespamp: 01-11-2009 Recommended action

client data -

name: John Smith authorized |task transition

address: Liberation Str. 167 agvertise | START

Statistics
min |max |std. |0 average
dev. |instances
17d | 62d |23d 3 35d 6h
19n | 1n |13h

o [] Execute event “inspect START to finish in 42d 16h

Fig. 4.5. Time-based recommendations in ProM

48

In (Schonenberg, et al., 2008), a similar approach is presented. Recommendations for
an enabled activity provide predictive information about the user goal, based on observations
from the past, i.e., fully completed traces accompanied by their target value (e.g., cost, cycle
time, or profit) that have been stored in an event log. The log-based recommendation service
requires the presence of an event log that contains such information about process instances
that have been executed for a certain process. A recommendation is initiated by
a recommendation request, which consists of a partial trace and a set of enabled activities.
In the presented approach for each enabled activity, two expected target values are defined:

e The expected target value when executing a particular enabled activity e;
e The expected target value when not executing a particular enabled activity.

During recommendation, the enabled activities are ordered according to the difference
between two values, i.e., the bigger the difference, the more attractive the activity is.

In (Nakatumba, et al.,, 2012), the meta-model for operational support is presented.
The purpose of the meta-model is to refine a common understanding of recommendation
problem based on process mining and to create the common framework for development of
future concepts. As in previous approaches, also this approach uses the information contained
in a partial trace and a model of the running process instance to provide support to the user.
The concept of recommendation, referred in the paper as recommendation query, is explained
with the use of three simpler queries: simple, compare and predict. A simple query checks
current performance of the current partial execution trace, for example, the total execution
time. A compare query compares performance of the current partial trace to other similar
traces, e.g., is the execution time of the current trace to this point higher or lower than the
average. A predict query considers the future of traces similar to the current one. The predict
query uses information concerning similar traces to provide predictions about the current
trace, e.g., what is the expected total execution time for this trace. Finally, a recommend query
gives the best possible next activity to be done based on the current partial trace. More
precisely, in the proposed model the recommendation is formulated by finding all the traces
being continuations of the running partial trace and finding the best matching trace that
maximizes the prediction value. Formal description of the definition can be found in
(Nakatumba, et al., 2012). In (Nakatumba, et al.,, 2012), the authors present
the implementation of the operational support functionality in ProM application with desire to
be used by the DECLARE system. The high level architecture of the proposed approach is
presented in Fig. 4.6. A Client communicates with a Workflow system, and an Operational
Support Service (OS Service, OSS). The Client sends one of four queries to OSS, which
forwards it to a number of Operational Support Providers (OS Providers), which may
implement different algorithms. Responses are sent back to the OSS and forwarded to
the Client.

Operation
Support System Request
(ProM)

User

User

1

OS Provider 1

K~
-

K~

Workflow

Recommendation
] System

OS Service

OS Provider 2

OS Provider n

Fig. 4.6. Architecture of the operational support in ProM

49

The approach presented in (Schonenberg, et al., 2008) is extended in (Haisjackl & Weber,
2011) with the study of various recommendation strategies. In this approach it is assumed that
the process is structured, but there is no underlying process model guiding the execution of
the process instances that facilitates identification of a set of enabled activities. Instead, the set
of enabled activities must be identified and is strictly connected to the problem of finding
similar traces to the trace of the running process instance. Thus, in (Haisjackl & Weber, 2011)
the problem of recommendation is divided in two subproblems:

1. Finding similar log traces,
2. Creating recommendation using selected strategy.

Algorithms for finding similar log traces iterates over the log to calculate the result bag for
a given partial trace. Depending on the approach to identification of similar traces, a resulting
bag is different (Haisjackl & Weber, 2011):

e Prefix miner — considers the exact ordering of activities when comparing the partial
trace with a log trace; if the partial trace is a prefix of the log trace, the log trace
obtains a weight of one; the result trace is coming from the trace having the highest
weight;

e Set miner — does not consider the ordering of activities in the log, but only the
presence/absence of activities; the weight is calculated by dividing the number of
distinct matching activities by the number of distinct activities in the partial trace;

e Multiset miner — does not consider the ordering of activities in the log; it takes the
number of occurrences of an activity in a log trace into account; the weight is
calculated by dividing the number of matching activities by the number of activities in
the partial trace; moreover, all activities from the log trace minus the activities from
the partial trace are added to the result set;

e Partial trace miner — takes the ordering of activities into consideration but instead of
comparing the entire partial trace with the log traces, it only considers the last n
activities of the partial trace (denoted horizon); all the activities succeeding the found
search trace(s) are considered result traces;

e Chunk miner — does not compare the entire partial trace with the log traces; instead,
the partial trace is divided into chunks of size n (i.e., sliding window of size n), each
of which is then compared with the log trace.

The miners are responsible for weighting log traces according to their fit with the partial trace
and provide a result bag containing the mining results which is then taken by the strategies as
input for generating recommendations. In particular, based on this information the strategies
evaluate all the enabled activities in respect to the performance goal (e.g., minimize cycle
time, minimizing error rates or maximizing customer satisfaction). The following strategies
are distinguished (Haisjackl & Weber, 2011):

e Randomized Strategy — randomly picks one of the possible next tasks and recommends
this task for execution;

e Prefix Strategy, Partial Trace Strategy, Chunk Strategy — strategies differ in terms of
the used miner but they use the same method for calculating expected target value
when following and not following a particular recommended activity; all the strategies
consider the first task of each result trace from the result bag for calculating the
expected values in the way described in (Schonenberg, et al., 2008);

e Set Strategy, Multiset Strategy — strategies differ in terms of the used miner; they
consider all the activities of each result set in the result bag for calculating expected

50

target value when following and not following a particular recommended activity:
the result sets which do not contain any of the enabled activities are discarded; for
each possible next activity the expected target value when executing the activity is
calculated as the weighted average of target values of all result sets containing that
particular activity. The expected target value when not executing the activity, in turn,
Is the weighted average of target values of all the result sets which do not contain that
particular activity.

In (Haisjackl & Weber, 2011), the miners and strategies are evaluated in terms of
performance. No strategy is always outperforming all other strategies. Consistently good
performance is delivered by the Prefix Strategy. In the majority of cases, both the Partial
Trace Strategy and the Chunk Strategy are outperformed by the Prefix Strategy. However, the
Chunk Strategy might bear some potential for processes comprising loops.

In (Dorn, et al, 2010), an approach to context-sensitive, self-adjusting process
recommendations is presented. The paper focuses on two major challenges associated with
processes that share characteristics with VO collaborative processes (Dorn, et al., 2010):

e Users in people-driven processes require a combination of personalized
recommendations, while exploiting the best practices emerging from the overall user
community;

e Flexible processes need to evolve across time to reflect the changes in working style,
business constraints, and impact of cross-organizational cooperation.

The recommendation is performed for processes which have models guiding execution of
process instances (Fig. 4.7) (Dorn, et al., 2010). Despite existence of a model, a user is able to
select activities in any order. The process model describes a generic process that provides
arough guide for most cases. The proposed recommendation system monitors user’s
decisions and continuously adapts to recommend always the most suitable next activities. The
approach relays on identification of sequence graphs. The sequence graph SG(P,E) consists of
nodes representing the individual process activities P and a set of edges E. A directed edge
e € E in SG between two nodes A and B describes a temporal sequence: activity B follows
immediately after A. Whenever a user performs activity B after A, the edge value is increased.
The SG accumulates all individual activity sequences for a particular process. Thus, it yields
the preference of following a particular path through the process. Identification of sequence
graphs is performed during process instance execution on the basis of event log analysis.
Sequence graphs are constantly extended as subsequent process instances are executed.

Fig. 4.7. The process model (a) and the corresponding sequence graph (b)

51

Created sequence graphs are used during process instance executions by the Process Instance
Manager component. The Process Instance Manager is responsible for:

Selecting relevant activities to be performed in the current process instance, where
the selection is based on information about current process instance state and
information from the sequence graph;

Tracking user activities that have been completed;

Providing a list of activities that are ready to be carried out;

Analyzing process instances for skipped and out-of-order activities.

Personalized recommendations based on individual sequence graphs yield highly relevant
activity rankings. Drawbacks of such personalized recommendations are the following:

Recommendations are limited to activities that a particular user has executed so far;
Alternative sets of activities that potentially reduce overall processing time remain
unavailable;

Recommendations are not applicable in exceptional situations that have not been
encountered by the user before;

Recommendations reinforce inefficient or even incorrect activities that the user tends
to execute.

Crowd-based recommendations mitigate this shortcoming. Crowd-based recommendations
enrich the set of relevant possible process paths through aggregation of the process
experiences from multiple users. The mechanism of creating recommendations is presented
in Fig. 4.8 (Dorn, et al., 2010):

1.
2.
3.

Incoming request for recommendation triggers the recommendation mechanism,

The recommendation system collects information from the Process Instance Manager;
The recommendation system collects information from both personal and crowd-based
sequence graphs;

The recommendation system subsequently provides the user with the recommended
activities;

The user selects one activity and performs it; the Recommendation System Monitor
observes the user’s actions (5a), and other events (5b) to determine the true process
progress;

The Recommendation System Monitor updates the Process Instance Manager
whenever an activity is completed:;

The Process Instance Manager updates the personal and crowd-based sequence graphs
for each completed step;

In regular intervals, the Process Miner takes a sequence graph and generates
an updated process model.

52

——(2b) prefered order of process step
Persanal
Sequence Graph
Manual
Process Miner —(8) extract Crowd-based

Proces:
Saquence Graph 0) seed=— MIB

(9) generate

(7) log process
Crowd-based PM Shop Wanslion
(1) recommendation Personal Process ||
request v Moded p{ PM Instance (2x)
P . - ~~——] Process Instance
Recommender) e
(create or update)
I (6) mark . tep
: process s
(3a) provide complete
¥ f
Rewnrrfahdaﬁon (4) select and (58 log action
Candidates |[—— execute —] Service — " event =] Process Monitor fe—(5b) external events—
\-_-/.—..\ recommendation

Fig. 4.8. Feedback cycle for personal and crowd-centric recommendations

The overall recommendation combines user-centric and crowd-based recommendations
according to the classifier a. The classifier describes the user on a scale between 0 and 1,
where 1 denotes a user always adhering to his individual work style — the eagle. At the other
extreme end of the classifier (@« = 0), a user follows generally applied work practices — the
flock. The classifier a is determined for each user and process as a user’s work style
potentially deviates for one process to another. The overall recommendation merges user-
centric and crowd-based recommendations according to the following formula: Ryyeran = « *
Ruser + (1 — @) * Rerowq- The value of a increases when the user carries out activities that
originated from R,.,. Similarly, the value of « is reduced when the user follows crowd-
based recommendations. The merged recommendations coming from individual and crowd
sourced are sorted according to overall recommendation value. A dynamic adjustment if
a value reflects a user’s learning effects and his/her adaptation to changing process. The
move of a value is determined by process output, i.e., process success. When a remains close
to 1, but process success declines, it is assumed that the personalized recommendations fail as
they most likely reinforce bad decisions. In this case, « is pushed towards the neutral value to
take again into account crowd-based recommendations.

In (Swinkels, 2012), intelligence of organizations, instead of single users is used to better
formulate recommendation. The architecture of the suggested system is presented in Fig. 4.9.
The event logs of various organizations are integrated into one so called Collective Event
Log (CEL). The Collaborative Event Log is used to mine Collective Transition System (CTS)
describing behavior of organizations captured in the CEL. A Multiple Log
Recommender (MLR) is a central component of the suggested system.
When recommendation request is set by an organization, MLR uses information provided
in the request and information coming from CTS to provide recommendations. CTS provides
to MLR a mined time-annotated transition system. MLR creates further continuation of
process instances. The best continuation of a process instance is returned to the client.

53

Process-Aware Transition System
Information System Miner
e ;.\‘,_;_,, Collaborative
Process Partial trace O%Oe Z77 Transition

X i - System

execution engine . -
Multiple Log Recommendation |

—— Recommender

Organziation i - Collaborative

N Event Lo
Partial trace &

Recommended

model "
Recommendation

Event Log
Model

Event Log j, Event Log

Event Log i,

Event Log

Fig. 4.9. High-level architecture of the collective recommendation system

A request for a recommendation by a process instance of an organization contains:
(1) the process instance identifier, which is a unique number for each process instance,
(2) alist of activities that were executed since the last recommendation request, and
(3) a list of possible activities that can be executed next. Extended number of parameters
passed to the recommendation system is greater than number proposed in (Aalst, et al., 2010)
and in (Schonenberg, et al., 2008), because the recommendation service has to recommend
an activity which is present in the list of all the possible activities allowed in organizations
requesting recommendations. A recommendation cannot involve an activity that is not
available or possible in the organization.

Another approach is proposed by in (Almeida, et al., 2004) where recommendations are based
on ontology and semantic rules that generate possible process alternatives or suitable
activities if execution of a workflow instance fails to proceed. Among other works,
the prediction engine of Staffware (Staffware, 2003) uses simulation to complete audit trails
with expected information about future activities. The approach does not provide a means of
learning to make better predictions over time. A more refined approach focusing on transient
behavior is presented in (Rozinat, et al., 2009). In (Stoitsev, et al., 2007) recommendations are
based on best-practices shared by users within a company. This approach supports operational
decision making using process mining techniques and simulation in the context of YAWL.
In (Weber, et al., 2004) the case based reasoning approach is presented. The prototype
implementation of CBRFlow is able to adapt a process model to changing situations at run-
time and provide the workflow system with learning capabilities. Recommendations can also
be based on a Product Data Model as discussed in (Vanderfeesten, et al., 2008), but they are
specific for product based workflows. In (Barba, et al., 2012), the authors propose
a recommendation system based on a constraint-based approach extended to consider not only
the control-flow, but also the resource perspective in order to optimize performance goals of
business processes.

54

4.4. Mining Behavioral Patterns in Collaboration

Identification of behavioral patterns in unstructured processes (cf. Section 3.1.2) is achieved
via process mining methods, classic data mining methods, and social network analysis.

Process mining methods can be split into five categories: (1) generalization and clustering,
(2) constraint-based analysis, (3) variant analysis, (4) social network mining based on event
data, and (5) context capturing.

Majority of process mining methods were developed for discovery and analysis of structured
process. Applying these methods to unstructured processes is followed by high complexity of
discovered models, and low understandability and usefulness of such models. Thus, the main
objective of process mining methods developed for analysis of unstructured processes is to
lower complexity of discovered models. In fuzzy mining methods the concept of
generalization of activities and transitions among activities is proposed. Generalizations
combine activities frequently appearing together (Gunther & Aalst, 2007). The method
proposed in (Bose & Aalst, 2009) is based on initial clustering of process instances according
to their similarity. Then classic process model discovery algorithms are applied separately for
each cluster. In (Bose & Aalst, 2009) a generic edit distance metric is proposed that captures
dependencies among activities and takes into account various degrees of similarity among
activities. Generic edit distance metric eliminates some drawbacks of Hamming and
Levenshtein distance metrics. Classic similarity metrics are used (Delias, et al., 2013) to count
similarity among traces of process instances, e.g., cosine similarity is used for clustering of
healthcare processes. Some approaches to analysis of behavior of service consumers and
service providers are presented in (Aalst, 2004) (Aalst, 2006) (Aalst, 2013).

Traditionally mined descriptive process models aim at specification of behavior that is
allowed in a process. As mentioned above, in case of unstructured processes this approach
leads to very sophisticated models. On the contrary, constraint-based approaches specify only
what is forbidden during process execution. This group of methods is implemented as
constrain-based workflows and constraint-based languages such as DECLARE (Aalst, et al.,
2009). Process mining methods discover constraints that are used to guide the execution of
process instances. Other approaches to unstructured processes rely on analysis of variants of
execution of process instances. Variants describe common ways of process execution
(Rozinat, 2013). Variants do not aim at achievement of full process models.

While majority of methods concentrate on a process perspective, i.e., a control flow
perspective, some methods discover social perspective by analysis of information concerning
resources and structure of activities. As a result, social relations describing handover of
work (Aalst, et al., 2005) or organizational structure (Song & Aalst, 2008) are discovered.
While usually social and control flow perspective are analyzed separately, new approaches to
analysis of human behavior using process mining claim the need of simultaneous analysis of
more than one perspective at time (Leoni & Aalst, 2013). However, such methods miss
important aspect of analysis of correlation among various perspectives. For instance, analysis
of influence of structure of discovered social network on the model is not possible. All
the methods aiming at discovery of a social perspective assume a limited scope of available
data that are associated with events in an event log. Thus, a set of social relations to be
discovered is very limited. On the contrary, in many modern PAIS, each event is usually
described by a number of attributes referring both to activity itself as well as resources
involved in activity execution and can be additionally supplemented with data from other

55

systems. Up to date, no approach to identification of social roles and social relations based on
such rich event logs has been proposed.

An approach to capturing a context of human behavior is presented in (Ghattas, et al., 2009).
Context is represented by a set of attributes describing a process instance. A presented case
study refers to clinical processes. An example of a process instance context includes the
following attributes: patient age, gender, race, chronic illnesses, general mental and overall
state of the patient, etc. Such process instance context is used to build a decision tree. So far,
the notion of context is limited to process instance context. Up to date, the notion of activity
context, which is crucial for providing recommendations for the running process instances,
has not been defined and used.

Analysis of human behavior goes far beyond process mining techniques. In classic data
mining a wide set of sequence mining techniques has been developed over years. Among
others, sequence mining algorithms take into account activity ordering. This group of
algorithms include AprioriAll (Agrawal & Srikant, 1995), GSP (Srikant & Agrawal, 1996),
SPAM (Mane, 2013), and BIDE (Wang & Han, 2004). For instance, PrefixSpan
algorithm (Pei, et al., 2004) is based on a pattern-growth approach to discovery of sequential
patterns. Its optimized versions include bi-level projections of sequence database and pseudo-
projection. In general, data mining algorithms have limitations preventing them from being
used in VO collaborative process model discovery: (a)they focus on frequent behavior
without trying to generate models, (b) they cannot model choices, loops, etc., (c) they cannot
well handle concurrency, (d) they do not include analysis of patterns on the level of activity
attributes, i.e., only activity names are considered, (e) they consider local patterns only,
i.e., no overall process model is created. Some methods deal with individual limitations,
e.g., discovery of parallel patterns was introduced in (Hwang, et al., 2004). Three algorithms
were proposed do discover so called temporal patterns capturing followed and overlapped
relations among activities: TP-Graph, TP-Itemset, and TP-Sequence.

Classic data mining techniques such as classification and clustering (Witten, et al., 2011)
(Wiszniewski, 2011) are used by many process mining methods. For example, in (Delias, et
al., 2013) first clustering and then classification are used to reason about context-aware
patterns in patient care. Decision trees are used to explain reasons underlying particular
decision making points in a process (Rozinat & Aalst, 2006).

Social network analysis (Watts, 2004) concentrates on analysis of human behavior from the
perspective of social network structure and its dynamism. Recent works in the area of social
networks include works on evolution of social networks (Jeong, et al., 2003) (Morzy, 2013),
resilience of networks (Brendel & Krawczyk, 2008) (Brendel & Krawczyk, 2010),
propagation of information (Pastor-Satorras & Vespignani, 2001), categorization of social
networks (Morzy, 2012), evaluation of actors reputation and importance (Morzy, et al., 2009)
or their negative impact on the network (Krawczyk & Brendel, 2006), discovery of social
aspects in incomplete or aggregated data sets (Morzy & Forenc, 2013). Social network
analysis abstracts from activities and processes performed by members of a social network.
Thus, existing methods for social network analysis do not support the analysis of correlation
between processes performed by collaborators and a structure of underlying social network.

56

4.6. Event Log Formalization

In this section, the concepts of event, trace and event log are formally defined.

Definition 4.1. (Event). An event e is an object describing an observation at time t, where this
observation is related to precisely one activity instance executed within a collaborative
process instance.

Let E* denote the set of all the events.

Each activity instance executed within a process instance is related to at least one event.
Within a VO collaborative process instance, events may refer to the same activity instance
(e.g., activity start or completion) or to different activity instances of the same activity (e.g.,
activity executed in a loop).

For each event e E* and attribute a = (an, av,,) with the attribute name av,, € AV,
e(an) is a value av of attribute a for event e.

Definition 4.2. (Trace). A trace 7, = {ey, ey, ..., €;_1} is a finite sequence of events recorded
for a VO collaborative process instance p, where |rp| =uand 7,(u) = e,.

Example 4.1. An example of a trace is presented in Tab. 4.1. Each row corresponds to
an event, where each event is described by four attributes presented in columns: activity
name, resource, timestamp and cost. =

Tab. 4.1. Trace (p)

Event | Activity name Resource Timestamp Cost
______ e |.....A | . Tom | 01122012315pm. | 30
S A Tom | 01.12.20123.19pm. | 40
______ e | C | Kae |01122012321pm. | 10
______ es | ... B | Pal |01122012335pm | 10
______ eq | ... B | Pal |01122012402pm | 40
______ es | _..C | . Kae) 01122012415pm. | 20
e D Tom 01.12.2012 4.16 p.m. 20

Let E = {ey, ey, ..., €, } denote a sequence of g+1 events.

Let E,(vi;) denote a set of events assigned to activity instance vi; from VO collaborative
process instance p. Then, E, (vi;) € 7,.

Let A(t,) denote a set of process instance attributes.

Definition 4.3. (Partial trace). A partial trace 7(p) is a trace corresponding to
a collaborative process instance that is still running.

Example 4.2. In Fig. 4.10, a partial trace of a collaborative process instance p is presented.
The dark activity E indicates that instances of activities A, B, C and D have already been
executed. Execution of those activity instances was recorded in trace t(p). Activities E and F
have not been reached yet which means that process instance p is still in progress and trace
T(p) is partial. Each event e from trace t(p) is associated with exactly one executed activity

57

instance. Each activity instance is assigned to at least one event. For example, activity A is

associated with event e; and ey, i.e., E,(A) = {e;, e,}. =

o—@—(—o

:/é\
Collaborative N
process
instance p
C
Trace T(p) { eOl ey, €y, e3r €y, e5'

eG}

Fig. 4.10. Collaborative process instance and its partial trace

Let 7(p, e) denote a subsequence of events from trace t(p) that were recorded before event e

inclusive.

Example 4.3. For trace from Example 4.2, t(p, e3) = {eg,e1,€2}. *

Definition 4.4. (Event log). An event log / is a set of traces.

Let E(e, t1,t,) denote a set of events different than e that were recorded in an event log in

time period from ¢, to t, inclusive.

58

5. Conceptual model of the RMV method

5.1.

RMV Method Requirements

Basing on unpredictable and emergent character of VO collaborative processes
(cf. Section 3.1.2), nine main requirements for computer support for VO collaborative
processes are defined in this dissertation:

1.

Guidance for process instance execution — computer support for VO collaborative
processes should provide whenever possible a guidance for VO collaborative
processes instance execution; guidance should be performed by indication of the next
activities and collaborators involved in their execution; in case when the set of best
fitting collaborators is impossible to determine, it should provide information vital for
their selection (cf. Section 3.1.2);

Support for conformance analysis — once guidance is given, computer support for
VO collaborative processes should provide means for verification of conformity of
process instance execution to the guidance: potential discrepancies should trigger
adaptation actions and influence a confidence of future recommendations;

Support for adaptation and flexibility — computer support for VO collaborative
processes should allow collaborators to respond to new situations; computer support
should enable selection and modification of sets of collaborators and performed
activities (cf. Section 3.1.2);

Descriptive model — as VO collaborative processes are frequently modeled ad-hoc
(cf. Section 3.1.1), computer support for VO collaborative processes should rely on
descriptive models of collaboration, instead of prescriptive ones; descriptive models
represent actual, real behavior of collaborators (cf. Section 4.1);

Computer supported approach — a computer supported approach should provide
relevant information for the collaborators, instead of making decisions on behalf of
them; the decision making should remain under responsibility of collaborators;
VO collaborative process instance execution is influenced by rules of social norms and
shared tacit knowledge on collaboration, which are elements that may hardly be taken
into account by information systems (cf. Section 3.1.2);

Collaborative wisdom —guidance for VO collaborative process execution should be
based on the best practices following from the overall collaborators community;
to exploit the wisdom of community, the reasoning performed to provide operation
support should rely on analysis of behavior of all the collaborators involved in various
VO collaborative process instances (cf. Section 4.2);

59

7. Reusability — computer support for VO collaborative processes should provide
reusable outcomes to rule collaboration within various VOs;

8. Social aspect and context — efficient computer support of VO collaborative processes
must include modeling and analysis of social relations among collaborators
(cf. Section 3.1.3) and context in which a VO collaborative process instance is
executed (cf. Section 3.2);

9. Continuous instantiation — computer support for VO collaborative processes should
include selection of actors based on aspects relevant for VO collaborative processes;
as the set of activities and collaborators is dynamic, the instantiation should be
performed throughout the execution of VO collaborative process
instance (cf. Section 2.3).

5.2. RMV Method Motivation

The needs of computer support for VO collaborative processes go beyond possibilities of
existing methods. The methods in the area of PAIS, process mining, recommender systems
and VO creation support do not satisfy the above requirements.

Various PAISs aim at finding right balance between the support offered to a user on the one
hand, and flexibility in definition and execution of user’s activities, on the other. The trade-off
between support and flexibility is presented in Fig. 5.1 (Dumas, et al., 2005). In particular,
three representative types of PAISs are distinguished: production workflow systems, ad-hoc
workflow systems, and computer supported collaborative work systems.

High |\ o/
o/
\ QQQ/
s/
N\ 2
/
N\ /
/
N\ /
/
N\ /
AN /
s/
AN /
s
}/
// \
7 d \
e 7 N £
P s \/@4’/6 .
- \///Q/
Low - - ~
-~
CSCwW Ad-hoc Production
workflow workflow

Fig. 5.1. Trade-off between flexibility of process definition
and support for human actions in PAIS

In the production workflow managements systems, process models highly restrict the
collaboration limiting flexibility. The concept of a process model, which is at the core of
workflow management systems, aims at defining the complete set of potential interactions
within a given process as precisely as possible, i.e. design and run-time phases of process
lifecycle are precisely separated.

60

A possibility of process model modification at run-time is provided by ad-hoc workflow
systems. However, ad-hoc workflow systems require a system user, i.e., a collaborator, to
declare at some stage the future shape of his/her process. This declaration may concern
an initial process model to be later modified (adaptive processes) or some process parts to be
later used during process reconfiguration (flexible processes).

The computer supported collaborative work (CSCW) systems do not strongly restrict
collaboration with predefined sets of activities. Instead, activities are rather considered as
functions that are available for the collaborators, with weak constraints on the precedence of
some activities. The support focuses on communication among collaborators giving poor
guidance for the process instance execution.

Therefore,

there is a need for a method that maximizes the scope of guidance for
collaborative process execution (requirement 2, 3, 5) with a little negative impact
on flexibility of collaborative process instance execution (requirement 1), where a
set of available activities and a set of involved collaborators are unpredictable
and dynamic (requirement 4).

The problem of discovery of descriptive process models is addressed by process mining
methods. In particular, process mining offers methods for operational support that provide
guidance during process instance execution. However, process mining methods miss
significant aspects preventing them from being used in support of VO collaborative process
executions:

e Support for structured processes — discovery of process models and activity sequences
is limited to structured processes, while VO collaborative processes are quasi-
structured (cf. Section 4.2);

e Required knowledge of process model — recommendations are provided on the basis of
some underlying workflow model (discovered or hand-made); in case of
VO collaborative processes the full model of a process cannot be discovered or
modeled (cf. Section 4.2);

e Limited context — in majority of methods, recommendations are based on information
concerning the activity itself; as evolving character of VO collaborative processes
follows from constant analysis of process or activity context, efficient operational
support for VO collaborative processes must take context into
account (cf. Section 3.2); some approaches to inclusion of context take into account
process instance properties which are used for recommendation of full process
instance traces, but not for recommendation of particular activities in a particular
process instance state (cf. Section 4.3);

e [Focus on activity names — methods mining behavioral patterns in unstructured
processes permit identification of activity names, but no other aspects of a process
which are significant from the efficient collaboration point of view, e.g. social aspects;
thus any guidance concerning process instance execution is formulated on an abstract
level rather than executable one (cf. Section 4.3);

e Low-level recommendation criteria — criteria functions used when providing guidance
during process instance execution are defined on a low level, i.e., execution time or
cost; it is impossible to define goals on a business level, because the analysis of
correlation between process instance structure and successful or unsuccessful process
completion is not performed (cf. Section 4.2);

61

e Inflexible preferences — operational support misses the aspect of collaboration and
flexible definition of collaborator preferences (cf. Section 4.2).

Recommender systems other than ones based on process mining techniques, provide some
guidance concerning activities performed by recommender system users. However, support
for the concept of context is rather limited, i.e., the context is static and does not change over
time.

Therefore,

there is a need for a method that identifies descriptive models of a VO
collaborative processes (requirement 4) and their context (requirement 8) in
multiple past executions of VO collaborative process instances (requirement 6),
and provides context-aware, business-oriented operational support for future VO
collaborative process instances (requirement 7).

Existing methods of partner and service selection during VO creation, do not address
the characteristics of inter-organizational collaboration (cf. Section 2.3). This leads to
the following shortcoming of the methods preventing them from effective application to
collaborative processes:

e Required knowledge of the process model — it is assumed that the model describing
collaboration is known in advance and that it does not change;

e One-time selection — all the partners are selected before a VO collaborative process
starts, while in practice new partners may be required when the process progresses, or
some initially selected partners may appear useless, so the evolving aspect of
the partner selection is not addressed,

e Unsupported social aspects — a combined analysis of potential partners, their services
and social relations is not supported.

Therefore,
there is a need for a method of instantiation of VO collaborative processes such
that the selection is performed throughout the VO collaborative process instance
execution (requirement 9) and selection of actors is based on criteria analysis
relevant for VO collaborative processes (requirement 8).

5.3. RMV Method Outline

The main idea of the Recommendation Method for Virtual Organizations (RMV method) is
an automatic discovery of activity patterns and ad-hoc generation of recommendations for VO
collaborative processes, where a VO collaborative process is performed within a SOVOBE.
An activity pattern is a service protocol (cf. Section 3.1.3) that is frequently performed in
a particular contexts as a part of various instances of VO collaborative processes of the same
type. Formal definition of activity pattern is provided in Section 5.4.4. Discovered activity
patterns are used to provide on-request recommendations for the running VO collaborative
process instances. Selection of activity patterns for recommendation is based on similarity
between activity pattern contexts and the context of running VO collaborative process
instance. The best matching activity pattern is instantiated before actually being incorporated
into VO collaborative process execution. Selection of the best matching activity pattern from

62

a set of recommended activity patterns and its instantiation is performed in a collaborative
way by a group of collaborators referred to as selecting collaborators.

5.3.1. RMV Method Steps

The high level architecture of the approach proposed in this dissertation is presented in Fig.
5.18. There are two main components of the architecture: PAIS and Operational Support
System (OSSys). PAIS functionality is used by collaborators to execute activity instances
within VO collaborative process instances. Potentially, PAIS supports execution of multiple
VO collaborative process instances at the same time. OSSys provides operational support for
execution of VO collaborative process instances by their analysis and formulation of
recommendations. OSSys is the actual implementation of the RMV method.

Two components take part in communication between OSSys and PAIS: Operational Support
Service (OSS) and Operational Support Client (OSC). OSS provides access to OSSys
functionality. OSC is a part of the PAIS that is responsible for communication with OSS.
A request send by OSC is handled by OSS. The OSS forwards the request to OSSys
functional components. Responses generated by OSSys functional components are sent back
to the OSS and forwarded to the OSC.

Operational Support System

0sS 0sS
Sevice Client

Recommendation request
Find matching Manager Visualize
activity patterns recommendations

4——Request activity pattems:

Process Miner

Provide process instance
recommendation history

Forward

Discover/update
to instantiation

activity
patterns

Recommendation Save
Monitor recom.

Execute
recommendation

Update user
recommendation history

b, Record user
- activity

- Record exteral
Event log - context

Fig. 5.2. Main steps of the RMV method

The RMV method consists of the two main phases:

1. Discovery of activity patterns and their context (steps 1-3 in Fig. 5.18) — in this phase
the set of activity patterns is discovered; discovery requires separation of
VO collaborative processes parts that appear in quasi-structured processes: (a) are
repeatable and occur in many VO collaborative process instances are repeatable and
occur in many VO collaborative process, (b) are unique and have ad-hoc character;
the discovered repeatable parts are stored as activity patterns associated with contexts
they appeared in;

2. Recommendation formulation (steps 4-13 in Fig. 5.18) — in this phase, activity patterns
suited to a particular context of VO collaborative process are selected and
recommended for inclusion in further execution of a process instance; once activity
pattern is selected, it is instantiated before being incorporated into VO collaborative
process execution; the second phase is performed on request. The request for

63

recommendation of activity patterns is generated manually by a collaborator or
automatically by PAIS each time a change is observed by the OSC in the
VO collaborative process instance.

In the first phase, information about activity instances that are executed by collaborators is
stored in the Event log (step 1). Information concerns activity instances in both completed and
still ongoing VO collaborative process instances. The information about activity instance in
the Event log encompasses the context of the activity instance execution (2). On the basis of
data stored in the Event log, Process Miner performs discovery of activity patterns and their
context (3). The discovery is performed in preconfigured intervals. Each activity pattern
discovery step updates the set of activity patterns available for operational support. Each
activity pattern is stored together with information concerning contexts it was discovered in.

In the second phase, a recommendation formulation includes: finding the best matching
activity pattern, and instantiation of the activity pattern. The VO collaborative process
instance within which a recommendation of an activity pattern was made is referred to as
the selected process. Selected and selecting processes are interrelated and are executed
simultaneously. Collaborators involved in a selecting process, i.e., selecting collaborators, are
in general different from actors executing the service protocol being instantiated.
In the selecting process, recommendation is performed as a response to a request (6). The
request includes current context of a collaborator and his/her preferences concerning the
recommendation. The request is first passed to the Process Miner (7) and initial set of
matching activity patterns is selected (8). Final selection of best matching recommendations is
made by the Recommendation Manager. The Recommendation Manager performs
the selection in real-time, each time a request is received. During the selection,
the Recommendation Manager uses:

e Information provided by the Process Miner;

e Information provided by the Recommendation Monitor (9); the Recommendation
Monitor collects information concerning history of recommendations accepted by
aselecting collaborators and analyzes the usage of recommendations in
VO collaborative process instances (4).

The Recommendation Manager presents one or more of the best matching recommendations
to selecting collaborators (10). The selected recommendation is submitted to the Matchmaker
for instantiation (11). Information about the newly selected and instantiated activity pattern is
saved in the Recommendation Monitor (13). Finally, instantiated activity pattern is returned to
the PAIS for the use and monitoring in the VO collaborative process instance.
The recommendation can be used by the OOC in various ways. A simple scenario may
concern information being just displayed to collaborators for their recognition. In more
advanced applications, recommended activity patterns are instantiated and passed to
the workflow engine that supports flexible definition of workflow processes. A sequence of
recognized and instantiated activity patterns can potentially create a fully executable
VO collaborative process instance. Finally, conformance rules generated on the basis of
classes of service entities and service requirements are used for monitoring events generated
by further execution of a process instance. The fact that further execution of a VO
collaborative process instance is in line with recommendation, i.e., conformance rules are
satisfied, increases the confidence indicator of a recommendation. In this way, the RMV
method is a full framework for discovery, recommendation, instantiation and verification of
activity patterns — Fig. 5.3.

64

Activity pattern Activity pattern Activity pattern Activity pattern
discovery recommendation instantiation verification

Fig. 5.3. Activity pattern life cycle

Recommendations are based on selecting collaborators’ context, thus activity patterns can be
used in many VO collaborative process instances of various process types as far as they match
selecting collaborators’ context. This allows the knowledge to be shared between multiple and
various VO collaborative process instance executions, as wall as various VOs. Tab. 5.1
summarizes functionality of the main OSSys components.

Tab. 5.1. Functionality of the RMV method components

Component name Functionality
Process Miner ¢ Identification of activity patterns
¢ Identification of activity pattern contexts
_________________________________ «_Storage of activity patterns and their contexts
Recommendation ¢ Analyzing collaborators’ activities for skipped, out-of-order and
Monitor out-of-scope activities that do not follow generated and
instantiated recommendation using conformance rules

¢ Analyzing collaborators’ tendency to follow recommendations

Recommendation o Analysis of information from the Process Miner

Manager e Creating a ranked list of recommendations for selecting
_____________________________________ collaborators .
Matchmaker ¢ Instantiation of activity pattern by selection of best matching
_____________________________________ collaboratorsand services
Event Log e Recording events corresponding to collaborators’ activities

e Recording contextual information and VO collaborative process
instance attributes

5.3.2. Key Concepts of the RMV Method

This section describes in a general way key models and techniques used in the RMV method.
Formal definition of models is presented in Section 5.4. The formalization of methods is
presented in Section 5.5.

Eight key aspects related to context-aware recommendation of activity patterns for
VO collaborative processes in the RMV method are:

Activity pattern representation;

Scope of information required in a VO collaborative event log;
Scope and functionality of SOVOBE services;

Context model;

Activity pattern discovery technique;

Recommendation generation technique;

Activity pattern instantiation technique; and

Parameterization of the RMV method.

N~ wWNE

65

1. Activity pattern representation

In the RMV method, the SOA approach to VO collaborative process execution is assumed
(cf. Section 3.1.3), i.e., execution of each activity in a VO collaborative process instance is
associated with a triple: service consumer, service interface, and service provider. Each
discovered activity pattern is represented by a service protocol. Service protocol is a bi-
perspective model of process (cf. Section 4) that captures relations between two perspectives:
control flow perspective (service protocol process model and service-oriented summary of
a process model) and social perspective (service network schema and social network).
The formal model of activity patterns is presented in Section 5.4.4. The formal model of
service protocol is presented in Appendix A.

The RMV method is independent from the specific formalism used to describe the control
flow of a process. In the prototype implementation presented in Section 6.5, temporal graphs
are used for representation of a process model of an activity pattern. Activity pattern process
model enables both sequential and parallel representation of activities ordering.

2. Collaborative process event log

Discovery of activity patterns includes identification of: (1) contexts of an activity pattern,
(2) the set of service entities, (3) the set of classes of service entities, (4) the set of service
requirements and (5) mapping between all those elements. Discovery of activity patterns is
possible only if relevant data are available in the event log. Formalization of VO collaborative
process event log is presented in Section 5.4.3. In addition to data usually available in
an event log (cf. Section 4.5), the following information about each event is expected:

e Service entity attributes — a non-empty set of attributes that describe service entities
involved in activity instance execution associated with the event;

e Social attributes — a non-empty set of attributes that describe service relations among
service entities.

e Context attributes — a non-empty set of attributes that describe the context of event
occurrence, i.e., circumstances of event generation. The scope of context information
to be gathered is shared by all the events. Changes in particular values of context
attributes are recorded throughout the VO collaborative process instance execution.
In this way, context attributes capture the dynamic aspects of VO collaborative
process instance context. No assumptions concerning the scope of information
provided as the context attributes and process instance attributes are made. The scope
of information useful for a particular VO collaborative process instance depends
strongly on the nature of the process.

e Service entity identifiers — a non-empty set of identifiers of service consumer, service
provider and service interface.

A rich VO collaborative processes event log is currently commonly available in many modern
PAISs. Moreover, an event log can be additionally enriched by data coming from other
information sources such as social media. VO collaborative process event log may represent
high level activities performed by organizations, as well as lower level activities describing
interaction among information systems.

66

3. SOVOBE'’s services

SOVOBE’s services provide an access to data necessary for creation of a VO collaborative
process event log.

In the RMV method, each VO collaborative process is executed within SOVOBE,
i.e., collaborators use services provided by SOVOBE throughout the VO collaborative
process instance execution. SOVOBE logs information concerning activities performed by
SOVOBE members within various VO collaborative processes. SOVOBE’s services also
provide an access to these logs and other data including:

e Context information,

e Service entity descriptions,

e Service relations descriptions,

e The set of activity instances in running and past collaborative process instances
executed by various VOs,

e Assignment of service entities to activity instances, including terms under which
organizations collaborate.

The RMV method itself is also one of SOVOBE’s services provided to various VOSs in a form
of an OSS service (cf. Fig. 5.2). As all the virtual organizations may use the OSS service,
activity pattern discovery and recommendation supports knowledge sharing among VOs
operating inside the SOVOBE. Notion of VO and SOVOBE is formalized in Section 5.4.1.

4. Context model

An observation underlying the RMV method is the following: context of an activity instance
affects its execution and outcomes, so indirectly it affects the course of VO collaborative
process instance execution. The RMV method aims at categorizing all the meaningful
information associated with activity instance execution and aggregate them into a context that
is later used during activity pattern recommendation.

Formalization of the RMV method context model is presented in Section 5.4.2. In the RMV
method, the context of an activity instance is composed of five elements:

1. Event context attributes associated with events of an activity instance;

2. Process instance attributes which capture static information that refers to a process
instance. One obligatory attribute of a completed VO collaborative process instance is
the outcome of this instance;

3. A sequence of events that occurred before the events associated with the activity
instance execution (inclusive);

4. A set of descriptions of service consumers and service providers that were involved
in VO collaborative process instance execution before the activity instance (inclusive)
was executed;

5. A set of events that occurred in other VO collaborative process instances at the time
when the activity instance was executed.

67

5. Activity pattern discovery technique

In the RMV method, particular behavior of collaborators is considered to be an activity
pattern if it appeared in a predefined percentage of completed VO collaborative process
instances recorded in the VO collaborative process event log. Discovery of activity patterns
in the event log includes:

e Discovery of activities and temporal relations among them;

e Discovery of collaborators and service interfaces associated with activities, as well as
analysis of their characteristics to extract classes of service entities;

e Discovery of service relations among collaborators associated with activities and
analysis of their characteristics to extract service requirements;

e Discovery of activity pattern context.

Activity patterns are discovered in two steps: (1) discovery of sequence patterns (formalized
in Section 5.5.1), (2) transformation of sequence patterns into activity patterns (formalized
in Section 5.5.2).

In the first step, a modified version of the PrefixSpan algorithm (cf. Section 4.3) is used in the
RMV method to discover sequence patterns. Main two modifications of the PrefixSpan
algorithm include: (1) redefinition of the notion of prefix and suffix to capture the overlapped
relation among activities; (2) discovery of sequence patterns on both the activity and
the attribute level.

In the second step, sequence patterns are transformed to activity patterns by parsing sequence
pattern attributes to identify frequent activities, service entities, classes of service entities and
service requirements.

An activity pattern may appear in many contexts. All the contexts of an activity pattern are
discovered together with this activity pattern.

6. Context-aware recommendations

Analysis of activity pattern contexts is crucial in the second phase of the RMV method
devoted to generation of recommendations. The aim of this phase is to provide
recommendations by finding the best matching between the current context of an activity
instance being a part of the running VO collaborative process instance, on the one hand, and
discovered contexts of activity patterns, on the other hand. Formalization of
the recommendation model is presented in Section 5.4. The recommendation method is
formalized in Section 5.5.

A context class expresses some constraints concerning the context of an activity pattern that
must be met by an activity pattern to be recommended. In the RMV method, identification of
a set of activity patterns with contexts matching a given context class is based on context
distance. The context distance metric indicates difference between a context class and a
context. Context analysis during recommendation supports the adaptation of
the VO collaborative processes to changing environment. If circumstances of running
VO collaborative process instance change, the context class changes and the set of
recommended actions changes as well.

The most frequent activity patterns with low context distance metric are validated using
statistical metrics of sensitivity and specificity (Simon & Boring, 1990). Finally,

68

recommended activity pattern is supplemented with two more values: (1) recom_index
indicates the expected cost of the process instance when following the recommendation, and
(2) nonrecom_index indicates expected cost of the process instance when not following
the recommendation. The most attractive patterns are those with high values of both
sensitivity and specificity, while a small value of recom_index in comparison with
nonrecom_index.

Recommended activity patterns are merged into one generic activity pattern capturing all
the behavior described by each activity pattern separately. The RMV method encompasses
a method of merging activity pattern service oriented summaries of a process models, service
network schemas and service networks. An output recommendation consists of a generic
activity pattern and a set of activity patterns.

The final decision to follow particular recommended activity pattern is made by a group of
selecting collaborators.

7. Activity pattern instantiation

Preferably, discovered activity patterns are on the executable level (cf. Section 3.1.3).
However, if the variety of VO collaborative process instances is too big, identification of
activity patterns on the abstract or prototype levels is also assumed. Abstract and prototype
activity patterns miss complete mapping of service entities to classes of service entities and —
as a consequence — to activity descriptions. Missing assignments of service entities to classes
of service entities are found during instantiation of activity patterns. The RMV method
supports selecting collaborators through generation and comparison of various assignments of
service entities to classes of service entities.

In the RMV method, the problem of service entities selection is transformed to the problem of
subgraph search in the SOVOBE social network. Classes of service entities and service
requirements from an activity pattern are used as requirements that must be satisfied to
the highest possible extent by a set of service entities. The problem is solved using
an approach based on a genetic algorithm (Mitchell, 1998). Two functions are used to guide
generation of genomes in each iteration of the genetic algorithm: function evaluating
satisfaction of a class of service entity by a service entity and function evaluating satisfaction
of a set of service requirements by a set of service entities.

Formalization of activity pattern instantiation problem is presented in Sections 5.4.6 and
5.5.4.

8. Parameterization

Parameterization of the RMV method is made by the use of explicit and implicit collaborator
preferences.

Explicit collaborator preferences are defined during method configuration or are provided to
OO0S within recommendation request. The set of parameters is associated with various parts
of the RMV method and directly influence its effectiveness, quality and results. Parameters
are used by the Process Miner and Recommendation Manager components from Fig. 5.2.
Definition of these parameters must take into account the characteristics of a specific
VO collaborative process supported by the RMV method. The parameters specific for various
parts of the RMV method are presented in corresponding sections. The summary of
parameters in given in Section 5.6.

69

Implicit collaborator preferences are not provided by the users, but they are calculated by
the Recommendation Monitor (cf. Fig. 5.2). Implicit collaborator preferences influence
the ranking of recommended activity patterns presented to collaborators. There are two
metrics:

e Confidence indicator — states the willingness of the collaborators to follow
recommendations; if the collaborators perform activities that follow the recommended
activity pattern, the confidence level of the recommendation is raised, otherwise it is
lowered; activity patterns with higher confidence indicators are ranked higher by the
Recommendation Manager; the fact of following recommendation is verified using
conformance rules generated for the activity pattern;

e Social coefficient — indicates the preference of the selecting collaborators toward using
recommendations formulated on the basis of VO collaborative process instances they
were involved in (the group approach) or the preference to follow recommendations
formulated on the basis of VO collaborative process instances they did not participate
in (the generic approach).

5.4. RMV Method Formal Model
5.4.1. Collaborative Process and VO

In this section, the concept of VO collaborative process and virtual organization is formally
defined. These notions are necessary to introduce a formal definition of VO collaborative
process event log, VO collaborative process context, activity pattern and VO collaborative
process instantiation problem.

Definition 5.1. (Collaboration) A collaboration arises when two actors alternately and
mutually play roles of service consumer and service provider within one process instance.

Definition 5.2. (Collaborators) Actors involved in collaboration are called collaborators.

Definition 5.3. (Collaborative Process) A process is collaborative if some actors involved in
it are collaborators.

Definition 5.4. (Autonomous member) An autonomous member is a member that is legally
independent and aims at fulfillment of its own goal that may be different from the goal of
an organization it is a member of.

Definition 5.5. (Virtual organization) A virtual organization vo; is an organization whose
members are autonomous collaborators involved in execution of a collaborative process to
achieve vo; goal, where at least one member is an organization.

Formally, virtual organization vo; is a quadruple: (n , M;, SI;, R;), where:
l

n . is a collaborative process model being a vo; plan to achieve its goal;
L

e M;, is aset of members of virtual organization vo;, |M;| = 2;

e SI; is a set of service interface descriptions used by members of virtual organization
vo;, where SI; # @;

e R;isaset of relations among members of virtual organization vo;, where R; + @.

70

Let VO denote the set of all the virtual organizations VO = {vo}.

Definition 5.6. (Virtual Organization Breeding Environment) A Virtual Organization
Breeding Environment (VOBE) is a virtual organization whose immutable goal is to provide
services to create the conditions and environment to support rapid and fluid creation of other
virtual organizations.

5.4.2. Collaborative Process Context

In this section, the concept of context in VO collaborative process instances is formally
defined. The notion of context is required to define contextual event and contextual trace.
The notion of context is also crucial in discovery and recommendation of activity patterns
presented in Section 5.4.4 and Section 5.4.5.

Generic context definitions

For the purpose of identification of activity patterns, a special type of attribute name is
distinguished called context feature.

Definition 5.7. (Context Feature). A context feature cf is a name of an attribute.
Let CF = {cf} denote the set of all the context features. Note that CF < AN.

Definition 5.8. (Context Element). An event context element ce is an attribute whose name is
a context feature cf, ce = (cf, av,e).

Let ce(t) denote an event context element captured at time t.

Definition 5.9. (Context). A context co(t) is an object whose attributes are context elements
ce(t).

Let co(t,cf) denote a subset of context elements of context co(t) where context element
name is cf.

Let CO* = {co} denote the set of all the contexts.
Event context

Definition 5.10. (Event Context). An event context co(e) is a context of event e observed
at time e(t).

Example 5.1. Event context element is used to describe circumstances in which an event was
observed, e.g., current rate USD/PLN, particular state of social relations among collaborators,
or weather conditions. An event context element indicating a particular USD/PLN rate on
Monday, June 26" 2013 at 3:52 p.m. is:

e ce(e) = (USD/PLN, 3.1931 PLN), where e(t) = Monday, June 26" 2013 at 3:52
p.m. =

Example 5.2. Consider event context object TypicalStockDay captured at time t having
the following set of context elements:

e (USD/PLN, 3.1931 PLN),
e (NASDAQ,3605.19). =

71

Event context is not specific for a single event. Instead, one event context is shared by many
events executed at time t.

Definition 5.11. (Event Social Context Element). An event social context element sce is an
event context element whose name is SOCIAL and value is a service network o, i.e., sce =
(SOCIAL, o).

Definition 5.12. (Social Event Context). A social event context is an event context whose at
least one attribute is a social context element.

Activity instance context

Let SE(e) = {(se, c)} denote a set of descriptions of service consumers and service providers
who were involved in process instance execution before the event e inclusive, where se is
a service entity description and c is a number of events a particular service entity description
appeared in.

Definition 5.13. (Activity Instance Context). An activity instance context co(vi) is a context
consisting of the five context elements:

(EC,co(e)),

(H,7(p,),
(SE,SE(e)),
(PID, pid,), and

(S,E(e,e(t), (t = A))),

where e is the event from the set E,(vi) with the highest timestamp and p is a process
instance of vi. EC, H,SE, PID, S are context element names.

agrwNOE

Example 5.3. Consider an event log from Fig. 5.4. Assume that for each vi; |E,(vi;)| = 1,
A= 0. Then, each activity instance was executed by a unique service consumer and service
provider. Then context co(aiy,) equals:

(EC,{aa41, @n42})),

(H, {eAlf €42, €43, eAél-})a

(SE; {(SCAlf 1)! (SCAZI 1)1 <SCA31 1)) (SCA4-; 1)) (SpAll 1)! (SpAZI 1)1 (SPA3r 1)1 (SpAél-J 1)})1
(PID, {apl, Ap2, ap3}), and

(S, {eps ecal),
@ {anan,9na2}
{SCas,5Pas}

{aplrap213p3} eA4

agrwNhE

Fig. 5.4. Four elements of activity instance context

Note that activity instance context is unique within one process instance.

72

Context class

Definition 5.14. (Context Element Constraint) A context element constraint ce“ is
an attribute constraint {(cf,9..), Where cf is a context feature being the name of the context
element constraint and 9., is a predicate.

Definition 5.15. (Context Class). A context class co® is a class whose each attribute
constraint is a context element constraint.

Let class(co) be a user-defined function mapping context co into context class co?.

Definition 5.16. (Social Context Element Constraint). A social event context element
constraint sce® is an event context element constraint whose name is SOCIAL and predicate

is @a% where g% is a service network schema and @ is a compliance relation, i.e., sce® =
(SOCIAL, ® c%).

Definition 5.17. (Social Context Class). A social event context class sco® is a context class
whose at least one context element constraint is social context element constraint.

Using event context class it is possible to select a subset of all the event contexts CO being
instances of context class co® from CO*.

Example 5.4. Consider an EconomicStagnation® event context class, having the following
set of event context element constraints:

e (USD/PLN,> 3.1000 PLN), and
e (NASDAQ,< 3800).

An event context TypicalStockDay is an instance of an event context class
EconomicStagnation®, because:

e (USD/PLN,3.1931 PLN)>(USD/PLN,> 3.1000 PLN}), and

e (NASDAQ,3605.19)>(NASDAQ, < 3800).

Event context DayInMay = {{USD/PLN, 3.1850 PLN), (NASDAQ, 3605.19),
(Temperature,30°C)} is also an instance of context class EconomicStagnation®. Thus
context DayInMay and TypicalStockDay are equal according to context class
EconomicStagnation®.

Another example concerns event context class HotDay“® = {{Temperature,> 25°C)}.
Contexts DayInMay and TypicalStockDay are not equal according to context class
HotDay®*. =

Instances of classes of activity instance contexts are found in a similar way.

Definition 5.18. (Context Distance). A context distance is a user-defined function
eval(co, co®) that returns a level of compliance of context co to context class co®, where
the smaller context distance the more similar is context co to the context class co®.

Example 5.5. Consider an event context BeforeChristmas composed of the following event
context elements:

e (USD/PLN,3.0050 PLN), and
e (NASDAQ,3605.19).

73

Consider an event context class EconomicStagnationPlus®:

e (USD/PLN,> 3.1000 PLN), and
e (NASDAQ,< 3800).

Consider a user-defined function eval that assigns weights to each context element constraint,
ie, 08 and 04. Then, weights assigned to attribute constraints from
EconomicStagnationPlus® which are not satisfied by context element from
BeforeChristmas are summarized. For context BeforeChristmas and context class
EconomicStagnationPlus® only context element constraint ce = (USD/PLN,> 3.1000)
with weight 0.8 is satisfied. The weight of the second unsatisfied constrain is 0.4. Thus,

the value of eval(BeforeChristmas, EconomicStagnationPlus®) = 0.4. =

In real cases more refined context distance metrics may be used. For instance, when
comparing activity instance context with activity instance context class, evaluation of
similarity between partial traces from activity instance context feature H (cf. Definition 5.13)
can take advantage of advanced techniques of partial trace comparison (cf. Section 4.3).

5.4.3. Collaborative Process Event Log

Definition 5.19. (Context Event Attribute). A context event attribute is an attribute of
an event being event context element.

Definition 5.20. (Contextual Event). A contextual event is an event having at least one
context event attribute.

Definition 5.21. (Service Entity Event Attribute). A service entity event attribute is
an attribute of an event whose attribute value is service entity description.

Definition 5.22. (Event Social Attribute). An event social attribute is an attribute of an
event whose attribute value is an object describing the arcs adjacent to service entity
description in the service network.

Definition 5.23. (Social Event). A social event is an event having at least one service entity
event attribute and one social attribute.

Definition 5.24. (Collaborative Event). An event that is contextual and social is called
a collaborative event.

Collaborative event attribute set includes:

» e(id) is the unique identifier of the event;

» e(processld) is the unique identifier of the VO collaborative process;

* e(activityld) is the unique identifier of the activity description ;

» e(processinstanceld) is the unique identifier of the VO collaborative process
instance;

* e(activityInstanceld) is the unique identifier of the activity instance;

» e(time) is the timestamp of event e;

» e(trans) is the type of event e (for instance: start, resume, suspend, complete);

» e(context) is the event context attribute;

* e(S0C) is aunique identifier of a service consumer;

* e(SP) is aunique identifier of a service provider;

74

* e(SI) is a unique identifier of a service interface;

* e(serviceEntity — SC) is a service consumer description;

* e(serviceEntity — SP) is a service provider description;

* e(serviceEntity — SI) is a service interface description;

* e(social — SC) is an event social attribute referring to service consumer;
* e(social — SP) is an event social attribute referring to service provider;
* e(social — SI) is an event social attribute referring to service interface.

Note that only event attribute values e(t), e(context) and e(trans) are different for events
associated with the same activity instance. It is assumed that other attribute values are
the same for all the events associated with one activity instance attribute.

Example 5.6. Consider a collaborative event SubmitLoanApplication from trace recorded
during LoanRequest collaborative process instance execution. SubmitLoanApplication
event has the following set of attributes:

e ¢(id) = 80,

e e(processld) = LoadRequest,

o e(activityld) = SubmitLoanApplication,

o e(processinstanceld) = LoanRequest — 2867,

e e(activitylnstanceld) = SubmitLoanAplication — 3465,

e e(time) = Monday,June,27th,12:59:23,123,

e e¢(trans) = complete,

o e(context) =
(DayInMay = {{USD/PLN, 3.1850 PLN),(NASDAQ, 3605.19),
(Temperature,30°C)})

e ¢(SC) = JakubP,

e ¢(SP) = LoanDept,

o ¢(SI) = SubmissionApp,

o e(serviceEntity — SC) = (JakubP,{{age, 34)}),

e e(serviceEntity — SP) = {LoanDept, {type, Internet}},

e(serviceEntity — SI) = (SubmissionApp, {{readyToUse, May 1 — 3)}),
e e(social — SC) = (JakubP,{{location, Poznan)}),
e e(social — SP) = (LoanDept, {{location, Poznan)}). =

Definition 5.25. (Collaborative Trace). A collaborative trace is a trace where each event is
collaborative.

5.4.4. Activity Patterns

Temporal graph

Let e, ,,; T, denote an event corresponding to starting of activity instance vi execution.
Let e, ,,; €T, denote an event corresponding to completion of activity instance vi execution.
Let st(vi) = egy,;(t).

Let et (vi) = eq ;i (t).

75

Definition 5.26. (Relation: Is followed by). In a VO collaborative process instance p,
an executed activity instance vi; is followed by activity instance vi;, where i # j, if st(vi;) =

et(vi;).

Definition 5.27. (Relation: Are overlapped). In a collaborative process instance p, two
activity instances, vi; and vi;, where i # j, are overlapping if st(vi;) < et(vi;) < et(vi;) or
st(vi;) < st(vij) < et(viy).

Definition 5.28. (Relation: Is directly followed). An executed activity instance vi; is directly
followed by activity instance vi;, where i # j, in a collaborative process instance p, if vi; is
followed by vi; and there does not exist a distinct activity instance vi, in p such that vi; is
followed by vi, and viy is followed by vi;.

Definition 5.29. (Temporal Graph). Temporal graph G, of a VO collaborative process
instance p is a directed acyclic graph G, = (VID, E), where VID is the set of activity instance
descriptions, and E is the set of arcs representing is followed by and overlapped relations and
defining partial ordering of activity instance descriptions from VID.

Activity graph

Definition 5.30. (Activity Graph). Activity graph Y, is a prototype service protocol, where
the process model is a temporal graph G,,.

Example 5.7. An example of activity graph is presented in Fig. 5.5. =

Prototype Service Protocol

Abstract Service Protocol

Service-Oriented Summaryj /u\ Service Network Schema
: i VTG :
SR /:/w ~—
: 11l 1
: [| l
Il scl sil spl —> 8
Il n |
Il \ |
Il L 5
I w W
- b |
| sc2 si2 sp2 1 v9
1 |
| T i T
| —
| —> V2 vi
' N
L | b i
s3 | si3| sp3 v4 v3
Q o
I 1 S S e
,,,,,,,,,,,,,,,,,,,,,,,,,,,, S —
1 I
i |
‘Q ‘ Service Network| ‘ (D‘
H
!

Fig. 5.5. Activity graph

76

Definition 5.31. (Supported Activity Graph). Activity graph Y~ is supported by activity
graph Y if:

« all followed and overlapped relations that exist in G,," are present in G,,,

e all activities that exist in G," are present in G,,,

all service descriptions that exist in Y’ are presentin Y,

e service network schema of Y’ is a sub-network of service network schema of Y,
e relation py is a restriction of relation py to py’,

e relation 7y, is a restriction of relation 7§ to 7y,

e relation A, isarestriction of relation A, to A
e relation Q- is a restriction of relation Q to Q,,
o relation @, is a restriction of relation @y to ¢,

e set of service entity descriptions assigned to service description elements in Y’ is
a subset of service entity descriptions assigned to service description elements in Y.

Y"

Let Y’ +Y denote the fact that Y " is supported by Y.

Example 5.8. In Fig. 5.6 two activity graphs are presented. Activity graph Y’ on the right is
supported by an activity graph Y on the left, i.e., Y'£Y . Although, temporal graphs in both
activity graphs are the same, the number of classes of service entity descriptions from service
network schema associated with service descriptions is smaller in Y’. As a consequence,
the set of service entity descriptions assigned to elements of service descriptions is a subset of

service entity descriptions from Y. Thus, A, Q, ® relations from Y’ are restriction of
analogous relations from Y. =

Ly =.

Fig. 5.6. Supporting activity graph

Definition 5.32. (Activity Subgraph). An activity graph Y’ is an activity subgraph of activity
graph Y, where Y’ # Y if;

e VID, cVID, and for any pair of vertices vid,, vid, € VID,, there is an arc in G,
connecting vid, to vid, if and only if there is an arc in G, connecting vid, to vid,,

11 Restriction of function, http://en.wikipedia.org/wiki/Restriction_(mathematics)/

77

e Y’issupported byY.

Note that if Y is a subgraph of Y thenY £ Y".

Example 5.9. Activity graph Y’ presented in Fig. 5.9 is a subgraph of activity graph Y.
The set of activities and relations in Y’ is a subset of activities and relations in Y,
i.e., temporal graph from Y’ has only two activities and one followed relation, while temporal
graph from Y’ has three activities, two followed relations and one overlapped relation.
As aresult, the set of service descriptions of Y’ is a subset of service descriptions in Y’ as
well. As a consequence, the set of service entities assigned to elements of service descriptions

is also a subset of analogue set in Y. Relations A, Q, ® from Y’ are restriction of relations
from Y. Note that Y’ supports both Y and Y. =

Prototype Service Protocol

Fig. 5.7. Activity subgraph

Definition 5.33. (Activity Supergraph). If Y’ is an activity subgraph of Y, then Y is
an activity supergraph of Y.

Example 5.10. Activity graph Y is a supergraph of activity graph Y. =
Activity pattern

Let PatternSearch (t(p)) denote a function that discovers a set of activity graphs from
collaborative trace 7(p).

Definition 5.34. (Activity Graph Supported by Collaborative Trace). An activity graph Y
is said to be supported by a collaborative trace 7(p) if 3Y; € PatternSearch (t),Y = Yr.

Definition 5.35. (Activity Pattern). Let s% denote a minimum support threshold. Given
an event log /, an activity pattern z is an activity graph that is supported by s% of traces
from /.

78

Let Z = {z} denote a set of activity patterns.
Let sup(z) denote a function returning a support of z in event log /.

Example 5.11. Consider a set of ten collaborative process instances, a set of ten
corresponding collaborative traces and support threshold 30%. Then, only activity graph that
is supported by three collaborative traces is considered an activity pattern. =

Definition 5.36. (Closed Activity Pattern). Given a set of activity patterns Z. An activity
pattern z is a closed activity pattern in Z if there exists no proper activity pattern supergraph z’
such that z’ has the same support as z in Z.

Formally, a set of closed activity patterns CZ = {z|z € Zand 3! z' % Z, sup(z) = sup (z’)},
where function sup returns the support of z in event log /.

Definition 5.37. (Candidate Activity Pattern). An activity pattern z is said to be candidate
activity pattern if it is unknown if it is a closed activity pattern.

Activity pattern context

Definition 5.38. (Activity Pattern Context in Collaborative Trace). An activity pattern
context co(z) in a collaborative trace t is a context of the completed activity instance
associated with an event e from 7 that directly proceeds the first event associated with
the activity instance from the activity pattern.

In other words, activity pattern context describes circumstances that appeared during
VO collaborative process instance execution directly before the appearance of an activity
pattern.

Example 5.12. In Fig. 5.8 an approach to identification of activity pattern context in
the RMV method is presented. Temporal graph is supported by event trace 7. Assume that
discovered activity pattern is a subgraph of a temporal graph, i.e., a set of activity instances
supporting activity pattern is {B,D, E}. Activity pattern context is a context of activity
instance A which is the last completed activity instance whose last event precedes events
associated with activity instance B. Although, event e; directly precedes B in the trace, it is
associated with uncompleted activity C. =

00— —

{ €1, €y €3, €4, €5 € €7 }

Fig. 5.8. Identification of activity pattern context

Note that one activity pattern supported by n traces may have n different activity pattern
contexts. Moreover, a value of activity pattern context co(z) may not be unique, i.e., more
than one activity pattern may be discovered with the same activity pattern context.

79

Let fco(z) denote a set of pairs {co(z), T), where co(z) is an activity pattern context and T is
a set of traces supporting activity pattern in context co(z).

Activity pattern discovery problem

Definition 5.39. (Activity Pattern Discovery). An activity pattern discovery is a function
that maps an event log / onto a set of closed activity patterns, where each activity pattern is
supported by at least s% of traces recorded in event log /, and for each activity pattern z a set
fco(z) is known.

Let CMZ = {z} denote the set of all the closed activity patterns discovered in an event log /
for minimum pattern support threshold s.

5.4.5. Recommendations

Let co(7) be a context of the activity instance completed as the last one in partial trace .
Let co,* = class(co(1)).

Definition 5.40. (Target Function). A target function o : L — R is a user-defined function
which attaches a target value to a collaborative trace.

Example 5.13. Examples of target values are: cost or number of involved resources.
The target value is calculated on the basis of appropriate event attributes. Event attributes
corresponding to activity instance cost can be used to calculate cost of the VO collaborative
process instance. =

Definition 5.41. (Recommendation index). A recommendation index recom_index is
the expected target value of the collaborative partial trace T when t is continued after
performing activity pattern z.

A recommendation index for z is calculated on the basis of target values calculated for traces
supporting z in co.*. In other words, by analysis of traces in which an activity pattern was
executed in particular contexts, one can make some prediction concerning the outcome of
the current collaborative process instance if it is continued after performing activity pattern z.

Definition 5.42. (Non-recommendation index). A non-recommendation index
nonrecom_index is the expected target value when t is continued after decision of not
performing activity pattern z.

A non-recommendation index for z is calculated on the basis of target values calculated for
traces supporting z in co,“.

Definition 5.43. (Recommendation Justification). A justification X is an object describing
recommendation.

Definition 5.44. (Recommendation Element). Recommendation element §(t,z) is a tuple
(z,recom_index,nonrecom_index, X).

Definition 5.45. (Recommendation Query). A recommendation query is a tuple RQ =
{r,CMZ}.

80

Definition 5.46. (Recommendation). For a given set of activity patterns Z,
a recommendation R(t) be a set of recommendation elements for all the activity patterns from
set CMZ. Formally, R(t) = {6(t,2)|z € CMZ}.

5.4.6. Instantiation

Definition 5.47. (Compliance value). A compliance value is the value of the level of
compliance of a service network ¢ = (SE, L) with a service network schema o% = (SE%, L%,)
where value is in (0,1).

Let compliance(o,0%) denote a user-defined compliance function returning compliance
value for a service network o and service network schema o% Then,

o® a%*< compliance(o,0%) =1 and o+ 0%< compliance(os,0%) € (0,1). ¢ is not
compliant with ¢%, denoted o ¥ ¢%, if compliance(o,c%) = 0.

Let a5oy0pe denote a service network of all the members of SOVOBE.

Definition 5.48. (Activity Pattern Instantiation). An activity pattern instantiation is
a function that maps a set of service entities from osoy0pr ONto a set of classes of service
entities from service network schema o¢% maximizing the value of
the compliance(osoyope, 0%) function.

5.5. RMV Method Partner and Service Selection Technique

In this section the formalization of the main steps of the RMV method is presented. First,
the RMV method algorithm of discovery of frequent sequence patterns in behavior of a group
of collaborators is formalized (Section 5.5.1). The output of the algorithm is activity sequence
patterns. Discovered activity sequence patterns are then analyzed and transformed to activity
patterns and then stored in activity pattern repository (Section 5.5.2). Transformation of
sequence patterns to activity patterns within the RMV method encompasses identification of
service-oriented summary of a process model, service network schema, service network and
corresponding mappings. In the third part of this section, the RMV method algorithm for
recommendation formulation is formalized (Section 5.5.3). This algorithm aims at
recommendation of identified activity patterns to the RMV method users. Finally, RMV
method algorithm for activity patterns instantiation is formalized in Section 5.5.4.

5.5.1. Activity Sequence Pattern Discovery

The RMV method algorithm for discovery of frequent sequence patterns in behavior of
agroup of collaborators presented in this section is based on the modified PrefixSpan
algorithm (cf. Section 4.3). The modification of the classic PrefixSpan algorithm is twofold:
(1) elaboration of representation of is followed by and overlaps relations in a form of
a sequence of activity instance descriptions, (2) modification of the basic notions used in the
algorithm, i.e., the notions of prefix and suffix.

Activity sequences

Definition 5.49. (Activity Instance Description Sequence) An activity instance description
sequence Qss (activity sequence in short) is a list of activity instance description sets

81

corresponding to activity instances executed in a VO collaborative process instance.
Let gss = (VID) denote a sequence, where VID = {vid}.

A sequence of one-element sets of activity instance descriptions ({vidi}{vidj}) denotes that
activity instance vi; is followed by activity instance vi;. Note that square brackets are used for
grouping activity instance description sets within the sequence. A two-element set of activity
instance descriptions {vidi, vid j} denotes that activities instance vi; and vi; are temporally
overlapped. The sequence ({vid,,vid,}{vid,, vid;}) denotes that activity instance vi, is
followed by vi; and activity instance vi, overlaps with vi; and vi;. Note that curly brackets
are used for grouping activity instance descriptions corresponding to overlapping activity
instances.

In this section, for clarity of presentation, the following assumptions are made:

e If all the activity instance descriptions within a sequence are described with a set of
attributes having the same names, then only attribute values are presented in
an activity sequence;

e If the activity instance description has one attribute, then only the value of the attribute
is used in an activity sequence;

e If an activity instance description set has only one element then curly brackets are
dropped;

e The requirement for an activity instance description is to have two mandatory
attributes with names activityStart and activityEnd is dropped.

Example 5.14. A sequence of two activity instance descriptions having the same set of
attribute is: ((A23®),(B,5,£)). »

Note that round brackets are used for grouping attribute values from one activity instance
description.

A set of attributes of activity instance description is defined on the basis of attributes of events
generated during execution of an activity instance that this activity instance description
represents.

Let e,;; € E,(vi;) denote an event assigned to activity instance vi; from the VO collaborative
process instance p. Let es,;, denote a set of attributes of event e,;. Then vid; = es,;, \
{e(time), e(context), e(trans)}.

Definition 5.50. (Activity Instance Description Attribute Equality) The activity instance
description vid; is attribute equal to vid; if it is equal according to classifier co (cf. Definition
2.5) where a set of attribute names from co is equal to a set of attribute names from vid;.

co

Let vid; = vid; denote that vid; is attribute equal to vid;.

co co
Note that if vid; = vid;, then vid; = vid; is not necessary observed.

Example 5.15. Consider attribute sets of the following activity instance descriptions:

82

vidl = {(all A)J <a2, 5); <a3r ®)}1 VidZ = {(a1'A>; <a2F 5)} <a3i ®)(a4—' @)}1 vid3 =
((ay, A), (ay, 10)}, vid, = {(ay, A), (ay,5)}. Then, vid, = vid, but vid,= vid,, vid# vid,
and Uidlz vid4. -

Note that the above interpretation of the sequence ({vid,, vid,}{vid,, vids}) is different from
the one used in majority of classic pattern discovery algorithms including PrefixSpan.
In the classic approach, the sequence ({vid,,vid,}{vid,, vids;}) expresses that uvi,
represented by vid, in the first set is taking place before the activity instances represented by
activity instance descriptions in the second set and activity instance wvi, represented by
activity instance description in the second set occurs after those from the first one.
As a consequence of interpretation of activity sequence proposed in the RMV method, in
order to support overlapped relation among activity instances, the concept of the subsequence
must be redefined as compared to the classic approach.

Definition 5.51. (Activity Instance Description Set Containment) An activity instance
description set VID; contains VID; if each activity instance description from VID; is attribute
equal to different attribute instance descriptions from VID;.

co
Let VID; c VID; denote that VID; contains VID;.

Definition 5.52. (Subsequence) A sequence r = (VID;,VID,, ...,VID,) is a subsequence of
sequence d = (VID,,VID,,...,VID,) if there exists integers i; <i, < -+ < i, such that

co co co
VID, cVID'; ,VID,cVID';,,...,VID,cVID'; , and there exist no consecutive sets of
activity instance description sets VID; and VID;, 4 in r such that activity instance description
b € VID;, activity instance description q € VID;,4, and {b,q} € VID’l-j or{b,q} S VID’l-jH.

Example 5.16. Consider two sets of activity instance descriptions having one attribute being
activity instance identifier. Sequence r = (B, C) is a not a subsequence of d = ({4, B}{B, C}).
The sequence r denotes is followed by relation between B and C, which differs from an
overlapped relation in d. A subsequence r’' = (4,C) is a subsequence of sequence d. r’
corresponds to is followed by relation that is also present in d. =

Definition 5.53. (Sequence Support) A sequence d supports sequence s if s is a subsequence
of d. Then d is a super-sequence of s.

Definition 5.54. (Canonical Sequence) A sequence s = (vid,, vid,, ..., vid,) is canonical if
for each activity instance description set u;, 1 < j < m,u; € uj,4, and ujq u;.

Example 5.17. A sequence (4, {4, B}) is not canonical. In further analysis such sequence is
reduced to canonical equivalent({A, B}) representing the same behavior. =

Activity sequence discovery

Further in this section it is assumed that each activity instance description in an activity
sequence consists only of one attribute that is the activity instance identifier. This is only for
the sake of clarity of presentation of the proposed concepts. All the statements that are true for
one-attribute activity instance descriptions are also true for multi-attribute activity instance
descriptions.

83

The RMV method analyses traces stored in a collaborative event log and transforms
information about the events into a non-empty set of activity instance descriptions, where all
the overlapped and is followed by relations are explicitly represented as a sequence.

Definition 5.55. (Sequence Length) Let k denote the length of activity sequence gss that is
the maximum number of activity instance descriptions connected by is directly followed
relation in temporal graph G, corresponding to gss.

Example 5.18. In activity sequence ((4,B)(B,C)) the maximum number of activities
executed sequentially is two, i.e., activity A and C. Thus, len({(4,B)(B,C))) = 2. =

Definition 5.56. (Sequence Size) Let s denote a sequence size that is the number of activity
instance descriptions in an activity sequence.

Example 5.19. There are three activity instance descriptions in ((4, B)(B, C)), i.e., A, B, C.
Thus, size(((4,B)(B,C))) = 3. =

Each VO collaborative process instance p can be transformed to I-sequence gss, where
len(gss) < | < size(gss).

A transformation of a trace 7 into a sequence begins with initialization of sets S = @ and
T = @. The starting and completion times of activity instances in process instance p are
captured in event attribute e(time). Events are traversed in time ascending order. The set T
starts to accumulate when the first event with activity instance starting time is visited —
activity instance description corresponding to the visited event is added to T. Set T is
appended to S when two conditions are satisfied: (1) the completion time of one of activities
in T is encountered; (2) at least one new activity instance description has been added to T after
T was appended to S. Subsequently, the traverse is continued until the next starting time is
visited. At this moment, the subset of activity instance descriptions in T whose completion
times appear before the currently visited activity instance description are removed from T
since this subset of activity instance descriptions that have appeared in the activity sequence
are followed by the current activity instance description. This traversal procedure continues
until all the events are visited.

Example 5.20. An example of transformation is presented in Fig. 5.9. First, starting points of
activity instances corresponding to activity instance description A and B are visited, T =
(A, B). Then the completion point of activity instance A is visited and set T is appended to set
S, S=SUT = ({4, B}). When starting time of C is visited, A’s completion time appears
before the C’s starting time, A is removed from T, T = T\{A} = (B). In next steps activities C
and D are added to T as their staring points are encountered. At this point T = (B, C, D). Then,
completion point of B is reached, thus S=SUT = ({4,B},{B,C,D}) and T =T\{B} =
(C,D). When completion times of C and D are reached, T is not appended to S as no new
items appeared in T after last appending. When the following E’s starting time is visited, T
becomes empty because the completion times of B, C, and D have all been traversed. When
the last completion time is visited, then S = SU(E) = ({4,B},{B,C,D},{E}). =

84

Fig. 5.9. Transformation of a trace to a sequence: (a) activity instances in process instance,
(b) corresponding temporal graph

The activity instance descriptions ordering in the same set is unimportant as the activity
instances represented by activity instance descriptions from one set were executed in parallel.
Thus, it is convenient to assume that all the activity instance descriptions in one set are
written with respect to the alphabetical order.

Example 5.21. A sequence should be written in the form of ({4, B,E}{B,C}) instead of
({B,A,E}{C,B}). "

Prefix and suffix discovery

In the RMV method, the PrefixSpan (cf. Section 4.3) is extended in the following way to be
able to be applied to identification of activity sequence patterns:

e Redefinition of the notion of prefix and suffix to capture the overlapped relation
among activities;

e Identification of sequence patterns on both the activity and the attribute level;

e Technique for generation of frequent 1-sequence patterns for multi-attribute items;

e Incorporating constraint-base analysis to increase usefulness and understanding of
generated results;

e Filtering algorithm results in post pruning to include only closed sequence patterns,
where closed sequence patterns are those having no super-sequence with the same
support.

Without losing generality and for the ease of understanding of the RMV method,
modifications introduced to the algorithm are explained under assumption that each activity is
described only by its name. All the observations will be later generalized to multi-attribute
activities. As each activity has only one attribute, round brackets are dropped.

Consider an activity sequence s = (4,{B,C,F},{D, F}, E) representing a temporal graph TG
presented in Fig. 5.10. According to the classic definition, an activity sequence t = (4, F) is
a prefix of s. Consequently, the suffix created using prefix tis ¢’ = ({B, C},{D, F}, E). Suffix
g’ corresponds to graph 7G’ in Fig. 5.10. Graphs TG and 7G’ are presented in Fig. 5.10. Note
that suffix q’ is incorrect, as 7G’ is not a subgraph of TG. The correct suffix is q"" =
({B,C},D,E) and corresponding graph TP’ is also presented in Fig. 5.10. Due to this
difference between suffixes ¢’ and ¢, identification of activity patterns using PrefixSpan
algorithm requires a redefinition of prefix and suffix concepts.

85

Fig. 5.10. Suffixes of temporal graph TG. Incorrect suffix ¢ identified for prefix t follows the classic definition
and is different from correct suffix ¢’

Definition 5.57. (Prefix) Given an activity sequence s = {VID,,VID,, ...,VID,}, then activity
sequence t = {VID'y,VID',,...,VID',,}, where m < n, is called the prefix of s if t is
a subsequence of s for i < m.

Example 5.22. Activity sequences (4, F), (A,{B,C}) are examples of prefixes of activity
sequence (A,{B,C,F},{D, F},E), but neither (4, D, F) nor (4, E) are prefixes. =

Note that the above definition of prefix is applicable for multi-attribute activity instance
descriptions.

Example 5.23. Sequence ((4,%),(F,+)) is a prefix of an activity sequence

((4,0){(c® @) F+9)).-

Definition 5.58. (Suffix) Given activity sequence s = {VID;,VID,,...,VID,}, let activity
sequence t = {VID',,VID',,...,VID',,_,,VID',,} be a prefix of s, where m < n. Activity
sequence q = {VID",,,,VID" ,.;;, ...,,VID" .}, where 1 < i < n —m, is a suffix if and only if
two conditions are satisfied: (1) VID",,, = VID,,\VID',,,, (2) for each VID,,.;, if VID',, <
VID and VID",, i1 # VIDy4i—1 then VID" . .; # VID,,;\VID',,. Otherwise, for each
VIDpyi, i€ VID y @ VID i then VID" o vi = VID i

Let g=s|t denote a suffix of s with regards to prefix t.

Example 5.24. Consider activity sequence s = (A4,{B,C,F},{D,F},E), and its prefix t; =
(A, F) (cf. Fig. 5.11). Then m=2 and n=4. The suffix is initialized as an empty set q; = @.
First, activity instance description set VID", starting the suffix is identified. Following the
rule VID", = VID,\VID', we have {B,C,F}\F = {B,C}. VID", is then appended to g,
resulting in q; = ({B, C}). Another element in suffix g, is VID";. The value of VID"; is
created on the basis of element VID"; = {D, F}. Because VID', € VID, i.e., F < {D, F}, and
VID", # VID,, then VID" 3 = VID;\VID',, i.e., VID" 5 = {D, F)\{F} = {D}. Element VID"',
is appended to q;, q; = ({B,C})uU{D} = ({B,C},D). Finally, the value of VID", is
established. Because VID', # VID,, then VID", = {E} and VID", is appended to q;, q; =
({B,C},D,E). Sequence s, prefix t;, and suffix g, are graphically presented in Fig. 5.11. =

Example 5.25. Consider again activity sequence s = (A,{B,C,F},{D,F}, E) and its different
prefix t, = (4,{B,C})1, :<A, {B,C}). Then m=2 and n-4. Element VID", = VID,\VID',,

i.e.,, VID", ={B,C,F}\{B,C} ={F}, and VID", is appended to q,, g, = (F). Because
VID', ¢ VIDs, then VID"; = {D, F}, and VID"; is appended to q,, q, = (F,{D, F}). Finally,

86

VID", = {E} and VID", is appended to t, i.e., g, = (F,{D, F}, E). The resulting suffix g, is
not canonical thus it is reduced to activity sequence q, = ({D, F}, E). Activity sequence s,
prefix t,, and suffix g, are graphically presented in Fig. 5.11. =

tl t2

/—'

(- .
@ @ d @ (o[} Q2
—

Fig. 5.11. Temporal graph prefixes and corresponding suffixes
Frequent 1-sequences

In the first step of the RMV method algorithm for identification of activity sequence patterns,
the database of sequences is scanned to find all the frequent items. Each activity is validated if
it is supported by the minimum number of sequences.

Example 5.26. Consider three activity sequences: s; = (4, B), s, = (C, A), and s; = (C, B).
Assuming minimum required support equal to 2, a set of 1l-element frequent patterns is
qss = {A, B, C} as all the items appear in at least two activity sequences. =

On the contrary, in the RMV method, to identify activity sequence patterns, not only on the
level of activity names, also other attributes and their subsets are validated in terms of
patterns. As a consequence, it is possible to discover activity sequence patterns with unknown
names of some activities. For instance it might not be possible to clearly indicate which
activity is performed after activity A. Still it is possible to indicate that the next activity should
be performed by John and should last no longer than 30 minutes.

Identification of activity sequence patterns using all the attributes associated with activity
instance descriptions requires identification of closed sets of attributes. For this purpose, two
steps are performed:

1. First, attributes supported by a minimum number of activity instance descriptions
are selected.

2. Second, attributes are used to generate maximum closed sets of attributes; in each
generated set, attribute names must be unique; each generated maximum closed set
is stored with its support.

Example 5.27. Consider three sequences: s; = ((4,3,%),(B,3,1), s, =((C,1,%),(4,3,1))
and s; = ((C,4,%), (B, 5,#)). Assume that the minimum required support is equal to 2. In the
first step, the following set of attributes is identified: sa = {4:2, B:2, C:2, 3:2, *:3, 112},
where the notation “pattern : count” represents the attribute and its associated support

87

count. A set of 1-element frequent patterns identified in the second step is: gss =
{(3,D:2, (C,*):2, (A,3):2, (B):2}. For instance, (3,!) is supported by (B,3,!) and
(4,3,1).-

Constraints

The RMV method approach to identification of activity sequence patterns is based on
constraint-based approach to limit the search space and the number of generated results.
Following the classic categorization of constraints, the following constraints are used:

e Duration constraint — dur(s) < td, where td is a given integer; function dur
calculates the difference between timestamps corresponding to the activities in s
completed at the latest, and started at the earliest;

e Gap constraint — gap(s) < tg, where tg is a given integer; function gap calculates
the maximum difference between two activities joined by is followed by relation;

e Maximum timestamp constraint — timestamp(s) < tm, where tm is a timestamp;
function timestamp returns the maximum timestamp corresponding to the last activity
instance description in sequence s.

e Minimum sequence pattern length constraint — len(s) > k, where k is an integer;
function len returns the length of s.

e Maximum sequence pattern length constraint — len(s) < h, where h is an integer;
function len returns the length of s.

In the RMV method, every generated activity sequence pattern is validated against prefix
constraints before it is used for bi-level projection. The activity sequence pattern that does not
satisfy the constraints is not further analyzed in terms of support and is not used for database
projection.

Activity pattern support and closed patterns

Having a set of sequences QSS and sequence pattern s, each gss from QSS is validated in
terms of support for s. Sequences qss supports s if: (1)s is a subsequence of gss,
(2) subsequences s meets all prefix anti-monotone.

The pseudo-code for the proposed function SupportCalc calculating the support level for
pattern s is presented in Listing 5.1

88

Listing 5.1. SupportCalc function

SupportCalc (

activity sequence pattern: s,
sequence set: QSS;

set of prefix constraints: C): number

0.

1

2

3.

4. {
5 sup_s=0;

6 0SS’ find all gss in QSS that support s and satisfy constraints from C;
;

8. for each gss from OSS”

9 {

10. if (s is subsequence of gss and s satisfies C)
11. {

12. sup_s++;

13. }

14. }*end-for*/

15. return sup_s/|QSS|; /* express support in % by dividing number of supporting

16. sequence by a total number of sequences in database*/
17. }

In the RMV method the closed activity pattern set is created during post-pruning.
All the unclosed sequence patterns are filtered out.

Context-aware activity sequence patterns

The RMV method algorithm recursively generates activity sequence patterns and utilizes
SupportCalc function for verification of their support. The pseudo-code for the algorithm is
presented in Listing 5.2 and Listing 3.

The RMV method algorithm presented in Listing 5.2 takes activity sequence database QQS,
predefined minimum support s, and a set of constraints C as an input. First, frequent 1-
sequences that satisfy a required support level are identified as set B (line 7-14). A set of
frequent 1-sequences is used to simplify a sequence database and create a pseudo-database,
where each sequence consists only of activity instance descriptions that support 1-sequences
(line 15). Then pseudo-database and set B are used for first database projection (line 16).
To improve efficiency of calculations, the algorithm employs the notion of S-matrix tree from
the classic PrefixSpan algorithm for projecting new partitions, storing sequences and counting
their support. As a result of bi-projection, a set of frequent 2-sequence patterns Z is
created (line 16).

Each activity sequence pattern « from Z is saved with all it contexts (line 19-23). Note that
each activity sequence pattern discovered as an extension of activity pattern a will have
the same set of contexts. Each sequence pattern a from Z is used for projection of a database
(line 24). Then recursion is called for each a and corresponding projected database (line 25).
Required support level, set B and set of constraints C are also always passed to each
recursion level.

89

Listing 5.2. Sequence pattern search initialization

PatternSearch (

a set of sequences: QSS,

the minimum support: s,

set of anti-monotone constraints: C): a set of activity patterns

frequent — @; /* a set of frequent 1-sequences in QQS*/
B « find all 1-sequence in QSS;
for each b from B

0.
1.
2.
3
4. {
5
6
.
8.
9. A

10. if (SupportCalc(b, QSS, C) not less than s)
11. {

12. frequent — b;

13. H* end-if */

14. }*end-for*/

15. QSS « create pseudo-database using frequent and QSS;
16. Z <« perform bi-level projection for B, QSS and s;

17. foreach o fromZ

18. {

19. if (a satisfies all constraints from C)

21. {

22. save pattern o with context;

23. }

24. S| & < build projected database using a and QSS;
25. R < Ru Recursion(a, S|a, s, B, C);

26. }H*end-for */

27. returnR;

28. }

The Recursion method of the RMV method is presented in Listing 5.3.. First, the list of 1-
sequences is updated for particular current pseudo-database QSS, i.e., 1-sequences that are not
frequent in a pseudo-database are removed (line 7). For each frequent 1-sequence and activity
sequence pattern a, a new activity sequence pattern is created and saved if it is frequent and
meets constraints C (line 8-16). Each saved activity sequence pattern has a size equal to
the size of activity sequence pattern « increased by 1. If the length of a saved activity
sequence pattern is smaller than maximum allowed length (line 17-18), the next step of the
algorithm is performed. A set of frequent 1-sequences is used for database
projection (line 20). Each pattern z from generated set Z is then merged with activity sequence
pattern a (line 23). Resulting activity sequence pattern a’ has the size of activity sequence
pattern « increased by 2. Activity sequence pattern a' is saved if it meets constraints (line 24-
27). For each z from Z a new projection is performed (line 28) and recursion is
called (line 29).

90

Listing 5.3. Sequence pattern search recursion call

0
1
2
3.
4.
5
6
7
8

9

10.
11.
12.
13.
14.
15.
l6.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

Re

}

cursion (

activity sequence pattern: «a,

« -projected database: QSS,

the minimum support: s,

frequent patterns from previous recursion: B;

set of anti-monotone constraints: C): a set of activity patterns

B « update frequent 1-sequence set using B and QSS;
for (each b from B)
{
b’ = merge activity pattern a with 1-sequence b;
if (b~ satisfies all constraints from C
and SupportCalc(’, 0SS, C) not less than s)

{
¥

save pattern b with context;

ky

if length of a + length of any element from B is smaller than maximum from C
{
Z «— perform bi-level projection using B, QSS and s);
for each z from Z
{
a' = merge activity pattern a with activity pattern z;
if (a’ satisfies all constraints from C)

{
save pattern a’ with context
}* end-if */
S|a’ < build projected database for z and QSS;
R < Ru Recursion(a’, S|a’, s, B, C);

The RMV method algorithm returns a set of closed activity sequence patterns, where each
activity sequence pattern is associated with a set of process instance identifiers indicating
process instances supporting the pattern. The pseudo-code for the algorithm is presented
in Listing 5.4.

91

Listing 5.4. The first phase of the RMV method algorithm for discovery of activity sequence patterns

SequencePatternDiscovery (event log: L,

the minimum support: s,
set of constraints (maximum pattern duration: td,
maximum gap: tg, maximum timestamp: tm, minimum length: h): C,):
a set of closed activity patterns

QSS «— @; /* QSS contains a set of sequences */
CQSS < @; /* CQSS contains a set of closed sequence patterns */
for each trace T in L

{
QSS «— QSS usequence generated for t;
} /I* end-for */
R « PatternSearch (QSS, s, C);
R « filter out all the sequences that appear in CMZ that are
not closed and satisfy constraints from C;
return R;

5.5.2. Activity Pattern Identification

In the RMV method, transformation of an activity sequence pattern to an activity pattern is
based on a subset of attributes associated with activity instance description from sequence
patterns. The considered set of attributes is: e(SC), e(SI), e(SP), e(serviceEntity — SC),
e(serviceEntity — SI), e(serviceEntity — SP), e(social —SC), e(social — SI),
e(social — SP) (cf. Section 5.4.3).

The following steps are performed in the RMV method when transforming an activity
sequence pattern to an activity pattern:

1.

2.

Identification of service oriented summary of a process model, in particular process
model % = (VD, E);
Identification of service network schema o% = (SE%, L¥) elements, i.e., identification
of classes of service entity descriptions from SE* and identification of service
requirements from L?%;

Definition of function A:(** =SC* uSI* uSP“)x SE” mapping classes of
service entity descriptions from the service network schema to elements of service
descriptions from a service-oriented summary of a process model;

Identification of service network ¢ = (SE, L), in particular identification of service
entity descriptions from SE and identification of relations among service entity
descriptions from L ;

Definition of function ®:SE x SE“ mapping service entity descriptions from service
network o to classed of service entities in service network schema ¢¢;

Definition of function Q:E x S$** mapping service entity descriptions from service
network ¢ to elements of service descriptions.

92

Service-oriented summary of a process model

The RMV method algorithm for identification of a service-oriented summary of a process
model is presented in Listing 5.5. The algorithm travers all the activity instance descriptions
from activity sequence pattern s (line 5). For each activity instance description vid, a process
model activity t is created (line 7) having the name equal to an attribute e(activityld) of vid.
Note that for some visited activity instance descriptions, e(activityld) may not be set. Then
an activity with no name is created in the process model. Created process model activity t is
added to the set of activities VD (line 8). Also the mapping m between the activity instance
description form the activity sequence pattern and the created activity is kept (line 9). Once all
the process model activities are identified, a set of temporal relations E is created (line 11) by
parsing activity sequence pattern s. Interpretation of activity sequence pattern notation in
terms of temporal relationships is presented in Section 5.5.1. In lines 12-15, a process model
is created together with full service-oriented summary of the process model, i.e., set S; and
mapping p* are generated automatically — each activity from the process model has assigned
one unigue service description.

Listing 5.5. Create service oriented summary of a process model process model ¢

0. CreateServiceOrientedSummaryOfProcessModel (

1 activity sequence pattern: s): process model

2. {

3 m«— @ /* holds mapping of activity instance description to task */
4. VD« @ /* holds a set of process model activities t */

5 for each activity instance description vid form s

6

7

8

{
t = create task (vid);
VD «t;
9. m « add activity instance description vid to task t mapping;
10. }

11. E <« capture temporal relations among tasks (7%, s);
12. % =(VD,E);

13. m%—m;

14. mgog— Y,

15. mg,s < Create other elements of mg,,;

16. return mg,g;

17.}

Service network schema

Identification of a service network schema in the RMV method requires two steps
(Listing 5.6): (1) identification of classes of service entities, and (2) identification of service
requirements.

Classes of service entities are separately identified for each element type of service
description — service consumer, service interface, and service provider (line 6, 14). Given
a particular element type of service description sde, each activity instance description vid in
the activity sequence pattern s is visited. For each vid, a set of attributes atts describing a
service entity is identified — depending on the element type of service description, it is

93

described by e(serviceEntity — SC), e(serviceEntity — SI) or e(serviceEntity — SP)
attributes, respectively (line 18). Attributes atts are used to create a class of a service entity
description se® (line 21). The class is added to the set of all the classes of service entities
(SE*). Two mapping are stored: (1) mapping of a class to element of service description
(line 22), and (2) mapping of a class to activity instance description vid (line 23). A class is
not created if a set of attributes atts is empty, unless analyzed vid has an attribute identifying
a service entity of type sde (one of attributes e(SC), e(SP), e(SI) depending on a type of sde)
(line 19). At this point, mapping between elements of service descriptions and classes of
service entities is 1:1. Next, classes of service entities from SE* are compared with each
other. If two classes are exactly the same, i.e., if they have the same set of attributes, then they
are merged into one class that is mapped to two elements of service descriptions (line 28).
Final mapping of each element of service description to a class of service entity description is
in general M:1, i.e., many elements of a service description may be mapped to one class of
a service entity.

Similarly to classes of service entities, service requirements are separately identified for each
element type of service description (line 6, 14). It starts with identification of a set of social
attributes from all the activity instance descriptions from s. Each attribute is stored in
the MATTS set together with information about activity instance descriptions supporting this
attribute (line 34-45). For each attribute att (line 36), all the activity instance descriptions vids
supporting it are visited (line 38-40). For each visited activity instance description source €
vids (line 40), a corresponding class of service entity description sClass of a type sde
(line 42-43) is searched for. If for activity instance description source no class of service
entity of type sde has been identified, i.e., sClass is null, then an empty class is
created (line 46-47). In the next step of the algorithm, the next activity instance description is
taken from vids that is different than source (line 49-50) and the corresponding class of
service entity description tClass is searched for (line 52-53). Similarly, if tClass is null
(line 52), an empty class is created (line 56-57). When both sClass and tClass are not null,
a service requirement joining these two classes is created, and the attribute att is added to its
description (line 54-56). If a service requirement joining sClass and tClass already exists,
attribute att is added to the existing service requirement. Finally, service network schema is
created (line 66). In the final step, for each pair of classes of service interfaces and service
providers assigned to the same service description, an implicit “provide/is provided” service
requirement is created. This service requirement states that potential service interface
description assigned to the class of service interface description must be associated with
a service interface provided by an actor being an instance of a class of service provider
description assigned to the same service description.

94

a
Listing 5.6. Creating service network schema o “ and mapping relation A

N P O

O J o U1 b W

11.
12.
13.
14.
15.
l6.
17.
18.
19.
20.
21.
22.

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42 .

CreateServiceNetworkSchema(

{

service-oriented summary of process model: g,
activity sequence pattern: s,

a

service description elements to class of service description mapper: A,

.). service network schema

SDES « { SC, SI, SP }; [* create a set of service description element types */
SE¢— @ ; /* holds classes of service entities */

L*— O; /* holds service requirements */

smapper «— @; /* assignment of classes of service entities

to activity instance descriptions */
[* #HHH#HH# step 1 - create classes of service entities ###H# */

for each sde from SDES /* for each type of service description element */

{

for each activity instance description vid form s
{
atts = get service entity attributes (vid, sde) ;
if (atts is not null or (atts is null and entity name of type sde is known))
{
se® = create class of service entity (atts);
SE%« se?;

7\«— add mapping (sde, se“, vid, m,,);
smapper «— add mapping (se%, vid);
}* end-if */
}* end-for */
}* end-for */
find and merge common classes(SE%);

I* #### step 2 - create service requirements ####H */

for each sde from SDES
{
MATTS = get mapping of unique social attributes to
activity instance descriptions (s, sde) ;
for each matt form MATTS
{
att = get social attribute from matt;
vids = get activity instance description associated with att in matt
for each activity instance description source from vids

{

sClass = get class of service entity description

95

43, (smapper, source, 1, Sde);
44, if sClass is null

45, {

46. sClass = new class of entity description;

47 . 16{ < add mapping (sde, sClass, source, mg,s);

48. }/* end-if */

49, for each activity instance description target

50. from vids different that source
51. {

52. tClass = get class of service entity description

53. (smapper, target, m,, sde);
54. if tClass is null

55. {

56. tClass = new class of entity description;
57. X «— add mapping (sde, tClass, target, mg,s);
58. }* end-if */

59. [*=create service requirement (sClass,

60. tClass, att, source, target);
61. L%« 1%; [* add to service network schema */

62. }* end-for */

63. }* end-for */

64. }H*end-for */
65. find and merge common service requirements despite type (L%);
66. 0% = (SE%L%), [* create service network schema */

67. create implicit service requirements(A, a%);
68. returno“,
69. }

Service network

Identification of a service network in the RMV method is presented in Listing 5.6. Service
network is identified in a similar way to identification of a service network schema. There are
three main differences: instead of classes of service entities and service requirements, service
entities and service relations are created, (2) depending on the type of service entity, one of
attributes e(SC), e(SI), e(SP) is used as the name of created service entity, (3) no empty
services entities are created. During execution of the algorithm of Listing 5.7, also mapping ®
of classes of service entity to service descriptions is identified (line 18).

96

Listing 5.7. Creating service network o

0. CreateServiceNetwork (

1. activity sequence pattern: s,

2. mapping of classes of service entity descriptions to service entity descriptions: @,
3. service network schema: o %,

4. service-oriented summary of a process model: 74,

5.):service network

6. {

7. sdes — { SC, SI, SP}; [* create a set of service description element types */
8. SE—~0; /* holds service entities */

8. L—0; /* holds service relations */

9.

10. [* ####HH# create service entities ####H */

11.

10. for each sde from sdes [* for each type of service description element */
11. {

12. for each activity instance description vid form s

13. {

14. name = get service entity name (vid, sde) ;

15. if name is not null

16. {

17. se = create service entity (name);

18. ® «— add mapping (sde, se, Ts.s);

19. smapper «— add mapping (se, vid);

20. SE «—se; /* add to service network schema */

21. }

22. }* end-for */

23. }H*end-for */

25.

26. [* #HH#HHH# create service relations ##H##H: */

27.

28. foreach sde from sdes [* for each type of service description element */
29. {

30. matts = get mapping of unique social attribute to

31. activity instance descriptions (s, sde) ;
32. for each matt form matts

33. {

34. att = get social attribute from matt;

35. vids = get activity instance description associated with att in matt
36. for each activity instance description source from vids

37. {

38. sourceEntity = get service entity description

39. (smapper, source, sde);
39. if (sourceEntity is null) continue to next source;

40. for each activity instance description target

471. from vids different that source

97

42 {

43, targetEntity = get service entity description

44, (smapper, target, sde);

39. if (targetEntity is null) continue to next target;
45. for each targetClass from targetClasses

46 . {

47 . | = create service relation (sourceEntity,
48. targetEntity, att, source, target);
49. L « I; /* add to service network schema */
50. 1

51. }

52. }

53. }

54. }

54. o =(SE,L); [* create service network */

55. returno; }

Activity pattern

Finally, the algorithm presented in Listing 5.8, shows the ordering of all the operations
required to create an activity pattern in the RMV method. First, service-oriented summary of
a process model is created based on activity sequence pattern (line 6). In line 7, a service
network schema is created basing on the service-oriented summary of the process model 7,
and activity sequence pattern s. Basing on activity sequence pattern s and service network
schema o (line 8), service network o is created (line 9). As the last element, mapping Q is
identified (line 10-11). Finally all the elements, i.e., w5y, 4, 0%, @, g, are used for creation of
activity pattern z (line 12).

Listing 5.8. Creating activity pattern z

CreateActivityPattern (
activity sequence pattern: s): activity pattern

{

0

1

2

3. 10{ «— ; /* assignment of service description elements to
4 class of service entity */

5 ® — O; /* create mapping of classes of service entities to

6 service entity description */
7 505 = CreateServiceOrientedSummaryOfProcessModel (s);

8. o%= CreateServiceNetworkSchema (4,5, S, A);
. o = CreateServiceNetwork (s, @ ,c%);
10. € =create mapping of elements of service descriptions to

11. service entity descriptions (®,A);

12. z=create activity pattern(m,s, A, 0%, @, g, Q);
13. returnz; }

98

Example 5.28. Consider an activity sequence pattern s = (4, {B, C}, D), where each activity
instance description is associated with a set of attributes. Attributes associated with each
activity instance description are presented in Tab. 5.2, Tab. 5.3 and Tab. 5.2. In each table,
attributes are arranged by activity instance description (A, B, C, D) and the type of element of
service description — SC, SI, SP.

Tab. 5.2 presents values of e(SC), e(SI), e(SP) attributes of activity instance descriptions.
Values in the table indicate names of service entities discovered in the activity pattern.
For instance, according to the activity pattern, activity A is performed by James, who uses
the PostApp service interface provided by the Loan Department. Note that some activities
miss assigned service entities, e.g., there is no service consumer indicated for activity B.

Tab. 5.2. Service entities discovered in an activity pattern

A (B C) D
SC | s <Name, James> | | <Name, Mark>
SEL <Name, PostApp> _ | <Name, SubApp> | <Name, Review> |
SP <Name, LoanDept> <Name, LoanDept> <Name, Mark> <Name, ClientSupportDept>

In Tab. 5.3, attributes describing service entities typically involved in the execution of an
activity are presented. Those are values of e(serviceEntity — SC), e(serviceEntity — SP)
or e(serviceEntity — SI) attributes of each activity from the activity pattern. For example,
attributes discovered in the activity pattern for activity instance description A which
correspond to service consumer description are: {<Profession, Architect>, and <Nationality,
Polish>}. Attributes associated with service interface for the same activity instance
description are: {<Availability, 24/7>, <MultipleAccess, True>}. Note that if a service entity
for a given activity instance description is known (Tab. 5.2), attributes in Tab. 5.3 describe
this service entity. In case when a service entity is unknown, the set of attributes includes
attributes common for the few service entities. Note that some elements of the service
description have no attributes in both tables, e.g., the service consumer description associated
with activity instance description B has no attributes both in Tab. 5.2 and Tab. 5.3.

Tab. 5.3. Example of service entity attributes discovered in an activity pattern

#service

Entity A (B c) D
<Profession, <Nationality,
e Architect> <Domain, Software> German>
<Nationality, <Experience, High> <Profession,
e Polish> L _.....__...|.___Programmer>
<Availability, <Availability,
24/7>
24/7> .
Sl . <MultipleAccess,
<MultipleAccess,
True>
True>
N e <Nationality, German> |
<Size, Big> <Size, Big> . ’
SP <Teams, 7> <Teams, 7> <Profession, Programmer>

In Tab. 5.4, social attributes of activity instance descriptions are presented. Those are values
of e(social — SC), e(social — SI) or e(social — SP) attributes of each activity instance
description from the activity pattern. For example, attributes discovered in the activity pattern
for activity instance description A which correspond to service consumer description, indicate
that he is from Poznan, he is a member of IEEE and he is categorized as the second-year

99

client. He shares some characteristics with a service provider of the same activity who is also
from Poznan.

Tab. 5.4. Example of social attributes discovered in an activity pattern

#social A (B C) D
<Loc, Poznan> <TrustLevel, 10>
SC <Membership, IEEE> <Security, High> <Country, Poland>
________________ <ClientAge, 2years> | | ___<toc Gdansk> |
<Loc, Gdansk> <Loc, Gdansk>
Sl <EXxp, 2 years> <EXp, 2 years> <Security, High>
__________________ <TrustLevel, 10> | _<Trustlevel, 10> | |
<Loc, Poznan> <Loc, Poznan>
sP <Org, MB> <Org, MB> <Country, Poland> <Org, MB>
<Country, Poland> <Country, Poland>

In the first step, the service oriented summary of the process model is created basing only on
information concerning the set of activity instance descriptions in the activity pattern. Process
model activities A, B, C, and D are created together with service descriptions s; € S; and
with five temporal relations among them: A proceeds B, A proceeds C, C proceeds D, B
proceeds D, B and C are overlapping. The mapping function p:V — S; is generated
automatically.

In the second step of the RMV algorithm, the social network schema is created. Eight classes
of service entities are identified that have non-empty set of attributes. The number of classes
is reduced in the next step to 5, as some identical classes are merged. Moreover, two classes
with an empty set of attributes are identified for elements of service descriptions with known
service entities. All the classes are presented in Tab. 5.5. Just for clarity of further discussion,
each class is assigned a name. An example of a merged class is class B* which is common for
service interface description of activity A (S1,) and service interface description of activity B
(SIg). Other merged classes are C* and E*. Empty classes are F* and G associated with SPp
and SI., respectively. Note that there is no SCy element of the service description in Tab. 5.5.
There is no service entity and no service entity attributes discovered for service consumer of
activity B in the activity pattern. Thus, a class of service entity for this element is not created.

Tab. 5.5. Identified classes of service entity descriptions SE*
and their mapping Ato elements of service descriptions

Class name Attribute set Support
A“ {<Profession, Architect>, <Nationality, Polish>} SC,
"""" B® | {<Availability, 24/7>, <MultipleAccess, Trues} | SI, SI;
e | {<Size, Big>, <Teams, 75} | SP,, P,
"""" D | {<Domain, Software>, <Experience, High>} | SC.
"""" E« | {<Nationality, German>, <Profession, Programmer >} | SP., SC,
_______ S AR £.~2 S RO .-
G” {9} Sl

Data from Tab. 5.4 are used for identification of service requirements which are presented in
Tab. 5.6. Just for clarity of further discussion, each service requirement is assigned a name.
Note that one additional class of service entity was created in this phase, namely, H*. This is

100

a consequence of lines 44-48 and 54-48 in Listing 5.6. In case when there is an identified
service requirement between two elements of service description having no assigned class of
service entity, an empty class of service entity is created and assigned to the proper element of
a service description. Such class is used in the definition of service requirement. In this case,
empty class H* was created and assigned to SI,. Its interpretation is that there are no
requirements concerning a service interface used in execution of D, but such a service entity
must provide a high level of security together with a service consumer of activity C. The final
number of identified classes of service entities is eight.

Tab. 5.6. Identified service requirements L*

Service requirement name Classes Attribute set
a a ra <Loc, Poznan>,
_______________ M ________4__’_9____________________F_Q?_U_’FU_Y’_P_Q[@’JQE______
a a na <Loc, Gdansk>,
_______________ N B <Tnstevel 10>
_______________ o .|.....D%HT | <SecurtyHigh>
_______________ Pt | C%E* | <CountryPoland>
R“ C* F“ <Org, MB>

Note that some social attributes do not appear in any of service requirements, i.e., attributes
<ClientAge, 2 years>, <Membership, 10> and <TarustLevel, 10> are not shared by classes of
service entities. Thus, they are not translated into service requirements.

In the final step of service network schema identification, implicit relations are created.
Classes corresponding to service provider description and service interface descriptions are
considered. Identified set of implicit relations is presented in Tab. 5.7.

Tab. 5.7. Implicit requirements denoted from A and added to L*

Service requirement name S SP
SpPF B% c®
SP§ G“* E*
SPy H% F*

In the next step of the RMV algorithm, each service entity captured in the activity sequence
pattern (Tab. 5.2) is assigned to at least one class of service entity. Discovered assignment of
service entities to classes is presented in Tab. 5.8. Note that classes of service entities D* and
H? are left without a service entity assigned.

Tab. 5.8. Assignment of classes of service entity descriptions from SE*
to service entities from SE - mapping relation &

Class name Service entity
A James
~B® | PostApp,SubApp
e LoanDept
R C 2 Mark
O Fe ClientSupportDept
G* | ReviewApp

101

Finally, the service network is filled-in with service relations. A set of service relations
presented in Tab. 5.9 is very similar to a set of service requirements from Tab. 5.6,
i.e., majority of service requirements has a corresponding service relation. For instance,
service relation M joins service entities assigned to classes of service entities connected by
service requirement M%. There are two exceptions form this rule: (1) service relation
corresponding to service requirement 0% is missing as a consequence of a missing assignment
of service entity to D%, (2) relation corresponding to implicit relation SP§ is missing as
a consequence of a missing assignment of service entity to H¢.

Tab. 5.9. Identified service relations L

Service relation name Attribute set Service entities
<Loc, Poznan>,
______________ M | <Membership IEEE> | JamesLoanDept
<Loc, Gdansk>,
______________ Nl <Tustevel 10> | PostAepSubApp
______________ P | <CountryPoland> | ~ LoanDept, Mark
______________ R | ... <OgmB> | LoanDept, ClientSupportDept
T Y < S E R N PostApp, LoanDept
SP, <Org, MB> Review, Mark

Having mapping A (Tab. 5.5) and @ (Tab. 5.8) it is possible to denote mapping Q presented
in Tab. 5.10. Some elements of service descriptions miss assignment of service entities. Thus
the identified activity pattern is not executable (cf. Section 3.1.3). Formally, the following
condition is not met: Vs x%€ S x% 3e € E such that eQs x* and the induced relation
®*: E x E%*is in compliance relation (cf. Definition A.11).

Tab. 5.10. Assignment of service entities to elements of service descriptions — mapping

Element of service description Service entity
SCy James
"""""""""" S, | subApp,PostApp
e SPa | bownDept
SCy
"""""""""" S, | subApp,PostApp
o SPe | bownDept
SCe
"""""""""" Sl. | Review
e SPe | Mak
e SCp o Mak
Slp
' sp, | ClientSupportDept

Graphical representation of the activity pattern discovered by the use of the RMV method is
presented in Fig. 5.12. =

102

k) - >
> s @ 4
€5 28 4
Es Ew
> 9 'q_,n 7 [N
g S / B \\
£ ﬁ B // T AN

O i , i N
qCJ g_ 2 / AN
S
o © 3 -S
g %_9— 25 SCa | Sla | SPa SCg | Slg | SPg SCc | Slc | SPc SCp | Slp | SPp
g 38
< s o

A

V4
uJaried Auanoy

Service Network
Schema
& !
Z

o
(@]
/Q

()

W P

SubApp R
CientSupportDept
Camesy— R

Fig. 5.12. Discovered activity pattern z

Service
Network
o

5.5.3. Recommendation Formulation

Selection of an activity pattern matching a particular context class is transformed to
the classification problem. In the RMV method, first a set of activity pattern contexts that
are the most similar to a given context class is selected. Then, activity patterns associated with
those contexts are evaluated for suitability for recommendation. The RMV algorithm for
recommendation formulation includes the following steps:

1) Enabled contexts — identification of the most similar contexts based on context

distance,

2) Enabled activity patterns — identification of activity patterns enabled for
recommendation, i.e., associated with contexts selected in the first step,

3) Recommendation credibility — validation of activity patterns in terms of

recommendation credibility,

4) Recommendation formulation — formulation of the final recommendation and its
justification following the formal model presented in Section 5.4.5,

5) Recommendation ordering — ordering of recommendation elements according to
confidence indicator and social coefficient.

Enabled contexts

In the first step of the RMV method algorithm, a set of k contexts is identified referred to as
an enabled context set. The smaller the context distance metric determined by the user-
defined function eval(co,co®) (cf. Section 5.4.2), the more similar is the context to the
context class.

For context class co,“ and each context that supports at least one discovered activity pattern
z € CMZ a context distance is calculated. Then a set of k activity pattern contexts with
the lowest value of context distance is selected for further analysis.

103

Definition 5.59. (Recommendation Threshold). Let w be a recommendation threshold
stating the maximum accepted context distance between context and context class.

Let contexts(CMZ, !') denote the set of all the unique contexts of all the activity patterns
discovered from CMZ, i.e., contexts(CMZ, f) ={co(z) | co(z) € fco(z),z € CMZ}.

Definition 5.60. (Enabled contexts). Enabled contexts for event log / is a set
enabled(t, co;*) = {co(z) | co(z) € contexts(CMZ, [), eval(co(z), co;*) = w}.

Let k be a user-defined size of target enabled(t,co,%) set such that k<n, where n =
|contexts(CMZ, 1.

The pseudo-code calculating the value of w and finding elements of enabled set is presented
in Listing 5.9.

Listing 5.9. Finding enabled context set

0. GetEnabledContexts (

1. Set of activity patterns: CMZ,

2. Number of searched neighbors: k;

3. Context class: co,“)

4 . :enabled contexts set

5. 4

6. C « contexts(CMZ, I);

7. eC — 0; /[* contains a set of contexts; a maximum set size equals k ; */
8. W < ©; [* recommendation threshold */

9.

10. foreachcfromC

11. {

12. val = eval(co, co%);

13. w = get the smaller value of context distance from among contexts in eC set;
14. if (val is smaller than w)

15. {

16. eC «c; /* add c to set eC */

17. if (size of eC set > k) /* if a set eC is to big */

18. {

19. remove context with the highest distance to context class;
20.

21. }

22. }

23. H*end-for*/
24 . returneC;
25. }

104

Enabled activity patterns

Definition 5.61. (Enabled activity patterns). Enabled activity patterns for event log / is
aset of activity patterns whose contexts are in enabled(t,co;%) set. Formally,
enabledAP(t,co,;*) ={z |co(z) € enabled(z, co;*)}.

Let enabled(t, co,%, z) denote a set of contexts of activity pattern z in enabled set.

Let enabledTraces(t, co,%, z) denote a set of traces supporting activity pattern z in contexts
from the enabled set.

Example 5.29. Consider an event log of 600 traces. There are 6 activity patterns discovered in
the event log that appear in 30 different contexts. In a particular:

activity pattern z, is supported by 120 traces in 10 different contexts coys, ..., C0410,
activity pattern zg is supported by 75 traces in 8 contexts cog;, ..., Cogg,

activity pattern z. is supported by 70 traces in 5 contexts co.4, ..., Cocs,

activity pattern zj, is supported by 60 traces in 5 context copy, ..., COps,

activity pattern zg is supported by 70 traces in 5 contexts cog;, ..., Cogs and

activity pattern z is supported by 60 traces in 2 context cogq, Cop,.

For simplicity, assume that each context is unique which in general is not always true. For
k =9, calculation of context distance for each of 36 contexts leads to identification of the
following set: enabled(t,cof) = {co41,C042,C043,CO44, COg1, CORy, COR3, COC1, COD1).
The context distance of every other context was greater than context distance of any context
from the enabled(t, co,%) set. Thus, the set nabledAP(t,co;%) = {z,, 25, Z¢, Zp }.

The number of traces supporting each activity pattern z in context from enabled(z, co.%, z)
IS:

for activity pattern z,: 70 traces,
for activity pattern zg: 60 traces,
for activity pattern z.: 30 traces,
for activity pattern z,: 20 traces.

Thus, activity pattern Z, is considered to be the most frequent one in the enabled set.

This situation is presented in Fig. 5.13, where each column corresponds to one activity pattern
from enabledAP(t,co,%) set. Each column represents the number of traces supporting
a particular activity pattern in a particular context. This information is supplemented by
the distance of a particular context to the given context class. Numbers above columns
represent the ratio of traces supporting an activity pattern in contexts from
the enabled(t, co,*) set, to the total number of traces supporting a given activity pattern.
For instance, activity pattern z, is supported in context z,5; by 20 traces where the distance
between z,5 and the context class is 3. Moreover, there are 50 traces that support z, in other
contexts than z,1, Z42, Za3, Zas- *

105

80

70/120
70 -

dza1 =1 60/75
dza2 =2

60 -

50 -+

40 ——— 20 Oy =3

50 dn =1
30 4 ZB1 30/70

20 -+
Oza3 =

6
dzp1=3
. dze» : 5
B

10

Fig. 5.13. Enabled activity patterns
Recommendation credibility

In this step, each enabled activity pattern from enabledAP(t,co.%) is validated for
confidence of its recommendation. Validation of confidence is crucial to guarantee
(1) robustness to noise data, (2) representative character of selected neighborhood, (3) limited
influence of distant contexts on recommendation compared to similar contexts. In the RMV
method, measures of sensitivity, specificity (Simon & Boring, 1990) and weighted context
distance are used to validate the confidence of potential recommendation of each activity
pattern from enabledAP (t, co;%) Set.

Sensitivity specifies how many percent of event traces support the frequent activity pattern z
in contexts from enabled(t,co,%) set. High sensitivity means that contexts from
enabled(z, co;*) are typical for z.

Specificity is used to estimate cleanness of set enabledAP(z,co;*). The smaller
enabledAP(t,co.%) set, the set of activity patterns suitable for a context class is more
specific and recommendation is less fuzzy. Moreover, the more dominant the activity pattern z
is in terms of support from among all the activity patterns in the enabledAP(t,co.%) set,
the higher is specificity. Activity patterns of high sensitivity and specificity are preferred for
recommendation.

Let sensitivity(z, enabled(t,co,*)) denote a function returning sensitivity of activity
pattern z.

Let specificity(z, enabled(t,co,*)) denote a function returning specificity of activity
pattern z.

Example 5.30. Continuing Example 5.29, sensitivity and specificity for Z, is:

sensitivity(z,, enabled(t,co.%)) = % = 58.3%, and

600—(120+60+30+20)

— 770
750 =77%.

specificity(zy, enabled(t, co,%)) =

106

If z, was more dominant in enabled set, i.e, for example if only Z, and z, were in
the enabledAP(t, co; %) set, then:

sensitivity(z,, enabled(t,co;%)) = % = 58%, and
_ 600—(120+20)

250 = 95.83%.

specificity(z,, enabled(t, co;%))
Finally, if support of z, for contexts from enabled set was lower and thus z, was not so
dominant in terms of frequency in the original enabledAP(t,co.%) set, i.e., if it was
supported by 60 traces:
60

sensitivity(z,, enabled(t,co;%)) = o= 50%, and

600—(120—60—30—20)

790 =75%."

specificity(z,, enabled(t, co,%)) =

Weighted context distance is used to minimize the influence of distant contexts on
recommendation. Let traces(z, co) denote the number of traces supporting activity pattern z
in context co. To calculate weighted context distance of activity pattern z, for each co from
enabled(t, co;*), the number of traces supporting activity pattern z in co is multiplied by a
distance of co from the context class co,%. Then, obtained products are added and divided by
|lenabledTraces(t, co;%, z)|. The activity patterns with small weighted context distance are
preferred for recommendation. Formally:

weightedContextDist(z, enabled(t, co;%))

a
Zlie:nlabled(f’w’ 2| traces(z, co;) * eval(co;, co;%)

|enabledTraces(t,co,%, z)|

Let weightedContextDist(z, enabled(t,co,*)) denote a function returning weighted
context distance of activity pattern z.

Example 5.31. Calculate weighted context distance for z, and Z; from Example 5.29:

weightedContextDist(z,, enabled(t, co,%)) = 1+10+2+1049-20v0+30 — 270~ 3,18
4 T 70 70
. . *50+5%
weightedContextDist(zg, enabled(t, co,%)) = 1010 199~ 166 -

60 60

Weighted context distance is definitely smaller for zz. This means that the context class co,
is more typical for zg than for z,, i.e., zg usually appears in contexts more similar to
the context class. Still zg does not appear in such contexts as often as z4. It is left up to a user
whether he/she prefers less frequent pattern appearing on average in more similar contexts or
he/she prefers frequency over similarity.

Recommendation formulation

Let ¢ denote a user-defined minimum sensitivity of an activity pattern z from the set
enabledAP(t, co;%) to be accepted for recommendation.

Definition 5.62. (Recommended Activity Patterns). A recommended activity pattern is
a set:

107

recomm(t, co,%) =
{Z € enabledAP(z, coT“)|Sensitivity(z, enabledTraces(t, co,“,z)) > g} c
enabledAP (7, co%).

For each activity pattern z from recomm(z, co,%), the following metrics are calculated:

e cdif = calculateNRI(t,z) — calculateRI(z, z, enabledTraces(t, z,co,*)), Where
calculateRl is the function calculating recom_index for traces from
enabledTraces(t,z,co,*) and calculateNRI is the function calculating
nonrecom_index for traces from enabledTraces(t, z, co.%);

e spec = specificity(z, enabled(t, co;*)) — specificity;

e sens = sensitivity(z, enabled(t, co;%)) — sensitivity;

e ws= WeightedContextDist(z, recomm(t, co,“)) — weighted context distance;

e s = sup(z) - value of z support in event log /.

All these values are considered attributes of justification X of recommendation element
6(t, z) (cf. Section 5.4.5).

Example 5.32. Assume that ¢=50%. Only two activity patterns from Example 5.29 have
sensitivity greater than ¢, e, sensitivity(z,, enabled(t,co,%)) = 58,3% and

sensitivity(zB,enabled(‘r, c0;%)) = 80%. Thus, recomm(t, co;*) = {z,, zg}.
Recommendation element for activity pattern Z,, is:
5(1-) ZA) =

(z4, recom_index, nonrecom_index, (just, =
{(CDIF, cdif),{SPEC,77%),{SENS, 53,8%), (WS, 3,18),(S, 20%)})). =

The pseudo-code finding the enabledAP(t,co,*) set and formulating recommendations is
presented in Listing 5.10.

108

Listing 5.10. Finding enabled activity patterns and formulating recommendations

0. GetRecomm (

1 Set of enabled context: enabled,

2 Partial trace: t;

3. Context class: co,%;

4. Expected sensitivity:¢): set of recommendations

5. 4

6 enapbledAP < @; /* contains a set of activity patterns */
7 recomm<«— @; /* contains a set of recommendation */7 .
8

9. for each context co from enabled

10. {

11. Z « get activity patterns identified in context co
12. enabledAP « z;

13. if (sensitivity(z, enapbledAP) is not smaller than ¢)
14. {

15. recomm <«— z;

16. }

17. }*end-for */
18. for each activity pattern z from recomm

19. {

20. recom_index = calculateRl (7, z);

21. nonrecom_index = calculateNRI (z, z);

22. cdif = nonrecom_index — recom_index;

23. spec = calculateSpecificity(z, enabledTraces(t, co,%, z), enabledAP);
24. sens = calculateSensitivity(z, enabledTraces(t, co,%, z), enabledAP);
25. WS = calculateWeightedContextDistance(z, enabledTraces(z, co;%, z));
26. s =sup(z);

27. just = createJustification(cdif, spec, sens, ws, s);

28. r = createRecommendationElement(z, recom_index, nonrecom_index, just);
29. recomm « r;

30. }H*end-for */
31. return recomm;
32. }

If |[recomm(t, co,%)| > 1, activity pattern from recomm(zt, co,*) are merged into generic
activity pattern which generalizes behavior observed in recommended activity patterns.

Let gz(recomm(r, coT“)) denote a generic activity pattern discovered from activity patterns
from set recomm.

Let L7, « denote a set of relations adjacent to class of service entity se®.
Let L, denote a set of service relations adjacent to service entity se.

Definition 5.63. (Attribute equality of classes of service entities). Two classes of service
entities sef* and se¥ are attribute equal if they have the same set of attribute constraints.

109

Definition 5.64. (Attribute equality of service entities). Two service entities se; and se, are
attribute equal if they have the same set of attributes.

Definition 5.65. (Equality of service requirements). Two service requirements I$ and 1§ are
equal if (1) they are adjacent to attribute equal classes of service entities, (2) they have
the same set of attribute constraints.

Definition 5.66. (Equality of service relations). Two service relations [, and [, are equal if
(1) they are adjacent to attribute equal service entities, (2) they have the same set of attributes.

Merging activity patterns from set recomm(t, co.%) is performed in the following manner:

1. Merging process models — information concerning temporal relationships among
activities in each activity pattern z € recomm(t,co,*) are used to discover
a generalized process model capturing behavior of all the patterns from
recomm(t, co,*); any existing algorithm discovering process model based on
temporal relationships among activities can be used here, e.g. Alpha algorithm (Aalst,
et al., 2004); each activity is associated with service description that together comprise
service oriented description of a process model;

2. Merging service network schemas — service network schema of generic activity pattern
is created by adding service requirements from activity patterns. Each requirement
service in a generic activity pattern service network schema must be unique,
i.e., if requirement services from different activity patterns are equal, requirement
service is added only once. Unique service requirements are added together with
adjacent classes of service entities. Equal classes of service entities associated with
service requirements are merged, i.e. if two classes of service entities se* and seS are
attribute equal, and the resulting class of service entity seg is attribute equal to them,
then set LS, = LS., U LS., . Finally classes of service entities with no adjacent service
requirements are also added to the set of service requirements in service network
schema.

3. Merging service network — service network of generic activity pattern is created by
adding service relations from activity patterns. All the equal service relations and
service entity decryptions are merged. If two service entity description are attribute
equal, then set Lg,, = Lge, U Lge, .

4. Merging mappings — merged classes of service entities are associated service
descriptions assigned to corresponding classes in activity patterns. Service entity
descriptions are assigned to corresponding classes of service descriptions from
the activity patterns.

Example 5.33. Consider two activity patterns presented in Fig. 5.14 and Fig. 5.15 that were
discovered and recommended for a particular context class. Each activity pattern encompasses
definition of a process model, service oriented summary of a process model, service network
schema and service network. Assume that each symbol in service network schema represents
a unique attribute describing class of service entity or service requirement of an actor.
The activity pattern following from the merge of these two patterns is presented in Fig. 5.16.
In Fig. 5.16, the process model is represented as a Petri Net discovered from temporal
relationships captured in activity patterns from Fig. 5.14 and Fig. 5.15. Petri Net is discovered
using Alpha algorithm that aims at finding balance between four dimensions of process
mining: generalization, simplicity, fitness, and precision. Although all the activities are
captured in the model, it is not true for all the transitions among activities. Note that while
according to Fig. 5.14, activities 2 and 4 can be executed in sequence, it is not possible in Fig.

110

5.15. Thus, according to Petri Net in Fig. 5.16 these two activities can be performed only in
parallel. On the other hand, Petri Net in Fig. 5.16 permits infinite loop of two activities:
activity 2 and some other unknown activity.

SCy | Sly | SPy

SCs

Sl3

SP3

SC,

Sl,

SP,

SCy

Sly

SP,

Fig. 5.14. Example of an activity pattern

5]
J 4l
L

‘SQ‘SI,‘SP]‘ ‘SCZ‘SIZ‘SPZ‘ ‘SC;‘SI7|SP3HSC1‘SIZ‘SPQ‘ ‘SC,‘SI4‘SP4‘ ‘SCE‘SIE|SP5‘

o ——® 5 @

Fig. 5.15. Example of an activity pattern

While in activity patterns all the splits and joins follow AND condition, Petri Net adds also
OR condition at splits and joints. For instance, once Activity 4 is executed, it is possible to
continue either to Activity 6 or to the end. Service network schema and service network are
also merged. Classes (C,D) are merged as they are the same in both activity patterns,
i.e., the scope of attributes in classes of service entity, service requirements and their
attributes are the same in both activity patterns. In both activity patterns, classes (C, D) are
linked to two different service descriptions: sc; and si;. In the merged generic activity
pattern, the class is linked to both sc; and si,. Note a different case of the (F) class. Although
in both patterns such a class appears, the number and description of service requirements
associated with it in each activity pattern is different. Thus, classes are not merged. The set of
actors in service networks and corresponding social relations are copied from both activity
patterns into one graph.

Generalization of behavior performed during activity pattern merge is also true for service
network schema. For instance, while each activity pattern assigns (C, D) class to one service
description, according to the generic activity pattern it is assigned to both, so an actor
assigned to these classes can play two process roles instead of one.

111

3

Coaod

‘sc]‘sw,‘spl"sc;‘sw;|sp;Hscz‘sh‘sm"sa‘sn‘spv‘ ‘sca‘su‘sm‘ ‘scb‘swﬁ‘sm‘
© 4@ ® ©
-y, o

é//Q

Fig. 5.16. Merged activity pattern with Petri Net as a process model

As mentioned in Section 3.1.3, service protocols and — as a consequence — activity patterns,
abstract from a formal representation of a process model. For instance, in Fig. 5.17, generic
activity pattern introduced in Example 5.33 has a process model represented by a process map
including only frequent transitions among activities. =

‘sc,‘su‘sp,‘ ‘sca‘swg‘spaHsc;‘swz‘spz‘ ‘sc,‘su‘sp,‘ ‘sc,‘su‘sm‘ ‘scs‘sg‘sps‘
@ : ®
D)

c@/ %@/
o= oy

g >

Fig. 5.17. Merged activity pattern with a frequent process map as a process model

Definition 5.67. (Full recommendation). The full recommendation is a tuple
(gz(recomm(r, co,“)), R(7)).

Recommendation monitoring

In the basic scenario, it is assumed that recommendation elements generated by the RMV
method are simply displayed to the user. In more advanced scenarios, recommended activity
patterns are used for automatic orchestration of collaboration. In any case, the fact of
following a recommendation by a set of collaborators is monitored by the Recommendation
Monitor. The observations made by the Recommendation Monitor influence future

112

recommendations. Fig. 5.18 is a simplified version of Fig. 5.2 — only those components of
RMV methods associated with monitoring of recommendations and selection of activity
patterns are presented.

The Recommendation Monitor associates recommended activity patterns with a group of
collaborators that received recommendation in a particular process instance.
The Recommendation Monitor observes events recorded in the event log (step 1 in Fig. 5.18)
during further process instance execution. Periodically, a captured partial trace is validated in
terms of supporting activity patterns (step 4). The validation is done using rules extracted
from activity patterns. As an example, activity patterns can be parsed to one or more LTL
rules (Aalst, et al., 2005). Definition of rule format and associated parser transforming activity
pattern to rules is a part of the RMV method parameterization (cf. Section 5.6). Validation of
each rule results in one of three statuses:

¢ Rule satisfied — execution of the process instance is in line with the rule;
¢ Rule waiting — the execution of activities described in the rule has not begun yet;
¢ Rule violated — execution of the process instance is not in line with the rule.

Example 5.34. Considered an activity pattern:

e Trustex, who is a developer with 10 year experience and comes from Poland, uses
service interface Sign contract categorized as Init with maximum duration of 7 days, is
used by to sign contract with a company that is usually a general contractor from
Poznan; this takes place on Monday;

e Later, Retrieve project plan service interface categorized as Init, is used by a general
contractor to interact with architect Bud Tool from Berlin.

Assuming, that the RMV method user uses activity pattern-to-LTL rule parser, the activity
pattern is transformed to the following LTL rule:

formula activities eventually follow each other() :=

<> ((
(SC == Trustex /\ SC-Type == Developer /\ SC-Country == Poland /\
SC-Experience == 10 years /\ SI == Sign contract /\ SI-Category ==
Init /\ SI-Duration == 7 days /\ SP-specialization == general
contractor /\ SP-City == Poznan)
/\ <>

(SC-Type == General contractor /\ SI == Retrieve project plan /\ SI-
Category == 1Init /\ SP == Bud Tool /\ SP-City == Berlin /\ SP-
specialization == Architect)

))i
The rule can be used by any of existing conformance checking methods based on LTL rules. =

The activity pattern is considered unsupported by a partial trace, i.e., activity pattern is not
followed by a group of collaborators, if a particular rule derived from an activity pattern is not
satisfied before the process instance completes, or before the next recommendation request for
the process instance is issued. If the partial trace supports activity pattern, the priority of
activity pattern for future recommendation increases (steps 6-10). If a pattern is not supported
by a trace, its future priority decreases. Note that a partial trace can support more than one

113

activity pattern from a recommendation. Thus, for one recommendation there can be a number
of supported an unsupported activity patterns.

Recommendation elements ordering

To estimate the future value of an activity pattern in future recommendations, the
Recommendation Monitor calculates two metrics, i.e., confidence indicator and social
coefficient.

The range of confidence indicator is between 0 and 1. Confidence indicator of an activity
pattern is increased every time a partial trace of a running VO collaborative process instance
supports this activity pattern. Confidence indicator decreases if recommended activity pattern
IS not supported by the trace.

The value of social coefficient for a group of collaborators is based on classifier a.
Calculation of social coefficient for a group of collaborators requires that each activity pattern
from recomm is assigned to one of two categories: group or general. If majority of traces
supporting a particular pattern z includes participation of at least half of collaborators
involved in execution of a running process instance, then the pattern is assigned to the group
category. Otherwise, it is classified as general. Typically, general activity patterns will come
from process instances performed in other departments, units or organizations, but concerning
the same subject.

The classifier a describes the collaborators group on a scale between 0 and 1, where 1 denotes
a group always following activity patterns categorized as group. At the other end of the
classifier («a = 0), a group follows only general activity patterns. The value of a increases
when the group carries out group recommendations. Similarly, the value of « is reduced when
the group follows general recommendations. Reducing a reflects group’s learning from other
groups of collaborators. A group’s work profile potentially deviates for one process instance
to another. Once the Recommendation Monitor discovers that a particular pattern is supported
by a partial trace of running process instance, a value of a for this group of collaborators and
this running process instance is updated.

Note that while the confidence indicator is a feature of an activity patterns included in
a recommendation, the social coefficient is a feature of a particular group of collaborators
within a particular process instance that requests and accepts recommendations.

Operational Support System

oS oS

4———Request activity pattems e Recommendation Sevice ser Client

Find matching Manager
activity patterns

Process Miner

Recommendation
Monitor

Fig. 5.18. Recommendations monitoring

114

Activity patterns returned by the Process Miner (step 7-8) are ordered by the
Recommendation Manager before forwarding a recommendation to a group of collaborators
(step 10). Ordering is performed according to the recommendation value calculated on the
basis of cdif value, confidence indicator associated with recommendation element and social
coefficient of each recommendation element. For general activity patterns, recommendation
value Vy is calculated as:

Vs = cdif xci*(1—a)
For group activity patterns recommendation value Vg is:
Vs = cdif xcixa

Example 5.35. Consider a set of recommendation elements in Tab. 5.11. For each activity
pattern from each recommendation element, user-defined functions returned values presented
in recom_index and nonrecom_index column. Assumed confidence indicator values are
presented in column ci. Each pattern has assigned category general or group. A list of
recommendations is presented to a group of collaborators with estimated classifier a = 0.6 —
preference towards group activity patterns. Thus, values in column se for group activity
patterns equals 0.6 and for general activity patterns equal 0.4. =

Values in cdif are calculated by subtracting recom_index from nonrecom_index. They indicate
the potential benefit of following a recommendation element. Negative value of cdif for
activity pattern E indicates that although the activity pattern is performed frequently, it does
not result in any benefit, i.e., the potential predicted cost of not following the activity pattern
is smaller than when following it. Such activity pattern has negative recommendation value Vg
equal to -2,4. Information concerning such activity patterns is still useful — having knowledge
of such “bad” pattern one may undertake actions to eliminate it. Patterns A-D have positive
cdif value. The activity pattern with the highest estimated recommendation values is C.
This activity pattern does not follow collaborators’ group preferences, i.e., pattern is general,
but it has high value of confidence indicator equal 1 and a relatively high potential benefit
equal 20. The second highest estimation is for activity pattern B which is a group pattern but
possible benefits and confidence are smaller than in the previous case. Activity pattern D has
very high potential benefits but its confidence is low. Finally, activity pattern A has quite high
confidence, but small benefits and it does not follow collaborators’ group preference — it is
a general pattern. The final ordering of patterns presented to a user is: 3, 2, 4, 1, 5. Increasing
the social coefficient to a = 0.8 would result in completely different order of
recommendation elements: 2, 4, 3, 1, 5.

Tab. 5.11. Sorting of recommendation elements

ACtiVitY recom_ nonrecom_f i ci category | ce Vs
pattern id index index
A 55 60 5 0.8 general 0.4 0.8
B | 3B | ! 50 | 15 | 07 | group | 06 | 63
""""" c | 20 | 40 | 20 | 1 |general| 04 | 8
b | 10 | 60 | 50 | 02 | group | 06 | | 6
- E | 30 | 0 | 20 | 02 | group | 06 | -24

115

Note that values of confidence indicators and social coefficients are not presented to a group
of collaborators as a part of justification. Except cdif values, justification of each
recommendation element includes only values of specificity (spec), sensitivity (sens),
weighted context distance (ws) and support (S).

5.5.4. Activity Pattern Instantiation

In the RMV method, activity patterns are discovered on abstract, prototype or executable
level (cf. Section 3.1.3). Both abstract and prototype activity patterns do not provide the
complete mapping between service entities from the service network and classes of service
entities in the service network schema. Such activity patterns must be instantiated and brought
down to executable level. Both abstract and prototype activity patterns encompass definition
of a set of partially ordered activities enriched with information concerning desired
collaborators, their features and character of service relations among them. This information
is a basis for assignment of service entities to classes of service entities.

In the RMV method, an instance of an activity pattern z is created by selection of service
entities from the set of SOVOBE members. Selection is performed according to
the constraints defined in service network schema of. The selection of appropriate service
entities is done from among all the service entities existing in SOVOBE, where selected
entities must be instances of appropriate classes of service entities and must satisfy service
requirements defined in the service network schema. Selection of service entities is performed
on the basis of information about SOVOBE members provided via SOVOBE services
including:

e Service entity descriptions encompassing information corresponding to service entity
competences, capabilities, former experience, conspicuities, etc.
e Service relations among members of SOVOBE represented as service network

OSOVOBE-

Note that ogoy0pg IS NOt the same service network as the one discovered for activity pattern
o,. Discovered g, is always a subnetwork of gy, 05z. The aim of activity pattern instantiation
is to add a subset of service entities from osoyope 10 05, SO that potentially o,® of
(cf. Definition A.11). Instantiation of an activity pattern is transformed to the following
problem: given service network schema ¢%, find such subnetwork o, of social network
dsovoge Which maximizes the value of the compliance(a, c%) function.

The RMV method algorithm for instantiation of activity patterns consists in four phases:

1. Specification of VO — definition or redefinition of classes of service requirements,
service requirements and associated functions;

2. Selection of service entities for classes of service entities — selection of candidate
service entities; the output of this phase is a set of service entities for each class of
service entities from the activity pattern;

3. VO variant generation — ranking of service entity assignment according to the global
compliance function; this phase includes generation and comparison of best possible
VO variants, where a VO variant is a set of service entity descriptions assigned to
the classes of service entity descriptions defined in phase 1 for execution of the activity
pattern; as an output, a set of VO variants is generated ordered according to the values
of the compliance function;

4. VO inception — registration of the VO in SOVOBE.

116

In each phase, interaction among selecting collaborators is assumed. In the first phase,
the service network schema as well as the service network of an activity pattern may be
redefined by selecting collaborators. Definition of VO specification encompasses:

Redefinition of classes of service entities and service requirements — introduction of
changes in the set of constraints associated with each class of service entity of
aservice requirement; also changes in predicates associated with constraints are
possible or creation of new classes of service entities;

Reassignment of service entities to classes of service entities — assignment of service
entities can be changed, i.e., service entities can be removed or reassigned;

Class compliance function — for each service class, definition of the function
evaluating a compliance of a particular service entity to the class of service entity;
Class threshold values — for each service class, an acceptable compliance level is
assigned; this threshold is used in the second phase of MAAS to limit the number of
assigned service entities;

Global compliance function — global multi-attribute utility function is used in the third
phase of the method to evaluate generated VO variants against satisfaction of service
requirements;

Global threshold value — an acceptable compliance level of global compliance
function used to limit a number of VO variants passed to phase 4.

In the second phase, a set of services entities is selected for each class of service entity that
has no assignment in the discovered activity pattern. Identified service entities are ordered
according to the values of the class compliance function. Service entities with the value of
compliance function smaller than the class compliance threshold are filtered out.

The number of potential VO variants that may be constituted with service entities identified in
phase 2 is usually high. The goal of the third phase is to find an ordered list of VO variants
ranked according to the compliance function in the usually large domain of potential
VO variants. In phase 3, the genetic algorithm is used to determine the best fitted VO variants,
as illustrated in Fig. 5.19. The genome g is an array of N items, N being the number of classes
of service entities. Genes re are sets of service entity descriptions selected in phase 2 and
assigned to classes of service entities r from the genome g.

Gene Gene Gene
re; re; re,
e25 eNM
e24
Phase 2
(selection of service Sets of
entity descriptions e13 23 | Sel’VIC? erltlty
for classes of descriptions
service entitiy (Genes)
descriptions)
el2 e22
ell €21 | s eN1
Phase 3 - - - Virtual organization
(Generation of rl r2 r3 rN variant g
VO variants) (Genome)

Fig. 5.19. Phases 2-3 of activity pattern instantiation method

117

The crossover operator is the standard one-point crossover, while the mutation operator
randomly selects a class of service entity description (a position in the genome) and randomly
replaces the corresponding service entity description with another one among those available
from the set of service entity descriptions assigned to this class in phase 2. In this way
the genetic algorithm creates many VO variants. Each VO variant is evaluated by the use of
the global fitness function defined in VO specification. The global compliance function used
in this phase estimates the level of satisfaction of service requirements. As the result of this
phase, a set of VO variants is selected ordered according to global compliance function
values. A threshold value defined in phase 1 is used to filter out the VO variants: VO variants
for which the value of the global compliance function is below the threshold value are not
passed to phase 4.

In phase 4, the final selection of the one of the best ranked VO variants is made by
collaborators. This VO variant is registered in the SOVOBE, i.e., service entity description
and SOVOBE service network is updated.

5.6. RMV Method Parameterization

The RMV method includes a set of parameters required for its efficient operation. Some of
these parameters, e.g., confidence indicator, or social coefficient, are deduced. Other
parameters are defined by a user during RMV method configuration before its launch or they
are submitted by a user to the RMV method in each recommendation request. User-defined
parameters have impact on quality of recommendation and effectiveness of recommendation
formulation. Definition of these parameters should take into account the characteristics of
a specific VO collaborative process that the RMV method supports.

The summary of all the RMV method user-defined parameters is presented in Tab. 5.12.
Parameters are grouped into three categories: event attributes, functions and constants.

Tab. 5.12. User-defined parameters of the RMV method

. RMV method
I.p. | Parameter name Description step
Event attributes
1. | Scope and types | Given a log, where each event trace is Activity sequence
of activity described by n attributes, it is necessary to pattern discovery.
instance indicate which attributes must be taken into Activity pattern
description account by the RMV method. Next, selected identification

attributes attributes must be categorized according to
event types presented in Section 5.4.3.

2. | Activity instance | Definition of the scope of attributes describing | Recommendation
context scope activity process instance and event context. In | formulation
particular, an attribute from the set of process
instance attributes must be indicated as the one
stating the outcome of the completed VO
collaborative process instance.

3. | Process instance | Definition of the scope of attributes describing | Recommendation
attributes scope process instance. formulation

4. | Minimum The minimum number of attributes that each Activity sequence
activity instance | activity description in an activity pattern must | pattern discovery

_________ description length | consistsof. .

5. | Obligatory Names of attributes that must be included in Activity sequence
attributes each activity description from a discovered pattern discovery

activity pattern.

Functions

1. | Context distance | A function used to compare context class with | Recommendation
function a particular context. formulation
eval(co, C0%) Input: context class, context.

2. | Function A function denoting context class co® from Recommendation
class(co) context co. Note that class(co) function can formulation
mapping given simply convert context elements to context
context to context | element constraints. In more advanced
class scenarios this function leads to generalization

running process instance context
___________________________________ Input: activity instance context. |

3. | recom_index and | Definition of two functions used for calculation | Recommendation
nonrecom_index | of expected costs of following or not following | formulation
calculation recommendations. Calculation of recom_index

and nonrecom_index values is based on cost

attributes of collaborative events. It is also

necessary to indicate which attribute associated

with each event should be used during

calculation.

Input: set of process instances, cost attribute
___________________________________ name.

4. | Class compliance | A function evaluating conformance of a service | Activity pattern
function entity with a class of service entity. instantiation

___________________________________ Input: class of service entity, serviceentity. |

5. | Global A function evaluating conformance of a VO Activity pattern
compliance variant with a set of service requirements. instantiation
function Input: VO variant, set of service requirements.

Constants

1. | Class compliance | A value used by the class compliance function | Activity pattern
threshold to filter out service entities not suitable for instantiation

___________________________________ assignment to a class of serviceentity. |

2. | Global A value used by the global compliance Activity pattern

compliance function to filter out not matching VO variants. | instantiation
_________ tweshod |
3. | Classification The size of a classification enabled context set. | Recommendation
_________ groupsize | .| formulation

4. | Minimum Required value of sensitivity for the activity Recommendation
accepted pattern to be accepted for recommendation. formulation

_________ sensitivity

5. | Duration The maximum allowed time span between the | Activity sequence

constraint start of the first and the completion of the last pattern discovery
activity instance from an activity sequence
___________________________________ supporting an activity pattern. |

6. | Gap constraint The maximum time difference in milliseconds | Activity sequence

between two sequentially performed activities | pattern discovery

from an activity sequence supporting an
o |activitypattem.
7. | Maximum The maximum completion time of the last Activity sequence
timestamp activity from an activity sequence supporting pattern discovery
.....|.constraint | anactivitypattern. |
8. | Minimum The minimum length of an activity pattern. Activity sequence
sequence pattern pattern discovery
_________ length constraint |
9. | Maximum The maximum length of an activity pattern. Activity sequence
seguence pattern pattern discovery
_________ length constraint |
10. | Delta Time interval used for identification of parallel | Recommendation
ool |events(inmilliseconds) | formulation
11. | Recommendation | The rule parser transforming activity patterns Recommendation
rule parser to rules which are used in recommendation monitoring
oo __|monitoring
12. | Required activity | The minimum support of an activity graph to Activity sequence
pattern support be categorized as an activity pattern. pattern discovery
level
13. | Time of validity | Time interval between discovery of activity Activity sequence
patterns and update of activity pattern set in pattern discovery
Process Miner

A right set of parameters for both activity pattern discovery and recommendation formulation
must be selected basing on knowledge concerning: (1) business domain, i.e., specificity of
the process, (2) basic characteristics of the data set identified at the earlier phases of the
method, e.g., number of discovered activity patterns influents parameters used for
recommendation formulation such as context class function or classification group size.

5.7. RMV Method Computational Complexity

In this section, computational complexity of four parts composing the RMV method is
presented: (1) activity sequence pattern discovery method, (2) activity pattern identification
method, (3) recommendation formulation method, and (4) activity pattern instantiation
method. Then, different ways aiming at reducing time of the RMV method execution are
presented and explained. The following abbreviations are used to express the RMV method
complexity:

R — the number of traces in the event log,

G — the number of events in the event log,

N — the number of attributes in the event log,

C — the number of attributes for each event,

B — the average number of activity instance descriptions in each sequence,
A — the number of identified sequence patterns,

D — the number of activity pattern contexts,

E — the number of service entities in the SOVOBE,

| — the maximum number of events in one trace,

w — the maximum activity instance description width,

120

e - the number of genome generations in the genetic algorithm.
Complexity of activity sequence pattern discovery

Discovering activity sequence patterns is composed of three major steps: (1) discovery of
activity sequences from the event log, (2) finding frequent 1-sequence patterns, and
(3) finding closed sequence patterns.

Complexity of discovery of activity sequences in an event log is O(G). The algorithm
traverses all the events in all the traces, discovers activity instance descriptions and
determines temporal relationships among them. In the worst case, the number of discovered
activity instance description is equal to the number of events G.

The worst case of finding 1-sequence patterns in an even log arises, when each attribute in the
event log is unique. Then, an event log can potentially generate up to 2"-1 frequent 1-
sequence patterns, excluding the null set. The brute force approach to finding frequent 1-
sequence patterns consists in determination of the support threshold (cf. Definition 5.35) for
every candidate set of attributes. Such approach requires G * (2¥ — 1) = w comparisons.
Thus, overall complexity is 0(2"). To limit complexity of the brute force algorithm, the
Apriori algorithm based on a priori principle is used in the RMV method (cf. Section 5.5.1).
Complexity of the classic Apriori algorithm is O(e™), but recently it has been reduced
to O(N) (Suneetha & Krishnamoorti, 2010).

Complexity of finding closed sequence patterns in the RMV method is the same as that of the
PrefixSpan algorithm. In the worst case, the number of frequent 1-sequence patterns is equal
to the number of all the attributes in the event log, so complexity of this step is O (N*).

Overall complexity of activity sequence pattern discovery in the RMV method is determined
by complexity of finding closed sequence patterns O(NY).

Complexity of activity pattern identification

In the RMV method, activity patterns are identified in all the discovered sequence patterns.
In this section, first, complexity of identification of one activity pattern in one sequence
pattern is presented. Then, overall complexity of activity pattern identification in the
RMV method is presented.

Identification of an activity pattern in a sequence pattern consists of three steps:
(1) identification of a service oriented summary of the process model, (2) identification of
service network schema and corresponding mappings, (3) identification of the service
network and corresponding mappings.

Complexity of identification of the service oriented summary of a process model is O(B). The
algorithm traverses all the activity instance descriptions in the sequence pattern and restores
temporal relationships among them.

Identification of service network schema includes: (1) identification of classes of service
entities, (2) identification of service requirements.

During identification of classes of service entities, the algorithm, first, traverses all the
activity instance descriptions and discovers initial set of classes of service entities.
Complexity of this step is O(B). In the worst case, the number of classes of service entities is
equal to B. Then, the algorithm compares all the initially discovered classes of service entities

121

with each other looking for identical, redundant classes of service entities. The number of
comparisons is B * (B — 1)/2. The number of comparisons of two classes of service entities
depends on the number of attributes in each class. In the worst case, the number of attributes
in each class of service entity is equal to C. Thus, the total number of comparisons of classes
of service entities is C * B = (B — 1)/2. Overall complexity of identification of classes of
service entities is 0(C * B?).

In the worst case, if all the initially discovered classes of service entities are unique,
the resulting number of classes of service entities is still equal to B. Mapping of classes to
elements of service descriptions from the service oriented summary of a process model is
O(B). The algorithm visits each service description from the service oriented summary of the
process model and maps elements of service description into classes of service entities.

During identification of service requirements, the algorithm also traverses all the activity
instance descriptions and discovers the initial set of service requirements. Complexity of this
step is O(B). Then, the search for identical, redundant services requires B * (B —1)/2
operations. The number of comparisons of two service requirements depends on the number
of attributes indicated as service requirement descriptions, which in the worst case is equal to
C. The total number of operations is then C * B x (B — 1)/2 and overall complexity is
0(C * B?). Assignment of service requirements to classes of service entities requires
validation of all the possible pairs of classes of service entities in terms of service relations
existing among them. This needs (B — 1)? operations. Overall complexity of service network
schema identification is O(C * B?).

Identification of service network includes: (1) identification of service entities, and
(2) identification of service relations.

Calculation of the number of operations required to identify a service network is similar to
identification of a service network schema. The search of duplicated service entities requires
B x (B —1)/2 comparisons. As each service entity is represented by its identifier,
comparison of service entities does not require comparison of the sets of attributes.
Complexity of mapping service entities to classes of service entities is O(B). The algorithm
visits all the classes of service entities and assigns corresponding service entities. Complexity
of identification of service network is the same as complexity of identification of service
requirements O(C = B?).

Complexity of activity pattern identification is determined by complexity of identification of
service network schema O(C * B?). Overall complexity of activity pattern identification in A
sequence patterns is 0 (A * C = B?).

Complexity of recommendation formulation

Complexity of finding the set of enabled contexts is O(D). The algorithm traverses all
the contexts and calculates the distance of each context from the context class.

Complexity of finding a set of enabled activity patterns for the set of enabled contexts
is O(A). The algorithm traverses all the discovered activity patterns and validates if at least
one context from the enabled context set is the context of the activity pattern.

Ordering of activity patterns in a recommendation requires: (1) calculation of
the recommendation value (cf. Section 5.5.3) for each enabled activity pattern, (2) sorting
activity patterns according to the recommendation values. In the worst case, all the activity

122

patterns are enabled. Complexity of calculation of recommendation values is O(A).
The algorithm calculates the recommendation value for each activity pattern from the enabled
set. Complexity of activity pattern sorting using QuickSort algorithm is 0(4?) in the worst
case, and O (A * log(A)) on average, respectively.

Total complexity of recommendation formulation in the RMV method is determined by
complexity of activity pattern sorting 0(42).

Complexity of activity pattern instantiation

Instantiation of an activity pattern is performed in two major steps: (1) selection of service
entities for classes of service entities, (2) VO variant generation.

To find a candidate for classes of service entities, the algorithm takes each class of service
entity, traverses all the service entities registered in the SOVOBE, and validates them in terms
of compliance with the class of service entity. Complexity of this step is O(B * E).

In the RMV method, the VO variant generation is performed using a genetic algorithm based
on roulette wheel selection, point mutation, and one point crossover with both individuals and

populations represented by fixed length tables. Complexity of this algorithm is O(g *

(mut + cross + select)), where mut is point mutation complexity equal to O(E * B),
cross is complexity of crossover equal to O(E * B), and select is complexity of selection
equal to O(E). Therefore, complexity of VO variants generation is 0(g * E * B).

Total complexity of activity pattern instantiation step in the RMV method is O(g * E * C).
Total complexity

The summary of complexity of the RMV method steps is presented in Tab. 5.13. All the
RMV method steps are performed sequentially. Total RMV method complexity depends on
the highest complexity of its phases.

Tab. 5.13. Complexity of RMV method steps

RMV method parts Complexity
Activity sequence pattern discovery O(NY
‘Activity pattern identification | O(AxC+B*
_Recommendation formulation | 0@
Activity pattern instantiation O(g *E *B)

Complexity assigned to activity sequence pattern discovery is higher than complexity of
activity pattern identification, recommendation formulation and activity pattern instantiation.
Thus, complexity of the RMV method is O(N'). This means that the number of event
attributes in the event log, the length of traces and the time required to discover sequence
patterns are key factors determining complexity of the RMV method.

Reduction of the RMV method execution time

The execution time of the RMV method is reduced by the use of parameters presented in Tab.
5.14. The presented set of parameters is a subset of parameters presented in Section 5.6.

123

Tab. 5.14. Parameters reducing the execution time of the RMV method

Parameter name

Impact on execution time

Scope of activity
instance description
attributes

Minimum activity
instance description
length

Minimum accepted
sensitivity

Maximum timestamp
constraint

Maximum sequence
pattern length constraint

Required activity pattern
support level

Reduction of the set of activity instance description
attributes reduces time of discovering 1-sequence
patterns and the number of discovered 1-sequence
patterns; smaller number of 1-sequence patterns reduces
time of the closed sequence pattern discovery

Longer activity instance descriptions reduce the number
of frequent 1-sequence patterns; smaller number of 1-
sequence patterns reduces time of the closed sequence
pattern discovery

High number of obligatory attributes reduces the
number of frequent 1-sequence patterns; smaller number
of 1-sequence patterns reduces time of the closed
sequence pattern discovery

Reduction of the classification group size reduces the
size of the set of enabled contexts; as a consequence, the
number of enabled activity patterns, the number of
calculated recommendation values, and time needed to
sort activity patterns are reduced

Shortening time span between activity pattern start and
completion reduces the number of sequence patterns
generated during sequence pattern discovery and the
time of sequence pattern discovery

Increased value of acceptable sensitivity reduces the
number of activity patterns used in a recommendation;
as a consequence, the number of recommendation value
calculations and time needed to sort activity patterns are
reduced

Reduced maximum allowed time difference between
activities reduces the number of sequence patterns
generated during sequence pattern discovery; as a
consequence, time of the closed sequence pattern
discovery is reduced

Reduced maximum completion time reduces the number
of sequence patterns generated during sequence pattern
discovery; as a consequence, time of the closed
sequence pattern discovery is reduced

Reduced maximum allowed sequence pattern length
reduces the number of sequence patterns generated
during sequence pattern discovery; as a consequence,
time of the closed sequence pattern discovery is reduced

Increased support level decreases number of 1-
sequences, decreases the length of discovered sequence
patterns, and the time of sequence pattern discovery

124

6. Integration of the RMV Method with the ErGo System

In this section the prototype implementation of the RMV method is described and evaluated.
First, the architecture of the prototype implementation of the RMV method is presented.
Second, the RMV method is integrated with the PAIS named ErGo. Finally, the RMV method
is evaluated on the real case data provided by company Epsilon.

6.1. RMV Method Prototype Architecture

The prototype implementation of the RMV method (RMV prototype in short) has been built
to support collaborators by providing context-aware recommendations for their
VO collaborative processes. The RMV method prototype: (1) discovers activity patterns in
VO collaborative event logs and (2) recommends activity patterns suited for VO collaborative
process context. The RMV prototype consists of main and supporting modules. The five main
modules are the following: Sequence Pattern Discovery (SPD) module, Activity Pattern
Identification (AP1) module, Recommendation Formulation (RF) module, Activity Pattern
Instantiation (APIN) module, and Recommendation Monitoring module (RM). Each module is
the implementation of one of methods presented in Section 5.5. Functionality of two
supporting modules is used by the main modules. The two supporting modules are:
Context (CON) module and Functions (FUNC) module. The full list of modules is presented
in Tab. 6.1. Each main module is mapped to logical component from Fig. 5.2.

Tab. 6.1. Mapping between modules and logical components

l.p. Module Logical Method
component

1. SPD Event Log Activity Sequence Pattern Discovery
__________________________________ Process Miner | .
2 APL | Process Miner | Activity Pattern Identification

3. RF Recommendation | Recommendation Formulation
__________________________________ Manager
A APIN | MatchMaker | Activity Pattern Instantiation

5. RM Recommendation | Recommendation Formulation
__________________________________ Monitor
6 CON | R Supporting module; classes modeling context

7. FUNC — Supporting module; compliance functions

125

Interaction among the RMV prototype modules is presented in Fig. 6.1. The SPD module uses
the CON module classes to capture contexts of activity instance descriptions and contexts of
sequence patterns. The APl module interacts with the SPD module to retrieve identified
activity sequence patterns. The API module transforms activity sequence patterns into activity
patterns. An activity pattern context is modeled in the CON module. The RF module is
associated with the highest number of modules. The RF interacts with API to retrieve activity
patterns that are the most suitable for recommendations. The RF module compares contexts of
activity patterns using the CON module. Ordering of recommendation elements is based on
user-defined functions from the FUNC module. The APIN module interacts with the API
module to retrieve the activity pattern selected from the set of recommended activity patterns.
All the functions used during activity pattern instantiation are modeled in the FUNC module.
Finally, the RM module constantly exchanges information with the RF module concerning the
use of recommendations. Classes of the RM module use classes coming from the SPD module
in implementation of the monitoring mechanism.

m
Il
o

CON
FUNC

/IX 1IN

Bl
|

_

=

Fig. 6.1. Interactions between modules

The RMV prototype is distributed (Fig. 6.2). It is implemented as a client/server system: it is
organized according to the user interface, business logic, and data storage tiers.

The business logic tier is implemented as the RMV server. The RMV server implements the
logic of event log management, activity sequence pattern discovery, activity pattern
identification, instantiation and recommendation, and recommendation monitoring. It is also
responsible for access to the data storage tier. Functionality offered by the RMV server is
externalized by OS Service (cf. Fig. 5.2). The Java'™ technology has been used for server
implementation.

The data storage tier is implemented using the Oracle11i database.

126

RMV client
(Console)

11

i o,
A (). <
RMV client - B :
iy <:>] — | Ry server — w

Internet
Fig. 6.2. Distribution of the RMV prototype

Functionality of the RMV prototype requires its integration with a PAIS system. The PAIS
provides data concerning collaborators’ activities and associated events. The OS Client
(cf. Fig. 5.2) integrated with PAIS sends events via OS Service to the RMV server. Events are
inserted to the database. PAIS events are used in activity pattern identification and monitoring
of recommendation execution. PAIS provides also the presentation layer for the RMV
prototype, i.e., PAIS presents recommendation outputs returned by the RMV prototype.
Finally, it is assumed that PAIS has a repository of service entities that are used during
activity pattern instantiation for search of the best matching collaborators and their services.

Communication between PAIS and the server follows the Web service standard. Other
standards may be used as the RMV prototype is designed in a way independent of any
specific middleware. For instance, integration with the ErGo system (cf. Section 6.2) is based
on OSGi services.

Moreover, the RMV prototype comprises a console client that is a Java'™ application. The
RMV console client provides a front-end to the APD, API, and RF modules. The RMV
console functionality permits discovery of activity patterns in a given event log, and
recommendation for a given partial trace. The RMV console functionality does not support
activity pattern instantiation, recommendation monitoring, including management of
confidence indicator and social coefficient values. Recommendation monitoring is possible
only in case of integration with PAIS.

6.2. ErGo System Concept

The ErGo system (http://ergo.kti.ue.poznan.pl/) (Paszkiewicz, et al., 2011) (Paszkiewicz, et
al., 2012) is an implementation of technical infrastructure supporting operation of SOVOBE
and a proof of feasibility of the implementation of an IT system supporting the execution of
VO collaborative processes based on discovery of activity patterns and their
recommendations. The ErGo system has been developed in the Department of Information
Technology at the Poznan University of Economics within the ITSOA project:2.

The ErGo system — from the Greek word érgo (‘ergo’), meaning “task”, or “work” — aims at
supporting collaboration between a real-estate developer and its subcontractors during
the construction phase of a development process. The ErGo system takes into account
the characteristics of the interactions between a real-estate developer and its subcontractors

12 ITSOA project, https://www.soa.edu.pl/web/guest/home/
127

during the construction phase. A construction phase of a development process meets all
the characteristics of VO collaborative process presented in Section 3.1.2.

In the ErGo system, VO collaborative processes are modeled as a set of activities performed
by subcontractors on demand of a real-estate developer. Execution of an activity is regulated
by contracts. If the realization of a development process instance meets an obstacle, the real-
estate developer or a subcontractor may start adaptation, i.e., may request recommendations
concerning selection of a set of activities, subcontractors and/or contracts related with
the process.

Functionality of the ErGo system is provided by two categories of its components:

ErGo applications — ErGo system components providing functionality available to
end users through a graphical user interface. The list of applications include: ErGo
Organizations, ErGo Services, ErGo Investment Types and ErGo Investments.

ErGo internal modules — ErGo system components providing the core functions of
the ErGo system such as: security, user management, KPl management, access to
social network data, etc.; among others, the list of internal modules includes: ErGo
KPI, ErGo ServiceNet.

The RMV method is tightly integrated with all the ErGo applications. The RMV method has
been implemented partly as an ErGo internal modules and partly as an ErGo application:

ErGo Recomm module — ErGo internal module being an implementation of
the following RMV method elements: activity sequence pattern discovery, activity
pattern identification, and recommendation formulation. This module is an
implementation of Process Miner, Recommendation Monitor, Recommendation
Manager and OS Service from Fig. 5.2; the Recomm module provides analysis of
ErGo system event logs stored in the ErGo Logs aiming at discovery of activity
patterns and provision of recommendations on request from other ErGo applications
and modules;

ErGo Logs module — ErGo internal module storing collaborative event logs; this
module is an implementation of Event log from Fig. 5.2;

ErGo MatchMaker application — implementation of an RMV activity pattern
instantiation method; this application corresponds to MatchMaker component from
Fig. 5.2.

The ErGo system architecture is presented in Fig. 6.3. The system architecture relies on
the OSGi Container Equinox 3.5.2 deployed on the Jetty 6.1.19 application server.
The infrastructural components of the system architecture are:

OSGi 4.2 Blueprint Container providing means for management of OSGi services;
Google Web Toolkit 2.0.3 with various libraries providing means for building
graphical user interfaces;

Apache CXF Distributed OSGi 1.2 providing means for building web services
exposed by the system;

Hibernate 3.3.1.GA providing means for communication with an Oracle 11g database.

128

MatchMaker
application

Organizations Services
application application
Investment Other
application application

[Google Web Toolkit Apache CXF

Investment Types
application

module
module
module
module
module

1]
z 9
T 3
.2-8
c
S E
(%]

MatchMaker
Organizations
Services
Investments
Investment Types
Recomm
module
Security
module
Other internal
module

Equinox

)

Hibernate j

Fig. 6.3. System architecture diagram

Functionality provided by the ErGo system can be accessed by remote web services as well as
through a graphical user interface. Two types of web services may be supported by Apache
CXF Distributed OSGi:

e SOAP web services, relying on HTTP as a transport protocol and WSDL as a
description language; currently supported in the ErGo system;

e RESTful web services, compliant with Java APl for RESTful Web Services
specification (JAX-RS).

The Web services issued by the ErGo system can be used by any external application
supporting SOAP on HTTP. Detailed specification of the ErGo system is available on
the project web site http://ergo.kti.ue.poznan.pl/documentation.

Below, in Section 6.3, ErGo applications together with two ErGo internal modules that are
crucial for implementation and operation of RMV method modules, are presented in more
detail. Then, in Section 6.4, integration of these applications with the RMV method
components is presented.

6.3. ErGo Applications

The ErGo applications tackle various complementary aspects of the construction phase of
development processes. The first application — ErGo Organizations — is responsible for
management of the descriptions of organizations and their competences. The second
application — ErGo Services — is responsible for management of the descriptions of business
services provided by organizations. A real-estate developer manages all the activities and
contracts with subcontractors using the third application — ErGo Investments. Templates for
various types of development processes are defined in the fourth application — ErGo
Investment Types. There are two internal modules important for operation of
the RMV method components: ErGo KPI, and ErGo ServiceNet.

ErGo Organizations

The ErGo Organizations application permits users to manage the descriptions of
organizations, especially their competences. A precise description of competences of

129

organizations is important for management of development processes. Functionality of
the ErGo Organizations application is organized as follows: first, a group of functions
provide users with means for registering new organizations and updating the data concerning
already registered organizations. Second, a group of functions permit users to manage
the competences of organizations, based on the competence model proposed in (Paszkiewicz
& Picard, 2011). Third, a group of functions give users means for retrieving organizations
satisfying a set of requirements concerning either their profile or their competences. Finally,
the ErGo Organizations application provides functions for searching and filtering registered
organizations. A screen capture of the ErGo Organizations application is presented in Fig.
6.4. Users select an organization from the list of organizations on the left side. Detailed
information about the selected organization is then displayed in the central panel.
Competences of the organization are available on the associated tabbed panel.
The ErGo Organizations application permits to find organizations meeting a particular set of
requirements. This function is not available through the graphical user interface and it is not
used by the user directly. Instead, it is offered in the form of services provided by
the ErGo Organization module to be used by other ErGo system components, including
RMV method components.

@ °
.[—RG.. Seachorganeaton Winame ¥ oescrpion ¥ competences ¥ services
400 organgaton Organizations
Qrganzatons
_Add | Ect| Delem| Pronie
BUD-MAT -
26w TRUST tel. 61 8 220 993, 61 8 220 998
s Przedsigbiorstwo Inzynieryje TRUST dziska na rynku budowtamym od
b 1969, 2 na rynku dewslopersiim od 1990 roku. Do 2006 roku TRUST odds
Poch e @0 uZytkowania powy2e| 1000 lokall mieszkalmych | uZytkowych. Obecnie
.: pomcada w pre— aw
m"“"' - ™ do 2000 lokali
2ax Organtzation class Developer ¢
s Creation date 989
TONA e 7820026468
B REOON 008454361
Cralceram
—— KRS 0000299906
Jack Bua &wo
Rot-Bud
ALY Asdress Contact iformation
Dantar Beazep & Deaze 6

Poznah Poznad
61608 61608
WoR OO S weACOCI e

Fig. 6.4. ErGo Organizations application
ErGo Services

The ErGo Services application permits users to manage the descriptions of the services
provided by organizations. The list of services that organizations provide is an important
element of organization description. The choice of an organization as a subcontractor depends
on services an organization provides. The goal of the ErGo Services application is to support
management and search of services provided by organizations.

Functionality of the ErGo Services application is organized as follows: first, a group of
functions provide users with means for registering new types of business services and
updating the already registered ones. Second, a group of functions provide users with means
for managing business services provided by organizations registered in
the ErGo Organizations application. Third, a group of functions permit users to retrieve
organizations satisfying a set of requirements concerning organizations’ services. Finally,
functions for searching and filtering business services registered in the ErGo system are
provided by the ErGo Services application. Similarly to ErGo Organizations, functionality of

130

finding services meeting a particular set of requirements is not available through the graphical
user interface but offered as a service to other ErGo modules. A screen capture of
the ErGo Services application is presented in Fig. 6.5. The graphical user interface of the
ErGo Services application is a part of the ErGo Organizations application. For a given
organization, details concerning the business services provided by it are available on
the “Services” tabbed panel. The screen capture for management of service descriptions is

presented in Fig. 6.6.

Organizations
Add | Edit | ml Profile Competences vice: Conspicuities
BUD-MAT -
2-8ud Brix
Orbud Filter ! search in name ¥l search In description
TRUST Kontrota BHP
Fach-Bud Przeprowadzenie kontroli BHP we wskazanym budynku
IS budownictwo
PRIM > Kontrota arég ewakuacyjnych
2ak > InSpekcia wWyposazenia ratunkowego
Dekpol > gana reg 6
Mai-Max Serwis Kiimatyzacji
Budimex
TONA Przeglad, Senws oraz cagrzydianie urza
B | » Przeglad urzadzed Kimatyzacyjnych pod katem bezpleczefistwa uZytkowania
Chaiceram > Serwts uszkodzonych urzadzed
Betia > Odgrzybianie A i %
Jack-Bud
Rob-Bud Nadzér budowtany
AL Nadzdr prac na terenie budowy
Dankar 2 "
> i L ych
> INSpekCia POSIgPU Prac w miejscu budowy
» Raportowanie loerownictwu wykonanych zadah
Fig. 6.5. ErGo Services main view
Ustuga_ Wylewanie fundamentow
Ussi | Edyts Dodaj atrybet
Informacje ogdine Arybuty
Narwa: Wylewanie fundamentdw Atrybuty
Opis: Usluga wykonywana przez dzial ICDS firmy. Czas | x
realizacji ushugl zaleZy od stopnia nawcdnienia gruntu, Hazws Opis Wariodd Kategoria
Kty trzeba osuszyt. Ushuga ususzenia gruntu jest c2gsto Czes Szacowanie dia domk jednorodzing,.. 3 tygodnie Kaszty
Iunoamenw:. . Zushuga Koszt wykonania Wyrazory w LY 30 000 Koszty
Liczba osdb Wartodé dia domu jednorodzinnega §... 10 Zasoby

Organizacia: Metalex Gwarsacia Informacia czy wynk dwisdczensu. . Tak Tne

Fig. 6.6. ErGo Services — management of service description view

ErGo Investments

The ErGo Investments application permit users to manage activities and contracts for the
construction phase of development processes. During the construction phase of a development
process, the sequence of activities to be performed is usually not explicitly specified in
advance. Moreover, a development process is usually not entirely determined when its
construction phase starts. Activities to be performed during the construction phase of a
development process are usually not planned ahead for more than three months. The ErGo
Investments application permits users to control the realization of the construction phase of a
development process in a seamless manner, by providing means for continuous definition of
activities, preparation of contracts, appendices and progress payment claims. A screen capture
of the ErGo Investments application is presented in Fig. 6.7.

131

Wszystkie inwestycje e = d

1

wibwensccoegy | | Eomd | | Usa % 2] g ,

Szukaj % Rozwifi wazysto Zwif wszysto
Narws Stan Obecnie Flanowana cena (P... Rrecrywista ¢
102 21212 W realizacii 87388

1
L] Bi mieszkalny-D i 162 0.0.0.0.0 Planowana 180585 0
0.0.0,0,0 70338]
]
]

m

0.0.0.0.0 58718
0.0.0.0.0 0
0.0.0.0.0 31533]

™~

B o M B W R

' Sklep wielobranzowy-Marcelifiska 65 0.0.0.0.20 Zskoficzons 203072 47750
C Rezvdencia-Krart 120 21,212 W realizagi 92902 14897

Fig. 6.7. ErGo Investments
ErGo Investment Types

The ErGo Investment Types application permits users to manage reusable templates of
process executions referred to as investment types. An investment type contains:

e Activity descriptions — descriptions of activities that may be included in a development
process;

e Category groups — groups of descriptions of activities to be performed at the same
stage of the construction phase;

e Contract templates — templates associated with activity descriptions that hold
requirements concerning subcontractors and their services;

e Contracts — specify particular subcontractors and their services envisioned for
execution of an activity; contracts are optionally assigned to contract templates.

Investment types are modeled as abstract or prototype service protocols (cf. Section 3.1.3).
Each contract template is in fact a service description associated with a particular activity
description. Requirements concerning subcontractors and subcontractors’ services stored in
a contract template correspond to classes of service entities associated with elements of
service description. Contracts assign particular service entities, i.e., subcontractors and
services, to their classes. Some investment types do not include contracts, i.e., service entities
are not assigned to activity descriptions.

Investment types support planning the construction phase of a development process by
reducing time required to plan development process execution, and promoting good practices
from past executions of the development process. Functionality of the ErGo Investment Types
application is organized as follows: first, a group of functions provide users with means for
registering new investment types and managing already registered ones, including managing
category groups, requirements, and contract templates. Second, a group of functions provide
other ErGo modules and applications, e.g., ErGo Investments, with access to investment
types. A screen capture of the ErGo Investment Types application is presented in Fig. 6.8.
In the presented panel, an investment type concerning the construction of a supermarket
building is presented. The investment type for supermarket contains five groups of activities,
three requirements, and three contract templates that can be used to contract activities from
subcontractors.

132

Contract templates Edit investment type

Investment types
Categories fore) |Se
Category groups (ES) name
T Supermarket
Category groups Add| | Remove
Fundamenty

Parter - konstrukcja scian
Parter - konstrukcja stropu
Dach - pokrycie, obrobki, detale
Instalacje wodne | kanalizacyjne

Requirements Add | | Remove
Architekci

Organizacje z Wielkopolski

Organt powyzej 100

Contract templates Add| | Remove

Long-term cooperation
Short-term cooperation
Architect contract

Fig. 6.8. ErGo Investments Types

ErGo Internal Modules

Two internal modules provide functionality necessary for the RMV modules: ErGo
ServiceNet and ErGo KPI.

ErGo ServiceNet is an internal module that provides information about service relations
among organizations and services registered in SOVOBE. Service relations are added to
the module automatically as a result of actions performed by a user in other ErGo
applications, or manually by an ErGo user. For instance, if an organization and its service are
assigned to an activity, appropriate service relation is added to the module joining
the subcontractor, the service and the real-estate developer. Service relations are typed and
they contain a set of attributes. The ErGo ServiceNet module permits verification of relations
among organizations. The module also validates the level of conformance of a set of
organizations and services to a set of service requirements.

Module ErGo KPI supports definition of key performance indicators, where each indicator is
a user-defined function. Function definition includes its logic, and the set of input and output
parameters. A screen capture of the ErGo KPI is presented in Fig. 6.9.

KP1 models
Gemite oo KPLmadsl
¥ 1 cennion & FOMUL Creation
KFi nama Number of used parametars
Conhdence Indiator 0
KPY desciigtion oy | | G
This is an indicater chat shows st i3

1
the Level of mrust of pastisulas Parameter [1] name: ™3Leve!
organizaticn

Paramtee 2] namy: "SIOSIOPamarS

Pacameter (3] nama: b0 edbcates
Ciassifcaion according 10 he Referonce MGl | .y 4] s, WOPPSPOEValie
Subject of measurement
= = [arp—
‘Collaberation charactenstics]
Effecivenes + Rncton s Choose language
Scopr KPY formada & Javaseren
e function f(trustlevel, numberOfPartners, «

rerusn truer
if (nusberGfPartoess > 10)
retumn trwes

P Data sources assignment
* vaiues set-p

® kPt vak calculation

Fig. 6.9. Definition of KPI function in ErGo KPI module

133

6.4. Integration of the RMV Method with the ErGo system

The RMV method is implemented in the ErGo system as the ErGo Logs module, ErGo
Recomm module and ErGo MatchMaker application. The RMV method components use
functions provided by ErGo Organizations, ErGo Services, ErGo Investments applications,
and ErGo ServiceNet and ErGo KPI modules.

ErGo Logs

ErGo Logs module inserts event related data into a database. In particular the following data
are stored:

e Events associated with execution of an activity instance in the ErGo Investments
application; and
e Attributes describing completed VO collaborative process instances.

Each event is stored in the database with the set of corresponding attributes in two separate
tables: event data table, and event context table. For each event, the following information is
stored in the event data table:

e Development process instance identifier, e.g., bd24ff38-931d-4d69-8bcd-
cr8ad24c3210,

Activity instance identifier, e.g., bd24ff38-931d-4d69-8bcd-cr8ad24c3210,

Event identifier, e.g., bd24ff38-931d-4d69-8bcd-cr8ad24c¢3210,

Event name, e.g., Fundaments,

Transition, e.g., Registered,

Subcontractor identifier, e.g., ergo.organization.2761,

Service identifier, e.g., ergo.service.3321,

Real-estate developer identifier, e.g., ergo.organization.1,

Contract identifier, e.g., ergo.contract.2762,

Contract template identifier, e.g., ergo.contract.template.5678,

Timestamp: Tue Dec 04 12:35:36 CET 2013,

Name of the ErGo internal module generating an event, e.g., ergo.invetments.memory,
Identifier of the session of a user whose action was followed by event generation, e.g.,
bd24ff38-931d-4d69-8bcd-cr8ad24c3210.

Information concerning event context is stored in the event context table. This information
captured for each event includes: development process instance identifier, event identifier,
a set event context elements.

The set of process instance attributes that is assigned to the development process instance
identifier is stored in the process instance data table.

ErGo Recomm

The ErGo Recomm module is responsible for analysis of event logs from the ErGo Logs
module and their transformation to activity patterns. In the ErGo system, discovered activity
patterns are investment types containing groups of activities, requirements and contract
templates.

134

Configuration of the ErGo Recomm module includes all the parameters described
in Section 5.6. In addition, configuration of the ErGo Recomm module encompasses:

e Indication of attributes from the ErGo Organizations, ErGo Services, ErGo
ServiceNet, ErGo Investment Types, and ErGo Investments components to be
incorporated into event traces;

e Indication of attributes from the ErGo Investments application to be incorporated into
event context elements and process instance attributes;

¢ Indication of functions defined previously in the ErGo KPI to be used in various steps
of the RMV method, e.g., indication of functions calculating recom_index and
nonrecom_index.

Note that the ErGo Logs module does not hold all the attributes of subcontractors, services,
contract templates, and contracts associated with a particular executed activity instance.
Instead, it stores their identifiers in corresponding ErGo applications. Before data from
the ErGo Logs module is used by ErGo Recomm module in activity pattern discovery, it is
transformed to collaborative process log. Each trace from the event log is supplemented with
data coming from other ErGo modules, i.e., attributes holding identifiers of service entities
from ErGo Organizations, ErGo Services and ErGo ServiceNet are supplemented with a set
of attributes actually describing service entities, and identifiers of contracts, while contract
templates are supplemented with data from ErGo Investments and ErGo Investment Types.

Example 6.1. An example of simplified data from the ErGo collaborative event log created
inthe ErGo Recomm module is presented in Tab. 6.2 and Tab. 6.3. A set of attributes
describing each process instance is presented in Tab. 6.4.

In Tab. 6.2, attributes that appear in the log are: process instance identifier (pi-id), activity
instance identifier (ai-id), event identifier (e-id), event timestamp (time.) and event transition
(trans.). Service customer, service interface and service provider unique identifiers are
represented by columns SC, SI and SP, respectively. In the ErGo system all the activities are
executed on demand of a real-estate developer. Thus, the value of SC attribute is the same for
all the events. Characteristics of service entities are provided as values of attributes SC-Type,
Sl-Duration, and SP-Specialization. Two columns correspond to social relations existing
among service providers — SP-Country and SP-City, e.g., all the companies, except Bud Tool
share the relation of being located in Poland. Similarly, services are grouped into categories
(SI1-Category attribute). For the clarity, column corresponding to ErGo module name and user
session are not presented in Tab. 6.2.

Event context elements recorded for each event presented in Tab. 6.3 include the day of week
and season of year. A set of attributes describing each process instance is presented in Tab.
6.4.

135

Tab. 6.2. RMV event data table

pi-id | ai-id e-id Time Trans SC SI SP SC-Type SP-Specialization SP-Country SP-City Sl-Category Sl-Duration
1 1 09 1 Start Trustex Fundamenty ﬁ:ﬁ/ Developer Ground works Poland Poznan Init 30 days
1 1 10 2 Complete | Trustex Fundamenty DAorr(;lhe Developer Ground works Poland Poznan Init 7 days
""""""""""""""""""""""""""""" donool VIR I i R A R I
1 2 11 3 Start Trustex konstrukcja Developer . - Germany Berlin Init 10 days
. Tool installations
___ sean b
Parter — .
1 2 12 4 Complete | Trustex konstrukcja Bud Developer . Electrlgal Poland Warsaw Init 10 days
Tool installations
__ Stropy Ll e
2 3 13 2 Complete Trustex Dach SBkjg Developer Vertical surfaces Poland Poznan Init 7 days
"""""""""""""""""""""""""""""""""""" Bud |~ T TElectrical | L T T T T
SR S s S RGN It IOl OO A O Tool | DVEIOPET | instalations | Germeny LB LM A
Instalacje Arch
3 5 15 1 Start Trustex wodne i Dome Developer Ground works Poland Cracow Final 6 days
kanalizacyjne
Tab. 6.3. RMV event context table
pi-id e-id Day Season
R B 09 | Frday | Spring
R S R 10 ... Monday | ___ Spring ___.
S B | Fiday] Spring
R S R L Tuesday ___ | ___ Spring ___.
2 8 | Fridy | Spring
R S N 14 Tuesday | summer
3 15 Monday Summer
Tab. 6.4. RMV process instance attributes
pi-id Duration Start Complete No. subcontractors In time
______ SN S N Y A S L L L
______ 2 sy A2 ue
3 5 4 9 5 false

The graphical user interface components presenting recommendation results are integrated
into ErGo Investment Types and ErGo Investments applications. When a user attempts to add
a new investment or a new category group to existing investments, a recommendation is
provided to the user automatically. Creation of a new investment or a category group requires
selection of an investment type. The selected investment type is used as a template for a new
investment or a category group. The screen capture in Fig. 6.10 presents the ErGo Investments
functionality of adding a new investment (1) and a new category group (2).

Wszystkie inwestycje
yhen st L] e sy B m A rsenen s S
S Rozwh wilysho Zwih wilystis
Narwe Sten Dbwcrie P cana (PLN) ¥ L1 Postee Inansowy (%)
' [WBudynek mieszkalny Glogowska 199 ' 2! Wi T . 2
’ 127 00000 Parcwans 122137]]
¥ () Apantamentowsec-Marceldska 174 000120 Zakohczona 1542 Tesen {F]
4 M 21212 W reaikzacy 120713 12823 n
s (] Market-Bulgarska 61 (AN NN Pasowans 13879 °]
¢ [MRezydenciaReymonta132 enoex Zaaohczone 02 So8as ™
? ! W 17 21212 W resizech 20583 1“2
* [WSiep sporywezy Dmowskiego 196 ©.0. Prestwarzane ’ .
L] Hotel 41 00 prosh Crelad... am ™
- Dah-polyceobbkideme | um "
2+ | Obedbiiblacharsise dachu drwwnianego. © ° - - ° o s
12 o @Umowayes ettt s ey me »
B B, Protoks | PRI Wbt sacsegly) e
" ~ Anoks ANd4 Eamg J
s —_Anaks AN e
w - 248 »
“ 8 Umoua UMSY - " e »
18 28 Umowa L9 F — 10043 508 »
w BB Umowa UWES e —) WEEN s B
] Umcwa 7 [T TR] Zmohczons w188 84]
a Umowa [T X RN] Zskohczons wss = n
2 _Konstukciadrewniana coead 124 WS "
b - mm (AN NN e s "
4 B Umowa UNMS 00019 Zahohczons ww 28 =

Fig. 6.10. Adding a new category group and a new investment in the ErGo Investment module

An investment type is selected from the set of investments types available in the ErGo
system. Optionally, a user may define a new investment type. The screen allowing a user to
select an existing investment type is presented in Fig. 6.11. Two sets of investment types are
presented. In the “Available” table (1), there are investment types previously added to
the system by a user. Those investment types are described in a meaningful way.
In “Suggested by system” table (2), there are investment types discovered and recommended
by the ErGo Recomm module. Each investment type is described by level of recommendation
confidence of provided recommendation (3) and basic information concerning the number of
categories and subcontractors in the recommended investment type (4). Finally, a user may
select an investment type and display detailed information form the third column (5).

In 1L Investment types

Detads Add Edit Remave

Last changes Available
MName Description
Investment types -
Budynek 4 Budynek pieciokondygnacyjny (w tym dwa poziomy poddasza), ceglany z detalem
Categories rodzinny kamiennym.
Category groups (ES Supermarket jest to wiaciwie pewien duzy kompleks skiepéw. Mi ie schemat 1
Supermarket przewaznie wyglada tak samo: duzy hipermarket wielobranZzowy, gidwnie jednak 5
SpoZywezy.
Hotel Hotel oferuje noclegi w pokojach jedno-, dwu- | trzyosobowych oraz imponujgcych
rozmiardw ap t, przy | ym zac iu najwyz usiug. -

Suggested by system

Confidance Description Action
Liczba kategoril zadari: 5 _ -
Wysoka | e kias podwykonaweéw: 5 Edit
Liczba kategorii zadari: 10 |
Wysoka Liczba podwykonawodw: 5 Edit 3

Liczba klas podwykonacow: 2
Liczba kategorii zadar: 10; Liczba klas podwykonawcdw: 5

kzha podwykonawcow: 5; Liczba wymagafi spoteczych: 2 Edi I

Copyright by DIT PUE 2010

Niska

Fig. 6.11. A view of available and recommended investment types

In Fig. 6.12, a screen for viewing details of recommended investment type is presented.
Details of recommendation are visible in the panel on the left (1). The screen provides
possibilities to modify an investment type composed of activities (2), requirements and
contract templates (4), and to save it (5) in the ErGo system. Finally, selection of
the investment type is done in a collaborative manner. The discussion mechanism (6) built-in
the ErGo system supports the exchange of comments and suggestion of possible
modifications concerning the investment type.

138

Contract templates Feiinvestment type

Investment types
ategori Back
I r E Name
Supermarket
Evaluation Category groups Add | | Remove
Benefit: 4] Fundamenty
Support: 32(10%) Parter - konstrukcja scian
Sensitivity: 75% Parter - konstrukcja stropu

Specificity: 89,5 Dach - pokrycie, obrobki, detale
Distance: 1 Instalacje wodne i kanalizacyjne
Total: Wysoka

Requirements Add | | Remove

Architekci

Organizacje z Wielkopolski

Organizacje powyzej 100 p

Contract templates Add | | Remove

Long-term cooperation

Short-term cooperation
Architect contract

Offers

Jan Kowalski on Nov 29, 2010 3:56:22 PM
4a Proposed: new start date with value Dec 10, 2010 12:00:00 AM

4 Mariusz Wroblewski on Nov 29, 2010 3:56:22 PM
4, Proposed: new start date with value Dec 10, 2010 12:00:00 AM

Fig. 6.12. Adding recommended investment type to the ErGo system

In Fig. 6.13, a screen for creating an investment based on investment type (1) is presented.
Created investment is added to the list of investments visible in Fig. 6.10. Similarly, a created
category group is added to the list of category groups of a particular ongoing investment
process.

Bodynel plancwany pray ul. s 100. e kworg

Fig. 6.13. Adding investment based on investment types

After the assignment of the investment type to the investment, the investment is monitored to
validate if its execution is conducted in line with the investment type specification. In Fig.
6.14, the investment details view is presented. Among others, the view provides information
concerning investment types assigned to the investments. Each investment type is described
with its name (1) and status of its execution (2). Status Satisfied in Fig. 6.14 means that all the

139

activities from the investment type were already executed in line with all the requirements
specified in the investment type. Waiting status means that execution of activities from
the investment type has not begun yet. Additional Action column (3) permits edition of
detailed information about the investment type.

Investments Edit investment
Contracts in preparation
Contracts in negotiation
Protocols to be signed Name

Save Back

Last changes Radojewo 3
Investor

Investment types TRUST

Categories

Category groups (ES Description

dachowa krokwiowo-piatwiowa (platew kalenicowa) z jedna o
Sciang stolcows ze Sciankami kolankowymi i krokwiami |
wzmocnionymi zastrzalami. Deskowanie gr. 32 mm, krokwie

nie wymieniane od poczatku. Miecze 15x16 polaczone na

koiki drewniane.

Pokrycie calego dachu (o réznych poziomach) papa
termozgrzewalna. Brak czesci opierzen, pozostakie w ziym
stanie. Czg3¢ attyk posiada stara blachg, a na niektérych
brak opierzenia. Ponadto na czesciach attvk brak tvnku -

Contracts
Number Contractor Signature date
21/DWi2010 Jerzy Nowak Jun 30, 2010
22/DWI2010 Budmed Jun 30, 2010
23/DW/2010 Rob-Bud Jun 30, 2010
Types
Status Name Action
Satisfied Rod 3 - parter Edit
Satisfied Rod 3 - parter 11 Edit,
Waiting Rod 3 - I pietro Edit

Fig. 6.14. Viewing levels of satisfaction of investment types for the investment

ErGo MatchMaker

Each recommended investment type is an activity pattern. If an activity pattern is on
the abstract or the prototype level, the service-oriented summary, the service network schema
and the mapping functions of an activity pattern are further used by the ErGo MatchMaker
application as a set of requirements for the selection of subcontractors. ErGo MatchMaker
module is an implementation of the RMV method algorithm for instantiation of activity
patterns. ErGo MatchMaker is closely integrated with ErGo Organizations and ErGo Service
applications (selection and validation of organizations and services against classes of service
entities), ErGo ServiceNet module (validation of service requirements), ErGo KPI (definition
of KPIs), ErGo Investment Types (access to information concerning recommended investment
types) and ErGo Investments (launching the method and presentation of the results).

In ErGo MatchMaker subcontractors are selected in a collaborative way. Users select
organizations that can perform required activities, and then aggregates the chosen
organizations. Both single organizations and groups of organizations are discussed with other
collaborators. Internal discussions concern potential subcontractors and the terms of
the contracts to be negotiated with selected organizations. Internal discussions are followed by
external discussions in which the representatives of selected organizations are involved.
The goal of the external discussion is the negotiation of the final terms of the contract. When

140

the external discussion ends with a satisfying compromise, the contract is signed and its
representation is added to the ErGo Investments application.

Launching selection of subcontractors in the ErGo Investment application is presented in Fig.
6.15 (1).

Wszystkie inwestycje
b assag L] Cota sy ta aees Cota sesstyom A Renet s Saee
Sran Rozwt wilystio Jwi walysto
Narwe Sten Dbwcrig cana (PLN) ¥ L1 Postee inansewy (%)
' [WlBudynek miesskalnyGlogowska199 '3 1! Wreind T e 2
2 [BSkep wislobranzowy Dabrowsicego 127 #0088 Pasowass 3 ' ¢
¥ () Apatamentowsec-Marceldska 174 00120 Zmachczone [Tesen 128
4 M 21212 W reaikzacy 120713 12823 "
s (] Market-Bulgarska 61 (AN NN Pasowans 138794 ° []
¢ [WRezydenciaReymonta13? tooo Zoaohczone L~ Sonas ™
? ! W 17 21212 W resizech 20583 -2
* [MSuep spotywezy Omowsiiego %6 °° ¢ ’
9 . Hotel 41 00 prose Qeadl... 2 ™
| Dachspolayels obrdbk detale | ¢ | um @
+ [Obidbiblacharsise dachs drewnianego| © ° - - ° o 198
12 o @Umowages et s ey e »
I %, Protoks | PRI L Wyt scsegoly J e
iU - Aneks AN/ Edne 1
1 - Aneks ANMI s Duemany -
" o Uows U0 ey 26 s *
17 3 - erer 80 »
18 2 Umowa LMW — 10043 508 »
"W 28 Umowa UMSB4 —— —— N s »
x 8 Umowa UM47 00010 Zemsnirons L ko B
a 8 Umowa UM3S 0.0.0.1,0 Zskohczons wss = n
n Konshukciachewnigng oo0o7 1243% 18778 151
n + _Pokrycie dachowe (AN N L) " "
B ‘|m|m Loare Zmanhiions " E =

Fig. 6.15. Launching selection of subcontractors from ErGo Investments

A screen capture of the ErGo MatchMaker application is presented in Fig. 6.16.
The presented panel permits users to discuss about a group of potential subcontractors.
On the top of the panel, the description of the group of activities to be contracted and the
associated development process are presented. In the middle of the panel, the table presents
the activities to be contracted and the organizations that are proposed as potential
subcontractors. In Fig. 6.16, only one organization, i.e., “Dekoratornia”, has been proposed as
a potential subcontractor for the building of a reinforced concrete slab (“Konstrukcja stropu
zelbetenowego” in Fig. 6.16). Negotiations are ongoing with selected organizations.
At the bottom of the panel, another proposition submitted by Jakub Flotynski is presented.

141

rc2egily prowadzonego dobory partnerdy

Opis. Proces doboru partnertw dia Market-Buigarska 61 | 59 | Zmefsuns | Popes aymesedde |
Status Aktywny

Nazwa typu o) F task group: Paner - konstrukcja stropu Pigiro

- konstrukca stropu Pigiro - konstrukeja $cian Przejdd do inwestycl

Doboér partneréw dla inwestycji :: Market-Buigarska 61

Ponize| znajouje sk obecnie dyskulowana grupa partneriw.
Y pitpracy z ré

Mozesz gl ¢ swoje propozyc ¥ o P
¥ Axtuaina grupa parnerow
' Zadanie Orgemizca Usisgs 2
Konstrukcys stropy Etap 1: Przygotowanie
stropy 9o D <) Emp2 Wiece) *
Konstrukc Scen Etap 1: Przygotowanie
5570 (+0/ 0)K1o lubi?KIo nie ubi?

Ponize) 2najdujq sig propozZycie uczestnikbw dyskusji co do Spopracy

Propozycje

Jakub Fiotyfsk) oni Jul 4, 2012 31833 PM

@, Liczbe zmesnionych prrypesan 1
Zadania. Konsirukoe stopu telbetowego

Nowa propozycie W €9 CF 0(+0/-0) 10 kbN? Ko ke hubi?
Fig. 6.16. ErGo MatchMaker

In the ErGo MatchMaker application, the subcontractor selection process is based on the set
of requirements defined in the investment type. As an example, an investment type for
the construction of residential buildings defines requirements concerning an architect,
electricians, and their relations. These requirements are captured in the service network
schema. The ErGo MatchMaker uses these requirements together with information coming
from the ErGo Organizations, ErGo Services and ErGo ServiceNet modules. As a result, it
evaluates suitability of service entities to classes of service entities. The set of organizations
best fitting classes of service entities together with evaluation of their conformance is
presented in Fig. 6.17. The ErGo system also evaluates the full set of organizations in terms
of conformance to service requirements (Fig. 6.18).

Evaluation
zoo &, remonty, stalov 24
Ushigi budewiane wodno-kanaizacype a8
Profespnaine uidadans glazury, terakoty, gresu, kamesna 13

Suggested by system

 Organizations

Fig. 6.17. Supported evaluation of assignment of a service entity to a class of service entity

142

Hew partner selection
Barnar selection Partner groups

Naramowice 1-16

X ¥ Subject of descussion: Low risk vanant
Bersonal panel

Partners
Dexussions General infromation
Configueation ok nase
MName: Low nsk variant Archtec Hydratesn 20101118 1237
Intere Matex 20101118 1237
Partners Description: Poor time, good quakty e

Salety supsrviase Beiiee Poigks 0101118 1237
Earner roups - -
Creation date: 2010-11-18 1237 Demoltien company Ermar 2010-11-18 1237

BERER

MatchMaker: Haamovece 1-15

Evaluation

Beuirement satistaction
Soclal evaluator: 18
Organization evaluator: 87
Process estimator; 59

Average evaluation: 4

Conste sew sifer
Offers

T & =,
a @ o modted parers 6
-

Hedified partrers.
Rgie name

Archibect Hydrateas 2010-1118 1237
Interor desgner Uartex 201011181237
Safety supervmor Batfor Ponts 011181237
Demcition compasy Etmar 0114181237

BEEE

e @@ 5 D speus) Pulview

Fig. 6.18. Supported evaluation of a VO variant

6.5. RMV Method Real Case Evaluation

The real case evaluation presented in this section encompasses activity sequence pattern
discovery, activity pattern identification and recommendation formulation.

In this section, first the analyzed company and its delivery process are shortly described.
The name of the company has been anonymized, so it is named Epsilon. Second, the set of
events recorded during delivery process instance executions is described. Events are recorded
by the warehouse management system. Initial exploration of events is used to provide more
detailed characteristics of the delivery process. It is shown that the delivery process shares
characteristics of the VO collaborative process. Then, the RMV method is applied to
the analysis of the event log. Activity pattern discovery and recommendation formulation is
presented for various parameter sets. The section is concluded with presentation of
recommendations that were given to Epsilon.

Epsilon company

Epsilon is a production company specializing in production of some physical items exported
to Western Europe. Its production volume is over 2 million per year. Epsilon employs more
than five hundred people.

The process mining project was conducted jointly with the Epsilon team that was led by
the Distribution and Warehouse Manager. The aim of the project was to provide insight into
warehouse processes performed in the company. The operation of the company’s warehouses
is supported by the Warehouse Management System (WMS). The WMS is used by both
storekeepers and management:

143

e The set of storekeepers’ activities include: delivery taking, organizing shipment,
transporting materials to production, and receiving final products from inventory;
the WMS records data associated with all the activities performed by storekeepers;

e Management staff uses WMS to monitor stock levels and supervise storekeepers work.

The WMS supports two main processes performed in the warehouse:

1. Delivery process — encompasses activities required to unpack trucks coming from
material suppliers, to group materials into pallets, to transport pallets from a delivery
line to the warehouse and to the production lines;

2. Shipment process — encompasses activities required to take the final product from
the production lines to the warehouse and send them to the client or to an external
warehouse.

The prototype implementation of the RMV method was validated based on data collected in
the WMS during the execution delivery process instances.

In the warehouse, all the materials are organized in pallets. A pallet is the smallest storage and
transport unit. Pallets are stored in the warehouse before being forwarded to the production
lines. One delivery process instance refers to a number of created and transported pallets and
a number of various materials. Materials are categorized into families, which are material
types. There are 80 various material families.

Pallets are transported among delivery lines, the warehouse and production lines by 60
storekeepers and quality department employees. The work is conducted on three shifts, 24
hours per day except weekends. Warehouse employees are divided into three not disjunctive
groups:

1. Unpacking group — responsible for unpacking incoming trucks and moving pallets to
the warehouse;

2. Production group — responsible for delivery of pallets from the warehouse to
the production lines;

3. Quality group — responsible for validation of materials quality.

Assignment of employees to groups changes from a shift to another. A person that is not
assigned to a particular group should not performed activities assigned to that group,
e.g., storekeepers assigned only to the production group should not unpack incoming trucks.

The use of the WMS in warehouse management requires an employee to use mobile scanner
to scan the bar code available on the pallet before performing any activity referring to
the pallet. The WMS keeps track of pallet life cycle and associates each scanned bar code
with an appropriate activity. For instance, once the pallet is scanned in delivery (Pallet in
delivery activity) the next recorded activity instance must be Pallet on fork and finally Pallet
resting. This sequence refers to moving a pallet from a delivery line to the warehouse.
Activities are performed also using the WMS web interface, e.g., Delivery volume change
activity can be performed only using web interface.

Various activity instances require storekeepers to use various services provided by the WMS.
Services are provided by various WMS modules. Some services available in the WMS are
provided by more than one WMS module, e.g., delivery details are retrieved from both
Delivery module and Purchase module. Redundant functionality is a consequence of ongoing
integration of various systems used in the company.

144

The process involves 17 activities:

1. Pallet on fork — transporting a pallet among the delivery lines, the warehouse and
the production lines;

2. Pallet resting — putting a pallet in the storage area in the warehouse;

3. Pallet created — registering a new pallet in the WMS;

4. Quality check — verification of materials quality; typically each delivery includes

many material families; for each material family, one pallet is randomly selected to be

inspected by the quality group;

Pallet on production — putting a pallet on a production line;

6. Delivery confirmation document — printing confirmation of delivery and giving it to a
supplier;

7. Label printing — printing a set of labels with bar codes for marking the pallets created

during the delivery;

Pallet update — updating information about a pallet in the WMS;

9. Delivery close — truck unpacking is completed; the delivery status in the WMS is
updated to Closed;

10. Delivery start — truck unpacking is started; the delivery status in the WMS is updated
to Started; all the created pallets are automatically assigned to the started delivery
process instance;

11. Pallet state: repack — repacking materials on the pallets; this activity is performed if a
pallet is destroyed or must be divided into smaller pallets;

12. Pallet state: banned — quality group forbids passing a pallet to the production lines;

13. Pallet state: ok — pallet quality is set to Satisfactory by the quality group; the activity
is performed once for each material family; note that one pallet per material family is
inspected, but information about the positive result of quality evaluation is stored
separately for each pallet from a delivery as a value of QualityControlResults pallet
attribute (cf. Tab. 6.6);

14. Delivery volume change — changing the volume of the delivery; the activity is
executed if the volume of the delivery is different from the planned volume;

15. Pallet state: open — pallet is marked as partially opened; the activity is performed if
the pallet has not been fully used on a production line and it is returned to
the warehouse as being partially used;

16. Pallet in delivery — transporting the pallet to a delivery section in the warehouse;

17. Pallet deleted — removing the pallet from the WMS.

o1

®©

Note that while activities Pallet on fork, Pallet resting, Pallet created, Pallet on production,
Pallet update, Pallet state*, Pallet in delivery, and Pallet deleted refer to one particular pallet,
other activities are associated with a delivery process instance. Each activity instance is
associated with one event in the WMS event log having the same name.

The de jure model describing expected execution of each delivery process instance is
presented in Fig. 6.19. The process is divided into five phases. In phase 1, the delivery
process instance starts with Delivery start followed by Label printing. In phase 2, materials
are divided into pallets. The Pallet created activity instance is executed for each pallet. Then
each pallet is transported (Pallet on fork activity instance) and placed in the warehouse
(Pallet resting activity instance). After all the pallets are moved to the warehouse, the delivery
is closed in phase 3. Two activity instances are executed in this phase: Delivery close and
Delivery confirmation document. In phase 4, one pallet per material family is inspected in
term of quality (Quality check activity instance). Activity instance Pallet state: ok is executed
to positively acknowledge quality of pallets with the inspected material family. In phase 5,

145

pallets are gradually transferred to the production lines by performing Pallet on fork and
Pallet on production activity instances. If materials from the pallet are not used at once for
production, the state of the pallet is set to open (Pallet state: open activity instance), and
the pallet is taken to the warehouse (Pallet on fork and Pallet resting activity instances) to be
reused in future. There are two conditions of delivery process instance completion:
(1) Delivery confirmation document is printed, and (2) all the pallets created in phase 2 are
fully utilized in production.

Delivery start

25U

Label printing

. 4 —

2. Pallet created

Quality check

Pallet state: ok

Pallet on fork

Ajlwey [eualew
Yoea 404

19||ed yoea Jo4

Pallet resting

3. 5
Delivery close . 3
Pallet on fork Pallet resting =
2
o
$ Pallet on fork _g'
Delivery confirmation 5%
document Pallet on production Pallet state: open E
) 4

Fig. 6.19. Expected execution of the delivery process instance

Note that six activities are not presented in Fig. 6.19: Pallet update, Delivery volume change,
Pallet in delivery, Pallet state: repack, Pallet state: banned and Pallet deleted.
These activities do not appear in the proper execution of a delivery process instance.
Nevertheless, they can appear at any stage of an improper or exceptional delivery process
instance execution.

Analysis scope

Epsilon company deals with the problem of low efficiency of a warehouse operation, where
the efficiency is measured by:

1. Percentage of pallets of materials inspected by the quality group — it is unacceptable
that some materials are forwarded to production either without quality check or with
multiple unnecessary quality checks; the cases of low quality of materials must be
reported to suppliers as complaints;

2. Number of pallets damaged during truck unpacking or transport of pallets to
production lines — this number should be as low as possible; in case of pallet damage,
the damaged pallet should be handled according to a special procedure;

3. The amount of time needed to unpack a truck and the average time that pallets with
materials are stored in the warehouse — the expected times are provided in
the warehouse procedure;

146

4. Conformance with good practices formulated by the management staff based on long
time experience and observation of the warehouse operation — each nonconformance is
perceived as an error in storekeeper work.

To increase efficiency of warehouse operation, Epsilon aims at identification of storekeepers,
storekeeper groups, shifts and their practices that influence efficiency of warehouse operation
in both positive and negative ways. Such identification would be used to eliminate inefficient
teams and behaviors and to promote good ones.

To limit the scope of the analysis, a set of questions concerning the delivery process was
asked by the Distribution and Warehouse Manager. Questions concerning five key aspects of
the delivery process are presented in Tab. 6.5.

Tab. 6.5. Five key aspects of the delivery process

l.p. Aspect Questions
1. | Quality e How to minimize the time and number of activities required to
assurance handle complaints?

2. | Palletdamage | ¢ How to minimize the number of damaged pallets?
e Which employees are involved in a higher number of damaged

pallets?
_______________________________ o _How to reduce the number of printed and unused labels?
3. | Process e How to lower the time required to unpacking a truck?
performance e How to reduce the overall delivery process instance execution
___________________________________ UMy
4. | Work e Which shifts should be involved in execution of particular
distribution activities?

e Should work be distributed equally among shifts or should shifts
be specialized in some sort of activities?

5. | Conformance | e What are frequent practices that do not follow the de jure model?
to the de jure
model

The analysis was performed by applying the RMV method to the WMS event log.
As mentioned in Section 5.6, a right set of parameters for both activity pattern discovery and
recommendation formulation must be selected basing on knowledge concerning: (1) business
domain, and (2) basic characteristics of the data set identified at the earlier phases of
the method. Thus, the analysis was performed in close collaboration with the Distribution and
Warehouse Manager.

The search for relevant activity patterns was done using the if-cause approach,
i.e., assumptions concerning the RMV method parameters were provided by the Distribution
and Warehouse Manager. As a result, the RMV method was applied to the event log multiple
times using various parameter sets. The application of the RMV method to the event log with
one particular set of parameters is further referred to as an experiment. Each experiment led to
identification of different activity patterns and formulation of recommendations. The most
relevant modifications in parameter sets included various definitions of: context class
function, context distance function, functions mapping recom_index and nonrecom_index
values and required activity patterns lengths.

147

WMS event log

The set of attributes associated with events in the WMS event log is presented in Tab. 6.6.
The AttributeName column presents event attribute names. Description of each attribute is
given in the Description column. The Attr.Type column informs if an attribute is associated
either with a service provider, or a service consumer, or the service interface
(cf. Section 5.4.3). For clarity, example values of all the attributes are presented in
the Domain example column. Not all the events have the same set of attributes. The set of
events sharing a particular attribute is presented in the Events column, e.g., PalletNo attribute
is stored only for events referring to a particular pallet being created, updated, moved, etc.

There are 18 attributes used in various phased of the RMV method. Note that not all attributes
are used in the same manner:

e Attributes DeliverylD and ActivitylnstancelD are used for grouping events into
delivery process instances; attributes are not associated with any service entity;

e Timestamp and Trans attributes are used only to determine the temporal relations
among activities represented by events; attributes are not associated with any service
entity;

e Remaining fourteen attributes are used as attributes of activity instance descriptions
during activity pattern discovery.

Attributes accounting for event context are presented in Tab. 6.7. Note that Shift and
Warehouse event attributes are used both as context attributes and regular event attributes.

The set of attributes stored in the WMS event log, which describe each delivery process
instance, is presented in Tab. 6.8. Values of Resource, AdminName, SupplierName,
PalletArticles are anonymized. Also final product names are anonymized.

148

Tab. 6.6. Event attributes

l.p. Attribute name Description Events Attr. type Domain example
_____ 1. | DeliverylD | Delivery process instance identifier | Al | - | DS0000007337
_____ 2. | ActivitylnstancelD | Activity instance identifier | ANl | .St 12435 .
_____ 8. _|Actvity __________[Activityname | Al |._..Sl____|Palletonfork, Deliveryclose
_____ 4. | Resource | Storekeepermame | AWl |._..SC____|mmanmrob
5. ModuleName WMS module name All SP, Obsolete, Purchase, Control,

social-Sl Management, Delivery,
Inventory, Complaint

_____ 6. |Trans | Eventtype(cf Section543) | AW |- ___|complete

7. Group Stakeholder group All social-SC | Unpacking, Production, Both
(Unpacking and Production),

___ Quality

_____ 8. _|Shift .. |Stakeholdershift | AWl | social-SC_ | Morning, Afternoon, Night
9. Timestamp Time of the activity instance All Si 2013/01/02 08:55:27.247

___ execution
10. PalletNo Pallet identifier Pallet in delivery, Pallet on fork, Pallet resting, service 799000000001559562

Pallet created, Pallet on production, Pallet | Entity-SI
update, Pallet state: *, Pallet deleted

11. PalletArticles Material families on pallet Pallet in delivery, Pallet on fork, Pallet resting, service M1, M2
Pallet created, Pallet on production, Pallet | Entity-SI
update, Pallet state: *, Pallet deleted

12. Warehouse Warehouse hame All service Base warehouse, Warehouse in
N ! N E R N Entity-SI | ddp Ocigz., Warehouse sewing ___
13. Recommendation Information whether the Pallet resting, Pallet on production service True, False
Done recommendation generate by the Entity-SI

WMS concerning storage place for
the pallet was followed

14. QualityControl Approved in terms of quality Quality check service 1;0
_____________ ReSUNS L ENUYSSE .
15. Damaged Pallet put in the storage area Pallet resting service 1;0
___ reserved for the damaged pallets | | Enuty-SP | .
16. System Name of the system All service WMS
Entity-SP

18. Privilages Security rights assigned to user All social-SP | manager
Tab. 6.7. Context attributes of activity instances
l.p. Attribute name Description Activities Domain example
_____ 1. [Month | Nameofthemonth AN | Marh .
2. StockLevel Warehouse stock level in percent Pallet created, Pallet deleted, Pallet on 71.87%
___ production
_____ 8. _|sShift | Stakeholdershift (AWl | Morning Afternoon,Night =
4. Warehouse Warehouse name All Base warehouse, Warehouse in DDP, Warehouse
sewing, Production-matrasses, Production-
sewing, Quarantine
Tab. 6.8. Delivery process instance attributes
l.p. Attribute name Description Domain example
1. ProcessResult Delivery process instance output; the delivery process instance following de OK, Deleted, Disposal, Complaint
jure process from Fig. 6.19 has output OK; other possible outputs are:
______________________________________ Complaint, Deleted, Disposal
__..2.__| PurchaseValueDPS | The monetary value of the deliveryinPLN 1500000320000
3. | ArticlesOrdered | | Ordered materials with quantity in format: material family/quantity | Al/80, A216002000/112
4. | ArticleDelivered | | Delivered materials o MLM2 .
__.0._| Articlevolume || Quantity of delivered materials . |8%112 .
.6. | SupplierName | Suppliername A B .
.8 | OrderMonth || Deliverymonth .| March .
..10. | NoDamagedPallets | | Number of pallets damaged during the delivery process instance execution 1 0;115
11. | PalletVsLabelQty Depending on percentage of printed labels that were used with pallets, use of Full, Fine, Medium, Small, Unacceptable
______________________________________ labels is categorized into five categories
12. | LablesToErase Number of pallet labels to utilize 8

150

Delivery process analysis was performed on the basis of 152 523 events associated with 1448
delivery process instances performed during 6 months of the warehouse operation. During
this time, 26 641 pallets were delivered to the warehouse and forwarded to the production
lines. The average duration of a delivery process instance was 4 days 17 hours 45 minutes.

The delivery process has spaghetti-like structure (cf. Section 2.1). 1648 delivery process
instances were executed according to 1590 variants. This means that execution of a process
instance is not fully determined and almost each process instance is executed in a unique way.
Distribution of numbers of events among variants is presented in Fig. 6.20=. Values on
the horizontal axis represent the number of events. Values on the vertical axis represent
number of delivery process instances. Average number of events per delivery process instance
is 105, but 46% of delivery process instances have less than 50 events.

I e Ty

Fig. 6.20. Distribution of number of events among process instances

Complexity of the delivery process is confirmed by the process presented in Fig. 6.21% —
rectangles represent activities, arrows represent temporal relations among activities.
The complicated structure of the process map proves its spaghetti-like character. The process
map presented in Fig. 6.22 is yet more complex. Here each rectangle corresponds to an
activity performed by a particular storekeeper using a particular WMS service — the number
of rectangles is much bigger, i.e., there is a large diversity in assignment of actors and WMS
system modules to each activity instance.

===

Fig. 6.21. Process map: rectangle corresponds to activity

13 The figure is generated using Fluxicon Disco software, http://www.fluxicon.com/disco/

4" The figure is generated using Fluxicon Disco software, http://www.fluxicon.com/disco/

—— o~ —
=

Fig. 6.22. Process map: rectangle corresponds to a triple: activity name, storekeeper, WMS module

Execution of all the recorded delivery process instances involved 55 persons and 8 WMS
modules. Frequency of activities recorded in the WMS event log is presented in Tab. 6.9.

Tab. 6.9. Frequency of activities in the event log

l.p. Value Frequency Relative frequency
L |Palletonfork | 48077 | . 8152%
> |Palletrestng | 30816 | . 2020%
3 |Palletoreated | 26806 | 17.58%
% |Qualitycheck | 7428 | 1143%
> |Palletonproduction | 18614 | 1024%
% | Delivery confirmationdocument | 3934 | 258%
I |Lapelprinting | 3187 | 200%
8 |Palletupdate 1540 | L01%
% |peliveryclose 448 | 095%
10 |peliverystart | 1448 | 095%
M |Palletstate:repack] 1433 | 094%
12 |palletstate:banned | o4 | 018%
13 |palletstate:ok | 152 | 010%
1% | Deliveryvolumechange | 07 | 0.07%
1> |Palletstatecopen | 07 | 007%
15 |palletindelivery | I 005%

1r. Pallet deleted 76 0.05%

Despite the fact that the delivery process is performed within one organization,

the organization

of the warehouse operation

(cf. Sections 2.1, 2.2, and 5.4.1):

follows

the

characteristics of VO

The set of VO members includes: storekeepers, quality department employees, groups

and shifts of storekeepers and quality department employees;

The set of service interface descriptions used by the VO members is the set of services
provided by the WMS system modules that are interchangeably used during execution
of activities;
The set of relations among the VO members encompasses: (1) relations among people,
i.e., relations of belonging to a particular day, afternoon or night shift, and relations of
belonging to the unpacking, production or quality group; (2) relations among services,
i.e., relations of being provided by the same WMS module;

152

e Collaboration is guided by the delivery process having all the characteristics of a VO
collaborative process:

o Large diversity in assignments of storekeepers and WMS module services to
activity instances;

o Unstructured character of the delivery process;

o The set of storekeepers and services as well as their roles change during
delivery process instance executions;

o Similar instances of a delivery process are interrelated;

o The delivery process has unpredictable and emergent character.

e Virtual organization members are largely autonomous, separately managed, differently
situated in the Epsilon organizational structure, have heterogeneous culture, social
capital and goals;

e Collaboration within VO is performed on demand of the Production Department that
is a VO client.

Thus, the problem of identification of storekeepers, storekeeper groups and shifts,
investigated by Epsilon that would increase efficiency of delivery process is indeed
the problem of partner and service selection for VO. Consequently Epsilon company, like
SOVOBE, provides technical and organizational infrastructure supporting collaboration of
such VO.

Experiments

Further in this section, four experiments are presented. Experiments A and B refer to
discovery of activity patterns. Experiments C and D refer to recommendation formulation.
This representative set of experiments permits to analyze the impact of parameter values on
the quantity of results generated by the RMV method. As an example, one of discovered
activity patterns is described in detail. The section is concluded with the list of business-level
recommendations formulated by interpretation of identified activity patterns. These
recommendations address questions from Tab. 6.5. They were successfully applied by
the production company Epsilon to improve the delivery process.

Experiments A and B

Parameter values used in Experiment A and Experiment B are presented in Tab. 6.10.
The parameter sets are subsets of parameters presented in Section 5.6. The set of parameters
used in Experiment A supports discovery of the activity patterns having the largest possible
number of activity descriptions. The parameters set in Experiment B aims at discovery of a set
of activity patterns having high diversity of contexts. Discovered activity patterns are then
shorter, but they support more parts of delivery process execution.

Values of Duration constraint, Gap constraint and Maximum timestamp constraint
parameters are the same in both Experiments A and B.

Values of other parameters in Experiment A state that:

e The analyzed set of activity instance description attributes encompasses all the 14
relevant attributes from Tab. 6.6;

e The minimum number of attributes that must describe an activity in an activity pattern
Is set to 4; this constraint makes the discovered activity patterns more information rich
and meaningful in comparison with activity patterns with a smaller number of

153

attributes in activity descriptions; this constraint reduces the number of discovered
activity patterns;

e Only activity patterns having no less than 15 activity descriptions are considered;

e Presented results are discovered for required support level equal to 0.2;

e No constraint is set on maximum sequence length;

e No constraint is imposed on attribute names that must be present in each activity
description from an activity pattern.

In Experiment B:

e Maximum sequence length is set to 25; this constraint imposed on maximum sequence
length boosts the number of discovered activity patterns;

e Two activity instance attributes are removed from the set of analyzed attributes:
RecommendationDone and AdminName attributes — the set of attributes is limited to
12;

e The set of obligatory attributes for each activity pattern is set to identifiers of service
consumer (SC), service provider (SP) and service interface (Sl); only activity patterns
with defined full set of actors should be discovered:;

e The minimum number of activity instance description attributes is increased to 6;

e The required support is increased to 0.25.

Tab. 6.10. User-defined parameters for Experiments A and B

lp. | Parameter name | Experiment A | Experiment B
Event attributes
1. | Scope and types of activity instance description | 14 12
_________ attributes
__2._| Minimum activity instance description length | T AL 6 .
3. | Obligatory attributes - S, SP, SC
Constants
1. | Duration constraint 1209 600 000 ms 1209 600 000 ms
___ (336hours) | (@36hours)
2 Gap constraint 172 800 000 ms (48 hours) | 172 800 000 ms (48
hours)
3. | Maximum timestamp constraint |- 2013/05/26 23:59:00.000 __ | 2013/05/26 23:59:00.000 _
__A._| Minimum sequence length constraint | I 1S
__5._| Maximum sequence length constraint | | 25
6. | Required activity pattern support level 0.2 0.25
(290 process instances) (262 process instances)

In Experiment A, the total number of discovered closed activity patterns is 1079,
The maximum support for an activity pattern is 0.33. There are 53 different activity patterns
having the maximum support. There are 12 maximum activity patterns with maximum length
of 47 activity descriptions. The highest support of maximum activity pattern is 0.2. Average
pattern length is 24.8.

In Experiment B, the total number of discovered closed activity patterns is 1360. This number
is larger than the number of activity patterns discovered in Experiment A, but activity patterns
are shorter on average. Average pattern length is now 16.8. The maximum support for activity
pattern is 0.3. There are 71 different activity patterns having such support. There are 21
activity patterns having maximum allowed length. The highest support of the maximum
activity pattern is 0.24.

154

Experiments C and D

Values of parameters for Experiments C and D are presented in Tab. 6.11. In particular,
the parameterization of the RMV method in Experiments C and D included definition of
the following functions: context distance functions, function mapping context to context class,
function mapping recom_index and nonrecom_index values. The functions used in
the Experiments C and D are simple but powerful enough to formulate relevant
recommendations. In other experiments that are not described in this section due to limited
space, many more advanced functions were used to answer Distribution and Warehouse
Manager questions.

Tab. 6.11. User-defined parameters for experiment C and D

lp. | Parameter name | Experiment C | Experiment D
Event attributes
(L] Activity instance contextscope | Al A
2. Process instance attributes scope All, ProcessResult All, ProcessResult
Functions
(L] Contextdistance function | Functionname:eval | | Function name: eval
2. Function mapping context to context | Function name: context C Function name: context_D
class
3. recom_index and nonrecom_index | Function name: max_dur Function name: max_dur
calculation Cost attribute: Timestamp Cost attribute: Timestamp
Constants
L] Classification groupsize | 300 100 .
2 | Deta | 300000 (5min)] 300000 (Bmin)
3. Minimum accepted sensitivity 30% 30%

In Experiments C and D, the set of activity instance context attributes includes all the context
attributes from Tab. 6.7. The set of attributes describing process instances includes attributes
from Tab. 6.8. The name of the outcome attribute is ProcessResult.

In Experiments C and D, the context distance function eval is the same. The function
compares elements of context class and context (cf. Section 5.4.2) using a subfunction for
each element. The set of subfunctions for each context element (PID, EC, H, SE, S —
cf. Section 5.4.2) is as follows:

e PID - if all the context element constraints from a context class referring to attributes
of the process instances are satisfied, the subfunction returns 0, otherwise 1;

EC — if at least half of the event context element constraints from a context class
referring to event attributes are satisfied, the subfunction returns 0, otherwise 1,

H — if all the events indicated in a context class already appeared in the partial trace of
the process instance, the subfunction returns 0, otherwise 1;

SE — if all the constraints concerning the frequency of appearance of actors are
satisfied, the subfunction returns 0, otherwise 1;

e S —this context element is ignored in the analysis, the subfunction always returns 0.

Values returned by the subfunctions are then summarized. The value of the eval function
returned for a given context class and the activity pattern context is between 0 and 4, where
the smaller the value the more similar context and context class are.

In Experiments C and D, values of recom_index and nonrecom_index are calculated based on
the max_dur function. Function max_dur takes a delivery process instance as an argument and

155

returns the time that was required to execute the delivery process instance. Calculation is
based on Timestamp attributes of each event. Having a set of activity pattern contexts enabled
for the context class, the value of recom_index is calculated as a sum of max_dur function
results calculated for all the delivery process instances supporting the activity pattern in
the set of enabled activity pattern contexts. Similarly, the value of nonrecom_index is
calculated as a sum of max_dur function results returned for all the delivery process instances
that support activity patterns different from the activity pattern in the set of enabled activity
pattern contexts.

In Experiments C and D, the value of delta parameter is set to 5 minutes. Minimum accepted
sensitivity is set to 70%.

Experiments C and D are different in terms of functions denoting context class for a given
context, and classification group size.

In Experiment C, the context C function transforms context of running delivery process
instance to a very general context class. In Experiment C, the recommendation was requested
for the following context co:

co={PID=

((ProcessResult, Unknown), {PurchaseValueDPS,150 000),,]
(ArticlesOrdered, M1/90), (ArticlesDelivered, M1),
4 (ArticleVolume, 90), (SupplierName, XXZ),{OrderDate,2013/02/01 08: 55:27.247),, E
l (OrderMonth, February),(LabelSumQty, 36), (NoDamagedPallets, 0), J
(PalletsVsLabelQty, Full),(LabelsToErase, 0),

EC=
(Warehouse, Base Warehouse), (Shift, Morning), (StockLevel, 55%),
{ (Month, February) }
H=
Delivery start, Label printing, Qualityceck, Pallet created,
Pallet state: ok, Pallet on fork, Delivery close, Pallet resting,
Pallet created, Pallet on fork, Pallet resting
SE =
{{mmar, 2), {(mtom, 5), (kset, 3)}

S=

{Pallet resting, Pallet created, Pallet on fork} }

The context_C function transforms attributes associated with each context element (PID, EC,
H, SE, S) to context constraints and maps the context co to the following context class co_C*:

co_C*={PID=

{(ProcessResult, = OK),(OrderMonth, 3 {January, February, M arch}),}
(ArticlesDelivered,> {M1, M2}),(SupplierName, > {XXZ,XYZ})

EC =
(Warehouse, = Base Warehouse), (Shift,3 {Morning, Afternoon, Night}),
{ (Month, February),(NoDamagedPallets, < 10) }
H=¢
SE =
{{mmar, > 0), (mtom, > 0), (kset, > 0)}
S=0¢ }

156

Note that during mapping, some attributes of the context elements are ignored and all
the context element values are replaced with predicates.

Finally, in Experiment C, the classification group size is set to 50, i.e., only activity instances
appearing in one of 50 contexts that are the most similar to the context class according to
the value of the eval function are considered for recommendation.

In Experiment D, the function mapping context to context class and classification group size
are changed. Function context D maps context co to the following context class co_D*:

co_D* ={PID =
(ProcessResult,= OK),(OrderMonth, 3 {January, February}),
(ArticlesDelivered,> {M1}),(SupplierName, > {XXZ,XYZ}),
(NoDamagedPallets, < 10)
EC=
{(Warehouse, = {Base Warehouse}), (Shift,= {Morning}), (StockLevel, > 55%),}
(Month, February)
H=
Delivery start, Label printing, Qualityceck, Pallet created,
Pallet state: ok, Pallet on fork, Delivery close, Pallet resting,
Pallet created, Pallet on fork, Pallet resting
SE =
{{mmar, > 0), (mtom, > 0),{kset,> 0)}
S=¢ }

Note that the context class co_D* more precisely defines constraints on activity pattern
contexts than the context class co_C* from Experiment C. The classification group size is
limited to 100. Only activity instances appearing in one of 100 contexts that are the most
similar to the context class are considered for recommendation.

To determine the set of enabled activity pattern contexts in both Experiments C and D, 3022
different activity pattern contexts were compared with the context classes. This means that on
average, each activity pattern appears in 6 contexts.

In Experiment C, on the basis of values returned by the context_sim funtions, 300 activity
patterns were classified as enabled. These 300 contexts correspond to 196 activity patterns
that were further analyzed for recommendation. The highest number of contexts from the set
of enabled contexts that belong to one activity pattern was 25. On the other hand, in the set of
enabled contexts, one context was common for 18 enabled activity patterns. From the set of
196 activity patterns, 31 were excluded from being considered for recommendation due to
their sensitivity lower than assumed minimum. Maximum recorded values of sensitivity and
specificity were 65% and 54% respectively. The minimum recorded weighted context
distance was 0.5. The values of recom_index and nonrecom_index for the activity pattern with
the highest sensitivity value were 16 days and 12 days, respectively. This means that it is not
worth to follow this activity pattern because recom_index is greater than nonrecom_index.
Thus, the benefit of following this activity pattern is negative. The largest calculated benefit
from following an activity pattern, calculated as a difference between recom_index and
nonrecom_index, was: 5 days. The activity pattern with the largest benefit has, however,
higher weighted context distance.

157

In Experiment D, the number of activity patterns that appear in the set of 100 enabled contexts
is 100. Thus, each enabled activity pattern has a different enabled context, but all the contexts
are very similar to each other. This is the result of more strict constraints used in this
experiment (cf. Tab. 6.11). Minimum recorded weighted context distance is 1,1. In the set of
enabled activity patterns, the differences between potential benefits are very small. On
the other hand, there is large diversity in sensitivity and specificity values of enabled activity
patterns.

Final findings

An example of a discovered activity pattern is presented in Fig. 6.23. The activity pattern was
enabled for context class co_C*. For the sake of simplicity, relatively small activity pattern is
presented in Fig. 6.23, i.e., constraints used during activity pattern discovery concerning
minimum sequence length are dropped. The activity pattern encompasses Six activity
descriptions I, 11, 111, 1V, V, VI. Each activity description has one service description assigned.
Elements of each service description have classes of service entities assigned coming from
the service network schema. Note that not all the elements of service descriptions have classes
of service entities assigned. Some classes of service entities define characteristics of service
entities, e.g., the class of service interface assigned to the service description of activity
description I means that a service provider required for execution of this activity must be
the WMS system module administrated by rros. There is a set of empty classes of service
descriptions that do not impose any requirements on service entity attributes but, on
the contrary, require some particular service relations, e.g., service consumer from the activity
description I must be the same unpacking group and day shift as the service consumer from
the activity description Il. Majority of classes of service entities from the service network
schema have service entities assigned from the service network. Note that service
requirements denoted SP* and service relations denoted SP indicate provides/is provided by
relation among service interfaces and service providers. Note an interesting case of activity
description I11. Service entities required for execution of activity Ill are unknown. The only
known thing about activity 11 is that it follows activity 1, proceeds activity 1V, and a service
consumer assigned to activity 111 should be in group Both as service consumer kkuj assigned
to activity V. The activity pattern has the following credibility characteristics:

e Difference between recom_index and nonrecom_index values is (cdif value): 40 hours
(2 days 16 hours);

Sensitivity: 75%;

Specificity: 71%;

Weighted context distance: 0.5;

Support: 31%;

The activity pattern characteristics confirm that this activity pattern is credible and should be
followed.

158

©
5 <
2% o i I v <V VD
] oo
it
2
8
2
;.:; % .scA Sly | SPa Sl | SPy Sle Sl SCe | Sle | SPe Sle
o
Q\Group: Both\O/Group: Unpacking/o
~ o shift: D?Ck'\ng/O System: WMS
3 g £ Group: UnP o/ Privilages: Manager
2 2 System: WMS 3
2) : S
3 L8 PalletArticles: M1 SP“’@ @ QualityControl
= Results: 0 o
SP
PalletArticles:M1 Spe. System: WMS
Privilages: storekeeper
Activity: Delivery vty Activity: ModuleName:
Activity: Label Quality chec SP Management
~ printing - -
_&'] NN Activity: Deliver
23 close
38

Resource:
mman

ModuleName:
Inventory

oduleName?
Delivery

: R :
Resource: kkuj Group: Unpacklng

Fig. 6.23. An example of a discovered activity pattern

SP: Activity: Delivery
anfirmation documen

Identification of the above activity pattern results in the following recommendation:

e If the aim is to limit the time required for the overall delivery process execution and if
the delivered materials are M1, the process instance execution should be started by
mman employee using Delivery start service provided by the Inventory module of
the WMS system. The second activity should be executed using Label printing service
provided by the Inventory module. The activity should be followed by some activity
performed by the service consumer coming from the same Both group as service
consumer kkuj using Delivery close service in execution of activity V. For activity 1V,
Delivery close service should be provided by the Delivery module of the WMS
system. Data associated with this activity should be saved in the database using
storekeeper security role. Activity 1V should be followed by Kkuj service consumer
using Quality check service provided by the Management module to execute this
activity. Kkuj is in unpacking group together with mrob service consumer from
activity VI. Activity VI requires the use of Delivery confirmation document service
provided by the unknown WMS module.

In a similar way other business-level recommendations were formulated and presented to
company Epsilon. Note that the above example of recommendation is very detailed.
In practice, after the analysis of numerous activity patterns, recommendations are generalized
and simplified to be applicable in the warehouse operation, i.e., too detailed recommendations
are difficult to comprehend and thus to apply by the Distribution and Warehouse Manager.
The subset of generalized recommendations given to company Epsilon is presented in Tab.
6.12.

Tab. 6.12. Recommendations formulated using the RMV method

l.p. Aspect Questions
1. | Quality e If complaints concern M2, M3, M1 materials, it is recommended to
assurance involve msob, hwit, mmen, kgrz storekeepers to handle these

complaints together on a day shift;

e If complaints concern M4, M5, M6 materials, it is recommended to
involve hwit, mmen, ptur, iszu, mbaj, mkuj storekeepers to handle

ol .| thesecomplaints together onadayshift,
2. | Palletdamage | e It is always recommended not to include ptur storekeeper in
the production group on the night shift;

e It is always recommended to limit the number of storekeepers
involved in the delivery process instance execution;

e If the Pallet state: banned activity is executed, it is recommended
to execute Pallet on fork and Pallet resting activities by mmar or
mmah storekeepers, where the pallet is put on storage area reserved

o] fordamagedpallets,
3. | Process e If the delivery process instance is executed on a night shift, the

performance Quality check should be performed after the truck is fully
unpacked; moreover, all the pallets should be checked within one
shift by people form the quality group;

e If the delivery process execution is performed on the night shift
with high stock levels, it is not recommended that activities are
executed by storekeepers assigned both to the unpacking and
production groups;

e It is always recommended to execute phases 3 and 4 of the delivery
process in parallel;

e It is always recommended to eliminate multiple quality checks
performed by the quality group throughout the delivery process
instance execution;

e It is always recommended to eliminate delivery confirmation
document printing at the early stages of delivery process instance
execution;

e It is always recommended to eliminate multiple executions of
the Delivery close activity within one process instance;

eIt is always recommended to perform Quality check of all
the materials before moving any pallet to a production line;

4. | Work e If the delivery process instance is executed on an afternoon or night

distribution shift and if the delivery concerns materials used in production of
product type X, it is recommended not to put jsaw and mkuj
storekeepers on the same shift;

e There is an unwanted frequent activity pattern including the
following sequence of activities: Pallet created, Pallet on fork,
Pallet resting, Pallet on fork, Pallet in delivery, Pallet on fork,
Pallet rest; this pattern indicates that the pallet is unnecessarily
taken from a delivery line to the warehouse and later returned to the
delivery line to be finally transported to the warehouse for the

_________________________________ second time; the pattern appears independently from the context.
5. | Conformance | e Unwanted execution of the Delivery volume change activity

to de jure| typically takes place if the delivery is associated with WZX supplier

model and the number of LabelsToErase is greater than zero; the Delivery
volume change activity is typically performed after the Quality

Check activity.

Note that recommendations include aspects concerning service relations that should appear
among storekeepers (e.g., assignment to a group or shift), characteristics of actors (e.g.,
material families transported on pallets), set of activities to be executed, assignment of actors
to activities, information concerning process instance characteristics, activities proceeding
activity patterns execution and finally potential benefit of following the recommendations.
Note also that some discovered activity patterns and formulated recommendations are not
limited to a particular context.

Discovered activity patterns and formulated contextual recommendation helped the Epsilon
company in identification of storekeepers, storekeeper groups, shifts and their practices that
increase or reduce efficiency of the warehouse operation. RMV method results were used in
further investigation of reasons explaining the appearance of indicated activity patterns.
This led to a number of actions undertaken by the company including: reassignment of
responsibilities among warehouse employees, changes is distribution of work among shifts,
trainings of storekeepers and quality department employees, and WMS system re-
configuration.

161

7. Conclusions

The Recommendation Method for Virtual Organizations RMV presented in this dissertation
provides a solution to the problem of computer support for unstructured, emergent and
unpredictable VO collaborative processes through recommendations of activity patterns based
on contexts.

Four ideas are the basis of the RMV method. First, VO collaborative event logs contain
information about interactions among collaborators that appear during executions of various
VO collaborative process instances. Second, contexts influence behavior of collaborators.
Third, frequently repeatable collaborators’ behavioral patterns, called activity patterns, can be
discovered through analysis of data stored in the VO collaborative events logs.
Forth, discovered activity patterns can be evaluated as good or bad practices and then used in
other instances of VO collaborative process instances to improve their efficiency.

The RMV method is composed of four parts: activity sequence pattern discovery method,
activity pattern identification method, recommendation formulation method and activity
pattern instantiation method. Each of these methods offers a value by itself, but combined
together constitute an approach that provides efficient support for execution of VO
collaborative process instances and satisfies nine requirements for computer support for VO
collaborative processes presented in Section 5.1: (1) guidance for process instance execution,
(2) support for conformance analysis, (3) support for adaptation and flexibility, (4) descriptive
model, (5) computer supported approach, (6) collaborative wisdom, (7) reusability,
(8) social aspect and context, and (9) continuous instantiation.

The RMV method maximizes the scope of guidance for VO collaborative process execution
by recommendation of activity patterns suitable for the current context of VO collaborative
process (requirement 1). Though the RMV method generates a list of best matching activity
patterns, the final selection of an activity pattern to be included in VO collaborative process
instance execution is up to a group of selecting collaborators (requirement5). Activity
patterns include not only specification of partially ordered set of activities to be performed as
the next ones in the VO collaborative process instance, but also indicates expected relations
among service entities, their characteristics and assignment to activities (requirement 8).

A recommendation may be requested at any moment of VO collaborative process instance
execution. The recommendation concerns the set of activities suitable for the current context.
Once context changes and a new recommendation is requested, the set of presented
recommendations is in general different (requirement 8). Such context-awareness supports the
adaptation of the VO collaborative processes to changing environment. Due to context

162

awareness and the fact that activity patterns encompass a set of activities to be performed in
the nearest future, the RMV method allows collaborators to change planned set of activities if
it is required by a context change. Thus, the RMV method offers user guidance at little cost of
flexibility of a VO collaborative processes instance execution (requirement 3).

Recommended activity patterns are descriptive, not prescriptive (requirement 4), i.e., activity
patterns do not represent assumptions concerning collaborators’ behavior, but capture real and
actual repeatable patterns of collaborators’ behavior. Activity patterns discovered in one VO
collaborative process instance can be reused in other VO collaborative process instances by
other collaborators (requirement6 and 7). Recommendation mechanism encompasses
recommendation monitoring which validates the willingness of collaborators to follow
recommendations (requirement 2). Outcomes of recommendations monitoring are used during
formulation of the next recommendations. Activity patterns that had been recommended to the
group of collaborators, but were not followed by the group, are excluded from the future
recommendations. Similarly, if monitoring captures the fact that the group of collaborators
consequently follows activity patterns discovered in VO collaborative process instances
executed without their participation, such activity patterns are promoted during
recommendation formulation (requirement 6).

Finally, the RMV method supports continuous instantiation of VO collaborative processes
such that the selection of service entities is performed throughout the VO collaborative
process instance execution every time a particular activity patterns is selected to be followed
(requirement 9). Selection of collaborators and services is based on criteria relevant to
collaborative processes including collaborator and service features and service
requirements (requirement 8).

The RMV method goes beyond the existing methods of recommendation based on process
mining by providing recommendations for processes that are unstructured, emerging and
unpredictable. Moreover, recommendation does not encompass information only about one
activity that should be executed as the next one, but it encompasses a set of partially ordered
activities enriched with information concerning desired collaborators, their features and
character of service relations among them.

The application of the RMV method to the real case data presented in Section 6.5 shows that
the RMV method permits formulation of non-trivial, accurate recommendation that are very
relevant for a given business context and a particular VO collaborative process. Classes of
service entities and service requirements discovered as a part of each recommended activity
pattern provide credible information concerning success factors guiding collaboration.
Knowledge concerning these factors leads to selection of service entities that are able to
execute VO collaborative process instances more efficiently.

163

The main achievements of this dissertation are the following:

e ldentification and evaluation of existing partner and service selection methods in
the area of collaborative networked organizations and service-oriented architecture in
terms of application to VO collaborative process instantiation (Section 2);

e ldentification and evaluation of existing activity recommendation methods in
the fields of process-aware information systems, context-aware recommender systems
and process mining (Section 3 and 4);

e Formal definition of VO collaborative process, activity pattern, activity pattern context
and collaborative process event log (Section 5.4);

e Development of the activity pattern discovery and identification method that permits
extraction of activity patterns and their contexts from a collaborative event log
maintained by a process-aware information system (Sections 5.5.1 and 5.5.2);

e Development of the method of formulation of recommendations of activity patterns
for VO collaborative process executions, where a recommendation is based on
the current context of VO collaborative process and activity pattern contexts
(Section 5.5.3);

e Development of the activity pattern instantiation method that permits selection of
missing actors and service interfaces for activity patterns discovered on the abstract or
prototype level; the selection of partners and services is performed within SOVOBE
constantly throughout the VO lifecycle (Section 5.5.4);

e Implementation of a prototype of the RMV method composed of the Operational
Support Service, Recommendation Manager, Recommendation Monitor, MatchMaker
Module, Process Miner Module, Event log Module and Operational Support for
Clients Module (Section 6.1);

e Example integration of the prototype of the RMV method with the process-aware
information system named ErGo used to support collaboration in the construction
sector (Sections 6.2, 6.3 and 6.4);

e Example application of the RMV method to analysis of event log data from a
production company, leading to non-trivial, valuable recommendations for
Distribution and Warehouse Manager (Section 6.5).

The RMV method is characterized by two important features: extendibility and independence.
Its extendibility relies on flexible definition of a set of attributes and functions used during
activity pattern discovery and recommendation. Different sets of attributes useful in
a particular domain or application can be used to describe service entities, service relations,
and VO collaborative process instances event contexts. Sophistication of the functions is up to
the RMV method user. Such an approach permits both rough and very refined analysis of
event logs. The RMV method is independent of a particular type of VO collaborative process
or type of process-aware information systems. The RMV method can be applied to analysis of
any event log that follows the characteristics of collaborative event log. Such independence
makes the RMV method applicable to different collaborative process requirements and
different business environments. Besides application in the production company (Section 6.5),
it is currently under application to analyze document flow processes in Wielkopolska
Voivodship Office in Poznan.

Results described in this dissertation were partially presented during “Unleashing Operational
Process Mining” Daghstul seminar® organized by the IEEE Task Force on Process Minings,

15 “Unleashing Operational Process Mining”, Dagstuhl seminar,

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=13481
164

the World Business Congress organized by the International Management Development
Association (Paszkiewicz & Cellary, 2011), two IFIP Working Conferences on Virtual
EnterErises (PRO-VE) (Paszkiewicz & Picard, 2010) (Paszkiewicz & Picard, 2009),
the 6" International ~ Conference on Theory and Practice of Electronic
Governance (Paszkiewicz & Cellary, 2012), the 15th International Conference on Computer
Supported Cooperative Work in Design (CSCWD) (Paszkiewicz & Picard, 2011) and two
PhD Consortia organized during the Business Information Systems conference (BIS 2013)v
and East-European Conference in Advances in Databases and Information Systems
(ADBIS 2012) conference 2. The RMV method applications were also published in Journal of
Transnational Management (Paszkiewicz & Cellary, 2012) and two book chapters (Picard, et
al., 2014) (Picard, et al., 2010). The importance of social network analysis in business process
mining was demonstrated in (Paszkiewicz & Picard, 2013)

Discovery and recommendation of activity patterns opens new research directions. Interesting
is a possibility of analysis of mutual influence of social networks on process structures and
vice versa. This is possible as activity patterns discovered in the RMV method combine two
important perspectives on the process: control flow perspective and social perspective.
The analysis of mutual impact of interdependent process perspectives on each other is a new
and promising research direction that has not yet been explored. Works in this area require
extension of the RMV method. Such extension would include simulating and predicting
the influence of changes made in one perspective on the structure and characteristics of the
other perspective. Analyzed exemplary characteristics of social network perspective include
network resilience and integrity. Exemplary characteristics of control flow perspective include
process effectiveness or structures of dependencies among activities. Such method would be
an important step-ahead in analysis of team dynamics, selection and management of teams
and groups of organizations with potential application is various fields, including construction
process management and smart cities.

IEEE Task Force on Process Mining, www.win.tue.nl/ieeetfpm/

PhD Symposium co-located with 16th International Conference on Business Information Systems (BIS 2013),
http://bis.kie.ue.poznan.pl/16th_bis/phd2013.php

Ph.D. Consortium co-located with 16th East-European Conference in Advances in Databases and Information Systems,
http://adbis.cs.put.poznan.pl/call phd_consortium.php

165

166

Bibliography

Aalst, W., 2004. Discovering Coordination Patterns Using Process Mining. Bologna, Italy,
Springer, pp. 49-63.

Aalst, W., 2006. Process Mining and Monitoring Processes and Services: Workshop Report.
Dagstuhl, Germany, Dagstuhl: Internationales Begegnungs- und Forschungszentrum fiir
Informatik.

Aalst, W., 2009. TomTom for Business Process Management (TomTom4BPM). Amsterdam,
The Netherlands, Springer-Verlag, p. 2-5.

Aalst, W., 2011. Process Mining. Discovery, Conformance and Enhancement of Business
Processes. : Springer.

Aalst, W., 2013. Service Mining: Using Process Mining to Discover, Check, and Improve
Service Behavior. IEEE Transactions on Services Computing, 6(4), pp. 525 - 535.

Aalst, W., De Beer, H. & Van Dongen, B. F., 2005. Process Mining and Verification of
Properties: An Approach based on Temporal Logic. Agia Napa, Cyprus, Springer-
Verlag.

Aalst, W. et al., 2009. ProM: The Process Mining Toolkit. UIm, Germany, CEUR-WS.org.

Aalst, W. M. P., 2004. Business Process Management: A Personal View. Business Process
Management Journal, 11(10).

Aalst, W. M. P., Hofstede, A. H. M. & Weske, M., 2003. Business Process Management: a
Survey. Berlin/Heidelberg, Springer-Verlag, p. 1-12.

Aalst, W. M. P., Weske, M. & Wirtz, G., 2003. Advanced Topics in Workflow Management:
Issues, Requirements, and Solutions. Journal of Integrated Design & Process Science,
7(3), p. 49-77.

Aalst, W., Pesic, M. & Schonenberg, H., 2009. Declarative Workflows: Balancing Between
Flexibility and Support. Computer Science - Research and Development, 11(23), p. 99—
113.

Aalst, W., Pesic, M. & Song, M., 2010. Beyond Process Mining - From the Past to Present
and Future. Proceedings of the 22nd International Conference on Advanced Information
Systems Engineering, pp. 38-52.

Aalst, W., Reijers, H. & Song, M., 2005. Discovering Social Networks from Event Logs.
Computer Supported Cooperative Work, 14(6), pp. 549 - 593.

Aalst, W. et al., 2009. Process Mining: a Two-Step Approach to Balance Between
Underfitting and Overfitting. Software and Systems Modeling, IX(1), pp. 87-111.

Aalst, W., Schonenberg, M. & Song, M., 2011. Time Prediction Based on Process Mining.
Information Systems, 11(36), p. 450-475.

Aalst, W., Weijters, T. & Maruster, L., 2004. Workflow mining: discovering process models
from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), pp.
1128-1142.

Abowd, G. et al.,, 1997. Cyberguide: A mobile Context-Aware Tour Guide. Wireless
Networks, V(3), pp. 421-433.

Abowd, G. et al., 1999. Towards a Better Understanding of Context and Context-Awareness.
London, UK, Springer-Verlag, pp. 304-307.

Abramowicz, W., 2008. Filtrowanie informacji. Poznan: Poznan University of Economics
Press.

167

Abramowicz, W., Haniewicz, K., Kaczmarek, M. & Zyskowski, D., 2008. E-marketplace for
Semantic Web Services. Berlin/Heidelberg, Springer, p. 271-285.

Adomavicius, G., Sankaranarayanan, R., Sen, S. & Tuzhilin, A., 2005. Incorporating
Contextual Information in Recommender Systems Using a Multidimensional Approach.
ACM Transactions on Information Systems, 1(23), pp. 103-145.

Adomavicius, G. & Tuzhilin, A., 2005. Toward the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions
on Knowledge and Data Engineering, XV1I(6), pp. 734-749.

Adomavicius, G. & Tuzhilin, A., 2008. Context-Aware Recommender Systems. New York,
NY, USA, ACM, pp. 335-336.

Adomavicius, G. & Tuzhilin, A., 2008. Context-Aware Recommender Systems. New York,
NY, USA, ACM, pp. 335-336.

Agrawal, R. & Srikant, R., 1995. Mining sequential patterns. Washington, DC, USA, EEE
Computer Society, pp. 3-14.

Akman, V. & Surav, M., 1996. Steps Toward Formalizing Context. Al Magazine.

Akman, V. & Surav, M., 1997. The Use of Situation Theory in Context Modeling.
Computational Intelligence, 13(3), pp. 427-438.

Almeida, T., Vieira, S. & Casanova, M., 2004. Flexible Workflow Execution Through an
Ontology-based Approach. Vancouver, Canada, Springer.

Anand, S. & Mobasher, B., 2007. Contextual Recommendation. WebMine, Issue 4737, pp.
142-160.

Anderson, J., 2009. Cognitive Psychology and Its Implications. Seventh Edition ed. : Worth
Publishers.

Arazy, O., Kumar, N. & Shapira, B., 2009. Improving Social Recommender Systems. IT
Professional, IV(11), p. 38-44.

Barba, 1., Weber, B. & Del Valle, C., 2012. Supporting the Optimized Execution of Business
Processes Through Recommendations. Clermont-Ferrand, France, Springer, pp. 135-
140.

Barney, J., 1991. Firm Resources and Sustained Competitive Advantage. Journal of
Management, 1(17), p. 99-120.

Barros, A., Dumas, M. & Bruza, P., 2005. The Move to Web Service Ecosystems. [On-line]
Available at: http://www.bptrends.com/publicationfiles/12-05-WP-
WebServiceEcosystems-Barros-Dumas.pdf
[Accessed 19 October 2012].

Bazire, M. & Brézillon, P., 2005. Understanding Context Before Using It. Volume 3554, pp.
113-192.

Berry, M. & Linoff, G., 1997. Data Minig Techniques: for Marketing, Sales, and Customer
Support. New York, NY, USA: John Wiley & Sons.

Bettini, C. et al., 2010. A Survey of Context Modelling and Reasoning Techniques. Pervasive
and Mobile Computing, 2(6), pp. 161-180.

Bettman, J., Luce, M. & Payne, J.,, 1991. Customer Decision Making: a Consecutive
Perspective., pp. 1-42.

Bichler, M. & Lin, K., 2006. Service-Oriented Computing. Computer, p. 99-101.

Bose, J. & Aalst, W., 2009. Context-aware Trace Clustering: Towards Improving Process
Mining Results. Sparks, Nevada, USA, SIAM, pp. 401-412.

Brendel, R. & Krawczyk, H., 2008. Application of Social Relation Graphs for Early Detection
of Transient Spammers. WSEAS Transactions on Information Science and Applications,
V(3), pp. 267-276.

168

Brendel, R. & Krawczyk, H., 2010. Static and Dynamic Approach of Social Roles
Identification Using PISNA and Subgraphs Matching. Taiyuan, IEEE Computer
Society, pp. 557 - 560.

Bridge, D., Goker, M., McGinty, L. & Smyth, B., 2006. Case-Based Recommender Systems.
The Knowledge Engineering review, I11(20), p. 315-320.

Brown, P. & Jones, G. J. F., 2002. Exploiting Contextual Change in Context Aware Retrieval.
NY, USA, ACM New York, pp. 650-656.

Burke, R., 2002. Hybrid Recommender Systems: Survey and Experiments. User Modeling
and User-Adapted Interaction, XI1(4), pp. 331 - 370.

Burke, R., 2007. Hybrid Web Recommender Systems. In: P. Brusilovsky, A. Kobsa & W.
Nejdl, eds. The Adaptive Web. Berlin/Heidelberg: Springer , p. 377-408.

Camarinha-Matos, L., Afsarmanesh, H. & Ollus, M., 2008. ECOLEAD and CNO Base
Concepts. Methods and Tools for Collaborative Networked Organizations, p. 3-32.

Camarinha-Matos, L. et al., 2007. A Computer-Assisted VO Creation Framework. Guimaraes,
Portugal, Springer, pp. 165-178.

Canfora, G., Di Penta, M., Esposito, R. & Villani, M., 2005. An approach for QoS-aware
service composition based on genetic algorithms. New York, NY, USA, ACM, pp.
1069-1075.

Cantador, 1. & Castells, P., 2009. Semantic Contextualization in a News Recommender
System. , ACM.

Carolis, B., Mazzzotta, 1., Novielli, N. & Silvestri, V., 2009. Using Common Sense in
Providing Personalized Recommendations in the Tourist Domain. New York, NY,
USA, ACM.

Cellary, W., 2006. Sieciowe organizacje wirtualne w sektorze matych 1 $rednich
przedsigbiorstw. In: P. Adamczewski & J. Stefanowski, eds. Nowoczesne systemy
informatyczne dla matych i srednich przedsigbiorstw. Poznan, Poland: Wydawnictwa
Wyzszej Szkoty Bankowej, pp. 13-24.

Cellary, W., 2009. Networked Virtual Organizations: A Chance for Small and Medium Sized
Enterprises on Global Markets. Nancy (France), Springer, pp. 73-81.

Cellary, W. & Strykowski, S., 2009. E-government Based on Cloud Computing and Service-
Oriented Architecture. Bogota (Colombia), ACM Press, p. 5-10.

Cena, F. et al., 2006. Integrating Heterogeneous Adaptation Techniques to Build Flexible and
Usable Mobile Tourist Guide. Al Communications, 1V(19), pp. 369-384.

Claro, D., Albers, P. & Hao, J., 2005. Selecting Web Services for Optimal Composition.
Orlando, USA, Springer.

Crispim, J. & Sousa, J., 2007. Multiple Criteria Partner Selection in Virtual enterprises.
Guimaraes, Portugal, Springer, pp. 197-206.

Davison, B. & Hirsh, H., 1998. Predicting Sequences of User Actions. Madison, WI, USA,
AAAL Press.

Delias, P. et al., 2013. Clustering Healthcare Processes with a Robust Approach. Rome, Italy,
EURO-INFORMS.

Demirkan, H. et al., 2008. Service-Oriented Technology and Management: Perspectives on
Research and Practice for the Coming Decade. IV(7), p. 356-376.

Dey, A., 2001. Understanding and Using Context. Personal and Ubiquitous Computing, 5(1),
pp. 4-7.

Ding, H., Benyoucef, L. & Xie, X., 2003. A Simulation-Optimization Approach Using
Genetic Search for Supplier Selection. New Orleans, Louisiana, USA, IEEE Computer
Society.

169

Dorn, C., Burkhart, T., Werth, D. & Dustdar, S., 2010. Self-Adjusting Recommendations for
People-driven Ad-hoc Processes. Hoboken, NJ, USA, Springer-Verlag Berlin,
Heidelberg, pp. 327-342.

Dourish, P., 2004. What We Talk About When We Talk About Context. Personal and
ubiquitous computing, 1(8), pp. 19-30.

Do, V., Halatchev, M. & Neumann, D., 2000. A Context Based Approach to Support Virtual
Enterprises. Washington, DC, USA, IEEE Computer Society.

Drozdowski, L. et al., 2005. A Cooperative Model for Implementing Complex Virtual
Enterprises. Foundations of Computing and Decision Sciences, pp. 39-48.

Dumas, M., Aalst, W. & Hofstede, A. H., 2005. Process-Aware Information Systems:
Bridging People and Software Through Process Technology. Hoboken, NJ, USA: John
Wiley & Sons, Inc..

Ermilova, E. & Afsarmanesh, H., 2007. Competency and Profiling Management in Virtual
Organization Breeding Environments. Helsinki, Finland, Springer, pp. 131-142.

Ermilova, E. & Afsarmanesh, H., 2010. Competency Modeling Targeted on Boosting
Configuration of Virtual Organizations. Production Planning and Control. The
Management of Operations, 11(21), pp. 103-118.

Fisher, G., 2001. User Modeling in Human-Computer Interaction. User Modeling and User-
Adapted Interaction, XI(1-2), p. 65-86.

Free Dictionary, 2013. [On-line]

Available at: http://www.thefreedictionary.com/context
[Accessed 26 April 2013].

Gallon, M., Stillman, H. & Coates, D., 1995. Putting Core Competency Thinking Into
Practice. Research Technology Management, 111(38), pp. 20-29.

Ghattas, J., Peleg, M., Soffer, P. & Denekamp, Y., 2009. Learning the Context of a Clinical
Process. Ulm, Germany, Springer Berlin Heidelberg, pp. 545-556.

Golbeckm, J., 2006. Generating Predictive Movie Recommendations from Trust in Social
Networks. Pisa, Italy, Springer-Verlag, pp. 93-104.

Gonga, R. et al, 2009. Context Modeling and Measuring for Proactive Resource
Recommendation in Business Collaboration. Journal Computers and Industrial
Engineering, LVII(1), pp. 27-36.

Greenberg, S., 2001. Context as a Dynamic Construct. Human-Computer Interaction, XVI(2),
pp. 257-268.

Groh, G. & Ehmig, C., 2007. Recommendations in Taste Related Domains: Collaborative
Filtering vs. Social Filtering. New York, NY, USA, ACM, p. 127-136.

Gunther, C. & Aalst, W., 2007. Fuzzy Mining - Adaptive Process Simplification Based on
Multi-perspective Metrics. Berlin, Germany, Springer-Verlag, pp. 328-343.

Haisjackl, C. & Weber, B., 2011. User Assistance During Process Execution - an
Experimental Evaluation of Recommendation Strategies. Hoboken, New Jersey, USA,
Springer, pp. 135-145.

Hartmann, M. & Schreiber, D., 2007. Prediction Algorithms for User Actions. Silicon Vally,
USA, IEEE Computer Society, pp. 49-354.

Heierman, E. & Cook, D., 2003. Improving Home Automation by Discovering Regularly
Occurring Device Usage Patterns. Melbourne, Florida, USA, IEEE Computer Society,
pp. 537 - 540.

Herlocker, J. & Konstan, J., 2001. Content-Independent Task-Focused Recommendation.
IEEE Internet Computing, pp. 40-47.

Herlocker, J., Konstan, J., Terveen, L. & Riedl, J., 2004. Evaluating Collaborative Filtering
Recommender Systems. ACM Trans. Information Systems, XXI1(1), pp. 5-53.

170

Hornix, P., 2007. Performance Analysis of Business Processes Through Process Mining,
Eindhoven: Technische Universiteit Eindhoven.

Hwang, S., Wei, C. & Yang, W., 2004. Discovery of Temporal Patterns from Process
Instances. Computers in Industry - Special issue: Process/Workflow mining, 53(3), pp.

345 - 364.
IBM & SAP, 2005. WS-BPEL Extension for Sub-Processes. [On-line]
Available at: http://pds10.egloos.com/pds/200808/14/94/BPEL-SPE.pdf

[Accessed 30 Match 2011].

Jaeger, M. & Miihl, G., 2007. QoS-based Selection of Services: The Implementation of a
Genetic Algorithm. Bern, Switzland, IEEE Computer Society.

Jannach, D., Zanker, M., Felfernig, A. & Friedrich, G., 2010. Recommender Systems: An
Introduction. Cambridge: Cambridge University Press.

Jarimo, T. S. A., 2009. Multicriteria Partner Selection in Virtual Organizations With
Transportation Costs and Other Network Interdependencies. IEEE Transactions on
Systems, Man and Cybernetics — part C: Applications and reviews, 1(39), pp. 124-129.

Jeong, H., Néda, Z. & Barabasi, A.-L., 2003. Measuring Preferential Attachment for Evolving
Networks. Europhysics Letters, LXI(4), pp. 567-572.

Jones, G. J. F., Glasnevin, D. & Gareth, 1., 2005. Challenges and Opportunities of Context-
Aware Information Access. International Workshop on Ubiquitous Data Management,
pp. 53-62.

Koller, D. & M, S., 1996. Toward Optimal Feature Selection. Proceedings of the 13th
International Conference on Machine Learning, pp. 284-292.

Krawczyk, H. & Brendel, R., 2006. Spam Classification Methods Based on Users e-mail
Communication Graphs. istanbul, Turcja, Kadir Has Universitesi, pp. 219-229.

Leoni, M. & Aalst, W., 2013. Aligning Event Logs and Process Models for Multi-Perspective
Conformance Checking: An Approach Based on Integer Linear Programming. Beijing,
China, Springer-Verlag, pp. 113-129.

Liu, H. & Motoda, H., 1998. Feature Selection for Knowledge Discovery and Data Mining.
Kluwer Academic Publishers ed. Norwell, MA, USA: Springer.

Lombardi, S., Anand, S. & Gorgolione, M., 2009. Context and Customer Behavior in
Recommendation. New York, NY, USA, ACM.

Magnusson, M., 2004. Repeated Patterns in Behavior and Other Biological Phenomena.
Evolution of Communication Systems : A Comparative Approach, pp. 111-128.

Magnusson, M., 2005. Understanding Social Interaction: Discovering Hidden Structure With
Model and Algorithms. Volume VII, pp. 3-22.

Mahmood, T. & Ricci, F., 2007. Towards Learning User-Adaptive State Models in a
Conversational Recommender System. Halle, Germany, , pp. 373-378.

Mane, R., 2013. A comparative study of Spam and PrefixSpan sequential pattern mining
algorithm for protein sequences. Advances in Computing, Communication, and Control
Communications in Computer and Information Science, Volume 361, pp. 147-155.

McCarthy, J. & Buvac, S., 1994. Formalizing Context (Expanded notes), Stanford: Stanford
University.

Merriam-Webster On-line, 2013. [On-line]

Available at: http://www.merriam-webster.com/dictionary/context
[Accessed 26 April 2013].

Ministry of Administration and Digitization, 2012. Electronic Platform of Public
Administration Services (ePUAP). [On-line]

Available at: http://epuap.gov.pl/wps/portal/
[Accessed 19 October 2012].

171

Mitchell, M., 1998. An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT
Press.

Montali, M. et al., 2010. Declarative Specification and Verification of Service
Choreographies. ACM Transactions on the Web, 1(4), p. 1-62.

Morzy, M., 2012. An Analysis of Communities in Different Types of Online Forums. Odense,
IEEE Computer Society, pp. 341 - 345.

Morzy, M., 2013. Evolution of Online Forum Communities. In: T. Ozyer, J. Rokne, G.
Wagner & A. Reuser, eds. The Influence of Technology on Social Network Analysis and
Mining. Germany: Springer, pp. 615-630.

Morzy, M. & Forenc, K., 2013. Social Network Analysis on Highly Aggregated Data: What
Can We Find?. In: T. Morzy, T. Harder & R. Wrembel, eds. Advances in Databases and
Information Systems. Germany: Springer, pp. 195-206.

Morzy, M., Wierzbicki, A. & and Papadopoulos, A. N., 2009. Mining Online Auction Social
Networks for Reputation and Recommendation. Control and Cybernetics, XXXVI1I(1),
pp. 87-106.

Mueller, E., 2006. Production planning and operation in competence-cell based networks.
Production Planning and Control, 11(17), pp. 99-112.

Nakatumba, J., Westergaard, M. & Aalst, W., 2012. A Meta-model for Operational Support.
BPM Center Report. [On-line]
Available at: http://bpmcenter.org/wp-content/uploads/reports/2012/BPM-12-05.pdf
[Accessed 26 May 2012].

Nardi, B. A., 1995. Studying Context: A Comparison of Activity Theory, Situated Action
Models, and Distributed Cognition. Context and consciousness.

OASIS Technical Committee, 2006. Reference Model for Service Oriented Architecture 1.0.
OASIS Standard.. [On-line]

Available at: https://www.oasis-open.org/committees/download.php/19679/
[Accessed 17 5 2013].
OASIS, 2007. WS-Coordination Standard Specification. [On-line]
Available at: http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-0s/wstx-
wscoor-1.1-spec-errata-0s.html
[Accessed 19 October 2012].
Oferia.pl, 2012. [On-line]
[Accessed 19 October 2012].

Oku, K., Nakajima, S., Miyazaki, J. & Uemura, S., 2006. Context-Aware SVM for Context-
Dependent Information Recommendation. Nara, Japan, IEEE Computer Society, pp.
109-113.

Padovitz, A., Loke, S., Zaslavsky, A. & Burg, B., 2004. Towards a General Approach for
Reasoning About Context, Situations and Uncertainty in Ubiquitous Sensing: Putting
Geometrical Intuitions to Work. Tokyo, Japan, Springer.

Palmisano, C., Tuzhilin, A. & Goegogline, M., 2008. Using the Context to Improve
Predicting Modeling of Customers in Personalization Applications. IEEE Transitions on
Knowledge and Data Enginering, 11(20), pp. 1535-1549.

Panniello, U., Tuzhilin, A., Gorgoglione, M. & Palmisano, C., 2009. Experimental
Comparison Pre- vs. Post-filtering Approaches in Context-Aware Recommender
Systems. New York, NY, USA, ACM, pp. 265-268.

Panorama Firm, 2012. [On-line]

Available at: http://panoramafirm.pl/
[Accessed 19 October 2012].

172

Pariser, E., 2011. Beware Online "Filter Bubbles". [On-line]
Available at: http://www.youtube.com/watch?v=B80ofWFx525s
[Accessed 18 March 2013].

Pastor-Satorras, R. & Vespignani, A., 2001. Epidemic Spreading in Scale-Free Networks.
Physical Review Letters.

Paszkiewicz, Z. & Cellary, W., 2011. Computer supported collaborative processes in virtual
organizations. Poznan, IMDA Press, pp. 85-94.

Paszkiewicz, Z. & Cellary, W., 2012. Computer supported collaboration of SMEs in
transnational market. Journal of Transnational Management, 17(4), pp. 294-313.

Paszkiewicz, Z. & Cellary, W., 2012. Computer supported collaboration of SMEs in
transnational market. Journal of Transnational Management, 17(4), pp. 294-313.

Paszkiewicz, Z. & Cellary, W., 2012. Computer supported contractor selection for public
administration ventures. Albany, NY, ACM, pp. 322-335.

Paszkiewicz, Z. et al., 2011. ErGo: Developer’s Guide, Poznan: Poznan University of
Economics, Department of Information Technology.
Paszkiewicz, Z., Krysztofiak, K., K., W. & Gabryszak, P., 2012. ErGo: User’s Guide,
Poznan: Poznan University of Economics, Department of Information Technology.
Paszkiewicz, Z. & Picard, W., 2009. Modeling virtual organization architecture with the
Virtual Organization Breeding Methodology. Thessaloniki, Greece, Springer, pp. 187-
196.

Paszkiewicz, Z. & Picard, W., 2010. MAPSS, a Multi-Aspect Partner and Service Selection
method. Saint-Etienne, France, Springer, pp. 329-337.

Paszkiewicz, Z. & Picard, W., 2011. Modeling competences in service-oriented virtual
organization breeding environments. Lausanne, Switzerland, IEEE, pp. 497-502.

Paszkiewicz, Z. & Picard, W., 2013. Analysis of the Volvo IT Incident and Problem Handling
Processes using Process Mining and Social Network Analysis. Beijing, China, CEUR
online proceedings.

Pazzani, M. & Billsus, D., 2007. Content-Based Recommendation Systems. In: P.
Brusilovsky, A. Kobsa & W. Nejdl, eds. The Adaptive Web. Berlin/Heidelberg: Springer
, pp. 325-341.

Pei, J. et al., 2004. Mining sequential patterns by pattern-growth: the PrefixSpan approach.
IEEE Transactions on Knowledge and Data Engineering, Volume 16.

Pepiot, G., Cheikhrouhou, N., Furbringer, J. & Glardon, R., 2007. UECML: Unified
Enterprise Competence Modelling Language. Computers in Industry, Issue 58, p. 130—
142.
Pesic, M., Schonenberg, H. & Aalst, W. M. P., 2007. DECLARE: Full Support for Loosely-
Structured Processes. Washington, DC, USA, IEEE Computer Society, p. 287—-298.
Petrie, C. & Bussler, C., 2008. The Myth of Open Web Services: the Rise of the Service
Parks. IEEE Internet Computing, 111(12), p. 86-95.

Picard, W., 2009. Social Protocols for Agile Virtual Teams. Thessaloniki, Greece, Springer, p.
168-176.

Picard, W., 2013. A Formalization of Social Requirements for Human Interactions with
Service Protocols. Information Sciences, Volume 283, pp. 1-21.

Picard, W., 2013. Adaptation of Service Protocols. Poznan, Poland: Poznan University of
Economics Press.

Picard, W. & Cellary, W., 2010. Agile and Pro-active Public Administration as a
Collaborative Networked Organization. New York (NY, USA), ACM, pp. 9-14.

Picard, W. et al., 2010. Breeding Virtual Organizations in a Service-Oriented Architecture
Environment. In: SOA Infrastructure Tools - Concepts and Methods. Poznan, Poland:
Poznan University of Economics Press, p. 375-396.

173

Picard, W. et al., 2014. Application of the Service-Oriented Architecture at the Inter-
Organizational Level. In: S. Ambroszkiewicz, et al. eds. Studies in Computational
Intelligence. Berlin Heidelberg: Springer, pp. 125-201.

Popescul, A., Ungar, L., Pennock, D. & Lawrence, S., 2001. Probabilistic Models for Unified
Collaborative and Content-Based Recommendation in Sparse-Data Environments.
Seattle, Washington, USA, Morgan Kaufmann, p. 437-444.

Porter, M., 1979. How Competitive Forces Shape Strategy. Harvard Business Review, 11(57).

Porter, M., 2008. Competitive Advantage: Creating and Sustaining Superior Performance.
New York, USA: Simon and Schuster.

Rabelo, R. & Gusmeroli, S., 2008. The ECOLEAD Collaborative Business Infrastructure for
Networked Organizations. Poznan, Springer, p. 451-462.

Ramakrishnan, R. & Gehrke, J., 2000. Data Management Systems. : McGraw Hill
Companies.

Reichert, M., 2011. What BPM Technology Can Do for Healthcare Process Support. Bled,
Slovenia, Springer-Verlag, p. 2-13.

Reichert, M., Rinderle, S., Kreher, U. & Dadam, P., 2005. Adaptive Process Management
with ADEPT2. Washington, DC, USA, IEEE Computer Society, p. 1113-1114.

Ricardo, D., 1817. On the Principles of Political Economy and Taxation.

Ricci, F., Rokach, L., Sshapira, B. & Kantor, P. B., 2011. Recommender Systems Handbook. :
Springer.

Rozinat, A., 2013. How to Understand the Variants in Your Process. [On-line]
Available at: http://fluxicon.com/blog/2012/11/how-to-understand-the-variants-in-your-
process/

[Accessed 11 January 2013].

Rozinat, A. & Aalst, W., 2006. Decision Mining in ProM. Ulm, Germany, Springer, pp. 420-
425.

Rozinat, A. & Aalst, W., 2008. Conformance Checking of Processes Based on Monitoring
Real Behavior. Information Systems, 33(1), pp. 64-95.

Rozinat, A. et al., 2009. Workflow Simulation for Operational Decision Support. Data and
Knowledge Engineering, 1X(68), pp. 834-850.

Russell, N. & Aalst, W., 2007. Evaluation of the BPEL4People and WS-HumanTask
Extensions to WS-BPEL 2.0 Using the Workflow Resource Patterns, Eindhoven, The
Netherlands: Department of Technology Management, Eindhoven University of
Technology.

Sadig, S., Orlowska, M. & Sadiq, W., 2005. Specification and Validation of Process
Constraints for Flexible Workflows. Journal of Information Systems, 30(5).

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J., 2001. Item-Based Collaborative Filtering
Recommendation Algorithms. New York, NY, USA, ACM , pp. 285-295 .

Schafer, J., Frankowski, D., Herlocker, J. & Sen, S., 2007. Collaborative Filtering
Recommender Systems. In: P. Brusilovsky, A. Kobsa & W. Nejdl, eds. The Adaptive
Web. Berlin/Heidelberg: Springer, p. 291-324.

Schilit, B. & Theimer, M. M., 1994. Disseminating Active Map Information to Mobile Hosts.
IEEE network, 5(8), pp. 22-32.

Schilt, B., Adams, N. & Want, R., 1994. Context-Aware Computing Applications. IEEE
Network, Volume V, pp. 22-32.

Schonenberg, H., Weber, B., Dongen, B. & Aalst, W., 2008. Supporting Flexible Processes
Through Recommendations Based on History. Milan, Italy, Springer-Verlag, Berlin, pp.
51-66.

Sigg, S., 2008. Development of Novel Context Prediction Algorithm, and Analysis of Context
Prediction Schemes. Kassel, Germany, Kassel University Press.

174

Simon, D. & Boring, J., 1990. Sensitivity, Specificity, and Predictive Value. In: H. Walker,
W. Hall & J. Hurst, eds. Clinical Methods: The History, Physical, and Laboratory
Examinations. Boston: Butterworths, p. Chapter 6.

Sinur, J. & Jones, T., 2012. Leverage Automated Business Process Discovery for Business
Benefits, Stamford, CT, USA: Gartner Report.

Skopik, F., Schall, D., Dustdar, S. & Sesana, M., 2010. Context-Aware Interaction Models in
Cross-Organizational Processes. Barcelona, IEEE Computer Society, pp. 85 - 90.

Song, M. & Aalst, W., 2008. Towards Comprehensive Support for Organizational Mining.
Decision Support Systems, XLVI(1), pp. 300-317.

Spohrer, J. & Maglio, P., 2008. The Emergence of Service Science: Toward Systematic
Service Innovations to Accelerate Co-creation of Value. Production and Operations
Management, 111(17), p. 238-246.

Srikant, R. & Agrawal, R., 1996. Mining sequential patterns: generalizations and
performance improvements. London, UK, Springer-Verlag.

Staffware, 2003. Staffware Process Suite Version 2 — White Paper, Alkmaar, The
Netherlands: Staware PLC.

Stefanidis, K., Pitoura, E. & Vassiliadis, P., 2007. A Context-Aware Preference Database
System. International Journal of Pervasive Computing and Communication, 4(3), pp.
439-600.

Stoitsev, T., Scheidl, S. & Spahn, M., 2007. A Framework for Light-weight Composition and
Management of Ad-hoc Business Processes. Toulouse, France, Springer, p. 213-226.

Stoner, J., Freeman, R. & Gilbert, D. R., 1999. Management. 6 ed. Singapore: Pearson.

Suneetha, K. & Krishnamoorti, R., 2010. Advanced Version of Apriori Algorithm.
Washington, DC, USA, IEEE Computer Society, pp. 238-245 .

Swenson, K., 2010. Mastering the Unpredictable: How Adaptive Case Management Will
Revolutionize the Way That Knowledge Workers Get Things Done. Tampa, USA:
Meghan-Kiffer Press.

Swinkels, G., 2012. Performance Improvement based on Cross-Organizational
Recommendations, Eindhoven : Eindhoven University of Technology.

Swierzowicz, J. & Picard, W., 2009. Social Requirements for Virtual Organization Breeding
Environments. Thessaloniki, Greece, Springer, p. 614-622.

Taghipour, N., Kardan, A. & Ghidary, S., 2007. Usage-Based Web Recommendations: a
Reinforcement Learning Approach. Minneapolis, MN, USA, ACM, p. 113-120.

Tan, P., Goh, A. & Lee, S., 2008. A Context Model for B2B Collaborations. Washington, DC,
USA, IEEE Computer Society, pp. 108-115.

U.S. Bureau of Labor Statistics, 2010. Business Employment Dynamics: Entrepreneurship
and the U.S. economy. [On-line]

Available at: http://www.bls.gov/bdm/entrepreneurship/entrepreneurship.htm.
[Accessed 2012 10 19].

Van Setten, M., Pokraev, S. & Koolwaaij, J., 2004. Context-Aware Recommendations in the
Mobile Tourist Application COMPASS. Adaptive Hypermedia and Adaptive Web-
Based Systems, Volume 3137, pp. 235-244.

Vanderfeesten, I., Reijers, H. & Aalst, W., 2008. Product Based Workflow Support: Dynamic
Workflow Execution. Montpellier, France, Springer-Verlag, p. 571 — 574.

W3C, 2004. WS-Choreography Standard Specification. [On-line]

Available at: http://www.w3.org/TR/ws-chor-model/
[Accessed 19 October 2012].

Wall, Q., 2007. Rethinking SOA Governance. [On-line]

Available at: http://www.oracle.com/technetwork/articles/entarch/soagovernance-

175

093602.html
[Accessed 19 10 2010].

Wang, J. & Han, J., 2004. BIDE: efficient mining of frequent closed sequences. Boston, MA,
USA, IEEE Computer Society, pp. 79 - 90.

Watts, D., 2004. Six Degrees: the Science of a Connected Age. New York, NY, USA: W. W.
Norton & Company.

Weber, B., Wild, W. & Breu, R., 2004. Advances in Case-Based Reasoning. Advances in
Case-Based Reasoning, Volume 3155, pp. 434--448.

Weijters, A. & Aalst, W., 2001. Process Mining: Discovering Workflow Models from Event-
Based Data. Amsterdam, The Netherlands, Springer-Verlag, pp. 283-290.

Wiszniewski, B., 2011. Inteligentne wydobywanie informacji z internetowych serwisow.
Gdansk, Polska: Pomorskie Wydawnictwo Naukowo-Techniczne.

Witten, 1., Frank, E. & Hall, M., 2011. Data Mining. Practical Machine Learning Tools and
Techniques. Third ed. Burlington, MA, USA: Elsevier Inc..

Workflow Management Coalition, 1999. Terminology and Glossary. [On-line]
Available at: http://www.wfmec.org/standards/docs/TC-1011 term_glossary v3.pdf
[Accessed 19 October 2012].

YAWL Foundation, 2012. YAWL. [On-line]

Available at: http://www.yawlfoundation.org/
[Accessed 20 June 2013].

Yu, Z. et al., 2006. Supporting Context-Aware Media Recommendations for Smart Phones.

IEEE Pervasive Computing, I11(5), pp. 68-75.

176

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

3.1. ADSEract SErVICe ProtOCOL........cuiiieiiiiicceece e 28
3.2. Creating coNteXt aDSLrACIONScciiiiiieiiiie et 32
3.3. General components of the traditional recommendation processcccccvvvevveennene. 36
3.4. Paradigms for incorporating context in recommender SYStemsccccceeevverieennnne 39
3.5. Adjustment of recommendations in PoSt-filteringccccceviveveiie i 40
4.1. Event log creation and analysis in process lifecycle ..o 43
4.2. Architecture of a system providing operational support based on time information in
BVEINTE JOOS ..ttt bbb 47
4.3. General approach to recommendations based on process Mining..........cc.cceeevevveennene. 47
4.4. Discovered process model represented as a transition system and a set of enabled
ACHIVITIES TOI ACHIVILY € ...viviciece et 48
4.5. Time-based recommendations in PrOMcccooviieiiieiiiie e 48
4.6. Architecture of the operational support in ProM ..o 49
4.7. The process model (a) and the corresponding sequence graph (b)cccccocvvirinins 51
4.8. Feedback cycle for personal and crowd-centric recommendationsc.cccec...... 53
4.9. High-level architecture of the collective recommendation systemc.ccocevvnene 54
4.10. Collaborative process instance and its partial traCecccccovvveveereeiiecieseese e 58
5.1. Trade-off between flexibility of process definition and support for human actions in
PAILS b bRttt bbb b e nre s 60
5.2. Main steps of the RMV Method ... 63
5.3. Activity pattern life CYCIcviiiei e 65
5.4. Four elements of activity iNStaNCe CONTEXL.........cceiueriiiriiiriiieeeee e 72
5.5, ACLIVILY GrapN.....oo e e 76
5.6. SUPPOrtiNg aCtIVILY Graphc.coviiiiiieieie e 77
5.7. ACHIVILY SUDGIAPN ...t 78
5.8. Identification of activity pattern CONEXEcovvereriieriiirese e 79
5.9. Transformation of a trace to a sequence: () activity instances in process instance, (b)
corresponding temporal graphi........ccoooiiiiiii s 85
5.10. Suffixes of temporal graph TG........ccoiieiiiiiecce e 86
5.11. Temporal graph prefixes and corresponding SUFFIXESccoovrviiireienenineseen 87
5.12. Discovered actiVity PAttern Z.........ccccvvieieeiie e 103
5.13. Enabled aCtiVity PATEINSooviiiiiiieicieeeee s 106
5.14. Example of an activity Patternccooveie e 111
5.15. Example of an activity Patternccocviriiiiiiene s 111
5.16. Merged activity pattern with Petri Net as a process model..............ccccoveeveieinnnen. 112
5.17. Merged activity pattern with a frequent process map as a process model 112
5.18. Recommendations MONITOIINGceiiveeiieiiieiie e 114
5.19. Phases 2-3 of activity pattern instantiation methodcccccevvvieiiere e 117
6.1. Interactions DEtWeen MOAUIESccoiiiiiiiiiiereee e 126
6.2. Distribution of the RMV PrototyPe.........ccoviiriiiiiieieresereeee s 127
6.3. System architeCture diagramcccveiiieiiiiii e 129
6.4. ErGo Organizations appliCationccoceeieieiiiiniie s 130
6.5. ErGO SEIVICES MAIN VIBW.....coiiiiiiiiieieiiie sttt sttt sttt e sbe e 131
6.6. ErGo Services — management of service description VIEWcccceveverenerieninne 131

177

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

6.7. EFGO INVESTMENTS ... 132
6.8. ErGO INVESIMENTS TYPES ..ottt 133
6.9. Definition of KPI function in ErGo KPI module............cccccooviiiiiiiiiieicicncicis 133
6.10. Adding a new category group and a new investment in the ErGo Investment module
... 137
6.11. A view of available and recommended investment typescccccerenereneninnnns 138
6.12. Adding recommended investment type to the ErGo systemcccccceevveveennnnn. 139
6.13. Adding investment based 0N INVESIMENT LYPES........cccorvreririeeiieieerese e 139
6.14. Viewing levels of satisfaction of investment types for the investment................. 140
6.15. Launching selection of subcontractors from ErGo Investmentsc.cccceeeveene. 141
6.16. EFrGO MAIChMAKETccuviiiiiiiiiiesie sttt 142
6.17. Supported evaluation of assignment of a service entity to a class of service entity
... 142
6.18. Supported evaluation of @ VO Variantccccceveriiinieninieeee e 143
6.19. Expected execution of the delivery process instancecccceevveviviveseeseennn, 146
6.20. Distribution of number of events among process INStANCEScccovererererennens 151
6.21. Process map: rectangle corresponds to aCtiVityccccceevvervivieiieniesie s 151
6.22. Process map: rectangle corresponds to a triple: activity name, storekeeper, WMS
00 T0 0 L1] L TSROSO P PSP 152
6.23. An example of a discovered activity Patternccocoeveriniiieieie e 159
A.L Service NEtWOrk eXamPpPle........coviiiiiiiiiii e 181
A.2. Service requirement and classes of ODJECTS. ... 182
A.3. Service-oriented summary of a process Modelcccoveveiiieieeie s 183
A4, Service NEtWOrK SChHEMAc.uiiieiicie e 184
A.5. AbStract Service ProtOCOIceeiiiiiiiiii e 185
A.6. Prototype Service ProtoColcooiiiiiiiiiiiieieee s 187
B.1. Classes in Sequence Pattern Discovery modulecccoocveveieeiiiie e 190
B.2. Requesting sequence Pattern CONEXIS.cuviirrierereriesesieeieeeeee e 191
B.3. Classes in Activity Pattern Identification module............cccoeiviiiiie i 194
B.4. Requesting activity pattern CONEXESccoveierieieienerisieeee s 195
B.5. Recommendation classes in recommendation formulation module 198
B.6. Creation of recommendation and sorting recommendation elements according to
USEE PIETEIEINCES .. vvieiie ittt ettt et e et e et e e nte e sre e s beenrnas 199
B.7. Classes in Activity Pattern Instantiation module ... 202
B.8. Generation, selection and modification of the best Vo Variant...............ccccoovevenne. 203
B.9. Classes in Activity Pattern Instantiation modulec.ccoovevieiiiiiiiccccie e 205
B.10. Context classes in Recommendation Formulation module..............ccccocoivninnne. 207

178

List of Tables

Tab.
Tab.
Tab.
Tab.
Tab.
Tab.

Tab.

Tab.
Tab.
Tab.

Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.
Tab.

3.1. Techniques and algorithms used in various classes of recommender systems 37
O I I - (oL o) I PRSP 57
5.1. Functionality of the RMV method COMPONENTS.........cccoeiiriniiieiceee e 65
5.2. Service entities discovered in an activity patterncccocveveiieere s 99
5.3. Example of service entity attributes discovered in an activity pattern...................... 99
5.4. Example of social attributes discovered in an activity pattern...........c.ccccoeevvnnnnnns 100
5.5. Identified classes of service entity descriptions SE* and their mapping A to elements
OF SEIVICE AESCIIPLIONSoviiieeie ettt eas 100
5.6. Identified service reqUIreMENtS L%ccceoveiieieiiieie et 101
5.7. Implicit requirements added t0 L%cccooiiiiieiiieie e 101
5.8. Assignment of classes of service entity descriptions from SE* to service entities
from SE - mapping relation @ccccooiiiiii i 101
5.9. Identified SErvice relationS L..........ccooviiiiiiniiiee e 102
5.10. Assignment of service entities to elements of service descriptions — mapping Q.102
5.11. Sorting of recommendation eleMeNntS..........cccoviieiiieie i 115
5.12. User-defined parameters of the RMV Method.............ccocoiiriiiiiiiiinies 118
5.13. Complexity of RMV mMethod SEEPS.......c.ccvveiviiiiiieieeie e 123
5.14. Parameters reducing the execution time of the RMV methodccccvevrnnn. 124
6.1. Mapping between modules and logical COMPONENtS...........cccoveieieereiiie i 125
6.2. RMV event data table...........ccoiviiiieiiee e 136
6.3. RMV event CoNteXt taDIE.........cceiiiiiiieiiseseee e 136
6.4. RMV process insStance attribULES...........cooiriiiiieieiesc st 136
6.5. Five key aspects of the deliVery ProCessccvcvveiveieiiieiicse e 147
6.6. EVENT ALIIIDULES.....c.eiiiieeee e 149
6.7. Context attributes of activity INSTANCESccoveieiieiece e 150
6.8. Delivery process instance attribDULEScciveieieiiie e 150
6.9. Frequency of activities in the event 10g..........c.ccceevveiieii i 152
6.10. User-defined parameters for Experiments Aand Bcoovvvieiinincicninnnns 154
6.11. User-defined parameters for experiment C and D..........cccccevviiiiieie e, 155
6.12. Recommendations formulated using the RMV method............ccccooiiiiiiniiinns 160
B.1. Functionality of SPD mMOdule CIaSSEScceiveiieeriiiieceece e 192
B.2. Functionality of API module CIaSSeScccuiiiiiiiiiieie e 195
B.3. Functionality of RF module CIaSSes..........ccccviiiiieiiiiccecce e 197
B.4. Functionality of APIN module CIaSSeSccceiiiiiiiieiiieece e 201

179

List of Listings

Listing 5.1. SUPPOITCalC FUNCHION........ceiiieccecce e e 89
Listing 5.2. Sequence pattern search iNitializationccoceveiiiiiniiinee e 90
Listing 5.3. Sequence pattern search recursion Callccccoovveiiiiiii i 91
Listing 5.4. The first phase of the RMV method algorithm for discovery of activity sequence
012U (=] PP TPPI 92
Listing 5.5. Create service oriented summary of a process model process model 7“............. 93
Listing 5.6. Creating service NEtWOrk SCNEMAccoviiiiiiiiieie e 95
Listing 5.7. Creating SErViCe NEIWOIK Gcccueiiieiieiieiieie et 97
Listing 5.8. Creating aCtiVity PAtTIN Z........coooieiiiiiiiiiereeee e 98
Listing 5.9. Finding enabled CONtEXE SELccceciieiieiicc e 104
Listing 5.10. Finding enabled activity patterns and formulating recommendations.............. 109

180

Appendix A. Service Protocols Formal Model

In this appendix, the concept of service protocols is formally defined. The formal model of
service protocols was first introduced by Picard (Picard, 2013). Examples used in this section
have also been introduced in (Picard, 2013).

Definition A.1. (Service Entity) A service entity is a common name for an actor or a service
interface.

Definition A.2. (Service Entity Description) A service entity description se is an object
describing a service entity.

Let SE* = {se} denote the set of all the service entity descriptions.

Definition A.3. (Service Network) A service network ¢ = (SE,L) is a directed graph of
service entity descriptions.

Example A.1. Service networks aim at capturing attributes and relations among service entity
descriptions, i.e., service consumer descriptions, service interface descriptions, and service
provider descriptions. A service network presented in Fig. A.1 consists of DevHouse,
ArchibaldTex, MoniBank represented by rectangles. Service entity descriptions are
connected by arcs represented by arrows. For example service entity descriptions
ArchibaldTex and DevHouse are connected by an arc modeling the fact of present or past
Collaboration between the architect and the real-estate developer. Objects describing the arcs
are represented by rectangles stuck to the arrows. The attributes of both the service entity
descriptions and the objects describing the arcs are represented by inner rounded rectangles.

name: DevHouse

Collaboration

DeveloperBank

prafession: {Real-estate Developer} hasAccount: true

#currentProjects: 3

#investments: 24 #ourrentLoans: 0

#pastProjects: 15

Archibald Tex MoniBank
nationality: Canadian interestRate: 3%
profession: {Architect) #clients: 235.500

#realizations: 17

Fig. A.1. Service network example

Definition A.4. (Service Description) A service description is a triple defining the “who”
(the service consumer), “what” (the service interface), and “whose” (the service provider) part
of the activity.

181

Formally, a service description is a triple s; = (sc%, si%, sp%) € S;, where sc® is a class of
service consumer description, si® is a class of service interface description, and sp® is a class
of service provider description.

Example A.2. The ExpiriencedArchitect® is a class of service consumer description.
Following this example, a class of service interface description defining access to printing
services is defined with constraints such as:

e (CADPIlottingSupport, o{bond, vellum}), and

e (PaymentMeans, >{BankTransfer, CreditCard}).

Similarly, an example of a class of service provider description defines construction printing
companies with constraints concerning the industry sector, the geographical location, etc.

Definition A.5. (Service Requirement) A service requirements is a set of attribute
constraints that the arcs of service network being instances of that class must observe.

Let [* denote a service requirement.

Example A.3. Consider a Collaboration® service requirement, defined by the following set
of attribute constraints:

e (No.currentProjects: > 2),

e (No.pastProjects, > 5).

The wuse of Collaboration” service requirements is presented in Fig. A.2.
ExpiriencedArchitect® and ExpiriencedDeveloper® nodes are connected by an arc
associated with the Collaboration® class.

Experienced Developer®
(profession, > {Real-estate Developer})

(#investments, >10)

[Collaboration®™
(#currentProjects, >2)
(#pastProjects, >5)

Experienced Architect™
(profession, o {Architect})

(#realizations, >15)

Fig. A.2. Service requirement and classes of objects

Definition A.6. (Service-Oriented Summary of a Process Model) A service-oriented
summary of a process model is an association of each activity description with a service
description.

Formally, a service-oriented summary of a process model 7, is a triple (7%, Sy, p), where
m® is a process model, S, is a set of service descriptions, and p%:VD — S, is a function
mapping activity descriptions in % to service descriptions in a bijective manner, i.e.,
Vs, € Sg,3'vd € VD, such that p(vd) = s,.

Let SC“ denote the set of all the classes of service consumer descriptions defined in the
service-oriented summary of a process model . Let SI* denote the set of all the classes of
service interface descriptions defined in the service-oriented summary of a process model

182

Ts0s- LEL SPY denote the set of all the classes of service provider descriptions defined in the
service-oriented summary of a process model . Let S *¥= SC* U SI* U SP%,

Example A.4. The concept of service-oriented summary of a process model is presented in
Fig. A.3, in which three service descriptions are represented as rectangles on the left side.
Each service description contains a class of service consumer descriptions, represented by a
rounded rectangle labeled sc{i}, a class of service interface descriptions, represented by a
rounded rectangle labeled si{i}, and a class of service provider descriptions, represented by a
rounded rectangle labeled sp{i}, where i € {1,2,3}. Next, three dashed arrows are connecting
service descriptions with the activity descriptions of the process model represented by
rounded rectangles labeled al, a2, and a3. These three arrows visualize the mapping function
p. Rounded rectangles labeled e1, e2, and e3 represent arcs connecting activities.

Service-Oriented Summary
Process Model
Pl

Service description 1

“_ Vi l-i-'

i | s
—D‘ 4—;— v2 |

> +_ el
sc3 si3 sp3) | v3 ;lﬁl

Fig. A.3. Service-oriented summary of a process model

Definition A.7. (Service Network Schema) A service network schema is a graph o% =
(SE*, L*) composed of classes of service entity descriptions SE*and service requirements L*.

Example A.5. Service network schema aims at capturing classes of service entity descriptions
and their relations. A service network schema presented in Fig. A.4 consists of
ExpiriencedDeveloper®, ExpiriencedArchitect®* and Bank® classes represented by
rectangles. Classes of service entity descriptions are connected by service requirements
represented by arrows. For example, classes of service entity descriptions
ExpiriencedDeveloper® and ExpiriencedArchitect® are connected by a service
requirement Collaboration® modeling constraints on possible collaboration between the
architect and the real-estate developer. Service requirements are represented by rectangles
stuck to the arrows. The attribute constraints of both classes of service entity descriptions and
service requirements are represented by inner rounded rectangles.

183

. oL
m Experienced Developer"

profession: > {Real-estate Developer}

o
#investements: =10 ('] DeveloperBank .

1 collaboration®

#currentProjects: >2 hasAccount: = true

#pastProjects: =5 #eurrentLoans: =0

Experienced Architect®

profession: = {Architect} interestRate: > 5.5%

#realizations: >15

Fig. A.4. Service network schema
Definition A.8. (Abstract Service Protocol) A service protocol Y is a triple Y =

a
(s, 0% A) where ml; is a service-oriented summary of a process model 7%, ¢ is a graph

[
representing a service network schema, and A is a mapping relations between the service-
oriented summary of a process model and service network schema.

The mapping relation A: (S *¥= SC* U SI* U SP%) x SE® associates elements of service
descriptions — service customer description, service interface description, service provider
classes description — with classes of service entity descriptions of the service network schema.
Each element of a service description s ** — sc%, si*and sp®* — is associated with the class of
service entity description se® of the service network schema. Formally, V(s x%,se) € S **X

a
SE%, s %% Ase?®

Example A.6. An abstract service protocol is presented in Fig. A.5. The service-oriented
summary of the abstract service protocol is represented at the top of the Fig. A.5. The service
network schema is represented at the bottom of the Fig. A.5. A set of dashed arrows
associates the elements of service descriptions of the service-oriented summary with the
nodes of the service network schema represented by rounded rectangles labeled v{i}, where

i € [1,9]. This set of arrows represents the mapping relation A between the service-oriented
summary and the service network schema. Therefore, the service consumer description scl is
associated with the class of service entity descriptions v6 of the service network schema.
Additionally, the following relations of service description are defined: sc(consumes,=
true)si, sp(provides,= true)si, si{isConsumedBYy,= true)sc, si{isConsumedBy,=
true)sp. Although implicit in service descriptions, these relations are not explicitly defined in
the service network schema.

184

Abstract Service Protocol
Service-Oriented Summary

- __1] - -
A4
Service description 1 Service description 2 Service description 3
sci si1 sp1 ! sc2| si2| sp2 I P si3 | sp3
I N RN L N B
} H H S } H H : H
SR A W S —
| | i e] | | 1 |
rd ~
Service Network Schema
I |54 2 i I]
b . T PN
e
v v \ v VoAV Y
v6 < v7 vb

V3 < v2 —>» v4

I

=
-

Fig. A.5. Abstract service protocol

Compliance of a service network with a service network schema has a global character,
although it is based on the local concept of membership. Membership refers to a particular
type of relations that may exist between objects and classes in a service network and a service
network schema. Although various types of membership may be defined in service networks
and service network schemata, class relational membership and link class full membership
have to be defined for a further definition of compliance.

Definition A.9. (Class Relational Membership) A service entity description se is a
relational member of a class of service entity description se®, denoted sec*se?, iff: (1) se is
an instance of se%, (2) for each service requirement starting from se® and associated with
class c, at least one link starting from se is associated with an instance of class c, (3) for each
service requirement leading to se®* and associated with a class c, at least one link leading to se
is associated with an instance of class c.

Definition A.10. (Link Class Full Membership) A link | = (seg,., Seqst, 0) is a full member
of the class of links [* = (se&.., seds, c) denoted [°*c*l%, iff the source and destination
service entity descriptions are instances of their respective classes of service entity
descriptions, and the object associated with the link is an instance of the class associated with
the class of links.

Formally, [°c*l* < segc o sed.. and seyq o sefs, and oocc.

Based on the membership relations, the concept of compliance with a service network schema
may be defined. A service network is compliant with a service network schema if the
constraints on the service entity descriptions and the social requirements among them, defined
in a service network schema, are satisfied by a given service network.

185

Definition A.11. (Compliance Relation) Having a service network schema o% =

(SE?%, L*)and service network ¢ = (SE, L), a compliance relation @ on ¢ X g% is a relation
that: (1) the compliance of a service entity description se with a class of service entity
descriptions se® implies that that the service entity description se is a relational member of
the class of service entity descriptions se%, (2) for each service requirement (¢ between two
classes of service entity descriptions seZ.. and sej,,, for each service entity descriptions seg,..
and seys; being members of classes sed..and sed,, respectively, there exist a link between
that is a full member of I, (3) for each class of service entity descriptions, at least one service
entity description is compliant with the class.

Definition A.12. (Partial Compliance Relation) Having a service network schema o¢ =
(SE%, L*) and service network o = (SE, L), a partial compliance relation + on ¢ X ¢% is a
relation that satisfies only condition 1 and 2 from Definition A.11, the third condition is
relaxed.

Definition A.13. (Compliance with Service Network Schema) A service network ¢ =
(SE, L) is compliant with a service network schema % = (SE%, L*), denoted o ® o ¥, iff there
exist a compliance relation @ on o X o%.

Definition A.14. (Partial Compliance with Service Network Schema) A service network
o = (SE, L) is partially compliant with a service network schema ¢% = (SE%, L*), denoted
o+ g%, iff there exist a partial compliance relation + on g X g%.

Example A.7. The service network schema in Fig. A.4 is compliant with service network

presented in Fig. A.1. The compliance relation @ applies to the following pairs of service
entity descriptions and classes:

e ArchibaldText @ ExpiriencedArchitect®
e DevHouse © ExpiriencedDeveloper®MoniBank @© Bank“

Additionally, for each service requirement between two classes of service entity descriptions
among ExpiriencedArchitect®, ExpiriencedDeveloper®, and Bank®, there is a full
member link between two service entity descriptions that are instances of the given classes.
For example, the link Collaboration is a full member of the service requirement
Collaboration®. As a consequence, both conditions (1) and (2) from Definition A.11 are
satisfied. Also condition (3) is satisfied, as all the classes of service entity descriptions in
service network schema have their instances in the service network presented in Fig. A.1.

Definition A.15. (Prototype Service Protocol) A prototype service protocol Y# is a tuple
YB = (Y% 0,Q,®) where Y5 is an abstract service protocol, ¢ is a service network, and
Q:SE x S +% is a relation associating service entity descriptions of the service network to
elements of service descriptions, and ®: SE X SE® is a relations associating nodes of service
network to classes of service entity descriptions of the service network schema of Y¢.

Example A.8. An example of a prototype service protocol is presented in Fig. A.6. Each
service entity description of the service network is represented by a circle, some service entity
descriptions being additionally labeled, e.g., the top-right service entity description is
labeled '/’. The links between service entity descriptions are represented by solid lines
between the nodes. The relation Q mapping service entity descriptions of the service network
to elements of service descriptions is represented by dashed arrows on the left. Note that

186

many service entity descriptions may be associated with a given service description element.
In Fig. A.6., both nodes labeled '/’ and 2’ are associated with the service interface
description sil. Additionally, the relation & mapping nodes of the service network to classes
of service entity descriptions of the service network schema is represented by dot-dashed
arrows on the right side. Note that many service entity descriptions may be associated with a
given class of service entity description of the service network schema. In Fig. A.6, both
nodes labeled '/ and "2’ are associated with the class of service entity descriptions v7.

Prototype Service Protocol

Abstract Service Protocol |

. Service-Oriented Summary [u\ Service Network Schema
: ProcessModel /VF :
| V7 ——
I ervce description

|
|
|
|
\/

v8

1
i
i =
| i \l
—c - I by
' : ! 5
| S L L 1
| L] I; VIZ vl
| B BRI
H !
L ™ o3| s3] sp3 L L : vé4 v3
= P P Dol T
o - R
R
Lot I B
'
‘Q : ‘ Service Network ‘ CD‘
T S T
T . T
|
i
i
I
I
I
I

Fig. A.6. Prototype service protocol

When a prototype service protocol is fully implemented, i.e., there is a service entity
description implementing each element of service description, then it may be executed. The
service protocol is then an executable service protocol.

Definition A.16. (Executable Service Protocol) An executable service protocol Y¢ is a
prototype service protocol such that Vs x*€ S % 3se € SE such that seQs *% and the
induced relation ®*: SE x SE** is in compliance relation.

187

Appendix B. RMV Method Prototype Modules and Classes

Sequence Pattern Discovery module

All the SPD Java™ classes and interfaces are in the pl.poznan.pue.dit.zp.spd
package. Classes from this package are associated with context classes from
pl.poznan.pue.dit.zp.context package. Classes of the SPD module are presented
in Fig. B.1.

The SPD module classes:

Provide access to an event log,

Transform event traces to activity sequences,

Identify frequent and closed activity sequence patterns,

Capture event, activity instance description and activity pattern contexts.

The EventLog class provides abstraction for event log management. This class is
responsible for accessing traces (getTraces method), process instance attributes
(getProcessInstanceAttributes method) and events (getParallelEvents
method). The getParallelEvents method returns events that were recorded in delta
time span before the event e. The getProcessInstanceAttributes and
gatParallelEvents methods are used to determine a context of an activity instance.
Finally, the importTraces method of EventLog class converts traces into activity
sequences modeled by ActivitySequence class.

The ActivitySequence class is an extension of the AbstractSequence class.
Abstraction for activity sequence persistence is provided by ActivitySequenceDao
class. The EventLog class is associated with the Trace class. Each instance of Trace
class is composed of events modeled by the Event class. Each event object is an aggregation
of attributes being objects of Attribute class.

The ActivityInstanceDescription class represents activity instance descriptions.
All the activity instance descriptions are created during import of traces from event log —
importTraces method of EventLog class — and their transformation to activity
sequences — createActivitySequence method of ActivitySequenceDao class.
The access to events of an activity instance description is provided by getEvents method
of ActivityInstanceDescription class. The
ActivityInstanceDescription class has also getStartingEvent,
getFinishingEvent methods for retrieving first and last event recorded for the activity
instance. The context of the first event is returned by the getStartingEventContext
method.

Each object of ActivitySequence class holds association to particular trace returned by
getTrace method. Context of an activity instance description is created by the
createContext method call. The createContext method internal logic encompasses:
calling getStartingEventContext method of

188

ActivityInstanceDescription class, calling getParallelEvents and
getProcessInstanceAttributes methods of an EventLog object, retrieving
proceeding events and service entities by calling getProceedingActors and
getProceedingEvents methods of the Trace class.

Each activity sequence object is composed of a set of activity instance description sets
represented by ActivityInstanceDescriptionSet class. Each activity instance
description set is composed of a number of activity instance descriptions. Four methods of
ActivityInstanceDescriptionSet class permit comparison of activity instance
description sets: containsAll, contains, equal, exaclyEquals. Those methods
are used during sequence pattern discovery.

The sequence pattern discovery algorithm § launch by calling
findSequencePatternMethod of the ActivitySequenceDatabase class. This
method is an implementation of an algorithm presented in Section 5.5.1. Algorithm is
configured by an instance of RMVPatternConfirguration class. Configuration
includes a subset of parameters presented in Section 5.6 that are relevant for discovery of
sequence patterns.

Resulting sequence patterns are represented by SequencePattern class. Similarly to
ActivitySequence class, SequencePattern class is an extension of the
AbstractSequence class. Each activity pattern object is an aggregation of objects being
instances of the Pair class. Each instance of Pair class links the activity instance
description with activity sequences supporting this activity instance description. Additionally
isPostfix method gives access to information if the activity instance description was a
part of the larger set of activity instance descriptions or not. This information is used when
merging pairs into sequence patterns in database projection step of the algorithm.

189

+getBvents () : List
Instanceld():

String

dingEvents (e:
edingActors (e:

Event): Set
Event): Set

Event): Event

edingEvent

+getAttributes(): Set

tgetAttributes(): Set
+getEvents () :
+getStart () : Timestamp

+getFinish():
+getStartingEv
+getFinishingE

Timestamp
nt(): Event
ent (): Event

EventContext

: void
EventLog, t: Trace): Activ
ctivityIns ceDescription): Boolean

+createContext (el:
+attributeEqual (ai

tyInstanceContext 1+——

|
|
|
|
|
|
|
I
|
|
|
| +getContext () : EventContext
i N
|
|
|
|
|
I
|
|

—

+getName () :
+getvValue () :

String
string

1.*

+getTraces(): Set
tgetProcessInstanceAtt

butes (id: 8

ng)
urce, db: ActivityInstanceDatabase): void
, timeDelta: Long): Set

+importTraces (source:
+getParallelEv

— +findSequencePatterns(): Se
+createActivitySequence (trace
+getActivitySequences () : Set

+addActivitySequence (as tivitySequence): void

ActivitySequence

tgetProcessInstance
+getTrace () : Trace
+getContext (sp: SequencePattern, el: EventLog)
tgetContext (aid: ActivityInstanceDescription, e

Context
EventLog) :

+obligatoryAttribut

+getActivityInstanceDescr
+containsAll (set: Activ
+equals(set: ActivityInstancedescriptionSet)

ActivityInstancedescriptionSet):
ption): Boolea

tions (): Set

Boolean

texaclyEquals (set:

+contains (aid: ActivityInstar n

tyInstanceDescriptionSet): Boolean

Boolean

+eventInstanceAttribu
+minimalnumberOfAttributesInAID: Integer
+durationConstraint: Long

+gapCo Long 1

+maximumTimestamp: Timestamp
quenceLength: Integer
port: Double

Long

+minimals
+requiredsuj
+timeDelta:

+getSequence
+supportsPr
tcreateSuffix (sp: SequencePattern)
+getSuffix(): Activitys
+suffixSupportsPair (p:
+isPostFix (aidIndex: Integ

/Sequence
uencePattern) : Boolean
PseudoSequence

equence
Pair): Boolean

): Boolean

+convertTo.

tivityPattern (parser
List

SequencePatternParser

getPairs () :
getSupportingSequences () :
tegratePattern (ap
+integratePair (pair vityPatterr

+addPairsOverlapped (Pair, p2: Pair): void

attern): ActivityP

void

+addPairsSequentially (pl: Pair, p2: Pair)
+addPair (p: Pair): void

+getContexts () : Set

+getFirstAid(): ActivityInstanceDescription

tivityPattern

stfix():
upportingSequences () : Set
tgetAid() : ActivityInstanceDescription

Boolean

(): List
itySequence) : Boolean
anceDescription
ivityInstanceDescription

ctivityInstance
+isSubsequence (as: A
d(e: Event):
roceedingAid(aid: Ac
tyInstanceDescription

Fig. B.1. Classes in Sequence Pattern Discovery module

A context of an sequence pattern is retrieved by calling getContexts method. For each
activity sequence supporting sequence pattern returned by getSupporting method, a set
of methods is called to collect: event context, process instance attributes, proceeding actors
and activity instance descriptions, parallel events (cf. Section 5.4.2). The interaction among
objects of various classes during retrieval of sequence pattern context is presented on UML
sequence diagram in Fig. B.2.

Sequence Activit Activity Instance
. y Y ioti EventlLog Trace
Pattern Sequence Description

—getContexts()H

getFirstAid(): said
=
getSupportingSequences(): Set

for I

each suppojrting sequence
. getContext:

getProceedingAid(said): aid

getFinishingEvent(): f

getFinishingEvent
Context(fe): :
EventContext getContext(): EventContext—p»

getProcessinstanceld(): id

getProcessinstanceAttributes(id): Set #.

getTrace(id): Trace F_.
getProceedingEvents(fe): Se #l
getProceedingActors(fe): Set: .

Fig. B.2. Requesting sequence pattern contexts

Sequence pattern object can be transformed to activity pattern by calling
convertToActivityPattern method of the SequencePattern class.

The key class for discovery of sequence patterns is the PseudoSequence class. Objects of
the class are used during the database projection step of the algorithm. The createSuffix
and getsSuf fix methods provide access to suffix created for: (1) the sequence returned by
getSequence method, and (2) prefix being the sequence pattern.

The summary of functionality provided by the SPD module classes is presented in Tab. B.1

Tab. B.1. Functionality of SPD module classes

Function Classes
Access to an event log EventLog
" Transformation of event traces to activity | Traces, Event, EventLog,
sequences ActivitySequenceDatabase

Capturing context of events, activity instance | octivitySequence,

descriptions and activity patterns AbstarctSequence,

ActivityInstanceDescription,
ActivityInstanceDescriptionSet
Attribute,
RMVPatternConfiguration

Identification of frequent activity sequence SequencePattern, PseudoSequence,

patterns Pair, ActivitySequenceDatabase,
RMVPatternConfiguration

Activity Pattern Identification module

All the SPD classes and interfaces are in the pl.poznan.pue.dit.zp.api package and
use classes from pl.poznan.pue.dit.zp.recommendation.context and
pl.poznan.pue.dit.zp.activitysequences packages.

Classes from API module:

e Model the concept of activity patterns,
e Transform sequence patterns to activity patterns,
e Store activity patterns and provide access to their context.

The classes presented in Fig. B.3 corresponds to the formal model of activity patterns
introduced in Section Activity Pattern Identification and in Appendix A.

The activity pattern is modeled by the ActivityPattern class. Each activity pattern
object is associated with abstract activity pattern being an instance of
AbstractActivityPattern class. Classes ProcessModel,
ActivityDescription, ServiceDescription correspond to service-oriented
summary of a process model of an activity pattern. Service network schema is modeled by the
SericeNetworkSchema class. This class is associated with ServiceEntityClass
and ServiceRequierement classes corresponding to concepts of class of service entity
and service requirement respectively. Similarly, ServiceNetwork class is associated with
ServiceEntity and ServiceRelation classes. Classes Implementer and
Mapping correspond to mapping relations among service entities and classes of service
entities, and service description and classes of service entities respectively. The
createInstance method of the ActivityPattern class return function that maps
service entities to elements of service descriptions. The ServiceEntity class has two
extensions: ServiceIntefacedescription and ActorDescription classes.
These classes represent service interfaces and actors registered in the RMV prototype, that are
assigned to the activity pattern.

192

Conversion of a sequence pattern to an activity pattern is started by calling the
convertToActivityPattern method of the SequencePattern (cf. Fig. B.2). This
method uses the object of the SequencePatternParser class to perform all the
necessary conversions. The SequencePatternParser class implements activity pattern
identification method presented in Section 5.5.2. Methods
createServiceOrientedSummaryOfProcessModel,
createServiceNetworkSchema, createServieNetwork, createMapping
correspond to steps from Listing 5.8. Parsing algorithm uses configuration parameters
represented by the object of RmvParsingConfiguration class (cf. Section 5.6). Created
activity patterns are added to activity pattern database — the ActivityPatternDao class
hides a logic behind storing and retrieving activity patterns.

193

+getServiceDescription(): ServiceDescription

1.+

ption(a

ActivityDescription): void
t

viceDescriptions(): S

viceProviderElements () :
viceConsumerElements () :
3 viceInterfaceElements (
+createProcessInstance () : Proces

+getMapping () : Mapping

+geth

ctivityPatternContexts () :
+getParents S

quencePattern ()

Element (ProviderEleme:
Element () : ceConsumerElement

eElement () : ServiceInterfaceElem

c: Service

+addMapping (sde:
+getMappings () :

ServiceDescriptionElement,
t

+addAttributeConstraint (att:
tributeConstraints () :

tributeConstraint): void

1

addServiceRequirement (sr: ServiceRequirement): void

dServiceEnti

yClass (s
1 +getServiceRequirements ()
+getServiceEntityClasses () :

—-3 +getImplicitSocialRelations

ServiceRequirement

+getSource () : Serv

+getDestination () :
+addAttribute
+getAttribut

ServiceNetwork

ttern(): Rbstra

ServiceNetwork

rviceRelation): void

—membe rName

iceEntitiy,

+getAct

tgeth Set

vityPatternConte
\cePatternParser ()

+getSequ ePatternParser

+created

ityPattern(sp: SequencePattern,
— RmvPatternConfiguration): ActivityPatter
0fPro

Proc
hema

eate
eate

-create

ceEntitiy): v

ceRelation

+getSource () : ServiceEntity
+getDestination():
+addAttribute (att
tgetAttributes () :

taddAttr tribute): void

Fig. B.3. Classes in Activity Pattern Identification module

terfaceDescription

The getAllActivityPatternContext method returns all the context of all the
activity patterns stored in activity pattern database. The contexts of particular activity pattern
are retrieved by calling the getContexts method of the AbstractActivityPattern
class. The logic of this method calls the getContexts method of parent sequence pattern

returned by getParentsequencePattern method. Corresponding UML sequence
diagram is presented in Fig. B.4.

Activity Abstract activity
pattern pattern

getActivityPatternContext: i

Sequence
pattern

getParentSequencePattern

Fig. B.4. Requesting activity pattern contexts
The summary of functionality provided by the APl module classes is presented in Tab. B.2.

Tab. B.2. Functionality of API module classes

Function Classes
Activity patterns model ActivityPattern,
AbstractActivityPattern,
Activitydescription,
ServiceDescription,
Mapping,
Implementer,
ServiecDescriptionElement,
ServiceNetworkSchema,
ServiceEntityClass,
serviceRequirement,
ServiceNetwork,
ServiceRelation,
ServiceEntity,
ServicelInterfaceDescription,
ActorDescription .
Transformation sequence patterns to activity | SequencePatternParser,
patterns RmvParsingConfiguration

Activity patterns persistence and access to | ActivityPatternDao
context

Recommendation Formulation module

Classes of the RF module (Fig. B.5) are stored in pl.poznan.pue.dit.zp.rf
package. Classes are associated with other modules (pl.poznan.pue.dit.zp.rm,
pl.poznan.pue.dit.zp.api, pl.poznan.pue.dit.zp.spd) and supporting
packages (pl.poznan.pue.dit.zp.functions,
pl.poznan.pue.dit.zp.context).

Classes from the RF module:

e Implement formal model from Section 5.4.5, and
e Implement recommendation formulation method presented in Section 5.5.3.

Recommendation request is modelled by RecommendationRequest class. The access to
the current context of a collaborative process instance is provided by getContext method
of this class. The getProcessInstanceId method returns the identifier of the process
instance for which the recommendation is requested.

The RecommendationQuery class models an input for recommendation engine. Methods
of the RecommendationQuery class provide access to data necessary for recommendation
engine, i.e., recommendation request (getRecommendationRequest method), set of
activity patterns stored in the RMV prototype (getClosedActivityPatterns method).
Recommendation formulation algorithm is implemented in RecommendationEngine
class. Configuration of the algorithm is modeled as the RmvRecommConfiguration
class. The recommendation is formulated by the getRecommendat i on method.

The RecommendationEngine class internally uses the three methods. The
createClass method returns a context class created on the basis of the context from the
recommendation query and the contextClassFunction from the
RmvRecommmConfiguration object. A set of activity patterns is returned by the
findActivityPatterns method. Finally, specificity, sensitivity, weighed context
distance, support and confidence indicator, social coefficient are calculated within
calculatePartialMetrics. The method returns the object of the
PartialJustification class. Not that the confidence indicator and social coefficient
values are retrieved from recommendation monitor modeled by
RecommendationMonitor class.

The recommendation returned by the recommendation engine is modeled by
Recommendation class. The Recommendation class is an aggregation of instances of
RecommendationElement class. Both Recommendation and
RecommendationElement classes provide access to identifier of a process instance they
were created for — getProcessInstanceId method. The process instance identifier is
copied from recommendation request. The getActivityPattern method of
RecommendationElement class provides access to activity pattern associated with
recommendation element.

The justification of the recommendation element is modeled by FullJustification
class. The three methods the FullJustification on the basis of user preferences. Each
FullJustification object consist of recomm index and nonrecom index values, and

196

PartialJustification object. The getCDiff method returns the difference
between recomm index and nonrecom index.

Information from FullJustification class is used by
calculateRecommendationValue method to calculate a total attractiveness of the
recommendation element. The getSortedRecommendationElements method orders
recommendation elements according to values returned by the
calculateRecommendationValue method.

User preferences are modeled as UserConfiguration class. Preferences include
definition of ri and nri functions used for calculation of recomm index and nonrecom index
values. Note that while recommendation engine uses parameters from
RmvRecommConfiguration class that are common for all the users, the configuration
modeled with UserConfiguration is specific for particular user. The interaction among
objects of various classes during recommendation generation is presented on UML sequence
diagram in Fig. B.5. Two phases are distinguished in Fig. B.6: (1) generation of
recommendation elements with partial justification, (2) generation of full justification and
ordering of recommendation elements following preferences of the particular user.

The best recommendation element is selected to execution by calling
promoteToExecution method of RecommendationElement class. Information
concerning the selected activity pattern is forwarded to recommendation monitor
(RecommendationMonitor class) for update of social coefficient. Recommendations
with recommendation elements and partial justifications are stored in database modeled as
RecommendationDao.

The summary of functionality provided by the RF module classes is presented in Tab. B.3.

Tab. B.3. Functionality of RF module classes

Function Classes
Recommendation request RecommendationRequest,
.| RecommendationQuery
Recommendation generation RecommendationEngine,

PartialJustification,
RmvRecommConfiguration,
Recommendation,
RecommendationElement,
RecommendationDao

Recommendation elements ordering UserConfiguration,
Recommendation,
RecommendationElement,
FullJustification

197

-enabledSetSize
-contextDistanceFun
-minimalSensitivity:
costAttributeName: ring

-contextClassFunction: AbstractFunction

RecommendationReque

ommendationQue

Recommend
vityP

+getRecommendationRequest () :
+getClosedActivityPatterns (

tionRequest tgetContext () : Context
\Database +getProcessInstanceld(): String

tter

tionEngine

———- +getRecommendation(query: RecommendationQuery): Recommendation | ——=—=— ,
+findActivityPatterns (query: RecommendationQuery): Set | 2
+calculatePartialMetrics (ap: ActivityPattern): Partialdustification |y === TR tonm Fo i i o
+createContextClass (query Reccmnerdat;onQuerv): ContextClass inri: AboteactRunction ealoulate (parameters: M Pouble
L 5
| R ‘
| e -
i

onfidanceIndicator
cialCoefficient

+getSortedRecommendationElements (conf:
Sorted t

+getLastRecommendation (proc
+addRe

ohfiguration, rm: RecommendationMonitor): Instatnceld: String): Recommendation
| .

String
Double
+weighedContextDistance: Double

mendation (r: Re ndation, processInstatncel
+getRecommendatio: Recommendation): Set

String): void

+createGenericActivityPattern(ap: Set)

1.
yityPattern

+getProcessIn |

+addRecommendatio

stanc String

t(re: RecommendationElement) :

+create (ap: ActivityPattern): void

+calculateRecommendationValue (conf:
+getCDif (conf: UserConfiguration): Double +getActivityPattern(): ActivityPa
-getRecomIndex (conf: UserConfiguration): Double +createFullJustification (conf: UserConfiguratior

alJustification(): PartialJustification

UserConfiguration, , rm: RecommendationMonitor):Double

PartialJustification) : FullJustification

UserConfiguration): Double +getPa
(): PartialJustification +getProcessInstanceId(): String
+promoteToExecution () : ActivityPattern

|
I
|
|
I
|
|
I
I
I
|
|
} SulSele ActivityPattern
|
|
I
|
I
|
|
I
|
I
|
|

Fig. B.5. Recommendation classes in recommendation formulation module

i
Recommendation
Engine

. -getRecommendation () Recommendation Recommendation
Monitor
findActivityPatterns()
for "
Recommendation
[each activity ern] Element

calculatePartial Metrics()

create : Confidanceindicator()
_____________________ °_"'_,aﬂce_"_'ci‘ﬁl’__________________:-
getSocial Coefficient () i

ymendationE lement——————»
create Ge nericActivityPatte m (}————————»

(A S

getSortedRecommendationl) _

Recommendation—»,
Value()

Fulllustification
calculate .

create
Fulllustification()

getCDif()

promoteToExecution()

ial Coefficient ()

Fig. B.6. Creation of recommendation and sorting recommendation elements
according to user preferences

Activity Pattern Instantiation module

Classes stored in pl.poznan.pue.dit.zp.apin package are presented in Fig. B.7.
Classes from the APIN module:

e Implement formal model from Section 5.4.6, and
¢ Implement recommendation formulation method presented in Section 5.5.4.

Assignment of service entity to class of service entities is modeled as ClassVariant class.
The ClassvVariant class provides methods to access: class of service entity
(getServiceEntityClass method) and service entity (getServiceEntity
method). The evaluate method returns an evaluation of compliance of service entity to
class of service entities based on compliance function provided by a user. The
getActivityPattern function returns the activity pattern being instantiated. Finally

promoteToOffer method performs two operations: (1) creates an object of the
ClassOffer class, and (2) saves newly created class offer to database. Objects of the
ClassOffer class model assignment of service entities to classes of service entities that is
considered especially attractive and worth discussion with other selecting collaborators.

The assignment of class compliance function to particular class of service entity is modeled
by ClassFunction class. Each object of the ClassFucntion class has three methods:
(1) the getClasscomplianceFunction method is used for evaluation of assignment
for particular class of service entity, (2) the getComplianceThreshold methods returns
compliance threshold value, and (3) the getServiceEntityClass method returns class
of service entity. A set of ClassFucntion objects is modeled by the ClassFunctions
models.

Generation of class variants is performed by the generator modeled by the
ClassVariantGenerator class. The generateClassVariants method returns a
set of service entities assigned to the «class of service entity. The
generateClassVariants method uses getFunctionByClass method to access
user-defined compliances function for the particular class of service entity. A set of service
entities generated by the generator for the class of service entity, is a subset of all the services
entities registered in the RMV prototype. The getAl1ClassVariants method returns all
the sets of service entities for all the classes of service entities. Access to repository of actors
and service interfaces is provided by geActorDescriptionRepository and
getServicelnterfaceDescriptionrepository methods. Access to class variants
generated by the generator is provided by getSortedvVariantsForClass and
getGeneratedVariants.

VO variants are molded by the vOvariant class VovVarint is an aggregation of class
variants. Each VO variant can be transformed to object of VOOffer class. VOOffer
class object is an aggregation of class offers. Note that each VOOffer and ClassOffer
classes has evaluate method that takes as an argument a user configuration. This method
returns the evaluation of an offer from point of view of a particular user. Persistence of
ClassOffer and VOOf fer objects is performed by Of ferDao class. Both vOOf fer and
VoVariant class objects can be modified using changeAssignment method. Finally,
one VoOffer is selected for instantiation of activity pattern by calling instantiate
method of VoOf fer class.

VO variants are generated by an instance of VoVariantGenerator class. The
VoVariantGenerator class implements the genetic algorithm. Information concerning
the best VO variant is returned by the getBestVariant and
getBestVariantEvaluation methods.

The summary of functionality provided by the APIN module classes is presented in Tab. B.4.

200

Tab. B.4. Functionality

of APIN module classes

Function

Classes

Assignment of service entities to classes of
service entities

Collaboration over selection of service
entities

ClassFunction, ClassFunctions,
ClassVariantGenerator,
UserConfiguration

VoVariantGenerator, VoVariant,
UserConfiguration
'ClassOffer, VoOffer, OfferDAO,

UserConfiguration

201

tgetAllClassOffers (ap:

+addClassOffer (¢

+getClassOffers (sec: Servi

+addvoOffer (vo: VoOffer): void
ClassOffer): void

+getVoOffers (ap: ActivityPattern): set

eEntityClass, ap: ActivityPattern): Set

@ ate (userFunction: UserConfiguration
ActivityPattern): Set tgetClassVariant () : ClassVariant

ServiceNetwork

-vovariantToEvalualtion: Map<VoVariant, Double>

+generateVoVariants(cvg: ClassVariantGenerator,

variantFunction: AbstractFunction): Map<VoVariant, Double>

ActorDescription

tgetBestVoVariant () : VoVariant
+getBestVariantEvaluation(): Double

+getVoVariants (number: Integer): Map<VoVariant, Double>
+getActivityPattern(): ActivityPattern
+getServiceNetwork () : ServiceNetwork

+tevaluate (co UserConfiguration
+getVoVariant () : VoVariant
ate(ap: ActivityPattern): void

+instant

|
| +changeAssignment (cv: ClassOffer): void
| "

+evaluate (complFunc: AbstractFunction

-classesTovVariants: Map<ServiceEntityClass, List<CL

nt>>

+generateClassVariants (sec: ServiceEntityCla classFunction: AbstractFunction): List<Cl
| +generateAllClassVariants(ap: ActivityPattern, fs: ClassFunctions): Map<ServiceEntityClass,

tgetFunctionByClass (sec: ServiceEntityClass): AbstractFunction
+getSortedVariantsForClass (sec: ServiceEntityClass): List
tgetGeneratedvariants () : Map<ServiceEntityClass, List<ClassVariant>>
+getActorDescriptionRepository(): Set
+getServiceInterfaceDescriptionRepository(): Set

tpromoteToOffer () : VoOffer
+getClassVariants(): Set
+getActivityPattern(): Act yPattern
tchangeAssignment (cv: ClassVariant): void

iv

+evaluate (complFunc: AbstractFunction): Double -

erviceEntityCla
+getServiceEntity () :
+promoteToOffer () : C
tern():

erviceEntityClass

ActivityPattern

1
1% !

——-3 +classCompliance: Set<AbstractFunction> B SN -
52 tgetServiceEntityClass(): ServiceEntityClass 1 | +globalCompliance: AbstractFunction |
+getMappings () : Set +getClassComplianceFunction(): AbstractFuction tclassComplianceThreshold: Set<Double> |
+getClassFunction(sec: ServiceEntityClass): AbstractFunction +getClassComplianceThreshold: Double +globalComplianceThreshold: Double I
+createClassFunctions(conf: UserConfiguration): Set = }
|

PN N

Fig. B.7. Classes in Activity Pattern Instantiation module

[one |
N
g

m ClassFunctions ClassGenerator VoVariantGenerator

‘ createClassFunctions()

gen erateAl ICIassVarian'rs.()‘*3

for

each cass of sefVce entity

generateClassVariants()

getBestVoVariant !
VoOffer
. . \

I< evaluate]

Fig. B.8. Generation, selection and modification of the best Vo Variant
Recommendation Monitoring module

Classes stored in the pl.poznan.pue.dit.zp.rm package are presented in Fig. B.9.
Classes of the RM module implement mechanism for recommendation monitoring. In
particular they implement Recommendation Monitor component from Fig. 5.2 which is
responsible for management of confidence indicator and social coefficient values. Confidence
indicator and social coefficient values are used during recommendation formulation and
ordering of recommendation elements (cf. Section 5.5.3).

Recommended activity pattern is transformed to recommendation rules by a parser modeled
by AbstractConforormanceRuleParser class (cf. Section 5.6). Each rule is modeled
by the Rule class. Access to rule logic is provided by getLogic method. This method is
used by objects of the RuleValidator class. The RulevValidator class has a
reference to AbstractConformanceRuleParser and uses getRules method of this
class to retrieve generated rules. The Rulevalidator class validates partial trace of
running collaborative process instance using the validateTrace method. A result of
validation is modeled by Rulevalidation class. Each object of RulevValidation

class has: one assigned rule, and one rule status modeled by RuleStatus class. Rule
validation results are used to update confidence indicator value. Recommendation monitor
represented by RecommendationMonitor class manages values of confidence indicators
and social coefficients. The getConfidanceIndicator and
getSocialCoefficient methods return up-to-date values of these metrics. The
RecommendationMonitorDao class models the persistence layer of the module.

204

nforman

(ap: Set<Rule>

ControlFlow() :

ActivityPattern):
void

+getlogic

getProcessInstanceld():

rviceNetworkSchema () :void

1 rviceNetwork () :voi. 5 -
+getRules () : Set<Rule> |

| T

| |

1 ! i

| |

| |

| |

| |

| |

| |

| |

| |

| |

+validateRule(r: Rule): RuleStatus | |

,,,,,,,,,,,,,,,,, e —— |

"ing

String
ActivityPattern

Object

+validatePartialTrace (t:

+getRecommendationElement
tgetProcessInstanceld (
+getParser ()

Trace): Set<RuleValidation>
): RecommendationElement

Recommenc

+getRule () : Rule
getRuleStatus () :

<<Enum>>

RuleStatus

GOING
+DONE
+NOT_STARTED
+ABANDONED

+updateConfidanceFactor (rs:
+updateSocialCoefficient (rs
Rules (rs: Rules): void

getRules () : Rules

ocialCoefficient (processInsta

mmen
idation>, ap: ActivityPattern): void
Jalidation>, processInstanceld: String , ap:

Double
Double

ActivityPattern
id: String):

ActivityP void

Fig. B.9. Classes in Activity Pattern Instantiation module

Context and Function packages

Classes from pl.poznan.pue.dit.zp.context package are presented in Fig. B.10.
All the classes:

e Model the concept of event context,
e Model the concept of activity instance context,
e Model the concept of activity pattern context and context classifier.

The EventContext class models the concept of event context. The access to the event
context attributes is provided by getAttributes and addAttribute methods. The
ActivityInstanceContext class holds reference to EventContext object that is
returned by getEventContext method. Additionally, its methods permit accessing all the
elements of activity instance context that follows formal model presented in Section 5.4.2,
ie, a set of events proceeding particular activity instance is returned by
getHistoryTrace method, the getProcessInstanceAttributes method returns
attributes of a process instance, the getParallelEvent method return events recorded at
the time of activity instance. Finally, the getHistoryServiceEntities method returns
service entities associated with proceeding events. ActivityPatternContext and
ContextClass classes are extensions of ActivityInstanceContext class. The
validate method of the ContextClass calculates a context distance between context
class and the given context. A function being an instance of AbstractClass and provided
by a user as a part of the RMV prototype configuration is used.

Each function provided by a user as a part of the RMV prototype configuration is an
extension of AbstractFunction class from pl.poznan.pue.dit.zp.functions
package (Fig. B.10). All the user-defined functions overload the implementation of the
evaluate method.

Attributes

*
+getHistoryServiceEntities () : Set 1 1 1
+getP llelE t : Set N
+thPazzeszInZiZnie(;%tt ?b tes(): Set fgetAttributes () : Set
_________________________ T r ri H . .
gethr v +addAttribute (att: Attribute): void
+getHistoryTrace(): Trace
+getEventContext () : EventContext
JA\

+validate (context: Context, contextDistanceFunction: AbstractFunction): Double +calculate (parameters: Map): Double

Fig. B.10. Context classes in Recommendation Formulation module

Appendix C. Table of Symbols Used in Dissertation

Objects and classes

a
an

obo«cc

Activities and processes

v
V*
vd
VD*
vi
48
vid
VID*
p
pid
T[d
ar
AR
ard
s

sq
Service protocols

se
se“

SE®
o

attribute
attribute name
attribute value
attribute equality
object

object classifier

equality according to classifier ob
attribute constraint

name of attribute constraint
attribute constraint predicate
satisfaction of attribute constraint
class of an object

name of class of an object

a set of attribute constraints
object being instance of a class

activity

denotes the set of all the activities
activity description

the set of all the activity descriptions
activity instance

the set of all the activity instances
activity instance description

the set of all the activity instance descriptions
process instance

process instance description

process model

actor

the set of all the actor

actor description

service

service interface

service entity description
class of service entity description

set of classes service entity description
service network

Organizations

OSoVOBE

Sa
Sa
se
SCc“

a

si“

Si“

YS
o® ¥

LSOomX3°

Vo

the service network of all the members of
SOVOBE

service description

the set of all the service descriptions
class of service consumer description

the set of all classes of service consumer
descriptions

class of service interface description

the set of all classes of service interface
descriptions

class of service provider description

the set of all classes of service provider
descriptions

SC* U SI* U SP”

service-oriented summary of a process model
service requirement

set of service descriptions

function mapping activity descriptions in 7% to
service descriptions

service network schema

service protocol

function mapping relations between the service-
oriented summary of a process model and service
network schema

prototype service protocol

function associating service entity descriptions of
the service network to elements of service
descriptions

function associating nodes of service network to
classes of service entity descriptions of the
service network schema

executable service protocol

compliance with service network schema

organization

organization goal

a set of organization members

relations among members of organization

the set of all the organizations

virtual organization

a set of service interface descriptions used by
members of virtual organization

the set of all the virtual organizations

209

Events

Context

{
A(p)
E(er tlr tZ)

e(id)
e(processid)

e(activityld)

e(processinstanceld)

e(activitylnstanceld)
e(time)
e(trans)

e(context)

e(SC)

e(SP)

e(SI)

e(serviceEntity — SC)
e(serviceEntity — SP)
e(serviceEntity — SI)
e(social — SC)

e(social — SP)

e(social — SI)

event

universe of events

the set of all the events

set of events assigned to activity insistence vi;.
process instance trace

a subsequence of events from trace 7(p) that
were recorded before event e inclusive

event log

a set of process instance attributes

a set of events different than e that were recorded
in an event log in time period from ¢, to t,
inclusive

the unique identifier of the event;

the unique identifier of the VO collaborative
process;

a unique identifier of the activity description ;

a unique identifier of the VO collaborative
process instance;

a unique identifier of the activity instance;
timestamp of event e;

type of event e (for instance: start, resume,
suspend, complete);

the event context attribute;

a unique identifier of a service consumer;

a unique identifier of a service provider;

a unigue identifier of a service interface;

a service consumer description;

a service provider description;

a service interface description;

an event social attribute referring to service
consumer;

an event social attribute referring to service
provider;

an event social attribute referring to service
interface.

context feature

the set of all the context features

context element

an event context element captured at time t
context

the set of all the contexts

210

co(t,cf)

co(e)
sce
SE(e)

co(vi)
ce®

sce®

co®

sco®
class(co)

eval(co, co%)

Activity patterns

es,vi

ee,vi

G
Y

Y'+Y
PatternSearch (t(p))

z
Z

sup(z)
CMZ
co(z)

co(1)

qss

Recommendation and instantiation

recom_index
nonrecom_index
6(t,2)

N

RQ

R(7)

compliance(o,0%)

a subset of context elements of context co(t)
where context element name is cf

event context

event social context element

a set of descriptions of service consumers and
service providers who were involved in process
instance execution before the event e inclusive
activity instance context

context element constraint

social context element constraint

context class

social event context class

function mapping context co into context class
co®

context distance

event corresponding to starting of activity
instance vi execution

event corresponding to completion of activity
instance vi

temporal pattern of process instance p

activity graph of process instance p

activity graph Y’ is supported by activity graph Y
a function that discovers a set of activity graphs
from collaborative trace 7(p)

activity pattern

a set of activity patterns

a function mapping activity patterns z to its
support in event log /

a set of closed activity patterns

activity pattern context

a context of the activity instance completed as the
last one in partial trace t

activity instance description sequence

recommendation index

non-recommendation index

recommendation element

recommendation justification

recommendation query

recommendation

a function mapping a service network ¢ and
service network schema o“ to compliance value

211

212

GDANSK UNIVERSITY . :
OF TECHNOLOGY I Informatyki

POLITECHNIKA GDANSKA
Wydziat Elektroniki, Telekomunikacji

Zbigniew Paszkiewicz

Metoda rekomendacji RMV
dla doboru partneréw i ustug
w inkubatorach wirtualnych organizacji
oparta na technikach eksploracji proceséw

Streszczenie rozprawy

Promotor:
prof. dr hab. inz. Wojciech Cellary
Wydziat Informatyki i Gospodarki
Elektronicznej
Uniwersytet Ekonomiczny w Poznaniu

Gdansk, 2014

213

214

1. Wstep

W gospodarce otoczenie organizacji w duzym stopniu wplywa na sposob ich funkcjonowania
(Stoner, et al., 1999). Wspotczesne trendy: globalizacja, rozwoj iupowszechnienie
technologii informacyjnych, rozwoj elektronicznej gospodarki opartej na wiedzy i rosngca
konkurencja rynkowa, przektadaja si¢ na ztozonos¢, niepewnos¢, dynamizm, burzliwo$¢ i
zréznicowanie otoczenia organizacji. W takim otoczeniu produkcja i §wiadczenie ustug na
skale §wiatowa wymaga duzych zasobow i1 zréznicowanych kompetencji, ktorych pojedyncza
organizacja zwykle nie posiada. Nowoczesne organizacje wcielaja zatem w zycie strategie
sprzyjajace integracji 1 wspolpracy wielu roznorodnych, wyspecjalizowanych,
autonomicznych jednostek posiadajacych komplementarne zasoby i kompetencje (Porter,
2008).

W wyniku studiéw nad wspolpracg migdzyorganizacyjng zaproponowano pojecie wirtualnej
organizacji (VO, ang. Virtual Organization) jako , sieci wielu réznorodnych aktorow,
nazywanych czlonkami wirtualnej organizacji, ktorzy sq w znacznym stopniu autonomiczni,
rozproszeni geograficznie i heterogeniczni pod wzgledem kultury organizacyjnej, kapitatu
spolecznego, celow i otoczenia, w ktorych dzialajq. Czlonkowie wirtualnej organizacji
wspolnie realizujq co najmniej jeden proces wspoipracy wirtualnej organizacji, ktorego
celem jest zaspokojenie potrzeby klienta wirtualnej organizacji” (Camarinha-Matos, et al.,
2008). Elastyczne powigzania pomig¢dzy czlonkami VO oparte na technologiach
informatycznych, zwigkszaja zwinno$¢ wspoOlpracy miedzy nimi i pozwalajg na lepsze
radzenie sobie ze zlozonosScig otoczenia biznesowego. Czlonkami VO s3 organizacje —
przedsiebiorstwa, jednostki administracji publicznej i/lub organizacje pozarzadowe — oraz
ludzie i systemy informatyczne.

Sukces VO w duzym stopniu zalezy od efektywnosci i skutecznosci wspolpracy migdzy ich
cztonkami. Kluczowe znaczenie ma tu wiasciwy dobor cztonkow VO. Ze wzgledu na
ztozono$¢ tego problemu, w literaturze naukowej przedmiotu zaproponowano wiele metod
wsparcia doboru czlonkéw VO zarowno wsparcia informatycznego, jak i organizacyjnego. W
tym kontekScie zaproponowano pojecie Inkubatora Wirtualnych Organizacji (VOBE,
ang. Virtual Organization Breeding Environment) jako ,, stowarzyszenia organizacji, ktérego
celem jest podniesienie ogolnego poziomu przygotowania cztonkow tego stowarzyszenia do
potencjalnej, przysztej wspolpracy w ramach wirtualnej organizacji” (Camarinha-Matos, et
al., 2008). VOBE pozwala na wstgpne przygotowanie si¢ danej organizacji do wspotpracy
z innymi czlonkami VOBE zanim pojawi si¢ konkretna okazja biznesowa wymagajaca
utworzenia wirtualnej organizacji. Przygotowanie odbywa si¢ przez ustalenie wspdlnych
standardow wspoéldzielenia informacji, procedur postgpowania, sposoboéw wspotdzielenia
infrastruktury informatycznej itp. VOBE, ktorego dziatanie 1 infrastruktura techniczna sa
zorganizowane zgodnie z architekturg ustugowa SOA (OASIS Technical Committee, 2006),
nazywa si¢ Ustugowym Inkubatorem Wirtualnych Organizacji (SOVOBE, ang. Service-
Oriented Virtual Organization Breeding Environment) (Picard, et al., 2010). W SOVOBE,
interakcje miedzy czlonkami VO, wirtualnymi organizacjami i infrastrukturg3 SOVOBE
odbywaja si¢ w formie §wiadczenia ustug.

ZYozona struktura VO przeklada si¢ na ztozono$¢ procesu wspotpracy migdzy cztonkami VO.
Dwiema glownymi cechami procesu wspotpracy w VO sa: nieprzewidywalno$¢ (ang.

215

unpredictability) i wylanianie si¢ (ang. emergence). Nieprzewidywalnosé¢ procesu wspotpracy
w VO odnosi si¢ do trudnosci przewidzenia z wyprzedzeniem przebiegu wykonania instancji
procesu wspotpracy w VO. Wylanianie sie procesu wspotpracy w VO odnosi si¢ do wptywu,
jaki ma czg¢éciowe wykonanie instancji procesu wspolpracy w VO na jej dalszy przebieg.
Przyktadowo, decyzje podjete we wstepnym etapie wykonania instancji procesu wspotpracy
w VO majag wplyw na zbiér czynnosci wykonywanych w jej dalszych etapach. Takze cel
wykonania instancji procesu wspotpracy w VO moze ulec przeformulowaniu w trakcie jej
wykonania. Z cech nieprzewidywalno$ci i wytaniania si¢ instancji procesu wspotpracy w VO
wynika wysoki poziom nieustrukturyzowania procesu wspotpracy w VO.

W konsekwencji upowszechnienia si¢ technologii informacyjnych i wszechobecnego dostepu
do internetu za pomoca urzadzen stacjonarnych i mobilnych, duza liczba procesow jest
wykonywanych przy wykorzystaniu technologii informatycznych. Pojecie systemow
zorientowanych procesowo (ang. Process-Aware Information Systems) zostato
zaproponowane jako ogolne okreslenie systeméw informatycznych wspierajacych rézne fazy
zarzadzania procesami (Aalst, 2004) (Reichert, 2011). Systemy zorientowane procesowo sg
., Systemami informatycznymi, ktore wspierajq zarzqdzanie procesami na wszystkich etapach
jego cyklu Zycia procesu: budowy modelu, konfiguracji i implementacji instancji procesu,
uruchomienia instancji procesu, monitorowania i modyfikacji instancji procesu, gdzie
wykonanie instancji procesu wymaga zaangazowania ludzi, systemow informacyjnych
I wykorzystania roznych zrodel informacji” (Dumas, et al., 2005). Przykladami systemow
zorientowanych procesowo sg systemy przeptywu prac (ang. workflow) i systemy wsparcia
wspolpracy (ang. Computer Supported Collaborative Work (CSCW) systems). Projektanci
systemOw zorientowanych procesowo daza do réwnowagi pomiedzy oferowanym przez
system zorientowany procesowo wsparciem uzytkownika w wyborze czynnosci do realizacji
iw wykonaniu tych czynno$ci, a elastyczno$cia w modyfikowaniu przebiegu instancji
procesu. Systemy pozwalajace na wigksza elastyczno$¢ oferuja mniejsze wsparcie dla
wykonywanych czynnosci i vice versa. Typowe jest, ze oferowane przez systemy
zorientowane procesowo wsparcie dla wykonania czynno$ci wykorzystuje predefiniowane, z
gory ustalone modele proceséw, ktore szybko ulegaja dezaktualizacji w dynamicznym
srodowisku organizacji.

Nowoczesne systemy zorientowane procesowo zapisuja duze ilosci szczegétowych danych o
przebiegu wykonania instancji procesOw 1 czynnosci w formie tzw. dziennikow zdarzen.
Analiza dziennikéw zdarzen pozwala na odkrycie czynnikéw wplywajacych na efektywnosc
wykonania instancji procesow. Wiedza na temat tych czynnikéw moze by¢ wykorzystania do
poprawy efektywnos$ci wykonania przysztych instancji procesow. Skuteczne wykorzystanie
danych z dziennikdw zdarzef zalezy od efektywnos$ci metod ich analizy i zdolno$ci tych
metod do formulowania wnioskow dotyczacych wykonan procesOw na poziomie
biznesowym.

Odkrywanie wiedzy na podstawie duzych ilosci danych jest przedmiotem takich obszaréw
badawczych w informatyce jak eksploracja danych i uczenie maszynowe. Nowe pojecie
eksploracji procesow zostalo wprowadzone jako okreslenie na podzbidr metod eksploracji
danych, ktére bazuja na pojeciu procesu. Eksploracja procesow jest , zbiorem technik,
narzedzi i metod pozwalajgcych na odkrywanie, monitorowanie i ulepszanie rzeczywistych
procesow biznesowych na podstawie wiedzy wyekstrahowanej z dziennikow zdarzen
dostepnych w nowoczesnych systemach zorientowanych procesowo” (Aalst, 2011).
W badaniach nad eksploracja procesow wyroznia si¢ dwie glowne grupy metod: metody

216

analizy off-line i metody analizy on-line. Grupa metod analizy off-line obejmuje metody
budowy modeli procesow, metody weryfikacji modeli proceséw | metody rozbudowy modeli
procesow. Grupa metod analizy on-line obejmuje metody rozpoznania, predykcji
I rekomendacji (Aalst, 2011).

Efektywne wykorzystanie metod rekomendacji on-line opartych na eksploracji procesow
pozwala na podniesienie efektywnosci wykonania procesow wspomaganego przez systemy
zorientowane procesowo (Aalst, et al., 2010). Metody te polegaja na analizie zakonczonych
I trwajacych wykonan instancji procesow w celu odkrycia ich rzeczywistych (a nie
zatozonych, teoretycznych) modeli, a nastgpnie wykorzystaniu tych modeli do wsparcia
uzytkownika przez system zorientowany procesowo w formie rekomendacji kolejnych
czynno$ci do wykonania.

Rekomendacja czynno$ci oparta na analizie dziennikdw zdarzen jest nowym obszarem badan
naukowych — pierwsze prace na ten temat pojawily sie¢ w roku 2008 (Schonenberg, et al.,
2008). Istniejace metody rekomendacji czynnoSci oparte na eksploracji proceséw
ograniczajacg si¢ do procesow ustrukturyzowanych o znanych a priori modelach.
Takie metody nie mogg by¢ zastosowane do wsparcia waznego zbioru proceséw, ktore sa
nieustrukturyzowane, nieprzewidywalne 1 wylaniajace si¢. Ponadto, istniejace metody
rekomendacji bazuja tylko na odkrywaniu nazw czynnosci, analizie ich uporzadkowania i ich
charakterystykach czasowych. Metody te nie uwzgledniajg wielu aspektéw waznych z punktu
widzenia efektywnego doboru partnerow i ustug do VO, w tym informacji o aktorach
bioragcych udzial w wykonaniu poszczegdlnych czynnosci i kontek$cie wykonania
poszczegolnych instancji proceséw. Potrzeba opracowania metod rekomendacji czynnosci
wspierajacych wykonanie nieustrukturyzowanych procesow wspdipracy w VO zostata
podkreslona w (Sinur & Jones, 2012): ,w procesach poét-ustrukturyzowanych i
nieustrukturyzowanych, w ktorych istnieje wiele sposobow wykonania kazdej instancji
procesu, czynniki warunkujgce sukces ich wykonania mogg by¢ zidentyfikowane przy
wykorzystaniu metod automatycznego budowania modeli procesow. Nastepnie, odkryte
czynniki sukcesu mogq byc¢ prezentowane aktorom uczestniczqcym w przysztych realizacjach
procesow jako przyktady dobrych praktyk, uszeregowane wedtug celow osigganych przy ich
wykorzystaniu. Gtéownymi obszarami zastosowan dla takich metod sq: zwinne zarzqdzanie
przypadkami (ang. adaptive case management), procesy wspolpracy i interakcje spoteczne”.

Metoda rekomendacji dla wirtualnych organizacji RMV (ang. Recommendation Method for
Virtual Organizations) przedstawiona w tej rozprawie polega na automatycznym odkrywaniu
szablondw czynno$ci 1 generowaniu rekomendacji ad-hoc dla procesow wspotpracy w VO
wykonywanych w ramach SOVOBE. Szablon czynno$ci jest czeSciowo uporzadkowanym
zbiorem czynnosci, ktory czgsto wystepuje w wielu instancjach procesow wspotpracy w VO.
W metodzie RMV zaktada si¢, ze dziennik zdarzen systemu zorientowanego procesowo
gromadzi zdarzenia spetniajace nastepujace trzy wymagania:

1. kazde zdarzenie w dzienniku zdarzen ma zbior atrybutow opisujacych cztonkow VO
zaangazowanych wykonanie instancji czynnos$ci powigzanej z tym zdarzeniem,;

2. kazde zdarzenie w dzienniku zdarzen ma zbidr atrybutow opisujacych okolicznosci, w
jakich zostato zarejestrowane;

3. kazda zakonczona instancja procesu wspoOlpracy w VO jest opisana przez zbidr
atrybutdéw, z ktdrych jeden opisuje wynik wykonania tej instancji procesu wspotpracy
w VO.

217

Metoda RMYV sktada si¢ z dwoch faz:

1. odkrywania szablondw czynnosci i ich kontekstow,
2. formulowania rekomendacji.

W pierwszej fazie, zbidr szablonéw czynnosci jest odkrywany na podstawie analizy danych z
dziennika zdarzeh. Kazdy szablon czynnosci zawiera informacje o kontekstach, w jakich
wystapit, czesciowo uporzadkowany zbior czynnosci, zbior cztonkéw VO zaangazowanych w
wykonanie czynnosci skladajacych si¢ na szablon czynnosci i zbidr relacji spotecznych
wystepujacych miedzy tymi cztonkami VO. W drugiej fazie metody RMV wykonywanej na
zadanie uzytkownika, szablon czynnosci pasujagcy do kontekstu wykonywanej i
niezakonczonej instancji procesu wspolpracy w VO jest rekomendowany do uwzgledniania
podczas kontynuacji jej wykonywania wspotpracy w VO. Przed wiaczeniem w wykonanie
instancji procesu wspotpracy w VO, szablon czynno$ci jest instancjonowany. Podczas
instancjonowania s3 wykorzystywane: (1)informacje zawarte w szablonie czynnosSci
dotyczace pozadanych cech cztonkéw VO i relacji miedzy nimi, (2) informacje o cztonkach
SOVOBE, do ktoérych dostep jest mozliwy za pomoca ustug $wiadczonych przez SOVOBE.
Wybdr szablonu czynnos$ci do wykorzystania w instancji procesu wspotpracy w VO i
instancjonowanie szablonu czynno$ci sa rowniez wykonywane na drodze wspolpracy.
Rekomendacje generowane przez metode RMV s3 wykorzystywane przez system
zorientowany procesowo do wsparcia uczestnikow instancji procesu wspotpracy w VO.

Teza rozprawy jest sformutowana nastepujaco:

Metoda RMV pozwala na trafne formulowanie rekomendacji prowadzgcych do
wyznaczenia zbioru partnerow i ustug do wspolpracy w ramach wirtualnej
organizacji.

2. Komputerowe wsparcie procesow wspotpracy w VO

Badania nad wspotpracg ludzi, organizacji 1 systemow informatycznych sa réwnolegle
prowadzone przez dwie spotecznosci naukowe: (1) spoteczno$¢ organizacyjnych sieci
wspotpracy (Porter, 2008) (Camarinha-Matos, et al., 2007) (Rabelo & Gusmeroli, 2008)
(Cellary & Strykowski, 2009) (Picard & Cellary, 2010) i (2) rozproszonych systemow
informatycznych (OASIS Technical Committee, 2006) (Workflow Management Coalition,
1999). Spotecznosci te zaproponowaly rézne podejscia do opisu organizacji (Gallon, et al.,
1995) (Ermilova & Afsarmanesh, 2010), opisu systeméw informatycznych, opisu ustug
swiadczonych przez organizacje i systemy informatyczne (Claro, et al., 2005) (Jaeger &
Miihl, 2007). Zaproponowano takze struktury organizacyjne wspierajace wspOlprace ludzi,
organizacji i systemoéw informatycznych (Camarinha-Matos, et al., 2007). W literaturze
zaproponowano szereg podejs¢ do rozwigzania problemu efektywnego doboru partneréw
i ustug do procesow wspolpracy (Jarimo, 2009) (Ding, et al., 2003) (Canfora, et al., 2005)
(Crispim & Sousa, 2007) (Rabelo & Gusmeroli, 2008).

Wsrod metod komputerowego wsparcia procesOw wspotpracy w VO na wyrdznienie
zashuguja wspominane we wstepie (Cf. Rozdziat 0) systemy zorientowane procesowo oraz
systemy rekomendacji kontekstowych (ang. context-aware recommender systems). Te drugie
(Adomavicius, et al., 2005) (Adomavicius & Tuzhilin, 2005) (Ricci, et al., 2011) opieraja si¢
na pojeciu kontekstu (Dey, 2001) (Tan, et al., 2008) (Abowd, et al., 1999), ktory jest

218

podstawg do generowania rekomendacji czynnosci dla uzytkownikow systemow
rekomendacyjnych.

Szczegdlnym typem systemow rekomendacyjnych sa systemy wykorzystujace techniki
eksploracji procesow. Metody eksploracji proceséw pozwalaja na odkrycie i analize
rzeczywistych zachowan uzytkownikow w konkretnych sytuacjach praktycznych, zamiast
bazowaé¢ na domniemanych, zalozonych teoretycznie zachowaniach ludzi (Aalst, et al., 2010)
(Schonenberg, et al., 2008) (Nakatumba, et al., 2012) (Haisjackl & Weber, 2011) (Dorn, et al.,
2010) (Swinkels, 2012).

Eksploracja proceséw nie jest jedyng technikg odkrywania zachowan ludzkich na podstawie
analizy duzych ilosci danych. Na gruncie eksploracji danych opracowano metody odkrywania
wzorcoOw sekwencji (Agrawal & Srikant, 1995) (Srikant & Agrawal, 1996) (Mane, 2013)
(Wang & Han, 2004) (Hwang, et al., 2004), Kklasyfikacji (Witten, et al., 2011) i
grupowania (Delias, et al., 2013). Metody te jednak nie radzg sobiec jednak z odkryciem
podstawowych konstrukcji wykorzystywanych w modelach proceséw, jak np. rownolegte
wykonanie czynnosci, petle i miejsca decyzyjne. Metody analizy sieci spotecznych (Morzy &
Forenc, 2013) (Brendel & Krawczyk, 2010) (Watts, 2004) abstrahujg od poj¢é czynnosci i
procesu.

Istniejace metody komputerowego wsparcia modelowania proceséw, wykonania instancji
procesoOw 1 odkrywania zachowan ludzkich sg niewystarczajace dla efektywnego wsparcia
procesow wspotpracy w VO. Systemy zorientowane procesowo ograniczaja elastycznosé
planowania wspotpracy lub oferuja ograniczone wsparcie dla planowania i wykonania
czynno$ci. Metody rekomendacji czynno$ci opieraja si¢ statycznych, predefiniowanych
modelach dziatan uzytkownikow i modelach kontekstu, ktore szybko ulegaja dezaktualizacji
w dynamicznym otoczeniu organizacji. Dynamika zmian kontekstu jest modelowana
w ograniczonym stopniu. Rekomendacje generowane przez metody oparte na metodach
eksploracji danych, w tym eksploracji proceséw, dotycza zwykle tylko czynnos$ci, a pomijaja
takie aspekty jak cechy wspotpracujacych partnerow i cechy relacji miedzy nimi. Aspekty te
sag wazne dla efektywnego doboru partnerow do procesow wspotpracy w VO. Wreszcie
w istniejgcych metodach doboru partnerdéw 1 ustug zaklada si¢ pelng wiedze o modelu procesu
wspotpracy w VO. Dobor partnerow 1 ustug wykonywany przy ich uzyciu jest wykonywany
tylko raz przed rozpoczgciem realizacji instancji procesu wspolpracy w VO. Tymczasem
w praktyce, w dynamicznym otoczeniu, takie podejscie nigdy nie jest stosowane. Ponadto
istniejace metody doboru partnerow i ustug nie biora pod uwage aspektow spotecznych,
ktore w praktyce maja znaczacy wpltyw na ogdélng zdolnos¢ do wspodltpracy cztonkoéw VO.

Istnieje zatem potrzeba opracowania nowej metody wspierania instancjonowania i wykonania
procesoOw wspotpracy w VO, ktoéra bedzie maksymalizowaé wsparcie dawane uzytkownikowi
przy jednoczesnym malym negatywnym wplywie na elastyczno$ci przebiegu instancji
procesu wspoOlpracy w VO. Metoda ta nie bedzie wymagac¢ apriorycznej wiedzy o modelu
procesu wspotpracy w VO oraz bedzie uwzglednia¢ wazne dla procesow wspotpracy w VO
aspekty kontekstowe i spoteczne, ktore pozwolg na efektywny dobor partneréow i ustug
dokonywany przez caty okres realizacji procesu wspotpracy w VO.

219

3. Protokoty ustugowe

W (Picard, 2013) przeanalizowano rdézne podejScia do modelowania interakcji
miedzyludzkich. Na podstawie wynikow tej analizy zaproponowano pojecie protokotu
ustugowego jako podejscia do modelowania i adaptacji interakcji pomig¢dzy ludzmi,
organizacjami i systemami informatycznymi w zmiennym otoczeniu. W metodzie RMV
protokoty ustugowe wykorzystywane sa jako element reprezentacji szablonéw czynnosci.

Protokot ustugowy sktada si¢ z czterech elementow: (1) modelu procesu, (2) ustugowego
podsumowania modelu procesu, (3) sieci ustugowej, oraz (4) schematu sieci ustugowe;j.
Model procesu jest zbiorem cze$ciowo uporzadkowanych czynno$ci, gdzie relacja
porzadkujaca jest czasowe nastgpstwo wykonywanych czynno$ci. Ustugowe podsumowanie
modelu procesu (ang. service-oriented summary of a process model) zawiera powigzanie
kazdej czynnosci z modelu procesu z opisem ushugi. Opis usfugi sklada si¢ z trzech
elementow opisu ustugi: (1) opisu konsumenta ustugi odpowiedzialnego za wykonanie
czynnosci, (2) opisu interfejsu ustugi wykorzystywanej przez konsumenta ustugi do
wykonania czynnos$ci, (3) opisu dostawcy ustugi odpowiedzialnego za wykonanie ustugi.
Ustugowe podsumowanie modelu procesu stanowi dodatkowa warstwe abstrakcji
pozwalajaca na reprezentacj¢ czynno$ci z modelu procesu w sposob zgodny z architekturg
ustugowg SOA. Informacja 0 jednostkach wustugowych (ang. service entity), czyli
konsumentach ustug, dostawcach ushug i1 interfejsach ustug, jest przechowywana w sieci
ustugowej. Sie¢ ustugowa (ang. service network) jest zrodtem informacji o cechach jednostek
ustugowych 1 cechach relacji ustugowych wystepujacych pomiedzy nimi. Zbiér wymagan
wobec cech jednostki ustugowej nazywa si¢ klasq jednostki ustugowej (ang. class of service
entity). Klasy jednostek ustlugowych sg powigzane z elementami opisow ustug. Zbior
wymagan dotyczacych relacji ustugowych pomiedzy jednostkami uslugowymi nazywa si¢
wymaganiem ustugowym (ang. service requirement). Schemat sieci ustugowej (ang. service
network schema) jest grafem, w ktorym wierzchotkami sg klasy jednostek ustugowych,
atukami wymagania uslugowe. Schemat sieci uslugowej ogranicza zbior jednostek
uslugowych, ktére moga wzig¢ udzial w wykonaniu protokotu ustugowego. Instancjonowanie
protokotu ustugowego polega na znalezieniu zbioru jednostek ustugowych i przypisaniu ich
do klas jednostek ustugowych tak, aby ograniczenia zdefiniowane w klasach jednostek
ustugowych 1 w wymaganiach ustugowych byty spelnione w najwyzszym mozliwym stopniu.
Protokot ustugowy bez przypisanych jednostek ustlugowych jest nazywany protokotem
abstrakcyjnym. Przyktad protokotu abstrakcyjnego jest przedstawiony na Rys. 3.1.

220

_ Abstrakcyjny protokét ustugowy
Ustugowe podsumowanie modelu procesu
|

10 0 0 060 00]
:‘I (] 1 . j
I]]

Rys. 3.1. Abstrakcyjny protokot ushugowy

Protokét uslugowy jest nazywany protokotem prototypowym, jesli tylko wybrane klasy
jednostek ustugowych maja przypisane jednostki ustugowe. Natomiast protokot ustugowy jest
nazywany protokotem wykonywalnym, jesli kazda klasa jednostki ustugowej ma przypisang
jednostke ustugowa.

Protokoly ustugowe maja zestaw cech, ktorym pozwalaja na efektywne modelowanie
procesOw wspotpracy w VO:

oddzielenie implementacji czynnosci od modelu procesu — jedna czynno$¢ moze mie¢
wiele roznych implementacji réznigcych si¢ migdzy soba konsumentami ustug,
interfejsami ushugi lub dostawcami ustug bioragcymi udziat w wykonaniu czynnosci;
modelowanie odpowiedzialnosci — protokoty ustugowe pozwalaja na uchwycenie
faktu odpowiedzialno$ci klienta uslugowego za wywotanie czynnos$ci
I odpowiedzialnosci dostawcy ustugi za wykonanie ustugi;

modelownie wymagan dotyczgcych cztonkow VO i relacji ustugowych — protokoty
ustugowe umozliwiaja definiowanie wymagan dotyczacych wspotpracujacych
cztonkoéw VO i relacji migdzy nimi.

Model formalny protokotow wspotpracy jest przedstawiony w (Picard, 2013).

221

4. Metoda RMV

4.1. Wymagania dla metody RMV

Na podstawie analizy stanu wiedzy (cf. Rozdzial 2 rozprawy) zdefiniowano nastepujace
wymagania dla metody efektywnego wsparcia wykonania proceséw wspoipracy w VO:

1. wsparcie uczestnikow procesu wspotpracy w VO powinno mie¢ forme¢ wytycznych
dotyczacych koniecznych do wykonania czynnosci i wytycznych dotyczacych
cztonkow VO, ktorzy powinni by¢ zaangazowani w wykonanie tych czynnosci; jesli
cztonkowie VO nie moga by¢ imiennie wskazani, to nalezy wskaza¢ ich pozadane
cechy;

2. wsparcie uczestnikOw procesu wspotpracy w VO powinno obejmowaé mechanizm
weryfikacji zgodnoS$ci realizacji instancji procesu wspotpracy w VO z przyjetymi
wytycznymi; odstepstwa od przyjetych wytycznych powinny by¢ podstawa do zmiany
wytycznych lub uzyskania nowych;

3. kluczowe jest wsparcie dla adaptacji i elastyczno$ci wykonania instancji procesu
wspotpracy w VO przez reagowanie na zmiany w otoczeniu, w jakim instancja
procesu wspotpracy w VO jest wykonywana wspotpracy w VO; zmiana w otoczeniu
powinna skutkowa¢ uzyskaniem nowych wytycznych dotyczacych wykonania
instancji procesu VO dopasowanych do tego nowego otoczenia;

4. wsparcie powinno opiera¢ si¢ na analizie faktycznych, rzeczywistych zachowan
uczestnikow procesu wspoOlpracy w VO, a nie na predefiniowanych modelach
procesow, ktore szybko ulegaja dezaktualizacji w dynamicznym otoczeniu;

5. celem jest komputerowe wsparcie wspotpracujacych cztonkéw VO w podejmowaniu
decyzji dotyczacej wykonania procesu wspotpracy w VO, a nie zastgpienie ich
mechanizmem automatycznego podejmowania decyzji;

6. wytyczne dotyczace wykonania procesu wspoOlpracy w VO powinny bazowaé na
tzw. mgdrosci tlumu (ang. collaborative wisdom), czyli powinny opiera¢ si¢ na
obserwacji wielu roznych wykonan procesoOw wspoipracy w VO 1 uwzglednia¢ rozne
mozliwo$ci wykonania instancji procesow;

7. wyniki dziatania metody wsparcia procesoOw wspdlpracy w VO powinny nadawac si¢
do wielokrotnego wykorzystania w r6éznych instancjach proceséw wspolpracy w VO,
w roznych VO;

8. wsparcie proceséw wspotpracy w VO musi uwzglednia¢ aspekty spoteczne i
kontekstowe majace kluczowy wptyw na wspotprace w ramach VO;

9. dobor cztonkow VO do procesu wspdtpracy w VO musi by¢ realizowany
konsekwentnie przez caty czas wykonania instancji procesu wspotpracy w VO.

4.2. Koncepcja metody RMV

Metoda rekomendacji dla wirtualnych organizacji RMV (metoda RMV, ang.
Recommendation Method for Virtual Organizations) polega na automatycznym odkrywaniu
szablondw czynno$ci 1 generowaniu rekomendacji ad-hoc dla procesow wspotpracy w VO
wykonywanych w ramach SOVOBE. Szablon czynnosci jest protokotem ustlugowym, ktory
jest czesto wykonywany w okreslonych kontekstach jako cze$¢ instancji procesow
wspoOtpracy w VO. Odkryte szablony czynno$ci sa wykorzystywane jako rekomendacje

222

czynnosci 1 cztonkéw VO. Wybdr szablonéw czynnosci do rekomendacji opiera si¢ na
podobienstwie pomigdzy kontekstami szablonu czynnosci a aktualnym kontekstem instancji
procesu wspotpracy w VO. Szablon czynnosci, ktory najlepiej pasuje do kontekstu instancji
procesu wspotpracy w VO jest instancjonowany i wigczany w wykonanie instancji procesu
wspotpracy w VO. Wybor 1 instancjonowanie rekomendowanego szablonu czynno$ci odbywa
si¢ na drodze wspotpracy grupy aktoréw nazywanych partnerami dobierajgcymi.

Czesci sktadowe metody RMV sg przedstawione na Rys. 4.1. Dwie gléwne sktadowe metody
RMV to system zorientowany procesowo (PAIS, ang. Process-Aware Information System)
i system wsparcia operacyjnego (OSSys, ang. Operational Support System). PAIS umozliwia
wspotpracujacym cztonkom VO wykonywanie czynno$ci w ramach réznych instancji
proceséw wspotpracy w VO. Potencjalnie PAIS wspiera wykonanie wielu instancji procesow
wspolpracy w VO réwnoczesnie. OSSys stanowi faktyczng implementacje metody RMV.

Dwa komponenty biorg udzial w komunikacji pomiedzy PAIS i OSSys: Ustuga Wsparcia
Operacyjnego (OOS, ang. Operational Support Service) i Klient Wsparcia Operacyjnego
(OSC, ang. Operational Support Client). OSC umozliwia korzystanie z funkcjonalnosci
OSSys. OSC jest zintegrowany z PAIS i jest odpowiedzialny za wymian¢ danych pomiedzy
SZP i UWO. Zadanie rekomendacji uzytkownika PAIS jest przesytane przez OSC do OSS.
OSS przekazuje zadanie do poszczegolnych komponentoéw OSSys. Odpowiedz
wygenerowana przez komponenty OSSys jest przekazywana do OSS i dalej do OSC.

System Wsparcia Operacyjnego (OSSys)

Zadanie
Meneger uzytkownika
Rekomendacji

4—Zadanie szablonéw czynnoci:

Eksplorator

Procesow Wizualizacja

Wybrane szablony czynnoci rekomendagji

Historia rekomendagji
dla instanciji procesu

Przekaz
do instancjonowania

Wykonaj
rekomendacje

Odkryj/aktualizuj Monitor nici
szablony czynnosci Rekomendacji nicjator

Update user
recommendation history

- Zapisz aktywnos¢
<

uzytkownika
Dziennik <
Rys. 4.1. Gtoéwne sktadowe metody RMV

Metoda RMV sktada si¢ z dwoch faz:

Zapisz informacje
kontekstowe

1. odkrycie szablonow czynnosci i ich kontekstow — odkrycie szablonoOw czynnosci
wymaga oddzielenia tych instancji procesu wspolpracy w VO, ktére sa powtarzalne
I wspdlne dla wielu instancji procesow wspotpracy w VO, od tych, ktore sg unikalne
| niepowtarzalne; powtarzalne czg$ci instancji procesow wspotpracy w VO sa
przechowywane jako szablony czynnoSci wraz z kontekstami, w ktorych zostaty
zidentyfikowane;

2. formutowanie rekomendacji — w tej fazie, ze zbioru wszystkich szablonow czynnosci
sa wybierane szablony czynnosci dopasowane do kontekstu rozpatrywanej instancji

223

procesu wspotpracy w VO; szablony te sg rekomendowane; jeden szablon wybrany do
wykonania jest instancjonowany; faza druga jest wykonywane na Zadanie
uzytkownika systemu zorientowanego procesowo; zadanie moze by¢ wygenerowane
recznie przez uzytkownika lub moze by¢ wysylane do OSSys automatycznie za
kazdym razem, gdy PAIS wykryje zmian¢ stanu realizowanej instancji procesu
wspotpracy w VO.

Pierwsza faza obejmuje kroki 1-3 widoczne na Rys. 4.1. Informacje o czynnoSciach
wykonywanych przez wspolpracujacych czlonkow VO sa zapisywane w Dzienniku
Zdarzen (krok 1). Zdarzenia zgromadzone W Dzienniku Zdarzen sa powigzane zarOwno z
zakonczonymi, jak i jeszcze wykonywanymi instancjami procesow wspotpracy w VO. Kazde
zapisane zdarzenie zawiera informacj¢ o kontek$cie, w jakim wystapito (krok 2). Eksplorator
Procesow analizuje dane przechowywanych w Dzienniku Zdarzen i na ich podstawie odkrywa
szablony czynnos$ci oraz ich konteksty (krok 3). Szablony czynnosci wraz z kontekstami sg
przechowywane w Eksploratorze Proceséow. Odkrywanie szablonéw czynnosci odbywa si¢ w
okreslonych odstgpach czasu. Kazde kolejne szablony czynnosci sg odkrywane przy
wykorzystaniu coraz wigkszej ilosci danych gromadzonych w Dzienniku Zdarzen. Interwat
czasowy pomiedzy kolejnymi odkryciami szablonéw czynnos$ci jest jednym z parametrow
metody RMV.

Druga faza metody RMV obejmuje kroki 4-13 widoczne na Rys. 4.1. Formutowanie
rekomendacji obejmuje wybor szablonu czynnos$ci najlepiej pasujgcego do kontekstu instancji
procesu wspolpracy w VO 1 instancjonowanie szablonu czynnosci. Te kroki wykonane dla
wielu szablonow czynnosci w czasie calego wykonania procesu wspolpracy w VO tworza
proces doboru. Instancja procesu wspotpracy, dla ktorego sa tworzone rekomendacje i jest
prowadzony dobor nazywany jest procesem dobieranym. Procesy doboru i dobierane sa $cisle
powigzane — przebieg jednego procesu ma znaczacy wplyw na przebieg drugiego.
Czlonkowie VO wspoéltpracujacy w ramach procesu doboru, czyli partnerzy dobierajgcy, sa
zreguly inni niz czlonkowie VO wspotpracujacy w ramach procesu dobieranego.
Wygenerowanie rekomendacji ma miejsce w odpowiedzi na zadanie partnera
dobierajacego (krok 6). Zadanie zawiera aktualny kontekst procesu wspotpracy w VO
I preferencje partnera dobierajgcego. Preferencje sg wykorzystywane do sparametryzowania
metody RMV. W pierwszej kolejnosci zadanie jest przekazywane do Eksploratora Procesow
(krok 7), ktory dokonuje wyboru podzbioru szablonéw czynnosci, ktére moga byc
rekomendowane w konkretnym kontekscie instancji procesu wspotpracy w VO (krok 8).
Ostateczne uszeregowanie szablondéw czynnosci jest wykonywane przez Menedzer
Rekomendacji. Uszeregowanie szablonéw czynnos$ci uwzglednia:

e zbiodr szablonéw czynnosci pochodzacy od Eksploratora Procesow,

e informacje pochodzace od Monitora Rekomendacji (krok 9); Monitor Rekomendacji
udostgpnia informacje dotyczace historii rekomendacji wygenerowanych wczesniej
dla tej instancji procesu wspotpracy w VO 1 informacje opisujace stopien
wykorzystania rekomendacji przez wspotpracujacych cztonkow VO (krok 4).

Menedzer Rekomendacji prezentuje zbior uszeregowanych szablondéw czynnosci partnerom
dobierajgcym (krok 10). Partnerzy dobierajagcy dokonujg ostatecznego wyboru jednego

szablonu czynnosci, ktory zostanie wilaczony w wykonanie instancji procesu wspolpracy
w VO. Ten szablon czynnos$ci jest wowczas przekazany do Inicjatora (krok 11), gdzie jest

224

instancjonowany, a nastepnie przekazany do wykonania (krok 12). Informacja o decyzji
dobierajacych partnerow jest zapisywana w Monitorze Rekomendacji (krok 13).

W zaleznosci od typu systemu zorientowanegO procesowo, rekomendowany szablon
czynno$ci moze by¢ wykorzystany na roézne sposoby. Prosty scenariusz dopuszcza
wyswietlenie listy czynnos$ci do wykonania kazdemu cztonkowi VO zaangazowanemu
W instancje procesu wspotpracy w VO. Bardziej zaawansowany scenariusz dopuszcza
przekazanie szablonu czynnosci do elastycznego silnika przeptywu prac, gdzie jest
automatycznie wykonywany. Sekwencja rekomendowanych i instancjonowanych szablonéw
czynnosci, tworzona podczas wykonywania procesu doboru, moze potencjalnie utworzyc
peilng wykonywalng instancj¢ procesu wspotpracy w VO.

Stosowanie si¢ do rekomendacji przez czlonkow VO biorgcych udziat w instancji procesu
wspolpracy w VO jest monitorowane przez Monitor Rekomendacji (krok 4 na Rys. 4.1).
Monitoring wykorzystuje regulty zgodnosci (ang. conformance rules) wygenerowane na
podstawie rekomendowanego szablonu czynnosci. Kolejne zdarzenia zapisywane
W Dzienniku Zdarzen sa weryfikowane pod katem zgodno$ci z regutami. Spelnienie regut
zgodnosci, tj. stosowanie si¢ cztonkow VO do rekomendacji, podnosi pewnos¢ przysztych
rekomendacji. Metoda RMV obejmuje zatem peten cykl zycia szablonu czynnos$ci: odkrycie,
rekomendacje, instancjonowanie i monitorowanie szablonéw czynnosci — Rys. 4.2.

Rekomendacja Instancjonowanie Monitorowanie
szablonéw szablondw szablonéw
czynnosci czynnosci czynnosci

Odkrycie szablonéw

czynnosci

Rys. 4.2. Cykl zycia szablonu czynno$ci

Podstawg rekomendacji szablonow czynnosci jest kontekst instancji procesu wspolpracy
w VO, w ktorym znajduja si¢ obecnie dobierajacy partnerzy. Szablony czynno$ci wystepujace
W jednej instancji procesu wspdipracy w VO mogg byé wykorzystywane w innych
instancjach VO, jesli tylko w tych instancjach wystapi kontekst, do ktorego szablony
czynnos$ci pasuja. Metoda RMV wspiera zatem dzielenie si¢ wiedza i dobrymi praktykami
pomigdzy réznymi procesami wspotpracy w VO i réoznymi wirtualnymi organizacjami.

4.3. Kluczowe elementy metody RMV

Kluczowymi elementami metody RMV sa: (1) reprezentacja szablonow czynnosci, (2) zakres
informacji w dzienniku zdarzen procesu wspdtpracy w VO, (3) rola ustug SOVOBE w
metodzie RMV, (4) model kontekstu szablonow czynnosci, (5)technika odkrywania
I identyfikacji szablonow czynnosci, (6) technika generowania rekomendacji kontekstowych,
(7) technika instancjonowania szablonéw czynnosci, (8) parametryzacja metody RMV.

Reprezentacja szablonéw czynnosci

W metodzie RMV konsekwentnie stosuje si¢ podejScie uslugowe do modelowania
wspotpracy. Kazdy odkryty szablon czynnos$ci jest modelowany jako protokoét ustugowy.
Protokot uslugowy taczy w jednym modelu dwie perspektywy procesowe: perspektywe
przeptywu prac (model procesu, ustugowe podsumowanie modelu procesu) i perspektywe
spoteczng (schemat sieci ustugowe;j, sie¢ ustugowa).

225

Metoda RMV jest niezalezna od formalizmu wykorzystywanego do reprezentacji procesu.
Uzyty formalizm musi jednak pozwala¢ na sekwencyjne i réwnolegte uporzadkowanie
czynnosci. W prototypowej implementacji metody RMV do reprezentacji modelu procesu
wykorzystano grafy, w ktorych wierzchotki reprezentujg czynnosci, a tuki — relacje czasowe
miedzy czynno$ciami. W rozprawie przedstawiono takze przyktad wykorzystania do tego celu
sieci Petriego.

Zakres informacji w dzienniku zdarzen procesu wspétpracy w VO

Odkrywanie szablonéw czynno$ci obejmuje: (1) odkrycie kontekstow szablonéw czynnosci,
(2) odkrycie zbioru jednostek ustugowych, (3) odkrycie zbioru klas jednostek ustugowych,
(4) odkrycie zbioru wymagan ustugowych, (5) odkrycie mapowan pomiedzy wszystkimi tymi
elementami. Odkrycie szablonéow czynno$ci jest mozliwe tylko wowczas, gdy kazde
zdarzenie w dzienniku zdarzen jest odpowiednio opisane. Poza typowymi danymi,
W metodzie RMV zaktada si¢, ze w opisie kazdego zdarzenia znajduja si¢ nastepujace dane:

o atrybuty jednostek ustugowych — niepusty zbior atrybutow opisujacych cechy
jednostek ustugowych zaangazowanych w wykonanie instancji czynno$ci zwigzanej
ze zdarzeniem;

e atrybuty spoteczne — niepusty zbior atrybutéw opisujacych relacje ustugowe pomigdzy
jednostkami ustugowymi;

e atrybuty kontekstowe — niepusty zbior atrybutéw opisujacy kontekst, w jakim byto
zarejestrowane zdarzenie; zakres informacji kontekstowej jest taki sam dla kazdego
zarejestrowanego zdarzenia; zmiany w wartosciach atrybutéw kontekstowych sa
zapisywane w trakcie calego wykonania procesu wspotpracy w VO; w ten sposob
atrybuty kontekstowe pozwalaja na uchwycenie dynamiki kontekstu, w jakim jest
wykonywana instancja procesu wspotpracy w VO; zakres informacji kontekstowe;j
uzyteczny w analizie danego procesu wspdlpracy w VO w znacznym stopniu zalezy
od charakteru tego procesu;

o identyfikatory jednostek ustugowych — niepusty zbior atrybutéw jednoznacznie
identyfikujacych jednostki ustugowe zaangazowane w wykonanie instancji czynnosci.

Dzienniki zdarzen zawierajace taki zbior atrybutow opisujacych zdarzenie sa powszechnie
dostgpne w nowoczesnych systemach zorientowanych procesowo. Zbidr atrybutow moze by¢
réwniez rozszerzony o dane pochodzace ze zrodet innych niz sam system zorientowany
procesowo np. portale spoleczno$ciowe. Zdarzenia w dzienniku zdarzen procesu wspolpracy
w VO moga odzwierciedla¢ zardéwno wysokopoziomowe czynnosci biznesowe jak
I niskopoziomowe czynnosci wykonywane przez system informatyczny.

Rola ustug SOVOBE w metodzie RMV

W metodzie RMV zaklada sig, ze proces wspotpracy w VO odbywa si¢ migedzy czlonkami
SOVOBE przy wykorzystaniem ustug udostepnionych przez infrastruktur¢ SOVOBE. Ustugi
SOVOBE zapewniajg dostep do danych wykorzystywanych podczas odkrywania szablonow
czynnos$ci 1 podczas instancjonowania szablonéw czynnosci. Informacje udostepniane kazdej
VO za pomocg ustug SOVOBE to:

¢ informacje na temat kontekstu wykonania czynnosci,
e opisy jednostek ustugowych,
e opisy relacji ustugowych migdzy jednostkami ustugowymi,

226

e informacje o wykonywanych 1 wykonanych czynnosciach w ramach réznych instancji
proceséw wspotpracy w VO,
¢ informacje o warunkach $wiadczenia ustug.

Metoda RMV jest takze jedng z ustug SOVOBE udostgpniang réznym wirtualnym
organizacjom. W ten sposob metoda RMV przyczynia si¢ do wspotdzielenia wiedzy
pomigdzy VO dziatajacymi w ramach SOVOBE.

Model kontekstu szablonéw czynnosci

Podstawa metody RMYV jest obserwacja, ze kontekst wykonania instancji czynnos$ci wplywa
na sposob jej wykonania i na jej wynik, a wiec posrednio wplywa takze na przebieg i wynik
calej instancji procesu wspotpracy w VO. Kontekst instancji czynno$ci analizowany przez
metode RMYV sktada si¢ z pigciu elementow:

1. atrybuty kontekstowe zdarzen zwigzanych z instancja czynnosci;

2. atrybuty instancji procesu stanowigce statyczny opis instancji procesu wspOlpracy
w VO, wsrdd ktorych jeden atrybut opisuje wynik zakonczonej instancji procesu
wspotpracy w VO;

3. sekwencja zdarzen, ktore wystapilty zanim wykonanie instancji czynno$ci rozpoczeto
S1¢;

4. aktorzy zaangazowani w realizacje instancji procesu wspolpracy w VO, zanim
wykonanie instancji czynno$ci rozpoczelo sig;

5. zbior zdarzen, ktore zostaly zarejestrowane w innych instancjach procesu wspotpracy
w VO w trakcie, gdy instancja czynnos$ci byta wykonywana.

Technika odkrywania i identyfikacji szablonéw czynnosci

W metodzie RMV zachowanie wspotpracujacych partneréw jest uznawane za szablon
czynnosci, jesli wystepuje w réznych instancjach procesu wspotpracy w VO predefiniowang
liczbg razy. Odkrywanie szablondw czynno$ci w dzienniku zdarzef obejmuje:

e odkrycie zbioru czynnosci 1 ich czasowego uporzadkowania,

e odkrycie zbioru wspotpracujacych partnerow i wykorzystywanych interfejséw ustug
powigzanych z czynnos$ciami oraz cech tych partneréw 1 interfejsow ustug oraz ich
analiza w celu odkrycia klas jednostek ustugowych,

e odkrycie relacji ustugowych pomigdzy wspotpracujgcymi partnerami i ich analiza
w celu odkrycia wymagan ustugowych,

e odkrycie kontekstow szablonow czynnosci.

Odkrycie szablonow czynnos$ci odbywa si¢ w dwoch krokach: (1) odkrycie wzorcow
sekwencji (ang. activity sequence patterns), (2) interpretacja wzorcow sekwencji do
szablonéw czynnosci. W pierwszym kroku jest wykorzystywany zmodyfikowany algorytm
PrefixSpan (Pei, et al., 2004), w ktorym wprowadzono dwie zmiany: (1) zmieniono definicjg¢
poje¢ prefiksu i sufiksu w celu uchwycenia faktu wykonywania czynno$ci w sposob
réwnolegly; (2) odkrycie wzorcow sekwencji odbywa si¢ zardowno na poziomie czynnosci, jak
1 atrybutéw czynnosci. W drugim kroku, interpretacja wzorcow sekwencji do szablonow
czynno$ci odbywa si¢ przez parsowanie atrybutow czynnosci w odkrytych wzorcach
sekwencji.

227

Technika generowania rekomendacji kontekstowych

Analiza kontekstow szablonow czynnosci jej kluczowa podczas generowania rekomendacji
w drugiej fazie metody RMV. Celem tej fazy jest rekomendowanie szablonéw czynnosci,
ktorych konteksty sa najbardziej podobne do kontekstu wykonywanej instancji procesu
wspolpracy w VO.

Klasa kontekstu (ang. context class) jest zbiorem ograniczen, jakie musza by¢ spelnione przez
kontekst szablonu czynnos$ci, aby byl on uznany za podobny do kontekstu instancji procesu
wspotpracy w VO. Dopuszczalne jest, aby kontekst szablonu czynno$ci spetnial tylko
podzbior ograniczen z klasy kontekstu. W metodzie RMV miarg podobienstwa klasy
kontekstu i danego kontekstu szablonu czynnosSci jest odleglos¢ kontekstu (ang. context
distance). Odleglos¢ kontekstu obliczana dla réznych kontekstow roéznych szablondéw
czynno$ci stuzy do wyboru najbardziej podobnego kontekstu i w konsekwencji
odpowiedniego szablonu czynnosci.

Szablony czynnosci o matej odlegtosci od kontekstu instancji procesu wspotpracy w VO, sa
dodatkowo weryfikowane przy wykorzystaniu statystycznych miar wrazliwosci
(ang. sensitivity) i jednoznaczrosci (ang. specificity) (Simon & Boring, 1990). Dla
rekomendowanych szablonéw czynno$ci sg obliczane: (1) recom_index — wskazuje
oczekiwany koszt wykonania instancji procesu wspotpracy w VO, gdy danych szablon
czynno$ci bedzie wykonany jako czg$¢ instancji procesu wspdlpracy w VO,
(2) nonrecom_index — wskazuje oczekiwany koszt wykonania instancji procesu wspotpracy
w VO, gdy dalsze jej wykonanie nie uwzgledni szablonu czynnosci. Do rekomendacji
sg preferowane szablony czynnos$ci majace duze wartos$ci wrazliwosci i jednoznacznosci oraz
malg warto$¢ recom_index w poréwnaniu z warto$cig nonrecom_index.

Rekomendowane szablony czynnosci sg taczone w jeden generyczny szablon czynnosci, ktory
opisuje cate zachowanie ujete w poszczegdlnych rekomendowanych szablonach czynnosci.
Czgécig metody RMV jest technika tgczenia szablonéw czynnosci w jeden generyczny
szablon czynno$ci. Technika ta obejmuje taczenie modeli proceséw, schematdéw sieci
uslugowych 1 sieci ustugowych poszczegdlnych szablonéw czynnosci. Koncowy wynik
rekomendacji metody RMV skiada si¢ z generycznego szablonu czynnosci 1 listy szablonow
czynnosci wraz z odlegtoscig kontekstu, wrazliwoscig, jednoznaczno$cig oraz warto$ciami
indeksow: recom_index i nonrecom_index dla kazdego szablonu kontekstu.

Technika instancjonowania szablonéw czynnosci

W najlepszym przypadku szablony czynnos$ci sa odkrywane na poziomie wykonywalnym.
Jesli jednak réznorodnos¢ w wykonaniu instancji procesoOw wspdlpracy w VO jest bardzo
duza, to szablony czynno$ci sa odkrywane na poziomie abstrakcyjnym lub prototypowym.
Takie szablony czynno$ci maja niepelny zbior jednostek ustugowych, tzn. niektore klasy
jednostek ustugowych nie majg przypisanych jednostek ustugowych. Metoda RMV pozwala
na efektywne wskazanie podzbioru jednostek uslugowych bedacych cztonkami SOVOBE,
ktory najlepiej pasuje do klas jednostek ustugowych zdefiniowanych w szablonie czynnosci.

W metodzie RMV problem znajdowania jednostek ustugowych dla klas jednostek
uslugowych jest sprowadzony do problemu poszukiwania podgrafu w sieci ustugowej
SOVOBE. Klasy jednostek ustugowych i wymagania uslugowe sa wykorzystywane jako
wymagania, ktore muszg spetni¢ wierzchotki 1 tuki podgrafu. Problem jest rozwigzany przy

228

wykorzystaniu algorytmu genetycznego (Mitchell, 1998). W kazdej iteracji algorytmu
genetycznego sa wykorzystywane zdefiniowane przez dobierajacych partnerow funkcje
zgodnosci: (1) oceniajace stopien dopasowania poszczegolnych jednostek ustugowych do
odpowiednich klas jednostek ushlugowych, (2) oceniajagce poziom spelnienia wymagan
uslugowych przez relacje ustugowe wystepujace pomiedzy rozwazanymi w danej iteracji
jednostkami ustugowymi.

Parametryzacja metody RMV
Parametryzacja metody RMV odbywa si¢ w sposob jawny i1 niejawny.

Jawne parametry metody RMV sa okre§lane w chwili konfiguracji metody RMV 1 sg
przekazywane do metody RMV wraz z zadaniem rekomendacji. Parametry s3
wykorzystywane przez Eksplorator Proceséow | Menedzer Rekomendacji (cf. Rys. 4.1).
Wartosci parametrow metody RMV musza uwzglednia¢ charakter analizowanego procesu
wspotpracy w VO. Jawne parametry metody RMV w znaczacy sposob wpltywaja na jej
efektywnos¢ i jakos¢ uzyskiwanych wynikow. Parametry jawne redukuja czas obliczen
wykonywanych zgodnie z metodga RMV. Lista najwazniejszych jawnych parametréw metody
RMV obejmuje: zakres i typ interpretowanych atrybutow zdarzen, zakres atrybutéw
opisujacych kontekst zdarzen, zakres atrybutéw instancji procesow w VO, minimalng liczbg
atrybutéw czynnosci w szablonach czynno$ci, zbidr atrybutdow obowigzkowych
W czynno$ciach szablondw czynnosci, funkcj¢ odlegltosci kontekstu, funkcje mapujaca
konteksty instancji procesow wspotpracy w VO na klasy kontekstu, funkcje mapujace
wartosci recom_index i nonrecom_index, funkcje zgodnosci wykorzystywane w algorytmie
genetycznym, wymagany minimalny poziom wsparcia dla szablonéw czynnos$ci, wartosci
progowe dla funkcji zgodnosci wykorzystywanych w algorytmie genetycznym, liczbe
szablonow czynno$ci w pojedynczej rekomendacji, minimalng dopuszczalng wrazliwos¢
szablonéw czynno$ci, minimalng dtugos$¢ szablonu czynnosci.

Niejawne preferencje partnerow dobierajgcych sa okreslane przez Monitor Rekomendacji na
podstawie analizy wyboréw dokonywanych przez dobierajacych partneréw 1 sktonnosci
cztonkow VO do podazania za rekomendacjg. Dla kazdego szablonu czynnosci Monitor
Rekomendacji oblicza wskaznik pewnosci (ang. confidence indicator), a dla kazdej instancji
procesu wspotpracy w VO — wspélczynnik spoteczny (ang. social coefficient). Wskaznik
pewnosci danego szablonu czynno$ci okresla che¢é¢ cztonkéw VO do podazania za
rekomendacja. Wspodlczynnik spoleczny wskazuje na preferencje cztonkow VO do podazania
za szablonami czynnos$ci odkrytymi w instancjach procesu wspoipracy w VO, w ktorych sami
brali udziat lub wrgcz przeciwnie. Warto§ci parametrow niejawnych wptywaja na
uporzadkowanie szablonow czynnosci na liscie rekomendacji.

229

5. Prototyp i ewaluacja metody RMV

Prototyp metody RMV zostat zaimplementowany w architekturze klient-serwer (Rys. 5.1)
W jezyku Java'™. Logika metody RMV znajduje sie na serwerze RMV. Warstwa danych
zostala zrealizowana przy wykorzystaniu systemu baz danych Oracle 11i. Prototyp ma dwa
klienty: ograniczona funkcjonalno$¢ serwera jest dostepna za pomocg klienta konsolowego
(odkrywanie wzorcow sekwencji, identyfikacja szablondw czynnosci), pelna funkcjonalno$¢
wymaga wykorzystania systemu zorientowanego procesowo.

Klient RMV
(Konsola)

I

Serwer RMV (::>

Rys. 5.1. Architektura prototypu metody RMV

(ﬁ”)
Khe(g;;rvlv<:> \\I// —

Ustuga WO

Internet

Przyktadem systemu zorientowanego procesowo, z ktoérym zostal zintegrowany prototyp
metody RMV, jest system ErGo. System ErGo (http://ergo.kti.ue.poznan.pl/) (Paszkiewicz, et
al., 2011) jest wykorzystywany do wsparcia wykonania proceséw budowalnych zarzadzanych
przez deweloperéw nieruchomosci.

Jako$¢ rekomendacji generowanych przy wykorzystaniu metody RMV zostata
zweryfikowana podczas analizy rzeczywistych danych firmy Epsilon. Przeprowadzona dla
firmy Epsilon analiza miata na celu udzielenie rekomendacji dotyczacych organizacji pracy
magazynierOw zaangazowanych w realizacj¢ proceséw magazynowych tej firmy.
Przedmiotem analizy byt proces obstugi palet z materialami produkcyjnymi, ktory jest
wspierany przez system zarzadzania magazynem. System zarzadzania magazynem jest
systemem zorientowanym procesowo. Wewnetrzna organizacja firmy Epsilon i cechy procesu
dostawy materiatoéw produkcyjnych pokrywaja si¢ z cechami wirtualnej organizacji i cechami
procesu wspotpracy w VO.

Proces obstugi palet z materiatami produkcyjnymi obejmuje czynnosci zwigzane z przyjgciem
materialow do magazynu, przechowywaniem palet w magazynie 1 wydaniem materiatow do
produkcji. Eksperymenty prowadzone na danych firmy Epsilon pozwolity na jakosciowsa i
ilosciowa ocen¢ rekomendacji generowanych przez metode RMV. Przyktadowy szablon
czynnos$ci odkryty w dzienniku zdarzen systemu zarzadzania magazynem jest przedstawiony
na Rys. 5.2.

230

Graf
czynno

\% Vi

Opisy ustug

[sca[s[5 [sc[sic[se]

O\Group Bo[h\Q’/Gmup Unpackmg
shift: D3y /O

s
n
O—crow: Unpacking inlages Manager
System: WMS
PaHetAmcIES M1 AdminName: rros Quahty(:ontro
PalletAmc\es M1 System: WMS
Privilages: storekeeper

Acnmy Dellverv Activity: oduleName?
Ac{::\?tnyt\rL\gbel Quality chec P Management

cuvuty Dehver

Resource ModuleName:
Inventory Resource: kku] Group: Unpackmg
oduleName: SP- Activity: Delivery
Delivery nfirmation docume;

Schemat sieci
ustugowej

Sie¢
ustugowa

Rys. 5.2. Szablon czynno$ci odkryty dla procesu zarzadzania materiatami produkcyjnymi w firmie Epsilon

Szablon czynno$ci na Rys. 5.2 sktada si¢ z sze$ciu czynnosci I-VI. Kazda czynnos¢ jest
powigzana z jednym opisem ustugi. Elementy poszczegdlnych opisow ustug sa powigzane
z klasami jednostek ustugowych pochodzacych ze schematu sieci spotecznej. Nie wszystkie
elementy opiséw ustug sa powiazane z klasami jednostek ustugowych. Czes¢ klas jednostek
ustugowych jest powigzana z jednostkami ustugowymi z sieci uslugowej. Szablon czynnosci
Z Rys. 5.2 pozwolit na zdefiniowanie nast¢pujacych rekomendacji: jesli celem biznesowym,
jest zmniejszenie catkowitego czasu wykonania instancji procesu, a wykonanie instancji
procesu wigze si¢ z materiatami typu M1, wykonanie instancji procesu powinno rozpoczac¢ si¢
od wywotania ustugi Delivery start systemu magazynowego przez pracownika mman. Druga
czynno$¢ powinna uwzglednia¢ wywotanie ustugi Label printing modutu Inwentory systemu
magazynowego. Czynnos$¢ IlIl powinna by¢ wykonana przez magazyniera pochodzacego
z grupy Both, do ktorej nalezy takze magazynier kkuj zaangazowany w wykonanie czynnos$ci
V. Czynno$¢ IV powinna by¢ wykonana przy uzyciu ushugi Delivery close oferowanej przez
modut Delivery systemu magazynowego. Dane zwigzane z tg uslugg powinny by¢ zapisane do
bazy danych z uprawnieniami roli Storekeeper. Wykonanie czynnos$ci V powinno wigzaé si¢ z
wywotaniem przez magazyniera Kkuj ustugi Quality check modulu Management systemu
magazynowego. Kkuj musi naleze¢ do grupy Unpacking razem z magazynierem mrob
zaangazowanym w wykonanie czynnosci VI. Czynno$¢ VI powinna by¢ wykonana przez
wywotanie ustugi Delivery confirmation document oferowanej przez nieokreslony w
szablonie czynno$ci modut systemu magazynowego.

Przedstawiona powyzej rekomendacja jest bardzo szczegétowa. W praktyce, w celu
utatwienia zrozumienie wygenerowanych rekomendacji byly one wuogdlniane przed
przekazaniem firmie Epsilon. Rekomendacje pozwolity firmie Epsilon na identyfikacje
magazynieroOw, grup magazynieréw i zmian magazynowych, ktére maja albo pozytywny, albo
negatywny wpltyw na funkcjonowanie magazynu. Rekomendacje doprowadzily do szeregu
dziatan podjetych przez firme¢ Epsilon, takich jak szkolenia pracownikéw, zmiana przypisania
pracownikow do zmian, modyfikacja obcigzenia zmian magazynowych czy rekonfiguracja
systemu magazynowego.

231

6. Wnioski

Przedstawiona w rozprawie metoda rekomendacji dla wirtualnych organizacji RMV stanowi
rozwigzanie problemu efektywnego wsparcia informatycznego dla nieprzewidywalnych,
wylaniajacych si¢ i nieustrukturyzowanych proceséw wspolpracy w VO. Wsparcie dla
wykonania proceséw wspotpracy w VO ma forme¢ kontekstowych rekomendacji szablonow
czynnosci.

Idea metody RMYV jest oparta na czterech spostrzezeniach:

1. dziennik zdarzen procesu wspotpracy w VO zawiera informacje opisujace interakcje
zachodzace pomiedzy aktorami wspotpracujagcymi w ramach poszczegdlnych instancji
procesu wspotpracy w VO,

2. kontekst, w ktorym odbywa si¢ wspoOtpraca, ma znaczacy wplyw na ksztalt tej
wspoOltpracy;

3. powtarzajace si¢ zachowania wspotpracujacych aktorow, nazywane szablonami
czynnosci, moga by¢ odkryte na podstawie analiz dziennikéw zdarzen;

4. odkryte szablony czynno$ci moga zosta¢ ocenione jako warte lub nie warte
rekomendacji; rekomendowane szablony czynno$ci przyczyniaja si¢ podniesienia
efektywnos$ci wykonania instancji procesow wspotpracy w VO.

Metoda RMV sktada si¢ z czterech czgéci: (1) odkrywanie sekwencji czynnosci,
(2) identyfikacja szablonow czynnosci, (3) formutowanie rekomendacji, (4) instancjonowanie
szablonéw czynno$ci. Kazda z tych czesci jest zrodlem warto$ci dodanej sama w sobie, ale
wykonane sekwencyjnie pozwalaja na efektywne wsparcie proceséw wspoOlpracy w VO
spelniajagce postawione w dysertacji wymagania dla takiego wsparcia (cf. Rozdziat 4.1).
wspotpracy w WO. Metoda RMV maksymalizuje wsparcie dla uzytkownika w postaci
rekomendacji szablondéw czynnosci odpowiednich do wykonania w biezacym kontekscie
procesu wspotpracy w VO (wymaganie 1). W przypadku zmiany kontekstu instancji procesu
wspotpracy w VO, zbidér rekomendowanych czynnosci jest inny (wymaganie3 i 8).
Decyzja dotyczaca ostatecznego wyboru i instancjonowania szablonu czynnosci jest
podejmowana przez grupe dobierajacych partnerow, a nie jest dokonywana
automatycznie (wymaganie 5). Szablony czynnosci zawieraja nie tylko specyfikacje
czynnosci, ale takze specyfikacje cech 1 relacji ustugowych pomiedzy cztonkami VO
(wymaganie 8). Rekomendowane szablony czynno$ci sg modelami deskryptywnymi a nie
preskryptywnymi (wymaganie 4). Szablony czynno$ci odkryte w procesach wspolpracy
jednej VO moga by¢ wykorzystywane wielokrotnie w procesach wspotpracy innych VO
(wymaganie 6 i1 7). Mechanizm monitorowania rekomendacji jest podstawa oceny gotowosci
cztonkow VO do podazania za rekomendacja (wymaganie 2). Wreszcie metoda RMV wspiera
ciggle instancjonowanie procesu wspoOtpracy w VO. Dobor nowych partneréw i uslug jest
wykonywany za kazdym razem, gdy dobierajacy partnerzy akceptuja do wykonania
rekomendowany szablon czynno$ci (wymaganie 9). Dobor partnerow 1 ustug odbywa si¢ w
oparciu o kryteria spoteczne, istotne dla procesow wspolpracy w VO (wymaganie 8).

Metoda RMV zostata wykorzystana w praktyce do analizy dziennikow zdarzen pochodzacych
z systemu zarzadzania magazynem firmy produkcyjnej. Nietrywialne i trafne rekomendacje
otrzymane w wyniku zastosowanie metody RMV miaty duzg warto$¢ biznesowa dla danego
procesu wspotpracy w VO. Klasy jednostek uslugowych 1 wymagania ustugowe stanowiace

232

cze$¢ szablonéw czynno$ci byly zrodlem wartoSciowej informacji o czynnikach sukcesu
procesu wspotpracy w VO. Wiedza na temat czynnikdw sukcesu zostata wykorzystana do
doboru jednostek ustugowych, ktére sa w stanie wykonaé proces wspdipracy w VO
W bardziej efektywny sposob.

Glowne osiggnigcia rozprawy obejmuja:

e identyfikacj¢ i ocen¢ opisanych w literaturze metod doboru partneréw i ustug
w dziedzinie sieci wspotpracy i architektury ustugowej pod katem zastosowania
W instancjonowaniu procesow wspotpracy w VO,

e identyfikacje i ocen¢ istniejacych metod rekomendacji czynnosci w dziedzinie
Systemow zorientowanych procesowo, kontekstowych systemow rekomendacyjnych i
eksploracji proceséw pod katem wykorzystania w informatycznym wsparciu
wykonania proceséw wspotpracy w VO;

e model formalny procesu wspotpracy w VO, szablonu czynnosci, kontekstu szablonu
czynnosci, dziennika zdarzen procesu wspotpracy w VO;

e opracowanie metody odkrywania i identyfikacji szablono6w czynno$ci, ktora pozwala
na wyekstrahowanie szablonéw czynnosci i ich kontekstow z dziennika zdarzen
procesu wspotpracy w VO tworzonego przez system zorientowany procesowo;

e opracowanie metody formulowania rekomendacji szablondéw czynnoS$ci
w wykonywanych procesach wspotlpracy w VO, gdzie dopasowanie szablonu
czynnos$ci do instancji procesu wspdtpracy w VO opiera si¢ na analizie aktualnego
kontekstu instancji i kontekstow szablonow czynnosci;

e opracowanie metody instancjonowania abstrakcyjnych i prototypowych szablonow
czynnosci, gdzie instancjonowanie odbywa si¢ w ramach SOVOBE i ma miejsce caty
czas podczas wykonania instancji procesu wspotpracy w VO;

e implementacja prototypu metody RMV i integracja prototypu z systemem
zorientowanym procesowo ErGo wykorzystywanym w sektorze budowalnym do
wsparcia wykonania procesu budowlanego;

e wykorzystanie metody RMV do analizy dziennikéw zdarzen firmy produkcyjnej;
przeprowadzona analiza doprowadzita do nietrywialnych rekomendacji, ocenionych
jako bardzo wartosciowe przez kierownika magazynu i dystrybucji firmy Epsilon.

Dwiema waznymi cechami metody RMV jest jej rozszerzalno$¢ 1 niezaleznos¢.
Rozszerzalnos¢ metody RMV polega na elastycznej definicji zbioru atrybutéw i funkcji
wykorzystywanych podczas odkrywania szablonéw czynno$ci i ich rekomendacji. Rézne
zbiory atrybutow, istotne dla danego obszaru aplikacji, moga sktada¢ si¢ na opisy jednostek
ustugowych, relacji ustugowych 1 kontekstu. Skomplikowanie wykorzystywanych funkcji
zalezy od uzytkownika metody RMV. W zalezno$ci od potrzeby, funkcje moga pozwalaé na
bardzo wyrafinowane 1 doglebne analizy. Metoda RMV jest niezalezna od typu
analizowanego procesu wspotpracy w VO i systemu zorientowanego procesowo. Metoda
RMV moze by¢ zastosowana do analizy kazdego dziennika zdarzen, ktéry ma cechy
dziennika zdarzen procesu wspolpracy w VO. Niezalezno§¢ metody RMV pozwala na jej
zastosowanie w roznych procesach wspotpracy w VO 1 réznych domenach biznesowych.
Poza zastosowaniem do analizy proceséw magazynowych, ktore przedstawiono w rozprawie,
metoda RMV jest obecnie uzywana do analizy procesOw obiegu dokumentow
w Wielkopolskim Urzedzie Wojewddzkim w Poznaniu.

233

Mectoda RMV byta prezentowana m.in. podczas seminarium ,, Unleashing Operational
Process Mining™™ w Daghstul “ zorganizowanymi przez Grupg¢ Roboczg IEEE
ds. Eksploracji Procesow®, podczas World Business Congress zorganizowanego przez
mi¢dzynarodowa organizacje International Management Development
Association (Paszkiewicz & Cellary, 2011), podczas dwodch konferencji IFIP poswigconej
tematyce sieci wspotpracy (Paszkiewicz & Picard, 2010) (Paszkiewicz & Picard, 2009),
podczas konferencji poswigconej teorii 1 praktyce elektronicznej administracji
ICEGOV (Paszkiewicz & Cellary, 2012), podczas pigtnastej konferencji poswigconej
systemom wspotpracy CSCWD (Paszkiewicz & Picard, 2011) i podczas dwoch sympozjow
doktoranckich organizowanych przy okazji konferencji BIS 20132 i ADBIS 20122, Metoda
RMYV jest takze opisana w czasopi$mie Journal of Transnational Management (Paszkiewicz
& Cellary, 2012). Elementy metody znalazty si¢ w dwoch rozdziatach ksigzek (Picard, et al.,
2014) (Picard, et al., 2010). Warto$¢ analiz sieci spotecznej w analizie procesOw biznesowych
zostala przedstawiona w (Paszkiewicz & Picard, 2013)

Metoda RMV otwiera nowe kierunki badan. Interesujgca jest mozliwos¢ analizy wzajemnego
wplywu na siebie struktury czynnosci wchodzacych w sktad modelu procesu i struktury sieci
spolecznych. Jest to mozliwe, poniewaz szablony czynno$ci tacza dwie perspektywy
procesowe: perspektywe przeptywu sterowania 1 perspektywe spoleczng. Analiza
wzajemnego wplywu tych dwoéch perspektyw na siebie jest nowa, ciekawa i1 obiecujaca
dziedzing badan. Badania takie wymagaja rozszerzenia metody RMV. Takie rozszerzenie
musi obja¢ symulacje 1 predykcje wptywu zmian wprowadzanych w jednej perspektywie na
zmiany w strukturze i cechach drugiej perspektywy. Przykladem analizowanej cechy sieci
spolecznej moze by¢ odporno$¢ sieci na uszkodzenia. Przykltadowe cechy perspektywy
przeplywu sterowania obejmuja efektywnos¢ wykonania zadan i strukture zalezno$ci
pomiedzy zadaniami. Rozszerzona metoda RMV bytaby waznym krokiem naprzoéd w rozwoju
metod analizy dynamiki pracy zespotéw, tworzenia zespoldw 1 grup organizacji
z potencjalnymi obszarami aplikacji takimi jak inteligentne miasta (ang. smart cities) lub
sektor budowlany.

19 “Unleashing Operational Process Mining”, seminarium Dagstuhl

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=13481

Grupa Robocza IEEE ds. Eksploracji Procesow, www.win.tue.nl/ieeetfpm/

Sympozjum doktoranckie organizowane przy okazji 16th International Conference on Business Information Systems
(BIS 2013), http://bis.kie.ue.poznan.pl/16th_bis/phd2013.php

Sympozjum doktoranckie organizowane przy okazji 16th East-European Conference in Advances in Databases and
Information Systems, http://adbis.cs.put.poznan.pl/call_phd consortium.php

20
21

22

234

Bibliografia do streszczenia polskiego

Aalst, W. M. P., 2004. Business Process Management: A Personal View. Business Process
Management Journal, 11(10).

Aalst, W., 2009. TomTom for Business Process Management (TomTom4BPM). Amsterdam,
The Netherlands, Springer-Verlag, p. 2-5.

Aalst, W., 2011. Process Mining. Discovery, Conformance and Enhancement of Business
Processes. : Springer.

Aalst, W., Pesic, M. & Song, M., 2010. Beyond process mining - from the past to present and
future. Proceedings of the 22nd international conference on advanced information
systems engineering, pp. 38-52.

Aalst, W., Schonenberg, M. & Song, M., 2011. Time Prediction Based on Process Mining.
Information Systems, 11(36), p. 450-475.

Abowd, G. et al., 1999. Towards a Better Understanding of Context and Context-Awareness.
London, UK, Springer-Verlag, pp. 304-307.

Adomavicius, G., Sankaranarayanan, R., Sen, S. & Tuzhilin, A., 2005. Incorporating
Contextual Information in Recommender Systems Using a Multidimensional Approach.
ACM Transactions on Information Systems, 1(23), pp. 103-145.

Adomavicius, G. & Tuzhilin, A., 2005. Toward the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions
on Knowledge and Data Engineering, XVI11(6), pp. 734-749.

Agrawal, R. & Srikant, R., 1995. Mining sequential patterns. Washington, DC, USA, EEE
Computer Society, pp. 3-14.

Brendel, R. & Krawczyk, H., 2010. Static and Dynamic Approach of Social Roles
Identification Using PISNA and Subgraphs Matching. Taiyuan, IEEE Computer
Society, pp. 557 - 560.

Camarinha-Matos, L. et al., 2007. A Computer-Assisted VO Creation Framework. Guimaraes,
Portugal, Springer, pp. 165-178.

Camarinha-Matos, L., Afsarmanesh, H. & Ollus, M., 2008. ECOLEAD and CNO Base
Concepts. Methods and Tools for Collaborative Networked Organizations, p. 3-32.
Canfora, G., Di Penta, M., Esposito, R. & Villani, M., 2005. An approach for QoS-aware
service composition based on genetic algorithms. New York, NY, USA, ACM, pp.

1069-1075.

Cellary, W. & Strykowski, S., 2009. E-government Based on Cloud Computing and Service-
Oriented Architecture. Bogota (Colombia), ACM Press, p. 5-10.

Cellary, W. & Strykowski, S., 2009. E-government Based on Cloud Computing and Service-
Oriented Architecture. Bogota (Colombia), ACM Press, p. 5-10.

Claro, D., Albers, P. & Hao, J., 2005. Selecting Web Services for Optimal Composition.
Orlando, USA, Springer.

Crispim, J. & Sousa, J., 2007. Multiple Criteria Partner Selection in Virtual enterprises.
Guimaraes, Portugal, Springer, pp. 197-206.

Delias, P. et al., 2013. Clustering Healthcare Processes with a Robust Approach. Rome, Italy,
EURO-INFORMS.

Dey, A., 2001. Understanding and Using Context. Personal and Ubiquitous Computing, 5(1),
pp. 4-7.

235

Ding, H., Benyoucef, L. & Xie, X., 2003. A Simulation-Optimization Approach Using
Genetic Search for Supplier Selection. New Orleans, Louisiana, USA, IEEE Computer
Society.

Dorn, C., Burkhart, T., Werth, D. & Dustdar, S., 2010. Self-Adjusting Recommendations for
People-driven Ad-hoc Processes. Hoboken, NJ, USA, Springer-Verlag Berlin,
Heidelberg, pp. 327-342.

Dumas, M., Aalst, W. & Hofstede, A. H., 2005. Process-Aware Information Systems:
Bridging People and Software Through Process Technology. Hoboken, NJ, USA: John
Wiley & Sons, Inc..

Ermilova, E. & Afsarmanesh, H., 2010. Competency Modeling Targeted on Boosting
Configuration of Virtual Organizations. Production Planning and Control. The
Management of Operations, 11(21), pp. 103-118.

Gallon, M., Stillman, H. & Coates, D., 1995. Putting Core Competency Thinking Into
Practice. Research Technology Management, 111(38), pp. 20-29.

Haisjackl, C. & Weber, B., 2011. User Assistance During Process Execution - an
Experimental Evaluation of Recommendation Strategies. Hoboken, New Jersey, USA,
Springer, pp. 135-145.

Hwang, S., Wei, C. & Yang, W., 2004. Discovery of temporal patterns from process
instances. Computers in Industry - Special issue: Process/workflow mining, 53(3), pp.
345 - 364.

Jaeger, M. & Miihl, G., 2007. QoS-based Selection of Services: The Implementation of a
Genetic Algorithm. Bern, Switzland, IEEE Computer Society.

Mane, R., 2013. A comparative study of Spam and PrefixSpan sequential pattern mining
algorithm for protein sequences. Advances in Computing, Communication, and Control
Communications in Computer and Information Science, Volume 361, pp. 147-155.

Mitchell, M., 1998. An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT
Press.

Morzy, M. & Forenc, K., 2013. Social Network Analysis on Highly Aggregated Data: What
Can We Find?. In: T. Morzy, T. Héarder & R. Wrembel, eds. Advances in Databases and
Information Systems. Germany: Springer, pp. 195-206.

Nakatumba, J., Westergaard, M. & Aalst, W., 2012. A meta-model for operational support.
BPM Center Report. [On-line]

Available at: http://bpmcenter.org/wp-content/uploads/reports/2012/BPM-12-05.pdf
[Accessed 26 May 2012].

OASIS Technical Committee, 2006. Reference Model for Service Oriented Architecture 1.0.
OASIS Standard.. [On-line]

Available at: https://www.0asis-open.org/committees/download.php/19679/
[Accessed 17 5 2013].

Paszkiewicz, Z., Gabryszak, P., Krysztofiak, K., Wawrzyniak, K., Picard, W., 2011. ErGo:
Developer’s Guide, Poznan: Poznan University of Economics, Department of
Information Technology.

Paszkiewicz, Z. & Cellary, W., 2011. Computer supported collaborative processes in virtual
organizations. Poznan, IMDA Press, pp. 85-94.

Paszkiewicz, Z. & Cellary, W., 2012. Computer supported contractor selection for public
administration ventures. Albany, NY, ACM, pp. 322-335.

Paszkiewicz, Z. & Cellary, W., 2012. Computer supported collaboration of SMEs in
transnational market. Journal of Transnational Management, 17(4), pp. 294-313.

236

Paszkiewicz, Z. & Picard, W., 2009. Modeling virtual organization architecture with the
Virtual Organization Breeding Methodology. Thessaloniki, Greece, Springer, pp. 187-
196.

Paszkiewicz, Z. & Picard, W., 2010. MAPSS, a Multi-Aspect Partner and Service Selection
method. Saint-Etienne, France, Springer, pp. 329-337.

Paszkiewicz, Z. & Picard, W., 2011. Modeling competences in service-oriented virtual
organization breeding environments. Lausanne, Switzerland, IEEE, pp. 497-502.

Paszkiewicz, Z. & Picard. W., 2013. Analysis of the Volvo IT Incident and Problem Handling
Processes using Process Mining and Social Network Analysis. Beijing, China, CEUR
online proceedings.

Pei, J. et al., 2004. Mining sequential patterns by pattern-growth: the PrefixSpan approach.
IEEE Transactions on Knowledge and Data Engineering, Volume 16.

Picard, W., 2013. A Formalization of Social Requirements for Human Interactions with
Service Protocols. Information Sciences, Volume 283, pp. 1-21.

Picard, W., 2013. Adaptation of Service Protocols. Poznan, Poland: Poznan University of
Economics Press.

Picard, W. et al., 2010. Breeding Virtual Organizations in a Service-Oriented Architecture
Environment. In: SOA Infrastructure Tools - Concepts and Methods. Poznan, Poland:
Poznan University of Economics Press, p. 375-396.

Picard, W. & Cellary, W., 2010. Agile and Pro-active Public Administration as a
Collaborative Networked Organization. New York (NY, USA), ACM, pp. 9-14.

Porter, M., 2008. Competitive Advantage: Creating and Sustaining Superior Performance.
New York, USA: Simon and Schuster.

Rabelo, R. & Gusmeroli, S., 2008. The ECOLEAD Collaborative Business Infrastructure for
Networked Organizations. Poznan, Springer, p. 451-462.

Reichert, M., 2011. What BPM Technology Can Do for Healthcare Process Support.
Springer-Verlag, s.n., p. 2-13.

Ricci, F., Rokach, L., Sshapira, B. & Kantor, P. B., 2011. Recommender Systems Handbook. :
Springer.

Simon, D. & Boring, J., 1990. Sensitivity, Specificity, and Predictive Value. In: H. Walker,
W. Hall & J. Hurst, eds. Clinical Methods: The History, Physical, and Laboratory
Examinations. Boston: Butterworths, p. Chapter 6 .

Sinur, J. & Jones, T., 2012. Leverage Automated Business Process Discovery for Business
Benefits, Stamford, CT, USA: Gartner Report.

Srikant, R. & Agrawal, R., 1996. Mining sequential patterns: generalizations and
performance improvements. London, UK, Springer-Verlag

Stoner, J., Freeman, R. & Gilbert, D. R., 1999. Management. 6 ed. Singapore: Pearson.

Swinkels, G., 2012. Performance Improvement based on Cross-Organizational
Recommendations, Eindhoven : Eindhoven University of Technology.

Tan, P., Goh, A. & Lee, S., 2008. A Context Model for B2B Collaborations. Washington, DC,
USA, IEEE Computer Society, pp. 108-115.

Wang, J. & Han, J., 2004. BIDE: efficient mining of frequent closed sequences. Boston, MA,
USA, IEEE Computer Society, pp. 79 - 90.

Watts, D., 2004. Six Degrees: the Science of a Connected Age. New York, NY, USA: W. W.
Norton & Company.

Witten, I., Frank, E. & Hall, M., 2011. Data Mining. Practical Machine Learning Tools and
Techniques. Third ed. Burlington, MA, USA: Elsevier Inc..

237

Workflow Management Coalition, 1999. Terminology and Glossary. [On-line]
Available at: http://www.wfmc.org/standards/docs/TC-1011_term_glossary v3.pdf
[Accessed 19 October 2012].

Podziekowanie

Praca nad rozprawg zostala sfinansowana ze srodkéw Narodowego Centrum Nauki
przyznanych na podstawie decyzji nr DEC-2011/01/N/ST6/04205

238

239

