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Chapter 1

Introduction

1.1 Historical overview

1.1.1 Solitons

Nowadays solitons are one of the most commonly studied nonlinear fields. They
are roughly defined as pulses, which retain their exact shape despite dispersion and
collisions. Such quality is of high interest in communication technology as well as
elementary particle models. Solitary waves were first documented and studied ex-
perimentally by Scott-Russell in 1844 [1]. First theoretical explanation came almost
30 years later in works of Boussinesq [2, 3] and Rayleigh [4] on shallow water wave
equations and finally in 1895 Korteweg and de Vries published their most renown
paper [5], in which they found analytic fixed-form solution of

∂φ

∂t
+
∂3φ

∂x3
+ 6φ

∂φ

∂x
= 0, (1.1.1)

which they derived independently of similar works by Boussinesq from 1877 [6]. The
aforementioned solution

φ(t, x) = 2κ2sech2(4κ3t− κx) (1.1.2)

(with κ as a free parameter) does not disperse like a typical linear wave packet. In
fact, it keeps its shape even after colliding with other waves. Aforementioned solution
matched well with the general shape and properties of solitary waves studied by
Scott-Russell. It is of note, that it could not be approximated using perturbation
techniques. Even though nonlinear differential equations were first formally studied
in differential geometry in the context of Gauss-Peterson-Codazzi equations, which
are central to the problem of embedding of submanifolds, the results of Korteweg
and de Vries were the first non-trivial nonlinear solutions of a field equation. For
instance, the so called Sine-Gordon equation

∂2φ

∂u1∂u2
= m2 sinφ (1.1.3)

9
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Figure 1.1: KdV solitary waves for κ ∈ {1
2 ,

3
4 , 1} (from left to right).

(in light cone coordinates) was first used in the study of pseudospheres back in
1862 [7]. Yet, it wasn’t until 1939 for it to find a use in physics as a continuum
approximation of the Frenkel-Kontorova model of crystalline structures [8] and it
took another 11 years for soliton (a term coined by Zabusky and Kruskal in their
publication on KdV solitary waves collisions in 1965 [9]) solutions to be discovered
by Kochendörfer and Seeger [10, 11]

φ(u1, u2) = 2 arc sin{tgh[m(a1u1 + a2u2)]}+ π (1.1.4)

(with a1 and a2 as arbitrary parameters with condition a1a2 = 1) or

φ(t, x) = 2 arc sin
[
tgh

(
m√

1− v2
x− mv√

1− v2
t

)]
+ π (1.1.5)

in normal Cartesian coordinates. The most important feature of this solution is that
it can be stationary or propagate with an arbitrary speed lower than that of linear
waves of the given system. In essence, it behaves as a particle with a non-zero mass.
The notion is further reinforced by the fact, that there is a conserved quantity con-
nected to the total number of solitons. Kochendörfer’s and Seeger’s results included
solutions containing arbitrary number of solitons (or strictly speaking kinks) and
so-called breathers (a localized oscillating pulse, which can be seen as a bound state
of a kink-antikink pair). It is important to stress, that along with low amplitude
waves this is a complete set of solutions for Sine-Gordon equation, proving which
is a rare achievement in case of a nonlinear system (see [111]). Moreover, Faddeev
and Takhtadzhan were able to transform the Hamiltonian structure determined by
Poisson bracket

{π(x), φ(y)} = δ(x− y) π(x) =
1
γ

∂φ

∂t
(x) (1.1.6)
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Figure 1.2: Stationary Sine-Gordon kink in Cartesian coordinates for m = 0.5 (blue),
m = 1 (green), m = 2 (red).

(with γ as a coupling constant) into a set of three independent subsystems [111]

1. 0 ¬ ρ(p) <∞, 0 ¬ χ(p) < 2π, {ρ(p1), χ(p2)} = δ(p1 − p2),

2. −∞ < pa <∞, −∞ < qa <∞, {pa1 , qa2} = δa1a2 , a ∈ {1, . . . , A},

3. −∞ < ξb <∞, −∞ < ηb <∞, 0 ¬ αb < 2π, 0 ¬ βb <
8π
γ
,

{ξb1 , ηb2} = δb1b2 , {αb1 , βb2} = δb1b2 , b ∈ {1, . . . , B}

describing regular waves, single solitons and breathers respectively with A and B as
arbitrary integers denoting the number of particles of a given type. Sine-Gordon
equation has proven to be substantial in describing dynamics of crystal defects
including adsorbed atomic layers [12] and surface reconstruction [13]. Due to the
integrability of Sine-Gordon equation and richness of possible solutions, it found
use in a variety of research fields ranging from spin structure dynamics [14, 15]
to elementary particle physics [16, 17, 18]. For a more detailed description of the
Frenkel-Kontorova and Sine-Gordon systems in the context of crystal and magnetic
structures see [19]. Another widely used nonlinear equation (usually denoted as φ4

model)
∂2φ

∂t2
− ∂2φ

∂x2
+ C1φ− C2φ

3 = 0 (1.1.7)

was introduced by Landau in his paper on phase transitions [20]. Considering it is
the simplest wave equation with a polynomial nonlinearity, it can be found in many
works using perturbative methods to deal with nonlinear systems. Most importantly,
it contains a stable kink solution for C1C2 > 0, which behaves as a relativistic
particle of non-zero mass just as the Sine-Gordon kink, yet in the φ4 model, there
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can never exist two kinks or antikinks in a row, since there are only two minima in
the potential. A similar potential emerges naturally in the mean field approximation
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Figure 1.3: Stationary φ4 kink in Cartesian coordinates for m = 0.5 (blue), m = 1
(green), m = 2 (red) with V =

√
2.

of multiparticle problems in quantum mechanics leading to the well known nonlinear
Schrödinger equation

i
∂ψ

∂t
= −1

2
∂2ψ

∂x2
+ κ|ψ|2ψ, (1.1.8)

which can be applied to nonlinear optical fibres, planar waveguides and Bose-Einstein
condensation. It is of note, that whereas nonlinear Schrödinger equation is com-
pletely integrable [21] the φ4 model is not integrable.

1.1.2 Quantization

Canonical quantization

The first general formulation of quantization process was given by Heisenberg in
1925 [22] and further refined in collaboration with Born and Jordan [23, 24]. The
general idea is to describe observable quantities as time-dependent matrices indexed
over all possible energy states of the system with the equivalents of position and
momentum still fulfilling equations of Hamiltonian mechanics

dX
dt

= ∂H
∂P

dP
dt

= −∂H
∂X

(1.1.9)

with Hamiltonian H as in the classical system with the distinction, that X and
P don’t commute, which will have an impact on the results. In order to make the
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solutions unequivocal, Heisenberg added a normalising condition on the commutator
of X and P (as well as all other observables)

[X,P ] = i~I (1.1.10)

with I as identity matrix. Value of the constant on the right-hand side stems from
the earlier findings on periodic motion in Bohr atom model as well as the study
of quantum harmonic oscillator. It is important to remark, that due to (1.1.9) all
commutation relations are direct analogs of Poisson bracket relations in classical me-
chanics, which is even more prominent, when one looks at the Heisenberg’s equation
of motion for observables

i~
∂

∂t
O = [O,H] (1.1.11)

(with O as an arbitrary observable), which is a direct analog of the classic condition
for conservation of a given quantity

∂

∂t
O = {H,O}. (1.1.12)

It can be said, that the quantization process is the act of substitution of Poisson
bracket with a different operation. This notion was further generalized by Moyal
[25] and independently by Groenewold [26], who introduced a deformation of Pois-
son bracket (parametrised by ~), which also behaves as a deformed commutator
for non-commuting quantities. This formalism is often called minimal or deforma-
tion quantization and is a useful tool in studying relations between classical and
quantum systems. For instance, it was recently adopted by Błaszak and Domański
[27, 28] and used to analyse separability of variables in quantum versions of certain
integrable systems [29, 30]. As for the Heisenberg’s picture, position matrix X con-
tains information about available energy states and possible jumps between them,
but it does not describe a specific state of the system anymore. For that, additional
state vectors φ had to be introduced and average values of a given observable were
obtained as (here for example the position)∑

n,k

φnXnk(t)φk. (1.1.13)

In this sense φn is the probability amplitude of finding the system in state n. It is
worth stressing, that in the Heisenberg picture, the state vectors are not dependent
on time, since the time evolution of the system is contained in the observables. The
situation can be reversed, if we solve the evolution equation (1.1.11)

O(t) = e
it
~HO(0)e−

it
~H (1.1.14)

(with the exponential function defined through Taylor expansion) and insert the
solution into (1.1.13). We can rightfully assume, that the time evolution operator
e−

it
~H works on the state vector φ instead of the observable matrix and define a

time-dependent state vector
φ(t) = e−

it
~Hφ. (1.1.15)
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This assumption is the basis of Schrödinger’s series of papers [31, 32, 33, 34], where
he treated observables as functional operators instead of using matrix representation.
More precisely, he assumed a specific form of said operators

x̂ = −→x
p̂ = −i~∇
Ê = i~ ∂

∂t

(1.1.16)

and expanded the evolution equation in a Taylor series in t obtaining the well known
differential equation

Ĥψ(−→x , t) = Êψ(−→x , t), (1.1.17)

where the Hamiltonian operator Ĥ is obtained by a substitution of position and
momentum by their operator forms in the classical formula. What is important,
Schrödinger form of quantum mechanics preserves all commutation relations given
by Heisenberg, yet it is strictly non-relativistic, whereas Heisenberg viewpoint can
contain relativistic case as well as the non-relativistic one. This was the reason for
Dirac to search for a different wave equation, which would be consistent with special
relativity. He achieved his goal in 1928 [35] (here for a free particle)

i~γµ∂µψ −mcψ = 0 (1.1.18)

here written down using the Einstein summation convention and with γµ as four-
dimensional square matrices fulfilling anticommutation relation

{γµ, γν} = 2gµ,ν (1.1.19)

with gµ,ν as the standard metric tensor. One of the implications was that the wave
function was no longer a scalar and it implied a change in the definition of probabil-
ity density. Even more important implication was the seemingly artificial negative
energy spectrum mirroring the positive eigenvalues. Dirac proposed a conceptual
solution to that problem [36] by postulating, that almost all negative energy states
are already occupied. Going from this assumption he predicted, that holes (akin to
those encountered in semiconductors) behave exactly like electrons with an oppo-
site electrical charge. This concept also readily led him to discover the possibility of
annihilation and creation processes. He did however make a false assumption, that
the positively charged counterparts to electrons are protons - a mistake, that was
however soon rectified by Weyl, who pointed out, that Dirac’s hole would have to
have the same mass as an electron. Thus a positron was the first particle predicted
theoretically before it was ever observed, which happened in 1932 [37, 38]. Mean-
while Dirac has stated that relativistic quantum mechanics has to explicitly involve
the field through which particles interact and are observed [39]. The resulting model
for quantum electrodynamics was further studied by Fock and Podolsky [40] and
quickly led to a joint paper with Dirac [41], where they have shown the equivalence
of this new model to the earlier attempts on quantization of electromagnetic field by
Heisenberg and Pauli [42, 43], which gives a full view of the so called old quantum
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electrodynamics. The problem of infinite ground state energy due to an infinity of
degrees of freedom was not satisfactorily solved until 1947, when Bethe proposed a
first mathematically sound way of renormalization [44]. At the same time Feynman
has sought for an entirely new way of quantization in hope to rewrite the quantum
electrodynamics in a more universal and coherent way. His approach to quantiza-
tion was formulated as an extrapolation of probability amplitude summation rules
in 1948 [45] along with the notion, that lack of information about the quantum state
has physical consequences. More precisely, he defined the wave function as a sum
over all possible histories leading to the current state (a general idea, which was
loosely mentioned in earlier papers by Dirac [39])

ψ(x, t) = lim
ε→0

∫ ∞
−∞

−1∏
k=−∞

e
i
~S(xk,xk+1)

−1∏
k=−∞

dxk
Ak

(1.1.20)

with xk as positions at times tk, S as action integral over a classical path between
events (tk, xk) and (tk+1, xk+1), x0 = x, t0 = t, ε as the partition width, tk → −∞
as k → −∞ and A as a normalising factor. In this form it is not computable, but it
naturally shows the way to calculate evolution of a known state

ψ(x, t) = lim
ε→0

∫ ∞
−∞

ψ(x−Nε , t−Nε)
−1∏

k=−Nε
e
i
~S(xk,xk+1)

−1∏
k=−Nε

dxk
Ak

(1.1.21)

with t−Nε as a fixed time previous to t and Nε → ∞ as ε → 0. A year later
Feynman published two papers concerning quantum electrodynamics [46, 47]. By
combining propagator formalism with Stückelberg’s idea of positrons as electrons
travelling backward in time he obtained creation and annihilation processes as a
type of scattering process in an unmodified Dirac system. The key was to change
the typical condition on the propagator kernel (denoted with K)

∀t′<tK(q, q′, t, t′) = 0 (1.1.22)

(with primed coordinates as the final coordinates) with one based on the distinction
between positive eigenvalues of the Hamiltonian (associated with electrons) and the
negative ones (associated with positrons) ∀t′>tK(q, q′, t, t′) =

∑
En>0 φn(x′, t′)φn(x′, t′)e−iEn(t′−t)

∀t′<tK(q, q′, t, t′) = −∑En<0 φn(x′, t′)φn(x′, t′)e−iEn(t′−t).
(1.1.23)

Within this formalism Feynman has described virtual particles as closed loops in
space-time, which led to a relatively simple form of vacuum to vacuum amplitude
(denoted as Cv)

Cv = e−L, (1.1.24)

where L is the sum of amplitudes from all possible single virtual particle loops, which
is represented by a sum over single loops containing specific number of scattering
processes. In a subsequent paper [48] he incorporated photons into the model by
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taking advantage of the ease of separation of subsystems in his method of quantiza-
tion. While the problem of self interaction and vacuum polarization was discussed,
there was no definitive answer on the proper renormalization thereof. Throughout
following decades many new techniques were developed in order to cut the emerging
infinities, yet there were few works, which would redefine the quantum field theory
in a way, which would not lead to divergent results in the first place. An interesting
approach to the problem was introduced by Czachor in 2000 [49], where he proposed
to treat frequency as another observable of the quantum system. It allowed him to
construct vacuum state by using a finite amount of oscillators with indefinite fre-
quency instead of using an infinity of oscillators as in the canonical representation of
quantum electrodynamics (one for each allowed frequency). An analogue treatment
of fermionic fields can be found in [50] and a discussion of possible experimental
differences between canonical quantum electrodynamics and the proposed reducible
representation was presented in [51, 52, 53]. It is also important to mention the
algebro geometric approach to quantization, which allows for the use of the whole
range of topological tools in order to investigate properties of quantum systems. An
intuitive description was given by Tyurin [54] both for Abelian and non-Abelian
structures.

Semiclassical quantization

However, for the purpose of this thesis we will focus on semiclassical quantization
methods, which as yet are only developed for the canonical quantization schemes.
First semiclassical scheme was the renown WKB approximation [55, 56, 57] (some-
times referred to as Liouville-Green method, since the same ideas can be found in
their works from the first half of XIX century), which is a specific type of perturba-
tion calculus. The general idea is to substitute the solution of a differential equation
with an exponent containing a power series (starting from the −1 power and up to
infinity) in a specific infinitesimal parameter. When applied to Schrödinger equation,
it usually takes a slightly modified form:

ψ(x, t) = e
i
~S(x,t)

∞∑
n=0

~nψn(x, t) (1.1.25)

(with x containing all spatial variables). Separation of the equation in respect to
powers of ~ gives as a series of equations, which can be used to calculate arbitrarily
many elements of this expansion starting from S (which turns out to solve equations
for corresponding classical action). In 1931 Fock has published a book on the fun-
damentals of quantum mechanics [58], which presents the state of the research field
in that time. In his study of canonical transformations of quantum theory and their
connection to contact transformation of classical mechanics he derived an expression
for evolution of ψ0 in the WKB approximation through the determinant of a Hessian
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of the classical action integral in respect to initial and final coordinates

ΨQ(q) = (2π~)
n
2

√√√√det
[
∂2S

∂q∂Q

]
e
i
~S(x,t) (1.1.26)

(with n as the number of spatial dimensions). This expression is basically the semi-
classical approximation of the propagation operator even if it was not identified as
such by Fock at the time. Exactly the same result was (possibly independently)
derived by Pauli in 1951 [59] from Feynman’s formulation of quantum mechanics for
small propagation times

K(q, q′, t) =
1√

2πi~n
√
De

i
~S(q,q′,t) (1.1.27)

with K as the propagator kernel, n as the number of degrees of freedom, S as the
classical action and D as the determinant of the Hessian of S in respect to all com-
ponents of q and q′. He has also shown, that this approximation solves Schrödinger
equation with an error of order ~2, which is natural considering the connection with
WKB scheme. In 1961 Maslov used Taylor expansion of the action integral around
a chosen classical path with fixed border conditions

ψ(x, t) ≈
∫ ∞
−∞

ψ(x0, t0)e
i
~

(
S(ϕ)+ 12

∂S
∂wj∂wk

(ϕ)wjwk

)
dx0

∏
o

dwo (1.1.28)

(with ϕ as the classical path between (x0, t0) and (x, t), and wo as coefficients in a
representation of paths in a given base of functions) to approximate the path integral
through functional determinants [60, 61]

ψ(x, t) ≈
∫ ∞
−∞

ψ(x0, t0)
e
i
~S(ϕ)√
det[L]

dx0 (1.1.29)

(operator L derived from ∂S
∂wj∂wk

(ϕ) as i
2~

∂S
∂wj∂wk

(ϕ) = −π(φj, Lφk) with φj as cho-
sen base functions). Later it has proven important in expanding Feynman ideas to
nonlinear field theories, since this approach to semiclassical limit will not require
more than a single classical path as opposed to the method shown by Pauli [59].
It is important to stress, that Maslov’s method is non-perturbative in nature as
opposed to WKB approximation. Meanwhile Garrod reformulated path integrals in
the language of Hamilton mechanics [62] as opposed to the notion of action integral
used in the original works of Feynman

ψ(x1, t1) =
∫ ∞
−∞

∫ x1

x0
ψ(x0, t0)e

2πi
∫ t1
t0

(p(t)ẋ(t)−H(x(t),p(t)))dt
d[x(t)]d[p(t)]dx0. (1.1.30)

This allowed him to construct canonical transformations, which are much simpler in
path integral form in arbitrary coordinate system, since they are performed on the
classical coordinates and therefore do not require explicit operator form of position
and momentum. Building upon those results Gutzwiller was able to construct the
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semiclassical approximation of propagator kernel in the energy-momentum repre-
sentation [63, 64]

K̃(p′′, p′, E) = − 1
2π~2

∑
classical paths

|DT |
1
2 ei

T
~ +φπ2 (1.1.31)

with p′ as the initial and p′′ as final momentum, E as energy, T as classical action
in energy-momentum representation, φ as phase factor connected with caustics in
the phase space (see [63, 64] for details) later on identified as the winding number
of the classical orbit [65] and DT is a determinant of the Hessian of the classical
action T in respect to E and all components of p′ and p′′. Apart from reproducing
well known exact energy levels of Coulomb potential (derived as simple poles of the
propagation kernel in the E variable), Gutzwiller has also given an explicit form of
propagation kernel for a general spherically symmetric potential with a simple pole
at the centre assuming only, that it is monotonic in r as well as given a proper way
of extracting energy levels from the propagator. In two subsequent papers [66, 67]
Gutzwiller refined the notion of state density

N(E) ∝ −E
∫
K(q, q, E)dq +

∫ E

0
K(q, q, E ′)dqdE ′ (1.1.32)

as an attempt to expand semiclassical quantization beyond the cases for which we
can perform complete variable separation.

Quantization of solitons

Methods shown in Gutzwiller’s papers allow one to calculate energy levels of a given
potential without any knowledge of the wave functions, which was later utilised by
Daschen, Hasslacher and Neveu in their most renown series of papers from 1974 [16],
where they succeeded in quantising a static kink solution of the φ4 system (wave
equation with potential V (φ) = λ

4φ
4 − m

2 φ
2) by finding the correction to kink’s

energy

∆E = m

(
1

2
√

6
− 3
π
√

2

)
(1.1.33)

(with ~ = c = 1) as well energies of its excited states in the weak coupling approxima-
tion. It is of note, that the renormalization consisted of a regular vacuum cut-off and
an additional additive term introduced in order to eliminate logarithmic divergences.
Shortly thereafter Korepin together with Faddeev obtained quantum corrections to
energy of a static soliton of the Sine-Gordon system (V (φ) = m2(1 − cosφ)) using
Maslov approach to semiclassical quantization [68]

∆E = Tr
[
ln
(
∂2

∂t2
− ∂2

∂x2
+ V ′′(φcl)

)]
(1.1.34)

(here before regularization with φcl as the classical field). In the end the result was

∆E = −m
π
. (1.1.35)
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It is of note, that their method includes time-dependent part of the action inte-
gral explicitly and does not depend on harmonic expansion of the potential around
the classical field. Furthermore, it shows that Maslov approximation translates well
to multidimensional problems. In the following year Dashen, Hasslacher an Neveu
quantized the Sine-Gordon kink using the same method as for the φ4 model and
obtained the same result [17]. Actual calculations in a general d-dimensional theory
required another improvement in mathematical methods, which came in form of
generalized zeta-function first used for the purpose of regularization by Dowker and
Critchley [69] in the context of Klein Gordon equation in de Sitter space

ζ(x′′, x′, s,m2) =
1

Γ(s)

∫ ∞
0

dττ s−1e−im
2τK(x′′, x′, τ) (1.1.36)

with τ as proper time in relativistic sense and m2 as mass in the Klein-Gordon
equation. It was used to calculate the semiclassical correction to Lagrangian

∆L(x) = lim
s→1

iζ(x, x, s− 1,m2)
2(s− 1)

(1.1.37)

with ~ = c = 1 and before renormalization, which can be performed on the level of
finite zeta-function. Shortly after that Hawking constructed a general method for
quantising field theories on curved space-time manifolds [70] using the generalized
zeta-function. In 1980 Ventura explicitly calculated energy corrections to φ4 in 3 + 1
dimensions [71] using the method given earlier by Daschen et al. [16] (assuming
V (φ) = λ

4φ
4 − m2

2 φ
2 + m4

4λ and ~ = c = 1)

∆E =
m3

24π

9
√

2
π
−
√

3
2

 . (1.1.38)

Finally Konoplich was able to perform quantization of φ4 kink solution in a general
d-dimensional euclidean space [72] (assuming V (φ) = g

4φ
4 − m2

2 φ
2 and ~ = c = 1)

∆E1+1 =
m

π
√

2

[
π

2
√

3
− 3− 3 ln

(
M

m
√

2

)]
, (1.1.39)

∆E2+1 =
3m2

4π

[
1 +

1
4

ln(3)
]
, (1.1.40)

∆E3+1 =
3m3

4
√

2π2

[
1− π

6
√

3
+ ln

(
M

m
√

2

)]
. (1.1.41)

Most notable in his work is the inclusion of the so called mass scale M introduced
to cut logarithmic divergences, which is not an arbitrary parameter despite such an
assertion in the publication. It is important to note, that the results are qualitatively
dependent on the number of dimensions accounted for, even if the classical solution
is not. Another important aspect of the method, which will not be elaborated on in
this thesis, is that a very similar formalism can be used in thermodynamics, which
was shown by Konoplich in [73]. A throughout explanation of Dashen’s approach as
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well as S-matrix formalism in the context of solitons can be found in the book by
Rajaraman [74] (see also [75]). Later publications refined the mathematical methods,
yet there was little progress in quantising nonlinear fields other than single solitons
or kinks. Of note would be the development of direct mode summation by Bordag
[76], which is a very general method suitable for localized potentials in 1+1 and 3+1
dimensions. Another important progress was made by Kirsten in collaboration with
McKane [77] and Loya [78], when they proposed a method of constructing zeta-
function by contour integrals without explicit solutions to the spectral problem.
Namely, if the eigenvalue problem can be rewritten in a form

F (λ) = 0, (1.1.42)

where F is a known function, then

ζ(s) =
1

2πi

∫
γ
dλλ−s

d

dλ
ln(F (λ)), (1.1.43)

where γ is a counterclockwise curve enclosing all the zeros of F . In recent years
Pawellek has made a major breakthrough by quantising periodic solutions of Sine-
Gordon and φ4 systems [79, 80] using the methods developed by Kirsten. As impor-
tant as those results are, they lack an explicit analytic form and they don’t account
for rest variables.

This survey would not be complete without the mention of quantum inverse
scattering method. For those nonlinear systems, for which there exists a canonical
transformation of coordinates into a fully linear Hamilton system (complete inte-
grable systems, see [111] for an example) it is possible to go through with a canonical
quantization procedure (substitution of Poisson bracket structure with commuta-
tors). In 1979 Sklyanin, Takhtadzhyan and Faddeev used such a representation to
fully quantize the Sine-Gordon system [81]. It took another 10 years to quantize the
Sinh-Gordon model [82]. The main limitation of quantum inverse scattering method
is the requirement of complete integrability imposed on the classical system and it
was only ever employed in case of 1+1 dimensions (due to difficulties with studying
multidimensional nonlinear classical systems) with infinite spatial domain (due to
limitations of scattering methods). A comprehensive explanation of the method can
be found in [83] with an application to Heisenberg spin chain.

1.1.3 Ferromagnetism

First attempt of theoretical description of ferromagnetic materials can be attributed
to Weiss [84]. He assumed, that the field generated by the material itself is enough
to fully saturate it magnetically and thus ferromagnets are always saturated (before
one accounts for thermal vibrations). To explain the possibility of varied degrees of
magnetization (including a lack of external field) of pieces of iron and other ferro-
magnetic materials, he proposed that their interior is divided into so called domains
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(each fully saturated), which can cancel each other out. He even correctly predicted
the two possible magnetization processes: through the change of domain size and
change in direction of their magnetization. Weiss’s theory was good enough to ex-
plain the Curie point and together with Pierre Curie he was able to properly describe
behavior of ferromagnets above the critical temperature, yet he could not find a rea-
son for the internal magnetization he proposed. This feat was achieved by Heisenberg
[85] in 1928 (see also his later works [86, 87]). Under the Heitler-London approxima-
tion he has shown, that the Pauli exclusion principle can lead to an ordered ground
state for valence electrons in crystals. Moreover, he predicted, that ferromagnetism
in elementally pure materials (the only case he was able to properly solve) requires
specific crystal configuration, in which each atom has at least 8 nearest neighbours.
This was a significant breakthrough, since not only an underlying phenomenon re-
sponsible for ferromagnetism was found, but also the theory properly shown, which
elements have ferromagnetic properties. Heisenberg’s ideas were further refined by
Bloch [88, 89], who was able to introduce thermodynamics into the model and thus
calculate the magnetic properties of ferromagnets below and above the Curie point.
More importantly, he was the first to obtain a model of a domain wall from first
principles. His estimations of domain size and shape based on microscopic qualities
of a given material were unfortunately incomplete due to the importance of magne-
tostatic energy and the macroscopic geometry of a particular ferromagnetic object
as was pointed by Landau and Lifschitz in their seminal paper [90] in 1935. Their
most important achievement was construction of a classical system describing key
qualitative and quantitative properties of ferromagntic materials. It uses a classical
expression for internal energy density (here with an easy axis anisotropy with z as
the preferred direction of spin as per the original paper)

H =
∫ {

1
2α

[
(∇sx)2 + (∇sy)2 + (∇sz)2

]
+

1
2β

[
s2
x + s2

y

]}
dV, (1.1.44)

where −→s = [sx, sy, sz] is a vector representing local magnetization (in a discrete
version of the model it would represent magnetic moment of a single atom), ∇ the
standard vector differential operator, α parameter can be derived from Heisenberg’s
exchange integrals or experimentally from Curie point of a given material and β is
the anisotropy parameter. As such this model allows one to calculate the spatial
parameters of the domain wall as well as its energy. Yet, to properly calculate the
shape and distribution of domain walls, Landau and Lifschitz noted, that the global
magnetostatic energy has to be taken into account. By imposing a lack of external
field generated by a piece of ferromagnet of a given shape, they were able to replicate
experimental data on that subject. The approach presented by Landau and Lifschitz
was adapted and refined by numerous researchers in following decades. A very com-
prehensive summary of early accomplishments in the field of magnetic domain walls
was given by Kittel in 1949 [91]. In later years the dynamic properties of magnetic
systems were more closely studied and in 1966 Akhiezer and Borovik have presented
a throughout study of spin waves in ferromagnets [92]. One of the most interest-
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ing finds in their work is that solitary waves have a specific maximum propagation
speed. Other researchers enriched the system by accounting for external magnetic
field (see for example [14, 15]), non-zero temperature [93], impurities in the crystal
structure [94], long-range interactions [95], discrete nature of the real ferromagnets
in form of perturbative corrections [96] or numerical study of an explicitly discrete
system [97]. A throughout overview of the fully quantum Heisenberg chain was given
by Maillet [98] with focus on connection between theory and experimental data.

1.2 Aim of work

The main goal of this work is to obtain an analytic form of non-relativistic quasiclas-
sical corrections to energy of static, periodic solution of φ4 nonlinear model as well
as the static quasi-periodic (ϕ(x + xp) = ϕ(x) + C) solution of Sine-Gordon model
with inclusion of all due rest variables. Until now, there was very little progress in
quantising nonlinear fields other than single static solitons. In order to achieve this
objective refinement of mathematical tools used in semiclassical quantization is in
order. First point of order is a revision and rederivation of zeta-function regular-
ization scheme. It is required to properly determine the meaning of the so called
mass scale and the way of estimating its value. It is equally important to extract
as much of physical data as possible from the general energy corrections formula
without explicitly solving the inherent eigenvalue problem. Another goal is to refine
the mathematical methods used to construct the generalized zeta-function. Most
notably this thesis contains a detailed analysis of the Drach equation including the
necessary conditions on potentials to have finite gap spectrum (through a connection
between borders of energy bands and singularities of the Green function) as well as
a proof of uniqueness of solutions for such potentials. The final goal is to apply the
mathematical results to the domain walls of the classical Heisenberg magnetic chain
in easy axis and easy plane approximation. Considering the relatively high ratio of
quantum corrections to classical energy, measurable effects on domain wall dynam-
ics are expected. In particular the dependence of energy on the spatial period of
analysed field contains valuable information on interaction energy of domain walls.
Negative sign of energy corrections in a given set of system parameters can also
lead to spontaneous domain wall creation, which could not be accounted for in the
classical system.

1.3 Thesis Outline

Second chapter is devoted to the classical Heisenberg magnetic chain model with
external magnetic field perpendicular to the chain. It starts with an explanation of
relation between the discrete and continuous chain, from which two distinct approxi-
mations are derived for ferromagnets with axial anisotropy: one for the so called easy
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axis case, where spin direction in line with the anisotropy is preferred, and one for
the so called easy plane case, where spin direction perpendicular to the anisotropy
is preferred.

Third chapter provides an in-depth overview of the semiclassical quantization
in version developed by Maslov. Firstly the original definition of path integrals is
discussed and the difference between the quantum-mechanical case and field theory
path integrals is shown. Next the connection between the original definition and
formula given by Maslov is explained and the general form of corrections to energy
is provided. Lastly the zeta-function regularization scheme is discussed and the way
in which variable separation simplifies multidimensional problems is shown.

Fourth chapter focuses on the Drach equation in the context of Green func-
tion problem. It opens with a proof, that diagonal elements of a given Green function
problem solve the Drach equation. Following is a detailed analysis of the equation it-
self and resulting set of conditions for finite gap potentials. Furthermore, the chapter
contains a proof of uniqueness of solutions representing Green function diagonal for
finite gap potentials and a solving algorithm (sample implementation in appendix
B). It concludes with a brief discussion of scaling operation and their impact on
solutions.

The last chapter concentrates on calculating energy corrections to static,
periodic solution of φ4 nonlinear model as well as the static quasi-periodic solution of
Sine-Gordon model, which contain the single kink solution as a limit. It begins with
an analysis of scaling operations on the general formulae for semiclassical corrections,
which allows for extraction of physically relevant data without the need of solving
the underlying spectral problem.



Chapter 2

Heisenberg’s magnetic chain

2.1 General equations of motion

Full set of quantum-mechanical equations for a large number of electrons is im-
mensely difficult to handle without approximations. Heisenberg managed to derive
the phenomenon of ferromagnetism from first principles [85], but in many cases
one has to either resort to time consuming numerical procedures or vastly reduced
systems. Therefore in the study of various aspects of magnetic structure of solids
classical systems are created from their quantum counterparts. In case of magnetic
domain walls, one often is concerned with a single chain of atoms with a single
relevant electron on each of them and models a cross-section of a domain wall as
a soliton (or a similar solution) on this chain [14, 15]. Spins are assumed to be
simple localized vectors of unitary length. Assuming an axial anisotropy (here in
line with the modelled chain, but it is not essential) and an external magnetic field
perpendicular to the anisotropy direction we will work with a Hamiltonian of form

H = −J
∑
n

−→s n−→s n+1 +D
∑
n

(sn,3)2 − gµBB
∑
n

sn,1 (2.1.1)

with −→s n = [sn,1, sn,2, sn,3] (since we impose an additional limit of |−→s n| = 1 only two
of those elements will be independent) representing electron spins, D as anisotropy
parameter, g as the g-factor, µB as Bohr magneton, B as the amplitude of exter-
nal magnetic field and J representing the so-called exchange energy arising from
the influence of Pauli exclusion principle on interaction of electrons, which can be
calculated from first principles [85] or estimated from Weiss molecular field model
[99]. Equation parameters can also be obtained experimentally as was shown in [90].
According to [100] the equation of motion for this model can be written as

~∂t−→s n = −→s n ×∇sn,jH, (2.1.2)

where
−→
∇sn =

[
∂sn,1 , ∂sn,2 , ∂sn,3

]
. We will now insert the explicit form of

−→
∇snH = −J(−→s n+1 +−→s n−1) + 2Dsn,3x̂3 − gµBBx̂1 (2.1.3)

24
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into (2.1.2)

~∂t−→s n = −→s n × (−J(−→s n+1 +−→s n−1) + 2Dsn,3x̂3 − gµBBx̂1). (2.1.4)

We will procede with writing the equations explicitly for each base direction
~∂tsn,1 = −J [sn,2(sn+1,3 + sn−1,3)− sn,3(sn+1,2 + sn−1,2)] + 2Dsn,2sn,3
~∂tsn,2 = −J [sn,3(sn+1,1 + sn−1,1)− sn,1(sn+1,3 + sn−1,3)]− 2Dsn,1sn,3 − gµBBsn,3
~∂tsn,3 = −J [sn,1(sn+1,2 + sn−1,2)− sn,2(sn+1,1 + sn−1,1)] + gµBBsn,2

(2.1.5)
and taking the continuum limit (with a as lattice constant and −→s = [s1, s2, s3] as a
smooth function in t and x3)

~∂ts1 = −J [s2(2s3 + a2∂2
x3
s3)− s3(2s2 + a2∂2

x3
s2)] + 2Ds2s3

~∂ts2 = −J [s3(2s1 + a2∂2
x3
s1)− s1(2s3 + a2∂2

x3
s3)]− 2Ds1s3 − gµBBs3

~∂ts3 = −J [s1(2s2 + a2∂2
x3
s2)− s2(2s1 + a2∂2

x3
s1)] + gµBBs2.

(2.1.6)

Considering the fact that |−→s | = 1 we can work with two unknown functions (angles
in three-dimensional space) instead of three (s1, s2 and s3). With this in mind, we
substitute

−→s = [cos θ cosφ, sin θ cosφ, sinφ] (2.1.7)

and after simple reduction we obtain general equations of motion ~ cosφ∂tθ = Ja2[∂2
x3
φ+ sinφ cosφ(∂x3θ)

2]− 2D cosφ sinφ− gµBB sinφ cos θ
~∂tφ = −Ja2[cosφ∂2

x3
θ − 2 sinφ∂x3θ∂x3φ] + gµBB sin θ

(2.1.8)
as well as the Hamiltonian

H = −J
a
{cosφ cos(a∂x3θ)[cosφ cos(a∂x3φ)− sinφ sin(a∂x3φ)]

+ sinφ[sinφ cos(a∂x3φ) + sin(a∂x3φ) cosφ]}

+
2D
a

sinφ− gµBB

a
cos θ cosφ (2.1.9)

which might require addition of a constant to set the energy minimum at 0. In the
next two subsections we will reproduce two distinctive simplifications of this system.

2.2 Easy plane approximation

If the axial anisotropy parameter D is greater than zero, then spins lying in the
OX1X2 plane are preferred. Without the external magnetic field, spins would be
able to rotate freely in that plane, thus the name of the approximation, which takes
it a step further and assumes, that φ angle is almost zero. For this approximation
to be viable, axial anisotropy has to be the dominating factor in determining spin
direction. Since the nearest neighbour interaction term of the Hamiltonian (the part
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with coefficient J) doesn’t prefer any direction, it will suffice to assume D >> gµBB.
From the assumption φ ≈ 0 we can readily obtain sin(φ) ≈ φ and cos(φ) ≈ 1. In
essence, we treat φ as the least significant value. After inserting those approximation
to equations of motion we obtain ~∂tθ = Ja2[∂2

x3
φ+ φ(∂x3θ)

2]− 2Dφ− gµBBφ cos θ
~∂tφ = −Ja2[∂2

x3
θ − 2φ∂x3θ∂x3φ] + gµBB sin θ.

(2.2.10)

Considering the continuum approximation we can omit all components containing
a2∂2

x3
φ and a2φ as a product of two least significant values. We arrive at ~∂tθ = −2Dφ− gµBBφ cos θ

~∂tφ = −Ja2∂2
x3
θ + gµBB sin θ.

(2.2.11)

Now we use our base assumption D >> gµBB on the first equation to obtain ~∂tθ = −2Dφ
~∂tφ = −Ja2∂2

x3
θ + gµBB sin θ.

(2.2.12)

As can be seen, we can use the first equation to eliminate φ from the second one
and obtain an equation of motion for θ angle only φ = − ~

2D∂tθ
~2
2D∂

2
t θ = Ja2∂2

x3
θ − gµBB sin θ

(2.2.13)

with a corresponding Hamiltonian

H =
~2

4aD

(
∂θ

∂t

)2

+
Ja

2

(
∂θ

∂x3

)2

+
gµBB

a
(1− cos θ) (2.2.14)

with a constant gµBB
a

added to set the energy minimum at 0. This system can be
easily identified as the Sine-Gordon equation. We will now proceed to derive a quasi-
periodic solution of this equation describing the so-called stripe domains (assuming
the same width of each domain as well as the same direction each domain wall
is twisted in) and an asymptotic case thereof describing a singular ferromagnetic
domain wall. Let us start with the equation of motion (2.2.13) in a dimensionless
form (t = Tt′ and x3 = ax′ with T as a parameter introduced in the action integral
in Chapter 3)

~2

2JDT 2
∂2
t′θ = ∂2

x′θ −
gµBB

J
sin θ. (2.2.15)

In this form, there are only two relevant parameters: phase speed

c =

√
2JDT 2

~2
(2.2.16)

and potential amplitude

m2
θ =

gµBB

J
. (2.2.17)
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We will use this notation for simplicity

1
c2
∂2
t′θ = ∂2

x′θ −m2
θ sin θ. (2.2.18)

As we are only concerned with static solutions (due to limitations of Green function
evaluation methods and a few concerns about the quantization scheme), we can
simplify the equation to

∂2
x′θ −m2

θ sin θ = 0. (2.2.19)

From here we multiply the equation by ∂x′θ

∂2
x′θ∂x′θ −m2

θ sin θ∂x′θ = 0 (2.2.20)

and integrate over x′
1
2

(∂x′θ)
2 +m2

θ cos θ = C, (2.2.21)

where C is an arbitrary integration constant. We can now substitute

θ = 2 arc sin θ′ + π, (2.2.22)

which combined with the Pythagorean identity gives us

2
(∂x′θ′)

2

1− θ′2
= C +m2

θ − 2m2
θθ
′2. (2.2.23)

After multiplication by 1
2(1− θ′2) and a substitution

k2 =
C +m2

θ

2m2
θ

(2.2.24)

we arrive at
(∂x′θ′)

2 = m2
θ(1− θ′2)(k2 − θ′2), (2.2.25)

which is the equation defining the Jacobi sn function. Namely

θ′(x′) = k sn(mθx
′; k). (2.2.26)

With this we can build the actual solution of Sine-Gordon equation

θ(x′) = 2 arc sin[k sn(mθx
′; k)] + π (2.2.27)

or

θ(x3) = 2 arc sin

k sn

√gµBB
J

x3

a
; k

+ π, (2.2.28)

if we use the original notation. It is important to note, that this solution without
additional care is only valid for a half-period of the sn function due to the nature of
the arc sin function, which should be in general treated as a multivalued function. Yet
if we start from any arbitrary part of the solution there is always a unique smooth
continuation. In the end we obtain a so called quasi-periodic solutions, which is
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characterized by θ
(
x3 + 2

mθ
K(k)

)
= θ (x3) + 2π quality. In the k → 1 limit this

solution will converge to a well known single soliton:

θ(x3) = 2 arc sin

tgh

√gµBB
J

x3

a

+ π. (2.2.29)

Energy per single period of the solution ( 2
mθ
K(k)), which represents a single domain

wall, can be calculated by integration of the Hamiltonian

Ec(k) =
4
k2

√
JgµBB

[(
1 + k2

)
E(k) +

(
1− k2

)
K(k)

]
, (2.2.30)

where K denotes the complete elliptic integral of the first kind and E the complete
elliptic integral of the second kind. In the case of a single domain wall (k → 1) it
simplifies to

Ec = 8
√
JgµBB. (2.2.31)

2.3 Easy axis approximation

If the anisotropy coefficient D is negative, then without the external magnetic field
spin direction in line with the anisotropy axis is preferred. In extreme cases, when
nearest neighbour interaction is weak (which would invalidate the continuous ap-
proximation) it would result in a discrete Ising model. Here we will focus on a
different regime. Let us look on the stationary points ((θ, φ) = const) of an easy
axis magnetic chain (D < 0) with external magnetic field perpendicular to the
anisotropy axis.  0 = −2D cosφ sinφ− gµBB sinφ cos θ

0 = gµBB sin θ,
(2.3.32)

which gives us readily θ = 0
φ ∈ {− arc cos(gµBB−2D ), 0, arc cos(gµBB−2D )}

(2.3.33)

with φ = 0 being unstable. For gµBB close to but lower than −2D both stable
points are close to φ = 0. In such a situation it is valid to assume φ ≈ 0 with φ3 as
the highest considered term due to the instability of the φ = 0 point and with θ as
the highest considered term ~∂tθ = Ja2∂2

x3
φ− 2D(φ− 2φ3

3 )− gµBB(φ− φ3

6 )
~∂tφ = −Ja2∂2

x3
θ + gµBBθ.

(2.3.34)

As in the easy plane case we consider a2∂2
x3
θ as a product of two least significant

values and omit it ~∂tθ = Ja2∂2
x3
φ− 2D(φ− 2φ3

3 )− gµBB(φ− φ3

6 )
~∂tφ = gµBBθ,

(2.3.35)
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which leads to
~2

gµBB
∂2
t φ = Ja2∂2

x3
φ− (2D + gµBB)φ+ 8D+gµBB

6 φ3

θ = ~
gµBB

∂tφ.
(2.3.36)

The result represents the φ4 model with the energy density

H =
~2

2agµbB

(
∂φ

∂t

)2

+
Ja

2

(
∂φ

∂x3

)2

− 3(2D + gµBB)2

2a(8D + gµBB)
+

2D + gµBB

2a
φ2 − 8D + gµBB

24a
φ4 (2.3.37)

with − 3(2D+gµBB)2

2a(8D+gµBB) added to set the energy minimum at 0. Now we will derive a peri-
odic solution of this system describing the so called stripe domains, which similarly
to the easy plane case will have a single domain wall solution as a limit. As before,
we will start by introducing dimensionless variables t = Tt′ and x3 = ax′ (with a

and T having the same meaning as before)

~2

gµBBJT 2
∂2
t′φ = ∂2

x′φ−
2D + gµBB

J
φ+

8D + gµBB

6J
φ3. (2.3.38)

We can readily identify the phase speed

c =
T

~

√
gµBBJ. (2.3.39)

Since we are interested only in a static solution, we can omit the time derivative

∂2
x′φ−

2D + gµBB

J
φ+

8D + gµBB

6J
φ3 = 0 (2.3.40)

and as in the previous case multiply the equation by ∂x′φ, and integrate it over x′

1
2

(∂x′φ)2 =
2D + gµBB

2J
φ2 − 8D + gµBB

24J
φ4 + C. (2.3.41)

For brevity, we will introduce
mφ =

√
−2D+gµBB

J

V =
√

12(2D+gµBB)
8D+gµBB

,
(2.3.42)

which will result in

(∂x′φ)2 = −m2
φφ

2 +
m2
φ

V 2
φ4 + 2C. (2.3.43)

From here we can again refer to the definition of Jacobi sn function and substitute
a solution of form φ = C1sn(C2x

′; k) with C1 and C2 as constant to be found after
inserting the solution back to (2.3.43). We will obtain

φ(x′) =

√
k2

1 + k2
V sn

(
mφ√
1 + k2

x′; k
)

(2.3.44)
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with k as a free parameter. For k → 1 it reduces to a well known single kink solution

φ(x′) =
1√
2
V tgh

(
mφ√

2
x′
)
. (2.3.45)

With this we can also calculate the classical energy per half period of the solution
2
√

1+k2
mφ
K(k), which represents a single domain wall

Ec =
JmφV

2

12(1 + k2)
3
2

[
8(1 + k2)E(k) + (−5 + 2k2 + 3k4)K(k)

]
, (2.3.46)

which for k = 1 simplifies to

Ec =

√
2

3
JmφV

2, (2.3.47)

or

Ec =
4
√
−2J(2D + gµBB)

3
2

8D + gµBB
(2.3.48)

in the original notation.
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Semiclassical quantization

3.1 Feynman formalism

For the purpose of this section we will use Dirac notation for quantum states. More
specifically |xn〉 will denote a state fully localized in point xn. In Feynman formu-
lation of quantum mechanics [45] propagation operator can be expressed as [101]
(conditional probability densities were obviously expressed in many earlier publica-
tions including the original [45, 61], but we are using this form of the left hand side
for elegance)

〈xT | e−
i
~TH |x0〉 = lim

N→∞

∫ ∞
−∞

N∏
n=1

e
i
~S(xn−1,xn, TN )

N−1∏
n=1

dxN
χ

(3.1.1)

assuming xN = xT and that xn ∈ R, where S(xn−1, xn,
T
N

) represents an action
integral over a classical path between points xn−1 and xn with time difference T

N

(assuming a conservative system) and χ is a normalising factor as per the original
definition [45]. Assuming the most typical form of action integral for a material point
of mass M

S(x, T ) =
∫ T

0

M
2

(
∂x

∂t

)2

− V (x)

 dt (3.1.2)

(with x as a function of time with specified boundary conditions) we can simplify
(3.1.1) for N →∞, since for short time intervals classical trajectory can be approx-
imated with a straight line between (xn−1, tn−1) and (xn, tn) provided the potential
is smooth

S
(
xn−1, xn,

T

N

)
≈ MN

2T
(xn − xn−1)2 − T

N
V (xn). (3.1.3)

This approximation should still hold for almost everywhere smooth or discontinuous
potentials (as long as the set of discontinuities has no accumulation points), but
they should be treated with additional care. The gaussian term becomes dominant
as N → ∞. Considering that ∆xn = xn − xn−1 are independent variables, this
formulation of Feynman integral is similar to that of a Wiener process, yet there
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are substantial differences as was shown in [102]. At this point one can properly
define the normalising factor using the fact, that the integral has to converge in the
N →∞ limit. Namely for high enough N we should have

e
iMN
2T~ (xn−xn−1)2 =

∫ ∞
−∞

e
iMN
T~ [(x−xn−1)2+(xn−x)2]dx

χ
. (3.1.4)

This leads directly to

χ =

√
iπT~
MN

(3.1.5)

for a time interval T
N

. It is of note, that the convergence requirement automatically
implies that the propagator always converges to identity operator for small T . The
same result was obtained by Feynman in [45] by matching path integral formalism
with Schrödinger viewpoint. Difference by a factor of

√
2 stems from the fact, that

Feynman integrated over ∆xn instead of xn. This result can be easily generalized
to d-dimensional theory, where we would take the same normalising factor for each
degree of freedom (as long as they are independent).

The same ideas could potentially be used to quantize field theories

〈ψT | e−
i
~TH |ψ0〉 = lim

N→

∫
C(R)

N∏
n=1

e
i
~S(ψn−1,ψn, TN )

N−1∏
n=1

Dψn
χ

, (3.1.6)

where ψ are twice differentiable fields over R2 (position variable x and time variable
t), ψn denote positions at given time points (as in ψ(tn, x) ≡ ψn(x)), ψN = ψT and
S(ψn−1, ψn,

T
N

) represents an action over a classical path between ψn−1 and ψn in
time T

N
and χ is a normalising factor. Assuming action integral

S(ψ, T ) =
∫ T

0

∫
R

M
2

(
∂ψ

∂t

)2

− G

2

(
∂ψ

∂x

)2

− V (ψ)

 dxdt (3.1.7)

we can obtain a similar convergence condition as for a quantum mechanical path
integral. Namely for N →∞

S
(
ψn−1, ψn,

T

N

)
≈

∫
R

{
MN

2T
[ψn − ψn−1]2

−G
2

∫ T
N

0

[
tN

T

∂ψn
∂x
−
(

1− tN

T

)
∂ψn−1

∂x

]2

dt

 dx (3.1.8)

and subsequently

e
i
~S(ψn−1,ψn, TN ) ≈

∫
C(R)

e
i
~

∫
R{MN

T
[ψn−1/2−ψn−1]2}dx

×e
i
~

∫
R

{
−G2

∫ T
2N
0

[
2tN
T

∂ψn−1/2
∂x

−(1− 2tN
T ) ∂ψn−1∂x

]2
dt

}
dx

×e
i
~

∫
R{MN

T
[ψn−ψn−1/2]2}dx

×e
i
~

∫
R

{
−G2

∫ T
2N
0

[
2tN
T

∂ψn
∂x
−(1− 2tN

T )
∂ψn−1/2

∂x

]2
dt

}
dxDψn−1/2

χ
.

(3.1.9)
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After integration over t we obtain

e
i
~S(ψn−1,ψn, TN ) ≈

∫
C(R)

e
i
~

∫
R{MN

T
[ψn−1/2−ψn−1]2}dx

×e
i
~

∫
R

{
−G2

∫ T
2N
0

[(
∂ψn−1/2

∂x

)2
−
∂ψn−1/2

∂x

∂ψn−1
∂x

+
(
∂ψn−1
∂x

)2]}
dx

×e
i
~

∫
R{MN

T
[ψn−ψn−1/2]2}dx

×e
i
~

∫
R

{
−G2

∫ T
2N
0

[(
∂ψn−1/2

∂x

)2
−
∂ψn−1/2

∂x
∂ψn
∂x

+( ∂ψn∂x )2
]}

dxDψn−1/2

χ
.

(3.1.10)

In this case, one does not have an easy choice for the normalising factor χ. In fact,
normalization of such functional gaussian integrals (real or complex) is still an open
question.

3.2 Maslov representation

A different approach was presented by Maslov in [60, 61]. Let us expand the action
integral into a Taylor series around a specific classical field ϕ over R2 × [0, al]d−1

(one time variable t spanning over R and d spatial variables written summarily as
−→x = [x1, ..., xd] with x1 spanning over R and all others over [0, al]) with a given
boundary conditions (Dirichlet or Neumann) or periodic condition. Namely, we use
a substitution

φ = ϕ+
∑
j

wjφj (3.2.11)

with φj fulfilling the same type of condition as ϕ with the difference, that in case of
boundary conditions its value (or derivative) will vanish at the boundary. If we use
the chosen base for the Taylor expansion

S(φ) = S(ϕ) +
1
2

∑
j,k

∂2S

∂wj∂wk
(ϕ)wjwk + . . . , (3.2.12)

we obtain a following approximation of propagation operator

∫
C0,T
ψ0,ψT

e
i
~S(φ)Dφ ≈

∫
R
e
i
~

[
S(ϕ)+ 12

∑
j,k

∂2S
∂wj∂wk

(ϕ)wjwk

]∏
f

dwf (3.2.13)

with ϕ as the classical path with boundary conditions ϕ(0,−→x ) ≡ ψ0(−→x ), ϕ(T,−→x ) ≡
ψT (−→x ) and φj as a base of all functions over R2 × [0, al]d−1 fulfilling conditions
∀jφj(0,−→x ) ≡ φj(T,−→x ) ≡ 0. It is easy to see, that the classical action can be
extracted out of the integral

e
i
~S(ϕ)

∫
R
e
i
2~
∑

j,k
∂2S

∂wj∂wk
(ϕ)wjwk∏

f

dwf . (3.2.14)
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Assuming (specifics of the spatial domain are not important at this point)

S(φ) =
∫ T

0

∫
R×[0,al]d−1

ρ
2

(
∂φ

∂t

)2

−
d∑

n=1

Gn

2

(
∂φ

∂xn

)2

− V (φ)

 d−→x dt (3.2.15)

we obtain

∂S

∂wj∂wk
(ϕ) =

∫ T

0

∫
R×[0,al]d−1

[
ρ
∂φj
∂t

∂φk
∂t

−
d∑

n=1

Gn
∂φj
∂xn

∂φk
∂xn
− V ′′(ϕ)φjφk

]
d−→x dt. (3.2.16)

Considering the boundary conditions

∂S

∂wj∂wk
(ϕ) =

∫ T

0

∫
R×[0,al]d−1

[
−ρ∂

2φj
∂t2

φk

+
d∑

n=1

Gn
∂2φj
∂x2

n

φk − V ′′(ϕ)φjφk

]
d−→x dt. (3.2.17)

It is important to note, that Robin boundary conditions would generate additional
terms due to integration by parts. By introducing dimensionless variables −→x = a

−→
x′ ,

t = Tt′,

∂S

∂wj∂wk
(ϕ) = Tad

∫ 1

0

∫
R×[0,l]d−1

[
− ρ

T 2

∂2φj
∂t′2

φk

+
d∑

n=1

Gn

a2

∂2φj
∂x′2n

φk − V ′′(ϕ)φjφk

]
d
−→
x′dt′ (3.2.18)

and inserting the result back into (3.2.14)

e
i
~S(ϕ)

∫
R
e
iTad

2~
∑

j,k

∫ 1
0

∫
R×[0,l]d−1

(
− ρ

T2
∂2φj
∂t2

φk+
∑d

n=1
Gn
a2

∂2φj
∂x′2n

φk−V ′′(ϕ)φjφk

)
d
−→
x′dt′wjwk∏

f

dwf

(3.2.19)
we can rewrite the integral by introducing a scalar product (for real-valued classical
fields)

(φk, φj) =
∫ 1

0

∫
R×[0,l]d−1

φjφkd
−→
x′dt′ (3.2.20)

and an operator

L = − iTad

2π~r2

(
− ρ

T 2

∂2

∂t′2
+

d∑
n=1

Gn

a2

∂2

∂x′2n
− V ′′(ϕ)

)
(3.2.21)

with r2 as normalising factor introduced to eliminate (φj, φj) from calculations and
explained in detail further in the text

e
i
~S(ϕ)

∫
R
e−r

2π
∑

j,k
(φk,Lφj)wjwk

∏
f

dwf . (3.2.22)
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Further transformations rely on the form of the potential and the classical so-
lution taken. If we consider a solution dependent on a single variable (including
one obtained by Lorentz transform or rotation), then operator L is a sum of one-
dimensional symmetric (for our definition of scalar product) second order differential
operators, which means its eigenfunctions form an orthogonal base provided that the
border conditions do not couple the single variable of importance with any other.
In such a case we can use this base to simplify the propagator into a product of
standard Gaussian integrals

e
i
~S(ϕ)

∫
R
e−π

∑
j
λjw

2
j
∏
f

dwf , (3.2.23)

which can be easily solved
e
i
~S(ϕ)

∏
j

(λj)−
1
2 . (3.2.24)

Finally, the product of eigenvalues of L can be represented simply as a determinant
of L

e
i
~S(ϕ)√
det[L]

, (3.2.25)

which is the main point of [61] (which also provides proper regularization). Up to
this point we have neglected the left hand side of (3.1.6). In case of a static classical
field (which also implies ∀TψT = ψ0 and S(ϕ) = −TEc) it can be approximated by

〈ψ0| e−
i
~TH |ψ0〉 ≈ e−

i
~TEq 〈ψ0|ψ0〉 , (3.2.26)

where Eq is the total energy of a given field [101]. Earlier publications often used
the notion of effective Lagrangian or effective action to obtain the same results.
However, the connection to the quantum eigenvalue problem might be a useful notion
in quantization of non-static classical fields. By combining both approximations one
obtains

Eq = Ec +
i~
2T

ln(det[L]) +
iT

~
ln 〈ψ0|ψ0〉 , (3.2.27)

or more precisely

Eq = Ec + <
(
i~
2T

ln det[L]
)
. (3.2.28)

This expression needs to be regularized, considering that the spectrum of any dif-
ferential operator is unbounded. We will describe the chosen regularization scheme
in the next subsection.

3.3 Generalized zeta-function regularization

Chosen regularization scheme consists of two steps. First is based on the assumption,
that for a minimal energy solution (vacuum state) the corrections should vanish [61].
Therefore

Eq = Ec + <
[
i~
2T

(ln det[L]− ln det[L0])
]
, (3.3.29)
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where

L0 = − iTad

2π~r2

(
− ρ

T 2

∂2

∂t′2
+

d∑
n=1

Gn

a2

∂2

∂x′2n
− C

)
(3.3.30)

with C = const dependent on the particular potential V chosen. This also assumes,
that the potential V is a function of φ only. At this point it is necessary to rewrite
the determinants of both operators in a form, which would allow the subtraction.
For this purpose we use a well known generalized zeta-function [103, 104]

ζL(s) =
∑
j

λ−sj , (3.3.31)

where λj are eigenvalues of L. As can be seen

ln det[L] = −∂ζL
∂s

(0). (3.3.32)

The zeta-function itself will be constructed through a set of transformations on a
heat equation Green function as was shown in [72](

∂

∂τ
+ L

)
gL

(
τ, t′, t′0,

−→
x′ ,
−→
x′ 0

)
= δ(τ)δ(t′ − t′0)δ

(−→
x′ −

−→
x′ 0

)
(3.3.33)

with border conditions on gL the same as for the functions in Maslov representation
and an additional condition

∀τ<0 gL

(
τ, t′, t′0,

−→
x′ ,
−→
x′ 0

)
≡ 0. (3.3.34)

In such a situation the Green function can be expressed as a formal sum over eigen-
states of L

gL

(
τ, t′, t′0,

−→
x′ ,
−→
x′ 0

)
=
∑
j

e−λjτ
φj

(
t′,
−→
x′
)
φj

(
t′0,
−→
x′ 0

)
(φj, φj)

Θ(τ), (3.3.35)

where Θ denotes Heaviside step function. This definition of the Green function relies
on the expression of Dirac delta function through a formal sum

δ(t′ − t′0)δ
(−→
x′ −

−→
x′ 0

)
=
∑
j

φj

(
t′,
−→
x′
)
φj

(
t′0,
−→
x′ 0

)
(φj, φj)

(3.3.36)

over all elements of a orthogonal base. After inserting (3.3.35) into (3.3.33) we obtain

δ(τ)
∑
j

e−λjτ
φj

(
t′,
−→
x′
)
φj

(
t′0,
−→
x′ 0

)
(φj, φj)

= δ(τ)δ(t′ − t′0)δ
(−→
x′ −

−→
x′ 0

)
. (3.3.37)

As can be seen the formal sum on the left side of equation will converge to the
definition of δ function for τ → 0. We can build the renormalized zeta-function by
following transformations:

ζ(s) =
1

Γ(s)

∫ ∞
0

τ s−1
∫ 1

0

∫
R× [0, al]d−1

[
gL

(
τ, t′, t′,

−→
x′ ,
−→
x′
)

−gL0
(
τ, t′, t′,

−→
x′ ,
−→
x′
)]
d
−→
x′dt′dτ. (3.3.38)
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This method of constructing the generalized zeta-function allows for an easy in-
troduction of additional variables thanks to the property of heat equation Green
function [72]

gL1+L2 = gL1gL2 (3.3.39)

up to a factor of Θ(τ) if L1 and L2 depend on different, independent variables. Since
usually one calculates the Green function for τ > 0 and adds the step function
later, it’s not much of a setback. To explain this property, let us assume φ1,j(x)
as eigenfunctions of L1 with eigenvalues λ1,j and φ2,n(y) as eigenfunctions of L2

with eigenvalues λ2,n. Considering the aforementioned independence of variables
φ1,j(x)φ2,n(y) are eigenfunctions of L1 + L2 with eigenvalues λ1,j + λ2,n. Knowing
this we can build

gL1+L2 =
∑
j,n

e−(λ1,j+λ2,n)τ φ1,j(x)φ2,n(y)φ1,j(x0)φ2,n(y0)
(φ1,jφ2,n, φ1,jφ2,n)

Θ(τ). (3.3.40)

Considering the scalar product we use, we can write

(φ1,jφ2,n, φ1,jφ2,n) = (φ1,j, φ1,j)1(φ2,n, φ2,n)2. (3.3.41)

From here we obtain

gL1+L2 =
∑
j

e−λ1,jτ
φ1,j(x)φ1,j(x0)

(φ1,j, φ1,j)1

∑
n

e−λ2,nτ
φ2,n(y)φ2,n(y0)

(φ2,n, φ2,n)2
Θ(τ), (3.3.42)

which brings us back to (3.3.39). It is convenient to introduce an additional function

γL(τ) =
∫ 1

0

∫
gL(τ, t′, t′,

−→
x′ ,
−→
x′ )d
−→
x′dt′, (3.3.43)

for which the (3.3.39) relation holds as well. For the purpose of this thesis we consider
only one-dimensional classical solutions and use a few additional definition

L1 = A

(
∂2

∂x′21
− a2V ′′(ϕ(x′1))

G

)
, (3.3.44)

A = −iTGa
d−2

2π~r2
(3.3.45)

with the exact form of potential V and solution ϕ specified in Chapter 5. It also
means we can restrict L0 to the x variable only. For the rest of the publication x′1
will be denoted as x and ∀nGn = G. Furthermore

L2 = −A
c2

∂2

∂t′2
, (3.3.46)

L3 = A
∑
n6=1

∂2

∂x′2n
(3.3.47)

with a connection to (3.2.21) by ∀nGn = G and c2 = GT 2

Ma2
. Considering the simple

form of L2 and L3 we can readily calculate (assuming a span of l for all x′n and
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continuum approximation of spectra)

γL2 =

√
c2

4πAτ
, (3.3.48)

γL3 =
(
− l

4πAτ

) d−1
2

. (3.3.49)

We can also transform the equation for gL1 to extract A out of it with a simple
substitution τ = τA

|A| (due to the nature of Dirac delta function it is better not to
scale it by an imaginary constant). We will get{

∂

∂τA
− i

[
∂2

∂x2
− a2V ′′(ϕ(x))

G

]}
gL1(τA, x, x0) = δ(τA)δ(x− x0). (3.3.50)

With such notation we obtain a final form of zeta-function

ζ(s) =
icl

d−1
2 π

d
2

2d|A|−sΓ(s)

∫ ∞
0

τ
s− d+22
A

∫
R [gL1(τA, x, x)− gL0(τA, x, x)] dxdτA (3.3.51)

and the final form for energy corrections

∆E = <

lim
s→0

∂

∂s

~cl d−12 π d
2

2d+1T |A|−sΓ(s)

∫ ∞
0

τ
s− d+22
A

×
∫

[gL1(τA, x, x)− gL0(τA, x, x)] dxdτA
}
. (3.3.52)

At this point the renormalising factor r2 (often referred to as the mass scale [72]) is
chosen to cut out all logarithmically divergent terms arising from differentiation of
A−s and possibly the Mellin integral as well. It is important to stress, that the choice
of its value has impact on quantitative results and is not necessarily obvious. On
purely mathematical level r2 can be viewed as a free parameter of the theory (which
is a reason for keeping it unspecified in works of Konoplich [72]), but it seems so
only because we usually are unable to construct the whole propagator, which would
allow us to use the normalising condition of the propagation operator

∀0<T ′<T 〈ψT | e−
i
~TH |ψ0〉 =

∑
ψT ′

〈ψT | e−
i
~ (T−T ′)H |ψT ′〉 〈ψT ′ | e−

i
~T
′H |ψ0〉 (3.3.53)

to properly set the value of r2 (see appendix A for a sample use of the same method
in the case of harmonic oscillator). Yet, to obtain physically relevant results one
has to find a way of estimating the normalising factor. This problem will be further
discussed in Sections 5.1 and 5.2.1. Similar issues might arise with the L0 for fields
spanning over a finite domain, where any choice of the constant potential leads
to finite results. However, known results for fields spanning over infinite domains
suggest, that the lowest eigenvalue of L0 should coincide with start of the unbound
states band.



Chapter 4

Green function diagonal equation

4.1 Derivation

Let us consider a heat kernel problem(
∂

∂τA
+

∂2

∂x2
− U(x)

)
g(x, x0, τA) = δ(x− x0)δ(τA), (4.1.1)

where g(x, x0, τA) ∈ S is the fundamental solution over Schwartz space S and
δ(x − x0), δ(τA) are Dirac delta-functions. After Laplace transformation, an ODE,
parameterized by p, appears(

p+
∂2

∂x2
− U(x)

)
ĝ(x, x0, p) = δ(x− x0). (4.1.2)

The construction of generalized zeta-function in fact relies upon the Green function
diagonal [70, 72, 103]. In [103] a statement about ĝ(p, x, x) = G(p, x), is used.
Namely, G(p, x) solves the equation

2GG′′xx − (G′x)
2 − 4(U(x)− p)G2 + 1 = 0 (4.1.3)

on condition, that U(x) is bounded [103]. As can be seen, this is a form of Drach
equation [105] (main points of this and related works were described in [106]) used
in a different context. The equation resembles one of derived by Hermit for the Lamè
equation [107], see also [108]. We will now explicitly prove the connection between
heat kernel problem and Drach equation.

Thesis: If ĝ(p, x, x0) is a solution of (4.1.2), then ĝ(p, x, x) solves (4.1.3).

Proof: Let us consider homogeneous equation(
p+

∂2

∂x2
− U(x)

)
f (p, x, x0) = 0. (4.1.4)

The fundamental solution of (4.1.4) is built by standard procedure. It has
two linearly independent solutions, for example φ and ψ, decaying respectively at
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−∞ and +∞. One can represent ĝ through φ and ψ either for x < x0, or x > x0

with a sewing condition determined by equation (4.1.2)

ĝD(p, x, x0) =

 A(x0)φ(p, x), x ¬ x0

B(x0)ψ(p, x), x  x0.
(4.1.5)

From the continuity condition of ĝ one obtains

A(x0)φ(p, x0) = B(x0)ψ(p, x0), (4.1.6)

which leads to:

A(x0) = C(x0)ψ(p, x0), (4.1.7)

B(x0) = C(x0)φ(p, x0). (4.1.8)

Due to the symmetry of Green function in respect to exchange of x and x0, C(x0)
is constant (later referred as C). To obtain the condition for derivatives of φ and ψ

one integrates (4.1.2) with respect to x in an ε neighbourhood of x0

∫ x0+ε

x0−ε

(
p+

∂2

∂x2
− U(x)

)
ĝ (p, x, x0) dx = 1, (4.1.9)

∂ĝD
∂x

(p, x, x0)

∣∣∣∣∣
x0+ε

x=x0−ε
+
∫ x0+ε

x0−ε
(p− U(x)) ĝ (p, x, x0) dx = 1 (4.1.10)

and insert the proper form of gD

∂φ

∂x
(p, x0+ε) Cψ(p, x0)−∂ψ

∂x
(p, x0−ε) Cφ(p, x0)+

∫ x0+ε

x0−ε
(p− U(x)) ĝ (p, x, x0) dx = 1.

(4.1.11)
In ε→ 0 limit above equation reduces to

∂φ

∂x
(p, x0) Cψ(p, x0)− ∂ψ

∂x
(p, x0) Cφ(p, x0) = 1. (4.1.12)

Since solutions of (4.1.4) are linear, one can assume C = 1. Therefore (4.1.12)
reduces to

∂φ

∂x
(p, x0) ψ(p, x0) =

∂ψ

∂x
(p, x0) φ(p, x0) + 1. (4.1.13)

Actual proof will be made, by inserting (4.1.5) to (4.1.3). For brevity function ar-
guments will be omitted and prime will denote a derivative with respect to x

2ψφ (ψ′′φ+ 2ψ′φ′ + ψφ′′)− (ψ′φ+ ψφ′)2 − 4(U(x)− p)ψ2φ2 + 1 = 0. (4.1.14)

We arrange the elements of the equation

2ψ2φ (φ′′ − (U(x)− p)φ)+2ψφ2 (ψ′′ − (U(x)− p)ψ)+4ψ′φ′ψφ−(ψ′φ+ ψφ′)2+1 = 0
(4.1.15)
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to use (4.1.4) in order to nullify the two first elements. One also uses property
(4.1.13):

4ψ′φ′ψφ− (2ψ′φ+ 1)2 + 1 = 0, (4.1.16)

4ψ′φ′ψφ− 4ψ′2φ2 − 4ψ′φ− 1 + 1 = 0, (4.1.17)

ψ′φ′ψφ− ψ′2φ2 − ψ′φ = 0, (4.1.18)

ψ′2φ2 + ψ′φ− ψ′2φ2 − ψ′φ = 0. (4.1.19)

Thus the proof is concluded. It is important to note, that the transition is general
and doesn’t rely on the nature of U(x) as long as it is bound, but its usefulness is
dependent on a few qualities of the potential though.

4.2 General properties

It is most useful, if there exists a variable transition x→ z, U(x)→ u(z), in which
the solution can be written in a form

G(p, z) =
P (p, z)

2
√
Q(p)

, (4.2.20)

P (p, z) =
N∑
n=0

pn
Mn∑
l=0

Pn,lz
l, (4.2.21)

Q(p) =
2N+1∑
n=0

qnp
n. (4.2.22)

Basic conditions for it to be possible are:

1. u is a polynomial in z,

2. (z′x)
2 is a polynomial in z (note, that z′′xx = 1

2
∂
∂z

(z′x)
2).

This does not ensure simplicity of solutions as will be shown further in the text. At
this point, it is important to notice, that the second condition restricts z(x) apart
from a class of elementary functions to elliptic and hyperelliptic functions - see,
e.g. [106]. It is also very interesting to see, that the conditions are very similar to
those of a Lame operator - those similarities will be further reinforced after following
analysis.

Let us assume, that (z′x)
2 and u are polynomials in the variable z of order

L+1, and K respectively, hence z′′xx is a polynomial of the order L. We also assume,
that coefficient by the highest power term of (z′x)

2 is equal to 1 (which is always
attainable through scaling). After the change of variables, the equation will take the
form:

2P (P ′′(z′x)
2 + P ′z′′xx)− (P ′z′x)

2 − 4(u(z)− p)P 2 + 4Q = 0. (4.2.23)



42 Chapter 4. Green function diagonal equation

We will now proceed to analyse the solution by separating the equation in
respect to powers of p and z. The equation for p0, z2M0+max(K,L−1) takes following
form:

• if K > L− 1,
4uKP0,M0 = 0; (4.2.24)

• if K ¬ L− 1 ∧ M0  1,

2P 2
0,M0 [M0(M0 − 1) +

L+ 1
2

M0]− P 2
0,M0M

2
0 − 4uKP 2

0,M0δK,L−1 = 0, (4.2.25)

which reduces to
M2

0 + (L− 1)M0 − 4uKδK,L−1 = 0. (4.2.26)

This equation gives us a condition on the amplitude of the potential for which
polynomial expansion of the solution is possible (assuming K = L− 1)

uK =
M0(M0 + L− 1)

4
. (4.2.27)

Note, that M0 = 0 leads to K = 0 (this case will be examined later in the text).
Another conclusion is, that K ¬ L − 1 is necessary for sought type of solutions.
Furthermore, this leads to following, more precise conditions: L  1 (due to K  0),

K = L− 1 (for M0 to have positive value).
(4.2.28)

It is very interesting to see, that for K = 1 we obtain exactly the conditions for a
Lame operator. Now we analyse the equations for specific powers of p starting from
the highest (p2N+1)

4

MN∑
l=0

PN,lz
l

2

+ 4q2N+1 = 0, (4.2.29)

which leads to following conclusions:

MN = 0 ∧ P 2
N,0 = −q2N+1. (4.2.30)

Let us now look at subsequent equations for descending powers of p. For p2N we
have

−4u(z)P 2
N,0 + 8PN,0

MN−1∑
l=0

PN−1,lz
l + 4q2N = 0, (4.2.31)

which leads to
MN−1∑
l=0

PN−1,lz
l =

1
2

[
PN,0u(z)− q2N

PN,0

]
(4.2.32)

and in consequence
MN−1 = K. (4.2.33)

For p2N−1 we get (for the highest power of z):
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• on condition MN−2 > MN−1 +K (z 6= x2)

4PN,0PN−2,MN−2 = 0, (4.2.34)

• on condition MN−2 ¬MN−1 +K

2PN,0PN−1,MN−1 [MN−1(MN−1 − 1) +
K + 2

2
MN−1]

−2PN,0PN−1,MN−1 − 8uKPN,0PN−1,MN−1

+8PN,0PN−2,MN−2δMN−2,L−1 + 4q2N−1 = 0. (4.2.35)

It is obvious, that MN−2 ¬MN−1 +K is a necessary condition for (4.2.20). Now we
can consider a general rule for all remaining equations.

Thesis: ∀0¬k<N−1Mk ¬ (N − k)K.

Proof by induction:

• If Mk > (N − k)K, then equation for pN+k+1 and highest power of z takes
form:

4PN,0Pk,Mk
= 0. (4.2.36)

• If Mk ¬ (N − k)K and ∀k<l<NMl = (N − l)K (possibility giving the highest
possible value of Mk), then equation for pN+k+1 and highest power of z takes
form:

0 = 2PN,0Pk+1[Mk+1(Mk+1 − 1) +
K + 2

2
Mk+1]

+2
N−1∑
n=k+2

Pn,MnPN−n+k+1,MN−n+k+1 [MN−n+k+1(MN−n+k+1 − 1)

+
K + 2

2
MN−n+k+1]− 2

N−1∑
n=k+2

Pn,MnPN−n+k+1MN−n+k+1Mn

−4uK
N∑

n=k+1

Pn,MnPN−n+k+1 + 4
N−1∑
n=k+1

Pn,MnPN−n+k,MN−n+k

+4δMk,Mk+1+L−1PN,0Pk,Mk
. (4.2.37)

Thus the solution exists only if the thesis holds. This leads directly to a minimal
condition on N :

N  M0

K
∀M0  K. (4.2.38)

Summarising, existence of solutions of form (4.2.20) depends on the power of the
potential (K), power of (z′x)

2 (L ¬ 1 can give abnormal results), amplitude of
the highest power term of the potential and there exists a definite formula for the
minimal value of N .
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4.3 Uniqueness of solutions

Let us assume according to conclusions of the previous section

(z′x)
2 = zK+2 +

K+1∑
n=0

cnz
n (4.3.39)

and a solution in form of

P =
M∑
l=0

Pl(p)zl, (4.3.40)

Q =
2N+1∑
k=0

qkp
k (4.3.41)

and separate the equation in respect to powers of z starting with the highest power
(z2M+K) assuming K > 0

P 2
M

[
2M(M − 1) +M(K + 2)−M2 − 4uK

]
= 0, (4.3.42)

which simplifies to

P 2
M(M2 +MK − 4uK) = 0. (4.3.43)

Considering K  0 the above equation has at most one positive solution. Equation
for z2M+K−1

0 = PMPM−1[2M2 +MK + 2(M − 1)2 + (M − 1)K − 2M(M − 1)− 8uK ]

+P 2
M [2M(M − 1)cK+1 +M(K + 2)cK+1 −M2cK+1 − 4uK−1 + 4pδK,1]

(4.3.44)

can be divided by PM and give

0 = PM−1[2M2 + 2M(K − 1)−K − 8uK + 2]

+PM [2M(M − 1)cK+1 +M(K + 2)cK+1 −M2cK+1 − 4uK−1 + 4pδK,1].

(4.3.45)

By substituting uK from (4.3.43) we obtain

2PM−1(2−K − 2M) + PM(4uKcK+1 − 4uK−1 + 4pδK,1) = 0. (4.3.46)

Considering that M and K are either both equal to 0 or both positive integers (as
seen in [109]) 2 − K − 2M 6= 0, so PM−1 is of one power higher in p than PM if
and only if the potential is linear and it is of the same power in any other situation.
More importantly, PM−1 is unambiguously determined by PM .

Theorem: All Pl are linearly proportional to PM .
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Proof by induction:
Let us consider the equation for zM+K+l for 0 ¬ l < M − 1 and assume the theorem
holds for all l < k < M

PlPM [2l(l − 1) + l(K + 2) + 2M(M − 1)

+M(K + 2)− 2Ml − 8uK ] + P 2
MF (U, z′2) = 0, (4.3.47)

where F contains all parts of equation not written explicitly. For the theorem to hold,
it suffices to prove, that 2l(l−1)+l(K+2)+2M(M−1)+M(K+2)−2Ml−8uK 6= 0.
Let us consider the opposite:

2l(l − 1) + l(K + 2) + 2M(M − 1) +M(K + 2)− 2Ml − 8uK = 0. (4.3.48)

After substitution of uK we obtain

2l(l− 1) + l(K + 2) + 2M(M − 1) +M(K + 2)− 2Ml− 2M2− 2MK = 0, (4.3.49)

which can be simplified

2l2 + lK + 2M2 +MK − 2Ml − 2M2 − 2MK = 0, (4.3.50)

2l2 + lK −MK − 2Ml = 0, (4.3.51)

(2l +K)(l −M) = 0. (4.3.52)

This equation would only be true for l = M , which ends the proof. There are two
important conclusions from this theorem:

1. PM is a free parameter of the solution, that doesn’t have any meaning, since
P ∝ PM and Q ∝ P 2

M .

2. Solutions of form (4.2.20) are unique up to a sign (this uncertainty is due to
the quadratic nature of the equation and not just due to the square root in the
chosen form) and can only exist, if there exists a natural M solving equation
(4.3.43).

We will now proceed to analyse the K = 0 case. In [109] it was established, that a
solution for constant potential does not depend on z and P can be a polynomial of
arbitrary power. We will now show, that all those solutions are equal by explicitly
solving the equation

−4(u− p)P (p)2 + 4Q(p) = 0, (4.3.53)

which immediately gives
Q(p) = (u− p)P (p)2, (4.3.54)

where P can be an arbitrary function of p. This gives

G(p, z) =
P (p)

2
√
P 2(p)(u− p)

=
1

2
√
u− p

. (4.3.55)
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4.4 Solving algorithms

4.4.1 Polynomial expansion in z(x)

Following the proof of uniqueness we can readily construct the solution of (4.1.3) by
iteratively solving the equations for descending powers of z with respect to Pl(p).
There is no explicit method of finding the proper change of variables, which would
fulfil the necessary conditions (4.2), so z(x) and preferably (z′x)

2 as well as u(z) have
to be given at the start. In first step one calculates the value of M from (4.3.43).
For implementation in programing languages capable of symbolic computation it is
convenient to write the whole left hand side of the equation (with P , u(z), (z′x)

2 and
z′′xx in explicit polynomial form in z) as a single function (for example F (p, z)). We
can then proceed to extract equations for specific powers of z by differentiation in
z and taking a limit of z → 0. For example

lim
z→0

∂n

∂zn
F (p, z) = 0 (4.4.56)

is the equation for z2M+K−n. As was shown in the previous subsection, we can assume
PM(p) = 1. From equations for z2M+K−1 to zM+K we will obtain all Pn(p) from
PM−1(p) to P0(p) respectively. Equations from zM+K−1 to z1 will be used to validate
the solution and the equation for z0 will be used to calculate Q(p) thus ending the
process. Sample implementation in Mathematica can be found in Appendix B.

4.4.2 Polynomial expansion in p

The equation can still be solved, even if P is only a polynomial in p. We assume

P =
N∑
l=0

Pl(x)pl,

Q =
2N+1∑
l=0

qlp
l. (4.4.57)

We can obtain all Pl up to a constant in an iterative procedure following the analysis
done in Section 4.2. For p2N+1

PN = −q2N+1. (4.4.58)

For p2N

PN−1 =
PN
2
u(x)− q2N

2PN
. (4.4.59)

For pN+k (where k is a positive integer)

Pk−1 =
1

8PN

{
4qN+k +

N∑
l=k

[
2Pl

(
P ′′N−l+k − 2PN−l+ku(x)

)

−P ′lP ′N−l+k
]

+ 4
N−1∑
l=k

PlPN−l+k−1

}
. (4.4.60)
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Using this method we can obtain all Pl, but there remains the problem of obtaining
all ql. They can be obtained from the remaining equations, but as yet there is no
explicit method unless the conditions of (4.4.1) are met. As of yet there is also no
method of checking, if a solution of form (4.4.57) exists and what would be the
proper value of N in such a situation. Those problems could probably be solved, if
one could transform the recurrent equation for Pk into one relying on u(x), ql and
PN only.

4.5 Generalizations

4.5.1 Scaling

The most important aspect, that needs to be incorporated is the scaling of operator
∂2

∂x2
− U(x) through a complex constant. Let us consider an equation[

p′ + C

(
∂2

∂x2
− U(x)

)]
ĝ′L1(p

′, x, x0) = δ(x− x0) (4.5.61)

with C as a complex constant. If we were to substitute p′ = Cp

C

[
p+

∂2

∂x2
− U(x)

]
ĝ′L1(Cp, x, x0) = δ(x− x0), (4.5.62)

then it’s easy to see, that Cĝ′L1(Cp, x, x) solves the equation (4.1.3). Therefore, if
G(p, x) is a solution of (4.1.3), then 1

C
G
(
p′

C
, x
)

is the diagonal of the Green function
defined by (4.5.61).

4.5.2 Application to other differential equations

Considering, that the Drach equation does not contain derivatives in respect to p,
we can substitute this variable with an arbitrary function of a number of parameters
as long as they are independent of x

p = f(p1, . . . , pn). (4.5.63)

Considering the connection between the Drach equation and the original heat kernel
problem (4.1.1), it means, that we can potentially calculate Green function diagonals
for a very wide range of differential equations. For instance, substitution

p = p2
1 (4.5.64)

would change the initial problem (4.1.1) into an elliptic equation. The main caveat
is, such substitutions will inevitably complicate the inverse Laplace transform -
especially if we introduce more parameters. This can make it impossible to extract
explicit results.
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Quantum corrections to energy

5.1 General remarks

All potentials considered in following sections have many similarities, so it is useful
to study general properties of a family of potentials of form

u(x) = b2f(bx) + C, (5.1.1)

where b and C are real constants and f is an arbitrary integrable function. Our goal
will be to extract as much information from (3.3.52) as possible without explicitly
solving the Green function problem. This will be most useful for periodic and quasi-
periodic solutions of Sine-Gordon and φ4 models, where exact analytic solutions are
difficult to obtain. Let us begin with the Green function equation for L1 with (5.1.1)
as the potential[

∂

∂τ
+ A

(
∂2

∂x2
− b2f(bx)− C

)]
gL1(τ, x, x0) = δ(τ)δ(x− x0). (5.1.2)

We will now try to remove b from the equation by a series of substitutions. Firstly,
we rescale the x variable

xb = bx, (5.1.3)

which will give us[
∂

∂τ
+ Ab2

(
∂2

∂x2
b

− f(xb)−
C

b2

)]
gL1(τ, xb, xb,0) = bδ(τ)δ(xb − xb,0). (5.1.4)

Next we rescale τ similarly as in Section 3.3

τ =
τb
|A|b2

(5.1.5)

obtaining[
∂

∂τb
− i

(
∂2

∂x2
b

− f(xb)−
C

b2

)]
gL1(τb, xb, xb,0) = bδ(τb)δ(xb − xb,0). (5.1.6)

48
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From here we can extract both b and C by rescaling the Green function

gL1(τb, xb, xb,0) = be
C
b2
τbgL1,b(τb, xb, xb,0). (5.1.7)

After inserting that form into (5.1.6), we find that gL1,b(τb, xb, xb,0) solves the equa-
tion [

∂

∂τb
− i

(
∂2

∂x2
b

− f(xb)
)]

gL1,b(τb, xb, xb,0) = δ(τb)δ(xb − xb,0). (5.1.8)

The same procedure has to be done for the Green function of operator L0 - both
rescaling of the x and τ variables as well as potential shift by C

b2
(if done after

rescaling of τ) even if the constant potential in L0 has a different value than C
b2

. As
for the Green functions (or γ functions (3.3.43)) of L2 and L3 operators, it is most
convenient to express them through τb as well

γL2(τb) =

√
ic2b2

4πτb
, (5.1.9)

γL3(τb) =
(
l2b2

i4πτb

) d−1
2

. (5.1.10)

With this information we can reproduce the equation for energy corrections remem-
bering to change the integration over x to integration over xb

∆E = <
{

lim
s→0

∂

∂s

~cbdld−1

2d+1π
d
2T (|A|b2)−sΓ(s)

∫ ∞
0

i1−
d
2 τ

s− d+22
b e

C
b2
τb

∫
[gL1,b(τb, xb, xb)− gL0,b(τb, xb, xb)] dxbdτb

}
. (5.1.11)

Interestingly, in all cases considered in this work C is proportional to b2, so we can
rightfully substitute

C = Cbb
2 (5.1.12)

and obtain

∆E = <
{

lim
s→0

∂

∂s

~cbdld−1

2d+1π
d
2T (|A|b2)−sΓ(s)

∫ ∞
0

i1−
d
2 τ

s− d+22
b eCbτb∫

[gL1,b(τb, xb, xb)− gL0,b(τb, xb, xb)] dxbdτb
}
. (5.1.13)

Unfortunately, extracting Cb out of the Mellin transform is not a trivial task. Nev-
ertheless at this point we have most of physical parameters of the classical system
extracted out of the Green function. Apart from qualitative estimations of quan-
tum corrections, it helps us in choosing the renormalization parameter r2, since the
logarithmic divergences will arise from differentiation of exponential components of
the zeta-function. This does not concern divergence in T only - it is also reasonable
to assume, that if the classical solution vanishes, corrections should vanish as well.
This means, that r2 should contain b2 The same argument can be used to cut diver-
gences in all physically relevant parameters, thus it seems valid to propose for the
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renormalization factor to cancel the whole (|A|b2)−s term. Yet, there is no strict way
of choosing the value of r2, so in practice we will fit its value to recover well known
results in the cases obtainable by different methods.

At this point it is also worth noting, that in our chosen dimensionless variables
c is linearly dependent on T , so it cancels out the T component in the denominator.
This would not be the case, if we didn’t include the kinetic energy component in
the action integral and later on in calculation of energy corrections. Combined with
the strong dependence of the result on the number of spatial dimensions included it
indicates that one should never omit any elements in the action integral even if it
would be valid for the classical solution.

One of the most important findings going beyond the chosen class of poten-
tials, if we consider a τA = |A|τ scaling, is that quantum corrections to energy do
not depend on the scale of the classical system. If we were to amplify the action
integral by a constant factor, it would have no impact on the quantum corrections.
This quality will also be present in other semiclassical methods such as harmonic
oscillator expansion of the potential (method used for example in [16] and explained
in detail later in [74]). The results from this subsection were published in [110].

5.2 Single kink case

5.2.1 General results

Let us first construct potentials for single kink solutions of Sine-Gordon and φ4

models in dimensionless form of (3.3.44) with respective m coefficients calculated
separately for specific physical models (see Chapter 2):

a2V ′′SG(θ)
G

= −m2
θ cos(θ), (5.2.14)

which for a static kink gives

a2V ′′SG(θ)
G

= −m2
θ[1− 2sech2(mθx)], (5.2.15)

and
a2V ′′φ4(φ)

G
= m2

φ − 6
m2
φ

V 2
φ2, (5.2.16)

which for a static kink gives

a2V ′′φ4(φ)
G

= −
m2
φ

2

[
4− 6sech

(
mφ√

2
x

)]
. (5.2.17)

As can be seen, they both fit into the form

u(x) = U1sech
2(bx) + U0 (5.2.18)
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with b = mθ or b = mφ√
2

respectively. Using the algorithm described in Section 4.4 we
will obtain green function diagonal for specific values of U1. Since we will be able
to obtain exact results for those cases, we won’t need to rescale the x variable and
the Green function diagonal by b. We will however use the proposed normalising
parameter r2 value. We proceed with substitution

z = sech2(bx), (5.2.19)

(z′x)
2 = 4b2z2(1− z). (5.2.20)

Green function diagonal equation takes form (before the inclusion of −i factor)

2G[G′′zz(z
′
x)

2 +G′zz
′′
xx]− (G′zz

′
x)

2 − 4(U1z + U0 − p)G2 + 1 = 0. (5.2.21)

We seek solutions of form (4.2.20). Existence and complexity of solutions depends
on the value of U1. An analog of equation (4.3.43) will take form

−8b2M(M − 1)− 12b2M + 4b2M2 − 4U1 = 0, (5.2.22)

U1 = −b2M2 − b2M. (5.2.23)

M = 0 gives U1 = 0 and thus represents vacuum potential

GM=0 =
1

2
√
U0 − p

. (5.2.24)

M = 1 gives U1 = −2b2 and is related to Sine-Gordon soliton (U0 = b2 and b = mθ

for easy plane ferromagnet)

GM=1 =
p− b2z

2p
√
b2 − p

. (5.2.25)

M = 2 gives U1 = −6b2 and is related to φ4 kink (U0 = 4b2 and b = mφ√
2

for easy axis
ferromagnet)

GM=2 =
p2 − 3b2p(1 + z) + 9b4z2

2p(p− 3b2)
√

4b2 − p
. (5.2.26)

Solutions of an arbitrary order can be obtained as well.

We proceed with the regularization scheme 3.3 with vacuum potential chosen
so that the square roots in the denominator coincide. At this point we also include
the results of Section 4.5.1

γM=j = L−1
[∫ ∞
−∞

i {GM=j(ip, x)−GM=0(ip, x)} dx
]

(5.2.27)

with L−1 representing inverse Laplace transform.

γM=1(τA) = −Erf(b
√
iτA), (5.2.28)

γM=2(τA) = −e3b2iτAErf(b
√
iτA)− Erf(2b

√
iτA). (5.2.29)
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After accounting for the remaining variables we calculate zeta-function. All calcula-
tions assume <(s) < d

2

ζM=j(s) =
1

|A|sΓ(s)

∫ ∞
0

τ s−1
A γ2(τA)γ3(τA)γM=j(τA)dτA, (5.2.30)

which for particular values of M gives

ζM=1(s) = −
icld−1bdΓ

(
1−d

2 + s
)

2d−1π
1+d
2 (−Ab2)s(d− 2s)Γ(s)

(5.2.31)

and

ζM=2 = −
icbdld−1Γ

(
1−d

2 + s
)

2d−1(−Ab2)sπ
d+1
2 Γ(s)[

3−s+
d−1
2 2F1

(
1
2
, s− d− 1

2
,
3
2
,−1

3

)
+ 2−2s+d 1

d− 2s

]
, (5.2.32)

where 2F1 is the hypergeometric function. Derivatives are then calculated separately
for each value of d. At this point it is important to stress, that Γ function is singular
for all non-positive integers. For d = 1 and d = 3 it is not a problem, since we can use
reduction formulae for division of Euler’s Gamma functions. Regularization factor
r for those cases was chosen to cut all logarithmic divergences (namely ln(−Ab2)).
On the other hand for d = 2 the Γ(s) in the denominator is the only singular part of
ζ function and results in lims→0 ζ(s) = 0. Yet, the derivative is non-zero and finite.
The simplest way to obtain the result is to multiply ζ function by s

s
(shown below

on ζM=1)

ζM=1(s) = −
iclb2sΓ

(
s− 1

2

)
2π

3
2 (−Ab2)s(2− 2s)Γ(s+ 1)

. (5.2.33)

From this form it is very easy to calculate the derivative, which at s = 0 has only
one non-zero component

∂ζM=1

∂s
(0) = −

iclb2Γ
(
−1

2

)
4π

3
2

. (5.2.34)

The most important feature of this case (as well as for any other value of M) is lack
of the logarithmic component, which means that the results are independent of the
regularization factor r. Quantum corrections to energy will finally take form given
in Table 5.1. It is important to stress, that since c in chosen set of dimensionless
variables is linearly dependent on T , corrections will not depend on T after final
substitution of all parameters as will be seen in next subsections. Due to the un-
certainty of the sign of corrections resulting from Green function diagonal equation
there might be a disagreement by a factor of −1 with other methods, nevertheless
the sign is consequent for all values of d.

The corrections for Sine-Gordon soliton are in agreement with works of Kono-
plich [72] having in mind, that Konoplich assumed most physical constants to be
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Table 5.1: Energy corrections for kink solutions.

d Sine-Gordon φ4

1 −~bc
Tπ

~bc
2Tπ

(
6 ln(2) + π√

3
− 6

)
2 ~b2cl

4Tπ
~b2cl
2Tπ

(
3 + 3

2 arc sin
(

1√
3

))
3 5~b3cl2

72Tπ2 − ~b3cl2
12Tπ2

(
18 ln(2)− 18 + π√

3

)

equal to 1 and used imaginary time formalism, so the two-dimensional case in his
work corresponds to the 1 + 1 dimensional case in our work. Konoplich also left the
mass scale (r2 in our work) undetermined. The 1+1 dimensions case is also identical
to the one obtained by Faddeev [111], where the mass scale is not explicitly used,
but the action integral is implicitly regularized in a similar way.

In the case of φ4 kink, we also obtained the same results as Konoplich (with
the same considerations as for Sine-Gordon case), but our intuitive choice of normal-
ising factor r2 does not agree with works of Dashen et al. [16] and later publications
confirming that result (as for example [112, 80]). A different choice for r2 would
allow us to recover proper corrections to energy (namely one leading to −4Ab2 = 1),
yet within the zeta-function regularization scheme there is so far no direct method
of finding the correct normalising factor. Nevertheless, if we fit the 1 + 1 case with
works of Dashen et al., we unambiguously expand the results to 1 + 2 and 1 + 3
cases and have a solid basis for quantization of periodic and quasi-periodic fields of
Sine-Gordon and φ4 systems as shown in Section 5.3. Therefore following the works
of Dashen et al. we obtain for the φ4 proper results (see Table 5.2) It is of note,

Table 5.2: Energy corrections for φ4 kinks with proper regularization.

d ∆E

1 ~bc
2Tπ

(
π√
3
− 6

)
2 ~b2cl

2Tπ

(
3 + 3

2 arc sin
(

1√
3

))
3 ~b3cl2

4Tπ2

(
6− π√

3

)

that the result for 3 + 1 dimensions is in agreement with the publication by Ventura
[71], which proves that our choice of r2 is correct.
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5.2.2 Domain walls

The results can be directly applied to magnetic domain walls in ferromagnets with
axial anisotropy. As was shown in section 2, ferromagnets with easy axis anisotropy
can be modelled by a wave equation with φ4 potential and those with easy plane
anisotropy by Sine-Gordon equation. In both cases domain walls are expressed as
single kink solutions also shown in Section 2. With the classical energy Ec treated as

Table 5.3: Energy corrections for single domain walls.

Easy plane Easy axis

classic solution 2 arc sin (tgh (mθx))− π mφ

√
−6J

8D+gµBB
tgh

(
mφ√

2
x
)

m
√

gµBB
J

√
−2D+gµBB

J

c
√

2JDT 2
~2

√
JgµBBT 2

~2

Ec 8
√
JgµBB

4
√
−2J(2D+gµBB)

3
2

8D+gµBB

∆E1 −
√

2DgµBB
π2

1
2
√

2π

√
−(2D + gµBB)gµBB

(
π√
3
− 6

)
∆E2 l

√
Dg2µ2BB

2

8Jπ2 −l 2D+gµBB
4π

√
gµBB
J

(
3 + 3

2 arc sin
(

1√
3

))
∆E3

5
36π2 l

2

√
Dg3µ3BB

3

2J2 l2
√
−(2D+gµBB)3gµBB

8
√

2Jπ2

(
6− π√

3

)

per single chain of atoms. The above results were published in [113, 114]. The most
important conclusion is, that on quantum level the energy is highly dependent on the
number of spatial dimensions taken into account, which is not seen in the classical
model. This means, that magnetic domain walls in bulk material (three spatial
dimensions) would interact differently with an external magnetic field (figure 5.3)
than for example those in thin ferromagnetic films (figure 5.2). This should be most
visible for easy axis ferromagnetic domain walls with B very near the − 2D

gµB
limit,

where for planar and linear ferromagnets the quantum corrections would dominate
over the classical energy. Moreover, for linear easy axis ferromagnets overall energy
of a domain wall would be negative in certain magnetic field range (figure 5.1 with
blue line representing the classical energy and red line representing corrected energy
in arbitrary units as a function of magnetic field scaled so that − 2D

gµB
= 1 and with

D = −0.3J), which would imply spontaneous creation of domain walls. As such it
is insufficient to consider a singular domain wall and interaction between them has
to be accounted for. This phenomenon will be further investigated in Section 5.3.
In the case of easy plane ferromagnetic domain walls in d = 1 case corrections to
classic energy ratio gives

∆E1

Ec
=

1
8π

√
2D
J
. (5.2.35)
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Figure 5.1: Easy axis domain wall energy for d = 1 in arbitrary units.
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Figure 5.2: Easy axis domain wall energy for d = 2 in arbitrary units.

For (CH3)4NNiBr3 (J and D parameters according to [115]) this would give a ratio
of 0.0346, which might be noticed in experiments. Corrections for planar and bulk
ferromagnets will be less pronounced due to the D >> gµBB requirement of the
easy plane approximation, which usually implies J >> gµBB at least in materials
for which the continuum approximation is valid.
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Figure 5.3: Easy axis domain wall energy for d = 3 in arbitrary units.

5.3 Cnoidal wave case

5.3.1 General results

The results of this and next subsection were published in [110]. We will start with
calculating potentials for Sine-Gordon and φ4 cnoidal solutions

a2V ′′SG(θ)
G

= m2
θ cos θ, (5.3.36)

which gives
a2V ′′SG(θ)

G
= m2

θ

[
2k2 − 1− 2k2cn2(mθx; k)

]
, (5.3.37)

and
a2V ′′φ4(φ)

G
= −m2

φ + 6
m2
φ

V 2
φ2, (5.3.38)

which gives

a2V ′′φ4(φ)
G

=
m2
φ

1 + k2

[
5k2 − 1− 6k2cn2

(
mφ√
1 + k2

x; k
)]

. (5.3.39)

Both potentials can be written in a form

U(x) = U1cn2(bx; k) + U0, (5.3.40)

where cn is a Jacobi elliptic function, b = mθ for the Sine-Gordon case and b = mφ√
1+k2

for the φ4 case. We don’t have explicit solutions for energy corrections, thus we will
use the scaling presented in Section 5.1. As in a single soliton case we use algorithm
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4.4 with substitution

z = cn2(xb; k), (5.3.41)

(z′xb)
2 = 4z(1− z)(k2z + 1− k2). (5.3.42)

As before we obtain a relation between U1 and order of the polynomial P

U1 = −k2(M2 +M). (5.3.43)

It is important to note, that k = 1 gives back single soliton case and M = 0 gives an
identical vacuum solution for all values of k. M = 1 gives U1 = −2k2 and is related
to Sine-Gordon cnoidal wave (U0 = 2k2 − 1)

GM=1 =
p− k2z

2
√
p[p− (k2 − 1)][k2 − p]

. (5.3.44)

M = 2 gives U1 = −6k2 and is related to three different φ4 cnoidal waves (U0 =
(5k2 − 1))

GM=2 =
p2 + 9k2[1 + k2(−1 + z)]z − 3[p+ k2pz]

2
√

[3− p]p[p− 3k2][(p− 1− k2)2 − 4(1− k2 + k4)]
. (5.3.45)

In each case we pick the vacuum potential so it would coincide with the highest root
of the denominator of the Green function diagonal (U0 = k2 for Sine-Gordon model
and U0 = 1 + k2 + 2

√
1− k2 + k4 for φ4), which is also in both cases the only root,

which does not converge with any other at k → 1 limit.

The key problem is the inverse Laplace transform of the Green function di-
agonal, since GM>0 generates complex space of non-zero genus. There is however
a definition of bilateral inverse Laplace transform for which it is sufficient for the
Green function diagonal to be analytic in a ol < <(p) < op area for a given pair of
real constants ol and op

g(xb, xb, τb) =
1

2πi

∫ o+i∞

o−i∞
epτbiGM=j(ip, xb)dp, (5.3.46)

where ol < o < op and scaling by i is included. Disregarding the choice of the
sign of the square root we have only two choices for o (either o < 0 or o > 0),
since all the singularities will lie on the imaginary axis. Considering the condition
∀τ<0g(x, x0, τ) = 0 we have to choose o > 0. There still remains the problem of
evaluating the integral. We can however expand the G function around the k = 1
case or more precisely expand only the problematic part of said function omitting the
elliptic integrals emergent from the integration over the spatial variable x. We will
now showcase the procedure using the Sine-Gordon quasi-periodic (ϕ(xb+2K(k)) =
ϕ(xb) + 2π) solution. Let us first subtract the vacuum solution from the Green
function diagonal integrate over the period of the potential (2K(k)) and substitute
iG(ip, x) as the Green function diagonal

γ̂M=1(p) =
∫ K(k)

−K(k)
(iGM=1(ip, xb)− iGM=0(ip, xb)) dxb, (5.3.47)
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which gives

γ̂M=1(p) = i
−E(k) +

(
−1 + k2 + ip− ip

√
1−k2
ip

+ 1
)
K(k)√

(ip+ 1− k2)(k2 − ip)ip
. (5.3.48)

We now expand γ̂ function in a power series with respect to k at k = 1 treating
both elliptic integrals as independent parameters. We obtain

γ̂M=1(p) ≈ −i E(k)
ip
√

1− ip
+ i(k − 1)

E(k)(2ip− 1) + 3K(k)(p2 + ip)
(−1 + ip)p2

√
1− ip

−i(k − 1)2

[
E(k)(−3 + 7ip+ 5p2 + 2ip3)

(−1 + ip)2p3
√
ip− 1

+
K(k)(7ip+ 17p2 − 7ip3 + 3p4)

(−1 + ip)2p3
√
ip− 1

]
+ . . . . (5.3.49)

Inverse Laplace transform of this function is easily calculated, since any function of
form ∏N

j=1(p− aj)∏N
j=1(p− bj)

√
b0 − p

(5.3.50)

can be rewritten as a sum of

1
(p− bj)n

√
b0 − p

(5.3.51)

for which inverse Laplace transforms are well known. We will obtain

γM=1(τb) = −E(k)Erf(
√
iτb)

+(k − 1)
{
− 1√

π
e−iτbE(k)

√
iτb +

1
2

[6K(k) + E(k)(1 + 2iτb)]Erf(
√
iτb)

}

−1
8

(k − 1)2

{
2√
π
e−iτb
√
iτb[8K(k)(1 + iτb) + 5E(k)(1 + 2iτb)]

+Erf[
√
iτb]

[
4K(k)(1− 14iτb) + E(k)(−5 + 4iτb + 12τ 2

b )
]}

+ . . . . (5.3.52)

All elements present in this function (as well as in all further elements of the Taylor
series) can be in general divided into two groups (with n as a non-negative integer):

1. Erf(
√
iτb) (iτb)

n,

2. (iτb)
n+ 12 e−iτb .

Since we still need to multiply γM=1 by γL2 (5.1.9) and γL3 (5.1.10) we will be
performing Mellin transform on elements:

1. iErf(
√
iτb) (iτb)

n− d2 ,

2. i (iτb)
n+ 1−d2 e−iτb .
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To construct the final form of the zeta-function we need to find Mellin transforms
of those two types of elements. In essence we need to solve integrals:

1. 1
Γ(s)

∫∞
0 Erf(

√
iτb)in+1− d2 τ

s− d+22 +n
b dτb,

2. 1
Γ(s)

∫∞
0 in+ 32−

d
2 τ

s− d+22 +n+ 12
b e−iτbdτb.

It is evident, that there are possible convergence issues at either of the limits. Yet,
those integrals can still be evaluated as a limit of slightly different integrals:

1. 1
Γ(s) limε→0+

∫∞
0 Erf(

√
iτb)in+1− d2 τ

s− d+22 +n
b e−ετbdτb,

2. 1
Γ(s) limε→0+

∫∞
0 in+ 32−

d
2 τ

s− d+22 +n+ 12
b e−iτbe−ετbdτb

as long as τb exponent is higher than −1. This will most definitely not be the case,
when we will try to obtain the limit of the derivative of zeta-function at s→ 0. Still,
if the resulting function is well defined even outside of this condition we can use it
as an analytical continuation. As a result we will obtain

1. 2i1−sΓ( 1−d2 +n+s)√
π(d−2(n+s))Γ(s) ,

2. i1−sΓ( 1−d2 +n+s)
Γ(s) .

With this result we can finally construct the zeta-function

ζ(s) =
icbdld−1

2dπ
d+1
2 (−Ab2)−sΓ(s)

{
−E(k)

2Γ(1−d
2 + s)

d− 2s

+(k − 1)
[
−E(k)Γ(

1− d
2

+ s) + 6K(k)
Γ(1−d

2 + s)
d− 2s

+E(k)
(

Γ(1−d
2 + s)
d− 2s

+ 2
Γ(3−d

2 + s)
d− 2(1 + s)

)]

−(k − 1)2

8

[
16K(k)

(
Γ(

1− d
2

+ s) + Γ(
3− d

2
+ s)

)

+10E(k)
(

Γ(
1− d

2
+ s) + 2Γ(

3− d
2

+ s)
)

+4K(k)
(

Γ(1−d
2 + s)
d− 2s

− 14
Γ(3−d

2 + s)
d− 2(1 + s)

)

+E(k)
(
−5Γ(1−d

2 + s)
d− 2s

+ 4
Γ(3−d

2 + s)
d− 2(1 + s)

− 12
Γ(5−d

2 + s)
d− 2(2 + s)

)]}
+ . . . . (5.3.53)

When calculating the derivative of the ζ function we will be concerned with two
kinds of elements:
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1. Γ( 1−d2 +n+s)
(d−2(n+s))Γ(s) ,

2. Γ( 1−d2 +n+s)
Γ(s) ,

since our choice of regularization factor r ensures −Ab2 = 1. One has to be careful,
because Euler’s Gamma function is singular at 0 as well as all negative integers.
This means that the derivatives have to be calculated separately for specific values
of d just as in the single soliton case

∆E1(k) =
~cb
4Tπ

{−4E(k) + 12(k − 1)K(k)

−(k − 1)2

8
[80K(k)− 10E(k)]

}
+ . . . , (5.3.54)

∆E2(k) =
~cb2l

8Tπ
{2E(k) + (k − 1) [−6K(k) + E(k)(− ln(4))]

−(k − 1)2

8
[−4K(k)(5 + 14 ln(2)) + 4E(k)(2 + ln(2))]

}
+ . . . ,

(5.3.55)

∆E3(k) =
~cb3l2

16Tπ2

{10
9
E(k) + (k − 1)

[
−15

3
K(k) + E(k)

(
−5 +

5
9

)]
−(k − 1)2

8

[
K(k)

(
−20

9
− 128

)
+ E(k)

(
10 +

25
9

)]}
+ . . . .

(5.3.56)

As can be seen, the results converge to single soliton case for k → 1 as should be
expected. Arbitrarily many elements of the Taylor series can be evaluated using the
same method and thus an arbitrary level of precision can be obtained. As yet, there
are no clear results on the convergence radius of the series, which also makes approx-
imation inaccuracies difficult to assess. Combined with the difficulty of recreating
numerical calculations of Pawellek [79] it regrettably makes comparison of results
difficult. It is also very important to notice, that because of elements containing
Γ[ 12+s]
2sΓ[s] the results for d = 2 depend on the value of r2 unlike the k → 1 limit.

Using the same procedures we obtained energy corrections for the cnoidal
solution of the φ4 model (with regularization factor chosen as in the single kink
case)

∆E1(k) = − ~bc
4Tπ

{
2E(k)(6− π√

3
) + (k − 1)

[
− 2π√

3
K(k)− 6(E(k)− 2K(k))

]

+(k − 1)2

[
−15K(k) +

3
2
E(k) +

π√
3

(K(k)− 2E(k))
]}

+ . . . , (5.3.57)
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∆E2(k) = −~lcb2

8Tπ

{
−E(k)(12 + 3 ln(3))− (k − 1)

3
2

(E(k) + 2K(k))(4 + ln(3))

+(k − 1)2 3
8

[E(k)(6− 33arccoth(2)) +K(k)(−40 + 6 ln(3))]
}

+ . . . , (5.3.58)

∆E3(k) = − ~l2b3c

48π2T

{
4E(k)(

√
3π − 18)+

4(k − 1)
[√

3(K(k) + E(k))π − 9(2K(k) + E(k))
]
−

(k − 1)2
[
2K(k)(7 + 2

√
3π)− E(k)(14

√
3π − 27)

]}
+ . . . .

(5.3.59)

One has to keep in mind that b = mφ√
1+k2

. As before corrections for d = 2 become
dependent on the value of the normalising factor r2. We also obtain proper single
kink results in the k → 1 limit.

5.3.2 Stripe domains

In the context of easy axis and easy plane magnetic chains cnoidal solutions of Sine-
Gordon and φ4 models represent a cross-section of a stripe domain structure. Width
of the particular domains is equal to 2K(k) in units of xb or 2

b
K(k) in the units of

x (dimensionless units normalized to the crystal lattice constant in the direction of
the chain). We substitute model parameters in the same way as in Section 5.2.2 and
obtain

∆E1(k) =

√
DgµBB

8π2
{−4E(k) + 12(k − 1)K(k)

−(k − 1)2

8
[80K(k)− 10E(k)]

}
+ . . . , (5.3.60)

∆E2(k) =
l

4π

√
Dg2µ2

BB
2

2J
{2E(k) + (k − 1) (−6K(k) + E(k)(− ln(4)))

−(k − 1)2

2
[−K(k)(5 + 7 ln(4)) + E(k)(2 + ln(2))]

}
+ . . . ,

(5.3.61)

∆E3(k) =
l2

8π2

√
Dg3µ3

BB
3

2J2

{10
9
E(k) + (k − 1)

[
−15

3
K(k) + E(k)

(
−5 +

5
9

)]
−(k − 1)2

8

[
K(k)

(
−20

9
− 128

)
+ E(k)

(
10 +

25
9

)]}
+ . . .

(5.3.62)
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for the easy plane domain walls and

∆E1(k) = −

√
−(2D + gµBB)gµBB

4
√
k2 + 1π

{
2E(k)[6− π√

3
]

+(k − 1)
[
− 2π√

3
K(k)− 6(E(k)− 2K(k))

]

+(k − 1)2

[
−15K(k) +

3
2
E(k) +

π√
3

(K(k)− 2E(k))
]}

+ . . . ,

(5.3.63)

∆E2(k) = l
2D + gµBB

8π(k2 + 1)

√
gµBB

J
{−E(k)[12 + 3 ln(3)]

−(k − 1)
3
2

[E(k) + 2K(k)][4 + ln(3)]

+(k − 1)2 3
8

[E(k)(6− 33arccoth(2)) +K(k)(−40 + 6 ln(3))]
}

+ . . . ,

(5.3.64)

∆E3(k) = −l2
√
−(2D + gµBB)3gµBB

48Jπ2(k2 + 1)
3
2

{
4E(k)[

√
3π − 18]

+4(k − 1)[
√

3(K(k) + E(k))π − 9(2K(k) + E(k))]

−(k − 1)2[2K(k)(7 + 2
√

3π)− E(k)(14
√

3π − 27)]
}

+ . . .

(5.3.65)

for easy axis domain walls.

The most important aspect of the results is that the dependence on material
parameters and external magnetic field is exactly the same as in the singular domain
wall case and is not affected by our approximations regarding the Green function
diagonal as a result of our rescaling methods shown in Section 5.1. Our power series
expansion does affect the dependence on the elliptic modulus. Until we find the
convergence radius and consequently estimate the inaccuracies arising due to those
approximations, the results can at best be considered as qualitative estimates of
width dependence of stripe domain energy. If we were to solve this problem, we
would be able to determine interaction energy of domain walls.

Quantum corrections for easy plane domain walls are significantly smaller
than the classical energy even for comparatively large anisotropy (D

J
) considering

the easy plane approximation constrain D >> gµBB. Therefore we can conclude,
that in this case classical model gives accurate qualitative predictions.

As for the easy axis case, we already established, that near the critical field in-
tensity the corrections can dominate over the classical energy. Assuming D = −0.3J
and B = 0.95−2D

gµB
we obtained energy of a single domain wall in arbitrary units as a
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function of the elliptic parameter k (figures 5.4, 5.6 and 5.7), which is directly con-
nected to the width of stripe domains, with blue line denoting classical energy and
red line denoting total energy. In the case of d = 2 the quantum corrections are vis-
ibly causing a repelling force between domain walls, which will be more pronounced
near the critical field intensity due to the established dependence of classical energy
and quantum corrections on

√
−2D − gµBB. In the d = 3 case the corrections have

a minimal impact on the overall energy and seem to merely amplify the classical
dependence on k parameter. The most interesting is the d = 1 case as was the case
for single domain walls. From physical standpoint more important than the energy
of a single domain wall will be the energy density (figure 5.5). As can be seen there
is a well defined minimum, which means that, if we apply the corrections to the easy
axis magnetic chain we can predict width of stripe domains, which minimises the
energy density, as a function of magnetic field and material parameters. Such a de-
pendence might be measurable in experiments. Furthermore, quantum energy seems
to be much more dependent on the elliptic modulus than the classical energy, which
implies that the interaction between domain walls cannot be properly modelled by
a classical system.
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Figure 5.4: Easy axis single domain wall energy for d = 1 in arbitrary units.
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Figure 5.5: Easy axis average energy density for d = 1 in arbitrary units.
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Figure 5.6: Easy axis single domain wall energy for d = 2 in arbitrary units.
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Figure 5.7: Easy axis single domain wall energy for d = 3 in arbitrary units.



Chapter 6

Conclusions

1. If we carry all physical constants through the calculations, it becomes evident,
that quantum corrections to energy are independent of the energy scale of
the classical system. If we were to multiply the classical action integral by
any constant, it would not affect the corrections due to the way parameter
A is cut by regularization. Even if our choice of the regularization coefficient
r2 was incorrect, scaling of the classical Hamiltonian would at most result
in a logarithmic change in quantum corrections. In a way it coincides with
the intuition, that quantum effects should only be noticeable in small scale
systems.

2. The zeta-function regularization scheme is incomplete in the sense, that it does
not give clear method of choosing the regularization coefficient r2. The choice
of vacuum cutoff in the case of fields over a finite interval is not necessarily
straightforward as well. We can solve the problem by comparing the energy
corrections for cases solved by other methods and extending the results to
those otherwise unattainable as we did for the φ4 and Sine-Gordon models.

3. Zeta-function regularization scheme does have the advantage of being easily
extended to an arbitrary number of dimensions and the meaning of regulariza-
tion steps can be directly linked to the definition of Maslov-Feynman integral.
Moreover, Maslov approach to semiclassical quantization requires identical reg-
ularization in both quantum mechanics and quantum field theory, which might
be useful in general studies of path integrals over fields.

4. In the case of easy axis domain walls, quantum corrections should dominate
over classical energy in 1 + 1 and 1 + 2 cases leading to spontaneous domain
creation in the 1 + 1 case in a certain range of external magnetic fields.

5. Energy corrections show strong dependence on the overall number of dimen-
sions of the classical system. It would be of interest to calculate energy correc-
tions without the continuum approximation to research the system’s geometry
effect on energy in semiclassical regime.
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6. In principle, Maslov approximation of path integrals can be used for non-
trivialy multidimensional or dynamic fields as long as eigenvector of relevant
operators form a base (see Section 3.2). We plan to use Darboux and Moutard
to study such cases explicitly.

7. Algebraic analysis of Drach equation and resulting solving algorithm are of
general enough nature, to allow a theoretical study of generalizations of Lamé
operator to arbitrary polynomial potentials. It is also of interest to study the
possibility of construction of Drach equation analogues for a wider class of
ordinary differential equations.

The path integral formulation of quantum field theory used in this thesis is non-
relativistic in the sense it is equivalent to the Schrödinger viewpoint.



Appendix A

Harmonic oscillator

Let us consider a classical harmonic oscillator

S(φ) =
∫ T

0

M
2

(
∂φ

∂t

)2

− kφ2

2

 dt, (A.0.1)

which after introduction of standard dimensionless variable t = Tt′ gives

S(φ) = T
∫ 1

0

 M
2T 2

(
∂φ

∂t′

)2

− kφ2

2

 dt′. (A.0.2)

We will now calculate the quantum propagator in the Maslov approximation 3.3

K(q, q′, t, t′) ≈ e
i
~S(φ)

√
detL0

detL
(A.0.3)

(with φ as a classical path between (q, t) and (q′, t′)), which is particularly easy,
since the second derivative of the potential is trivial and does not depend on the
classical solution

L =
iM

2Tπ~r2

(
∂2

∂t′2
− kT 2

M

)
, (A.0.4)

L0 =
iM

2Tπ~r2

(
∂2

∂t′2
+ C

)
. (A.0.5)

We intentionally leave the vacuum potential undecided to study its impact on the
result. In order to obtain meaningful results for non-stationary solutions, we can’t
use continuum approximation of respective spectra. Therefore

γL(τ) =
∑

n∈Z{0}
e−

iM(π2n2− kT
2

M
)

2Tπ~r2
τ (A.0.6)

and
γL0(τ) =

∑
n∈Z{0}

e−
iM(π2n2+C)
2Tπ~r2

τ . (A.0.7)
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Let us now write down the ζ function

ζ(s) =
1

Γ(s)

∫ ∞
0

τ s−1[γL(τ)− γL0(τ)]dτ. (A.0.8)

We use the substitution τA = Aτ with A = M
2Tπ~r2

ζ(s) =
A−s

Γ(s)

∫ ∞
0

τ s−1
A [γL(τA)− γL0(τA)]dτA. (A.0.9)

After inserting the γ functions

ζ(s) =
A−s

Γ(s)

∫ ∞
0

τ s−1
A (ei

kT2

M
τA − e−iCτA)

∑
n∈Z

e−iπ
2n2τAdτA. (A.0.10)

The joining of the sums is acceptable, since they are unconditionally convergent. We
can now perform the Mellin transform

ζ(s) = A−si−s
∑

n∈Z{0}
(π2n2 − kT 2

M
)−s − (π2n2 + C)−s. (A.0.11)

Derivative at 0 gives us

∂ζ

∂s
(0) = − ln(iA) +

∑
n∈Z{0}

ln
(
π2n2 + C

π2n2 − kT 2

M

)
. (A.0.12)

From this form we can build the propagator (A.0.3)

e
i
~S(φ)

√iA ∏
n∈Z{0}

√√√√ π2n2 + C

π2n2 − kT 2

M

 , (A.0.13)

which can be simplified to

e
i
~S(φ)

√iA ∏
n∈Z{0}

√√√√ 1 + C
π2n2

1− kT 2

π2n2M

 (A.0.14)

and finally written down as

e
i
~S(φ)
√
iA

√
kT 2

CM

sinh
(√

C
)

sin
(√

k
M
T
) . (A.0.15)

We arrive at an expression, which looks like a naive ordering of L and L0 eigenvalues
with an additional term

√
iA, which clearly needs to by regularized through a proper

choice of base functions norm r, since the whole expression should converge to 1 for
T → 0. It is important to mention, that we can extract an arbitrary constant out of
the sum in (A.0.11). For instance, we could have written

ζ(s) = A−si−sπ−2s
∑

n∈Z{0}

(
n2 − kT 2

Mπ2

)−s
−
(
n2 +

C

π2

)−s
(A.0.16)



70 Chapter A. Harmonic oscillator

and arrive at

e
i
~S(φ)
√
iAπ2

√
kT 2

CM

sinh
(√

C
)

sin
(√

k
M
T
) , (A.0.17)

which does not contradict (A.0.15), since the differences will be covered by the
normalising factor. After inserting the value of A we obtain

e
i
~S(φ)

√
i
πkT

2~r2C

sinh
(√

C
)

sin
(√

k
M
T
) . (A.0.18)

We can normalize the expression using the most important quality of the propagator

K(q, q′, t, t′) =
∫ ∞
−∞

K(q, q′′, t, t′′)K(q′′, q′, t′′, t′)dq′′. (A.0.19)

It is important to note, that in this particular case we seem to have an overabun-
dance of normalising factors, since we can use r (norm of the base functions used in
Taylor expansion), the vacuum potential (which often is locked by the convergence
condition) or the normalization of integral over q (which is directly available only in
the quantum-mechanical case). For the sake of simplicity and without abandoning
the generality of our calculations we will assume C → 0+ and keep the normaliza-
tion of the integral as in (A.0.19). Using the expression for the action integral over
a classical path between two arbitrary points in space-time

S(q, q′, t, t′) =

√
kM

2 sin
(√

k
M

(t′ − t)
)
(q2 + q′2) cos

√ k

m
(t′ − t)

− 2qq′
 . (A.0.20)

We can calculate the integral in (A.0.19) remembering that r can be a function of
the time interval (in the following equations explicitly denoted as r(t))√

i πk(t′−t)
2~r2(t′−t)

sin
(√

k
M

(t′ − t)
) =

√√√√√√2i~π sin
(√

k
M

(t′ − t′′)
)

sin
(√

k
M

(t′′ − t)
)

√
kM sin

(√
k
M

(t′ − t)
)

×

√
i πk(t′′−t)

2~r2(t′′−t)

√
i πk(t′−t′′)

2~r2(t′−t′′)

sin
(√

k
M

(t′ − t′′)
)

sin
(√

k
M

(t′′ − t)
) (A.0.21)

with the e
i
~S(φ) already cut on both sides for the purpose of clarity. After simplifying

the expression we obtain√√√√√ iπk(t′ − t)
2~r2(t′ − t) sin

(√
k
M

(t′ − t)
) = ×

√
2i~π√
kM

√√√√√ iπk(t′′ − t)
2~r2(t′′ − t) sin

(√
k
M

(t′′ − t)
)

√√√√√ iπk(t′ − t′′)
2~r2(t′ − t′′) sin

(√
k
M

(t′ − t′′)
) , (A.0.22)



71

which reveals a straightforward choice of r2

r2(T ) = − π2T
√
k

√
M sin

(√
k
M
T
) (A.0.23)

and the final form of the propagation operator

K(q, q′, t, t′) = e

i
~

√
kM

2 sin

(√
k
M
(t′−t)

)[(q2+q′2) cos
(√

k
m

(t′−t)
)
−2qq′

]√√√√√
√
kM

2i~π sin
(√

k
M

(t′ − t)
) .

(A.0.24)
It is of note, that in this case the semiclassical approach gives the exact result
(compare with [116], where the harmonic oscillator propagator was obtained with
three different methods). Additionally, it is worth noting, that the normalising factor
r is not necessarily a simple function of the time interval and even the qualitative
behavior of the propagator might not be fully visible before the normalization.



Appendix B

Mathematica code

Below, we present a sample implementation of the solving algorithm for the Drach
equation described in Section 4.4.1.

Clear[U, L, m, z, k, r, n, H, P, PP, f, q]
U[z_] := m^2 (5 k^2 - 1) - 6 m^2 k^2 z ;
(*U is the chosen potential*)
L[z_] := 4 m^2 (1 - k^2) z + 4 m^2 (2 k^2 - 1) z^2 - 4 m^2 k^2 z^3;
(*L represents (z’_x)^2*)
kk = 0;
While[Not[D[U[z], {z, kk + 1}] === 0], kk++]
(*calculation of the order of polynomial U*)
n = r /. Solve[(r^2 + kk r)*D[L[z], {z, kk + 2}]/(kk + 2)! -

4/(kk!)*D[U[z], {z, kk}] == 0, r][[2]];
(*calculation of the order of polynomial P*)
P[z_] := Sum[PP[i] z^i,{i,0,n}];
(*construction of polynomial P as an explicit sum in powers of z*)
f[z_] :=
2 P[z] (D[P[z], {z, 2}] L[z] + D[L[z], z] D[P[z], z]/2) -
L[z] (D[P[z], z])^2 - 4 (U[z] - p) P[z]^2
(*function f contains the whole left hand side of equation*)
Do[r = PP[i - n - kk] /.
Solve[{D[f[z], {z, i}] == 0, z == 0}, PP[i - n - kk]];
PP[i - n - kk] = r[[1]], {i, 2 n + kk - 1, n + kk, -1}];
(*evaluation of P_n (p)*)
If[Simplify[D[f[z], {z, 1}]] === 0, , "No solution"]
(*checking the solution*)
q = -f[z] /. z -> 0;
(*evaluation of Q (p) or more precisely 4Q (p)*)
FullSimplify[P[z]/Sqrt[q]]
(*presentation of results*)
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[59] W. Pauli, Ausgewählte Kapitel aus der Feldquantisierung, Zurich (1951)

[60] V. P. Maslov, Stationary-phase method for Feynman’s continual integral,
Zhurnal Vychislitelnoj Matematiki i Matematicheskoj Fiziki 1, p. 638 (1961)

[61] V. P. Maslov, On the stationary phase method for Feynman’s continual inte-
gral, Teoreticheskaya i Matematicheskaya Fizika 2, 1, pp. 30-35 (1970)

[62] C. Garrod, Hamiltonian path-integral methods, Reviews of Modern Physics
38, 3, pp. 483-494 (1966)

[63] M. C. Gutzwiller, Phase-integral approximation in momentum space and the
bound states of an atom, Journal Of Mathematical Physics 8, 10, pp. 1979-
2000 (1967)

[64] M. C. Gutzwiller, Phase-integral approximation in momentum space and the
bound states of an atom. II, Journal Of Mathematical Physics 10, 6, pp.
1004-1020 (1969)

[65] J. M. Robbins, Maslov indices in the Gutzwiller trace formula, Nonlinearity
4, 2, pp. 343-363 (1991)

[66] M. C. Gutzwiller, Energy spectrum according to classical mechanics, Journal
Of Mathematical Physics 11, 6, pp. 1791-1806 (1970)

[67] M. C. Gutzwiller, Periodic orbits and classical quantization conditions, Jour-
nal Of Mathematical Physics 12, 3, pp. 343-358 (1971)

[68] V. E. Korepin, L. D. Faddeev, Quantization of solitons, Teoreticheskaya i
Matematicheskaya Fizika 25, 2, pp. 1039-1049 (1975)

[69] J. S. Dowker, R. Critchley, Effective Lagrangian and energy-momentum ten-
sor in de Sitter space, Physical Review D 13, 12, pp. 3224-3232 (1976)

[70] S. W. Hawking, Zeta function regularization of path integrals in curved space-
time, Communications in Mathematical Physics 55, 2, pp. 133-148 (1977)

[71] I. Ventura, Macroscopic solitons in thermodynamics, Physical Review B 24,
5, pp. 2812-2816 (1981)



78 BIBLIOGRAPHY

[72] R. V. Konoplich, Calculation of quantum corrections to nontrivial classical
solutions by means of the zeta-function, Teoreticheskaya i Matematicheskaya
Fizika 73, 3, pp. 379-392 (1987)

[73] R. V. Konoplich, The zeta-function method in field theory at finite tempera-
ture Teoreticheskaya i Matematicheskaya Fizika 78, 3, pp. 444-457 (1989)

[74] R. Rajaraman, Solitons and instantons, Elsevier, Amsterdam (1982)

[75] R. Rajaraman, Some nonperturbative semiclassical methods in quantum field
theory, Physics Reports 21, 5, pp. 227-317 (1975)

[76] M. Bordag, Vacuum energy in smooth background fields, Journal of Physics
A: Mathematical and Theoretical 28, 3, pp. 755-765 (1995)

[77] K. Kirsten, A. J. McKane, Functional determinants by contour integral meth-
ods, Annals of Physics 308, 2, pp. 502-527 (2003)

[78] K. Kirsten, P. Loya, Computation of determinants using contour integrals,
American Journal of Physics 76, 1, pp. 60-65 (2008)

[79] M. Pawellek, Quantization of Sine-Gordon solitons on the circle: semiclassical
vs. exact results, Nuclear Physics B 810, 3, pp. 527-541 (2009)

[80] M. Pawellek, Quantum mass correction for the twisted kink,
arXiv:0802.0710v1 [hep-th] (2008)

[81] E. K. Sklyanin, L. A. Takhtadzhan, L. D. Faddeev, Quantum inverse problem
method, Teoreticheskaya i Matematicheskaya Fizika 40, 2, pp. 194-211 (1979)

[82] E. K. Sklyanin, Exact quantization of the Sinh-Gordon model, Nuclear Physics
B 326, 3, pp. 719–736 (1989)

[83] L. A. Takhtadzhan, L. D. Faddeev, The quantum method of the inverse prob-
lem and the Heisenberg XYZ model, Uspekhi Matematicheskikh Nauk 34, 5,
pp. 13-63 (1979)

[84] P. Weiss, La variation du ferromagnetisme du temperature, Comptes Rendus
de l’Academie des Sciences 143, pp. 1136-1149 (1906)

[85] W. Heisenberg, Zur Theorie des Ferromagnetismus, Zeitschrift für Physik 49,
9-10, pp. 619-636 (1928)

[86] W. Heisenberg, Zur Quantentheorie des Ferromagnetismus, Probleme der
Modernen Physik, A. Sommerfeld Festschrift, pp. 114-122, Leipzig (1928)

[87] W. Heisenberg, Zur Theorie des Magnetostriktin und der Mag-
netisierungkurve, Zeitschrift für Physik 69, 5-6, pp. 287-297 (1931)



BIBLIOGRAPHY 79

[88] F. Bloch, Bemerkung zur Elektronentheorie des Ferromagnetismus und der
elektrischen Leitfähigkeit, Zeitschrift für Physik 57, 7-8, pp. 545-555 (1929)

[89] F. Bloch, Zur Theorie des Ferromagnetismus, Zeitschrift für Physik 61, 3-4,
pp. 206-219 (1930)

[90] L. Landau, E. Lifschitz, On the theory of the dispersion of magnetic perme-
ability in ferromagnetic bodies, Physikalische Zeitschrift der Sowjetunion 8,
pp. 153–169 (1935)

[91] C. Kittel, Physical theory of ferromagnetic domain walls, Reviews of Modern
Physics 21, 4, pp. 541-584 (1949)

[92] I. A. Akhiezer, A. E. Borovik, Theory of finite-amplitude spin waves, Journal
of Experimental and Theoretical Physics 52, 2, pp. 508-513 (1967)

[93] S. Davis, G. Gutierrez, Dynamic properties of a classical anisotropic Heisen-
berg chain under external magnetic field, Physica B 355, 1-4, pp. 1-8 (2005)

[94] F. Marchesoni, Sine-Gordon Solitons in Random Potentials: Application to
Magnetic Chains, Europhysics Letters 8, 1, pp. 83-87 (1989)

[95] C. B. Muratov, Theory of domain patterns in systems with long-range inter-
actions of Coulomb type, Physical Review E 66, 6, 066108 (2002)

[96] P. S. Riseborough, D. L. Mills, S. E. Trullinger, Non-covariant corrections to
magnetic solitons in CsNiF3, Journal of Physics C: Solid State Physics 14,
7, pp. 1109-1119 (1981)

[97] H. Y. Kwon et al., A study of the stripe domain phase at the spin reorientation
transition of two-dimensional magnetic system, Journal of Magnetism and
Magnetic Materials 322, 18, pp. 2742–2748 (2010)

[98] J. M. Maillet, Heisenberg spin chains: from quantum groups to neutron scat-
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