

GDAŃSK UNIVERSITY OF TECHNOLOGY
Faculty of Electronics,

Telecommunications and Informatics

Zbigniew Paszkiewicz

Recommendation Method RMV
for Partner and Service Selection

in Virtual Organization Breeding Environments
Based on Process Mining Techniques

PhD Dissertation

Supervisor:
prof. Wojciech Cellary
Faculty of Informatics

and Electronic Economy
Poznań University of Economics

Gdańsk, 2014

2

3

For Zosia, my parents and my brother Jakub

4

5

Acknowledgements

I wish first of all to thank in particular Professor Wojciech Cellary for many intellectually

challenging discussions that we have had on the topics related to this dissertation and for

keeping me going.

I would also like to thank Willy Picard for his invaluable remarks on this dissertation and his

encouraging comments. Without your involvement, this dissertation would have never been

written.

I would like to thank the members of the Department of Information Technology of the

Poznań University of Economics for their collaboration during these years.

Finally, thanks to my beloved fiancé Zosia for her love, patience, and support. At last, thanks

to my parents, brother and my friends because I have never been left alone with my work.

This work has been partially supported by

the Polish National Science Center. Grant no. DEC-2011/01/N/ST6/04205

6

7

Table of Contents

1. Introduction .. 9

2. Inter-Organizational Collaboration .. 14
2.1. Collaborative Processes .. 15
2.2. Virtual Organizations and their Breeding Environments ... 16
2.3. Partner Selection for Virtual Organizations ... 18
2.4. Basic Definitions .. 19

3. Computer Support for Collaborative Processes .. 23

3.1. Process-Aware Information Systems.. 23

3.2. Context-Aware Recommender Systems ... 29

4. Process Mining .. 43

4.1. Operational Support .. 44
4.2. Process Recommendations ... 47
4.3. Mining Behavioral Patterns in Collaboration ... 55

4.4. Event Log Formalization .. 57

5. Conceptual model of the RMV method .. 59

5.1. RMV Method Requirements .. 59
5.2. RMV Method Motivation ... 60
5.3. RMV Method Outline ... 62

5.4. RMV Method Formal Model .. 70
5.5. RMV Method Partner and Service Selection Technique.. 81

5.6. RMV Method Parameterization.. 118

5.7. RMV Method Computational Complexity ... 120

6. Integration of the RMV Method with the ErGo System 125

6.1. RMV Method Prototype Architecture .. 125
6.2. ErGo System Concept .. 127
6.3. ErGo Applications .. 129

6.4. Integration of the RMV Method with the ErGo system ... 134
6.5. RMV Method Real Case Evaluation .. 143

7. Conclusions ... 162

Bibliography ... 167
List of Figures ... 177

List of Tables .. 179
List of Listings .. 180

Appendix A. Service Protocols Formal Model .. 181
Appendix B. RMV Method Prototype Modules and Classes .. 188
Appendix C. Table of Symbols Used in Dissertation .. 208
Streszczenie rozprawy .. 213

8

9

1. Introduction

Usually, environment of an organization has significant impact on its success. Current trends:

globalization, development and proliferation of information technology, spread of social

media, development of electronic, knowledge-based economy and rising competition, are

followed by increased complexity, uncertainty, dynamism, turbulence and diversity of

organization operations. In such environment, complex production and service provision

at the global scale require a large set of resources and competences that one enterprise is

usually not able to provide. Thus, modern provision of services and delivery of products

require integration and collaboration of many diversified, specialized, autonomous units

offering access to complementary set of resources and competences.

As a generic organizational structure supporting collaboration of divers units, the concept of

Virtual Organizations (VO) has been coined. VO is “a network consisting of a variety of

actors, called VO members that are largely autonomous, geographically distributed, and

heterogeneous in terms of their operating environment, culture, social capital and goals,

which conduct processes including at least one VO collaborative process in order to carry out

a particular venture due to the demand from VO clients” (Camarinha-Matos, et al., 2008). VO

permits to deal with complexity, pursuit for agility, and takes advantages of broad use of

information technologies in economic and managerial operations. Partners collaborating

within a VO are organizations – enterprises, public administration units, and non-government

organizations – people, and information systems. The success of a VO strongly depends on

ability of all participating actors to efficiently and seamlessly collaborate. Good level of

collaboration is achieved by appropriate selection of services and collaborators. Due to

importance and complexity of partner and service selection problem, a number of computer

and organizational methods has already been proposed including the concept of

Virtual Organization Breeding Environment (VOBE). A VOBE is “an association of

organizations with the main goal of increasing preparedness of its members towards

collaboration in potential virtual organizations” (Camarinha-Matos, et al., 2008).

VOBE allows potential collaborators to prepare their future collaboration with other VOBE

members before a business opportunity occurs. A VOBE that consequently applies the

Service Oriented Architecture (OASIS Technical Committee, 2006) is referred to as Service-

Oriented Virtual Organization Breeding Environment (SOVOBE) (Picard, et al., 2010).

10

In SOVOBE, interaction among all the actors, virtual organizations and SOVOBE

infrastructure is performed with the use of services.

Complexity of organizational environment is followed by complexity of VO collaborative

processes guiding operations of VOs. Two main features of each VO collaborative process

are: unpredictability and emergence. The unpredictability aspect of VO collaborative

processes refers to the difficulty to plan in advance the further execution of

a VO collaborative process. The emergence aspect of VO collaborative processes refers to

the influence of VO collaborative process instance execution on itself, i.e., decisions made

during VO collaborative process instance execution impact the next activities. As a

consequence, VO collaborative processes are highly unstructured.

Proliferation of information technologies and ubiquitous access to the internet via fixed and

mobile devices are followed by increased number of processes that are performed by the use

of electronic means. The concept of Process-Aware Information Systems (PAISs) has been

proposed in (Dumas, et al., 2005) to encompass various information systems supporting

the lifecycle of any process. A PAIS is defined as “a software system that manages and

executes operational processes involving people, applications, and/or information sources on

the basis of process models” (Dumas, et al., 2005). Examples of PAISs include: production

workflow managements systems, ad-hoc workflow systems, and computer supported

collaborative work (CSCW) systems. PAISs support for process execution aims at finding

a balance between flexibility of process definition and guidance for human actions. Systems

that allow greater flexibility offer limited support for user guidance and vice versa. PAISs

providing both flexibility and guidance are missing. Moreover, in existing PAISs, guidance is

based on predefined process models that become quickly obsolete in dynamic organization

environment.

Modern PAISs log enormous amount of data providing detailed information about activities

and processes that have been executed. Such data are referred to as events. Event logs provide

valuable insight into process instance executions. Analysis of event logs may permit

to discover factors impacting efficient execution of process instances. Information about those

factors may be used to improve efficiency of future process instance executions. Efficient use

of information from event logs relies on ability to analyze PAISs’ data and draw business-

level conclusions concerning process execution success factors.

Discovery of knowledge from large amounts of data is the domain of data mining and

machine learning techniques. To capture the notion of process in data mining, the term

process mining has been coined. Process mining is “a set of techniques, tools, and methods

to discover, monitor and improve real business processes by extracting knowledge from event

data available in today's information systems” (Aalst, 2011). Traditionally, in process mining

research, one may distinguish two main areas of interest: on-line and off-line analysis. While

off-line analysis includes process discovery, process conformance checking and process

enhancement, on-line analysis encompasses process prediction, detection and

recommendation (Aalst, 2011).

11

On-line process mining recommendations provide an opportunity to efficiently support

processes executions in PAIS (Schonenberg, et al., 2008). The idea consists in analyzing past

and ongoing executions of process instances to discover real, actual process models and use

them to guide users by PAIS. Recommendation of activities based on event logs is a known

but still new and largely unexplored area of process mining.

Existing process mining recommendation methods are limited to structured processes with

known process models. Such methods cannot be applied to very large sets of unstructured,

emerging, unpredictable processes with unknown underlying process model. Moreover,

existing methods permit to discover only activity names and time characteristics. They do not

include important aspects relevant for partner and service selection such as information about

actors involved in the VO collaborative processes and the context of VO collaborative process

executions. The need for efficient process mining methods supporting execution of

unstructured processes guiding collaboration is confirmed in (Sinur & Jones, 2012):

“in processes where there are multiple ways of finishing a process instance to completion,

typical in semi- and unstructured processes, paths to success can be traced by automated

business process discovery. Success patterns can be mined, stored and presented to resources

as better practices, ranked by goals for future process participants. This will become more

important where collaboration is used to drive to completion. Case management, extreme

collaboration and social interactions are drivers for these kinds of process solutions.

Productive collaboration pairings and sources can be identified and leveraged for future

cases”.

The main idea of the Recommendation Method for Virtual Organizations (the RMV method),

proposed in this dissertation, is automatic discovery of activity patterns and ad-hoc generation

of recommendations for VO collaborative process instances performed within a SOVOBE.

An activity pattern is a set of partially ordered activities performed by collaborators that

frequently occurs in many instances of VO collaborative processes.

In the RMV method, it is assumed that event logs of a PAIS satisfy the following

requirements:

1. Each event in the event log has attributes indicating actors involved in execution of

the activity instance comprising the event;

2. Each event has a distinguished set of attributes describing circumstances in which it

was recorded;

3. Each completed VO collaborative process instance is described by a set of attributes,

including one that indicates the outcome of the VO collaborative process instance.

The RMV method consists of two main phases:

1. Identification of activity patterns and their contexts;

2. Recommendation formulation.

In the first phase, a set of activity patterns is identified. Each activity pattern contains

information about its contexts, partially ordered set of activities ordered according to temporal

12

dependencies, involved set of actors, and relations among actors. The second phase is

performed on request. In the second phase, activity patterns suited to a particular context of

a running VO collaborative process are selected and recommended for inclusion in further

execution of the VO collaborative process instance. Once an activity pattern is selected, it is

instantiated before incorporation into VO collaborative process execution. Instantiation

is based on information stored in the activity pattern regarding actors and information

concerning SOVOBE members provided by SOVOBE services. Selection of the best

matching activity pattern from the set of recommended activity patterns and its instantiation is

performed in a collaborative way by a group of collaborators. Recommendations generated by

the RMV method are used by PAIS to guide user actions. As a consequence, PAIS provides

a support for both flexible definition of process models and user guidance, where the guidance

is based on discovered, real and actual activity patterns.

The thesis of this dissertation is the following:

The RMV method permits formulation of accurate recommendations leading to

selection of partners and services for collaboration within virtual organizations.

The reminder of this dissertation is organized as follows. In Section 2, an inter-organization

collaboration is characterized in detail. In particular, the theoretical foundations of inter-

organization collaboration formulated on the ground of economy and management are

presented. This section also explains the application of the Service Oriented Architecture at

inter-organization level and formalizes basic concepts referring to collaboration such as:

service, process, process model, collaborator and collaboration. Two important concepts of

Virtual Organization and Virtual Organization Breeding Environment are presented as

organizational structures supporting inter-organization collaboration. Finally, the problem of

partner and service selection for VO collaborative processes is presented.

Section 3 is devoted to computer support for execution of VO collaborative processes. First,

the concept of Process-Aware Information Systems (PAISs) is introduced that support

processes modeling, management and adaptation. PAISs are analyzed in terms of support they

provide to VO collaborative processes. Next, the concept of service protocols is presented as

an approach to modeling and adaptation of collaboration. Finally, context-aware

recommender systems are analyzed in terms of on-line support of VO collaborative processes

execution. The analysis is divided into two parts: (1) approaches to context modeling,

(2) methods of generating recommendations based on modeled context.

Section 4 outlines data analysis methods applicable to human behavior, including those based

on process mining. Special attention is paid to the concept of operational support based on

process mining and process mining recommendation methods. This section is concluded by

description of methods of data analysis, other than process mining, which aim at finding

patterns in data describing human behavior.

In Section 5, the concept of the RMV method together with its formal model is presented.

First, motivation behind the RMV method is explained in detail. The motivation is based on

the requirements of inter-organization collaboration, limitations of existing methods

13

in support of VO collaborative processes, and limitations of current process mining and data

analysis methods. The motivation is followed by the RMV method outline which is divided

into two parts: (1) general description of the method, and (2) description of the RMV method

key aspects. Formalization of the RMV method includes the following concepts:

collaborative process, VO, VO collaborative process context, collaborative process event log,

activity patterns, activity pattern recommendation, and activity pattern instantiation, as well

as the following operations: activity sequence pattern discovery, activity pattern

identification, recommendation formulation and activity pattern instantiation. The section is

concluded by description of the RMV method parameters and the RMV method

computational complexity.

Integration of the RMV method with a PAIS is presented in Section 6. First, the architecture

of the prototype implementation of the RMV method is presented. Then, the ErGo system

being an example of PAIS used in the construction sector is presented. The ErGo system

description includes its main applications: ErGo Organizations, ErGo Services, ErGo

Investments, and ErGo Investment Types. The prototype implementation of the RMV method

is integrated with all the ErGo applications. Moreover, the ErGo MatchMaker application is

added to the ErGo system as a part of the prototype. This section includes also evaluation of

the RMV method applied to real case data. The analysis is performed on data coming from

a delivery process performed in the warehouse of Epsilon company which is a medium sized

production company. Application of the RMV method has led to discovery of activity patterns

and formulation of nontrivial recommendations concerning complaints handling, work of

quality department employees, and handling of damaged pallets.

Section 8 concludes the dissertation.

In addition, three appendices are provided. Appendix A contains the formal model of service

protocols that are used as a part of formal representation of activity patterns. All the modules

and classes of the prototype implementation of the RMV method are presented

in Appendix B. Appendix C contains table of symbols used in the dissertation.

14

2. Inter-Organizational Collaboration

Organizations always perform their processes in a particular economic, legal, social, political

and technological environment which has impact on their success (Stoner, et al., 1999).

In (Porter, 2008), organization environment is defined as “all the forces, processes and other

entities – companies, public administration agencies, non-government organizations, etc. –

outside an organization that interact with the organization and can potentially affect the

organization’s performance”. Current trends: globalization, development and proliferation of

information technology, spread of social media, development of electronic, knowledge-based

economy and rising competition, are followed by increased complexity, uncertainty,

dynamism, turbulence and diversity of organization operations. Such environment is

a particular challenge for small organizations. Although many small organizations are flexible

and innovative, so they may adapt to transforming environment in a relatively easy and fast

way, they are volatile, they have limited capabilities to influence the market and to control

their environment and, finally, they have to compete with large global organizations that have

much more resources. To achieve market success, small organizations have to combine

strategies of specialization, differentiation and cost leadership throughout the value chain.

As a consequence, these strategies lead to collaboration by integration of various organization

efforts.

The main reason for collaboration among organizations is the need for competitive advantage.

The first theoretical framework that may be used to understand the fundamental need for

collaboration among organizations has been proposed by David Ricardo in his book

“Principles of Political Economy and Taxation” (Ricardo, 1817). David Ricardo indicated

the strategy of specialization as a way to boost efficiency of organization operation.

Specialization means concentration of an organization on operations where it has comparative

advantage and taking benefits from exchange of goods and services with other specialized

organizations. Ricardo has explained that this approach is effective even if an organization is

able to produce all the goods and services more efficiently than the other organizations. In the

theory of competitive advantage, Michael Porter proposed a value chain as an approach to

analysis of organization operations (Porter, 2008). A value chain is a set of activities related

to production processes, marketing, supply, client support, etc. which all together lead to

service provision or product delivery that has a value to a final customer. Basing on the value

chain concept, two organization strategies were proposed: cost leadership and differentiation.

An organization develops a cost advantage by reconfiguring its value chain to reduce costs of

as many stages of the chain as possible. Reconfiguration means making structural changes,

such as adding new production processes, changing distribution channels, or trying a different

sales approach. Differentiation stems from uniqueness and perceived value. An organization

15

focusing on activities it does best and creating innovative and unique products and services,

naturally rises above its competitors. An organization can achieve a differentiation advantage

by either changing individual value chain activities to increase uniqueness in the final product

or by reconfiguring the entire value chain. Barney (Barney, 1991) has proposed that “a firm is

said to have a competitive advantage when it is implementing a value creating strategy not

simultaneously being implemented by any current or potential player”. Focusing on the

resources and attributes which provide the competitive advantage to an organization has

a deep impact on its performance outcomes, and therefore, should be a fundamental aspect in

every business strategy. As a consequence, organizations should specialize to gain

a competitive advantage.

Focusing on competitive advantage leads to narrowing the areas of organization expertise and

operation. Meanwhile, the production and service provision currently require a large set of

skills and resources that a given organization is usually not able to handle efficiently. Thus,

modern value chains cover not one but a number of specialized organizations, integrated with

each other to perform activities defined within the value chain. Such collaboration creates an

opportunity for efficient, cost effective differentiation at each phase of the value chain. On the

other hand, efficient collaboration among autonomous organizations is difficult mainly due to

differences among them including geographic, legislative, and cultural differences, diverse

markets of products and services, frequent changes of customers and suppliers, as well as

modifications of law, technology and methods of work. This raises the question of

(1) the methods of modeling collaboration to achieve efficient computer support,

(2) organizational structures supporting collaboration. Collaborative processes have been

proposed to model inter-organizational collaboration, while Virtual Organizations and Virtual

Organization Breeding Environments have been intensively scrutinized organizational

structures supporting collaboration among organizations.

2.1. Collaborative Processes

The world economy is currently in an advanced stage of transformation from a goods-based

economy to a services-based economy in which value creation, employment, and economic

wealth depend more and more on the service sector (Spohrer & Maglio, 2008) (Demirkan, et

al., 2008) (Wall, 2007). Service Oriented Architecture (SOA) is one of the widely applied

paradigms with relevance to accounting, finance, supply chain management and operations,

as well as strategy and marketing. Thus, in modern approaches to management, SOA plays

a key role as a way to integrate heterogeneous information systems coming from different

organizations (Cellary & Strykowski, 2009) (Picard & Cellary, 2010). Typically, SOA

methods, Web services, associated tools and standards enable implementation of SOA

at infrastructural and technical levels. Recently, it has been stated that SOA does not have to

be limited to these levels only (Picard, et al., 2010). OASIS defines SOA as “a paradigm for

organizing and utilizing distributed capabilities that may be under the control of different

ownership domains” (OASIS Technical Committee, 2006). The concept of a service is

defined as follows: “a service is the mechanism by which needs and capabilities are brought

together”. These two definitions emphasize some characteristics of SOA applied to a set of

organizations which mutually collaborate to achieve common or compatible goals.

The service definition focuses exactly on the matching of the needs of users and the

capabilities of an organization or a set of organizations to answer these needs.

The terms traditionally used in SOA can be used to model the collaboration among

organizations in the following way. To achieve their goals, organizations perform activities

16

defined as closed pieces of work (Workflow Management Coalition, 1999). An activity may

be a piece of automated work performed by an information system, e.g., a web service for

creating invoices, a piece of work performed by a human, e.g., making a decision by a senior

executive, or a piece of work performed by an organization, e.g. constructing a residential

building. A set of partially ordered activities which realize an objective in a structured manner

is called a process (Workflow Management Coalition, 1999). A process instance is a single

enactment of a process. A process instance state is a representation of the internal conditions

defining the status of a process instance at a particular moment. A process model captures the

possibility to execute a given activity in a given state. Information systems, humans and

organizations involved in activities being a part of the process are called actors. A service is

an access to a competence of an actor, called service provider, to satisfy a need of another

actor, called service consumer, where the access is provided via a prescribed

interface (Picard, 2013). A service perceived by a service consumer corresponds to an activity

performed by a service provider. A collaboration arises when two actors alternately and

mutually play roles of service consumer and provider. Actors involved in collaboration are

called collaborators. A process is collaborative if some actors involved in it are collaborators.

The formalized definition of a collaborative process is presented in Section 5.4.1.

In the SOA approach, the organizational environment is referred to as a SOA ecosystem.

According to OASIS, a SOA ecosystem is defined as “a network of discrete processes and

machines that, together with a community of people, creates, uses, and governs specific

services as well as external suppliers of resources required by those services” (OASIS

Technical Committee, 2006). Although implementations of SOA at the inter-organizational,

infrastructural, and technical levels share many common concerns, such as orchestration of

services, reliability issues, and service instance selection, the SOA ecosystem at the inter-

organizational level has two specific characteristics: the heterogeneity and dynamism. In the

global economy, the SOA ecosystem is neither homogeneous nor static. Following Porter’s

Five Forces theory (Porter, 1979), SOA ecosystem heterogeneity comes from supplier power,

barriers to entry, rivalry among organizations, threat of substitute services and buyer power

which are different in different business domains. Also, organizations operating in

a SOA ecosystem are characterized by different readiness to personalize provided services,

level of computer support in service provision, business models, organizational culture, level

of formalization of collaboration and internal processes, geographical localization, ability to

adapt to SOA ecosystem changes, etc. Dynamics of a SOA ecosystem follow from constant

changes in the set of organizations, individuals and information systems operating in the SOA

ecosystem, changes in their operations and their results having impact on the whole

ecosystem. In a globalized economic environment, organizations are often competing

at the global scale. New organizations are created on a daily-basis, however, for instance

in the USA, more than 50% of them do not survive 5 years (U.S. Bureau of Labor Statistics,

2010). Therefore, new potential collaborators appear continuously, while many already

collaborating organizations disappear.

2.2. Virtual Organizations and their Breeding Environments

As a generic organizational structure supporting enactment of collaborative processes,

the concept of Virtual Organizations (VO) has been coined in (Camarinha-Matos, et al.,

2008). In this dissertation, Virtual Organization is defined as follows: “VO is a network

consisting of a variety of actors, called VO members, that are largely autonomous,

geographically distributed, and heterogeneous in terms of their operating environment,

17

culture, social capital and goals, which conduct processes including at least one

collaborative process in order to carry out a particular venture due to the demand from VO

clients”. The formal definition of VO is presented in Section 5.4.1.

Partners collaborating within a VO are organizations – enterprises, public administration

units, and non-government organizations – people, and information systems (Cellary,

2006) (Drozdowski, et al., 2005). Theoretical foundations for virtual organizations have been

proposed in (Rabelo & Gusmeroli, 2008) and (Camarinha-Matos, et al., 2007). VO permits to

deal with complexity, pursuit for agility, and take advantages of broad use of information

technologies in economic and managerial operations (Cellary, 2009). In case of a VO,

a modification of a VO collaborative process may be triggered either by external events

occurring in VO environment or internal events that are strictly connected to the execution of

VO collaborative processes. Among others, modification may be followed by change in a set

of VO partners, modification of VO collaborative processes or even redefinition of the VO

goal. Modification of virtual organizations takes place during the whole VO operation.

Services available in a SOA ecosystem that can be incorporated into VO collaborative

processes are offered on markets of services having various forms and levels of formality. For

instance, the service market may take form of catalogs of organizations (Panorama Firm,

2012), service auctions (Oferia.pl, 2012), IT service parks (Petrie & Bussler, 2008), dynamic

business networks (Bichler & Lin, 2006), Web service ecosystem (Barros, et al., 2005), B2B

e-marketplaces (Abramowicz, et al., 2008) or public administration service

platforms (Ministry of Administration and Digitization, 2012). Within these markets, service

providers offer multiple services that can be dynamically and on-demand bind into VO

collaborative processes. Evolution in the area of service publication, discovery and usage

recently has shifted from tight coupling of intra-organizational systems to inter-organizational

loosely coupling of partners using well defined service level agreements to open market of

services with new models of licensing comprising abstract processes and dynamic service

selection and instantiation.

A concept of Virtual Organization Breeding Environment (VOBE, sometimes abbreviated to

VBE in the literature) has been proposed to support dynamic partner and service selection and

instantiation of VO. A VOBE is “an association of organizations with the main goal of

increasing preparedness of its members towards collaboration in potential virtual

organizations” (Camarinha-Matos, et al., 2008). VOBE allows potential collaborators to

prepare their future collaboration with other VOBE members before a business opportunity

occurs. Preparation is done by publication of available services and provision of other data

useful for identification of collaboration chances. VOBE supports its members by providing

an access to various services that can be used across virtual organization

lifecycle (Camarinha-Matos, et al., 2007):

 In the VO creation phase: VOBE provides access to information not publicly

available, such as information about the past performance of VOBE members; it also

provides a standardized description of partner profiles, competences and services;

it supports the potential partner search and selection; it provides methods and tools for

analysis and evaluation of present and future cooperation performance, as well as

necessary information for trust building among selected members;

 In the VO operation phase: VOBE supports communication and exchange of

documents, facilitates integration of heterogeneous information systems and manages

common infrastructure, provides guidelines for standardized data formats, data storage

facilities, information about changing environment of collaboration, information about

18

new collaboration opportunities, and permits to reuse artifacts elaborated by other

VOs (in particular business process models, or best practices);

 In the VO evolution phase: VOBE supports adaptation by redefinition of business

goals, searching for new partners, supporting negotiations, etc.;

 In the VO dissolution phase: VOBE inherits knowledge, i.e., it captures experience

gained during the operation of VOs for future reuse.

While the concept of VOBE is currently widely accepted, many doubts concern its

architecture and implementation. Existing VOBEs have been created in an ad hoc manner and

have an infrastructure allowing limited support for efficient integration of VOBE members on

both business and technical levels. Service-Oriented Virtual Organization Breeding

Environments (SOVOBEs) have been proposed as VOBEs organized systematically on both

technical and organizational level around the concept of a service allowing SOVOBE

members to collaborate better (Picard, et al., 2010).

2.3. Partner Selection for Virtual Organizations

As mentioned in Section 2.2, both SOVOBE and VO operations are based on services

performed by organizations, people, and information systems, composed in potentially

complex VO collaborative processes. Success of a VO strongly depends on ability of all

participating partners to efficiently and seamlessly collaborate. Good level of collaboration

may be achieved by an appropriate selection of services and collaborators. Selected

collaborators need to be able to mutually communicate, synchronize, and cooperate to

efficiently realize a set of activities. Due to importance and complexity of the partner

selection problem, a number of computer supported methods has already been proposed.

Although, the newest methods address the aspect of service orientation, in the literature the

selection of services is usually separated from the concept of selection of partners. While

service selection is a concept investigated by the distributed systems community (especially

in terms of SOA), partner selection is mainly a subject of interest of the collaborative

networked organization community. Nevertheless, in most methods presented in the papers

coming from both communities, it is possible to distinguish two elements: first, an

information model captures and structures information about artifacts based on which

selection is performed. Second, various selection techniques have been proposed, focusing on

the selection context, scope of the selection and selection strategy.

Partner selection is strongly related with the idea of competence modeling (Gallon, et al.,

1995). Works on competence modeling aim at providing a structural description of

organizations with a special emphasis on competences, profiles, capacities, and resources

(Ermilova & Afsarmanesh, 2010) (Pepiot, et al., 2007). The concept of partner selection based

on organization and competence profiles have been published in (Ermilova & Afsarmanesh,

2007). In a competence-based approach, inclusion of service characteristics is

marginal (Ermilova & Afsarmanesh, 2010) or not present at all (Pepiot, et al., 2007).

In (Canfora, et al., 2005) and (Mueller, 2006), the selection of services is based on

an information model consisting of service descriptions. A service description usually

includes a wide range of technical, functional, non-functional and business characteristics of a

given service. In (Claro, et al., 2005) and (Jaeger & Mühl, 2007), opinions concerning

services and user feedback are taken into account. These works do not take advantage of the

concepts elaborated in the area of competence modeling, so proposed descriptions of service

providers are often not structured, consisting of a simple list of attributes. Moreover, while

19

the importance of social aspects in SOA has been noted recently (Świerzowicz & Picard,

2009) (Picard, 2009), existing approaches to inclusion of these aspects in partner selection are

still to be developed (Jarimo, 2009). As an example, (Ding, et al., 2003) have proposed

a simulation-optimization approach using genetic search for supplier selection, integrating

performance estimation, social aspects and genetic algorithm. However, the social relation

model encompasses only a simple social model for supply chains limited to only one relation

type, i.e. customer-supplier. A number of selection strategies have been proposed for partner

selection. The conclusion of the comparison of various popular approaches presented

in (Canfora, et al., 2005) and (Crispim & Sousa, 2007) is that genetic algorithms are the most

popular approach. The general guidelines for partner selection within the VOBE are presented

in (Rabelo & Gusmeroli, 2008) and (Camarinha-Matos, et al., 2007).

2.4. Basic Definitions

In this section, first, the concepts related to objects and classes of objects are defined. Next,

the main concepts related to organizations, processes and services in SOA are introduced.

Definition 2.1. (Attribute) An attribute a is a pair , where is the name of the

attribute and is the value of the attribute. The value of an attribute may be a literal,

an attribute or a set of attributes.

Definition 2.2. (Attribute equality) An attribute is equal to an attribute if

and . Formally, .

Definition 2.3. (Object) An object ob is a pair , where is a name of an object

and is a set of attributes .

Example 2.1. An object named is composed of the following set of

attributes:

 ,
 ,
 . ▪

Definition 2.4. (Object Classifier) An object classifier is a set of attribute names
 .

Definition 2.5. (Equality According to Classifier) Two objects are equal according to

classifier if they have the same attribute values associated with attribute names composing

object classifier .

Formally, an object is equal to object according to

classifier , denoted
ob

 , iff

Example 2.2. All the objects having the same value of attributes named: and

 are considered equal according to classifier ,
independently of how many other attributes they have. ▪

20

Definition 2.6. (Attribute Constraint) An attribute constraint is a pair , where

 is the name of the attribute constraint and is a predicate.

Definition 2.7. (Satisfaction of Attribute Constraint) An attribute satisfies

an attribute constraint , denoted , iff and .

Definition 2.8. (Class) A class c is a pair , where is a name of a class and is

a set of attribute constraints .

Example 2.3. An class is composed of the following set of attribute

constraints:

 ,
 ▪

An class is composed of the following set of attribute constraints:

 ,
 ▪

Definition 2.9. (Class Instance) An object is an instance of

a class , denoted , iff .

Example 2.4. The object is an instance of the class,

because all the attribute constraints of the class are satisfied: is an architect

and his number of realizations, equal to 17, is higher than the required number, equal to 15.

Note that attribute nationality is not relevant for the class. ▪

Definition 2.10. (Activity) An activity v is a closed piece of work aiming at creation of new

objects, removal or modification of existing objects.

An activity may be a piece of automated work performed by an information system,

e.g., a web service of creating invoices, or a piece of work performed by a human,

e.g., making a decision by a senior executive.

Let be the set of all the activities.

Definition 2.11. (Activity Description) An activity description vd is an object describing

an activity with the following minimum set of mandatory attributes having empty values:

 activityStart is a timestamp representing the starting time of activity

execution, and

 activityEnd is a timestamp representing the completion time of activity

execution.

Let be the set of all the activity descriptions.

Definition 2.12. (Activity Instance) An activity instance vi is a single enactment of an

activity.

Let be the set of all the activity instances.

Definition 2.13. (Activity Instance Description) An activity instance description vid is an

activity description where the values of mandatory attributes are non-empty.

Let be the set of all the activity instance descriptions.

21

Definition 2.14. (Process) A process is a set of partially ordered activities which realize

an objective in a structured manner.

Definition 2.15. (Process Instance) A process instance is a single enactment of a process.

Definition 2.16. (Process Instance Description) A process instance description pid is

an object describing process instance.

If the process instance is completed, exactly one attribute describes its outcome. Other

instance attributes may include information concerning process instance type, purpose,

starting time, place of process instance execution, etc.

Definition 2.17. (Process Model) A process model is a directed acyclic graph
 , where is the set of activity descriptions, and E is a set of arcs determining

the partial order of activity execution.

Definition 2.18. (Basic entity) A basic entity is a human or an information system.

Definition 2.19. (Organization) An organization is a set of at least two members, where

a member is either a basic entity or another organization, working within a particular structure

of relations in order to achieve a certain goal of this organization and having a plan to achieve

this goal. A goal of an organization may change, followed by the need of plan adaptation.

Formally, an organization io is a triple

 , where:

 is a plan to achieve goal of organization ,

 is a set of members of organization , such that ,

 set of relations among members of organization , where .

Let denote the set of all the organizations .

Definition 2.20. (Actor) An actor ar is a basic entity or an organization able to perform

an activity.

Let denote the set of all the actors. Note that .

Definition 2.21. (Actor Description) An actor description ard is an object describing

an actor.

Definition 2.22. (Competence) A competence is an ability of an actor to perform a particular

set of activities.

Definition 2.23. (Need) A need of an actor is a demand for object creation, modification or

removal.

Definition 2.24. (Interface) An interface is a pair of sets of classes of objects
 .

Definition 2.25. (Service) A service s is an access to a competence of an actor, called service

provider, to satisfy a need of another actor, called service consumer. The access to

a competence is provided via a prescribed service interface , where is a set of classes

of objects accessed by a subset of activities composing service provider competence, and

 is a set of classes of objects to be modified, created or removed during activities

execution to satisfy a service customer need.

22

Example 2.5. Consider two companies: and . Company

 has a competence of finding highly qualified professionals in the labor

market. Finding a right professional requires execution of a set of activities

by . Company is a provider of a service .

Service offers an access to competence. ▪

The service has an interface , where

is a 1-element set whose element is a class of position description
 having the following set of attribute constraints:
 . class states that

a position description object must provide a none empty list of responsibilities of an employee

and expected experience of an employee. An object being an instance of

 class must be provided by a service consumer during the service call.

 is a 1-element set whose element is a class of employee bio having a set

of attribute constraints . The class

states that employee bio with his/her name, contact information and skills will be given to

a service consumer as a result of service execution.

 is a ’s client. ’s need is to find a proper business analyst.

 is a consumer of the service . requests service

execution and gives a company an object having attributes

 . is

a description of a business analyst position in . Note that

 . As a result of service execution,

 returns object with attributes

 to . Note

that . ▪

23

3. Computer Support for Collaborative Processes

Efficient computer support for VO collaborative processes requires proper approaches to

modeling collaboration, supporting execution of VO collaborative processes and providing

guidance to collaborators in determining upcoming process activities that must be performed.

The main support is provided by Process-Aware Information Systems (PAISs) and

recommender systems.

3.1. Process-Aware Information Systems

3.1.1. Business Process Management

Business Process Management (BPM) is defined as “supporting business processes using

methods, techniques, and software to design, enact, control, and analyze operational

processes involving humans, organizations, applications, documents and other sources of

information” (Aalst, 2004) (Aalst, et al., 2003). In the literature concerning BPM, information

required to model and control a process has been classified according to various perspectives.

In (Aalst, et al., 2003), five perspectives have been presented:

 The functional perspective focuses on activities to be performed, their casual and

temporal dependencies,

 The process perspective focuses on the execution conditions for activities,

 The organization perspective focuses on the organizational structure of the population

that potentially executes activities,

 The information perspective focuses on data flow among activities,

 The operation perspective focuses on elementary operations performed by

applications and resources.

Traditionally, BPM literature describes the following six phases of the process

lifecycle (Reichert, 2011):

1. The process design phase, during which a process designer or a group of process

designers define a process model; the definition of a process model is based on a

process modeling language, e.g., BPMN
1
, EPC

2
, providing appropriate constructs for

creating graphical representation of the model;

1 Business Process Modeling Notation, http://www.bpmn.org/
2 Event-driven Process Chain, http://www.ariscommunity.com/event-driven-process-chain

24

2. The process configuration phase, during which appropriate implementation of the

activities of the process are identified;

3. The process implementation phase, during which values of the process parameters,

especially values of the parameters of its activities, are provided to tailor the process

instance to the addressed situation;

4. The process enactment phase, during which activity instances are executed;

5. The process monitoring and diagnosis phase, during which the execution of the

process instance is controlled, logged, and eventually audited;

6. The process evolution phase, during which modifications are introduced in the process

instance and/or the process model.

Proliferation of information technologies and ubiquitous access to the internet by fixed and

mobile devices are followed by increased number of processes that are performed

by electronic means. The concept of Process-Aware Information Systems (PAISs) has been

proposed in (Dumas, et al., 2005) as a concept encompassing various information systems

supporting process lifecycles. A PAIS is defined as “a software system that manages and

executes operational processes involving people, applications, and/or information sources

on the basis of process models” (Dumas, et al., 2005). PAISs include among others: workflow

management systems, Enterprise Resource Planning (ERP) systems and Customer

Relationship Management (CRM) systems. The main difference between more traditional

information systems and PAIS is the focus of the system. Information systems take a data-

driven approach, focusing purely on the tasks they have to perform. On the contrary, PAISs

look at the process they have to support. As a consequence, PAISs are able to support

organizations by providing insight in the status of both the process as a whole and activities

which are part of it. This enables organizations to monitor and communicate about their

current state and performance.

3.1.2. Characteristics of VO Collaborative Processes

Heterogeneity and dynamic nature of the SOA ecosystem is followed by complexity of

VO collaborative processes. Collaborators constantly gain knowledge through the analysis of

information concerning the organization environment. Moreover, collaborators learn from

each other both explicit and tacit rules governing the execution of collaborative processes.

As a consequence of instantly gained knowledge, collaborators change the way they perceive

processes, activities, semantics of the decisions being made, and the way these decisions have

been made. Due to usually long-lasting character of the VO collaborative processes, the set of

collaborators and their roles change, so the set of collaborators having the holistic vision and

understanding of collaborative processes realized in the whole VO may be small. Finally,

similar instances of VO collaborative processes—e.g. having a similar goal, involving

a similar set of collaborators, performed at the same time—may be interrelated, which means

that the course of execution of one VO process instance and its results may influence

the course of execution of another instance.

Traditional PAISs are built on clear separation of design-time and run-time phases. Process

design, implementation, and configuration phases are considered to be the design-time phases.

Process enactment, monitoring and diagnosis phases are considered to be the run-time phases.

Most PAISs enforce a strong precedence constraint on design-time and run-time: a process is

first modeled, and then executed, with a limited possibility to change the model at run-time.

This strong precedence is usually justified by two assumptions:

25

1. The process model is known before process execution, i.e., it is possible to design

a process model that is further instantiated and later on executed;

2. The business environment is rather static, which implies process repetition.

Processes meeting the above two assumptions are structured, i.e., repeatable and predictable.

Examples of such processes are production ones which can be well supported. To support

such processes, a number of methods and standards have been proposed in (Russell & Aalst,

2007) and in WS-BPEL (IBM & SAP, 2005), WS-Coordination (OASIS, 2007), WS-

Choreography (W3C, 2004) standards. Full automation is achieved at the expense of

possibility to provide change in a process model which cannot be made during process run-

time.

In case of VO collaborative processes, the above two assumptions are often not observed.

This causes the mismatch between a support provided by PAISs and highly dynamic business

environments. If a business environment is highly dynamic, it may be impossible to foresee

the process that has to be performed at a given moment. Two aspects of VO collaborative

processes have to be addressed to tackle their ad-hoc character:

1. The unpredictability aspect of VO collaborative processes refers to the difficulty to

plan in advance a partially ordered set of activities to reach the assumed goal;

2. The emergence aspect of VO collaborative processes refers to the influence of the

VO collaborative process instance execution on itself, i.e., decisions made during

process instance exaction condition a set of the next activities.

To precisely define problems related to VO collaborative process modifications during run-

time, the concepts of process flexibility and adaptation are used (Sadiq, et al., 2005).

Flexibility refers to the fact that execution of a VO collaborative process starts without its full

specification, i.e., the full set of activities to be performed and their ordering is not known

when the VO collaborative process execution starts, so specification of the model is made

at run-time and may be unique to each VO collaborative process instance. Flexible

VO collaborative processes are characterized by a lack of ability to completely predict and

define a set of activities and ordering relationships among them. Adaptability is the possibility

of a VO collaborative process to adjust to exceptional circumstances that may or may not be

foreseen, and generally would affect one or a few VO collaborative process instances.

As the possibility of modification of VO collaborative process instances at run-time plays

a crucial role in a SOA ecosystem, a special attention should be put on computer methods

supporting VO collaborative process flexibility and adaptation. Currently, computer support

for adaptability and flexibility of processes is provided to various extent in many systems,

e.g., YAWL (YAWL Foundation, 2012), ADEPT (Reichert, et al., 2005), DECLARE (Pešic,

et al., 2007). A survey of current approaches is provided in (Picard, 2013).

In (Swenson, 2010), a problematic case of processes related with knowledge work has been

identified, e.g., emergency rescue, financial audit or bridge construction engineering, for

which a new approach is needed, referred to as Adaptive Case Management (ACM). In ACM,

it is impossible to predict the full course of process execution. However, it can be noted that

some sets of activities are highly probable to appear in particular circumstances. Still, it is

unknown whether the particular circumstances will appear. For instance, consider a process

describing a rescue action performed by a firefighter. The firefighter does not know how

a particular rescue action will develop, but he/she is trained to behave in a certain way

in particular circumstances. For example, when an electrical installation is on fire, he/she

performs a known set of activities related with this situation. Existence of reproducible,

26

typical human behavior patterns noted in (Swenson, 2010) is supported by findings described

in (Anderson, 2009). In cognitive psychology, these typical patterns are referred to as scripts.

A script describes some specific circumstances and a set of activities that is typical for these

circumstances. It has been shown that individuals are able to complete uncompleted or

erroneously reported scripts so that errors in the observed situations could be

corrected (Anderson, 2009). Similar findings can be observed in various fields.

In (Magnusson, 2004), it is stated that “behavior consists of patterns in time”. The authors

observe typical behaviors in team sport games like soccer. Some works even draws

a connection between behavior patterns and patterns found in DNA-sequences (Magnusson,

2005). In (Heierman & Cook, 2003) it is argued that identification of significant patterns

in human behavior can boost efficiency of operation of smart home infrastructure. Similar

observations are made in the area of interactive user interfaces (Davison & Hirsh, 1998)

(Hartmann & Schreiber, 2007). It has been shown that reproducible human behavior patterns

concern also groups of individuals while small alterations might exist for individuals coming

from different cultures and societies (Anderson, 2009). Processes analyzed by Swenson share

characteristics with VO collaborative processes.

The IT support for processes observed by Swenson is not yet provided. To systemize

classification of process in accordance with various levels of structuration, in (Aalst, 2011)

three levels of process structuration have been proposed:

1. Structured processes (also called Lasagnia-like processes) – during execution of

various process instances more than 80% of activities happen as captured in the

process model and stakeholders confirm the validity of the model; structured

processes have activities that are repeatable and all the activities have a well-defined

input and output;

2. Unstructured processes (also called Spagetti-like processes) – execution of process

instances is driven by experience, intuition, trail-and-error, rules-of-thumb, and vague

qualitative information; it is difficult to define pre- and post-conditions for activities;

3. Semi-structured processes – it is possible to sketch a general process model and major

parts of it are known in detail; conditions under which activities are performed are

known and some activities require human judgment; process instances can deviate

depending on actors decisions and the specific characteristics of the process instance

being executed.

Processes analyzed by Swenson and VO collaborative processes are in between semi- and

unstructured processes – it is possible to distinguish repeatable behaviors in generally

unpredictable and emerging process instances. In this dissertation such processes will be

referred to as quasi-structured processes.

3.1.3. Service Protocols

In (Picard, 2013), service protocols have been proposed as an approach to modeling

VO collaborative processes. The advantages of service protocols over other approaches to

VO collaborative process modeling have been listed in (Picard, 2013). In particular,

traditional approaches have the following disqualifying features:

 Static set of process actors: assignment of actors and services to the whole process;

this assignment cannot be modified at run-time;

 Singular service consumer: in the existing approaches, a single service consumer and

multiple service providers are assumed;

27

 Limited constraints: in the existing approaches, process models focus on the set of

activities and their partial ordering; the concept of role is used to limit the execution of

a given activity to actors with appropriate rights; the role definition is usually limited

to a label associated with a set of activities that may be performed;

 Unsupported social aspects: although in the existing approaches the importance of

social aspects in VO collaborative processes has been largely studied, existing

methods of process modeling still lack support for relational constraints;

 One-time instantiation: in the existing approaches, the instantiation of a process is

done at once for the whole process and this assignment cannot be modified at run-

time.

A service protocol proposed in (Picard, 2013) consists of four elements: a process model,

a service-oriented summary of a process model, service network and a service network

schema. As mentioned in Section 2.4, a process model defines a set of partially ordered

activities to be performed during process execution. A service-oriented summary of a process

model is an association of each activity with a service description, where a service description

is a triplet defining the “who” (the service consumer), “what” (the service interface), and

“whose” (the service provider) part of the activity. A service-oriented summary of a process

model provides a representation of the activities of the associated process model in SOA

terms, independently of the process modeling language, e.g., BPEL3 or BPMN. In a service-

oriented summary of a process model, each activity of the process is associated with a service

represented by a service description. Information about service entities, i.e., service providers,

service interfaces, and service consumers, are captured in a service network. A service

network is a directed graph of service entities, i.e., service providers, service interfaces, and

service consumers. Service network aims at capturing properties and relations among service

entities. A service network is the source of service implementation used to instantiate service

protocol. A class of service entities is set of constraints which service entities being instances

of that class must observe. A class of arcs of a service network is a set of constraints that

the arcs being instances of that class must observe. Classes of arcs are called service

requirements. A service network schema is a graph composed of classes of service entities

and service requirements. A service network schema restricts the set of potential service

entities that may participate in a service protocol execution. The constraints should be taken

into account when selecting service entities, i.e., actors and service interfaces, during

instantiation of the collaborative process model. A service entity is an instance of a class of

service entities iff it satisfies all the constraints defined by the class of service entities. Finally,

a service protocol instance is a service protocol, where activity names and all the classes of

service entities defined in service network schema are known. The formal definition of

a service protocol is given in Appendix A.

A service protocol may be applied at four levels that differ mainly with regard to the

availability of information concerning the chosen service consumers, providers, and

interfaces:

1. At the abstract level, a service-oriented summary provides a service-oriented

representation of a process model, a service network schema provides constraints on

service entities and social requirements, and both the service oriented summary and

the service network schema are linked to associated service descriptions (from the

service-oriented summary) with classes of service entities (from the service network

3 Business Process Execution Language, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

28

schema); graphical representation of an abstract service protocol is presented in Fig.

3.1 (Picard, 2013);

2. At the prototype level, service entities of a service network are associated with both

service elements of the service-oriented summary and the classes of service entities of

the service network schema; at the prototype level, the service network provides only

a partial implementation of an abstract service protocol, as some elements of

the service-oriented summary and some classes of service entities of the schema may

not be associated with any service entity of the service network;

3. At the executable level, the service network associated with both the service-oriented

summary and the service network schema provides a complete implementation of an

abstract service protocol: all the service elements of the service-oriented summary and

all the classes of service entities of the schema are associated with service entities of

the service network;

4. At the instance level, an executable service protocol is enacted; at the instance level,

service entities defined at the executable level consume and provide services

modifying the state of the process model.

Fig. 3.1. Abstract service protocol

The main characteristics of service protocols that facilitate modeling of VO collaborative

processes are:

 Separation of activities implementation from the process model: a service protocol

include potential interactions among collaborators, however, the interactions are

decoupled from implementation of the activities performed by actors;

as a consequence, activities of a given process model may be implemented in different

ways, using different technologies, or different locations/hosts;

 Modeling shared responsibility: in a service protocols, responsibility for execution of

activities is shared by different actors; service protocols express responsibility of

service consumers for invocation of services as well as responsibility of service

providers for the execution of services;

 Constraints on actors: service protocols support the definition of constraints on actors,

both service providers and consumers; constraints on actors are then used as means to

29

define the obligations that an actor has to fulfill to participate in a VO collaborative

process; constraints on actors concern different aspects of actors such as their

competences to perform a given activity;

 Relational constraints: due to the importance of social aspects in collaborative

processes, social protocols support the definition of relational constraints between

actors; relational constraints concern activities that may be performed only by actors

with appropriate relations with other actors; computer support for VO collaborative

processes should treat relational constraints as an integral part of the model.

Although service protocols capture all the aspects relevant to description of VO collaborative

processes, the unpredictable and emerging character of VO collaborative process is only

partially addressed. The concept of service protocols is based on the assumption that the full

process is modeled before the process execution starts. Optionally, during execution, service

protocol is adapted to changing circumstances.

3.2. Context-Aware Recommender Systems

As follows from the research on customer decision making and human

collaboration (Lombardi, et al., 2009), behavior of actors involved in execution of

VO collaborative process instances largely depends on circumstances in which

the VO collaborative process instance execution takes place. For instance, utility of a

particular activity to an actor, or attractiveness of potential collaborators to an actor, depend

also on other aspects than characteristics of these activities and collaborators. In VO

collaborative processes, among others, evaluation of utility or attractiveness of an activity or

collaborators to an actor is influenced by the domain knowledge of the actor, time, and current

location. It has been proved that decision making, rather than being invariant, is contingent on

the circumstances of decision making (Bettman, et al., 1991). Social sciences demonstrate that

efficient collaboration is conditioned by social circumstances surrounding the act of

collaboration (Picard, 2013).

These observations lead to a conclusion that efficient computer support of VO collaborative

processes must include modeling and analysis of circumstances in which a VO collaborative

process instance is performed. The approaches to this problem are based on the notion of

context and context-aware systems.

3.2.1. Modeling Context of Collaboration

Notion of context has been studied in multiple disciplines. The Merriam-Webster dictionary

definition of context is “the interrelated conditions in which something exists or

occurs” (Merriam-Webster Online, 2013). The Free Dictionary defines context as

“the conditions and circumstances that are relevant to an event, fact, etc.” (Free Dictionary,

2013). More precise definitions of context come from the following main scientific areas: data

mining (Berry & Linoff, 1997), e-commerce personalization (Palmisano, et al., 2008),

ubiquitous and mobile context-aware systems (Schilit & Theimer, 1994),

databases (Stefanidis, et al., 2007), information retrieval (Jones, et al., 2005), marketing and

management (Bettman, et al., 1991), cognitive science and linguistics (Nardi, 1995). Each

discipline tends to take its own view that is suited for the particular application area or

research. In (Bazire & Brézillon, 2005), 150 different definitions of context were examined

from different research and application fields. Examined definitions make evident lack of

consensus on context definition. The provided analysis also proves the lack of consensus

30

concerning many essential aspects of a context, e.g., external or internal character of context,

static or dynamic nature of context. In the majority of works concerning context, the terms

‘user’, ‘task’, and ‘action’ are used as substitutes of ‘activity’, and ‘actor’ used in the area of

VO collaborative processes, including this dissertation.

When considering information systems, the most commonly cited definition of context is

the one formulated by Dey in (Abowd, et al., 1999) in the area of mobile computing and

ubiquitous systems: “context is any information that can be used to characterize the situation

of an entity, where an entity is a person, place, or object that is considered relevant to

the interaction between a user and an application, including the user and applications

themselves”. In (Ramakrishnan & Gehrke, 2000), the Dey’s definition is discussed and

another one is proposed stressing the importance of context for user activity fulfillment:

“context is a set of circumstances surrounding a task that are potentially relevant for its

completion”. The definition is still very abstract and gives no guidelines on the actual

representation of context and its use in information system. Nevertheless, this definition is

adopted in this section. The formal definition of the context is presented in Section 5.4.2.

All information comprising the context is called contextual information. Contextual

information is provided by context sources. A context source can be a sensor and meter in

case of ubiquities computing, an information system, database, person, web site, etc.

The concept of conjunction of context and computing is not new (Jones, et al., 2005).

A context-aware system “adapts accordingly to location of use, the collection of nearby

people and objects as well as changes to those objects in time” (Adomavicius & Tuzhilin,

2008). The definition of context-aware system introduced by Dey in (Dey, 2001) puts

an emphasis on a role of such a system in supporting actor’s activities: “context-aware system

is a system that uses context to provide relevant information and/or services to the user,

where relevancy depends on the user’s task”. While this definition addresses only the aspect

of information presentation to an actor, Abowd et al. in (Abowd, et al., 1999) refined the

specification of context-aware system functionality. Three categories of context-aware system

are distinguished on the basis of provided functionality (Abowd, et al., 1999):

 Presentation of information and actions to a user – refers to information systems that

either present contextual information to the information system user, or use context to

propose appropriate selections of actions to the user;

 Automatic execution of actions – refers to information systems that trigger

a command, or reconfigure itself or other information systems on behalf of the

information system user according to changes in contextual information;

 Tagging of context to information for later retrieval – refers to information systems

that tag captured data with relevant contextual information for future analysis or use.

The use of context in information systems requires its formalization. Various approaches to

this problem have been presented in (McCarthy & Buvac, 1994) and (Akman & Surav, 1996).

In particular, various predicates expressed in logic-based languages formalize the notion of

relations among contexts, clarify concepts of context generalization, context hierarchy,

context paradox, situation theory, and operations on context. Among others, the works of

McCarthy, Guha, Buvac, Guinchigia, Shoham were compared in (Akman & Surav, 1996).

31

The following concepts concerning the context modeling are relevant for computer support of

VO collaborative processes and discussed further in this section:

 Representational and interactional views on context;

 Contextual information scope;

 Context abstractions;

 Context dynamics.

As follows from taxonomy provided in (Dourish, 2004), contexts can be classified into two

views: representational and interactional. In representational view, a context is described by

a predefined set of observable attributes, whose structure does not change significantly over

time. It is assumed in a representational view that the contextual attributes are identifiable and

known a priori and, hence, can be captured and used within the applications. Most of

approaches described in literature are based on the representational view on context (Anand &

Mobasher, 2007). On the contrary, in the interactional view it is assumed that the user’s

behavior is induced by an underlying context, but the context itself is not necessarily

observable. In the interactional view approach there is a bidirectional relationship between

activities and underlying context (Bettini, et al., 2010), i.e., context influences activities while

different activities give rise to different contexts.

Contextual information describes a certain aspect of context, such as time, location,

companion, purpose, etc. In literature, contextual information is referred to as context features

categories, types or aspects. The following contextual information was distinguished

in (Adomavicius, et al., 2005): user context, physical context, and computing context. Other

authors added other contextual information, such as time context, blood pressure, user

emotions, focus of attention. The scope of contextual information depends on context-aware

system domain. Contextual information can be obtained in three ways (Anand & Mobasher,

2007):

 Explicitly – directly approaching relevant people and other sources of contextual

information and explicitly gathering this information either by asking direct questions

or eliciting this information through other means;

 Implicitly – nothing needs to be done in terms of interaction with context-aware

system users or other context sources, the source of information is accessed directly

and the data are extracted from it;

 Inferring – context is derived using statistical or data mining methods; usually to infer

contextual information, it is necessary to build a predictive model and train it using

appropriate data; examples of used methods include Naïve Bayes classifiers and

Bayesian Networks.

There are several approaches to determine the relevance of given contextual information for

various uses:

 Manually – using domain knowledge of the information system’s designer or a market

expert in a given application domain;

 Automatically – using one of many existing feature selection procedures such as

machine learning, data mining, or statistics (Koller & M, 1996) (Liu & Motoda, 1998).

In the representational view on context, contextual information need to be identified and

acquired before actual operations based on context analysis are performed. Decisions

concerning the scope of relevant and collected contextual information should be done at

32

the application design stage. In (Adomavicius & Tuzhilin, 2008) it is proposed that a wide

range of contextual information should be initially selected by the domain experts. Then, after

collecting the data, it is possible to apply various types of statistic test to identify which

contextual information is truly significant.

A context can be analyzed on several levels of abstractions. For instance, contextual

information referring to temperature might hold the value of ‘24 Celsius degrees’ as well as

the value ‘warm’, where such contextual information might originate from identical context

sources. The value ‘warm’ is at a higher level of abstraction than the value of ‘24 Celsius

degrees’. Authors of (Schilit & Theimer, 1994) use the notion of high-level context, low-level

context and raw data, to describe various context abstractions levels. Low-level context is used

synonymously for raw data directly output from context sources. The high-level context is

contextual information that is processed, i.e., it is aggregated, interpreted, calibrated, cleaned

from noise, etc. To provide seamless transition among various levels of context abstractions,

the concepts of aggregators and interpreters are proposed in the literature devoted to

architectures of context-aware systems. Aggregator is a component of a context-aware system

collecting multiple, distributed, but logically related pieces of contextual information into

a common repository. The need for aggregation comes in part from the distributed nature of

contextual information. Interpreter is a context-aware system component responsible for

rising up the level of abstraction of contextual information. An interpreter typically takes

contextual information from one or more context sources or aggregators and produces a new

piece of contextual information.

To address the problem of context abstractions, the notion of situation was introduced

in (Akman & Surav, 1997). A situation is defined as “a limited portion of the world over

some location and time which can be picked out by a cognitive agent” (Akman & Surav,

1997). In (Dey, 2001), situation is defined as “a state of context sources, aggregators and

interpreters”, where state is information captured and stored in some point in time.

An approach to capturing situations in context-aware systems using clustering methods is

proposed in (Bettini, et al., 2010) and presented in Fig. 3.2 (Bettini, et al., 2010).

Fig. 3.2. Creating context abstractions

In Fig. 3.2 the context interpretation step is presented using multidimensional coordinate

system. The idea is to represent a low level context feature by a vector in a multidimensional

coordinate system for every time interval. Each coordinate axis represents a normalized low-

level context feature. High level context is then a set of low-level contexts that is assigned

a label. A detailed discussion on various aspects of geometrical context representation, such

as overlapping of high-level contexts, can be found in (Padovitz, et al., 2004).

33

In (Adomavicius, et al., 2005), the authors address the notion of context abstractions by

building context hierarchies and formulating the concept of context generalization.

In (Adomavicius, et al., 2005) it is proposed that the contextual information is a set of

contextual dimensions K, each contextual dimension k in K being defined by a set of q

attributes . Attributes have a hierarchical structure and capture particular

contextual information. The values taken by attribute define finer levels, while values

define coarser levels of contextual knowledge. This is a basis for a formal definition of

context generalization (Adomavicius, et al., 2005). Let

 , where refers to

a contextual information. Then is generalization of context iff in the

corresponding context hierarchy for every ,
 is higher in context hierarchy than

 Formally,
 . For example, assume three pieces of contextual information,

each one described with a hierarchy of possible values:

 Company: Girlfriend Friends NotAlone AnyCompany

 Place: Theater AnyPlace;

 Time: Sunday Weekend AnyTime.

A number of generalizations of context are possible,

among others including the following:

 ;
 ;
 .

A multiple generalization of one context cause significant computational overload during

context analysis. The problem is complex as various levels of granularity have different

usefulness in various context-aware systems. For the time being, no generic approach to

appropriate context granularity selection was developed.

The dynamic aspect of the context is addressed in research on context prediction (Sigg, 2008).

A special emphasis here is put on the notion of time in context analysis. The main assumption

is that context is not static but changes over time gradually and semi-predictably (Brown &

Jones, 2002) (Greenberg, 2001). The knowledge of context change in history permits

extrapolation of context information and prediction of various aspects connected with context.

For the purpose of analysis of context change in time, the concept of context time series has

been proposed in (Sigg, 2008). A context time series are a non-empty, time-ordered set of

context elements with attached timestamps, where a context element is a non-empty set of

contextual information retrieved from context sources during one time interval. In (Brown &

Jones, 2002) the concept of context diary was introduced for storage of context information

over time.

The concepts of context, context aggregation, interpretation, generalization, etc., have been

applied to the area of inter-organizational collaboration quite recently. The application of

these concepts in this area is not yet mature. The notion of context appears in publications

addressing the problem of virtual organization formation (Tan, et al., 2008) (Do, et al., 2000)

(Gonga, et al., 2009). Examples of contextual information relevant to inter-organizational

collaboration are (Skopik, et al., 2010): desires, goals and needs of collaborators, ability of

service providers to satisfy service consumer requirements, or competences of interacting

parties. To enhance inter-organizational collaboration, context analysis is said to be crucial

for (Skopik, et al., 2010):

34

 Determination of collaboration patterns, for example delegation patterns, actor

preferences, and actor behavior;

 Selecting suitable collaboration partners and communication channels;

 Analysis of social relations that influence communication patterns.

In (Tan, et al., 2008), seventy eight papers were reviewed to find a common understanding of

VO collaborative process context and its relevant scope. The contextual information

was divided into seven categories: Role, Activity, Intent, History (Time-based), Social,

Emotional/Mental and Others. The contextual information concerning social aspects comes

out as very strong and important in (Do, et al., 2000) and (Gonga, et al., 2009). Social aspects

of collaboration refer to the nature of interaction between an actor and its human environment.

For instance, in (Picard, 2013), the author states that in context of human interactions and

inter-organizational interaction, social aspects may limit the choice of collaborators

by imposing some relations on interacting entities. In (OASIS Technical Committee, 2006),

the concept of execution context is proposed as an element of service-oriented architecture.

In SOA, the actors exchanging services must agree and acknowledge a consistent set of

agreements to successfully collaborate. The execution context is ‘the collection of consistent

set of agreements’. Furthermore, the execution context concerns “the totality of the

interaction – including the service provider, the service consumer and the common technical

infrastructure needed to mediate the interaction” (OASIS Technical Committee, 2006).

The execution context, specific for a VO collaborative process instance, evolves during

an execution of the VO collaborative process instance – the set of infrastructure elements,

the policies and agreements is changing.

3.2.2. Recommender Systems

As mentioned in Section 3.1.2, VO collaborative processes are knowledge intensive.

Observable explosion of the amount of data stored in information systems that is available to

actors involved in VO collaborative processes follows the Moore’s law4. Information concerns

other VO collaborative process instances, activities, actors, services, decision points,

VO collaborative process instance contexts, etc. One of the main challenges is to extract

knowledge from information stored in information systems. The problem of filtering and

selection of relevant information on behalf of information system user is addressed by

the concept of recommender systems.

Recommender Systems are “software tools and techniques providing suggestions for items to

be of use to a user” (Ricci, et al., 2011) Usually, recommender systems are targeted to

situations when users who lack sufficient experience, competence, time or ability to evaluate

overwhelming number of information items potentially suitable for their particular, complex

situation, preferences or purposes. Typically, execution of VO collaborative processes follows

these characteristics.

Below, evaluation of recommender systems in support of VO collaborative process instances

is presented, which encompasses:

 Overview of traditional recommender system elements: item, user model, and

transaction logs;

 Study and classifications of traditional two dimensional recommender systems and

their algorithms;

4 “The number of components in integrated circuits would double every year”, Gordon E. Moore

35

 Methods of including context in recommender system, i.e., data models and

algorithmic paradigms;

 Limitations of recommender system systems and methods of recommender system

evaluation.

recommender systems emerged as an independent research area in the mid-1990s. In recent

years, the interest in recommender systems has dramatically increased, mainly due to their

important role in highly rated internet sites as Amazon.com5, YouTube6, Netflix7,

Tripadvisor8, Last.fm9, and IMDb10. In operation of every recommender system, three main

components are typically distinguished: items, user model, and recommendation transaction

log. Recommendations relate to various decision-making processes, such as which products to

buy, which music to listen to, which on-line news to read, or which activities to perform.

An item is a general term used to denote what the system recommends to its user. Examples

of items are: activity, restaurant, article, or movie. Typically, a recommender system is

tailored to provide suggestions for a specific type of items. In the most common case,

recommendations are presented as ranked lists of items. To rank items, recommender systems

try to predict suitability of items for a user, basing on his/her preferences and constraints.

To complete such a computational task, recommender systems collect user’s preferences,

which are either explicitly expressed, or are inferred by interpreting user actions. Items may

be characterized by their value, cost and complexity (Ricci, et al., 2011). The value of an item

may be positive if the item is useful for the user, or negative if the item is not appropriate and

leads to wrong decision when selecting it. When a user is acquiring an item, he/she will

always incur cost, which includes: (1) the cognitive cost of searching for an item, (2) the real

monetary cost eventually paid for the item. If a selected item is relevant to a user, this cost is

dominated by the positive benefit of having acquired useful information. If the item is not

relevant, the net value of a recommendation is negative. Complexity of item varies from low

(books, videos) to high (cars, insurance, policies, jobs). Simple items can be repressed by

name or identifier, while highly complex ones can be represented by developed structures of

semantically annotated attributes. More complex is an item, higher is potential benefit of

recommendations, but also the difficulty of issuing a recommendation and possible

consequences of wrong recommendations. It is up to recommender system developer to

design recommender system mechanism to be suitable for a particular type of item

considering its value, cost and complexity characteristics.

Provision of recommendations is not limited to human individuals. Recommendations are also

formulated for groups, organizations and other information systems. In general, an entity

receiving recommendations from a recommender system is called recommendation system

user. The user model encodes recommender system user preferences and needs (Jannach, et

al., 2010). As literature focuses on recommendation systems devoted to human individuals,

many human user models have been developed. In (Fisher, 2001) the user model is extended

by information about relations existing among users, e.g. relations of trust, while

in (Taghipour, et al., 2007) users can also be described by data concerning their behavior.

5 Amazon, http://www.amazon.com/
6 YouTube, http://www.youtube.com/
7 Netflix, http://www.netflix.com/
8 Tripadvisor, http://pl.tripadvisor.com/
9 Last.fm, http://www.last.fm/
10 Internet Movie Database, IMDb, http://www.imdb.com/

36

A recommendation transaction log is a “recorded interaction between a user and

the recommender system” (Ricci, et al., 2011). These recorded data are useful for

the recommendation generation algorithm that the recommender system is equipped with.

A recommendation transaction log contains a reference to the item selected by the user and

a description of the context (e.g., the user goal/query) for that particular recommendation.

If available, a recommendation transaction log also includes an explicit feedback the user

has provided, such as the rating of the selected item. In refined recommender systems, such

data collected during transactions is used for recommender system active learning aiming to

refine the recommendation generation algorithm (Ricci, et al., 2011).

Formally, a recommender system rating function is , where User

and Item are the domains of users and items, respectively, and Rating is a set of items totally

ordered according to item utility to a recommender system user (Fig. 3.3) (Adomavicius &

Tuzhilin, 2008).

The rating function R is usually defined as a function, where the initial set of ratings is

known. Once the function R is calculated for the whole two-dimensional space,

a recommender system recommends k highest-rated items for each user (cf. Fig. 3.3). Some

recommender systems do not fully calculate the utility before making a recommendation, but

they apply some heuristics to hypothesize that an item is useful to a user (Burke, 2007).

Data
U × I × R

2D Recommender
U × I → R

Recommendations
i1, i2, i3, ...

u

Fig. 3.3. General components of the traditional recommendation process: data (input), two-dimensional

recommender system (function), and recommendation list (output)

Assuming that there is some available knowledge (zero knowledge is admissible) about a user

who is requesting a recommendation, knowledge about items, and other users who received

recommendations, the system will leverage this knowledge with an appropriate algorithm to

generate various utility predictions and hence recommendations. Different types of

recommender systems can be distinguished that vary in terms of used knowledge,

recommendation algorithm, final assemble of recommendations, forms of presentation of

recommendations to the user. Coherent classification of recommendation systems is presented

in (Burke, 2002). Six different classes of recommendation systems are:

1. Content-based (Pazzani & Billsus, 2007) – recommender system recommends items

that are similar to the ones that the user liked in the past, where the similarity of items

is calculated based on the features associated with the compared items; content-based

approach to recommendation has its roots in information retrieval and information

filtering research (Abramowicz, 2008);

2. Collaborative filtering (Schafer, et al., 2007) – recommender system recommends the

items to the user that other users with similar taste liked in the past, where

the similarity of two users is calculated based on the similarity in their rating histories;

3. Demographic (Mahmood & Ricci, 2007) – recommender system recommends items

based on the demographic profile of the user;

4. Knowledge-based (Bridge, et al., 2006) – recommender system recommends items

based on specific domain knowledge about how certain item features meet

recommender system users’ needs, preferences and requirements; two types of

recommender system are distinguished in this category: (1) case-based recommenders

37

determine recommendations on the basis of similarity metrics, (2) constraint-based

recommenders exploit predefined knowledge bases that contain explicit rules about

how to relate customer requirements with items;

5. Community-based (Arazy, et al., 2009) (Golbeckm, 2006) (Groh & Ehmig, 2007) –

recommender system recommends items based on the preferences of the user friends;

in some cases social-network data yields better recommendations than user model

profile similarity; adding social network data to traditional collaborative filtering

improves recommendation results; this approach is often referred to as social filtering;

the approach is currently intensively exploited by companies such as Google;

6. Hybrid recommender systems (Burke, 2007) – recommender system recommends

items based on combination of the other techniques; a hybrid system combining

techniques A and B tries to use the advantages of A to fix the disadvantages of B.

Hybrid recommender systems are those that combine two or more of the techniques described

above to improve recommendation performance, usually to deal with the cold-start problem of

handling new items or new users. Different types of hybrids has been identified and presented

in (Burke, 2002).

Each of recommender system, despite the class it belongs to, uses some kind of an algorithm

to make the rating function total. To this end, hundreds of algorithms have been developed.

In general, used algorithms are divided into two groups:

 Memory-based – ranking predictions are based on the entire collection of items

previously rated by the users; statistical methods are used that work better as

the available set of data gets bigger;

 Model-based – collection of ratings is used to learn the predictive probabilistic model

(i.e. decision trees, regression); the created model is later used for prediction of

unrated items for the user.

A description and analysis of various memory-based and model-based algorithms can be

found in (Adomavicius & Tuzhilin, 2005), (Herlocker, et al., 2004), (Popescul, et al., 2001),

(Sarwar, et al., 2001). In Tab. 3.1 (Adomavicius & Tuzhilin, 2005) only the most commonly

used techniques and algorithms in context-based, collaborative and hybrid systems are

enumerated.

Tab. 3.1. Techniques and algorithms used in various classes of recommender systems

Recommendation

Approach

Recommendation Technique

Memory-based Model-based

Content-based TF-IDF (information retrieval)

 Clustering

 Bayesian classifiers

 Clustering

 Decision trees

 Artificial neural networks

Collaborative Nearest neighbor (cosine, correlation)

 Clustering

 Graph theory

 Bayesian classifiers

 Clustering

 Artificial neural networks

 Linear regression

 Probabilistic models

Hybrid Linear combination of predicted ratings

 Various voting schemes

 Incorporating one component as a part

of heuristic for the other

 Incorporating one component as a part

of model for the other

 Building one unifying model

38

3.2.3. Context-Based Recommendations

Vast majority of the existing approaches to recommendation do not take into consideration

any contextual information. Traditional recommender systems do not put users and items into

a context when providing recommendations. In VO collaborative processes, evaluation of

utility of an activity or a collaborator to an actor is strongly influenced by context

(cf. Section 3.2.1).

Recommendation systems that use contextual information to improve accuracy of

recommendations are called Context-Aware Recommendation Systems (CARS). CARS deal

with modeling and predicting user tastes and preferences by incorporating available

contextual information into the recommendation processes. CARS are usually modeled as the

function , where Context specifies the contextual

information.

The approach presented in (Herlocker & Konstan, 2001) serves as a successful illustration of

how additional relevant information can be incorporated into the standard collaborative

filtering approach. The importance of including and using contextual information

in recommendation systems has been demonstrated also in (Adomavicius, et al., 2005), where

authors present a multidimensional approach to recommendations. In (Oku, et al., 2006) it is

empirically proved that context-aware approach significantly outperforms the corresponding

non-contextual approach in terms of recommendation accuracy and user’s satisfaction with

recommendations.

Different approaches to contextual information application in recommendation processes are

classified into two groups (Abowd, et al., 1997):

1. Recommendation via context-driven querying and search;

2. Recommendation via contextual preference elicitation and estimation.

The context querying and search approach has been used by a wide variety of mobile and

tourist recommender systems (Abowd, et al., 1997) (Van Setten, et al., 2004) (Carolis, et al.,

2009). Recommender systems based on this approach typically use contextual information to

query or search a certain repository of items and present the best matching resources.

For instance, a restaurant recommender system may recommend best matching restaurant

basing on user’s current mood or interest provided explicitly, and additional information

collected implicitly describing the user’s environment, e.g., local time, weather, or current

location. User mood, interest, time, weather, and location form the context of

recommendation. The approach to recommendation based on contextual preference elicitation

and estimation is more recent trend in research, and practical applications (Panniello, et al.,

2009) (Yu, et al., 2006). This set of techniques attempt to model and learn user preferences,

e.g., by observing the interactions of this and other users with the systems or by obtaining

preference feedback from the user on various previously recommended items. To model

users’ context-sensitive preferences and generate recommendations, these techniques typically

either adopt existing collaborative filtering, content-based or hybrid recommendation methods

to context-aware recommendations, or apply various intelligent data analysis techniques.

Some practical examples of CARS, combine the techniques from both general approaches

into a single system. The UbiquiTO system (Cena, et al., 2006) implements a mobile tourist

guide and provides intelligent adaptation based not only on the specific contextual

information, but also on various rule-based and fuzzy set techniques to adapt the application

content based on user preferences and interest. The News@hand system (Cantador &

Castells, 2009) uses semantic technology to provide personalized news recommendation that

39

are retrieved using user’s concept-based queries or calculated according to a specific user’s or

user group’s profile.

Three different algorithmic paradigms for incorporating contextual information into

the recommendation process are discussed:

 Pre-filtering (contextualization of recommendation input, Fig. 3.4a) – information about

the current context is used for selecting or constructing the relevant set of data records;

only the information that matches the current usage context is used to compute the

recommendations, e.g., the ratings for items evaluated in the same context;

recommendation can be performed using any traditional two-dimensional recommender

system on the selected data;

 Post filtering (contextualization of recommendation output, Fig. 3.4b) – initially

the recommendation algorithm ignores the context information; the ratings are predicted

using any traditional two-dimensional recommender system on the entire data; the output

of the algorithm is then filtered to include only the recommendations that are relevant

in the analyzed context;

 Contextual modeling (contextualization of recommendation function, Fig. 3.4c) – context

data are explicitly used in the prediction algorithm.

Data
U × I × C × R

Contextual
recommendations

i1, i2, i3, ...

c

Contextualized data
U × I × R

Two-dimensional
recommender system

U × I → R

u

Data
U × I × C × R

Contextual
recommendations

i1, i2, i3, ...

c

Two-dimensional
recommender system

U × I → R

Recommendations
i1, i2, i3, ...

u

Data
U × I × C × R

Contextual
recommendations

i1, i2, i3, ...

u

Multi-dimensional
recommender system

U × I × C → R

c

A. B. C.

Fig. 3.4. Paradigms for incorporating context in recommender systems

In (Adomavicius, et al., 2005), the authors refer to pre-filtering approach as reduction based.

In practice, the use of context in pre-filtering approach can be perceived as formulation of

a query for selecting (filtering) relevant data to be used in further analysis. As an example, if

a recommendation should concern analysis of activities to be performed by a user on Sunday,

only the historical information concerning Sunday activities should be used. The example

presents exact pre-filtering. Also other pre-filters can be distinguished like generalized pre-

filer. Following the example, below the exact contextual pre-filer for activity recommendation

taking into account time is defined:

40

where User, Activity and Time are the domains of users, activities and time, respectively. D is

a set of existing ratings. D contains records for each known,

user-specified ratings. Moreover, [Time = Sunday] denotes simple contextual pre-filter and

 denotes a rating dataset obtained from D by

selecting only the records where Time dimension has value Sunday and keeping only the

values from User and Activity dimensions.

Using the concept of hierarchy in context modeling (cf. Section 3.2.1), the concept of

generalized pre-filtering was introduced in (Adomavicius & Tuzhilin, 2008), where simple

filter [Time = Sunday], which represents the exact context of the rating (u, a, t), can be

replaced by generalized filter , where denotes some superset of context t. The

three-dimensional reduction can be generalized to reduction of n-dimensional space to m-

dimensional one, where . To use reduction outputs in recommendation, frequently in

practice is used. Due to the usual multiplicity of possible generalization of one context

(cf. Section 3.2.1), the important problem arises of selecting appropriate generalized filter.

Such selection can be performed based on expert knowledge or automatic selection methods

which still need to be developed or refined. When using the pre-filtering approach, one must

be aware of the tradeoff between having more relevant data for calculating an unknown rating

based only on ratings with the same or similar context and having fewer data points used for

this calculation (sparsity problem). This tradeoff leads to better recommendation efficiency of

pre-filtering approach in some domains and the general approach in others.

Contextual post-filtering ignores context information input data when generating

recommendations (Fig. 3.5) (Schilt, et al., 1994). Instead, when a recommendation list is

formulated, it is adjusted to user context. The idea behind adjustment of recommendation list

goes beyond simple filtering. The approaches based on heuristics and models consists of

analyzing contextual preference data for a given user in a given context to find specific item

usage patterns and then use these patterns (Schilt, et al., 1994).

Traditional
Recommendations

i1, i2, i3, ...
Item Adjustments

Contextual
Recommendations

i1, i2, i3, ...

uc
Data

U × I × C × R

Item Usage Patterns

Fig. 3.5. Adjustment of recommendations in post-filtering

Heuristic post-filtering approaches focus on finding common item characteristics (attributes)

for a given user in a given context and use these attributes to filter out the recommendations

without having less than assumed number of common attributes. Alternatively, items are

ranked according to the number of supported attributes. Model-based approach to pre-filtering

also relies on filtering out or ranking items in a recommendation list, but such adjustments are

based on probability with which the user chooses a certain type of item in a given context.

The big advantage of both pre- and post-filtering approaches is that they do not require

development of any new recommendation techniques. Instead, traditional techniques

developed for two-dimensional recommender system can be used.

Contextual modeling approach uses contextual information in the recommendation function as

an explicit predictor of a user’s rating for an item. This approach takes advantage of such

41

techniques as decision trees, regression, probabilistic models, etc., or heuristic calculations

that incorporate contextual information. Comparison of various methods based on pre-

filtering, post-filtering and context modeling is presented in (Panniello, et al., 2009).

The comparison points out that the usefulness and efficiency of recommendations based on

these methods largely depends on a given application.

The concept of recommender systems is quite mature. Thus, the number of limitations and

challenges that the recommender systems must face is well defined. As the recommender

systems are specific for particular areas, the impact of various limitations on their

performance varies. The universal metrics have been proposed to evaluate and compare

recommender systems. Traditionally, four limitations of recommender systems are mentioned

in literature: (1) cold start problem, (2) sparsity problem, (3) limited content analysis, and

(4) overspecialization.

A cold start problem appears when a system has insufficient data concerning users or items

that are new in the system. In such situation, the system has no data to use in

the recommendation algorithm. This problem can be divided into two types: new user

problem, and new item problem. The new user problem refers to situation when not enough

information is available to build user model. To deal with this problem, it is essential to select

training points prior to any recommendation, to be rated by the user that will maximize

understanding of what the new user wants. A new item problem appears in collaborative

filtering approach to recommendation when recommendation mechanism would fail to

consider items which no-one in the community has rated previously. The cold start problem

is often reduced by adopting a hybrid approach between content-based matching and

collaborative filtering. New items would then be assigned a rating automatically, based on the

ratings assigned by the community to other similar items according to the items’ content-

based characteristics. In some approaches to collaborative filtering it is assumed that new

products which are inserted into the system are submitted to selected users for evaluation

which should result in quick improvement of prediction accuracy.

The sparsity problem comes from the observation that usually the number of items stored in

recommender system is extremely large. Even the most active users will only rate a small

subset of them, so even the most popular items have very few ratings. Thus, too few pairs of

users or items have sufficient number of ratings to form a similar group among them.

A limited content analysis appears when there is an insufficient amount of available

information describing items, i.e., small set of features can be analyzed in terms of similarity

among items or users.

Finally, the overspecialization problem leads to recommendation of too similar items.

Initially, the overspecialization problem concerned similarity in terms of item features. When

social filters started to be applied, overspecialization also concerns social relations – typically

people being in users’ social network like similar items (Pariser, 2011).

The challenges that are important when considering CARS to support VO collaborative

processes are (Ricci, et al., 2011) (Adomavicius & Tuzhilin, 2005) the following:

 Explanations formulation – challenge refers to formulation of user understandable

explanations accompanying recommendations justifying particular recommendations;

refined explanation mechanism should explain how the system works, allow users to

tell the system it is wrong, increase user confidence in the system, help users to make

good decisions, convince users to follow a recommendation, help users to make

decisions faster;

42

 Exploration versus exploitation – challenge refers to the dilemma whether to keep

items that the system can now identify as good recommendations, given the data

currently available for the system or to further explore and complement user

preferences to build newer and possibly better recommendations in the future;

 Time value – challenge refers to the fact that a given set of recommendations may not

be applicable forever but there could be a time interval when these items should be

recommended;

 User activity interpretation – challenge refers to analysis of many activities performed

by the user operating the recommendation system that can be detected, analyzed and

used to build a better prediction model;

 Scalability – challenge refers to the ability of CARS algorithms to deal with large and

real-world datasets;

 Pro-activeness – challenge refers to functionality of CARS to provide

recommendations even if not explicitly requested by a user;

 Conversational CARSs – a system may also request additional user preferences to

provide the user with better results; in the transaction model, the system collects

various requests-responses, and may eventually learn to modify its interaction strategy

by observing the outcome of the recommendation process;

 Context usage – challenge refers to efficient use of contextual information in practice;

 Active learning – challenge refers to applying active learning methods in CARSs to

learn more about user preferences to improve personalization of the recommending

process;

 Optimum feature selection – challenge refers to efficient identification of relevant

features of users, items, and social relations that are used in recommendation

processes; challenge refers also to selection of appropriate information describing

context of recommendations, as well as to selection of the right context level of

abstraction and contextual filter used in multi-dimensional CARSs.

Several metrics have been developed to evaluate efficiency of a particular recommendation

system. Metrics allow various CARSs to be compared and problems in CARS

implementations to be detected. Typically the following metrics are used:

 Accuracy – measure of the differences between values predicted by a CARS and the

values actually observed; a root-mean-square error is a frequently used measure of

accuracy;

 Diversity – measure indicating the diversity among items recommended to a user; the

metric is used to diagnose possible overspecialization problem;

 Coverage – measure of the percentage of requests for recommendation,

a recommender system is capable to make predictions;

 Usefulness – measure of user satisfaction from receiving a recommendation;

 Novelty – measure of the percentage of times an item recommended to a user has not

been recommended before; the metric is opposite to measuring the percentage of times

an item already known to a user is recommended.

43

4. Process Mining

The term process mining is used to describe “techniques, tools, and methods to discover,

monitor and improve real business processes by extracting knowledge from event logs

commonly available in today's information systems” (Aalst, 2011). The concept of process

mining is based on observation that creating a process model, as stated in the classical

business process management approach, is complicated and time-consuming. Moreover,

typically there are discrepancies between the actually executed processes and the envisioned

process models. Even more, ad-hoc processes cannot be modeled due to their unpredictability

and emergence, but once they are executed, the knowledge concerning the model of executed

process is still useful. Process mining is based on exploration of events generated by PAIS

during the execution of process instances. Exploration aims at discovering process models

describing actually executed process instances and facts associated with those models.

Modern PAISs log enormous numbers of events providing detailed information about the

activities that have been executed. A finite ordered sequence of events recorded for

a particular process instance is called a trace. Event log is a set of traces. The following

assumptions concerning events recorded in event logs must be satisfied: (1) each event refers

to one process activity instance, and (2) events are totally ordered, i.e., in a log, events are

recorded sequentially even though tasks may be executed in parallel. The formal definitions

of event, trace and event log are presented in Section 4.5. The role of event log in process

lifecycle is presented in Fig. 4.1. While design phases are based on models, run-time phases

are organized around the event log. Enactment of a process inserts data in event log. Process

mining can be used in monitoring, diagnosis and evolution phases.

ModelsEvent log
Design

Configuration and
Implementation

Enactment

Monitoring
and diagnosis

Evolution

Fig. 4.1. Event log creation and analysis in process lifecycle

44

Traditionally, in the process mining research, one may distinguish two main areas of interest:

on-line analysis also referred to as operational support, and off-line analysis. On-line analysis

methods encompass process prediction, checking and recommendation. They are described in

detail in Section 4.1. Off-line analysis encompasses three groups of methods (Aalst, 2011):

• Process discovery – methods aiming at discovering process models describing

behavior recorded in event log; during a discovery no assumptions are made

concerning the resulting process model (Weijters & Aalst, 2001) (Aalst, et al., 2009);

• Process conformance checking – methods aiming at comparison of envisioned process

model with process instances recorded in an event; conformance checking is used to

check if process instances, whose execution is recorded in the log, conforms to the

model and vice versa (Aalst, 2011) (Rozinat & Aalst, 2008);

• Process enhancement – methods aiming at extension or improvement of an existing

process model using information about the process instances recorded in an event

log (Hornix, 2007).

Process mining covers different perspectives. The four most popular perspectives

include (Aalst, 2011):

1. Control-flow perspective focuses on ordering of activities;

2. Organizational perspective focuses on information about resources hidden in the event

log to classify people in terms of roles and organizational units or to show the social

network;

3. Case perspective focuses on properties of cases;

4. Time perspective is concerned with timing and frequency of events.

While majority of methods concentrate on one individual perspective, some methods aim at

finding correlations among various perspectives. This is referred to as multi-perspective

process mining.

Two types of process models and two types of data are distinguished and used in process

mining methods. A de jure process model is normative, i.e., it specifies how things should be

done or handled. For example, a process model used to configure a BPM system is normative

and forces people to work in a particular way (Aalst, 2011). A de facto model is descriptive.

Its goal is not to steer or control reality. Instead, de facto models aim at capturing reality.

Post-mortem event data refers to information about process instances that have completed.

Such data are used in off-line process mining. Pre-mortem event data refers to process

instances that are still going and have not yet completed. Such data are used to support the

process instance it refers to by validation of its enactment, prediction of further flow and

guidance in execution by provision of recommendations. Analysis of such data is performed

in on-line process mining. The prototypes of some off-line and on-line methods have been

implemented as a part of open-source process mining tool developed by academic community

called ProM (Aalst, et al., 2009).

4.1. Operational Support

Process mining techniques can be used to extract knowledge from event logs helping

organizations to gain insights into the operation of their business processes. When such

analysis is provided for information concerning ongoing process instances in an on-line

setting, it is commonly referred to as operational support. In (Aalst, 2009), the author outlines

45

the potential of operational support based on process mining. The methods for process

prediction, process checking and recommendation have been proposed.

On the contrary to traditional process mining techniques, operational support considers pre-

mortem event data. Operational support techniques analyze pre-mortem data and react to them

in on-line manner. As running process instances are considered, the concept of partial trace is

introduced as a trace corresponding to a process instance that is still running. The partial trace

describes the known past of the case, while the future of the case is not yet known.

Information stored in a partial trace supplemented by information concerning underlying

process model and traces of other similar process instances can be used to reason about the

ongoing process instance. To this end, three groups of methods have been proposed in (Aalst,

2011):

 Detection methods – comparison of de jure models with pre-mortem data with

the goal to detect deviations at run-time;

 Prediction methods – combining information about running process instance stored

in partial trace with discovered or hand-made process models to make predictions

about the future, e.g., the remaining flow time, the probability of success;

 Recommendation methods – combining information about running process instances

stored in a partial trace with discovered or hand-made process models to suggest to

actors suitable activities to be performed to meet objectives of predefined target

function, e.g., to minimize cost or time.

Detection has a lot in common with conformance checking but here an immediate response is

provided by a system when the deviation occurs. This response should take a form of

an action occurring in process-aware system or at least notification displayed by detection

mechanism to the user. Two approaches to detection of deviations at run-time are presented

in (Aalst, 2011): approach based on workflow net (WF-net) replay and approach based on

validation of LTL rules.

In the approach based on WF-net replay, existence of a WF-net is assumed describing the

desired normative behavior. Execution of every activity and resulting persistence of event

data are followed by verification of a particular trace against underlying WF-net. As far as

a partial trace can be replayed by WF-net, the process instances are perceived as to be

executed as envisioned. As soon as replaying an event log is not possible by WF-net, the alert

signals about the nature of deviation are issued, e.g., about some activity that was started

without being enabled.

The approach based on validation of LTL rules emerged from the works on DECLARE

workflow system (Montali, et al., 2010) (Aalst, et al., 2009). Declare is a constraint-based

workflow system that guides the execution of process instances by constraints that are

imposed on these instances. On the contrary to workflow procedural languages that aim

at defining control-flow perspective of the process specifying a set of possible actions,

in DECLARE “everything is possible unless explicitly forbidden” (Montali, et al., 2010).

Constraints in DECLARE use semantics based on LTL (Aalst, et al., 2005). The same

semantics is used in on-line detection. An example of an LTL constraint is: eventually activity

A is executed then activity B and C are executed. The constraint is represented formally as

 .
In general, a partial trace is violated if at least one of the constraints imposed on it is violated.

In such case, a deviation is detected and reported. A partial trace meets constraints if

all the constraints imposed on it are satisfied.

46

The concept of prediction is examined in (Aalst, 2011). Predictions are generated on the basis

of information stored in a partial trace and a predictive model. Supervised learning techniques

are used as a predictive model, e.g., regression analysis, or decision tree learning. In these

approaches, events comprising a partial trace and their relevant properties are mapped onto

predictor variables. The response variable is typically a key performance indicator or

a probability measure. Examples of predictions include: remaining flow time of process

instance, probability of meeting a legal deadline, total cost of process instance, probability of

occurrence of a particular activity. The predictive model is based on post-mortem data. It is

used for predictions of running process instances.

In (Aalst, et al., 2011) an approach is presented to predict the remaining flow time using

an annotated transition system. The method uses two inputs: (1) transition system, and

(2) an event log having events annotated with timestamps and two event transition types,

i.e. start, and complete. It is assumed that the event log fits the transition system,

i.e., all traces in the event log can be replayed by the transition system from the beginning to

the end. During a replay, each state in the transition system is annotated with a set of time

values: t, e, r, s, where t is the time the state is visited, e is the elapsed time since the start

when visiting the state, r is the remaining flow time, and s is the sojourn time calculated as

the difference between complete and start transactions of associated events. Assuming a large

event log, there may be hundreds or even thousands of annotations per state. For each state x

it is possible to create a multi-set

 of remaining flow times based on these

annotations. Similar multi-sets can be created for elapsed and sojourn times. Basing on these

multi-sets, all kinds of statistics can be computed, e.g., the mean remaining flow time for

a given state, standard deviation, minimum, and maximum. Finally, such an annotated

transition system can also be used to predict the remaining time for a running case as

the mean remaining flow time of all earlier process instances in the same state. Hence,

the expected time of process instance completion can be derived. In the refined scenario, also

standard deviation of the historic samples in the multi-set can be used to estimate

the reliability of the prediction, e.g., with 90% confidence the remaining flow time is

predicted to be between 40 and 45 days (Aalst, et al., 2011). The approach based on an

annotated transition system is not restricted to predicting the remaining flow time (Aalst,

2011). For example, suppose that somebody is interested whether the activity g or h will

occur. To make such prediction, annotation of states should include information about known

outcomes for completed process instances in post-mortem data. For example, annotation of

state x as

 is created during replay by adding “0” for each visit of

a process instance that includes activity g or “1” activity h. Average value of

 is a

predictor of the probability that a case visiting state x will be followed by activity g. In this

approach based on process mining, the prediction is based on the state of the running process

instance rather than some static attribute. Classical data mining approaches (e.g., based on

regression or decision trees) typically use static attributes of a case rather than state

information.

The approaches to recommendations based on process mining are discussed in detail in

Section 4.2.

As three groups of methods, i.e. detection, prediction and recommendation, are envisioned for

operational support, it must be noted that some methods from off-line analysis can be simply

applied to analysis of partial traces, e.g., process discovery can also be applied to running

process instances. In (Aalst, et al., 2010), the authors present a framework for operational

47

support using process mining (Fig. 4.2) and detail a coherent set of approaches that focus on

time information.

TO
S

Se
rv

ic
e

TO
S

C
lie

n
t

Process-Aware
Information

System

User

User

Event log

Detection

Predicting

Recommending

Request

Annotations

Operation
Support System

Transition
System

Extending

Discovering

Fig. 4.2. Architecture of a system providing operational support based on time information

in event logs

The proposed Time-based Operational Support (TOS) Service (Fig. 4.2) uses the transition

system and other information, e.g. time annotations, to generate information about active

process instances. Such information concerning active process instances is generated on

request of a TOS Client. The TOS Client is rather not standalone software but an integrated

part of a PAIS. Together with a request, the TOS Client sends the partial trace and currently

enabled tasks of the running process instances. In response, the TOS Service generates

various types of information about the current process instance. In implementation described

in (Aalst, et al., 2010), the TOS Service performs at least one of three actions: (1) checks if

the elapsed time of the current case is within certain boundaries of elapsed time that past

process instances had in the same state, (2) predicts the remaining execution time based on the

past process instances, (3) recommends the enabled activities that, in the past, led to minimum

execution times. The presented approach to provision of an on-line support can be

generalized. It need not to be limited to time-based support.

4.2. Process Recommendations

The general approach to recommendations based on process mining is presented in Fig.

4.3 (Aalst, 2011). The approach outlines the problem of recommendation as an extension of

the prediction problem. In case of recommendations, in addition to the partial trace of the

running case used in prediction methods, the set of items, i.e., enabled activities that

constitute a decision space is also used.

Event log

Model

Process-Aware
Information

System

Operational
Support Systemx (85% certainty)

y (70% certainty)

Partial trace
Action

Suggestion Learn
recommendation

modelRecommendation

Request Enabled
activities

Fig. 4.3. General approach to recommendations based on process mining

48

The set of enabled activities is created on the basis of a process model that is either hand-

made or discovered. For instance, for a partial trace presented in Fig. 4.4 and for activity

Check that was executed as the last from the partial trace, the set of enabled activities is:

 .

1 Check 2

Inspect

Advertise

Process

3 Advertise

Decide5 64 Inspect

Fig. 4.4. Discovered process model represented as a transition system and

a set of enabled activities for activity e

Best matching activity from decision space is chosen according to used rating function. In the

presented approach, typically recommendation aims at minimizing the remaining flow time,

total process instance cost, etc. Thus, creating a recommendation is closely related to

predicting the corresponding performance indicator. Having an already executed partial trace

 , one may identify the set of enabled activities . The partial trace is extended

by each of possible enabled activities leading to creation of a number of k partial traces

 for . Each of k partial traces is then evaluated using prediction approach

described in Section 4.1, i.e. two steps are performed: (1) a new trace is created by extending

the partial trace of the running process instance, (2) the new trace is replayed

in the transition system to identify the state to be assigned to activity . Then partial traces

are ranked and selected according to predicted values. In a similar way, the decision space and

the recommendation problem may concern resources instead of activities. The problem then is

to recommend the resource for the next activity that optimizes the value of a rating function.

A particular implementation of the approach is presented in (Aalst, et al., 2010), where time

annotations created during transition system replay are used for creating recommendations

concerning activities that optimize the completion time of the process instances. The ranking

function based on calculation of average remaining times is used. The method is implemented

as a ProM plugin. The user interface of implemented plugin is presented in Fig. 4.5 (Aalst, et

al., 2010). Together with the name of a particular activity to be executed as the next one,

additional statistics are provided justifying the recommendation given to the user.

Fig. 4.5. Time-based recommendations in ProM

49

In (Schonenberg, et al., 2008), a similar approach is presented. Recommendations for

an enabled activity provide predictive information about the user goal, based on observations

from the past, i.e., fully completed traces accompanied by their target value (e.g., cost, cycle

time, or profit) that have been stored in an event log. The log-based recommendation service

requires the presence of an event log that contains such information about process instances

that have been executed for a certain process. A recommendation is initiated by

a recommendation request, which consists of a partial trace and a set of enabled activities.

In the presented approach for each enabled activity, two expected target values are defined:

 The expected target value when executing a particular enabled activity e;

 The expected target value when not executing a particular enabled activity.

During recommendation, the enabled activities are ordered according to the difference

between two values, i.e., the bigger the difference, the more attractive the activity is.

In (Nakatumba, et al., 2012), the meta-model for operational support is presented.

The purpose of the meta-model is to refine a common understanding of recommendation

problem based on process mining and to create the common framework for development of

future concepts. As in previous approaches, also this approach uses the information contained

in a partial trace and a model of the running process instance to provide support to the user.

The concept of recommendation, referred in the paper as recommendation query, is explained

with the use of three simpler queries: simple, compare and predict. A simple query checks

current performance of the current partial execution trace, for example, the total execution

time. A compare query compares performance of the current partial trace to other similar

traces, e.g., is the execution time of the current trace to this point higher or lower than the

average. A predict query considers the future of traces similar to the current one. The predict

query uses information concerning similar traces to provide predictions about the current

trace, e.g., what is the expected total execution time for this trace. Finally, a recommend query

gives the best possible next activity to be done based on the current partial trace. More

precisely, in the proposed model the recommendation is formulated by finding all the traces

being continuations of the running partial trace and finding the best matching trace that

maximizes the prediction value. Formal description of the definition can be found in

(Nakatumba, et al., 2012). In (Nakatumba, et al., 2012), the authors present

the implementation of the operational support functionality in ProM application with desire to

be used by the DECLARE system. The high level architecture of the proposed approach is

presented in Fig. 4.6. A Client communicates with a Workflow system, and an Operational

Support Service (OS Service, OSS). The Client sends one of four queries to OSS, which

forwards it to a number of Operational Support Providers (OS Providers), which may

implement different algorithms. Responses are sent back to the OSS and forwarded to

the Client.

O
S

Se
rv

ic
e

C
lie

n
t

User

User

Recommendation

Request

Operation
Support System

(ProM)

Workflow
System

OS Provider 1

OS Provider 2

OS Provider n

. . .

Fig. 4.6. Architecture of the operational support in ProM

50

The approach presented in (Schonenberg, et al., 2008) is extended in (Haisjackl & Weber,

2011) with the study of various recommendation strategies. In this approach it is assumed that

the process is structured, but there is no underlying process model guiding the execution of

the process instances that facilitates identification of a set of enabled activities. Instead, the set

of enabled activities must be identified and is strictly connected to the problem of finding

similar traces to the trace of the running process instance. Thus, in (Haisjackl & Weber, 2011)

the problem of recommendation is divided in two subproblems:

1. Finding similar log traces,

2. Creating recommendation using selected strategy.

Algorithms for finding similar log traces iterates over the log to calculate the result bag for

a given partial trace. Depending on the approach to identification of similar traces, a resulting

bag is different (Haisjackl & Weber, 2011):

 Prefix miner – considers the exact ordering of activities when comparing the partial

trace with a log trace; if the partial trace is a prefix of the log trace, the log trace

obtains a weight of one; the result trace is coming from the trace having the highest

weight;

 Set miner – does not consider the ordering of activities in the log, but only the

presence/absence of activities; the weight is calculated by dividing the number of

distinct matching activities by the number of distinct activities in the partial trace;

 Multiset miner – does not consider the ordering of activities in the log; it takes the

number of occurrences of an activity in a log trace into account; the weight is

calculated by dividing the number of matching activities by the number of activities in

the partial trace; moreover, all activities from the log trace minus the activities from

the partial trace are added to the result set;

 Partial trace miner – takes the ordering of activities into consideration but instead of

comparing the entire partial trace with the log traces, it only considers the last n

activities of the partial trace (denoted horizon); all the activities succeeding the found

search trace(s) are considered result traces;

 Chunk miner – does not compare the entire partial trace with the log traces; instead,

the partial trace is divided into chunks of size n (i.e., sliding window of size n), each

of which is then compared with the log trace.

The miners are responsible for weighting log traces according to their fit with the partial trace

and provide a result bag containing the mining results which is then taken by the strategies as

input for generating recommendations. In particular, based on this information the strategies

evaluate all the enabled activities in respect to the performance goal (e.g., minimize cycle

time, minimizing error rates or maximizing customer satisfaction). The following strategies

are distinguished (Haisjackl & Weber, 2011):

 Randomized Strategy – randomly picks one of the possible next tasks and recommends

this task for execution;

 Prefix Strategy, Partial Trace Strategy, Chunk Strategy – strategies differ in terms of

the used miner but they use the same method for calculating expected target value

when following and not following a particular recommended activity; all the strategies

consider the first task of each result trace from the result bag for calculating the

expected values in the way described in (Schonenberg, et al., 2008);

 Set Strategy, Multiset Strategy – strategies differ in terms of the used miner; they

consider all the activities of each result set in the result bag for calculating expected

51

target value when following and not following a particular recommended activity:

the result sets which do not contain any of the enabled activities are discarded; for

each possible next activity the expected target value when executing the activity is

calculated as the weighted average of target values of all result sets containing that

particular activity. The expected target value when not executing the activity, in turn,

is the weighted average of target values of all the result sets which do not contain that

particular activity.

In (Haisjackl & Weber, 2011), the miners and strategies are evaluated in terms of

performance. No strategy is always outperforming all other strategies. Consistently good

performance is delivered by the Prefix Strategy. In the majority of cases, both the Partial

Trace Strategy and the Chunk Strategy are outperformed by the Prefix Strategy. However, the

Chunk Strategy might bear some potential for processes comprising loops.

In (Dorn, et al., 2010), an approach to context-sensitive, self-adjusting process

recommendations is presented. The paper focuses on two major challenges associated with

processes that share characteristics with VO collaborative processes (Dorn, et al., 2010):

 Users in people-driven processes require a combination of personalized

recommendations, while exploiting the best practices emerging from the overall user

community;

 Flexible processes need to evolve across time to reflect the changes in working style,

business constraints, and impact of cross-organizational cooperation.

The recommendation is performed for processes which have models guiding execution of

process instances (Fig. 4.7) (Dorn, et al., 2010). Despite existence of a model, a user is able to

select activities in any order. The process model describes a generic process that provides

a rough guide for most cases. The proposed recommendation system monitors user’s

decisions and continuously adapts to recommend always the most suitable next activities. The

approach relays on identification of sequence graphs. The sequence graph SG(P,E) consists of

nodes representing the individual process activities P and a set of edges E. A directed edge

 in SG between two nodes A and B describes a temporal sequence: activity B follows

immediately after A. Whenever a user performs activity B after A, the edge value is increased.

The SG accumulates all individual activity sequences for a particular process. Thus, it yields

the preference of following a particular path through the process. Identification of sequence

graphs is performed during process instance execution on the basis of event log analysis.

Sequence graphs are constantly extended as subsequent process instances are executed.

Fig. 4.7. The process model (a) and the corresponding sequence graph (b)

a) b)

52

Created sequence graphs are used during process instance executions by the Process Instance

Manager component. The Process Instance Manager is responsible for:

 Selecting relevant activities to be performed in the current process instance, where

the selection is based on information about current process instance state and

information from the sequence graph;

 Tracking user activities that have been completed;

 Providing a list of activities that are ready to be carried out;

 Analyzing process instances for skipped and out-of-order activities.

Personalized recommendations based on individual sequence graphs yield highly relevant

activity rankings. Drawbacks of such personalized recommendations are the following:

 Recommendations are limited to activities that a particular user has executed so far;

 Alternative sets of activities that potentially reduce overall processing time remain

unavailable;

 Recommendations are not applicable in exceptional situations that have not been

encountered by the user before;

 Recommendations reinforce inefficient or even incorrect activities that the user tends

to execute.

Crowd-based recommendations mitigate this shortcoming. Crowd-based recommendations

enrich the set of relevant possible process paths through aggregation of the process

experiences from multiple users. The mechanism of creating recommendations is presented

in Fig. 4.8 (Dorn, et al., 2010):

1. Incoming request for recommendation triggers the recommendation mechanism,

2. The recommendation system collects information from the Process Instance Manager;

3. The recommendation system collects information from both personal and crowd-based

sequence graphs;

4. The recommendation system subsequently provides the user with the recommended

activities;

5. The user selects one activity and performs it; the Recommendation System Monitor

observes the user’s actions (5a), and other events (5b) to determine the true process

progress;

6. The Recommendation System Monitor updates the Process Instance Manager

whenever an activity is completed;

7. The Process Instance Manager updates the personal and crowd-based sequence graphs

for each completed step;

8. In regular intervals, the Process Miner takes a sequence graph and generates

an updated process model.

53

Fig. 4.8. Feedback cycle for personal and crowd-centric recommendations

The overall recommendation combines user-centric and crowd-based recommendations

according to the classifier . The classifier describes the user on a scale between 0 and 1,

where 1 denotes a user always adhering to his individual work style – the eagle. At the other

extreme end of the classifier (), a user follows generally applied work practices – the

flock. The classifier is determined for each user and process as a user’s work style

potentially deviates for one process to another. The overall recommendation merges user-

centric and crowd-based recommendations according to the following formula:
 . The value of increases when the user carries out activities that

originated from . Similarly, the value of is reduced when the user follows crowd-

based recommendations. The merged recommendations coming from individual and crowd

sourced are sorted according to overall recommendation value. A dynamic adjustment if

 value reflects a user’s learning effects and his/her adaptation to changing process. The

move of value is determined by process output, i.e., process success. When remains close

to 1, but process success declines, it is assumed that the personalized recommendations fail as

they most likely reinforce bad decisions. In this case, is pushed towards the neutral value to

take again into account crowd-based recommendations.

In (Swinkels, 2012), intelligence of organizations, instead of single users is used to better

formulate recommendation. The architecture of the suggested system is presented in Fig. 4.9.

The event logs of various organizations are integrated into one so called Collective Event

Log (CEL). The Collaborative Event Log is used to mine Collective Transition System (CTS)

describing behavior of organizations captured in the CEL. A Multiple Log

Recommender (MLR) is a central component of the suggested system.

When recommendation request is set by an organization, MLR uses information provided

in the request and information coming from CTS to provide recommendations. CTS provides

to MLR a mined time-annotated transition system. MLR creates further continuation of

process instances. The best continuation of a process instance is returned to the client.

54

Process
execution engine

Organziation i

Recommended
model

Event Log
Model

Process-Aware
Information System

Multiple Log
Recommender

Transition System
Miner

Event Log i
…

Event Log j Event Log n

Collaborative
Transition

System

Collaborative
Event Log

Partial trace

Recommendation

Partial trace

Recommendation

Event Log

Fig. 4.9. High-level architecture of the collective recommendation system

A request for a recommendation by a process instance of an organization contains:

(1) the process instance identifier, which is a unique number for each process instance,

(2) a list of activities that were executed since the last recommendation request, and

(3) a list of possible activities that can be executed next. Extended number of parameters

passed to the recommendation system is greater than number proposed in (Aalst, et al., 2010)

and in (Schonenberg, et al., 2008), because the recommendation service has to recommend

an activity which is present in the list of all the possible activities allowed in organizations

requesting recommendations. A recommendation cannot involve an activity that is not

available or possible in the organization.

Another approach is proposed by in (Almeida, et al., 2004) where recommendations are based

on ontology and semantic rules that generate possible process alternatives or suitable

activities if execution of a workflow instance fails to proceed. Among other works,

the prediction engine of Staffware (Staffware, 2003) uses simulation to complete audit trails

with expected information about future activities. The approach does not provide a means of

learning to make better predictions over time. A more refined approach focusing on transient

behavior is presented in (Rozinat, et al., 2009). In (Stoitsev, et al., 2007) recommendations are

based on best-practices shared by users within a company. This approach supports operational

decision making using process mining techniques and simulation in the context of YAWL.

In (Weber, et al., 2004) the case based reasoning approach is presented. The prototype

implementation of CBRFlow is able to adapt a process model to changing situations at run-

time and provide the workflow system with learning capabilities. Recommendations can also

be based on a Product Data Model as discussed in (Vanderfeesten, et al., 2008), but they are

specific for product based workflows. In (Barba, et al., 2012), the authors propose

a recommendation system based on a constraint-based approach extended to consider not only

the control-flow, but also the resource perspective in order to optimize performance goals of

business processes.

55

4.4. Mining Behavioral Patterns in Collaboration

Identification of behavioral patterns in unstructured processes (cf. Section 3.1.2) is achieved

via process mining methods, classic data mining methods, and social network analysis.

Process mining methods can be split into five categories: (1) generalization and clustering,

(2) constraint-based analysis, (3) variant analysis, (4) social network mining based on event

data, and (5) context capturing.

Majority of process mining methods were developed for discovery and analysis of structured

process. Applying these methods to unstructured processes is followed by high complexity of

discovered models, and low understandability and usefulness of such models. Thus, the main

objective of process mining methods developed for analysis of unstructured processes is to

lower complexity of discovered models. In fuzzy mining methods the concept of

generalization of activities and transitions among activities is proposed. Generalizations

combine activities frequently appearing together (Gunther & Aalst, 2007). The method

proposed in (Bose & Aalst, 2009) is based on initial clustering of process instances according

to their similarity. Then classic process model discovery algorithms are applied separately for

each cluster. In (Bose & Aalst, 2009) a generic edit distance metric is proposed that captures

dependencies among activities and takes into account various degrees of similarity among

activities. Generic edit distance metric eliminates some drawbacks of Hamming and

Levenshtein distance metrics. Classic similarity metrics are used (Delias, et al., 2013) to count

similarity among traces of process instances, e.g., cosine similarity is used for clustering of

healthcare processes. Some approaches to analysis of behavior of service consumers and

service providers are presented in (Aalst, 2004) (Aalst, 2006) (Aalst, 2013).

Traditionally mined descriptive process models aim at specification of behavior that is

allowed in a process. As mentioned above, in case of unstructured processes this approach

leads to very sophisticated models. On the contrary, constraint-based approaches specify only

what is forbidden during process execution. This group of methods is implemented as

constrain-based workflows and constraint-based languages such as DECLARE (Aalst, et al.,

2009). Process mining methods discover constraints that are used to guide the execution of

process instances. Other approaches to unstructured processes rely on analysis of variants of

execution of process instances. Variants describe common ways of process execution

(Rozinat, 2013). Variants do not aim at achievement of full process models.

While majority of methods concentrate on a process perspective, i.e., a control flow

perspective, some methods discover social perspective by analysis of information concerning

resources and structure of activities. As a result, social relations describing handover of

work (Aalst, et al., 2005) or organizational structure (Song & Aalst, 2008) are discovered.

While usually social and control flow perspective are analyzed separately, new approaches to

analysis of human behavior using process mining claim the need of simultaneous analysis of

more than one perspective at time (Leoni & Aalst, 2013). However, such methods miss

important aspect of analysis of correlation among various perspectives. For instance, analysis

of influence of structure of discovered social network on the model is not possible. All

the methods aiming at discovery of a social perspective assume a limited scope of available

data that are associated with events in an event log. Thus, a set of social relations to be

discovered is very limited. On the contrary, in many modern PAIS, each event is usually

described by a number of attributes referring both to activity itself as well as resources

involved in activity execution and can be additionally supplemented with data from other

56

systems. Up to date, no approach to identification of social roles and social relations based on

such rich event logs has been proposed.

An approach to capturing a context of human behavior is presented in (Ghattas, et al., 2009).

Context is represented by a set of attributes describing a process instance. A presented case

study refers to clinical processes. An example of a process instance context includes the

following attributes: patient age, gender, race, chronic illnesses, general mental and overall

state of the patient, etc. Such process instance context is used to build a decision tree. So far,

the notion of context is limited to process instance context. Up to date, the notion of activity

context, which is crucial for providing recommendations for the running process instances,

has not been defined and used.

Analysis of human behavior goes far beyond process mining techniques. In classic data

mining a wide set of sequence mining techniques has been developed over years. Among

others, sequence mining algorithms take into account activity ordering. This group of

algorithms include AprioriAll (Agrawal & Srikant, 1995), GSP (Srikant & Agrawal, 1996),

SPAM (Mane, 2013), and BIDE (Wang & Han, 2004). For instance, PrefixSpan

algorithm (Pei, et al., 2004) is based on a pattern-growth approach to discovery of sequential

patterns. Its optimized versions include bi-level projections of sequence database and pseudo-

projection. In general, data mining algorithms have limitations preventing them from being

used in VO collaborative process model discovery: (a) they focus on frequent behavior

without trying to generate models, (b) they cannot model choices, loops, etc., (c) they cannot

well handle concurrency, (d) they do not include analysis of patterns on the level of activity

attributes, i.e., only activity names are considered, (e) they consider local patterns only,

i.e., no overall process model is created. Some methods deal with individual limitations,

e.g., discovery of parallel patterns was introduced in (Hwang, et al., 2004). Three algorithms

were proposed do discover so called temporal patterns capturing followed and overlapped

relations among activities: TP-Graph, TP-Itemset, and TP-Sequence.

Classic data mining techniques such as classification and clustering (Witten, et al., 2011)

(Wiszniewski, 2011) are used by many process mining methods. For example, in (Delias, et

al., 2013) first clustering and then classification are used to reason about context-aware

patterns in patient care. Decision trees are used to explain reasons underlying particular

decision making points in a process (Rozinat & Aalst, 2006).

Social network analysis (Watts, 2004) concentrates on analysis of human behavior from the

perspective of social network structure and its dynamism. Recent works in the area of social

networks include works on evolution of social networks (Jeong, et al., 2003) (Morzy, 2013),

resilience of networks (Brendel & Krawczyk, 2008) (Brendel & Krawczyk, 2010),

propagation of information (Pastor-Satorras & Vespignani, 2001), categorization of social

networks (Morzy, 2012), evaluation of actors reputation and importance (Morzy, et al., 2009)

or their negative impact on the network (Krawczyk & Brendel, 2006), discovery of social

aspects in incomplete or aggregated data sets (Morzy & Forenc, 2013). Social network

analysis abstracts from activities and processes performed by members of a social network.

Thus, existing methods for social network analysis do not support the analysis of correlation

between processes performed by collaborators and a structure of underlying social network.

57

4.6. Event Log Formalization

In this section, the concepts of event, trace and event log are formally defined.

Definition 4.1. (Event). An event e is an object describing an observation at time t, where this

observation is related to precisely one activity instance executed within a collaborative

process instance.

Let denote the set of all the events.

Each activity instance executed within a process instance is related to at least one event.

Within a VO collaborative process instance, events may refer to the same activity instance

(e.g., activity start or completion) or to different activity instances of the same activity (e.g.,

activity executed in a loop).

For each event *Ee and attribute with the attribute name AVavan ,

 is a value av of attribute a for event e.

Definition 4.2. (Trace). A trace } is a finite sequence of events recorded

for a VO collaborative process instance p, where and .

Example 4.1. An example of a trace is presented in Tab. 4.1. Each row corresponds to

an event, where each event is described by four attributes presented in columns: activity

name, resource, timestamp and cost. ▪

Tab. 4.1. Trace

Event Activity name Resource Timestamp Cost

 A Tom 01.12.2012 3.15 p.m. 30

 A Tom 01.12.2012 3.19 p.m. 40

 C Kate 01.12.2012 3.21 p.m. 10

 B Paul 01.12.2012 3.35 p.m. 10

 B Paul 01.12.2012 4.02 p.m. 40

 C Kate 01.12.2012 4.15 p.m. 20

 D Tom 01.12.2012 4.16 p.m. 20

Let denote a sequence of q+1 events.

Let denote a set of events assigned to activity instance from VO collaborative

process instance p. Then, .

Let denote a set of process instance attributes.

Definition 4.3. (Partial trace). A partial trace is a trace corresponding to

a collaborative process instance that is still running.

Example 4.2. In Fig. 4.10, a partial trace of a collaborative process instance p is presented.

The dark activity E indicates that instances of activities A, B, C and D have already been

executed. Execution of those activity instances was recorded in trace . Activities E and F

have not been reached yet which means that process instance p is still in progress and trace

 is partial. Each event e from trace is associated with exactly one executed activity

58

instance. Each activity instance is assigned to at least one event. For example, activity A is

associated with event and , i.e., . ▪

{ }e0, e2, e3, e4, e5, e6e1,

Collaborative
process

instance p

Trace τ(p)

A

C

B
D E F

Fig. 4.10. Collaborative process instance and its partial trace

Let denote a subsequence of events from trace that were recorded before event e

inclusive.

Example 4.3. For trace from Example 4.2, . ▪

Definition 4.4. (Event log). An event log is a set of traces.

Let denote a set of events different than e that were recorded in an event log in

time period from to inclusive.

59

5. Conceptual model of the RMV method

5.1. RMV Method Requirements

Basing on unpredictable and emergent character of VO collaborative processes

(cf. Section 3.1.2), nine main requirements for computer support for VO collaborative

processes are defined in this dissertation:

1. Guidance for process instance execution – computer support for VO collaborative

processes should provide whenever possible a guidance for VO collaborative

processes instance execution; guidance should be performed by indication of the next

activities and collaborators involved in their execution; in case when the set of best

fitting collaborators is impossible to determine, it should provide information vital for

their selection (cf. Section 3.1.2);

2. Support for conformance analysis – once guidance is given, computer support for

VO collaborative processes should provide means for verification of conformity of

process instance execution to the guidance: potential discrepancies should trigger

adaptation actions and influence a confidence of future recommendations;

3. Support for adaptation and flexibility – computer support for VO collaborative

processes should allow collaborators to respond to new situations; computer support

should enable selection and modification of sets of collaborators and performed

activities (cf. Section 3.1.2);

4. Descriptive model – as VO collaborative processes are frequently modeled ad-hoc

(cf. Section 3.1.1), computer support for VO collaborative processes should rely on

descriptive models of collaboration, instead of prescriptive ones; descriptive models

represent actual, real behavior of collaborators (cf. Section 4.1);

5. Computer supported approach – a computer supported approach should provide

relevant information for the collaborators, instead of making decisions on behalf of

them; the decision making should remain under responsibility of collaborators;

VO collaborative process instance execution is influenced by rules of social norms and

shared tacit knowledge on collaboration, which are elements that may hardly be taken

into account by information systems (cf. Section 3.1.2);

6. Collaborative wisdom –guidance for VO collaborative process execution should be

based on the best practices following from the overall collaborators community;

to exploit the wisdom of community, the reasoning performed to provide operation

support should rely on analysis of behavior of all the collaborators involved in various

VO collaborative process instances (cf. Section 4.2);

60

7. Reusability – computer support for VO collaborative processes should provide

reusable outcomes to rule collaboration within various VOs;

8. Social aspect and context – efficient computer support of VO collaborative processes

must include modeling and analysis of social relations among collaborators

(cf. Section 3.1.3) and context in which a VO collaborative process instance is

executed (cf. Section 3.2);

9. Continuous instantiation – computer support for VO collaborative processes should

include selection of actors based on aspects relevant for VO collaborative processes;

as the set of activities and collaborators is dynamic, the instantiation should be

performed throughout the execution of VO collaborative process

instance (cf. Section 2.3).

5.2. RMV Method Motivation

The needs of computer support for VO collaborative processes go beyond possibilities of

existing methods. The methods in the area of PAIS, process mining, recommender systems

and VO creation support do not satisfy the above requirements.

Various PAISs aim at finding right balance between the support offered to a user on the one

hand, and flexibility in definition and execution of user’s activities, on the other. The trade-off

between support and flexibility is presented in Fig. 5.1 (Dumas, et al., 2005). In particular,

three representative types of PAISs are distinguished: production workflow systems, ad-hoc

workflow systems, and computer supported collaborative work systems.

CSCW Ad-hoc
workflow

Production
workflow

High

Low

Fig. 5.1. Trade-off between flexibility of process definition

and support for human actions in PAIS

In the production workflow managements systems, process models highly restrict the

collaboration limiting flexibility. The concept of a process model, which is at the core of

workflow management systems, aims at defining the complete set of potential interactions

within a given process as precisely as possible, i.e. design and run-time phases of process

lifecycle are precisely separated.

61

A possibility of process model modification at run-time is provided by ad-hoc workflow

systems. However, ad-hoc workflow systems require a system user, i.e., a collaborator, to

declare at some stage the future shape of his/her process. This declaration may concern

an initial process model to be later modified (adaptive processes) or some process parts to be

later used during process reconfiguration (flexible processes).

The computer supported collaborative work (CSCW) systems do not strongly restrict

collaboration with predefined sets of activities. Instead, activities are rather considered as

functions that are available for the collaborators, with weak constraints on the precedence of

some activities. The support focuses on communication among collaborators giving poor

guidance for the process instance execution.

Therefore,

there is a need for a method that maximizes the scope of guidance for

collaborative process execution (requirement 2, 3, 5) with a little negative impact

on flexibility of collaborative process instance execution (requirement 1), where a

set of available activities and a set of involved collaborators are unpredictable

and dynamic (requirement 4).

The problem of discovery of descriptive process models is addressed by process mining

methods. In particular, process mining offers methods for operational support that provide

guidance during process instance execution. However, process mining methods miss

significant aspects preventing them from being used in support of VO collaborative process

executions:

 Support for structured processes – discovery of process models and activity sequences

is limited to structured processes, while VO collaborative processes are quasi-

structured (cf. Section 4.2);

 Required knowledge of process model – recommendations are provided on the basis of

some underlying workflow model (discovered or hand-made); in case of

VO collaborative processes the full model of a process cannot be discovered or

modeled (cf. Section 4.2);

 Limited context – in majority of methods, recommendations are based on information

concerning the activity itself; as evolving character of VO collaborative processes

follows from constant analysis of process or activity context, efficient operational

support for VO collaborative processes must take context into

account (cf. Section 3.2); some approaches to inclusion of context take into account

process instance properties which are used for recommendation of full process

instance traces, but not for recommendation of particular activities in a particular

process instance state (cf. Section 4.3);

 Focus on activity names – methods mining behavioral patterns in unstructured

processes permit identification of activity names, but no other aspects of a process

which are significant from the efficient collaboration point of view, e.g. social aspects;

thus any guidance concerning process instance execution is formulated on an abstract

level rather than executable one (cf. Section 4.3);

 Low-level recommendation criteria – criteria functions used when providing guidance

during process instance execution are defined on a low level, i.e., execution time or

cost; it is impossible to define goals on a business level, because the analysis of

correlation between process instance structure and successful or unsuccessful process

completion is not performed (cf. Section 4.2);

62

 Inflexible preferences – operational support misses the aspect of collaboration and

flexible definition of collaborator preferences (cf. Section 4.2).

Recommender systems other than ones based on process mining techniques, provide some

guidance concerning activities performed by recommender system users. However, support

for the concept of context is rather limited, i.e., the context is static and does not change over

time.

Therefore,

there is a need for a method that identifies descriptive models of a VO

collaborative processes (requirement 4) and their context (requirement 8) in

multiple past executions of VO collaborative process instances (requirement 6),

and provides context-aware, business-oriented operational support for future VO

collaborative process instances (requirement 7).

Existing methods of partner and service selection during VO creation, do not address

the characteristics of inter-organizational collaboration (cf. Section 2.3). This leads to

the following shortcoming of the methods preventing them from effective application to

collaborative processes:

 Required knowledge of the process model – it is assumed that the model describing

collaboration is known in advance and that it does not change;

 One-time selection – all the partners are selected before a VO collaborative process

starts, while in practice new partners may be required when the process progresses, or

some initially selected partners may appear useless, so the evolving aspect of

the partner selection is not addressed,

 Unsupported social aspects – a combined analysis of potential partners, their services

and social relations is not supported.

Therefore,

there is a need for a method of instantiation of VO collaborative processes such

that the selection is performed throughout the VO collaborative process instance

execution (requirement 9) and selection of actors is based on criteria analysis

relevant for VO collaborative processes (requirement 8).

5.3. RMV Method Outline

The main idea of the Recommendation Method for Virtual Organizations (RMV method) is

an automatic discovery of activity patterns and ad-hoc generation of recommendations for VO

collaborative processes, where a VO collaborative process is performed within a SOVOBE.

An activity pattern is a service protocol (cf. Section 3.1.3) that is frequently performed in

a particular contexts as a part of various instances of VO collaborative processes of the same

type. Formal definition of activity pattern is provided in Section 5.4.4. Discovered activity

patterns are used to provide on-request recommendations for the running VO collaborative

process instances. Selection of activity patterns for recommendation is based on similarity

between activity pattern contexts and the context of running VO collaborative process

instance. The best matching activity pattern is instantiated before actually being incorporated

into VO collaborative process execution. Selection of the best matching activity pattern from

63

a set of recommended activity patterns and its instantiation is performed in a collaborative

way by a group of collaborators referred to as selecting collaborators.

5.3.1. RMV Method Steps

The high level architecture of the approach proposed in this dissertation is presented in Fig.

5.18. There are two main components of the architecture: PAIS and Operational Support

System (OSSys). PAIS functionality is used by collaborators to execute activity instances

within VO collaborative process instances. Potentially, PAIS supports execution of multiple

VO collaborative process instances at the same time. OSSys provides operational support for

execution of VO collaborative process instances by their analysis and formulation of

recommendations. OSSys is the actual implementation of the RMV method.

Two components take part in communication between OSSys and PAIS: Operational Support

Service (OSS) and Operational Support Client (OSC). OSS provides access to OSSys

functionality. OSC is a part of the PAIS that is responsible for communication with OSS.

A request send by OSC is handled by OSS. The OSS forwards the request to OSSys

functional components. Responses generated by OSSys functional components are sent back

to the OSS and forwarded to the OSC.

PAIS

OS
Client

Operational Support System

OS
Sevice

Recommendation
Monitor

Recommendation
Manager

Process Miner

Record user
activity

Record exteral
contextEvent log

Discover/update
activity

patterns

Visualize
recommendations

Save
recom.

Update user
recommendation history

Provide process instance
recommendation history

Find matching
activity patterns

Matchmaker
Execute

recommendation

User
request

Forward
to instantiation

Request activity patterns 67

9

8 10

11

12

13

1

2

4

3

Fig. 5.2. Main steps of the RMV method

The RMV method consists of the two main phases:

1. Discovery of activity patterns and their context (steps 1-3 in Fig. 5.18) – in this phase

the set of activity patterns is discovered; discovery requires separation of

VO collaborative processes parts that appear in quasi-structured processes: (a) are

repeatable and occur in many VO collaborative process instances are repeatable and

occur in many VO collaborative process, (b) are unique and have ad-hoc character;

the discovered repeatable parts are stored as activity patterns associated with contexts

they appeared in;

2. Recommendation formulation (steps 4-13 in Fig. 5.18) – in this phase, activity patterns

suited to a particular context of VO collaborative process are selected and

recommended for inclusion in further execution of a process instance; once activity

pattern is selected, it is instantiated before being incorporated into VO collaborative

process execution; the second phase is performed on request. The request for

64

recommendation of activity patterns is generated manually by a collaborator or

automatically by PAIS each time a change is observed by the OSC in the

VO collaborative process instance.

In the first phase, information about activity instances that are executed by collaborators is

stored in the Event log (step 1). Information concerns activity instances in both completed and

still ongoing VO collaborative process instances. The information about activity instance in

the Event log encompasses the context of the activity instance execution (2). On the basis of

data stored in the Event log, Process Miner performs discovery of activity patterns and their

context (3). The discovery is performed in preconfigured intervals. Each activity pattern

discovery step updates the set of activity patterns available for operational support. Each

activity pattern is stored together with information concerning contexts it was discovered in.

In the second phase, a recommendation formulation includes: finding the best matching

activity pattern, and instantiation of the activity pattern. The VO collaborative process

instance within which a recommendation of an activity pattern was made is referred to as

the selected process. Selected and selecting processes are interrelated and are executed

simultaneously. Collaborators involved in a selecting process, i.e., selecting collaborators, are

in general different from actors executing the service protocol being instantiated.

In the selecting process, recommendation is performed as a response to a request (6). The

request includes current context of a collaborator and his/her preferences concerning the

recommendation. The request is first passed to the Process Miner (7) and initial set of

matching activity patterns is selected (8). Final selection of best matching recommendations is

made by the Recommendation Manager. The Recommendation Manager performs

the selection in real-time, each time a request is received. During the selection,

the Recommendation Manager uses:

 Information provided by the Process Miner;

 Information provided by the Recommendation Monitor (9); the Recommendation

Monitor collects information concerning history of recommendations accepted by

a selecting collaborators and analyzes the usage of recommendations in

VO collaborative process instances (4).

The Recommendation Manager presents one or more of the best matching recommendations

to selecting collaborators (10). The selected recommendation is submitted to the Matchmaker

for instantiation (11). Information about the newly selected and instantiated activity pattern is

saved in the Recommendation Monitor (13). Finally, instantiated activity pattern is returned to

the PAIS for the use and monitoring in the VO collaborative process instance.

The recommendation can be used by the OOC in various ways. A simple scenario may

concern information being just displayed to collaborators for their recognition. In more

advanced applications, recommended activity patterns are instantiated and passed to

the workflow engine that supports flexible definition of workflow processes. A sequence of

recognized and instantiated activity patterns can potentially create a fully executable

VO collaborative process instance. Finally, conformance rules generated on the basis of

classes of service entities and service requirements are used for monitoring events generated

by further execution of a process instance. The fact that further execution of a VO

collaborative process instance is in line with recommendation, i.e., conformance rules are

satisfied, increases the confidence indicator of a recommendation. In this way, the RMV

method is a full framework for discovery, recommendation, instantiation and verification of

activity patterns – Fig. 5.3.

65

Activity pattern
discovery

Activity pattern
recommendation

Activity pattern
instantiation

Activity pattern
verification

Fig. 5.3. Activity pattern life cycle

Recommendations are based on selecting collaborators’ context, thus activity patterns can be

used in many VO collaborative process instances of various process types as far as they match

selecting collaborators’ context. This allows the knowledge to be shared between multiple and

various VO collaborative process instance executions, as wall as various VOs. Tab. 5.1

summarizes functionality of the main OSSys components.

Tab. 5.1. Functionality of the RMV method components

Component name Functionality

Process Miner Identification of activity patterns

 Identification of activity pattern contexts

 Storage of activity patterns and their contexts

Recommendation

Monitor
 Analyzing collaborators’ activities for skipped, out-of-order and

out-of-scope activities that do not follow generated and

instantiated recommendation using conformance rules

 Analyzing collaborators’ tendency to follow recommendations

Recommendation

Manager
 Analysis of information from the Process Miner

 Creating a ranked list of recommendations for selecting

collaborators

Matchmaker Instantiation of activity pattern by selection of best matching

collaborators and services

Event Log Recording events corresponding to collaborators’ activities

 Recording contextual information and VO collaborative process

instance attributes

5.3.2. Key Concepts of the RMV Method

This section describes in a general way key models and techniques used in the RMV method.

Formal definition of models is presented in Section 5.4. The formalization of methods is

presented in Section 5.5.

Eight key aspects related to context-aware recommendation of activity patterns for

VO collaborative processes in the RMV method are:

1. Activity pattern representation;

2. Scope of information required in a VO collaborative event log;

3. Scope and functionality of SOVOBE services;

4. Context model;

5. Activity pattern discovery technique;

6. Recommendation generation technique;

7. Activity pattern instantiation technique; and

8. Parameterization of the RMV method.

66

1. Activity pattern representation

In the RMV method, the SOA approach to VO collaborative process execution is assumed

(cf. Section 3.1.3), i.e., execution of each activity in a VO collaborative process instance is

associated with a triple: service consumer, service interface, and service provider. Each

discovered activity pattern is represented by a service protocol. Service protocol is a bi-

perspective model of process (cf. Section 4) that captures relations between two perspectives:

control flow perspective (service protocol process model and service-oriented summary of

a process model) and social perspective (service network schema and social network).

The formal model of activity patterns is presented in Section 5.4.4. The formal model of

service protocol is presented in Appendix A.

The RMV method is independent from the specific formalism used to describe the control

flow of a process. In the prototype implementation presented in Section 6.5, temporal graphs

are used for representation of a process model of an activity pattern. Activity pattern process

model enables both sequential and parallel representation of activities ordering.

2. Collaborative process event log

Discovery of activity patterns includes identification of: (1) contexts of an activity pattern,

(2) the set of service entities, (3) the set of classes of service entities, (4) the set of service

requirements and (5) mapping between all those elements. Discovery of activity patterns is

possible only if relevant data are available in the event log. Formalization of VO collaborative

process event log is presented in Section 5.4.3. In addition to data usually available in

an event log (cf. Section 4.5), the following information about each event is expected:

 Service entity attributes – a non-empty set of attributes that describe service entities

involved in activity instance execution associated with the event;

 Social attributes – a non-empty set of attributes that describe service relations among

service entities.

 Context attributes – a non-empty set of attributes that describe the context of event

occurrence, i.e., circumstances of event generation. The scope of context information

to be gathered is shared by all the events. Changes in particular values of context

attributes are recorded throughout the VO collaborative process instance execution.

In this way, context attributes capture the dynamic aspects of VO collaborative

process instance context. No assumptions concerning the scope of information

provided as the context attributes and process instance attributes are made. The scope

of information useful for a particular VO collaborative process instance depends

strongly on the nature of the process.

 Service entity identifiers – a non-empty set of identifiers of service consumer, service

provider and service interface.

A rich VO collaborative processes event log is currently commonly available in many modern

PAISs. Moreover, an event log can be additionally enriched by data coming from other

information sources such as social media. VO collaborative process event log may represent

high level activities performed by organizations, as well as lower level activities describing

interaction among information systems.

67

3. SOVOBE’s services

SOVOBE’s services provide an access to data necessary for creation of a VO collaborative

process event log.

In the RMV method, each VO collaborative process is executed within SOVOBE,

i.e., collaborators use services provided by SOVOBE throughout the VO collaborative

process instance execution. SOVOBE logs information concerning activities performed by

SOVOBE members within various VO collaborative processes. SOVOBE’s services also

provide an access to these logs and other data including:

 Context information,

 Service entity descriptions,

 Service relations descriptions,

 The set of activity instances in running and past collaborative process instances

executed by various VOs,

 Assignment of service entities to activity instances, including terms under which

organizations collaborate.

The RMV method itself is also one of SOVOBE’s services provided to various VOs in a form

of an OSS service (cf. Fig. 5.2). As all the virtual organizations may use the OSS service,

activity pattern discovery and recommendation supports knowledge sharing among VOs

operating inside the SOVOBE. Notion of VO and SOVOBE is formalized in Section 5.4.1.

4. Context model

An observation underlying the RMV method is the following: context of an activity instance

affects its execution and outcomes, so indirectly it affects the course of VO collaborative

process instance execution. The RMV method aims at categorizing all the meaningful

information associated with activity instance execution and aggregate them into a context that

is later used during activity pattern recommendation.

Formalization of the RMV method context model is presented in Section 5.4.2. In the RMV

method, the context of an activity instance is composed of five elements:

1. Event context attributes associated with events of an activity instance;

2. Process instance attributes which capture static information that refers to a process

instance. One obligatory attribute of a completed VO collaborative process instance is

the outcome of this instance;

3. A sequence of events that occurred before the events associated with the activity

instance execution (inclusive);

4. A set of descriptions of service consumers and service providers that were involved

in VO collaborative process instance execution before the activity instance (inclusive)

was executed;

5. A set of events that occurred in other VO collaborative process instances at the time

when the activity instance was executed.

68

5. Activity pattern discovery technique

In the RMV method, particular behavior of collaborators is considered to be an activity

pattern if it appeared in a predefined percentage of completed VO collaborative process

instances recorded in the VO collaborative process event log. Discovery of activity patterns

in the event log includes:

 Discovery of activities and temporal relations among them;

 Discovery of collaborators and service interfaces associated with activities, as well as

analysis of their characteristics to extract classes of service entities;

 Discovery of service relations among collaborators associated with activities and

analysis of their characteristics to extract service requirements;

 Discovery of activity pattern context.

Activity patterns are discovered in two steps: (1) discovery of sequence patterns (formalized

in Section 5.5.1), (2) transformation of sequence patterns into activity patterns (formalized

in Section 5.5.2).

In the first step, a modified version of the PrefixSpan algorithm (cf. Section 4.3) is used in the

RMV method to discover sequence patterns. Main two modifications of the PrefixSpan

algorithm include: (1) redefinition of the notion of prefix and suffix to capture the overlapped

relation among activities; (2) discovery of sequence patterns on both the activity and

the attribute level.

In the second step, sequence patterns are transformed to activity patterns by parsing sequence

pattern attributes to identify frequent activities, service entities, classes of service entities and

service requirements.

An activity pattern may appear in many contexts. All the contexts of an activity pattern are

discovered together with this activity pattern.

6. Context-aware recommendations

Analysis of activity pattern contexts is crucial in the second phase of the RMV method

devoted to generation of recommendations. The aim of this phase is to provide

recommendations by finding the best matching between the current context of an activity

instance being a part of the running VO collaborative process instance, on the one hand, and

discovered contexts of activity patterns, on the other hand. Formalization of

the recommendation model is presented in Section 5.4. The recommendation method is

formalized in Section 5.5.

A context class expresses some constraints concerning the context of an activity pattern that

must be met by an activity pattern to be recommended. In the RMV method, identification of

a set of activity patterns with contexts matching a given context class is based on context

distance. The context distance metric indicates difference between a context class and a

context. Context analysis during recommendation supports the adaptation of

the VO collaborative processes to changing environment. If circumstances of running

VO collaborative process instance change, the context class changes and the set of

recommended actions changes as well.

The most frequent activity patterns with low context distance metric are validated using

statistical metrics of sensitivity and specificity (Simon & Boring, 1990). Finally,

69

recommended activity pattern is supplemented with two more values: (1) recom_index

indicates the expected cost of the process instance when following the recommendation, and

(2) nonrecom_index indicates expected cost of the process instance when not following

the recommendation. The most attractive patterns are those with high values of both

sensitivity and specificity, while a small value of recom_index in comparison with

nonrecom_index.

Recommended activity patterns are merged into one generic activity pattern capturing all

the behavior described by each activity pattern separately. The RMV method encompasses

a method of merging activity pattern service oriented summaries of a process models, service

network schemas and service networks. An output recommendation consists of a generic

activity pattern and a set of activity patterns.

The final decision to follow particular recommended activity pattern is made by a group of

selecting collaborators.

7. Activity pattern instantiation

Preferably, discovered activity patterns are on the executable level (cf. Section 3.1.3).

However, if the variety of VO collaborative process instances is too big, identification of

activity patterns on the abstract or prototype levels is also assumed. Abstract and prototype

activity patterns miss complete mapping of service entities to classes of service entities and –

as a consequence – to activity descriptions. Missing assignments of service entities to classes

of service entities are found during instantiation of activity patterns. The RMV method

supports selecting collaborators through generation and comparison of various assignments of

service entities to classes of service entities.

In the RMV method, the problem of service entities selection is transformed to the problem of

subgraph search in the SOVOBE social network. Classes of service entities and service

requirements from an activity pattern are used as requirements that must be satisfied to

the highest possible extent by a set of service entities. The problem is solved using

an approach based on a genetic algorithm (Mitchell, 1998). Two functions are used to guide

generation of genomes in each iteration of the genetic algorithm: function evaluating

satisfaction of a class of service entity by a service entity and function evaluating satisfaction

of a set of service requirements by a set of service entities.

Formalization of activity pattern instantiation problem is presented in Sections 5.4.6 and

5.5.4.

8. Parameterization

Parameterization of the RMV method is made by the use of explicit and implicit collaborator

preferences.

Explicit collaborator preferences are defined during method configuration or are provided to

OOS within recommendation request. The set of parameters is associated with various parts

of the RMV method and directly influence its effectiveness, quality and results. Parameters

are used by the Process Miner and Recommendation Manager components from Fig. 5.2.

Definition of these parameters must take into account the characteristics of a specific

VO collaborative process supported by the RMV method. The parameters specific for various

parts of the RMV method are presented in corresponding sections. The summary of

parameters in given in Section 5.6.

70

Implicit collaborator preferences are not provided by the users, but they are calculated by

the Recommendation Monitor (cf. Fig. 5.2). Implicit collaborator preferences influence

the ranking of recommended activity patterns presented to collaborators. There are two

metrics:

 Confidence indicator – states the willingness of the collaborators to follow

recommendations; if the collaborators perform activities that follow the recommended

activity pattern, the confidence level of the recommendation is raised, otherwise it is

lowered; activity patterns with higher confidence indicators are ranked higher by the

Recommendation Manager; the fact of following recommendation is verified using

conformance rules generated for the activity pattern;

 Social coefficient – indicates the preference of the selecting collaborators toward using

recommendations formulated on the basis of VO collaborative process instances they

were involved in (the group approach) or the preference to follow recommendations

formulated on the basis of VO collaborative process instances they did not participate

in (the generic approach).

5.4. RMV Method Formal Model

5.4.1. Collaborative Process and VO

In this section, the concept of VO collaborative process and virtual organization is formally

defined. These notions are necessary to introduce a formal definition of VO collaborative

process event log, VO collaborative process context, activity pattern and VO collaborative

process instantiation problem.

Definition 5.1. (Collaboration) A collaboration arises when two actors alternately and

mutually play roles of service consumer and service provider within one process instance.

Definition 5.2. (Collaborators) Actors involved in collaboration are called collaborators.

Definition 5.3. (Collaborative Process) A process is collaborative if some actors involved in

it are collaborators.

Definition 5.4. (Autonomous member) An autonomous member is a member that is legally

independent and aims at fulfillment of its own goal that may be different from the goal of

an organization it is a member of.

Definition 5.5. (Virtual organization) A virtual organization is an organization whose

members are autonomous collaborators involved in execution of a collaborative process to

achieve goal, where at least one member is an organization.

Formally, virtual organization is a quadruple:

 , where:

 is a collaborative process model being a plan to achieve its goal;

 , is a set of members of virtual organization , ;

 is a set of service interface descriptions used by members of virtual organization

 , where ;

 is a set of relations among members of virtual organization , where .

71

Let VO denote the set of all the virtual organizations .

Definition 5.6. (Virtual Organization Breeding Environment) A Virtual Organization

Breeding Environment (VOBE) is a virtual organization whose immutable goal is to provide

services to create the conditions and environment to support rapid and fluid creation of other

virtual organizations.

5.4.2. Collaborative Process Context

In this section, the concept of context in VO collaborative process instances is formally

defined. The notion of context is required to define contextual event and contextual trace.

The notion of context is also crucial in discovery and recommendation of activity patterns

presented in Section 5.4.4 and Section 5.4.5.

Generic context definitions

For the purpose of identification of activity patterns, a special type of attribute name is

distinguished called context feature.

Definition 5.7. (Context Feature). A context feature cf is a name of an attribute.

Let denote the set of all the context features. Note that .

Definition 5.8. (Context Element). An event context element is an attribute whose name is

a context feature , .

Let denote an event context element captured at time t.

Definition 5.9. (Context). A context is an object whose attributes are context elements

 .

Let denote a subset of context elements of context where context element

name is cf.

Let denote the set of all the contexts.

Event context

Definition 5.10. (Event Context). An event context is a context of event e observed

at time .

Example 5.1. Event context element is used to describe circumstances in which an event was

observed, e.g., current rate USD/PLN, particular state of social relations among collaborators,

or weather conditions. An event context element indicating a particular USD/PLN rate on

Monday, June 26
th

 2013 at 3:52 p.m. is:

 , where Monday, June 26
th

 2013 at 3:52

p.m. ▪

Example 5.2. Consider event context object captured at time t having

the following set of context elements:

 ,
 . ▪

72

Event context is not specific for a single event. Instead, one event context is shared by many

events executed at time t.

Definition 5.11. (Event Social Context Element). An event social context element sce is an

event context element whose name is SOCIAL and value is a service network , i.e.,
 .

Definition 5.12. (Social Event Context). A social event context is an event context whose at

least one attribute is a social context element.

Activity instance context

Let denote a set of descriptions of service consumers and service providers

who were involved in process instance execution before the event e inclusive, where se is

a service entity description and c is a number of events a particular service entity description

appeared in.

Definition 5.13. (Activity Instance Context). An activity instance context is a context

consisting of the five context elements:

1. ,
2. ,
3. ,
4. , and

5. ,

where e is the event from the set with the highest timestamp and p is a process

instance of . are context element names.

Example 5.3. Consider an event log from Fig. 5.4. Assume that for each ,

 . Then, each activity instance was executed by a unique service consumer and service

provider. Then context equals:

1. ,
2. ,
3. ,

4. , and

5. ,

{ }eA1, eA3, eA4, eA5, eA6, eA7eA2,

{ }eB1, eB3, eB4, eB5, eB6, eB7eB2,

{ }eC1, eC3, eC4, eC5, eC6, eC7eC2,

{aA41,aA42}
{scA4,spA4}

{ap1,ap2,ap3}

EC

S

H

PID
{aA31,aA32}
{scA3,spA3}

{aA21,aA22}
{scA2,spA2}

{aA11,aA12}
{scA1,spA1}SE

Fig. 5.4. Four elements of activity instance context

Note that activity instance context is unique within one process instance.

73

Context class

Definition 5.14. (Context Element Constraint) A context element constraint is

an attribute constraint , where is a context feature being the name of the context

element constraint and is a predicate.

Definition 5.15. (Context Class). A context class is a class whose each attribute

constraint is a context element constraint.

Let be a user-defined function mapping context into context class .

Definition 5.16. (Social Context Element Constraint). A social event context element

constraint is an event context element constraint whose name is and predicate

is where is a service network schema and is a compliance relation, i.e.,

 .

Definition 5.17. (Social Context Class). A social event context class is a context class

whose at least one context element constraint is social context element constraint.

Using event context class it is possible to select a subset of all the event contexts being

instances of context class from .

Example 5.4. Consider an event context class, having the following

set of event context element constraints:

 , and

 .

An event context is an instance of an event context class

 , because:

 , and

 .

Event context
 is also an instance of context class . Thus

context and are equal according to context class

 .

Another example concerns event context class .
Contexts and are not equal according to context class

 . ▪

Instances of classes of activity instance contexts are found in a similar way.

Definition 5.18. (Context Distance). A context distance is a user-defined function

 that returns a level of compliance of context co to context class , where

the smaller context distance the more similar is context to the context class .

Example 5.5. Consider an event context composed of the following event

context elements:

 , and

 .

74

Consider an event context class :

 , and

 .

Consider a user-defined function that assigns weights to each context element constraint,

i.e., 0.8 and 0.4. Then, weights assigned to attribute constraints from

which are not satisfied by context element from

 are summarized. For context and context class

 only context element constraint
with weight 0.8 is satisfied. The weight of the second unsatisfied constrain is 0.4. Thus,

the value of 0.4. ▪

In real cases more refined context distance metrics may be used. For instance, when

comparing activity instance context with activity instance context class, evaluation of

similarity between partial traces from activity instance context feature H (cf. Definition 5.13)

can take advantage of advanced techniques of partial trace comparison (cf. Section 4.3).

5.4.3. Collaborative Process Event Log

Definition 5.19. (Context Event Attribute). A context event attribute is an attribute of

an event being event context element.

Definition 5.20. (Contextual Event). A contextual event is an event having at least one

context event attribute.

Definition 5.21. (Service Entity Event Attribute). A service entity event attribute is

an attribute of an event whose attribute value is service entity description.

Definition 5.22. (Event Social Attribute). An event social attribute is an attribute of an

event whose attribute value is an object describing the arcs adjacent to service entity

description in the service network.

Definition 5.23. (Social Event). A social event is an event having at least one service entity

event attribute and one social attribute.

Definition 5.24. (Collaborative Event). An event that is contextual and social is called

a collaborative event.

Collaborative event attribute set includes:

• is the unique identifier of the event;

• is the unique identifier of the VO collaborative process;

• is the unique identifier of the activity description ;

• is the unique identifier of the VO collaborative process

instance;

• is the unique identifier of the activity instance;

• is the timestamp of event e;

• is the type of event e (for instance: start, resume, suspend, complete);

• is the event context attribute;

• is a unique identifier of a service consumer;

• is a unique identifier of a service provider;

75

• is a unique identifier of a service interface;

• is a service consumer description;

• is a service provider description;

• is a service interface description;

• is an event social attribute referring to service consumer;

• is an event social attribute referring to service provider;

• is an event social attribute referring to service interface.

Note that only event attribute values , and are different for events

associated with the same activity instance. It is assumed that other attribute values are

the same for all the events associated with one activity instance attribute.

Example 5.6. Consider a collaborative event from trace recorded

during collaborative process instance execution.

event has the following set of attributes:

 ,

 ,
 ,

 ,

 ,

 ,

 ,

 ,

 ,
 ,

 ,

 ,

 ,
 ,
 . ▪

Definition 5.25. (Collaborative Trace). A collaborative trace is a trace where each event is

collaborative.

5.4.4. Activity Patterns

Temporal graph

Let denote an event corresponding to starting of activity instance vi execution.

Let denote an event corresponding to completion of activity instance vi execution.

Let .
Let .

76

Definition 5.26. (Relation: Is followed by). In a VO collaborative process instance p,

an executed activity instance is followed by activity instance , where , if

 .

Definition 5.27. (Relation: Are overlapped). In a collaborative process instance p, two

activity instances, and , where , are overlapping if or

 .

Definition 5.28. (Relation: Is directly followed). An executed activity instance is directly

followed by activity instance , where , in a collaborative process instance p, if is

followed by and there does not exist a distinct activity instance in p such that is

followed by and is followed by .

Definition 5.29. (Temporal Graph). Temporal graph of a VO collaborative process

instance p is a directed acyclic graph , where is the set of activity instance

descriptions, and is the set of arcs representing is followed by and overlapped relations and

defining partial ordering of activity instance descriptions from .

Activity graph

Definition 5.30. (Activity Graph). Activity graph is a prototype service protocol, where

the process model is a temporal graph .

Example 5.7. An example of activity graph is presented in Fig. 5.5. ▪

Fig. 5.5. Activity graph

77

Definition 5.31. (Supported Activity Graph). Activity graph is supported by activity

graph if:

 all followed and overlapped relations that exist in are present in ,

 all activities that exist in are present in ,

 all service descriptions that exist in are present in Y,

 service network schema of is a sub-network of service network schema of Y,

 relation is a restriction11 of relation ,

 relation
 is a restriction of relation

 to
 ,

 relation

 is a restriction of relation

 to

 ,

 relation is a restriction of relation to ,

 relation is a restriction of relation to ,

 set of service entity descriptions assigned to service description elements in Y’ is

a subset of service entity descriptions assigned to service description elements in Y.

Let denote the fact that Y’ is supported by Y.

Example 5.8. In Fig. 5.6 two activity graphs are presented. Activity graph Y’ on the right is

supported by an activity graph Y on the left, i.e., YY ' . Although, temporal graphs in both

activity graphs are the same, the number of classes of service entity descriptions from service

network schema associated with service descriptions is smaller in Y’. As a consequence,

the set of service entity descriptions assigned to elements of service descriptions is a subset of

service entity descriptions from Y. Thus,

 , , relations from Y’ are restriction of

analogous relations from Y. ▪

Fig. 5.6. Supporting activity graph

Definition 5.32. (Activity Subgraph). An activity graph Y’ is an activity subgraph of activity

graph Y, where if:

 and for any pair of vertices , there is an arc in
connecting to if and only if there is an arc in connecting to ,

11 Restriction of function, http://en.wikipedia.org/wiki/Restriction_(mathematics)/

Y Y’

78

 Y’ is supported by Y.

Note that if Y’ is a subgraph of Y then .

Example 5.9. Activity graph Y’’ presented in Fig. 5.9 is a subgraph of activity graph Y’.

The set of activities and relations in Y’’ is a subset of activities and relations in Y’,

i.e., temporal graph from Y’’ has only two activities and one followed relation, while temporal

graph from Y’ has three activities, two followed relations and one overlapped relation.

As a result, the set of service descriptions of Y’’ is a subset of service descriptions in Y’ as

well. As a consequence, the set of service entities assigned to elements of service descriptions

is also a subset of analogue set in Y’. Relations

 , , from Y’’ are restriction of relations

from Y’. Note that Y’’ supports both Y and Y’. ▪

Fig. 5.7. Activity subgraph

Definition 5.33. (Activity Supergraph). If Y’ is an activity subgraph of Y, then Y is

an activity supergraph of Y’.

Example 5.10. Activity graph Y is a supergraph of activity graph Y’’. ▪

Activity pattern

Let denote a function that discovers a set of activity graphs from

collaborative trace .

Definition 5.34. (Activity Graph Supported by Collaborative Trace). An activity graph Y

is said to be supported by a collaborative trace if .

Definition 5.35. (Activity Pattern). Let s% denote a minimum support threshold. Given

an event log , an activity pattern z is an activity graph that is supported by s% of traces

from .

Y’’

79

Let denote a set of activity patterns.

Let denote a function returning a support of z in event log .

Example 5.11. Consider a set of ten collaborative process instances, a set of ten

corresponding collaborative traces and support threshold 30%. Then, only activity graph that

is supported by three collaborative traces is considered an activity pattern. ▪

Definition 5.36. (Closed Activity Pattern). Given a set of activity patterns Z. An activity

pattern z is a closed activity pattern in Z if there exists no proper activity pattern supergraph z’

such that z’ has the same support as z in Z.

Formally, a set of closed activity patterns ,

where function sup returns the support of z in event log .

Definition 5.37. (Candidate Activity Pattern). An activity pattern z is said to be candidate

activity pattern if it is unknown if it is a closed activity pattern.

Activity pattern context

Definition 5.38. (Activity Pattern Context in Collaborative Trace). An activity pattern

context in a collaborative trace is a context of the completed activity instance

associated with an event e from that directly proceeds the first event associated with

the activity instance from the activity pattern.

In other words, activity pattern context describes circumstances that appeared during

VO collaborative process instance execution directly before the appearance of an activity

pattern.

Example 5.12. In Fig. 5.8 an approach to identification of activity pattern context in

the RMV method is presented. Temporal graph is supported by event trace . Assume that

discovered activity pattern is a subgraph of a temporal graph, i.e., a set of activity instances

supporting activity pattern is . Activity pattern context is a context of activity

instance A which is the last completed activity instance whose last event precedes events

associated with activity instance B. Although, event directly precedes B in the trace, it is

associated with uncompleted activity C. ▪

{ }e1, e3, e4, e5, e6, e7e2,

A

C

B
D E F

Fig. 5.8. Identification of activity pattern context

Note that one activity pattern supported by n traces may have n different activity pattern

contexts. Moreover, a value of activity pattern context may not be unique, i.e., more

than one activity pattern may be discovered with the same activity pattern context.

80

Let denote a set of pairs , where is an activity pattern context and T is

a set of traces supporting activity pattern in context .

Activity pattern discovery problem

Definition 5.39. (Activity Pattern Discovery). An activity pattern discovery is a function

that maps an event log onto a set of closed activity patterns, where each activity pattern is

supported by at least s% of traces recorded in event log , and for each activity pattern z a set

 is known.

Let denote the set of all the closed activity patterns discovered in an event log

for minimum pattern support threshold s.

5.4.5. Recommendations

Let be a context of the activity instance completed as the last one in partial trace .

Let
 .

Definition 5.40. (Target Function). A target function is a user-defined function

which attaches a target value to a collaborative trace.

Example 5.13. Examples of target values are: cost or number of involved resources.

The target value is calculated on the basis of appropriate event attributes. Event attributes

corresponding to activity instance cost can be used to calculate cost of the VO collaborative

process instance. ▪

Definition 5.41. (Recommendation index). A recommendation index recom_index is

the expected target value of the collaborative partial trace when is continued after

performing activity pattern z.

A recommendation index for z is calculated on the basis of target values calculated for traces

supporting z in
 . In other words, by analysis of traces in which an activity pattern was

executed in particular contexts, one can make some prediction concerning the outcome of

the current collaborative process instance if it is continued after performing activity pattern z.

Definition 5.42. (Non-recommendation index). A non-recommendation index

nonrecom_index is the expected target value when is continued after decision of not

performing activity pattern z.

A non-recommendation index for z is calculated on the basis of target values calculated for

traces supporting z in
 .

Definition 5.43. (Recommendation Justification). A justification is an object describing

recommendation.

Definition 5.44. (Recommendation Element). Recommendation element is a tuple

 .

Definition 5.45. (Recommendation Query). A recommendation query is a tuple
 .

81

Definition 5.46. (Recommendation). For a given set of activity patterns Z,

a recommendation be a set of recommendation elements for all the activity patterns from

set CMZ. Formally, .

5.4.6. Instantiation

Definition 5.47. (Compliance value). A compliance value is the value of the level of

compliance of a service network with a service network schema
where value is in .

Let denote a user-defined compliance function returning compliance

value for a service network and service network schema . Then,

 and . is not

compliant with , denoted , if .

Let denote a service network of all the members of SOVOBE.

Definition 5.48. (Activity Pattern Instantiation). An activity pattern instantiation is

a function that maps a set of service entities from onto a set of classes of service

entities from service network schema maximizing the value of

the
 function.

5.5. RMV Method Partner and Service Selection Technique

In this section the formalization of the main steps of the RMV method is presented. First,

the RMV method algorithm of discovery of frequent sequence patterns in behavior of a group

of collaborators is formalized (Section 5.5.1). The output of the algorithm is activity sequence

patterns. Discovered activity sequence patterns are then analyzed and transformed to activity

patterns and then stored in activity pattern repository (Section 5.5.2). Transformation of

sequence patterns to activity patterns within the RMV method encompasses identification of

service-oriented summary of a process model, service network schema, service network and

corresponding mappings. In the third part of this section, the RMV method algorithm for

recommendation formulation is formalized (Section 5.5.3). This algorithm aims at

recommendation of identified activity patterns to the RMV method users. Finally, RMV

method algorithm for activity patterns instantiation is formalized in Section 5.5.4.

5.5.1. Activity Sequence Pattern Discovery

The RMV method algorithm for discovery of frequent sequence patterns in behavior of

a group of collaborators presented in this section is based on the modified PrefixSpan

algorithm (cf. Section 4.3). The modification of the classic PrefixSpan algorithm is twofold:

(1) elaboration of representation of is followed by and overlaps relations in a form of

a sequence of activity instance descriptions, (2) modification of the basic notions used in the

algorithm, i.e., the notions of prefix and suffix.

Activity sequences

Definition 5.49. (Activity Instance Description Sequence) An activity instance description

sequence qss (activity sequence in short) is a list of activity instance description sets

82

corresponding to activity instances executed in a VO collaborative process instance.

Let denote a sequence, where .

A sequence of one-element sets of activity instance descriptions denotes that

activity instance is followed by activity instance . Note that square brackets are used for

grouping activity instance description sets within the sequence. A two-element set of activity

instance descriptions denotes that activities instance and are temporally

overlapped. The sequence denotes that activity instance is

followed by and activity instance overlaps with and . Note that curly brackets

are used for grouping activity instance descriptions corresponding to overlapping activity

instances.

In this section, for clarity of presentation, the following assumptions are made:

 If all the activity instance descriptions within a sequence are described with a set of

attributes having the same names, then only attribute values are presented in

an activity sequence;

 If the activity instance description has one attribute, then only the value of the attribute

is used in an activity sequence;

 If an activity instance description set has only one element then curly brackets are

dropped;

 The requirement for an activity instance description is to have two mandatory

attributes with names and is dropped.

Example 5.14. A sequence of two activity instance descriptions having the same set of

attribute is: ,23,A ,5,B . ▪

Note that round brackets are used for grouping attribute values from one activity instance

description.

A set of attributes of activity instance description is defined on the basis of attributes of events

generated during execution of an activity instance that this activity instance description

represents.

Let denote an event assigned to activity instance from the VO collaborative

process instance p. Let denote a set of attributes of event . Then

 .

Definition 5.50. (Activity Instance Description Attribute Equality) The activity instance

description is attribute equal to if it is equal according to classifier co (cf. Definition

2.5) where a set of attribute names from co is equal to a set of attribute names from .

Let
co

 denote that is attribute equal to .

Note that if
co

 , then
co

 is not necessary observed.

Example 5.15. Consider attribute sets of the following activity instance descriptions:

83

 , ,

 , . Then,
co

 but
co

 ,
co

and
co

 . ▪

Note that the above interpretation of the sequence is different from

the one used in majority of classic pattern discovery algorithms including PrefixSpan.

In the classic approach, the sequence expresses that

represented by in the first set is taking place before the activity instances represented by

activity instance descriptions in the second set and activity instance represented by

activity instance description in the second set occurs after those from the first one.

As a consequence of interpretation of activity sequence proposed in the RMV method, in

order to support overlapped relation among activity instances, the concept of the subsequence

must be redefined as compared to the classic approach.

Definition 5.51. (Activity Instance Description Set Containment) An activity instance

description set contains if each activity instance description from is attribute

equal to different attribute instance descriptions from .

Let
co

 denote that contains .

Definition 5.52. (Subsequence) A sequence is a subsequence of

sequence if there exists integers such that

co

co

co

 , and there exist no consecutive sets of

activity instance description sets and in r such that activity instance description

 , activity instance description , and or .

Example 5.16. Consider two sets of activity instance descriptions having one attribute being

activity instance identifier. Sequence is a not a subsequence of .
The sequence r denotes is followed by relation between B and C, which differs from an

overlapped relation in d. A subsequence is a subsequence of sequence d. r’

corresponds to is followed by relation that is also present in d. ▪

Definition 5.53. (Sequence Support) A sequence d supports sequence s if s is a subsequence

of d. Then d is a super-sequence of s.

Definition 5.54. (Canonical Sequence) A sequence is canonical if

for each activity instance description set , , and .

Example 5.17. A sequence is not canonical. In further analysis such sequence is

reduced to canonical equivalent representing the same behavior. ▪

Activity sequence discovery

Further in this section it is assumed that each activity instance description in an activity

sequence consists only of one attribute that is the activity instance identifier. This is only for

the sake of clarity of presentation of the proposed concepts. All the statements that are true for

one-attribute activity instance descriptions are also true for multi-attribute activity instance

descriptions.

84

The RMV method analyses traces stored in a collaborative event log and transforms

information about the events into a non-empty set of activity instance descriptions, where all

the overlapped and is followed by relations are explicitly represented as a sequence.

Definition 5.55. (Sequence Length) Let k denote the length of activity sequence qss that is

the maximum number of activity instance descriptions connected by is directly followed

relation in temporal graph corresponding to qss.

Example 5.18. In activity sequence the maximum number of activities

executed sequentially is two, i.e., activity A and C. Thus, . ▪

Definition 5.56. (Sequence Size) Let s denote a sequence size that is the number of activity

instance descriptions in an activity sequence.

Example 5.19. There are three activity instance descriptions in , i.e., A, B, C.

Thus, . ▪

Each VO collaborative process instance p can be transformed to l-sequence qss, where

 .

A transformation of a trace into a sequence begins with initialization of sets and

 . The starting and completion times of activity instances in process instance p are

captured in event attribute . Events are traversed in time ascending order. The set T

starts to accumulate when the first event with activity instance starting time is visited –

activity instance description corresponding to the visited event is added to T. Set T is

appended to S when two conditions are satisfied: (1) the completion time of one of activities

in T is encountered; (2) at least one new activity instance description has been added to T after

T was appended to S. Subsequently, the traverse is continued until the next starting time is

visited. At this moment, the subset of activity instance descriptions in T whose completion

times appear before the currently visited activity instance description are removed from T

since this subset of activity instance descriptions that have appeared in the activity sequence

are followed by the current activity instance description. This traversal procedure continues

until all the events are visited.

Example 5.20. An example of transformation is presented in Fig. 5.9. First, starting points of

activity instances corresponding to activity instance description A and B are visited,
 . Then the completion point of activity instance A is visited and set T is appended to set

S, . When starting time of C is visited, A’s completion time appears

before the C’s starting time, A is removed from T, . In next steps activities C

and D are added to T as their staring points are encountered. At this point . Then,

completion point of B is reached, thus and
 . When completion times of C and D are reached, T is not appended to S as no new

items appeared in T after last appending. When the following E’s starting time is visited, T

becomes empty because the completion times of B, C, and D have all been traversed. When

the last completion time is visited, then . ▪

85

Fig. 5.9. Transformation of a trace to a sequence: (a) activity instances in process instance,

(b) corresponding temporal graph

The activity instance descriptions ordering in the same set is unimportant as the activity

instances represented by activity instance descriptions from one set were executed in parallel.

Thus, it is convenient to assume that all the activity instance descriptions in one set are

written with respect to the alphabetical order.

Example 5.21. A sequence should be written in the form of instead of
 . ▪

Prefix and suffix discovery

In the RMV method, the PrefixSpan (cf. Section 4.3) is extended in the following way to be

able to be applied to identification of activity sequence patterns:

 Redefinition of the notion of prefix and suffix to capture the overlapped relation

among activities;

 Identification of sequence patterns on both the activity and the attribute level;

 Technique for generation of frequent 1-sequence patterns for multi-attribute items;

 Incorporating constraint-base analysis to increase usefulness and understanding of

generated results;

 Filtering algorithm results in post pruning to include only closed sequence patterns,

where closed sequence patterns are those having no super-sequence with the same

support.

Without losing generality and for the ease of understanding of the RMV method,

modifications introduced to the algorithm are explained under assumption that each activity is

described only by its name. All the observations will be later generalized to multi-attribute

activities. As each activity has only one attribute, round brackets are dropped.

Consider an activity sequence representing a temporal graph TG

presented in Fig. 5.10. According to the classic definition, an activity sequence is

a prefix of s. Consequently, the suffix created using prefix t is . Suffix

q’ corresponds to graph TG’ in Fig. 5.10. Graphs TG and TG’ are presented in Fig. 5.10. Note

that suffix q’ is incorrect, as TG’ is not a subgraph of TG. The correct suffix is
 and corresponding graph TP’’ is also presented in Fig. 5.10. Due to this

difference between suffixes q’ and q’’, identification of activity patterns using PrefixSpan

algorithm requires a redefinition of prefix and suffix concepts.

A

C

B

D

E

A C

B E

D

a) b)

86

TG’’

TG

t

TG’

A C

B

F

E
D

C

B

ED

C

B F

E

D
A

F

Fig. 5.10. Suffixes of temporal graph TG. Incorrect suffix q’ identified for prefix t follows the classic definition

and is different from correct suffix q’’

Definition 5.57. (Prefix) Given an activity sequence , then activity

sequence , where , is called the prefix of s if t is

a subsequence of s for .

Example 5.22. Activity sequences , are examples of prefixes of activity

sequence , but neither nor are prefixes. ▪

Note that the above definition of prefix is applicable for multi-attribute activity instance

descriptions.

Example 5.23. Sequence is a prefix of an activity sequence

 @ . ▪

Definition 5.58. (Suffix) Given activity sequence , let activity

sequence
 be a prefix of s, where . Activity

sequence , where , is a suffix if and only if

two conditions are satisfied: (1) , (2) for each , if
 and then . Otherwise, for each

 , if then .

Let q=s|t denote a suffix of s with regards to prefix t.

Example 5.24. Consider activity sequence , and its prefix
 (cf. Fig. 5.11). Then m=2 and n=4. The suffix is initialized as an empty set .

First, activity instance description set starting the suffix is identified. Following the

rule we have . is then appended to

resulting in . Another element in suffix is . The value of is

created on the basis of element . Because , i.e., , and

 , then , i.e., . Element

is appended to , . Finally, the value of is

established. Because , then and is appended to ,
 . Sequence s, prefix , and suffix are graphically presented in Fig. 5.11. ▪

Example 5.25. Consider again activity sequence and its different

prefix CBAt ,,2 . Then m=2 and n-4. Element ,

i.e., , and is appended to , . Because

 , then , and is appended to , . Finally,

87

 and is appended to t, i.e., . The resulting suffix is

not canonical thus it is reduced to activity sequence . Activity sequence s,

prefix , and suffix are graphically presented in Fig. 5.11. ▪

A C

B

F

E
D

A C

B

F

E
D

A C

B

F

E
D

A C

B

F

E
D

A C

B

F

E
D

Fig. 5.11. Temporal graph prefixes and corresponding suffixes

Frequent 1-sequences

In the first step of the RMV method algorithm for identification of activity sequence patterns,

the database of sequences is scanned to find all the frequent items. Each activity is validated if

it is supported by the minimum number of sequences.

Example 5.26. Consider three activity sequences: , , and .
Assuming minimum required support equal to 2, a set of 1-element frequent patterns is

 as all the items appear in at least two activity sequences. ▪

On the contrary, in the RMV method, to identify activity sequence patterns, not only on the

level of activity names, also other attributes and their subsets are validated in terms of

patterns. As a consequence, it is possible to discover activity sequence patterns with unknown

names of some activities. For instance it might not be possible to clearly indicate which

activity is performed after activity A. Still it is possible to indicate that the next activity should

be performed by John and should last no longer than 30 minutes.

Identification of activity sequence patterns using all the attributes associated with activity

instance descriptions requires identification of closed sets of attributes. For this purpose, two

steps are performed:

1. First, attributes supported by a minimum number of activity instance descriptions

are selected.

2. Second, attributes are used to generate maximum closed sets of attributes; in each

generated set, attribute names must be unique; each generated maximum closed set

is stored with its support.

Example 5.27. Consider three sequences: ,
and . Assume that the minimum required support is equal to 2. In the

first step, the following set of attributes is identified: ,
where the notation represents the attribute and its associated support

t2

t1

q1

q2

s

88

count. A set of 1-element frequent patterns identified in the second step is:
 . For instance, is supported by and
 . ▪

Constraints

The RMV method approach to identification of activity sequence patterns is based on

constraint-based approach to limit the search space and the number of generated results.

Following the classic categorization of constraints, the following constraints are used:

 Duration constraint – , where td is a given integer; function dur

calculates the difference between timestamps corresponding to the activities in s

completed at the latest, and started at the earliest;

 Gap constraint – , where is a given integer; function gap calculates

the maximum difference between two activities joined by is followed by relation;

 Maximum timestamp constraint – , where tm is a timestamp;

function timestamp returns the maximum timestamp corresponding to the last activity

instance description in sequence s.

 Minimum sequence pattern length constraint – , where k is an integer;

function len returns the length of s.

 Maximum sequence pattern length constraint – , where h is an integer;

function len returns the length of s.

In the RMV method, every generated activity sequence pattern is validated against prefix

constraints before it is used for bi-level projection. The activity sequence pattern that does not

satisfy the constraints is not further analyzed in terms of support and is not used for database

projection.

Activity pattern support and closed patterns

Having a set of sequences QSS and sequence pattern s, each qss from QSS is validated in

terms of support for s. Sequences qss supports s if: (1) s is a subsequence of qss,

(2) subsequences s meets all prefix anti-monotone.

The pseudo-code for the proposed function SupportCalc calculating the support level for

pattern s is presented in Listing 5.1

89

Listing 5.1. SupportCalc function

0. SupportCalc (

1. activity sequence pattern: s,

2. sequence set: QSS;

3. set of prefix constraints: C): number

4. {

5. sup_s=0;

6. QSS’← find all qss in QSS that support s and satisfy constraints from C;
7.

8. for each qss from QSS’

9. {

10. if (s is subsequence of qss and s satisfies C)

11. {

12. sup_s++;

13. }

14. }/* end-for*/

15. return sup_s/|QSS|; /* express support in % by dividing number of supporting

16. sequence by a total number of sequences in database*/

17. }

In the RMV method the closed activity pattern set is created during post-pruning.

All the unclosed sequence patterns are filtered out.

Context-aware activity sequence patterns

The RMV method algorithm recursively generates activity sequence patterns and utilizes

SupportCalc function for verification of their support. The pseudo-code for the algorithm is

presented in Listing 5.2 and Listing 3.

The RMV method algorithm presented in Listing 5.2 takes activity sequence database QQS,

predefined minimum support s, and a set of constraints C as an input. First, frequent 1-

sequences that satisfy a required support level are identified as set B (line 7-14). A set of

frequent 1-sequences is used to simplify a sequence database and create a pseudo-database,

where each sequence consists only of activity instance descriptions that support 1-sequences

(line 15). Then pseudo-database and set B are used for first database projection (line 16).

To improve efficiency of calculations, the algorithm employs the notion of S-matrix tree from

the classic PrefixSpan algorithm for projecting new partitions, storing sequences and counting

their support. As a result of bi-projection, a set of frequent 2-sequence patterns Z is

created (line 16).

Each activity sequence pattern from Z is saved with all it contexts (line 19-23). Note that

each activity sequence pattern discovered as an extension of activity pattern will have

the same set of contexts. Each sequence pattern from Z is used for projection of a database

(line 24). Then recursion is called for each and corresponding projected database (line 25).

Required support level, set B and set of constraints C are also always passed to each

recursion level.

90

Listing 5.2. Sequence pattern search initialization

0. PatternSearch (

1. a set of sequences: QSS,

2. the minimum support: s,

3. set of anti-monotone constraints: C): a set of activity patterns

4. {
5.

6. frequent ← Ø; /* a set of frequent 1-sequences in QQS*/

7. B ← find all 1-sequence in QSS;

8. for each b from B

9. {

10. if (SupportCalc(b, QSS, C) not less than s)

11. {

12. frequent ← b;

13. }/* end-if */

14. }/* end-for */

15. QSS ← create pseudo-database using frequent and QSS;

16. Z ← perform bi-level projection for B, QSS and s;

17. for each from Z

18. {

19. if (satisfies all constraints from C)

21. {

22. save pattern with context;

23. }

24. S| ← build projected database using and QSS;

25. RR Recursion(, , s, B, C);

26. }/* end-for */

27. return R;

28. }

The Recursion method of the RMV method is presented in Listing 5.3.. First, the list of 1-

sequences is updated for particular current pseudo-database QSS, i.e., 1-sequences that are not

frequent in a pseudo-database are removed (line 7). For each frequent 1-sequence and activity

sequence pattern , a new activity sequence pattern is created and saved if it is frequent and

meets constraints C (line 8-16). Each saved activity sequence pattern has a size equal to

the size of activity sequence pattern increased by 1. If the length of a saved activity

sequence pattern is smaller than maximum allowed length (line 17-18), the next step of the

algorithm is performed. A set of frequent 1-sequences is used for database

projection (line 20). Each pattern z from generated set Z is then merged with activity sequence

pattern (line 23). Resulting activity sequence pattern has the size of activity sequence

pattern increased by 2. Activity sequence pattern is saved if it meets constraints (line 24-

27). For each z from Z a new projection is performed (line 28) and recursion is

called (line 29).

91

Listing 5.3. Sequence pattern search recursion call

0. Recursion (

1. activity sequence pattern: ,

2. -projected database: QSS,

3. the minimum support: s,

4. frequent patterns from previous recursion: B;

5. set of anti-monotone constraints: C): a set of activity patterns

6. {

7. B ← update frequent 1-sequence set using B and QSS;

8. for (each b from B)
9. {

10. b’ = merge activity pattern with 1-sequence b;

11. if (b’ satisfies all constraints from C

12. and SupportCalc(b’, QSS, C) not less than s)

13. {

14. save pattern b with context;

15. }

16. }

17.

18. if length of + length of any element from B is smaller than maximum from C

19. {

20. Z ← perform bi-level projection using B, QSS and s);

21. for each z from Z

22. {

23. = merge activity pattern with activity pattern z;

24. if (satisfies all constraints from C)

25. {

26. save pattern with context

27. }/* end-if */

28. ← build projected database for z and QSS;

29. RR Recursion(, , s, B, C);

30. }

31. }

The RMV method algorithm returns a set of closed activity sequence patterns, where each

activity sequence pattern is associated with a set of process instance identifiers indicating

process instances supporting the pattern. The pseudo-code for the algorithm is presented

in Listing 5.4.

92

Listing 5.4. The first phase of the RMV method algorithm for discovery of activity sequence patterns

0. SequencePatternDiscovery (event log: L,

1. the minimum support: s,

2. set of constraints (maximum pattern duration: td,

3. maximum gap: tg, maximum timestamp: tm, minimum length: h): C,):

4. a set of closed activity patterns

5. {

6. QSS ← Ø; /* QSS contains a set of sequences */

7. CQSS ← Ø; /* CQSS contains a set of closed sequence patterns */

8. for each trace in L

9. {

10. QSS ← QSS ∪sequence generated for ;

11. } /* end-for */

12. R PatternSearch (QSS, s, C);

13. R ← filter out all the sequences that appear in CMZ that are

14. not closed and satisfy constraints from C;

15. return R;

16. }

5.5.2. Activity Pattern Identification

In the RMV method, transformation of an activity sequence pattern to an activity pattern is

based on a subset of attributes associated with activity instance description from sequence

patterns. The considered set of attributes is: , , , ,
 , , , ,
 (cf. Section 5.4.3).

The following steps are performed in the RMV method when transforming an activity

sequence pattern to an activity pattern:

1. Identification of service oriented summary of a process model, in particular process

model ;
2. Identification of service network schema elements, i.e., identification

of classes of service entity descriptions from and identification of service

requirements from ;

3. Definition of function

SESPSISCS *: mapping classes of

service entity descriptions from the service network schema to elements of service

descriptions from a service-oriented summary of a process model;

4. Identification of service network , in particular identification of service

entity descriptions from SE and identification of relations among service entity

descriptions from L ;

5. Definition of function mapping service entity descriptions from service

network to classed of service entities in service network schema ;

6. Definition of function mapping service entity descriptions from service

network to elements of service descriptions.

93

Service-oriented summary of a process model

The RMV method algorithm for identification of a service-oriented summary of a process

model is presented in Listing 5.5. The algorithm travers all the activity instance descriptions

from activity sequence pattern s (line 5). For each activity instance description , a process

model activity t is created (line 7) having the name equal to an attribute of .

Note that for some visited activity instance descriptions, may not be set. Then

an activity with no name is created in the process model. Created process model activity t is

added to the set of activities VD (line 8). Also the mapping m between the activity instance

description form the activity sequence pattern and the created activity is kept (line 9). Once all

the process model activities are identified, a set of temporal relations E is created (line 11) by

parsing activity sequence pattern s. Interpretation of activity sequence pattern notation in

terms of temporal relationships is presented in Section 5.5.1. In lines 12-15, a process model

is created together with full service-oriented summary of the process model, i.e., set and

mapping are generated automatically – each activity from the process model has assigned

one unique service description.

Listing 5.5. Create service oriented summary of a process model process model

0. CreateServiceOrientedSummaryOfProcessModel (

1. activity sequence pattern: s): process model

2. {

3. m← Ø /* holds mapping of activity instance description to task */

4. VD← Ø /* holds a set of process model activities t */

5. for each activity instance description vid form s

6. {

7. t = create task (vid);

8. VD ← t;

9. m ← add activity instance description vid to task t mapping;

10. }

11. E ← capture temporal relations among tasks (, s);

12. ;
13. ← m;

14. ← ;

15. ← create other elements of ;
16. return ;
17. }

Service network schema

Identification of a service network schema in the RMV method requires two steps

(Listing 5.6): (1) identification of classes of service entities, and (2) identification of service

requirements.

Classes of service entities are separately identified for each element type of service

description – service consumer, service interface, and service provider (line 6, 14). Given

a particular element type of service description sde, each activity instance description vid in

the activity sequence pattern s is visited. For each vid, a set of attributes atts describing a

service entity is identified – depending on the element type of service description, it is

94

described by , or
attributes, respectively (line 18). Attributes atts are used to create a class of a service entity

description (line 21). The class is added to the set of all the classes of service entities

(). Two mapping are stored: (1) mapping of a class to element of service description

(line 22), and (2) mapping of a class to activity instance description vid (line 23). A class is

not created if a set of attributes atts is empty, unless analyzed vid has an attribute identifying

a service entity of type sde (one of attributes , , depending on a type of sde)

(line 19). At this point, mapping between elements of service descriptions and classes of

service entities is 1:1. Next, classes of service entities from are compared with each

other. If two classes are exactly the same, i.e., if they have the same set of attributes, then they

are merged into one class that is mapped to two elements of service descriptions (line 28).

Final mapping of each element of service description to a class of service entity description is

in general M:1, i.e., many elements of a service description may be mapped to one class of

a service entity.

Similarly to classes of service entities, service requirements are separately identified for each

element type of service description (line 6, 14). It starts with identification of a set of social

attributes from all the activity instance descriptions from s. Each attribute is stored in

the MATTS set together with information about activity instance descriptions supporting this

attribute (line 34-45). For each attribute att (line 36), all the activity instance descriptions vids

supporting it are visited (line 38-40). For each visited activity instance description
 (line 40), a corresponding class of service entity description sClass of a type sde

(line 42-43) is searched for. If for activity instance description source no class of service

entity of type sde has been identified, i.e., sClass is null, then an empty class is

created (line 46-47). In the next step of the algorithm, the next activity instance description is

taken from vids that is different than source (line 49-50) and the corresponding class of

service entity description tClass is searched for (line 52-53). Similarly, if tClass is null

(line 52), an empty class is created (line 56-57). When both sClass and tClass are not null,

a service requirement joining these two classes is created, and the attribute att is added to its

description (line 54-56). If a service requirement joining sClass and tClass already exists,

attribute att is added to the existing service requirement. Finally, service network schema is

created (line 66). In the final step, for each pair of classes of service interfaces and service

providers assigned to the same service description, an implicit “provide/is provided” service

requirement is created. This service requirement states that potential service interface

description assigned to the class of service interface description must be associated with

a service interface provided by an actor being an instance of a class of service provider

description assigned to the same service description.

95

Listing 5.6. Creating service network schema
 and mapping relation

0. CreateServiceNetworkSchema(

1. service-oriented summary of process model: ,
2. activity sequence pattern: s,

3. service description elements to class of service description mapper:

 ,

4.): service network schema

5. {

6. SDES ← { SC, SI, SP }; /* create a set of service description element types */

7. ← Ø ; /* holds classes of service entities */

8. ← Ø; /* holds service requirements */

9. smapper ← Ø; /* assignment of classes of service entities

10. to activity instance descriptions */

11.

12. /* ###### step 1 - create classes of service entities ##### */
13.

14. for each sde from SDES /* for each type of service description element */

15. {

16. for each activity instance description vid form s

17. {

18. atts = get service entity attributes (vid, sde) ;

19. if (atts is not null or (atts is null and entity name of type sde is known))

20. {

21. = create class of service entity (atts);

22. ← ;

23.

← add mapping (sde, , vid,);
24. smapper ← add mapping (, vid);

25. }/* end-if */

26. }/* end-for */

27. }/* end-for */

28. find and merge common classes();
29.

30. /* ###### step 2 - create service requirements ##### */
31.

32. for each sde from SDES

33. {

34. MATTS = get mapping of unique social attributes to

35. activity instance descriptions (s, sde) ;

36. for each matt form MATTS

37. {

38. att = get social attribute from matt;

39. vids = get activity instance description associated with att in matt

40. for each activity instance description source from vids

41. {

42. sClass = get class of service entity description

96

43. (smapper, source, , sde);

44. if sClass is null

45. {

46. sClass = new class of entity description;

47.

← add mapping (sde, sClass, source,);
48. }/* end-if */

49. for each activity instance description target

50. from vids different that source

51. {

52. tClass = get class of service entity description

53. (smapper, target, , sde);

54. if tClass is null

55. {

56. tClass = new class of entity description;

57.

← add mapping (sde, tClass, target,);
58. }/* end-if */

59. = create service requirement (sClass,

60. tClass, att, source, target);

61. ← ; /* add to service network schema */

62. }/* end-for */

63. }/* end-for */

64. }/* end-for */

65. find and merge common service requirements despite type ();

66. ; /* create service network schema */

67. create implicit service requirements(

 ,);

68. return ;

69. }

Service network

Identification of a service network in the RMV method is presented in Listing 5.6. Service

network is identified in a similar way to identification of a service network schema. There are

three main differences: instead of classes of service entities and service requirements, service

entities and service relations are created, (2) depending on the type of service entity, one of

attributes , , is used as the name of created service entity, (3) no empty

services entities are created. During execution of the algorithm of Listing 5.7, also mapping Φ

of classes of service entity to service descriptions is identified (line 18).

97

Listing 5.7. Creating service network

0. CreateServiceNetwork (

1. activity sequence pattern: s,

2. mapping of classes of service entity descriptions to service entity descriptions: Φ,

3. service network schema: ,

4. service-oriented summary of a process model:
5.): service network

6. {

7. sdes ← { SC, SI, SP}; /* create a set of service description element types */

8. SE ← Ø ; /* holds service entities */

8. L ← Ø; /* holds service relations */
9.

10. /* ###### create service entities ##### */
11.

10. for each sde from sdes /* for each type of service description element */

11. {

12. for each activity instance description vid form s

13. {

14. name = get service entity name (vid, sde) ;

15. if name is not null

16. {

17. se = create service entity (name);

18. ← add mapping (sde, se,);
19. smapper ← add mapping (se, vid);

20. SE ←se; /* add to service network schema */

21. }

22. }/* end-for */

23. }/* end-for */
25.

26. /* ###### create service relations ##### */
27.

28. for each sde from sdes /* for each type of service description element */

29. {

30. matts = get mapping of unique social attribute to

31. activity instance descriptions (s, sde) ;

32. for each matt form matts

33. {

34. att = get social attribute from matt;

35. vids = get activity instance description associated with att in matt

36. for each activity instance description source from vids

37. {

38. sourceEntity = get service entity description

39. (smapper, source, sde);

39. if (sourceEntity is null) continue to next source;

40. for each activity instance description target

41. from vids different that source

98

42. {

43. targetEntity = get service entity description

44. (smapper, target, sde);

39. if (targetEntity is null) continue to next target;

45. for each targetClass from targetClasses

46. {

47. l = create service relation (sourceEntity,

48. targetEntity, att, source, target);

49. L ← l; /* add to service network schema */

50. }

51. }

52. }

53. }

54. }

54. ; /* create service network */

55. return ; }

Activity pattern

Finally, the algorithm presented in Listing 5.8, shows the ordering of all the operations

required to create an activity pattern in the RMV method. First, service-oriented summary of

a process model is created based on activity sequence pattern (line 6). In line 7, a service

network schema is created basing on the service-oriented summary of the process model
and activity sequence pattern s. Basing on activity sequence pattern s and service network

schema (line 8), service network is created (line 9). As the last element, mapping Ω is

identified (line 10-11). Finally all the elements, i.e., ,

 , , Φ, , are used for creation of

activity pattern z (line 12).

Listing 5.8. Creating activity pattern z

0. CreateActivityPattern (

1. activity sequence pattern: s): activity pattern

2. {

3.

← Ø; /* assignment of service description elements to

4. class of service entity */

5. Φ ← Ø; /* create mapping of classes of service entities to

6. service entity description */

7. = CreateServiceOrientedSummaryOfProcessModel (s);

8. = CreateServiceNetworkSchema (, s,

);

9. = CreateServiceNetwork (s, ,);

10. Ω = create mapping of elements of service descriptions to

11. service entity descriptions (Φ,

);

12. z = create activity pattern(,

 , , Φ, , Ω);

13. return z; }

99

Example 5.28. Consider an activity sequence pattern , where each activity

instance description is associated with a set of attributes. Attributes associated with each

activity instance description are presented in Tab. 5.2, Tab. 5.3 and Tab. 5.2. In each table,

attributes are arranged by activity instance description (A, B, C, D) and the type of element of

service description – SC, SI, SP.

Tab. 5.2 presents values of , , attributes of activity instance descriptions.

Values in the table indicate names of service entities discovered in the activity pattern.

For instance, according to the activity pattern, activity A is performed by James, who uses

the PostApp service interface provided by the Loan Department. Note that some activities

miss assigned service entities, e.g., there is no service consumer indicated for activity B.

Tab. 5.2. Service entities discovered in an activity pattern

A (B C) D

SC <Name, James> <Name, Mark>

SI <Name, PostApp> <Name, SubApp> <Name, Review>

SP <Name, LoanDept> <Name, LoanDept> <Name, Mark> <Name, ClientSupportDept>

In Tab. 5.3, attributes describing service entities typically involved in the execution of an

activity are presented. Those are values of ,
or attributes of each activity from the activity pattern. For example,

attributes discovered in the activity pattern for activity instance description A which

correspond to service consumer description are: {<Profession, Architect>, and <Nationality,

Polish>}. Attributes associated with service interface for the same activity instance

description are: {<Availability, 24/7>, <MultipleAccess, True>}. Note that if a service entity

for a given activity instance description is known (Tab. 5.2), attributes in Tab. 5.3 describe

this service entity. In case when a service entity is unknown, the set of attributes includes

attributes common for the few service entities. Note that some elements of the service

description have no attributes in both tables, e.g., the service consumer description associated

with activity instance description B has no attributes both in Tab. 5.2 and Tab. 5.3.

Tab. 5.3. Example of service entity attributes discovered in an activity pattern

#service

Entity
A (B C) D

SC

<Profession,

Architect>

<Nationality,

Polish>

<Domain, Software>

<Experience, High>

<Nationality,

German>

<Profession,

Programmer >

SI

<Availability,

24/7>

<MultipleAccess,

True>

<Availability,

24/7>

<MultipleAccess,

True>

SP
<Size, Big>

<Teams, 7>

<Size, Big>

<Teams, 7>

<Nationality, German>

<Profession, Programmer>

In Tab. 5.4, social attributes of activity instance descriptions are presented. Those are values

of , or attributes of each activity instance

description from the activity pattern. For example, attributes discovered in the activity pattern

for activity instance description A which correspond to service consumer description, indicate

that he is from Poznań, he is a member of IEEE and he is categorized as the second-year

100

client. He shares some characteristics with a service provider of the same activity who is also

from Poznań.

Tab. 5.4. Example of social attributes discovered in an activity pattern

#social A (B C) D

SC

<Loc, Poznań>

<Membership, IEEE>

<ClientAge, 2 years>

<TrustLevel, 10>

<Security, High>

<Loc, Gdańsk>

<Country, Poland>

SI

<Loc, Gdańsk>

<Exp, 2 years>

<TrustLevel, 10>

<Loc, Gdańsk>

<Exp, 2 years>

<TrustLevel, 10>

 <Security, High>

SP

<Loc, Poznań>

<Org, MB>

<Country, Poland>

<Loc, Poznań>

<Org, MB>

<Country, Poland>

<Country, Poland>

<Org, MB>

In the first step, the service oriented summary of the process model is created basing only on

information concerning the set of activity instance descriptions in the activity pattern. Process

model activities A, B, C, and D are created together with service descriptions and

with five temporal relations among them: A proceeds B, A proceeds C, C proceeds D, B

proceeds D, B and C are overlapping. The mapping function is generated

automatically.

In the second step of the RMV algorithm, the social network schema is created. Eight classes

of service entities are identified that have non-empty set of attributes. The number of classes

is reduced in the next step to 5, as some identical classes are merged. Moreover, two classes

with an empty set of attributes are identified for elements of service descriptions with known

service entities. All the classes are presented in Tab. 5.5. Just for clarity of further discussion,

each class is assigned a name. An example of a merged class is class which is common for

service interface description of activity A () and service interface description of activity B

(). Other merged classes are and . Empty classes are and associated with

and , respectively. Note that there is no element of the service description in Tab. 5.5.

There is no service entity and no service entity attributes discovered for service consumer of

activity B in the activity pattern. Thus, a class of service entity for this element is not created.

Tab. 5.5. Identified classes of service entity descriptions

and their mapping

 to elements of service descriptions

Class name Attribute set Support

A {<Profession, Architect>, <Nationality, Polish>}
ASC

B {<Availability, 24/7>, <MultipleAccess, True>}
ASI , BSI

C {<Size, Big>, <Teams, 7>}
ASP , BSP

D {<Domain, Software>, <Experience, High>} CSC

E {<Nationality, German>, <Profession, Programmer >}
CSP , DSC

F { } DSP

G { } CSI

Data from Tab. 5.4 are used for identification of service requirements which are presented in

Tab. 5.6. Just for clarity of further discussion, each service requirement is assigned a name.

Note that one additional class of service entity was created in this phase, namely, . This is

101

a consequence of lines 44-48 and 54-48 in Listing 5.6. In case when there is an identified

service requirement between two elements of service description having no assigned class of

service entity, an empty class of service entity is created and assigned to the proper element of

a service description. Such class is used in the definition of service requirement. In this case,

empty class was created and assigned to . Its interpretation is that there are no

requirements concerning a service interface used in execution of D, but such a service entity

must provide a high level of security together with a service consumer of activity C. The final

number of identified classes of service entities is eight.

Tab. 5.6. Identified service requirements

Service requirement name Classes Attribute set

 ,
<Loc, Poznań>,

<Country, Poland>

 ,
<Loc, Gdańsk>,

<TrustLevel, 10>

 , < Security, High>

 , <Country, Poland>

 , <Org, MB>

Note that some social attributes do not appear in any of service requirements, i.e., attributes

<ClientAge, 2 years>, <Membership, 10> and <TarustLevel, 10> are not shared by classes of

service entities. Thus, they are not translated into service requirements.

In the final step of service network schema identification, implicit relations are created.

Classes corresponding to service provider description and service interface descriptions are

considered. Identified set of implicit relations is presented in Tab. 5.7.

Tab. 5.7. Implicit requirements denoted from

 and added to

Service requirement name SI SP

In the next step of the RMV algorithm, each service entity captured in the activity sequence

pattern (Tab. 5.2) is assigned to at least one class of service entity. Discovered assignment of

service entities to classes is presented in Tab. 5.8. Note that classes of service entities and

 are left without a service entity assigned.

Tab. 5.8. Assignment of classes of service entity descriptions from

to service entities from SE - mapping relation

Class name Service entity

 James

 PostApp, SubApp

 LoanDept

 Mark

 ClientSupportDept

 ReviewApp

102

Finally, the service network is filled-in with service relations. A set of service relations

presented in Tab. 5.9 is very similar to a set of service requirements from Tab. 5.6,

i.e., majority of service requirements has a corresponding service relation. For instance,

service relation M joins service entities assigned to classes of service entities connected by

service requirement . There are two exceptions form this rule: (1) service relation

corresponding to service requirement is missing as a consequence of a missing assignment

of service entity to , (2) relation corresponding to implicit relation

 is missing as

a consequence of a missing assignment of service entity to .

Tab. 5.9. Identified service relations L

Service relation name Attribute set Service entities

M
<Loc, Poznań>,

<Membership, IEEE>
James, LoanDept

N
<Loc, Gdańsk>,

<TrustLevel, 10>
PostApp, SubApp

P <Country, Poland> LoanDept, Mark

R <Org, MB> LoanDept, ClientSupportDept

 PostApp, LoanDept

 <Org, MB> Review, Mark

Having mapping

 (Tab. 5.5) and Φ (Tab. 5.8) it is possible to denote mapping Ω presented

in Tab. 5.10. Some elements of service descriptions miss assignment of service entities. Thus

the identified activity pattern is not executable (cf. Section 3.1.3). Formally, the following

condition is not met: such that and the induced relation

 is in compliance relation (cf. Definition A.11).

Tab. 5.10. Assignment of service entities to elements of service descriptions – mapping

Element of service description Service entity

 James

 SubApp, PostApp

 LoanDept

 SubApp, PostApp

 LoanDept

 Review

 Mark

 Mark

 ClientSupportDept

Graphical representation of the activity pattern discovered by the use of the RMV method is

presented in Fig. 5.12. ▪

103

A

C

D

BTe
m

po
ra

l
gr

ap
h

SCA SIA SPA SCB SIB SPB SCC SIC SPC SCD SID SPD

Aα

Bα

Cα

Eα

Fα

James LoanDept.

Se
rv

ic
e

de
sc

ri
pt

io
ns

Se
rv

ic
e

N
et

w
o

rk

Sc
h

em
a

Se
rv

ic
e

N
et

w
o

rk

PostApp

CientSupportDept

Mark

Dα

Hα

A
ctivity P

attern

Se
rv

ic
e-

or
ie

nt
ed

 s
um

m
ar

y
of

a

p
ro

ce
ss

 m
o

de
l

SubApp

Gα

Review

z

Fig. 5.12. Discovered activity pattern z

5.5.3. Recommendation Formulation

Selection of an activity pattern matching a particular context class is transformed to

the classification problem. In the RMV method, first a set of activity pattern contexts that

are the most similar to a given context class is selected. Then, activity patterns associated with

those contexts are evaluated for suitability for recommendation. The RMV algorithm for

recommendation formulation includes the following steps:

1) Enabled contexts – identification of the most similar contexts based on context

distance,

2) Enabled activity patterns – identification of activity patterns enabled for

recommendation, i.e., associated with contexts selected in the first step,

3) Recommendation credibility – validation of activity patterns in terms of

recommendation credibility,

4) Recommendation formulation – formulation of the final recommendation and its

justification following the formal model presented in Section 5.4.5,

5) Recommendation ordering – ordering of recommendation elements according to

confidence indicator and social coefficient.

Enabled contexts

In the first step of the RMV method algorithm, a set of k contexts is identified referred to as

an enabled context set. The smaller the context distance metric determined by the user-

defined function (cf. Section 5.4.2), the more similar is the context to the

context class.

For context class
 and each context that supports at least one discovered activity pattern

 a context distance is calculated. Then a set of k activity pattern contexts with

the lowest value of context distance is selected for further analysis.

104

Definition 5.59. (Recommendation Threshold). Let be a recommendation threshold

stating the maximum accepted context distance between context and context class.

Let denote the set of all the unique contexts of all the activity patterns

discovered from CMZ, i.e., .

Definition 5.60. (Enabled contexts). Enabled contexts for event log is a set

 .

Let k be a user-defined size of target
 set such that k<n, where

 .

The pseudo-code calculating the value of and finding elements of enabled set is presented

in Listing 5.9.

Listing 5.9. Finding enabled context set

0. GetEnabledContexts (

1. Set of activity patterns: CMZ,

2. Number of searched neighbors: k;

3. Context class:

co)

4. : enabled contexts set

5. {

6. C ← contexts(CMZ, l);

7. eC ← Ø; /* contains a set of contexts; a maximum set size equals k ; */

8. ← ; /* recommendation threshold */

9.

10. for each c from C

11. {

12. val = ;
13. = get the smaller value of context distance from among contexts in eC set;

14. if (val is smaller than)

15. {

16. eC ← c; /* add c to set eC */

17. if (size of eC set > k) /* if a set eC is to big */

18. {

19. remove context with the highest distance to context class;

20.

21. }

22. }

23. }/* end-for */

24. return eC;

25. }

105

Enabled activity patterns

Definition 5.61. (Enabled activity patterns). Enabled activity patterns for event log is

a set of activity patterns whose contexts are in
 set. Formally,

 .

Let
 denote a set of contexts of activity pattern z in enabled set.

Let
 denote a set of traces supporting activity pattern z in contexts

from the enabled set.

Example 5.29. Consider an event log of 600 traces. There are 6 activity patterns discovered in

the event log that appear in 30 different contexts. In a particular:

 activity pattern is supported by 120 traces in 10 different contexts ,

 activity pattern is supported by 75 traces in 8 contexts ,

 activity pattern is supported by 70 traces in 5 contexts ,

 activity pattern is supported by 60 traces in 5 context ,

 activity pattern is supported by 70 traces in 5 contexts and

 activity pattern is supported by 60 traces in 2 context .

For simplicity, assume that each context is unique which in general is not always true. For

k = 9, calculation of context distance for each of 36 contexts leads to identification of the

following set:
 .

The context distance of every other context was greater than context distance of any context

from the
 set. Thus, the set

 .

The number of traces supporting each activity pattern z in context from

is:

 for activity pattern : 70 traces,

 for activity pattern : 60 traces,

 for activity pattern : 30 traces,

 for activity pattern : 20 traces.

Thus, activity pattern Az is considered to be the most frequent one in the enabled set.

This situation is presented in Fig. 5.13, where each column corresponds to one activity pattern

from
 set. Each column represents the number of traces supporting

a particular activity pattern in a particular context. This information is supplemented by

the distance of a particular context to the given context class. Numbers above columns

represent the ratio of traces supporting an activity pattern in contexts from

the
 set, to the total number of traces supporting a given activity pattern.

For instance, activity pattern is supported in context by 20 traces where the distance

between and the context class is 3. Moreover, there are 50 traces that support in other

contexts than . ▪

106

Fig. 5.13. Enabled activity patterns

Recommendation credibility

In this step, each enabled activity pattern from
 is validated for

confidence of its recommendation. Validation of confidence is crucial to guarantee

(1) robustness to noise data, (2) representative character of selected neighborhood, (3) limited

influence of distant contexts on recommendation compared to similar contexts. In the RMV

method, measures of sensitivity, specificity (Simon & Boring, 1990) and weighted context

distance are used to validate the confidence of potential recommendation of each activity

pattern from
 set.

Sensitivity specifies how many percent of event traces support the frequent activity pattern z

in contexts from
 set. High sensitivity means that contexts from

 are typical for z.

Specificity is used to estimate cleanness of set
 . The smaller

 set, the set of activity patterns suitable for a context class is more

specific and recommendation is less fuzzy. Moreover, the more dominant the activity pattern z

is in terms of support from among all the activity patterns in the
 set,

the higher is specificity. Activity patterns of high sensitivity and specificity are preferred for

recommendation.

Let
 denote a function returning sensitivity of activity

pattern z.

Let
 denote a function returning specificity of activity

pattern z.

Example 5.30. Continuing Example 5.29, sensitivity and specificity for Az is:

 , and

 .

30

10

30
20

20
50

10

10

0

10

20

30

40

50

60

70

80

A B C D

dZA1 = 1

dZA2 = 2

dZA3 = 3

dZA3 = 6

dZB1 = 1

dZB2 = 5

dZC1 = 3
dZD1 = 3

70/120

60/75

30/70

20/60

107

If Az was more dominant in enabled set, i.e, for example if only Az and Dz were in

the
 set, then:

 , and

 .

Finally, if support of for contexts from enabled set was lower and thus was not so

dominant in terms of frequency in the original
 set, i.e., if it was

supported by 60 traces:

 , and

 ▪

Weighted context distance is used to minimize the influence of distant contexts on

recommendation. Let denote the number of traces supporting activity pattern z

in context co. To calculate weighted context distance of activity pattern z, for each co from

 , the number of traces supporting activity pattern z in co is multiplied by a

distance of co from the context class
 . Then, obtained products are added and divided by

 . The activity patterns with small weighted context distance are

preferred for recommendation. Formally:

Let
 denote a function returning weighted

context distance of activity pattern z.

Example 5.31. Calculate weighted context distance for Az and Bz from Example 5.29:

 ▪

Weighted context distance is definitely smaller for . This means that the context class

is more typical for than for , i.e., usually appears in contexts more similar to

the context class. Still does not appear in such contexts as often as . It is left up to a user

whether he/she prefers less frequent pattern appearing on average in more similar contexts or

he/she prefers frequency over similarity.

Recommendation formulation

Let denote a user-defined minimum sensitivity of an activity pattern z from the set

 to be accepted for recommendation.

Definition 5.62. (Recommended Activity Patterns). A recommended activity pattern is

a set:

108

 .

For each activity pattern z from
 , the following metrics are calculated:

 , where

calculateRI is the function calculating recom_index for traces from

 and calculateNRI is the function calculating

nonrecom_index for traces from
 ;

 – specificity;

 – sensitivity;

 – weighted context distance;

 – value of z support in event log .

All these values are considered attributes of justification of recommendation element

 (cf. Section 5.4.5).

Example 5.32. Assume that =50%. Only two activity patterns from Example 5.29 have

sensitivity greater than , i.e.,
 and

 . Thus,

 .

Recommendation element for activity pattern Az is:

 . ▪

The pseudo-code finding the
 set and formulating recommendations is

presented in Listing 5.10.

109

Listing 5.10. Finding enabled activity patterns and formulating recommendations

0. GetRecomm (

1. Set of enabled context: enabled,

2. Partial trace: ;

3. Context class:
 ;

4. Expected sensitivity:): set of recommendations

5. {

6. enapbledAP ← Ø; /* contains a set of activity patterns */

7. recomm← Ø; /* contains a set of recommendation */7.
8.

9. for each context co from enabled

10. {

11. z ← get activity patterns identified in context co

12. enabledAP ← z;

13. if (sensitivity(z, enapbledAP) is not smaller than)

14. {

15. recomm ← z;

16. }

17. }/* end-for */

18. for each activity pattern z from recomm

19. {

20. recom_index = ;
21. nonrecom_index = ;
22. cdif = nonrecom_index – recom_index;

23. spec = calculateSpecificity(z,
 , enabledAP);

24. sens = calculateSensitivity(z,
 , enabledAP);

25. ws = calculateWeightedContextDistance(z,
);

26. s = sup(z);

27. just = createJustification(cdif, spec, sens, ws, s);

28. r = createRecommendationElement(z, recom_index, nonrecom_index, just);

29. recomm ← r;

30. }/* end-for */

31. return recomm;

32. }

If
 , activity pattern from

 are merged into generic

activity pattern which generalizes behavior observed in recommended activity patterns.

Let
 denote a generic activity pattern discovered from activity patterns

from set recomm.

Let
 denote a set of relations adjacent to class of service entity .

Let denote a set of service relations adjacent to service entity .

Definition 5.63. (Attribute equality of classes of service entities). Two classes of service

entities
 and

 are attribute equal if they have the same set of attribute constraints.

110

Definition 5.64. (Attribute equality of service entities). Two service entities and are

attribute equal if they have the same set of attributes.

Definition 5.65. (Equality of service requirements). Two service requirements
 and

 are

equal if (1) they are adjacent to attribute equal classes of service entities, (2) they have

the same set of attribute constraints.

Definition 5.66. (Equality of service relations). Two service relations and are equal if

(1) they are adjacent to attribute equal service entities, (2) they have the same set of attributes.

Merging activity patterns from set
 is performed in the following manner:

1. Merging process models – information concerning temporal relationships among

activities in each activity pattern
 are used to discover

a generalized process model capturing behavior of all the patterns from

 ; any existing algorithm discovering process model based on

temporal relationships among activities can be used here, e.g. Alpha algorithm (Aalst,

et al., 2004); each activity is associated with service description that together comprise

service oriented description of a process model;

2. Merging service network schemas – service network schema of generic activity pattern

is created by adding service requirements from activity patterns. Each requirement

service in a generic activity pattern service network schema must be unique,

i.e., if requirement services from different activity patterns are equal, requirement

service is added only once. Unique service requirements are added together with

adjacent classes of service entities. Equal classes of service entities associated with

service requirements are merged, i.e. if two classes of service entities
 and

 are

attribute equal, and the resulting class of service entity
 is attribute equal to them,

then set

 . Finally classes of service entities with no adjacent service

requirements are also added to the set of service requirements in service network

schema.

3. Merging service network – service network of generic activity pattern is created by

adding service relations from activity patterns. All the equal service relations and

service entity decryptions are merged. If two service entity description are attribute

equal, then set .

4. Merging mappings – merged classes of service entities are associated service

descriptions assigned to corresponding classes in activity patterns. Service entity

descriptions are assigned to corresponding classes of service descriptions from

the activity patterns.

Example 5.33. Consider two activity patterns presented in Fig. 5.14 and Fig. 5.15 that were

discovered and recommended for a particular context class. Each activity pattern encompasses

definition of a process model, service oriented summary of a process model, service network

schema and service network. Assume that each symbol in service network schema represents

a unique attribute describing class of service entity or service requirement of an actor.

The activity pattern following from the merge of these two patterns is presented in Fig. 5.16.

In Fig. 5.16, the process model is represented as a Petri Net discovered from temporal

relationships captured in activity patterns from Fig. 5.14 and Fig. 5.15. Petri Net is discovered

using Alpha algorithm that aims at finding balance between four dimensions of process

mining: generalization, simplicity, fitness, and precision. Although all the activities are

captured in the model, it is not true for all the transitions among activities. Note that while

according to Fig. 5.14, activities 2 and 4 can be executed in sequence, it is not possible in Fig.

111

5.15. Thus, according to Petri Net in Fig. 5.16 these two activities can be performed only in

parallel. On the other hand, Petri Net in Fig. 5.16 permits infinite loop of two activities:

activity 2 and some other unknown activity.

SC1 SI1 SP1 SC3 SI3 SP3 SC2 SI2 SP2 SC4 SI4 SP4

C,D

F

E

I

II

IV
III

A,B

4

2

3

1

Fig. 5.14. Example of an activity pattern

SC1 SI1 SP1 SC2 SI2 SP2 SC? SI? SP? SC4 SI4 SP4

C,D

E
G

I IIV$,%

2

4

1

? 2

6

SC6 SI6 SP6SC2 SI2 SP2

F

Fig. 5.15. Example of an activity pattern

While in activity patterns all the splits and joins follow AND condition, Petri Net adds also

OR condition at splits and joints. For instance, once Activity 4 is executed, it is possible to

continue either to Activity 6 or to the end. Service network schema and service network are

also merged. Classes are merged as they are the same in both activity patterns,

i.e., the scope of attributes in classes of service entity, service requirements and their

attributes are the same in both activity patterns. In both activity patterns, classes are

linked to two different service descriptions: and . In the merged generic activity

pattern, the class is linked to both and . Note a different case of the class. Although

in both patterns such a class appears, the number and description of service requirements

associated with it in each activity pattern is different. Thus, classes are not merged. The set of

actors in service networks and corresponding social relations are copied from both activity

patterns into one graph.

Generalization of behavior performed during activity pattern merge is also true for service

network schema. For instance, while each activity pattern assigns class to one service

description, according to the generic activity pattern it is assigned to both, so an actor

assigned to these classes can play two process roles instead of one.

112

2

4

?

6

3

1

SC1 SI1 SP1 SC3 SI3 SP3 SC? SI? SP? SC4 SI4 SP4SC2 SI2 SP2 SC6 SI6 SP6

A,B

C,D

F

E

I

II

IV

III

V$,%

G
F

Fig. 5.16. Merged activity pattern with Petri Net as a process model

As mentioned in Section 3.1.3, service protocols and – as a consequence – activity patterns,

abstract from a formal representation of a process model. For instance, in Fig. 5.17, generic

activity pattern introduced in Example 5.33 has a process model represented by a process map

including only frequent transitions among activities. ▪

2

4

?

6

3

1

SC1 SI1 SP1 SC3 SI3 SP3 SC? SI? SP? SC4 SI4 SP4SC2 SI2 SP2 SC6 SI6 SP6

A,B

C,D

F

E

I

II

IV

III

V$,%

G
F

Fig. 5.17. Merged activity pattern with a frequent process map as a process model

Definition 5.67. (Full recommendation). The full recommendation is a tuple

 .

Recommendation monitoring

In the basic scenario, it is assumed that recommendation elements generated by the RMV

method are simply displayed to the user. In more advanced scenarios, recommended activity

patterns are used for automatic orchestration of collaboration. In any case, the fact of

following a recommendation by a set of collaborators is monitored by the Recommendation

Monitor. The observations made by the Recommendation Monitor influence future

113

recommendations. Fig. 5.18 is a simplified version of Fig. 5.2 – only those components of

RMV methods associated with monitoring of recommendations and selection of activity

patterns are presented.

The Recommendation Monitor associates recommended activity patterns with a group of

collaborators that received recommendation in a particular process instance.

The Recommendation Monitor observes events recorded in the event log (step 1 in Fig. 5.18)

during further process instance execution. Periodically, a captured partial trace is validated in

terms of supporting activity patterns (step 4). The validation is done using rules extracted

from activity patterns. As an example, activity patterns can be parsed to one or more LTL

rules (Aalst, et al., 2005). Definition of rule format and associated parser transforming activity

pattern to rules is a part of the RMV method parameterization (cf. Section 5.6). Validation of

each rule results in one of three statuses:

 Rule satisfied – execution of the process instance is in line with the rule;

 Rule waiting – the execution of activities described in the rule has not begun yet;

 Rule violated – execution of the process instance is not in line with the rule.

Example 5.34. Considered an activity pattern:

 Trustex, who is a developer with 10 year experience and comes from Poland, uses

service interface Sign contract categorized as Init with maximum duration of 7 days, is

used by to sign contract with a company that is usually a general contractor from

Poznań; this takes place on Monday;

 Later, Retrieve project plan service interface categorized as Init, is used by a general

contractor to interact with architect Bud Tool from Berlin.

Assuming, that the RMV method user uses activity pattern-to-LTL rule parser, the activity

pattern is transformed to the following LTL rule:

formula activities_eventually_follow_each_other() :=

<> ((

(SC == Trustex /\ SC-Type == Developer /\ SC-Country == Poland /\

SC-Experience == 10 years /\ SI == Sign contract /\ SI-Category ==

Init /\ SI-Duration == 7 days /\ SP-specialization == general

contractor /\ SP-City == Poznań)

/\ <>

(SC-Type == General contractor /\ SI == Retrieve project plan /\ SI-

Category == Init /\ SP == Bud Tool /\ SP-City == Berlin /\ SP-

specialization == Architect)

));

The rule can be used by any of existing conformance checking methods based on LTL rules. ▪

The activity pattern is considered unsupported by a partial trace, i.e., activity pattern is not

followed by a group of collaborators, if a particular rule derived from an activity pattern is not

satisfied before the process instance completes, or before the next recommendation request for

the process instance is issued. If the partial trace supports activity pattern, the priority of

activity pattern for future recommendation increases (steps 6-10). If a pattern is not supported

by a trace, its future priority decreases. Note that a partial trace can support more than one

114

activity pattern from a recommendation. Thus, for one recommendation there can be a number

of supported an unsupported activity patterns.

Recommendation elements ordering

To estimate the future value of an activity pattern in future recommendations, the

Recommendation Monitor calculates two metrics, i.e., confidence indicator and social

coefficient.

The range of confidence indicator is between 0 and 1. Confidence indicator of an activity

pattern is increased every time a partial trace of a running VO collaborative process instance

supports this activity pattern. Confidence indicator decreases if recommended activity pattern

is not supported by the trace.

The value of social coefficient for a group of collaborators is based on classifier .

Calculation of social coefficient for a group of collaborators requires that each activity pattern

from recomm is assigned to one of two categories: group or general. If majority of traces

supporting a particular pattern z includes participation of at least half of collaborators

involved in execution of a running process instance, then the pattern is assigned to the group

category. Otherwise, it is classified as general. Typically, general activity patterns will come

from process instances performed in other departments, units or organizations, but concerning

the same subject.

The classifier describes the collaborators group on a scale between 0 and 1, where 1 denotes

a group always following activity patterns categorized as group. At the other end of the

classifier (), a group follows only general activity patterns. The value of increases

when the group carries out group recommendations. Similarly, the value of is reduced when

the group follows general recommendations. Reducing reflects group’s learning from other

groups of collaborators. A group’s work profile potentially deviates for one process instance

to another. Once the Recommendation Monitor discovers that a particular pattern is supported

by a partial trace of running process instance, a value of for this group of collaborators and

this running process instance is updated.

Note that while the confidence indicator is a feature of an activity patterns included in

a recommendation, the social coefficient is a feature of a particular group of collaborators

within a particular process instance that requests and accepts recommendations.

PAIS

OS
Client

Operational Support System

OS
Sevice

Recommendation
Monitor

Recommendation
Manager

Process Miner

Record user
activity

Event log

Visualize
recommendations

Update user
recommendation history

Provide process instance
recommendation history

Find matching
activity patterns

User
request

Request activity patterns 67

9

8 10

1

4

Fig. 5.18. Recommendations monitoring

115

Activity patterns returned by the Process Miner (step 7-8) are ordered by the

Recommendation Manager before forwarding a recommendation to a group of collaborators

(step 10). Ordering is performed according to the recommendation value calculated on the

basis of cdif value, confidence indicator associated with recommendation element and social

coefficient of each recommendation element. For general activity patterns, recommendation

value is calculated as:

For group activity patterns recommendation value is:

Example 5.35. Consider a set of recommendation elements in Tab. 5.11. For each activity

pattern from each recommendation element, user-defined functions returned values presented

in recom_index and nonrecom_index column. Assumed confidence indicator values are

presented in column ci. Each pattern has assigned category general or group. A list of

recommendations is presented to a group of collaborators with estimated classifier –

preference towards group activity patterns. Thus, values in column se for group activity

patterns equals 0.6 and for general activity patterns equal 0.4. ▪

Values in cdif are calculated by subtracting recom_index from nonrecom_index. They indicate

the potential benefit of following a recommendation element. Negative value of cdif for

activity pattern E indicates that although the activity pattern is performed frequently, it does

not result in any benefit, i.e., the potential predicted cost of not following the activity pattern

is smaller than when following it. Such activity pattern has negative recommendation value

equal to -2,4. Information concerning such activity patterns is still useful – having knowledge

of such “bad” pattern one may undertake actions to eliminate it. Patterns A-D have positive

cdif value. The activity pattern with the highest estimated recommendation values is C.

This activity pattern does not follow collaborators’ group preferences, i.e., pattern is general,

but it has high value of confidence indicator equal 1 and a relatively high potential benefit

equal 20. The second highest estimation is for activity pattern B which is a group pattern but

possible benefits and confidence are smaller than in the previous case. Activity pattern D has

very high potential benefits but its confidence is low. Finally, activity pattern A has quite high

confidence, but small benefits and it does not follow collaborators’ group preference – it is

a general pattern. The final ordering of patterns presented to a user is: 3, 2, 4, 1, 5. Increasing

the social coefficient to would result in completely different order of

recommendation elements: 2, 4, 3, 1, 5.

Tab. 5.11. Sorting of recommendation elements

Activity

pattern id

recom_

index

nonrecom_

index
cdif ci category ce

A 55 60 5 0.8 general 0.4 0.8

B 35 50 15 0.7 group 0.6 6.3

C 20 40 20 1 general 0.4 8

D 10 60 50 0.2 group 0.6 6

E 30 10 -20 0.2 group 0.6 -2.4

116

Note that values of confidence indicators and social coefficients are not presented to a group

of collaborators as a part of justification. Except cdif values, justification of each

recommendation element includes only values of specificity (spec), sensitivity (sens),

weighted context distance (ws) and support (s).

5.5.4. Activity Pattern Instantiation

In the RMV method, activity patterns are discovered on abstract, prototype or executable

level (cf. Section 3.1.3). Both abstract and prototype activity patterns do not provide the

complete mapping between service entities from the service network and classes of service

entities in the service network schema. Such activity patterns must be instantiated and brought

down to executable level. Both abstract and prototype activity patterns encompass definition

of a set of partially ordered activities enriched with information concerning desired

collaborators, their features and character of service relations among them. This information

is a basis for assignment of service entities to classes of service entities.

In the RMV method, an instance of an activity pattern z is created by selection of service

entities from the set of SOVOBE members. Selection is performed according to

the constraints defined in service network schema
 . The selection of appropriate service

entities is done from among all the service entities existing in SOVOBE, where selected

entities must be instances of appropriate classes of service entities and must satisfy service

requirements defined in the service network schema. Selection of service entities is performed

on the basis of information about SOVOBE members provided via SOVOBE services

including:

 Service entity descriptions encompassing information corresponding to service entity

competences, capabilities, former experience, conspicuities, etc.

 Service relations among members of SOVOBE represented as service network

 .

Note that is not the same service network as the one discovered for activity pattern

 . Discovered is always a subnetwork of . The aim of activity pattern instantiation

is to add a subset of service entities from to , so that potentially

(cf. Definition A.11). Instantiation of an activity pattern is transformed to the following

problem: given service network schema , find such subnetwork of social network

 which maximizes the value of the function.

The RMV method algorithm for instantiation of activity patterns consists in four phases:

1. Specification of VO – definition or redefinition of classes of service requirements,

service requirements and associated functions;

2. Selection of service entities for classes of service entities – selection of candidate

service entities; the output of this phase is a set of service entities for each class of

service entities from the activity pattern;

3. VO variant generation – ranking of service entity assignment according to the global

compliance function; this phase includes generation and comparison of best possible

VO variants, where a VO variant is a set of service entity descriptions assigned to

the classes of service entity descriptions defined in phase 1 for execution of the activity

pattern; as an output, a set of VO variants is generated ordered according to the values

of the compliance function;

4. VO inception – registration of the VO in SOVOBE.

117

In each phase, interaction among selecting collaborators is assumed. In the first phase,

the service network schema as well as the service network of an activity pattern may be

redefined by selecting collaborators. Definition of VO specification encompasses:

 Redefinition of classes of service entities and service requirements – introduction of

changes in the set of constraints associated with each class of service entity of

a service requirement; also changes in predicates associated with constraints are

possible or creation of new classes of service entities;

 Reassignment of service entities to classes of service entities – assignment of service

entities can be changed, i.e., service entities can be removed or reassigned;

 Class compliance function – for each service class, definition of the function

evaluating a compliance of a particular service entity to the class of service entity;

 Class threshold values – for each service class, an acceptable compliance level is

assigned; this threshold is used in the second phase of MAAS to limit the number of

assigned service entities;

 Global compliance function – global multi-attribute utility function is used in the third

phase of the method to evaluate generated VO variants against satisfaction of service

requirements;

 Global threshold value – an acceptable compliance level of global compliance

function used to limit a number of VO variants passed to phase 4.

In the second phase, a set of services entities is selected for each class of service entity that

has no assignment in the discovered activity pattern. Identified service entities are ordered

according to the values of the class compliance function. Service entities with the value of

compliance function smaller than the class compliance threshold are filtered out.

The number of potential VO variants that may be constituted with service entities identified in

phase 2 is usually high. The goal of the third phase is to find an ordered list of VO variants

ranked according to the compliance function in the usually large domain of potential

VO variants. In phase 3, the genetic algorithm is used to determine the best fitted VO variants,

as illustrated in Fig. 5.19. The genome g is an array of N items, N being the number of classes

of service entities. Genes re are sets of service entity descriptions selected in phase 2 and

assigned to classes of service entities r from the genome g.

r1 r2 r3 rN
Virtual organization

variant g
(Genome)

e11

e12

e13

e21

e22

e23

e24

e25

eN1

…..

eNM

……………………………………..

Sets of
service entity
descriptions

(Genes)

Phase 2
(selection of service
entity descriptions

for classes of
service entitiy
descriptions)

Phase 3
(Generation of

VO variants)

Gene
re1

Gene
re2

Gene
ren

Fig. 5.19. Phases 2-3 of activity pattern instantiation method

118

The crossover operator is the standard one-point crossover, while the mutation operator

randomly selects a class of service entity description (a position in the genome) and randomly

replaces the corresponding service entity description with another one among those available

from the set of service entity descriptions assigned to this class in phase 2. In this way

the genetic algorithm creates many VO variants. Each VO variant is evaluated by the use of

the global fitness function defined in VO specification. The global compliance function used

in this phase estimates the level of satisfaction of service requirements. As the result of this

phase, a set of VO variants is selected ordered according to global compliance function

values. A threshold value defined in phase 1 is used to filter out the VO variants: VO variants

for which the value of the global compliance function is below the threshold value are not

passed to phase 4.

In phase 4, the final selection of the one of the best ranked VO variants is made by

collaborators. This VO variant is registered in the SOVOBE, i.e., service entity description

and SOVOBE service network is updated.

5.6. RMV Method Parameterization

The RMV method includes a set of parameters required for its efficient operation. Some of

these parameters, e.g., confidence indicator, or social coefficient, are deduced. Other

parameters are defined by a user during RMV method configuration before its launch or they

are submitted by a user to the RMV method in each recommendation request. User-defined

parameters have impact on quality of recommendation and effectiveness of recommendation

formulation. Definition of these parameters should take into account the characteristics of

a specific VO collaborative process that the RMV method supports.

The summary of all the RMV method user-defined parameters is presented in Tab. 5.12.

Parameters are grouped into three categories: event attributes, functions and constants.

Tab. 5.12. User-defined parameters of the RMV method

l.p. Parameter name Description
RMV method

step

Event attributes

1. Scope and types

of activity

instance

description

attributes

Given a log, where each event trace is

described by n attributes, it is necessary to

indicate which attributes must be taken into

account by the RMV method. Next, selected

attributes must be categorized according to

event types presented in Section 5.4.3.

Activity sequence

pattern discovery.

Activity pattern

identification

2. Activity instance

context scope

Definition of the scope of attributes describing

activity process instance and event context. In

particular, an attribute from the set of process

instance attributes must be indicated as the one

stating the outcome of the completed VO

collaborative process instance.

Recommendation

formulation

3. Process instance

attributes scope

Definition of the scope of attributes describing

process instance.

Recommendation

formulation

4. Minimum

activity instance

The minimum number of attributes that each

activity description in an activity pattern must

Activity sequence

pattern discovery

119

description length consists of.

5. Obligatory

attributes

Names of attributes that must be included in

each activity description from a discovered

activity pattern.

Activity sequence

pattern discovery

Functions

1. Context distance

function

eval(co,
co)

A function used to compare context class with

a particular context.

Input: context class, context.

Recommendation

formulation

2. Function

class(co)

mapping given

context to context

class

A function denoting context class from

context co. Note that class(co) function can

simply convert context elements to context

element constraints. In more advanced

scenarios this function leads to generalization

running process instance context

Input: activity instance context.

Recommendation

formulation

3. recom_index and

nonrecom_index

calculation

Definition of two functions used for calculation

of expected costs of following or not following

recommendations. Calculation of recom_index

and nonrecom_index values is based on cost

attributes of collaborative events. It is also

necessary to indicate which attribute associated

with each event should be used during

calculation.

Input: set of process instances, cost attribute

name.

Recommendation

formulation

4. Class compliance

function

A function evaluating conformance of a service

entity with a class of service entity.

Input: class of service entity, service entity.

Activity pattern

instantiation

5. Global

compliance

function

A function evaluating conformance of a VO

variant with a set of service requirements.

Input: VO variant, set of service requirements.

Activity pattern

instantiation

Constants

1. Class compliance

threshold

A value used by the class compliance function

to filter out service entities not suitable for

assignment to a class of service entity.

Activity pattern

instantiation

2. Global

compliance

threshold

A value used by the global compliance

function to filter out not matching VO variants.

Activity pattern

instantiation

3. Classification

group size

The size of a classification enabled context set. Recommendation

formulation

4. Minimum

accepted

sensitivity

Required value of sensitivity for the activity

pattern to be accepted for recommendation.

Recommendation

formulation

5. Duration

constraint

The maximum allowed time span between the

start of the first and the completion of the last

activity instance from an activity sequence

supporting an activity pattern.

Activity sequence

pattern discovery

6. Gap constraint The maximum time difference in milliseconds

between two sequentially performed activities

Activity sequence

pattern discovery

120

from an activity sequence supporting an

activity pattern.

7. Maximum

timestamp

constraint

The maximum completion time of the last

activity from an activity sequence supporting

an activity pattern.

Activity sequence

pattern discovery

8. Minimum

sequence pattern

length constraint

The minimum length of an activity pattern. Activity sequence

pattern discovery

9. Maximum

sequence pattern

length constraint

The maximum length of an activity pattern. Activity sequence

pattern discovery

10. Delta Time interval used for identification of parallel

events (in milliseconds)

Recommendation

formulation

11. Recommendation

rule parser

The rule parser transforming activity patterns

to rules which are used in recommendation

monitoring

Recommendation

monitoring

12. Required activity

pattern support

level

The minimum support of an activity graph to

be categorized as an activity pattern.

Activity sequence

pattern discovery

13. Time of validity Time interval between discovery of activity

patterns and update of activity pattern set in

Process Miner

Activity sequence

pattern discovery

A right set of parameters for both activity pattern discovery and recommendation formulation

must be selected basing on knowledge concerning: (1) business domain, i.e., specificity of

the process, (2) basic characteristics of the data set identified at the earlier phases of the

method, e.g., number of discovered activity patterns influents parameters used for

recommendation formulation such as context class function or classification group size.

5.7. RMV Method Computational Complexity

In this section, computational complexity of four parts composing the RMV method is

presented: (1) activity sequence pattern discovery method, (2) activity pattern identification

method, (3) recommendation formulation method, and (4) activity pattern instantiation

method. Then, different ways aiming at reducing time of the RMV method execution are

presented and explained. The following abbreviations are used to express the RMV method

complexity:

 R – the number of traces in the event log,

 G – the number of events in the event log,

 N – the number of attributes in the event log,

 C – the number of attributes for each event,

 B – the average number of activity instance descriptions in each sequence,

 A – the number of identified sequence patterns,

 D – the number of activity pattern contexts,

 E – the number of service entities in the SOVOBE,

 l – the maximum number of events in one trace,

 w – the maximum activity instance description width,

121

 g – the number of genome generations in the genetic algorithm.

Complexity of activity sequence pattern discovery

Discovering activity sequence patterns is composed of three major steps: (1) discovery of

activity sequences from the event log, (2) finding frequent 1-sequence patterns, and

(3) finding closed sequence patterns.

Complexity of discovery of activity sequences in an event log is . The algorithm

traverses all the events in all the traces, discovers activity instance descriptions and

determines temporal relationships among them. In the worst case, the number of discovered

activity instance description is equal to the number of events G.

The worst case of finding 1-sequence patterns in an even log arises, when each attribute in the

event log is unique. Then, an event log can potentially generate up to 2
N
-1 frequent 1-

sequence patterns, excluding the null set. The brute force approach to finding frequent 1-

sequence patterns consists in determination of the support threshold (cf. Definition 5.35) for

every candidate set of attributes. Such approach requires comparisons.

Thus, overall complexity is . To limit complexity of the brute force algorithm, the

Apriori algorithm based on a priori principle is used in the RMV method (cf. Section 5.5.1).

Complexity of the classic Apriori algorithm is , but recently it has been reduced

to (Suneetha & Krishnamoorti, 2010).

Complexity of finding closed sequence patterns in the RMV method is the same as that of the

PrefixSpan algorithm. In the worst case, the number of frequent 1-sequence patterns is equal

to the number of all the attributes in the event log, so complexity of this step is .

Overall complexity of activity sequence pattern discovery in the RMV method is determined

by complexity of finding closed sequence patterns .

Complexity of activity pattern identification

In the RMV method, activity patterns are identified in all the discovered sequence patterns.

In this section, first, complexity of identification of one activity pattern in one sequence

pattern is presented. Then, overall complexity of activity pattern identification in the

RMV method is presented.

Identification of an activity pattern in a sequence pattern consists of three steps:

(1) identification of a service oriented summary of the process model, (2) identification of

service network schema and corresponding mappings, (3) identification of the service

network and corresponding mappings.

Complexity of identification of the service oriented summary of a process model is . The

algorithm traverses all the activity instance descriptions in the sequence pattern and restores

temporal relationships among them.

Identification of service network schema includes: (1) identification of classes of service

entities, (2) identification of service requirements.

During identification of classes of service entities, the algorithm, first, traverses all the

activity instance descriptions and discovers initial set of classes of service entities.

Complexity of this step is . In the worst case, the number of classes of service entities is

equal to B. Then, the algorithm compares all the initially discovered classes of service entities

122

with each other looking for identical, redundant classes of service entities. The number of

comparisons is . The number of comparisons of two classes of service entities

depends on the number of attributes in each class. In the worst case, the number of attributes

in each class of service entity is equal to C. Thus, the total number of comparisons of classes

of service entities is . Overall complexity of identification of classes of

service entities is .

In the worst case, if all the initially discovered classes of service entities are unique,

the resulting number of classes of service entities is still equal to B. Mapping of classes to

elements of service descriptions from the service oriented summary of a process model is

 . The algorithm visits each service description from the service oriented summary of the

process model and maps elements of service description into classes of service entities.

During identification of service requirements, the algorithm also traverses all the activity

instance descriptions and discovers the initial set of service requirements. Complexity of this

step is . Then, the search for identical, redundant services requires

operations. The number of comparisons of two service requirements depends on the number

of attributes indicated as service requirement descriptions, which in the worst case is equal to

C. The total number of operations is then and overall complexity is

 . Assignment of service requirements to classes of service entities requires

validation of all the possible pairs of classes of service entities in terms of service relations

existing among them. This needs operations. Overall complexity of service network

schema identification is .

Identification of service network includes: (1) identification of service entities, and

(2) identification of service relations.

Calculation of the number of operations required to identify a service network is similar to

identification of a service network schema. The search of duplicated service entities requires

 comparisons. As each service entity is represented by its identifier,

comparison of service entities does not require comparison of the sets of attributes.

Complexity of mapping service entities to classes of service entities is . The algorithm

visits all the classes of service entities and assigns corresponding service entities. Complexity

of identification of service network is the same as complexity of identification of service

requirements .

Complexity of activity pattern identification is determined by complexity of identification of

service network schema . Overall complexity of activity pattern identification in A

sequence patterns is .

Complexity of recommendation formulation

Complexity of finding the set of enabled contexts is . The algorithm traverses all

the contexts and calculates the distance of each context from the context class.

Complexity of finding a set of enabled activity patterns for the set of enabled contexts

is . The algorithm traverses all the discovered activity patterns and validates if at least

one context from the enabled context set is the context of the activity pattern.

Ordering of activity patterns in a recommendation requires: (1) calculation of

the recommendation value (cf. Section 5.5.3) for each enabled activity pattern, (2) sorting

activity patterns according to the recommendation values. In the worst case, all the activity

123

patterns are enabled. Complexity of calculation of recommendation values is .
The algorithm calculates the recommendation value for each activity pattern from the enabled

set. Complexity of activity pattern sorting using QuickSort algorithm is in the worst

case, and on average, respectively.

Total complexity of recommendation formulation in the RMV method is determined by

complexity of activity pattern sorting .

Complexity of activity pattern instantiation

Instantiation of an activity pattern is performed in two major steps: (1) selection of service

entities for classes of service entities, (2) VO variant generation.

To find a candidate for classes of service entities, the algorithm takes each class of service

entity, traverses all the service entities registered in the SOVOBE, and validates them in terms

of compliance with the class of service entity. Complexity of this step is .

In the RMV method, the VO variant generation is performed using a genetic algorithm based

on roulette wheel selection, point mutation, and one point crossover with both individuals and

populations represented by fixed length tables. Complexity of this algorithm is

 , where is point mutation complexity equal to ,
 is complexity of crossover equal to , and is complexity of selection

equal to Therefore, complexity of VO variants generation is .

Total complexity of activity pattern instantiation step in the RMV method is .

Total complexity

The summary of complexity of the RMV method steps is presented in Tab. 5.13. All the

RMV method steps are performed sequentially. Total RMV method complexity depends on

the highest complexity of its phases.

Tab. 5.13. Complexity of RMV method steps

RMV method parts Complexity

Activity sequence pattern discovery
Activity pattern identification
Recommendation formulation
Activity pattern instantiation

Complexity assigned to activity sequence pattern discovery is higher than complexity of

activity pattern identification, recommendation formulation and activity pattern instantiation.

Thus, complexity of the RMV method is . This means that the number of event

attributes in the event log, the length of traces and the time required to discover sequence

patterns are key factors determining complexity of the RMV method.

Reduction of the RMV method execution time

The execution time of the RMV method is reduced by the use of parameters presented in Tab.

5.14. The presented set of parameters is a subset of parameters presented in Section 5.6.

124

Tab. 5.14. Parameters reducing the execution time of the RMV method

l.p. Parameter name Impact on execution time

1. Scope of activity

instance description

attributes

Reduction of the set of activity instance description

attributes reduces time of discovering 1-sequence

patterns and the number of discovered 1-sequence

patterns; smaller number of 1-sequence patterns reduces

time of the closed sequence pattern discovery

2. Minimum activity

instance description

length

Longer activity instance descriptions reduce the number

of frequent 1-sequence patterns; smaller number of 1-

sequence patterns reduces time of the closed sequence

pattern discovery

3. Obligatory attributes High number of obligatory attributes reduces the

number of frequent 1-sequence patterns; smaller number

of 1-sequence patterns reduces time of the closed

sequence pattern discovery

4. Classification group size Reduction of the classification group size reduces the

size of the set of enabled contexts; as a consequence, the

number of enabled activity patterns, the number of

calculated recommendation values, and time needed to

sort activity patterns are reduced

5. Duration constraint Shortening time span between activity pattern start and

completion reduces the number of sequence patterns

generated during sequence pattern discovery and the

time of sequence pattern discovery

6. Minimum accepted

sensitivity

Increased value of acceptable sensitivity reduces the

number of activity patterns used in a recommendation;

as a consequence, the number of recommendation value

calculations and time needed to sort activity patterns are

reduced

7. Gap constraint Reduced maximum allowed time difference between

activities reduces the number of sequence patterns

generated during sequence pattern discovery; as a

consequence, time of the closed sequence pattern

discovery is reduced

8. Maximum timestamp

constraint

Reduced maximum completion time reduces the number

of sequence patterns generated during sequence pattern

discovery; as a consequence, time of the closed

sequence pattern discovery is reduced

9. Maximum sequence

pattern length constraint

Reduced maximum allowed sequence pattern length

reduces the number of sequence patterns generated

during sequence pattern discovery; as a consequence,

time of the closed sequence pattern discovery is reduced

10. Required activity pattern

support level

Increased support level decreases number of 1-

sequences, decreases the length of discovered sequence

patterns, and the time of sequence pattern discovery

125

6. Integration of the RMV Method with the ErGo System

In this section the prototype implementation of the RMV method is described and evaluated.

First, the architecture of the prototype implementation of the RMV method is presented.

Second, the RMV method is integrated with the PAIS named ErGo. Finally, the RMV method

is evaluated on the real case data provided by company Epsilon.

6.1. RMV Method Prototype Architecture

The prototype implementation of the RMV method (RMV prototype in short) has been built

to support collaborators by providing context-aware recommendations for their

VO collaborative processes. The RMV method prototype: (1) discovers activity patterns in

VO collaborative event logs and (2) recommends activity patterns suited for VO collaborative

process context. The RMV prototype consists of main and supporting modules. The five main

modules are the following: Sequence Pattern Discovery (SPD) module, Activity Pattern

Identification (API) module, Recommendation Formulation (RF) module, Activity Pattern

Instantiation (APIN) module, and Recommendation Monitoring module (RM). Each module is

the implementation of one of methods presented in Section 5.5. Functionality of two

supporting modules is used by the main modules. The two supporting modules are:

Context (CON) module and Functions (FUNC) module. The full list of modules is presented

in Tab. 6.1. Each main module is mapped to logical component from Fig. 5.2.

Tab. 6.1. Mapping between modules and logical components

l.p. Module Logical

component

Method

1. SPD Event Log

Process Miner

Activity Sequence Pattern Discovery

2. API Process Miner Activity Pattern Identification

3. RF Recommendation

Manager

Recommendation Formulation

4. APIN MatchMaker Activity Pattern Instantiation

5. RM Recommendation

Monitor

Recommendation Formulation

6. CON – Supporting module; classes modeling context

7. FUNC – Supporting module; compliance functions

126

Interaction among the RMV prototype modules is presented in Fig. 6.1. The SPD module uses

the CON module classes to capture contexts of activity instance descriptions and contexts of

sequence patterns. The API module interacts with the SPD module to retrieve identified

activity sequence patterns. The API module transforms activity sequence patterns into activity

patterns. An activity pattern context is modeled in the CON module. The RF module is

associated with the highest number of modules. The RF interacts with API to retrieve activity

patterns that are the most suitable for recommendations. The RF module compares contexts of

activity patterns using the CON module. Ordering of recommendation elements is based on

user-defined functions from the FUNC module. The APIN module interacts with the API

module to retrieve the activity pattern selected from the set of recommended activity patterns.

All the functions used during activity pattern instantiation are modeled in the FUNC module.

Finally, the RM module constantly exchanges information with the RF module concerning the

use of recommendations. Classes of the RM module use classes coming from the SPD module

in implementation of the monitoring mechanism.

CON

SPD

RMRF

APIN

APIFUNC

Fig. 6.1. Interactions between modules

The RMV prototype is distributed (Fig. 6.2). It is implemented as a client/server system: it is

organized according to the user interface, business logic, and data storage tiers.

The business logic tier is implemented as the RMV server. The RMV server implements the

logic of event log management, activity sequence pattern discovery, activity pattern

identification, instantiation and recommendation, and recommendation monitoring. It is also

responsible for access to the data storage tier. Functionality offered by the RMV server is

externalized by OS Service (cf. Fig. 5.2). The Java
TM

 technology has been used for server

implementation.

The data storage tier is implemented using the Oracle11i database.

127

Oracle 11iRMV server
RMV client

(PAIS)

Internet

O
S

Se
rv

ic
e

O
S

C
lie

n
t

RMV client
(Console)

Fig. 6.2. Distribution of the RMV prototype

Functionality of the RMV prototype requires its integration with a PAIS system. The PAIS

provides data concerning collaborators’ activities and associated events. The OS Client

(cf. Fig. 5.2) integrated with PAIS sends events via OS Service to the RMV server. Events are

inserted to the database. PAIS events are used in activity pattern identification and monitoring

of recommendation execution. PAIS provides also the presentation layer for the RMV

prototype, i.e., PAIS presents recommendation outputs returned by the RMV prototype.

Finally, it is assumed that PAIS has a repository of service entities that are used during

activity pattern instantiation for search of the best matching collaborators and their services.

Communication between PAIS and the server follows the Web service standard. Other

standards may be used as the RMV prototype is designed in a way independent of any

specific middleware. For instance, integration with the ErGo system (cf. Section 6.2) is based

on OSGi services.

Moreover, the RMV prototype comprises a console client that is a Java
TM

 application. The

RMV console client provides a front-end to the APD, API, and RF modules. The RMV

console functionality permits discovery of activity patterns in a given event log, and

recommendation for a given partial trace. The RMV console functionality does not support

activity pattern instantiation, recommendation monitoring, including management of

confidence indicator and social coefficient values. Recommendation monitoring is possible

only in case of integration with PAIS.

6.2. ErGo System Concept

The ErGo system (http://ergo.kti.ue.poznan.pl/) (Paszkiewicz, et al., 2011) (Paszkiewicz, et

al., 2012) is an implementation of technical infrastructure supporting operation of SOVOBE

and a proof of feasibility of the implementation of an IT system supporting the execution of

VO collaborative processes based on discovery of activity patterns and their

recommendations. The ErGo system has been developed in the Department of Information

Technology at the Poznań University of Economics within the ITSOA project12.

The ErGo system – from the Greek word èrgo (‘ergo’), meaning “task”, or “work” – aims at

supporting collaboration between a real-estate developer and its subcontractors during

the construction phase of a development process. The ErGo system takes into account

the characteristics of the interactions between a real-estate developer and its subcontractors

12 ITSOA project, https://www.soa.edu.pl/web/guest/home/

128

during the construction phase. A construction phase of a development process meets all

the characteristics of VO collaborative process presented in Section 3.1.2.

In the ErGo system, VO collaborative processes are modeled as a set of activities performed

by subcontractors on demand of a real-estate developer. Execution of an activity is regulated

by contracts. If the realization of a development process instance meets an obstacle, the real-

estate developer or a subcontractor may start adaptation, i.e., may request recommendations

concerning selection of a set of activities, subcontractors and/or contracts related with

the process.

Functionality of the ErGo system is provided by two categories of its components:

 ErGo applications – ErGo system components providing functionality available to

end users through a graphical user interface. The list of applications include: ErGo

Organizations, ErGo Services, ErGo Investment Types and ErGo Investments.

 ErGo internal modules – ErGo system components providing the core functions of

the ErGo system such as: security, user management, KPI management, access to

social network data, etc.; among others, the list of internal modules includes: ErGo

KPI, ErGo ServiceNet.

The RMV method is tightly integrated with all the ErGo applications. The RMV method has

been implemented partly as an ErGo internal modules and partly as an ErGo application:

 ErGo Recomm module – ErGo internal module being an implementation of

the following RMV method elements: activity sequence pattern discovery, activity

pattern identification, and recommendation formulation. This module is an

implementation of Process Miner, Recommendation Monitor, Recommendation

Manager and OS Service from Fig. 5.2; the Recomm module provides analysis of

ErGo system event logs stored in the ErGo Logs aiming at discovery of activity

patterns and provision of recommendations on request from other ErGo applications

and modules;

 ErGo Logs module – ErGo internal module storing collaborative event logs; this

module is an implementation of Event log from Fig. 5.2;

 ErGo MatchMaker application – implementation of an RMV activity pattern

instantiation method; this application corresponds to MatchMaker component from

Fig. 5.2.

The ErGo system architecture is presented in Fig. 6.3. The system architecture relies on

the OSGi Container Equinox 3.5.2 deployed on the Jetty 6.1.19 application server.

The infrastructural components of the system architecture are:

 OSGi 4.2 Blueprint Container providing means for management of OSGi services;

 Google Web Toolkit 2.0.3 with various libraries providing means for building

graphical user interfaces;

 Apache CXF Distributed OSGi 1.2 providing means for building web services

exposed by the system;

 Hibernate 3.3.1.GA providing means for communication with an Oracle 11g database.

129

MatchMaker
application

Organizations
application

Services
application

Investment Types
application

Investment
application

Other
application

Google Web Toolkit Apache CXF

M
at

ch
M

ak
e

r
m

o
d

ul
e

O
rg

an
iz

at
io

n
s

m
o

d
ul

e

Se
rv

ic
es

m
o

d
ul

e

K
PI

m
o

d
ul

e

In
ve

st
m

en
ts

m
o

d
ul

e

In
ve

st
m

en
t

Ty
p

es
m

o
d

ul
e

Se
rv

ic
eN

e
t

m
o

d
ul

e

R
ec

o
m

m
m

o
d

ul
e

Se
cu

ri
ty

m
o

d
ul

e

O
th

e
r

in
te

rn
al

m
o

d
ul

e

Equinox Hibernate

Fig. 6.3. System architecture diagram

Functionality provided by the ErGo system can be accessed by remote web services as well as

through a graphical user interface. Two types of web services may be supported by Apache

CXF Distributed OSGi:

 SOAP web services, relying on HTTP as a transport protocol and WSDL as a

description language; currently supported in the ErGo system;

 RESTful web services, compliant with Java API for RESTful Web Services

specification (JAX-RS).

The Web services issued by the ErGo system can be used by any external application

supporting SOAP on HTTP. Detailed specification of the ErGo system is available on

the project web site http://ergo.kti.ue.poznan.pl/documentation.

Below, in Section 6.3, ErGo applications together with two ErGo internal modules that are

crucial for implementation and operation of RMV method modules, are presented in more

detail. Then, in Section 6.4, integration of these applications with the RMV method

components is presented.

6.3. ErGo Applications

The ErGo applications tackle various complementary aspects of the construction phase of

development processes. The first application – ErGo Organizations – is responsible for

management of the descriptions of organizations and their competences. The second

application – ErGo Services – is responsible for management of the descriptions of business

services provided by organizations. A real-estate developer manages all the activities and

contracts with subcontractors using the third application – ErGo Investments. Templates for

various types of development processes are defined in the fourth application – ErGo

Investment Types. There are two internal modules important for operation of

the RMV method components: ErGo KPI, and ErGo ServiceNet.

ErGo Organizations

The ErGo Organizations application permits users to manage the descriptions of

organizations, especially their competences. A precise description of competences of

130

organizations is important for management of development processes. Functionality of

the ErGo Organizations application is organized as follows: first, a group of functions

provide users with means for registering new organizations and updating the data concerning

already registered organizations. Second, a group of functions permit users to manage

the competences of organizations, based on the competence model proposed in (Paszkiewicz

& Picard, 2011). Third, a group of functions give users means for retrieving organizations

satisfying a set of requirements concerning either their profile or their competences. Finally,

the ErGo Organizations application provides functions for searching and filtering registered

organizations. A screen capture of the ErGo Organizations application is presented in Fig.

6.4. Users select an organization from the list of organizations on the left side. Detailed

information about the selected organization is then displayed in the central panel.

Competences of the organization are available on the associated tabbed panel.

The ErGo Organizations application permits to find organizations meeting a particular set of

requirements. This function is not available through the graphical user interface and it is not

used by the user directly. Instead, it is offered in the form of services provided by

the ErGo Organization module to be used by other ErGo system components, including

RMV method components.

Fig. 6.4. ErGo Organizations application

ErGo Services

The ErGo Services application permits users to manage the descriptions of the services

provided by organizations. The list of services that organizations provide is an important

element of organization description. The choice of an organization as a subcontractor depends

on services an organization provides. The goal of the ErGo Services application is to support

management and search of services provided by organizations.

Functionality of the ErGo Services application is organized as follows: first, a group of

functions provide users with means for registering new types of business services and

updating the already registered ones. Second, a group of functions provide users with means

for managing business services provided by organizations registered in

the ErGo Organizations application. Third, a group of functions permit users to retrieve

organizations satisfying a set of requirements concerning organizations’ services. Finally,

functions for searching and filtering business services registered in the ErGo system are

provided by the ErGo Services application. Similarly to ErGo Organizations, functionality of

131

finding services meeting a particular set of requirements is not available through the graphical

user interface but offered as a service to other ErGo modules. A screen capture of

the ErGo Services application is presented in Fig. 6.5. The graphical user interface of the

ErGo Services application is a part of the ErGo Organizations application. For a given

organization, details concerning the business services provided by it are available on

the “Services” tabbed panel. The screen capture for management of service descriptions is

presented in Fig. 6.6.

Fig. 6.5. ErGo Services main view

Fig. 6.6. ErGo Services – management of service description view

ErGo Investments

The ErGo Investments application permit users to manage activities and contracts for the

construction phase of development processes. During the construction phase of a development

process, the sequence of activities to be performed is usually not explicitly specified in

advance. Moreover, a development process is usually not entirely determined when its

construction phase starts. Activities to be performed during the construction phase of a

development process are usually not planned ahead for more than three months. The ErGo

Investments application permits users to control the realization of the construction phase of a

development process in a seamless manner, by providing means for continuous definition of

activities, preparation of contracts, appendices and progress payment claims. A screen capture

of the ErGo Investments application is presented in Fig. 6.7.

132

Fig. 6.7. ErGo Investments

ErGo Investment Types

The ErGo Investment Types application permits users to manage reusable templates of

process executions referred to as investment types. An investment type contains:

 Activity descriptions – descriptions of activities that may be included in a development

process;

 Category groups – groups of descriptions of activities to be performed at the same

stage of the construction phase;

 Contract templates – templates associated with activity descriptions that hold

requirements concerning subcontractors and their services;

 Contracts – specify particular subcontractors and their services envisioned for

execution of an activity; contracts are optionally assigned to contract templates.

Investment types are modeled as abstract or prototype service protocols (cf. Section 3.1.3).

Each contract template is in fact a service description associated with a particular activity

description. Requirements concerning subcontractors and subcontractors’ services stored in

a contract template correspond to classes of service entities associated with elements of

service description. Contracts assign particular service entities, i.e., subcontractors and

services, to their classes. Some investment types do not include contracts, i.e., service entities

are not assigned to activity descriptions.

Investment types support planning the construction phase of a development process by

reducing time required to plan development process execution, and promoting good practices

from past executions of the development process. Functionality of the ErGo Investment Types

application is organized as follows: first, a group of functions provide users with means for

registering new investment types and managing already registered ones, including managing

category groups, requirements, and contract templates. Second, a group of functions provide

other ErGo modules and applications, e.g., ErGo Investments, with access to investment

types. A screen capture of the ErGo Investment Types application is presented in Fig. 6.8.

In the presented panel, an investment type concerning the construction of a supermarket

building is presented. The investment type for supermarket contains five groups of activities,

three requirements, and three contract templates that can be used to contract activities from

subcontractors.

133

Fig. 6.8. ErGo Investments Types

ErGo Internal Modules

Two internal modules provide functionality necessary for the RMV modules: ErGo

ServiceNet and ErGo KPI.

ErGo ServiceNet is an internal module that provides information about service relations

among organizations and services registered in SOVOBE. Service relations are added to

the module automatically as a result of actions performed by a user in other ErGo

applications, or manually by an ErGo user. For instance, if an organization and its service are

assigned to an activity, appropriate service relation is added to the module joining

the subcontractor, the service and the real-estate developer. Service relations are typed and

they contain a set of attributes. The ErGo ServiceNet module permits verification of relations

among organizations. The module also validates the level of conformance of a set of

organizations and services to a set of service requirements.

Module ErGo KPI supports definition of key performance indicators, where each indicator is

a user-defined function. Function definition includes its logic, and the set of input and output

parameters. A screen capture of the ErGo KPI is presented in Fig. 6.9.

Fig. 6.9. Definition of KPI function in ErGo KPI module

134

6.4. Integration of the RMV Method with the ErGo system

The RMV method is implemented in the ErGo system as the ErGo Logs module, ErGo

Recomm module and ErGo MatchMaker application. The RMV method components use

functions provided by ErGo Organizations, ErGo Services, ErGo Investments applications,

and ErGo ServiceNet and ErGo KPI modules.

ErGo Logs

ErGo Logs module inserts event related data into a database. In particular the following data

are stored:

 Events associated with execution of an activity instance in the ErGo Investments

application; and

 Attributes describing completed VO collaborative process instances.

Each event is stored in the database with the set of corresponding attributes in two separate

tables: event data table, and event context table. For each event, the following information is

stored in the event data table:

 Development process instance identifier, e.g., bd24ff38-931d-4d69-8bcd-

cr8ad24c3210,

 Activity instance identifier, e.g., bd24ff38-931d-4d69-8bcd-cr8ad24c3210,

 Event identifier, e.g., bd24ff38-931d-4d69-8bcd-cr8ad24c3210,

 Event name, e.g., Fundaments,

 Transition, e.g., Registered,

 Subcontractor identifier, e.g., ergo.organization.2761,

 Service identifier, e.g., ergo.service.3321,

 Real-estate developer identifier, e.g., ergo.organization.1,

 Contract identifier, e.g., ergo.contract.2762,

 Contract template identifier, e.g., ergo.contract.template.5678,

 Timestamp: Tue Dec 04 12:35:36 CET 2013,

 Name of the ErGo internal module generating an event, e.g., ergo.invetments.memory,

 Identifier of the session of a user whose action was followed by event generation, e.g.,

bd24ff38-931d-4d69-8bcd-cr8ad24c3210.

Information concerning event context is stored in the event context table. This information

captured for each event includes: development process instance identifier, event identifier,

a set event context elements.

The set of process instance attributes that is assigned to the development process instance

identifier is stored in the process instance data table.

ErGo Recomm

The ErGo Recomm module is responsible for analysis of event logs from the ErGo Logs

module and their transformation to activity patterns. In the ErGo system, discovered activity

patterns are investment types containing groups of activities, requirements and contract

templates.

135

Configuration of the ErGo Recomm module includes all the parameters described

in Section 5.6. In addition, configuration of the ErGo Recomm module encompasses:

 Indication of attributes from the ErGo Organizations, ErGo Services, ErGo

ServiceNet, ErGo Investment Types, and ErGo Investments components to be

incorporated into event traces;

 Indication of attributes from the ErGo Investments application to be incorporated into

event context elements and process instance attributes;

 Indication of functions defined previously in the ErGo KPI to be used in various steps

of the RMV method, e.g., indication of functions calculating recom_index and

nonrecom_index.

Note that the ErGo Logs module does not hold all the attributes of subcontractors, services,

contract templates, and contracts associated with a particular executed activity instance.

Instead, it stores their identifiers in corresponding ErGo applications. Before data from

the ErGo Logs module is used by ErGo Recomm module in activity pattern discovery, it is

transformed to collaborative process log. Each trace from the event log is supplemented with

data coming from other ErGo modules, i.e., attributes holding identifiers of service entities

from ErGo Organizations, ErGo Services and ErGo ServiceNet are supplemented with a set

of attributes actually describing service entities, and identifiers of contracts, while contract

templates are supplemented with data from ErGo Investments and ErGo Investment Types.

Example 6.1. An example of simplified data from the ErGo collaborative event log created

in the ErGo Recomm module is presented in Tab. 6.2 and Tab. 6.3. A set of attributes

describing each process instance is presented in Tab. 6.4.

In Tab. 6.2, attributes that appear in the log are: process instance identifier (pi-id), activity

instance identifier (ai-id), event identifier (e-id), event timestamp (time.) and event transition

(trans.). Service customer, service interface and service provider unique identifiers are

represented by columns SC, SI and SP, respectively. In the ErGo system all the activities are

executed on demand of a real-estate developer. Thus, the value of SC attribute is the same for

all the events. Characteristics of service entities are provided as values of attributes SC-Type,

SI-Duration, and SP-Specialization. Two columns correspond to social relations existing

among service providers – SP-Country and SP-City, e.g., all the companies, except Bud Tool

share the relation of being located in Poland. Similarly, services are grouped into categories

(SI-Category attribute). For the clarity, column corresponding to ErGo module name and user

session are not presented in Tab. 6.2.

Event context elements recorded for each event presented in Tab. 6.3 include the day of week

and season of year. A set of attributes describing each process instance is presented in Tab.

6.4.

Tab. 6.2. RMV event data table

pi-id ai-id e-id Time Trans. SC SI SP SC-Type SP-Specialization SP-Country SP-City SI-Category SI-Duration

1 1 09 1 Start Trustex Fundamenty
City
hall

Developer Ground works Poland Poznań Init 30 days

1 1 10 2 Complete Trustex Fundamenty
Arch

Dome
Developer Ground works Poland Poznań Init 7 days

1 2 11 3 Start Trustex
Parter –

konstrukcja

ścian

Bud

Tool
Developer

Electrical

installations
Germany Berlin Init 10 days

1 2 12 4 Complete Trustex

Parter –

konstrukcja
stropu

Bud

Tool
Developer

Electrical

installations
Poland Warsaw Init 10 days

2 3 13 2 Complete Trustex Dach
Skan

Bud
Developer Vertical surfaces Poland Poznań Init 7 days

2 4 14 3 Start Trustex Dach
Bud
Tool

Developer
Electrical

installations
Germany Berlin Init 1 day

3 5 15 1 Start Trustex

Instalacje

wodne i
kanalizacyjne

Arch

Dome
Developer Ground works Poland Cracow Final 6 days

Tab. 6.3. RMV event context table

pi-id e-id Day Season

1 09 Friday Spring

1 10 Monday Spring

1 11 Friday Spring

1 12 Tuesday Spring

2 13 Friday Spring

2 14 Tuesday Summer

3 15 Monday Summer

Tab. 6.4. RMV process instance attributes

pi-id Duration Start Complete No. subcontractors In time

1 9 1 10 10 true

2 3 1 4 12 true

3 5 4 9 5 false

The graphical user interface components presenting recommendation results are integrated

into ErGo Investment Types and ErGo Investments applications. When a user attempts to add

a new investment or a new category group to existing investments, a recommendation is

provided to the user automatically. Creation of a new investment or a category group requires

selection of an investment type. The selected investment type is used as a template for a new

investment or a category group. The screen capture in Fig. 6.10 presents the ErGo Investments

functionality of adding a new investment (1) and a new category group (2).

Fig. 6.10. Adding a new category group and a new investment in the ErGo Investment module

An investment type is selected from the set of investments types available in the ErGo

system. Optionally, a user may define a new investment type. The screen allowing a user to

select an existing investment type is presented in Fig. 6.11. Two sets of investment types are

presented. In the “Available” table (1), there are investment types previously added to

the system by a user. Those investment types are described in a meaningful way.

In “Suggested by system” table (2), there are investment types discovered and recommended

by the ErGo Recomm module. Each investment type is described by level of recommendation

confidence of provided recommendation (3) and basic information concerning the number of

categories and subcontractors in the recommended investment type (4). Finally, a user may

select an investment type and display detailed information form the third column (5).

1

2

138

Fig. 6.11. A view of available and recommended investment types

In Fig. 6.12, a screen for viewing details of recommended investment type is presented.

Details of recommendation are visible in the panel on the left (1). The screen provides

possibilities to modify an investment type composed of activities (2), requirements and

contract templates (4), and to save it (5) in the ErGo system. Finally, selection of

the investment type is done in a collaborative manner. The discussion mechanism (6) built-in

the ErGo system supports the exchange of comments and suggestion of possible

modifications concerning the investment type.

1

2

3 4 5

139

Fig. 6.12. Adding recommended investment type to the ErGo system

In Fig. 6.13, a screen for creating an investment based on investment type (1) is presented.

Created investment is added to the list of investments visible in Fig. 6.10. Similarly, a created

category group is added to the list of category groups of a particular ongoing investment

process.

Fig. 6.13. Adding investment based on investment types

After the assignment of the investment type to the investment, the investment is monitored to

validate if its execution is conducted in line with the investment type specification. In Fig.

6.14, the investment details view is presented. Among others, the view provides information

concerning investment types assigned to the investments. Each investment type is described

with its name (1) and status of its execution (2). Status Satisfied in Fig. 6.14 means that all the

1

5

3

2

1

4

6

140

activities from the investment type were already executed in line with all the requirements

specified in the investment type. Waiting status means that execution of activities from

the investment type has not begun yet. Additional Action column (3) permits edition of

detailed information about the investment type.

Fig. 6.14. Viewing levels of satisfaction of investment types for the investment

ErGo MatchMaker

Each recommended investment type is an activity pattern. If an activity pattern is on

the abstract or the prototype level, the service-oriented summary, the service network schema

and the mapping functions of an activity pattern are further used by the ErGo MatchMaker

application as a set of requirements for the selection of subcontractors. ErGo MatchMaker

module is an implementation of the RMV method algorithm for instantiation of activity

patterns. ErGo MatchMaker is closely integrated with ErGo Organizations and ErGo Service

applications (selection and validation of organizations and services against classes of service

entities), ErGo ServiceNet module (validation of service requirements), ErGo KPI (definition

of KPIs), ErGo Investment Types (access to information concerning recommended investment

types) and ErGo Investments (launching the method and presentation of the results).

In ErGo MatchMaker subcontractors are selected in a collaborative way. Users select

organizations that can perform required activities, and then aggregates the chosen

organizations. Both single organizations and groups of organizations are discussed with other

collaborators. Internal discussions concern potential subcontractors and the terms of

the contracts to be negotiated with selected organizations. Internal discussions are followed by

external discussions in which the representatives of selected organizations are involved.

The goal of the external discussion is the negotiation of the final terms of the contract. When

2 1 3

141

the external discussion ends with a satisfying compromise, the contract is signed and its

representation is added to the ErGo Investments application.

Launching selection of subcontractors in the ErGo Investment application is presented in Fig.

6.15 (1).

Fig. 6.15. Launching selection of subcontractors from ErGo Investments

A screen capture of the ErGo MatchMaker application is presented in Fig. 6.16.

The presented panel permits users to discuss about a group of potential subcontractors.

On the top of the panel, the description of the group of activities to be contracted and the

associated development process are presented. In the middle of the panel, the table presents

the activities to be contracted and the organizations that are proposed as potential

subcontractors. In Fig. 6.16, only one organization, i.e., “Dekoratornia”, has been proposed as

a potential subcontractor for the building of a reinforced concrete slab (“Konstrukcja stropu

żelbetenowego” in Fig. 6.16). Negotiations are ongoing with selected organizations.

At the bottom of the panel, another proposition submitted by Jakub Flotyński is presented.

142

Fig. 6.16. ErGo MatchMaker

In the ErGo MatchMaker application, the subcontractor selection process is based on the set

of requirements defined in the investment type. As an example, an investment type for

the construction of residential buildings defines requirements concerning an architect,

electricians, and their relations. These requirements are captured in the service network

schema. The ErGo MatchMaker uses these requirements together with information coming

from the ErGo Organizations, ErGo Services and ErGo ServiceNet modules. As a result, it

evaluates suitability of service entities to classes of service entities. The set of organizations

best fitting classes of service entities together with evaluation of their conformance is

presented in Fig. 6.17. The ErGo system also evaluates the full set of organizations in terms

of conformance to service requirements (Fig. 6.18).

Fig. 6.17. Supported evaluation of assignment of a service entity to a class of service entity

143

Fig. 6.18. Supported evaluation of a VO variant

6.5. RMV Method Real Case Evaluation

The real case evaluation presented in this section encompasses activity sequence pattern

discovery, activity pattern identification and recommendation formulation.

In this section, first the analyzed company and its delivery process are shortly described.

The name of the company has been anonymized, so it is named Epsilon. Second, the set of

events recorded during delivery process instance executions is described. Events are recorded

by the warehouse management system. Initial exploration of events is used to provide more

detailed characteristics of the delivery process. It is shown that the delivery process shares

characteristics of the VO collaborative process. Then, the RMV method is applied to

the analysis of the event log. Activity pattern discovery and recommendation formulation is

presented for various parameter sets. The section is concluded with presentation of

recommendations that were given to Epsilon.

Epsilon company

Epsilon is a production company specializing in production of some physical items exported

to Western Europe. Its production volume is over 2 million per year. Epsilon employs more

than five hundred people.

The process mining project was conducted jointly with the Epsilon team that was led by

the Distribution and Warehouse Manager. The aim of the project was to provide insight into

warehouse processes performed in the company. The operation of the company’s warehouses

is supported by the Warehouse Management System (WMS). The WMS is used by both

storekeepers and management:

144

 The set of storekeepers’ activities include: delivery taking, organizing shipment,

transporting materials to production, and receiving final products from inventory;

the WMS records data associated with all the activities performed by storekeepers;

 Management staff uses WMS to monitor stock levels and supervise storekeepers work.

The WMS supports two main processes performed in the warehouse:

1. Delivery process – encompasses activities required to unpack trucks coming from

material suppliers, to group materials into pallets, to transport pallets from a delivery

line to the warehouse and to the production lines;

2. Shipment process – encompasses activities required to take the final product from

the production lines to the warehouse and send them to the client or to an external

warehouse.

The prototype implementation of the RMV method was validated based on data collected in

the WMS during the execution delivery process instances.

In the warehouse, all the materials are organized in pallets. A pallet is the smallest storage and

transport unit. Pallets are stored in the warehouse before being forwarded to the production

lines. One delivery process instance refers to a number of created and transported pallets and

a number of various materials. Materials are categorized into families, which are material

types. There are 80 various material families.

Pallets are transported among delivery lines, the warehouse and production lines by 60

storekeepers and quality department employees. The work is conducted on three shifts, 24

hours per day except weekends. Warehouse employees are divided into three not disjunctive

groups:

1. Unpacking group – responsible for unpacking incoming trucks and moving pallets to

the warehouse;

2. Production group – responsible for delivery of pallets from the warehouse to

the production lines;

3. Quality group – responsible for validation of materials quality.

Assignment of employees to groups changes from a shift to another. A person that is not

assigned to a particular group should not performed activities assigned to that group,

e.g., storekeepers assigned only to the production group should not unpack incoming trucks.

The use of the WMS in warehouse management requires an employee to use mobile scanner

to scan the bar code available on the pallet before performing any activity referring to

the pallet. The WMS keeps track of pallet life cycle and associates each scanned bar code

with an appropriate activity. For instance, once the pallet is scanned in delivery (Pallet in

delivery activity) the next recorded activity instance must be Pallet on fork and finally Pallet

resting. This sequence refers to moving a pallet from a delivery line to the warehouse.

Activities are performed also using the WMS web interface, e.g., Delivery volume change

activity can be performed only using web interface.

Various activity instances require storekeepers to use various services provided by the WMS.

Services are provided by various WMS modules. Some services available in the WMS are

provided by more than one WMS module, e.g., delivery details are retrieved from both

Delivery module and Purchase module. Redundant functionality is a consequence of ongoing

integration of various systems used in the company.

145

The process involves 17 activities:

1. Pallet on fork – transporting a pallet among the delivery lines, the warehouse and

the production lines;

2. Pallet resting – putting a pallet in the storage area in the warehouse;

3. Pallet created – registering a new pallet in the WMS;

4. Quality check – verification of materials quality; typically each delivery includes

many material families; for each material family, one pallet is randomly selected to be

inspected by the quality group;

5. Pallet on production – putting a pallet on a production line;

6. Delivery confirmation document – printing confirmation of delivery and giving it to a

supplier;

7. Label printing – printing a set of labels with bar codes for marking the pallets created

during the delivery;

8. Pallet update – updating information about a pallet in the WMS;

9. Delivery close – truck unpacking is completed; the delivery status in the WMS is

updated to Closed;

10. Delivery start – truck unpacking is started; the delivery status in the WMS is updated

to Started; all the created pallets are automatically assigned to the started delivery

process instance;

11. Pallet state: repack – repacking materials on the pallets; this activity is performed if a

pallet is destroyed or must be divided into smaller pallets;

12. Pallet state: banned – quality group forbids passing a pallet to the production lines;

13. Pallet state: ok – pallet quality is set to Satisfactory by the quality group; the activity

is performed once for each material family; note that one pallet per material family is

inspected, but information about the positive result of quality evaluation is stored

separately for each pallet from a delivery as a value of QualityControlResults pallet

attribute (cf. Tab. 6.6);

14. Delivery volume change – changing the volume of the delivery; the activity is

executed if the volume of the delivery is different from the planned volume;

15. Pallet state: open – pallet is marked as partially opened; the activity is performed if

the pallet has not been fully used on a production line and it is returned to

the warehouse as being partially used;

16. Pallet in delivery – transporting the pallet to a delivery section in the warehouse;

17. Pallet deleted – removing the pallet from the WMS.

Note that while activities Pallet on fork, Pallet resting, Pallet created, Pallet on production,

Pallet update, Pallet state*, Pallet in delivery, and Pallet deleted refer to one particular pallet,

other activities are associated with a delivery process instance. Each activity instance is

associated with one event in the WMS event log having the same name.

The de jure model describing expected execution of each delivery process instance is

presented in Fig. 6.19. The process is divided into five phases. In phase 1, the delivery

process instance starts with Delivery start followed by Label printing. In phase 2, materials

are divided into pallets. The Pallet created activity instance is executed for each pallet. Then

each pallet is transported (Pallet on fork activity instance) and placed in the warehouse

(Pallet resting activity instance). After all the pallets are moved to the warehouse, the delivery

is closed in phase 3. Two activity instances are executed in this phase: Delivery close and

Delivery confirmation document. In phase 4, one pallet per material family is inspected in

term of quality (Quality check activity instance). Activity instance Pallet state: ok is executed

to positively acknowledge quality of pallets with the inspected material family. In phase 5,

146

pallets are gradually transferred to the production lines by performing Pallet on fork and

Pallet on production activity instances. If materials from the pallet are not used at once for

production, the state of the pallet is set to open (Pallet state: open activity instance), and

the pallet is taken to the warehouse (Pallet on fork and Pallet resting activity instances) to be

reused in future. There are two conditions of delivery process instance completion:

(1) Delivery confirmation document is printed, and (2) all the pallets created in phase 2 are

fully utilized in production.

Delivery start

Label printing

Pallet created

Pallet on fork

Pallet resting

Quality check

Pallet state: ok

Pallet on fork

Pallet on production
Delivery confirmation

document

Delivery close
Pallet resting

Pallet state: open

Fo
r each

 p
allet

Fo
r each

 p
allet

Fo
r each

m

ate
ria

l fa
m

ily

1.

2.

3.

4.

5.

O
n

ce

O
n

ce Pallet on fork

Fig. 6.19. Expected execution of the delivery process instance

Note that six activities are not presented in Fig. 6.19: Pallet update, Delivery volume change,

Pallet in delivery, Pallet state: repack, Pallet state: banned and Pallet deleted.

These activities do not appear in the proper execution of a delivery process instance.

Nevertheless, they can appear at any stage of an improper or exceptional delivery process

instance execution.

Analysis scope

Epsilon company deals with the problem of low efficiency of a warehouse operation, where

the efficiency is measured by:

1. Percentage of pallets of materials inspected by the quality group – it is unacceptable

that some materials are forwarded to production either without quality check or with

multiple unnecessary quality checks; the cases of low quality of materials must be

reported to suppliers as complaints;

2. Number of pallets damaged during truck unpacking or transport of pallets to

production lines – this number should be as low as possible; in case of pallet damage,

the damaged pallet should be handled according to a special procedure;

3. The amount of time needed to unpack a truck and the average time that pallets with

materials are stored in the warehouse – the expected times are provided in

the warehouse procedure;

147

4. Conformance with good practices formulated by the management staff based on long

time experience and observation of the warehouse operation – each nonconformance is

perceived as an error in storekeeper work.

To increase efficiency of warehouse operation, Epsilon aims at identification of storekeepers,

storekeeper groups, shifts and their practices that influence efficiency of warehouse operation

in both positive and negative ways. Such identification would be used to eliminate inefficient

teams and behaviors and to promote good ones.

To limit the scope of the analysis, a set of questions concerning the delivery process was

asked by the Distribution and Warehouse Manager. Questions concerning five key aspects of

the delivery process are presented in Tab. 6.5.

Tab. 6.5. Five key aspects of the delivery process

l.p. Aspect Questions

1. Quality

assurance
 How to minimize the time and number of activities required to

handle complaints?

2. Pallet damage How to minimize the number of damaged pallets?

 Which employees are involved in a higher number of damaged

pallets?

 How to reduce the number of printed and unused labels?

3. Process

performance
 How to lower the time required to unpacking a truck?

 How to reduce the overall delivery process instance execution

time?

4. Work

distribution
 Which shifts should be involved in execution of particular

activities?

 Should work be distributed equally among shifts or should shifts

be specialized in some sort of activities?

5. Conformance

to the de jure

model

 What are frequent practices that do not follow the de jure model?

The analysis was performed by applying the RMV method to the WMS event log.

As mentioned in Section 5.6, a right set of parameters for both activity pattern discovery and

recommendation formulation must be selected basing on knowledge concerning: (1) business

domain, and (2) basic characteristics of the data set identified at the earlier phases of

the method. Thus, the analysis was performed in close collaboration with the Distribution and

Warehouse Manager.

The search for relevant activity patterns was done using the if-cause approach,

i.e., assumptions concerning the RMV method parameters were provided by the Distribution

and Warehouse Manager. As a result, the RMV method was applied to the event log multiple

times using various parameter sets. The application of the RMV method to the event log with

one particular set of parameters is further referred to as an experiment. Each experiment led to

identification of different activity patterns and formulation of recommendations. The most

relevant modifications in parameter sets included various definitions of: context class

function, context distance function, functions mapping recom_index and nonrecom_index

values and required activity patterns lengths.

148

WMS event log

The set of attributes associated with events in the WMS event log is presented in Tab. 6.6.

The AttributeName column presents event attribute names. Description of each attribute is

given in the Description column. The Attr.Type column informs if an attribute is associated

either with a service provider, or a service consumer, or the service interface

(cf. Section 5.4.3). For clarity, example values of all the attributes are presented in

the Domain example column. Not all the events have the same set of attributes. The set of

events sharing a particular attribute is presented in the Events column, e.g., PalletNo attribute

is stored only for events referring to a particular pallet being created, updated, moved, etc.

There are 18 attributes used in various phased of the RMV method. Note that not all attributes

are used in the same manner:

 Attributes DeliveryID and ActivityInstanceID are used for grouping events into

delivery process instances; attributes are not associated with any service entity;

 Timestamp and Trans attributes are used only to determine the temporal relations

among activities represented by events; attributes are not associated with any service

entity;

 Remaining fourteen attributes are used as attributes of activity instance descriptions

during activity pattern discovery.

Attributes accounting for event context are presented in Tab. 6.7. Note that Shift and

Warehouse event attributes are used both as context attributes and regular event attributes.

The set of attributes stored in the WMS event log, which describe each delivery process

instance, is presented in Tab. 6.8. Values of Resource, AdminName, SupplierName,

PalletArticles are anonymized. Also final product names are anonymized.

Tab. 6.6. Event attributes

l.p. Attribute name Description Events Attr. type Domain example

1. DeliveryID Delivery process instance identifier All - DS0000007337

2. ActivityInstanceID Activity instance identifier All SI 2435

3. Activity Activity name All SI Pallet on fork, Delivery close

4. Resource Storekeeper name All SC mman, mrob

5. ModuleName WMS module name All SP,

social-SI

Obsolete, Purchase, Control,

Management, Delivery,

Inventory, Complaint

6. Trans Event type (cf. Section 5.4.3) All - complete

7. Group Stakeholder group All social-SC Unpacking, Production, Both

(Unpacking and Production),

Quality

8. Shift Stakeholder shift All social-SC Morning, Afternoon, Night

9. Timestamp Time of the activity instance

execution

All SI 2013/01/02 08:55:27.247

10. PalletNo Pallet identifier Pallet in delivery, Pallet on fork, Pallet resting,

Pallet created, Pallet on production, Pallet

update, Pallet state: *, Pallet deleted

service

Entity-SI

799000000001559562

11. PalletArticles Material families on pallet Pallet in delivery, Pallet on fork, Pallet resting,

Pallet created, Pallet on production, Pallet

update, Pallet state: *, Pallet deleted

service

Entity-SI

M1, M2

12. Warehouse Warehouse name All service

Entity-SI

Base warehouse, Warehouse in

ddp Ociąż., Warehouse sewing

13. Recommendation

Done

Information whether the

recommendation generate by the

WMS concerning storage place for

the pallet was followed

Pallet resting, Pallet on production service

Entity-SI

True, False

14. QualityControl

Results

Approved in terms of quality Quality check service

Entity-SI

1; 0

15. Damaged Pallet put in the storage area

reserved for the damaged pallets

Pallet resting service

Entity-SP

1; 0

16. System Name of the system All service

Entity-SP

WMS

17. AdminName Name of system admin on the time All service krys, phan

150

of activity instance execution Entity-SP

18. Privilages Security rights assigned to user All social-SP manager

Tab. 6.7. Context attributes of activity instances

l.p. Attribute name Description Activities Domain example

1. Month Name of the month All March

2. StockLevel Warehouse stock level in percent Pallet created, Pallet deleted, Pallet on

production

71.87%

3. Shift Stakeholder shift All Morning, Afternoon, Night

4. Warehouse Warehouse name All Base warehouse, Warehouse in DDP, Warehouse

sewing, Production-matrasses, Production-

sewing, Quarantine

Tab. 6.8. Delivery process instance attributes

l.p. Attribute name Description Domain example

1. ProcessResult Delivery process instance output; the delivery process instance following de

jure process from Fig. 6.19 has output OK; other possible outputs are:

Complaint, Deleted, Disposal

OK, Deleted, Disposal, Complaint

2. PurchaseValueDPS The monetary value of the delivery in PLN 500 000, 320 000

3. ArticlesOrdered Ordered materials with quantity in format: material family/quantity A1/80, A2 16002000/112

4. ArticleDelivered Delivered materials M1, M2

5. ArticleVolume Quantity of delivered materials 80; 112

6. SupplierName Supplier name A; B

8. OrderMonth Delivery month March

10. NoDamagedPallets Number of pallets damaged during the delivery process instance execution 0; 11.5

11. PalletVsLabelQty Depending on percentage of printed labels that were used with pallets, use of

labels is categorized into five categories

Full, Fine, Medium, Small, Unacceptable

12. LablesToErase Number of pallet labels to utilize 8

Delivery process analysis was performed on the basis of 152 523 events associated with 1448

delivery process instances performed during 6 months of the warehouse operation. During

this time, 26 641 pallets were delivered to the warehouse and forwarded to the production

lines. The average duration of a delivery process instance was 4 days 17 hours 45 minutes.

The delivery process has spaghetti-like structure (cf. Section 2.1). 1648 delivery process

instances were executed according to 1590 variants. This means that execution of a process

instance is not fully determined and almost each process instance is executed in a unique way.

Distribution of numbers of events among variants is presented in Fig. 6.2013. Values on

the horizontal axis represent the number of events. Values on the vertical axis represent

number of delivery process instances. Average number of events per delivery process instance

is 105, but 46% of delivery process instances have less than 50 events.

Fig. 6.20. Distribution of number of events among process instances

Complexity of the delivery process is confirmed by the process presented in Fig. 6.2114 –

rectangles represent activities, arrows represent temporal relations among activities.

The complicated structure of the process map proves its spaghetti-like character. The process

map presented in Fig. 6.22 is yet more complex. Here each rectangle corresponds to an

activity performed by a particular storekeeper using a particular WMS service – the number

of rectangles is much bigger, i.e., there is a large diversity in assignment of actors and WMS

system modules to each activity instance.

Fig. 6.21. Process map: rectangle corresponds to activity

13 The figure is generated using Fluxicon Disco software, http://www.fluxicon.com/disco/
14 The figure is generated using Fluxicon Disco software, http://www.fluxicon.com/disco/

10 170 90 50 110 230 270 310 350 390

76

101

12

25

152

Fig. 6.22. Process map: rectangle corresponds to a triple: activity name, storekeeper, WMS module

Execution of all the recorded delivery process instances involved 55 persons and 8 WMS

modules. Frequency of activities recorded in the WMS event log is presented in Tab. 6.9.

Tab. 6.9. Frequency of activities in the event log

l.p. Value Frequency Relative frequency

1. Pallet on fork 48077 31.52%

2. Pallet resting 30816 20.20%

3. Pallet created 26806 17.58%

4. Quality check 17428 11.43%

5. Pallet on production 15614 10.24%

6. Delivery confirmation document 3934 2.58%

7. Label printing 3187 2.09%

8. Pallet update 1540 1.01%

9. Delivery close 1448 0.95%

10. Delivery start 1448 0.95%

11. Pallet state: repack 1433 0.94%

12. Pallet state: banned 274 0.18%

13. Pallet state: ok 152 0.10%

14. Delivery volume change 107 0.07%

15. Pallet state: open 107 0.07%

16. Pallet in delivery 76 0.05%

17. Pallet deleted 76 0.05%

Despite the fact that the delivery process is performed within one organization,

the organization of the warehouse operation follows the characteristics of VO

(cf. Sections 2.1, 2.2, and 5.4.1):

 The set of VO members includes: storekeepers, quality department employees, groups

and shifts of storekeepers and quality department employees;

 The set of service interface descriptions used by the VO members is the set of services

provided by the WMS system modules that are interchangeably used during execution

of activities;

 The set of relations among the VO members encompasses: (1) relations among people,

i.e., relations of belonging to a particular day, afternoon or night shift, and relations of

belonging to the unpacking, production or quality group; (2) relations among services,

i.e., relations of being provided by the same WMS module;

153

 Collaboration is guided by the delivery process having all the characteristics of a VO

collaborative process:

o Large diversity in assignments of storekeepers and WMS module services to

activity instances;

o Unstructured character of the delivery process;

o The set of storekeepers and services as well as their roles change during

delivery process instance executions;

o Similar instances of a delivery process are interrelated;

o The delivery process has unpredictable and emergent character.

 Virtual organization members are largely autonomous, separately managed, differently

situated in the Epsilon organizational structure, have heterogeneous culture, social

capital and goals;

 Collaboration within VO is performed on demand of the Production Department that

is a VO client.

Thus, the problem of identification of storekeepers, storekeeper groups and shifts,

investigated by Epsilon that would increase efficiency of delivery process is indeed

the problem of partner and service selection for VO. Consequently Epsilon company, like

SOVOBE, provides technical and organizational infrastructure supporting collaboration of

such VO.

Experiments

Further in this section, four experiments are presented. Experiments A and B refer to

discovery of activity patterns. Experiments C and D refer to recommendation formulation.

This representative set of experiments permits to analyze the impact of parameter values on

the quantity of results generated by the RMV method. As an example, one of discovered

activity patterns is described in detail. The section is concluded with the list of business-level

recommendations formulated by interpretation of identified activity patterns. These

recommendations address questions from Tab. 6.5. They were successfully applied by

the production company Epsilon to improve the delivery process.

Experiments A and B

Parameter values used in Experiment A and Experiment B are presented in Tab. 6.10.

The parameter sets are subsets of parameters presented in Section 5.6. The set of parameters

used in Experiment A supports discovery of the activity patterns having the largest possible

number of activity descriptions. The parameters set in Experiment B aims at discovery of a set

of activity patterns having high diversity of contexts. Discovered activity patterns are then

shorter, but they support more parts of delivery process execution.

Values of Duration constraint, Gap constraint and Maximum timestamp constraint

parameters are the same in both Experiments A and B.

Values of other parameters in Experiment A state that:

 The analyzed set of activity instance description attributes encompasses all the 14

relevant attributes from Tab. 6.6;

 The minimum number of attributes that must describe an activity in an activity pattern

is set to 4; this constraint makes the discovered activity patterns more information rich

and meaningful in comparison with activity patterns with a smaller number of

154

attributes in activity descriptions; this constraint reduces the number of discovered

activity patterns;

 Only activity patterns having no less than 15 activity descriptions are considered;

 Presented results are discovered for required support level equal to 0.2;

 No constraint is set on maximum sequence length;

 No constraint is imposed on attribute names that must be present in each activity

description from an activity pattern.

In Experiment B:

 Maximum sequence length is set to 25; this constraint imposed on maximum sequence

length boosts the number of discovered activity patterns;

 Two activity instance attributes are removed from the set of analyzed attributes:

RecommendationDone and AdminName attributes – the set of attributes is limited to

12;

 The set of obligatory attributes for each activity pattern is set to identifiers of service

consumer (SC), service provider (SP) and service interface (SI); only activity patterns

with defined full set of actors should be discovered;

 The minimum number of activity instance description attributes is increased to 6;

 The required support is increased to 0.25.

Tab. 6.10. User-defined parameters for Experiments A and B

l.p. Parameter name Experiment A Experiment B

Event attributes

1. Scope and types of activity instance description

attributes

14 12

2. Minimum activity instance description length 4 6

3. Obligatory attributes - SI, SP, SC

Constants

1. Duration constraint 1 209 600 000 ms

(336 hours)

1 209 600 000 ms

(336 hours)

2. Gap constraint 172 800 000 ms (48 hours) 172 800 000 ms (48

hours)

3. Maximum timestamp constraint 2013/05/26 23:59:00.000 2013/05/26 23:59:00.000

4. Minimum sequence length constraint 15 15

5. Maximum sequence length constraint - 25

6. Required activity pattern support level 0.2

(290 process instances)

0.25

(262 process instances)

In Experiment A, the total number of discovered closed activity patterns is 1079.

The maximum support for an activity pattern is 0.33. There are 53 different activity patterns

having the maximum support. There are 12 maximum activity patterns with maximum length

of 47 activity descriptions. The highest support of maximum activity pattern is 0.2. Average

pattern length is 24.8.

In Experiment B, the total number of discovered closed activity patterns is 1360. This number

is larger than the number of activity patterns discovered in Experiment A, but activity patterns

are shorter on average. Average pattern length is now 16.8. The maximum support for activity

pattern is 0.3. There are 71 different activity patterns having such support. There are 21

activity patterns having maximum allowed length. The highest support of the maximum

activity pattern is 0.24.

155

Experiments C and D

Values of parameters for Experiments C and D are presented in Tab. 6.11. In particular,

the parameterization of the RMV method in Experiments C and D included definition of

the following functions: context distance functions, function mapping context to context class,

function mapping recom_index and nonrecom_index values. The functions used in

the Experiments C and D are simple but powerful enough to formulate relevant

recommendations. In other experiments that are not described in this section due to limited

space, many more advanced functions were used to answer Distribution and Warehouse

Manager questions.

Tab. 6.11. User-defined parameters for experiment C and D

l.p. Parameter name Experiment C Experiment D

Event attributes

1. Activity instance context scope All All

2. Process instance attributes scope All, ProcessResult All, ProcessResult

Functions

1. Context distance function Function name: eval Function name: eval

2. Function mapping context to context

class

Function name: context_C Function name: context_D

3. recom_index and nonrecom_index

calculation

Function name: max_dur

Cost attribute: Timestamp

Function name: max_dur

Cost attribute: Timestamp

Constants

1. Classification group size 300 100

2. Delta 300 000 (5 min) 300 000 (5 min)

3. Minimum accepted sensitivity 30% 30%

In Experiments C and D, the set of activity instance context attributes includes all the context

attributes from Tab. 6.7. The set of attributes describing process instances includes attributes

from Tab. 6.8. The name of the outcome attribute is ProcessResult.

In Experiments C and D, the context distance function eval is the same. The function

compares elements of context class and context (cf. Section 5.4.2) using a subfunction for

each element. The set of subfunctions for each context element (PID, EC, H, SE, S –

cf. Section 5.4.2) is as follows:

 PID – if all the context element constraints from a context class referring to attributes

of the process instances are satisfied, the subfunction returns 0, otherwise 1;

 EC – if at least half of the event context element constraints from a context class

referring to event attributes are satisfied, the subfunction returns 0, otherwise 1;

 H – if all the events indicated in a context class already appeared in the partial trace of

the process instance, the subfunction returns 0, otherwise 1;

 SE – if all the constraints concerning the frequency of appearance of actors are

satisfied, the subfunction returns 0, otherwise 1;

 S – this context element is ignored in the analysis, the subfunction always returns 0.

Values returned by the subfunctions are then summarized. The value of the eval function

returned for a given context class and the activity pattern context is between 0 and 4, where

the smaller the value the more similar context and context class are.

In Experiments C and D, values of recom_index and nonrecom_index are calculated based on

the max_dur function. Function max_dur takes a delivery process instance as an argument and

156

returns the time that was required to execute the delivery process instance. Calculation is

based on Timestamp attributes of each event. Having a set of activity pattern contexts enabled

for the context class, the value of recom_index is calculated as a sum of max_dur function

results calculated for all the delivery process instances supporting the activity pattern in

the set of enabled activity pattern contexts. Similarly, the value of nonrecom_index is

calculated as a sum of max_dur function results returned for all the delivery process instances

that support activity patterns different from the activity pattern in the set of enabled activity

pattern contexts.

In Experiments C and D, the value of delta parameter is set to 5 minutes. Minimum accepted

sensitivity is set to 70%.

Experiments C and D are different in terms of functions denoting context class for a given

context, and classification group size.

In Experiment C, the context_C function transforms context of running delivery process

instance to a very general context class. In Experiment C, the recommendation was requested

for the following context co:

co ={ PID =

EC =

H =

SE =

S =

 }

The context_C function transforms attributes associated with each context element (PID, EC,

H, SE, S) to context constraints and maps the context co to the following context class :

 ={ PID =

EC =

H =

SE =

S = }

157

Note that during mapping, some attributes of the context elements are ignored and all

the context element values are replaced with predicates.

Finally, in Experiment C, the classification group size is set to 50, i.e., only activity instances

appearing in one of 50 contexts that are the most similar to the context class according to

the value of the eval function are considered for recommendation.

In Experiment D, the function mapping context to context class and classification group size

are changed. Function context_D maps context co to the following context class :

 ={ PID =

EC =

H =

SE =

S = }

Note that the context class more precisely defines constraints on activity pattern

contexts than the context class from Experiment C. The classification group size is

limited to 100. Only activity instances appearing in one of 100 contexts that are the most

similar to the context class are considered for recommendation.

To determine the set of enabled activity pattern contexts in both Experiments C and D, 3022

different activity pattern contexts were compared with the context classes. This means that on

average, each activity pattern appears in 6 contexts.

In Experiment C, on the basis of values returned by the context_sim funtions, 300 activity

patterns were classified as enabled. These 300 contexts correspond to 196 activity patterns

that were further analyzed for recommendation. The highest number of contexts from the set

of enabled contexts that belong to one activity pattern was 25. On the other hand, in the set of

enabled contexts, one context was common for 18 enabled activity patterns. From the set of

196 activity patterns, 31 were excluded from being considered for recommendation due to

their sensitivity lower than assumed minimum. Maximum recorded values of sensitivity and

specificity were 65% and 54% respectively. The minimum recorded weighted context

distance was 0.5. The values of recom_index and nonrecom_index for the activity pattern with

the highest sensitivity value were 16 days and 12 days, respectively. This means that it is not

worth to follow this activity pattern because recom_index is greater than nonrecom_index.

Thus, the benefit of following this activity pattern is negative. The largest calculated benefit

from following an activity pattern, calculated as a difference between recom_index and

nonrecom_index, was: 5 days. The activity pattern with the largest benefit has, however,

higher weighted context distance.

158

In Experiment D, the number of activity patterns that appear in the set of 100 enabled contexts

is 100. Thus, each enabled activity pattern has a different enabled context, but all the contexts

are very similar to each other. This is the result of more strict constraints used in this

experiment (cf. Tab. 6.11). Minimum recorded weighted context distance is 1,1. In the set of

enabled activity patterns, the differences between potential benefits are very small. On

the other hand, there is large diversity in sensitivity and specificity values of enabled activity

patterns.

Final findings

An example of a discovered activity pattern is presented in Fig. 6.23. The activity pattern was

enabled for context class . For the sake of simplicity, relatively small activity pattern is

presented in Fig. 6.23, i.e., constraints used during activity pattern discovery concerning

minimum sequence length are dropped. The activity pattern encompasses six activity

descriptions I, II, III, IV, V, VI. Each activity description has one service description assigned.

Elements of each service description have classes of service entities assigned coming from

the service network schema. Note that not all the elements of service descriptions have classes

of service entities assigned. Some classes of service entities define characteristics of service

entities, e.g., the class of service interface assigned to the service description of activity

description I means that a service provider required for execution of this activity must be

the WMS system module administrated by rros. There is a set of empty classes of service

descriptions that do not impose any requirements on service entity attributes but, on

the contrary, require some particular service relations, e.g., service consumer from the activity

description I must be the same unpacking group and day shift as the service consumer from

the activity description II. Majority of classes of service entities from the service network

schema have service entities assigned from the service network. Note that service

requirements denoted and service relations denoted SP indicate provides/is provided by

relation among service interfaces and service providers. Note an interesting case of activity

description III. Service entities required for execution of activity III are unknown. The only

known thing about activity III is that it follows activity II, proceeds activity IV, and a service

consumer assigned to activity III should be in group Both as service consumer kkuj assigned

to activity V. The activity pattern has the following credibility characteristics:

 Difference between recom_index and nonrecom_index values is (cdif value): 40 hours

(2 days 16 hours);

 Sensitivity: 75%;

 Specificity: 71%;

 Weighted context distance: 0.5;

 Support: 31%;

The activity pattern characteristics confirm that this activity pattern is credible and should be

followed.

I III IVII

Te
m

po
ra

l
gr

ap
h

SCA SIA SPA SCB SIB SPB SCC SIC SPC SCD SID SPD

PalletArticles:M1

Se
rv

ic
e

d
es

cr
ip

ti
o

ns

Se
rv

ic
e

N
et

w
or

k
Sc

h
em

a

Se
rv

ic
e

N
et

w
or

k

V VI

SCE SIE SPE SCF SIF SPF

ModuleName:
Management

ModuleName:
Delivery

ModuleName:
Inventory

Resource:
mman Resource:

mrobResource: kkuj

Activity: Delivery
start

Activity: Label
printing

Activity: Delivery
close

Activity: Delivery
confirmation document

Activity:
Quality check

PalletArticles: M1 QualityControl
Results: 0

System: WMS

Privilages: storekeeper

System: WMS
AdminName: rros

System: WMS
Privilages: Manager

Fig. 6.23. An example of a discovered activity pattern

Identification of the above activity pattern results in the following recommendation:

 If the aim is to limit the time required for the overall delivery process execution and if

the delivered materials are M1, the process instance execution should be started by

mman employee using Delivery start service provided by the Inventory module of

the WMS system. The second activity should be executed using Label printing service

provided by the Inventory module. The activity should be followed by some activity

performed by the service consumer coming from the same Both group as service

consumer kkuj using Delivery close service in execution of activity V. For activity IV,

Delivery close service should be provided by the Delivery module of the WMS

system. Data associated with this activity should be saved in the database using

storekeeper security role. Activity IV should be followed by Kkuj service consumer

using Quality check service provided by the Management module to execute this

activity. Kkuj is in unpacking group together with mrob service consumer from

activity VI. Activity VI requires the use of Delivery confirmation document service

provided by the unknown WMS module.

In a similar way other business-level recommendations were formulated and presented to

company Epsilon. Note that the above example of recommendation is very detailed.

In practice, after the analysis of numerous activity patterns, recommendations are generalized

and simplified to be applicable in the warehouse operation, i.e., too detailed recommendations

are difficult to comprehend and thus to apply by the Distribution and Warehouse Manager.

The subset of generalized recommendations given to company Epsilon is presented in Tab.

6.12.

Tab. 6.12. Recommendations formulated using the RMV method

l.p. Aspect Questions

1. Quality

assurance
 If complaints concern M2, M3, M1 materials, it is recommended to

involve msob, hwit, mmen, kgrz storekeepers to handle these

complaints together on a day shift;

 If complaints concern M4, M5, M6 materials, it is recommended to

involve hwit, mmen, ptur, iszu, mbaj, mkuj storekeepers to handle

these complaints together on a day shift;

2. Pallet damage It is always recommended not to include ptur storekeeper in

the production group on the night shift;

 It is always recommended to limit the number of storekeepers

involved in the delivery process instance execution;

 If the Pallet state: banned activity is executed, it is recommended

to execute Pallet on fork and Pallet resting activities by mmar or

mmah storekeepers, where the pallet is put on storage area reserved

for damaged pallets;

 3. Process

performance
 If the delivery process instance is executed on a night shift, the

Quality check should be performed after the truck is fully

unpacked; moreover, all the pallets should be checked within one

shift by people form the quality group;

 If the delivery process execution is performed on the night shift

with high stock levels, it is not recommended that activities are

executed by storekeepers assigned both to the unpacking and

production groups;

161

 It is always recommended to execute phases 3 and 4 of the delivery

process in parallel;

 It is always recommended to eliminate multiple quality checks

performed by the quality group throughout the delivery process

instance execution;

 It is always recommended to eliminate delivery confirmation

document printing at the early stages of delivery process instance

execution;

 It is always recommended to eliminate multiple executions of

the Delivery close activity within one process instance;

 It is always recommended to perform Quality check of all

the materials before moving any pallet to a production line;

4. Work

distribution
 If the delivery process instance is executed on an afternoon or night

shift and if the delivery concerns materials used in production of

product type X, it is recommended not to put jsaw and mkuj

storekeepers on the same shift;

 There is an unwanted frequent activity pattern including the

following sequence of activities: Pallet created, Pallet on fork,

Pallet resting, Pallet on fork, Pallet in delivery, Pallet on fork,

Pallet rest; this pattern indicates that the pallet is unnecessarily

taken from a delivery line to the warehouse and later returned to the

delivery line to be finally transported to the warehouse for the

second time; the pattern appears independently from the context.

5. Conformance

to de jure

model

 Unwanted execution of the Delivery volume change activity

typically takes place if the delivery is associated with WZX supplier

and the number of LabelsToErase is greater than zero; the Delivery

volume change activity is typically performed after the Quality

Check activity.

Note that recommendations include aspects concerning service relations that should appear

among storekeepers (e.g., assignment to a group or shift), characteristics of actors (e.g.,

material families transported on pallets), set of activities to be executed, assignment of actors

to activities, information concerning process instance characteristics, activities proceeding

activity patterns execution and finally potential benefit of following the recommendations.

Note also that some discovered activity patterns and formulated recommendations are not

limited to a particular context.

Discovered activity patterns and formulated contextual recommendation helped the Epsilon

company in identification of storekeepers, storekeeper groups, shifts and their practices that

increase or reduce efficiency of the warehouse operation. RMV method results were used in

further investigation of reasons explaining the appearance of indicated activity patterns.

This led to a number of actions undertaken by the company including: reassignment of

responsibilities among warehouse employees, changes is distribution of work among shifts,

trainings of storekeepers and quality department employees, and WMS system re-

configuration.

162

7. Conclusions

The Recommendation Method for Virtual Organizations RMV presented in this dissertation

provides a solution to the problem of computer support for unstructured, emergent and

unpredictable VO collaborative processes through recommendations of activity patterns based

on contexts.

Four ideas are the basis of the RMV method. First, VO collaborative event logs contain

information about interactions among collaborators that appear during executions of various

VO collaborative process instances. Second, contexts influence behavior of collaborators.

Third, frequently repeatable collaborators’ behavioral patterns, called activity patterns, can be

discovered through analysis of data stored in the VO collaborative events logs.

Forth, discovered activity patterns can be evaluated as good or bad practices and then used in

other instances of VO collaborative process instances to improve their efficiency.

The RMV method is composed of four parts: activity sequence pattern discovery method,

activity pattern identification method, recommendation formulation method and activity

pattern instantiation method. Each of these methods offers a value by itself, but combined

together constitute an approach that provides efficient support for execution of VO

collaborative process instances and satisfies nine requirements for computer support for VO

collaborative processes presented in Section 5.1: (1) guidance for process instance execution,

(2) support for conformance analysis, (3) support for adaptation and flexibility, (4) descriptive

model, (5) computer supported approach, (6) collaborative wisdom, (7) reusability,

(8) social aspect and context, and (9) continuous instantiation.

The RMV method maximizes the scope of guidance for VO collaborative process execution

by recommendation of activity patterns suitable for the current context of VO collaborative

process (requirement 1). Though the RMV method generates a list of best matching activity

patterns, the final selection of an activity pattern to be included in VO collaborative process

instance execution is up to a group of selecting collaborators (requirement 5). Activity

patterns include not only specification of partially ordered set of activities to be performed as

the next ones in the VO collaborative process instance, but also indicates expected relations

among service entities, their characteristics and assignment to activities (requirement 8).

A recommendation may be requested at any moment of VO collaborative process instance

execution. The recommendation concerns the set of activities suitable for the current context.

Once context changes and a new recommendation is requested, the set of presented

recommendations is in general different (requirement 8). Such context-awareness supports the

adaptation of the VO collaborative processes to changing environment. Due to context

163

awareness and the fact that activity patterns encompass a set of activities to be performed in

the nearest future, the RMV method allows collaborators to change planned set of activities if

it is required by a context change. Thus, the RMV method offers user guidance at little cost of

flexibility of a VO collaborative processes instance execution (requirement 3).

Recommended activity patterns are descriptive, not prescriptive (requirement 4), i.e., activity

patterns do not represent assumptions concerning collaborators’ behavior, but capture real and

actual repeatable patterns of collaborators’ behavior. Activity patterns discovered in one VO

collaborative process instance can be reused in other VO collaborative process instances by

other collaborators (requirement 6 and 7). Recommendation mechanism encompasses

recommendation monitoring which validates the willingness of collaborators to follow

recommendations (requirement 2). Outcomes of recommendations monitoring are used during

formulation of the next recommendations. Activity patterns that had been recommended to the

group of collaborators, but were not followed by the group, are excluded from the future

recommendations. Similarly, if monitoring captures the fact that the group of collaborators

consequently follows activity patterns discovered in VO collaborative process instances

executed without their participation, such activity patterns are promoted during

recommendation formulation (requirement 6).

Finally, the RMV method supports continuous instantiation of VO collaborative processes

such that the selection of service entities is performed throughout the VO collaborative

process instance execution every time a particular activity patterns is selected to be followed

(requirement 9). Selection of collaborators and services is based on criteria relevant to

collaborative processes including collaborator and service features and service

requirements (requirement 8).

The RMV method goes beyond the existing methods of recommendation based on process

mining by providing recommendations for processes that are unstructured, emerging and

unpredictable. Moreover, recommendation does not encompass information only about one

activity that should be executed as the next one, but it encompasses a set of partially ordered

activities enriched with information concerning desired collaborators, their features and

character of service relations among them.

The application of the RMV method to the real case data presented in Section 6.5 shows that

the RMV method permits formulation of non-trivial, accurate recommendation that are very

relevant for a given business context and a particular VO collaborative process. Classes of

service entities and service requirements discovered as a part of each recommended activity

pattern provide credible information concerning success factors guiding collaboration.

Knowledge concerning these factors leads to selection of service entities that are able to

execute VO collaborative process instances more efficiently.

164

The main achievements of this dissertation are the following:

 Identification and evaluation of existing partner and service selection methods in

the area of collaborative networked organizations and service-oriented architecture in

terms of application to VO collaborative process instantiation (Section 2);

 Identification and evaluation of existing activity recommendation methods in

the fields of process-aware information systems, context-aware recommender systems

and process mining (Section 3 and 4);

 Formal definition of VO collaborative process, activity pattern, activity pattern context

and collaborative process event log (Section 5.4);

 Development of the activity pattern discovery and identification method that permits

extraction of activity patterns and their contexts from a collaborative event log

maintained by a process-aware information system (Sections 5.5.1 and 5.5.2);

 Development of the method of formulation of recommendations of activity patterns

for VO collaborative process executions, where a recommendation is based on

the current context of VO collaborative process and activity pattern contexts

(Section 5.5.3);

 Development of the activity pattern instantiation method that permits selection of

missing actors and service interfaces for activity patterns discovered on the abstract or

prototype level; the selection of partners and services is performed within SOVOBE

constantly throughout the VO lifecycle (Section 5.5.4);

 Implementation of a prototype of the RMV method composed of the Operational

Support Service, Recommendation Manager, Recommendation Monitor, MatchMaker

Module, Process Miner Module, Event log Module and Operational Support for

Clients Module (Section 6.1);

 Example integration of the prototype of the RMV method with the process-aware

information system named ErGo used to support collaboration in the construction

sector (Sections 6.2, 6.3 and 6.4);

 Example application of the RMV method to analysis of event log data from a

production company, leading to non-trivial, valuable recommendations for

Distribution and Warehouse Manager (Section 6.5).

The RMV method is characterized by two important features: extendibility and independence.

Its extendibility relies on flexible definition of a set of attributes and functions used during

activity pattern discovery and recommendation. Different sets of attributes useful in

a particular domain or application can be used to describe service entities, service relations,

and VO collaborative process instances event contexts. Sophistication of the functions is up to

the RMV method user. Such an approach permits both rough and very refined analysis of

event logs. The RMV method is independent of a particular type of VO collaborative process

or type of process-aware information systems. The RMV method can be applied to analysis of

any event log that follows the characteristics of collaborative event log. Such independence

makes the RMV method applicable to different collaborative process requirements and

different business environments. Besides application in the production company (Section 6.5),

it is currently under application to analyze document flow processes in Wielkopolska

Voivodship Office in Poznań.

Results described in this dissertation were partially presented during “Unleashing Operational

Process Mining” Daghstul seminar15 organized by the IEEE Task Force on Process Mining16,

15 “Unleashing Operational Process Mining”, Dagstuhl seminar,

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=13481

165

the World Business Congress organized by the International Management Development

Association (Paszkiewicz & Cellary, 2011), two IFIP Working Conferences on Virtual

Enterprises (PRO-VE) (Paszkiewicz & Picard, 2010) (Paszkiewicz & Picard, 2009),

the 6
th

 International Conference on Theory and Practice of Electronic

Governance (Paszkiewicz & Cellary, 2012), the 15th International Conference on Computer

Supported Cooperative Work in Design (CSCWD) (Paszkiewicz & Picard, 2011) and two

PhD Consortia organized during the Business Information Systems conference (BIS 2013)17

and East-European Conference in Advances in Databases and Information Systems

(ADBIS 2012) conference 18. The RMV method applications were also published in Journal of

Transnational Management (Paszkiewicz & Cellary, 2012) and two book chapters (Picard, et

al., 2014) (Picard, et al., 2010). The importance of social network analysis in business process

mining was demonstrated in (Paszkiewicz & Picard, 2013)

Discovery and recommendation of activity patterns opens new research directions. Interesting

is a possibility of analysis of mutual influence of social networks on process structures and

vice versa. This is possible as activity patterns discovered in the RMV method combine two

important perspectives on the process: control flow perspective and social perspective.

The analysis of mutual impact of interdependent process perspectives on each other is a new

and promising research direction that has not yet been explored. Works in this area require

extension of the RMV method. Such extension would include simulating and predicting

the influence of changes made in one perspective on the structure and characteristics of the

other perspective. Analyzed exemplary characteristics of social network perspective include

network resilience and integrity. Exemplary characteristics of control flow perspective include

process effectiveness or structures of dependencies among activities. Such method would be

an important step-ahead in analysis of team dynamics, selection and management of teams

and groups of organizations with potential application is various fields, including construction

process management and smart cities.

16 IEEE Task Force on Process Mining, www.win.tue.nl/ieeetfpm/
17 PhD Symposium co-located with 16th International Conference on Business Information Systems (BIS 2013),

http://bis.kie.ue.poznan.pl/16th_bis/phd2013.php
18 Ph.D. Consortium co-located with 16th East-European Conference in Advances in Databases and Information Systems,

http://adbis.cs.put.poznan.pl/call_phd_consortium.php

166

167

Bibliography

Aalst, W., 2004. Discovering Coordination Patterns Using Process Mining. Bologna, Italy,

Springer, pp. 49-63.

Aalst, W., 2006. Process Mining and Monitoring Processes and Services: Workshop Report.

Dagstuhl, Germany, Dagstuhl: Internationales Begegnungs- und Forschungszentrum für

Informatik.

Aalst, W., 2009. TomTom for Business Process Management (TomTom4BPM). Amsterdam,

The Netherlands, Springer-Verlag, p. 2–5.

Aalst, W., 2011. Process Mining. Discovery, Conformance and Enhancement of Business

Processes. : Springer.

Aalst, W., 2013. Service Mining: Using Process Mining to Discover, Check, and Improve

Service Behavior. IEEE Transactions on Services Computing, 6(4), pp. 525 - 535.

Aalst, W., De Beer, H. & Van Dongen, B. F., 2005. Process Mining and Verification of

Properties: An Approach based on Temporal Logic. Agia Napa, Cyprus, Springer-

Verlag.

Aalst, W. et al., 2009. ProM: The Process Mining Toolkit. Ulm, Germany, CEUR-WS.org.

Aalst, W. M. P., 2004. Business Process Management: A Personal View. Business Process

Management Journal, II(10).

Aalst, W. M. P., Hofstede, A. H. M. & Weske, M., 2003. Business Process Management: a

Survey. Berlin/Heidelberg, Springer-Verlag, p. 1–12.

Aalst, W. M. P., Weske, M. & Wirtz, G., 2003. Advanced Topics in Workflow Management:

Issues, Requirements, and Solutions. Journal of Integrated Design & Process Science,

7(3), p. 49–77.

Aalst, W., Pesic, M. & Schonenberg, H., 2009. Declarative Workflows: Balancing Between

Flexibility and Support. Computer Science - Research and Development, II(23), p. 99–

113.

Aalst, W., Pesic, M. & Song, M., 2010. Beyond Process Mining - From the Past to Present

and Future. Proceedings of the 22nd International Conference on Advanced Information

Systems Engineering, pp. 38-52.

Aalst, W., Reijers, H. & Song, M., 2005. Discovering Social Networks from Event Logs.

Computer Supported Cooperative Work, 14(6), pp. 549 - 593.

Aalst, W. et al., 2009. Process Mining: a Two-Step Approach to Balance Between

Underfitting and Overfitting. Software and Systems Modeling, IX(1), pp. 87-111.

Aalst, W., Schonenberg, M. & Song, M., 2011. Time Prediction Based on Process Mining.

Information Systems, II(36), p. 450–475.

Aalst, W., Weijters, T. & Maruster, L., 2004. Workflow mining: discovering process models

from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9), pp.

1128-1142.

Abowd, G. et al., 1997. Cyberguide: A mobile Context-Aware Tour Guide. Wireless

Networks, V(3), pp. 421-433.

Abowd, G. et al., 1999. Towards a Better Understanding of Context and Context-Awareness.

London, UK, Springer-Verlag, pp. 304-307.

Abramowicz, W., 2008. Filtrowanie informacji. Poznań: Poznań University of Economics

Press.

168

Abramowicz, W., Haniewicz, K., Kaczmarek, M. & Zyskowski, D., 2008. E-marketplace for

Semantic Web Services. Berlin/Heidelberg, Springer, p. 271–285.

Adomavicius, G., Sankaranarayanan, R., Sen, S. & Tuzhilin, A., 2005. Incorporating

Contextual Information in Recommender Systems Using a Multidimensional Approach.

ACM Transactions on Information Systems, 1(23), pp. 103-145.

Adomavicius, G. & Tuzhilin, A., 2005. Toward the Next Generation of Recommender

Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions

on Knowledge and Data Engineering, XVII(6), pp. 734-749.

Adomavicius, G. & Tuzhilin, A., 2008. Context-Aware Recommender Systems. New York,

NY, USA, ACM, pp. 335-336.

Adomavicius, G. & Tuzhilin, A., 2008. Context-Aware Recommender Systems. New York,

NY, USA, ACM, pp. 335-336.

Agrawal, R. & Srikant, R., 1995. Mining sequential patterns. Washington, DC, USA, EEE

Computer Society, pp. 3-14.

Akman, V. & Surav, M., 1996. Steps Toward Formalizing Context. AI Magazine.

Akman, V. & Surav, M., 1997. The Use of Situation Theory in Context Modeling.

Computational Intelligence, 13(3), pp. 427-438.

Almeida, T., Vieira, S. & Casanova, M., 2004. Flexible Workflow Execution Through an

Ontology-based Approach. Vancouver, Canada, Springer.

Anand, S. & Mobasher, B., 2007. Contextual Recommendation. WebMine, Issue 4737, pp.

142-160.

Anderson, J., 2009. Cognitive Psychology and Its Implications. Seventh Edition ed. : Worth

Publishers.

Arazy, O., Kumar, N. & Shapira, B., 2009. Improving Social Recommender Systems. IT

Professional, IV(11), p. 38–44.

Barba, I., Weber, B. & Del Valle, C., 2012. Supporting the Optimized Execution of Business

Processes Through Recommendations. Clermont-Ferrand, France, Springer, pp. 135-

140.

Barney, J., 1991. Firm Resources and Sustained Competitive Advantage. Journal of

Management, I(17), p. 99–120.

Barros, A., Dumas, M. & Bruza, P., 2005. The Move to Web Service Ecosystems. [On-line]

Available at: http://www.bptrends.com/publicationfiles/12-05-WP-

WebServiceEcosystems-Barros-Dumas.pdf

[Accessed 19 October 2012].

Bazire, M. & Brézillon, P., 2005. Understanding Context Before Using It. Volume 3554, pp.

113-192.

Berry, M. & Linoff, G., 1997. Data Minig Techniques: for Marketing, Sales, and Customer

Support. New York, NY, USA: John Wiley & Sons.

Bettini, C. et al., 2010. A Survey of Context Modelling and Reasoning Techniques. Pervasive

and Mobile Computing, 2(6), pp. 161-180.

Bettman, J., Luce, M. & Payne, J., 1991. Customer Decision Making: a Consecutive

Perspective., pp. 1-42.

Bichler, M. & Lin, K., 2006. Service-Oriented Computing. Computer, p. 99–101.

Bose, J. & Aalst, W., 2009. Context-aware Trace Clustering: Towards Improving Process

Mining Results. Sparks, Nevada, USA, SIAM, pp. 401-412.

Brendel, R. & Krawczyk, H., 2008. Application of Social Relation Graphs for Early Detection

of Transient Spammers. WSEAS Transactions on Information Science and Applications,

V(3), pp. 267-276.

169

Brendel, R. & Krawczyk, H., 2010. Static and Dynamic Approach of Social Roles

Identification Using PISNA and Subgraphs Matching. Taiyuan, IEEE Computer

Society, pp. 557 - 560.

Bridge, D., Goker, M., McGinty, L. & Smyth, B., 2006. Case-Based Recommender Systems.

The Knowledge Engineering review, III(20), p. 315–320.

Brown, P. & Jones, G. J. F., 2002. Exploiting Contextual Change in Context Aware Retrieval.

NY, USA, ACM New York, pp. 650-656.

Burke, R., 2002. Hybrid Recommender Systems: Survey and Experiments. User Modeling

and User-Adapted Interaction, XII(4), pp. 331 - 370.

Burke, R., 2007. Hybrid Web Recommender Systems. In: P. Brusilovsky, A. Kobsa & W.

Nejdl, eds. The Adaptive Web. Berlin/Heidelberg: Springer , p. 377–408.

Camarinha-Matos, L., Afsarmanesh, H. & Ollus, M., 2008. ECOLEAD and CNO Base

Concepts. Methods and Tools for Collaborative Networked Organizations, p. 3–32.

Camarinha-Matos, L. et al., 2007. A Computer-Assisted VO Creation Framework. Guimarães,

Portugal, Springer, pp. 165-178.

Canfora, G., Di Penta, M., Esposito, R. & Villani, M., 2005. An approach for QoS-aware

service composition based on genetic algorithms. New York, NY, USA, ACM, pp.

1069-1075.

Cantador, I. & Castells, P., 2009. Semantic Contextualization in a News Recommender

System. , ACM.

Carolis, B., Mazzzotta, I., Novielli, N. & Silvestri, V., 2009. Using Common Sense in

Providing Personalized Recommendations in the Tourist Domain. New York, NY,

USA, ACM.

Cellary, W., 2006. Sieciowe organizacje wirtualne w sektorze małych i średnich

przedsiębiorstw. In: P. Adamczewski & J. Stefanowski, eds. Nowoczesne systemy

informatyczne dla małych i średnich przedsiębiorstw. Poznań, Poland: Wydawnictwa

Wyższej Szkoły Bankowej, pp. 13-24.

Cellary, W., 2009. Networked Virtual Organizations: A Chance for Small and Medium Sized

Enterprises on Global Markets. Nancy (France), Springer, pp. 73-81.

Cellary, W. & Strykowski, S., 2009. E-government Based on Cloud Computing and Service-

Oriented Architecture. Bogota (Colombia), ACM Press, p. 5–10.

Cena, F. et al., 2006. Integrating Heterogeneous Adaptation Techniques to Build Flexible and

Usable Mobile Tourist Guide. AI Communications, IV(19), pp. 369-384.

Claro, D., Albers, P. & Hao, J., 2005. Selecting Web Services for Optimal Composition.

Orlando, USA, Springer.

Crispim, J. & Sousa, J., 2007. Multiple Criteria Partner Selection in Virtual enterprises.

Guimarães, Portugal, Springer, pp. 197-206.

Davison, B. & Hirsh, H., 1998. Predicting Sequences of User Actions. Madison, WI, USA,

AAAI Press.

Delias, P. et al., 2013. Clustering Healthcare Processes with a Robust Approach. Rome, Italy,

EURO-INFORMS.

Demirkan, H. et al., 2008. Service-Oriented Technology and Management: Perspectives on

Research and Practice for the Coming Decade. IV(7), p. 356–376.

Dey, A., 2001. Understanding and Using Context. Personal and Ubiquitous Computing, 5(1),

pp. 4-7.

Ding, H., Benyoucef, L. & Xie, X., 2003. A Simulation-Optimization Approach Using

Genetic Search for Supplier Selection. New Orleans, Louisiana, USA, IEEE Computer

Society.

170

Dorn, C., Burkhart, T., Werth, D. & Dustdar, S., 2010. Self-Adjusting Recommendations for

People-driven Ad-hoc Processes. Hoboken, NJ, USA, Springer-Verlag Berlin,

Heidelberg, pp. 327-342.

Dourish, P., 2004. What We Talk About When We Talk About Context. Personal and

ubiquitous computing, 1(8), pp. 19-30.

Do, V., Halatchev, M. & Neumann, D., 2000. A Context Based Approach to Support Virtual

Enterprises. Washington, DC, USA, IEEE Computer Society.

Drozdowski, L. et al., 2005. A Cooperative Model for Implementing Complex Virtual

Enterprises. Foundations of Computing and Decision Sciences, pp. 39-48.

Dumas, M., Aalst, W. & Hofstede, A. H., 2005. Process-Aware Information Systems:

Bridging People and Software Through Process Technology. Hoboken, NJ, USA: John

Wiley & Sons, Inc..

Ermilova, E. & Afsarmanesh, H., 2007. Competency and Profiling Management in Virtual

Organization Breeding Environments. Helsinki, Finland, Springer, pp. 131-142.

Ermilova, E. & Afsarmanesh, H., 2010. Competency Modeling Targeted on Boosting

Configuration of Virtual Organizations. Production Planning and Control. The

Management of Operations, II(21), pp. 103-118.

Fisher, G., 2001. User Modeling in Human-Computer Interaction. User Modeling and User-

Adapted Interaction, XI(1-2), p. 65–86.

Free Dictionary, 2013. [On-line]

Available at: http://www.thefreedictionary.com/context

[Accessed 26 April 2013].

Gallon, M., Stillman, H. & Coates, D., 1995. Putting Core Competency Thinking Into

Practice. Research Technology Management, III(38), pp. 20-29.

Ghattas, J., Peleg, M., Soffer, P. & Denekamp, Y., 2009. Learning the Context of a Clinical

Process. Ulm, Germany, Springer Berlin Heidelberg, pp. 545-556.

Golbeckm, J., 2006. Generating Predictive Movie Recommendations from Trust in Social

Networks. Pisa, Italy, Springer-Verlag, pp. 93-104.

Gonga, R. et al., 2009. Context Modeling and Measuring for Proactive Resource

Recommendation in Business Collaboration. Journal Computers and Industrial

Engineering, LVII(1), pp. 27-36.

Greenberg, S., 2001. Context as a Dynamic Construct. Human-Computer Interaction, XVI(2),

pp. 257-268.

Groh, G. & Ehmig, C., 2007. Recommendations in Taste Related Domains: Collaborative

Filtering vs. Social Filtering. New York, NY, USA, ACM, p. 127–136.

Gunther, C. & Aalst, W., 2007. Fuzzy Mining - Adaptive Process Simplification Based on

Multi-perspective Metrics. Berlin, Germany, Springer-Verlag, pp. 328-343.

Haisjackl, C. & Weber, B., 2011. User Assistance During Process Execution - an

Experimental Evaluation of Recommendation Strategies. Hoboken, New Jersey, USA,

Springer, pp. 135-145.

Hartmann, M. & Schreiber, D., 2007. Prediction Algorithms for User Actions. Silicon Vally,

USA, IEEE Computer Society, pp. 49-354.

Heierman, E. & Cook, D., 2003. Improving Home Automation by Discovering Regularly

Occurring Device Usage Patterns. Melbourne, Florida, USA, IEEE Computer Society,

pp. 537 - 540.

Herlocker, J. & Konstan, J., 2001. Content-Independent Task-Focused Recommendation.

IEEE Internet Computing, pp. 40-47.

Herlocker, J., Konstan, J., Terveen, L. & Riedl, J., 2004. Evaluating Collaborative Filtering

Recommender Systems. ACM Trans. Information Systems, XXII(1), pp. 5-53.

171

Hornix, P., 2007. Performance Analysis of Business Processes Through Process Mining,

Eindhoven: Technische Universiteit Eindhoven.

Hwang, S., Wei, C. & Yang, W., 2004. Discovery of Temporal Patterns from Process

Instances. Computers in Industry - Special issue: Process/Workflow mining, 53(3), pp.

345 - 364.

IBM & SAP, 2005. WS-BPEL Extension for Sub-Processes. [On-line]

Available at: http://pds10.egloos.com/pds/200808/14/94/BPEL-SPE.pdf

[Accessed 30 Match 2011].

Jaeger, M. & Mühl, G., 2007. QoS-based Selection of Services: The Implementation of a

Genetic Algorithm. Bern, Switzland, IEEE Computer Society.

Jannach, D., Zanker, M., Felfernig, A. & Friedrich, G., 2010. Recommender Systems: An

Introduction. Cambridge: Cambridge University Press.

Jarimo, T. S. A., 2009. Multicriteria Partner Selection in Virtual Organizations With

Transportation Costs and Other Network Interdependencies. IEEE Transactions on

Systems, Man and Cybernetics — part C: Applications and reviews, I(39), pp. 124-129.

Jeong, H., Néda, Z. & Barabási, A.-L., 2003. Measuring Preferential Attachment for Evolving

Networks. Europhysics Letters, LXI(4), pp. 567-572.

Jones, G. J. F., Glasnevin, D. & Gareth, I., 2005. Challenges and Opportunities of Context-

Aware Information Access. International Workshop on Ubiquitous Data Management,

pp. 53-62.

Koller, D. & M, S., 1996. Toward Optimal Feature Selection. Proceedings of the 13th

International Conference on Machine Learning, pp. 284-292.

Krawczyk, H. & Brendel, R., 2006. Spam Classification Methods Based on Users e-mail

Communication Graphs. İstanbul, Turcja, Kadir Has Universitesi, pp. 219-229.

Leoni, M. & Aalst, W., 2013. Aligning Event Logs and Process Models for Multi-Perspective

Conformance Checking: An Approach Based on Integer Linear Programming. Beijing,

China, Springer-Verlag, pp. 113-129.

Liu, H. & Motoda, H., 1998. Feature Selection for Knowledge Discovery and Data Mining.

Kluwer Academic Publishers ed. Norwell, MA, USA: Springer.

Lombardi, S., Anand, S. & Gorgolione, M., 2009. Context and Customer Behavior in

Recommendation. New York, NY, USA, ACM.

Magnusson, M., 2004. Repeated Patterns in Behavior and Other Biological Phenomena.

Evolution of Communication Systems : A Comparative Approach, pp. 111-128.

Magnusson, M., 2005. Understanding Social Interaction: Discovering Hidden Structure With

Model and Algorithms. Volume VII, pp. 3-22.

Mahmood, T. & Ricci, F., 2007. Towards Learning User-Adaptive State Models in a

Conversational Recommender System. Halle, Germany, , pp. 373-378.

Mane, R., 2013. A comparative study of Spam and PrefixSpan sequential pattern mining

algorithm for protein sequences. Advances in Computing, Communication, and Control

Communications in Computer and Information Science, Volume 361, pp. 147-155.

McCarthy, J. & Buvac, S., 1994. Formalizing Context (Expanded notes), Stanford: Stanford

University.

Merriam-Webster On-line, 2013. [On-line]

Available at: http://www.merriam-webster.com/dictionary/context

[Accessed 26 April 2013].

Ministry of Administration and Digitization, 2012. Electronic Platform of Public

Administration Services (ePUAP). [On-line]

Available at: http://epuap.gov.pl/wps/portal/

[Accessed 19 October 2012].

172

Mitchell, M., 1998. An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT

Press.

Montali, M. et al., 2010. Declarative Specification and Verification of Service

Choreographies. ACM Transactions on the Web, I(4), p. 1–62.

Morzy, M., 2012. An Analysis of Communities in Different Types of Online Forums. Odense,

IEEE Computer Society, pp. 341 - 345.

Morzy, M., 2013. Evolution of Online Forum Communities. In: T. Özyer, J. Rokne, G.

Wagner & A. Reuser, eds. The Influence of Technology on Social Network Analysis and

Mining. Germany: Springer, pp. 615-630.

Morzy, M. & Forenc, K., 2013. Social Network Analysis on Highly Aggregated Data: What

Can We Find?. In: T. Morzy, T. Härder & R. Wrembel, eds. Advances in Databases and

Information Systems. Germany: Springer, pp. 195-206.

Morzy, M., Wierzbicki, A. & and Papadopoulos, A. N., 2009. Mining Online Auction Social

Networks for Reputation and Recommendation. Control and Cybernetics, XXXVIII(1),

pp. 87-106.

Mueller, E., 2006. Production planning and operation in competence-cell based networks.

Production Planning and Control, II(17), pp. 99-112.

Nakatumba, J., Westergaard, M. & Aalst, W., 2012. A Meta-model for Operational Support.

BPM Center Report. [On-line]

Available at: http://bpmcenter.org/wp-content/uploads/reports/2012/BPM-12-05.pdf

[Accessed 26 May 2012].

Nardi, B. A., 1995. Studying Context: A Comparison of Activity Theory, Situated Action

Models, and Distributed Cognition. Context and consciousness.

OASIS Technical Committee, 2006. Reference Model for Service Oriented Architecture 1.0.

OASIS Standard.. [On-line]

Available at: https://www.oasis-open.org/committees/download.php/19679/

[Accessed 17 5 2013].

OASIS, 2007. WS-Coordination Standard Specification. [On-line]

Available at: http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.1-spec-errata-os/wstx-

wscoor-1.1-spec-errata-os.html

[Accessed 19 October 2012].

Oferia.pl, 2012. [On-line]

[Accessed 19 October 2012].

Oku, K., Nakajima, S., Miyazaki, J. & Uemura, S., 2006. Context-Aware SVM for Context-

Dependent Information Recommendation. Nara, Japan, IEEE Computer Society, pp.

109-113.

Padovitz, A., Loke, S., Zaslavsky, A. & Burg, B., 2004. Towards a General Approach for

Reasoning About Context, Situations and Uncertainty in Ubiquitous Sensing: Putting

Geometrical Intuitions to Work. Tokyo, Japan, Springer.

Palmisano, C., Tuzhilin, A. & Goegogline, M., 2008. Using the Context to Improve

Predicting Modeling of Customers in Personalization Applications. IEEE Transitions on

Knowledge and Data Enginering, 11(20), pp. 1535-1549.

Panniello, U., Tuzhilin, A., Gorgoglione, M. & Palmisano, C., 2009. Experimental

Comparison Pre- vs. Post-filtering Approaches in Context-Aware Recommender

Systems. New York, NY, USA, ACM, pp. 265-268.

Panorama Firm, 2012. [On-line]

Available at: http://panoramafirm.pl/

[Accessed 19 October 2012].

173

Pariser, E., 2011. Beware Online "Filter Bubbles". [On-line]

Available at: http://www.youtube.com/watch?v=B8ofWFx525s

[Accessed 18 March 2013].

Pastor-Satorras, R. & Vespignani, A., 2001. Epidemic Spreading in Scale-Free Networks.

Physical Review Letters.

Paszkiewicz, Z. & Cellary, W., 2011. Computer supported collaborative processes in virtual

organizations. Poznań, IMDA Press, pp. 85-94.

Paszkiewicz, Z. & Cellary, W., 2012. Computer supported collaboration of SMEs in

transnational market. Journal of Transnational Management, 17(4), pp. 294-313.

Paszkiewicz, Z. & Cellary, W., 2012. Computer supported collaboration of SMEs in

transnational market. Journal of Transnational Management, 17(4), pp. 294-313.

Paszkiewicz, Z. & Cellary, W., 2012. Computer supported contractor selection for public

administration ventures. Albany, NY, ACM, pp. 322-335.

Paszkiewicz, Z. et al., 2011. ErGo: Developer’s Guide, Poznań: Poznań University of

Economics, Department of Information Technology.

Paszkiewicz, Z., Krysztofiak, K., K., W. & Gabryszak, P., 2012. ErGo: User’s Guide,

Poznań: Poznań University of Economics, Department of Information Technology.

Paszkiewicz, Z. & Picard, W., 2009. Modeling virtual organization architecture with the

Virtual Organization Breeding Methodology. Thessaloniki, Greece, Springer, pp. 187-

196.

Paszkiewicz, Z. & Picard, W., 2010. MAPSS, a Multi-Aspect Partner and Service Selection

method. Saint-Etienne, France, Springer, pp. 329-337.

Paszkiewicz, Z. & Picard, W., 2011. Modeling competences in service-oriented virtual

organization breeding environments. Lausanne, Switzerland, IEEE, pp. 497-502.

Paszkiewicz, Z. & Picard, W., 2013. Analysis of the Volvo IT Incident and Problem Handling

Processes using Process Mining and Social Network Analysis. Beijing, China, CEUR

online proceedings.

Pazzani, M. & Billsus, D., 2007. Content-Based Recommendation Systems. In: P.

Brusilovsky, A. Kobsa & W. Nejdl, eds. The Adaptive Web. Berlin/Heidelberg: Springer

, pp. 325-341.

Pei, J. et al., 2004. Mining sequential patterns by pattern-growth: the PrefixSpan approach.

IEEE Transactions on Knowledge and Data Engineering, Volume 16.

Pepiot, G., Cheikhrouhou, N., Furbringer, J. & Glardon, R., 2007. UECML: Unified

Enterprise Competence Modelling Language. Computers in Industry, Issue 58, p. 130–

142.

Pešic, M., Schonenberg, H. & Aalst, W. M. P., 2007. DECLARE: Full Support for Loosely-

Structured Processes. Washington, DC, USA, IEEE Computer Society, p. 287–298.

Petrie, C. & Bussler, C., 2008. The Myth of Open Web Services: the Rise of the Service

Parks. IEEE Internet Computing, III(12), p. 86–95.

Picard, W., 2009. Social Protocols for Agile Virtual Teams. Thessaloniki, Greece, Springer, p.

168–176.

Picard, W., 2013. A Formalization of Social Requirements for Human Interactions with

Service Protocols. Information Sciences, Volume 283, pp. 1-21.

Picard, W., 2013. Adaptation of Service Protocols. Poznań, Poland: Poznań University of

Economics Press.

Picard, W. & Cellary, W., 2010. Agile and Pro-active Public Administration as a

Collaborative Networked Organization. New York (NY, USA), ACM, pp. 9-14.

Picard, W. et al., 2010. Breeding Virtual Organizations in a Service-Oriented Architecture

Environment. In: SOA Infrastructure Tools - Concepts and Methods. Poznań, Poland:

Poznań University of Economics Press, p. 375–396.

174

Picard, W. et al., 2014. Application of the Service-Oriented Architecture at the Inter-

Organizational Level. In: S. Ambroszkiewicz, et al. eds. Studies in Computational

Intelligence. Berlin Heidelberg: Springer, pp. 125-201.

Popescul, A., Ungar, L., Pennock, D. & Lawrence, S., 2001. Probabilistic Models for Unified

Collaborative and Content-Based Recommendation in Sparse-Data Environments.

Seattle, Washington, USA, Morgan Kaufmann, p. 437–444.

Porter, M., 1979. How Competitive Forces Shape Strategy. Harvard Business Review, II(57).

Porter, M., 2008. Competitive Advantage: Creating and Sustaining Superior Performance.

New York, USA: Simon and Schuster.

Rabelo, R. & Gusmeroli, S., 2008. The ECOLEAD Collaborative Business Infrastructure for

Networked Organizations. Poznań, Springer, p. 451–462.

Ramakrishnan, R. & Gehrke, J., 2000. Data Management Systems. : McGraw Hill

Companies.

Reichert, M., 2011. What BPM Technology Can Do for Healthcare Process Support. Bled,

Slovenia, Springer-Verlag, p. 2–13.

Reichert, M., Rinderle, S., Kreher, U. & Dadam, P., 2005. Adaptive Process Management

with ADEPT2. Washington, DC, USA, IEEE Computer Society, p. 1113–1114.

Ricardo, D., 1817. On the Principles of Political Economy and Taxation.

Ricci, F., Rokach, L., Sshapira, B. & Kantor, P. B., 2011. Recommender Systems Handbook. :

Springer.

Rozinat, A., 2013. How to Understand the Variants in Your Process. [On-line]

Available at: http://fluxicon.com/blog/2012/11/how-to-understand-the-variants-in-your-

process/

[Accessed 11 January 2013].

Rozinat, A. & Aalst, W., 2006. Decision Mining in ProM. Ulm, Germany, Springer, pp. 420-

425.

Rozinat, A. & Aalst, W., 2008. Conformance Checking of Processes Based on Monitoring

Real Behavior. Information Systems, 33(1), pp. 64-95.

Rozinat, A. et al., 2009. Workflow Simulation for Operational Decision Support. Data and

Knowledge Engineering, IX(68), pp. 834-850.

Russell, N. & Aalst, W., 2007. Evaluation of the BPEL4People and WS-HumanTask

Extensions to WS-BPEL 2.0 Using the Workflow Resource Patterns, Eindhoven, The

Netherlands: Department of Technology Management, Eindhoven University of

Technology.

Sadiq, S., Orlowska, M. & Sadiq, W., 2005. Specification and Validation of Process

Constraints for Flexible Workflows. Journal of Information Systems, 30(5).

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J., 2001. Item-Based Collaborative Filtering

Recommendation Algorithms. New York, NY, USA, ACM , pp. 285-295 .

Schafer, J., Frankowski, D., Herlocker, J. & Sen, S., 2007. Collaborative Filtering

Recommender Systems. In: P. Brusilovsky, A. Kobsa & W. Nejdl, eds. The Adaptive

Web. Berlin/Heidelberg: Springer, p. 291–324.

Schilit, B. & Theimer, M. M., 1994. Disseminating Active Map Information to Mobile Hosts.

IEEE network, 5(8), pp. 22-32.

Schilt, B., Adams, N. & Want, R., 1994. Context-Aware Computing Applications. IEEE

Network, Volume V, pp. 22-32.

Schonenberg, H., Weber, B., Dongen, B. & Aalst, W., 2008. Supporting Flexible Processes

Through Recommendations Based on History. Milan, Italy, Springer-Verlag, Berlin, pp.

51-66.

Sigg, S., 2008. Development of Novel Context Prediction Algorithm, and Analysis of Context

Prediction Schemes. Kassel, Germany, Kassel University Press.

175

Simon, D. & Boring, J., 1990. Sensitivity, Specificity, and Predictive Value. In: H. Walker,

W. Hall & J. Hurst, eds. Clinical Methods: The History, Physical, and Laboratory

Examinations. Boston: Butterworths, p. Chapter 6.

Sinur, J. & Jones, T., 2012. Leverage Automated Business Process Discovery for Business

Benefits, Stamford, CT, USA: Gartner Report.

Skopik, F., Schall, D., Dustdar, S. & Sesana, M., 2010. Context-Aware Interaction Models in

Cross-Organizational Processes. Barcelona, IEEE Computer Society, pp. 85 - 90.

Song, M. & Aalst, W., 2008. Towards Comprehensive Support for Organizational Mining.

Decision Support Systems, XLVI(1), pp. 300-317.

Spohrer, J. & Maglio, P., 2008. The Emergence of Service Science: Toward Systematic

Service Innovations to Accelerate Co-creation of Value. Production and Operations

Management, III(17), p. 238–246.

Srikant, R. & Agrawal, R., 1996. Mining sequential patterns: generalizations and

performance improvements. London, UK, Springer-Verlag.

Staffware, 2003. Staffware Process Suite Version 2 – White Paper, Alkmaar, The

Netherlands: Staware PLC.

Stefanidis, K., Pitoura, E. & Vassiliadis, P., 2007. A Context-Aware Preference Database

System. International Journal of Pervasive Computing and Communication, 4(3), pp.

439-600.

Stoitsev, T., Scheidl, S. & Spahn, M., 2007. A Framework for Light-weight Composition and

Management of Ad-hoc Business Processes. Toulouse, France, Springer, p. 213–226.

Stoner, J., Freeman, R. & Gilbert, D. R., 1999. Management. 6 ed. Singapore: Pearson.

Suneetha, K. & Krishnamoorti, R., 2010. Advanced Version of Apriori Algorithm.

Washington, DC, USA, IEEE Computer Society, pp. 238-245 .

Swenson, K., 2010. Mastering the Unpredictable: How Adaptive Case Management Will

Revolutionize the Way That Knowledge Workers Get Things Done. Tampa, USA:

Meghan-Kiffer Press.

Swinkels, G., 2012. Performance Improvement based on Cross-Organizational

Recommendations, Eindhoven : Eindhoven University of Technology.

Świerzowicz, J. & Picard, W., 2009. Social Requirements for Virtual Organization Breeding

Environments. Thessaloniki, Greece, Springer, p. 614–622.

Taghipour, N., Kardan, A. & Ghidary, S., 2007. Usage-Based Web Recommendations: a

Reinforcement Learning Approach. Minneapolis, MN, USA, ACM, p. 113–120.

Tan, P., Goh, A. & Lee, S., 2008. A Context Model for B2B Collaborations. Washington, DC,

USA, IEEE Computer Society, pp. 108-115.

U.S. Bureau of Labor Statistics, 2010. Business Employment Dynamics: Entrepreneurship

and the U.S. economy. [On-line]

Available at: http://www.bls.gov/bdm/entrepreneurship/entrepreneurship.htm.

[Accessed 2012 10 19].

Van Setten, M., Pokraev, S. & Koolwaaij, J., 2004. Context-Aware Recommendations in the

Mobile Tourist Application COMPASS. Adaptive Hypermedia and Adaptive Web-

Based Systems, Volume 3137, pp. 235-244.

Vanderfeesten, I., Reijers, H. & Aalst, W., 2008. Product Based Workflow Support: Dynamic

Workflow Execution. Montpellier, France, Springer-Verlag, p. 571 – 574.

W3C, 2004. WS-Choreography Standard Specification. [On-line]

Available at: http://www.w3.org/TR/ws-chor-model/

[Accessed 19 October 2012].

Wall, Q., 2007. Rethinking SOA Governance. [On-line]

Available at: http://www.oracle.com/technetwork/articles/entarch/soagovernance-

176

093602.html

[Accessed 19 10 2010].

Wang, J. & Han, J., 2004. BIDE: efficient mining of frequent closed sequences. Boston, MA,

USA, IEEE Computer Society, pp. 79 - 90.

Watts, D., 2004. Six Degrees: the Science of a Connected Age. New York, NY, USA: W. W.

Norton & Company.

Weber, B., Wild, W. & Breu, R., 2004. Advances in Case-Based Reasoning. Advances in

Case-Based Reasoning, Volume 3155, pp. 434--448.

Weijters, A. & Aalst, W., 2001. Process Mining: Discovering Workflow Models from Event-

Based Data. Amsterdam, The Netherlands, Springer-Verlag, pp. 283-290.

Wiszniewski, B., 2011. Inteligentne wydobywanie informacji z internetowych serwisów.

Gdańsk, Polska: Pomorskie Wydawnictwo Naukowo-Techniczne.

Witten, I., Frank, E. & Hall, M., 2011. Data Mining. Practical Machine Learning Tools and

Techniques. Third ed. Burlington, MA, USA: Elsevier Inc..

Workflow Management Coalition, 1999. Terminology and Glossary. [On-line]

Available at: http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

[Accessed 19 October 2012].

YAWL Foundation, 2012. YAWL. [On-line]

Available at: http://www.yawlfoundation.org/

[Accessed 20 June 2013].

Yu, Z. et al., 2006. Supporting Context-Aware Media Recommendations for Smart Phones.

IEEE Pervasive Computing, III(5), pp. 68-75.

177

List of Figures

Fig. 3.1. Abstract service protocol .. 28
Fig. 3.2. Creating context abstractions ... 32

Fig. 3.3. General components of the traditional recommendation process 36
Fig. 3.4. Paradigms for incorporating context in recommender systems 39
Fig. 3.5. Adjustment of recommendations in post-filtering ... 40
Fig. 4.1. Event log creation and analysis in process lifecycle .. 43
Fig. 4.2. Architecture of a system providing operational support based on time information in

event logs .. 47
Fig. 4.3. General approach to recommendations based on process mining.............................. 47

Fig. 4.4. Discovered process model represented as a transition system and a set of enabled

activities for activity e .. 48
Fig. 4.5. Time-based recommendations in ProM ... 48
Fig. 4.6. Architecture of the operational support in ProM ... 49

Fig. 4.7. The process model (a) and the corresponding sequence graph (b) 51
Fig. 4.8. Feedback cycle for personal and crowd-centric recommendations 53

Fig. 4.9. High-level architecture of the collective recommendation system 54
Fig. 4.10. Collaborative process instance and its partial trace ... 58
Fig. 5.1. Trade-off between flexibility of process definition and support for human actions in

PAIS ... 60
Fig. 5.2. Main steps of the RMV method ... 63

Fig. 5.3. Activity pattern life cycle ... 65
Fig. 5.4. Four elements of activity instance context ... 72
Fig. 5.5. Activity graph ... 76

Fig. 5.6. Supporting activity graph ... 77
Fig. 5.7. Activity subgraph ... 78

Fig. 5.8. Identification of activity pattern context .. 79

Fig. 5.9. Transformation of a trace to a sequence: (a) activity instances in process instance, (b)

corresponding temporal graph .. 85
Fig. 5.10. Suffixes of temporal graph TG ... 86
Fig. 5.11. Temporal graph prefixes and corresponding suffixes .. 87
Fig. 5.12. Discovered activity pattern z .. 103

Fig. 5.13. Enabled activity patterns .. 106
Fig. 5.14. Example of an activity pattern ... 111
Fig. 5.15. Example of an activity pattern ... 111
Fig. 5.16. Merged activity pattern with Petri Net as a process model 112
Fig. 5.17. Merged activity pattern with a frequent process map as a process model 112

Fig. 5.18. Recommendations monitoring ... 114
Fig. 5.19. Phases 2-3 of activity pattern instantiation method ... 117

Fig. 6.1. Interactions between modules .. 126
Fig. 6.2. Distribution of the RMV prototype .. 127
Fig. 6.3. System architecture diagram .. 129
Fig. 6.4. ErGo Organizations application .. 130
Fig. 6.5. ErGo Services main view ... 131
Fig. 6.6. ErGo Services – management of service description view 131

178

Fig. 6.7. ErGo Investments .. 132

Fig. 6.8. ErGo Investments Types ... 133
Fig. 6.9. Definition of KPI function in ErGo KPI module ... 133
Fig. 6.10. Adding a new category group and a new investment in the ErGo Investment module

 ... 137
Fig. 6.11. A view of available and recommended investment types 138
Fig. 6.12. Adding recommended investment type to the ErGo system 139
Fig. 6.13. Adding investment based on investment types .. 139
Fig. 6.14. Viewing levels of satisfaction of investment types for the investment 140

Fig. 6.15. Launching selection of subcontractors from ErGo Investments 141
Fig. 6.16. ErGo MatchMaker ... 142
Fig. 6.17. Supported evaluation of assignment of a service entity to a class of service entity

 ... 142
Fig. 6.18. Supported evaluation of a VO variant ... 143

Fig. 6.19. Expected execution of the delivery process instance .. 146

Fig. 6.20. Distribution of number of events among process instances 151

Fig. 6.21. Process map: rectangle corresponds to activity ... 151
Fig. 6.22. Process map: rectangle corresponds to a triple: activity name, storekeeper, WMS

module ... 152
Fig. 6.23. An example of a discovered activity pattern ... 159

Fig. A.1. Service network example .. 181
Fig. A.2. Service requirement and classes of objects... 182

Fig. A.3. Service-oriented summary of a process model ... 183
Fig. A.4. Service network schema ... 184
Fig. A.5. Abstract service protocol .. 185

Fig. A.6. Prototype service protocol .. 187
Fig. B.1. Classes in Sequence Pattern Discovery module ... 190

Fig. B.2. Requesting sequence pattern contexts ... 191
Fig. B.3. Classes in Activity Pattern Identification module... 194

Fig. B.4. Requesting activity pattern contexts ... 195
Fig. B.5. Recommendation classes in recommendation formulation module 198

Fig. B.6. Creation of recommendation and sorting recommendation elements according to

user preferences ... 199
Fig. B.7. Classes in Activity Pattern Instantiation module .. 202

Fig. B.8. Generation, selection and modification of the best Vo Variant 203
Fig. B.9. Classes in Activity Pattern Instantiation module .. 205
Fig. B.10. Context classes in Recommendation Formulation module 207

179

List of Tables

Tab. 3.1. Techniques and algorithms used in various classes of recommender systems 37

Tab. 4.1. Trace ... 57
Tab. 5.1. Functionality of the RMV method components .. 65
Tab. 5.2. Service entities discovered in an activity pattern .. 99
Tab. 5.3. Example of service entity attributes discovered in an activity pattern 99
Tab. 5.4. Example of social attributes discovered in an activity pattern 100

Tab. 5.5. Identified classes of service entity descriptions and their mapping

 to elements

of service descriptions .. 100

Tab. 5.6. Identified service requirements .. 101

Tab. 5.7. Implicit requirements added to ... 101

Tab. 5.8. Assignment of classes of service entity descriptions from to service entities

from SE - mapping relation .. 101
Tab. 5.9. Identified service relations L ... 102

Tab. 5.10. Assignment of service entities to elements of service descriptions – mapping . 102
Tab. 5.11. Sorting of recommendation elements .. 115
Tab. 5.12. User-defined parameters of the RMV Method .. 118

Tab. 5.13. Complexity of RMV method steps .. 123
Tab. 5.14. Parameters reducing the execution time of the RMV method 124

Tab. 6.1. Mapping between modules and logical components ... 125
Tab. 6.2. RMV event data table .. 136
Tab. 6.3. RMV event context table ... 136

Tab. 6.4. RMV process instance attributes ... 136

Tab. 6.5. Five key aspects of the delivery process ... 147

Tab. 6.6. Event attributes .. 149
Tab. 6.7. Context attributes of activity instances ... 150

Tab. 6.8. Delivery process instance attributes .. 150
Tab. 6.9. Frequency of activities in the event log... 152
Tab. 6.10. User-defined parameters for Experiments A and B .. 154
Tab. 6.11. User-defined parameters for experiment C and D... 155

Tab. 6.12. Recommendations formulated using the RMV method .. 160
Tab. B.1. Functionality of SPD module classes ... 192
Tab. B.2. Functionality of API module classes .. 195
Tab. B.3. Functionality of RF module classes .. 197
Tab. B.4. Functionality of APIN module classes ... 201

180

List of Listings

Listing 5.1. SupportCalc function .. 89
Listing 5.2. Sequence pattern search initialization .. 90

Listing 5.3. Sequence pattern search recursion call ... 91
Listing 5.4. The first phase of the RMV method algorithm for discovery of activity sequence

patterns .. 92

Listing 5.5. Create service oriented summary of a process model process model 93

Listing 5.6. Creating service network schema ... 95

Listing 5.7. Creating service network ... 97
Listing 5.8. Creating activity pattern z ... 98

Listing 5.9. Finding enabled context set .. 104
Listing 5.10. Finding enabled activity patterns and formulating recommendations 109

181

Appendix A. Service Protocols Formal Model

In this appendix, the concept of service protocols is formally defined. The formal model of

service protocols was first introduced by Picard (Picard, 2013). Examples used in this section

have also been introduced in (Picard, 2013).

Definition A.1. (Service Entity) A service entity is a common name for an actor or a service

interface.

Definition A.2. (Service Entity Description) A service entity description se is an object

describing a service entity.

Let denote the set of all the service entity descriptions.

Definition A.3. (Service Network) A service network is a directed graph of

service entity descriptions.

Example A.1. Service networks aim at capturing attributes and relations among service entity

descriptions, i.e., service consumer descriptions, service interface descriptions, and service

provider descriptions. A service network presented in Fig. A.1 consists of ,

 , represented by rectangles. Service entity descriptions are

connected by arcs represented by arrows. For example service entity descriptions

 and are connected by an arc modeling the fact of present or past

Collaboration between the architect and the real-estate developer. Objects describing the arcs

are represented by rectangles stuck to the arrows. The attributes of both the service entity

descriptions and the objects describing the arcs are represented by inner rounded rectangles.

Fig. A.1. Service network example

Definition A.4. (Service Description) A service description is a triple defining the “who”

(the service consumer), “what” (the service interface), and “whose” (the service provider) part

of the activity.

182

Formally, a service description is a triple , where is a class of

service consumer description, is a class of service interface description, and is a class

of service provider description.

Example A.2. The is a class of service consumer description.

Following this example, a class of service interface description defining access to printing

services is defined with constraints such as:

 , and

 .

Similarly, an example of a class of service provider description defines construction printing

companies with constraints concerning the industry sector, the geographical location, etc.

Definition A.5. (Service Requirement) A service requirements is a set of attribute

constraints that the arcs of service network being instances of that class must observe.

Let denote a service requirement.

Example A.3. Consider a service requirement, defined by the following set

of attribute constraints:

 ,
 .

The use of Collaboration
α

service requirements is presented in Fig. A.2.

 and nodes are connected by an arc

associated with the class.

Fig. A.2. Service requirement and classes of objects

Definition A.6. (Service-Oriented Summary of a Process Model) A service-oriented

summary of a process model is an association of each activity description with a service

description.

Formally, a service-oriented summary of a process model is a triple , where

 is a process model, is a set of service descriptions, and is a function

mapping activity descriptions in to service descriptions in a bijective manner, i.e.,

 , such that .

Let denote the set of all the classes of service consumer descriptions defined in the

service-oriented summary of a process model . Let denote the set of all the classes of

service interface descriptions defined in the service-oriented summary of a process model

183

 . Let denote the set of all the classes of service provider descriptions defined in the

service-oriented summary of a process model . Let .

Example A.4. The concept of service-oriented summary of a process model is presented in

Fig. A.3, in which three service descriptions are represented as rectangles on the left side.

Each service description contains a class of service consumer descriptions, represented by a

rounded rectangle labeled , a class of service interface descriptions, represented by a

rounded rectangle labeled , and a class of service provider descriptions, represented by a

rounded rectangle labeled , where . Next, three dashed arrows are connecting

service descriptions with the activity descriptions of the process model represented by

rounded rectangles labeled a1, a2, and a3. These three arrows visualize the mapping function

 . Rounded rectangles labeled e1, e2, and e3 represent arcs connecting activities.

Fig. A.3. Service-oriented summary of a process model

Definition A.7. (Service Network Schema) A service network schema is a graph
 composed of classes of service entity descriptions and service requirements .

Example A.5. Service network schema aims at capturing classes of service entity descriptions

and their relations. A service network schema presented in Fig. A.4 consists of

 , and classes represented by

rectangles. Classes of service entity descriptions are connected by service requirements

represented by arrows. For example, classes of service entity descriptions

 and are connected by a service

requirement modeling constraints on possible collaboration between the

architect and the real-estate developer. Service requirements are represented by rectangles

stuck to the arrows. The attribute constraints of both classes of service entity descriptions and

service requirements are represented by inner rounded rectangles.

184

Fig. A.4. Service network schema

Definition A.8. (Abstract Service Protocol) A service protocol is a triple

 where
 is a service-oriented summary of a process model , is a graph

representing a service network schema, and

 is a mapping relations between the service-

oriented summary of a process model and service network schema.

The mapping relation

 associates elements of service

descriptions – service customer description, service interface description, service provider

classes description – with classes of service entity descriptions of the service network schema.

Each element of a service description – , and – is associated with the class of

service entity description of the service network schema. Formally,

Example A.6. An abstract service protocol is presented in Fig. A.5. The service-oriented

summary of the abstract service protocol is represented at the top of the Fig. A.5. The service

network schema is represented at the bottom of the Fig. A.5. A set of dashed arrows

associates the elements of service descriptions of the service-oriented summary with the

nodes of the service network schema represented by rounded rectangles labeled , where

 . This set of arrows represents the mapping relation

 between the service-oriented

summary and the service network schema. Therefore, the service consumer description sc1 is

associated with the class of service entity descriptions v6 of the service network schema.

Additionally, the following relations of service description are defined:
 , , ,
 . Although implicit in service descriptions, these relations are not explicitly defined in

the service network schema.

185

Fig. A.5. Abstract service protocol

Compliance of a service network with a service network schema has a global character,

although it is based on the local concept of membership. Membership refers to a particular

type of relations that may exist between objects and classes in a service network and a service

network schema. Although various types of membership may be defined in service networks

and service network schemata, class relational membership and link class full membership

have to be defined for a further definition of compliance.

Definition A.9. (Class Relational Membership) A service entity description se is a

relational member of a class of service entity description , denoted , iff: (1) se is

an instance of , (2) for each service requirement starting from and associated with

class c, at least one link starting from se is associated with an instance of class c, (3) for each

service requirement leading to and associated with a class c, at least one link leading to se

is associated with an instance of class c.

Definition A.10. (Link Class Full Membership) A link is a full member

of the class of links

 denoted , iff the source and destination

service entity descriptions are instances of their respective classes of service entity

descriptions, and the object associated with the link is an instance of the class associated with

the class of links.

Formally,

 .

Based on the membership relations, the concept of compliance with a service network schema

may be defined. A service network is compliant with a service network schema if the

constraints on the service entity descriptions and the social requirements among them, defined

in a service network schema, are satisfied by a given service network.

186

Definition A.11. (Compliance Relation) Having a service network schema

 and service network , a compliance relation on is a relation

that: (1) the compliance of a service entity description se with a class of service entity

descriptions implies that that the service entity description se is a relational member of

the class of service entity descriptions , (2) for each service requirement between two

classes of service entity descriptions
 and

 , for each service entity descriptions

and being members of classes
 and

 respectively, there exist a link between

that is a full member of l, (3) for each class of service entity descriptions, at least one service

entity description is compliant with the class.

Definition A.12. (Partial Compliance Relation) Having a service network schema
 and service network , a partial compliance relation on is a

relation that satisfies only condition 1 and 2 from Definition A.11, the third condition is

relaxed.

Definition A.13. (Compliance with Service Network Schema) A service network

 is compliant with a service network schema , denoted , iff there

exist a compliance relation on .

Definition A.14. (Partial Compliance with Service Network Schema) A service network

 is partially compliant with a service network schema , denoted

 , iff there exist a partial compliance relation on .

Example A.7. The service network schema in Fig. A.4 is compliant with service network

presented in Fig. A.1. The compliance relation applies to the following pairs of service

entity descriptions and classes:

Additionally, for each service requirement between two classes of service entity descriptions

among , , and , there is a full

member link between two service entity descriptions that are instances of the given classes.

For example, the link Collaboration is a full member of the service requirement

 . As a consequence, both conditions (1) and (2) from Definition A.11 are

satisfied. Also condition (3) is satisfied, as all the classes of service entity descriptions in

service network schema have their instances in the service network presented in Fig. A.1.

Definition A.15. (Prototype Service Protocol) A prototype service protocol is a tuple

 where is an abstract service protocol, is a service network, and

 is a relation associating service entity descriptions of the service network to

elements of service descriptions, and is a relations associating nodes of service

network to classes of service entity descriptions of the service network schema of .

Example A.8. An example of a prototype service protocol is presented in Fig. A.6. Each

service entity description of the service network is represented by a circle, some service entity

descriptions being additionally labeled, e.g., the top-right service entity description is

labeled ’1’. The links between service entity descriptions are represented by solid lines

between the nodes. The relation mapping service entity descriptions of the service network

to elements of service descriptions is represented by dashed arrows on the left. Note that

187

many service entity descriptions may be associated with a given service description element.

In Fig. A.6., both nodes labeled ’1’ and ’2’ are associated with the service interface

description si1. Additionally, the relation mapping nodes of the service network to classes

of service entity descriptions of the service network schema is represented by dot-dashed

arrows on the right side. Note that many service entity descriptions may be associated with a

given class of service entity description of the service network schema. In Fig. A.6, both

nodes labeled ’1’ and ’2’ are associated with the class of service entity descriptions v7.

Fig. A.6. Prototype service protocol

When a prototype service protocol is fully implemented, i.e., there is a service entity

description implementing each element of service description, then it may be executed. The

service protocol is then an executable service protocol.

Definition A.16. (Executable Service Protocol) An executable service protocol is a

prototype service protocol such that such that and the

induced relation is in compliance relation.

188

Appendix B. RMV Method Prototype Modules and Classes

Sequence Pattern Discovery module

All the SPD Java
TM

 classes and interfaces are in the pl.poznan.pue.dit.zp.spd

package. Classes from this package are associated with context classes from

pl.poznan.pue.dit.zp.context package. Classes of the SPD module are presented

in Fig. B.1.

The SPD module classes:

 Provide access to an event log,

 Transform event traces to activity sequences,

 Identify frequent and closed activity sequence patterns,

 Capture event, activity instance description and activity pattern contexts.

The EventLog class provides abstraction for event log management. This class is

responsible for accessing traces (getTraces method), process instance attributes

(getProcessInstanceAttributes method) and events (getParallelEvents

method). The getParallelEvents method returns events that were recorded in delta

time span before the event e. The getProcessInstanceAttributes and

gatParallelEvents methods are used to determine a context of an activity instance.

Finally, the importTraces method of EventLog class converts traces into activity

sequences modeled by ActivitySequence class.

The ActivitySequence class is an extension of the AbstractSequence class.

Abstraction for activity sequence persistence is provided by ActivitySequenceDao

class. The EventLog class is associated with the Trace class. Each instance of Trace

class is composed of events modeled by the Event class. Each event object is an aggregation

of attributes being objects of Attribute class.

The ActivityInstanceDescription class represents activity instance descriptions.

All the activity instance descriptions are created during import of traces from event log –

importTraces method of EventLog class – and their transformation to activity

sequences – createActivitySequence method of ActivitySequenceDao class.

The access to events of an activity instance description is provided by getEvents method

of ActivityInstanceDescription class. The

ActivityInstanceDescription class has also getStartingEvent,

getFinishingEvent methods for retrieving first and last event recorded for the activity

instance. The context of the first event is returned by the getStartingEventContext

method.

Each object of ActivitySequence class holds association to particular trace returned by

getTrace method. Context of an activity instance description is created by the

createContext method call. The createContext method internal logic encompasses:

calling getStartingEventContext method of

189

ActivityInstanceDescription class, calling getParallelEvents and

getProcessInstanceAttributes methods of an EventLog object, retrieving

proceeding events and service entities by calling getProceedingActors and

getProceedingEvents methods of the Trace class.

Each activity sequence object is composed of a set of activity instance description sets

represented by ActivityInstanceDescriptionSet class. Each activity instance

description set is composed of a number of activity instance descriptions. Four methods of

ActivityInstanceDescriptionSet class permit comparison of activity instance

description sets: containsAll, contains, equal, exaclyEquals. Those methods

are used during sequence pattern discovery.

The sequence pattern discovery algorithm is launch by calling

findSequencePatternMethod of the ActivitySequenceDatabase class. This

method is an implementation of an algorithm presented in Section 5.5.1. Algorithm is

configured by an instance of RMVPatternConfirguration class. Configuration

includes a subset of parameters presented in Section 5.6 that are relevant for discovery of

sequence patterns.

Resulting sequence patterns are represented by SequencePattern class. Similarly to

ActivitySequence class, SequencePattern class is an extension of the

AbstractSequence class. Each activity pattern object is an aggregation of objects being

instances of the Pair class. Each instance of Pair class links the activity instance

description with activity sequences supporting this activity instance description. Additionally

isPostfix method gives access to information if the activity instance description was a

part of the larger set of activity instance descriptions or not. This information is used when

merging pairs into sequence patterns in database projection step of the algorithm.

ActivitySequence

SequencePattern

+convertToActivityPattern(parser: SequencePatternParser): ActivityPattern

ActivityInstanceDescriptionSet

+getActivityInstanceDescriptions(): Set

ActivityInstanceDescription

+getAttributes(): Set

Pair

+isPostfix(): Boolean

Event

+getAttributes(): Set

EventContext

PseudoSequence

+getSequence(): ActivitySequence

+supportsPrefix(sp: SequencePattern): Boolean

+createSuffix(sp: SequencePattern): PseudoSequence

+getSuffix(): ActivitySequence

Trace

+getEvents(): List

ActivityPatternContext

EventLog

+getTraces(): Set

Attribute

+getName(): String

+getValue(): String

+getPairs(): List

+getSupportingSequences(): Set

+integratePattern(ap: ActivityPattern): ActivityPattern

+integratePair(pair: Pair): ActivityPattern

+addPairsOverlapped(p1: Pair, p2: Pair): void

+addPairsSequentially(p1: Pair, p2: Pair): void

+addPair(p: Pair): void

+getContexts(): Set

+getSupportingSequences(): Set

+getAid(): ActivityInstanceDescription

+containsAll(set: ActivityInstanceDescriptionSet): Boolean

+equals(set: ActivityInstancedescriptionSet): Boolean

+exaclyEquals(set: ActivityInstancedescriptionSet): Boolean

+contains(aid: ActivityInstanceDescription): Boolean

+getEvents(): List

+getStart(): Timestamp

+getFinish(): Timestamp

+getStartingEvent(): Event

+getFinishingEvent(): Event

+getStartingEventContext(): EventContext

+getProcessInstanceAttributes(id: String): Set

+getProcessInstanceId(): String

+getTrace(): Trace

+importTraces(source: Source, db: ActivityInstanceDatabase): void

ActivitySequenceDAO

+findSequencePatterns(): Set

+createActivitySequence(trace: Trace): ActivitySequence

RMVPatternConfiguration

+obligatoryAttributes: Set

+requiredSupport: Double

+minimalSequenceLength: Integer

+maximumTimestamp: Timestamp

+gapConstraint: Long

+durationConstraint: Long

+minimalnumberOfAttributesInAID: Integer

+eventInstanceAttributes

+suffixSupportsPair(p: Pair): Boolean

+isPostFix(aidIndex: Integer): Boolean

+getProcessInstanceId(): String

+addAttribute(att: Attribute): void

1..*

1..*

1..*

1

1..*

1..*

1..*

1

1

1..*

1..*

1

1

1

1..*

1..*

1..*

+getActivitySequences(): Set

+getProceedingEvents(e: Event): Set

+getProceedingActors(e: Event): Set
+getParallelEvents(e: Event, timeDelta: Long): Set

+getProceedingEvent(e: Event): Event

+getContext(sp: SequencePattern, el: EventLog): Context

ActivityInstanceContext

+getFirstAid(): ActivityInstanceDescription

+createContext(el: EventLog, t: Trace): ActivityInstanceContext

+timeDelta: Long

+addActivitySequence(as: ActivitySequence): void

+attributeEqual(aid: ActivityInstanceDescription): Boolean

AbstractSequence

+getActivityInstanceDescriptionSets(): List

+isSubsequence(as: ActivitySequence): Boolean

+getAid(e: Event): ActivityInstanceDescription

+getProceedingAid(aid: ActivityInstanceDescription):

ActivityInstanceDescription

+getContext(aid: ActivityInstanceDescription, el: EventLog): Context

1..* 1..*

+getContext(): EventContext

Fig. B.1. Classes in Sequence Pattern Discovery module

A context of an sequence pattern is retrieved by calling getContexts method. For each

activity sequence supporting sequence pattern returned by getSupporting method, a set

of methods is called to collect: event context, process instance attributes, proceeding actors

and activity instance descriptions, parallel events (cf. Section 5.4.2). The interaction among

objects of various classes during retrieval of sequence pattern context is presented on UML

sequence diagram in Fig. B.2.

Sequence
Pattern

for

each supporting sequence

Activity
Sequence

Activity Instance
Description

Event EventLog Trace

getContexts()

getContext

getFinishingEvent(): fe

getFinishingEvent
Context(fe):

 EventContext getContext(): EventContext

getParallelEvents(fe): Set

getProcessInstanceAttributes(id): Set

getTrace(id): Trace

getProceedingEvents(fe): Set

getProceedingActors(fe): Set

getProceedingAid(said): aid

getProcessInstanceId(): id

getSupportingSequences(): Set

getFirstAid(): said

Fig. B.2. Requesting sequence pattern contexts

Sequence pattern object can be transformed to activity pattern by calling

convertToActivityPattern method of the SequencePattern class.

The key class for discovery of sequence patterns is the PseudoSequence class. Objects of

the class are used during the database projection step of the algorithm. The createSuffix

and getSuffix methods provide access to suffix created for: (1) the sequence returned by

getSequence method, and (2) prefix being the sequence pattern.

The summary of functionality provided by the SPD module classes is presented in Tab. B.1

.

192

Tab. B.1. Functionality of SPD module classes

Function Classes

Access to an event log EventLog

Transformation of event traces to activity

sequences

Capturing context of events, activity instance

descriptions and activity patterns

Traces, Event, EventLog,

ActivitySequenceDatabase,

ActivitySequence,

AbstarctSequence,

ActivityInstanceDescription,

ActivityInstanceDescriptionSet,

Attribute,

RMVPatternConfiguration

Identification of frequent activity sequence

patterns
SequencePattern, PseudoSequence,

Pair, ActivitySequenceDatabase,
RMVPatternConfiguration

Activity Pattern Identification module

All the SPD classes and interfaces are in the pl.poznan.pue.dit.zp.api package and

use classes from pl.poznan.pue.dit.zp.recommendation.context and

pl.poznan.pue.dit.zp.activitysequences packages.

Classes from API module:

 Model the concept of activity patterns,

 Transform sequence patterns to activity patterns,

 Store activity patterns and provide access to their context.

The classes presented in Fig. B.3 corresponds to the formal model of activity patterns

introduced in Section Activity Pattern Identification and in Appendix A.

The activity pattern is modeled by the ActivityPattern class. Each activity pattern

object is associated with abstract activity pattern being an instance of

AbstractActivityPattern class. Classes ProcessModel,

ActivityDescription, ServiceDescription correspond to service-oriented

summary of a process model of an activity pattern. Service network schema is modeled by the

SericeNetworkSchema class. This class is associated with ServiceEntityClass

and ServiceRequierement classes corresponding to concepts of class of service entity

and service requirement respectively. Similarly, ServiceNetwork class is associated with

ServiceEntity and ServiceRelation classes. Classes Implementer and

Mapping correspond to mapping relations among service entities and classes of service

entities, and service description and classes of service entities respectively. The

createInstance method of the ActivityPattern class return function that maps

service entities to elements of service descriptions. The ServiceEntity class has two

extensions: ServiceIntefacedescription and ActorDescription classes.

These classes represent service interfaces and actors registered in the RMV prototype, that are

assigned to the activity pattern.

193

Conversion of a sequence pattern to an activity pattern is started by calling the

convertToActivityPattern method of the SequencePattern (cf. Fig. B.2). This

method uses the object of the SequencePatternParser class to perform all the

necessary conversions. The SequencePatternParser class implements activity pattern

identification method presented in Section 5.5.2. Methods

createServiceOrientedSummaryOfProcessModel,

createServiceNetworkSchema, createServieNetwork, createMapping

correspond to steps from Listing 5.8. Parsing algorithm uses configuration parameters

represented by the object of RmvParsingConfiguration class (cf. Section 5.6). Created

activity patterns are added to activity pattern database – the ActivityPatternDao class

hides a logic behind storing and retrieving activity patterns.

ServiceNetwork

+addServiceRelation(sr: ServiceRelation): void

ServiceEntitiyClass

+addAttributeConstraint(att: AttributeConstraint): void

ServiceRequirement

+getSource(): ServiceEntityClass

ActorDescription
ServiceInterfaceDescription

ProcessModel

+addActivityDescription(a: ActivityDescription): void

ServiceDescription

-memberName

+getServiceProviderElement(): ServiceProviderElement

ActivityDerscription

+getServiceDescription(): ServiceDescription

ServiceRelation

+getSource(): ServiceEntity

Mapping

+addMapping(sde: ServiceDescriptionElement, sec: ServiceEntitiyClass): void

ServiceDescriptionElement

+getType(): String

SequencePatternParser

+createActivityPattern(sp: SequencePattern, uc:

RmvPatternConfiguration): ActivityPattern

-createServiceOrientedSummaryOfProcessmodel(): ProcessModel

-createServiceNetworkSchema(): ServiceNetworkSchema

-createServiceNetwork(): ServiceNetwork

-createMappings(): Implementer

SequencePattern

ActivitySequenceDatabase

AbstractActivityPattern

+getProcessModel(): ProcessModel

+getServiceNetworkSchema(): ServiceNetworkSchema

+getMapping(): Mapping

ActivityPattern

+getAbstractActivityPattern(): AbstractActivityPattern

+getServiceNetwork(): ServiceNetwork

+getImplementer(): Implementer

+createInstance(): Instantiator

Implementer

-memberName

+addMapping(se: ServiceEntitiy, sec: ServiceEntityClass): void

+getActivityDescriptions(): Set

+getServiceDescriptions(): Set

+getServiceProviderElements(): Set

+getServiceConsumerElements(): Set

+getServiceInterfaceElements(): Set

+createProcessInstance(): ProcessInstance

+getRelations(): Set

+addRelation(r: Relation): void

+getServiceConsumerElement(): ServiceConsumerElement

+getServiceInterfaceElement(): ServiceInterfaceElement

+getMappings(): Set

ServiceNetworkSchema

addServiceRequirement(sr: ServiceRequirement): void

+addServiceEntityClass(sec: ServiceEntitiyClass): void

+getServiceRequirements(): Set

+getServiceEntityClasses(): Set

+getImplicitSocialRelations(): Set

+getDestination(): ServiceEntityClass

+addAttributeConstraint(att: AttributeConstraint): void

+getAttributeConstraints(): Set

+getDestination(): ServiceEntity

+addAttribute(att: Attribute): void

+getAttributes(): Set

ServiceEntitiy

+getAttributes(): Set

+addAttribute(att: Attribute): void

+addServiceEntity(se: ServiceEntitiy): void

+getServiceRelations(): Set

+getServiceEntities(): Set

+getAttributeConstraints(): Set

ActivityPatternContext

+getActivityPatternContexts(): Set

ActivityPatternDAO

+addActivityPattern(ap: ActivityPattern): void

+getActivityPatterns(): Set

+getAllActivityPatternContexts(): Set

1..*

1

1

1

1

1

1..*

1

11 1

1..*

1

1

0..*

0..*

0..*

0..*

1

1..*

1

1

RmvParsingConfiguration

-eventAttributes: Set

+getSequencePatternParser(): SequencePatternParser

+getParentSequencePattern(): SequencePattern

1

Fig. B.3. Classes in Activity Pattern Identification module

The getAllActivityPatternContext method returns all the context of all the

activity patterns stored in activity pattern database. The contexts of particular activity pattern

are retrieved by calling the getContexts method of the AbstractActivityPattern

class. The logic of this method calls the getContexts method of parent sequence pattern

returned by getParentsequencePattern method. Corresponding UML sequence

diagram is presented in Fig. B.4.

Activity
pattern

Abstract activity
pattern

Sequence
pattern

getActivityPatternContexts

getContexts()

getParentSequencePattern

Fig. B.4. Requesting activity pattern contexts

The summary of functionality provided by the API module classes is presented in Tab. B.2.

Tab. B.2. Functionality of API module classes

Function Classes

Activity patterns model ActivityPattern,

AbstractActivityPattern,

Activitydescription,

ServiceDescription,

Mapping,

Implementer,

ServiecDescriptionElement,

ServiceNetworkSchema,

ServiceEntityClass,

serviceRequirement,

ServiceNetwork,

ServiceRelation,

ServiceEntity,

ServiceInterfaceDescription,

ActorDescription

Transformation sequence patterns to activity

patterns

SequencePatternParser,

RmvParsingConfiguration

Activity patterns persistence and access to

context

ActivityPatternDao

196

Recommendation Formulation module

Classes of the RF module (Fig. B.5) are stored in pl.poznan.pue.dit.zp.rf

package. Classes are associated with other modules (pl.poznan.pue.dit.zp.rm,

pl.poznan.pue.dit.zp.api, pl.poznan.pue.dit.zp.spd) and supporting

packages (pl.poznan.pue.dit.zp.functions,

pl.poznan.pue.dit.zp.context).

Classes from the RF module:

 Implement formal model from Section 5.4.5, and

 Implement recommendation formulation method presented in Section 5.5.3.

Recommendation request is modelled by RecommendationRequest class. The access to

the current context of a collaborative process instance is provided by getContext method

of this class. The getProcessInstanceId method returns the identifier of the process

instance for which the recommendation is requested.

The RecommendationQuery class models an input for recommendation engine. Methods

of the RecommendationQuery class provide access to data necessary for recommendation

engine, i.e., recommendation request (getRecommendationRequest method), set of

activity patterns stored in the RMV prototype (getClosedActivityPatterns method).

Recommendation formulation algorithm is implemented in RecommendationEngine

class. Configuration of the algorithm is modeled as the RmvRecommConfiguration

class. The recommendation is formulated by the getRecommendation method.

The RecommendationEngine class internally uses the three methods. The

createClass method returns a context class created on the basis of the context from the

recommendation query and the contextClassFunction from the

RmvRecommmConfiguration object. A set of activity patterns is returned by the

findActivityPatterns method. Finally, specificity, sensitivity, weighed context

distance, support and confidence indicator, social coefficient are calculated within

calculatePartialMetrics. The method returns the object of the

PartialJustification class. Not that the confidence indicator and social coefficient

values are retrieved from recommendation monitor modeled by

RecommendationMonitor class.

The recommendation returned by the recommendation engine is modeled by

Recommendation class. The Recommendation class is an aggregation of instances of

RecommendationElement class. Both Recommendation and

RecommendationElement classes provide access to identifier of a process instance they

were created for – getProcessInstanceId method. The process instance identifier is

copied from recommendation request. The getActivityPattern method of

RecommendationElement class provides access to activity pattern associated with

recommendation element.

The justification of the recommendation element is modeled by FullJustification

class. The three methods the FullJustification on the basis of user preferences. Each

FullJustification object consist of recomm index and nonrecom index values, and

197

PartialJustification object. The getCDiff method returns the difference

between recomm index and nonrecom index.

Information from FullJustification class is used by

calculateRecommendationValue method to calculate a total attractiveness of the

recommendation element. The getSortedRecommendationElements method orders

recommendation elements according to values returned by the

calculateRecommendationValue method.

User preferences are modeled as UserConfiguration class. Preferences include

definition of ri and nri functions used for calculation of recomm index and nonrecom index

values. Note that while recommendation engine uses parameters from

RmvRecommConfiguration class that are common for all the users, the configuration

modeled with UserConfiguration is specific for particular user. The interaction among

objects of various classes during recommendation generation is presented on UML sequence

diagram in Fig. B.5. Two phases are distinguished in Fig. B.6: (1) generation of

recommendation elements with partial justification, (2) generation of full justification and

ordering of recommendation elements following preferences of the particular user.

The best recommendation element is selected to execution by calling

promoteToExecution method of RecommendationElement class. Information

concerning the selected activity pattern is forwarded to recommendation monitor

(RecommendationMonitor class) for update of social coefficient. Recommendations

with recommendation elements and partial justifications are stored in database modeled as

RecommendationDao.

The summary of functionality provided by the RF module classes is presented in Tab. B.3.

Tab. B.3. Functionality of RF module classes

Function Classes

Recommendation request RecommendationRequest,

RecommendationQuery

Recommendation generation RecommendationEngine,

PartialJustification,

RmvRecommConfiguration,

Recommendation,

RecommendationElement,

RecommendationDao

Recommendation elements ordering UserConfiguration,

Recommendation,

RecommendationElement,

FullJustification

ActivityInstanceContext

RecommendationRequest

+getContext(): Context

RecommendationQuery

+getRecommendationRequest(): RecommendationRequest

RecommendationElement

Recommendation

+getSortedRecommendationElements(conf: userConfiguration, rm: RecommendationMonitor):

SortedList

RecommendationEngine

+findActivityPatterns(query: RecommendationQuery): Set

RmvRecommConfiguration

-enabledSetSize: Integer

-contextClassFunction: AbstractFunction

-costAttributeName: String

-minimalSensitivity: Double

-contextDistanceFunction: AbstractFunction

UserConfiguration

+ri: AbstractFunction

+nri: AbstractFunction

+createGenericActivityPattern(ap: Set) : ActivityPattern

+getRecommendation(query: RecommendationQuery): Recommendation

+calculatePartialMetrics(ap: ActivityPattern): PartialJustification

+calculateRecommendationValue(conf: UserConfiguration, , rm: RecommendationMonitor):Double

FullJustification

+getCDif(conf: UserConfiguration): Double

PartialJustification

+ci:ConfidanceIndicator

+support: Double

+category: String

+se: SocialCoefficient

-getRecomIndex(conf: UserConfiguration): Double

-getNonRecomIndex(conf: UserConfiguration): Double

AbstractFunction

+calculate(parameters: Map): Double
+createContextClass(query: RecommendationQuery): ContextClass

+getClosedActivityPatterns(): ActivityPatternDatabase

0..*

2

+getActivityPattern(): ActivityPattern

ActivityPattern
1

+createFullJustification(conf: UserConfiguration, sj: PartialJustification) : FullJustification

+getPartialJustification(): PartialJustification

1

1

1

0..*

1

+getPartialJustification(): PartialJustification

RecommendationDAO

+getLastRecommendation(processInstatnceId: String): Recommendation

+getProcessInstanceId(): String

+getProcessInstanceId(): String

+getProcessInstanceId(): String

+promoteToExecution(): ActivityPattern

+addRecommendation(r: Recommendation, processInstatnceId: String): void

+getRecommendationElements(r: Recommendation): Set

RecommendationMonitor

+addRecommendationElement(re: RecommendationElement): void+create(ap: ActivityPattern): void

+weighedContextDistance: Double

Fig. B.5. Recommendation classes in recommendation formulation module

Recommendation
Engine

Recommendation
Element

User

Partial
Justification

Recommendation
getRecommendation()

findActivityPatterns()

calculatePartialMetrics()

create

create

create

addRecommendationElement

createGenericActivityPattern()

for

[each activity pattern]

User

FullJustification
calculate

Recommendation
Value() create

FullJustification()

getCDif()

sort()

getSortedRecommendationElements()

for

each recommendation element

Recommendation
Monitor

promoteToExecution()

updateSocialCoefficient()

getConfidanceIndicator()

getSocialCoefficient()

Fig. B.6. Creation of recommendation and sorting recommendation elements

 according to user preferences

Activity Pattern Instantiation module

Classes stored in pl.poznan.pue.dit.zp.apin package are presented in Fig. B.7.

Classes from the APIN module:

 Implement formal model from Section 5.4.6, and

 Implement recommendation formulation method presented in Section 5.5.4.

Assignment of service entity to class of service entities is modeled as ClassVariant class.

The ClassVariant class provides methods to access: class of service entity

(getServiceEntityClass method) and service entity (getServiceEntity

method). The evaluate method returns an evaluation of compliance of service entity to

class of service entities based on compliance function provided by a user. The

getActivityPattern function returns the activity pattern being instantiated. Finally

200

promoteToOffer method performs two operations: (1) creates an object of the

ClassOffer class, and (2) saves newly created class offer to database. Objects of the

ClassOffer class model assignment of service entities to classes of service entities that is

considered especially attractive and worth discussion with other selecting collaborators.

The assignment of class compliance function to particular class of service entity is modeled

by ClassFunction class. Each object of the ClassFucntion class has three methods:

(1) the getClasscomplianceFunction method is used for evaluation of assignment

for particular class of service entity, (2) the getComplianceThreshold methods returns

compliance threshold value, and (3) the getServiceEntityClass method returns class

of service entity. A set of ClassFucntion objects is modeled by the ClassFunctions

models.

Generation of class variants is performed by the generator modeled by the

ClassVariantGenerator class. The generateClassVariants method returns a

set of service entities assigned to the class of service entity. The

generateClassVariants method uses getFunctionByClass method to access

user-defined compliances function for the particular class of service entity. A set of service

entities generated by the generator for the class of service entity, is a subset of all the services

entities registered in the RMV prototype. The getAllClassVariants method returns all

the sets of service entities for all the classes of service entities. Access to repository of actors

and service interfaces is provided by geActorDescriptionRepository and

getServiceInterfaceDescriptionrepository methods. Access to class variants

generated by the generator is provided by getSortedVariantsForClass and

getGeneratedVariants.

VO variants are molded by the VOVariant class VoVarint is an aggregation of class

variants. Each VO variant can be transformed to object of VOOffer class. VOOffer

class object is an aggregation of class offers. Note that each VOOffer and ClassOffer

classes has evaluate method that takes as an argument a user configuration. This method

returns the evaluation of an offer from point of view of a particular user. Persistence of

ClassOffer and VOOffer objects is performed by OfferDao class. Both VOOffer and

VoVariant class objects can be modified using changeAssignment method. Finally,

one VoOffer is selected for instantiation of activity pattern by calling instantiate

method of VoOffer class.

VO variants are generated by an instance of VoVariantGenerator class. The

VoVariantGenerator class implements the genetic algorithm. Information concerning

the best VO variant is returned by the getBestVariant and

getBestVariantEvaluation methods.

The summary of functionality provided by the APIN module classes is presented in Tab. B.4.

201

Tab. B.4. Functionality of APIN module classes

Function Classes

Assignment of service entities to classes of

service entities

ClassFunction, ClassFunctions,

ClassVariantGenerator,

UserConfiguration

Evaluation of groups of service entities VoVariantGenerator, VoVariant,

UserConfiguration

Collaboration over selection of service

entities

ClassOffer, VoOffer, OfferDAO,

UserConfiguration

VoVariant

+evaluate(complFunc: AbstractFunction)

AbstractFunction

VoVariantGenerator

+generateVoVariants(cvg: ClassVariantGenerator, variantFunction: AbstractFunction): Map<VoVariant, Double>

-voVariantToEvalualtion: Map<VoVariant, Double>

ClassVariantGenerator

+generateClassVariants(sec: ServiceEntityClass, classFunction: AbstractFunction): List<ClassVariant>

ClassVariant

+evaluate(complFunc: AbstractFunction): Double+generateAllClassVariants(ap: ActivityPattern, fs: ClassFunctions): Map<ServiceEntityClass, List<ClassVariant>>

+getFunctionByClass(sec: ServiceEntityClass): AbstractFunction

ClassFunction

+getServiceEntityClass(): ServiceEntityClass

+getClassComplianceFunction(): AbstractFuction

VoOffer

+evaluate(conf: UserConfiguration)

ClassFunctions

+getMappings(): Set

UserConfiguration

+globalComplianceThreshold: Double

+classComplianceThreshold: Set<Double>

+globalCompliance: AbstractFunction

+classCompliance: Set<AbstractFunction>

+getClassComplianceThreshold: Double

+getServiceEntityClass(): ServiceEntityClass

+getServiceEntity(): ServiceEntity

+getClassFunction(sec: ServiceEntityClass): AbstractFunction

+getVoVariant(): VoVariant

-classesToVariants: Map<ServiceEntityClass, List<ClassVariant>>

+getSortedVariantsForClass(sec: ServiceEntityClass): List

+getGeneratedVariants(): Map<ServiceEntityClass, List<ClassVariant>> +promoteToOffer(): ClassOffer

ClassOffer

+evaluate(userFunction: UserConfiguration)

+getClassVariant(): ClassVariant

+getBestVoVariant(): VoVariant

+getBestVariantEvaluation(): Double

+getVoVariants(number: Integer): Map<VoVariant, Double>

+promoteToOffer(): VoOffer

+getClassVariants(): Set

+instantiate(ap: ActivityPattern): void

+getActivityPattern(): ActivityPattern

+getActivityPattern(): ActivityPattern

+changeAssignment(cv: ClassOffer): void

+changeAssignment(cv: ClassVariant): void

ServiceEntity

ActivityPattern

OrganizationDescription

ActorDescription

ServiceNetwork
1

+getServiceNetwork(): ServiceNetwork

0..*

0..*

0..*

+getActivityPattern(): ActivityPattern

11

+getActorDescriptionRepository(): Set

+getServiceInterfaceDescriptionRepository(): Set

1

1..*

1

1

1..*

1

1

0..*

0..*

1

1..*

OfferDAO

+getVoOffers(ap: ActivityPattern): set

+getClassOffers(sec: ServiceEntityClass, ap: ActivityPattern): Set

+getAllClassOffers(ap: ActivityPattern): Set

+addVoOffer(vo: VoOffer): void

+addClassOffer(co: ClassOffer): void

+createClassFunctions(conf: UserConfiguration): Set

Fig. B.7. Classes in Activity Pattern Instantiation module

User ClassGenerator VoVariantGenerator VoVariantClassFunctions

generateClassVariants()

generateVoVariants()

getBestVoVariant

changeAssignment()

promoteToOffer

generateAllClassVariants()

createClassFunctions()

for

each class of service entity

User

VoOffer

create

evaluate

Fig. B.8. Generation, selection and modification of the best Vo Variant

Recommendation Monitoring module

Classes stored in the pl.poznan.pue.dit.zp.rm package are presented in Fig. B.9.

Classes of the RM module implement mechanism for recommendation monitoring. In

particular they implement Recommendation Monitor component from Fig. 5.2 which is

responsible for management of confidence indicator and social coefficient values. Confidence

indicator and social coefficient values are used during recommendation formulation and

ordering of recommendation elements (cf. Section 5.5.3).

Recommended activity pattern is transformed to recommendation rules by a parser modeled

by AbstractConforormanceRuleParser class (cf. Section 5.6). Each rule is modeled

by the Rule class. Access to rule logic is provided by getLogic method. This method is

used by objects of the RuleValidator class. The RuleValidator class has a

reference to AbstractConformanceRuleParser and uses getRules method of this

class to retrieve generated rules. The RuleValidator class validates partial trace of

running collaborative process instance using the validateTrace method. A result of

validation is modeled by RuleValidation class. Each object of RuleValidation

204

class has: one assigned rule, and one rule status modeled by RuleStatus class. Rule

validation results are used to update confidence indicator value. Recommendation monitor

represented by RecommendationMonitor class manages values of confidence indicators

and social coefficients. The getConfidanceIndicator and

getSocialCoefficient methods return up-to-date values of these metrics. The

RecommendationMonitorDao class models the persistence layer of the module.

EventLog

RecommendationMonitorDao

RuleValidator

+validateRule(r: Rule): RuleStatus

+validatePartialTrace(t: Trace): Set<RuleValidation>

<<Enum>>

RuleStatus

+NOT_STARTED

+ONGOING

+DONE

+ABANDONED

AbstractConformanceRuleParser

+parse(ap: ActivityPattern): Set<Rule>

-parseControlFlow(): void

-parseServiceNetworkSchema():void

-parseServiceNetwork():void

Rule

+getId(): String

+getProcessInstanceId(): String

+getActivityPattern(): ActivityPattern

ActivityPattern

+getRecommendationElement(): RecommendationElement

+getProcessInstanceId(): String

+getParser(): AbstractConformanceRuleParser

+getPartialTrace(processIsntanceId: String, l: EventLog): Trace

RecommendationMonitor

+updateConfidanceFactor(rs: Set<RuleValidation>, ap: ActivityPattern): void

+updateSocialCoefficient(rs: Set<RuleValidation>, processInstanceId: String , ap: ActivityPattern): void

+addRules(rs: Rules): void

RuleValidation

+getRule(): Rule

getRuleStatus(): RuleStatus

+getRules(): Rules

+getConfidanceIndicator(ap: ActivityPattern): Double

+getSocialCoefficient(processInstanceid: String): Double

RecommendationElement Recommendation

Trace

+getRules(): Set<Rule>

1

1

1

1..*

1

1

1

+getLogic(): Object

Fig. B.9. Classes in Activity Pattern Instantiation module

Context and Function packages

Classes from pl.poznan.pue.dit.zp.context package are presented in Fig. B.10.

All the classes:

 Model the concept of event context,

 Model the concept of activity instance context,

 Model the concept of activity pattern context and context classifier.

The EventContext class models the concept of event context. The access to the event

context attributes is provided by getAttributes and addAttribute methods. The

ActivityInstanceContext class holds reference to EventContext object that is

returned by getEventContext method. Additionally, its methods permit accessing all the

elements of activity instance context that follows formal model presented in Section 5.4.2,

i.e., a set of events proceeding particular activity instance is returned by

getHistoryTrace method, the getProcessInstanceAttributes method returns

attributes of a process instance, the getParallelEvent method return events recorded at

the time of activity instance. Finally, the getHistoryServiceEntities method returns

service entities associated with proceeding events. ActivityPatternContext and

ContextClass classes are extensions of ActivityInstanceContext class. The

validate method of the ContextClass calculates a context distance between context

class and the given context. A function being an instance of AbstractClass and provided

by a user as a part of the RMV prototype configuration is used.

Each function provided by a user as a part of the RMV prototype configuration is an

extension of AbstractFunction class from pl.poznan.pue.dit.zp.functions

package (Fig. B.10). All the user-defined functions overload the implementation of the

evaluate method.

ActivityPatternContext

EventContext

+getAttributes(): Set

ContextClass

+validate(context: Context, contextDistanceFunction: AbstractFunction): Double

Trace

ActivityInstanceContext

+getHistoryServiceEntities(): Set

+getHistoryTrace(): Trace

+getEventContext(): EventContext

+getProcessInstanceAttributes(): Set

+getParallelEvents(): Set

Attributes

+addAttribute(att: Attribute): void

1..*

Event

1

1

1..*

11..*

0..*

0..*
ServiceEntitiy

0..*

EventLog

AbstractFunction

+calculate(parameters: Map): Double

Fig. B.10. Context classes in Recommendation Formulation module

Appendix C. Table of Symbols Used in Dissertation

Objects and classes

 attribute

 attribute name

 attribute value

 attribute equality

 object

 object classifier

ob

 equality according to classifier

 attribute constraint

 name of attribute constraint

 attribute constraint predicate

 satisfaction of attribute constraint

 class of an object

 name of class of an object

 a set of attribute constraints

 object being instance of a class

Activities and processes

 activity

 denotes the set of all the activities

 activity description

 the set of all the activity descriptions

 activity instance

 the set of all the activity instances

 activity instance description

 the set of all the activity instance descriptions

 process instance

 process instance description

 process model

 actor

 the set of all the actor

 actor description

 service

 service interface

Service protocols

 service entity description

 class of service entity description

 set of classes service entity description

 service network

209

 the service network of all the members of

SOVOBE

 service description

 the set of all the service descriptions

 class of service consumer description

 the set of all classes of service consumer

descriptions

 class of service interface description

 the set of all classes of service interface

descriptions

 class of service provider description

 the set of all classes of service provider

descriptions

 service-oriented summary of a process model

 service requirement

 set of service descriptions

 function mapping activity descriptions in to

service descriptions

 service network schema

 service protocol

 function mapping relations between the service-

oriented summary of a process model and service

network schema

 prototype service protocol

 function associating service entity descriptions of

the service network to elements of service

descriptions

 function associating nodes of service network to

classes of service entity descriptions of the

service network schema

 executable service protocol

 compliance with service network schema

Organizations

 organization
 organization goal

 a set of organization members

 relations among members of organization

 the set of all the organizations

 virtual organization

 a set of service interface descriptions used by

members of virtual organization

 the set of all the virtual organizations

210

Events

 event
 universe of events

 the set of all the events

 set of events assigned to activity insistence .
 process instance trace

 a subsequence of events from trace that

were recorded before event e inclusive

 event log

 a set of process instance attributes

 a set of events different than e that were recorded

in an event log in time period from to

inclusive

 the unique identifier of the event;

 the unique identifier of the VO collaborative

process;

 a unique identifier of the activity description ;

 a unique identifier of the VO collaborative

process instance;

 a unique identifier of the activity instance;

 timestamp of event e;

 type of event e (for instance: start, resume,

suspend, complete);

 the event context attribute;

 a unique identifier of a service consumer;

 a unique identifier of a service provider;

 a unique identifier of a service interface;

 a service consumer description;

 a service provider description;

 a service interface description;

 an event social attribute referring to service

consumer;

 an event social attribute referring to service

provider;

 an event social attribute referring to service

interface.

Context

 context feature

 the set of all the context features

 context element

 an event context element captured at time t

 context

 the set of all the contexts

211

 a subset of context elements of context
where context element name is cf

 event context

 event social context element

 a set of descriptions of service consumers and

service providers who were involved in process

instance execution before the event e inclusive

 activity instance context

 context element constraint

 social context element constraint

 context class

 social event context class

 function mapping context into context class

 context distance

Activity patterns

 event corresponding to starting of activity

instance vi execution

 event corresponding to completion of activity

instance vi

 temporal pattern of process instance p

 activity graph of process instance p

 activity graph Y’ is supported by activity graph Y

 a function that discovers a set of activity graphs

from collaborative trace
 activity pattern

 a set of activity patterns

 a function mapping activity patterns z to its

support in event log

 a set of closed activity patterns

 activity pattern context

 a context of the activity instance completed as the

last one in partial trace

 activity instance description sequence

Recommendation and instantiation

recom_index recommendation index

nonrecom_index non-recommendation index

 recommendation element

 recommendation justification

 recommendation query

 recommendation

 a function mapping a service network and

service network schema to compliance value

212

213

POLITECHNIKA GDAŃSKA
Wydział Elektroniki, Telekomunikacji

i Informatyki

Zbigniew Paszkiewicz

Metoda rekomendacji RMV
dla doboru partnerów i usług

w inkubatorach wirtualnych organizacji
oparta na technikach eksploracji procesów

Streszczenie rozprawy

Promotor:
prof. dr hab. inż. Wojciech Cellary
Wydział Informatyki i Gospodarki

Elektronicznej
Uniwersytet Ekonomiczny w Poznaniu

Gdańsk, 2014

214

215

1. Wstęp

W gospodarce otoczenie organizacji w dużym stopniu wpływa na sposób ich funkcjonowania

(Stoner, et al., 1999). Współczesne trendy: globalizacja, rozwój i upowszechnienie

technologii informacyjnych, rozwój elektronicznej gospodarki opartej na wiedzy i rosnąca

konkurencja rynkowa, przekładają się na złożoność, niepewność, dynamizm, burzliwość i

zróżnicowanie otoczenia organizacji. W takim otoczeniu produkcja i świadczenie usług na

skalę światową wymaga dużych zasobów i zróżnicowanych kompetencji, których pojedyncza

organizacja zwykle nie posiada. Nowoczesne organizacje wcielają zatem w życie strategie

sprzyjające integracji i współpracy wielu różnorodnych, wyspecjalizowanych,

autonomicznych jednostek posiadających komplementarne zasoby i kompetencje (Porter,

2008).

W wyniku studiów nad współpracą międzyorganizacyjną zaproponowano pojęcie wirtualnej

organizacji (VO, ang. Virtual Organization) jako „sieci wielu różnorodnych aktorów,

nazywanych członkami wirtualnej organizacji, którzy są w znacznym stopniu autonomiczni,

rozproszeni geograficznie i heterogeniczni pod względem kultury organizacyjnej, kapitału

społecznego, celów i otoczenia, w których działają. Członkowie wirtualnej organizacji

wspólnie realizują co najmniej jeden proces współpracy wirtualnej organizacji, którego

celem jest zaspokojenie potrzeby klienta wirtualnej organizacji” (Camarinha-Matos, et al.,

2008). Elastyczne powiązania pomiędzy członkami VO oparte na technologiach

informatycznych, zwiększają zwinność współpracy między nimi i pozwalają na lepsze

radzenie sobie ze złożonością otoczenia biznesowego. Członkami VO są organizacje –

przedsiębiorstwa, jednostki administracji publicznej i/lub organizacje pozarządowe – oraz

ludzie i systemy informatyczne.

Sukces VO w dużym stopniu zależy od efektywności i skuteczności współpracy między ich

członkami. Kluczowe znaczenie ma tu właściwy dobór członków VO. Ze względu na

złożoność tego problemu, w literaturze naukowej przedmiotu zaproponowano wiele metod

wsparcia doboru członków VO zarówno wsparcia informatycznego, jak i organizacyjnego. W

tym kontekście zaproponowano pojęcie Inkubatora Wirtualnych Organizacji (VOBE,

ang. Virtual Organization Breeding Environment) jako „stowarzyszenia organizacji, którego

celem jest podniesienie ogólnego poziomu przygotowania członków tego stowarzyszenia do

potencjalnej, przyszłej współpracy w ramach wirtualnej organizacji” (Camarinha-Matos, et

al., 2008). VOBE pozwala na wstępne przygotowanie się danej organizacji do współpracy

z innymi członkami VOBE zanim pojawi się konkretna okazja biznesowa wymagająca

utworzenia wirtualnej organizacji. Przygotowanie odbywa się przez ustalenie wspólnych

standardów współdzielenia informacji, procedur postępowania, sposobów współdzielenia

infrastruktury informatycznej itp. VOBE, którego działanie i infrastruktura techniczna są

zorganizowane zgodnie z architekturą usługową SOA (OASIS Technical Committee, 2006),

nazywa się Usługowym Inkubatorem Wirtualnych Organizacji (SOVOBE, ang. Service-

Oriented Virtual Organization Breeding Environment) (Picard, et al., 2010). W SOVOBE,

interakcje między członkami VO, wirtualnymi organizacjami i infrastrukturą SOVOBE

odbywają się w formie świadczenia usług.

Złożona struktura VO przekłada się na złożoność procesu współpracy między członkami VO.

Dwiema głównymi cechami procesu współpracy w VO są: nieprzewidywalność (ang.

216

unpredictability) i wyłanianie się (ang. emergence). Nieprzewidywalność procesu współpracy

w VO odnosi się do trudności przewidzenia z wyprzedzeniem przebiegu wykonania instancji

procesu współpracy w VO. Wyłanianie się procesu współpracy w VO odnosi się do wpływu,

jaki ma częściowe wykonanie instancji procesu współpracy w VO na jej dalszy przebieg.

Przykładowo, decyzje podjęte we wstępnym etapie wykonania instancji procesu współpracy

w VO mają wpływ na zbiór czynności wykonywanych w jej dalszych etapach. Także cel

wykonania instancji procesu współpracy w VO może ulec przeformułowaniu w trakcie jej

wykonania. Z cech nieprzewidywalności i wyłaniania się instancji procesu współpracy w VO

wynika wysoki poziom nieustrukturyzowania procesu współpracy w VO.

W konsekwencji upowszechnienia się technologii informacyjnych i wszechobecnego dostępu

do internetu za pomocą urządzeń stacjonarnych i mobilnych, duża liczba procesów jest

wykonywanych przy wykorzystaniu technologii informatycznych. Pojęcie systemów

zorientowanych procesowo (ang. Process-Aware Information Systems) zostało

zaproponowane jako ogólne określenie systemów informatycznych wspierających różne fazy

zarządzania procesami (Aalst, 2004) (Reichert, 2011). Systemy zorientowane procesowo są

„systemami informatycznymi, które wspierają zarządzanie procesami na wszystkich etapach

jego cyklu życia procesu: budowy modelu, konfiguracji i implementacji instancji procesu,

uruchomienia instancji procesu, monitorowania i modyfikacji instancji procesu, gdzie

wykonanie instancji procesu wymaga zaangażowania ludzi, systemów informacyjnych

i wykorzystania różnych źródeł informacji” (Dumas, et al., 2005). Przykładami systemów

zorientowanych procesowo są systemy przepływu prac (ang. workflow) i systemy wsparcia

współpracy (ang. Computer Supported Collaborative Work (CSCW) systems). Projektanci

systemów zorientowanych procesowo dążą do równowagi pomiędzy oferowanym przez

system zorientowany procesowo wsparciem użytkownika w wyborze czynności do realizacji

i w wykonaniu tych czynności, a elastycznością w modyfikowaniu przebiegu instancji

procesu. Systemy pozwalające na większą elastyczność oferują mniejsze wsparcie dla

wykonywanych czynności i vice versa. Typowe jest, że oferowane przez systemy

zorientowane procesowo wsparcie dla wykonania czynności wykorzystuje predefiniowane, z

góry ustalone modele procesów, które szybko ulegają dezaktualizacji w dynamicznym

środowisku organizacji.

Nowoczesne systemy zorientowane procesowo zapisują duże ilości szczegółowych danych o

przebiegu wykonania instancji procesów i czynności w formie tzw. dzienników zdarzeń.

Analiza dzienników zdarzeń pozwala na odkrycie czynników wpływających na efektywność

wykonania instancji procesów. Wiedza na temat tych czynników może być wykorzystania do

poprawy efektywności wykonania przyszłych instancji procesów. Skuteczne wykorzystanie

danych z dzienników zdarzeń zależy od efektywności metod ich analizy i zdolności tych

metod do formułowania wniosków dotyczących wykonań procesów na poziomie

biznesowym.

Odkrywanie wiedzy na podstawie dużych ilości danych jest przedmiotem takich obszarów

badawczych w informatyce jak eksploracja danych i uczenie maszynowe. Nowe pojęcie

eksploracji procesów zostało wprowadzone jako określenie na podzbiór metod eksploracji

danych, które bazują na pojęciu procesu. Eksploracja procesów jest „zbiorem technik,

narzędzi i metod pozwalających na odkrywanie, monitorowanie i ulepszanie rzeczywistych

procesów biznesowych na podstawie wiedzy wyekstrahowanej z dzienników zdarzeń

dostępnych w nowoczesnych systemach zorientowanych procesowo” (Aalst, 2011).

W badaniach nad eksploracją procesów wyróżnia się dwie główne grupy metod: metody

217

analizy off-line i metody analizy on-line. Grupa metod analizy off-line obejmuje metody

budowy modeli procesów, metody weryfikacji modeli procesów i metody rozbudowy modeli

procesów. Grupa metod analizy on-line obejmuje metody rozpoznania, predykcji

i rekomendacji (Aalst, 2011).

Efektywne wykorzystanie metod rekomendacji on-line opartych na eksploracji procesów

pozwala na podniesienie efektywności wykonania procesów wspomaganego przez systemy

zorientowane procesowo (Aalst, et al., 2010). Metody te polegają na analizie zakończonych

i trwających wykonań instancji procesów w celu odkrycia ich rzeczywistych (a nie

założonych, teoretycznych) modeli, a następnie wykorzystaniu tych modeli do wsparcia

użytkownika przez system zorientowany procesowo w formie rekomendacji kolejnych

czynności do wykonania.

Rekomendacja czynności oparta na analizie dzienników zdarzeń jest nowym obszarem badań

naukowych – pierwsze prace na ten temat pojawiły się w roku 2008 (Schonenberg, et al.,

2008). Istniejące metody rekomendacji czynności oparte na eksploracji procesów

ograniczającą się do procesów ustrukturyzowanych o znanych a priori modelach.

Takie metody nie mogą być zastosowane do wsparcia ważnego zbioru procesów, które są

nieustrukturyzowane, nieprzewidywalne i wyłaniające się. Ponadto, istniejące metody

rekomendacji bazują tylko na odkrywaniu nazw czynności, analizie ich uporządkowania i ich

charakterystykach czasowych. Metody te nie uwzględniają wielu aspektów ważnych z punktu

widzenia efektywnego doboru partnerów i usług do VO, w tym informacji o aktorach

biorących udział w wykonaniu poszczególnych czynności i kontekście wykonania

poszczególnych instancji procesów. Potrzeba opracowania metod rekomendacji czynności

wspierających wykonanie nieustrukturyzowanych procesów współpracy w VO została

podkreślona w (Sinur & Jones, 2012): „w procesach pół-ustrukturyzowanych i

nieustrukturyzowanych, w których istnieje wiele sposobów wykonania każdej instancji

procesu, czynniki warunkujące sukces ich wykonania mogą być zidentyfikowane przy

wykorzystaniu metod automatycznego budowania modeli procesów. Następnie, odkryte

czynniki sukcesu mogą być prezentowane aktorom uczestniczącym w przyszłych realizacjach

procesów jako przykłady dobrych praktyk, uszeregowane według celów osiąganych przy ich

wykorzystaniu. Głównymi obszarami zastosowań dla takich metod są: zwinne zarządzanie

przypadkami (ang. adaptive case management), procesy współpracy i interakcje społeczne”.

Metoda rekomendacji dla wirtualnych organizacji RMV (ang. Recommendation Method for

Virtual Organizations) przedstawiona w tej rozprawie polega na automatycznym odkrywaniu

szablonów czynności i generowaniu rekomendacji ad-hoc dla procesów współpracy w VO

wykonywanych w ramach SOVOBE. Szablon czynności jest częściowo uporządkowanym

zbiorem czynności, który często występuje w wielu instancjach procesów współpracy w VO.

W metodzie RMV zakłada się, że dziennik zdarzeń systemu zorientowanego procesowo

gromadzi zdarzenia spełniające następujące trzy wymagania:

1. każde zdarzenie w dzienniku zdarzeń ma zbiór atrybutów opisujących członków VO

zaangażowanych wykonanie instancji czynności powiązanej z tym zdarzeniem;

2. każde zdarzenie w dzienniku zdarzeń ma zbiór atrybutów opisujących okoliczności, w

jakich zostało zarejestrowane;

3. każda zakończona instancja procesu współpracy w VO jest opisana przez zbiór

atrybutów, z których jeden opisuje wynik wykonania tej instancji procesu współpracy

w VO.

218

Metoda RMV składa się z dwóch faz:

1. odkrywania szablonów czynności i ich kontekstów,

2. formułowania rekomendacji.

W pierwszej fazie, zbiór szablonów czynności jest odkrywany na podstawie analizy danych z

dziennika zdarzeń. Każdy szablon czynności zawiera informację o kontekstach, w jakich

wystąpił, częściowo uporządkowany zbiór czynności, zbiór członków VO zaangażowanych w

wykonanie czynności składających się na szablon czynności i zbiór relacji społecznych

występujących między tymi członkami VO. W drugiej fazie metody RMV wykonywanej na

żądanie użytkownika, szablon czynności pasujący do kontekstu wykonywanej i

niezakończonej instancji procesu współpracy w VO jest rekomendowany do uwzględniania

podczas kontynuacji jej wykonywania współpracy w VO. Przed włączeniem w wykonanie

instancji procesu współpracy w VO, szablon czynności jest instancjonowany. Podczas

instancjonowania są wykorzystywane: (1) informacje zawarte w szablonie czynności

dotyczące pożądanych cech członków VO i relacji między nimi, (2) informacje o członkach

SOVOBE, do których dostęp jest możliwy za pomocą usług świadczonych przez SOVOBE.

Wybór szablonu czynności do wykorzystania w instancji procesu współpracy w VO i

instancjonowanie szablonu czynności są również wykonywane na drodze współpracy.

Rekomendacje generowane przez metodę RMV są wykorzystywane przez system

zorientowany procesowo do wsparcia uczestników instancji procesu współpracy w VO.

Teza rozprawy jest sformułowana następująco:

Metoda RMV pozwala na trafne formułowanie rekomendacji prowadzących do

wyznaczenia zbioru partnerów i usług do współpracy w ramach wirtualnej

organizacji.

2. Komputerowe wsparcie procesów współpracy w VO

Badania nad współpracą ludzi, organizacji i systemów informatycznych są równolegle

prowadzone przez dwie społeczności naukowe: (1) społeczność organizacyjnych sieci

współpracy (Porter, 2008) (Camarinha-Matos, et al., 2007) (Rabelo & Gusmeroli, 2008)

(Cellary & Strykowski, 2009) (Picard & Cellary, 2010) i (2) rozproszonych systemów

informatycznych (OASIS Technical Committee, 2006) (Workflow Management Coalition,

1999). Społeczności te zaproponowały różne podejścia do opisu organizacji (Gallon, et al.,

1995) (Ermilova & Afsarmanesh, 2010), opisu systemów informatycznych, opisu usług

świadczonych przez organizacje i systemy informatyczne (Claro, et al., 2005) (Jaeger &

Mühl, 2007). Zaproponowano także struktury organizacyjne wspierające współpracę ludzi,

organizacji i systemów informatycznych (Camarinha-Matos, et al., 2007). W literaturze

zaproponowano szereg podejść do rozwiązania problemu efektywnego doboru partnerów

i usług do procesów współpracy (Jarimo, 2009) (Ding, et al., 2003) (Canfora, et al., 2005)

(Crispim & Sousa, 2007) (Rabelo & Gusmeroli, 2008).

Wśród metod komputerowego wsparcia procesów współpracy w VO na wyróżnienie

zasługują wspominane we wstępie (cf. Rozdział 0) systemy zorientowane procesowo oraz

systemy rekomendacji kontekstowych (ang. context-aware recommender systems). Te drugie

(Adomavicius, et al., 2005) (Adomavicius & Tuzhilin, 2005) (Ricci, et al., 2011) opierają się

na pojęciu kontekstu (Dey, 2001) (Tan, et al., 2008) (Abowd, et al., 1999), który jest

219

podstawą do generowania rekomendacji czynności dla użytkowników systemów

rekomendacyjnych.

Szczególnym typem systemów rekomendacyjnych są systemy wykorzystujące techniki

eksploracji procesów. Metody eksploracji procesów pozwalają na odkrycie i analizę

rzeczywistych zachowań użytkowników w konkretnych sytuacjach praktycznych, zamiast

bazować na domniemanych, założonych teoretycznie zachowaniach ludzi (Aalst, et al., 2010)

(Schonenberg, et al., 2008) (Nakatumba, et al., 2012) (Haisjackl & Weber, 2011) (Dorn, et al.,

2010) (Swinkels, 2012).

Eksploracja procesów nie jest jedyną techniką odkrywania zachowań ludzkich na podstawie

analizy dużych ilości danych. Na gruncie eksploracji danych opracowano metody odkrywania

wzorców sekwencji (Agrawal & Srikant, 1995) (Srikant & Agrawal, 1996) (Mane, 2013)

(Wang & Han, 2004) (Hwang, et al., 2004), klasyfikacji (Witten, et al., 2011) i

grupowania (Delias, et al., 2013). Metody te jednak nie radzą sobie jednak z odkryciem

podstawowych konstrukcji wykorzystywanych w modelach procesów, jak np. równoległe

wykonanie czynności, pętle i miejsca decyzyjne. Metody analizy sieci społecznych (Morzy &

Forenc, 2013) (Brendel & Krawczyk, 2010) (Watts, 2004) abstrahują od pojęć czynności i

procesu.

Istniejące metody komputerowego wsparcia modelowania procesów, wykonania instancji

procesów i odkrywania zachowań ludzkich są niewystarczające dla efektywnego wsparcia

procesów współpracy w VO. Systemy zorientowane procesowo ograniczają elastyczność

planowania współpracy lub oferują ograniczone wsparcie dla planowania i wykonania

czynności. Metody rekomendacji czynności opierają się statycznych, predefiniowanych

modelach działań użytkowników i modelach kontekstu, które szybko ulegają dezaktualizacji

w dynamicznym otoczeniu organizacji. Dynamika zmian kontekstu jest modelowana

w ograniczonym stopniu. Rekomendacje generowane przez metody oparte na metodach

eksploracji danych, w tym eksploracji procesów, dotyczą zwykle tylko czynności, a pomijają

takie aspekty jak cechy współpracujących partnerów i cechy relacji między nimi. Aspekty te

są ważne dla efektywnego doboru partnerów do procesów współpracy w VO. Wreszcie

w istniejących metodach doboru partnerów i usług zakłada się pełną wiedzę o modelu procesu

współpracy w VO. Dobór partnerów i usług wykonywany przy ich użyciu jest wykonywany

tylko raz przed rozpoczęciem realizacji instancji procesu współpracy w VO. Tymczasem

w praktyce, w dynamicznym otoczeniu, takie podejście nigdy nie jest stosowane. Ponadto

istniejące metody doboru partnerów i usług nie biorą pod uwagę aspektów społecznych,

które w praktyce mają znaczący wpływ na ogólną zdolność do współpracy członków VO.

Istnieje zatem potrzeba opracowania nowej metody wspierania instancjonowania i wykonania

procesów współpracy w VO, która będzie maksymalizować wsparcie dawane użytkownikowi

przy jednoczesnym małym negatywnym wpływie na elastyczności przebiegu instancji

procesu współpracy w VO. Metoda ta nie będzie wymagać apriorycznej wiedzy o modelu

procesu współpracy w VO oraz będzie uwzględniać ważne dla procesów współpracy w VO

aspekty kontekstowe i społeczne, które pozwolą na efektywny dobór partnerów i usług

dokonywany przez cały okres realizacji procesu współpracy w VO.

220

3. Protokoły usługowe

W (Picard, 2013) przeanalizowano różne podejścia do modelowania interakcji

międzyludzkich. Na podstawie wyników tej analizy zaproponowano pojęcie protokołu

usługowego jako podejścia do modelowania i adaptacji interakcji pomiędzy ludźmi,

organizacjami i systemami informatycznymi w zmiennym otoczeniu. W metodzie RMV

protokoły usługowe wykorzystywane są jako element reprezentacji szablonów czynności.

Protokół usługowy składa się z czterech elementów: (1) modelu procesu, (2) usługowego

podsumowania modelu procesu, (3) sieci usługowej, oraz (4) schematu sieci usługowej.

Model procesu jest zbiorem częściowo uporządkowanych czynności, gdzie relacją

porządkującą jest czasowe następstwo wykonywanych czynności. Usługowe podsumowanie

modelu procesu (ang. service-oriented summary of a process model) zawiera powiązanie

każdej czynności z modelu procesu z opisem usługi. Opis usługi składa się z trzech

elementów opisu usługi: (1) opisu konsumenta usługi odpowiedzialnego za wykonanie

czynności, (2) opisu interfejsu usługi wykorzystywanej przez konsumenta usługi do

wykonania czynności, (3) opisu dostawcy usługi odpowiedzialnego za wykonanie usługi.

Usługowe podsumowanie modelu procesu stanowi dodatkową warstwę abstrakcji

pozwalającą na reprezentację czynności z modelu procesu w sposób zgodny z architekturą

usługową SOA. Informacja o jednostkach usługowych (ang. service entity), czyli

konsumentach usług, dostawcach usług i interfejsach usług, jest przechowywana w sieci

usługowej. Sieć usługowa (ang. service network) jest źródłem informacji o cechach jednostek

usługowych i cechach relacji usługowych występujących pomiędzy nimi. Zbiór wymagań

wobec cech jednostki usługowej nazywa się klasą jednostki usługowej (ang. class of service

entity). Klasy jednostek usługowych są powiązane z elementami opisów usług. Zbiór

wymagań dotyczących relacji usługowych pomiędzy jednostkami usługowymi nazywa się

wymaganiem usługowym (ang. service requirement). Schemat sieci usługowej (ang. service

network schema) jest grafem, w którym wierzchołkami są klasy jednostek usługowych,

a łukami wymagania usługowe. Schemat sieci usługowej ogranicza zbiór jednostek

usługowych, które mogą wziąć udział w wykonaniu protokołu usługowego. Instancjonowanie

protokołu usługowego polega na znalezieniu zbioru jednostek usługowych i przypisaniu ich

do klas jednostek usługowych tak, aby ograniczenia zdefiniowane w klasach jednostek

usługowych i w wymaganiach usługowych były spełnione w najwyższym możliwym stopniu.

Protokół usługowy bez przypisanych jednostek usługowych jest nazywany protokołem

abstrakcyjnym. Przykład protokołu abstrakcyjnego jest przedstawiony na Rys. 3.1.

221

Rys. 3.1. Abstrakcyjny protokół usługowy

Protokół usługowy jest nazywany protokołem prototypowym, jeśli tylko wybrane klasy

jednostek usługowych mają przypisane jednostki usługowe. Natomiast protokół usługowy jest

nazywany protokołem wykonywalnym, jeśli każda klasa jednostki usługowej ma przypisaną

jednostkę usługową.

Protokoły usługowe mają zestaw cech, którym pozwalają na efektywne modelowanie

procesów współpracy w VO:

 oddzielenie implementacji czynności od modelu procesu – jedna czynność może mieć

wiele różnych implementacji różniących się między sobą konsumentami usług,

interfejsami usługi lub dostawcami usług biorącymi udział w wykonaniu czynności;

 modelowanie odpowiedzialności – protokoły usługowe pozwalają na uchwycenie

faktu odpowiedzialności klienta usługowego za wywołanie czynności

i odpowiedzialności dostawcy usługi za wykonanie usługi;

 modelownie wymagań dotyczących członków VO i relacji usługowych – protokoły

usługowe umożliwiają definiowanie wymagań dotyczących współpracujących

członków VO i relacji między nimi.

Model formalny protokołów współpracy jest przedstawiony w (Picard, 2013).

222

4. Metoda RMV

4.1. Wymagania dla metody RMV

Na podstawie analizy stanu wiedzy (cf. Rozdział 2 rozprawy) zdefiniowano następujące

wymagania dla metody efektywnego wsparcia wykonania procesów współpracy w VO:

1. wsparcie uczestników procesu współpracy w VO powinno mieć formę wytycznych

dotyczących koniecznych do wykonania czynności i wytycznych dotyczących

członków VO, którzy powinni być zaangażowani w wykonanie tych czynności; jeśli

członkowie VO nie mogą być imiennie wskazani, to należy wskazać ich pożądane

cechy;

2. wsparcie uczestników procesu współpracy w VO powinno obejmować mechanizm

weryfikacji zgodności realizacji instancji procesu współpracy w VO z przyjętymi

wytycznymi; odstępstwa od przyjętych wytycznych powinny być podstawą do zmiany

wytycznych lub uzyskania nowych;

3. kluczowe jest wsparcie dla adaptacji i elastyczności wykonania instancji procesu

współpracy w VO przez reagowanie na zmiany w otoczeniu, w jakim instancja

procesu współpracy w VO jest wykonywana współpracy w VO; zmiana w otoczeniu

powinna skutkować uzyskaniem nowych wytycznych dotyczących wykonania

instancji procesu VO dopasowanych do tego nowego otoczenia;

4. wsparcie powinno opierać się na analizie faktycznych, rzeczywistych zachowań

uczestników procesu współpracy w VO, a nie na predefiniowanych modelach

procesów, które szybko ulegają dezaktualizacji w dynamicznym otoczeniu;

5. celem jest komputerowe wsparcie współpracujących członków VO w podejmowaniu

decyzji dotyczącej wykonania procesu współpracy w VO, a nie zastąpienie ich

mechanizmem automatycznego podejmowania decyzji;

6. wytyczne dotyczące wykonania procesu współpracy w VO powinny bazować na

tzw. mądrości tłumu (ang. collaborative wisdom), czyli powinny opierać się na

obserwacji wielu różnych wykonań procesów współpracy w VO i uwzględniać różne

możliwości wykonania instancji procesów;

7. wyniki działania metody wsparcia procesów współpracy w VO powinny nadawać się

do wielokrotnego wykorzystania w różnych instancjach procesów współpracy w VO,

w różnych VO;

8. wsparcie procesów współpracy w VO musi uwzględniać aspekty społeczne i

kontekstowe mające kluczowy wpływ na współpracę w ramach VO;

9. dobór członków VO do procesu współpracy w VO musi być realizowany

konsekwentnie przez cały czas wykonania instancji procesu współpracy w VO.

4.2. Koncepcja metody RMV

Metoda rekomendacji dla wirtualnych organizacji RMV (metoda RMV, ang.

Recommendation Method for Virtual Organizations) polega na automatycznym odkrywaniu

szablonów czynności i generowaniu rekomendacji ad-hoc dla procesów współpracy w VO

wykonywanych w ramach SOVOBE. Szablon czynności jest protokołem usługowym, który

jest często wykonywany w określonych kontekstach jako część instancji procesów

współpracy w VO. Odkryte szablony czynności są wykorzystywane jako rekomendacje

223

czynności i członków VO. Wybór szablonów czynności do rekomendacji opiera się na

podobieństwie pomiędzy kontekstami szablonu czynności a aktualnym kontekstem instancji

procesu współpracy w VO. Szablon czynności, który najlepiej pasuje do kontekstu instancji

procesu współpracy w VO jest instancjonowany i włączany w wykonanie instancji procesu

współpracy w VO. Wybór i instancjonowanie rekomendowanego szablonu czynności odbywa

się na drodze współpracy grupy aktorów nazywanych partnerami dobierającymi.

Części składowe metody RMV są przedstawione na Rys. 4.1. Dwie główne składowe metody

RMV to system zorientowany procesowo (PAIS, ang. Process-Aware Information System)

i system wsparcia operacyjnego (OSSys, ang. Operational Support System). PAIS umożliwia

współpracującym członkom VO wykonywanie czynności w ramach różnych instancji

procesów współpracy w VO. Potencjalnie PAIS wspiera wykonanie wielu instancji procesów

współpracy w VO równocześnie. OSSys stanowi faktyczną implementację metody RMV.

Dwa komponenty biorą udział w komunikacji pomiędzy PAIS i OSSys: Usługa Wsparcia

Operacyjnego (OOS, ang. Operational Support Service) i Klient Wsparcia Operacyjnego

(OSC, ang. Operational Support Client). OSC umożliwia korzystanie z funkcjonalności

OSSys. OSC jest zintegrowany z PAIS i jest odpowiedzialny za wymianę danych pomiędzy

SZP i UWO. Żądanie rekomendacji użytkownika PAIS jest przesyłane przez OSC do OSS.

OSS przekazuje żądanie do poszczególnych komponentów OSSys. Odpowiedź

wygenerowana przez komponenty OSSys jest przekazywana do OSS i dalej do OSC.

PAIS

OSC

System Wsparcia Operacyjnego (OSSys)

OSS

Monitor
Rekomendacji

Meneger
Rekomendacji

Eksplorator
Procesów

Zapisz aktywność
użytkownika

Zapisz informacje
kontekstowe

Dziennik
Zdarzeń

Odkryj/aktualizuj
szablony czynności

Wizualizacja
rekomendacji

Zapisz
rekom.

Update user
recommendation history

Historia rekomendacji
dla instancji procesu

Wybrane szablony czynnoci

Inicjator
Wykonaj

rekomendację

Żądanie
użytkownika

Przekaż
do instancjonowania

Żądanie szablonów czynnoci 67

9

8 10

11

12

13

1

2

4

3

Rys. 4.1. Główne składowe metody RMV

Metoda RMV składa się z dwóch faz:

1. odkrycie szablonów czynności i ich kontekstów – odkrycie szablonów czynności

wymaga oddzielenia tych instancji procesu współpracy w VO, które są powtarzalne

i wspólne dla wielu instancji procesów współpracy w VO, od tych, które są unikalne

i niepowtarzalne; powtarzalne części instancji procesów współpracy w VO są

przechowywane jako szablony czynności wraz z kontekstami, w których zostały

zidentyfikowane;

2. formułowanie rekomendacji – w tej fazie, ze zbioru wszystkich szablonów czynności

są wybierane szablony czynności dopasowane do kontekstu rozpatrywanej instancji

224

procesu współpracy w VO; szablony te są rekomendowane; jeden szablon wybrany do

wykonania jest instancjonowany; faza druga jest wykonywane na żądanie

użytkownika systemu zorientowanego procesowo; żądanie może być wygenerowane

ręcznie przez użytkownika lub może być wysyłane do OSSys automatycznie za

każdym razem, gdy PAIS wykryje zmianę stanu realizowanej instancji procesu

współpracy w VO.

Pierwsza faza obejmuje kroki 1-3 widoczne na Rys. 4.1. Informacje o czynnościach

wykonywanych przez współpracujących członków VO są zapisywane w Dzienniku

Zdarzeń (krok 1). Zdarzenia zgromadzone w Dzienniku Zdarzeń są powiązane zarówno z

zakończonymi, jak i jeszcze wykonywanymi instancjami procesów współpracy w VO. Każde

zapisane zdarzenie zawiera informację o kontekście, w jakim wystąpiło (krok 2). Eksplorator

Procesów analizuje dane przechowywanych w Dzienniku Zdarzeń i na ich podstawie odkrywa

szablony czynności oraz ich konteksty (krok 3). Szablony czynności wraz z kontekstami są

przechowywane w Eksploratorze Procesów. Odkrywanie szablonów czynności odbywa się w

określonych odstępach czasu. Każde kolejne szablony czynności są odkrywane przy

wykorzystaniu coraz większej ilości danych gromadzonych w Dzienniku Zdarzeń. Interwał

czasowy pomiędzy kolejnymi odkryciami szablonów czynności jest jednym z parametrów

metody RMV.

Druga faza metody RMV obejmuje kroki 4-13 widoczne na Rys. 4.1. Formułowanie

rekomendacji obejmuje wybór szablonu czynności najlepiej pasującego do kontekstu instancji

procesu współpracy w VO i instancjonowanie szablonu czynności. Te kroki wykonane dla

wielu szablonów czynności w czasie całego wykonania procesu współpracy w VO tworzą

proces doboru. Instancja procesu współpracy, dla którego są tworzone rekomendacje i jest

prowadzony dobór nazywany jest procesem dobieranym. Procesy doboru i dobierane są ściśle

powiązane – przebieg jednego procesu ma znaczący wpływ na przebieg drugiego.

Członkowie VO współpracujący w ramach procesu doboru, czyli partnerzy dobierający, są

z reguły inni niż członkowie VO współpracujący w ramach procesu dobieranego.

Wygenerowanie rekomendacji ma miejsce w odpowiedzi na żądanie partnera

dobierającego (krok 6). Żądanie zawiera aktualny kontekst procesu współpracy w VO

i preferencje partnera dobierającego. Preferencje są wykorzystywane do sparametryzowania

metody RMV. W pierwszej kolejności żądanie jest przekazywane do Eksploratora Procesów

(krok 7), który dokonuje wyboru podzbioru szablonów czynności, które mogą być

rekomendowane w konkretnym kontekście instancji procesu współpracy w VO (krok 8).

Ostateczne uszeregowanie szablonów czynności jest wykonywane przez Menedżer

Rekomendacji. Uszeregowanie szablonów czynności uwzględnia:

 zbiór szablonów czynności pochodzący od Eksploratora Procesów,

 informacje pochodzące od Monitora Rekomendacji (krok 9); Monitor Rekomendacji

udostępnia informacje dotyczące historii rekomendacji wygenerowanych wcześniej

dla tej instancji procesu współpracy w VO i informacje opisujące stopień

wykorzystania rekomendacji przez współpracujących członków VO (krok 4).

Menedżer Rekomendacji prezentuje zbiór uszeregowanych szablonów czynności partnerom

dobierającym (krok 10). Partnerzy dobierający dokonują ostatecznego wyboru jednego

szablonu czynności, który zostanie włączony w wykonanie instancji procesu współpracy

w VO. Ten szablon czynności jest wówczas przekazany do Inicjatora (krok 11), gdzie jest

225

instancjonowany, a następnie przekazany do wykonania (krok 12). Informacja o decyzji

dobierających partnerów jest zapisywana w Monitorze Rekomendacji (krok 13).

W zależności od typu systemu zorientowanego procesowo, rekomendowany szablon

czynności może być wykorzystany na różne sposoby. Prosty scenariusz dopuszcza

wyświetlenie listy czynności do wykonania każdemu członkowi VO zaangażowanemu

w instancję procesu współpracy w VO. Bardziej zaawansowany scenariusz dopuszcza

przekazanie szablonu czynności do elastycznego silnika przepływu prac, gdzie jest

automatycznie wykonywany. Sekwencja rekomendowanych i instancjonowanych szablonów

czynności, tworzona podczas wykonywania procesu doboru, może potencjalnie utworzyć

pełną wykonywalną instancję procesu współpracy w VO.

Stosowanie się do rekomendacji przez członków VO biorących udział w instancji procesu

współpracy w VO jest monitorowane przez Monitor Rekomendacji (krok 4 na Rys. 4.1).

Monitoring wykorzystuje reguły zgodności (ang. conformance rules) wygenerowane na

podstawie rekomendowanego szablonu czynności. Kolejne zdarzenia zapisywane

w Dzienniku Zdarzeń są weryfikowane pod kątem zgodności z regułami. Spełnienie reguł

zgodności, tj. stosowanie się członków VO do rekomendacji, podnosi pewność przyszłych

rekomendacji. Metoda RMV obejmuje zatem pełen cykl życia szablonu czynności: odkrycie,

rekomendację, instancjonowanie i monitorowanie szablonów czynności – Rys. 4.2.

Odkrycie szablonów
czynności

Rekomendacja
szablonów
czynności

Instancjonowanie
szablonów
czynności

Monitorowanie
szablonów
czynności

Rys. 4.2. Cykl życia szablonu czynności

Podstawą rekomendacji szablonów czynności jest kontekst instancji procesu współpracy

w VO, w którym znajdują się obecnie dobierający partnerzy. Szablony czynności występujące

w jednej instancji procesu współpracy w VO mogą być wykorzystywane w innych

instancjach VO, jeśli tylko w tych instancjach wystąpi kontekst, do którego szablony

czynności pasują. Metoda RMV wspiera zatem dzielenie się wiedzą i dobrymi praktykami

pomiędzy różnymi procesami współpracy w VO i różnymi wirtualnymi organizacjami.

4.3. Kluczowe elementy metody RMV

Kluczowymi elementami metody RMV są: (1) reprezentacja szablonów czynności, (2) zakres

informacji w dzienniku zdarzeń procesu współpracy w VO, (3) rola usług SOVOBE w

metodzie RMV, (4) model kontekstu szablonów czynności, (5) technika odkrywania

i identyfikacji szablonów czynności, (6) technika generowania rekomendacji kontekstowych,

(7) technika instancjonowania szablonów czynności, (8) parametryzacja metody RMV.

Reprezentacja szablonów czynności

W metodzie RMV konsekwentnie stosuje się podejście usługowe do modelowania

współpracy. Każdy odkryty szablon czynności jest modelowany jako protokół usługowy.

Protokół usługowy łączy w jednym modelu dwie perspektywy procesowe: perspektywę

przepływu prac (model procesu, usługowe podsumowanie modelu procesu) i perspektywę

społeczną (schemat sieci usługowej, sieć usługowa).

226

Metoda RMV jest niezależna od formalizmu wykorzystywanego do reprezentacji procesu.

Użyty formalizm musi jednak pozwalać na sekwencyjne i równoległe uporządkowanie

czynności. W prototypowej implementacji metody RMV do reprezentacji modelu procesu

wykorzystano grafy, w których wierzchołki reprezentują czynności, a łuki – relacje czasowe

między czynnościami. W rozprawie przedstawiono także przykład wykorzystania do tego celu

sieci Petriego.

Zakres informacji w dzienniku zdarzeń procesu współpracy w VO

Odkrywanie szablonów czynności obejmuje: (1) odkrycie kontekstów szablonów czynności,

(2) odkrycie zbioru jednostek usługowych, (3) odkrycie zbioru klas jednostek usługowych,

(4) odkrycie zbioru wymagań usługowych, (5) odkrycie mapowań pomiędzy wszystkimi tymi

elementami. Odkrycie szablonów czynności jest możliwe tylko wówczas, gdy każde

zdarzenie w dzienniku zdarzeń jest odpowiednio opisane. Poza typowymi danymi,

w metodzie RMV zakłada się, że w opisie każdego zdarzenia znajdują się następujące dane:

 atrybuty jednostek usługowych – niepusty zbiór atrybutów opisujących cechy

jednostek usługowych zaangażowanych w wykonanie instancji czynności związanej

ze zdarzeniem;

 atrybuty społeczne – niepusty zbiór atrybutów opisujących relacje usługowe pomiędzy

jednostkami usługowymi;

 atrybuty kontekstowe – niepusty zbiór atrybutów opisujący kontekst, w jakim było

zarejestrowane zdarzenie; zakres informacji kontekstowej jest taki sam dla każdego

zarejestrowanego zdarzenia; zmiany w wartościach atrybutów kontekstowych są

zapisywane w trakcie całego wykonania procesu współpracy w VO; w ten sposób

atrybuty kontekstowe pozwalają na uchwycenie dynamiki kontekstu, w jakim jest

wykonywana instancja procesu współpracy w VO; zakres informacji kontekstowej

użyteczny w analizie danego procesu współpracy w VO w znacznym stopniu zależy

od charakteru tego procesu;

 identyfikatory jednostek usługowych – niepusty zbiór atrybutów jednoznacznie

identyfikujących jednostki usługowe zaangażowane w wykonanie instancji czynności.

Dzienniki zdarzeń zawierające taki zbiór atrybutów opisujących zdarzenie są powszechnie

dostępne w nowoczesnych systemach zorientowanych procesowo. Zbiór atrybutów może być

również rozszerzony o dane pochodzące ze źródeł innych niż sam system zorientowany

procesowo np. portale społecznościowe. Zdarzenia w dzienniku zdarzeń procesu współpracy

w VO mogą odzwierciedlać zarówno wysokopoziomowe czynności biznesowe jak

i niskopoziomowe czynności wykonywane przez system informatyczny.

Rola usług SOVOBE w metodzie RMV

W metodzie RMV zakłada się, że proces współpracy w VO odbywa się między członkami

SOVOBE przy wykorzystaniem usług udostępnionych przez infrastrukturę SOVOBE. Usługi

SOVOBE zapewniają dostęp do danych wykorzystywanych podczas odkrywania szablonów

czynności i podczas instancjonowania szablonów czynności. Informacje udostępniane każdej

VO za pomocą usług SOVOBE to:

 informacje na temat kontekstu wykonania czynności,

 opisy jednostek usługowych,

 opisy relacji usługowych między jednostkami usługowymi,

227

 informacje o wykonywanych i wykonanych czynnościach w ramach różnych instancji

procesów współpracy w VO,

 informacje o warunkach świadczenia usług.

Metoda RMV jest także jedną z usług SOVOBE udostępnianą różnym wirtualnym

organizacjom. W ten sposób metoda RMV przyczynia się do współdzielenia wiedzy

pomiędzy VO działającymi w ramach SOVOBE.

Model kontekstu szablonów czynności

Podstawą metody RMV jest obserwacja, że kontekst wykonania instancji czynności wpływa

na sposób jej wykonania i na jej wynik, a więc pośrednio wpływa także na przebieg i wynik

całej instancji procesu współpracy w VO. Kontekst instancji czynności analizowany przez

metodę RMV składa się z pięciu elementów:

1. atrybuty kontekstowe zdarzeń związanych z instancją czynności;

2. atrybuty instancji procesu stanowiące statyczny opis instancji procesu współpracy

w VO, wśród których jeden atrybut opisuje wynik zakończonej instancji procesu

współpracy w VO;

3. sekwencja zdarzeń, które wystąpiły zanim wykonanie instancji czynności rozpoczęło

się;

4. aktorzy zaangażowani w realizację instancji procesu współpracy w VO, zanim

wykonanie instancji czynności rozpoczęło się;

5. zbiór zdarzeń, które zostały zarejestrowane w innych instancjach procesu współpracy

w VO w trakcie, gdy instancja czynności była wykonywana.

Technika odkrywania i identyfikacji szablonów czynności

W metodzie RMV zachowanie współpracujących partnerów jest uznawane za szablon

czynności, jeśli występuje w różnych instancjach procesu współpracy w VO predefiniowaną

liczbę razy. Odkrywanie szablonów czynności w dzienniku zdarzeń obejmuje:

 odkrycie zbioru czynności i ich czasowego uporządkowania,

 odkrycie zbioru współpracujących partnerów i wykorzystywanych interfejsów usług

powiązanych z czynnościami oraz cech tych partnerów i interfejsów usług oraz ich

analiza w celu odkrycia klas jednostek usługowych,

 odkrycie relacji usługowych pomiędzy współpracującymi partnerami i ich analiza

w celu odkrycia wymagań usługowych,

 odkrycie kontekstów szablonów czynności.

Odkrycie szablonów czynności odbywa się w dwóch krokach: (1) odkrycie wzorców

sekwencji (ang. activity sequence patterns), (2) interpretacja wzorców sekwencji do

szablonów czynności. W pierwszym kroku jest wykorzystywany zmodyfikowany algorytm

PrefixSpan (Pei, et al., 2004), w którym wprowadzono dwie zmiany: (1) zmieniono definicję

pojęć prefiksu i sufiksu w celu uchwycenia faktu wykonywania czynności w sposób

równoległy; (2) odkrycie wzorców sekwencji odbywa się zarówno na poziomie czynności, jak

i atrybutów czynności. W drugim kroku, interpretacja wzorców sekwencji do szablonów

czynności odbywa się przez parsowanie atrybutów czynności w odkrytych wzorcach

sekwencji.

228

Technika generowania rekomendacji kontekstowych

Analiza kontekstów szablonów czynności jej kluczowa podczas generowania rekomendacji

w drugiej fazie metody RMV. Celem tej fazy jest rekomendowanie szablonów czynności,

których konteksty są najbardziej podobne do kontekstu wykonywanej instancji procesu

współpracy w VO.

Klasa kontekstu (ang. context class) jest zbiorem ograniczeń, jakie muszą być spełnione przez

kontekst szablonu czynności, aby był on uznany za podobny do kontekstu instancji procesu

współpracy w VO. Dopuszczalne jest, aby kontekst szablonu czynności spełniał tylko

podzbiór ograniczeń z klasy kontekstu. W metodzie RMV miarą podobieństwa klasy

kontekstu i danego kontekstu szablonu czynności jest odległość kontekstu (ang. context

distance). Odległość kontekstu obliczana dla różnych kontekstów różnych szablonów

czynności służy do wyboru najbardziej podobnego kontekstu i w konsekwencji

odpowiedniego szablonu czynności.

Szablony czynności o małej odległości od kontekstu instancji procesu współpracy w VO, są

dodatkowo weryfikowane przy wykorzystaniu statystycznych miar wrażliwości

(ang. sensitivity) i jednoznaczności (ang. specificity) (Simon & Boring, 1990). Dla

rekomendowanych szablonów czynności są obliczane: (1) recom_index – wskazuje

oczekiwany koszt wykonania instancji procesu współpracy w VO, gdy danych szablon

czynności będzie wykonany jako część instancji procesu współpracy w VO,

(2) nonrecom_index – wskazuje oczekiwany koszt wykonania instancji procesu współpracy

w VO, gdy dalsze jej wykonanie nie uwzględni szablonu czynności. Do rekomendacji

są preferowane szablony czynności mające duże wartości wrażliwości i jednoznaczności oraz

małą wartość recom_index w porównaniu z wartością nonrecom_index.

Rekomendowane szablony czynności są łączone w jeden generyczny szablon czynności, który

opisuje całe zachowanie ujęte w poszczególnych rekomendowanych szablonach czynności.

Częścią metody RMV jest technika łączenia szablonów czynności w jeden generyczny

szablon czynności. Technika ta obejmuje łączenie modeli procesów, schematów sieci

usługowych i sieci usługowych poszczególnych szablonów czynności. Końcowy wynik

rekomendacji metody RMV składa się z generycznego szablonu czynności i listy szablonów

czynności wraz z odległością kontekstu, wrażliwością, jednoznacznością oraz wartościami

indeksów: recom_index i nonrecom_index dla każdego szablonu kontekstu.

Technika instancjonowania szablonów czynności

W najlepszym przypadku szablony czynności są odkrywane na poziomie wykonywalnym.

Jeśli jednak różnorodność w wykonaniu instancji procesów współpracy w VO jest bardzo

duża, to szablony czynności są odkrywane na poziomie abstrakcyjnym lub prototypowym.

Takie szablony czynności mają niepełny zbiór jednostek usługowych, tzn. niektóre klasy

jednostek usługowych nie mają przypisanych jednostek usługowych. Metoda RMV pozwala

na efektywne wskazanie podzbioru jednostek usługowych będących członkami SOVOBE,

który najlepiej pasuje do klas jednostek usługowych zdefiniowanych w szablonie czynności.

W metodzie RMV problem znajdowania jednostek usługowych dla klas jednostek

usługowych jest sprowadzony do problemu poszukiwania podgrafu w sieci usługowej

SOVOBE. Klasy jednostek usługowych i wymagania usługowe są wykorzystywane jako

wymagania, które muszą spełnić wierzchołki i łuki podgrafu. Problem jest rozwiązany przy

229

wykorzystaniu algorytmu genetycznego (Mitchell, 1998). W każdej iteracji algorytmu

genetycznego są wykorzystywane zdefiniowane przez dobierających partnerów funkcje

zgodności: (1) oceniające stopień dopasowania poszczególnych jednostek usługowych do

odpowiednich klas jednostek usługowych, (2) oceniające poziom spełnienia wymagań

usługowych przez relacje usługowe występujące pomiędzy rozważanymi w danej iteracji

jednostkami usługowymi.

Parametryzacja metody RMV

Parametryzacja metody RMV odbywa się w sposób jawny i niejawny.

Jawne parametry metody RMV są określane w chwili konfiguracji metody RMV i są

przekazywane do metody RMV wraz z żądaniem rekomendacji. Parametry są

wykorzystywane przez Eksplorator Procesów i Menedżer Rekomendacji (cf. Rys. 4.1).

Wartości parametrów metody RMV muszą uwzględniać charakter analizowanego procesu

współpracy w VO. Jawne parametry metody RMV w znaczący sposób wpływają na jej

efektywność i jakość uzyskiwanych wyników. Parametry jawne redukują czas obliczeń

wykonywanych zgodnie z metodą RMV. Lista najważniejszych jawnych parametrów metody

RMV obejmuje: zakres i typ interpretowanych atrybutów zdarzeń, zakres atrybutów

opisujących kontekst zdarzeń, zakres atrybutów instancji procesów w VO, minimalną liczbę

atrybutów czynności w szablonach czynności, zbiór atrybutów obowiązkowych

w czynnościach szablonów czynności, funkcję odległości kontekstu, funkcję mapującą

konteksty instancji procesów współpracy w VO na klasy kontekstu, funkcje mapujące

wartości recom_index i nonrecom_index, funkcje zgodności wykorzystywane w algorytmie

genetycznym, wymagany minimalny poziom wsparcia dla szablonów czynności, wartości

progowe dla funkcji zgodności wykorzystywanych w algorytmie genetycznym, liczbę

szablonów czynności w pojedynczej rekomendacji, minimalną dopuszczalną wrażliwość

szablonów czynności, minimalną długość szablonu czynności.

Niejawne preferencje partnerów dobierających są określane przez Monitor Rekomendacji na

podstawie analizy wyborów dokonywanych przez dobierających partnerów i skłonności

członków VO do podążania za rekomendacją. Dla każdego szablonu czynności Monitor

Rekomendacji oblicza wskaźnik pewności (ang. confidence indicator), a dla każdej instancji

procesu współpracy w VO – współczynnik społeczny (ang. social coefficient). Wskaźnik

pewności danego szablonu czynności określa chęć członków VO do podążania za

rekomendacją. Współczynnik społeczny wskazuje na preferencje członków VO do podążania

za szablonami czynności odkrytymi w instancjach procesu współpracy w VO, w których sami

brali udział lub wręcz przeciwnie. Wartości parametrów niejawnych wpływają na

uporządkowanie szablonów czynności na liście rekomendacji.

230

5. Prototyp i ewaluacja metody RMV

Prototyp metody RMV został zaimplementowany w architekturze klient-serwer (Rys. 5.1)

w języku Java
TM

. Logika metody RMV znajduje się na serwerze RMV. Warstwa danych

została zrealizowana przy wykorzystaniu systemu baz danych Oracle 11i. Prototyp ma dwa

klienty: ograniczona funkcjonalność serwera jest dostępna za pomocą klienta konsolowego

(odkrywanie wzorców sekwencji, identyfikacja szablonów czynności), pełna funkcjonalność

wymaga wykorzystania systemu zorientowanego procesowo.

Oracle 11iSerwer RMV
Klient RMV

(SZP)

Internet

U
sł

ug
a

W
O

K
lie

nt
 W

O

Klient RMV
(Konsola)

Rys. 5.1. Architektura prototypu metody RMV

Przykładem systemu zorientowanego procesowo, z którym został zintegrowany prototyp

metody RMV, jest system ErGo. System ErGo (http://ergo.kti.ue.poznan.pl/) (Paszkiewicz, et

al., 2011) jest wykorzystywany do wsparcia wykonania procesów budowalnych zarządzanych

przez deweloperów nieruchomości.

Jakość rekomendacji generowanych przy wykorzystaniu metody RMV została

zweryfikowana podczas analizy rzeczywistych danych firmy Epsilon. Przeprowadzona dla

firmy Epsilon analiza miała na celu udzielenie rekomendacji dotyczących organizacji pracy

magazynierów zaangażowanych w realizację procesów magazynowych tej firmy.

Przedmiotem analizy był proces obsługi palet z materiałami produkcyjnymi, który jest

wspierany przez system zarządzania magazynem. System zarządzania magazynem jest

systemem zorientowanym procesowo. Wewnętrzna organizacja firmy Epsilon i cechy procesu

dostawy materiałów produkcyjnych pokrywają się z cechami wirtualnej organizacji i cechami

procesu współpracy w VO.

Proces obsługi palet z materiałami produkcyjnymi obejmuje czynności związane z przyjęciem

materiałów do magazynu, przechowywaniem palet w magazynie i wydaniem materiałów do

produkcji. Eksperymenty prowadzone na danych firmy Epsilon pozwoliły na jakościową i

ilościową ocenę rekomendacji generowanych przez metodę RMV. Przykładowy szablon

czynności odkryty w dzienniku zdarzeń systemu zarządzania magazynem jest przedstawiony

na Rys. 5.2.

231

I III IVIIG
ra

f
cz

yn
n

o

SCA SIA SPA SCB SIB SPB SCC SIC SPC SCD SID SPD

PalletArticles:M1

O
p

is
y

us
łu

g
Sc

h
em

at
 s

ie
ci

u

sł
u

go
w

ej
Si

eć

u
sł

u
go

w
a

V VI

SCE SIE SPE SCF SIF SPF

ModuleName:
Management

ModuleName:
Delivery

ModuleName:
Inventory

Resource:
mman Resource:

mrobResource: kkuj

Activity: Delivery
start

Activity: Label
printing

Activity: Delivery
close

Activity: Delivery
confirmation document

Activity:
Quality check

PalletArticles: M1 QualityControl
Results: 0

System: WMS

Privilages: storekeeper

System: WMS
AdminName: rros

System: WMS
Privilages: Manager

Rys. 5.2. Szablon czynności odkryty dla procesu zarządzania materiałami produkcyjnymi w firmie Epsilon

Szablon czynności na Rys. 5.2 składa się z sześciu czynności I-VI. Każda czynność jest

powiązana z jednym opisem usługi. Elementy poszczególnych opisów usług są powiązane

z klasami jednostek usługowych pochodzących ze schematu sieci społecznej. Nie wszystkie

elementy opisów usług są powiązane z klasami jednostek usługowych. Część klas jednostek

usługowych jest powiązana z jednostkami usługowymi z sieci usługowej. Szablon czynności

z Rys. 5.2 pozwolił na zdefiniowanie następujących rekomendacji: jeśli celem biznesowym,

jest zmniejszenie całkowitego czasu wykonania instancji procesu, a wykonanie instancji

procesu wiąże się z materiałami typu M1, wykonanie instancji procesu powinno rozpocząć się

od wywołania usługi Delivery start systemu magazynowego przez pracownika mman. Druga

czynność powinna uwzględniać wywołanie usługi Label printing modułu Inwentory systemu

magazynowego. Czynność III powinna być wykonana przez magazyniera pochodzącego

z grupy Both, do której należy także magazynier kkuj zaangażowany w wykonanie czynności

V. Czynność IV powinna być wykonana przy użyciu usługi Delivery close oferowanej przez

moduł Delivery systemu magazynowego. Dane związane z tą usługą powinny być zapisane do

bazy danych z uprawnieniami roli Storekeeper. Wykonanie czynności V powinno wiązać się z

wywołaniem przez magazyniera kkuj usługi Quality check modułu Management systemu

magazynowego. Kkuj musi należeć do grupy Unpacking razem z magazynierem mrob

zaangażowanym w wykonanie czynności VI. Czynność VI powinna być wykonana przez

wywołanie usługi Delivery confirmation document oferowanej przez nieokreślony w

szablonie czynności moduł systemu magazynowego.

Przedstawiona powyżej rekomendacja jest bardzo szczegółowa. W praktyce, w celu

ułatwienia zrozumienie wygenerowanych rekomendacji były one uogólniane przed

przekazaniem firmie Epsilon. Rekomendacje pozwoliły firmie Epsilon na identyfikację

magazynierów, grup magazynierów i zmian magazynowych, które mają albo pozytywny, albo

negatywny wpływ na funkcjonowanie magazynu. Rekomendacje doprowadziły do szeregu

działań podjętych przez firmę Epsilon, takich jak szkolenia pracowników, zmiana przypisania

pracowników do zmian, modyfikacja obciążenia zmian magazynowych czy rekonfiguracja

systemu magazynowego.

232

6. Wnioski

Przedstawiona w rozprawie metoda rekomendacji dla wirtualnych organizacji RMV stanowi

rozwiązanie problemu efektywnego wsparcia informatycznego dla nieprzewidywalnych,

wyłaniających się i nieustrukturyzowanych procesów współpracy w VO. Wsparcie dla

wykonania procesów współpracy w VO ma formę kontekstowych rekomendacji szablonów

czynności.

Idea metody RMV jest oparta na czterech spostrzeżeniach:

1. dziennik zdarzeń procesu współpracy w VO zawiera informacje opisujące interakcje

zachodzące pomiędzy aktorami współpracującymi w ramach poszczególnych instancji

procesu współpracy w VO;

2. kontekst, w którym odbywa się współpraca, ma znaczący wpływ na kształt tej

współpracy;

3. powtarzające się zachowania współpracujących aktorów, nazywane szablonami

czynności, mogą być odkryte na podstawie analiz dzienników zdarzeń;

4. odkryte szablony czynności mogą zostać ocenione jako warte lub nie warte

rekomendacji; rekomendowane szablony czynności przyczyniają się podniesienia

efektywności wykonania instancji procesów współpracy w VO.

Metoda RMV składa się z czterech części: (1) odkrywanie sekwencji czynności,

(2) identyfikacja szablonów czynności, (3) formułowanie rekomendacji, (4) instancjonowanie

szablonów czynności. Każda z tych części jest źródłem wartości dodanej sama w sobie, ale

wykonane sekwencyjnie pozwalają na efektywne wsparcie procesów współpracy w VO

spełniające postawione w dysertacji wymagania dla takiego wsparcia (cf. Rozdział 4.1).

współpracy w WO. Metoda RMV maksymalizuje wsparcie dla użytkownika w postaci

rekomendacji szablonów czynności odpowiednich do wykonania w bieżącym kontekście

procesu współpracy w VO (wymaganie 1). W przypadku zmiany kontekstu instancji procesu

współpracy w VO, zbiór rekomendowanych czynności jest inny (wymaganie 3 i 8).

Decyzja dotycząca ostatecznego wyboru i instancjonowania szablonu czynności jest

podejmowana przez grupę dobierających partnerów, a nie jest dokonywana

automatycznie (wymaganie 5). Szablony czynności zawierają nie tylko specyfikację

czynności, ale także specyfikację cech i relacji usługowych pomiędzy członkami VO

(wymaganie 8). Rekomendowane szablony czynności są modelami deskryptywnymi a nie

preskryptywnymi (wymaganie 4). Szablony czynności odkryte w procesach współpracy

jednej VO mogą być wykorzystywane wielokrotnie w procesach współpracy innych VO

(wymaganie 6 i 7). Mechanizm monitorowania rekomendacji jest podstawą oceny gotowości

członków VO do podążania za rekomendacją (wymaganie 2). Wreszcie metoda RMV wspiera

ciągłe instancjonowanie procesu współpracy w VO. Dobór nowych partnerów i usług jest

wykonywany za każdym razem, gdy dobierający partnerzy akceptują do wykonania

rekomendowany szablon czynności (wymaganie 9). Dobór partnerów i usług odbywa się w

oparciu o kryteria społeczne, istotne dla procesów współpracy w VO (wymaganie 8).

Metoda RMV została wykorzystana w praktyce do analizy dzienników zdarzeń pochodzących

z systemu zarządzania magazynem firmy produkcyjnej. Nietrywialne i trafne rekomendacje

otrzymane w wyniku zastosowanie metody RMV miały dużą wartość biznesową dla danego

procesu współpracy w VO. Klasy jednostek usługowych i wymagania usługowe stanowiące

233

część szablonów czynności były źródłem wartościowej informacji o czynnikach sukcesu

procesu współpracy w VO. Wiedza na temat czynników sukcesu została wykorzystana do

doboru jednostek usługowych, które są w stanie wykonać proces współpracy w VO

w bardziej efektywny sposób.

Główne osiągnięcia rozprawy obejmują:

 identyfikację i ocenę opisanych w literaturze metod doboru partnerów i usług

w dziedzinie sieci współpracy i architektury usługowej pod kątem zastosowania

w instancjonowaniu procesów współpracy w VO;

 identyfikację i ocenę istniejących metod rekomendacji czynności w dziedzinie

systemów zorientowanych procesowo, kontekstowych systemów rekomendacyjnych i

eksploracji procesów pod kątem wykorzystania w informatycznym wsparciu

wykonania procesów współpracy w VO;

 model formalny procesu współpracy w VO, szablonu czynności, kontekstu szablonu

czynności, dziennika zdarzeń procesu współpracy w VO;

 opracowanie metody odkrywania i identyfikacji szablonów czynności, która pozwala

na wyekstrahowanie szablonów czynności i ich kontekstów z dziennika zdarzeń

procesu współpracy w VO tworzonego przez system zorientowany procesowo;

 opracowanie metody formułowania rekomendacji szablonów czynności

w wykonywanych procesach współpracy w VO, gdzie dopasowanie szablonu

czynności do instancji procesu współpracy w VO opiera się na analizie aktualnego

kontekstu instancji i kontekstów szablonów czynności;

 opracowanie metody instancjonowania abstrakcyjnych i prototypowych szablonów

czynności, gdzie instancjonowanie odbywa się w ramach SOVOBE i ma miejsce cały

czas podczas wykonania instancji procesu współpracy w VO;

 implementacja prototypu metody RMV i integracja prototypu z systemem

zorientowanym procesowo ErGo wykorzystywanym w sektorze budowalnym do

wsparcia wykonania procesu budowlanego;

 wykorzystanie metody RMV do analizy dzienników zdarzeń firmy produkcyjnej;

przeprowadzona analiza doprowadziła do nietrywialnych rekomendacji, ocenionych

jako bardzo wartościowe przez kierownika magazynu i dystrybucji firmy Epsilon.

Dwiema ważnymi cechami metody RMV jest jej rozszerzalność i niezależność.

Rozszerzalność metody RMV polega na elastycznej definicji zbioru atrybutów i funkcji

wykorzystywanych podczas odkrywania szablonów czynności i ich rekomendacji. Różne

zbiory atrybutów, istotne dla danego obszaru aplikacji, mogą składać się na opisy jednostek

usługowych, relacji usługowych i kontekstu. Skomplikowanie wykorzystywanych funkcji

zależy od użytkownika metody RMV. W zależności od potrzeby, funkcje mogą pozwalać na

bardzo wyrafinowane i dogłębne analizy. Metoda RMV jest niezależna od typu

analizowanego procesu współpracy w VO i systemu zorientowanego procesowo. Metoda

RMV może być zastosowana do analizy każdego dziennika zdarzeń, który ma cechy

dziennika zdarzeń procesu współpracy w VO. Niezależność metody RMV pozwala na jej

zastosowanie w różnych procesach współpracy w VO i różnych domenach biznesowych.

Poza zastosowaniem do analizy procesów magazynowych, które przedstawiono w rozprawie,

metoda RMV jest obecnie używana do analizy procesów obiegu dokumentów

w Wielkopolskim Urzędzie Wojewódzkim w Poznaniu.

234

Metoda RMV była prezentowana m.in. podczas seminarium „Unleashing Operational

Process Mining”19 w Daghstul “ zorganizowanymi przez Grupę Roboczą IEEE

ds. Eksploracji Procesów20, podczas World Business Congress zorganizowanego przez

międzynarodową organizację International Management Development

Association (Paszkiewicz & Cellary, 2011), podczas dwóch konferencji IFIP poświęconej

tematyce sieci współpracy (Paszkiewicz & Picard, 2010) (Paszkiewicz & Picard, 2009),

podczas konferencji poświęconej teorii i praktyce elektronicznej administracji

ICEGOV (Paszkiewicz & Cellary, 2012), podczas piętnastej konferencji poświęconej

systemom współpracy CSCWD (Paszkiewicz & Picard, 2011) i podczas dwóch sympozjów

doktoranckich organizowanych przy okazji konferencji BIS 201321 i ADBIS 201222. Metoda

RMV jest także opisana w czasopiśmie Journal of Transnational Management (Paszkiewicz

& Cellary, 2012). Elementy metody znalazły się w dwóch rozdziałach książek (Picard, et al.,

2014) (Picard, et al., 2010). Wartość analiz sieci społecznej w analizie procesów biznesowych

została przedstawiona w (Paszkiewicz & Picard, 2013)

Metoda RMV otwiera nowe kierunki badań. Interesująca jest możliwość analizy wzajemnego

wpływu na siebie struktury czynności wchodzących w skład modelu procesu i struktury sieci

społecznych. Jest to możliwe, ponieważ szablony czynności łączą dwie perspektywy

procesowe: perspektywę przepływu sterowania i perspektywę społeczną. Analiza

wzajemnego wpływu tych dwóch perspektyw na siebie jest nową, ciekawą i obiecującą

dziedziną badań. Badania takie wymagają rozszerzenia metody RMV. Takie rozszerzenie

musi objąć symulację i predykcję wpływu zmian wprowadzanych w jednej perspektywie na

zmiany w strukturze i cechach drugiej perspektywy. Przykładem analizowanej cechy sieci

społecznej może być odporność sieci na uszkodzenia. Przykładowe cechy perspektywy

przepływu sterowania obejmują efektywność wykonania zadań i strukturę zależności

pomiędzy zadaniami. Rozszerzona metoda RMV byłaby ważnym krokiem naprzód w rozwoju

metod analizy dynamiki pracy zespołów, tworzenia zespołów i grup organizacji

z potencjalnymi obszarami aplikacji takimi jak inteligentne miasta (ang. smart cities) lub

sektor budowlany.

19 “Unleashing Operational Process Mining”, seminarium Dagstuhl

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=13481
20 Grupa Robocza IEEE ds. Eksploracji Procesów, www.win.tue.nl/ieeetfpm/
21 Sympozjum doktoranckie organizowane przy okazji 16th International Conference on Business Information Systems

(BIS 2013), http://bis.kie.ue.poznan.pl/16th_bis/phd2013.php
22 Sympozjum doktoranckie organizowane przy okazji 16th East-European Conference in Advances in Databases and

Information Systems, http://adbis.cs.put.poznan.pl/call_phd_consortium.php

235

Bibliografia do streszczenia polskiego

Aalst, W. M. P., 2004. Business Process Management: A Personal View. Business Process

Management Journal, II(10).

Aalst, W., 2009. TomTom for Business Process Management (TomTom4BPM). Amsterdam,

The Netherlands, Springer-Verlag, p. 2–5.

Aalst, W., 2011. Process Mining. Discovery, Conformance and Enhancement of Business

Processes. : Springer.

Aalst, W., Pesic, M. & Song, M., 2010. Beyond process mining - from the past to present and

future. Proceedings of the 22nd international conference on advanced information

systems engineering, pp. 38-52.

Aalst, W., Schonenberg, M. & Song, M., 2011. Time Prediction Based on Process Mining.

Information Systems, II(36), p. 450–475.

Abowd, G. et al., 1999. Towards a Better Understanding of Context and Context-Awareness.

London, UK, Springer-Verlag, pp. 304-307.

Adomavicius, G., Sankaranarayanan, R., Sen, S. & Tuzhilin, A., 2005. Incorporating

Contextual Information in Recommender Systems Using a Multidimensional Approach.

ACM Transactions on Information Systems, I(23), pp. 103-145.

Adomavicius, G. & Tuzhilin, A., 2005. Toward the Next Generation of Recommender

Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions

on Knowledge and Data Engineering, XVII(6), pp. 734-749.

Agrawal, R. & Srikant, R., 1995. Mining sequential patterns. Washington, DC, USA, EEE

Computer Society, pp. 3-14.

Brendel, R. & Krawczyk, H., 2010. Static and Dynamic Approach of Social Roles

Identification Using PISNA and Subgraphs Matching. Taiyuan, IEEE Computer

Society, pp. 557 - 560.

Camarinha-Matos, L. et al., 2007. A Computer-Assisted VO Creation Framework. Guimarães,

Portugal, Springer, pp. 165-178.

Camarinha-Matos, L., Afsarmanesh, H. & Ollus, M., 2008. ECOLEAD and CNO Base

Concepts. Methods and Tools for Collaborative Networked Organizations, p. 3–32.

Canfora, G., Di Penta, M., Esposito, R. & Villani, M., 2005. An approach for QoS-aware

service composition based on genetic algorithms. New York, NY, USA, ACM, pp.

1069-1075.

Cellary, W. & Strykowski, S., 2009. E-government Based on Cloud Computing and Service-

Oriented Architecture. Bogota (Colombia), ACM Press, p. 5–10.

Cellary, W. & Strykowski, S., 2009. E-government Based on Cloud Computing and Service-

Oriented Architecture. Bogota (Colombia), ACM Press, p. 5–10.

Claro, D., Albers, P. & Hao, J., 2005. Selecting Web Services for Optimal Composition.

Orlando, USA, Springer.

Crispim, J. & Sousa, J., 2007. Multiple Criteria Partner Selection in Virtual enterprises.

Guimarães, Portugal, Springer, pp. 197-206.

Delias, P. et al., 2013. Clustering Healthcare Processes with a Robust Approach. Rome, Italy,

EURO-INFORMS.

Dey, A., 2001. Understanding and Using Context. Personal and Ubiquitous Computing, 5(1),

pp. 4-7.

236

Ding, H., Benyoucef, L. & Xie, X., 2003. A Simulation-Optimization Approach Using

Genetic Search for Supplier Selection. New Orleans, Louisiana, USA, IEEE Computer

Society.

Dorn, C., Burkhart, T., Werth, D. & Dustdar, S., 2010. Self-Adjusting Recommendations for

People-driven Ad-hoc Processes. Hoboken, NJ, USA, Springer-Verlag Berlin,

Heidelberg, pp. 327-342.

Dumas, M., Aalst, W. & Hofstede, A. H., 2005. Process-Aware Information Systems:

Bridging People and Software Through Process Technology. Hoboken, NJ, USA: John

Wiley & Sons, Inc..

Ermilova, E. & Afsarmanesh, H., 2010. Competency Modeling Targeted on Boosting

Configuration of Virtual Organizations. Production Planning and Control. The

Management of Operations, II(21), pp. 103-118.

Gallon, M., Stillman, H. & Coates, D., 1995. Putting Core Competency Thinking Into

Practice. Research Technology Management, III(38), pp. 20-29.

Haisjackl, C. & Weber, B., 2011. User Assistance During Process Execution - an

Experimental Evaluation of Recommendation Strategies. Hoboken, New Jersey, USA,

Springer, pp. 135-145.

Hwang, S., Wei, C. & Yang, W., 2004. Discovery of temporal patterns from process

instances. Computers in Industry - Special issue: Process/workflow mining, 53(3), pp.

345 - 364.

Jaeger, M. & Mühl, G., 2007. QoS-based Selection of Services: The Implementation of a

Genetic Algorithm. Bern, Switzland, IEEE Computer Society.

Mane, R., 2013. A comparative study of Spam and PrefixSpan sequential pattern mining

algorithm for protein sequences. Advances in Computing, Communication, and Control

Communications in Computer and Information Science, Volume 361, pp. 147-155.

Mitchell, M., 1998. An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT

Press.

Morzy, M. & Forenc, K., 2013. Social Network Analysis on Highly Aggregated Data: What

Can We Find?. In: T. Morzy, T. Härder & R. Wrembel, eds. Advances in Databases and

Information Systems. Germany: Springer, pp. 195-206.

Nakatumba, J., Westergaard, M. & Aalst, W., 2012. A meta-model for operational support.

BPM Center Report. [On-line]

Available at: http://bpmcenter.org/wp-content/uploads/reports/2012/BPM-12-05.pdf

[Accessed 26 May 2012].

OASIS Technical Committee, 2006. Reference Model for Service Oriented Architecture 1.0.

OASIS Standard.. [On-line]

Available at: https://www.oasis-open.org/committees/download.php/19679/

[Accessed 17 5 2013].

Paszkiewicz, Z., Gabryszak, P., Krysztofiak, K., Wawrzyniak, K., Picard, W., 2011. ErGo:

Developer’s Guide, Poznań: Poznań University of Economics, Department of

Information Technology.

Paszkiewicz, Z. & Cellary, W., 2011. Computer supported collaborative processes in virtual

organizations. Poznań, IMDA Press, pp. 85-94.

Paszkiewicz, Z. & Cellary, W., 2012. Computer supported contractor selection for public

administration ventures. Albany, NY, ACM, pp. 322-335.

Paszkiewicz, Z. & Cellary, W., 2012. Computer supported collaboration of SMEs in

transnational market. Journal of Transnational Management, 17(4), pp. 294-313.

237

Paszkiewicz, Z. & Picard, W., 2009. Modeling virtual organization architecture with the

Virtual Organization Breeding Methodology. Thessaloniki, Greece, Springer, pp. 187-

196.

Paszkiewicz, Z. & Picard, W., 2010. MAPSS, a Multi-Aspect Partner and Service Selection

method. Saint-Etienne, France, Springer, pp. 329-337.

Paszkiewicz, Z. & Picard, W., 2011. Modeling competences in service-oriented virtual

organization breeding environments. Lausanne, Switzerland, IEEE, pp. 497-502.

Paszkiewicz, Z. & Picard. W., 2013. Analysis of the Volvo IT Incident and Problem Handling

Processes using Process Mining and Social Network Analysis. Beijing, China, CEUR

online proceedings.

Pei, J. et al., 2004. Mining sequential patterns by pattern-growth: the PrefixSpan approach.

IEEE Transactions on Knowledge and Data Engineering, Volume 16.

Picard, W., 2013. A Formalization of Social Requirements for Human Interactions with

Service Protocols. Information Sciences, Volume 283, pp. 1-21.

Picard, W., 2013. Adaptation of Service Protocols. Poznań, Poland: Poznań University of

Economics Press.

Picard, W. et al., 2010. Breeding Virtual Organizations in a Service-Oriented Architecture

Environment. In: SOA Infrastructure Tools - Concepts and Methods. Poznań, Poland:

Poznań University of Economics Press, p. 375–396.

Picard, W. & Cellary, W., 2010. Agile and Pro-active Public Administration as a

Collaborative Networked Organization. New York (NY, USA), ACM, pp. 9-14.

Porter, M., 2008. Competitive Advantage: Creating and Sustaining Superior Performance.

New York, USA: Simon and Schuster.

Rabelo, R. & Gusmeroli, S., 2008. The ECOLEAD Collaborative Business Infrastructure for

Networked Organizations. Poznań, Springer, p. 451–462.

Reichert, M., 2011. What BPM Technology Can Do for Healthcare Process Support.

Springer-Verlag, s.n., p. 2–13.

Ricci, F., Rokach, L., Sshapira, B. & Kantor, P. B., 2011. Recommender Systems Handbook. :

Springer.

Simon, D. & Boring, J., 1990. Sensitivity, Specificity, and Predictive Value. In: H. Walker,

W. Hall & J. Hurst, eds. Clinical Methods: The History, Physical, and Laboratory

Examinations. Boston: Butterworths, p. Chapter 6 .

Sinur, J. & Jones, T., 2012. Leverage Automated Business Process Discovery for Business

Benefits, Stamford, CT, USA: Gartner Report.

Srikant, R. & Agrawal, R., 1996. Mining sequential patterns: generalizations and

performance improvements. London, UK, Springer-Verlag

Stoner, J., Freeman, R. & Gilbert, D. R., 1999. Management. 6 ed. Singapore: Pearson.

Swinkels, G., 2012. Performance Improvement based on Cross-Organizational

Recommendations, Eindhoven : Eindhoven University of Technology.

Tan, P., Goh, A. & Lee, S., 2008. A Context Model for B2B Collaborations. Washington, DC,

USA, IEEE Computer Society, pp. 108-115.

Wang, J. & Han, J., 2004. BIDE: efficient mining of frequent closed sequences. Boston, MA,

USA, IEEE Computer Society, pp. 79 - 90.

Watts, D., 2004. Six Degrees: the Science of a Connected Age. New York, NY, USA: W. W.

Norton & Company.

Witten, I., Frank, E. & Hall, M., 2011. Data Mining. Practical Machine Learning Tools and

Techniques. Third ed. Burlington, MA, USA: Elsevier Inc..

238

Workflow Management Coalition, 1999. Terminology and Glossary. [On-line]

Available at: http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

[Accessed 19 October 2012].

Podziękowanie

Praca nad rozprawą została sfinansowana ze środków Narodowego Centrum Nauki

przyznanych na podstawie decyzji nr DEC-2011/01/N/ST6/04205

239

