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Chapter 1

Introduction

1.1 Motivation
Finite-state machines are abstract mathematical devices that have found important practical
applications in many areas, like natural language processing and computational linguistics,
compiler construction, design of electronic circuits, computer graphics, communication pro-
tocols, requirements specification, etc. Variety of applications call for a variety of algorithms.

This book is conceived as an effort to gather all algorithms and methods developed or co-
developed by the author of the book that concern three aspects of optimization of automata:
incrementality, hashing, and compression. Some related algorithms and methods are given
as well when they are needed to complete the picture. The author worked on the algorithms
while preparing tools for natural language processing, and that domain remains their most
frequent application area. This does not exclude other uses.

1.2 Incrementality
Minimal deterministic automata have the smallest number of states among all deterministic
automata that recognize (or generate) the same language. As a result, they also occupy the
least space in memory. In all applications where large automata are static, it is profitable to
minimize them. Traditional automata construction algorithms obtainminimal automata in two
steps. In the first step, a non-minimal automaton is constructed. In the second step, the au-
tomaton is minimized. While the minimal automaton is usually small, intermediate automata,
e.g. tries, can be huge. Incremental construction algorithms construct minimal automata in
one step, i.e. without the need for an intermediate automaton. After addition of each item, the
automaton is kept very close to the minimal one. Those algorithms can be seen as algorithms
modifying a minimal automaton so that it recognizes more items while maintaining mini-
mality. Semi-incremental algorithms proceed in two steps, but the intermediate automaton is
not much larger than the minimal one, and little work is needed to make it minimal. Small
(in case of semi-incremental algorithms) or minimal (in case of fully incremental ones) size
means that the algorithms require little memory. Similar algorithms exist for pseudo-minimal
automata.
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Incrementality in minimization algorithms has a special sense. All minimization algo-
rithms except the incremental ones have unusable intermediate results. Most of them start by
dividing states of an automaton into two classes: final and non-final states. Those classes are
further divided until all states in all classes are equivalent to other states in their class. One
class in the final partition is one state in the minimal automaton. Brzozowski's algorithm [5]
is different in that it inverts the automaton, determinizes it, and then inverts and determinizes
it again. This process also renders a usable automaton only at the end of the process. Incre-
mental minimization finds pairs of equivalent states, deleting redundant states and redirecting
transitions accordingly. After each such operation, an intermediate automaton may not be
minimal, but it recognizes the same language, and it is smaller than the original one. When
there are time limits for minimization, it can be interrupted after any minimization step.

1.3 Hashing
Although quite a lot of information can be encoded into a finite automaton, some information
cannot be stored there without inflating the size of the automaton beyond reasonable bounds.
In such cases, hashing techniques implement mapping from strings in the language of the
automaton to any integer, or in case of pseudo-minimal automata, to just about any other
data. Those integers can then serve as indexes to other data structures, such as e.g. vectors of
pointers.

Hashing is implemented by placing some numbers either in states or in transitions, or in
both. A mapping from strings to numbers can then be calculated in various ways. Usually
numbers found along paths representing strings are added, but other solutions (one number
per path, keep the last number found) are also possible.

Numbers needed for implementation of hashing can be added after construction, but they
can also be added during it, which can lead to faster processing. Placing appropriate informa-
tion for hashing implementation may be part of construction algorithms.

1.4 Compression
Minimization is not the only method to reduce the size of an automaton. Various compres-
sion techniques serve the same purpose, and they can be applied independently of minimiza-
tion. They rely on various representation methods for automata. Compression not only re-
duces memory requirements for programs that use automata, but it can make them faster, as
it reduces the time needed to load the automaton representation into memory. Some other
representations of dictionaries would require additional time for initialization of their data
structures. However, some representations may slow down word look-up. Certain represen-
tations are more suitable for some applications than for others. Automata can be optimized
for specific needs.

1.5 Organization of This Book
The next chapter contains basic definitions that are used throughout this book. The following
three chapters present construction algorithms for deterministic finite-state automata and de-



1.6. Acknowledgements 11

terministic tree automata. They construct either minimal (Chapter 3 and Chapter 4) or pseudo-
minimal (Chapter 5) automata, and the algorithms are either incremental or semi-incremental.
The choice of algorithms reflects the author's participation in development of either the basic
versions of them, or their extensions.

Chapter 6 is dedicated to hashing implementedwith automata --- both finite-state automata
and tree automata. Chapter 7 describes incremental minimization developed by BruceWatson
and improved by the author of the present book. Chapter 8 discusses various compression
methods for deterministic finite-state automata. The last chapter is a summary.
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Chapter 2

Definitions

In the following definitions, we will use a notion of string. Let us call a set of symbols an
alphabet. An alphabet is usually denoted asΣ. A string is a sequence of symbols of any finite
length (including 0). The length of a stringw is written as |w|. This is the same notation as for
cardinality of a set, i.e. |S| is the number of items in S. An empty string (a string of length 0)
is denoted as ε. Note that |ε| = 0. An arbitrary sequence of items of the same type is denoted
with a raised star, so to indicate that w is a string, we write w ∈ Σ∗. We index individual
symbols in a string starting from 1, so w = w1w2 . . . w|w|.

2.1 Finite-State Automata
There are two kinds of a finite-state automaton (FSA): deterministic and nondeterministic
one. We will use only deterministic automata throughout this book. A deterministic finite
automaton (DFA) is a 5-tupleM = (Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is a
finite set of symbols called the alphabet, δ : Q × Σ → Q is the transition function, q0 is
the start state or the initial state, and F ⊆ Q is the set of final states. If transition function
is defined for every combination of state and symbol, then the automaton is called complete.
Otherwise it is called incomplete. If for a certain q ∈ Q and a ∈ Σ, δ(q, a) is not defined,
we write δ(q, a) = ⊥.

The transition function δ can be extended to δ∗ to act on strings rather than on single
symbols. If q ∈ Q, a ∈ Σ, and w ∈ Σ∗, then

δ∗(q, ε) ≡ q
δ∗(q, aw) ≡ δ∗(δ(q, a), w)

(2.1)

A path in an automaton is defined as a sequence of transitions, such that a target of a
transition is the source state of another transition. States are said to belong to the path if they
are either source or target state of any transition in the path.

π = (q1, σ1, q2)(q2, σ2, q3) . . . (qn, σn, qn+1), (∀1 ≤ i ≤ n)δ(qi, σi) = qi+1 (2.2)
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The right language of a state q is defined as

→
LM (q)M ≡ {w ∈ Σ∗|δ∗(q, w) ∈ F} (2.3)

The language of an automatonM is defined as

L(M)M ≡ {w ∈ Σ∗|δ∗(q0, w) ∈ F} (2.4)

Note that L(M) =
→
L (q0). If L(M) = L then we say that the automatonM recognizes

the language L. The automaton is called recognizer as opposed to a transducer, which has
output. The lower indexM can be dropped if the context is obvious. We define the output
alphabet of a state as a set of symbols on its outgoing transitions:

Σq = {σ : δ(q, σ) 6= ⊥} (2.5)

The right language can also be defined recursively:

→
L (q) ≡ {a

→
L (δ(q, a))|a ∈ Σq} ∪

{
{ε} if q ∈ F
∅ if q 6∈ F (2.6)

The left language of a state q is defined as:

←
Lm (q) ≡ {w ∈ Σ∗|δ∗(q0, w) = q} (2.7)

Let |S| be the cardinality of a set S. Among all automata recognizing the same language
L, there is one (up to isomorphism) that has the smallest number of states. Such automaton
is called minimal automaton.

(∀M such that L(M) = L(Mmin)) |Q| ≥ |Qmin| (2.8)

Two states are equivalent if and only if their right languages are equal.

(p ≡ q)⇔ (
→
L (p) =

→
L (q)) (2.9)

This equivalence relation divides all states of an automaton into classes of abstraction.
In a minimal automaton, all classes have only one element. In other words, in a minimal
automaton, if a pair of states is found equivalent, there is no pair of different states that are
equivalent.

A state is q reachable if there is w ∈ Σ∗ such that δ∗(q0, w) = q. A state is unreachable
if it is not reachable. A state q is co-reachable if there is w ∈ Σ∗ such that δ(q, w) ∈ F . If in
an automaton no pair of states is equivalent, there are no unreachable and no co-unreachable
states, the automaton is minimal.

There is also a notion of pseudo-equivalence. A state is divergent if cardinality of its
right language is greater than 1. A state p is pseudo-equivalent to another state q, denoted as
p ' q if they have the same right language and they are not divergent.

(p ' q)⇔
((→
L (p) =

→
L (q)

)
∧
(
|
→
L (p)| ≤ 1

))
(2.10)
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An automaton, in which if two states are pseudo-equivalent, theymust be the same state, is
a pseudo-minimal automaton. An alternative definition is possible. A state q is confluence
if it has more than 1 incoming transition. A pseudo-minimal automaton is an automaton that
has the smallest number of states among all automata that recognize the same language, and
in which there is no path such that a confluence state follows a divergent one, or a state is both
divergent and confluence.

We define a function fin that verifies finality of a state.

fin(q) =

{
0 if q 6∈ F
1 otherwise (2.11)

A signature of a state is defined as its finality and a suite of its outgoing transitions (their
labels and their targets).

sgnt(q) = (fin(q), {(σ, δ(q, σ)) : σ ∈ Σq}) (2.12)

If (∃w ∈ Σ∗, w 6= ε, ∃q ∈ Q)δ∗(q, w) = q, then the automaton is cyclic. Otherwise the
automaton is acyclic.

A height h(q) of a state q in an acyclic automaton is defined as:

h(q) = max
w∈

→
Lq
|w| (2.13)

and it can be computed as:

h(q) =

{
1 + maxσ∈Σq h(δ(q, σ)) Σq 6= ∅
0 otherwise (2.14)

An automaton is usually drawn as a directed graph. The states are drawn as circles, final
states as double circles, transitions as labeled arcs. The initial state has an incoming arc that
does not come from any state. The graph is called a transition diagram.

..0..

1

.

2

.

3

.

a

.

b

.

c

.
d

Figure 2.1: A transition graph of an automaton A = (Q,Σ, δ, q0, F , where Q = {0, 1, 2, 3},
Σ = {a, b, c, d}, δ(0, a) = 1, δ(0, d) = 3, δ(1, b) = 2, δ(2, c) = 2, q0 = 0, F = {2, 3}.

An example of a transition graph of an automaton is shown in Figure 2.1. The language of
the automaton is L(A) = abc∗|d, i.e. it contains d, a, ab, abc, abcc, abccc, . . . and so on. The
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right language of states is
→
L (0) = L(M),

→
L (2) = c∗,

→
L (1) = b

→
L (2) = bc∗,

→
L (3) = ε.

The automaton is minimal.

2.2 Tree Automata
Trees are defined as follows:

1. Each symbol σ ∈ Σ is a tree.

2. For each t = σ(t1, . . . , tm), where σ ∈ Σ, and t1, . . . , tm,m ≥ 0 are trees, t is a tree.

Any subset of all trees TΣ defined over an alphabet Σ is called a tree language. Trees are
recognized (or generated) by tree automata.

There are two kinds of tree automata: bottom-up and top-down. Bottom-up automata
are also called frontier-to-root, and top-down automata are also called root-to-frontier. Tree
automata recognize trees. Bottom-up ones recognize trees starting from leaves, top-down start
from the root. In this book, we use only bottom-up, deterministic tree automata since they are
more powerful than their top-down counterparts. When referring to a bottom-up, deterministic
tree automaton, we will often use a shorter name --- a deterministic tree automaton (DTA).

A finite-state, bottom-up tree automaton [11] is defined as A = (Q,Σ,∆, F ), whereQ is
a finite set of states, Σ is a finite set of symbols called the alphabet, ∆ =

{
τ1, . . . , τ|∆|

}
⊂∪m

i=0 Σ ×Qm+1 is a finite set of transitions, and F ⊆ Q is a set of final states. Final states
are also known as accepting states. In a deterministic, finite-state, bottom-up tree automaton,
for each (σ, q1, . . . , qm) ∈ Σ × Qm, m ≥ 0, there is at most one q ∈ Q such that τ =
(σ, q1, . . . , qm, q) ∈ ∆. In that case, we can define a function δm:

δm(σ, q1, ..., qm) =

{
q if q ∈ Q is such that (σ, q1, ..., qm, q) ∈ ∆
⊥ if no such q ∈ Q exists (2.15)

Wewill drop the indexm in δm in unambiguous cases. States q1, . . . , qm are source states,
and q is a target state. We can define an extended transition function on trees:

δA(t) =

{
δ0(σ) if t = σ ∈ Σ
δm(σ, δA(t1), . . . , δA(tm)) if t = σ(t1 · · · tm) ∈ TΣ \ Σ

(2.16)

A language of a state q in an automatonA is a set of trees such that the extended transition
function returns q for each of them:

LA(q) = {t ∈ TΣ : δA(t) = q} (2.17)

That language can be computed recursively:

LA(q) =
∪

τ=(σ,r1,...,rm,s)∈∆:s=q

σ(LA(r1), . . . , LA(rm)) +
∪

(σ,s)∈∆:s=q

σ (2.18)

A language of the whole automaton A is the union of the languages of all its final states:
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L(A) =
∪
q∈F

LA(q). (2.19)

Two automataA andB are equivalent ifL(A) = L(B). Two states p and q are equivalent
(written p ≡ q) if and only if:

p ∈ F ↔ q ∈ F (2.20)

and for allm > 0, all k ≤ m, and all τ = (σ, r1, . . . , rm) ∈ Σ×Qm:

δm(σ, r1, . . . , rk−1, p, rk+1, . . . , rm) ≡ δm(σ, r1, . . . , rk−1, q, rk+1, . . . , rm) (2.21)

The size of a DTA A = (Q,Σ,∆, F ) is the size of all its transitions:

|A| = |∆| (2.22)

A minimal deterministic tree automaton Amin is the smallest automaton among all
automata that recognize the same language:

Amin = A : ∀A′:L(A′)=L(A) |A| ≥ |Amin| (2.23)

The size of a DTA is the size of all its transitions, but the minimal DTA has also the
minimal number of states. In a minimal automaton, each equivalence class for ≡ has exactly
one state.

Let RA(q) denote a set of trees in TΣ∪{#} that have exactly one leaf node labeled # 6∈ Σ,
and that the result of replacing that node with a tree in LA(q) is a tree in L(A). That node
is a place holder used to generalize concatenation, so that t#s is a tree in L(A) obtained by
replacing the node labeled # in t with a subtree s.

RA(q) = {t ∈ TΣ∪{#} : δA(t#s) ∈ F for all s ∈ LA(q)} (2.24)

RA(q) plays the role analogous to the right language in FSAs. Two states p and q are
equivalent p ≡ q if they have identical RA:

(p ≡ q)⇔ (RA(p) = RA(q)) (2.25)

A state q is called divergent if |RA(q)| > 1.
Two states p and q are pseudo-equivalent, denoted as p ' q, if they are equivalent, and

they are not divergent (their languages contain more than one tree):

(p ' q) ≡ ((p ≡ q) ∧ (|LA(q)| > 1⇒ |RA(q)| = 1)) (2.26)

Pseudo-equivalence is an equivalence relation. In a pseudo-minimal DTA, each equiva-
lence class has exactly one element. In a pseudo-equivalent DTA, each tree has a transition
that is traversed when recognizing that tree and that is not traversed when recognizing any
other tree. W call it a proper transition.

As in the case of ordinary finite-state automata, we define function fin that acts on a state:
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fin(q) =

{
0 if q 6∈ F
1 otherwise (2.27)

We also define a function posn that acts on a state q and a transition τ that returns all the
positions of q as a source state of a transition:

posn(q, τ = (σ, r1, . . . , rm, n)) = {i : ri = q, 1 ≤ i ≤ m} (2.28)

The signature of a state q takes into account finality of the state as well as the label, the
target, and positions of the source state q in all outgoing transitions of the state:

sgnt(q) = (fin(q),
∪

τ=(σ,r1,...,rm,n):posn(q,τ)6=∅

(σ, posn(q, τ), n)) (2.29)

A fanout of a state q is defined as:

fanout(q) = {(σ, r1, . . . , rm, n, i) : (σ, r1, . . . , rm, n) ∈ ∆, 1 ≤ i ≤ m, ri = q} (2.30)

A fanin of a state q is defined as:

fanin(q) = {(σ, r1, . . . , rm, n) ∈ ∆ : n = q} (2.31)

The language of a transition τ = (σ, q1, . . . , qm, q) ∈ ∆ is the subset ofLA(q) recognized
by following τ :

LA(τ) =

{
σ τ = (σ, q)∪

(t1,...,tm)∈LA(q1)×...×LA(qm) σ(t1, . . . , tm) τ = (σ, q1, . . . , qm, q)

(2.32)
A state q ∈ Q is reachable if there is a tree t such that δA(t) = q. A state is unreachable

if it is not reachable. A state q is co-reachable if either

q ∈ F (2.33)
∃(σ, r1, . . . , rm, n) ∈ ∆ : ri = q ∧ 1 ≤ m ∧ n is co-reachable (2.34)



Chapter 3

Incremental Construction from
Sorted Data

This chapter is the first in a series of three chapters that present algorithms that construct
either minimal or pseudo-minimal deterministic finite-state automata or minimal or pseudo-
minimal deterministic bottom-up tree automata. The algorithms are selected because of their
incrementality or semi-incrementality. There are other algorithms that can be seen as incre-
mental, e.g. the Thompson construction [1]. They are not included here because they use
different input and they are loosely related to the work of the author of this book.

Each chapter is divided into sections where the basic algorithm and its extensions are pre-
sented. The algorithm is described first in its basic version --- that is a version that constructs
a minimal, acyclic, deterministic finite-state automaton. Then extensions of the algorithm are
presented, in which pseudo-minimal acyclic automata, cyclic automata, and minimal, deter-
ministic, acyclic bottom-up tree automata (if applicable) are constructed. Such presentation
makes it easier for the author to underline similarities between various extensions of the same
algorithm. See Section 5.3 for a summary of the algorithms and recommendations.

Incremental algorithms, presented in this chapter and in the next one, construct an au-
tomaton (a finite state automaton or a tree automaton) by adding items to the language of
the automaton one by one in such a way that the size of the automaton during construction
(measured in e.g. the number of states) remains very close to the size of the minimal or
pseudo-minimal (depending on the extension of the algorithm) automaton recognizing a lan-
guage consisting of all items added to the automaton so far. There are two families of such
algorithms: incremental algorithm for sorted data (described in this chapter) and incremental
algorithm for unsorted data (described in the next chapter, page 63).

The family of algorithms described in this chapter is the incremental construction for
sorted data. This family uses the fact that data comes lexicographically sorted. The algorithms
in this family are faster than competing algorithms. We start by presenting an algorithm that
constructs a minimal acyclic deterministic finite-state automaton from a finite set of strings,
and then present its extensions: construction of acyclic pseudo-minimal automata (page 40),
and adding strings to cyclic automata (page 45).
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3.1 Traditional, Non-Incremental Construction
Let us start with a description of a traditional method of constructing a minimal deterministic
finite-state automaton. It can be divided into two steps. The first step consists of an algorithm
that constructs an automaton that is not necessarily minimal. The second step is a minimiza-
tion algorithm. Incremental construction obtains mininmal (or almost-minimal) automaton
after each new string has been added. It can also be regarded as an algorithm for adding a
string or a set of strings to an already existing automaton.

The simplest way to construct a deterministic automaton recognizing a set of strings is
to construct an automaton in the form of a trie. A trie is a rooted tree with labels on edges
consisting of single characters (usually letters). Each string is recognized along the path from
the initial state to one of the final states. In a trie, one final state is associated with exactly
one string. An algorithm for constructing a trie can be summarized as Algorithm 3.1.

Algorithm 3.1 Algorithm for constructing a trie --- function ConstructTrie.
1: function ConstructTrie
2: CreateM = ({q0},Σ, ∅, q0, ∅)
3: while input not empty do
4: w ← newstring
5: AddStringToTrie(M,w)
6: end while
7: returnM
8: end function

Most of the work in the function ConstructTrie is done in procedure AddStringToTrie
outlined as Algorithm 3.2.

Algorithm 3.2 Algorithm for adding a string to a trie --- function AddStringToTrie. M is a
trie, and w is a string to be added. The procedure modifiesM .
1: procedure AddStringToTrie(M,w)
2: while There is a transition inM labeled with the next symbol of w do
3: Follow the transition
4: end while
5: while There is a next symbol σ left in w do
6: Create a new state p
7: Create a transition from the current state to p labeled with σ
8: Follow that transition
9: end while
10: Make the current state final
11: end procedure

Algorithm 3.2 can be rewritten more formally as Algorithm 3.3. Note that neither of the
two while loops needs to be entered. If the first loop is not entered, the first symbol of the
string to be added is different from the first symbol in any string currently stored in the trie.
If the second loop is not entered, either the string is already in the trie, or it is a prefix of a
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string already in the trie. In the first case, the trie remains intact (q is already in F ). In the
latter case, F is modified, i.e. one state becomes final.

Algorithm 3.3 Algorithm (more formal) for adding a string to a trie --- function AddString-
ToTrie. M is a trie, and w is a string to be added. The procedure modifiesM .
1: procedure AddStringToTrie(M,w)
2: q ← q0
3: i← 1
4: while δ(q, wi) 6= ⊥ do
5: q ← δ(q, wi)
6: i← i+ 1
7: end while
8: while i ≤ |w| do
9: p← new state
10: δ(q, wi)← p
11: i← i+ 1
12: q ← p
13: end while
14: F ← F ∪ {q}
15: end procedure

An example of a trie is shown in Figure 3.1. It can be seen that every state but the initial
one has one incoming transition. All leaf states are final states. Internal states can also be
final. In such case, the automaton recognizes words that are prefixes of other words also
contained in the language of the automaton.

Let us see how the trie construction algorithm works in practice. Our input data is a subset
of the language of the trie in Figure 3.1 --- words: bili, biliśmy, biję, and bij, in that order.
As specified in Algorithm 3.1, we start with an automaton having only a start state q0 = 0.
We add the word bili. Since there is only one state and no transitions in the automaton, the
loop in lines 4--7 of Algorithm 3.3 does not run. The loop in lines 8--13 creates a chain
of states 0, 1, 2, 5, and 12 (we use state number compatible with Figure 3.1), as well as a
sequence of transitions between them labeled with subsequent letters of the word. In line 14
of Algorithm 3.3, state 12 is made final. The result can be seen in Figure 3.2.

The next word is biliśmy. The previous word ---bili--- is its prefix. Therefore, the loop in
lines 4--7 traverses all transitions of the automaton, recognizing the prefix bili. Next, a chain
of states 23, 45, and 48 is created, as well as transition between state 12 and state 23 labeled
with ś, a transition between state 23 and state 45 labeled with m, and a transition between
state 45 and state 48 labeled with y. In line 14 of Algorithm 3.3, state 48 is made final. The
situation at the end is shown in Figure 3.3.

Now it is time to add biję. The first two letters are recognized by the trie in Figure 3.2.
The transitions that bear them as labels are traversed in the while loop in lines 4--7 of Al-
gorithm 3.3. The last two letters have to be added. The loop in lines 8--13 creates a chain of
states 4 and 7, a transition from state 2 to state 4 labeled with j, and a transition from state 4
to state 10 labeled with ę. In line 14 of Algorithm 3.3, state 10 is made final. The result can
be seen in Figure 3.4.

The last word to be added is bij. The first while loop uses all letters of the word. When
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Figure 3.1: Example of a trie. The automaton recognizes flectional forms of a polish verb
bić. Derived forms are not shown.
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..0.. 1. 2. 5. b. i. l. 12. i

Figure 3.2: Example of a trie construction. Word bili has just been added to an empty au-
tomaton.

..0.. 1. 2. 5. b. i. l. 12. i. 23. ś. 45. m. 48. y

Figure 3.3: Example of a trie construction. Word biliśmy has just been added to an automaton
already recognizing word bili.

..0.. 1. 2.

4

. 5. b. i.

j

. l.

10

.

ę

. 12. i. 23. ś. 45. m. 48. y

Figure 3.4: Example of a trie construction. Word biją has just been added to an automaton
containing words bili and biliśmy.

we get to state 4, no letters of bij are left for building a new chain of states and transitions.
The second loop is not run. However, the trie does not yet recognize the word bij. Instruction
in line 14 does the trick --- state 4 is made final. The automaton is shown in Figure 3.5 (note
that state 4 is now final).

..0.. 1. 2.

4

. 5. b. i.

j

. l.

10

.

ę

. 12. i. 23. ś. 45. m. 48. y

Figure 3.5: Example of a trie construction. Word bij has just been added to an automaton
containing words bili, biliśmy, and bij.

Our goal is to obtain a minimal automaton. Therefore, the trie needs to be minimized. We
could use general purpose minimization algorithms: Hopcroft algorithm [24] (the fastest),
Hopcroft-Ullman algorithm [25], or Aho-Hopcroft-Ullman [1] (the simplest). The incremen-
talminimization algorithm [41] is a bit slower for that purpose, and so is Brzozowski algorithm
[5], which can be used on nondeterministic automata. However, our automaton is a trie, so
we can use an algorithm that uses that fact.

Recall that two states are equivalent when they have the same language (see Equation (2.9)).
We compare states of a trie pairwise and replace one with the other one when they are equiv-
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alent. Replacement means that one of the states is deleted, and all transitions that lead to it
are redirected to the other state. Instead of using (2.3), we use the recursive definition (2.6).
Two states p and q are equivalent when they:

1. are both final or non-final

2. have the same number of outgoing transitions

3. have the same labels on outgoing transitions

4. targets of transitions with the same labels have the same right language

Formally (we compressed points 2 and 3 into a single condition):

p ≡ q ⇔


(p ∈ F ∧ q ∈ F ) ∨ (p 6∈ F ∧ q 6∈ F )
Σp = Σq

(∀σ ∈ Σp)
→
L (δ(p, σ)) =

→
L (δ(q, σ))

(3.1)

Contrary to the incremental minimization algorithm [41], we do not initially divide states
of an automaton into classes based on their finality, number of outgoing transitions, their la-
bels, etc. However, we do divide them into two groups: those that have already been checked,
and those that have not. Of course, at the beginning, the first group is empty. Each subsequent
state from the unchecked group is checked for equivalence against all states in the checked
group. It is possible to visit the states in the unchecked group in such an order that the tar-
gets of all their outgoing transitions have already been checked. Notice that that condition
also holds for any state from the checked group. One such order is postorder. To perform
operation P on state q and on all states reachable from state q, we use Algorithm 3.4.

Algorithm 3.4 Postordermethod of performing operationP on state q of an acyclic automaton
M , and on all states reachable from q.
1: procedure postorder(M, q)
2: for σ ∈ Σq do
3: postorder(M, δ(q, σ))
4: end for
5: P (q)
6: end procedure

One advantage of using postorder is that Equation (3.1) can be simplified to:

p ≡ q ⇔

 (p ∈ F ∧ q ∈ F ) ∨ (p 6∈ F ∧ q 6∈ F )
Σp = Σq

(∀σ ∈ Σp)δ(p, σ) = δ(q, σ)
(3.2)

or even more compactly to:

p ≡ q ⇔ sgnt(p) = sgnt(q) (3.3)

In our case, the operation P consists of comparison of a state q with states in the already
checked (minimized) part, and possibly a replacement of an equivalent state. The division
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into the checked and unchecked part is implemented so that we keep track only of the states
in the checked part. They are stored in a sparse table called the register. Actually, we do not
need to store whole states there; pointers to states or their indexes are enough. The sparse
table uses a hash function that is computed on basis of signatures. In that way, finding an
equivalent state is fast. This is done in constant time on average. Also storing a state in a
register is done in constant time on average.

Algorithm 3.5Minimization of a part of an acyclicM starting from state q. The registerR is
a global variable. M is modified by the function. Either q or its equivalent state is returned.To
minimize the whole automaton, setR to ∅, and call Minimize with q0 as the second argument.
1: function minimize(M, q)
2: for σ ∈ Σq do
3: δ(q, σ)← minimize(M, δ(q, σ))
4: end for
5: if (∃r ∈ R)r ≡ q then
6: delete q
7: else
8: R← R ∪ {q}
9: r ← q
10: end if
11: return r
12: end function

The minimization algorithm is presented as Algorithm 3.5. In the for loop, the function
is called recursively. The assignment statement either keeps the old state as the target of a
transition or sets an equivalent state as that target depending on the outcome of an if statement
in the recursive call. The if statement searches for an equivalent state. If one is found, then
the current state is deleted, and the equivalent state is returned, and a transition that leads to
the current state is redirected towards the equivalent state in the invocation of minimize one
level up. If an equivalent state is not found, then the current state has unique right language
among all states in the visited part of the automaton, hence the state is added to the register.

Let us run the algorithm on the trie automaton in Figure 3.1. minimize is called with 0
as the second argument, then 1, then 2, and then 3. Since there are no outgoing transitions
in state 3, the for loop is not run. The register is empty, so the conditional statement adds
state 3 to the register, and state 3 is returned. Control is transferred one level up to the call
with state 2 as the second argument, then minimize is called with state 4, and with state 7.
The register contains state 3, and state 7 is equivalent to state 3. State 7 is deleted, and the
function returns state 3. The assignment statement in line 3 redirects the transition from state
4 leading previously to state 7 to the new target: state 3. The situation is shown in Figure 3.6.

Next, minimization is called with state 8, then state 17, and state 32. State 32 is equivalent
to state 3. State 3 is deleted, and the transition to state 32 is redirected towards state 3. The
register still contains only state 3. State 17 is not equivalent to state 3, so it is added to the
register, and so is state 8. The transitions that lead to them are not redirected. This is shown
in Figure 3.7.

Minimization proceeds to states 9, 18, 33, and 34. State 34 is equivalent to state 3, so it
is deleted. Now non-final state 33 has one transition labeled with e leading to state 3, exactly
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Figure 3.6: Minimization of the trie automaton in Figure 3.1. Minimization reached state 7.
The register contains state 3.
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Figure 3.7: Minimization of the trie automaton in Figure 3.1. Minimization reached state 8.
The register contains states 3, 17, and 8.
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like state 17, so state 33 is replaced with state 17. Also state 18 is found equivalent to state 8,
since both are non-final and both have a transition labeled with i leading to state 17. State 18
is deleted, and the transition to state 18 is redirected towards state 8, as shown in Figure 3.8.

Algorithm 3.5 minimizes the whole automaton in the form of a trie since it visits all states
of the automaton, each time checking whether there is an equivalent state in the already ana-
lyzed part of the automaton. Since at the end all states have unique right languages, and there
are no unreachable states, and replacement of redundant states with equivalent states does not
change the language of the automaton, the automaton is minimal.

By comparing Figures 3.1 and 3.9, one can easily see that the minimal automaton is much
smaller. Indeed, minimal automata for natural language dictionaries are much smaller than
tries. Consider for example an automaton recognizing not only inflectional forms of the verb
bić, but also those of the verb pić. The trie would have twice as many states but one, as only
the start state would be shared between the two verbs. It would also have twice as many
transitions as the trie in Figure 3.1. On the other hand, the minimal automaton would have
exactly many states as the minimal automaton recognizing only the forms of the verb bić (as in
Figure 3.9), and it would have only one more transition: from state 0 to state 1 labeled with p.
The biggest problem with the traditional way of constructing a minimal acyclic automaton is
the size of the intermediate trie. The solution is reduction of the size of the automaton during
construction so that the size of the automaton during that process is close to the minimal one.

To keep the size of the automaton close to minimal during construction, one minimizes the
automaton after each string has been added. However, doing that in a naive way would result
in very long construction times as the same states would be reprocessed again and again, and
much information acquired during previous runs of minimization would be lost. Therefore,
minimization has to be local. Information between runs of the construction process and runs
of the minimization process should be shared.

It is also possible to use specific information about input data. One such information is
ordering. Ordered data is usually easier to process. The first incremental algorithm to be
presented here uses data that lexicographically (alphabetically) sorted.

3.2 Incremental Construction ofMinimal, AcyclicDFAs from
sorted data

In the algorithm of incremental construction of minimal, acyclic automata from sorted strings,
we have to synchronize two processes:

1. a trie-building process (Algorithm 3.1 and Algorithm 3.3),

2. a trie minimization process (Algorithm 3.5).

The two processes should work in turns, handing over control one to another in appropriate
places. Local minimization should be performed only on those parts of the automaton that
will not change when new strings are added.

Let us look at Figure 3.1 (page 22) again to see how the trie is constructed when strings
come in sorted. Suppose that the word added to the trie was bijmy. It is recognized along the
path of states 0, 1, 2, 4, 11, and 21. All words that come lexicographically earlier share some
initial segment of that path (that segment can also be null in general case), and then their paths
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Figure 3.8: Minimization of the trie automaton in Figure 3.1. Minimization reached state 18.
The register contains states 3, 17, and 8.
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Figure 3.9: Minimal automaton recognizing the same language as the trie automaton in Fig-
ure 3.1. The minimal automaton has only 20 states, as opposed to 65 in the trie. In real natural
language dictionaries, savings are much greater.
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branch out above the path of bijmy. All words that are added afterward also share some initial
segment (which can be null or cover the whole word), and then branch out below the path of
bijemy. Let us see what happens when the next word is added. The next word is bili. Now
the states that will not change also include states 4, 11, and 21, because they no longer lie on
the path recognizing the word added as the last. Each time a new word is added, states that
lie on the path of the previously added word but do not lie on the path of the last added word
join the part that will not be subject of any future modifications. Sometimes that part will not
be augmented. For example, when we add the next word: bilibyście, all states that lie on the
path of the previously added word lie also on the path of the last added word. This happens
because bili is a prefix of bilibyście.

Local minimization does change states. However, states undergo it before they enter the
analyzed part. Afterward, they can only get more incoming transitions, as they may become
targets of redirected transitions as equivalent states.

Algorithm 3.6 Incremental construction algorithm for sorted data.
1: function SortedIncrementalConstruction
2: Create empty automatonM = ({q0},Σ, ∅, q0, ∅)
3: R← ∅ . set empty register
4: w′ ← ε . previous word
5: while input not empty do
6: w ← next word
7: AddStrSorted(M,w,w′)
8: w′ ← w
9: end while
10: ReplOrReg(M, q0, w

′)
11: returnM
12: end function

Function SortedIncrementalConstruction presented as Algorithm 3.6 creates an empty au-
tomaton. Then, for each input string, it calls AddStrSorted that does the main job of adding
a string to the language of an automaton while maintaining its (almost) minimality. Finally,
function ReplOrReg is called to perform minimization of the path recognizing the last word
added. Recall that the part that is subject to local minimization is the path of the previously
added word, that does not share states with the path of the last added word. When we add the
last word from the input data, its whole path requires minimization. Function ReplOrReg is
described later (page 32).

Function AddStrSorted given as Algorithm 3.7 has two while loops. In the first one,
subsequent symbols of the input string are matched against labels of outgoing transitions
of the current state q of the automaton starting from the initial state q0. If an appropriate
transition is found, it is traversed changing the current state. The loop will not run if either
the automaton is empty (we are adding the first string), or when the first symbol of the current
word is different from the first symbol of the previous word (and of any other word already
added).

In the first while loop, we were traversing transitions of the previously added word. The
conditional instruction checks whether there are any transitions left in the path of the previ-
ously added word. If there are any, that part of the path is minimized in a call to ReplOrReg.
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Algorithm 3.7 Procedure AddStrSorted adds a stringw to the language of an acyclic automa-
tonM . Strings must come sorted.
1: procedure AddStrSorted(M,w,w′)
2: q ← q0
3: i← 1
4: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
5: q ← δ(q, wi)
6: i← i+ 1
7: end while
8: if i ≤ |w′| then
9: δ(q, w′i)← ReplOrReg(M, δ(q, w′i), w

′
i+1...|w′|)

10: end if
11: while i ≤ |w| do
12: δ(q, wi)← new state
13: q ← δ(q, wi)
14: i← i+ 1
15: end while
16: F ← F ∪ {q}
17: end procedure

The function returns the first state of the path after minimization. If that state is replaced with
an equivalent state, instruction in line 9 redirects a transition labeled with the next symbol of
the previous word toward the equivalent state.

The last while loop deals with remaining symbols of the current input word. For each
symbol, a new state is created, and a new transition with the symbol as the label is created
between the current state q and the newly created state. The newly created state becomes the
current state. Finally, state q ---the last state in the path--- is made final.

Algorithm 3.8 Function ReplOrReg performs local minimization. M is the automaton, q is
the start of the path to be minimized, w is a sequence of labels that chooses a path starting
from q. The function returns either state q or a state equivalent to it if found. The register R
is a global variable.
1: function ReplOrReg(M, q,w)
2: if w 6= ε then
3: δ(q, w1)← ReplOrReg(M, δ(q, w1), w2...|w|)
4: end if
5: if (∃r ∈ R)r ≡ q then
6: delete q
7: return r
8: else
9: R← R ∪ {q}
10: return q
11: end if
12: end function
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Function ReplOrReg is presented as Algorithm 3.8. It performs local minimization of
a path of states in the automaton M starting from state q, and with labels on subsequent
transitions being subsequent symbols in string w. The first conditional instruction checks
whether the end of the path is reached. If it is not so, the function recursively calls itself with
the next state on the path, i.e. δ(q, w1), and with the remaining part of the string after removal
of the first symbol. It keeps calling itself until the end of the path is reached. In that case, w
is empty.

The second conditional instruction checks whether there exists a state r in the already
minimized part of the automaton that is equivalent to state q. If it is so, state q is deleted, and
state r is returned. When the call is returned, the assignment instruction in line 3 performs
redirection of the transition that led to state q to state r. When no equivalent state in the
registerR exists, state q is added to the registerR as q has a unique right language. Assignment
instruction in line 3 does not perform any redirection as q is the original target of the transition
that could be redirected there.

Let us see how the algorithm works on sample data. Our input data is the language of
the trie automaton shown in Figure 3.1 (page 22) or of the minimal automaton shown in
Figure 3.9 (page 30). Recall that the data is sorted lexicographically, so the words come in
the following order: bić, bij, biją, bijcie, bije, bijecie, bijemy, bijesz, biję, bijmy, bili, biliby,
bilibyście, bilibyśmy, biliście, biliśmy, bił, biła, biłaby, biłabym, biłabyś, biłam, biłaś, biłby,
biłbym, biłbyś, biłem, biłeś, biły, biłyby, biłybyście, biłybyśmy, biłyście, biłyśmy. Function
SortedIncrementalConstruction first creates an empty automaton with only an initial state. It
also sets a previous word to an empty string ε. Subsequent while loop reads and processes
words from input.

The first word is bić. It is read from the input and assigned to variable w. Function
AddStrSorted is called with the automaton, bić, and ε as arguments. Current state q is set to
the initial state q0, and the current index of a symbol in the word to be added is set to 1. Since
there are no transitions in the automaton, the first while loop does not run. Since before the
loop w′ was set to an empty string ε, and i to one, the conditional instruction is not executed
either. The second while loop creates a chain of states and transitions so that the automaton
recognizes bić. The automaton is shown in Figure 3.10.

..0.. 1. 2.

3

. b. i.

ć

Figure 3.10: Incremental construction from sorted data. Input data is the language of an
automaton shown in Figure 3.1. Procedure AddStrSorted(M ,bić,ε) has just finished adding
the word.

The next word to be added is bij. After AddStrSorted was called with bić as the second
argument,w′ (the previous word variable) is set to bić, and word bij is read from the input and
set as value of variable w. Procedure AddStrSorted is called with bij and bić as the second
and the third arguments. The first while loop is executed. As there is a transition from 0 to
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1 labeled with b, it is traversed, and q becomes state 1. Next, transition labeled i is followed
so that q becomes state 2. There is no transition labeled with j coming out from state 2. The
while loop terminates. Variable i (an index of the current symbol in word w) is now 3. The
condition i ≤ |w′| is met, and ReplOrReg(M, 3, ε) is invoked. The second argument is 3
since δ(2, w′3 = ć) is state 3. The third argument is ε as there are no symbols with indexes 4
and greater in w′.

Inside ReplOrReg, the recursive call in the first conditional instruction cannot be made as
w is empty. Since the register R is empty, the condition of the second conditional instruction
is false. State 3 is inserted into the register, and the function returns state 3.

Back in the procedure AddStrSorted, the assignment in line 9 does nothing (it does not
change the target of the transition δ(2, ć)) as state 3was the target before the call to ReplOrReg.
Variable i is still 3 and |w| (the length of bij) is 3, so the second while loop is entered. A
new state 4 is created, and it becomes the target of a transition leaving state 2 with a label j.
State 4 is the new value of variable q. Variable i is incremented so that it becomes greater
than the length of bij. The loop is terminated. State 4 becomes final. That moment is shown
in Figure 3.11. The register R contains state 3.
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Figure 3.11: Incremental construction from sorted data. Input data is the language of an
automaton shown in Figure 3.1. Procedure AddStrSorted(M ,bij,bić) has just finished adding
the word bij.

The current word bij becomes the previous word w′. The next word on the input is biją.
It is read into variable w. Procedure AddStrSorted is called with biją and bij as the second
and the third parameter. The current state q is set to state 0, the symbol index i is set to 1. The
first while loop is entered. It is run 3 times so that q is set to 4, and i is set to 4. The condition
i ≤ |w′| is not met. It means that there is no local minimization in this run of AddStrSorted.
This happens because bij is a prefix of biją. The second while loop is entered. A new state 7
(we keep the numbering of states as in Figure 3.1) is created, and it becomes the current state
q. Also, variable i is incremented so that the loop condition is no longer met. State 7 becomes
final as shown in Figure 3.12. The register R contains state 3.

The current word biją becomes the previous word w′, and w is set to the next word on the
input --- bijcie. Procedure AddStrSorted(M , bijcie, biją) is invoked. The first while loop
runs until q becomes state 4, and i becomes 4. Since |w′| = 4, function ReplOrReg(M , 7, ε)
is called. Inside ReplOrReg, recursive calls are skipped. State 3 from the register is found to
be equivalent to state 7, so state 7 is deleted, and state 3 is returned by the function. In line 9
of AddStrSorted, the transition from state 4 to state 7 with label ą is redirected towards state
3. The second while loop is entered. State 8 is created, and a transition from state 4 to state
8 labeled with c. Next, state 17 and a transition from state 8 to state 17 labeled with i. In
the last run of the loop, state 32 and a transition from state 17 to state 32 labeled with e are
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Figure 3.12: Incremental construction from sorted data. Input data is the language of an
automaton shown in Figure 3.1. Procedure AddStrSorted(M ,biją,bij) has just finished adding
the word biją.

called to existence. Finally, the loop terminates, and state 32 is made final, which is shown in
Figure 3.13. The register contains state 3. Note that all other states are on the path of the last
added word.
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Figure 3.13: Incremental construction from sorted data. Input data is the language of an
automaton shown in Figure 3.1. Procedure AddStrSorted(M ,bijcie,biją) has just finished
adding the word bijcie.

In SortedIncrementalConstruction, afterw′ is set to bijcie,w is set to bije --- the next word
on the input. An invocation of AddStrSorted(M , bije, bijcie) follows. The first while loop
runs so that q is set to state 4, and i is set to 4. Function ReplOrReg(M , 8, ie) is called.
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Inside ReplOrReg, the function calls itself as ReplOrReg(M , 17, e) in line 3 as w = ie 6=
ε. In that recursive call w is still not empty, so another call to ReplOrReg(M , 32, ε) is made.
There, finally, w = ε, so another recursive call is blocked. State 3 is found equivalent to state
32, so state 32 is deleted, and state 3 is returned. It becomes the target of the transition from
state 17 labeled with e in line 3 of the call to function ReplOrReg(M , 17, e). As

→
L (17) = {e},

and the register contains only state 3 with the right language equal to ε, the right language of
state 17 is unique, so state 17 is inserted into the register, and it is returned by the function.
One level up, in textscReplOrReg(M , 8, ie), no redirection is performed in line 3, as state 17
is the original target of the transition from state 8 labeled with i. State 8 is also found unique,
so it is added to the register and returned by the function.

In function AddStrSorted, in line 9, no redirection is done as state 8 is unique. The second
while loop is entered. State 9 and a transition from state 4 to state 9 are created labeled with
e is created. Finally, state 9 is made final. The situation is presented in Figure 3.14. The
register contains states 3, 8, and 17.

..0.. 1. 2.

3

.

4

. b. i.

ć

.

j

.

8

.

9

.

ą

.

c

.

e

.

17

.

i

.

e

Figure 3.14: Incremental construction from sorted data. Input data is the language of an au-
tomaton shown in Figure 3.1. Procedure AddStrSorted(M ,bije,bijcie) has just finished adding
the word bije.

In SortedIncrementalConstruction, w′ is set to bije, and w to the next word from the input
--- bijecie. A call to AddStrSorted(M , bijecie, bij) is made. The first while loop leaves
q = 9, and i = 5. The conditional instruction does not execute as bije is a prefix of bijecie,
so function ReplOrReg is not called. The second while loop creates states 18, 33, and 34, as
well as transitions from state 9 to state 18 labeled with c, from state 18 to state 33 labeled with
i, and from state 33 to state 34 labeled with e. State 34 is made final as shown in Figure 3.15.
The register contains states 3, 8, and 17.

The next word on the input is bijemy, so AddStrSorted(M , bijemy, bijecie) is called. After
the first while loop, q = 9, and i = 5. A call to function ReplOrReg(M , 18, ie) is made,
which results in a call to ReplOrReg(M , 33, e), which in turns calls ReplOrReg(M , 34, ε).
Since w = ε, recursive calls are blocked. State 34 is found equivalent to state 3 from the
register, so state 34 is deleted, and state 3 is returned. In line 3 of ReplOrReg(M , 33, e), a
transition labeled with e is redirected towards state 3. Now a non-final state 33 has a single
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Figure 3.15: Incremental construction from sorted data. Input data is the language of an
automaton shown in Figure 3.1. Procedure AddStrSorted(M ,bijecie,bije) has just finished
adding the word bijecie.

transition labeled with e leading to state 3. So is state 17 in the register. State 33 is deleted,
and state 17 is returned so that the transition from state 18 labeled with i is redirected towards
it in line 3 of ReplOrReg(M , 18, ie). Also state 18 is found equivalent to state 8, so state
18 is deleted, and state 8 is returned. Back in AddStrSorted(M , bijemy, bijecie), in line 9,
a transition from state 9 to state 18 labeled with c is redirected towards state 8. The second
while loop creates states 19 and 35, as well as transitions from state 9 to state 19 labeled with
m, and from state 19 to state 35 labeled with y. State 35 is made final. The situation can be
seen in Figure 3.16. The register contains states 3, 8, and 17.

We could continue describing how further words are added, but the volume of this book is
limited, and we have shown all use cases of the procedure AddStrSorted. We leave adding the
words as an exercise to the reader. However, after the last call to AddStrSorted, the automaton
is not minimal, as shown in Figure 3.17. All states except for 0, 1, 2, 6, 16, 31, 62, and 65 are
in the register.

So when the last call to AddStrSorted is finished, w′ is set to biłyśmy, there are no more
words on the input, the while loop terminates, and ReplOrReg(M , 0, biłyśmy) is called. Since
the third argument is not an empty string, a series of recursive calls of ReplOrReg follows: Re-
plOrReg(M , 1, iłyśmy), ReplOrReg(M , 2, łyśmy), ReplOrReg(M , 6, yśmy), ReplOrReg(M ,
16, śmy), ReplOrReg(M , 31, my), ReplOrReg(M , 62, y), and ReplOrReg(M , 65, ε). In that
last call, further recursive calls are blocked since w = ε. State 65 is equivalent to state 3,
so state 65 is deleted and ReplOrReg(M , 65, ε) returns state 3, which becomes the target of
the transition δ(62, y). State 62 is equivalent to state 19, so state 62 is deleted, and ReplOr-
Reg(M , 62, y) returns state 19, which becomes the target of the transition δ(31,m). State 31
is equivalent to state 38, so state 31 is deleted, and ReplOrReg(M , 31, my) returns state 38,
which becomes the target of the transition δ(16, ś). State 16 is in turn equivalent to state 12,
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Figure 3.16: Incremental construction from sorted data. Input data is the language of an
automaton shown in Figure 3.1. Procedure AddStrSorted(M ,bijemy,bijecie) has just finished
adding the word bijemy.

so state 16 is deleted, and ReplOrReg(M , 16, śmy) returns state 12, which becomes the target
of δ(6, y). The remaining calls to ReplOrReg find that their second arguments have unique
right languages, so they are added to the register, no further modifications to the structure of
the automaton are made. The result can be seen in Figure 3.9 on page 30.

Let M = (Q,Σ, δ, q0, F ) be an automaton before function AddStrSorted is called. Let
M ′ = (Q′,Σ, δ′, q′0, F

′) be the automaton after the function is called with word w and the
previous word w′. The function creates confluence state only in the part of the automaton
where no new outgoing transitions are to be created. In the first while loop of the function,
the longest common prefix of w and w′ is found and followed in the automaton. Confluence
states can be created in function ReplOrReg by replacing states that recognize the remaining
part of w′ with equivalent states. Since the states are in the remaining part of w′, and new
words coming in lexicographical order can create outgoing transitions only from any prefix of
the longest common prefix, the confluence states will never be modified. No future longest
common prefix can go through them. Since the longest common prefix cannot go through
confluence states, the first while loop goes through it, and the last while loop creates a
chain of new states (the last one is made final) and transitions recognizing the suffix of w,
we have L(M ′) = L(M) ∪ {w}. No words are deleted as transitions are redirected only to
equivalent states, and states and transitions are deleted only when they become unreachable,
i.e. when they no longer contribute to the language of the automaton.

The function creates no useless states, i.e. no states that are either not reachable or not
co-reachable. Function ReplOrReg redirects transitions so that states can temporarily be-
come unreachable. When this happens, or more precisely before this happens, the states are
deleted. Since transitions are redirected to equivalent states that have exactly the same suite
of transitions, the deletion cannot create unreachable states. There are no states that are not
co-reachable, as the new chains of states and transitions created in the last while loop in func-
tion AddStrSorted always end with a final state, and function ReplOrReg redirects transitions
only to equivalent states.
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Figure 3.17: Incremental construction from sorted data. Input data is the language of an au-
tomaton shown in Figure 3.1. Procedure AddStrSorted(M ,biłyśmy,biłyście) has just finished
adding the word biłyśmy.
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Apart from the states along the path recognizing the last word added, all states do not
have an equivalent state outside the path. Indeed, the states in the path recognizing a word
are divided into two parts: those belonging to the longest common prefix path, and the rest.
The rest is checked using function ReplOrReg while visiting states in postorder, so that if an
equivalent state for them exists, they are replaced with that state. The states of the longest
common prefix path belong to the next word, so they are subject to the same division later on.

Function SortedIncrementalConstruction returns theminimal deterministic automaton rec-
ognizing all words read from the input. Indeed, since function AddStrSorted adds a word to
the language of the automaton, the only states not yet minimized after that addition are those
that lie along the path recognizing the last word added. Precisely that path is processed in the
last call to ReplOrReg, thus the automaton is minimal.

The while loop in the function SortedIncrementalConstruction runs n times when there
are n words or strings on the input. Reading a string w takes |w| time. Copying a string
can usually be done in constant time by copying a pointer. Procedure AddStrSorted runs n
times. Two while loops inside that procedure run jointly |w| times. Traversing a transition
is done in constant time. Creating a new state is done in constant time. Making state final is
done in constant time as it is implemented by setting a flag associated with the state. Func-
tion ReplOrReg is called at most once for each invocation of AddStrSorted. The former calls
itself |w| times. After a possible recursive call, a search for an equivalent state is performed
with complexity r(n). Deletion of a state takes constant time. Adding a state to the register
takes r(n) time. It follows that a top-level call to ReplOrReg including all recursive calls
takes O(|wmax|r(n)) time, where wmax is the longest word on the input. Similarly, a call
to AddStrSorted is executed in O(|wmax|r(n)) time. Finally, the time complexity of Sorte-
dIncrementalConstruction is O(n|wmax|r(n)). In practice, operations on the register take
constant time, so we assume r(n) = 1, and the complexity of SortedIncrementalConstruc-
tion is O(n|wmax|).

The incremental construction algorithm for sorted data was independently invented by Jan
Daciuk [18, 21, 12], and Stoyan Mihov [30, 18], and then reinvented by Ciura and Deorowicz
[10]. The algorithm has several extensions.

3.3 Extension to Pseudo-Minimal Automata
The incremental construction algorithm for sorted data can easily be adapted for construc-
tion of pseudo-minimal automata. The necessary changes must take into account cardinality
of the right language of states. In other words, they must check whether two states to be
merged are divergent. The main function PseudoSortedIncrementalConstruction is shown as
Algorithm 3.9.

The main differences between PseudoSortedIncrementalConstruction and SortedIncre-
mentalConstruction are the names of procedure and functions called, and an additional ar-
gument to PseudoReplOrReg in comparison to ReplOrReg, which has to be initialized.

The most important difference lies between functions ReplOrReg and PseudoReplOrReg.
The latter keeps track of divergent states. Parameter d is set to true if the current state q is
divergent. It is set to false in top-level calls to PseudoReplOrReg in both PseudoSortedIncre-
mentalConstruction and PseudoAddStrSorted. That value is passed down in each recursive
call until the end of a path is reached. Function FanOutC returns the number of outgoing
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Algorithm 3.9 Algorithm for incremental construction of pseudo-minimal automata from
sorted data.
1: function PseudoSortedIncrementalConstruction
2: Create empty automatonM = ({q0},Σ, ∅, q0, ∅)
3: R← ∅ . set empty register
4: w′ ← ε . previous word
5: while input not empty do
6: w ← next word
7: PseudoAddStrSorted(M,w,w′)
8: w′ ← w
9: end while
10: d← false
11: PseudoReplOrReg(M, q0, w

′, d)
12: returnM ;
13: end function

Algorithm 3.10 Procedure PseudoAddStrSorted adds a string to the language of an automa-
ton. Strings must come sorted.
1: procedure PseudoAddStrSorted(M,w,w′)
2: q ← q0
3: i← 1
4: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
5: q ← δ(q, wi)
6: i← i+ 1
7: end while
8: if i ≤ |w′| then
9: d← false
10: δ(q, w′i)← PseudoReplOrReg(M, δ(q, w′i), w

′
i+1...|w′|, d)

11: end if
12: while i ≤ |w| do
13: δ(q, wi)← new state
14: q ← δ(q, wi)
15: i← i+ 1
16: end while
17: F ← F ∪ {q}
18: end procedure
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transitions of a state. Parameter d is set to true if that value is greater than one, or if it is equal
to one and the state is final. The parameter is an input/output parameter, so setting its value
changes the actual parameter. That way, information of a divergent state propagates upwards
in a call hierarchy. Also, the condition for redirecting a transition is modified. An equivalent
state replaces state q only if d is false, i.e. when q is not divergent. Note that divergent states
are never put into the register by the function.

Algorithm 3.11 Function PseudoReplOrReg performs local minimization. M is the automa-
ton, q is the start of the path to be minimized, w is a sequence of labels that chooses a path
starting from q. Parameter d is an input/output parameter, i.e. its value is transferred to the
surrounding call. The function returns either state q or a state equivalent to it if found. The
register R is a global variable.
1: function PseudoReplOrReg(M, q,w, d)
2: if w 6= ε then
3: δ(q, w1)← ReplOrReg(M, δ(q, w1), w2...|w|, d)
4: end if
5: if FanOutC(q) + fin(q) > 1 then
6: d← true
7: end if
8: if d then
9: return q
10: else
11: if (∃r ∈ R)r ≡ q then
12: delete q
13: return r
14: else
15: R← R ∪ {q}
16: return q
17: end if
18: end if
19: end function

Let us see how the function PseudoSortedIncrementalConstruction constructs a pseudo-
minimal automaton that recognizes the same language as the trie automaton in Figure 3.1 and
the minimal automaton in Figure 3.9. The word bić is added exactly like in SortedIncremen-
talConstruction, as in PseudoAddStrSorted the first loop and a call to PseudoReplOrReg are
not executed. The word bij is also added in the same manner as in SortedIncrementalCon-
struction. In PseudoAddStrSorted, there is a call to PseudoReplOrReg, but state 3 has no
outgoing transitions, so d remains false, and pseudo-equivalence is equivalence.

When we add biję, the first difference occurs. The first while loop finds the longest
common prefix path ending at state 4, i.e. variable q is set to state 4, and i is set to 4. Variable d
is set to false and function PseudoReplOrReg(M , q=9,w=sz, d=false) is called. This is shown
in Figure 3.18. The function calls itself as PseudoReplOrReg(M , q=20, w=z, d=false), and
again as PseudoReplOrReg(M , q=9,w = ε, d=false). State 36 has no outgoing transitions, so
d remains false. State 3 is equivalent to state 36, so state 36 is deleted, and state 3 is returned,
so that in the upper level call, the transition going from state 20 to state 36 is redirected to state
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Figure 3.18: Construction of a pseudo-minimal automaton recognizing the same language as
the trie automaton in Figure 3.1. Procedure PseudoAddStrSorted(M , bilibyście, bijmy) has
just finished recognizing the longest common prefix bi.

3. State 20 has one outgoing transition, and it is not final, so d remains false. State 20 has no
equivalent, so it is put into the register, and returned. State 9 has 3 outgoing transitions, and
it is also final. Therefore, variable d is set to true. State 9 is returned by the function without
registering it. Function ReplOrReg would also return the state, but it would also put it into
the register.

Actually, the structure of the automaton remains the same as in the construction of min-
imal automata until we add biłabym, i.e. after we have added bić, bij, bijcie, bije, bijecie,
bijemy, bijesz, biję, bijmy, bilibyście, bilibyśmy, and biliście. We add the word biłabym to the
automaton shown in Figure 3.19.

Function PseudoSortedIncrementalConstruction calls procedure PseudoAddStrSorted(M ,
biłabym, biliśmy). After the first while loop in that procedure, q is state 2, and i is 3. Function
PseudoReplOrReg(M , 5, iśmy) is called. A series of recursive calls follows: PseudoReplOr-
Reg(M , 12, śmy), PseudoReplOrReg(M , 23, my), PseudoReplOrReg(M , 45, y), and Pseu-
doReplOrReg(M , 48, ε). In the last call, recursion stops. State 48 has no outgoing transitions,
so d remains false. State 48 is found equivalent to state 48, so state 48 is deleted, and Pseu-
doReplOrReg(M , 48, ε) returns state 3 that replaces state 48 as the target of transition δ(45, y)
in line 3 of PseudoReplOrReg(M , 45, y). That transition is still the single outgoing transition
of state 45, so d remains false. State 45 is equivalent to state 19. Since d is false, state 45 is
deleted, and PseudoReplOrReg(M , 45, y) returns state 19. In PseudoReplOrReg(M , 23, my),
state 19 becomes the target of transition δ(23,m).

At this point in PseudoReplOrReg(M , 23,my), d is set to true as state 23 has two outgoing
transitions: one labeled with c and leading to state 8, another one labeled with m and going to
state 19. It is also non-final. It is exactly the same situation as with state 38. Function ReplOr-
Reg would delete 23 and return state 38. However, d is true, and function PseudoReplOrReg
returns state 23 without adding it to the register.
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Figure 3.19: Construction of a pseudo-minimal automaton recognizing the same language as
the trie automaton in Figure 3.1. Procedure PseudoAddStrSorted(M , biliśmy, biliście) has
just finished adding the word biliśmy. Note that there are no states that are divergent and
confluence at the same time, and no confluence state follows a divergent state in any path.
The automaton is identical to the one obtained in the construction of minimal automata. States
4, 9, 22, 37, and 38 are not in the register as they are divergent.

In line 3 of PseudoReplOrReg(M , 12, śmy), transition δ(12, ś) is not altered; it still points
to state 23. Variable d is true as set in the call that has just finished, but it is set to true
again anyway, as final state 12 has 2 transitions. There is no state equivalent to state 12 in
the register. Even if there were one, it could not be used because of the value of d. State
12 is returned. Transition δ(5, i) remains unchanged in PseudoReplOrReg(M , 5, iśmy), d
remains true as passed from the recursive call just ended, so state 5 is returned by the function.
Therefore, transition δ(2, l) is not altered in line 10 of PseudoAddStrSorted. The second
while loop in PseudoAddStrSorted creates a chain of states and transitions that recognize the
rest of the string biłabym. The situation is shown in Figure 3.20.

We leave adding the rest of the words as an exercise to the reader. The whole pseudo-
minimal automaton recognizing the same language as the minimal automaton in Figure 3.1
and Figure 3.9 is presented in Figure 3.21. Note that the automaton has 28 states instead of
20 states of the minimal automaton. Also note that no confluence state is divergent, and no
divergent state is reachable from any confluence state.

Computational complexity of this algorithm is exactly as of the algorithm constructing
minimal automata. The additional checking whether a state is divergent can be done in con-
stant time, so can be setting the value of parameter d and evaluating the additional condition
for merger of pseudo-equivalent states. Therefore, execution time of this algorithm is linear
in the size of its data, i.e. it isO(n|wmax|), where n is the number of words, and wmax is the
longest string on the input.

This algorithm was developed by Jan Daciuk, Denis Maurel, and Agata Savary in [17].
Contrary to the algorithm developed by Dominique Revuz [31], this algorithm requires data
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Figure 3.20: Construction of a pseudo-minimal automaton recognizing the same language as
the trie automaton in Figure 3.1. Procedure PseudoAddStrSorted(M , biliśmy, biliście) has
just finished adding the word biliśmy. Note that there are no states that are divergent and
confluence at the same time, and no confluence state follows a divergent state in any path.
The automaton is identical to the one obtained in the construction of minimal automata.

to be sorted lexicographically. Revuz'es algorithm requires data to be sorted on reversals of
strings.

3.4 Extension to Cyclic Automata
The original algorithm for sorted data (see page 31) can be treated as an algorithm for adding
strings to an automaton. After all strings are added, the path for the last word must undergo
local minimization.

Suppose that we have created a minimal automaton, and then new data arrives, and new
strings should be added to the language of the automaton. Can the algorithm be used to add
them? Let us see an example.

Figure 3.22 shows a minimal automaton recognizing the same language as the automaton
in Figure 3.9 except for words biłaby and biłby. Let us add the word biłaby using procedure
AddStrSorted depicted as Algorithm 3.7 on page 32, with an empty string as the third pa-
rameter. The first while loop exits with q being state 49, and i equal to 7. The whole word
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Figure 3.21: A pseudo-minimal automaton recognizing the same language as the trie automa-
ton in Figure 3.1.



3.4. Extension to Cyclic Automata 47

..0.. 1. 2.

3

.

4

. 5.

6

. b. i.

ć

.

j

. l.

ł

.

8

.

9

.

ą

.

c

.

e

.

ę

.

m

. 12. i.

13

.

a

.

b

.

e

.

y

.

17

.

i

.

19

.

20

.

c

.

m

.

s

.

22

.

b

.

ś

.

24

.

b

.

m

.

ś

.

e

.

y

.

z

.

37

.

y

.

38

.

ś

.

c

.

m

.

49

.

y

.

m

.

ś

Figure 3.22: Minimal automaton recognizing all inflected forms of the Polish word bić except
for the forms biłaby and biłby.
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biłaby has been consumed. Since w′ = ε, no minimization takes place. As the whole word
was consumed, there is nothing more to add, and state 49 becomes final. Function SortedIn-
crementalConstruction calls function ReplOrReg, which finds that all states have their unique
right language. The result is shown in Figure 3.23.
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Figure 3.23: Automaton from Figure 3.22 after word biłaby has been added in a naive way.

It is easy to check that the resulting automaton, in Figure 3.23, recognizes word biłby as
well. Note that Figures 3.23 and 3.9 are different, even though the automaton in Figure 3.23
is supposed to recognize the same language as the automaton in Figure 3.9. The latter has one
more state. Since the former cannot be ''more minimal'' than the latter, and both are minimal,
their languages differ. The language of the smaller automaton contains one more string: biłe,
which does not belong to the paradigm of bić. Why is the string recognized? Making state
49 final served to recognize the words biłaby and biłby, as it is at the end of a path of states
0, 1, 2, 6, 13, 24, and 49, and labels on transitions along that path concatenate to form biłaby.
However, there are two other paths of states 0, 1, 2, 6, and 49 as well as 0, 1, 2, 6, and 24 that
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end in the same state. Labels on transitions along that second path form the string biłe. When
state 49 was made final, it was not only the words biłaby and biłby, but also the string biłe
that gained recognition. This happens because state 49 is a confluence state --- it has more
than one incoming transition. It also means that there is more than one path going through
that state. If the right language of such state is modified so that it has more items, there is
more than one string added to the language of the automaton.

Recall that procedure AddStringToTrie, page 21 called by function ConstructTrie, page 20
can add words in arbitrary order. It builds a trie, and no other process modifies that trie. In a
trie, there are no confluence states. Confluence states are results of minimization. Since there
is no minimization in a trie (actually, a trie is the biggest deterministic acyclic automaton
recognizing given language), there are no confluence states. Minimization replaces multiple
copies of identical subtrees with a single representative. When only one of those multiple
copies is to be modified, it needs to be extracted from the common representation. It is done
by cloning.

Cloning means making an exact copy of a state with the same finality and the same suite
of outgoing transitions. So for example, a clone of state 49 in Figure 3.22 is final, and it has
two transitions, both leading to states 3: one labeled with m, the other one labeled with ś. In
our example, the original state will change its number to 15, and we will name the clone state
49 to keep the original numbering of states from Figure 3.9. Now that we have separated the
clone from equivalent states, we can modify its right language. The final result is shown in
Figure 3.9, page 30 --- it is the minimal automaton for the whole lexeme of bić.

Algorithm 3.12 Function SortedCyclIncrConstruction adds sorted words to a language of a
minimal automatonM using information from the registerR and words to be added from the
input. BothM and R are modified by the function, andM is returned.
1: function SortedCyclIncrConstruction(M,R)
2: q′ ← q0
3: q0 ← Clone(q0)
4: w′ ← ε . previous word
5: while input not empty do
6: w ← next word
7: AddStrCyclSorted(M,w,w′)
8: w′ ← w
9: end while
10: q0 ← ReplOrReg(M, q0, w

′)
11: if q′ 6= q0 then
12: Increment incoming transition counter for q′
13: DeleteBranchUp(M, q′)
14: end if
15: returnM ;
16: end function

Function SortedCyclIncrConstruction for adding strings to (possibly cyclic) automata is
shown as Algorithm 3.12. Just like function SortedIncrementalConstruction, it returns a min-
imal automaton. Unlike function SortedIncrementalConstruction, it accepts two parameters:
a minimal automatonM , and a register R. Therefore, it contains initialization of neither an
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empty automaton, nor the register. A totally new item is cloning the initial state in line 3.
Note that since a clone of a state has the same suite of outgoing transitions, all targets of out-
going transitions of a cloned state and of its clone are necessarily confluence states, as each of
those targets has at least incoming transitions leading from both the cloned state and from the
clone. Thus by cloning the initial state, we have made all states that are targets of transitions
going out from q0 confluence states. Confluence states form a barrier between the old, intact
part of the automaton, and the new part modified by adding new strings. When the automa-
ton is cyclic, the initial state may have incoming transitions. By cloning the initial state, we
also prevent inadvertent addition of bogus strings to the language of the automaton. A call to
ReplOrReg in line 10 can change the initial state. Either the new q0 has a unique signature
so that it remains the new initial state, or it is equivalent to q′ (the old initial state), so that
the current q0 is deleted, and q′ is restored as the new q0. In the first case, states that are not
reachable from q0 are deleted by procedure DeleteBranchUp (see page 51). Instead of calling
AddStrSorted, function SortedCyclIncrConstruction calls AddStrCyclSorted, which is shown
as Algorithm 3.13.

Algorithm 3.13 Procedure AddStrCyclSorted adds a string to the language of an automaton.
Strings must come sorted.
1: procedure AddStrCyclSorted(M,w,w′)
2: q ← q0
3: i← 1
4: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ ∧ FanIn(q) = 1 do
5: q ← δ(q, wi)
6: i← i+ 1
7: end while
8: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
9: δ(q, wi)← Clone(δ(q, wi))
10: q ← δ(q, wi)
11: i← i+ 1
12: end while
13: if i ≤ |w′| then
14: δ(q, w′i)← ReplOrReg(M, δ(q, w′i), w

′
i+1...|w′|)

15: end if
16: while i ≤ |w| do
17: δ(q, wi)← new state
18: q ← δ(q, wi)
19: i← i+ 1
20: end while
21: F ← F ∪ {q}
22: end procedure

In procedure AddStrCyclSorted, the initial while loop has been replaced with two while
loops. In the first one, subsequent symbols of the input string are matched against labels of
outgoing transitions of the current state q of the automaton starting from the initial state q0.
If an appropriate transition is found, it is traversed changing the current state. The loop stops
running if either subsequent symbol of the current word does not match any label on outgoing
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transitions of the current state q, or when the target of such transition is a confluence state.
For a state q, function FanIn returns the number of its incoming transitions. In an efficient
implementation, that number is stored in a counter associated with a state.

The second while loop does the same job as the first one, but on confluence states. Ob-
viously, it does not run if no confluence state is encountered. Inside the loop, the target state
of a transition from the current state q labeled with the subsequent symbol wi of the current
word w on the input is cloned, and the transition is redirected towards the clone. In that way,
a barrier between the old and the modified part of the automaton is pushed farther away.

Algorithm 3.14 Procedure DeleteBranchUp deletes a part of an automaton that is no longer
reachable.
1: procedure DeleteBranchUp(M, q)
2: Decrement incoming transition counter for q
3: if FanIn(q) ≤ 0 then
4: for σ ∈ Σq do
5: DeleteBranchUp(M, δ(q, σ))
6: end for
7: R← R \ {q}
8: Delete q
9: end if
10: end procedure

Procedure DeleteBranchUp deletes a part of an automaton that is no longer reachable from
the initial state. The initial state has been cloned, and the clone became the new initial state.
If the new initial state after addition has been accomplished is not equivalent to the old one,
and the old initial state had no incoming transitions, the old initial state is deleted. When it
is deleted, states that are targets of its outgoing transitions may no longer have any incoming
transitions, so they should be deleted too. The procedure starts by decreasing by one the
counter of incoming transitions. If it reaches zero, DeleteBranchUp is invoked for the target
of each transition leaving state q, and then state q is deleted. If the counter is negative, it means
we are trying to delete a state that is already a parameter of an earlier call to DeleteBranchUp.

Now we have to prove that the algorithm works as expected. First, notice that cloning the
initial state, and making the clone the new initial state does not change the language of the
automaton, as the new initial state has exactly the same right language as the old one. This
comes directly from the definition of cloning and from the recursive definition of the right
language (2.6).

Second, calling AddStrCyclSorted(M,w) (either with the first string, or with any other
string) adds w to the language ofM . The first loop traverses transitions inM whose labels
form a string that is the longest common prefix of w and the previously added string w′ (or ε
in case of the first string). Traversing transitions obviously does not change the language of
the automaton. All states along the traversed path have a single incoming transition. In the
second loop, if it is run, farther transitions inM are traversed. Their labels when concatenated
form the next part of a prefix of a word being in the language of the original automaton before
the call to SortedCyclIncrConstruction --- the part not covered by w′. During that traversal,
target states of transitions are cloned, and transitions from the current state to the original
target state are redirected towards the clones. Cloning a state does not change the language
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of the automaton. As the clone has the same right language as the cloned state, redirection of
transitions in the loop does not change the language of the automaton. Note that the clone has
a single incoming transition.

Function ReplOrReg called in AddStrCyclSorted does not change the language of the
automaton either. If an equivalent state is found, a transition is redirected towards it, and by
the recursive definition of the right language (2.6) the language of the automaton does not
change. If an equivalent state is not found, nothing changes.

Finally, the last while loop in AddStrCyclSorted creates a chain of states and transitions
and makes the last state final so that the rest of stringw is recognized. Note that independently
of running or not running the second while loop, every state in the path recognizing the
string w has a single incoming transition, therefore no additional string has been added to the
language of the automaton.

After a call to AddStrCyclSorted(M,w), the only states that may not have unique right
language are those that are visited when recognizing w and states that are equivalent to those
states. The new initial state, and other states obtained by cloning in AddStrCyclSorted have
initially the same right languages as the originals. Their right languages change as the result
of adding new transitions in the third while loop in function AddStrCyclSorted, and the states
may become equivalent to some other states in the other part of the automaton. When the next
string is added, a part of the states that previously lied on the path of the current string no longer
lie on the path of the newest string. They are all visited using function ReplOrReg, which
checks whether equivalent states can be found elsewhere in the automaton. If equivalent
states can be found, they replace states that originally lied in the path of the previous string,
and the latter ones are deleted. If no equivalent states exist, then the states under examination
have unique right language.

After a call to AddStrCyclSorted(M,w), the only states that are not in the register are
those that lie on the path of the last string added to the automaton. Arguments for that are
exactly the same as in the previous paragraph, as the mechanisms for updating the register are
exactly the same.

After a call to ReplOrReg in line 10 of function SortedCyclIncrConstruction (page 49),
all states have unique right language. Since the only states with non-unique right language
were the states lying on the path recognizing the last string added to the language of the
automaton (and states equivalent to them), function ReplOrReg is invoked with the initial
state as a parameter, and the function ReplOrReg replaces all states with non-unique right
languages with equivalent states while removing redundant states, no states with non-unique
right language can be left afterwards. However, there can still be states with unique right
language that do not contribute to the language of the automaton. They do not contribute
because they are unreachable.

Procedure DeleteBranchUp removes unreachable states. Its correctness is explained on
page 51 in the description of the function. The only unreachable states produced by the al-
gorithm are the old initial state (if it has no incoming transitions) cloned at the beginning of
SortedCyclIncrConstruction, and states reachable from it but not from the new initial state.

Let us see a small example that explains cloning of the initial state and removal of un-
reachable states. Figure 3.24 shows an automaton that recognizes words cat and cow. We
want to add word dog.

The first thing to do is to clone the initial state. The situation after the cloning, just before
the invocation of AddStrCyclSorted, is shown in Figure 3.25.
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Figure 3.24: Automaton recognizing words cat and cow.
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Figure 3.25: Automaton from Figure 3.24 after cloning of the initial state.

Next, AddStrCyclSorted is called to add the word dog. Since there is no transition from
state 0 labeled with d, the two first while loops are skipped. And so is the invocation of
ReplOrReg, because the previous word w′ is empty. In the last while loop, three new states
are created, as well as transitions leading to them. The last state is made final. The automaton
is depicted in Figure 3.26.

Then ReplOrReg(M , 0', dog) is called. It deletes state 7, redirects a transition from state
6 to state 3, and puts states 6, 5, and 0' into the register as shown in Figure 3.27

Finally, DeleteBranchUp(M , 0) calls DeleteBranchUp(M , 1), which decrements incom-
ing transition counter for state 1, then it removes state 0 from the register, and deletes the
state. The final automaton is shown in Figure 3.28.

To show that DeleteBranchUp can delete more than one state, consider an automaton
recognizing words cat and dog shown in Figure 3.29.

We want to add word cow. First, the initial state is cloned as shown in Figure 3.30.
The first while loop in AddStrCyclSorted is skipped. Actually, it is always skipped when

adding the first string, as the targets of all transitions leaving the new initial state are conflu-
ence states. The second while loop clones state 1 as shown in Figure 3.31.

Since the previous word w′ = ε, ReplOrReg is not invoked, and the last while loop
creates two states with transitions leading to them, and then the last state is made final as
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Figure 3.26: Automaton from Figure 3.24 after cloning of the initial state. States 0, 1, 2, 3,
and 4 are in the register. States 0', 5, 6, and 7 are not.
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Figure 3.27: Automaton from Figure 3.26 after a call to ReplOrReg. All states are in the
register. State 0 is unreachable.
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Figure 3.28: Automaton from Figure 3.27 after a call to DeleteBranchUp. All states are in
the register. The automaton is minimal. It recognizes words cat, cow, and dog.
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Figure 3.29: Minimal automaton recognizing words cat and dog.
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Figure 3.30: Minimal automaton recognizing words cat and dog from Figure 3.29 after
cloning of the initial state.
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Figure 3.31: Minimal automaton recognizing words cat and dog during addition of word cow
using SortedCyclIncrConstruction. AddStrCyclSorted has been called, and the second loop
in it cloned state 1.

depicted in Figure 3.32.
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Figure 3.32: Minimal automaton recognizing words cat and dog during addition of word cow
using SortedCyclIncrConstruction. AddStrCyclSorted has been called, and the last loop in it
created states 6 and 7. All states except for 0', 1', 6, and 7 are in the register.

In line 10 of SortedCyclIncrConstruction, ReplOrReg(M , 0', cow); is invoked. It deletes
states 7 redirecting its incoming transition to state 4, then it puts into the register states 6,
1', and 0'. Now all the states in the automaton have unique right language, and they are all
in the register. However, notice that states 0 and 1 cannot be reached from the new initial
state 0', so they do not contribute to the language of the automaton. The situation is shown in
Figure 3.33.

Finally, DeleteBranchUp(M , 0) is called to delete unreachable states. It decrements the



3.4. Extension to Cyclic Automata 57

..0.

1

.

2

.

3

. 4.

5

.

0'

..

1'

.

6

.

c

.

d

.

a

.

t

.

o

.
g

.

c

.

d

.

a

.

o

.

w

Figure 3.33: Minimal automaton recognizing words cat and dog during addition of word cow
using SortedCyclIncrConstruction. ReplOrReg(M , 0', cow) has been called. All states are in
the register.

incoming transition counter so that it becomes zero. Before the procedure was invoked, the
counter was incremented to compensate for that decrease. When the counter reaches zero, it
means that the state is to be deleted. Outgoing transitions are examined in search for other
states to be deleted. DeleteBranchUp(M , 1) is called. It has one incoming transition, so the
counter is decremented to zero. This triggers an invocation of DeleteBranchUp(M , 3). State
3 has two incoming transitions, so its counter is decreased to 1, and the state is not deleted.
Back in the invocation DeleteBranchUp(M , 1), state 1 is removed from the register, and state
1 is deleted. Another transition going out from state 0 is examined, and DeleteBranchUp(M ,
2) is called. State 2 has two incoming transitions, so its counter reaches one, and state 2 is
kept. State 0 is removed from the register and deleted. The situation is shown in Figure 3.34.
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Figure 3.34: Minimal automaton recognizing words cat and dog during addition of word cow
using SortedCyclIncrConstruction. DeleteBranchUp(M , 0) has been called.
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Let us examine an example with a cyclic automaton. The initial automaton recognizes
host names in URLS. The syntax of those names is simplified: they are non-empty sequences
of lowercase Latin letters separated with dots. We want to add cat, cow, and dog. The initial
automaton is shown in Figure 3.35.
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Figure 3.35: A minimal automaton recognizing simplified host names in URLs following the
pattern [a − z]+(\.[a − z]+)+, and recognizing real numbers in format [0 − 9]∗\.[0 − 9]+.
A transition labeled with a-z stands for many transitions labeled with consecutive letters a, b,
c. . . z.

The initial state is cloned as in Figure 3.36.
The second while loop in AddStrCyclSorted first clones state 1 as shown in Figure 3.37.
State 1 has a loop labeled with letters so traversing transitions labeled a and t in the second

loop of SortedCyclIncrConstruction clones that state again twice creating states 7 and 8. Since
the previous word w′ = ε, function ReplOrReg is not invoked, the last while loop does not
run as all the letters of the word have already been used for traversal. State 8 is made final, as
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Figure 3.36: The minimal automaton recognizing simplified host names and real numbers
from Figure 3.35 with the initial state 0 cloned as 0'. Note that the loop in state 0 becomes a
transition to state 0 in state 0'.
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Figure 3.37: The minimal automaton recognizing simplified host names and real numbers
from Figure 3.35 with the initial state 0 cloned as 0', and state 1 cloned as 6.

shown in Figure 3.38.
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Figure 3.38: The minimal automaton recognizing simplified host names and real numbers
from Figure 3.35 with the initial state 0 cloned as 0', and state 1 cloned as 6, 7 and 8. All
states except for 0', 5, 7, and 8 are in the register.

The next word to add is cow. The first while loop in AddStrCyclSorted runs this time,
so that a transition to state 6 is traversed. The transition from state 6 labeled with o leads to
a confluence state 1, so state 1 is cloned as state 9. Similarly, state 1 is cloned again as state
10 when traversing a transition labeled with w. ReplOrReg is invoked with states 7 and 8.
State 8 is final, and it has a transition leading to state 2. No other state in the register has that
property, so state 8 is unique, and it is put into the register. Since state 7 is the sole state that
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Figure 3.39: The minimal automaton recognizing simplified host names and real numbers
from Figure 3.35 with cat and cow added.

has a transition leading to state 8, state 7 is also put into the register. The last while loop in
AddStrCyclSorted does not run as there are no more letters to add, and state 10 becomes final
as depicted in Figure 3.39.

The next word is dog. The first while loop in AddStrCyclSorted does not run as the
transition labeled with d going out from state 0' goes to a confluence state 1. In the next
while loop, state 1 is cloned three times as state 11, 12, and 13. ReplOrReg(M , 6, ow) is
called, which calls ReplOrReg(M , 9, w), which in turn calls ReplOrReg(M , 10, ε). State 10
is equivalent to state 8, so state 10 is deleted, and the transition from state 9 labeled with w is
redirected towards state 8. There are no more letters of dog to be used, so the third loop does
not run. State 13 becomes final. This is shown in Figure 3.40.

Finally AddStrCyclSorted finishes, and ReplOrReg(M , 11, og) is called. It invokes Re-
plOrReg(M , 12, g), which in turn invokes ReplOrReg(M , 13, ε). State 13 is equivalent to
state 8, so state 13 is deleted, and the transition labeled with g is redirected towards state 8.
States 12 and 11 are unique, so they are added to the register. The resulting automaton is
shown in Figure 3.41.

At the end of processing in SortedCyclIncrConstruction, the incoming transition counter
for state 0 is incremented and DeleteBranchUp is invoked with that state as a parameter.
Since that state has many incoming transitions, there are no recursive calls and the state is not
deleted. Therefore, the automaton in Figure 3.41 is the minimal automaton.

This algorithm was developed by the author, and it was published in [15, 16].
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Figure 3.40: The minimal automaton recognizing simplified host names and real numbers
from Figure 3.35 with cat, cow, and dog added.
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Figure 3.41: The minimal automaton recognizing simplified host names and real numbers
from Figure 3.35 with cat, cow, and dog added after an invocation of ReplOrReg and Lo-
calMinimization.





Chapter 4

Incremental Construction
Algorithm for Unsorted Data

The algorithm for sorted data cannot handle duplicates or data coming in arbitrary order. It
uses information about the ordering of data to determine which states should no longer be
processed. Only such states are put into the register, so that they can replace other equivalent
states. When they replace other states, they become confluence states..

When strings come in arbitrary order, we can no longer determine in advance which states
will change their signatures in the future. As we want to keep the automaton close to the
minimal one, we have to perform minimization after each addition till the end, that is until we
get a minimal automaton.

Recall from an example on page 45, that we cannot just follow transitions starting from the
initial state and labeled with subsequent symbols in the input string, and then create a chain
of states and transitions recognizing the rest of the string. If we were to do so, additional
strings would be added to the language of the automaton. That would happen because of the
potential presence of confluence states. Let w = uvz, u, v, w, z ∈ Σ∗ be a string to be added
to the automaton M , and that uv is the longest string such that δ∗(q0, uv) 6= ⊥. If for any
u, q = δ∗(q0, u) is a confluence state, i.e. |

←
L (q)| > 1, then not only w, but also all strings

{u′vz : u′ ∈
←
L (q), u′ 6= u} will be added to the language of the automaton.

Confluence states are result of minimization. They appear when two or more isomorphic
subtrees of a trie are folded together so that only one copy is maintained. A solution has also
been given in the example: it was cloning the confluence state. By cloning, a single subtree
is taken out from a set of folded subtrees so that the other subtrees are not modified when the
right language of the clone changes.

4.1 Incremental Construction ofAcyclic DFAs fromUnsorted
Data

By following transitions starting from the initial state and labeled with subsequent symbols in
the input string, and redirecting transitions with confluence states as their targets to clones of
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those states, and then by creating a chain of states and transitions that recognize the missing
part of the input string, we are able to add the string to the language of the automaton in such
a way that no additional strings are added there. However, the resulting automaton is not
minimal.

Since by adding a string, only a part of the automaton is modified, it is more efficient
to locally minimize only the part that has changed, instead of globally minimizing the whole
automaton from the scratch. The procedure outlined in the previous paragraph guarantees that
only the states on the path of the newly added string change their right language. Therefore,
only those states should be subject to local minimization. As only the signature of a state is
computed instead of the whole right language for equivalence checking, not all states in the
path of the newly added string need to be examined. Certainly, the states that are created as
a result of adding new string, and a state that directly precedes them, need to undergo local
minimization. This includes the states that form a path that recognizes the suffix of the newly
added string, and the clones of confluence states.

Algorithm 4.1 Incremental construction algorithm for unsorted data.
1: function UnsortedIncrementalConstruction
2: Create empty automatonM = ({q0},Σ, ∅, q0, ∅)
3: R← {q0}
4: while input not empty do
5: w ← next word
6: AddStrUnsorted(M,w)
7: end while
8: returnM
9: end function

FunctionUnsortedIncrementalConstruction is given asAlgorithm 4.1. In comparisonwith
function SortedIncrementalConstruction given as Algorithm 3.6 on page 31, one can see the
following four differences:

1. The previous string is not remembered nor passed to function AddStrUnsorted.

2. There is no call to function ReplOrReg.

3. Function AddStrSorted has been replaced with function AddStrUnsorted.

4. The register is initialized with the initial state q0.

The first difference comes from the fact that processing the current string does not directly
depend on the previous string. The second one is the result of performing local minimization
with no states left for later handling, i.e. with theminimal automaton as the outcome. The third
difference is obvious, as the functions implement the core of their respective algorithms. The
fourth difference stems from the fact that function AddStrUnsorted minimizes an automaton
completely, and that the register should reflect that.

Procedure AddStrUnsorted is given as Algorithm 4.2. It begins by setting initial values of
variables. Variable P holds a path of non-confluence states of the automaton that are visited
during recognition of the initial segment of the string w. In the first while loop, that path is
filled in with states. The last state in that path, stored in variable p, is the only state present
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Algorithm 4.2 Procedure AddStrUnsorted adds a string w to the language of an acyclic au-
tomatonM . No assumption about previously added strings is made.
1: procedure AddStrUnsorted(M,w)
2: q ← q0
3: i← 1
4: P ← ε . path of non-confluence states in the common prefix
5: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ ∧ FanIn(δ(q, wi)) = 1 do
6: push q onto P
7: q ← δ(q, wi)
8: i← i+ 1
9: end while
10: p← q
11: j ← i
12: R← R \ {p}
13: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
14: δ(q, wi)← Clone(δ(q, wi))
15: q ← δ(q, wi)
16: i← i+ 1
17: end while
18: while i ≤ |w| do
19: δ(q, wi)← new state
20: q ← δ(q, wi)
21: i← i+ 1
22: end while
23: F ← F ∪ {q}
24: LocalMinimization(M,P,w,ReplOrReg(M,p,wj...|w|), p, j)
25: end procedure

in the automaton before addition of w that obligatory changes not only its right language, but
also its signature as the result of adding w to the language of M , unless w is already in the
language of the automaton. Along with the last state stored in p, the current symbol index i
in the string w is stored in j. The state p is removed from the register as it will receive a new
outgoing transition (or it will change its finality).

The second while loop creates clones of confluence states along the path of w and redi-
rects transitions from the previous state on the path towards the clones. Recall that cloning
a state makes targets of its outgoing transitions confluence states too. Clones of confluence
states are new states; they are not in the register.

The third while loop creates a chain of states and transitions between them so that the
rest of the string w is recognized. This loop does not differ from analogous loops in other
analogous string adding functions being presented so far. The last state in the chain is made
final. Notice that the remaining part of w can be empty, i.e. δ(q0, w) ∈ Q already before
the addition. In such case, no states and no transitions are created, but either p or the last
clone of a confluence state (if present) is made final. This concludes the ``forward'' part of
the function.

In the ``backward'' part of the function, two other functions are called: ReplOrReg (see
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Algorithm 3.8 on page 32) is called to evaluate a parameter of a call to LocalMinimization.
Contrary to the situation in all versions of the algorithm for sorted data, function ReplOrReg
is invoked on a part of the path of the current string, not the previous one. The part of the path
begins with the state stored in p. That state is the first state in the path recognizing w that is
not in the register. The top level call to the function returns either the same state, or another
state equivalent to it.

Algorithm 4.3 Procedure LocalMinimization. M is the automaton, P is the path recognizing
the wordw, s is the state returned by the top-level call to function ReplOrReg, q is the original
state either the same as s or equivalent to it before it has replaced with s, i is the position in
the path P and in the word w (an index on those structures).
1: procedure LocalMinimization(M,P,w, s, q, i)
2: while P not empty ∧ s 6= q do
3: pop p from P
4: R← R \ {p}
5: δ(p, wi)← s
6: i← i− 1
7: q ← p
8: s← p
9: if ∃r ∈ R : r ≡ p then
10: delete s
11: s← r
12: else
13: R← R ∪ {p}
14: end if
15: end while
16: end procedure

At the end of AddStrUnsorted, procedure LocalMinimization is invoked. Its first param-
eter is the automatonM , the second -- the path P (here as a sequence of states) recognizing
the initial part of the string w (the third parameter) being added. The fourth parameter s is the
state returned by the function ReplOrReg, the fifth q -- the state hold in p in AddStrUnsorted.
The last parameter i is the number of the symbol in w that labels a transition from p to the
next state on the path. The procedure minimizes the initial segment of the path recognizing
w. That path is stored in the parameter P that is a stack of states. Contrary to the function
ReplOrReg, which operates on new states that are not yet in the register, LocalMinimization
handles states in the path ofw already present in the automaton beforew was added. All those
states change their right language, but not all of them change their signature. At the begin-
ning, it is the state preceding the state given as parameters s and q that changes (this happens
when q is different from s) its signature. If its right language remains unique inM , then the
signature of the state preceding it in P does not change, nor do signatures of any states in P
closer to q0. If the right language is not unique, the state is replaced with an equivalent one,
and the preceding state changes its signature. So, before the transition from the preceding
state to the current state is modified, the preceding state p is removed from the register. After
the modification, a search for a state equivalent to state p is performed. If an equivalent state
is not found, state p is put into the register again, the while loop and the whole procedure
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is completed. If not, q becomes p, s becomes a state equivalent to p, and the while loop is
executed again, with p becoming the previous state in the path P . The loop ends when either
no state equivalent to a previous state is found, or when the stack P is empty, i.e. when the
last state handled in the loop is the initial state.

Let us check how the algorithm works in practice. Function UnsortedIncrementalCon-
struction creates an empty automaton with an initial state q0 = 0 and it sets a register with
{0}. Then it reads subsequent strings from the input and adds them to the language of the
automaton using procedure AddStrUnsorted. Each time a string is added, the automaton is
completely minimized, and the register is updated accordingly. Let us add word bić to an
empty automaton. Procedure AddStrUnsorted initializes variables, and skips the first while
loop as there are no transitions to follow. Variable p becomes 0, j becomes 1, and state 0 is
removed from the register. Since there are no transitions in the automaton, the second while
loop does not run either. The third while loop creates states 1, 2, and 3, as well as transitions
from state 0 to state 1 labeled with b, from state 1 to state 2 labeled with i, and from state 2
to state 3 labeled with ć. Right after that, state 3 becomes final. Function ReplOrReg(M , 0,
bić) is invoked. It calls ReplOrReg(M , 1, ić), which calls ReplOrReg(M , 2, ć), which calls
ReplOrReg(M , 3, ε). In the last call, state 3 is found to be unique, and it is added to the
register, as well as returned to the call one level up. There, state 2 is found to be unique, and
so are state 1 and 0 higher up. The top level call returns state 0. All states of the automaton
are in the register. Procedure LocalMinimization(M , ε, bić, 0, 0, 1) is invoked. Since the
stack P is empty, the while loop is not entered, and the procedure immediately returns. The
automaton is depicted in Figure 4.1

..0.. 1. 2. 3. b. i. ć

Figure 4.1: Minimal automaton recognizing word bić.

As words are added in arbitrary order, and procedure AddStrUnsorted minimizes the au-
tomaton completely, we can skip addition of several strings.

Consider an automaton recognizing all forms of a verb bić except for biłaby and biłby.
The word biłaby is to be added to the language of the automaton. This is the same situation as
described at the beginning of Section 3.4 on page 45 in the example illustrating the behavior
of confluence states. The automaton shown in Figure 4.2 is the same as that in Figure 3.22 on
page 47.

Procedure AddStrUnsorted starts with initializing variables, and then the first while loop
is entered. Transitions with subsequent letters of biłaby are followed from state 0 until state
24 is reached. State 24 is a confluence state. Inside the loop, states 0, 1, 2, 6, and 13 are
pushed onto the stack P . Variable p becomes 13, j becomes 5, and state 13 is removed from
the register. Now the second while loop is entered. State 24 is cloned as state 50. Variable q
is now 50, and i is now 6. The situation is shown in Figure 4.3.

Transition from state 50 labeled with y leads to state 49 that is also a confluence state.
The while loop is run again. State 49 is cloned as state 51, which becomes a new value of q.
Variable i is incremented to 7. Since that value is bigger than the length of the current string
w, this loop exits, and the third loop is skipped. State 51 becomes final. This completes the
``forward'' step as shown in Figure 4.4. The last statement in procedure AddStrUnsorted is a
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Figure 4.2: Minimal automaton recognizing all inflected forms of the Polish word bić except
for the forms biłaby and biłby. A copy of Figure 3.22.
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Figure 4.3: Automaton from Figure 4.2. Word biłaby is being added. State 24 has just been
cloned as state 50.
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call to LocalMinimization, which includes a call to ReplOrReg. Recall that p is 13, and j is
5. ReplOrReg(M , 13, by) calls ReplOrReg(M , 50, y), which in turn calls ReplOrReg(M , 51,
ε).
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Figure 4.4: Automaton from Figure 4.2. Word biłaby is being added. State 49 has just been
cloned as state 51.

The right language of state 51 is {ε, m, ś}. That right language is unique inM . The state
is added to the register and returned by the function. As

→
L (51) is unique, so must be

→
L (50),

so state 50 is added to the register and returned by the function. And so is state 13, which is
also added to the register and returned. Now LocalMinimization(M , (0, 1, 2, 6, 13), biłaby,
13, 13, 5) is invoked. The stack P is not empty, but both s and q are state 13, because the
signature of state 13 has not been modified. The while loop is not entered, and the procedure
terminates. All states are in the register, and the automaton is minimal.

Now let us add word biłby. AddStrUnsorted(M , biłby) is called. Variable q is set to state
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0, i to 1, P to an empty stack. The first while loop is entered. States 0, 1, 2, 6, and 24
are visited and states 0, 1, 2, and 6 are pushed onto stack P . Variable q becomes 24, and i
becomes 5. The loop terminates as state 49 is a confluence state. Variable p becomes 24,
j becomes 5, and state 24 is removed from the register. The second while loop is entered.
State 49 is cloned as state 52. Variable q becomes 15, i becomes 6. Since 6 < |biłby|, the
loop terminates. State 52 becomes final, as portrayed in Figure 4.5.
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Figure 4.5: Automaton from Figure 4.4. Word biłby is being added. State 49 has just been
cloned as state 52.

Procedure LocalMinimization is invoked, which calls function ReplOrReg(M , 24, y),
which then calls ReplOrReg(M , 52, ε). State 52 is found equivalent to state 51, so state
52 is removed, and a transition labeled y from state 24 to state 52 is redirected towards state
51, which is returned by the function. The situation is shown in Figure 4.6.

In ReplOrReg(M , 24, y), state 24 is found equivalent to state 50, so state 24 is removed.
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Figure 4.6: Automaton from Figure 4.4. Word biłby is being added. State 15 has just been
removed and its incoming transition has been redirected towards state 51, and it has been
made final.



4.1. Incremental MADFA Construction from Unsorted Data 73

..0.. 1. 2.

3

.

4

. 5.

6

. b. i.

ć

.

j

. l.

ł

.

8

.

9

.

ą

.

c

.

e

.

ę

.

m

. 12. i.

13

.

a

.

e

.

y

.

17

.

i

.

19

.

20

.

c

.

m

.

s

.

22

.

b

.

ś

.

50

.

b

.

m

.

ś

.

b

.

e

.

y

.

z

.

37

.

y

.

38

.

ś

.

c

.

m

.

49

.

51

.

y

.

m

.

ś

.

m

.

ś

Figure 4.7: Automaton from Figure 4.4. Word biłby is being added. State 24 has just been
removed and its incoming transition has been redirected towards state 50.
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State 50 is returned from ReplOrReg(M , 24, y) to become the third parameter in the
invocation of LocalMinimization(M , (0, 1, 2, 6), biłby, 50, 24, 5). In the while loop, the
stack is not empty and states s = 50 and q = 24 are different. State 6 is popped from the
stack, stored in p, and removed from the register. Then, a transition from state 6 to state 24
labeled with b is redirected to state 50 (see Figure 4.7). Variable i is decremented to 4, state
q becomes 6, and state s becomes 6. A search for a state equivalent to state 6 is conducted
in the register. No such state can be found, so state 6 is added back to the register (this time
with a different right language). Now s = q = 6, so the while loop cannot be run, and the
procedure finishes. The minimal automaton is shown in Figure 4.7. It is equivalent to the
automaton in Figure 3.9.
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Figure 4.8: Minimal automaton recognizing all inflected forms of lexeme bić, and all inflected
forms of lexeme pić except for the form pić (the infinitive, which is the canonical form).

Let us consider the last example. Figure 4.8 recognizes all inflected forms of lexemes bić
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and pić except for one: the infinitive pić. We add that missing form. All states are in the
register R, and we call AddStrUnsorted(M , pić). After the first while loop, P = (0, 50),
q = 51, i = 3. The loop terminates, as there is no transition leaving state 51 labeled with ć.
Variable p becomes 51, j becomes 3, and state 51 is removed from the register. The second
while loop does not run as there is no transition leaving state 51 labeled with ć. In the third
loop, state 52 is created along with a transition leading to it from state 51 and labeled with ć.
State q becomes 52, and i becomes 4, which terminates the loop. State 52 becomes final ---
see Figure 4.9. State 52 is not in the register. Neither is state 51, which has just been removed
from there. All other states are in the register.
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Figure 4.9: Minimal automaton recognizing all inflected forms of lexeme bić, and all inflected
forms of lexeme pić. The automaton is minimal except for the path recognizing the word form
pić, which has just been added with a call to AddStrUnsorted. State 52 has just been made
final before a call to LocalMinimization.

Procedure LocalMinimization(M , P = (0, 50), w =pić, ReplOrReg(M , p = 51, ć),
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p = 51, j = 3) is called. In that invocation, ReplOrReg(M , 51, ć), 51, 3) is called first. It
calls itself as ReplOrReg(M , 52, ε). State 3 is equivalent to state 52, so state 52 is deleted,
and state 3 is returned. In the top level call to ReplOrReg, a transition from state 51 to state 52
labeled with ć is redirected towards state 3. State 51 is now equivalent to state 2, so state 51 is
deleted, and state 2 is returned, so that the call to LocalMinimization is LocalMinimization(M ,
(0, 50), pić, 2, 51, 3). As s = 2 6= q = 51, and the stack is not empty, the while loop is
entered. State 50 is popped from the stack, stored in variable p, and removed from the register.
A transition from state 50 to state 51 labeled with i is redirected towards state 2. Variable i is
decremented to reach 1, q and s become state 50. State 50 is equivalent to state 1. State 50
is deleted, and s becomes state 1. Now the stack contains state 0, s = 1, and q = 50. The
while loop runs once more. State 0 is popped from the stack, stored in p, and removed from
the register. A transition from state 0 to state 50 labeled with p is redirected towards state 1.
Variable i is decremented so that it is equal to 0, q and s become state 0. There is no state
equivalent to state 0, so state 0 is put back into the register. As the stack is now empty, and
variables s and q are both equal to state 0, the loop and the procedure terminate. The resulting
automaton is shown in Figure 4.10.

Let us prove that the algorithm is correct. It is sufficient to show that procedure AddStrUn-
sorted is correct. Let M = (Q,Σ, δ, q0, F )) be the automaton before an AddStrUnsorted
invocation,M ′ = (Q′,Σ, δ′, q′0, F

′) --- the automaton after the invocation, R --- the register
before the invocation, R′ --- the register afterwards, and w the word to be added. We show
that:

1. L(M ′) = L(M) ∪ {w}

2. M ′ is minimal

3. R′ = Q′

To prove the first point, let us notice that the first while loop in procedure AddStrUnsorted
does not change the automaton at all. It only changes the current state and the current symbol
number. It also puts states on the stackP . The second while loop does change the automaton.
New states are created by cloning, and transitions are redirected to the clones. However, no
preexisting states change their right languages since their outgoing transitions can only be
redirected to states equivalent to their previous targets. That loop also ensures that all states
lying on the path of w in the automaton have only one incoming state (except for the initial
state), and that that state is also on the same path. After those two loops, δ∗(q0, w1...j−1) = p,
and if j ≤ |w|, then δ(p, wj) = ⊥. The last while loop and the statement that follows it
immediately create a chain of states and transitions such that δ∗(p, wj...|w|) ∈ F . As only
one final state is added, and all the states on the path recognizing w have only one incoming
transition, only w is added to the language of the automaton. An invocation of procedure
LocalMinimization in the last line of procedure AddStrUnsorted contains a call to function
ReplOrReg. That function does not change the right language of any state, as it replaces
targets of outgoing transitions with equivalent states. It does delete states, but it ensures that
the preceding states on the path recognizing w are all reachable. Therefore, the language
of the automaton does not change. Finally, procedure LocalMinimization is similar, in its
behavior, to function ReplOrReg. It does not change the right language of any state. It does
delete states, but since it ensures that the states on the path recognizing w are all reachable,
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Figure 4.10: Minimal automaton recognizing all forms of lexemes bić and pić.

the right language of q0 does not change, so the language of the automaton does not change.
Therefore L(M ′) = L(M) ∪ {w}.

To prove the second point, let us notice that the automaton is minimal before procedure
AddStrUnsorted is called. The first loop in the procedure does not change the automaton, and
the second loop only possibly creates copies of states on the path recognizing w. The third
loop creates new states, which might have equivalent ones somewhere else in the automaton.
Those new states lie on the path recognizing w. So, before the invocation of procedure Lo-
calMinimization, only the states that lie on the path recognizing w (and the states equivalent
to them) might have a right language that is not unique. Function ReplOrReg examines the
states that form the (possibly empty) suffix of the word w. Those states are processed using
postorder, so that the simplified form of Equation (3.2) (page 24) can be used. If equivalent
states are found, they replace the states created in the third loop of procedure AddStrUnsorted.
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When the top-level invocation of function ReplOrReg finishes, the states recognizing the suf-
fix of w have all unique right languages. Procedure LocalMinimization proceeds in a similar
way. States in the path of w are replaced with their equivalents if such states exist using
postorder. However, the procedure can stop before reaching the initial state. It stops when a
subsequent state (let's call it q) does not have an equivalent. A question can be asked whether
states that have an equivalent state somewhere else may exist on the path from q0 to q. Since
the states are processed in postorder, and the signature of the states preceding q on the path
of w does not change, such states cannot exist. ThusM ′ is minimal.

Changes in the register follow the changes in the inventory of states of the automaton.
The second while loop in procedure AddStrUnsorted creates clones of existing states without
adding them to the register. Before the loop is executed or skipped, the last visited state is
removed from the register and stored in variable p. When the loop is executed, a transition
from state p is redirected towards the clone of its original target state. When the loop is
skipped, i.e. when the next state on the path is not confluence, either the third loop creates
a new transition going out from state p, or state p becomes final. In all those cases state p
changes its signature. So the state is removed from the register before it changes its signature.
In function ReplOrReg, all the states created in the third loop of procedure AddStrUnsorted
are either deleted or put into the register. The same happens with state p1. In procedure
LocalMinimization, states are removed from the register before they change their signature.
If state is removed from the register, it changes the target of one of its outgoing transitions,
and then it is either deleted, or it is put back into the register. If the state is deleted, then the
preceding state (if any) is removed from the register, and it undergoes the same procedure.
Thus R′ = Q′.

As with other algorithms described in this book, we will assume that operations on the reg-
ister take constant amount of time. If it is not so, then the complexity function must include a
factor responsible for modeling the complexity of register operations. Under our assumption,
creating an empty automaton and putting one state into the register in function UnsortedIn-
crementalConstruction takes constant time. The while loop is executed n times, where n is
the number of words on the input. The loop contains two instructions: reading a word from
the input, and an invocation of procedure AddStrUnsorted. Reading a word takesO(|wmax|)
time, where wmax is the longest word on the input.

Procedure AddStrUnsorted has three while loops, a few assignments, one operation on
the register, and an invocation of procedure LocalMinimization. The assignments, the opera-
tions on the register, and making a state final2 take constant amount of time. The first while
loop contains checking a few conditions, putting a state onto a stack, and two assignments.
They can all be done in constant time, The loop is executed at most |wmax| times. The second
while loop is similar, but instead of putting a state onto a stack, we have cloning, which also
takes constant (proportional to |Σ|) amount of time. The third while loop contains checking
a simple condition, creation of a new state, and assignments. It runs in constant time at most
|wmax| times.

A call to procedure LocalMinimization contains an invocation of ReplOrReg. The latter
calls itself at mostwmax| times as it operates along the path ofw. Except for nested calls, each

1State p can be deleted in function ReplOrReg. The transition from the preceding state in the path recognizing
w will point to a deleted state. As long as only the address of the deleted state is stored, it is correct. The preceding
state will first be removed from the register, and then the address of the target state will be changed.

2Implemented as setting a flag on the state.
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invocation of ReplOrReg is executed in constant time. Thus the top-level call to ReplOrReg
has total time complexity ofO(|wmax|). The loop in procedure LocalMinimization executes
at most |wmax| times. It contains only constant-time operations: assignments, register oper-
ations, deletion of states. Therefore, the complexity of UnsortedIncrementalConstruction is
O(n|wmax|).

As to memory complexity, we need space for the states (the number of states |Q| is never
greater than the number of states in the minimal automaton recognizing the current language
of the automaton plus the length of the last word added to the automaton), the number of edges
(at most |Σ||Q|), and the register (proportional to |Q|).

This algorithm was first described by J. Aoe, K. Morimoto, and M. Hase in [4], then
developed independently by Jan Daciuk [18, 21, 12], Bruce Watson and Richard Watson [18,
21], and Dominique Revuz [32].

4.2 Extension to Pseudo-Minimal Automata
The incremental algorithm for unsorted data can easily be extended so that it constructs
pseudo-minimal automata. The main function, given as Algorithm 4.4, calls a slightly dif-
ferent function for adding new words.

Algorithm 4.4 Incremental construction algorithm of pseudo-minimal automata from un-
sorted data.
1: function PseudoUnsortedIncrementalConstruction
2: Create empty automatonM = ({q0},Σ, ∅, q0, ∅)
3: R← {q0}
4: while input not empty do
5: w ← next word
6: PseudoAddStrUnsorted(M,w)
7: end while
8: returnM
9: end function

That function is PseudoUnsortedIncrementalConstruction, presented here asAlgorithm4.2.
It differs from UnsortedIncrementalConstruction only in the functions it calls. Instead of Re-
plOrReg, PseudoReplOrReg (Algorithm 3.11, page 42) is called. Instead of LocalMinimiza-
tion, PseudoLocalMinimization is called. The latter is given as Algorithm 4.6. To keep track
of divergent states, variable d is introduced. It is initialized to false, and it becomes true when
function PseudoReplOrReg returns a divergent state.

Procedure PseudoLocalMinimization is shown as Algorithm 4.6. It does the same job as
procedure LocalMinimization, but it keeps track whether states are divergent, and in that case,
replacement with an equivalent state does not take place, and the procedure terminates.

Let us see how the algorithm works. Figure 4.11 shows a pseudo-minimal automaton
recognizing all inflected forms of lexeme bić except for forms biłaby, biłabyś, biłby, and
biłbyś. We add biłby. The register contains states 3, 8, 9, 17, 19, 20, 24, and 49. It does not
contain divergent states.

Variable q is set to state 0, variable i is set to 1, the stackP is empty. The first loop traverses
non-confluence states 0, 1, 2, and 6. States 0, 1, and 2 are put onto stack P . Variables q and
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Figure 4.11: Pseudo-minimal automaton recognizing all inflected forms of lexeme bić except
for biłaby, biłabyś, biłby, and biłbyś. (Divergent) states not contained in the register are shown
in different color. Actually, there may well be some divergent states that are in the register,
e.g. states 0 and 1 could be there, but this is what we assume.
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Figure 4.12: Automaton in Figure 4.11 during addition of word biłby using procedure Pseu-
doAddStrUnsorted. State 24 has been cloned as state 14. State 49 has been cloned as state
27. Procedure PseudoLocalMinimization and function PseudoReplOrReg do not change the
automaton.
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Algorithm 4.5 Procedure PseudoAddStrUnsorted adds a string w to the language of an
acyclic, pseudo-minimal automaton M . No assumption about previously added strings is
made.
1: procedure PseudoAddStrUnsorted(M,w)
2: q ← q0
3: i← 1
4: P ← ε . path of non-confluence states in the common prefix
5: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ ∧ FanIn(δ(q, wi)) = 1 do
6: push q onto P
7: q ← δ(q, wi)
8: i← i+ 1
9: end while
10: p← q
11: j ← i
12: R← R \ {p}
13: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
14: δ(q, wi)← Clone(δ(q, wi))
15: q ← δ(q, wi)
16: i← i+ 1
17: end while
18: while i ≤ |w| do
19: δ(q, wi)← new state
20: q ← δ(q, wi)
21: i← i+ 1
22: end while
23: F ← F ∪ {q}
24: d← false
25: PseudoLocalMinimization(M,P,w, PseudoReplOrReg(M,p,wj...|w|, d), p, j, d)
26: end procedure

p become state 6, variables i and j become 4. State 6 is not in the register, so it cannot be
removed from there. In the second while loop, state 24 is cloned as state 14 with a transition
labeled with y to state 49, and the transition from state 6 to state 24 labeled with b is redirected
towards state 14. Variable q becomes state 14, and i becomes 5. In the next run of the loop,
state 49 is cloned as state 27 (with a transition labeled with m to state 3), and the transition
from state 14 to state 49 labeled with y is redirected towards state 27. Variable q becomes
state 27, and i becomes 6. Since |w| = 5, the loop terminates, and state 27 is made final.
Variable d is set to false. The situation is shown in Figure 4.12.

Function PseudoReplOrReg(M , p=6, w=by, d=false) is called. As w is not empty, it calls
PseudoReplOrReg(M , p=14, w=y, d=false), which in turn calls PseudoReplOrReg(M , p=27,
w = ε, d=false). As w = ε, no further recursive call is made. State 27 is final and it has
one outgoing transition, so the condition for setting variable d is true, and d is set to true. As
d is true, state 27 is not added to the register, and state 27 is returned. In the call one level
up, parameter d is updated to true, so the condition on setting d to true does not matter --- d
remains true. State 14 is returned. In the top level call to ReplOrReg, d is updated to true,
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Algorithm 4.6 Procedure PseudoLocalMinimization. M is the automaton, P is the path rec-
ognizing the word w, s is the state returned by the top-level call to function ReplOrReg, q
is the original state either the same as s or equivalent to it before it has replaced with s, i is
the position in the path P and in the word w (an index on those structures), d is true when
|
→
L (s)| > 1.
1: procedure PseudoLocalMinimization(M,P,w, s, q, i, d)
2: while P not empty ∧ s 6= q ∧ ¬d do
3: pop p from P
4: R← R \ {p}
5: δ(p, wi)← s
6: i← i− 1
7: q ← p
8: s← p
9: d← FanIn(p) > 1
10: if ¬d then
11: if ∃r ∈ R : r ≡ p then
12: delete s
13: s← r
14: else
15: R← R ∪ {p}
16: end if
17: end if
18: end while
19: end procedure

and state 6 is returned by the function. So procedure PseudoLocalMinimization is called as
PseudoLocalMinimization(M , P = {0, 1, 2}, w=bił, s=6, p=6, j=4, d=false). Since s = p,
the while loop does not run and the procedure terminates immediately. Figure 4.12 is still up
to date.

Now we add the form biłaby. In procedure PseudoAddStrUnsorted, q is set to state 0, i is
set to 1, and the stack is emptied. In the first while loop, the whole word is consumed. States
0, 1, 2, 6, 13, and 24 are put onto the stack. Variables p and q are set to state 49, i and j are set to
7. State 49 is removed from the register. Since i > |w|, the second and the third while loops
do not run. State 49 is made final, and d is set to false. Procedure PseudoLocalMinimiza-
tion(M , P = {0, 1, 2, 6, 13, 24}, w=biłaby, PseudoReplOrReg(M ,p=49,ε,d=false), p=49,
j=7, d=false) is called. It calls function PseudoReplOrReg(M ,p=49,ε,d=false) first. Since
its third parameter w is a null string, no recursive call is made. State 49 has one outgoing
transition, and it has just been made final, so d is set to true. Its right language is {ε,m}.
State 49 is equivalent to state 27. As d is set to true, state 49 is returned by the function. It
is not added to the register. Now procedure PseudoLocalMinimization can be called. Since
s = q = 49, the while loop does not run, and the procedure terminates immediately. The
resulting automaton is portrayed in Figure 4.13.

We now add biłabyś. The first loop in procedure PseudoAddStrUnsorted end with vari-
ables p and q set to state 49, i and j set to 7, states 0, 1, 2, 6, 13, and 24 put onto stack. An
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Figure 4.13: Automaton in Figure 4.12 during addition of word biłaby using procedure Pseu-
doAddStrUnsorted. State 49 has been made final. Neither PseudoReplOrReg nor PseudoLo-
calMinimization change the structure of the automaton.
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Figure 4.14: Automaton in Figure 4.13 after addition of word biłabyś using procedure Pseu-
doAddStrUnsorted. Final state 56was created, and a transition from state 49 to state 56 labeled
with ś was created as well. A call to PseudoReplOrReg deleted state 56, and redirected its
incoming transition to state 3. Procedure PseudoLocalMinimization again had nothing to do.
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attempt to remove state 49 has been made, but state 49 is divergent, so it not in the register.
The second while loop does not run as there are no confluence states along the path recogniz-
ing any prefix of biłabyś. The third while loop creates a new state 56, and a transition labeled
ś from state 49 to state 56. State 56 is made final, and variable d is set to false. Function Pseu-
doReplOrReg(M , 49, ś, d=false) is called to evaluate the fourth parameter of an invocation of
procedure PseudoLocalMinimization. It calls itself as PseudoReplOrReg(M , 56, ε, d=false).
As the third parameter is an empty string, no further recursive calls are made. Variable d re-
mains false as state 56 has no outgoing transitions. Since state 3 is equivalent to state 56, and
d is false, state 56 is deleted, and the transition from state 49 labeled with ś to state 56 is redi-
rected to state 3 when the function returns to one level up. This time d is set to true as state 49
has now two outgoing transitions, and it is final. The state is not added to the register, and it
returned by the function. Procedure PseudoLocalMinimization(M , P = {0, 1, 2, 6, 13, 24},
w=biłabyś, s=49, q=49, i=7, d=true) can now be executed. Since s = q, the while loop is
not executed and the procedure terminates immediately. The resulting automaton is shown
in Figure 4.14. Note that state 24 is divergent, and it remains in the register. It was put there
when it was not a divergent state. Procedure PseudoLocalMinimization finished before it
reached that state since state 24 is now divergent. Its presence in the register does not harm
the algorithm.

The next word to be added is biłbyś. In the first while loop of procedure PseudoAd-
dStrUnsorted, states 0, 1, 2, 6, and 14 are put onto the stack P , variables p and q are set to
state 27, i and j are set to 6, and an attempt is made to remove (divergent) state 27 from the
register. The second while loop does not run. The third while loop creates a new state 57,
and a transition from state 27 to state 57 labeled with ś. Variable q becomes state 57, i is
set to 7, state 57 becomes final, and d is set to false. Function PseudoReplOrReg(M , 27, ś,
d=false) is called, while calls itself again as PseudoReplOrReg(M , 57, ε, d=false). In the
nested call, recursion ends. As state 57 has no outgoing transitions, d remains false. State 3
is found to be equivalent to state 57, state 57 is deleted, and state 3 is returned. In the up-
per level invocation of PseudoReplOrReg, the incoming transition of state 57 is redirected
to state 3. As state q=27 is final, and it has two outgoing transitions, parameter d is set to
true. State 27 has an equivalent state 49, but as state 27 is divergent (and so is state 49), state
27 is not deleted. The function returns state 27. Procedure PseudoLocalMinimization(M ,
P = {0, 1, 2, 6, 16},w=biłbyś,s=27,q=27,i=6,d=true) is called. Since s = q = 27, the while
loop does not run, and the procedure terminates. The resulting automaton is shown in Fig-
ure 4.15.

To prove that the algorithm is correct, we need to prove that procedure PseudoAddStrUn-
sorted is correct. LetM = (Q,Σ, δ, q0, F ) be a pseudo-minimal automaton before an invo-
cation of PseudoAddStrUnsorted,R -- the register before the invocation,w -- the string being
added, M ′ -- the automaton after the invocation, and R′ -- the register after the invocation.
We assume that the register contains all non-divergent states. It can also contain divergent
states. We must show that:

1. L(M ′) = L(M) ∪ {w}

2. (∀q ∈ Q′ such that q is not divergent) q ∈ R′

3. M ′ is pseudo-minimal.

To prove the first statement, we note that the only possibility of adding anything to the



4.2. Extension to Pseudo-Minimal Automata 87

..0.. 1. 2.

3

.

4

. 5.

6

. b. i.

ć

.

j

. l.

ł

.

8

.

9

.

ą

.

c

.

e

.

ę

.

m

. 12. i.

13

.

14

.

15

.

16

.

a

.

b

.

e

.

y

.

17

.

i

.

19

.

20

.

c

.

m

.

s

.

22

.

b

. ś. 23.

c

.

m

.

24

.

b

.

m

.

ś

.

m

.

ś

.

e

.

y

.

z

.

27

.

y

.

m

.

ś

.

30

.

31

.

b

.

ś

.

37

.

y

.

38

.

ś

.

c

.

m

.

49

.

y

.

m

.

ś

.

54

.

y

.

55

.

ś

.

c

.

m

.

c

.

m

Figure 4.15: Pseudo-minimal automaton recognizing the same language as the trie automaton
in Figure 3.1. A copy of Figure 3.21.
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language of the automaton exists in the third loop of procedure PseudoAddStrUnsorted, and
making the last state in the path recognizing word w under investigation final. That possi-
bility consists of creating a new outgoing transition for the last state in the longest common
prefix path of w and some word already in the language of the automaton (if the third loop
is executed, i.e. if w is not a prefix of any word already recognized by the automaton), and
by making the last state in the path of w final. Since cloning confluence states in the second
while loop in the procedure makes sure no confluence state is in the path of w when the last
state is made final, and that state is δ∗(q0, w), then the only word that is added to the language
of the automaton is w.

The second point is important, because it allows us to replace states with their pseudo-
equivalent counterparts. The register can also contain divergent states. Some non-divergent
states may become divergent during processing, and the local minimization may stop before
examining them, as it only uses their signatures, and not their right languages. We have seen
such a situation in the example above.

The states that are not in the register are either newly created states (brand new or cloned),
or states removed from the register. All new states are created in the third while loop of
procedure PseudoAddStrUnsorted while adding a new word, and they are all processed by
function PseudoReplOrReg. They are put into the register unless there exists an equivalent
state already in the register. The same happens with cloned states. The state removed from
the register in line 12 of procedure PseudoAddStrUnsorted is handled by function PseudoRe-
plOrReg in exactly the same way. Other states are removed from the register in procedure
PseudoLocalMinimization. When a state is removed from the register in that procedure, then
either:

1. it is divergent, so it should not be in the register,

2. it is non-divergent, and it has an equivalent in the register, so it is deleted,

3. it is non-divergent, and it has no equivalent in the register, so it is put into it.

There may be doubts whether an equivalent state can always be found, as inequality of signa-
tures no longer implies inequivalence. However, that implication still holds for non-divergent
states, and only such states are put into the register, and only such states are search for there.

Point three means that all states are reachable and co-reachable, and that all non-divergent
states have different right languages. States are created in procedure PseudoAddStrUnsorted,
and that creation is done as a part of creation of a new transition reaching the new state. A state
may become unreachable by redirecting its incoming transition towards another state. This
can be done either in function PseudoReplOrReg, or in procedure PseudoLocalMinimization,
or in the second while loop in procedure PseudoAddStrUnsorted. In the first two cases, the
state has a single incoming transition, and it is deleted. In the third case, the confluence state
is cloned, one of its incoming transitions is redirected, but its other incoming transitions stay
intact, so the state remains reachable.

Every newly created state is checked against all states in the register in function Pseu-
doReplOrReg. If the states are equivalent, the new state is replaced by an old one. Existing
states can either change their signature by receiving a new outgoing transition in the first run
of the third while loop of procedure PseudoAddStrUnsorted, or change their signature be-
cause states directly reachable from them change their signature. In the first case, they are
handled exactly like the new states, i.e. by function PseudoReplOrReg. In the second case,
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they are handled by procedure PseudoLocalMinimization. The procedure looks for equiva-
lent states in the register only for non-divergent states. A visit to a divergent state terminates
the procedure. It is correct since divergent states cannot be preceded by non-divergent states.
Equivalent states are replaced with their counterparts found in the register.

The while loop in function PseudoUnsortedIncrementalConstruction runs n times, where
n is the number of words on the input. Inside the loop, there is reading a word from the input
--- running in time O(|wmax|), where wmax is the longest word on the input, and a call to
procedure PseudoAddStrUnsorted. Inside the procedure, there is a removal from the register,
making a state final, a call to procedure PseudoLocalMinimization, a few simple assignments,
and three while loops. We assume that all register operations run in O(1), i.e. in constant
time. Making a state final means changing a flag associated with the state --- a constant time
operation. The first while loop contains putting a state onto stack, traversing a transition, and
incrementing a counter --- all constant time operations. The second while loop also contains
cloning, which can be done in constant time (strictly speaking: O(|Σ|)). The third while loop
contains creation of a new state --- alsoO(1) operation. Function PseudoReplOrReg is called
to evaluate an actual parameter for an invocation of procedure PseudoLocalMinimization.
The function calls itself at most |wmax| times. In each call, a transition can be redirected, the
number of outgoing transitions and finality of a state is checked a state can be deleted, and
a state can be put into the register. They are all constant time operations. Also, to invoke
the function recursively, a transition is traversed, and a string is shortened at the beginning.
These are also constant time operations. Therefore, all recursive calls to PseudoReplOrReg
take O(|wmax|) time. The while loop in procedure PseudoLocalMinimization runs at most
|wmax| times. All operations inside the loop are constant time. Thus the whole algorithm
runs in time O(n|wmax|). If the assumption about constant time register operations does not
hold, that factor should be included in the estimation.

This algorithm was proposed by Jan Daciuk, Denis Maurel, and Agata Savary in [17].

4.3 Extension to Cyclic Automata
The algorithm for unsorted data can easily be extended so that it adds strings or words to a
minimal cyclic automaton. The extension is done in a similar way to the one that was used to
extend the algorithm for sorted data. Actually, the extension of the unsorted data algorithm
was done first. This algorithm (Algorithm 4.7) is more flexible than the one for sorted data,
but it is slower.

Algorithm 4.7 Function UnsortedCyclIncrConstruction adds unsorted words to a language of
a minimal automatonM using information from the register R and words to be added from
the input. BothM and R are modified by the function, andM is returned.
1: function UnsortedCyclIncrConstruction(M,R)
2: while input not empty do
3: w ← next word
4: AddStrCyclUnsorted(M,w)
5: end while
6: returnM ;
7: end function
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When comparing it to function SortedCyclIncrConstruction, one can see the absence of
cloning of the initial state, and then the absence of deletion of the old initial state when it
becomes unreachable. However, the idea remains the same. The missing parts have been
moved to procedure AddStrCyclUnsorted, because the automaton is minimized till the end
every time a new string is added to its language. That procedure looks like a simplified ver-
sion of procedure AddStrUnsorted. The first while loop is gone, and invocation of proce-
dure LocalMinimization is gone, but a call to ReplOrReg remains, the stack is gone. The
first while loop is gone, because when the initial state is cloned, its outgoing transitions are
cloned, and the targets of those transitions become automatically confluence states. Since the
stack recorded non-confluence part of the common prefix, it is no longer needed. As the clone
of the initial state is not yet in the register, it does not need to be removed from there. Pro-
cedure LocalMinimization was used to process the same part, therefore is not needed either.
Procedure DeleteBranchUp is given as Algorithm 3.14 on page 51.

Algorithm 4.8 Procedure AddStrCyclUnsorted adds a string w to the language of a possibly
cyclic automatonM . No assumption about previously added strings is made.
1: procedure AddStrCyclUnsorted(M,w)
2: q′ ← q0
3: q0 ← Clone(q0)
4: q ← q0
5: i← 1
6: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
7: δ(q, wi)← Clone(δ(q, wi))
8: q ← δ(q, wi)
9: i← i+ 1
10: end while
11: while i ≤ |w| do
12: δ(q, wi)← new state
13: q ← δ(q, wi)
14: i← i+ 1
15: end while
16: F ← F ∪ {q}
17: q0 ← ReplOrReg(M, q0, w)
18: if q′ 6= q0 then
19: Increment incoming transition counter for q′
20: DeleteBranchUp(M, q′)
21: end if
22: end procedure

Algorithm 4.8 is given here as in [9]. However, it can be further optimized. Such optimiza-
tion speeds up the algorithm, but it also makes it more complex. It is based on an observation
that when the initial state has no incoming transitions, it does not have to be cloned. Proce-
dure AddStrUnsorted (Algorithm 4.2, page 65) is sufficient to add a string in such case. The
optimized version of procedure AddStrCyclUnsorted is given as Algorithm 4.9. We will use
the optimized version from this point on.

Let us see how the algorithm works in practice. Figure 4.16 shows a copy of Figure 3.35
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Algorithm 4.9 Optimized version of procedure AddStrCyclUnsorted adds a string w to the
language of a possibly cyclic automatonM . No assumption about previously added strings
is made. The initial state is cloned only if it has incoming transitions.
1: procedure AddStrCyclUnsorted(M,w)
2: if FanIn(q0) = 0 then
3: AddStrUnsorted(M,w)
4: else
5: q′ ← q0
6: q0 ← Clone(q0)
7: q ← q0
8: i← 1
9: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
10: δ(q, wi)← Clone(δ(q, wi))
11: q ← δ(q, wi)
12: i← i+ 1
13: end while
14: while i ≤ |w| do
15: δ(q, wi)← new state
16: q ← δ(q, wi)
17: i← i+ 1
18: end while
19: F ← F ∪ {q}
20: q0 ← ReplOrReg(M, q0, w)
21: if q′ 6= q0 then
22: Increment incoming transition counter for q′
23: DeleteBranchUp(M, q′)
24: end if
25: end if
26: end procedure

on page 58. It is an automaton that recognizes simplified host names in URLs. To show the
differences between this algorithm and the algorithm for sorted data, we add words cat, cow,
and dog.

We start with cat. Function UnsortedCyclIncrConstruction reads cat from the input, and
it calls procedure AddStrCyclUnsorted. The initial state has incoming transitions. The old
initial state 0 is stored in variable q′, and state 0 is cloned as state 6 --- the new initial state.
Variable q is set to state 6, i is set to 1. State 1 is cloned as state 7, and the transition from
state 6 to state 7 labeled with c is redirected to state 7. Variable q becomes state 7, and i is
incremented to 2. The situation is shown in Figure 4.17.

In the next run of the first while loop, state 1 is cloned again as state 8. Variable q
becomes state 8, and i is incremented to 3. The transition from state 7 to state 1 labeled with
a (remember that a transition labeled a-z in the figures is actually a set of 26 transitions) is
redirected towards state 8. In the third run, state 1 is cloned yet again as state 9, q becomes
state 9, and i becomes 4. A transition labeled with t from state 8 to state 1 is redirected towards
state 9. Since 4 = i > |w| = 3, the second while loop is not entered. State 9 becomes final
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Figure 4.16: A minimal automaton recognizing simplified host names in URLs following the
pattern [a − z]+(\.[a − z]+)+, and recognizing real numbers in format [0 − 9]∗\.[0 − 9]+.
A transition labeled with a-z stands for many transitions labeled with consecutive letters a, b,
c. . . z. A copy of Figure 3.35.
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Figure 4.17: The automaton from Figure 4.16 during addition of word cat. State 1 has just
been cloned as state 7 while consuming letter c.
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Figure 4.18: The automaton from Figure 4.16 during addition of word cat. State 1 has just
been cloned as state 9 while consuming letter t.

as shown in Figure 4.18.
Function ReplOrReg(M , 6, cat) is called. It calls itself until state 9 is reached, and param-

eterw is an empty string. There is no state in the register that would be equivalent to state 9, so
state 9 is added to the register and returned by the function to an upper-level invocation. State
8 is also found to be unique, so it is added to the register and returned by the function. The
same happens with states 7 and 6. As q0 is now state 6, and it is different from the previous
initial state q′, which is state 0, the incoming transition counter for state 0 is incremented and
procedure DeleteBranchUp(M , 0) is called. The counter is decremented. As it is not equal to
zero DeleteBranchUp is finished with no state deleted. Figure 4.18 is still valid.

It is now time to add cow. State 6 has no incoming transitions, so AddStrUnsorted is
called. Variable q becomes state 6, i becomes 1, and the stack P is emptied. State 7 is not
confluence, so the first while loop is entered. State 6 is put onto stack. Variable q becomes
state 7, i becomes 2. As the transition from state 7 labeled with o points to confluence state
1, the loop ends. Variable p becomes state 7, j becomes 2, and state 7 is removed from the
register. In the second while loop, state 1 is cloned as state 10. Transition from state 7 labeled
with o to state 1 is redirected to state 10, and i is incremented to to 3. The loop runs once
again. State 1 is cloned again as state 11, and the transition from state 10 to state 1 labeled with
w is redirected to state 11. Variable q becomes state 11, i reaches 4, and the loop terminates.
The third while loop is not entered as i points past the end of the word. State 11 becomes
final. The resulting automaton is shown in Figure 4.19. For comparison, Figure 4.20 shows
what the unoptimized version would build at this point (before minimization).

Function ReplOrReg is called to evaluate a parameter for LocalMinimization. It is called
as ReplOrReg(M , 7, ow), which calls ReplOrReg(M , 10, w), which calls ReplOrReg(M , 11,
ε). State 11 is found to be equivalent to state 9, so state 11 is deleted, and state 9 is returned,
becoming the target of the transition from state 10 labeled with w one level up in the call
hierarchy. State 10 is unique, so it is added to the register and returned by the function. State
7 is also unique, so it is added to the register and returned by the top-level invocation of
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Figure 4.19: The automaton from Figure 4.16 during addition of word cow. State 1 has just
been cloned as state 11 while consuming letter w.
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Reg is called. Unoptimized version of the algorithm. Compare Figure 4.19.



4.3. Extension to Cyclic Automata 95

..0. 1. 2. 3.

4

.

5

.

6

..

7

.

8

.

9

.

10

. a-z.

a-z

. .. a-z.

a-z

.
.

.

0-9

.

.

.

0-9

.

0-9

.

.

.

a,b
,d-
z

.

c

.

0-9

.

b-
np
-z

.

.

.

a

.

o

.
a-s,u-z

.

.

.

t

.

a-z

.

.

.

a-vx-z

.

.

.

w

Figure 4.21: The automaton from Figure 4.16 after word cow has been added. State 11 has
been merged with state 9.

function ReplOrReg. Procedure LocalMinimization(M , P = {6}, w=cow, s = 7, q = 7,
i = 2) is called. The procedure is given as Algorithm 4.3 on page 66. Since q and s are the
same state, the loop in the procedure is not entered, and the procedure ends. This concludes
procedure AddStrUnsorted, and then AddStrCyclUnsorted, so the control returns to function
UnsortedCyclIncrConstruction. The resulting automaton is shown in Figure 4.21.

The last word read is dog. In function AddStrCyclUnsorted, the initial state 6 has no
incoming transitions, so procedure AddStrUnsorted is called again to handle addition of this
word. Variable q is set to state 6, i is set to 1, and the stack is emptied. A transition labeled
with d points to state 1, which is a confluence state, so the first while loop is not entered.
Variable p is set to state 6, j is set to 1, and state 6 is removed from the register. In the second
while loop, state 1 is cloned as state 11, and a transition labeled with d from state 6 to state
1 is redirected to state 11. Variable q is set to state 11, and i is incremented to 2. State 1 is
cloned again, this time as state 12, and the transition from state 11 to state 1 labeled with o
is redirected to state 12. Variable q is set to state 12, and i is set to 3. This time state 1 is
cloned as state 13, and a transition from state 12 to state 1 labeled with g is redirected to state
13. Variable q becomes state 13, and i becomes 4. Since index i points now past the end of
the word, the loop terminates, and the third while loop is not entered. State 13 is made final.
Function ReplOrReg(M , 6, dog) is called to evaluate the fourth actual parameter of procedure
LocalMinimization. The function calls itself as ReplOrReg(M , 11, og), then ReplOrReg(M ,
12, g), and finally as ReplOrReg(M , 13, ε). State 13 is found equivalent to state 9, so state 13
is deleted, and state 9 is returned. In the upper-level call, a transition from state 12 to state 13
labeled with g is redirected towards state 9. State 12 is found to be unique, so it is returned by
the function. One level up, state 11 is found to be unique, and it is returned by the function.
Procedure LocalMinimization(M , P = {}, w=dog, s = 11, q = 11, i = 1) is called, and
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Figure 4.22: The automaton from Figure 4.16 after word dog has been added. State 11 has
been merged with state 9. Compare with Figure 3.41.

it finishes immediately, as P is an empty stack, and s = q = 6. The resulting automaton is
depicted in Figure 4.22.

Let M = (Q,Σ, δ, q0, F ) be an automaton before an invocation of function AddStrCy-
clUnsorted, R --- the register before the call,M ′ = (Q′,Σ, δ′, q′0, F

′) --- the automaton after
the call, R′ --- the register after the call, w --- the word to be added to the language of the au-
tomaton during the call (a parameter in the call). We assume thatM is minimal, and Q = R.
There are two cases. When q0 has no incoming transitions, procedure AddStrUnsorted does
all the job, and the proof of correctness for that function also holds here. To prove that the
algorithm is correct when q0 does have incoming transitions, one needs to show that:

1. L(M ′) = L(M) ∪ {w}

2. R′ = Q′

3. M ′ is minimal

To prove the first point, let us notice that cloning the initial state and making the clone
become the new initial state does not change the language of the automaton. What it does do is
that it makes sure that the cardinality of the left language is exactly 1. This means that adding
a new outgoing transition to the initial state or to any state reachable from the initial state such
that the path from q0 to that state (including the state itself) does not include any confluence
states does not change the right language of any state outside that path. The first while loop
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in procedure AddStrCyclUnsorted ensures that there are no confluence states on that path.
The loop does not change the language of the automaton as the clones have a right language
identical to that of the cloned states. Let w = uv such that δ∗(q0, u) be the value of variable
q after the first while loop. Let us name that state q′. The second while loop creates a chain
of states and single transitions between them ending in a state q′′ such that δ∗(q′, w) = q′′.
State q′′ is made final. As

←
L (q′′) = {w}, L(M ′) = L(M) ∪ {w} before a call to function

ReplOrReg. Function ReplOrReg can delete states, but as proved several times elsewhere in
this book, it does not change the language of the automaton. Neither creates it any unreachable
states. This concludes the proof of the first point.

As to the second point, just before the top-level invocation of function ReplOrReg, all
states lying on the path recognizing w from q0 to δ∗(q0, w) are the only states not in the
register. Function ReplOrReg either deletes them or puts them into the register, one by one,
starting from δ∗(q0, w). The previous initial state may becomes unreachable. In that case, it is
removed from the register before its deletion. The same happens with other states that become
unreachable in procedure DeleteBranchUp. Therefore, at the end of the process, R′ = Q′.

Procedure AddStrCyclUnsorted does not create any unreachable states. In case of the
original initial state, it is explicitly checked at the end of the procedure whether it became
unreachable. If that is the case, the state is deleted, and so are other state that are deprived
of incoming transitions by deleting the original initial state or states reachable from it. As at
the end of processing R′ = Q′, states are put into the register when they have a unique right
language, their signature is never modified without removing them from the register, and the
processing of paths is done in postorder,M ′ is minimal.

Function UnsortedCyclIncrConstruction has a while loop that runs n times, where n is
the number of words on the input. Each time, it calls procedure AddStrCyclUnsorted. The
beginning of the procedure contains a conditional branch with the condition being a check
on the number of incoming transitions of a state. Since this is implemented with a counter
associated with each state, it is done in constant time. If the condition is true, procedure
AddStrUnsorted is called. As proved earlier (page 78), that procedure runs in O(|wmax|)
time. If the condition is false, there follow a few simple assignments with a call to function
Clone that runs in constant time. Then there is a while loop that runs at most |wmax| times,
and which contains simple assignments, a Clone invocation, and single transition traversals
--- all running in constant time. The condition for the loop is also checked in constant time
(instead of checking literally i < |w|, we rather check an end-of-string marker in w). The
second while loop is similar, but instead of cloning, it contains a creation of a new state,
also a constant-time operation. Making a state final is done with a flag on the state --- a
constant-time operation. All recursive invocations of function ReplOrReg in one run of pro-
cedure AddStrCyclUnsorted takeO(|wmax|) time as proved earlier. Since unreachable states
could only be created by cloning existing states and redirecting incoming transitions off the
cloned states, function DeleteBranchUp can be called up to |wmax||Σ| times. Treating |Σ| as
constant, as it is usual in automata theory, we get O(n|wmax|) for the whole algorithm.

This algorithm was prosed by Rafael Carrasco and Mikel Forcada in [9]. The optimized
version was proposed by the author of this book.
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4.4 Extension to Minimal Bottom-Up Tree Automata
An extension of the incremental construction algorithm to deterministic, bottom-up tree au-
tomata is complicated by the fact, that the items that are added to automata are trees, and not
strings, and that the automata are tree automata. Trees are not linear, so it is difficult to ar-
range their processing in the same, orderly way as it was with strings. While loops following
each other in the version for strings are replaced with recursion. The main function for the
algorithm, function UnsortedDTAconstruction is given as Algorithm 4.10. There is nothing
peculiar here; trees are read one by one, and function AddTree is called for each of them.
Reading a tree is, however, more complicated. We will not go into details of that process.

Algorithm 4.10 Function UnsortedDTAconstruction adds trees to the language of a DTA A.
Trees are read from the standard input. A register R initially contains all states of A. Both
A and R are modified by the function, so that at the end, |Q| = |R|. The function returns
the minimal automaton that recognizes all trees recognized by the original automaton and all
trees read from the input.
1: function UnsortedDTAconstruction(A, R)
2: Create an empty automaton A
3: R← ∅
4: while input not empty do
5: t← next tree
6: (A,R)← AddTree(A,R,t)
7: end while
8: end function

Function AddTree, given as Algorithm 4.11, has two parts. They are more clearly artic-
ulated here than in previous algorithms. In the forward step, a tree is added to the language
of the automaton. This is achieved by a call to function Split, and making δA(t) final. In
the backward step, the automaton is minimized by invocation of function LocMin. Function
AddTree uses two additional variables: Θ and Ω. The first one holds a set of states that are
either new or modified (their signature changes) in the current call of AddTree. The second
one is a stack of states visited during addition of the current tree t. It plays almost the same
role as variable P in Algorithm 4.2 (page 65).

Function Split adds a tree t to the language of the automaton, except for making δA(t)
final. Making δA(t) final is outside of function Split, as the function is used recursively to
follow or create paths for the subtrees of t. The tree t is decomposed into subtrees t1, . . . , tm.
For each of them δA(tk) is returned by a nested call to Split, and stored in the variable rk.
Recursion ends as the tree is finite, and leaves of the tree have m = 0. Recursion replaces
three while loops present in procedure AddStrUnsorted (Algorithm 4.2, page 65). It only
replaces the loops as control structures. The contents of the loops is placed after the recursive
calls. The loops are organized sequentially. In function Split, the choice which loop contents
to execute is made in each call separately. There are three cases. They correspond to the
three loops. The first case is when there is a transition from (r1, . . . , rk) labeled with σ to a
state q, and q has a single incoming transition. This case corresponds to the first while loop
contents. The only action taken then is storing the single incoming transition in variable Bq .
The second case is when state q has more than one incoming transition. This corresponds
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Algorithm 4.11 Function AddTree adds a tree t to the language of a minimal DTA A. All
states of the DTA are in the register R before the call. The procedure modifies A, so that it
recognizes the original language and the tree t, and it also modifies R so that it contains all
states of the new automaton. VariableΘ holds a set of states that are new or that changes their
signature. A stack Ω holds the same states as θ in chronological order of those visits. It may
later be changed by LocMin.
1: function AddTree(A, R, t)
2: Θ← ∅
3: Ω← ∅
4: q ← Split(A,R,Θ,Ω, t)
5: R← R \ {q}
6: F ← F ∪ {q}
7: Θ← Θ ∪ {q}
8: push q onto Ω
9: A← LocMin(A,R,Θ,Ω)
10: return (A,R)
11: end function

to the second while loop, and state q needs to be cloned. The transition going to q must
be redirected to state n, i.e. to the clone of state q. When no transition from (r1, . . . , rm)
labeled with σ exists, it needs to be built, just like it is done in the third loop in procedure
AddStrUnsorted. In the last two cases, the source states r1, . . . , rm of the transition being
traversed (either new or modified) are added to the set Θ and are removed from the register
R. In all cases the traversed transition is stored inBq , so that it is possible to go back from the
state. Also, the source states are put onto stack. Note that all states target visited by function
Split have single incoming transitions. When the target state has more incoming transitions,
it is cloned and the clone receives a single incoming transition.

Cloning a state in a DTA is more complicated than in a DFA. This stems from the fact that
the same state can be present several times in the same transition.

Let us take an example. Figure 4.23 shows a minimal DTA recognizing trees a(a,a),
a(a,b), a(b,a), and a(b,b). The language of state 2 is LA(1) = {a, b}.

Suppose we want to add b(b,b) to the language of the DTA. Since b is a subtree of both
the tree we want to add, and of three of four trees already recognized by the automaton, we
need to clone state 1. A naive, intuitive way of cloning would be to create another state 3 with
one outgoing transition labeled a, and with two source states being both the clone of state 1.
Then we create another transition labeled b with both source states being state 3 and leading
to a new state 4, which we made final. The situation is shown in Figure 4.24.

Note that the DTA in Figure 4.24 does not recognize trees a(a,b) and a(b,a) anymore. Let
us investigate why this is so. In the DTA in Figure 4.23, LA(1) = {a, b}. When we create
an exact copy of state 1 and store it as state 3, and make an exact copy of transition t1 with
state 3 replacing state 1 in both positions, and store it as transition t2, and then we redirect
a transition with label b and no source states so that instead of going to state 1, it goes to
state 3, then LA(1) = {a}, and LA(3) = {b}. So in both (a, 1, 1, 2) and (a, 3, 3, 2) both
subtrees must be exactly the same. However, the automaton in Figure 4.23 recognizes the
same language as the DTA in Figure 4.25. In the latter figure, states 1 and 3 are equivalent.
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Algorithm 4.12 Function Split adds a tree t to the language of an automatonAwithout making
δA(t) final. The registerR contains all states in the minimized part of the automaton. The set
Θ contains all states that need to be submitted to minimization. The function returns δA(t).
The automaton A, the register R, the set Θ, and the stack Ω are modified inside the function.
1: function Split(A,R,Θ,Ω, t = σ(t1, . . . , tm))
2: for k ∈ 1, . . . ,m do
3: rk ← Split(A,R,Θ,Ω, tk)
4: end for
5: q ← δm(σ, r1, . . . , rm)
6: if q = ⊥ ∨ Cq 6= 1 then
7: if q = ⊥ then
8: n← new state
9: ∆← ∆ ∪ {(σ, r1, . . . , rn, n)}
10: Cn ← 1
11: else
12: n← DTAClone(A, q)
13: ∆← ∆ \ {(σ, r1, . . . , rm, q)} ∪ {(σ, r1, . . . , rm, n)}
14: Cq ← Cq − 1
15: Cn ← 1
16: end if
17: q ← n
18: for i ∈ 1, . . . ,m do
19: if ri 6∈ Θ then
20: Θ← Θ ∪ {ri}
21: R← R \ {ri}
22: end if
23: end for
24: end if
25: push r1, . . . , rm onto Ω
26: Bq ← (σ, r1, . . . , rm, q)
27: return q
28: end function

Algorithm 4.13 Function DTAClone clones a state q in a DTA A.
1: function DTAClone(A, q)
2: n← new state
3: for (σ, q1, . . . , qm, p) ∈ ∆ such that m > 0, k ≤ m, q = qk and
δ(σ, q1, . . . , qk−1, n, qk+1, . . . , qm, p) = ⊥ do

4: ∆← ∆ ∪ {(σ, q1, . . . , qk−1, n, qk+1, . . . , qm, p)}
5: Cp ← Cp + 1
6: end for
7: if q ∈ F then
8: F ← F ∪ {n}
9: end if
10: end function
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Figure 4.23: A deterministic bottom-up tree automaton recognizing a tree language consisting
of trees a(a,a), a(a,b), a(b,a), and a(b,b).

A conclusion that comes from the example is that in cloning, a new state (a clone) is
created, and then for each transition with the cloned state anywhere among source states,
transitions with all combinations of the cloned state and the clone in positions of the cloned
state must be added. Since function has a while loop that goes over all transitions in ∆, and
new transitions augment ∆, all appropriate transitions are created. The minimal automaton
recognizing trees a(a,a), a(a,b), a(b,a), a(b,b), and b(b,b) is shown in Figure 4.26.

Local minimization, invoked in line 9 of function AddTree on page 99, is performed by
function LocMin, presented here as Algorithm 4.14.

In function LocMin, we go back from the root to the leaves, looking for equivalent states.
The stack Ω sets an order in which we visit states. We store transitions instead of storing only
their target states to have their source states ready.

Let us take an example. We start with an empty automaton, and we add a(b(a,b),b(a,b)),
i.e. the tree is read from the input in functionUnsortedDTAconstruction. FunctionAddTree(A,
R = ∅, a(b(a,b),b(a,b))) is called. It initialized the set Θ and the stack Ω, and then it calls
function Split(A, R = ∅, Θ = ∅, Ω = (), a(b(a,b),b(a,b))). That function divides its last
parameter (i.e. the input tree) into subtrees, and then it calls itself with the last parameter be-
ing the first subtree b(a,b). That invocation of the function does the same with the subtree,
i.e. it calls itself as Split(A, R = ∅, Θ = ∅, Ω = (), a). Since a is a leaf, recursion stops
here. As the DTA is empty, δ0(a) returns a sink state ⊥. A new state 1 is created and stored
in n. A new transition (a, 1) is added to the empty set of transitions ∆. The counter C1 of
incoming transition of state 1 is set to 1. Variable q is set to state 1. Since the transition has no
source states, Θ and R remain unchanged, i.e. empty. Variable B1 is set to (a, 1), and state
1 is returned by the function to be assigned to r1 one level up in the call hierarchy. Function
Split is invoked again as Split(A, R = ∅, Θ = ∅, Ω = (), b). As δ0(b) = ⊥, q is set to ⊥.
A new state 2 is created, and n is set to 2. A new transition (b, 2) is created, and added to ∆,
so ∆ becomes {(a, 1), (b, 2)}. The counter C2 is set to 1, q is set to 2, sets Θ and R remain
unchanged. B2 is set to (b, 2). State 2 is returned to become r2 in the upper level invocation
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Algorithm 4.14 Function LocMin.
1: function LocMin(A,R,Θ,Ω)
2: while Ω 6= ∅ do
3: pop n from Ω
4: if p ∈ Θ then
5: q ← FindEquiv(A,R, n)
6: if q 6= n then
7: τ = (σ, r1, . . . , rm, n)← Bn

8: F ← F \ {q}
9: Θ← Θ ∪ {r1, . . . , rm}
10: R← R \ {r1, . . . , rm}
11: ∆← ∆ \ {τ} ∪ (σ, r1, . . . , rn, q)}
12: Cq ← Cq + 1
13: for κ = (a, s1, . . . , sm, j) ∈ ∆ such that ∃i : si = q do
14: Cj ← Cj − 1
15: ∆← ∆ \ {κ}
16: end for
17: delete q
18: else
19: R← R ∪ {q}
20: end if
21: Θ← Θ \ {q}
22: end if
23: end while
24: return A
25: end function

Algorithm 4.15 Function FindEquiv searches for a state in the register R that is the target of
the transition τ in automaton A.
1: function FindEquiv(A,R, p)
2: if ∃q ∈ R such that

• p ∈ F ≡ q ∈ F
• for all (s, i1, . . . , im, j) ∈ ∆ and for all k ≤ m such that ik = p or ik = q
δm(s, i1, ik−1, p, ik+1, . . . , im) = δm(s, i1, ik−1, q, ik+1, . . . , im)

then
3: return q
4: else
5: return p
6: end if
7: end function
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Figure 4.24: The DTA from Figure 4.23 with a tree b(b,b) added in a naive way. The DTA
does not recognize trees a(a,b) and a(b,a) anymore.

of Split.
Since δ2(b, 1, 2) = ⊥, q is set to ⊥. A new state 3 is created, and a new transition

(b, 1, 2, 3) is created (added to ∆). The incoming transition counter for state 3 is set to 1.
Variable q is set to state 3. States 1 and 2 are added to Θ. SinceR is empty, they cannot be re-
moved from there. States 1 and 2 are put onto stack Ω. Back transitionB3 is set to (b, 1, 2, 3).
The function returns state 3, which is assigned to variable r1 in the top-level invocation of
Split.

The top-level Split invocation now calls Split(A, R = ∅, Θ = {1, 2}, Ω = (1, 2), t =
b(a, b)). Another nested call follows: Split(A, R = ∅, Θ = {1, 2}, Ω = (1, 2), t = a). As a
is a leaf, recursion stops. Transition function δ0(a) returns state 1. The incoming transition
counter for state 1 is equal to 1, so the body of the conditional instruction is skipped. The back
transition B1 for state 1 remains (a, 1). State 1 is returned by the function, and it is assigned
to r1 in the upper-level call to Split. Then Split(A, R = ∅, Θ = {1, 2}, Ω = (1, 2), t = b)
is called. It returns state 2 without modifying anything else. In the upper-level call, state 2 is
assigned to r2. As δ2(b, 1, 2) returns state 3, and C3 = 1, states 1 and 2 are put (again) onto
Ω, nothing else changes, and the function returns state 3 to be assigned to r2 in the top-level
call. Variable q gets a value of δ2(a, 3, 3), i.e. ⊥ as there is no such transition in the DTA.
Variable n becomes a new state 4, a new transition (a, 3, 3, 4) is created (added to ∆), and C4

becomes 1. As state 3 is absent in R, the register remains unchanged. State 3 is added twice
to Θ. State 3 is put onto stack Ω. The back transition B4 is set to (a, 3, 3, 4), and state 4 is
returned by the function. We are back in AddTree. State 4 is made final. It is also added to
Θ, and put onto stack Ω, which is now (1, 2, 1, 2, 3, 3, 4).

Function LocMin(A,R = ∅, Θ = {1, 2, 3, 4}, Ω = (1, 2, 1, 2, 3, 3, 4)) is called. State 4 is
popped and removed from the stack Ω. Function FindEquiv(A, R = ∅, 4) is invoked. Since
F = {4}, there is no other final, so there is no other equivalent state, and function FindEquiv
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Figure 4.25: The non-minimal recognizing the same language as DTA in Figure 4.23. States
1 and 3 are equivalent.
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Figure 4.26: A minimal DTA recognizing trees a(a,a), a(a,b), a(b,a), a(b,b), and b(b,b).

returns state 4. In function LocMin, state 4 is added to the register R, and removed from Θ,
which is now {1, 2, 3}. The next state on top of the stack is state 3. It is popped and removed
from there. Function FindEquiv cannot find an equivalent state in the register. It returns state
3, which is added to the register, and removed from Θ, which is now {1, 2}. State 3 is found
on top ofΩ again, but since it is no longer inΘ, it is silently dropped from the top of the stack.
State 2 is popped and removed from the stack Ω. Again, no equivalent state can be found for
it in function FindEquiv, so the state is added to the register and removed from Θ. The same
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Figure 4.27: Unsorted construction for bottom-up DTAs: a tree a(b(a,b),b(a,b)) has just been
added.

happens to state 1. States 2 and 1 are twice on the stack, but as they are no longer in Θ, they
are removed from there with no further action. So Figure 4.27 is also valid for the minimal
DTA recognizing the tree a(b(a,b),b(a,b)).

Let the next tree on the input be b(b(a,b),a(b,a),b). Function UnsortedDTAconstruction
calls AddTree(A,R = {1, 2, 3, 4}, b(b(a,b),a(b,a),b)). It empties Θ and Ω, which are already
empty, and calls Split(A, R = {1, 2, 3, 4}, Θ = ∅, Ω = (), t=b(b(a,b),a(b,a),b)). Function
Split divides t into subtrees, and calls itself as Split(A, R = {1, 2, 3, 4}, Θ = ∅, Ω = (),
t=b(a,b)), which calls Split(A, R = {1, 2, 3, 4}, Θ = ∅, Ω = (), t=a). Recursion stops here,
and δ0(a) returns state 1, which is assigned to variable q. AsC1 = 1,B1 gets transition (a, 1)
again, and the function returns state 1, which is assigned to variable r1 one level up in the
call hierarchy. A call to Split(A, R = {1, 2, 3, 4}, Θ = ∅, Ω = (), t=b) sets B2 as (b, 2),
and returns state 2, which is assigned to r2 one level up. The transition function δ2(b, 1, 2)
returns state 3, with C3 = 1. States 1 and 2 are put onto Ω, and B3 = (b, 1, 2, 3). State 3 is
returned and assigned to r1 in the top-level invocation of Split. That level then calls Split(A,
R = {1, 2, 3, 4}, Θ = ∅, Ω = (1, 2), t=a(b,a)), which calls Split(A, R = {1, 2, 3, 4}, Θ = ∅,
Ω = (1, 2), t=b). The last call returns state 2 without changing anything. Variable r2 is set
to state 2. Another call: Split(A, R = {1, 2, 3, 4}, Θ = ∅, Ω = (1, 2), t=a) returns state



106 4. Incremental Construction from Unsorted Data

1 without modifying anything. Variable r2 is set to state 1. As δ2(a, 2, 1) returns ⊥, a new
state 5, and a new transition (a, 2, 1, 5) are created. C5 is set to 1. States 1 and 2 are added
to Θ so that Θ = {1, 2} and removed from the register R, which is now {3, 4}. States 1 and
2 are pushed onto the stack Ω = (1, 2, 2, 1), and B5 is set to (a, 2, 1, 5). State 5 is returned,
and it is assigned to r2 in the top-level invocation of Split. At the top level, a call to Split(A,
R = {3, 4}, Θ = {1, 2}, Ω = (1, 2, 2, 1), t=b) returns state 2 without modifying anything.
Variable r3 is set to state 2 at the top level. As δ3(b(3, 5, 2) returns⊥, a new state 6 and a new
transition (a, 3, 5, 2, 6) are created. The counter C6 is set to 1. States 3 and 5 are added to Θ,
as state 2 is already there. Now Θ = {1, 2, 3, 5}. State 3 is removed from the register (states
2 and 5 are not there anyway), so that R contains only state 4. States 3, 5, and 2 are pushed
onto the stack Ω, andB6 is set to (a, 3, 5, 2, 6). State 6 is returned to function AddTree. State
6 is made final, and it is added to Θ, so that Θ is now {1, 2, 3, 5, 6}. It is also put onto the
stack so that Ω = (1, 2, 2, 1, 3, 5, 2, 6) The situation is shown in Figure 4.28.
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Figure 4.28: Unsorted construction for bottom-up DTAs: a tree b(b(a,b),a(b,a),b) has just
been added.

Function LocMin(A, R = {4}, Θ = {1, 2, 3, 5, 6}, Ω = (1, 2, 2, 1, 3, 5, 2, 6)) is called.
State 6 is popped and removed from Ω. Function FindEquiv returns state 4. The single tran-
sition coming to state 6 is retrieved from B6 and stored in τ = (b, 3, 5, 2, 6). That transition
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is removed. An identical transition with a target state set as state 4 is added. State 4 remains
final. States 2, 3, and 5 are already in Θ. C4 is set to 2, and state 6 is deleted. State 2 is
popped and removed from the stack Ω. Function FindEquiv cannot find an equivalent state
for it, so the state is returned by FindEquiv, added to the register R in LocMin, and removed
from Θ. The next state on top of the stack is state 5. It is popped and removed from there. It
has no equivalent state, so it is added to the register, and removed from Θ. The next state is
state 3, which is handled in exactly the same way. The same happens to states 1 and 2. Two
additional instances of states 2 and 1 are removed silently from the top of the stack Ω as they
are no longer present in Θ. The minimized automaton is shown in Figure 4.29.
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Figure 4.29: Unsorted construction for bottom-up DTAs: a tree b(b(a,b),a(b,a),b) has been
added, and the DTA has been minimized.

The next tree on the input is a(a(a,a),a(a,a)). Function UnsortedDTAconstruction calls
AddTree(A,R = {1, 2, 3, 4, 5}, t=a(a(a,a),a(a,a))). FunctionAddTree calls function Split(A,
R = {1, 2, 3, 4, 5}, Θ = ∅, Ω = (), t=a(a(a,a),a(a,a))), which divides t into subtrees, and
calls itself as Split(A, R = {1, 2, 3, 4, 5}, Θ = ∅, Ω = (), t=a(a,a)), which calls Split(A,
R = {1, 2, 3, 4, 5}, Θ = ∅, Ω = (), t=a). Recursion stops here. As C1 = 1, B1 is set again
to the same value it had before, and state 1 is returned to be assigned to r1 one level up. An
identical call follows, and state 1 is assigned to r2 one level up. As δ2(a, 1, 1) returns ⊥, a
new state 6, and a new transition (a, 1, 1, 6) are created. C6 is set to 1. State 1 is added to
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Θ, removed from the register R, and it is also pushed twice onto the stack Ω. B6 is set to
(a, 1, 1, 6). State 6 is returned and is assigned to r1 in the top-level invocation of function
Split. A call to Split(A, R = {1, 2, 3, 4, 5}, Θ = ∅, Ω = (1, 1), t=a(a,a)) follows. Leaves
are handled in exactly the same way as before, but this time δ2(a, 1, 1) = 6. No new state
or transition is created, and Θ and R remain unchanged. State 1 is pushed again twice onto
the stack Ω. The back transition B6 remains the same. State 6 is assigned to r2 in the top-
level invocation of function Split. As δ2(a, 6, 6) = ⊥, a new state 7, and a new transition
(a, 6, 6, 7) are created. C7 is set to 1. State 6 is added to Θ and is pushed twice onto the stack
Ω. It cannot be removed from the register as it is not yet there. B7 is set to (a, 6, 6, 7). State
7 is returned, and it is made final in function AddTree. It is also added to Θ, and it is pushed
onto Ω. The situation is shown in Figure 4.30.
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Figure 4.30: Unsorted construction for bottom-up DTAs: a tree a(a(a,a),a(a,a)) has just been
added.

Function LocMin(A, R = {2, 3, 4, 5}, Θ = {1, 6, 7}, Ω = (1, 1, 1, 1, 6, 6, 7)) is called.
State 7 is popped and removed from Ω. Function FindEquiv finds an equivalent state for it:
state 4. The transition τ = (a, 6, 6, 7) is replaced with (a, 6, 6, 4), state 7 is deleted, and
C4 is incremented to 3. State 6 is not added to Θ as it is already there. State 6 is popped
and removed from Ω. No equivalent state can be found for it, so it is added to R, so that
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R = {2, 3, 4, 5, 6}. State 6 is popped from Ω again, but this time it is not in Θ, so nothing
happens. State 1 is popped and removed from Ω. No state is found equivalent to it, so it is
added to R and removed from Θ. All other instances of state 1 on Ω are simply removed as
the state is no longer in Θ.

The next tree on the input is a(a(a,a),b(a,b)). Function Split(A, R = {1, 2, 3, 4, 5, 6},
Θ = ∅, Ω = (), t=a(a(a,a),b(a,b))) divides t into subtrees. It then calls Split(A, R =
{1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (), t=a(a,a)), which calls Split(A,R = {1, 2, 3, 4, 5, 6}, Θ = ∅,
Ω = (), t=a). We are at a leaf. The function returns state 1, which is assigned to r1 one level
up. The same call follows, and state 1 is assigned to r2 this time. As δ2(a, 1, 1) = 6, and
C6 = 1, state 1 is pushed twice onto Ω, and state 6 is returned and assigned to r1 in the
top-level call to Split. Then Split(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 1), t=b(a,b))
is invoked. It calls Split(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 1), t=a), which returns
state 1, and Split(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 1), t=b), which returns state 2.
With r1 = 1 and r2 = 2, δ2(b, 1, 2) = 3, and C3 = 1. States 1 and 2 are pushed onto Ω,
B3 remains the same, and state 3 is returned and assigned to r2 in the top-level invocation of
Split. As δ2(a, 6, 3) = ⊥, a new state 7 and a new transition (a, 6, 3, 7) are created, with C7

set to 1. States 6 and 3 are added to Θ, so that Θ = {3, 6}, and removed from the register,
so that R = {1, 2, 4, 5}. States 6 and 3 are pushed onto Ω, so that Ω = (1, 1, 1, 2, 6, 3). B7

becomes (a, 6, 3, 7), and state 7 is returned by the function. It is made final, is added to Θ,
and is pushed onto Ω in function AddTree. The resulting tree is shown in Figure 4.31.

Function LocMin(A, R = {1, 2, 4, 5}, Θ = {3, 6, 7}, Ω = (1, 1, 1, 2, 6, 3, 7)) is called.
State 7 is popped and removed from the top of Ω. Function FindEquiv returns state 4. Tran-
sition τ = (a, 6, 3, 7) is replaced with (a, 6, 3, 4). States 6 and 3 are already in Θ, C4 is
incremented to 4, and state 7 is deleted and removed from Θ. State 3 is popped and removed
from Ω. It is unique, so it is added to R and is removed from Θ. The next state on top of Ω is
state 6, and it is treated in the same way. So are state 2 and state 1. Two additional copies of
state 1 are removed from the stack without any further processing as state 1 is no longer in Θ.

The next tree on the input is a(b(a,b),a(a,a)). Function AddTree(A,R = {1, 2, 3, 4, 5, 6},
t=a(b(a,b),a(a,a))) calls Split(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (), t=a(b(a,b),a(a,a))),
which splitsT into subtrees and calls Split(A,R = {1, 2, 3, 4, 5, 6},Θ = ∅,Ω = (), t=b(a,b)),
which calls Split(A,R = {1, 2, 3, 4, 5, 6},Θ = ∅,Ω = (), t=a). We are at a leaf. The function
returns state 1, which is assigned to r1 one level up. A call to Split(A, R = {1, 2, 3, 4, 5, 6},
Θ = ∅, Ω = (), t=b) follows. The function returns state 2, which is assigned to r2. As
δ2(b, 1, 2) = 3, and C3 = 1, states 1 and 2 are pushed onto Ω, B3 remains unchanged,
and state 3 is returned and assigned to r1 in the top-level invocation of function Split. A
call to Split(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 2), t=a(a,a)) follows. It calls Split(A,
R = {1, 2, 3, 4, 5, 6},Θ = ∅,Ω = (1, 2), t=a). The function returns state 1, which is assigned
to r1 one level up. An identical call follows with the same result, and state 1 is assigned to
r2. As δ2(a, 1, 1) = 6, and C6 = 1, state 1 is pushed twice onto Ω, and state 6 is returned and
assigned to r2 in the top-level invocation of Split. Since δ2(a, 3, 6) = ⊥, a new state 7 and a
new transition (a, 3, 6, 7) are created, with C7 set to 1. States 3 and 6 are added to Θ, so that
Θ = {3, 6}, removed from the register, so that R = {1, 2, 4, 5}, and pushed onto Ω, so that
Ω = (1, 2, 1, 1, 3, 6). State 7 is returned, and it is made final, is added to Θ, and is pushed
onto Ω.

In function LocMin(A, R = {1, 2, 4, 5}, Θ = {3, 6, 7}, Ω = (1, 2, 1, 1, 3, 6, 7)) invo-
cation, state 7 is popped and removed from the top of Ω. State 7 is equivalent to state 4, so
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Figure 4.31: Unsorted construction for bottom-up DTAs: a tree a(a(a,a),b(a,b)) has just been
added.

transition τ = (a, 3, 6, 7) is replaced with (a, 3, 6, 4), C4 is incremented to 5, and state 7 is
deleted and removed from Θ. State 6 is popped and removed from the top of Ω. It is found
unique, so it is added toR and removed from Θ. The same happens to state 3. The remaining
contents of Ω is not present in Θ, so it is removed without any further action.

The next string on the input is b(a(a,a),a(b,a),b). FunctionAddTree(A,R = {1, 2, 3, 4, 5, 6},
t=b(a(a,a),a(b,a),b)) calls Split(A,R = {1, 2, 3, 4, 5, 6},Θ = ∅,Ω = (), t=b(a(a,a),a(b,a),b)),
which divided t into subtrees and calls Split(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (),
t=a(a,a)), which calls Split(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (), t=a). It returns
state 1 without modifying anything else. The state is assigned to r1 one level up. An-
other call to Split(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (), t=a) does exactly the same
thing, with state 1 being assigned to r2 one level up. State 1 is push twice onto Ω, and
state 6 is returned to the top-level invocation of Split, where it is assigned to r1. A call
to Split(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 1), t=a(b,a)) follows, which calls Split(A,
R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 1), t=b) that assigns state 2 to r1, and Split(A,
R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 1), t=a) that assigns state 1 to r2. After having pushed
state 2 and state 1 onto Ω, the function returns state 5, which is assigned to r2 in the top-level
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Figure 4.32: Unsorted construction for bottom-up DTAs: a tree a(b(a,b),a(a,a)) has just been
added.

invocation of Split. Another call to Split(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 1, 2, 1),
t=b) returns state 2, which is assigned to r3 in the top-level call. As δ3(a, 6, 5, 2) = ⊥, a new
state 7 and a new transition (b, 6, 5, 2, 7) are created, with C7 set to 1. States 2, 5, and 6 are
added to Θ, and they are removed from R, so that R = {1, 3, 4}. States 6, 5, and 3 are put
onto Ω, so that Ω = (1, 1, 2, 1, 6, 5, 2). B7 is set to (b, 6, 5, 2, 7), and state 7 is returned to
AddTree, where it is made final, it is added to Θ, and it is pushed onto Ω.

In function LocMin(A,R = {1, 3, 4}, Θ = {2, 5, 6, 7}, Ω = (1, 1, 2, 1, 6, 5, 2, 7)), state 7
is popped and removed fromΩ. It is found equivalent to state 4, so transition τ = (b, 6, 5, 2, 7)
is replaced with (b, 6, 5, 2, 4). States 2, 5, and 6 are already in Θ. C4 is incremented to 6, and
state 7 is deleted and removed from Θ. The resulting DTA is shown in Figure 4.33.

State 2 is popped and removed from Ω. Function FindEquiv cannot find an equivalent
state for it, so the state is added to R and removed from Θ. State 5 is popped and removed
from Ω. It is found unique, so the state is added to R and removed from Θ. State 6 is popped
and removed from Ω. Function FindEquiv finds an equivalent state: state 3. The single
transition τ = (a, 1, 1, 6) going to state 6 is redirected to state 3. State 1 is added to Θ and
removed from the register. All outgoing transitions of state 6 are deleted, and the incoming
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Figure 4.33: Unsorted construction for bottom-up DTAs: a tree b(a(a,a),a(b,a),b) has just
been added. Function LocMin has just replaced state 7 with state 4, deleting state 4.

transition counter C4 for their target state 4 is decremented accordingly so that it reaches 2.
State 6 is removed from Θ and deleted. State 1 is popped and removed from the top of Ω.
The state is found unique, so it is added toR and removed from Θ. The same happens to state
2. Remaining instances of state 1 are removed from Ω without further action as state 1 is no
longer in Θ. The resulting DTA is depicted in Figure 4.34.

The last tree on the input is a(a,a). Function AddTree(A, R = {1, 2, 3, 4, 5}, t=a(a,a))
calls Split(A, R = {1, 2, 3, 4, 5}, Θ = ∅, Ω = (), t=a(a,a)), which calls Split(A, R =
{1, 2, 3, 4, 5}, Θ = ∅, Ω = (), t=a) twice, each call returning state 1 without performing
any other action. State 1 is assigned to r1 and r2. As δ2(a, 1, 1) = 3 and C3 = 2, DTA-
Clone(A, q = 3) is called. It creates a new state 6, and new transitions (a, 3, 6, 4), (a, 6, 3, 4),
(a, 6, 6, 4), and (b, 6, 5, 2), incrementing C4 to 6. A transition (a, 1, 1, 3) is redirected to state
6. AlsoC3 is decremented to 1, as the redirected transition goes to state 6, which getsC6 = 1.
State 1 is added to Θ, and removed from the register. It is also pushed twice onto Ω. B6 is
set to (a, 1, 1, 6). State 6 is returned to function AddTree, which makes it final, adds it to Θ,
and pushes it onto Ω. The resulting automaton is shown in Figure 4.35.

In function LocMin(A, R = {2, 3, 4, 5}, Θ = {1, 6}, Ω = (1, 1, 6)), state 6 is popped
and removed from Ω. It is found unique, so it is added to R and is removed from Θ. The
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Figure 4.34: Unsorted construction for bottom-up DTAs: a tree b(a(a,a),a(b,a),b) has been
added. Function LocMin has minimized the automaton.

same happens with state 1. The remaining copy of state 1 is removed from Ω without further
action as Θ = ∅. The DTA in Figure 4.35 is the minimal automaton.

Let DTA A = (Q,Σ,∆, F ) be the minimal automaton before function AddTree(A, R, t)
is called, let R be the contents of the register before the call (R = Q), and t be the tree to
be added to the language of the automaton. Let A′ = (Q′,Σ,∆′, F ′) be the automaton just
before the call to LocMin, letR be the contents of the register before the call, andΘ′ andΩ′ be
the contents of Θ and Ω at the same time. Let A′′ = (Q′′,Σ,∆′′, F ′′) be the automaton after
the invocation of AddTree is completed, with the register contents R′′. Transition functions
δm, δ′m, and δ′′m are the transition functions in the respective stages of the process of adding a
tree to the language of the automaton. We will show that:

1. L(A′) = L(A) ∪ {t}

2. Every state in A′ is reachable and co-reachable.

3. L(A′′) = L(A′)

4. A′′ is minimal
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Figure 4.35: Unsorted construction for bottom-up DTAs: a tree a(a,a) has just been added.

To prove point 1, let us notice that adding a tree is handled almost entirely by function
Split. It divides a tree t = σ(t1, . . . , tm) into subtrees t1, . . . , tm, and makes sure that all
changes necessary to make r1 = δA(t1), . . . , rm = δA(tm) so that each ri has Cri = 1. If
δm(σ, r1, . . . , rm) = ⊥, it means that a new state and a new transition must be added to the
DTA, and the function creates a new state n and a new transition (σ, r1, . . . , rm, n) so that
δ′m(σ, r1, . . . , rm) = n. Note that Cn = 1, and LA′(n) = t. Otherwise the tree t is already
a subtree (not necessarily proper if q = δm(σ, r1, . . . , rm) ∈ F ) of a tree already present in
the language of the DTA. If Cq = 1, then nothing needs to be done for the tree as LA(q) = t.
Otherwise q is cloned, so that Cq is decremented by one, and the incoming transition counter
C ′n for the clone is 1. Cloning, as discussed above, ensures that the clone n is used in exactly
the same contexts as q, therefore cloning does not change the language of the automaton. The
top-level invocation of function Split returns state q such that LA′(q) = {t}. In function
AddTree, q is made final, so by definition (2.19), t ∈ L(A′). No tree is deleted from L(A), as
no states are deleted in function Split, and transitions are redirected only to clones of original
targets that function in exactly the same way as the original targets. The only new states that
are added are states that are created when for a particular subtree s of the tree t, δA(s) = ⊥,
and after that creation of a state n, LA′(n) = s. As Cn = 1, and only δA′(t) is made final,
nothing but t is added to L(A).
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To prove point 2, notice that every newly created state q is made reachable as there is
a tree t such that LA(q) = {t}. A state may become unreachable by deleting a state or a
transition, or by redirecting a transition. Function Split deletes no states and no transitions.
When it redirects a transition, its original target state has more than one incoming transition, so
it stays reachable. A state may stop being co-reachable by deleting a state or a transition, or by
redirecting a transition. Function Split deletes no states and no transitions. When it redirects
a transition, it redirects it towards a clone of the original target state which behaves in exactly
the same way as the original target state, so the new target state must be co-reachable.

Function LocMin would be responsible for any differences between L(A′) and L(A′′).
There are no differences there, i.e. that local minimization does not change the language of the
automaton. Notice that function LocMin replaces a state with an equivalent one, and redirects
to that state transitions that originally went to the state being replaced. Such operation does
not change the language of the automaton.

To prove the last point, notice that the states not visited during addition of a new tree
t (usually most states of the automaton) are pairwise inequivalent. They do not need to be
reprocessed. All other states are put onto stack Ω in the order of those visits, and are popped
from there in the reverse order. Notice also that throughout function AddTree, the sum of
the contents of the register and the current contents of the set Θ form Q, and the first sets
are disjoint. In function AddTree, δA(t) is added to Θ, and removed from R. In function
Split, each state added to Θ is removed from R (the last for loop). In function LocMin, only
states in Θ are processed, they are either added to the register or deleted, and they are always
removed from Θ. Only states put onto Ω may need to be processed, and they are in the proper
order in Ω. The remaining question is whether Θ is large enough to contain all states that
require processing. It is clear that all new states (including clones) should be processed, i.e. it
should be checked whether there is an equivalent state in the minimized part of the DTA. All
such states are added to Θ in function Split (because they are source states of new transitions)
or in function AddTree (the root). The remaining states, when they are processed in postorder
(here it means that targets of outgoing transitions of any state are processed before that state),
may become equivalent to some other states only when they change their signatures. This
happens on three occasions: when new transitions are added to a state in function Split, when
a transition of a state is redirected towards a clone of the original target of that transition in
function Split, and when the original target is replaced with an equivalent state in function
LocMin. In all these three cases source states of new or modified transitions are removed
from the register and added to Θ if they are not already there. There may be more than one
instance of a state in Ω. When the state is processed, it is removed from Θ, so that it is no
longer processed, unless it changes its signature again. Therefore, the DTA A′′ is minimal.

We do not provide any analysis of computational complexity of the algorithm. Due to
the complexity of cloning and merging states, such analysis would have to take into account
properties of input trees. In an efficient program, the register must be implemented as a hash
table. The hash function must act on the signature of a state (see Equation (2.29)).

This algorithm is a result of cooperation of the author with Rafael Carrasco and Mikel
Forcada. It was published in [8].
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4.5 Extension to Pseudo-Minimal Bottom-UpTreeAutomata
Like other extensions to pseudo-minimal automata described earlier in this book, this one
relies mainly on replacing equivalence with pseudo-equivalence. State q should be replaced
with an equivalent one, only if |RA(q)| ≤ 1. Let us investigate, when this condition is met.

|RA(q)| ≤ 1 ≡


true fanout(q) = ∅
false |fanout(q)| > 1
false |fanout(q)| = 1 ∧ q ∈ F
|RA(n)| ≤ 1 ∧ ∀k 6=j |LA(rk)| ≤ 1 otherwise with fanout(q) =

{(σ, r1, . . . , rm, n, j)}
(4.1)

The first point in the condition is obvious. The second and the third one are facets of the
same situation, as a final state implies the acceptance of another (additional) tree. The last
point is less obvious. It describes a situation where from the destination state of the single
outgoing transition τ of q forwards, there is a single tree top, but other source states in τ may
contribute more than one tree each. The first three points can obviously be computed locally
in q. In the fourth point, |LA(rk)| can easily be computed on the fly during addition of a tree
(a state being cloned has its LA decreased by one, and all states visited during that phase have
LA equal to 1), and during local minimization by adding LA's of merged states.

|LA(q)| =
∑

τ=(σ,r1,...,rm,n)∈∆:n=q

∑
i=1,...,m

|LA(ri)|+ |{(σ, n) ∈ ∆ : n = q}| (4.2)

If ∃k 6=j |LA(rk)| > 1, then |RA(n)| ≤ 1, because n is processed before q, and the condi-
tion must also be met at n.

Let us take an example. Figure 4.36 shows a DTA recognizing trees a(a(a,a)), a(a(a,b)),
a(a(b,a)), a(a(b,b)). We are in the middle of pseudo-minimization. States 1 and 2 are equiv-
alent. Are they pseudo-equivalent? Yes, they are pseudo-equivalent, because |fanout(2)| =
4 > 1, and RA(2) =a(a(a,#)),a(a(#,a)),a(a(#,b)),a(a(b,#)).

Fortunately, RA can be computed in a much simple way. RA of a new state (either com-
pletely new or cloned) is always one. RA of other states visited during addition of a tree is
increased by one. RA of other states (not visited) is not affected. Minimization replaces a
state with another one with identical RA. Unfortunately, states can be visited more than once
during addition of the same tree. Moreover, a newly created state can be visited again as an
unmodified, existing state. It is possible to use two sets of states for following those changes
and updatingRA counters, but a simpler solution is to use markers associated with every state.
The markers can take three values: unchanged -- not (yet) updated during addition of the cur-
rent tree, modified -- with the counter incremented, and new -- with the counter set to one.
The markers act as a global vectorM . Such computation of |RA| is valid only for states with
|LA| equal to one3, but only such states are processed in the forward step of the algorithm.

The main function PseudoUnsortedDTAconstruction is given as Algorithm 4.16. The
only difference to function UnsortedDTAconstruction (page 98) is the use of of the function
PseudoAddTree instead of AddTree.

3For states q with |LA(q)| > 1, the computed value of |RA(q)| should be divided by |LA(q)|.
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Figure 4.36: A DTA recognizing trees a(a(a,a)), a(a(a,b)), a(a(b,a)), a(a(b,b)). State 1 is
equivalent to state 2. Are they pseudo-equivalent?

Function PseudoAddTree also looks familiar --- Algorithm 4.17. It is identical to function
AddTree (page 99), except that it calls function PseudoSplit instead of Split and LocPseu-
doMin instead of LocMin.

In function PseudoSplit, wemaintain the counters T forRA. We not only need to maintain
the counters T themselves, but we must also set markersM on states so that the counters T
can be changed only once during addition of a single tree. Note that when the state appears
not to be new (i.e. the transition function returns a state), we still have to check the marker
M as the state might have been created to recognize an identical subtree somewhere else in
the current tree.

Function PseudoLocMin is different from function LocMin in only two places. Firstly,
function FindEquiv is called only when |RA(n)| ≤ 1. This is the condition for pseudo-
equivalence. Secondly, we clear the markers for all states in Ω (they are not used in Pseu-
doLocMin anyway) before the next invocation of function AddTree.

Let us take the same example of input data as in the previous section. Function Pseu-
doUnsortedDTAconstruction is called. It creates an empty automaton, resets the register, and
it reads the first tree from the input. The tree is a(b(a,b),b(a,b)). Function PseudoAddTree(A,
R = ∅, t=a(b(a,b),b(a,b))) is called. It resets Θ and Ω, and it calls function PseudoSplit(A,
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Algorithm 4.16 Function PseudoUnsortedDTAconstruction adds trees to the language of a
DTA A. Trees are read from the standard input. A registerR initially contains all states ofA.
BothA andR are modified by the function, so that at the end, |Q| = |R|. The function returns
a pseudo-minimal automaton that recognizes all trees recognized by the original automaton
and all trees read from the input.
1: function PseudoUnsortedDTAconstruction(A, R)
2: Create an empty automaton A
3: R← ∅
4: while input not empty do
5: t← next tree
6: (A,R)← PseudoAddTree(A,R,t)
7: end while
8: return A
9: end function

Algorithm 4.17 Function PseudoAddTree adds a tree t to the language of a pseudo-minimal
DTA A. All states of the DTA are in the register R before the call. The procedure modifies
A, so that it recognizes the original language and the tree t, and it also modifies R so that it
contains all states of the new automaton. Variable Θ holds a set of states that are new or that
changes their signature. A stack Ω holds the same states as Θ in chronological order of those
visits. It may later be changed by LocPseudoMin.
1: function PseudoAddTree(A, R, t)
2: Θ← ∅
3: Ω← ∅
4: q ← PseudoSplit(A,R,Θ,Ω, t)
5: R← R \ {q}
6: F ← F ∪ {q}
7: Θ← Θ ∪ {q}
8: push q onto Ω
9: A← LocPseudoMin(A,R,Θ,Ω)
10: return (A,R)
11: end function
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Algorithm 4.18 Function PseudoSplit adds a tree t to the language of a pseudo-minimal au-
tomaton A without making δA(t) final. The register R contains all states in the minimized
part of the automaton. The set Θ contains all states that need to be submitted to minimiza-
tion. The function returns δA(t). The automaton A, the register R, the set Θ, and the stack
Ω are modified inside the function. T and L are global vectors of counters for RA and LA,
respectively. M is a global vector of markers --- see the text.
1: function PseudoSplit(A,R,Θ,Ω,Ψ, t = σ(t1, . . . , tm))
2: for k ∈ 1, . . . ,m do
3: rk ← Split(A,R,Θ,Ω, tk)
4: end for
5: q ← δm(σ, r1, . . . , rm)
6: if q = ⊥ ∨ Cq 6= 1 then
7: if q = ⊥ then
8: n← new state
9: ∆← ∆ ∪ {(σ, r1, . . . , rn, n)}
10: Cn ← 1
11: else
12: n← DTAClone(A, q)
13: ∆← ∆ \ (σ, r1, . . . , rm, q) ∪ (σ, r1, . . . , rm, n)
14: Cq ← Cq − 1
15: Cn ← 1
16: end if
17: Tn ← 1
18: Mn ← new
19: q ← n
20: for i ∈ 1, . . . ,m do
21: if ri 6∈ Θ then
22: Θ← Θ ∪ {ri}
23: R← R \ {ri}
24: end if
25: end for
26: else if Mq = unchanged then
27: Mq ← modified
28: Tq ← Tq + 1
29: end if
30: push r1, . . . , rm onto Ω
31: Bq ← (σ, r1, . . . , rm, q)
32: return q
33: end function
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Algorithm 4.19 Function PseudoLocMin.
1: function PseudoLocMin(A,R,Θ,Ω)
2: while Ω 6= ∅ do
3: pop n from Ω
4: if n ∈ Θ then
5: if Tn ≤ 1 then
6: q ← FindEquiv(A,R, n)
7: else
8: q ← n
9: end if
10: if q 6= n then
11: τ = (σ, r1, . . . , rm, n)← Bn

12: F ← F \ {q}
13: Θ← Θ ∪ {r1, . . . , rm}
14: R← R \ {r1, . . . , rm}
15: ∆← ∆ \ {τ} ∪ (σ, r1, . . . , rn, q)}
16: Cq ← Cq + 1
17: for κ = (a, s1, . . . , sm, j) ∈ ∆ such that ∃i : si = q do
18: Cj ← Cj − 1
19: ∆← ∆ \ {κ}
20: end for
21: delete q
22: else
23: R← R ∪ {q}
24: end if
25: Θ← Θ \ {q}
26: end if
27: Mn ← unchanged
28: end while
29: return A
30: end function
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R = ∅,Θ = ∅,Ω = (), t=a(b(a,b),b(a,b))). Function PseudoSplit dived the tree into subtrees,
and calls itself as PseudoSplit(A,R = ∅, Θ = ∅, Ω = (), t=b(a,b)), which calls itself again as
PseudoSplit(A, R = ∅, Θ = ∅, Ω = (), t=a). A new state 1 is created, a new transition (a, 1)
is added to ∆, C1 is set to 1, T1 is set to 1, M1 is set to new, B1 is set to (a, 1), and state 1
is returned one level up, where it is assigned to variable r1. Function PseudoSplit(A, R = ∅,
Θ = ∅, Ω = (), t=a) is called again, this time with b as the last parameter. It creates a new
state 2 and a new transition (b, 2), C2 is set to 1, T2 is set to 1,M2 is set to new, states 1 and
2 are added to Θ and pushed onto Ω, B2 is set to (b, 2), and state 2 is returned one level up,
where it is assigned to variable r2. At that level, new state 3 and a new transition (b, 1, 2, 3)
are created. C3 is set to 1, T3 is set to 1,M3 is set to new, B3 is set to (b, 1, 2, 3), and state
3 is returned to the top-level invocation of PseudoSplit to be assigned to variable r1. A call
to PseudoSplit(A, R = ∅, Θ = {1, 2}, Ω = (1, 2), t=b(a,b)) follows, which calls PseudoS-
plit(A, R = ∅, Θ = {1, 2}, Ω = (1, 2), t=a). This time, the transition exists, and q is set to 1.
It is checked thatM1 = new, so T1 is unchanged. B1 is set to the same transition as before,
and state 1 is returned to be assigned to variable r1 one level up. PseudoSplit(A, R = ∅,
Θ = {1, 2}, Ω = (1, 2), t=b) is called, and it also returns state 2 without modifying anything
else. Variable r2 becomes state 2. The transition function returns state 3. AsM3 = new, T3
remains 1, states 1 and 2 are pushed onto Ω, and state 3 is returned to be assigned to r2 at the
top level. A new state 4 and a new transition (a, 3, 3, 4) are created. c4 is set to 1, T4 is set to
1,M4 is set to new, state 3 is added to Θ, and pushed twice onto Ω. B4 is set to (a, 3, 3, 4),
and state 4 is returned to function PseudoAddTree. State 4 is made final, it is added to Θ and
pushed onto Ω. The situation is shown in Figure 4.37.

A call to PseudoLocMin(A, R = ∅, Θ = {1, 2, 3, 4}, Ω = (1, 2, 1, 2, 3, 3, 4)) follows.
State 4 is popped and removed from Ω. As n ∈ Θ and T4 ≤ 1, function FindEquiv is called,
which returns the same state. State 4 is added to the register, and removed from Θ, andM4 is
set to unchanged. State 3 is popped and removed from Ω. The condition on |RA| holds, but
no equivalent state can be found, so state 3 is added to the register, and removed from Θ, and
M3 is set to unchanged. State 3 is again popped and removed fromΩ. This time, it is not inΘ,
so onlyM3 is again set to unchanged. State 2 is popped and removed from Ω. The condition
on |RA| holds, but no equivalent state can be found. State 2 is added toR, and removed from
Θ. M2 is set to unchanged. State 1 is popped and removed from Ω. The condition on |RA|
holds, but no equivalent state can be found. State 1 is added to R, and removed from Θ. M1

is set to unchanged. State 2 is popped and removed from Ω again, but this time it is not in Θ,
so onlyM2 is set again to unchanged. The same happens to the remaining instance of state
1. The automaton in Figure 4.37 is minimal.

The next tree on the input is b(b(a,b),a(b,a),b). Function AddTree(A, R = {1, 2, 3, 4},
t=b(b(a,b),a(b,a),b)) is called. It resets Θ and Ω, and calls function PseudoSplit(A, R =
{1, 2, 3, 4},Θ = ∅,Ω = (), t=b(b(a,b),a(b,a),b)), which calls PseudoSplit(A,R = {1, 2, 3, 4},
Θ = ∅, Ω = (), t=b(a,b)), which calls PseudoSplit(A, R = {1, 2, 3, 4}, Θ = ∅, Ω = (), t=a).
Recursion stops here. As δ0(a) = 1 andC1 = 1 andM1 = unchanged,M1 is set tomodified,
and T1 is incremented to 2. B1 is set to (a, 1) again, and state 1 is returned one level up to be
assigned to r1. PseudoSplit(A, R = {1, 2, 3, 4}, Θ = ∅, Ω = (), t=b) is called. As δ0(b) = 2
andC2 = 1 andM2 = unchanged,M2 is set tomodified, and T2 is incremented to 2. B2 is set
to (b, 2) again, and state 2 is returned one level up to be assigned to r2. The transition function
returns state 3, C3 = 1, M3 = unchanged, soM3 is set to modified, and T3 is incremented
to 2. States 1 and 2 are put onto Ω, B3 remains (b, 1, 2, 3), and state 3 is returned to the top-
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Figure 4.37: Unsorted construction of bottom-up pseudo-minimal DTAs: a tree
a(b(a,b),b(a,b)) has just been added.

level of PseudoSplit to be assigned to variable r1. A call to PseudoSplit(A, R = {1, 2, 3, 4},
Θ = ∅, Ω = (1, 2), t=a(b,a)) follows, and then to PseudoSplit(A, R = {1, 2, 3, 4}, Θ = ∅,
Ω = (1, 2), t=b). Again, δ0(b) = 1 and C2 = 1, butM2 = modified, so neitherM2 nor T2
are changed. Nor is B2 (it is assigned the same value), and state 2 is returned one level up to
be assigned to r1. Next PseudoSplit(A, R = {1, 2, 3, 4}, Θ = ∅, Ω = (1, 2), t=a) is called
that returns state 1 without any further actions. That state is assigned to variable r2 one level
up. At that level, δ2(a, 2, 1) = ⊥, so new state 5 and a new transition (a, 2, 1, 5) are created.
C5 is set to 1, so is T5, andM5 is set to new. States 2 and 1 are added to Θ, removed from the
register, and pushed onto Ω. B5 is set to (a, 2, 1, 5), and state 5 is returned to the top-level
invocation of PseudoSplit to be assigned to variable r2. Then PseudoSplit(A, R = {3, 4},
Θ = {1, 2}, Ω = (1, 2, 2, 1), t=b) is called. It returns state 2 without any further action. At
the top-level invocation of function PseudoSplit, δ3(b, 3, 5, 2) = ⊥, so a new state 6 and a
new transition (b, 3, 5, 2, 6)) are created, with C6 set to 1. T6 is set to 1, M6 is set to new,
state 3 is removed from the register, and states 3 and 5 and added to Θ. States 3, 5 and 2 are
pushed onto Ω, and B6 is set to (b, 3, 5, 2, 6). State 6 is returned to function PseudoAddTree,
where it is made final, it is added to Θ and pushed onto Ω.
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Figure 4.38: Unsorted construction of pseudo-minimal bottom-up DTAs: a tree
b(b(a,b),a(b,a),b) has just been added.

Function PseudoLocMin(A, R = {4}, Θ = {1, 2, 3, 5, 6}, Ω = (1, 2, 2, 1, 3, 5, 2, 6)) is
called. State 6 is popped and removed from Ω. It is in Θ, and T6 = 1, so function FindEquiv
is called. It finds that state 4 is equivalent to state 6. States 3, 5, and 2 are already in Θ, and
they are not in the register. The transition leading to state 6 is redirected to state 4. State 6 is
deleted, and C4 is incremented to 2. State 6 is removed from Θ, andM6 is set to unchanged.
State 2 is popped and removed from Ω. It is in Θ, but T2 = 2, so state 2 is added to the
register and removed form Θ, and M2 is set to unchanged. State 5 is popped and removed
from Ω. It is in Θ, and T5 = 1, so function FindEquiv is called, but it finds no equivalent
state, so state 5 is added to the register, removed from Θ, andM5 is set to unchanged. State
3 is popped and removed from Ω. It is in Θ, but T3 = 2, so state 3 is added to the register,
and it is removed from Θ, with M6 set to unchanged. State 1 is popped and removed from
the top of Ω. It is in Θ, but T1 = 2, so it is added to the register and removed from Θ, and
M1 is set to unchanged. The remaining instances of states 2 and 1 on Ω are removed from
there without further actions as the states are no longer in Ω, and their markers are both set to
unchanged.
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The next tree on the input is a(a(a,a),a(a,a)). Function PseudoAddTree(A,R = {1, 2, 3, 4,
5}, t=a(a(a,a),a(a,a))) resets Θ and Ω, and calls function PseudoSplit(A, R = {1, 2, 3, 4, 5},
Θ = ∅, Ω = (), t=a(a(a,a),a(a,a))), which calls PseudoSplit(A, R = {1, 2, 3, 4, 5}, Θ = ∅,
Ω = (), t=a(a,a)), which calls PseudoSplit(A, R = {1, 2, 3, 4, 5}, Θ = ∅, Ω = (), t=a). As
δ0(a) = 1, C1 = 1, andM1 = unchanged,M1 is set to modified, and T1 is incremented to
3. State 1 is returned one level up and assigned to r1. PseudoSplit(A, R = {1, 2, 3, 4, 5},
Θ = ∅, Ω = (), t=a) is called again. This time,M1 = modified, so state 1 is returned without
any other action, and state 1 is assigned to r2 one level up. At that level, δ2(a, 1, 1) = ⊥, so a
new state 6 and a new transition (a, 1, 1, 6) are created, with C6 set to 1. T6 is set to 1,M6 is
set to new, state 1 is removed from the register and added to Θ. It is pushed twice onto Ω. B6

is set to (a, 1, 1, 6), and state 6 is returned to the top-level invocation of PseudoSplit, where it
is assigned to variable r1. PseudoSplit(A, R = {2, 3, 4, 5}, Θ = {1}, Ω = (1, 1), t=a(a,a))
is called again, and then PseudoSplit(A, R = {2, 3, 4, 5}, Θ = {1}, Ω = (1, 1), t=a). The
last call returns state 1 without any modification of variables, and that value is assigned to
variable r1 one level up in the call hierarchy. PseudoSplit(A, R = {2, 3, 4, 5}, Θ = {1},
Ω = (1, 1), t=a) is called again with identical result, and this time state 1 is assigned to vari-
able r2. As δ2(a, 1, 1) = 6 and C6 = 1 andM6 = new, state 1 is pushed twice onto Ω, and
state 6 is returned to be assigned to variable r2 at the top-level invocation of PseudoSplit. As
δ2(a, 6, 6) = ⊥, a new state 7 and a new transition (a, 6, 6, 7) are created, with C7 set to 1.
T7 is set to 1, M7 is set to new, state 6 is added to Θ and pushed twice onto Ω, B7 is set to
(a, 6, 6, 7), and state 7 is returned to function PseudoAddTree, where it is made final, it is
added to Θ and pushed onto Ω. The situation is shown in Figure 4.39.

Function PseudoAddTree calls function PseudoSplit(A, R = {2, 3, 4, 5}, Θ = {1, 6, 7},
Ω = (1, 1, 1, 1, 6, 6, 7)). State 7 is popped and removed from the register. It is inΘ, and T7 =
1, so function FindEquiv finds a state that is equivalent to state 7, i.e. state 4. The transition
leading to state 7 is redirected towards state 4, state 7 is deleted, and C4 is incremented to 3.
State 7 is removed from Θ, andM7 is set to unchanged. State 6 is popped and removed from
the top of Ω. It is in Θ, and T6 = 1, but FindEquiv cannot find an equivalent state, so state
6 is added to the register, removed from Θ, and M6 is set to unchanged. Another copy of
state 6 is popped and removed from Ω. This time it is not in Θ, so nothing happens --M6 is
already set to unchanged. State 1 is popped and removed from Ω. It is in Θ, but T1 = 3, so it
is added to the register, removed from Θ, andM1 is set to unchanged. Remaining copies of
state 1 are removed from Ω without any change to variables.

The next tree on the input is a(a(a,a),b(a,b)). Function PseudoAddTree(A,R = {1, 2, 3, 4,
5, 6}, t=a(a(a,a),b(a,b))) resetsΘ andΩ, and calls function PseudoSplit(A,R = {1, 2, 3, 4, 5,
6}, Θ = ∅, Ω = (), t=a(a(a,a),b(a,b))), which calls PseudoSplit(A, R = {1, 2, 3, 4, 5, 6},
Θ = ∅, Ω = (), t=a(a,a)), which calls PseudoSplit(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (),
t=a). It increments T1 to 4, setsM1 to modified, and returns state 1 without modifying any
variables. One level up, state 1 is assigned to variable r1. Another call to PseudoSplit(A,
R = {1, 2, 3, 4, 5, 6},Θ = ∅,Ω = (), t=a) follows, which this time only returns state 1, which
is assigned to variable r2. As δ2(a, 1, 1) = 6 andC6 = 1, T6 is incremented to 2, andM6 is set
tomodified. State 1 is pushed twice onto Ω. State 6 is returned to be assigned to variable r1 at
the top-level invocation of function PseudoSplit. Next, PseudoSplit(A, R = {1, 2, 3, 4, 5, 6},
Θ = ∅, Ω = (1, 1), t=b(a,b)) is called, which calls PseudoSplit(A, R = {1, 2, 3, 4, 5, 6},
Θ = ∅, Ω = (1, 1), t=a). The last call returns state 1 without modifying any variables, and
state 1 is assigned to variable r1. PseudoSplit(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 1),
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Figure 4.39: Unsorted construction of pseudo-minimal bottom-up DTAs: a tree
a(a(a,a),a(a,a)) has just been added.

t=b) is called. It setsM2 tomodified, increments T2 to 3, and returns state 2, which is assigned
to variable r2 one level up. As δ2(b, 1, 2) = 3 and C3 = 1,M3 is set to modified, and T3 is
incremented to 3. States 1 and 2 are pushed onto Ω, and state 3 is returned to be assigned to
variable r2 at the top-level invocation of function PseudoSplit. Since δ2(a, 6, 3) = ⊥, a new
state 7 and a new transition (a, 6, 3, 7) are created, with C7 set to 1. T7 is set to 1, andM7 is
set to new. States 6 and 3 are removed from the register, added to Θ, and pushed onto Ω, B7

is set to (a, 6, 3, 7), and state 7 is returned to function PseudoAddTree, where it is made final,
it is added to Θ and pushed onto Ω. The situation is shown in Figure 4.40.

Function PseudoAddTree calls function PseudoLocMin(A,R = {1, 2, 4, 5},Θ = {3, 6, 7},
Ω = (1, 1, 1, 2, 6, 3, 7)). State 7 is popped and removed from Ω. It is in Θ, and T7 = 1, so
function FindEquiv finds that state 4 is equivalent to state 7. The transition leading to state
7 is redirected towards state 4, so that C4 is incremented to 4, state 7 is deleted, and states 3
and 6 do not need to be added to Θ since they are already there. State 7 is removed from Θ,
andM7 is set to unchanged. State 3 is popped and removed from Ω. It is in Θ, but T3 = 3,
so the state is added to the register and removed from Θ. State 6 is popped and removed from
Ω. It is in Θ, but T6 = 2, so state 6 is added to the register and removed from Θ. Since Θ is
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Figure 4.40: Unsorted construction of pseudo-minimal bottom-up DTAs: a tree
a(a(a,a),b(a,b)) has just been added.

now empty, the remaining states q are removed from Ω only to changeMq to unchanged if
necessary.

The next tree on the input is a(b(a,b),a(a,a)). Function PseudoAddTree resets Θ and Ω,
and calls function PseudoSplit(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (), t=a(b(a,b),a(a,a))),
which calls PseudoSplit(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (), t=b(a,b)), which calls
PseudoSplit(A,R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (), t=a). The last call setsM1 to modified,
increments T1 to 5, modifies no more variables, and returns state 1 to be assigned to variable
r1 one level up in the call hierarchy. Next, PseudoSplit(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅,
Ω = (), t=b) is called. It setsM2 to modified, increments T2 to 4, changes no more variables,
and returns state 2, which is assigned to variable r2 one level up. As δ2(b, 1, 2) = 3 and
C3 = 1,M3 is set to modified, and T3 is incremented to 4. States 1 and 2 are pushed onto Ω.
State 3 is returned, and it is assigned to variable r1 in the top-level invocation of PseudoSplit.
Now, PseudoSplit(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 2), t=a(a,a)) is called, which
calls PseudoSplit(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 2), t=a). The last call returns
state 1 without any change to variables. State 1 is assigned to variable r1 one level up. An
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identical call follows with identical result, but this time state 1 is assigned to variable r2. As
δ2(1, 1, 1) = 6 and C6 = 1, M6 is set to modified, and T6 is incremented to 3. State 1 is
pushed twice onto Ω, and state 6 is returned to be assigned to variable r2 in the top-level
invocation of function PseudoSplit. As δ2(a, 3, 6) = ⊥, a new state 7 and a new transition
(a, 3, 6, 7) are created, withC7 = 1. T7 is set to 1,M7 is set to new, states 3 and 6 are removed
from the register and are added to Θ. They are also pushed onto Ω. B7 is set to (a, 3, 6, 7).
State 7 is returned to PseudoAddTree, where it is made final, it is added to Θ, and pushed
onto Ω. The situation is shown in Figure 4.41.
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Figure 4.41: Unsorted construction of pseudo-minimal bottom-up DTAs: a tree
a(b(a,b),a(a,a)) has just been added.

Function PseudoAddTree calls PseudoLocMin(A, R = {1, 2, 4, 5}, Θ = {3, 6, 7}, Ω =
(1, 2, 1, 1, 3, 6, 7)). State 7 is popped and removed from Ω. It is in Θ, and T7 = 1, so function
FindEquiv finds an equivalent state -- state 4. The transition leading to state 7 is redirected
to state 4, with C4 incremented to 5. State 7 is deleted and removed from Θ, andM7 is set
to unchanged. State 6 is popped and removed from Ω. It is in Θ, but T6 = 3, so the state is
added to the register and removed from Θ. M6 is set to unchanged. State 3 is popped and
removed from Ω. It is in Θ, but T3 = 4, so it is added to the register and removed from Θ.
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Also, M3 is set to unchanged. The remaining contents of Ω is only used to set appropriate
Mq values to unchanged as those states are not in Θ.

The next string on the input is b(a(a,a),a(b,a),b). Function PseudoAddTree resetsΘ andΩ,
and calls function PseudoSplit(A,R = {1, 2, 3, 4, 5, 6},Θ = ∅,Ω = (), t=b(a(a,a),a(b,a),b)),
which calls PseudoSplit(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (), t=a(a,a)), which calls
PseudoSplit(A,R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (), t=a). The last call setsM1 to modified,
increments T1 to 6, and returns state 1, which is assigned to variable r1 one level up. An
identical call PseudoSplit(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (), t=a) only returns state
1, which is assigned to variable r2 one level up. At that level,M6 is set to modified, and T6
is incremented to 4. State 1 is pushed twice onto Ω, and state 6 is returned to be assigned
to variable r1 at the top-level invocation of function PseudoSplit. A call to PseudoSplit(A,
R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 1), t=a(b,a)) follows, which calls PseudoSplit(A,
R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 1), t=b). The last call setsM2 to modified, increments
T2 to 5, and returns state 2 to be assigned to variable r1 one level up. A call to PseudoSplit(A,
R = {1, 2, 3, 4, 5, 6}, Θ = ∅, Ω = (1, 1), t=a) returns state 1 to be assigned to variable
r2 one level up. At that level, M5 is set to modified, T5 is incremented to 2, and states 2
and 1 are pushed onto Ω. State 5 is returned and assigned to variable r2 at the top-level
invocation of function PseudoSplit. Next, PseudoSplit(A, R = {1, 2, 3, 4, 5, 6}, Θ = ∅,
Ω = (1, 1, 2, 1), t=b) is called, which returns state 2 to be assigned to variable r3 at the top-
level invocation of function PseudoSplit. At that level, a new state 7 and a new transition
(b, 6, 5, 2) are created, with C7 = 1, T7 = 1, andM7 = new. States 6, 5, and 2 are added to
Θ, removed from the register, and pushed onto Ω. B7 is set to (b, 6, 5, 2). State 7 is returned
to function PseudoAddTree, where it is made final, it is added to Θ, and pushed onto Ω.

Function PseudoAddTree calls PseudoLocMin(A, R = {1, 3, 4}, Θ = {2, 5, 6, 7}, Ω =
(1, 1, 2, 1, 6, 5, 2, 7)). State 7 is popped and removed from Ω. The state is in Θ and T7 = 1,
so FindEquiv finds that state 4 is equivalent to state 7. The transition that leads to state 7 is
redirected to state 4 with C4 incremented to 6. State 7 is deleted and removed from Θ with
M7 set to unchanged. The situation is shown in Figure 4.42.

State 2 is popped and removed from Ω. It is in Θ, but T2 = 4, so function FindEquiv
is not called. Were it to be called, it would find no equivalent state. State 2 is added to the
register and removed from Θ, with M2 set to unchanged. State 5 is popped and removed
from Ω. It is in Θ. Although it is unique, function FindEquiv has no chance to find that as
T5 = 2. The state is added to the register and removed from Θ, andM5 is set to unchanged.
State 6 is popped and removed from Ω. It is in Θ, and it is equivalent to state 3, but since
T6 = 4, function FindEquiv is not called, and state 6 is added to the register even though R
already contains an equivalent state. It is also removed from Θ, andM6 is set to unchanged.
Remaining states on Ω are not in Θ, so there are no further changes to the automaton, and the
DTA in Figure 4.42 is pseudo-minimal.

This construction closely follows that from the previous section. We have replaced equiv-
alence with pseudo-equivalence based on the definition of a pseudo-minimal automaton. It
remains to prove that the values of Tq , i.e. the values of |RA(q)| are calculated correctly. It
is easy to see that for a given state q the value of |RA(q)| is the number of trees that need a
visit to state q during their recognition by the DTA divided by |LA(q)|, as all trees in LA(q)
have common ,,tree tops''. Since the construction ensures that all states q that are potential
parameters of FindEquiv have |LA(q)| = 1 before the call, it remains to just count the trees.
New states and states that are clones of existing states get the value 1, and all other states
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Figure 4.42: Unsorted construction of pseudo-minimal bottom-up DTAs: a tree
b(a(a,a),a(b,a),b) has just been added. Function LocMin has just replaced state 7 with state
4, deleting state 4.

visited during a call to PseudoAddTree (except for states that are cloned, but their situation
does not change anyway) get their values incremented by one. MarkersM are used to ensure
that the values in T change at most once during addition of a single tree, and values new of
markersM are set before modified, which guaranties that new states always get the value 1.
Function PseudoLocMin clears all affected markers so that they can be reused for a new tree.

As with the algorithm in the previous section, we do not give complexity estimation of
the algorithm here, for the same reason. Remarks about implementation from the previous
section are also valid here.

The algorithm was developed in cooperation with Rafael Carrasco. It was published in
[7].





Chapter 5

Semi-Incremental Construction
Algorithms

5.1 Watson's Algorithm
Watson's algorithm is an example of semi-incremental construction algorithm. This means
that although some effort is taken to reduce the size of the automaton during construction,
it can still be significantly larger than the minimal one. It is a trade-off between memory
requirements and speed as semi-incremental algorithms are simpler than incremental ones,
and at least two sources1 show that they are also faster. The speed comes partially from a
special property of input data: data must be sorted. In case of Watson's algorithm it must be
sorted in any order of decreasing length. The construction is given as Algorithm 5.1. In line 5,
three functions are called.

Algorithm 5.1Watson's construction algorithm.
1: functionWatsonConstruction
2: Create an empty automatonM , register R, and a stack X
3: while there are words on the input do
4: w← next word on the input
5: minim(M ,R,BuildStack(M ,X ,AddWord(M ,w)))
6: end while
7: minim(M ,R,BuildStack(M ,X ,q0))
8: returnM
9: end function

Function AddWord simply adds a word to the language of the automaton. It assumes there
are no confluence states on the way, so it works as if we were adding a word to a trie. The
function first uses existing states and transitions to recognize a (possibly empty) prefix of the
word, and then creates states and transitions to recognize the missing ending. The function,
given as Algorithm 5.2, returns the final state at the end of the path recognizing the word.

1Bruce Watson's paper introducing the algorithm and one less formal source
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Algorithm 5.2 Function AddWord adds a word w to the language of an automaton M . It
assumes that there are no confluence on the path recognizing the word. The function returns
the final state created to recognize the word.
1: function AddWord(M , w)
2: q ← q0
3: i← 1
4: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
5: q ← δ(q, wi)
6: i← i+ 1
7: end while
8: while i ≤ |w| do
9: δ(q, wi)← new state
10: q ← δ(q, wi)
11: i← i+ 1
12: end while
13: F ← F ∪ {q}
14: return q
15: end function

Function BuildStack pushes its second argument q on stack X , and so it does with all
states reachable from q up to but excluding nearest final states. The states are pushed onto the
stack in such order that if there is a path in the automaton leading from state q to state p, then
state p is pushed earlier than state q. The stack is returned by the function, which is given as
Algorithm 5.3.

Algorithm 5.3 Function BuildStack builds a stackX of states starting from state q. The stack
is returned by the function.
1: function BuildStack(M , X , q)
2: push q onto X
3: for σ ∈ Σq do
4: if δ(q, σ) 6∈ F then
5: X ← BuildStack(M,X, δ(q, σ))
6: end if
7: end for
8: end function

ProcedureMinim performs localminimization of states stored on the stackX starting from
the top of the stack. States are popped from the stack one by one. If there is an equivalent
state r in the registerR, the current state q is deleted, and the single transition coming to state
q is redirected towards state r. If not, state q is added to the register.

Let us take an example. We construct a DFA from the following words: bij, bijmy, bij-
cie, bijemy, bijecie, coming in sorted on decreasing length: bijecie, bijemy, bijcie, bijmy, bij.
FunctionWatsonConstruction creates an empty automaton ({0},Σ, ∅, 0, ∅), an empty register
R, and an empty stackX . The first word ---bijecie--- is read from the input, and AddWord(M ,
w=bijecie) is called. It sets q to state 0, i to 1, and it skips the first loop as there are no tran-



5.1. Watson's Algorithm 133

Algorithm 5.4 Procedure Minim examines the states on the stackX to see if they are equiv-
alent to states in the register R, and replaces them if necessary.
1: procedureMinim(M , R, X)
2: while |X| > 0 do
3: pop q from X
4: if ∃r∈R:r≡q then
5: redirect the single incoming transition of q towards r
6: delete q
7: else
8: F ← F ∪ {q}
9: end if
10: end while
11: end procedure

sitions to follow. In the second loop, a chain of states 0, 1,. . . , 7 is created, as well as a chain
of transitions joining those states and labeled with consecutive letters of the word as shown
in Figure 5.1, with state 7 made final right after the loop.

..0.. 1. 2. 3. 4. 5. 6. 7. b. i. j. e. c. i. e

Figure 5.1: Watson construction: word bijecie has just been added to an empty automaton.

Function AddWord returns state 7. It is put by function BuildStack onto stack X . Since
state 7 has no outgoing transitions, no other states are put onto stack, which is returned by
function BuildStack to procedure Minim. That single state is compared with the empty con-
tents of the registerR. Since no equivalent state can be found in an empty set, state 7 is added
to R.

Word bijemy is read from the input. Function AddWord(M , w=bijemy) is called. The
first loop traverses states and transitions up to and including state 4. The second loop creates
a chain of states and transitions recognizing the rest of the word, with the last word made
final, as depicted in Figure 5.2.

..0.. 1. 2. 3. 4. 5. 6. 7.

8

.

9

. b. i. j. e. c. i. e.

m

.

y

Figure 5.2: Watson construction: word bijemy has just been added to an automaton recogniz-
ing word bijecie.

State 9 is returned by function AddWord to function BuildStack, which puts the state onto
stackX , and then the stack is returned to procedure Minim. In that function, state 9 is popped
from the stack, and compared against the only state in the register, i.e. against state 7. As the
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states are equivalent, the transition from state 8 to state 9 is redirected to state 7, and state 9
is deleted, as seen in Figure 5.3.
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Figure 5.3: Watson construction: word bijemy has just been added to an automaton recogniz-
ing bijemy. Procedure Minim has just deleted state 9, and it redirected a transition that led to
that state to state 7.

The next word is read from the input, and function AddWord(M , m=bijcie) is called.
States and transitions up to and including state 3 are traversed in the first loop. The second
loop creates states 9, 10, and 11, as well as transitions between them and between state 3 and
state 9 with labels that spell out the suffix of the word. State 11 is made final, as seen in
Figure 5.4.
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Figure 5.4: Watson construction: word bijcie has just been added to an automaton recognizing
words bijecie and bijemy.

Function AddWord returns state 11, which is put onto stack X by function BuildStack.
The stack is returned to procedure Minim that pops state 11 from it, finds that it is equivalent
to state 7, redirects incoming transition of state 11 towards state 7, and deletes state 11. This
situation is depicted in Figure 5.5.
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Figure 5.5: Watson construction: word bijcie has just been added to an automaton recognizing
words bijecie and bijemy. Procedure Minim has just deleted state 11, and it redirected a
transition that led to that state to state 7.
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The next word on the input is read, and function AddWord(M , w=bijmy) is called. In the
first loop, states and transitions up to and including state 3 are traversed, so that the prefix bij
is recognized. In the second loop, states 11 and 12 are created, as well as transitions between
state 3 and state 11, and between state 11 and state 12. State 12 is made final just after the
loop as seen in Figure 5.6.
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Figure 5.6: Watson construction: word bijmy has just been added to an automaton recognizing
words bijecie, bijemy, and bijcie.

State 12 is returned by function AddWord to function BuildStack that puts in onto stack
X . The stack is returned to procedure Minim that pops state 12 from the stack, finds that it is
equivalent to state 7, redirects the sole incoming transition of state 12 to state 7, and deletes
state 12, as depicted in Figure 5.7.
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Figure 5.7: Watson construction: word bijmy has just been added to an automaton recognizing
words bijecie, bijemy, and bijcie. ProcedureMinim has just redirected the incoming transition
of state 12 towards state 7, and deleted state 12.

The last word is read from the input, and function AddWord(M , w=bij) is called. The
first loop traverses transitions and states up to and including state 3. The second loop does
not run as the whole word has already been used for the traversal. State 3 is made final.
It is returned to function BuildStack. The function puts state 3 onto stack, and examines
its outgoing transitions. It calls BuildStack(M , X = {3},9), which puts state 9 onto stack
and calls BuildStack(M , X = {3, 9}, 10), which in turn puts state 10 onto stack and de-
termines that state 7 is final, and no other states are reachable from state 10, so the control
returns to the upper-level invocation, and then to the top level invocation of BuildStack. From
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that level, BuildStack(M , X = {3, 9, 10}, 4) is called. It puts state 4 onto stack, and calls
BuildStack(M ,X = {3, 9, 10, 4}, 5). At that invocation, state 5 is put onto stack, and Build-
Stack(M ,X = {3, 9, 10, 4, 5}, 6) is called. It puts state 6 onto stack, and determines that state
7 is final, so BuildStack cannot reprocess it. Control returns two levels up, and BuildStack(M ,
X = {3, 9, 10, 4, 5, 6}, 8) is called, where state 8 is put onto stack. Control returns to the top-
level call of BuildStack, where BuildStack(M ,X = {3, 9, 10, 4, 5, 6, 8}, 11) is called. It puts
state 11 onto stack, and returns to the top level call of BuildStack, which returns the stack to
procedure Minim(M , R = {7}, X = {3, 9, 10, 4, 5, 6, 8, 11}).

In procedure Minim, state 11 is popped from the stack. As the register R contains only
state 7, and state 11 is different, state 11 is added to the register. State 8 is popped from the
stack, and it is found equivalent to state 11, so the incoming transition of state 8 is redirected
to state 11, and state 8 is deleted. State 6 is popped from the stack, and it is found unique, so
it is added to the register. The same happens to states 5 and 4. State 10 is popped from the
stack. It is found equivalent to state 6, so the sole incoming transition of state 10 is redirected
to state 6, and state 10 is deleted. State 9 is popped from the stack. It is found equivalent to
state 5, so the sole incoming transition of state 9 is redirected to state 5, and state 9 is deleted.
State 3 is popped from the stack. It is found unique, so it is added to the register. The situation
is shown in Figure 5.8.
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Figure 5.8: Watson construction: word bij has just been added to an automaton recognizing
words bijecie, bijemy, bijcie, and bijmy. Procedure Minim has just deleted states 8, 9, and 10.

Finally, function BuildStack(M , X = ∅, 0) is called. State 0 is put onto stack, then
BuildStack(M ,X = {0}, 1) puts state 1 onto stack and calls BuildStack(M ,X = {0, 1}, 2).
The last call puts state 2 onto stack. It cannot call BuildStack(M ,X = {0, 1, 2}, 3), as state 3
is final. The stack is returned to procedure Minim(M ,R = {3, 4, 5, 6, 7, 11},X = {0, 1, 2}).
States are popped from the stack one by one, they are all found unique, and they are all added
to the register. So the automaton in Figure 5.8 is minimal.

In this algorithm, just like in the algorithm for sorted data described in Chapter 3 on
page 19, we have two processes running in parallel. The first one builds a trie, the second
one minimizes it. Those two processes are also synchronized, but in a much simpler way.
Let w be a word to be added to the language of an automaton. Let M = (Q,Σ, δ, q0, F )
be the automaton before a call to AddWord, and R --- the register before that call. Let
M ′ = (Q′,Σ, δ′, q′0, F

′) be the automaton right after the call. LetM ′′ = (Q′′,Σ, δ′′, q′′0 , F
′′)

be the automaton right after the call to Minim in the main loop of the algorithm.

1. L(M ′) = L(M) ∪ {w}

2. L(M ′′) = L(M ′)
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3. M ′′ is minimal

To see that point 1 is true, let us notice that function AddWord creates new transitions and
new states only for the part of w that is not yet stored in the automaton. If w is a prefix of
a word already in L(M), then only δ∗(q0, w) is made final. Otherwise let w = uv such
that δ∗(q0, u) ∈ Q and δ∗(δ(q0, u), v1) = ⊥. Then state δ∗(q0, u) gets a new outgoing
transition that leads to a chain of states and transitions recognizing v with state δ(q0, w) being
a final state. This process guaranties that w ∈ L(M ′). Also, all states are reachable and
co-reachable. To prove that L(M ′) = L(M) ∪ {w}, one must show that for any prefix w′
of w, δ∗(q0, w′) is not a confluence state. A state can become confluence only as a result
of minimization in procedure Minim. States can undergo that local minimization only when
length of the path from q0 that leads to them is greater than or equal to the length of the current
word or at the final minimization, when no additional word can be added. Thus confluence
states cannot be visited by function AddWord except for the last state, i.e. δ(q0, w), where it
does not matter.

To prove the second point, we note that the procedure Minim replaces a state with an
equivalent state, which does not change the language of the automaton. Deletion of replaced
states does not create unreachable states as the deleted states have the same suite of transitions
as their equivalents that replace them.

To prove the third point, we notice that the states are processed in procedure Minim in
such order that any state reachable from a given state is treated before the given state. This
comes from the ordering of input data, and from the way function BuildStack works, i.e. it
puts its argument onto the stack, and then proceeds to call itself with arguments being the
targets of outgoing transitions of the current state. Since all the states are processed in this
manner, there can be no pair of states that are pairwise equivalent. As there are no unreachable
or not co-reachable states, the automaton has to be minimal.

The main loop in function WatsonConstruction runs n times, where n is the number of
words on the input. Function AddWord has two loops that run up to |wmax| times in total,
wherewmax is the longest word on the input. Function BuildStack is invoked at mostn|wmax|
times. The inner loop is used for recursive calls, so it is already taken into account when count-
ing invocations of BuildStack. The conditional instruction inside procedure Minim runs at
most n|wmax| times (as many times as function BuildStack has put some state onto the stack).
We assume ---as before--- that register operations take constant time. Then the complexity of
the whole algorithm is O(n|wmax|).

This algorithm was developed by Bruce Watson and it was published in [38].

5.1.1 Extension to Pseudo-Minimal Automata
Watson's algorithm can easily be extended to produce pseudo-minimal automata. The diffi-
culty here is tomaintain information about divergence of states. States are no longer processed
in such way that we could compute that feature from the end of paths recognizing words. The
solution to that problem is to keep track of cardinality of the right language in each state during
the forward step of the algorithm. We introduce counters Dq for cardinality of the right lan-
guage of states q. The main algorithm is practically identical to that of the original Watson's
algorithm (page 131), and it is given here as Algorithm 5.5.

Function PseudoAddWord (Algorithm 5.6 is also almost identical to function AddWord
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Algorithm 5.5 Extension of Watson's construction algorithm to pseudo-minimal automata.
1: function PseudoWatsonConstruction
2: Create an empty automatonM , register R, and a stack X
3: while there are words on the input do
4: w← next word on the input
5: PseudoMinim(M ,R,BuildStack(M ,X ,PseudoAddWord(M ,w)))
6: end while
7: PseudoMinim(M ,R,BuildStack(M ,X ,q0))
8: returnM
9: end function

(page 132). We maintain countersDq for |
→
L (q)| using a method borrowed from Section 4.5.

Algorithm 5.6 Function PseudoAddWord adds a word w to the language of an automaton
M . It assumes that there are no confluence on the path recognizing the word. The function
returns the final state created to recognize the word. It also maintains countersDq for |

→
L (q)|

of states q.
1: function PseudoAddWord(M , w)
2: q ← q0
3: Dq ← Dq + 1
4: i← 1
5: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
6: q ← δ(q, wi)
7: Dq ← Dq + 1
8: i← i+ 1
9: end while
10: while i ≤ |w| do
11: δ(q, wi)← new state
12: q ← δ(q, wi)
13: Dq ← 1
14: i← i+ 1
15: end while
16: F ← F ∪ {q}
17: return q
18: end function

Function BuildStack can be used without modifications. Function PseudoMinim (Algo-
rithm 5.7) uses the counters that were introduced earlier to transform equivalence into pseudo-
equivalence.

Let us see how the algorithmworkswith an example. On the input we havewords: biliście,
biliśmy, bijecie, bijemy, bijcie, bijmy, and bij. Function PseudoWatsonConstruction creates
an empty automaton with the initial state 0 and D0 = 0, and reads biliście from the input.
Function PseudoAddWord(M , w=biliście) is called. It sets q to state 0, Increments D0 to 1,
and sets i to 1. The first while loop does not run as there are no transitions to traverse. The
second while loop creates states 1, 2,. . . ,8, setting Dq for each of those states to 1, and it
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Algorithm 5.7 Procedure PseudoMinim examines the states on the stackX to see if they are
equivalent to states in the register R, and replaces them if necessary.
1: procedure PseudoMinim(M , R, X)
2: while |X| > 0 do
3: pop q from X
4: if Dq = 1 ∧ ∃r∈R:r≡q then
5: redirect the single incoming transition of q towards r
6: delete q
7: else
8: R← R ∪ {q}
9: end if
10: end while
11: end procedure

creates transitions between the states, then state 8 is made final, as can be seen in Figure 5.9.
State 8 is returned to function BuildStack, which puts it onto stack. The stack is returned to
procedure PseudoMinim, which pops state 8 from it, and as the register is empty, it adds state
8 to R. Figure 5.9 is still valid.
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Figure 5.9: Watson construction of pseudo-minimal automata: word biliście has just been
added to an empty automaton.

Function PseudoWatsonConstruction reads word biliśmy, and calls PseudoAddWord(M ,
w=biliśmy). Going through the first loop, the function traverses states and transitions up to
and including state 5, incrementingDq for each of them by one to 2. In the second loop, states
9 and 10 are created, with D9 = D10 = 1, and transitions to both of those states. State 10
is made final just after the loop, and it is returned to function BuildStack, which puts it onto
stack. The stack is returned to procedure PseudoMinim that pops state 10 from the stack.
Since D10 = 1 and state 8 is equivalent to state 10, state 10 is deleted, and the incoming
transition of state 10 is redirected to state 8. This is shown in Figure 5.10.
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Figure 5.10: Watson construction of pseudo-minimal automata: word biliśmy has just been
added to an automaton recognizing word biliście.

The next word on the input is bijecie. Function PseudoAddWord traverses states and
transitions from the initial state up to and including state 2, incrementing their Dq to 3. The
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second loop creates states 10, 11, 12, 13, and 14, with qq of each state set to 1. It also creates
transitions leading to them. State 14 is made final, and it is returned to function BuildStack,
which puts in onto stack. The stack is returned to procedure PseudoMinim, which pops state
14. Since D13 = 1 and state 8 is equivalent to state 14, the incoming transition of state 14 is
redirected to state 8, and state 14 is deleted. The automaton is shown in Figure 5.11.

..0..

3

. 1.

3

. 2.

3

. 3.

2

. 4.

2

. 5.

2

. 6.

1

. 7.

1

. 8.

1

.

9

.

1

.

10

.

1

.

11

.

1

.

12

.

1

.

13

.

1

. b. i. l. i. ś. c. i. e.

m

.

y

.
j

.

e

.

c

.

i

.

e

Figure 5.11: Watson construction of pseudo-minimal automata: word bijecie has just been
added to an automaton recognizing words biliście and biliśmy.

The next word on the input is bijemy. In the first while loop in function PseudoAddWord,
states and transitions up to and including state 11 are traversed, incrementing their Dq . In
the second while loop, states 14 and 15 as well as transitions leading to them are created.
States receive Dq = 1. After the loop, state 15 is made final, and it is returned to function
BuildStack, where it is put onto stack. The stack is returned to procedure PseudoMinim. State
15 is popped. As D15 = 1 and state 15 is equivalent to state 8, the incoming transition of
state 15 is redirected towards state 8, and state 15 is deleted, as shown in Figure 5.12.
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Figure 5.12: Watson construction of pseudo-minimal automata: word bijemy has just been
added to an automaton recognizing words biliście biliśmy, and bijecie.

The next word on the input is bijcie. In the first while loop of function PseudoAddWord,
states and transitions up to and including state 10 are traversed, and Dq for states are incre-
mented. In the second while loop, states 15, 16, and 17 are created with Dq = 1, as well
as transitions leading to them. After the loop, state 17 is made final, and it returned to func-
tion BuildStack, where it is put onto stack. The stack is returned to procedure PseudoMinim,
where state 17 is popped. AsD17 = 1 and state 8 is found equivalent to state 17, the incoming
transition of state 17 is redirected towards state 8, and state 17 is deleted. Figure 5.13 shows
the resulting automaton.

The next word is bijmy. In the first while loop of function PseudoAddWord, states and
transitions up to and including state 10 are traversed, with theirDq incremented. In the second



5.1. Watson's Algorithm 141

..0..

5

. 1.

5

. 2.

5

. 3.

2

. 4.

2

. 5.

2

. 6.

1

. 7.

1

. 8.

1

.

9

.

1

.

10

.

3

.

11

.

2

.

12

.

1

.

13

.

1

.

14

.

1

.

15

.

1

.

16

.

1

. b. i. l. i. ś. c. i. e.

m

.

y

.
j

.

e

.

c

.

i

.

e

.

m

.

y

.

c

.

i

.

e

Figure 5.13: Watson construction of pseudo-minimal automata: word bijcie has just been
added to an automaton recognizing words biliście biliśmy, bijecie, and bijemy.

while loop, states 17 and 18 withDq = 1, as well as transitions that lead to them, are created.
After the loop, state 18 is made final, and it is returned to function BuildStack, that puts it
onto stack. The stack is returned to procedure PseudoMinim. State 18 is popped from the
stack. As D18 = 1 and state 18 is equivalent to state 8, the incoming transition of state 18
is redirected towards state 8, and state 18 is deleted. The resulting automaton is shown in
Figure 5.14.
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Figure 5.14: Watson construction of pseudo-minimal automata: word bijmy has just been
added to an automaton recognizing words biliście biliśmy, bijecie, bijemy, and bijcie.

The last word is bij. In the first while loop in function PseudoAddWord, states and
transitions up to and including state 10 are traversed with their Dq incremented. The second
while loop does not run as all letters of the word have been already consumed. State 10 is
made final, and it is returned to function BuildStack. State 10 is put onto stack, and BuildStack
is called again with state 11. State 11 is put onto stack, and BuildStack(M , X , 12) is called.
State 12 is put onto stack, and BuildStack(M ,X , 13) is invoked. State 13 is put onto stack. As
state 8 if final, recursion stops here, and control returns two levels up to call BuildStack(M ,
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X , 14). State 14 is put onto stack, and we are back at the top-level invocation of function
BuildStack, which calls itself with state 15 now. State 15 is put onto stack, and BuildStack(M ,
X , 16) is called. State 16 is put onto stack, and BuildStack(M ,X , 17) puts state 17 onto stack.
The stack X = (10, 11, 12, 13, 14, 15, 16, 17) is returned to procedure PseudoMinim.

In that procedure, state 17 is popped. Although D17 = 1, the register contains only state
8, which is not equivalent to state 17, so state 17 is added to the register. State 16 is popped.
Again, D16 = 1 but there is no equivalent state in the register, so state 16 is added to R.
State 15 undergoes the same actions. State 14 is popped from the stack. It also hasD14 = 1,
and this time, there is an equivalent state --- state 17. The incoming transition of state 14 is
redirected to state 17, and state 14 is deleted. State 13 is popped. With D13 = 1, the state is
found to be equivalent to state 16, so the incoming transition of state 13 is redirected to state
16, and state 13 is deleted. State 12 is popped. With D12 = 1, it is found equivalent to state
15, so the incoming transition of state 12 is redirected towards state 15, and state 12 is deleted.
State 11 is popped. Since D11 = 2, the state is added to the register. State 10 is popped. As
D10 = 4, the state is added to the register.

There are no more words on the input. Function BuildStack is called again, this time with
state 0 as its last parameter. State 0 is put onto stack, then BuildStack calls itself with state
1, which is put onto stack. Repeated invocations put states 2, 3, 4, 5, 6, 7, and 9 onto the
stack. The stack is returned to procedure PseudoMinim. State 9 is popped from the stack.
With D9 = 1, it is found to be equivalent to state 17, so the incoming transition of state 9
is redirected to state 17, and state 9 is deleted. State 7 is popped. With D7 = 1, it is found
being equivalent to state 16, so the incoming transition of state 7 is redirected towards state
16, and state 7 is deleted. State 6 is popped. WithD6 = 1, it is found to be equivalent to state
15, so the incoming transition of state 6 is redirected to state 15, and state 6 is deleted. State
5 is popped. It is equivalent to state 11, but as D5 = D11 = 2, state 5 is only added to the
register. Note that we have two equivalent states in the register now. It has no adverse effects
as divergent states are never searched for in the register. State 4 is popped, but as D4 = 2, it
is added to the register. The same happens with states 3, 2, 1, and 0. See Figure 5.15.
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Figure 5.15: The pseudo-minimal automaton recognizing words biliście biliśmy, bijecie, bi-
jemy, bijcie, and bij.

Note that only final states (except for one) have been merged into one before the final
minimization. This is in sharp contrast with incremental methods.
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Let M = (Q,Σ, δ, q0, F ) be an automaton before a next word w is added, let R be the
register at that time, letM ′ = (Q′,Σ, δ′, q′0, F

′) be the automaton right after function Pseu-
doAddWord returns, let R′ be the register at that time, let M ′′ = (Q′′,Σ, δ′′, q′′0 , F

′′) be
the automaton after the invocation of PseudoMinim right after the word had been added was
finished. To prove that the algorithm is correct, we need to prove that:

1. L(M ′) = L(M) ∪ {w}

2. L(M ′′) = L(M ′)

3. |M ′′| ≤ |M ′|

4. final minimization gives the minimal automaton for the language of the automaton.

The proof of the first point is exactly the same as in the previous algorithm. The differ-
ence between PseudoAddWord (page 138) and AddWord (page 132) is that PseudoAddWord
maintains counters Dq . But this does not change the language of the automaton. Also, pro-
cedure PseudoMinim cannot create new incoming transitions for the states visited in function
PseudoAddWord.

For the second point, we also make reference to the main algorithm. We replace states
with equivalent ones. When states are deleted, transitions that lead to them are redirected
towards equivalent states, so states remain co-reachable. Deleted states have their equiva-
lent counterparts, so every target of an outgoing transition of a deleted state is also a target
of an outgoing transition of its equivalent counterpart. Thus, PseudoMinim does not create
unreachable states.

The third point is obvious. Local pseudo-minimization deletes states while keeping the
language of the automaton intact, and it does not create any new states, so the size of the
automaton can only shrink.

As to the fourth point, notice that states are passed to function BuildStack and then popped
from the stack in procedure PseudoMinim in such away that equivalence (pseudo-equivalence
is equivalence with an additional condition) can use the recursive definition of the right lan-
guage where equivalence of target states of transitions is replaced with identity of target states
of transitions. This holds for both the invocation after each word has been added and the fi-
nal invocation of procedure PseudoMinim. As all states are passed to the procedure, and the
language of the automaton does not change, the automaton is pseudo-minimal.

The while loop in function PseudoWatsonConstruction runs n times, where n is the num-
ber of words on the input. Function PseudoAddWord is called n times. Inside it, all simple
actions run in constant time (finality should be implemented as a flag, not as a set). The two
while loops run at most |wmax| times, where wmax is the longest word on the input. Func-
tion BuildStack is invoked at most n|wmax| times including recursive calls, as it is invoked
for each state in a trie (the trie is never represented in full, as it is minimized on the fly). Each
call of BuildStack runs in constant time excluding the time spent in subordinate calls. The
while loop in procedure PseudoMinim runs as many times in total, as function BuildStack
was called in total. Since we assume as before that register operations take constant time, this
gives us O(n|wmax|) for the whole algorithm.

This algorithm was developed by the author with Denis Maurel and Agata Savary, and it
was first published in [17].
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5.1.2 Extension to Cyclic Automata

This extension relies on the same concept as extensions of the incremental algorithms. The
initial state is cloned, which creates confluence states that form a barrier between the old and
the new, modified part of the automaton. As a cyclic automaton cannot be created by this
algorithm, we start with a non-empty, cyclic automaton, and we add words to it. Confluence
states may be encountered, and they are cloned.

Algorithm 5.8 Extension of Watson's construction algorithm to cyclic automata.
1: function CyclicWatsonConstruction(M ,R)
2: Create an empty stack X
3: q′ ← q0
4: q0 ← Clone(q0)
5: while there are words on the input do
6: w← next word on the input
7: Minim(M ,R,CyclicBuildStack(M ,X ,CyclicAddWord(M ,w)))
8: end while
9: Minim(M ,R,CyclicBuildStack(M ,X ,q0))
10: if q′ 6= q0 then
11: Increment incoming transition counter for q′
12: DeleteBranchUp(M , q′)
13: end if
14: returnM
15: end function

The main function of the extension is given as Algorithm 5.8. The original initial state
is stored in q′. It is then cloned. The while loop resembles that of the original algorithm,
but names of functions are different to underline modifications. Just as in other extensions
to cyclic automata, a final check is done whether the initial state is different from the orig-
inal initial state stored in q′. If it is so, then procedure DeleteBranchUp is called to delete
unreachable states, if any.

Function CyclicAddWord, given here as Algorithm 5.9, differs from function AddWord
(page 132) by an additional loop where confluence states are cloned. The first while loop
contains an additional condition checking whether the state in question is confluence. The
function now closely resembles the first part of a similar function in the unsorted incremental
construction (see page 65, function AddStrUnsorted). However, it is used differently. The
second while loop, i.e. the one that clones confluence states, is run only if states of the
original automaton are encountered. Otherwise, the function behaves exactly like the original
one. Procedure Minim is used without modifications, as function CyclicBuildStack assures
that only new and modified states are on the stack.

Let us examine how the algorithm works using an example. The initial automaton will be
the same as in Figure 3.35, repeated here as Figure 5.16. On the input we have words: bijecie,
bijemy, bijcie, bijmy, and bij --- the same set as in the example for the original algorithm.

An empty stackX is created, the original initial state is stored in q′, q0 is cloned as state 6,
and q0 becomes state 6. Word bijecie is read form the input, and function CyclicAddWord(M ,
w=bijecie) is called. Variable q becomes state 6, i becomes 1. By cloning state 0, transitions
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Algorithm 5.9 Function CyclicAddWord adds a word w to the language of an automatonM .
It does not assume that there are no confluence on the path recognizing the word. If there are
any, they are cloned. The function returns the final state created to recognize the word.
1: function CyclicAddWord(M , w)
2: q ← q0
3: i← 1
4: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ ∧ FanIn(δ(q, wi)) = 1 do
5: q ← δ(q, wi)
6: i← i+ 1
7: end while
8: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
9: δ(q, wi)← Clone(δ(q, wi))
10: q ← δ(q, wi)
11: i← i+ 1
12: end while
13: while i ≤ |w| do
14: δ(q, wi)← new state
15: q ← δ(q, wi)
16: i← i+ 1
17: end while
18: F ← F ∪ {q}
19: return q
20: end function

Algorithm 5.10 Function CyclicBuildStack builds a stack X of states starting from state q.
Confluence states that form a boundary between the old, intact part of the automaton, and the
new, modified one, are never put onto stack or used as arguments of recursive calls. The stack
is returned by the function.
1: function CyclicBuildStack(M , X , q)
2: push q onto X
3: for σinΣq do
4: if δ(q, σ) 6∈ F ∧ FanIn(δ(q, σ)) = 1 then
5: X ← CyclicBuildStack(M,X, δ(q, σ))
6: end if
7: end for
8: end function
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Figure 5.16: A minimal automaton recognizing simplified host names in URLs following the
pattern [a − z]+(\.[a − z]+)+, and recognizing real numbers in format [0 − 9]∗\.[0 − 9]+.
A transition labeled with a-z stands for many transitions labeled with consecutive letters a, b,
c. . . z.
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Figure 5.17: Word bijecie has just been added using Watson's algorithm extended to cyclic
automata to a minimal automaton recognizing simplified host names in URLs following the
pattern [a− z]+(\.[a− z]+)+, and recognizing real numbers in format [0− 9]∗\.[0− 9]+.

from state 6 to state 1 were created, so even if state 1 were not confluence in the original
automaton, it becomes confluence after the cloning. As δ(6, b) = 1 and state 1 is confluence,
the first while loop in function CyclicAddWord does not run. In the second while loop,
state 1 is cloned as state 7, q becomes state 7, and i is incremented to 2. Now δ(7, i) points
again to state 1, so it is cloned again as state 8, q becomes state 8, and i is incremented to 3.
Transitions labeled with subsequent letters of w always point to state 1, which is continually
cloned as state 9, 10, 11, 12, and 13. State 13 is made final, and it is returned by the function
to function CyclicBuildStack. The resulting automaton is shown in Figure 5.17. Function
CyclicBuildStack puts state 13 onto the stack. Transitions from state 13 lead to states 0, 1,
and 4. They are all confluence, so no more states are put onto the stack, which is returned
to procedure Minim. In the procedure, state 13 is found to be unique, so it is added to the
register, which now contains states 0, 1, . . . , 6, and 13.
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Figure 5.18: Words bijecie and bijemy have just been added using Watson's algorithm ex-
tended to cyclic automata to a minimal automaton recognizing simplified host names in
URLs following the pattern [a − z]+(\.[a − z]+)+, recognizing real numbers in format
[0− 9]∗\.[0− 9]+.

The next word on the input is biliśmy. Function CyclicAddWord(M ,w=biliśmy) is called.
Variable q is set to state 6, and i is set to 1. In the first while loop, transitions are traversed
until state 11 is reached, so that q = 11 and i = 6. Transition δ(11,m) = 1, and state 1 is
confluence, so state 1 is cloned as state 14 in the second while loop, and a transition from
state 11 to state 1 is labeled with m is redirected to state 14. In the next run of the loop, state
1 is cloned as state 15, and a transition from state 14 to state 1 labeled with y is redirected
towards state 15. As there are no more letters in w, the loop ends, and state 15 is made final.
It is returned to function CyclicBuildStack, which puts it onto the stack. Transitions from
state 15 lead to states 0, 1, and 4, which are all confluence, so no more states are put onto
the stack. The stack is returned to procedure Minim. In the procedure, state 15 is popped
from the stack. State 13, which is present in the register, is found equivalent to state 15, so
the incoming transition of state 15 is redirected towards state 13, and state 15 is deleted, as
shown in Figure 5.18.

The next word from the input is read, and function CyclicAddWord(M , w=bijcie) is
called. In the first while loop, transitions are traversed until state 9 is reached with i = 4. In
the second while loop, state 1 is cloned as state 15, and the transition from state 9 to state 1
labeled with c is redirected to state 15. In the second run of the loop, state 1 is cloned again as
state 16, and the transition from state 15 to state 1 labeled with i is redirected to state 16. In
the last run of state loop, state 1 is cloned yet again as state 17, and the transition from state
16 to state 1 labeled with e is redirected to state 17. State 17 is made final, and it is returned
to function CyclicBuildStack, which puts it onto the stack. Transitions from state 17 go to
states 0, 1, and 4, which are all confluence, so no further states are put onto the stack, and it is
returned to procedure Minim. In that procedure, state 17 is popped from the stack. It is found
equivalent to state 13, so the transition from state 16 to state 17 is redirected to state 13, and
state 17 is deleted, as depicted in Figure 5.19.

The next word on the input is read, and function CyclicAddWord(M , w=bijcie) is called.
In the first while loop, transitions up to and including state 9 are traversed. In the second
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Figure 5.19: Words bijecie, bijemy, and bijcie have just been added using Watson's algorithm
extended to cyclic automata to a minimal automaton recognizing simplified host names in
URLs following the pattern [a− z]+(\.[a− z]+)+, recognizing real numbers in format [0−
9]∗\.[0− 9]+.

while loop, state 1 is cloned as state 17, and the transition from state 9 to state 1 labeled with
m is redirected towards state 17. In the second run of that loop, state 1 is cloned again as state
18, and the transition from state 17 to state 1 labeled with y is redirected towards state 18.
State 18 is made final, and it is returned to function CyclicBuildStack. State 18 is put onto the
stack. All transitions from state 18 lead to states 0, 1, and 4, which are all confluence, so no
more states are put onto the stack. In procedure Minim, state 18 is popped from the stack. It
is found equivalent to state 13, so the transition from state 17 to state 18 is redirected to state
13, and state 18 is deleted. The situation is shown in Figure 5.20.

The next word on the input is read, and function CyclicAddWord(M , w=bij) is called. In
the first while loop, state 9 is reached. As there are no more letters in w, the second while
loop does not run. State 9 is made final, and it is returned to function CyclicBuildStack. In
that function, state 9 is put onto the stack. Transitions from state 9 go to states 0, 1, 4, 10,
15, and 17. The first three are confluence, so they are skipped. Next, CyclicBuildStack(M ,
X = (9), 10) is called. State 10 is put onto the stack. Transitions from state 10 go to states 0,
1, 4, 11, and 14. The first three are confluence, so they are skipped, and CyclicBuildStack(M ,
X = (9, 10), 11) is called. It puts state 11 onto the stack. Transitions from state 11 go to states
0, 1, 4, and 12. The first three are confluence, so they are skipped, and CyclicBuildStack(M ,
X = (9, 10, 11), 12) is called. It puts state 12 onto the stack. Transitions from state 12
go to states 0, 1, 4, and 13, they are all confluence, and additionally, state 13 is final. Two
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Figure 5.20: Words bijecie, bijemy, bijcie, and bijmy have just been added using Watson's
algorithm extended to cyclic automata to a minimal automaton recognizing simplified host
names in URLs following the pattern [a − z]+(\.[a − z]+)+, recognizing real numbers in
format [0− 9]∗\.[0− 9]+.

recursive calls end, and CyclicBuildStack(M ,X = (9, 10, 11, 12), 14) is called. It puts state
14 onto the stack. Targets of all transitions leaving state 14 are confluence. Recursive calls
terminate so that we are back in state 9, and CyclicBuildStack(M , X = (9, 10, 11, 12, 14),
15) is called. State 15 is put onto the stack. Transitions from state 15 go to states 0, 1,
4, and 16, and only state 16 is not confluence on that list. Function CyclicBuildStack(M ,
X = (9, 10, 11, 12, 14, 15), 16) is called. State 16 is put onto the stack. All states that are
targets of transitions going out from state 16 are confluence. Two recursive calls end, and
CyclicBuildStack(M , X = (9, 10, 11, 12, 14, 15, 16), 17) is called. State 17 is put onto the
stack. Since all transitions from state 17 go to confluence states, no more states are put onto
the stack, and all recursive calls of CyclicBuildStack terminate. The stack is returned to
procedure Minim.

In procedureMinim, state 17 is popped from the stack. There is no state in the register that
is equivalent to state 17, so state 17 is added to the register. State 16 is popped from the stack.
It is also found unique, so it is added to the register. State 15 is popped from the register, and
yet again, it is found unique, so it is added to the register. State 14 is popped from the register.
It is equivalent to state 17, which is already in the register. The transition from state 10 to
state 14 labeled with m is redirected to state 17. State 14 is deleted. State 12 is popped from
the stack. It is equivalent to state 16, so the transition from state 11 to state 12 labeled with i
is redirected towards state 16, and state 12 is deleted. State 11 is popped from the stack. It is
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Figure 5.21: Words bijecie, bijemy, bijcie, bijmy, and bij have just been added using Watson's
algorithm extended to cyclic automata to a minimal automaton recognizing simplified host
names in URLs following the pattern [a − z]+(\.[a − z]+)+, recognizing real numbers in
format [0− 9]∗\.[0− 9]+.

equivalent to state 15, so the transition from state 10 to state 11 labeled with c is redirected to
state 15, and state 11 is deleted. State 10 is popped from the stack. It is unique, so it is added
to the register. State 9 is popped from the register, and it is also unique, so it is also added to
the register. The resulting automaton is shown in Figure 5.21.

There are no more words on the input. The loop in function CyclicWatsonConstruction
terminates. Function CyclicBuildStack(M ,X = (), 6) is called. It puts state 6 onto the stack,
and it calls CyclicBuildStack(M , X = (6), 7), as states 0, 1, and 4, which are also targets of
transitions going out from state 6, are confluence. State 7 is put onto the stack. States 0, 1, 4
that are targets of transitions going out from state 7 are skipped as they are confluence, and
CyclicBuildStack(M ,X = (6, 7), 8) is called. It puts state 8 onto the stack. All the recursive
calls of CyclicBuildStack terminate, and the stack is returned to procedure Minim. In that
procedure, state 8 is popped from the stack. It is unique, so it is added to the register. The
same thing happens to states 7 and 6. The automaton in Figure 5.21 is minimal.

Let M = (Q,Σ, δ, q0, F ) be an automaton before addition of a new word w. Let R be
the contents of the register before that event. LetM ′ = (Q′,Σ, δ′, q′0, F

′) be the automaton
after function CyclicAddWord has been called to add w to the language of the automaton.
Let M ′′ = (Q′′,Σ, δ′′, q′′0 , F

′′) be the automaton after a call to procedure Minim has acted
on some states added by function CyclicAddWord. LetM ′′′ = (Q′′′,Σ, δ′′′, q′′′0 , F

′′′) be the
automaton after the last call to procedure Minim inside the loop in function CyclicWatson-
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Construction. LetM ′′′′ = (Q′′′′,Σ, δ′′′′, q′′′′0 , F ′′′′) be the automaton obtained after the final
call to procedure Minim after the while loop in function CyclicWatsonConstruction.

1. L(M ′) = L(M) ∪ {w}

2. L(M ′′) = L(M ′)

3. L(M ′′′′) = L(M ′′′)

4. M ′′′′ is minimal

Initial cloning of the initial state does not change the language of the automaton. Function
CyclicAddWord recognizes a (possibly empty) prefix of w already contained in the automa-
ton, and then it creates a (possibly empty) chain of states and transitions recognizing the
(possibly empty) so far unrecognized part of w. Thus w ∈ L(M ′). The question is whether
something else is deleted or added. Deletion could only happen in CyclicAddWord when
redirecting transitions. However, transitions are redirected to equivalent states that are clones
of other states. Additionally, cloned states that lose one of their incoming transitions have
other incoming transitions, since they are always confluence states. Addition of strings, other
than w, could happen if any state in the path recognizing w were confluence. This is impos-
sible, as all confluence states in that path are cloned, and their clones have only one incoming
transition. Thus the first point is proven.

In function Minim, targets of transitions are replaced with equivalent states, with the orig-
inal targets deleted. Replacing states with equivalent states does not change the language of
the automaton. Additionally, since the state being deleted has an equivalent state, no states
become unreachable. Thus, point 2 is proven.

Point 3 is analogous to point 2: procedure Minim replaces states with equivalent states,
which cannot change the language of the automaton.

To prove point 4, notice that each state created in function CyclicAddWord (either a new
state, or a clone of an existing one) is processed exactly once. Function CyclicBuildStack
never puts unmodified states onto the stack, as they are always confluence. States are put onto
the stack in preorder, so they are processed in postorder. This also concerns states in different
invocations of function CyclicBuildStack. As each state created in function CyclicAddWord
is processed, all states of the unmodified part of the automaton are mutually inequivalent,
and during the processing in procedure Minim, states are replaced with equivalent ones if
they exist, each equivalence class inM ′′′′ has exactly one representative. Therefore,M ′′′′ is
minimal.

Operations outside the while loop in function CyclicWatsonConstruction take constant
time, except for procedureMinim and functionCyclicBuildStack, as well as procedureDelete-
BranchUp. Procedure DeleteBranchUp is executed up to n|wmax| times, where n is the num-
ber of words on the input, and wmax is the longest word on the input. We will count invoca-
tions of function CyclicBuildStack and procedure Minim outside the loop together with their
invocations inside the loop.

The loop runs n times. Inside the loop, function CyclicAddWord is invoked once per each
run. Inside the function, there are three loops that run as many times in total as there are char-
acters in the word being added. All operations inside and outside the loops take constant time.
Thus, function CyclicAddWord runs in O(n|wmax|) in total. Function CyclicBuildStack is
invoked as many times as there are states created in function CyclicAddWord --- n|wmax|
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in all. This is the same number as the number of runs of the contents of the while loop in
procedure Minim across all its invocations. Under the assumption of constant-time register
operations, all operations inside that loop run in constant time. This gives usO(n|wmax|) for
the whole algorithm.

Note that the problem with greediness of function CyclicBuildStack can be solved also
by marking words processed by CyclicAddWord. In that case, cloning the initial state is
necessary only when it has some incoming transitions, and invocation of procedure Delete-
BranchUp is not necessary.

This algorithm was developed by the author. It was published in [16].

5.1.3 Extension to Minimal Bottom-Up Tree Automata

The algorithm described in Section 4.4 has small memory footprint. However, states can be
reprocessed many times, and the cost of that processing is much higher in DTAs than in FSAs
because of much more complex cloning. An extension of Watson's algorithm can offer higher
speed at the cost of memory efficiency. As we have seen in examples of various versions of
the algorithm, the final invocation of local minimization has still a lot to do.

Algorithm 5.11 Extension ofWatson's construction algorithm to construction of deterministic
bottom-up tree automata.
1: functionWatsonDTAConstruction
2: Create an empty automaton A, register R, and a stack X
3: while There are trees on the input do
4: t← next tree on the input
5: LocTreeMinim(A,R,BuildTreeStack(A,X ,AddWatsonTree(A,t)))
6: end while
7: for σ ∈ Σ do
8: if δ0(σ) 6= ⊥ ∧ δ0(σ) 6∈ F then
9: LocTreeMinim(A,R,BuildTreeStack(A, X , δ0(σ)))
10: end if
11: end for
12: return A
13: end function

The main algorithm is implemented as function WatsonDTAConstruction, and is pre-
sented as Algorithm 5.11. In comparison to the basic algorithm in Section 5.1, (Algorithm 5.1,
page 131), there are slightly different function and procedure names, as they deal with tree
automata. The final minimization cannot start in the initial state, as there is no initial state in
DTAs. Therefore we start in states whose language is a single symbol in the alphabet, unless
they are final, i.e. there are trees in the language of the automaton (trees read from the input)
being just single symbols.

Function AddWatsonTree (Algorithm 5.12) calls function WatsonSplit (a simplified ver-
sion of function Split, given as Algorithm 4.12, page 100). As Watson's algorithm is much
simpler than the incremental algorithm for unsorted data, the only thing that remains to be
done in function AddWatsonTree is to make the returned state final.
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Algorithm 5.12 Function AddWatsonTree adds a tree to the language of a DTA. The main
work is done by a call to function WatsonSplit. The remaining work consists only of making
the returned state final.
1: function AddWatsonTree(A,R,X ,t = σ(t1, . . . , tm))
2: q ←WatsonSplit(A, t)
3: F ← F ∪ {q}
4: return q
5: end function

Algorithm 5.13 Function WatsonSplit adds a tree t to the automaton A without making state
δA(t) final (this is done in function AddWatsonTree.
1: functionWatsonSplit(A,t = σ(t1, . . . , tm))
2: for k ∈ 1, . . . ,m do
3: rk ←WatsonSplit(A, tk)
4: end for
5: q ← δm(σ, r1, . . . , rm)
6: if q = ⊥ then
7: n← new state
8: ∆← ∆ ∪ {(σ, r1, . . . , rm, n)}
9: q ← n
10: Bq ← (σ, r1, . . . , rm, n)
11: end if
12: return q
13: end function

Function Split has been simplified to WatsonSplit as there are no confluence states to be
handled there. Therefore, there is one case less. The function calls itself on the subtrees of the
parameter tree t, and if δA(t) 6= ⊥, δA(t) is returned. If not, the state and a transition leading
to it have to be created, and the back transition needs to be stored.

Algorithm 5.14 Function BuildTreeStack.
1: function BuildTreeStack(A, X , q)
2: push q onto X
3: Mark(q)
4: for d = (σ, q1, . . . , qm, n) ∈ ∆ such that ∃1≤i≤mqi = q do
5: if n 6∈ F ∧ ¬Marked(n) then
6: X = BuildTreeStack(A, X , n)
7: end if
8: end for
9: return X
10: end function

Function BuildTreeStack differs from function BuildStack (Algorithm 5.3, page 132) in
that it operates on states of a DTA, and ---as a consequence--- that it needs to mark states in
order not to reprocess them. In a DFA, a state that did not undergo the process of minimization
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had one predecessor as one symbol in a wordmay be immediately preceded by at most a single
symbol. In a DTA, a tree may have several subtrees that are shared among different trees.
Therefore, even in an automaton built like a trie with no minimization whatsoever, states may
have one incoming transition with more than one source state, i.e. they may have more than
one preceding state.

Algorithm 5.15 Procedure LocTreeMinim performs local minimization on states of a DTA
A stored on a stack X using a register R as a set of unique states.
1: procedure LocTreeMinim(A, R, X)
2: while X 6= ∅ do
3: pop n from X
4: q ← FindEquiv(A,R, n)
5: if q 6= n then
6: for τ = (σ, r1, . . . , rm, p) ∈ ∆ such that ∃1≤i≤mqi = q do
7: ∆← ∆ \ {τ}
8: end for
9: τ = (σ, r1, . . . , qm, n)← Bn

10: ∆← ∆ \ {τ} ∪ {(σ, r1, . . . , rm, q)}
11: delete state n
12: else
13: R← R ∪ {n}
14: end if
15: end while
16: end procedure

Procedure LocTreeMinim is also simple. States are popped from the stack until it becomes
empty. For each state an equivalent state is searched for. If found, all transitions that have the
popped state as a source state are removed, its incoming transition is redirected towards the
equivalent state, and the popped state is deleted. If not, the state is added to the register.

Let us see how the algorithm works. We start with an empty automaton, and we add
a(b(a,b),b(a,b)). FunctionWatsonDTAConstruction creates the empty automaton and an empty
stack X . Then it reads the tree, and calls function AddWatsonTree(A, t = a(b(a,b),b(a,b))),
which immediately calls function WatsonSplit(A, t = a(b(a,b),b(a,b))). The latter calls itself
as WatsonSplit(A, t = b(a,b)), which calls WatsonSplit(A, t=a). As δ0(a) = ⊥, a new state
1 is created, and a new transition (a, 1) is added to ∆. That transition is also assigned to B1.
The function returns state 1, which is assigned to variable r1 one level higher. Function Wat-
sonSplit(A, t=b) is called. As δ0(b) = ⊥, a new state 1 is created, and a new transition (b, 2)
is added to ∆. That transition is also assigned to B2. State 2 is returned, and it is assigned
to variable r2 one level of recursion up. As δ2(b, 1, 2) = ⊥, a new state 3 is created, and a
new transition (b, 1, 2, 3) is added to ∆. That transition is also assigned to B3. The function
returns state 3, which is assigned to variable r1 in the top-level call to WatsonSplit. Then
WatsonSplit(A, t=b(a,b)) is called again. It calls WatsonSplit(A, t=a). This time, δ0(a) = 1,
so state 1 is returned and assigned to variable r1 one level up. Function WatsonSplit(A, t=b)
is called, and as δ0(b) = 2, it returns state 2, which is assigned to variable r2 one level up.
At that level, as δ2(b, 1, 2) = 3, state 3 is returned, which is assigned to variable r2 at the
top-level invocation of function WatsonSplit. As δ2(a, 3, 3) = ⊥, a new state 4 is created,
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and a new transition (a, 3, 3, 4) is added to ∆. That transition is also assigned to B4. The
function returns state 4, which is made final in AddWatsonTree.

Function BuildTreeStack(A, X = (), 4) is called. It puts state 4 onto the stack. As there
are no transitions with state 4 as a source state, the function returns the stack. Procedure
LocTreeMinim(A, R = ∅, X = (4)) is called. State 4 is popped from the stack. As the
register R is empty, the state is added to the register, and the call is completed. The resulting
automaton is shown in Figure 5.22.
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Figure 5.22: Extension of Watson construction to minimal bottom-up DTAs: a tree
a(b(a,b),b(a,b)) has just been added to an empty DTA.

Function WatsonDTAConstruction reads another tree from the input, and calls function
AddWatsonTree(A, t=b(b(a,b),a(b,a),b)), which calls function WatsonSplit(A, t=b(b(a,b),
a(b,a),b)). It calls itself as WatsonSplit(A, t=b(a,b)), which calls WatsonSplit(A, t=a). That
call returns state 1, which is assigned to variable r1 one level up. A following call to Watson-
Split(A, t=b) returns state 2, which is assigned to variable r2 one level up. At that level, as
δ2(b, 1, 2) = 3, state 3 is returned and assigned to variable r1 at the top-level invocation of
function WatsonSplit. Then, WatsonSplit(A, t=a(b,a)) is called, which calls WatsonSplit(A,
t=b). The latter call returns state 2, which is assigned to variable r1 one level up. A following
call to WatsonSplit(A, t=a) returns state 1, which is assigned to variable r2 one level up. At
that level, as δ2(a(2, 1)) = ⊥, a new state 5 is created, and a new transition (a, 2, 1, 5) is
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added to ∆. That transition is also assigned to B5. The function returns state 5, which is
assigned to variable r2 in the top-level invocation of function WatsonSplit. The function is
called again as WatsonSplit(A, t=b). It returns state 2 to the top-level, where it is assigned to
variable r3. As δ3(b, 3, 5, 2) = ⊥, a new state 6 is created, and a new transition (b, 3, 5, 2, 6)
is added to ∆. That transition is also assigned to B6. The function returns state 6 to function
AddWatsonTree, which makes it final, and returns it to function BuildTreeStack.

Function BuildTreeStack puts state 6 onto the stack. As there are no transitions leaving
state 6, the stack is returned to procedure LocTreeMinim. State 6 is popped from the stack,
and function FindEquiv returns state 4. Transition τ = (b, 3, 5, 2, 6) is replaced in ∆ with
transition (b, 3, 5, 2, 4). State 6 is deleted, as depicted in Figure 5.23.
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Figure 5.23: Extension of Watson construction to minimal bottom-up DTAs: a tree
b(b(a,b),a(b,a),b) has just been added to a DTA containing a(b(a,b),b(a,b)).

Function WatsonDTAConstruction reads tree a(a(a,a),a(a,a)) from the input, and it calls
functionAddWatsonTree(A, t=a(a(a,a),a(a,a))), which calls functionWatsonSplit(A, t=a(a(a,
a),a(a,a))). The latter calls itself as WatsonSplit(A, t=a(a,a)), which calls WatsonSplit(A,
t=a). The last call returns state 1, which is assigned to variable r1 one level up in the call
hierarchy. A following identical call also returns state 1, which is assigned to variable r2
one level up. At that level, as δ2(1, 1) = ⊥, a new state 6 is created, and a new transition
(a, 1, 1, 6) is added to ∆ and assigned toB6. State 6 is returned to the top-level invocation of
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WatsonSplit to be assigned to variable r1. Another call to WatsonSplit(A, t=a(a,a)) follows.
It calls WatsonSplit(A, t=a) twice, which results is assigning state 1 to variables r1 and r2,
and it returns state 6 to the top-level invocation of function WatsonSplit. At that level, as
δ2(a, 6, 6) = ⊥, a new state 7 is created, and a new transition (a, 6, 6, 7) is added to ∆, and
assigned to B7. State 7 is made final, and it is returned to function BuildTreeStack.

Function BuildTreeStack puts state 7 onto the stackX . As state 7 has no outgoing transi-
tions, the function returns the stack to procedure LocTreeMinim, which pops state 7 from the
top of the stack. Function FindEquiv returns state 4. Transition (a, 6, 6, 7) is replaced with
transition (a, 6, 6, 4), and state 7 is deleted. The situation is shown in Figure 5.24.
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Figure 5.24: Extension of Watson construction to minimal bottom-up DTAs: a
tree a(a(a,a),a(a,a)) has just been added to a DTA containing a(b(a,b),b(a,b)) and
b(b(a,b),a(b,a),b).

Function WatsonDTAConstruction reads another tree from the input, and it calls function
AddWatsonTree(A, t=a(a(a,a),b(a,b))), which calls function WatsonSplit(A, t=a(a(a,a),b(a,
b))). The last function calls itself as WatsonSplit(A, t=a(a,a)), which calls WatsonSplit(A,
t=a). The function returns state 1, which is assigned to variable r1 one level up in the call
hierarchy. An identical call returns state 1 again, which is assigned to variable r2 one level
up. At that level, state 6 is returned and assigned to variable r1 at the top level. A call to
WatsonSplit(A, t=b(a,b)) follows, which calls WatsonSplit(A, t=a). State 1 is returned and
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assigned to variable r1 one level up. A call to WatsonSplit(A, t=b) returns state 2, which
is assigned to variable r2 one level up. At that level, state 3 is returned, which is assigned
to variable r2 at the top level. There, as δ2(a, 6, 3) = ⊥, a new state 7 is created, and a
new transition (a, 6, 3, 7 is added to ∆ and assigned to B7. State 7 is returned to function
AddWatsonTree, which makes it final, and returns it to function BuildTreeStack.

In function BuildTreeStack, state 7 is pushed onto the stack. As state 7 had no outgoing
transitions, the stack is returned to procedure LocTreeMinim. Function FindEquiv returns
state 4. Transition (a, 6, 3, 7) is redirected to state 4, and state 7 is deleted. The stack is
empty. The resulting automaton is shown in Figure 5.25.
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Figure 5.25: Extension of Watson construction to minimal bottom-up DTAs: a tree
a(a(a,a),b(a,b)) has just been added to a DTA containing a(b(a,b),b(a,b)) b(b(a,b),a(b,a),b),
and a(a(a,a),a(a,a)).

Function WatsonDTAConstruction reads another tree from the input, and it calls function
AddWatsonTree(A, t=a(b(a,b),a(a,a))). The latter calls function WatsonSplit(A, t=a(b(a,b),
a(a,a))), which calls itself as WatsonSplit(A, t=b(a,b)), which calls WatsonSplit(A, t=a). The
last function call returns state 1, which is assigned to variable r1 one level up in the call hier-
archy. Then WatsonSplit(A, t=b) returns state 2 assigned to variable r2. State 3 is returned
to the top-level WatsonSplit invocation, where it is assigned to variable r1 Function Watson-
Split(A, t=a(a,a)) is called, which callsWatsonSplit(A, t=a). The last function returns state 1,
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which is assigned to variable r1 one level up. An identical call returns state 1 again, this time
assigned to variable r2 one level up. State 6 is returned to the top-level invocation of function
WatsonSplit. As δ2(a, 3, 6) = ⊥, a new state 7 is created, and a new transition (a, 3, 6, 7) is
added to ∆ and assigned to B7. State 7 is returned to function AddWatsonTree that makes
the state final and returns it to function BuildTreeStack.

Function BuildTreeStack pushes state 7 onto the stack, and returns the stack, as state 7
has no outgoing transitions. Function LocTreeMinim pops state 7 from the stack. Function
FindEquiv returns state 4, so transition (a, 3, 6, 7) is redirected towards state 4, and state 7 is
deleted, as depicted in Figure 5.26.
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Figure 5.26: Extension of Watson construction to minimal bottom-up DTAs: a tree
a(b(a,b),a(a,a)) has just been added to a DTA containing a(b(a,b),b(a,b)) b(b(a,b),a(b,a),b),
a(a(a,a),a(a,a)), and a(a(a,a),b(a,b)).

Function WatsonDTAConstruction reads another tree from the input, and it calls function
AddWatsonTree(A, t=b(a(a,a),a(b,a),b)). The latter calls functionWatsonSplit(A, t=b(a(a,a),
a(b,a),b)), which calls itself as WatsonSplit(A, t=a(a,a)), which calls WatsonSplit(A, t=a).
The last function returns state 1, that is assigned to variable r1. An identical call that follows
returns state 1, which is assigned to variable r2. State 6 is returned to the top-level invocation
of WatsonSplit, where it is assigned to variable r1. Then WatsonSplit(A, t=a(b,a)) is called,
which calls WatsonSplit(A, t=b). The last call returns state 2, which is assigned to variable
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r1 one level up. A call to WatsonSplit(A, t=a) returns state 1 again, which is assigned to
variable r2 one level up. State 5 is returned to the top-level invocation of WatsonSplit. A call
to function WatsonSplit(A, t=b) returns state 2 to the top-level invocation of WatsonSplit. As
δ3(b, 6, 5, 2) = ⊥, a new state 7 is created, and a new transition (b, 6, 5, 2, 7) is added to ∆
and assigned to B7. State 7 is returned to function AddWatsonTree, where it is made final,
and where it is returned to function BuildTreeStack.

Function BuildTreeStack pushes state 7 onto the stack, and as there are no outgoing tran-
sitions in state 7, the stack is returned to procedure LocTreeMinim, where state 7 is popped
from the stack. Function FindEquiv returns state 4, so the transition (b, 6, 5, 2, 7) is redirected
towards state 4, and state 7 is deleted, as shown in Figure 5.27.
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Figure 5.27: Extension of Watson construction to minimal bottom-up DTAs: a tree
b(a(a,a),a(b,a),b) has just been added to a DTA containing a(b(a,b),b(a,b)) b(b(a,b),a(b,a),b),
a(a(a,a),a(a,a)), a(a(a,a),b(a,b)), and a(b(a,b),a(a,a))

Function WatsonDTAConstruction reads another tree from the input, and it calls function
AddWatsonTree(A, t=a(a,a)). The latter calls function WatsonSplit(A, t=a(a,a)). That one
calls itself as WatsonSplit(A, t=a), which returns state 1 that is assigned to variable r1 in the
top-level invocation of function WatsonSplit. State 1 is also returned from an identical call,
and then assigned to variable r2. Function WatsonSplit returns state 6 to function AddWat-
sonTree, where it is made final, and it is returned to function BuildTreeStack.
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Function BuildTreeStack pushes state 6 onto the stack. State 6 has a few outgoing tran-
sitions, but all of them lead to the same state 4, which is final, so it cannot be a parameter
of another BuildTreeStack call. The function returns the stack to procedure LocTreeMinim.
State 6 is popped from the stack. Function FindEquiv returns the same state (state 3 is not
final), so this completes the procedure.

There are no more trees on the input, so the for loop is executed. It sets σ to a and calls
BuildTreeStack(A, X , 1). State 1 is pushed onto the stack, and state 1 is marked. Transition
(a, 1, 1, 6) leads to state 6, which is final. Transition (b, 1, 2, 3) leads to state 3, which is not
final, so BuildTreeStack(A,X = (1), 3) is called. State 3 is pushed onto the stack andmarked.
All outgoing transitions of state 3 go to final state 4, so the call finishes. The last transition
from state 1 leads to non-final state 5, so BuildTreeStack(A, X = (1, 3), 5) is called. State 5
is pushed onto the stack, and it is marked. All transitions from state 5 lead to final state 4. All
invocations of BuildTreeStack terminate. The stack is returned to procedure LocTreeMinim.
State 5 is popped from the stack. Function FindEquiv returns the same state, so the state is
added to the register, and no further handling of that state is needed. State 3 is popped from
the stack, and it is also found to be unique, so it is added to the register. The same happens to
state 1.

The for loop sets σ to b and calls BuildTreeStack(A, X = (), 2). State 2 is pushed onto
the stack and marked. All outgoing transitions from state 2 lead to states that are either final
or already marked. The call terminates with the stack returned to procedure LocTreeMinim.
State 2 is popped from the stack. It is unique, so it is added to the register, and procedure
LocTreeMinim terminates. So does WatsonDTAConstruction. The resulting automaton is
presented in Figure 5.28.

LetA = (Q,Σ,∆, F ) be a minimal DTA just before a new tree t is added to the language
of the automaton, i.e. before function AddWatsonTree is called. Let A′ = (Q′,Σ,∆′, F ′) be
the automaton right after function AddWatsonTree has returned a state to function BuildTree-
Stack. Let A′′ = (Q′′,Σ,∆′′, F ′′) be the DTA after function LocTreeMinim has finished
working on t. Let A′′′ = (Q′′′,Σ,∆′′′, F ′′′) be the DTA returned by function WatsonDTA-
Construction. We assume that there are no redundant trees on the input, i.e. there are no
duplicates. We show that:

1. L(A′) = L(A) ∪ {t}

2. L(A′′) = L(A′)

3. |Q′′| ≤ |Q′|

4. During the whole construction process, each state is put onto the stack exactly once.

5. States are put onto the stack, and then undergo minimization in such order, that states
that are reachable from any given state are processed before that state.

6. L(A′′′) is the sum of all input trees.

7. A′′′ is minimal.

To prove the first point, let us first notice that t ∈ L(A′). Function WatsonSplit makes
sure that LA(t) 6= ⊥. It first calls itself recursively to ensure that subtrees t1, . . . , tm (if any)
get their corresponding states r1, . . . , rm. Then it verifies whether there is a state q such that
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Figure 5.28: Extension of Watson construction to minimal bottom-up DTAs: a tree
b(a(a,a),a(b,a),b) has just been added to a DTA containing a(b(a,b),b(a,b)) b(b(a,b),a(b,a),b),
a(a(a,a),a(a,a)), a(a(a,a),b(a,b)), and a(b(a,b),a(a,a))

LA(q) = {t} (we could write t ∈ LA(q), but states visited in function WatsonSplit are never
subject of minimization before that call). If there is such state, it is simply returned by the
function as nothing else needs to be done. If there is none, than it is created along with a
transition from the source states r1, . . . , rm. When m = 0, then no recursion takes place,
and an initial transition from a leaf is created. Once the entire structure is built, function Ad-
dWatsonTree makes LA(t) final, thus ensuring directly from definition (2.19) that t ∈ L(A).
Secondly, it can easily be seen thatL(A) ⊆ L(A′). Indeed, no states or transitions are deleted
or redirected in functions WatsonSplit and AddWatsonTree. Thirdly, notice that no additional
trees are recognized in L(A′). As function WatsonSplit creates only states and transitions
needed directly to recognize t, additional trees can be added only by creating transitions from
confluence states. But confluence states are created in procedure LocTreeMinim that acts on
states put onto stack by function BuildTreeStack. The latter is called initially with final states
that correspond to roots of trees that just have been added by function AddWatsonTree, and
then it can add additional states that are reachable from that state. Because the input trees are
sorted on height, and the DTA is acyclic, function WatsonSplit can never reach such states.

To prove the second point, let us see that function BuildTreeStack only selects states for
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minimization, and procedure LocTreeMinim replaces states with equivalent ones, redirecting
transitions accordingly, and deleting redundant states along with their outgoing transitions.
Function FindEquiv used for finding an equivalent state uses the assumption that states are
processed in an appropriate order. However, this only weakens the condition for replacement,
and replacing a state with an equivalent one does not change the language of the automaton.

The third point is obvious, as states in procedure LocTreeMinim can only be deleted.
When a unique tree is added to a DTA that recognizes trees already processed, there are

two cases. Either a tree is a subtree of at least one other tree that was added earlier (as the
bigger trees have greater height and must have come earlier in the input), or not. In the second
case, functionWatsonSplit must create a new state for the root of such a tree. The state is made
final in function AddWatsonTree and handed over to function BuildTreeStack. Since the tree
cannot be a subtree of a tree that comes later that bigger tree would have a greater height,
and the state is final, it cannot be revisited in function BuildTreeStack, and consequently in
procedure LocTreeMinim. In the first case, the state handed over to function BuildTreeStack
was not created during addition of the current tree. It was created earlier during addition of a
bigger tree. There may be some other bigger trees that also share the same subtree. States that
correspond to such subtrees of those trees that are not in the language of the DTA. They fall
into two categories: those that have not yet been processed by function BuildTreeStack and
procedure LocTreeMinim, and those that are already marked as processed. Note that none
of them can be revisited in function WatsonSplit. Marking ensures that states are processed
at most once. Depth-first visiting order in function BuildTreeStack ensures that each state is
indeed processed, as all states reachable from marked states are already marked. The final
loop in functionWatsonDTAConstruction calls function BuildTreeStack with all statesLA(σ)
such that σ ∈ Σ is a leaf of some tree in L(A′′′) and σ 6∈ L(A′′′). Those states and states
reachable from them up to but excluding final states are the only states in the automaton not
yet processed. The reasoning why they are processed once is exactly the same as above. this
concludes point 4.

Point 5 is a direct consequence of depth-first order of putting states onto the stack in
function BuildTreeStack. Point 6 can be concluded from point 2, and from the observation
that minimization does not change the language of the automaton. Point 7 results from points
4, 5, and 6.

Reading a tree takes time proportional to its size. Function AddWatsonTree is called once
for every input tree. Making a state final takes a constant amount of time (the information is
stored in states). Function WatsonSplit is called in total a number of times proportional to the
total size of the input trees (once for every transition). It either traverses or creates states and
transitions of the size of the input data. Function BuildTreeStack is called as many times in
total as function WatsonSplit. Marking a state, checking those marks or finality, and pushing
a state onto a stack is done in constant time. Procedure LocTreeMinim is called as many times
as there are trees on the input plus one, but the while loop in that procedure is executed a
number of times limited by the size of the input data. It is the size of the input data except
that common subtrees are counted once. Since each state is processed once in procedure
LocTreeMinim, each transition can be redirected (in constant time) or deleted (in constant
time) only once. We assume, as we do everywhere in this book, that register operations take
constant amount of time. Then function FindEquiv executes in constant time. This gives
us O(

∑
i |ti|) as the overall complexity of the algorithm, where

∑
i |ti| is total size of the

input trees. Under a different assumption about register operations, the complexity of such
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operations would become a factor in the overall complexity.
Notice that the algorithm is much faster than its incremental counterpart, because it does

not have to clone states, and in general, it does not have to reprocess states. However, this
comes at a cost of much greater intermediate size of the automaton.

This algorithm is yet to be benchmarked and then to be submitted to a conference or a
journal. It was developed by the author of the book.

5.1.4 Extension to Pseudo-Minimal Bottom-Up Tree Automata

Just like the incremental construction algorithm for sorted data has an extension for building
pseudo-minimal DTAs, so Watson algorithm does. Transforming an algorithm for construct-
ing minimal DTAs into an algorithm for constructing pseudo-minimal DTAs is very similar.
The extension of Watson algorithm is simpler. The algorithm is also faster, but it needs much
more memory for an intermediate automaton. As this algorithm is an extension of Watson's
algorithm, trees have to be sorted on their height, so that bigger trees come first.

Algorithm 5.16 Extension of Watson's construction algorithm to construction of pseudo-
minimal deterministic bottom-up tree automata.
1: functionWatsonPseudoDTAConstruction
2: Create an empty automaton A, register R, and a stack X
3: while there are trees on the input do
4: t← next tree on the input
5: LocTreePseudoMinim(A,R,BuildTreeStack(A,X ,PseudoAddWatsonTree(A,t)))
6: end while
7: for σ ∈ Σ do
8: if δ0(σ) 6= ⊥ ∧ δ0(σ) 6∈ F then
9: LocTreePseudoMinim(A,R,BuildTreeStack(A, X , δ0(σ)))
10: end if
11: end for
12: return A
13: end function

The main algorithm is implemented as function WatsonPseudoDTAConstruction, and is
presented as Algorithm 5.16. In comparison to the algorithm in the previous section, a bit
different function and procedure names are used. They reflect changes that are made inside
them.

Function PseudoAddWatsonTree (Algorithm 5.12) calls function WatsonPseudoSplit in-
stead of function WatsonSplit. It also empties a setM of states that updated their counters.
Otherwise, it is identical to function AddWatsonTree.

Compared to function WatsonSplit, function WatsonPseudoSplit has additional handling
of counters Tq of the number of trees that need to visit a state qwhile a tree is being recognized.
That handling also involves a setM of states that have already participated in counting that
prevents recounting the same tree when it has identical subtrees. Note that we previously
used markers for the same task. They were cleared in the procedure that performed local
minimization. However, that procedure processed the whole tree right after it has been added.
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Algorithm 5.17 Function PseudoAddWatsonTree adds a tree to the language of a DTA. The
main work is done by a call to function WatsonPseudoSplit. The remaining work consists
only in making the returned state final.
1: function PseudoAddWatsonTree(A,R,X ,t = σ(t1, . . . , tm))
2: M ← ∅
3: q ←WatsonSplit(A,M, t)
4: F ← F ∪ {q}
5: return q
6: end function

Algorithm 5.18 FunctionWatsonPseudoSplit adds a tree t to the automatonAwithout making
state δA(t) final (this is done in function PseudoAddWatsonTree.
1: functionWatsonPseudoSplit(A,M ,t = σ(t1, . . . , tm))
2: for k ∈ 1, . . . ,m do
3: rk ←WatsonPseudoSplit(A, tk)
4: end for
5: q ← δm(σ, r1, . . . , rm)
6: if q = ⊥ then
7: n← new state
8: ∆← ∆ ∪ {(σ, r1, . . . , rm, n)}
9: q ← n
10: Bq ← (σ, r1, . . . , rm, n)
11: M ←M ∪ {n}
12: Tn ← 1
13: else if q 6∈M then
14: M ←M ∪ {q}
15: Tq ← Tq + 1
16: end if
17: return q
18: end function

Here, it is not the case, so we use a set that can be cleared before each tree is added in function
PseudoAddWatsonTree.

Procedure LocTreePseudoMinim differs from procedure LocTreeMinim only by a test
Tn ≤ 1 that transforms equivalence into pseudo-equivalence.

We leave the proof of correctness as an easy exercise for the reader. The difference be-
tween this algorithm and the algorithm described in the previous section is that equivalence
has been replaced with pseudo-equivalence (which is also an equivalence relation), and that
wemaintain counters (handled in a trivial way) that help in implementing pseudo-equivalence.

This algorithm has been developed by the author of the book, and it still needs to be
benchmarked and to be submitted to a conference or a journal.
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Algorithm 5.19 Procedure LocTreePseudoMinim performs local pseudo-minimization on
states of a DTA A stored on a stack X using a register R as a set of unique states.
1: procedure LocTreePseudoMinim(A, R, X)
2: while X 6= ∅ do
3: pop n from X
4: if Tn ≤ 1 then
5: q ← FindEquiv(A,R, n)
6: else
7: q ← n
8: end if
9: if q 6= n then
10: for τ = (σ, r1, . . . , rm, p) ∈ ∆ such that ∃1≤i≤mqi = q do
11: ∆← ∆ \ {τ}
12: end for
13: τ = (σ, r1, . . . , qm, n)← Bn

14: ∆← ∆ \ {τ} ∪ {(σ, r1, . . . , rm, q)}
15: delete state n
16: else
17: R← R ∪ {n}
18: end if
19: end while
20: end procedure

5.2 Revuz's Algorithm
Dominique Revuz wanted to develop an algorithm for construction of minimal deterministic
acyclic automata. He wrote: ''Il n'existe pas d'algorithme rapide pour construire directement
l'automate déterministe minimal d'un language fini donné, à partir du language sous forme de
liste. Il est nécessaire de procéder en deux étapes.''2 We now know that it is indeed possible
to construct such an automaton directly; this is what incremental algorithms do. However, the
pseudo-minimal automaton that is the result of the first phase of his algorithm can be useful
for implementing arbitrary hashing. Therefore, we present his algorithm as an algorithm for
constructing a pseudo-minimal automaton. The original has also a final minimization phase
that we skip here.

The algorithm is presented here without any proof, as it is given here only to complete
the inventory of construction algorithms. The main function creates an empty automaton, and
then adds subsequent words from the input one by one using procedure RevuzAddWord as
shown in Algorithm 5.20.

Procedure RevuzAddWord looks quite complicated, and it is indeed more complex than
the incremental algorithms, and more complex than Watson's algorithm. The first part looks
familiar; those are the same two while loops that we see in the incremental construction
algorithm for sorted data. The only difference is the invocation of procedure Mark that marks
states that have been visited there. If the end of the input word has been reached, the path

2There is no fast algorithm for direct construction of a minimal, deterministic automaton of a given finite language
from a language in form of a list.
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Algorithm 5.20 Function RevuzConstruction takes a list of words sorted lexicographically
on reversals of words.
1: function RevuzConstruction
2: Create an empty automatonM = ({q0, qf , },Σ, ∅, q0, {qf})
3: P ← ()
4: w′ ← ε
5: while there are words on the input do
6: w ← next word on the input
7: RevuzAddWord(M , P , w, w′)
8: w′ ← w
9: end while
10: returnM
11: end function

P is cleared, the current state is made final, and that is it. Otherwise, the suffix of the word
w is examined. In lines 19--22, we look for the longest part of it that is also a suffix of the
previous word. This search only takes place if the previous word was not a prefix of any other
word in the automaton (checked in the line immediately preceding the loop). In the loop, we
also check whether the suffix overlaps with the prefix of w already found in the automaton
(states in the prefix are marked), and whether states in the suffix have more than one outgoing
transition. If the second condition is met, the suffix is shortened to exclude such state. The
next while loop in lines 24--28 builds a chain of states and transitions that link the state
representing the end of the prefix ofw with the state starting the suffix. The remaining part of
the procedure does housekeeping. It clears the marks in the path recognizing w, and it stores
that path in P for use with the next word.

Since the algorithm is provided here only for reference, and it has no extensions, we give
no examples of its use, and no proof of correctness. Our description of the algorithm differs
much from the original, as we give details about implementation that are totally lacking in
Revuz's text. The algorithm is linear in respect of its input data. It was designed byDominique
Revuz and presented in his Ph.D. thesis [31].

5.3 Summary
In the last three chapters, various construction algorithms are presented. This presentation dif-
fers from earlier ones. Algorithms are grouped into families forming extensions of a main al-
gorithm. Implementation details are provided. There are four families: two incremental algo-
rithms --- algorithm for sorted data and algorithm for unsorted data, and two semi-incremental
algorithms --- Watson's algorithm and Revuz's algorithm. The last one is presented here as an
incremental algorithm for constructing pseudo-minimal automata, because we skip its second
phase. However, the intention of Dominique Revuz was to construct minimal automata, and
the whole algorithm should be classified as semi-incremental.

Themain algorithms in the families constructminimal acyclic DFAs. Extensions construct
pseudo-minimal acyclic DFAs, add words to minimal cyclic DFAs, construct minimal DTAs,
and construct pseudo-minimal DTAs. Each of the algorithms has its niche, where it can be
considered the best solution.
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Algorithm 5.21 Procedure RevuzAddWord adds word w to the language of an acyclic DFA
M . States of the previous word w′ are stored in vector P .
1: procedure RevuzAddWord(M , P , w, w′)
2: q ← q0; i← 1
3: Mark(q)
4: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ ∧ FanIn(δ(q, wi)) = 1 do
5: q ← δ(q, wi); i← i+ 1
6: Mark(q)
7: end while
8: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
9: δ(q, wi)← Clone(δ(q, wi))
10: q ← δ(q, wi); i← i+ 1
11: Mark(q)
12: end while
13: if i > |w| then
14: P ← ()
15: F ← F ∪ {q}
16: else
17: j ← 1; p← P|w′|
18: if P|w′| = qf then
19: while j ≤ |w′| ∧ i + j − 2 < |w| ∧ w|w|−j+1 = w′|w′|−j+1 ∧ |Σp| =

1 ∧ ¬Marked(p) do
20: j ← j + 1
21: p← P|w′|−j+1

22: end while
23: end if
24: while i+ j − 3 < |w| do
25: δ(q, wi)← new state
26: q ← δ(q, wi)
27: i← i+ 1
28: end while
29: δ(q, wi)← qf
30: end if
31: P ← (); i← 1; q ← q0
32: Unmark(q)
33: P1 ← q0
34: while i ≤ |w| do
35: q ← δ(q, wi)
36: Unmark(q)
37: i← i+ 1
38: Pi ← q
39: end while
40: end procedure
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• For construction of minimal, acyclic DFAs:

– The incremental algorithm for sorted data should be used whenever data can be
presorted. This holds for quasi-static dictionaries that are updated with small sup-
plemental data that can easily be inserted into correct positions in the input data
file. This algorithm offers both the highest speed and the smallest memory foot-
print.

– The incremental algorithm for unsorted data should be used whenever data comes
in an arbitrary order. The algorithm is slower than the algorithm for sorted data,
but sorting also takes both time and memory.

– When only speed matters, Watson's algorithm may be used. This algorithm has
much bigger memory footprint than incremental algorithms. In morphological
dictionaries, only the leaves of a trie are compressed to one node. It should be
noted that this algorithm requires (simple, linear in time) presorting that also takes
time, and only some sources indicate that that it may be faster than the incremental
algorithm for sorted data.

• For adding words to minimal, cyclic DFAs:

– The extension of the incremental algorithm for sorted data should be used when-
ever data comes in sorted series.

– The extension of the incremental algorithm for unsorted data should be usedwhen-
ever data comes in arbitrary order and sorting offline cannot be used.

– The extension of Watson's algorithm should be used when data can be presorted
and the whole emphasis is on speed, and not on memory use.

• For construction of pseudo-minimal, acyclic DFAs:

– The extension of the incremental algorithm should be used whenever the data is
quasi-static and can be presorted.

– The extension of the incremental algorithm for unsorted data should be usedwhen-
ever the data comes unsorted.

– The extension of Watson's algorithm can be used when speed is of the highest
priority.

• For construction of minimal and pseudo-minimal DTAs:

– The extension of the incremental algorithm should be used whenever the data can-
not be presorted or when small memory requirements are of the highest priority.
Cloning states is very expensive, so very small memory footprint of the algorithm
comes at a cost of slower processing.

– Watson's algorithm should be used when speed is the highest concern. It should
be noted that intermediate automata are much bigger than minimal.

Some of the algorithms presented in this chapter have been benchmarked. This includes
a study by the author of this book [14]. This book is focused on the ease of implementation.
For a more formal review of algorithms for constructing minimal, acyclic DFAs, see [40].

Some of the algorithms can be adapted for deletion of strings or trees from automata.
Those adaptations are quite simple, but fall outside the scope of this book.





Chapter 6

Hashing

Finite-state automata are used in many domains. In natural language processing, they are
used mainly as dictionaries, which does not exclude other uses, like e.g. tagging. Dictionaries
can be seen as mappings [20]. Words can be associated with other words (for spelling cor-
rection), with morphological features, with frequency counts, translations, sense, etc. When
the mapping is not determined by morphology of words, storing it only by means of an au-
tomaton would lead to a huge waste of memory, because suffixes of words could not share
space, and the automaton would have a form of a trie. A better solution is to keep that sort of
information outside the automaton. The minimal (and thus small) DFA would then provide
a mapping between words and integer numbers (hash values) that could serve as indexes in
external storage. An inverse mapping, i.e. from integer numbers (hash values) to words, can
also be easily implemented with minimal automata. This mapping is called minimal perfect
hashing. It is hashing as it maps items from a very large domain (here: arbitrary strings) to
integer numbers. It is perfect as computing the hash values is injective --- different words
always get different numbers, or in other words: there are no collisions. It is minimal as it
uses n consecutive numbers for nwords. Notice that minimal perfect hashing is possibly only
for acyclic automata as their languages are finite sets of finite words.

The solution with minimal automata uses integer numbers stored in all states or in all
transitions to compute the word number and to find the word associated with a number. An
alternative solution is to use pseudo-minimal automata. In such an automaton, under certain
condition, each word has its own, proper transition that is not shared with any other word.
Such transition can then be used to store some information associated with the word. It can
be a number, but it can also be any other information. When it is a number, it can be any
number, i.e. the same number can be assigned to different words, and the range of number is
arbitrary. This comes at a cost: a pseudo-minimal automaton is not minimal; it can be much
larger than the minimal one. Additionally, the inverse mapping, i.e. from numbers (or any
other information) to words cannot be easily and efficiently implemented.

Hashing is not limited to words accepted by DFAs. Tree automata can provide a mapping
between trees and numbers and vice versa. Just like in case of DFAs, minimal and pseudo-
minimal can be used, with the same advantages and disadvantages. XML files are collections
of trees. Perfect hashing with DTAs can number those trees. This can lead to efficient storage
techniques for XML files.
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In minimal DFAs, perfect hashing can be implemented in two ways:

1. by storing integer numbers in states,

2. by storing integer numbers in transitions.

The first method can lead to more memory efficient implementations. The second method is
faster, and it can more easily be used in sparse-matrix representations of automata.

6.1 PerfectHashingwithMinimalDFAs --- Numbers in States
In this method, cardinalities of the right languages of states are stored in those states. Fig-
ure 6.1 shows a minimal automaton recognizing forms of a Polish verb pić with numbers by
each state showing cardinality of the right language of that state.

The numbers can be efficiently computed using recursive definition of the right language
(2.6):

|
→
L (q)| =

∑
a∈Σq

|
→
L (δ(q, a))|+

{
1 if q ∈ F
0 if q 6∈ F (6.1)

A minimal perfect hashing function effectively numbers words in an automaton. We as-
sume that words are ordered, e.g. lexicographically using some ordering of the alphabet Σ.
A hash value of a word is its ordinal number among all words recognized by the DTA. In
other words, if we count words from 0, it is the number of words that precede the word in the
automaton. An implementation of that hashing (word to hash value mapping) relies on that
definition. We assume that states are visited in preorder, following outgoing transitions in the
order of their labels. At each state visited during recognition of a word, we count the number
of words recognized when visiting states immediately reachable from the state by transitions
labeled with symbols that precede the current symbol in the word being mapped. Final states
receive a special treatment. They are treated as if a final state had an additional transition
labeled with an end-of-word marker symbol that precedes all other symbols. That transition
would lead to a final state with no outgoing transitions.

Function Word2Number that converts a word to its hash value is shown as Algorithm 6.1.
Apart from the automatonM and the word w, it has two additional parameters: q is the state
where counting should start (initially the initial state), i is the number of the first symbol in
the word to be considered (initially one).

An inverse mapping can also be easily computed. Algorithm 6.2 lists function Num-
ber2Word that finds a word associated with the given number n in an automatonM . It should
be invoked with the third parameter set to the initial state, and then it calls itself with succes-
sive states along the path that recognizes the word.

Figure 6.1 shows the numbers in states for the automaton in Figure 3.9 recognizing in-
flected forms of a Polish verb bić. Let us compute the hash value for the word biłyśmy. We
call function Word2Number(M , w=biłyśmy, 0, 1). The first symbol on the input is b. There
is only one transition leaving the initial state 0, and it is labeled with b. No transitions have
labels that precede b, the initial state is not final, so s is set 0, and Word2Number(M , w, 1,
2). There is a single transition leaving non-final state 1, and it has label i, so s is set to 0,
and Word2Number(M , w, 2, 3) is called. In state 2, there are outgoing transitions labeled
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Figure 6.1: Minimal automaton recognizing the same language as the trie automaton in Fig-
ure 3.1. A number close to a state shows cardinality of the right language of the state.
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Algorithm 6.1 Function Word2Number returns a hash value associated with a word w in a
dictionary (a DTA) M . The function calls itself recursively. In the top-level invocation, q
should be set to the initial state of the automaton, and i should be set to 1.
1: functionWord2Number(M ,w,q,i)
2: if i > |w| then
3: if q ∈ F then
4: return 0
5: else
6: Error(''Word not found'')
7: end if
8: end if
9: s←

∑
σ∈Σq,σ<wi

|
→
L (δ(q, σ))||

10: if q ∈ F then
11: s← s+ 1
12: end if
13: if δ(q, wi) 6= ⊥ then
14: return s+ Word2Number(M,w, δ(q, wi), i+ 1)
15: else
16: Error(''Word not found'')
17: end if
18: end function

Algorithm 6.2 Function Number2Word returns a word associated with the given hash value
n in an automaton M . The search starts in state q, which should be the initial state of the
automaton in the top-level invocation.
1: function Number2Word(M , n, q)
2: if n = 0 ∧ q ∈ F then
3: return ε
4: else
5: if q ∈ F then
6: s← 1
7: else
8: s← 0
9: end if
10: for σ ∈ Σq do
11: if n < s+ |

→
L (δ(q, σ))| then

12: return σ · Number2Word(M , n− s, δ(q, σ))
13: else
14: s← s+ |

→
L (δ(q, σ))|

15: end if
16: end for
17: Error(''Number too big'')
18: end if
19: end function
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with ć, j, l, and ł. As wi=ł, we compute s as the sum of numbers associated with targets of
outgoing transitions labeled with ć (1), j (9), and l (6), which gives us 16. We do not have
to increment that number as state 2 is not final. At this point, we know that any word in
the language of the automaton starting with bił must have a hash value greater or equal to
16. We call Word2Number(M , w, 6, 4). The next symbol in the word is y. The sum of
numbers associated with targets of outgoing transitions labeled with symbols that precede y
in the alphabet is 6 + 3 + 2 = 11. As state 6 is a final state, we increment s to 12. Then
we call Word2Number(M , w, 12, 5). One transition with label b leading to a state with
number 3 precedes a transition labeled with ś, and state 12 is final, so s is set to 4. We call
Word2Number(M , w, 38, 6). In state 38, there is one transition preceding a transition labeled
with m. It is labeled with c, and it leads to a state with number 1. As 36 is not final, s is
set to 1. We call Word2Number(M , w, 19, 7). In non-final state 19, no transition precedes a
transitions labeled with y, so s is set to 0, andWord2Number(M ,w, 3, 8) is called. As i > |w|
and state 3 is final, the function returns 0. One level up in the call hierarchy, in state 19, that
0 is added to the overall result, and returned. One level up, in state 38, the returned value is
added to 1, which gives 1. That value is returned. In state 12, that value is added to 4, so the
returned value is 5. In state 6, that value is incremented by 12, which gives 17. In state 2, 16
is added to make 33. In states 2 and 1, we also add 0 to the result, so biłyśmy (the last word
in the language) has number 33.

Let us try the other direction. Which word has number 15? We call Number2Word(M ,
n=15, q=0). Variable s is set to 0, and the first transition meets the criterion 15 < 0 + 35,
so we call Number2Word(M , n=15, q=1), while remembering σ=b. In state 1, we have the
same situation with σ=i, so we call Number2Word(M , n=15, q=2). We set s to 0. The first
transition does not meet the condition as 15 ≥ 0 + 1, so we increment s to 1. With the second
transition, we have 15 ≥ 1 + 9, so we increment s to 10. The third transition finally meets
the condition 15 < 10 + 6, so we call Number2Word(M , n=15 - 10, q=5) with σ=l. In state
5, the first transition meets the condition 5 < 0 + 6, we call Number2Word(M , n=5, q=12)
with σ=i. In state 12, we set s to 1. The first transition does not meet the condition, so we
increment s to 4. The second transition does, so we call Number2Word(M , n=1, q=39) with
σ=ś. In state 38, we set s to 0. For the first transition, we have 1 ≥ 0 + 1, so we increment
s to 1. We set σ=m, and we call Number2Word(M , n=0, q=19). In state 19, the condition is
obviously true for the unique transition there, so we set σ to y, and call Number2Word(M ,
n=0, q=3). As state 3 is final and n = 0, the function returns ε. In state 19, we prepend y to
ε, which gives us y that is returned. In state 38, we prepend m to y to return my. In state 12,
we prepend ś to return śmy. While going back to state 0, we prepend other letters that give us
the final result --- the word biliśmy.

Cardinalities of the right language can also be computed during construction of an au-
tomaton regardless of the actual algorithm in use. For example, in procedure AddStrSorted
(Algorithm 3.7, page 32), counters should be incremented by one for the initial state, and for
each state visited in the first while loop. Counters should be set to one for each state created
in the second while loop.

Various compression methods may change the order of transitions in an automaton. Min-
imal perfect hashing would still number words in the DFA, but the order of words could be
different.
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Algorithm 6.3 Function Word2NumberT returns a hash value associated with a word w in a
dictionary (a DTA)M using precomputed number stored in transitions. A number stored in
a transition δ(q, wi) can be retrieved as ψ(q, wi). The function calls itself recursively. In the
top-level invocation, q should be set to the initial state of the automaton, and i should be set
to one.
1: functionWord2NumberT(M , w, q, i)
2: if i > |w| then
3: if q ∈ F then
4: return 0
5: else
6: Error(''Word not found'')
7: end if
8: end if
9: if δ(q, wi) 6= ⊥ then
10: return ψ(q, wi) + Word2NumberT(M , w, δ(q, wi), i+ 1)
11: else
12: Error(''Word not found'')
13: end if
14: end function

Algorithm 6.3 lists function Word2NumberT that computes hash values for words using
numbers stored in transitions. Function ψ(q, σ) returns a number associated with a transition
δ(q, σ).

Let us compute again the hash value for the word biłyśmy. As the last executed instruction
in function Word2NumberT is returning a sum of number and the result of a recursive call,
we will compute the sum while going forwards instead of doing it at the end while going
backwards. We start by calling Word2NumberT(M , w, 0, 1). We follow δ(0, b), add 0 to the
total sum, and call Word2NumberT(M , w, 1, 2). In state 1, we add 0 to the total sum, and
call Word2NumberT(M , w, 2, 3). In state 3, we add 16, and we call Word2NumberT(M , w,
6, 4). In state 6, we add 12, and call Word2NumberT(M , w, 12, 5). In state 12, we add 4,
and call Word2NumberT(M , w, 38, 6). In state 38, we add 1, and call Word2NumberT(M ,
w, 19, 7). In state 19, we add 0, and call Word2NumberT(M , w, 3, 8). In state 3, we have
reached the end of the word, and the state is final, so we add 0 to the total sum, which is 0 +
0 + 16 + 12 + 4 + 1 + 0 + 0 = 33. This is consistent with the result in the previous section.

Computing the inverse mapping does require visiting other transitions. We need to re-
member the symbol on the previous transition as we check which transition leads to words
that have a greater ordinal number than the one that is searched for. Function Number2WordT
is shown as Algorithm 6.4.

Numbers on transitions can be computed in the same manner as in the previous method,
i.e. they can be updated after addition of each newword, but that would mean updating several
transitions for a given state instead of just one. Therefore, it is more efficient to compute and
store the numbers once the construction process is completed, i.e. non-incrementally.

Various compression methods may change the order of transitions in an automaton. Min-
imal perfect hashing would still number words in the DFA, but the order of words would
different.
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Algorithm 6.4 Function Number2WordT returns a word associated with the given hash value
n in a DFAM . The search starts in state q, which should be the initial state of the automaton
in the top-level call.
1: function Number2WordT(M , n, q)
2: if n = 0 ∧ q ∈ F then
3: return ε
4: else
5: σ′ ← minσ ∈ Σq

6: for σ ∈ Σq do
7: if ψ(q, σ) > n then
8: return σ′ · Number2WordT(M , n− ψ(q, σ′), δ(q, σ′))
9: else
10: σ′ ← σ
11: end if
12: end for
13: return σ′ · Number2WordT(M , n− ψ(q, σ′), δ(q, σ′))
14: end if
15: end function

6.3 Arbitrary Hashing with Pseudo-Minimal DFAs

Minimal perfect hashing numbers words in the language of an automaton. The numbering
scheme is imposed by the automaton; normally it is the lexicographical order of words. This is
usually what is wanted, but there are situations when something else is required. Wemaywant
to associate specific numbers with specific words. In dynamic perfect hashing, the contents
of the automaton change, but we want to keep the mapping for those items that do not change.
Finally, we may want to tag words, so that tags do not depend on morphology of words, and
there aremany different tags, but fewer than the number of words. In those situations, minimal
perfect hashing may not be the optimal solution.

Pseudo-minimal automata can be used for implementation of arbitrary hashing. If words
have an end-of-word marker appended, such automata have proper transitions, i.e. for each
word, the path in the automaton visited during recognition of that word has at least one tran-
sition that is not shared with any other word. Such transition is called a proper transition. As
it is not shared with other words, it can be used to store any number. Actually, it even does
not have to be a number; it can be e.g. string. This freedom comes at a price. Pseudo-minimal
automata are not minimal --- they can be much greater than the minimal ones.

There can be more than one proper transition for a word. In such case, they form a chain.
A number can be stored on any of them, but to facilitate compression, it should be stored on
the first such transition counting from the initial state.

The numbers (or other objects that are the image of the mapping) can be stored during
construction. In the extension of the incremental algorithm for sorted data, in procedure Pseu-
doAddStrSorted (Algorithm 3.10, page 41), putting the item onto the transition from state q
labeled with w′i should be done just before invoking function PseudoReplOrReg in line 10.
By the way, the test i ≤ |w′| is needed only for the first word. Afterwards, it will always be
true. The item should be kept along with the previous word w′ before it can be stored onto
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a transition. It is done once for each word. The last item is stored just before the final invo-
cation of function PseudoReplOrReg. An updated version of function PseudoAddStrSorted
that handles hashing is presented as function PseudoAddStrSortedH in Algorithm 6.5.

Algorithm 6.5 Procedure PseudoAddStrSortedH adds a string w to the language of an au-
tomatonM . Strings must come sorted. The previous word w′ has an associated item x′.
1: procedure PseudoAddStrSortedH(M,w,w′, x′)
2: q ← q0
3: i← 1
4: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
5: q ← δ(q, wi)
6: i← i+ 1
7: end while
8: if i ≤ |w′| then
9: d← false
10: put x′ onto transition (q, w′i, δ(q, wi))
11: δ(q, w′i)← PseudoReplOrReg(M, δ(q, w′i), w

′
i+1...|w′|, d)

12: end if
13: while i ≤ |w| do
14: δ(q, wi)← new state
15: q ← δ(q, wi)
16: i← i+ 1
17: end while
18: F ← F ∪ {q}
19: end procedure

The main algorithm is updated as function PseudoSortedIncrementalConstructionH and
presented as Algorithm 6.6. Storing the last item requires going to the state q reachable from
q0 with the longest common prefix of the last two words, and putting it onto a transition
labeled with the next symbol of the last word.

In the extension of the incremental algorithm for sorted data and in the extension of the
Watson algorithm, the items should be placed on the first new transition created for the word
with which the item should be associated. When a new word reuses the transition, the item
should be moved along the path of its word past the state for which a new transition is created
for the new word.

Function PseudoAddStrUnsortedH presented as Algorithm 6.7 is an adaptation of function
PseudoAddStrUnsorted for arbitrary hashing. The function has an additional parameter x,
which is the item to be associated with the word w. The item is stored on the first new
transition created for the word w. Note that there must be at least one new transition created
for each word assuming that each word ends with an end-of-word symbol and there are no
duplicate words. An item x′ associated with some previous word that shares an initial path
with the current word w may need to be relocated. The situation happens when w shares the
longest common prefix with that word among all words in the language of the automaton.
Then either in the first or in the second while loop, the item x′ is removed from a transition
it was stored on. The item is put onto the other outgoing transition of the same state that we
have put x. We use the notation x ← ∅ to indicate that an item x has already been stored in
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Algorithm 6.6 Algorithm for incremental construction of pseudo-minimal automata from
sorted data implementing arbitrary hashing.
1: function PseudoSortedIncrementalConstructionH
2: Create empty automatonM = ({q0},Σ, ∅, q0, ∅)
3: R← ∅ . set empty register
4: w′ ← ε . previous word
5: while input not empty do
6: (w, x)← next word and item
7: PseudoAddStrSorted(M,w,w′, x′)
8: (w′, x′)← (w, x)
9: end while
10: d← false
11: put x′ onto the last branching transition in the path of w′
12: PseudoReplOrReg(M, q0, w

′, d)
13: returnM ;
14: end function

an appropriate place. The main algorithm has to be modified accordingly. As those changes
are trivial, we do not list them here.

Similar modifications have to be carried out in Watson's algorithm in function PseudoAd-
dWord (Algorithm 5.6, page 138). As there are no confluence states there, picking up an item
for some previous word is handled in one loop instead of two. Otherwise, the changes are
almost identical, so we do not list them here.

Contrary to minimal perfect hashing with minimal automata, implementing the inverse
mapping in arbitrary hashing with pseudo-minimal automata does not seem to be possible.

6.4 Variable Output Transducers
The name variable output transducer, introduced by Denis Maurel, is misleading. Of course,
all automata implementing some form of hashing can be seen as transducers, i.e. automatawith
output. However, it is possible to implement hashing in true transducers, e.g. in transducers
implementing morphological rules. Therefore, we treat ''variable output transducers'' here as
just simple automata-recognizers with hashing, or numbered automata. Hash values stored
on transitions act as a sort of weights.

The main idea behind variable output transducers is that we can ignore earlier weights
on a path, and just keep the latest as the output for the mapping. Originally, Denis Mau-
rel used an adaptation of the incremental construction algorithm for sorted data (Chapter 3,
page 19) for construction of such automata, but any construction algorithm family described
in the previous chapters can be used for that purpose. During the construction process, the
hash value associated with a given word is put onto the first transition that is created for that
word. The difference between this approach and that for minimal perfect hashing using the
incremental algorithm for unsorted data or Watson algorithm is that there is no moving of
existing hash values along transitions. The hash values are treated as part of labels for the
purpose of minimization.
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Algorithm 6.7 Procedure PseudoAddStrUnsortedH adds a string w associated with item x to
the language of an acyclic, pseudo-minimal automatonM . No assumption about previously
added strings is made.
1: procedure PseudoAddStrUnsortedH(M,w, x)
2: q ← q0; x′ ← ∅
3: i← 1
4: P ← ε . path of non-confluence states in the common prefix
5: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ ∧ FanIn(δ(q, wi)) = 1 do
6: if transition (q, wi, δ(q, wi)) has an item then
7: x′ ← the item
8: remove the item from the transition
9: end if
10: push q onto P
11: q ← δ(q, wi)
12: i← i+ 1
13: end while
14: p← q
15: j ← i
16: R← R \ {p}
17: while i ≤ |w| ∧ δ(q, wi) 6= ⊥ do
18: if transition (q, wi, δ(q, wi)) has an item then
19: x′ ← the item
20: remove the item from the transition
21: end if
22: δ(q, wi)← Clone(δ(q, wi))
23: q ← δ(q, wi)
24: i← i+ 1
25: end while
26: if x′ 6= ∅ then
27: put x′ onto transition (q, w′i, δ(q, w

′
i))

28: end if
29: while i ≤ |w| do
30: δ(q, wi)← new state
31: if x 6= ∅ then
32: put x onto transition (q, wi, δ(q, wi)); x← ∅
33: end if
34: q ← δ(q, wi)
35: i← i+ 1
36: end while
37: F ← F ∪ {q}
38: d← false
39: PseudoLocalMinimization(M,P,w, PseudoReplOrReg(M,p,wj...|w|, d), p, j, d)
40: end procedure
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Results reported in [29] show that this implementation of hashing can offer smallest num-
ber of states and transitions for at least some data where the number of different hash values
is relatively small when compared with the number of words. This method requires more
investigation before any definitive conclusions are drown.

6.5 Dynamic Perfect Hashing
When a new word is added to a set of words, and an automaton that recognizes that set is re-
built, numbering of words done using minimal perfect hashing also changes, unless the word
follows all other words in lexicographical order. This situation may be undesirable in many
applications. One possible solution is to use pseudo-minimal automata. However, it is also
possible to use minimal automata with minimal perfect hashing, and with an additional trans-
lation vector. Another solution is to include perfect hashing weights into labels of transitions,
and another one is to use variable out transducers.

The choice of a particular solution depends on the characteristics of the data, and on the
profile of the desired application. We investigate the choices in more detail.

Dynamic perfect hashing is a mapping from n words to numbers 0, . . . , n− 1 (or equiv-
alently 1, . . . , n) that does not change for words that stay in the language of the automaton
even when new words are added or some other words are deleted.

Minimal perfect hashing using minimal DFAs is described in the first two sections of
this chapter. It provides static mapping. When a new word is added, the mapping changes.
Words that come later in lexicographical order than the newly added word have their numbers
incremented by one. To adapt it to dynamic perfect hashing requirements, an additional vector
is needed. We call it translation vector. Initially, it contains a sequence of numbers 0, . . . , n−
1, so that if t is a translation vector, then t[i] = i. When a new word comes, and it takes the
j-th position among all words, then |L(M)| − j numbers in the vector need to be moved. It
will be |L(M)|/2 on average, and |L(M)| in the worst case. When words come in groups,
then addingm words would require movingO(|L(M)|) numbers in the vector, and inserting
exactly m of them. If the automaton is maintained on-line, which means no compression,
then updating the automaton takes time proportional to the sum of the lengths of additional
words (and also of words to be deleted, as deletion is very similar to addition, but we do not
cover deletion in this book). At each visited state of the automaton, its right language counters
need to be incremented by one (in the first method described in Section 6.1), or numbers on
a transition that is taken and all outgoing transitions of the state that follow it need to be
incremented by one. Rebuilding the automaton from scratch takes linear time with regard to
the input size (see the previous chapter). The translation vector occupies space of |L(M)|
integers.

Arbitrary hashing with pseudo-minimal automata is described in the previous section.
Maintaining the automaton on-line takes time proportional to the size of the additional input
(or words to be deleted), rebuilding the automaton takes time proportional to the size of the
whole input data (see the previous chapter). The size of a pseudo-minimal automaton de-
pends heavily on ''regularity'' of its language. Experiments reported in [22] show that pseudo-
minimal automata were from 1.11 (for random data) to 33.47 times greater than minimal ones.
The second greatest ratio among 21 automata was 15.36 (for a dictionary of Polish, a highly
inflectional language). Differences between various languages strongly influence the ratio,
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e.g. for a dictionary of English (a language with hardly any inflection) was 2.39. The worst
case scenario for pseudo-minimal automata is Σn. It requires 2 +

∑n−1
i=0 |Σ|i = 2 + |Σ|n−1

|Σ|−1

states, and
∑n

i=0 |Σ|i = |Σ|n+1−1
|Σ|−1 transitions. A pseudo-minimal automaton recognizing the

language {a, b, c}3 is shown in Figure 6.3. The minimal automaton for the same language has
n+1 states forming a single chain, with |Σ| transitions linking each consecutive pair of states,
making n|Σ| in total. Note that pseudo-minimal automata cannot easily implement inverted
mapping.

The third solution consist in including weights (numbers needed for implementing per-
fect hashing) into labels. This can be explained best with an example. Suppose we want to
recognize a language {aa, ab, ba, bb}. The minimal automaton for that language is shown in
Figure 6.4. It is easy to put numbers either on states or on transitions to implement minimal
perfect hashing with it. However, the mapping created in that way is determined by the order
of words in the automaton and cannot be easily changed. Suppose we want the mapping to
be aa→ 0, ab→ 3, ba→ 1, bb→ 2. The minimal automaton cannot provide such mapping
on the basis of simple addition of numbers. Therefore, we need to differentiate a state with
the right language {a,b} reachable with a from a state with exactly the same right language
reachable from the initial state with b. One way of achieving that is to treat weights as parts
of labels, so that would be included in the right language of states during minimization. This
would prevent merger of states with the same right language in terms of symbols, but different
right language in terms of symbols and weights.

To avoid problems with negative weights, an end-of-word marker should be used exactly
in the same manner it is used in pseudo-minimal automata. The symbols is appended to each
word. As a consequence, the DFA has only one final state.

While it is possible to use other methods of constructing and maintaining such automata,
we will describe the simplest one. Words would simply receive consecutive numbers as they
are read. In that setting, we can use the incremental algorithm for unsorted data (see Chapter 4,
page 63). When adding a new word, we traverse the transitions already existing in the au-
tomaton recognizing a prefix of the word. At the same time, we calculate the sum of weights
on those transitions. When we need to create a new transition, we put there the difference
between the number associated with the word and the calculated sum.

We have no experimental results on this method. However, we can determine what the
best case and worst case scenario is. The best scenario is when the mapping is the same as
in perfect hashing. The resulting automaton would be minimal. The worst case scenario is
similar to that for pseudo-minimal automata. It is the language |Σ|n. However, for pseudo-
minimal automata, the worst case is achieved for all permutations of the mapping L(M) →
0, . . . , n − 1. For automata with weights included into labels, we can obtain both a minimal
automaton, and an automaton of size equal to that of the pseudo-minimal automaton. One of
several possible mappings that gives the worst case scenario is shown in Figure 6.6. Note that
the inverse mapping for this kind of automaton cannot be easily implemented.

The worst case scenario for variable output automata is exactly the same as for pseudo-
minimal automata, i.e. it is the language Σn. The reason is that that each |Σ| words share
exactly the same prefix. Therefore, if all those words are to have different hash values, at
least |Σ| − 1 of them must have those values stored on transition labeled with their last sym-
bol. Because hash values are incorporated into labels for the purpose of minimization, states
reachable with prefixes n − 1 long have all the same right language (Σ) cannot be replaced
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Figure 6.3: Pseudo-minimal automaton recognizing the language Σn for n = 3.
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with a single state.
Theoretical results show limits of various methods. A particular method should be chosen

empirically. The size of an automaton measured in the number of states or transitions is
only an indication of the size in bytes. Various compression methods interfere with hashing
techniques. For example, if we choose variable length encoding in automaton representation,
then methods that store fewer numbers (weights) somewhere in the automaton require less
bytes for their representation. Also, the smaller the numbers, the fewer bytes they need to
represent them. A minimal automaton implementing minimal perfect hashing has numbers
in every state or on every transition. Other kinds of automata need fewer of them. Therefore,
experiments are vital.

6.6 Perfect Hashing with Minimal DTAs
Just as finite automata recognize words or strings, tree automata recognize trees. Trees play a
vital role in many applications. Tree automata are primarily used for recognition and storage
of Extensible Markup Language (XML) trees. XML is used for example to store various
configuration files. In NLP, it is used e.g. for storing annotated corpora. We may want e.g.
to look for sentences where particular syntactic constructions are used. Syntax is mainly
expressed with trees, so the task is to recognize a tree, and then to find information that is
associated with it. That information does not depend on the shape or labels of the tree. It
needs to be stored outside the tree automaton. Just as in case of finite automata, we have
access to that information by computing an index in that other data structure. It can be done
by means of perfect hashing with DTAs.

There are similarities between hashing with DFAs and with DTAs, but there are also dif-
ferences. To compute a tree hash value (to determine a tree number), we need to compute how
many trees precede it in some ordering imposed by the automaton. To calculate that number
in DFAs, we started in the initial state. In bottom-up DTAs, there is no initial state. However,
we can compute the number of trees that precede the current tree t in the language of the state
δA(t):

ιA(t) = |{t′ : δA(t′) = δA(t) ∧ t′ ≺A t} (6.2)
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That number can be expressed as a sum of two numbers. Let q = δA(t), and t =
(σ, t1, . . . , tm). Let τ = (σ, δA(t1), . . . , δA(tm), δA(t)) = (σ, q1, . . . , qm, q). The first num-
ber is the number of trees ρA(t) that precede t but follow the same transition τ . The second
one is the number of trees while following transitions that precede τ :

ιA(t) = ρA(t) +
∑

τ ′=(σ′,q′1,...,q
′
m,q)≺Aτ

|LA(τ)| (6.3)

where LA(τ) is the language of a transition τ defined in Equation (2.32) (page 18). Its
cardinality is:

|LA(τ)| =
{

1 if τ = (σ, q)∏m
i=1 |LA(qi)| if τ = (σ, q1, . . . , qm, q),m > 0

(6.4)

The language of a state can be expressed in terms of the languages of its incoming transi-
tions:

LA(q) =
∪

τ=(σ,q1,...,qm,q),m≥0

LA(τ) (6.5)

so its cardinality is:

|LA(q)| =
∑

τ=(σ,q1,...,qm,q),m≥0

|LA(τ)| (6.6)

Before we formalize computation of ρA(t), let us see an example. Figure 6.7 shows a DTA
that recognizes the language: {a(a,a), b(a,b), a(a(a,a),a(a,a)), a(a(a,a),b(a,b)), a(b(a,b),a(a,
a)), a(b(a,b),b(a,b)), b(a(a,a),a(b,a),b), b(a(a,a),a(b,b),b), b(a(a,a),b(b,b)), b(b(a,b),a(b,a),b),
b(b(a, b),a(b,b),b), b(b(a,b),b(b,b),b)}. Languages of states and transitions are: LA(1) =
{a}, LA(b) = {b}, LA(t5) = {a(a, a)}, LA(t1) = {b(a, b)}, LA(t3) = {a(b, a)}, LA(t6) =
{a(b, b)},LA(t7 = {b(b, b)},LA(3) = {a(a, a), b(a, b)},LA(5) = {a(b, a), a(b, b), b(b, b)},
LA(t2) = {a(a(a, a), a(a, a)), a(a(a, a), b(a, b)), a(b(a, b), a(a, a)), a(b(a, b), b(a, b))}, and
LA(t4) = {b(a(a, a), a(b, a), b), b(a(a, a), }, LA(4) = LA(t2) ∪ LA(t4). Let us com-
pute how many trees precede a tree t=b(b(a,b),a(b,b),b) in state 4. We can immediately see
that t follows transition t4. Transition t2 precedes transition t4. We can use equations (6.6)
and (6.4) to find out, that |LA(t2)| = 4. We can also see that t4 = (b, 3, 5, 2). Our tree
t = (b, t1, t2, t3) has t1=b(a,b), which is the second tree recognized in state 2. This means at
least (|LA(5)||LA(2)|) = 3 trees precede t in transition t4. Tree t2=a(b,b) is the second tree
recognized in state 5. This means that |LA(2)| = 1 trees additionally precede t in t4. Tree
t3=b is the only tree recognized in state 2. It follows that our tree t=b(b(a,b),a(b,b),b) has
number 4+3+1=8.

The number of trees that precede t but follow the same transition τ can be computed as:

ρA(t) =

{
0 if t ∈ Σ∑m

i=1 ιA(ti) ·
∏m

j=i+1 |LA(δA(tj))| if t = σ(t1, . . . , tm) ∈ TΣ − Σ
(6.7)

It is more convenient and more efficient to compute ρA(t) by computing ρiA(t) defined
as:
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Figure 6.7: Minimal DTA recognizing trees: a(a,a), b(a,b), a(a(a,a),a(a,a)), a(a(a,a),b(a,b)),
a(b(a,b),a(a,a)), a(b(a,b),b(a,b)), b(a(a,a),a(b,a),b), b(a(a,a),a(b,b),b), b(a(a,a),b(b,b)),
b(b(a,b),a(b,a),b), b(b(a,b),a(b,b),b), b(b(a,b),b(b,b),b).

ρiA(t) =

{
1 if i = 0

ιiA(t) = ρi−1A (t) · |L(δA(ti))|+ ιA(ti) if 1 ≤ i ≤ m (6.8)

Thus, ρA(t) = ρmA (t).
When state q is final, then ιA(q) refers to numbering of trees in the language of the au-

tomaton as expressed with Equation (2.19) on page 17. The tree number for t is the sum of
ιA(δA(t)) and

∑
f∈F :δA(f)≺AδA(t) |LA(f)|, assuming some ordering ≺A among final states

of the DTA.
We can now define function hA(t) which returns a hash value (a tree number) for a given

tree t. It is given as Algorithm 6.8. The function returns -1 if the word is not present in the
language of the automaton. The main work in function hA(t) is done in function rh(t) given
as Algorithm 6.9. The rest of function hA(t) deals with incrementing the returned value with
the cardinality of languages of those final states that precede δA(t).

In function rh, the first loop calculates tree numbers vi for subtrees ti of the parameter tree t
among trees in the language of qi = δA(ti). Those values are used to compute ρiA(t). Once the
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Algorithm 6.8 Function hA returns a tree number for a given tree t. If the tree is not present
in the language of the automaton, the function returns -1.
1: function hA(t)
2: (q, v)← rh(t)
3: if q ∈ F ∧ v ≥ 0 then
4: for f ∈ F : f ≺A q do
5: v ← v + |LA(f)|
6: end for
7: else
8: return -1
9: end if
10: return v
11: end function

Algorithm 6.9 Function rh calculates a tree number for a given tree t among trees in the
language LA(δA(t)). If the tree is not recognized, the function returns -1.
1: function rh(t = σ(t1, . . . , tm))
2: h← 0
3: for i ∈ 1, . . . ,m do
4: (qi, vi)← rh(ti)
5: if qi = ⊥ ∨ vi = −1 then
6: return -1
7: else
8: h← h · |LA(qi−1)|+ vi
9: end if
10: end for
11: q ← δ(σ, q1, . . . , qm)
12: for ∆ 3 τ = (σ′, q′1, . . . , q

′
m, q) ≺A (σ, q1, . . . , qm, q) do

13: h← h+ |LA(τ)|
14: end for
15: return (q, h)
16: end function
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value of ρA(t) is computed, it is incremented in the second loop by the cardinality of languages
of the transitions that precede transition (σ, q1, . . . , qm, q) among incoming transitions of state
q. We assume for simplicity that q0 exists, and that |LA(q0)| = 0, otherwise we would have
to make the code a bit more complex.

Algorithm 6.10 Function h−1A returns a tree number n in the language of the tree automaton.
If there is no such tree, the function returns ε.
1: function h−1A (n)
2: h← 0
3: for i ∈ 1, . . . , |F | do . F = (f1, . . . , f|F | : f1 ≺A · · · ≺A f|F |
4: if h+ |LA(fi)| > n then
5: return rh−1(fi, n− h)
6: else
7: h← h+ |LA(fi)|
8: end if
9: end for
10: return ε
11: end function

Let us look at our example again. We call function hA(t = b(b(a, b), a(b, b), b)), which
immediately calls function rh(t=b(b(a,b),a(b,b),b)). Variable h is set to 0, and the tree is
divided into subtrees. Function rh(t=b(a,b)) is called. It sets h to 0 at its level, and then it
calls rh(t=a). Variable h for this invocation is set to 0. Asm = 0, the first for loop does not
run. Variable q is set to state 1. State 1 has only one incoming transition, and that transition is
used by t, so there are no preceding transitions, and the second for loop does not run either.
The function returns (1, 0). One level up, q1 is set to state 1, and v1 is set to 0. As v1 = 0,
h stays equal to 0. Function rh(t=b) is called. Variable h is set to 0. Asm = 0, the first for
loop does not run. Variable q is set to state 2. State 2 has only one incoming transition, and
that transition is used by t, so there are no preceding transitions, and the second for loop does
not run either. The function returns (2, 0). One level up, q2 is set to state 2, and v2 is set to
0. As v2 = 0, h stays equal to 0. Variable q is set to the value of δ(b, 1, 2), i.e. to state 3. In
state 3, there is one transition t5 that precedes transition t1 used by the tree. As |LA(t1)| = 1,
h is incremented to 1. The function returns (3, 1). One level up, q1 is set to 3, and v1 is set to
1. Then h is incremented to 1. Function rh(t=a(b,b)) is called. It sets its local variable h to
0, an calls rh(t=b). The function returns (2, 0) as before. One level up, q1 is set to 2, and v1
is set to 0. Variable h remains equal to 0. An identical call follows with an identical result.
This time, q2 is set to 2, and v2 is set to 0. Variable h is still equal to 0. Variable q is set to
state 5. There is one transition ---transition t3--- that precedes transition t6 among incoming
transitions of state 5. As |LA(t3)| = 1, variable h is incremented to 1. The function returns
(5, 1). One level up, at the top level invocation of function rh, q2 is set to state 5, and v2 is set
to 1. Variable h is set to its previous value (1) multiplied by |LA(5)| = 3, and incremented by
v2 = 1, which means that h is set to 4. A call to rh(t=b) follows. It returns (2, 0). One level
up, variable q3 is set to state 2, and v3 is set to 0. Variable h is set to 4 * 1 + 0 = 4. Variable
q is set to state 4. There is one transition ---transition t2--- that precedes transition t4 used by
the tree. As |LA(t2)| = 4, variable h is incremented by 4 to reach 8. The function returns
(4, 8). Back in function hA, variable q is set to state 4, and variable v is set to 8. State 3 with
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|LA(3)| = 2 precedes state 4, so v is incremented by 2 to reach 10. That value is returned by
the function as the hash value for tree b(b(a,b),a(b,b),b).

The inverse function can also be computed. Function h−1A is given as Algorithm 6.10.
Just like function hA, it adjusts the result taking into account other final state, while the actual
work is done in function rh−1, which is given as Algorithm 6.11. During invocation of rh−1
in h−1A , h takes the sum of cardinality of languages of final states that precede state fi such
that fi = δA(h−1A (n)). Tree number n has number n− h among LA(fi).

Algorithm 6.11 Function rh−1 returns tree number n in LA(q).
1: function rh−1(q,n)
2: Let N = |{(σ, q1, . . . , qm, q) ∈ ∆}|
3: τ1 ≺A . . . ≺A τN , τi = (σi, q1i , . . . , qmi , q)
4: h← 0; i← 1
5: while i ≤ N ∧ h+ |LA(τi)| ≤ n do
6: h← h+ |LA(τi)|; i← i+ 1
7: end while
8: h← n− h
9: th← |LA(τi = (σi, q1, . . . , qmi , q))|
10: for j ∈ 1, . . . ,mi do
11: th← th/|LA(qj)|
12: tj ← rh−1(qj ,bh/thc)
13: h← hmod th
14: end for
15: return σi(t1, . . . , tmi)
16: end function

In function rh−1, we must first find the transition that is used by nth tree. We do that by
trying them one by one and calculating the sum of languages of the transitions tried so far.
Once we have found the correct transition, we decompose the tree to be found into subtrees
recognized in the source states of the transition. As in each source state qj there are |LA(qj)|
trees recognized there. To calculate a subtree tj number among the trees in LA(qj), we invert
Equation (6.8).

Let us see how it works by looking at an example. We take the same automaton as in the
previous example. What tree has number 10? We call h−1A (10). Function h−1A calls function
rh−1. Recursive calls of function h−1A follow. As the function has a few local variables that
keep their different values at different levels of the call hierarchy, a verbal description can be
hard to read. Therefore, we decided to use a different method.

h−1A (n = 10)

h← 0
j ← 1; f1 ← 3
(0 + 2 > 10)→ false
h← 2
j ← 2; f2 ← 4
(2 + 10 > 10)→ true
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j ← 1
th← 1

rh−1(q=2,n=0)
· · · (as before)
←↩ b

t1 ← b
h← 0
j ← 2
th← 1

rh−1(q=2,n=0)
· · · (as before)
←↩ b

t2 ← b
←↩ a(b,b)

t2 ← a(b,b)
h← 0
j ← 3 th← 1

rh−1(q=2,n=0)
· · · (as before)
←↩ b

t3 ← b
h← 0
←↩ b(b(a,b),a(b,b),b

←↩ b(b(a,b),a(b,b),b

The time complexity of computing a tree hash value isO(|t| · |∆|+ |F |), where |t| is the
number of tree nodes calculated as:

|t| =
{

1 if t = σ ∈ Σ
1 +

∑m
i=1 |ti| if t = σ(t1, . . . , tm) ∈ (TΣ \ Σ)

(6.9)

|F | is the number of final states, and |∆| is the number of transitions in the DTA. There is
a loop on final states in function hA. Its contents is a constant-time operation. Function rh is
called |t| times for a tree t. Inside the function, there may be up to |∆|−1 previous transitions
that have to be included in calculations.

It is possible to significantly improve that complexity by:

1. storing the number of trees recognized by following previous transitions in the current
transition (this also eliminates the need for storing back transitions),

2. using an artificial super-root for every tree, so that only one final state will be present
(alternatively, one can store the number of tree recognized in previous final states in the
current final state).

These modifications lead to complexity ofO(|t|), i.e. hashing is linear with regard to the size
of the input.
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For inverse of perfect hashing, the complexity is O(|t| · |∆| + |F |). The |F | component
comes from a loop on final states in function h−1A . The |t| component comes from the fact that
function rh−1 is called exactly once for each node of the resulting tree. The |∆| factor comes
from the fact that we have to count incoming transitions for every visited node. Unfortunately,
that complexity is not easy to reduce. Also note that we have to store back transitions for every
node.

In the construction algorithms in Chapter 4 and Chapter 5, we saw how to calculate values
of |LA(q)|. Values of |LA(τ)| can be calculated in a similar way. Values of

∑
τ ′≺Aτ |LA(τ ′)|

needed for improving time complexity of perfect hashing are best calculated after the automa-
ton has been built.

6.7 Arbitrary Hashing with Pseudo-Minimal DTAs
Pseudo-minimal DTAs have the property that each tree belonging to the language of an au-
tomaton has its own state or transition that is traversed during its recognition, that is not shared
with any other tree recognized by the automaton. When an additional super-root for a tree is
provided, e.g. for a tree t, we store the tree λ(t), then each tree has its own transition. That
transition is called a proper transition, and it can be used to store an arbitrary value of a hash
function.

Section 4.5, page 116, describes an extension of the construction algorithm for sorted data
to the case of pseudo-minimal DTAs. Section 5.1.4, page 164, describes a similar extension
of the Watson algorithm. The only remaining issue is the placement of hash values onto the
transitions. There may be more than one proper transition for a given tree. The hash value can
be placed onto any proper transition. However, for better compression, it is a good practice to
place the values on the first available (closest to leaves) transition. Since we cannot predict,
which transitions will be proper, we can either move the hash values as new trees arrive, or we
can find them once the construction is completed. The latter does not seem like a good choice.
In order to maintain the tree-hash value relation, we would have to reread the collection of
trees with their hash values after the construction is completed. The former is a better solution.
In function PseudoSplit (Algorithm 4.18, page 119), when a new state and a new transition are
created (after line 13), the hash code can be put onto the new transition. In order to prevent
that the code is put onto more than one transition (which would not harm perfect hashing,
but it would harm compression), a flag should be used. When a code is encountered when
traversing existing transitions, it should be removed from its original place, and put onto the
other outgoing transition of a state qk then the first new transition created in line 13. An
identical solution can be used in function WatsonPseudoSplit (Algorithm 5.18, page 5.18),
only the function is simpler. Figure 6.8 shows an equivalent of a trie for DTAs, where the trees
all have a super-root labeled λ. The reader is encouraged to use it to visualize the movement
of hash codes.

6.8 Summary
We presented implementation of perfect hashing and arbitrary hashing for both deterministic,
acyclic finite-state automata, and for deterministic, bottom-up tree automata. We showed
solutions for dynamic perfect hashing and theoretical limits for it.







Chapter 7

Incremental Minimization
Algorithms

Among many deterministic finite state automata that recognize the same language there is
only one (up to isomorphisms) that has the minimal number of states. This also means that it
has the minimal number of transitions. There are several general minimization algorithms for
DFAs. Three of them are based on dividing states into two groups: finite and non-finite states,
and then refining the groups further based on transitions. The process stops when no divisions
can be made. Each group represents a state in a minimal automaton. Those algorithms are:

• Hopcroft algorithm [24] (the fastest in terms of asymptotic worst-case time complexity)

• Aho-Hopcroft-Ullman algorithm [1] (the simplest one)

• Hopcroft-Ullman algorithm [25]

Another algorithm was invented by Janusz Brzozowski [5]. His algorithm differs in several
respects from the three listed above. It dos not require a deterministic automaton as its input;
the automaton can be nondeterministic. It also does not divide states into groups. An input
automaton is reversed so that it recognizes reversals of words that form the language of the
original automaton, determinized, reversed again, and determinized again.

Brzozowski's algorithm and the three algorithms based on refinements of groups have
something in common: intermediate results are not usable. Either we get the final result at
the end of the processing, or we get nothing at all. Bruce Watson [39] came with a solution
that is different. It can be interrupted at any time, so that e.g. one can check whether a word
belongs to the language of a DFA during minimization of that DFA.

7.1 Original Algorithm by Bruce Watson
The incremental algorithm developed by Bruce Watson starts from a simple observation that
if two different states are equivalent, then they can be merged into one state, and the language
of the automaton does not change. It is therefore sufficient to check all pairs of states for
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equivalence, and merge them if possible, to arrive at the minimal automaton. In the minimal
automaton, no pairs of states are equivalent.
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Figure 7.1: A DFA during incremental minimization.

The idea is simple, but the details are not. Let us look at the automaton in Figure 7.1.
Suppose we want to check the equivalence of states 2 and 6. Their equivalence depends on
the equivalence of states 3 and 7. However, the equivalence of states 3 and 7 depends on the
equivalence of states 4 and 8 as well as on the equivalence of states 5 and 9. The equivalence of
states 4 and 8 depends on the equivalence of states 2 and 6. There are chains of dependencies
that can be very long and complicated.

Two states are equivalent when their right languages are equal. We can use the recursive
definition (2.6) of the right language.

(p ≡ q)⇔
(
(p ∈ F ≡ q ∈ F ) ∧ (Σp = Σq) ∧ ∀σ∈Σpδ(p, σ) = δ(q, σ)

)
(7.1)

This leads to the first (basic) version of a function Equiv that checks equivalence of states
pairwise. The function is given as Algorithm 7.1.

The most important item in the function is the third parameter S. If in course of checking
equivalence we arrive at the same pair of states (regardless of their order inside the pair), then
the states are considered equivalent for the purpose of the current evaluation. In other words,
if other conditions hold, then the pair must be equivalent. This part is not explained well in
[41], so let us focus on it. The purpose of the variable S is to detect cycles. When a pair of
parameters is already in S, it means that there is a cycle in the automaton that starts at the pair.
It also means that the right language of a state in the pair that is the parameter of the top-level
call to function Equiv has the form u ∪ vw∗xi ∪ yi, where

• u ∈ Σ∗ is any language that is already found the same for both states of the pair,
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Algorithm 7.1 First version of function Equiv that checks equivalence of a pair of states p
and q. Parameter S contains pairs of states already under examination. The function returns
true if states p and q are equivalent, and false otherwise.
1: function Equiv(p, q, S)
2: if {p, q} ∈ S then
3: return true
4: else if (p ∈ F 6≡ q ∈ F ) ∨ (Σp 6= Σq) then
5: return false
6: else
7: for σ ∈ Σp do
8: if ¬Equiv(σ(p, σ), δ(q, σ), S ∪ {p, q}) then
9: return false
10: end if
11: end for
12: return true
13: end if
14: end function

• v ∈ Σ∗ is a string leading from the states of the pair in the top-level call to function
Equiv to the states of the pair {p, q} that starts the cycle,

• w ∈ Σ+ is string that leads from the pair starting the cycle back to the same pair,

• xi ∈ Σ∗ is the right language of a state in the cycle-starting pair without a w∗ prefix ---
it may be different for those two states, and

• yi ∈ Σ∗ is the rest of the right language of the states in the top-level pair --- again it
may be different for the two states in the pair.

So
→
L (p) =

→
L (q) and p ≡ q when xp = xq .

Let us see an example. We check equivalence of states 2 and 6 in the automaton in Fig-
ure 7.1. Function Equiv(2, 6, ∅) checks that both states are not final and thatΣ2 = {a} = Σ6,
and calls Equiv(3, 7, {{2, 6}}). As {3, 7} 6∈ S, and both states are not final, and Σ3 =
{a, b} = Σ7, Equiv(4, 8, {{2, 6}, {3, 7}}) is called. As {4, 8} 6∈ {{2, 6}, {3, 7}}, and both
states are not final, and Σ4 = {a} = Σ8, Equiv(2, 6, {{2, 6}, {3, 7}, {4, 8}}) is called. This
time {2, 6} ∈ {{2, 6}, {3, 7}, {4, 8}}, so the pair is considered equivalent unless proved oth-
erwise, and the function returns true. Since there are no more symbols in Σ4, Equiv(4, 8,
{{2, 6}, {3, 7}}) returns true. In Equiv(3, 7, {{2, 6}}), Equiv(5, 9, {{2, 6}, {3, 7}}) is called.
This time {5, 9} 6∈ {{2, 6}, {3, 7}}, but state 9 is final and state 5 is not final, so the func-
tion returns false. So does Equiv(3, 7, {{2, 6}}) and Equiv(2, 6, ∅). States 2 and 6 are not
equivalent.

Function IncrMin presented as Algorithm 7.2 is the first version of the incremental mini-
mization algorithm. Set U contains unordered pairs of states that can possibly be equivalent
and that have not yet been checked for equivalence. Since only pairs with both final states or
both non-final states can be equivalent, the set is initialized accordingly. Set E holds pairs of
states that we know they are equivalent. The original algorithm also contained a set of states
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Algorithm 7.2 Function IncrMin performs incremental minimization of an automatonM .
1: function IncrMin(M = (Q,Σ, δ, q0, F ))
2: E ← ∅
3: U ← (F × F ∪ (Q \ F )× (Q \ F )) \ {{p, p} : p ∈ Q}
4: for {p, q} ∈ U do
5: if Equiv(p, q, ∅) then E ← E ∪ {{p, q}}
6: end if
7: U ← U \ {{p.q}}
8: end for
9: Merge pairs of states in E
10: returnM ;
11: end function

that were not equivalent ---updated with the result of function Equiv--- but the set was not
used in minimization, so maintaining it had no sense. Assuming constant time for set oper-
ations, this version of the algorithm runs in O(|Q|4) time, because there may be up to |Q|2
pairs checked in each top-level invocation of function Equiv, and there may be up to |Q|2
such invocations.

The original algorithm contains two improvements. The set S is made a global variable
rather than a parameter. While this leads to faster programs, we prefer to consider it an imple-
mentation detail rather than a major modification of the algorithm. The other improvement
is a limit on recursion depth. It can be proved that the depth of recursion can be bounded
by max(|Q| − 2, 0), so that value is provided as the third parameter (instead of S), and it is
decreased in every recursive call. Since this modification is incompatible with further im-
provements, we will not use it.

7.2 Faster Minimization
The author introduced three improvements to the algorithm. The first two are simple and
result in minor speed increase. The last one is crucial to enhanced time complexity of the
algorithm. The improvements are:

1. presorting of states

2. saving only the initial pair of states and states with more than one incoming transitions
in S

3. full memoization

7.2.1 Presorting of States
Initialization of variable U in Algorithm 7.2 can be interpreted as division of states into two
classes, and using only states from the same class for comparison. Such approach can be
enhanced by including more features for distinguishing classes: the number of outgoing tran-
sitions and the labels of those transitions. This has two advantages:
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1. As there are more smaller classes, there are fewer invocations of function Equiv. Pre-
sorting also takes time, but it can be done in O(|Q|) using bucket sort.

2. Instead of comparing finality, the number of outgoing transitions and labels on those
transitions, we compare only class numbers, so comparisons are much faster.

7.2.2 Saving Fewer State Pairs in S

Let us examine parameter S of function Equiv more closely. Its purpose is to detect cycles.
The cycles can be formed in two ways:

1. a chain of transitions can lead back to the pair in the initial call,

2. at least one of the states in the pair has more than one incoming transition; one of them
leads from a state in the initial pair, another one closes the cycle.

Saving fewer states in S can have two advantages, depending on the implementation of
S. It can either speed up the search in S, save memory required for S, or both.

7.2.3 Full Memoization
The original algorithm uses only (positive) results of top-level invocations of function Equiv.
However, for a single top-level call, up to |Q|2 pairs of states may be examined. The result of
their evaluation is simply thrown away in the original algorithm. The reason for that is that
the results from deeper levels of nested calls may not always be directly usable. Let us look
again at Figure 7.1. Function Equiv finds that states 4 and 8 are equivalent. However, this is
not true. The right language of state 4 is

→
L (4) = aa

(
ba ∪ a

→
L (4)

)
= aaa∗ba while the

right language of state 8 is
→
L (8) = aa

(
b ∪ ba ∪ a

→
L (8)

)
= aaa∗b ∪ aaa∗ba.

In the following, we will use the notation:

δ∗({p, q}, w) = {δ∗(p, w), δ∗(q, w)}, p, q ∈ Q,w ∈ Σ∗ (7.2)

Results returned by function Equiv(p, q, S) can fall into three categories:

1. Conclusive true. This happens when:

(a) p = q, i.e. p and q are actually the same state, or when the states have no outgoing
transitions and they belong to the same class

(b) Function Equiv returns conclusive true on all pairs of states directly reachable
from (p, q) by the same symbol.

(c) The pair {p, q} depends only on itself, i.e. ∃w∈Σ∗δ∗({p, q}, w) = {p, q} and
∀w∈Σ∗δ({p, q}, w) 6∈ (S \ {p, q}). In this case all pairs depending on {p, q} are
merged.

2. Conclusive false. This happens when:

(a) The states are in different classes
(b) They are already remembered as inequivalent
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(c) Any pair of states directly reachable from (p, q) by any symbol are inequivalent.

3. Inconclusive true. This happens when:

(a) A pair of states {r, s} reachable from {p, q} is already a parameter in a higher-
level call to Equiv. The pair {p, q}, and all pairs in the call hierarchy from {r, s}
up to and including {p, q} depend on {r, s}. If other pairs of states depend on
{p, q}, that dependency is transferred to {r, s}.

(b) The pair is already remembered as probably equivalent depending on another pair
of states.

Let us identify those cases in Figure 7.2. Case 1a is {11, 11}. Case 1b is not in the
figure, but it would be states 5 and 9 if state 5 were final or state 9 non-final. Under the same
condition states 2 and 6 would be case 1c. States 5 and 9 are actually case 2a. Case 2b is not
in the figure, as remembered inequivalence would be transferred from another top-level call
to function Equiv. When function Equiv detects inequivalence, then all recursive calls are
immediately completed and no further pairs are examined until another top-level invocation.
States 12 and 13 are an example of case 2c when inequivalence of states 5 and 9 has been
detected. States 4 and 8 are an example of case 3a when reached from {3, 7}, and of case 3b
when reached from {12, 13}.

..1..

2

.

3

.

4

.

12

.

5

.

6

.

7

.

13

.

8

.

9

. 10. 11.

14

.

15

.

a

.

b

.

a

.

a

.

b

.

b

.

b

.

b

.

a

.

a

.

b

.

b

.

a

.

a

.

a

.

a

.

b

.

b

.

a

.

a

Figure 7.2: Another DFA during incremental minimization.

The case of inconclusive (probable) equivalence requires further examination. When a
pair of states is revisited in function Equiv, it means that a cycle has been detected. Until
proved otherwise, the pair is considered equivalent. That equivalence is not sure. It is prob-
able, it is inconclusive as we do not have the complete picture. A cycle means that a pair
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of states, e.g. {r, s} is both at the beginning and at the end of a pair of paths (or a path of
pairs). Being at the end of a path means that there are other pairs of states whose equivalence
depends on the equivalence of {r, s}. All pairs in the cycle depend on {r, s}. They are stored
as dependent on {r, s}. In the course of recursive calls to function Equiv, more dependencies
may be detected. When we reach the pair {r, s}, it may turn out that it depends on no other
pair of states. Then all pairs of states that depend on {r, s}, including {r, s}, can be merged
or can be remembered as inequivalent. If {r, s} depends on another pair of states {p, q}, then
states depending on {r, s} become dependent on {p, q}. To prevent formation of chains of
dependencies that would require more time to be processed, the union-find algorithm [1] is
used to merge dependencies.

7.2.4 Improved Version
The most important part of the algorithm is function Equiv. It is depicted as Algorithm 7.3.

In this improved version, several new variables are used, and an old one is used also in
a new way. Let us begin with the variable S. It holds pairs of states that are already under
investigation in other invocations of function Equiv that are not yet completed, i.e. they are
higher up in the call hierarchy; only those pairs that can start cycles are stored in S. In the
original version, S was seen only as a set. In the improved version, it is perceived as both a
set and a stack. In particular, it holds information about the recursion level of the invocation
in which a pair was a parameter. More precisely, it holds information about the number of
pairs stored in S before the pair in question was put there, as not every call to Equiv stores
pairs of states in S. Local variable pushed is set to true if a pair being a parameter of Equiv
is stored, and false otherwise. Global variable level holds the number of pairs stored in S. It
can be seen as a stack pointer. Function index returns an index of the pair inside the stack.
Note that S does not have to be implemented as a structure containing a stack. We can store
the index in the stack in a table along with the pair, and instead of looking at the top of the
stack, we can find the current pair of states as the pair of two current parameters of function
Equiv (actually stored on a program stack).

If the current pair depends on another pair, then global variable rl holds an index inside S
of that other pair. No dependency is stored as |Q|2. As rl is a global variable, it can be used
to pass information on the dependency across recursive calls. Local variable rl' can collect
that information on the local level.

Variable P holds information about dependencies. It is also dual in nature. A list of pairs
depending on a pair at the given level l in S is accessible as P [l]. However, we can also
check whether {p, q} ∈ P regardless of the level of the pair that the pair {p, q} depends on.
Therefore, P should be implemented as both a table (e.g. a hash table) and a vector of lists.
Function index returns the level of a pair that the argument pair depends on, or |Q if no such
pair exists.

Set I holds pairs of inequivalent states. Equivalent states are merged as soon as their
equivalence is discovered. For a given state q, cl[q] gives its class.

In line 3 of function Equiv, we check whether two states are actually a single state. In the
top-level invocation of Equiv, the states are always different, but they can be merged at some
recursion level. If the states are equal, then Equiv returns true. The check is done in constant
time. In line 4, it is checked whether the states belong to the same class. This is equivalent to
checking finality and the suite of outgoing transitions in the original algorithm, but it is much
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Algorithm 7.3 Improved version of function Equiv.
1: function Equiv(p, q)
2: rl← |Q|2; pushed← false
3: if p = q then eq ← true
4: else if cl[p] 6= cl[q] then eq ← false
5: else if {p, q} ∈ S then eq ← true; rl← index({p, q}, S)
6: else if {p, q} ∈ I then eq ← false
7: else if {p, q} ∈ P then eq ← true; rl← index({p, q}, P )
8: else
9: if level = 0 ∨ FanIn(p) > 1 ∨ FanIn(q) > 1 then
10: S ← S ∪ {{p, q}}; level← level + 1; pushed← true
11: end if
12: rl′ ← |Q|2; eq ← true
13: for σ ∈ Σp do
14: eq ← eq ∧ Equiv(δ(p, σ), δ(q, σ))
15: rl′ ← min(rl′, rl)
16: if ¬eq then break
17: end if
18: end for
19: rl← rl′

20: if pushed then S ← S \ {{p, q}}; level← level − 1
21: end if
22: if eq then
23: if rl > level then
24: Merge{p, q}
25: else
26: P [rl]← P [rl] ∪ {{p, q}}
27: end if
28: else
29: I ← I ∪ {{p, q}}
30: end if
31: if rl = level then rl← |Q|2
32: end if
33: if eq then
34: if rl = |Q|2 then
35: ∀{r,s}∈P [level]Merge({r, s})
36: else
37: P [rl]← P [rl] ∪ P [level]
38: end if
39: else
40: I ← I ∪ P [level]
41: end if
42: P [level]← ∅
43: end if
44: return eq
45: end function
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faster. It is done in constant time. In line 5, cycles are detected by checking whether the pair
{p, q} is already present in S. If it is so, the function returns true, and variable rl is set to
the index of {p, q} in S (seen as a stack). This can be done in constant time. Note that in
the earlier instructions, rl was not modified; it maintained its value from a higher level Equiv
invocation. In line 6, it is checked whether the states are already known as inequivalent; in that
case, the function returns false. The check can also be done in constant time. This completes
the checks that can be done at the current recursion level.

In lines 9--11, it is determined whether the pair can start a cycle. If it is so, the pair is
stored in S, with the stack pointer level incremented, and the variable pushed set to true. Line
12 is a preparation for checks done in deeper recursion levels. Local variable rl' is set to |Q|2
to indicate that the current pair depends on no other pair, and eq is set to true to indicate that
the pair is considered equivalent until proved otherwise.

The loop in lines 13--18 launches checks done for targets of transitions going out from the
current pair of states. As soon as the states are found to be inequivalent, the loop is interrupted
as there is no point in checking more targets of outgoing transitions --- they would not change
the result. Function Equiv is called with targets of transitions going out of p and q. Local
variable rl' is updated so that the global variable rl can be reset at deeper levels. At the exit of
the loop, the value of rl is synchronized with the local variable rl' to communicate dependency
upwards in the call hierarchy. This is done in constant time.

Once the subordinate calls are completed, the pair {p, q} can be removed from S in con-
stant time in lines 20--21. If the result of equivalence check for the pair is positive, there are
two positives. Either the result is conclusive, in which case rl > level, and the pair can be
merged in line 24 (using Union-Find algorithm), or the result is inconclusive, and it depends
on the equivalence of a pair at rl level. In the latter case, the pair {p, q} is added to pairs
depending on the pair at level rl in line 26. This can be done in constant time (adding an item
to a list and to a table). If rl = level, then the pair depends only on itself, so rl is reset to
|Q|2 in line 31 to indicate that there is no longer any dependency. If it is so, and the pair is
equivalent, then all pairs depending on {p, q} are merged in line 35. If the result is positive,
but there is still a dependency on a pair at rl level, the list of pairs depending on {p, q} is
merged with the list of dependencies of the pair at rl level, and the merged list is stored as a
dependency list for the pair at rl level. If the result is negative, pair {p, q} is added to I , i.e. to
a set of pairs known to be inequivalent. The dependency list for the current level is reset in
line 42.

We will give no pseudo-code for the main function for incremental minimization, as it
would not shorten the text. First, all states are sorted on their finality and on the suite of their
outgoing transitions using bucket sort. Sorting divides states into classes. For each class,
states are compared pairwise. As each top-level call to Equiv may compare many pairs from
various classes, it also updates the set I of inequivalent states. Information from I is used to
limit the comparisons at the top level. It also helps in creating new classes.

Let us minimize the automaton in Figure 7.2. We call bucket sort, and get the classes as
in Table 7.1.

0 8 9 13
2 6 3 4 5 1 7 8 9 10 11 14 15 12 13

Table 7.1: Division of states in automaton in Figure 7.2 into classes after bucket sort.
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We set level to 0. We call Equiv(2, 6, S = ∅). We set rl to 175. States 2 and 6 belong to the
same class, and all S, I and P are empty. As level is zero, we put {2, 6} into S, associating it
with level 0, increment level, and set pushed to true. In preparation for nested calls, rl' is set to
175, and eq is set to true. Variable σ is set to a, and Equiv(11, 11) is called with S = {{2, 6}}.
It immediately returns true with rl = |Q|2. Then σ changes to b, and Equiv(3, 7) is called,
with S = {{2, 6}}. The states are different, but in the same class, and they are not in S, I ,
nor in P . As they are not the initial pair, and they both have a single incoming transition, they
are not stored in S, level remains unchanged, and pushed stays false. Variable rl' is set to 175,
and eq is set to true. The for loop is entered. Variable σ is set to a, and Equiv(4, 8) is called,
with S = {2, 6}. States 4 and 8 are in the same class, and they are not in S, I nor in P . They
do have more than one incoming transition, so the pair is stored in S at level 1, with variable
label incremented, and variable pushed set to true. Local variable rl' is set to 175, and eq is
set to true. With σ=a, Equiv(2, 6) is called, with S = {{2, 6}, {4, 8}}. This time, {2, 6} ∈ S,
so rl is set to 0, and the function returns true. Back in Equiv(4, 8), rl' is set to 0, σ is set to
b, and Equiv(14, 15) is called, with S = {{2, 6}, {4, 8}}. Global variable rl is set to 175,
pushed is set to false, states are in the same class, and they are not in S, I or P . They cannot
start a cycle, so instructions in line 10 are not executed. There are no outgoing transitions, and
nothing was saved in S, so eq stays true. States 14 and 15 are merged, i.e. state 15 is deleted,
and its incoming transition is redirected to state 14. Back in Equiv(4, 8), the loop terminates,
rl is set to 0, the pair {4, 8} is removed from S, and global variable level is decremented. Pair
{4, 8} is made dependent on pair {2, 6} in line 26. The function returns true. Back in Equiv(3,
7), rl is set to 0, σ is set to b, and Equiv(12, 13) is called, with S = {2, 6}. Global variable rl
is set to 175, and local pushed to false. The states are in the same class, they are not in S, I ,
nor they are in P . Since they cannot start a cycle, they are not stored in S. Local variables rl'
and eq are set to |Q|2 and true, respectively. Variable σ is set to a, and Equiv(4, 8) is called,
with S = {{2, 6}}. Variable rl is set to 175, and pushed is set to false. States 4 and 8 are in
the same class, they are no longer in S, they are not in I , but they are in P , so rl is set to 0, and
true is returned. Back in Equiv(12, 13), rl' is set to 0, σ is set to b, and Equiv(5, 9) is called,
with S = {{2, 6}}. Global variable rl is set to 0. States belong to different classes, so the
function returns false. Back in Equiv(12, 13), the loop is finished, and rl is set to 0. Restoring
S is skipped, and I is set to {{12, 13}}. The function returns false. Back in Equiv(3, 7), the
loop finishes. No restoration of S is needed. The pair {3, 7} is added to I , and the function
returns false. Back in Equiv(2, 6), rl' is set to 0, and so is rl. States 2 and 6 are removed from
S, and level reaches 0. The pair {2, 6} is added to I . As rl and level are now equal, rl is set
to 175. Pair {4, 8} is added to I , so that I = {{12, 13}, {3, 7}, {2, 6}, {4, 8}}.

The algorithm has an initialization phase, and comparison done inside classes. In the
initialization, a bucket sort is invoked. It runs in time proportional to the number of states.
Global variables S, I , and P are either two-dimensional arrays, or structures that contain
two-dimensional arrays, or hash tables of length proportional to |Q|2. Their initialization
takes O(|Q|2) time. Function Equiv is invoked at the top level at most |Q|2 times. For each
top-level call, the function may be invoked up to |Σ||Q|2 times recursively. Lines 9--42 are
executed at most |Q|2 times; previous lines may be executed |Σ| times more, and it is possible
to limit the number of calls to Equiv like it is done in Section 7.3, however it would not change
the time complexity since the same instructions are executed, and |Σ| is only a constant factor.
When the top-level call is finished, the equivalence or inequivalence of each visited pair is
known. Computational complexity of most operations inside function Equiv has been given
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when describing the function. Those operations run in constant time. What remains to be
explained is:

1. Merging states in lines 24 and 35. One merger can be done in constant time (a vector
can be used for redirection to actual structures representing states; redirection means
replacement of pointers). Various numbers of mergers can take place during a single
call, but there cannot be more mergers than there are states in the automaton. When
more mergers take place, one can use Union-Find algorithm to merge merged states
(see below).

2. Variable S can be implemented as a two-dimensional array or a hash table indexed with
a pair of states, with values being stack pointers for the pairs. The stack itself does not
need to be implemented. Adding a pair to S takes a constant amount of time, and so
does finding a pair and removing a pair from S.

3. Variable I can be implemented as a two-dimensional array (it can be bit packed) or a
hash table indexed with a pair of states. Adding, searching or removing a pair of states
takes constant amount of time.

4. Variable P is implemented as a structure containing an array or a hash table closely
resembling the one that is used in S, and a vector indexed with the number of pairs
stored in S with values being lists of pairs of states. Operations on the array or the hash
table take constant amount of time each. Adding a pair to a list also takes a constant
amount of time. Moving a list of pairs from P to I in line 40 takes time proportional
to the length of the list. There cannot be more than |Q|2 pairs there across all calls to
function Equiv. Merging two dependency lists in line 35 can be done using Union-Find
algorithm [1]. As there cannot be more than |Q|2 items in all those lists in total, and
a pair cannot be on such list in two separate top-level calls to Equiv, executing line 37
across all calls takesO(|Q|2G(|Q|2)), whereG(n) is the inverse Ackermann function.

Therefore, the complexity of the whole algorithm is O(|Q|2G(|Q|2)). That complexity is
larger than most other minimization algorithms, except for Brzozowski algorithm. It should
also be noted that ,,almost quadratic'' complexity does not mean that the algorithm runs almost
the same time as e.g. Aho-Hopcroft-Ullman algorithm for the same data. The incremental
algorithm is much more complicated, so the constant factor is much larger. However, it is the
only algorithm that can be interrupted at any time without loosing intermediate results.

The improvements introduced in this version have various influence on the execution
time of the algorithm. Omitting saving in S pairs of states that cannot start cycles had only a
small effect. During experiments conducted for [41], most states had more than one incoming
transition, and only in one case the greatest number of pairs in S was reduced from 24 to 10.
There may be, however, some applications where automata have different characteristics, and
where this improvement would induce more savings.

Benefits of presorting of states also depend on characteristics of input automata. The
smallest or no improvement was measured on automata with only a few classes. However,
for automata with more classes, presorting was always beneficial, with the average reduction
of calls to function Equiv equal to 16.95% for real-life automata used in the experiments. In
one of the cases, it was reduced by more than a half.
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The greatest improvement was registered with full memoization. For some automata,
e.g. for an automaton with 1 971 states and 24 633 transitions (26 states in the minimal au-
tomaton) as well as for an automaton with 3 186 states and 12 077 transitions (46 states in the
minimal automaton) the execution time for the original version of the algorithm was more
than 24 hours on the computer used in the experiments at that time, so it was not measured.
In cases when the execution time could be measured, the time was reduced up to 6 000 times,
although for some automata, improvement was not noticeable.

This version of the algorithm was developed and implemented by the author. It was first
published in [41]. That paper contains an error: limiting recursion depth is incompatible with
the full memoization. That implementation has been tested on many real-life automata, and
many automatically generated random automata. Only recently an example of an automaton
that was not minimized correctly has been discovered by Marco Almeida. We corrected the
error in this book. The correction involves not only omitting the recursion depth testing, but
also changing the value used for indicating no dependency. Originally, it was set to |Q|, it is
|Q|2 now.

7.3 Simplified Version
Marco Almeida, Nelma Moreira, and Rogério Reis did not stop at detecting the error in the
improved version of the algorithm. They developed their own version that is a simplification
of the improved version.

Algorithm 7.4 Simplified version of function Equiv proposed by Marco Almeida, Nelma
Moreira, and Rogério Reis.
1: function EquivAMR(p, q)
2: if {{p, q}} ∈ I then return false
3: end if
4: if Cl[p] = CL[q] then return true
5: end if
6: S ← S ∪ {{p, q}}
7: for σ ∈ Σp do
8: {p′, q′} ← {Cl[δ(p, σ)], Cl[δ(q, σ)]}
9: if p′ 6= q′ ∧ {p′, q′} 6∈ E then
10: S ← S ∪ {p′, q′}
11: if EquivAMR({p′, q′}) then
12: return false
13: end if
14: end if
15: end for
16: S ← S \ {{p, q}}
17: E ← S ∪ {{p, q}}
18: end function

Function Equiv in that version is listed here as function EquivAMR in Algorithm 7.4. It
is different from [2] because we introduced corrections discussed with one of the authors; the
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same corrections were introduced in FAdo --- the software they used for their experiments.
We have also renamed some variables and changed the style so that it resembles more closely
our version of the algorithm. VariableE is a set of potentially equivalent states. When the top-
level call to function EquivAMR returns true, pairs of states in that set are merged. However,
the process of merging is different from ours as the states keep their identity after the merger.
We introduced variable Cl (different from cl used in the earlier version) to store information
about merged states. When the top-level call returns false, the pairs in S are added to I .
However, contrary to our version of the algorithm, when any nested EquivAMR call returns
false, variable S stays intact holding the whole path from the initial pair to the first pair that
turned out to be inequivalent.

Nelma, Marco and Rogério claim that their version is faster than our version. It may be
so because our handling of dependency lists is time-consuming, but it is surprising as some
information gained in nested Equiv calls is lost in their version. They claim the time com-
plexity of their algorithm is |Σ||Q|2α(|Q|), where α(.) is related to the inverse Ackermann
function. However, their Lemma 5 is incorrect --- if EquivAMR returns false, the pair being
an argument of a nested EquivAMR call can be reused as an argument in a top-level call as
S does not store all visited pairs. That error should be corrected in [3].

7.4 New Version
If the bookkeeping done in our improved version is responsible for longer execution time
than the simplification done by Nelma, Marco and Rogério, then we can propose another
simplification of the improved version that does not loose so much information computed in
nested Equiv calls. Also for simplicity, we do not include our second improvement, but it is
always possible to include it.

It is quite similar to our improved version, but it does not fullymanage the set of potentially
equivalent pairs of states. This should speed up the algorithm if the simplicity hypothesis turns
out to be true. The set of potential states depends always on the pair that is the highest in nested
call hierarchy. When an inequivalent pair is encountered and the set is not empty, the result for
those pairs is waisted, just like in the Portuguese version. However, if the dependencies are
resolved before the inequivalent pair is found, the result is kept, i.e. the pairs are merged. Also,
the reaction to conclusive results (also when dependency has just been resolved) is immediate
--- either the pairs are merged, or they are added to I without waiting until the top-level call
is completed.

Since this is only a variant of the earlier algorithm, we leave the proof of the correctness
as an exercise for the reader.
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Algorithm 7.5 New simplified version of function Equiv.
1: function EquivN({p, q})
2: rl← |Q|2
3: if p = q then eq ← true
4: else if cl[p] 6= cl[q] then eq ← false
5: else if {p, q} ∈ S then eq ← true; rl← index({p, q}, S)
6: else if {p, q} ∈ I then eq ← false
7: else if {p, q} ∈ P then eq ← true; rl← index({p, q}, S)
8: else
9: S ← S ∪ {p, q}; level← level + 1
10: rl′ ← |Q|2; eq ← true
11: for σ ∈ Σp do
12: eq ← EquivN({δ(p, σ), δ(q, σ)})
13: rl′ ← min(rl′, rl)
14: if ¬eq then
15: I ← I ∪ {{p, q}}
16: return false
17: end if
18: end for
19: rl← rl′

20: S ← S \ {{p, q}}; level← level − 1;
21: if rl > level then
22: Merge(p, q)
23: else
24: P ← P ∪ {p, q}
25: end if
26: if rl = level then rl← |Q|2
27: end if
28: end if
29: return eq
30: end function



Chapter 8

Memory-Efficient Representations

Two previous chapters discussed algorithms for construction of minimal automata or for min-
imization of automata. A minimal automaton is smaller than a non-minimal one. However,
when the size in bytes is concerned, there are other factors that influence it. The most im-
portant one is the representation of the automaton in memory. In this chapter, we present
various techniques that reduce memory footprint of deterministic finite-state automata. The
techniques can be classified into several families. Some methods are incompatible with oth-
ers.

Let us take a definition of a DFAM = (Q,Σ, δ, q0, F ). The alphabet Σ usually does not
have to be represented explicitly. If it does, it is when the default coding of symbols takes
too much space (e.g. two bytes when the number of symbols is smaller than 255), and the
symbols have to be recoded. The initial state is either known by its position (the first state) or
it is coded as a single integer, so its influence on the size of the whole automaton is negligible.

Final states can theoretically be represented as a set of states, e.g. as a set of integer state
numbers. Unfortunately, such representation is impractical, because testing finality of a given
state would take too much time. Therefore, finality can be treated as an attribute of a state. It
can either be stored in a structure representing a state, or it can be stored apart in a vector. As
it is a binary feature, this can be a bit vector, i.e. a single state in that vector would take a single
bit. Finality is a concept that is slightly artificial. It can be seen as an output of an automaton.
There are two types of automata with output: Moore's automata and Mealy's automata. In
the first ones, the output is stored in states, in the latter ones --- in transitions. Analogically,
instead of automata with final states, we can have automata with final transitions. Ciura and
Deorowicz [10] call them Mealy's recognizers, and that seems to be a very good name. Such
automata have fewer states and fewer transitions than the traditional automata. Finality of
transitions can be stored in a similar way as for states. Even when representing traditional
automata, finality can also be stored in transitions representing finality of their target states.
It is also possible to get rid of final states altogether. This is done by appending an end-of-
string or end-of-word marker at the end of each input string. The marker cannot belong to
the alphabet of the input strings. The resulting minimal automaton would have only one fi-
nal state, and that state would have no outgoing transitions. In comparison with a traditional
minimal automaton recognizing the same language, the new automaton would have one addi-
tional state --- the final state, and transitions from the old final states leading to the new final
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states labeled with the marker.
The states can be represented as structures holding information about finality and about

the suite of outgoing transitions of a state. However, in most efficient representations, states
are represented only implicitly; they are sets or lists of transitions. One possible representation
of a state is a set of transitions, which is an implementation of a transition table. A state is
a vector of transitions, with transitions indexed by their labels. When there is no outgoing
transition with a particular label for a state, then the place is left ``empty''. Note that it is
normal for an automaton implemented in software to be incomplete rather than complete, so
there will normally be a lot of empty room in the transition table. The other implementation
is a transition list. The list can either be represented as a vector with a transition counter, or as
a sequence. Since the states are implicit, the transition counter would be placed in incoming
transitions of a state (the initial state would need an artificial incoming transition). When the
list is represented as a sequence, it can be a list with pointers, but it is more efficient to put
transitions one after another with a single bit flag indicating the last (outgoing) transition of
a state.

Transitions carry information about their source state, their label, and their target state.
They can also carry additional information related to states. The source state is usually im-
plicit. An automaton is basically represented as a vector of transitions.

Compression methods fall into several categories:

1. representing values of transition fields with smaller amount of memory

(a) single bit flags

(b) fixed size in bytes or bits

(c) variable size

2. sharing space

(a) storing states inside other states

(b) storing parts of states inside other states

(c) storing transitions of states interdigitated (superimposed coding)

(d) storing repeated sequences of transitions in one place

3. using frequency --- reordering states or transitions so that either

(a) more space can be shared

(b) some more frequent values can be represented with less memory

We will describe those methods with more detail, focusing on those techniques that have
been successfully implemented by the author of the book.

8.1 Sharing Space
Certain transitions of one state can be stored inside another state. There are several variants
of this method.



8.1. Sharing Space 213

..1.

2

. 3.

4

.
a

. b.

c

.

a

.

c
.. c.

a

.

b

. ◦. 7.

4

.

4

.3 .

2

.

1

.
4
.

l

.

L

.

t

. ...

. ...

Figure 8.1: Compression by sharing space: a state is stored inside another state. Fields of
a transition are: label (l), last transition (L) flag, target (t). We assume that state 3 starts at
transition 4, and state 4 starts at transition 7.

Let us see an example. Figure 8.1 shows a part (a few states) of an automaton. State 1
has three transitions labeled with a, b, and c. State 2 has two transitions with labels a and c.
Transitions labeled with a and c have the same targets for both states. State 2 can be stored
entirely inside state 1. A state is represented as a list of transitions, with the last transition
having a flag L (last transition of a state) raised. State 1 starts at transition 1, state 2 starts at
transition 2. Both states end with transition 3. Note that in order to use transitions of state 1
to represent also transitions of state 2, transitions of state 1 had to be reordered.
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Figure 8.2: Compression by sharing space: a state is stored partially inside one state, and
partially in another one. State 3 is entirely stored in states 2 and 4, a half in state 2, and the
other half in state 4. Field c is the number of transitions in the target state. It is assumed that
states 5--8 have a single outgoing transition.

Figure 8.2 shows an example of another variant of the same technique. This time a state
is also a list of transitions, but instead of having a marker for the last transition of a state, we
have a counter (c) for the number of transitions of the target state. While this representation
could be used in the previous example, the figure shows another case that is impossible to
implement with the previous representation. The first transition of state 3 is stored as the
last transition of state 2, and the second transition of state 3 is stored as the first transition
of state 4. Unfortunately, counters take much space in comparison to one bit flags, so this
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representation brings less savings than the previous one.
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Figure 8.3: Compression by sharing space: transitions labeled with a and d are shared by
states 1 and 2. State 1 starts at location 1 in the transition vector and ends in location 4. State
2 starts in location 5, and in location 7, it has a tail flag T raised and a pointer to location 3. It
is assumed that state 3 starts in location 8, and state 4 starts in location 9.

When a last transition marker is used, another space-sharing technique can be used. When
two states share a subset of outgoing transitions, and that subset does not constitute the entire
set of outgoing transitions of one of the states, then it is possible to store the subset in one state,
and provide only a pointer to it in the other one. Figure 8.3 shows an example. Transition
labeled with a going to state 3, and transition labeled with d going to state 4 are common both
to state 1 and 2. Those states have also transitions labeled with b and c, but their targets differ.
State 1 is represented normally --- it is a sequence of transitions starting at location 1 in the
transition vector, and ending in location 4, with flag L raised for the last transition. State 2
starts at location 5. Two subsequent slots are occupied by transitions labeled with b and c.
The third slot (at location 7) has a tail flag (T) raised, with the target field pointing to location
3 in the transition vector. At that location inside state 1, there are two other transitions of state
2 that are also transitions of state 1. The T flag in the transition at location 4 indicates both
the end of state 1 and the end of state 2.

Compression techniques described so far made possible sharing subsets of transitions be-
longing to single states. It is a restriction that can be broken. We have already seen that an
automaton is represented as a sequence of transitions. The transitions can be treated as sym-
bols in a large alphabet. Then the sequence of transitions would become text. Such text can
be compressed using text compression techniques. One of the most widely used is the LZW
compression, and a variant of it can also be used for compressing automata.

The LZ-style compression in automata consists in replacing repeated sequences of transi-
tions with pointers to their first appearance in the transition vector. While the idea is simple
and natural, and many researchers tried to follow it, there are several crucial issues to be re-
solved that decide whether the result is actually a success. The first decision to make is what is
the starting point. It turns out that it is better to start with a trie than with the minimal automa-
ton. This looks surprising at first glance, but this compression method automatically includes
minimization (minimization replaces certain repeated structures with pointer to their single
representative), and minimization makes some patterns of transitions less regular, which is an
obstacle.

The second decision is what sequences can be replaced. It is obvious that the sequence
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should be longer than a pointer to it. The sequence does not have to form complete states,
but there are usually constraints that must be obeyed. In the state-of-the-art solution in [33],
incoming transitions for states in the replaced sequence must be located later in the transition
vector than the sequence. Outgoing transitions can only point to a location inside the replaced
sequence. Note that when we use the last transition (L) flag, and store transitions with sub-
sequent letters of words in subsequent locations, we do not have to store transition addresses
there.

The third decision is how to look for repeated sequences. Naive solutions lead to quadratic
algorithms, which can be problematic given the size of large dictionaries. Suffix trees [23]
provide required speed, but they require huge memory. Suffix arrays take less memory while
providing the same construction and search speed. Both suffix trees and suffix arrays can be
built in linear time, and searching for a word in them takes time proportional to the length
of the word. The search for replacements should be optimized so that the greatest gain is
obtained. It should be noted that performing a replacement may change the transitions vector
so that some candidates for replacements stored in a suffix tree or suffix array are no longer
available. Therefore for the best results, the structure should be updated.
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Figure 8.4: Compression by sharing space: State 1 is represented by transitions 1 to 6. How-
ever, only locations 1 and 6 are actually occupied. The empty space is taken by two other
states: state 2 and state 3. State 2 starts at location 2 and ends in location 4. Location 3 is not
filled by any transition of state 2, so state 3 starts there. We assume that state 4 has a transition
labeled with a, and we make no assumption about state 5.

Another form of sharing space is shown in Figure 8.4. It is possible only when transitions
have all the same length, so it is incompatible with some other compression techniques. A
state is represented as a full vector of transitions with space for every symbol of the alphabet.
Therefore, the state starts a the location destined for a transition with the first symbol of the
alphabet. As in natural language dictionaries typical states have few outgoing transitions,
most slots in a vector for a single state are not taken by its transitions. That space is reused
by other states. Starting locations of different states must be different. When a word is being
recognized, a transition is accessed directly by its symbol number, i.e. the zero-based symbol
number must be added to the starting location of the state. As the label is determined by the
location, it seems at the first glance that the label does not have to be stored. However, the label
is used to verify that a given transition belongs to a given state. For example, the transition
at location 3 does not belong to state 2, because state 2 begins at location 2, location 3 would
hold symbol number 1 (b). Location 3 belongs to state 3, as state 3 starts at that location, and
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a is symbol number 0. In the figure, it is assumed that state 4 has a transition labeled with a.
Should its transitions start with a transition labeled with b, the state would start at location 6
instead of 7.

That compression technique gives fastest recognition times as we go directly to the right
transition or see that it does not exist. By contrast, it is slow in tasks when we explore all
transitions of a state, e.g. in spelling correction or listing previous/next word.

8.2 Compressing Fields
Programming languages have integer and Boolean types that can be used to express values of
fields of transitions. It is natural that programmers use them for that purpose. However, such
solution is not optimal. When all transitions have fixed length, then d(log2(n+ 1))/8e bytes
are needed to represent addresses of n transitions. When transitions do not have fixed length,
then they can be addressed by specifying their starting byte number, and for n bytes occupied
by the transition vector, d(log2(n+1))/8e byte addresses would be needed. For typical natural
language dictionaries, especially morphological dictionaries, addresses are usually three bytes
long.

Stopping at a byte boundary is not always the best solution. One can go one step further
and use as few bits as possible. When field boundaries are not bytes, this makes it possible
to store more fields in one byte, or to use fewer bytes to store the same number of fields. The
disadvantage is that unpacking bits is a bit slower than working at a byte level. This can be
compensated by a smaller size of the automaton as a bigger part of the automaton fits into a
cache.

For binary values, like certain flags (see the previous section and the beginning of the
chapter), one bit is sufficient. One-bit flags can also be used to indicate special situations
when a field value can be omitted. For example, in many cases the target state of a transition
in a transition list representation of states would be placed directly after the current state.
Computing its address is not necessary. One-bit flag Next (N) can be used to indicate whether
the situation takes place.

When represented values are integers that can be more than one byte long, it is possible
to use variable-length coding [6]. A value is split into 7-bit chunks accompanied with one-
bit continuation flag that indicates whether the chunk is the last one. Smaller values are
represented with fewer bytes. This simple technique is very efficient.

8.3 Using Frequency
Many text compression algorithms make extensive use of frequency of compressed items.
This can also be applied to automata. For example, we have already seen that sorting tran-
sitions made possible sharing more transitions between states. This works for all forms of
sharing space.

In the previous chapter, we introduced the Next (N) flag. If it is raised, then the target
state is located right after the transition, and the target field can be omitted. This leads to
large savings. The more often the flag is used, the more savings occur. It is possible to sort
transitions of states and the states themselves so that the flag is used more often.
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Transition labels occur with variable frequency. Actually, the frequency distribution fol-
lows Zipf's law. That property can be used for compression. A label in natural language
dictionaries usually takes one byte. If UTF-8 is in use, it is possible to treat individual bytes
of UTF-8 codes as labels. The most frequent labels can be stored in a most frequent label
dictionary, and they can get shorter codes. For example, in the format described in [22], 31
most frequent labels are stored on 5 bytes; 0 indicates that the label is not frequent, and that it
is stored directly afterwards. Three other bits in a byte are taken by finality (F), next (N), and
last (L) flags. When the N flag is raised (which happens often), a transition is represented on a
single byte! Of course, the most frequent labels dictionary must be stored with the automaton,
and it also occupies some space. However, that space is negligible compared to the savings.

8.4 Summary
Many techniques described in this section are described in [26, 28] --- a primary reference for
compression of automata. Interdigitation of states (the last technique described in this sec-
tion, also known as superimposed coding) is described in [27]. It is based on sparse matrix
representation described in [35]. The technique is also described in [31]. The LZ-style com-
pression is described in [34], and an improved method in [33]. Finding sub-automata [37, 36]
can be seen as a restricted variant of LZ-style compression, but finding sub-automata can
also serve other purpose than mere compression. Variable-length coding in transition fields
including recoding of the most frequent labels was introduced by Dawid Weiss [22]. Com-
parison of some of techniques can be found in [13], and [22] can be seen as a follow up to
that paper, with new techniques. A section on compression techniques can be found in [20].
The author of the present book implemented most of those techniques -- see [22, 20, 14, 19].
He reinvented many of them.





Chapter 9

Summary

The author of this book spent years on developing tools and algorithms for natural language
processing. Most of that work was focused on dictionaries. Throughout those years, questions
were asked: ``Why are you doing that''? Technological progress in hardware leads to faster
computers with larger memories. Does it make incremental algorithms, hashing, compression
obsolete? Does it really matter if we use standard databases for dictionaries instead of some
fancy compressed automata?

There are several reasons why this work still meats with interest in the natural language
processing community. Computers are getting faster and faster, but it does not mean that we
give up more advanced sorting algorithms in favor of bubble sort. Compiling an automaton
could take almost the whole day fifteen years ago. It can takeminutes nowadays, but the speed
will not matter when the processing time is under a second. It is simply annoying to wait until
some process finishes. Computers have bigger memories, but much part of them is already
occupied by the ever-growing resource-hungry operating system, and by other processes (a
browser, a multimedia player, a word processor etc.) that run at the same time so that the user
does not fall asleep waiting for the results.

Desktop computers and laptops have very fast processors (but their processing power can
fully be used in games and multimedia applications, NLP applications usually use a single
core), and they have huge memories. However, the computers we use most frequently are not
so powerful. They are getting faster and faster, and their memories grow, but mobile phones
(smartphones) still cannot match desktop computers. And when they do, smart watches wait
for their chance to capture our attention.

Faster, more powerful computers with bigger memories make possible tasks that we could
not think of before. Those tasks require more processing power than it used to be available.
We gather much more data than before. This is true also for dictionary data --- dictionaries
grow with time. They contain more information about individual words, their syntax, seman-
tics, frequency of use, context of use, etc. When the author developed a library for Alpino
project, dictionaries in the system dropped their memory requirements by an order of magni-
tude. But it took Gertjan van Noord little time to reclaim that memory -- he simply used more
data.

Modern NLP applications need algorithms and methods that are efficient. This book
should provide them to developers. We did not make the book formal; the focus is on im-
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plementation. We give many details that are often omitted from journal or conference papers.
We hope that the readers will find this work useful.
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