POLITECHNIKA GDAŃSKA WYDZIAŁ INŻYNIERII LĄDOWEJ I ŚRODOWISKA

Łukasz Marek Kopeć

Ilościowe i jakościowe aspekty procesu denitryfikacji w reaktorze ze złożem ruchomym

Rozprawa doktorska

Promotor: prof. dr hab. inż. Hanna Obarska-Pempkowiak

Gdańsk, kwiecień 2014

Pani Promotor prof. dr hab. inż. Hannie Obarskiej-Pempkowiak za kierownictwo, cenne wskazówki, za wyrozumiałość oraz życzliwą pomoc przy realizacji niniejszej pracy składam serdeczne podziękowania.

Niniejsza praca została zrealizowana w ramach projektu systemowego "InnoDoktorant – stypendia dla doktorantów, IV edycja". Projekt był współfinansowany przez Unię Europejską z Europejskiego Funduszu Społecznego (Program Operacyjny Kapitał Ludzki, Priorytet VIII, Działanie 8.2, Poddziałanie 8.2.2: "Regionalne Strategie Innowacji").

Spis treści:

1.	Wstęp		4	
2.	Teoret	yczne podstawy oczyszczania ścieków metodami biologicznymi	5	
2.	1 Pr	ocesy jednostkowe w biologicznym oczyszczaniu ścieków	5	
2.	2 Po	odstawy kinetyki przemian biologicznych	13	
	2.2.1	Kinetyka denitryfikacji	22	
2.	3 O	czyszczanie ścieków w złożach biologicznych	26	
	2.3.1	Złoża zraszane	30	
_	2.3.2	Złoże ruchome	35	
3.	Cel i z	akres pracy	52	
4.	Przedi	níot badań	54	
5.	Mater	ały i metodyka badań	56	
5.		adania kinetyki denitryfikacji w laboratoryjnym reaktorze MBBR	56	
5.	2 Ba	adania w skali technicznej	60	
	5.2.1	Opis objektu badan	60	
	5.2.2	Określenie liczby kształtek w jednym m ⁻ wypełnienia Evu Perl	66	
	5.2.3	Określenie konsumpcji substratów w procesie denitryfikacji	66	
	5.2.4	Określenie wpływu dawki zewnętrznego węgla organicznego	67	
	5.2.5	Wymeno za przyrostu biomasy	0/	
	5.2.0	Wyznaczenie szybkości deniu ynkacji	09	
	5.2.7	Wyznaczenie stałych w rownanu szyokości deniu ynkacji	/ 1 76	
5	3.2.8	wyznaczenie starych wzrostu mikroorganizmów deniu ynkacyjnych	70	
5. 5	J A	redy pomiarowe i niepewności wykonanych pomiarów	/ / 78	
6	Wynik	i badań	70	
0. 6	1 B	adania kinetyki denitryfikacii w laboratoryinym reaktorze MBBR	05	
0.	6.1.1	Doświadczenie z nadmiarem zewnetrznego wegla organicznego		
	6.1.2	Doświadczenie z nadmiarem azotanów V		
6.	2 Ba	adanja reaktora MBBR w skalj technicznej	91	
0.	6.2.1	Liczba kształtek w 1m ³ wypełnienia Evu Perl	91	
	6.2.2	Konsumpcia substratów w procesie denitryfikacji	93	
	6.2.3	Wpływ dawki preparatu Brennta Plus na szybkość denitryfikacji	94	
	6.2.4	Stężenie biomasy w reaktorze MBBR	95	
	6.2.5	Zmiany stężenia azotanów V, ChZT i potencjału utleniająco -		
	redukı	ijącego w reaktorze MBBR obsługiwanym ręcznie	97	
	6.2.6	Zmiany stężenia azotanów V i potencjału utleniająco - redukującego		
	w reak	torze MBBR pracującym w trybie automatycznym	102	
6.	3 W	yznaczenie stałych w procesie denitryfikacji	104	
6.	4 Ile	ościowa charakterystyka reaktora MBBR	110	
7.	Omów	vienie wyników badań	112	
8.	Wnios	ki	131	
9. Literatura				
10. Załączniki:				
1(0.1 Zo	ljęcia reaktora MBBR w laboratorium i w skali technicznej	152	
1().2 Ta	belaryczne zestawienie wyników	155	

1. Wstęp

Polska jest krajem wrażliwym na eutrofizację. Zgodnie z Ramową Dyrektywą Wodną 2000/60/WE Polska do roku 2015 musi zapewnić 75% usuwanie związków azotu i fosforu ze ścieków bytowych w odniesieniu do ładunku doprowadzonego do oczyszczalni. Nowe i zmodernizowane oczyszczalnie ścieków obsługujące miejscowości do 2000 mieszkańców (w tym również obiekty wykorzystujące złoża biologiczne) w najbliższym czasie powinny w znacznym stopniu przyczynić się do poprawy jakości wód powierzchniowych na obszarze kraju.

Problem oczyszczania ścieków w małych gminach i miejscowościach do 2000 mieszkańców wymaga pilnych rozwiązań. Między innymi należy zapewnić możliwość usuwania związków biogennych w małych oczyszczalniach ścieków, aby spełnić wymogi wynikające z obowiązującej dyrektywy (Obarska-Pempkowiak i in., 2010).

W Polsce na terenach o rozproszonej zabudowie istnieje wiele oczyszczalni ścieków wykorzystujących złoża biologiczne. Liczba tych urządzeń systematycznie wzrasta. Rocznie przybywa około 7000 nowych obiektów. Przeprowadzona wstępna analiza wykazała, że proces denitryfikacji w małych oczyszczalniach zachodzi w ograniczonym stopniu, przede wszystkim ze względu na dużą nierównomierność dopływającego ładunku zanieczyszczeń.

Liczba ludności na terenach wiejskich w ostatnich latach systematycznie wzrasta. Aktualnie, na tych terenach mieszka około 30% ludności kraju. Według Raportu o stanie środowiska w Polsce (Główny Inspektorat Ochrony Środowiska 2010) jedynie 1% mieszkańców tych obszarów korzysta z indywidualnych systemów oczyszczania. Oznacza to, że w najbliższych latach musi nastąpić znaczny przyrost liczby lokalnych i przydomowych oczyszczalni ścieków. W małych oczyszczalniach obsługujących poniżej 2000 mieszkańców (wykorzystujących zwykle reaktory osadu czynnego lub złoża biologiczne) istotne było dotychczas usuwanie przede wszystkim azotu amonowego, ze względu na jego toksyczne właściwości. Sprawa usuwania tlenowych form azotu – azotanów (III) i (V) praktycznie pozostawała nierozwiązana.

W pracy dokonano oceny jakościowych i ilościowych aspektów związanych z procesem denitryfikacji w reaktorze ze złożem ruchomym (ang. Moving Bed Biofilm Reactor – w skrócie MBBR), stanowiącym dodatkowy element oczyszczania ścieków po złożach biologicznych typu Bioclere[®].

2. Teoretyczne podstawy oczyszczania ścieków metodami biologicznymi

2.1 Procesy jednostkowe w biologicznym oczyszczaniu ścieków

Tlenowy rozkład materii organicznej

Substancja organiczna zawarta w ściekach ulega rozkładowi w warunkach tlenowych z udziałem mikroorganizmów heterotroficznych (cudzożywnych). Tlen cząsteczkowy doprowadzany do układu oczyszczania pełni funkcję akceptora elektronów. Utlenianie materii organicznej jest zwykle przedstawiane w sposób przybliżony z wykorzystaniem zapisu podanego m.in. przez Metcalf'a i Eddy'ego, 1991; Pöpel'a, 1988; McCarty'ego, 1975:

$$COHNS + O_2 + zw.biogenne \xrightarrow{bakterie} CO_2 + NH_4 + C_5H_7O_2N + produkty$$
$$C_5H_7O_2N + 5O_2 \xrightarrow{bakterie} 5CO_2 + 2H_2O + 2NH_4 + energia$$

Syntezę biomasy heterotroficznej przedstawionej w postaci sumarycznego wzoru: $C_5H_7NO_2$ można opisać reakcją podaną przez Kowala (1997).

$$C_{10}H_{19}O_3N + 1,5NH_3 + 2,5CO_2 \rightarrow 2,5C_5H_7NO_2 + 3H_2O_2$$

W procesie tym następuje również rozpad azotu organicznego do azotu amonowego (tzw. proces amonifikacji), ponieważ azot jest niezbędny do syntezy biomasy. Sumaryczny zapis procesu utleniania i syntezy materii organicznej został zaproponowany w 1978 roku przez Ber'a i Wang'a:

$$C_{10}H_{19}O_3N + 4,375O_2 + 0,625NH_3 \rightarrow 1,875CO_2 + 4,75H_2O + 1,625C_5H_7NO_2$$

Według Harremoes'a (1989) na podstawie podanego równania wynika, że istnieje konieczność dodania pewnej ilości azotu w postaci amoniaku (NH₃) lub azotu amonowego (NH₄⁺), ponieważ w przyjętej, hipotetycznej materii organicznej nie ma dostatecznej ilości azotu do asymilacji biomasy.

W procesie biologicznego tlenowego rozkładu materii organicznej uczestniczy wiele mikroorganizmów. Wśród nich istotne znaczenie mają m. in.: *Pseudomonas, Zoogloea, Achromobacter, Flavobacterium, Nocardia, Bdellovibrio, Mycobacterium* (Gdańska Fundacja Wody, 2004)

Amonifikacja

Amonifikacja jest reakcją zachodzącą w procesie biologicznego oczyszczania ścieków i polega na przemianie azotu organicznego w azot amonowy. Może zachodzić zarówno w warunkach tlenowych jak i beztlenowych, wymaga jednak obecności substratu i bakterii heterotroficznych. Według Kowala (1997) przebieg amonifikacji można opisać reakcją:

$$C_{10}H_{19}O_3N + 12,5O_2 \rightarrow 9CO_2 + 7H_2O + NH_4HCO_3$$

Z podanego równania wynika, że z 1 mola azotu organicznego powstaje 1 mol wodorowęglanu amonu (NH₄HCO₃). Wynika stąd, że wraz z powstaniem azotu amonowego następuje wzrost stężenia jonu HCO₃⁻. Jon ten jest odpowiedzialny za przyrost zasadowości o 3,57 gCaCO₃/gN.

Nitryfikacja

Proces nitryfikacji polega na przemianie azotu amonowego w azotany III i azotany V. Konwencjonalny proces opisuje się reakcją dwustopniową, w której udział biorą bakterie autotroficzne (samożywne) zdobywające energię z utleniania substratów nieorganicznych: NH_4^+ i NO_2^- . Źródłem węgla dla bakterii nitryfikacyjnych jest bezwodnik kwasu węglowego CO_2 .

Pierwszym etapem reakcji nitryfikacji jest utlenianie azotu amonowego do azotanów III. Według EPA (1975) przebieg tej reakcji jest najwolniejszy wśród zachodzących procesów biologicznego oczyszczania i odbywa się z udziałem bakterii *Nitrosomonas*:

$$NH_4^{+} + 1,5O_2 \rightarrow NO_2^{-} + 2H^{+} + H_2O$$

W drugim etapie, znacznie szybszym procesem jest utlenienie powstałych azotanów (III) do azotanów (V). Proces ten zachodzi z udziałem bakterii *Nitrobacter*. Z powodu różnic w szybkościach obu reakcji, w standardowych warunkach, stężenie azotanów (III) jest zwykle niewielkie. Przebieg procesu opisuje się reakcją:

$$NO_2^- + 0.5O_2 \rightarrow NO_3^-$$

Powyższą reakcję Henze i in. (2002) proponują opisać równaniem uwzględniającym przyrost bakterii nitryfikacyjnych:

Nitrosomonas:

$$13NH_4^+ + 15CO_2 \rightarrow 10NO_2^- + 3C_5H_7NO_2 + 23H^+ + 4H_2O_2$$

Nitrobacter:

$$NH_4^+ + 5CO_2 + 10NO_2^- + 2H_2O \rightarrow 10NO_3^- + C_5H_7NO_2 + H^+$$

W powyższym równaniu powstaje jon H⁺ reagujący z zasadowością wg reakcji:

$$HCO_3^- + H^+ \Leftrightarrow CO_2 + H_2O$$

Po połączeniu tej reakcji z równaniami dwóch etapów nitryfikacji można przebieg procesu opisać kolejnymi reakcjami:

Etap I:

$$NH_4^+ + 1,5O_2 + 2HCO_3^- \longrightarrow NO_2^- + 2H_2CO_3 + H_2O$$

 $13NH_4^+ + 23HCO_3^- \longrightarrow 10NO_2^- + 3C_5H_7NO_2 + 19H_2O$

Etap II:

$$10NO_{2}^{-} + NH_{4}^{+} + 4H_{2}CO_{3} + HCO_{3}^{-} \longrightarrow C_{5}H_{7}NO_{2} + 3H_{2}O + 10NO_{3}^{-}$$

Metcalf i Eddy (1991) proponują zapis tych samych reakcji z udziałem innych współczynników stechiometrycznych:

Nitrosomonas:

$$55NH_4^+ + 76O_2 + 109HCO_3^- \longrightarrow C_5H_7O_2N + 54NO_2^- + 57H_2O + 104H_2CO_3$$

Nitrobacter:

$$400NO_{2}^{-} + NH_{4}^{+} + 4H_{2}CO_{3} + HCO_{3}^{-} + 159O_{2} \longrightarrow C_{5}H_{7}O_{2}N + H_{2}O + 400NO_{3}^{-}$$

Proces nitryfikacji powoduje spadek zasadowości ścieków. Zgodnie z przedstawionymi reakcjami zużycie zasadowości wynosi: 7,14 g CaCO₃/ g NH₄⁺-N. Jednocześnie następuje obniżenie pH ścieków. Według Gomółki i Szynoka (1982) dla bakterii nitryfikacyjnych jest szczególnie niebezpieczna niska zasadowość ścieków, ponieważ po jej całkowitym wyczerpaniu występuje brak dostępnego węgla nieorganicznego (CO₂) i proces nitryfikacji może zostać zahamowany.

Zużycie tlenu w nitryfikacji wynosi 4,57 gO_2/gNH_4^+ -N. Często wartość ta określona doświadczalnie jest mniejsza i wynosi 4,19 gO_2/gNH_4^+ -N, gdyż bakterie nitryfikacyjne potrafią wykorzystywać tlen z wodorowęglanów. W przypadku braku tlenu przez dłuższy okres czasu mikroorganizmy te pozostają aktywne. Dlatego Painter (1970) podaje, że w niektórych układach technologicznych (w których występują na przemian warunki tlenowe i beztlenowe) tę zdolność można wykorzystywać.

Proces ten jest jednak bardzo wrażliwy. Według Fegnera (1970) inhibicja może być spowodowana nie tylko obecnością substancji toksycznych w ściekach, lecz również następować w skutek wypłukiwania bakterii. Wg Sharm'a, i og Ahlert'a (1977); Tomlinson'a i in., (1966); Loveless'a i Painter'a, (1968) wśród substancji chemicznych, najbardziej silne działanie inhibitujące następuje w obecności metali ciężkich, związków siarki, pochodnych aniliny, fenoli i cyjanków.

Skrócona nitryfikacja

Proces usuwania związków azotu można przeprowadzić również w sposób tzw. "skróconej nitryfikacji". Uważa się, że proces utleniania amoniaku na pierwszym etapie tj. do powstania azotanów (III) można zatrzymać. W rezultacie istnieje możliwość zaoszczędzenia 1 kgO₂/kgN oraz zmniejszenia zapotrzebowania na węgiel organiczny nawet o 40%. Według Dymaczewskiego i in., (2011) wzrost bakterii *Nitrobacter* można zahamować zmieniając pH ścieków lub przez zmianę ilości dostarczonego tlenu. Proces skróconej nitryfikacji obecnie stanowi podstawę do nowych technologii usuwania związków azotu w oczyszczalniach ścieków. Są to:

- Proces SHARON skrót od nazwy angielskiej: Single Reactor for High-Rate Ammonia Removal Over Nitrite,
- Proces OLAND skrót od nazwy angielskiej: Oxygen Limited Autotrophic Nitrification-denitrification
- Proces CANON pochodzący od wyrażenia z języka angielskiego: Completely Autotrophic Nitrogen Removal Over Nitrite

Denitryfikacja

Denitryfikacja jest procesem redukcji dysymilacyjnej polegającym na biochemicznym przejściu azotanów (V) lub azotanów (III) do azotu gazowego (N₂) lub (N₂O) z jednoczesnym utlenieniem materii organicznej, która jest źródłem węgla i energii dla bakterii heterotroficznych. Wg Gdańskiej Fundacji Wody (2004) wśród mikroorganizmów heterotroficznych - fakultatywnych, które są w stanie wykorzystywać tlen z azotanów dzięki enzymowi – reduktazie azotynowej, można wyróżnić m.in.: *Achramobacter, Aerobacter, Alcaligenes, Bacillus, Brevibacterium, Flavobacterium, Lactobacillus, Micrococcus, Proteus, Pseudomonas, Spirillum*

W uproszczeniu proces z udziałem bakterii denitryfikacyjnych można opisać następującym ciągiem przemian:

$$NO_3^{-} \rightarrow NO_2^{-} \rightarrow NO \rightarrow NOH \rightarrow N_2$$

Przebieg denitryfikacji jest uwarunkowany stężeniem rozpuszczonego tlenu. Jeżeli stężenie tlenu w ściekach jest powyżej wartości 0,5 gO₂/m³, następuje zahamowanie denitryfikacji. W takiej sytuacji w drugiej kolejności po wykorzystaniu tlenu cząsteczkowego będzie zużywany tlen z azotanów. Natomiast, jeżeli stężenie tlenu jest niższe od wartości 0,5 gO₂/m³ funkcję utleniacza zaczynają pełnić azotany V, a proces nazywa się procesem anoksycznym (Christensen i Harremoes 1977).

Według Kowala (1997), gdy występuje niskie stężenie tlenu rozpuszczonego i brak azotu amonowego mogą przebiegać jednocześnie denitryfikacja oraz redukcja asymilacyjna (wbudowywanie azotu w komórki bakterii). Gdyby w analogicznych warunkach ścieki oczyszczone zawierały wystarczająco dużo azotu amonowego (lub azotu organicznego łatwo ulegającego amonifikacji), wówczas przebiegałaby denitryfikacja, a zapotrzebowanie na azot do syntezy biomasy byłoby zaspokajane przez pobieranie jonu NH_4^+ ze ścieków.

W procesie denitryfikacji stosowane są zarówno wewnętrzne jak i zewnętrzne źródła węgla organicznego. Źródłem wewnętrznym jest substancja organiczna pochodząca ze ścieków surowych lub z biomasy przyrastającej (tzw. węgiel endogenny). Źródłem zewnętrznym są substancje organiczne dawkowane do ścieków z zewnątrz. Dotychczas rolę takich substancji spełniały: metanol, kwasy organiczne, melasa, ścieki z cukrowni, skrobia, aceton, alanina, osad piekarniczy, kazeina, sok wiśniowy, cytryniany, etanol, mączka rybna, żelatyna, glukoza, mleczany, margaryna, metan, pepton, sacharoza, syrop cukrowy, glikol oraz fuzle pochodzenia browarniczego (Mąkinia i in. 2008). Wszystkie wymienione źródła różnią się dostępnością, ceną, szybkością denitryfikacji oraz wydajnością przyrostu biomasy. Dlatego o wyborze najbardziej optymalnego substratu często decyduje aspekt ekonomiczny.

Denitryfikację z zastosowaniem metanolu jako zewnętrznego źródła węgla można opisać kolejnymi reakcjami:

$$NO_{3}^{-} + 0,33CH_{3}OH \xrightarrow{bakterie} NO_{2}^{-} + 0,67H_{2}O + 0,33CO_{2}$$
$$NO_{2}^{-} + 0,5CH_{3}OH \xrightarrow{bakterie} 0,5N_{2} + 0,5CO_{2} + 0,5H_{2}O + OH^{-}$$

Inne współczynniki tej reakcji proponują Metcalf i Eddy (1991):

$$6NO_{3}^{-} + 2CH_{3}OH \xrightarrow{bakterie} 6NO_{2}^{-} + 2CO_{2} + 4H_{2}O$$
$$6NO_{2}^{-} + 3CH_{3}OH \xrightarrow{bakterie} 5CO_{2} + 3N_{2} \uparrow +7H_{2}O + 6OH^{2}$$

Według Aspergen'a i in. (1998) oraz Hamlin'a i in. (2008), przy założeniu, że substratami procesu są metanol i azotany V, syntezę biomasy można przedstawić następująco:

$$14CH_{3}OH + 3NO_{3}^{-} + H_{2}CO_{3} \rightarrow 3C_{5}H_{7}NO_{2} + 17H_{2}O + 3OH$$

W reakcji tej powstają jony OH⁻, które reagują z dwutlenkiem węgla i zwiększają zasadowość ścieków:

$$CO_2 + OH^- \longleftrightarrow HCO_3^-$$

Połączenie tego równania z równaniem syntezy biomasy zapisuje się następująco:

$$NO_2^- + 0.5CH_3OH + 0.5H_2CO_3 \rightarrow 0.5N_2 + H_2O + HCO_3^-$$

 $14CH_3OH + 3NO_3^- + 4H_2CO_3 \rightarrow 3C_5H_7NO_2 + 20H_2O + 3HCO_3^-$

Zgodnie z podanymi reakcjami, denitryfikacja powoduje zwiększenie zasadowości o 3,57 gCaCO₃/gN. Jednocześnie następuje zmniejszenie stężenia dwutlenku węgla i wzrost pH. Wg Parker'a i in., (1997) oraz Cemy i in., (2005) wzrost zasadowości jest często mniejszy i wynosi około 2,90 gCaCO₃/gN, ponieważ jony HCO₃⁻ mogą być zużywane również w procesie asymilacji amoniaku.

Szybkość denitryfikacji jest uwarunkowana temperaturą procesu, podobnie jak dla heterotroficznych procesów aerobowych. Według Christensen'a i Harremoes'a (1977) możliwe jest przeprowadzane termofilnej denitryfikacji w temperaturze 50-60°C. Wówczas szybkość procesu jest o 50% wyższa w porównaniu z procesem realizowanym w temperaturze 35°C.

Optymalna wartość pH dla procesu denitryfikacji powinna być utrzymywana w zakresie 7-9. Borregaard (1997) jednak wykazał, że bakterie denitryfikacyjne przy długiej ekspozycji poza optymalnym zakresem pH mogą przystosowywać się do nowych warunków.

Anammox

Proces Anammox – autotroficzna denitryfikacja beztlenowa (w języku angielskim Anaerobic Ammonium Oxidation) polega na utlenieniu azotu amonowego w warunkach beztlenowych azotanami III do azotu gazowego. Proces ten jest prowadzony przez bakterie *Planctomycelates*. Jak podaje Szatkowska i in. (2005) oraz Cema i in. (2005) najlepiej poznanym organizmem z tej grupy jest *Candidatus Brocadia anammoxidans*, który umożliwia przebieg procesu wg poniższych reakcji:

$$2NH_4^+ + 1,5O_2 + 2HCO_3^- \rightarrow NH_4^+ + NO_2^- + 2CO_2 + 3H_2O_2^-$$

$$NH_4^+ + 1,32NO_2^- + H^+ \rightarrow 1.02N_2 + 0,26NO_3^- + 2H_2O_3^-$$

Jest to reakcja bardziej korzystna pod względem energetycznym niż konwencjonalna nitryfikacja. Proces ten jest jednak wrażliwy i ulega hamowaniu przez azotany V, (jeżeli stężenie azotanów V jest powyżej 20 mg/dm³, stężenie fosforanów powyżej 5 mg/dm³, a nasycenie tlenem wynosi co najmniej 1%). Reakcja przebiega w temperaturze 20 - 43°C i pH 6,7 – 8,3. Według Treli i in. (2004) ze względu na mały przyrost biomasy i powolną szybkość wzrostu, w procesie tym należy stosować reaktory z efektywną recyrkulacją osadu.

Biologiczna defosfatacja

Związki fosforu obecne w ściekach komunalnych stanowią przede wszystkim ortofosforany i fosfor organiczny. Pewna ilość fosforu zostaje zasymilowana przez przyrastającą biomasę. Jednak w ściekach komunalnych występuje nadmiar związków fosforu. Wg Bartoszewskiego (1994) ich nadmiar powinien zostać usunięty w drodze chemicznego strącenia (zwykle z wykorzystaniem związków żelaza i glinu).

Zupełnie innym procesem jest wzmożone biologiczne usuwanie fosforu zwane biologiczną defosfatacją. W procesie tym bakterie pobierają duże ilości ortofosforanów. Stanowią one rezerwę energii, która w warunkach anaerobowych może być wykorzystana do poboru substratu. Regeneracja ortofosforanów w komórkach bakterii zachodzi zarówno w fazie tlenowej jak i beztlenowej. Według Arvina (1985) celowe jest zapewnienie naprzemiennych warunków, aby mikroorganizmy mogły intensywnie akumulować związki fosforu.

Za przebieg procesu odpowiedzialne są mikroorganizmy PAO (Phosphorus Accumulated Organisms) tzn. bakterie akumulujące polifosforany. Według Żubrowskiej-Sudoł i Cyganeckiej (2008) przykładem takiego organizmu może być *Acinetobacter*. Tracy i Flammino, (1987) oraz Mino i in. (1987) reakcję defosfatacji w warunkach tlenowych i anoksycznych opisali reakcjami:

Warunki tlenowe:

$$C_{2}H_{4}O_{2} + 0.16NH_{4}^{+} + 1.2O_{2} + 0.2PO_{4}^{3-} \rightarrow 0.16C_{5}H_{7}NO_{2} + 1.2CO_{2} + 0.2HPO_{3}^{2-} + 0.44OH^{-} + 1.44H_{2}O$$

Warunki anoksyczne:

$$\begin{split} C_2 H_4 O_2 + 0.16 N H_4^{+} + 0.2 P O_4^{-3-} + 0.96 N O_3^{-} \rightarrow \\ 0.16 C_5 H_7 N O_2 + 1.2 C O_2 + 0.2 H P O_3^{-2-} + 1.40 O H^{-} + 0.96 H_2 O + 0.48 N_2 \end{split}$$

Produktem reakcji jest polifosforan (HPO₃²⁻), który jest magazynowany w komórkach bakterii PAO w fazie tlenowej oraz fazie anoksycznej. Natomiast w fazie beztlenowej (anaerobowej) następuje rozpad polifosforanów, produkcja energii w komórkach oraz uwolnienie fosforanów do ścieków. Wg Tracy i Flammino (1987) przebieg procesu w warunkach beztlenowych można opisać reakcją:

$$2C_2H_4O_2 + HPO_3^{2-} + H_2O \rightarrow (C_2H_4O_2)_2 + PO_4^{3-} + 3H^+$$

Otrzymany produkt zapisany wzorem sumarycznym $(C_2H_4O_2)_2$ oznacza zgromadzoną substancję organiczną w postaci polihydroksyalkenu – w skrócie PHA (zwykle kwasu octowego). Bakterie *Acinetobacter* utleniają ten związek do H₂O i CO₂ uzyskując energię.

W defosfatacji biologicznej w fazie anaerobowej nie mogą występować azotany. Wg Barnarda (1982) i Oleszkiewicza i Barnarda (2006) powodują one negatywne oddziaływanie na proces, ponieważ w ich obecności mikroorganizmy PAO przegrywają konkurencję o LKT (lotne kwasy tłuszczowe) z bakteriami denitryfikacyjnymi, które w osadzie czynnym stanowią znacznie większą populację.

2.2 Podstawy kinetyki przemian biologicznych

W oczyszczaniu ścieków procesy zachodzące z udziałem bakterii są reakcjami enzymatycznymi. Do opisu ich przebiegu zwykle wykorzystuje się teorię Michaelisa-Menten, która opisuje zależność pomiędzy szybkością reakcji enzymatycznej a stężeniem substratu. Reakcja przebiega wówczas w dwóch etapach. Początkowo substrat S reaguje z enzymem E tworząc kompleks: enzym-substrat ES.

$$[E] + [S] \xrightarrow{k_1} [ES] \xrightarrow{k_3} [E] + [P]$$

Tworzenie kompleksu następuje ze stałą szybkością k_1 . Istnieją dwie możliwości rozpadu kompleksu ES. Kompleks ES może rozpadać się do E i S z szybkością k_2 lub ulegać przekształceniu w produkt [P] z szybkością k_3 .

Stała równowagi rozpadu i tworzenia kompleksu ES określa się zwykle równaniem:

$$\frac{[S] \cdot [E]}{[ES]} = \frac{k_2}{k_1} = K_s \tag{2.1}$$

Stała K_s jest nazywana stałą substratową dysocjacji kompleksu. Rozpad kompleksu ES na produkt i substrat jest nieodwracalny a szybkość rozpadu (r) jest równa całkowitej szybkości reakcji (k₃). Stałą k₃ oznacza liczbę cząsteczek substratu przekształconych w produkt w warunkach pełnego wysycenia substratem (jest również nazywana "liczbą obrotów enzymu").

Oznaczając całkowite stężenie enzymu $E_0 = [E]+[ES]$ i po przekształceniu otrzymuje się równanie:

$$K_{s} = \frac{(E_{0} - [ES]) \cdot [S]}{[ES]}$$
(2.3)

Po przekształceniu otrzymuje się równanie opisujące kompleks ES:

$$[ES] = \frac{E_0 \cdot [S]}{K_s + [S]}$$
(2.4)

Uzyskane wyrażenie po podstawieniu do równania dotyczącego rozpadu kompleksu ES pozwala opisać jego szybkość :

$$r = \frac{k_3 \cdot E_0 \cdot S}{K_s + S} = \frac{V_{\text{max}} \cdot S}{K_s + S}$$
(2.5)

V_{max} to maksymalna szybkość reakcji enzymatycznej i jest równa iloczynowi stałej szybkości reakcji oraz całkowitego stężenia enzymu:

$$V_{\max} = k_3 \cdot E_0 \tag{2.6}$$

14

Maksymalną szybkość reakcji uzyskuje się wtedy, gdy wszystkie centra katalityczne enzymu są wysycone substratem, co oznacza, że stężenie substratu jest znacząco większe niż stała K_s czyli gdy $S/(S + K_s)$ jest bliskie jedności.

Teoria Michalelisa-Menten z roku 1913 została poszerzona przez Briggsa i Haldane'a (1925) Przyjęto wówczas założenie, że w reakcjach enzymatycznych tworzy się stan równowagi dynamicznej, który pozwala określić kolejną stałą K_M:

$$K_{M} = \frac{k_{2} + k_{3}}{k_{1}} \tag{2.7}$$

Stała K_M w równaniu Briggsa-Haldane'a nosi nazwę stałej Michalelisa-Menten lub stałej Michaelisa. Pomiędzy stałą substratową (K_s) a stałą Michaelisa-Menten istnieje zależność:

$$K_{M} = K_{s} + \frac{k_{3}}{k_{1}}$$
(2.8)

Wykorzystując założenie, że szybkość reakcji rozpadu kompleksu ES jest równa całkowitej szybkości reakcji otrzymano równanie Michaelisa-Menten:

$$r = \frac{k_3 \cdot E_0 \cdot [S]}{K_M + [S]} = V_{\text{max}} \cdot \frac{S}{K_M + S}$$
(2.9)

Zmiany szybkości reakcji enzymatycznej w zależności od stężenia substratu opisał Hartmann (1999) na rys. 2.1.

Rys. 2.1: Zmiany szybkości reakcji enzymatycznej (r) w zależności od stężenia substratu (S) (Hartmann, 1999).

Na podstawie przebiegu krzywej można wyróżnić trzy szczególne przypadki równania Michaelisa-Menten:

- 1. Jeżeli: $S = K_M$ to: $r = \frac{V_{max}}{2}$ a wartość K_M odpowiada takiemu stężeniu substratu, przy którym szybkość reakcji (r) osiąga połowę wartości szybkości maksymalnej.
- 2. Jeżeli: S<<K_M to: $r = \frac{V_{\text{max}}}{K_M} \cdot S$ i szybkość reakcji (r) jest proporcjonalna do stężenia substratu, co oznacza, że odpowiada reakcji I-ego rzędu.
- 3. Jeżeli S>>K_M to: $r = V_{max}$ i szybkość reakcji (r) odpowiada szybkości maksymalnej i nie zależy od stężenia substratu tzn., że rozkład opisuje się reakcją rzędu 0.

Wartość K_M może mieć zatem znaczenie stałej połówkowej. Wartość V_{max} jest stała tak długo, jak nie zmienia się stężenie enzymu. Wg Hartmann'a (1999) wartości stałych K_M i V_{max} umożliwiają opis ilościowy reakcji enzymatycznej.

Z kinetyki podanej przez Michaelisa i Menten w 1949 Monod wyprowadził równanie empiryczne opisujące szybkość wzrostu mikroorganizmów w warunkach limitowania substratem. Obecnie równanie to nazywa się równaniem Monoda.

Na rys. 2.2 przedstawiono fazy wzrostu mikroorganizmów w hodowli okresowej. Wyróżniono w nim pięć faz rozwoju:

- I. Faza adaptacji (lag faza) procesy przystosowawcze, biosynteza nowych białek i enzymów, podział komórek jest zahamowany.
- II. Faza wzrostu wykładniczego wzrost komórek następuje w optymalnych warunkach środowiskowych, szybkość podziału komórek może osiągnąć szybkość maksymalną.
- III. Faza wzrostu limitowanego wyczerpuje się przynajmniej jeden z substratów (substrat limitujący) i szybkość podziału komórek zmniejsza się (fazę tą opisuje równanie Monoda).
- IV. Faza stacjonarna tyle samo komórek powstaje co umiera, komórki uzyskują energię w wyniku respiracji endogennej.
- V. Faza zamierania nagromadzenie metabolitów, brak substratów, zagęszczenie populacji powodująca lizę komórek(tj. ich rozpad).

Rys. 2.2. Wzrostu mikroorganizmów w zależności od stężenia substratu w hodowli okresowej (Metcalf i Eddy, 1991)

W warunkach kiedy substrat jest limitowany, szybkość wzrostu mikroorganizmów można opisać równaniem:

$$r_g = \frac{dX}{dt} = \mu(C) \cdot X \tag{2.10}$$

gdzie:

$$r_g$$
 = szybkość wzrostu mikroorganizmów (g/m³·d).
X = stężenie biomasy mikroorganizmów (g/m³).

Wielkość $\mu(C)$ jest specyficzną szybkością wzrostu mikroorganizmów (1/d) i zależy od stężenia substratu limitującego C. Zależność tę opisuje równanie Monoda:

$$\mu(C) = \mu_{\max} \cdot \frac{C}{K_M + C} \tag{2.11}$$

gdzie:

 $\mu_{\rm max}$ - maksymalna specyficzna szybkość wzrostu mikroorganizmów (1/d),

 K_M - stała odpowiadająca stężeniu substratu, przy którym specyficzna szybkość wzrostu mikroorganizmów osiąga połowę wartości maksymalnej (tzw. stała Monoda) (g/m³).

Po połączeniu obu powyższych równań otrzymuje się równanie na szybkość wzrostu organizmów (r_g) w fazie limitowania substratem w hodowli okresowej:

$$r_g = \mu_{\max} \cdot \frac{C}{K_M + C} \cdot X \tag{2.12}$$

Szybkość usuwania substratu (r) zwykle opisuje się równaniem:

$$r = \frac{dC}{dt} = -k \cdot C \tag{2.13}$$

gdzie:

k - stała szybkości reakcji (1/d),

W podanym równaniu uwzględnia się dynamikę wzrostu populacji mikroorganizmów, ponieważ zmienne X i C oddziaływują na siebie. Zależność tę opisuje układ równań:

$$\begin{cases} r_g = \frac{dX}{dt} = \mu(C) \cdot X \\ r = \frac{dC}{dt} = -\mu(C) \cdot X \cdot \frac{1}{Y} \end{cases}$$
(2.14)

gdzie:

Y = określa stosunek pomiędzy ilością biomasy wytworzonej w reaktorze, a ilością zużytego na ten cel substratu (np. azotanów), zwany inaczej – stechiometrycznym współczynnikiem przyrostu biomasy (gX/gC_N).

Równanie Monoda jest równaniem empirycznym i z tego właśnie powodu stałe μ_{max} oraz K_M nie posiadają zdefiniowanego sensu fizycznego. Podejmowane próby ich opisania sprowadzają się zwykle do ustalenia podobieństw pomiędzy równaniem Monoda a równaniem Michaelisa-Menten, wykorzystywanym w opisie kinetyki reakcji enzymatycznych. Podobieństwo takie nie jest wyłącznie czysto formalne, ponieważ podstawę procesów życiowych w komórkach stanowią właśnie reakcje enzymatyczne. Natomiast szybkość wzrostu biomasy jest określona stężeniem substratu limitującego przetwarzanego przez enzym działający w decydującym ogniwie łańcucha reakcji katabolicznych (Czernawski i in., 1979).

W równaniu Monoda przyjęto założenie, że nie są istotne szybkości poszczególnych reakcji, lecz stałe K_M i μ_{max} , określone na podstawie empirycznej obserwacji $\mu(C)$.

Istotne dla rozwoju biomasy są warunki istniejące w układzie. Dlatego modele wzrostu populacji mikroorganizmów, powinny być budowane indywidualnie w zależności od rodzaju układu, w którym biomasa określonego zbiorowiska mikroorganizmów znajduje warunki do rozmnażania (Łagód i Sobczuk, 2006).

Szybkość biosyntezy w całej hodowli jest kontrolowana na podstawie sumy całkowitej ilości enzymów (E_0) we wszystkich komórkach, czyli pośrednio jest zależna od liczby mikroorganizmów (X) uczestniczących w procesie, a stała k_3 jest odpowiednikiem maksymalnej szybkości wzrostu (μ_{max}). Wg Klimiuk i in, (1995) wartości występujące w równaniu Michaelisa-Menten można porównać do tych, które występują w równaniu Monoda:

> $E_0 \cong X$ - stężenie biomasy mikroorganizmów (g/m³) $k_3 \cong \mu_{max}$ - maksymalna specyficzna szybkość wzrostu (1/d)

W literaturze znane są również inne równania opisujące specyficzną szybkość wzrostu mikroorganizmów $\mu(C)$ jak np. równania Teissera i Mosera. Zmiany $\mu(C)$ uzyskane na podstawie równań zostały przedstawione na rys. 2.3.

Rys. 2.3. Zależność specyficznej szybkości wzrostu mikroorganizmów od stężenia substratu na podstawie równań podanych przez Teissera i Mosera oraz równania Monoda (Klimiuk, 1995).

Równanie Monoda może przyjmować różne postacie dla szczególnych przypadków występujących w reaktorze okresowym. Uwzględniając wartości stosunków C_0/X_0 oraz K_M/C_0 mogących wystąpić w reaktorze wyszczególniono następujące możliwości:

1. $C_0 >> K_M$

równanie przyjmuje postać równania logistycznego:

$$-\frac{dC}{dt} = \frac{\mu_{\max}}{K_M \cdot Y} \cdot C \cdot (X_{\max} - C \cdot Y)$$
(2.15)

2. $C_0 << K_M$

równanie przyjmuje postać równania logarytmicznego:

$$-\frac{dC}{dt} = \mu_{\max} \cdot (X_{\max} - C \cdot Y) \cdot \frac{1}{Y}$$
(2.16)

3. $X_0 >> C_0$

równanie Monoda bez wzrostu mikroorganizmów:

$$-\frac{dC}{dt} = \frac{\mu_{\max}}{Y} \cdot X_0 \cdot \frac{C}{K_M + C}$$
(2.17)

4. X₀>>C₀ i C₀<<K_M

równanie Monoda pierwszego rzędu bez wzrostu mikroorganizmów:

$$-\frac{dC}{dt} = \frac{\mu_{\max} \cdot X_0}{K_M \cdot Y} \cdot C \tag{2.18}$$

5. X₀>>C₀ i C₀>>K_M

równanie Monoda zerowego rzędu bez wzrostu mikroorganizmów

$$\frac{dC}{dt} = \mu_{\max} \cdot X_0 \cdot \frac{1}{Y}$$
(2.19)

Na rys. 2.4 zaznaczono typy równań, które mogą być wykorzystane do opisu procesów rozkładu zanieczyszczeń stanowiących źródło węgla organicznego oraz wzrostu mikroorganizmów w zależności od X_0 i C_0 oraz K_M , podane przez Klimiuk i in. (1995).

Przebieg zależności opisujących zmiany stężenia zanieczyszczeń C (substrat) i biomasy mikroorganizmów X w reaktorze okresowym zależy od:

- podatności ścieków na biodegradację, która w równaniu Monoda jest charakteryzowana na podstawie wartości K_M.,
- rodzaju mikroorganizmów biorących udział w procesie oczyszczania, których zdolność wzrostu w środowisku jest charakteryzowana wielkością maksymalnej specyficznej szybkości wzrostu (µ_{max}),
- współczynnika przyrostu biomasy Y,
- warunków środowiskowych tj. temperatury, odczynu, występowania lub braku mikroelementów itp.

Rys. 2.4: Zakresy stężeń zanieczyszczeń organicznych i stężenia biomasy, dla których można stosować uproszczone postacie równania Monoda w reaktorze pracującym okresowo (Klimiuk i in. 1995)

2.2.1 Kinetyka denitryfikacji

Według Henze'go i Harremoes'a (2002) kinetyka denitryfikacji może być opisana równaniem Monoda, gdyż bakterie denitryfikacyjne są w istocie bakteriami heterotroficznymi, dla których źródłem tlenu są azotany. Specyficzną szybkość wzrostu bakterii denitryfikacyjnych $\mu(C)$ można wyrazić równaniem:

$$\mu(C) = \mu_{\max} \cdot \frac{C_N}{K_{S,N} + C_N} \cdot \frac{C_{ChZT}}{K_{S,ChZT} + C_{ChZT}}$$
(2.20)

gdzie:

- $K_{S,N}$ stała Monoda dla azotanów V
- K_{S,ChZT} stała Monoda dla zewnętrznego źródła węgla wyrażonego w ChZT

W przemianie azotanów do azotu cząsteczkowego w procesie denitryfikacji zwykle zakłada się, że azotany V nie mają wpływu na μ_{max} . Wówczas równanie ulega uproszczeniu do postaci:

$$\mu(C) = \mu_{\max} \cdot \frac{C_{ChZT}}{K_{S,ChZT} + C_{ChZT}}$$
(2.21)

Uproszczenie można zastosować, jeśli korzysta się z dodawania dodatkowego, zewnętrznego węgla organicznego takiego jak np. metanol, etanol, kwasy organiczne, melasa, mączka rybna, żelatyna, glukoza, mleczany, sacharoza, syrop cukrowy, fuzle pochodzenia browarniczego itp. (Mąkinia 2008, Onnis-Hayden i Gu 2008).

Jeśli w realizacji procesu denitryfikacji jedynym źródłem węgla organicznego są substancje organiczne zawarte w ściekach, może to powodować ograniczenie szybkości przemiany. Szybkość denitryfikacji (r) w warunkach, gdy zależy ona od dwóch substratów może być opisana równaniem:

$$r = -\frac{\mu_{\max}}{Y} \cdot \frac{C_N}{K_{S,N} + C_N} \cdot \frac{C_{CHZT}}{K_{S,CHZT} + C_{CHZT}} \cdot X$$
(2.22)

lub:

$$-r = V_{\max} \cdot \frac{C_N}{K_{S,N} + C_N} \cdot \frac{C_{CHZT}}{K_{S,CHZT} + C_{CHZT}} \cdot X \qquad \text{ponieważ:} \qquad V_{\max} = \frac{\mu_{\max}}{Y} \quad (2.23)$$

gdzie:

r - szybkość denitryfikacji ($gNO_3^--N/m^3.\cdot d$)

 $\mu_{\rm max}$ – maksymalna specyficzna stała wzrostu mikroorganizmów (1/d),

 V_{max} - maksymalna szybkość denitryfikacji (gNO₃⁻-N/gs.m.·d)

Y - stechiometryczny współczynnik przyrostu biomasy (gs.m./gO2),

 C_N – stężenie azotanów V (gNO₃⁻-N/m³),

 $K_{s,N}$ – stała odpowiadająca stężeniu azotanów V, przy którym specyficzna szybkość wzrostu mikroorganizmów osiąga połowę wartości maksymalnej (stała Monoda) (gNO₃⁻-N/m³),

 C_{CHZT} – stężenie materii organicznej wyrażonej w ChZT (gO₂/m³),

 $K_{s,CHZT}$ – stała odpowiadająca stężeniu materii organicznej, przy którym specyficzna szybkość wzrostu mikroorganizmów osiąga połowę wartości maksymalnej (stała Monoda) (g O_2 /dm³),

X – stężenie biomasy mikroorganizmów (gs.m/m³).

W technologii oczyszczania ścieków bytowych mechanizm procesu denitryfikacji jest teoretycznie dobrze rozpoznany. Od wielu lat prowadzi się badania eksperymentalne dotyczące efektywności usuwania związków azotu w stacjach pilotowych oraz w pełnej skali technicznej. Połączenie wiedzy teoretycznej z wynikami tych badań pozwoliło na sformułowanie dwóch modeli matematycznych opisujących szybkość procesów biochemicznych zachodzących w reaktorach z osadem czynnym w warunkach beztlenowo-tlenowych:

- Znany w piśmiennictwie pod nazwą "Model osadu czynnego nr 1" opisuje szybkość usuwania zanieczyszczeń oraz szybkość nitryfikacji i denitryfikacji. Podstawy teoretyczne modelu zostały podane w pracach Wentzel'a i in., 1985; Henze'go i in., 1987, Wentzel'a i in., 1991a,b; Gujera i in., 1995a.
- Znany w piśmiennictwie pod nazwą "Model osadu czynnego nr 2" opisuje szybkość usuwania zanieczyszczeń, ortofosforanów oraz szybkość nitryfikacji i denitryfikacji. Podstawy teoretyczne są prezentowane w pracach Gujer'a i in.,1995b; Isaacs'a i in., 1995.

Zdaniem autorów tych modeli, ich upowszechnienie w praktyce inżynierskiej powinno doprowadzić do ujednolicenia metod obliczania i projektowania oczyszczalni z usuwaniem związków biogennych. Dla oczyszczalni usuwających związki azotu autorzy zalecają stosowanie modelu nr 2.

W modelu osadu czynnego nr 2 (Activated Sludge Model no. 2 – w skrócie ASM 2) bakterie denitryfikacyjne są zaliczane do bakterii heterotroficznych. Równania szybkości reakcji zachodzące z ich udziałem są następujące:

Wzrost mikroorganizmów w obecności łatwo przyswajalnego substratu (CF):

$$r = \mu_{\max} \cdot \frac{C_{O2}}{K_{O2} + C_{O2}} \cdot \frac{C_F}{K_F + C_F} \cdot \frac{C_F}{C_F + C_A} \cdot \frac{C_{NH4}}{K_{NH4} + C_{NH4}} \cdot \frac{C_{PO4}}{K_P + C_{PO4}} \cdot \frac{C_{ALK}}{K_{ALK} + C_{ALK}} \cdot X_H$$

Wzrost mikroorganizmów pod wpływem produktów procesów fermentacji (C_A):

$$r = \mu_{\max} \cdot \frac{C_{O2}}{K_{O2} + C_{O2}} \cdot \frac{C_A}{K_A + C_A} \cdot \frac{C_A}{C_F + C_A} \cdot \frac{C_{NH4}}{K_{NH4} + C_{NH4}} \cdot \frac{C_{PO4}}{K_P + C_{PO4}} \cdot X_H$$

Denitryfikacja (C_F):

$$r = \mu_{\max} \cdot \eta_{NO3} \cdot \frac{K_{O2}}{K_{O2} + C_{O2}} \cdot \frac{C_F}{K_F + C_F} \cdot \frac{C_F}{C_F + C_A} \cdot \frac{C_{NH4}}{K_{NH4} + C_{NH4}} \cdot \frac{C_{NO3}}{K_{NO3} + C_{NO3}} \cdot \frac{C_{PO4}}{K_F + C_{PO4}} \cdot X_H$$

Denitryfikacja (C_A):

$$r = \mu_{\max} \cdot \eta_{NO3} \cdot \frac{K_{O2}}{K_{O2} + C_{O2}} \cdot \frac{C_A}{K_A + C_A} \cdot \frac{C_A}{C_F + C_A} \cdot \frac{C_{NH4}}{K_{NH4} + C_{NH4}} \cdot \frac{C_{NO3}}{K_{NO3} + C_{NO3}} \cdot \frac{C_{PO4}}{K_P + C_{PO4}} \cdot X_H$$

Fermentacja:

$$r = q_{fe} \cdot \frac{K_{O2}}{K_{O2} + C_{O2}} \cdot \frac{C_{NO3}}{K_{NO3} + C_{NO3}} \cdot \frac{C_F}{K_{fe} + C_F} \cdot \frac{C_{ALK}}{K_{ALK} + C_{ALK}} \cdot X_H$$

Liza:

 $r = b_H \cdot X_H$

gdzie:

 μ_{max} – specyficzna szybkość wzrostu bakterii heterotroficznych, 1/d,

C₀₂ - stężenie tlenu rozpuszczonego, gO₂/m³,

 K_{O2} – stała w równaniu Monoda dla C_{O2} , gO_2/m^3 ,

C_F – stężenie substancji organicznych łatwo rozkładalnych, gChZT/m³,

K_F – stała w równaniu Monoda dla C_F, gChZT/m³,

- C_A stężenie produktów fermentacji, gChZT/m³,
- K_A stała w równaniu Monoda dla C_A, gChZT/m³,
- C_{NH4} stężenie azotu amonowego, gN/m³,
- K_{NH4} stała w równaniu Monoda dla C_{NH4}, gN/m³,
- C_{PO4} stężenie ortofosforanów rozpuszczalnych, gP/m³,
- K_P stała w równaniu Monoda dla C_{PO4}, gP/m³,
- C_{ALK} zasadowość, molHCO₃/m³,
- K_{ALK} stała w równaniu Monoda dla C_{ALK} , molHCO₃/m³,
- C_{NO3} stężenie azotanów V, gN/m³,
- K_{NO3} stała w równaniu Monoda dla C_{NO3} , gN/m^3 ,
- η_{NO3} współczynnik korygujący dla reakcji denitryfikacji, –,
- q_{fe} maksymalna szybkość reakcji fermentacji, gChZT/g·gChZT/d,
- K_{fe} stała w równaniu Monoda dla reakcji fermentacji, gChZT/m³,

b_H – stała szybkość reakcji hydrolizy, 1/d,

 $X_{\rm H}$ – biomasa bakterii heterotroficznych, gChZT/m³.

2.3 Oczyszczanie ścieków w złożach biologicznych

Złoża biologiczne ze względu na doprowadzanie tlenu oraz zastosowane nośniki wspomagające wzrost błony biologicznej mogą być podzielone na cztery zasadnicze grupy. Według Malone'a i Pfeiffer (2006) można wyróżnić złoża: wynurzone, zanurzone upakowane, zanurzone ekspandowalne oraz zanurzone ekspandowane. Podział złóż biologicznych został przedstawiony na rys 2.4. Kolorem zielonym zaznaczono złoża, których działanie zostało poddane szczególnej analizie.

Konstrukcja złoża wynurzonego powinna zapewnić dostarczenie błonie biologicznej odpowiedniej ilości tlenu (np. przez zastosowanie przelewów kaskadowych). W przypadku złóż zraszanych odpowiednie natlenienie ścieków oraz dostarczenie ich nad złoże jest realizowane za pomocą odpowiednich dystrybutorów (Greiner i Timmons, 1998; Lekang i Kleppe, 2000; Eding i in., 2006). Stosuje się przede wszystkim dystrybutory obrotowe lub nieruchome z odpowiednimi dyszami. W złożach obrotowych uzyskuje się ten sam efekt przez obracanie wypełnienia, z którego jedna część jest nad a druga pod powierzchnią ścieków (Boaventura i Rodrigues, 1997). Podczas eksploatacji błona biologiczna ulega procesowi obrywania. Jest to możliwe z powodu względnie dużej porowatości wypełnienia, jakim są zwykle tworzywa sztuczne, głównie polipropylen (PP) lub polistyren (PS). Ponadto, w wynurzonych złożach z powodu dużej aeracji ulatnia się ze ścieków dwutlenek węgla, co stanowi dodatkową korzyść (Hall, 1999).

W złożach zanurzonych tlen jest dostarczany w inny sposób. Natlenienie ścieków uzyskuje się przez zwiększenie recyrkulacji zewnętrznej i wewnętrznej oraz wcześniejsze wzbogacanie ścieków surowych w tlen. Złoża zanurzone różnią się od złóż wynurzonych również sposobem nagromadzania błony biologicznej.

Rys. 2.4. Zmodyfikowany podział złóż biologicznych - (według Malone'a i Pfeiffer, 2006)

Złoża "upakowane" nie posiadają żadnych urządzeń do usuwania nadmiaru błony biologicznej i zawiesin. Według Manthe'go i in. (1998) zanurzony materiał skalny lub z tworzyw stanowi sztuczne podłoże dla mikroorganizmów, które w procesie oddychania wewnątrzkomórkowego usuwają substancję organiczną obecną w ściekach. Przepływ ścieków przez złoże może zachodzić od góry do dołu (w j. ang. upflow) lub też od dołu do góry (w j. ang. downflow). Filtry te zwykle są stosowane w instalacjach z niedużym ładunkiem zanieczyszczeń. W niektórych wariantach w celu osłabienia efektu akumulacji zawiesin stosuje się napowietrzanie złoża.

Kolejnymi urządzeniami są złoża "ekspandowalne". Błona biologiczna rozwija się w nich na odpowiednim podłożu (takim jak piasek gruboziarnisty lub flotujące paciorki z tworzywa sztucznego). Rozwój błony następuje, gdy złoże jest w pozycji statycznej. Okresowo złoże jest mieszane mechanicznie, pneumatycznie lub hydraulicznie. Następuje wówczas ścieranie błony biologicznej i tym samym kontrola jej wzrostu (Golz i in., 1999). Zastosowanie małych nośników (ziarna, granulki, paciorki), których powierzchnia właściwa jest bardzo duża (dochodząca do 800 m²/m³) zapewnia regenerację złoża.

Wśród zanurzonych złóż biologicznych wyróżnia się również złoża "ekspandowane". W tych urządzeniach wypełnienie wraz z błoną biologiczną jest w ciągłym ruchu. Szybkość utraty błony biologicznej ulegającej ciągłemu ścieraniu nie jest determinowana częstością mieszania, lecz doborem odpowiedniego rodzaju nośnika. Urządzenia te również wykorzystują granularne nośniki o dużej powierzchni właściwej, a jedynym ograniczeniem jest zdolność wypełnienia do abrazji (Odegaard i in., 1994). Najstarszymi w tej klasie są złoża fluidalne. Stosowane są różne materiały do wypełnienia (granit, antracyt, węgiel aktywny) o różnych średnicach ziaren. Ekspandowanie (rozszerzenie) złoża zachodzi przy użyciu strumienia cieczy pod dużym ciśnieniem. Kolejną podklasą są mikrozłoża, które wykorzystują ograniczony ruch wypełnienia do zachowania przewodności hydraulicznej. Korzysta się z dużej powierzchni właściwej wypełnienia, którą dają polistyrenowe flotujące paciorki stosowane w tych filtrach. Wg Zhu i Chen (1999) reaktory z ruchomym złożem sprawdzają się przy usuwaniu wysokich stężeń substratu (np. azotu amonowego). Stosuje się w nich wypełnienia nieco większych rozmiarów, aby ograniczyć proces abrazji i ochronić dostępną dla rozwoju błony biologicznej powierzchnię (Odegaard i in., 1994).

Szczegółowy podział złóż biologicznych ze względu na doprowadzenie tlenu, kontrolę wzrostu biomasy oraz powierzchnię właściwą podłoża został zaproponowany przez Malone'a i DeLos Reyes'a (1997), (Tabela 2.1).

W praktyce, w oczyszczaniu ścieków bytowych największe zastosowanie znalazły złoża zraszane i obrotowe oraz reaktory fluidalne (Harremoes, 1982; Suschka, 2000; Henze i in., 2002).

Tabela 2.1. Sposoby dostarczania tlenu oraz metody kontroli wzrostu błony biologicznej w zależności od rodzaju złoża biologicznego (wg Malone'a i DeLos Reyes'a; 1997).

Podzaj złoża biologicznago	Dostarczenie	Usuwania biomasy	Powierzchnia
Rouzaj zioza biologicznego	tlenu	Osuwanie biomasy	właściwa podłoża
Złoże obrotowe	kaskadowo	odrywanie	mała
Złoże zraszane	kaskadowo	odrywanie	mała
Filtr z materiałem skalnym	ze ściekami	brak	mała
Filtr muszlowy	ze ściekami	brak	mała
Złoże zanurzone upakowane	ze ściekami	brak	mała
Filtr piaskowy	ze ściekami	okresowa abrazja	duża
Osadnik ze złożem flotującym	ze ściekami	okresowa abrazja	duża
Złoże fluidalne	ze ściekami	ciągła abrazja	bardzo duża
Mikrozłoże	ze ściekami	ciągła abrazja	bardzo duża
Reaktor ze złożem ruchomym	napowietrzanie	ciągła abrazja	umiarkowana

Większa różnorodność stosowanych typów złóż biologicznych i rozwiązań technologicznych ma miejsce w gospodarstwach rybnych. Złoża biologiczne są tam wykorzystywane przede wszystkim do usuwania azotu amonowego, który jest toksyczny dla ryb (Bovendeur i in., 1987; Nijhof, 1995; Eding i in., 2006).

Złoża biologiczne mogą pracować w różnych układach technologicznych. Różne rozwiązania są związane z budową ciągów recyrkulacyjnych. Mogą one tłoczyć ścieki razem z osadem lub oddzielnie. Stosuje się różne miejsca wprowadzenia recyrkulatu do układu. Złoże biologiczne poprzedzone jest osadnikiem wstępnym a ostateczne oddzielenie zawiesin przeprowadza się w osadniku wtórnym na końcu układu. Często stosuje się w jednym układzie technologicznym kilka złóż biologicznych. Popularne są układy dwustopniowe, gdzie w pierwszej części następuje usuwanie materii organicznej a w drugiej związków azotu (Nicoll, 1988). Różne rodzaje układów jednostopniowych i dwustopniowych przedstawiono na rys. 2.5.

Rys. 2.5. Różne warianty przeprowadzania recyrkulacji ścieków (R) i usuwania osadu nadmiernego (S) dla złóż biologicznych: (a) dla układów jednostopniowych, (b) dla układów dwustopniowych (Metcalf i Eddy, 1991)

2.3.1 Złoża zraszane

Biologiczne złoża zraszane (ang. – trickling filters) po raz pierwszy zostały zastosowane w 1887 roku w "Lawrence Experiment Station" w stanie Massachussets w Stanach Zjednoczonych. Pierwsze zasady dotyczące procesu oczyszczania ścieków w złożach sformułował w 1893 roku Joseph Corbett dla pilotowej instalacji w Salford w Wielkiej Brytanii. Brytyjczyk zaproponował również dozowanie ścieków w postaci aerozolu za pomocą dysz zraszających. Pierwsza miejska oczyszczalnia wykorzystująca złoża zraszane powstała w 1908 roku w Columbus w Stanie Ohio (Lohmeyer, 1957).

Do dziś funkcjonuje podział, wprowadzony przez Qasim'a (1985) w zależności od doprowadzonego ładunku materii organicznej na złoża: nisko obciążone, średnio obciążone, wysoko obciążone i bardzo wysoko obciążone. Złoża nisko obciążone charakteryzują się prostą budowę i niezawodną eksploatacją przy zmiennych dopływach ścieków. Złoża te budowane są zwykle w postaci brył w kształcie kulistym lub prostopadłościanu. Stałe obciążenie hydrauliczne w złożach uzyskuje się nie przez recyrkulację ścieków, lecz zapewnienie odpowiedniego reżimu pracy pomp dozujących ścieki na złoże. Osadniki wstępne są niewielkie, o pojemności dwukrotnie większej od średniego dobowego zrzutu ścieków przewidzianego na etapie projektowania. Dwukrotna pojemność osadnika jest istotna w celu zminimalizowania przerywanego przepływu, który może występować szczególnie często w małych instalacjach w nocnych godzinach. Recyrkulację stosuje się aby nie dopuścić do wysychania złoża podczas braku zrzutu ścieków, Recyrkulacja zapewnia też odpowiednią wilgotność błonie biologicznej (ATV A 135P, 1989).

W złożach nisko obciążonych dla wypełnienia o wysokości 0,6-1,2 m obserwowany jest znaczny przyrost błony biologicznej. Jest to rezultat dostarczania małych porcji ścieków, dzięki którym korzystne warunki do życia znajdują nie tylko bakterie heterotroficzne, ale również autotrofy – bakterie nitryfikacyjne (*Nitrosomonas* i *Nitrosobacter*). Ponadto jeśli złoże biologiczne jest eksploatowane we właściwy sposób z uwzględnieniem odpowiedniego przepływu można uzyskać w odpływie wymaganą jakość ścieków wynikającą z dużej efektywności usuwania związków azotu (Albertson i Okey, 1988; Łomotowski i Szpindor, 1999; Heidrich i in., 2008).

W przypadkach, gdy jest to możliwe do złóż biologicznych doprowadza się ścieki grawitacyjnie. Takie rozwiązanie jest korzystne, ponieważ nie wymagają stosowania pomp. Przepompownie są stosowane na terenach płaskich lub z małym spadkiem. W eksploatacji złoża problem mogą stanowić odory, które występują w cieplejsze dni, lub wówczas, gdy ścieki są stęchłe lub zagniłe. Lokalizacja takich obiektów powinna być odpowiednia, aby odory nie były uciążliwe. Masowo mogą również pojawiać się muszki *Psychoda spp*. (Metcalf i Eddy, 1991).

W złożach średnio i wysoko obciążonych odpływ oraz ścieki recyrkulowane zawierają większy ładunek materii organicznej. Ich budowa jest podobna do złóż nisko obciążonych. Mogą mieć obudowę w kształcie kołowym lub prostokątnym. Ścieki surowe zwykle podawane są w sposób ciągły, chociaż niekiedy jest stosowane okresowe zraszanie złoża (Krause, 1988).

Złoża wysoko obciążone projektuje się zasadniczo dla ładunków materii organicznej zdecydowanie wyższych niż w przypadku złóż nisko obciążonych. Istnieje wiele rozwiązań konstrukcyjnych odnośnie przeprowadzenia recyrkulacji (rys. 2.5). Rezultatem zawracania ścieków (zawierających pożyteczne organizmy) jest często podniesienie efektywności oczyszczania (Matasci i in., 1986). Recyrkulacja pomaga również zapobiegać powstawaniu zastoisk ścieków i rozrodu muszek (*Psychoda*). Częsty ruch ścieków obniża ponadto powstawanie uciążliwych zapachów. Wysoko obciążone złoża wypełnione są materiałem skalnym albo materiałem wykonanym z tworzyw sztucznych. Stosuje się w nich przepływ ciągły.

Do złóż bardzo wysoko obciążonych jest doprowadzany wysoki ładunek materii organicznej. Złoża te pracują w warunkach dużych przepływów hydraulicznych. W porównaniu do innych podstawową różnicą jest wysokość tych złóż. Złoża wypełnione są materiałami z lekkich tworzyw sztucznych (więc mogą osiągać znaczne wysokości, ponieważ nie ma potrzeby wzmacniania ścian złoża). Większa część tego rodzaju złóż występuje w formie upakowanych wież.

Złoża wstępne są w rzeczywistości złożami bardzo wysoko obciążonymi przyjmującymi ładunek większy niż 1,6 kg/m³·d i pracującymi przy obciążeniach wyższych niż 180 m³/m²·d. W większości przypadków złoża tego typu znajdują się na początku rozbudowanych układów technologicznych. Stosuje się w nich przede wszystkim wypełnienia z tworzyw sztucznych (Water Pollution Control Federation, 1988).

W układach dwustopniowych wymagane jest zastosowanie dodatkowego osadnika do usuwania zawiesin powstałych po pierwszym złożu. Takie układy stosuje się często w przypadku, gdy potrzebne jest przeprowadzenie procesu nitryfikacji. Wówczas w złożu pierwszego stopnia usuwany jest ładunek materii organicznej podatnej na rozkład biologiczny wyrażonej w BZT₅, natomiast na złożu drugiego stopnia przebiega nitryfikacja.

Niektóre z właściwości złóż zależnych od obciążenia ładunkiem materii organicznej podano w tabeli 2.2. (Metcalf i Eddy, 1991).

Właściwości	Złoża nisko obciążone	Złoża średnio obciążone	Złoża wy- soko obciążone	Złoża bardzo wysoko obciążone	Złoża wstępne	Złoża dwu- stopniowe
Rodzaj wypełnie- nia	skała, żużel	skała, żużel	skała	tworzywa sztuczne	tworzywa sztuczne, drewno	skała, two- rzywa sztuczne
Obciążenie hy- drauliczne [m ³ /m ² ·d]	1,2-3,5	3,5-9,4	9,4-37,5	11,7-70,4	46,9-187,7	9,4-37,5
Ładunek BZT₅ [kg/m ³ ·d]	0,1-0,4	0,2-0,5	0,5-1,0	0,5-1,6	1,6-8	1,0-1,9
Wysokość złoża [m]	1,8-2,5	1,8-2,5	0,9-1,8	3-12	4,5-12	1,8-2,5
Stopień recyrku- lacji	0	0-1	1-2	1-2	1-4	0,5-2
Występowanie insektów	dużo	przeciętnie	mało	mało lub wcale	mało lub wcale	mało lub wcale
Zrywanie błony biologicznej	okresowo	okresowo	ciągle	ciągle	ciągle	ciągle
Efektywność usuwania ładunku BZT ₅ [%]	80-90	50-70	65-85	65-80	40-65	85-95
Ścieki oczyszczo- ne	dobrze znitryfi- kowane	okresowo znitryfi- kowane	słabo znitryfi- kowane	słabo znitryfi- kowane	nie znitryfi- kowane	dobrze znitryfi- kowane

Tabela 2.2. Wybrane właściwości złóż zraszanych w zależności od doprowadzonego ładunku materii organicznej (wg Metcalf i Eddy, 1991)

Dotychczas wykazano, że efektywność usuwania zanieczyszczeń w zraszanych złożach biologicznych jest uwarunkowana m. in.: intensywnością dozowania ścieków, sposobem dozowania ścieków, rodzajem zastosowanego wypełnienia, rodzajem zastosowanego drenażu, zaopatrzeniem w odpowiednią ilość tlenu i prawidłową wentylacją oraz rodzajem i wielkością zastosowanych osadników (Albertson, 1989; Boller i in., 1994; Eding i in., 2006; Dymaczewski i in. 2011).

Idealnym wypełnieniem złoża zraszanego (tzn. podłożem zasiedlanym przez mikroorganizmy) jest taki materiał, który: posiada dużą powierzchnię właściwą przypadającą na jednostkę objętości. Ponadto powinien być trwały, niedrogi i odporny na działanie ścieków, a przede wszystkim nie ulegać kolmatacji (Aryan i Johnson 1987, Hartmann 1999). Właściwości stosowanych wypełnień w złożach zraszanych podano w tabeli 2.3.

Podłoże wykonane z polichlorku winylu charakteryzuje się dużą lekkością i odpornością na zatykanie. Podłoża te mogą występować w postaci luźno upakowanych kształtek lub też w postaci pakietów (Materiały Informacyjne Ekofinn-Pol, 2011). Pakiety te mają zazwyczaj kształt prostopadłościanu i składają się z połączonych kolejno warstw przypominających plaster miodu. Pofałdowana powierzchnia sprzyja porostowi błony oraz zwiększa czas retencji ścieków w złożu. Złoża zraszane z wypełnieniem z tworzyw sztucznych lub z drewna sosnowego mogą osiągać wysokość nawet do 12 m, co sprawia, że są wykorzystywane do usuwania wysokich ładunków materii organicznej (Harrison i Daigger, 1987).

Wanahaiania	Rozmiar wypełnie-	Ciężar nasypowy	Powierzchnia wła-	Porowa-
wypeimenie	nia [mm]	$[kg/m^3]$	ściwa [m ² /m ³]	tość [%]
kamienie rzeczne:				
• małe	25-64	1250-1440	55,7-68,9	40-50
• duże	102-127	800-993	39,3-164	50-60
żużel paleniskowy:				
 mały 	51-76	897-1200	55,7-68,9	40-50
• duży	76-127	800-993	45,9-59	50-60
tworzywa sztuczne –				
pakiety:				
 konwencjo- 	610×610×1220	32-96	78,7-98,4	94-97
nalne				
 z rozwiniętą 				
powierzchnią	610×610×1220	32-96	98,4-196,8	94-97
tworzywa sztuczne –				
luźno upakowane	25-90	48-96	124,6-278,9	90-95
Hufo (PCV)	50×180	48	120	97
drewno				
sosnowe	1220×1220×508	144-176	39,4-49,2	70-80

Tabela 2.3. Rodzaje wypełnień stosowanych w złożach zraszanych i ich właściwości (wg Aryan'a i Johnson'a 1987 - zmienione)

Dla złóż z tworzywami sztucznymi nie ma potrzeby stosowania betonu. Używa się pokładników wykonanych z prefabrykatów podpartych słupkami lub kolumnami. Wypełnienie umieszcza się bezpośrednio na pokładnikach, które posiadają otwory zapewniające stały dostęp świeżego powietrza i swobodne odprowadzenie ścieków. Każdy drenaż powinien być tak skonstruowany, aby można było zastosować sztuczne napowietrzanie w przypadku gdyby warunki pracy złoża się zmieniły i napowietrzanie naturalne byłoby niewystarczające (Łomotowski i Szpindor,1999; Suschka, 2000; Heidrich i Stańko, 2007; Materiały Informacyjne Ekofinn-Pol, 2011).

Jednym z czynników decydujących o efektywnym usuwaniu zanieczyszczeń przy użyciu złoża zraszanego jest zapewnienie odpowiedniego napowietrzania (Schroeder i Tchobanoglous, 1976). Do tego celu można wykorzystać naturalny ciąg powietrza powodowany różnicą temperatur między powietrzem zewnętrznym a powietrzem wewnątrz porów złoża. Jeśli ścieki będą bardziej zimne od powierza otaczającego, wów-

czas naturalny ciąg powietrza przez złoże będzie skierowany ku dołowi. Jeśli powietrze z zewnątrz będzie zimniejsze, to ciąg powietrza będzie skierowany ku górze.

W głębokich i mocno obciążonych złożach można również stosować wentylację wymuszoną. Minimalny przepływ powietrza przez złoże powinien wynosić $0,3 \text{ m}^3/\text{m}^2 \cdot \text{min}$. Tylko w przypadkach wyjątkowo niskich temperatur zewnętrznych wystąpić może potrzeba ograniczenia dopływu powietrza, aby uchronić złoże przed zamarznięciem.

Proces oczyszczania ścieków z pomocą złóż zraszanych (oraz w większości innych metod z biomasą osiadłą) wymaga zastosowania osadników wtórnych. (Metcalf i Eddy, 1991; Rusten i in. 1997; Henze i in., 2002). Osadniki wtórne powinny zapewnić w odpływie ze złóż zraszanych uzyskanie klarownych ścieków pozbawionych cząstek zawiesiny. Osadnik wtórny swoją budową przypomina osadnik wstępny w oczyszczalni z osadem czynnym. Wyposażony jest dodatkowo w pompę wypompowującą zebrany osad. Sugerowane wartości przepływów ścieków dla tych osadników wynoszą 16 – 24 m³/m²·d (ATV, A 281 P, 2001).

2.3.2 Złoże ruchome

W procesach oczyszczania ścieków stosuje się techniki, łączące w sobie elementy osadu czynnego i złoża biologicznego. Przykładem takiego połączenia jest osad czynny z wypełnieniem zawieszonym zwanym również technologią reaktora ze złożem ruchomym (z angielskiego – Moving Bed Biofilm Reactor – w skrócie – MBBR).

W ostatnich latach zainteresowanie procesami oczyszczania ścieków z użyciem biomasy osiadłej (biofilmu) systematycznie wzrasta. Z początkiem lat 90-tych została wynaleziona technologia złoża ruchomego i wykorzystana w miejskich oczyszczalniach ścieków w Norwegii (Odegaard i in. 1991a; Rusten i in. 1992). Na przełomie nowego tysiąclecia obszar stosowania technologii rozszerzył się, ze względu na powszechne wykorzystanie do procesu nitryfikacji w gospodarstwach rybnych (Eikebrokk i Piedrahita, 1997; Ulgenes, 1997; Rusten, 2001; Rusten i in., 2006).

Reaktory ze złożem ruchomym (tzw. reaktory MBBR) stanowią połączenie metod osadu czynnego i złoża biologicznego, które umożliwiają usunięcie wad tych dwóch technologii (Odegaard i in. 1991b; Andreottola, 2000). Stworzenie dodatkowej powierzchni, na której może rozwijać się błona biologiczna pozwala na większe nagroma-
dzenie biomasy oraz skutkuje tym, że w reaktorach nie jest wymagana recyrkulacja. W przeciwieństwie do złóż biologicznych, w tych urządzeniach do wzrostu biomasy wykorzystuje się całą objętość reaktora. Takie rozwiązanie gwarantuje wyższą (od dotychczas notowanej) efektywność procesów jednostkowych (Żubrowska-Sudoł, 2002).

Odegaard i in. (2000) badali wpływ rozmiaru oraz kształtu nośników na efektywność usuwania materii organicznej w reaktorach z pełnym wymieszaniem w skali technicznej. Uwzględniano trzy rodzaje kształtek: Kaldnes K3, AWT i Anox, które różniły się między sobą objętością i specyficzną powierzchnią właściwą. W eksperymencie porównywano szybkość usuwania substratu na określonym rodzaju podłoża. Wyniki dla trzech typów wypełnień (pomimo różnych rozmiarów) były zbliżone. Autorzy stwierdzili, że wielkość i postać kształtki ma wpływ na szybkość sedymentacji wytworzonych zawiesin w osadniku wtórnym. Jednak nie potrafili wyjaśnić mechanizmu tego zjawiska.

Odegaard i in. (2000) wykazali, że szybkość usuwania materii organicznej nie zależy bezpośrednio od kształtu i rozmiaru kształtek wypełnienia złoża ruchomego a jedynie od powierzchni właściwej dostępnej dla mikroorganizmów. Kształtki większych rozmiarów wymagają większej objętości reaktora, aby osiągnąć wymaganą powierzchnię właściwą. Porównywanie działania poszczególnych wypełnień powinno zatem odbywać się z uwzględnieniem dostarczanego ładunku zanieczyszczeń w stosunku do specyficznej powierzchni właściwej (nie zaś w przeliczeniu na objętość złoża). Porównanie różnych rodzajów złóż ruchomych o tak dobranych objętościach, aby ich specyficzne powierzchnie właściwe były identyczne, umożliwia uzyskanie zbliżonej szybkości usuwania zanieczyszczeń (rys. 2.6).

W celu porównania efektywności różnych złóż ruchomych, osiągane szybkości przebiegu procesów jednostkowych na poszczególnych nośnikach, należy podawać w wartościach przeliczonych w odniesieniu do efektywnej powierzchni właściwej.

Rys. 2.6. Porównanie szybkości usuwania substratu w wypełnieniach 1 - Kaldnes K3, 2 - AWT i 3 - Anox względem objętości złoża oraz powierzchni właściwej (Odegaard i in., 2000)

Poprawę efektywności usuwania zanieczyszczeń za pomocą technologii złoża ruchomego uzyskano na skutek zwiększenia stopnia wypełnienia reaktorów. Według Makowskiej (2002) doprowadziło to do stwierdzenia, że nie ma potrzeby zwiększania kubatury zbiorników. Jak podaje Odegaard i in. (1999) dla wypełnienia Kaldnes K1 maksymalna objętość złoża ruchomego wynosi 70% w odniesieniu do objętości reaktora. Natomiast Munch i in. (2000) podał maksymalną objętość wypełnienia Anox równą 65%. Warunkiem granicznym jest zapewnienie wystarczających przestrzeni dla swobodnego ruchu kształtek w ściekach (Materiały Informacyjne EvU Kielce, 2008).

Charakterystykę różnego rodzaju wypełnień stosowanych w oczyszczaniu ścieków komunalnych podano w tabeli 2.4. Zwykle stosowane są różne materiały. Jednak tylko takie, które są wykonane z tworzyw sztucznych, zapewniają największą powierzchnię właściwą. Jak podaje Żubrowska-Sudoł (2003) wielkości powierzchni właściwej stanowiącej podłoże dla biofilmu zmieniają się w szerokim zakresie: 160-1000 m²/m³. Według Klimiuk i in. (1995) na podstawie tej wartości oraz ładunku materii organicznej doprowadzanej do reaktora MBBR powinna być wyznaczona wielkość niezbędnego wypełnienia.

Nazwa wy- pełnienia	Nazwa producenta (kraj pochodzenia)	Materiał	Kształt	Rozmiar [mm]	Powierzchnia właściwa [m ² /m ³]
Linpor	Bayer AG (Niemcy)	piankowy PU	sześcian	14×14×14	1000
Kaldnes K1	Kaldnes Miljoteknologi (Norwegia)	PE	walec, na ze- wnątrz wypustki, wewnątrz prze- grody	Ø 10, h 7	530
Kaldnes K2	Kaldnes Miljoteknologi (Norwegia)	PE walec, na ze- wnątrz wypustki, wewnątrz prze- grody		Ø 15, h 15	315
Biolox	Rauschert Verfarhren- stechnik GmgH (Niemcy)	PE i PP z recyklingu	walec, wewnątrz wypustki	Ø 14, h 8	640
Bioflow 9	Rauschert Verfarhren- stechnik GmgH (Niemcy)	PE i PP z recyklingu	walec, na ze- wnątrz wypustki, wewnątrz prze- grody	Ø 9, h 7	800
Evu-Perl	Entwicklung von Umwelttechnik GmgH (Niemcy)	PCV z recyklingu	walec, falista powierzchnia	Ø 7, h 6-8	800
Anox	Anox (Szwecja)	PE	ścięty stożek	Ø 50-63, h 50	200
Flocor	Flocor Inc. (Kanada)	PP	karbowany walec	Ø 15-20, h 20-30	160

Tabela 2.4: Charakterystyka różnego rodzaju nośników błony biologicznej stosowanych w reaktorach ze złożem ruchomym wg Żubrowskiej-Sudoł (2003).

Odegaard i in. (1994) zdefiniowali przyczyny, dla których reaktory z biomasą osiadłą są chętniej stosowane niż reaktory z biomasą zawieszoną:

- są bardziej kompaktowe i potrzebują mniejszej przestrzeni,
- efektywność oczyszczania w mniejszym stopniu zależy od ostatecznego oddzielenia osadu,
- przytwierdzona biomasa bardziej skutecznie usuwa zanieczyszczenia obecne w ściekach, ponieważ nie wymaga zastosowania recyrkulacji.

Rusten i in. (1995a) zwrócili uwagę na konieczność okresowego płukania z biomasy złóż biologicznych zraszanych i obrotowych oraz filtrów zanurzonych. Chcąc ograniczyć zjawisko nadmiernego obrastania podłoża został opracowany nowy reaktor nazwany przez Odegaard'a i in. (1994) Kaldnes Miljoteknologi Moving Bed Biofilm Reactor (KMT MBBR).

Istota działania reaktora KMT MBBR jest utrzymywanie ruchomych kształtek wypełnienia w ciągłym ruchu. Uzyskuje się to za pomocą odpowiedniego sposobu mieszania ścieków (Rusten i in. 2006). W zależności od rodzaju warunków panujących w reaktorze: tlenowych lub beztlenowych i anoksycznych stosuje się mieszanie za pomocą pęcherzyków powietrza lub przy użyciu mieszadeł mechanicznych (rys. 2.7). W celu zatrzymania złoża ruchomego niezbędne było zastosowanie na odpływie z reaktora sita o prześwicie 7 mm. Zastosowanie sita o otworach mniejszych niż 5 mm może powodować zatykanie prześwitów pomiędzy kształtkami i błoną biologiczną, co skutkuje hamowaniem przepływu ścieków (Materiały Informacyjne Kaldnes Miljoteknologi, 2002). Bardziej zawansowane metody separacji zawiesin stałych powstałych w komorach KMT MBBR, polegały m. in. na zastosowaniu filtru dyskowego w oczyszczalni ścieków Sjolunda w Malmö w Szwecji. Filtr składa się z pięciu dysków, wykonanych z mikrosita, które w sposób ciągły jest płukane ściekami oczyszczonymi. Urządzenie wychwytuje cząstki stałe powstałe w procesie denitryfikacji końcowej. Jak podaje Persson i in. (2005) odprowadzane ścieki charakteryzują się niskim stężeniem zawiesin: 2-8 mg/dm^3 .

Rys. 2.7. Sposoby mieszania wypełnienia w reaktorze MBBR (Rusten i in. 2006), a – za pomocą napowietrzania pęcherzykowego, b – za pomocą mieszadła mechanicznego

Kształtki wypełnienia Kaldnes[®] stosowane przez Odegaard'a i Rusten'a (1993) charakteryzowały się gęstością wynoszącą 0,95 g/cm³ i były wykonane z polipropylenu. Ich specyficzny kształt z licznymi wypustkami i krzyżem w środku zapewniał dużą powierzchnię dla wzrostu błony biologicznej. Wg Hem'a i in. (1994) rozwój błony biologicznej następował przede wszystkim wewnątrz kształtki Kaldnes[®], gdyż zewnętrza warstwa ulegała obrywaniu z powodu sił abrazji występujących pomiędzy kształtkami podczas ruchu złoża. Taki proces nie wymagał płukania złoża ani recyrkulacji biomasy. Jak podają Odegaard i in., (1999), Odegaard i in., (2000), Żubrowska-Sudoł (2002) w zależności od dostarczanego ładunku zanieczyszczeń pojemność reaktora pozostawała stała, zaś zmieniano jedynie stopień wypełnienia reaktora złożem ruchomym.

Odegaard i in. (1994) wykonywali badania w dwóch różnych układach technologicznych. Pierwszy układ stanowił połączenie chemicznego strącania wstępnego i denitryfikacji końcowej, zaś drugi układ umożliwiał denitryfikację wstępną i strącanie chemiczne końcowe. W pierwszym przypadku uzyskano usunięcie azotu ogólnego w 70%, zaś w drugim aż w 85%. W przeprowadzonych badaniach uduwodniono m. in., że:

- reaktor ze złożem ruchomym jest użyteczny w oczyszczaniu wielu rodzajów ścieków nie tylko komunalnych, ale także przemysłowych np. z fabryk papieru i celulozy, z produkcji chipsów ziemniaczanych i wyrobów mlecznych,
- biomasa na kształtkach Kaldnes[®] jest bardzo żywotna oraz aktywna biologicznie, o czym świadczy zużycie substratu wynoszące 0,84 g ChZT/g s.m.·h,
- znaczącym czynnikiem wpływającym na szybkość oczyszczania za pomocą złoża biologicznego jest dyfuzja do błony biologicznej.

Rusten i in. (1995b) poczynili również pewne praktyczne obserwacje. W reaktorach tlenowych MBBR, w niektórych przypadkach pojawiała się piana i musiały być dodawane preparaty ją dyspergujące. Ponadto w anoksycznych reaktorach MBBR wykorzystywanych do denitryfikacji okazało się, że istotne jest miejsce usytuowania mieszadła mechanicznego. Mieszadło powinno być zamontowane naprzeciw kraty w odpływie, aby nie następowało nagromadzanie kształtek wypełnienia na sicie, co powoduje blokowanie przepływu. Helness i Odegaard (2001) podają, że mieszanie powinno być delikatne (ale i efektywne), by zminimalizować procesy abrazji oraz, aby uniknąć niebezpieczeństwa uszkadzania kształtek.

Abrazja (ścieranie) błony biologicznej w reaktorze MBBR zachodzi w większym stopniu, gdy powierzchnia styku zewnętrznych ścian kształtek jest znacząca. Zwykle kształtki mniejszych rozmiarów (6-8 mm) bardziej ze sobą oddziaływają. Natomiast większe kształtki (np. wypełnienie FLOCOR – 20-30 mm) zachowują między sobą większe przestrzenie. Andreotttola i in. (2000) wykazali, że tańsze w zakupie wypełnienia mają mniejszą powierzchnię właściwą i przegrywają rywalizację z technikami osadu czynnego. Przeprowadzone przez nich porównanie tych dwóch metod oczyszczania doprowadziło do usunięcia ładunku ChZT w 76% w reaktorze MBBR i w 84% w reaktorze z osadem czynnym. Jak podają Andreottola i in. (2005), Mąkinia i in. (2009), Mąkinia i in., (2011) skuteczność usuwania ChZT może być nawet wyższa od 90% w przypadku obecności w ściekach łatwo przyswajalnego źródła węgla organicznego. Takim są np. fuzle z gorzelni i odpady płynne z winiarni.

Aesoy i in. (1998a) w swoich badaniach analizowali wpływ azotanów V dodawanych do sieci kanalizacyjnej połączonej z oczyszczalnią ścieków. W oczyszczalni tej działało dwustopniowe złoża ruchome. Dodatek azotanów V częściowo zmniejszał ładunek materii organicznej w rurociągach kanalizacyjnych dzięki obecności bakterii denitryfikacyjnych.

Autorzy w swoich badaniach doprowadzili również do zintensyfikowania szybkości usuwania azotu amonowego w złożu ruchomym Kaldnes przez napowietrzanie czystym tlenem. Osiągnęli szybkość usuwania wynoszącą 0,5 kgNH₄⁺-N/m³d, gdy stężenie tlenu wynosiło 5-8 mgO₂/dm³, zaś azotu amonowego 0,65 kgNH₄⁺-N/m³d. W drugim stopniu oczyszczania stężenie tlenu było wyższe i wynosiło 7-8 mgO₂/dm³. Wyznaczono stałą szybkości denitryfikacji wynoszącą 55 kg NO₃⁻-N/kgO₂d. Według Tomlinson'a i Bruce'a (1979) bakterie heterotroficzne znajdujące się w błonie biologicznej z zewnętrznej strony, przykrywające bakterie nitryfikacyjne nie miały wpływu na kinetykę reakcji. Nitryfikacja przebiegała według reakcji I-ego rzędu do uzyskania stężenia BZT₅ wynoszącego 12 mgO₂/dm³. Powyżej tej wartości dyfuzja tlenu do błony biologicznej przestawała być czynnikiem limitującym i reakcja przebiegała według zerowego rzędu. Zastosowanie czystego tlenu zwiększało wydajność nitryfikacji o 30-40 %. Według Aesoy i in. (1998b) obniżenie efektywności następowało, gdy w ściekach dopływających do oczyszczalni występowały znaczne stężenia siarczków powstających wskutek długiego czasu zatrzymania ścieków w rurociągu.

Aspergen i in. (1998) przeprowadzili długoterminowe badania w oczyszczalni Kalgshamn k. Malmö w Szwecji. Uzyskane wyniki doprowadziły do wniosku, że dla całkowitej denitryfikacji wymagany stosunek C/N powinien wynosić 4-5. Wówczas można uzyskać szybkość denitryfikacji wynoszącą 2,5 gNO₃⁻-N/m²d (gdy dodawano

etanol jako zewnętrzne źródło węgla). W temperaturze 16°C wydajność wynosiła 2,0 gNO₃⁻-N/m²d z dodatkiem metanolu. Powodem zastosowania złoża ruchomego była niska efektywność usuwania azotu. Jak podaje Nyberg i in. (1996) oczyszczalnia we wcześniejszych latach zapewniała stężenia azotu ogólnego w ściekach oczyszczonych na poziomie 12 mgN/dm³. Zastosowanie złoża ruchomego, a po nim filtra piaskowego, zapewniało stężenie azotu ogólnego poniżej 10 mgN/dm³ w odpływie.

Rusten i in. (1997) przeprowadzili udane próby wdrożenia technologii złoża ruchomego w małych oczyszczalniach ścieków (od 70 do 4000 równoważnej liczby mieszkańców – RLM). Stanowiły one podstawowy i jedyny etap biologicznego oczyszczania zakończony chemicznym strąceniem (w celu usuwania związków fosforu ogólnego i zawiesin ogólnych). W nowych wybudowanych oczyszczalniach reaktor MBBR podzielony był na część beztlenową i część tlenową. Część biologiczną poprzedzono zbiornikiem wyrównującym (rys. 2.8). Zmodernizowane zostały również istniejące oczyszczalnie, w których reaktory osadu czynnego zostały zastąpione reaktorami MBBR i zbiornikiem flokulacji (rys. 2.9). Oba systemy dzięki zastosowaniu strącenia za pomocą siarczanu glinu i końcowej sedymentacji w osadnikach wtórnych zapewniały stężenia poniżej 9 mg BZT₅/dm³, 11 mg Z_{og}/dm³ oraz 0,26 mg P_{og}/dm³.

Pastorelli i in. (1997) osiągnęli średnią szybkość denitryfikacji wynoszącą 2,2 g $NO_3^{-}-N/m^2d$ na kształtkach Flocor RMT w testach hodowli okresowej stosując octan sodu jako źródło węgla zewnętrznego w temperaturze 20,1°C.

Rys. 2.8. Schemat instalacji MBBR stosownej w nowych oczyszczalniach w Norwegii (wg Rusten'a i in., 1997)

Po raz pierwszy Rusten i in. (1999) przeprowadzili badania związane z oczyszczaniem ścieków przemysłowych (z produkcji artykułów chemicznych dla firmy Exxon Chemical w Baton Rouge w Stanach Zjednoczonych). Ścieki charakteryzowały się wysokim łatwo ulegającym biodegradacji ładunkiem materii organicznej wyrażonym w BZT₅. Ładunek doprowadzany do reaktorów wynosił 53 gBZT₅/m²d. Pomimo dużego ładunku w reaktorach MBBR pracujących na etapie oczyszczania wstępnego, usuwano od 60 do 80% zanieczyszczeń. Nawet trudno rozkładalny substrat w ilości 10-20 g BZT₅/m²d usuwano w 95%, a współczynnik przyrostu biomasy wynosił 0,6 g s.m./g usuniętego BZT₅.

Rys. 2.9. Schemat instalacji MBBR stosownej w zmodernizowanych oczyszczalniach w Norwegii (według Rusten'a i in., 1997)

Wstępne chemiczne wspomaganie procesu oczyszczania (CEPT – chemically enhanced primary treatment) zaproponował Odegaard (2005). Zastosowany proces wstępny umożliwił efektywne wynoszące 85% usuwanie materii organicznej. Wstępne strącanie wykonywano z użyciem soli żelaza III (przed reaktorem MBBR). Końcowe oddzielenie zawiesin wykonywano w procesie flotacji ciśnieniowej. Zastosowane działania umożliwiły uzyskanie niezwykle krótkiego czasu zatrzymania ścieków wynoszącego 65 min. Wyniki prowadzonych badań stanowiły podstawę do opracowania wielu koncepcji umożliwiających pracę ze złożem ruchomym w dużych oczyszczalniach ukierunkowanych na efektywne usuwanie związków azotu (do poziomu 3 mgN/dm³). Podstawowe schematy z wykorzystaniem omówionych procesów zostały przedstawione na rys. 2.10.

Rys. 2.10. Podstawowe schematy koncepcji wykorzystujących złoże ruchome w procesie nitryfikacji: a) nitryfikacja w złożu ruchomym, b) nitryfikacja w III-im stopniu oczyszczania biologicznego, c) nitryfikacja hybrydowa (wg Odegaard'a, 2005).

Złoże ruchome znalazło również zastosowanie w procesie Anammox (Anaerobic Ammonium Oxidation). Ten biologiczny proces pozwala przekształcić azot amonowy (NH_4^+) w anaerobowych warunkach w kontakcie z azotanami III (NO_2^-) do azotu cząsteczkowego (N₂) i azotanów V (NO₃⁻). Jak podaje Strous i in. (1997) stosunek azotu z NH₄⁺ do azotu z NO₂⁻ powinien wynosić 1,3:1. Wg Fux'a i in. (2002) jest to bardzo wrażliwy proces, ponieważ bakterią odpowiedzialną za Anammox - Brocadia anam*moxidans* jest organizmem, który ginie przy stężeniu NO_2^- wynoszącym 70 g/m³ oraz w przypadkach przedostania się do reaktora tlenu i przy dużych stężeniach zawiesin. Stosowane w procesie kształtki Kaldnes wytwarzają bakteriom podłoże do przytwierdzenia oraz zapobiegają wymywaniu podczas przepływu ścieków (Cema i in., 2005; Szatkowska i in, 2007). W doświadczeniach przeprowadzonych w skali pilotowej osiągnięto średnią szybkość usuwania azotu wynoszącą 1,3 gN/m²d a maksymalną na poziomie 1,9 gN/m^2d (dla stężenia tlenu 2,5 gO_2/m^3). Według Cemy i in. (2011) napowietrzanie zapewniające stężenie 4 gO₂/m³ w reaktorze MBBR powodowało wzrost stężenia azotanów (III) i (V). Optymalny poziom tlenu w reaktorach MBBR zależy od grubości i spoistości błony biologicznej oraz stężenia ChZT na dopływie do złoża oraz od temperatury (van Hulle i in., 2010).

Jak podają Helness i Gisvold (2001) celem technologii złoża ruchomego było także osiągnięcie symultanicznej naprzemiennej nitryfikacji i denitryfikacji. Zmienne warunki tlenowe osiągano dzięki stosowaniu przerywanego napowietrzania. Najlepsze wyniki zostały odnotowane, gdy faza beztlenowa stanowiła 1/3 czasu trwania całego cyklu. Efektywność usuwania azotu wynosiła powyżej 80%, a szybkość denitryfikacji – 1 g NO_3^- -N/m²d, zaś szybkość nitryfikacji – 0,5 g NH_4^+ -N/m²d (przy stosunku dodawanego octanu sodu do obliczeniowej liczby azotanów V równym 3,5). Autorzy na podstawie przeprowadzonego eksperymentu wykazali, że błona biologiczna na kształtkach powinna być dość gruba, aby zapewnić anoksyczne warunki w głębszych jej warstwach.

Helness i Odegaard (2005) testowali reaktory SBR zawierające złoże ruchome (SB MBBR – Sequencing Batch Moving Bed Biofilm Reactor) po przyjęciu tezy, że w fazie tlenowej (razem z nitryfikacją) ma miejsce usuwanie związków fosforu. Doszli do wniosku, że cykl reaktora SB MBBR powinien być tak dostosowany, aby w fazie anok-sycznej następowało całkowite usunięcie łatwo degradowalnego ChZT a w fazie tlenowej całkowite usunięcie azotu amonowego. Te same doniesienia sformułowali wcześniej Garzon-Zuniga i Gonzalez-Martinez (1996). Autorzy nastawiając 100-minutową fazę beztlenową i 260-minutową fazę napowietrzania uzyskali w oczyszczonych ściekach mniej niż 10 mg Nog/dm³ i 0,3 mg PO₄⁻³-P/dm³. Satysfakcjonujące wyniki w usuwaniu związków N i P były jednak możliwe, tylko przy użyciu zewnętrznego źródła węgla organicznego zawierającego łatwo degradowalny i rozpuszczalny ChZT (w języku angielskim określany jako BS COD). Do otrzymania podanych wartości należało zapewnić następujący iloraz mg BS COD : mg PO₄⁻³-P/dm³ równy 15:1. Bakterie akumulujące związki fosforu współistniały w złożu z bakteriami denitryfikacyjnymi nie mogącymi wbudowywać fosforu do swojej biomasy.

W badaniach Żubrowskiej-Sudoł i Cyganeckiej (2008) szczególny typ grupy bakterii denitryfikacyjnych posiadających zdolność akumulacji fosforu został nazwany PAO_{den} (PAO - Phosphorus Accumulated Organisms). Autorki w instalacji SBR ze złożem ruchomym określiły niezbędne warunki do przeprowadzenia denitryfikacji defosfatacyjnej. Minimalny stosunek ChZT:N powinien wynosić 8:1, a dla ChZT:P powinien być równy 40:1. Całkowite usunięcie związków biogennych wymaga ilorazu N:P = 7:1. Wartość taka rzadko występuje w ściekach bytowych. Czynnikiem determinującym wydajność procesu denitryfikacji defosfatacyjnej jest stosunek ChZT:N, którego optymalna wartość wynosi 3,4 gChZT : 1 gN. W przypadku wyższej wartości tego ilorazu może nastąpić niecałkowite usuwanie związków fosforu spowodowane niedoborem azotanów(V). Gdy stosunek ten jest niższy może mieć miejsce niewystarczająca wydajność denitryfikacji skutkująca obecnością NO₃⁻-N w odpływie. Trudność powoduje m.in. konieczność utrzymania odpowiednich warunków procesu. Należy zachować brak przenoszenia łatwo degradowalnego węgla organicznego (np. octanów) ze strefy beztlenowej do anoksycznej, co w skali technicznej jest praktycznie niemożliwe (Cyganecka i in., 2008; Bernat i in., 2005; Styka, 2004).

W gospodarstwach rybnych Rusten i in. (2006) prowadzili badania z zastosowaniem wspomnianych wcześniej kształtek Kaldnes wszystkich trzech typów K1, K2 i K3. W akwakulturach, aby umożliwić wydajny przebieg nitryfikacji, reaktory MBBR są urządzeniami nisko obciążonymi. Nawet niskie stężenia azotu amonowego (NH₄⁺) są toksyczne dla ryb. Dlatego usuwanie materii organicznej w tego typu instalacjach zawsze było celem drugorzędnym. Sterowanie procesem oczyszczania odbywało się w takich warunkach, aby azot amonowy był zawsze substratem limitującym wzrost błony biologicznej. W ten sposób nigdy nie dochodziło do letalnego dla ryb nagromadzenia jonów NH₄⁺.

Na szybkość nitryfikacji w złożu ruchomym wpływ mają takie czynniki jak: ładunek materii organicznej, stężenie tlenu rozpuszczonego, stężenie azotu amonowego, wartość pH, zasadowość oraz poprzednie warunki wzrostu biomasy. Czynniki te wyodrębnili Hem i in. (1994) w badaniach ze ściekami syntetycznymi oraz Rusten i in. (1995a) prowadząc badania ze ściekami komunalnymi.

W swoich doświadczeniach Hem i in. (1994) uzyskali połówkowy rząd reakcji nitryfikacji wynoszący 0,7. Według Szwerinskiego i in. (1986) dla zmiany substratu limitującego z tlenu na azot amonowy potrzebny jest stosunek O: NH₄⁺ równy 3,2:1. Jak podaje Harremoes (1982) w obecności biodegradowalnej materii organicznej aktywność bakterii heterotroficznych w zewnętrznej warstwie biofilmu jest na tyle duża, że zmniejsza stężenie tlenu dla bakterii nitryfikacyjnych obecnych w głębszej warstwie. W zewnętrznej warstwie błony biologicznej następowało zmniejszenie stężenia tlenu o 0,5 mg O₂/dm³ podczas doprowadzenia niskiego ładunku materii organicznej. Natomiast dla ładunku wynoszącego 1,5 g BZT₅/m²d stężenie tlenu uległo obniżeniu o 2,5 mgO₂/dm³. Przy niskim ładunku materii organicznej szybkość usuwania azotu amonowego zależy od stężenia tlenu rozpuszczonego (dissolved oxygen - DO) w ściekach. Następuje zmiana rzędu reakcji na rząd zerowy, gdy stężenie tlenu wynosi 2 mg O₂/dm³ a stężenie azotu amonowego (TAN – Total Ammonia Nitrogen) jest równe 0,5 mgNH₄⁺-N/dm³. Punkt przejścia z limitacji azotem amonowym do limitacji tlenem zmienia się w zależności od dostarczonego ładunku TAN do reaktora ze złożem ruchomym (rys 2.11).

Czynnikiem mającym znaczący wpływ na szybkość nitryfikacji w złożu ruchomym jest temperatura. Rusten i in. (1995b) wyznaczyli współczynnik temperaturowy wynoszący 1,09.

Stała szybkości nitryfikacji (k) dla reaktora MBBR ulega obniżeniu, gdy w ściekach zwiększy się stężenie zawiesin organicznych i innych cząstek stałych. Według Rusten'a i in. (1994) czynnik ten powoduje zmniejszenie stężenia bakterii nitryfikacyjnych w błonie. Niska zasadowość ścieków osłabia szybkość nitryfikacji, jak również niskie pH. W późniejszych badaniach Rusten i in. (1995a) wykazał, że wyższe wartości pH i zasadowość na poziomie 0,7 mmol/dm³ gwarantują większy przyrost błony biologicznej na kształtkach.

Rys. 2.11. Zależność szybkości nitryfikacji od dostarczonego tlenu (Rusten i in. 2006).

Proces denitryfikacji w złożu ruchomym był testowany przez Rusten i in. (1994, 1995a, 1995b) w kilku komunalnych oczyszczalniach ścieków w Holandii i Szwecji. W przypadkach, gdy w nie było wystarczającego stężenia węgla organicznego (zarówno zewnętrznego źródła węgla jak i źródła w postaci węgla endogennego) azotany V (NO₃) przechodziły w azotany III (NO₂⁻) zamiast całkowicie przekształcać się w azot cząsteczkowy (N₂). Azotany III są bardzo toksyczne dla środowiska wodnego, przede wszystkim dla ryb. Ich masowe występowanie w ściekach na odpływie świadczy o niestabilnych warunkach procesu oczyszczania (Styka i Bieńko, 2007).

Rusten i in. (1996) testowali trzy rodzaje związków chemicznych stanowiących zewnętrze źródło węgla organicznego. Były to: metanol, etanol i glikol propylenowy. Prawie dwa razy większą od pozostałych szybkość reakcji autorzy uzyskali przy zastosowaniu etanolu. Dla metanolu szybkość denitryfikacji była podobna jak dla glikolu propylowego, jednak wpracowanie reaktora MBBR trwało znacznie dłużej. Długie oczekiwanie na rezultaty było spowodowane czasem, w którym wykształcały się specyficzne bakterie usuwające metanol, a takich jest tylko kilka gatunków (Nurse, 1980).

Złoże ruchome znalazło szerokie zastosowanie w oczyszczaniu ścieków bytowych i przemysłowych oraz w hodowlach ryb. Przy pomocy nośnika biomasy umieszczonego w toni wodnej i odpowiedniego mieszania wykorzystuje się najbardziej efektywnie objętość reaktorów. Umożliwia to zmniejszenie kubatury urządzeń. Technologia złoża ruchomego jest przykładem immobilizacji biomasy, w której efektywnie mogą zachodzić wszystkie rodzaje biologicznego oczyszczania, w zależności od zadanych parametrów pracy. Biofilm występujący na kształtkach wypełnienia jest niezwykle złożonym medium składającym się różnego rodzaju mikroorganizmów (bakterii, pierwotniaków, bezkręgowców), które dodatkowo uwalniają pozakomórkowe substancje polimeryczne (EPS - Extracellurar Polymeric Substances) nadając błonie biologicznej odpowiedni wygląd i wielkość (Huzarska i in., 2006). Nie mniej jednak można przyjąć, że mikroorganizmy i sposób przeprowadzania określonych procesów biologicznych są podobne do metody osadu czynnego.

Aesoy i Odegaard (1994) w swojej pracy przedstawili możliwości i ograniczenia w stosowaniu złoża ruchomego do denitryfikacji z hydrolizowanym osadem jako źródłem węgla. Wykonali doświadczenie laboratoryjne, w którym przeprowadzali w określonych warunkach proces denitryfikacji z użyciem reaktora ze złożem ruchomym. Zastosowali w nim kształtki Kaldnes. Reaktor MBBR był reaktorem pełnego wymieszania wykonanym z pleksiglasu o konstrukcji podanej przez Kristensena i Jansena (1980). Stanowisko badawcze zostało przedstawione na rysunku 2.12. Autorzy prowadzili eksperyment przy nadmiarze lotnych kwasów tłuszczowych (VFA – volatile fatty acids) (rys. 2.13) i przy nadmiarze azotanów V (rys. 2.14). Na podstawie tych przypadków wyznaczyli oni stałe kinetyczne występujące w procesie denitryfikacji. Zostały one podane w tabeli 2.5.

Rys. 2.12. Stanowisko laboratoryjne do badań procesu nitryfikacji (Kristensen i Jansen 1980).

Rys. 2.13. Zależność szybkości denitryfikacji od stężenia azotanów V. Lotne kwasy tłuszczowe zostały dodane w nadmiarze (Aesoy i Odegaard 1994).

Rys. 2.14. Zależność szybkości denitryfikacji od stężenia lotnych kwasów tłuszczowych. Azotany V zostały dodane w nadmiarze (Aesoy i Odegaard 1994).

Stała	Wartość	Jednostka
Maksymalna szybkość denitryfikacji (V _{max})	0,567	$gNO_3 - N/g s.m. d$
Stała Monoda dla azotanów V (K _{S,NO3})	1,4	gNO ₃ ⁻ -N/m ³
Stała Monoda dla lotnych kwasów tłuszczowych ($K_{S,VLT}$)	3,0	$gO_{2(LKT)}/m^3$
Współczynnik przyrostu biomasy (Y)	0,22	g s.m./gO ₂
Specyficzna szybkość wzrostu bakterii. denit. (µmax)	0,61	1/d

Tabela 2.5: Stałe w procesie denitryfikacji wyznaczone przez Aesoy i Odegaard'a (1994).

Na podstawie przeprowadzonych badań uznano, że skoro błona biologiczna na ruchomym wypełnieniu jest bardzo cienka i porowata. Stąd denitryfikację można opisać hiperboliczną funkcją Monoda z uwzględnieniem obydwu substratów azotanów V i lotnych kwasów tłuszczowych (LKT). Na kształtkach uzyskiwano błonę biologiczną o grubości od 840 do 2400 µm o strukturze nierównej i porowatej. Była ona całkowicie spenetrowana przez substrat. Według Jansena i in. (1994) w denitryfikacyjnej błonie biologicznej powstają bąbelki wolnego azotu, przez co powierzchnia kontaktu ze ściekami drastyczne wzrasta. Siegrist i Gujer (1985) wykazali, że chropowatość błony biologicznej oraz dyfuzja Eddy'ego i warunki hydrauliczne mogą mieć wpływ na transfer substratu do wnętrza biofilmu. W doświadczeniu przedstawionym przez Aesoy i Odegaard (1994) kinetyka denitryfikacji została opisana funkcją Monoda, gdzie ogranicze-

nia związane z dyfuzją zostały wyrażone przez stałe substratowe (stałe Monoda) – $K_{S,NO3}$ i $K_{S,LKT}$ (tabela 2.5). Niska wartość stałej Monoda dla azotanów V ($K_{S,NO3} = 1,4$ gNO₃⁻-N/m³) świadczy o tym, że już niewielkie stężenia tego substratu nie hamują szybkości denitryfikacji. Dla lotnych kwasów tłuszczowych wartość stałej wynosi 3 gO₂/m³. Jest to również, niewielka wartość. Jednak jak podają autorzy, w hydrolizowanym osadzie tylko lotne kwasy tłuszczowe uległy usunięciu. Pozostałe frakcje ChZT nie zostały usunięte i nie wpływały na aktywność błony biologicznej. Większa wartość $K_{S,LKT}$ oznacza większy wpływ tej stałej na strukturę biofilmu. Duża ilość biomasy na kształtkach i duża gęstość biofilmu mogą spowodować, że błona biologiczna będzie tylko częściowo spenetrowana przez substrat. Wówczas kinetyka denitryfikacji opisana funkcją Monoda może zawierać błędy.

Zwiększająca się ilość biomasy powodowała zwiększenie stałej substratowej dla całkowitej materii organicznej wyrażonej w ChZT. Zostało to przedstawione na rys. 2.15. Jak twierdzą Aesoy i Odegaard (1994) takie zjawisko jest powodowane tym, że w całkowitym ChZT występują frakcje inertne i trudno degradowalne.

Korzystając z faktu, że maksymalna szybkość denitryfikacji (V_{max}) jest wartością stałą autorzy wyznaczyli specyficzną szybkość wzrostu mikroorganizmów μ_{max} równą 0,61 1/d oraz z bilansu wzrostu i respiracji współczynnik przyrostu biomasy Y wynoszacy 0,22 g s.m./gO₂.

Rys. 2.15. Zależność szybkości denitryfikacji od stężenia ChZT, wpływ stężenia biomasy został pokazany jako zmieniające się nachylenie funkcji Monoda (Aesoy i Odegaard 1994).

Z przeprowadzonych dotychczas badań wynika, że zastosowanie reaktorów ze złożem ruchomym może być efektywne w różnych procesach jednostkowych, począwszy od efektywnego usuwania materii organicznej, przez nitryfikację i denitryfikację, skończywszy na procesie Anammox. W technologii tej wykorzystuje się immobilizację mikroorganizmów osiadłych na kształtkach złoża, które dzięki dużej powierzchni właściwej zapewniają bardzo dobrą dostępność substratów. Dlatego reaktory MBBR charakteryzują się dużym nagromadzeniem aktywnej błony biologicznej i niskim czasem zatrzymania ścieków. Dodatkowo, istnieje możliwość koordynowania założonego wcześniej procesu na skutek zmiany stopnia wypełnienia reaktora. Powoduje to, że technologia ta staje się niezwykle elastyczna.

Zdecydowana większość przeprowadzonych badań z wykorzystaniem złoża ruchomego ma na celu uzyskanie poprawy efektywności usuwania zanieczyszczeń w istniejących dużych oczyszczalniach ścieków. Jedynie Rusten i in. (1997) proponują złoża ruchome jako rozwiązanie dla małych oczyszczalni. Autorzy zastosowali złoża ruchome do nitryfikacji i usuwania materii organicznej, zaś nie rozpatrywali użycia technologii MBBR do denitryfikacji. Tylko badania Aesoy i Odegaard (1994), Odegaard i in. (1999) dotyczą kinetyki i wykorzystania reaktorów ze złożem ruchomym (MBBR) do procesu denitryfikacji w końcowym etapie oczyszczania ścieków.

3. Cel i zakres pracy

Złoża zraszane są często stosowaną technologią oczyszczania ścieków ze względu na efektywne usuwanie materii organicznej oraz stabilną pracę. Mankamentem tej technologii jest niedostateczne usuwanie związków azotu. Można je usunąć, jeśli technologia zostanie uzupełniona o etap denitryfikacji końcowej np. w postaci reaktora ze złożem ruchomym. Przed przystąpieniem do badań sformułowano następującą tezę:

Zastosowanie reaktora ze złożem ruchomym w biologicznej oczyszczalni ścieków wykorzystującej złoża zraszane zwiększy efektywność usuwania związków azotu.

Przyjęto następujące cele badań:

- Określenie w warunkach laboratoryjnych przebiegu funkcji Monoda opisującej zmiany szybkości usuwania azotanów V w zależności od stężenia substratu w reaktorze ze złożem ruchomym (MBBR) i wyznaczenie stałych występujących w równaniu Monoda: V_{max}, K_{S,N}, K_{S,ChZT} na podstawie pomiarów laboratoryjnych.
- Weryfikacja uzyskanego równania Monoda w skali technicznej dla reaktora MBBR usytuowanego po biologicznym oczyszczaniu w złożach zraszanych typu Bioclere[®] w Gronowie Górnym.
- Określenie ilościowych i jakościowych cech reaktora MBBR oraz warunków, w których reaktor zapewni najbardziej efektywny przebieg procesu denitryfikacji końcowej po złożach zraszanych.

Realizacja wymienionych celów badań wymagała m. in.:

- a) wykonania laboratoryjnego stanowiska badawczego symulującego pracę reaktora MBBR,
- b) określenia zależności szybkości denitryfikacji od stężenia azotanów V oraz od stężenia zewnętrznego węgla organicznego (preparatu Brennta Plus),
- c) zaprojektowania i wykonania w skali technicznej reaktora MBBR pracującego w trybie automatycznym,
- d) wyznaczenia liczby kształtek wypełnienia EvU Perl w jednym m³ złoża,
- e) określenia konsumpcji substratów uczestniczących w denitryfikacji końcowej,
- f) określenia wpływu dawki zewnętrznego węgla organicznego na szybkość denitryfikacji,
- g) określenia stężeń biomasy zawieszonej w ściekach i biomasy osiadłej na wypełnieniu ruchomym,
- h) określenie efektywności usuwania zanieczyszczeń dla reaktora MBBR pracującego w trybie automatycznym.

4. Przedmiot badań

Przedmiotem badań była oczyszczalnia ścieków wykorzystująca w części biologicznej złoża zraszane typu Bioclere[®]. Obiekt znajduje się w miejscowości Gronowo Górne w woj. warmińsko-mazurskim i oczyszczał ścieki bytowe pochodzące z zakładu produkującego wyroby meblowe. Zakład odprowadzał ścieki w ilości około 26 m³/d. Ścieki pochodziły głównie z sanitariatów i pryszniców dla pracowników. Oczyszczalnia składała się z trzykomorowego osadnika wstępnego o pojemności 25 m³ wyposażonego w ręczną kratę koszową oraz dwóch złóż biologicznych typu Bioclere[®]. Były to złoża zraszane wypełnione kształtkami Hufo[®] z tworzywa sztucznego. Pierwsze złoże o symbolu B150 miało pojemność 18 m³ i było odpowiedzialne za mineralizację materii organicznej. Drugie złoże o symbolu B180 i objętości 21,6 m³ było wykorzystywane do realizacji procesu nitryfikacji. Z każdego ze złóż biologicznych odchodził rurociąg recyrkulacyjny, którego rolą było usuwanie osadu nadmiernego. Schemat oczyszczalni został przedstawiony na rys. 4.1.

Ścieki surowe były tłoczone z dwóch zakładowych przepompowni do studzienki rozprężnej przed osadnikiem wstępnym. Ich skład chemiczny został określony na podstawie kilkunastu pomiarów stężeń BZT₅, ChZT, NH₄⁺ i NO₃⁻. Średnie wartości poszczególnych wskaźników zanieczyszczeń pokazały, że do obiektu dopływały ścieki o proporcjonalnie dużym stężeniu azotu amonowego oraz niskich stężeniach materii organicznej wyrażonej w BZT₅ i ChZT. Stężenia azotu amonowego średnio wynosiły 111 mgNH₄⁺/dm³, zaś stężenia BZT₅ wynosiły zaledwie 186 mgO₂/dm³.

Ścieki po oczyszczeniu w złożach zraszanych Bioclere[®] (ścieki odpływające z oczyszczalni) charakteryzowały się stężeniem BZT₅ na poziomie 23 mgO₂/dm³ i stężeniem ChZT wynoszącym 134 mgO₂/dm³. Azot amonowy w znacznym stopniu ulegał transformacji w procesie nitryfikacji w formę tlenową azotu - azotany V. Z dopływających 111 mgNH₄⁺/dm³ pozostawało w odpływie ze złóż średnio 30 mgNH₄⁺/dm³. Usunięciu ulegało zatem 80 mgNH₄⁺/dm³. W ściekach odpływających pozostawały azotany V w stężeniu wynoszącym średnio 79 mgNO₃⁻/dm³.

Charakterystykę ścieków dopływających i odpływających z oczyszczalni w Gronowie Górnym podano w tabeli 4.1.

Pomiar:	BZT ₅ [mgO ₂ /dm ³]		ChZT [mgO ₂ /dm ³]		NH_4^+ [mgNH ₄ ⁺ /dm ³]		NO ₃ ⁻ [mgNO ₃ ⁻ /dm ³]	
	Dopływ	Odpływ	Dopływ	Odpływ	Dopływ	Odpływ	Dopływ	Odpływ
27.11.10	181,0	38,0	692,0	55,0	-	-	-	-
24.01.11	260,0	36,0	777,0	236,0	150,0	40,0	0,0	40,0
08.02.11	-	-	953,0	148,0	-	-	-	-
20.02.11	120,0	1,0	-	-	140,0	50,0	0,0	120,0
07.03.11	-	-	559,0	98 <i>,</i> 0	140,0	50,0	0,0	100,0
18.03.11	220,0	19,0	-	-	100,0	25,0	0,0	80,0
09.04.11	60,0	19,0	-	-	67,0	32,0	0,0	80,0
23.04.11	184,0	36,0	-	-	90,0	28,0	0,0	50,0
20.05.11	230,0	14,0	-	-	98,0	2,0	0,0	60,0
13.06.11	233,0	18,0	-	-	100,0	10,0	0,0	90,0
średnia:	186,0	22,6	745,3	134,3	110,6	29,6	0,0	78,8

Tabela 4.1: Charakterystyka stężeń wybranych wskaźników zanieczyszczeń w ściekach surowych i oczyszczonych w oczyszczalni ścieków w Gronowie Górnym

Po opuszczeniu oczyszczalni ścieki odprowadzane były grawitacyjnie do rowu melioracyjnego, skąd spływały do silnie zeutrofizowanego odbiornika jakim było Jezioro Drużno (III klasa czystości) (Choiński, 1991)

Występujące w odpływie znaczne stężenia azotanów V były efektem niewydajnego przebiegu denitryfikacji. Sprawiło to, że oczyszczalnia ścieków w Gronowie Górnym stała się właściwym obiektem do prowadzenia badań z reaktorem ze złożem ruchomym służącym do realizacji procesu denitryfikacji końcowej.

Do oczyszczalni w Gronowie Górnym dobudowano reaktor ze złożem ruchomym (MBBR). W ciągu technologicznym oczyszczalni został on umiejscowiony za złożami zraszanymi Bioclere[®] i stanowił dodatkowy etap oczyszczania biologicznego, w którym miał zachodzić proces denitryfikacji.

Reaktor MBBR jest w niniejszej pracy obiektem badań, zaś ścieki odpływające ze złóż zraszanych są tymi, które dopływają do reaktora.

Układ technologiczny oczyszczalni ścieków w Gronowie Górnym z dołączonym reaktorem MBBR przedstawiono na rys. 4.1. Widok ogólny oczyszczalni pokazano na zdjęciu w załączniku nr 10.1 na rys 10.3, zaś wnętrze reaktora pokazano na rys. 10.4.

Rys. 4.1 Schemat technologiczny przedmiotu badań – oczyszczalni ścieków w Gronowie Górnym oraz obiektu badań – reaktora MBBR.

5. Materiały i metodyka badań

5.1 Badania kinetyki denitryfikacji w laboratoryjnym reaktorze MBBR

W warunkach laboratoryjnych skonstruowano stanowisko badawcze, symulujące działanie małego reaktora MBBR. Przyjęto założenie, że działanie reaktora będzie podobne do działania reaktora MBBR realizującego proces denitryfikacji w warunkach technicznych.

Stanowisko laboratoryjne składało się z naczynia (reaktora) o poj. 28 dm³ wykonanego z przezroczystego tworzywa (pleksiglas). Objętość robocza urządzenia wynosiła 24 dm³. Złoże ruchome – kształtki EvU Perl zajmowało 25% objętości roboczej (6 dm³) Centralnie, w naczyniu umieszczone było mieszadło z dwoma łopatkami, których długość wynosiła 8 cm. Wał mieszadła napędzany był silnikiem z możliwością regulacji obrotów. Częstotliwość mieszania wynosiła 100 obr./min (ponieważ przy takiej wartości nie następowało natlenianie a poruszane były wszystkie kształtki ruchomego wypełnienia).

Laboratoryjny reaktor MBBR wypełniony był ściekami pochodzącymi z oczyszczalni ścieków w Gronowie Górnym. Dowiezione z obiektu ścieki charakteryzowały się znacznym stężeniem azotanów V i niskimi wartościami BZT₅. Do reaktora dodawano zmienne dawki azotanów V (korzystając z soli NaNO₃) i pożywkę (zewnętrzne źródło węgla organicznego) w postaci preparatu Brennta Plus. Po dodaniu substratów, z obecnych w reaktorze ścieków samoczynnie rozwinęła się biomasa zdolna do denitryfikacji.

Schemat reaktora MBBR dla badań laboratoryjnych przedstawiono na rys. 5.1. Zdjęcia laboratoryjnego stanowiska zostały umieszczone w załączniku nr 10.1 (rys. 10.1 i 10.2).

Rys. 5.1. Schemat reaktora MBBR dla badań laboratoryjnych

W badaniach laboratoryjnych w skonstruowanym modelu reaktora MBBR zachodził proces denitryfikacji. Podczas pracy reaktora określano szybkość denitryfikacji w zależności od stężenia początkowego substratu limitującego. Uzyskane wyniki umożliwiły określenie stałych występujących w równaniu Monoda.

W eksperymencie laboratoryjnym rozważono dwa przypadki: w I-szym w reaktorze znajdowała się nadmierna ilość zewnętrznego węgla organicznego, w II-im, w nadmiarze były azotany V. Te dwa sposoby pracy reaktora zostały przedstawione za pomocą tzw. "czarnych skrzynek" na rys. 5.2 i 5.3.

Rys. 5.2. Schemat doświadczenia laboratoryjnego z nadmiarem zewnętrznego węgla organicznego (przypadek I)

Rys. 5.3. Schemat doświadczenia laboratoryjnego z nadmiarem azotanów V (przypadek II)

Zawsze jeden z dwóch substratów pozostawał w niedomiarze (tzn. stanowił substrat limitujący). Założono bowiem, że szybkość denitryfikacji będzie zależała od tego substratu, którego w układzie jest mniej. W każdej serii pomiarowej mierzono zmiany stężenia azotanów V i zmiany stężenia substratu limitującego w czasie. Jak przedstawiono na rysunkach 5.2 i 5.3, przeprowadzono dwa doświadczenia, w których: w I przypadku szybkość denitryfikacji limitowana była stężeniem azotanów V, a w przypadku II - stężeniem węgla organicznego.

Pobór próbek wykonywano strzykawką o pojemności 100 cm³ zakończoną gumowym wężykiem, którego koniec w momencie zasysania próbki znajdował się pod warstwą złoża ruchomego. Jednorazowo pobierano 30 cm³ próbki, co 15 minut. Stężenie azotanów V oznaczano za pomocą testów kuwetowych firmy Hach Lange i fotometru Dr Lange ION 500. Przy oznaczeniu stężenia materii organicznej wyrażonej w ChZT najpierw przesączano próbkę przez sączek o średnicy porów wynoszącej 0,045 mm, następnie zmineralizowano w termostacie ultradźwiękowym HT 200S Hach Lange. Oznaczenie odbywało się z użyciem testów kuwetowych do ChZT Hach Lange i fotometru Dr Lange ION 500. Pozostała na sączku zawiesina była wykorzystana do oznaczeń suchej masy i określenia liczby mikroorganizmów uczestniczących w reakcji w danej serii pomiarowej. Suchą masę biomasy oznaczono przy pomocy wagosuszarki MAC 50/1 firmy RADWAG.

W pomiarach ChZT uwzględniano frakcje łatwo i trudno rozkładalne. Aby z całkowitego stężenia ChZT uzyskać podział na poszczególne frakcje, po każdej serii pomiarowej reaktor napowietrzano przez jedną godzinę i oznaczano ChZT. Wartość ta odpowiadała frakcji, która nie uległa biodegradacji, czyli było to stężenie ChZT dla frakcji trudno rozkładalnej. Z różnicy całkowitego ChZT i trudno rozkładalnego otrzymano stężenie frakcji ChZT łatwo rozkładalnej.

Równanie szybkości denitryfikacji (r_{su}) podane przez Henze'go i in. (2002) zawiera stałe kinetyczne, których znajomość jest potrzebna w dokładniejszym opisie procesu. Są to: maksymalna szybkość denitryfikacji – V_{max} , stała Monoda dla azotanów V – $K_{S,N}$ i stała Monoda dla materii organicznej wyrażonej w ChZT – $K_{S,ChZT}$. Postać równania jest następująca:

$$-r_{su} = V_{\max} \cdot \frac{C_N}{K_{S,N} + C_N} \cdot \frac{C_{ChZT}}{K_{S,ChZT} + C_{ChZT}}$$
(5.1)

59

W celu znalezienia wartości stałych występujących w równaniu przeprowadzono w warunkach laboratoryjnych następujące serie pomiarowe:

- w warunkach limitacji azotanami V, przy nadmiarze zewnętrznego węgla organicznego i stężeniu biomasy od 0,94 do 2,20 g s.m./dm³ – 13 serii pomiarowych,
- w warunkach limitacji zewnętrznym węglem organicznym, przy nadmiarze azotanów V i stężeniu biomasy od 0,11 do 0,16 g s.m./dm³ – 8 serii pomiarowych.

5.2 Badania w skali technicznej

5.2.1 Opis obiektu badań

Obiektem badań był reaktor ze złożem ruchomym (ang. – moving bed biological reactor, w skrócie MBBR). Reaktor był zbiornikiem w kształcie walca o średnicy 2,3 m i wysokości 2,5 m. Jego objętość czynna wynosiła 6,4 m³. Ściany reaktora wykonane byly z laminatu poliestrowo-szklanego. Składały się z dwóch warstw, między którymi znajdowała się pianka poliuretanowa zapewniająca dobrą izolację termiczną.

W górnej części reaktora (nad powierzchnią ścieków) zamontowany był podest, na którym zainstalowane było kontenerowe mieszadło mechaniczne o mocy 1,1 kW i szybkości mieszania 50 obr./min. Na podeście postawiona została pokrywa, której wnętrze stanowiło pomieszczenie, gdzie znajdowała się szafa sterująca reaktorem oraz pompka dozująca zewnętrzne źródło węgla organicznego. Na rurociągu doprowadzającym ścieki do reaktora został zainstalowany elektromagnetyczny przepływomierz, zawór kulowy z napędem elektrycznym oraz dwa ręczne zawory kulowe, z których jeden regulował ilość doprowadzanych ścieków, zaś drugi był wykorzystywany do kierowania ścieków do rurociągu omijającego reaktor – tzw. by-pass). W odległości 5 cm nad dnem reaktora umieszczono pompę osadową. W reaktorze znajdowały się kształtki Evu Perl o łącznej objętości 1,6 m³, co stanowiło 25% jego objętości czynnej. Schemat reaktora MBBR został przedstawiony na rys. 5.5. Ilustracja wnętrza urządzenia została zamieszczona w załączniku nr 10.1 (rys. 10.3).

Wyposażenie reaktora ze złożem ruchomym składało się z następujących urządzeń i elementów:

• pompa recyrkulacji osadów Grundfoss AP.12.06.12 o mocy 1100W,

- układ dozowania zewnętrznego źródła węgla: zbiornik o poj. 200 dm³ oraz pompka dozująca TEKNA AXL,
- mieszadło mechaniczne o mocy 1,1 kW i szybkością mieszania równą 50 obr./min,
- przepływomierz elektromagnetyczny Promag 50 firmy Endress-Hauser,
- kształtki EvU Perl[®] stanowiące złoże ruchome,
- elektryczny zawór kulowy,
- pływak,
- mierniki stężenia azotanów V i potencjału utleniająco-redukującego,
- sonda do pomiarów azotanów V,
- sonda do pomiarów potencjału utleniająco-redukującego,

Rys. 5.5: Schemat reaktora ze złożem ruchomym w skali technicznej – przekrój podłużny.

Wewnątrz reaktora w ruchomym złożu biologicznym zachodził proces denitryfikacji. Na powierzchni kształtek rozwijała się błona biologiczna, w której występowały specyficzne gatunki bakterii. Ścieki ze złóż zraszanych bogate w azotany V były doprowadzane do reaktora i dodawany był do nich preparat Brennta Plus stanowiący pożywkę dla bakterii. W reaktorze były zachowane odpowiednie warunki niezbędne do realizacji denitryfikacji, tzn.:

- a) potencjał utleniająco-redukujący poniżej 0 mV,
- b) pH: 6,5-8,
- c) dostępność zewnętrznego węgla organicznego
- d) temperatura 10-35 °C,
- e) obecność azotanów V

Na rys. 5.6 przedstawiono zdjęcie wypełnienia ruchomego EvU Perl. Były to kształtki przypominające drobne fałdowane rurki pocięte na drobne odcinki. Kształtki były wykonane z tworzywa sztucznego - PVA pochodzącego z recyklingu PP i HDPE. Miały one średnicę ok. 8 mm i długość ok. 8 mm i posiadały strukturę żłobkowaną wzdłużnie (na wewnątrz i z zewnątrz), bez przegród i usztywnień. Pozostałe właściwości fizyczne wypełnienia EvU Perl podano poniżej wg Materiałów Informacyjnych EvU Kielce Sp. z o.o., (2008):

- ciężar właściwy: 0,92 0,94 g/cm³,
- ciężar nasypowy: 250 kg/m³,
- powierzchnia właściwa: 800 m²/m³,
- powierzchnia właściwa jednej kształtki: powyżej 4,1 cm²,
- kolor: różny, zależnie od materiału podstawowego,
- temperatura topnienia : 150 260°C,
- temperatura zapłonu: powyżej 400°C,
- kształtki są nierozpuszczalne w wodzie.

Rys.5.6. Wypełnienie Evu Perl.

Skład chemiczny zastosowanego źródła węgla organicznego - preparatu Brennta Plus firmy Brenntag objęty był tajemnicą. Producent zastrzegł sobie prawo do udzielania informacji na temat składu pożywki. Wiadomo jedynie, że jest to "roztwór substancji odżywczych dla bakterii denitryfikacyjnych".

Reaktor ze złożem ruchomym (MBBR) w skali technicznej testowany był jako urządzenie pracujące w dwóch trybach :

- okresowy reaktor obsługiwany ręcznie
- okresowy reaktor pracujący automatycznie

Reaktor MBBR obsługiwany ręcznie

W reaktorze MBBR obsługiwanym ręcznie wszystkie czynności związane z przeprowadzeniem denitryfikacji były wykonywane manualnie. Wykonano 8 serii pomiarowych, z których każda trwała jedną dobę. W każdej przeprowadzonej serii pomiarowej wykonywano kolejno, jednakowe, następujące po sobie czynności:

- Za pomocą pompy recyrkulacji, przy pracującym mieszadle, wypompowano z reaktora MBBR 1,6 m³ ścieków na początek układu technologicznego oczyszczalni (do studni rozprężnej przez osadnikiem wstępnym).
- W miejsce odpompowanych ścieków dopływały ścieki ze złóż biologicznych charakteryzujące się znacznym stężeniem azotanów V. Po napełnieniu reaktora, napływające ścieki kierowano do rurociągu omijającego reaktor. W reakto-

rze znajdowała się identyczna objętość ścieków, jak przed wypompowaniem (6,4 m³).

- Pobierano próbki ścieków do analizy stężenia biomasy zawieszonej oraz pobierano z reaktora kształtki do analizy stężenia biomasy osiadłej na wypełnieniu ruchomym.
- 4. Następnie dodawano 1 dm³ zewnętrznego węgla organicznego w postaci pożywki Brennta Plus (koncentrat pożywki zawierał około 1.000.000 mgChZT/dm³). Po dodaniu jej do reaktora stężenie materii organicznej dostępnej dla mikroorganizmów wynosiło około 150 mgBZT₅/dm³.
- 5. W okresie 24 godzin mierzono stężenia azotanów V oraz wartości potencjału utleniająco-redukującego. Ponadto po upływie 0, 30, 60, 120 min od dodania pożywki pobierano z reaktora uśrednioną próbkę ścieków i oznaczano stężenie ChZT oraz stężenie jonów NH₄⁺.
- 6. Za pomocą komputera odczytywano zapisane w miernikach dane dotyczące pomiarów azotanów V i potencjału oksydacyjno-redukującego.

Reaktor MBBR pracujący automatycznie

Reaktor MBBR przeznaczony do pracy automatycznej musiał być dodatkowo wyposażony w urządzenia: pływak, elektrozawór, pompa recyrkulacji, pompa zewnętrznego źródła węgla, mieszadło. Dodatkowe elementy współpracowały ze sobą, ponieważ były kierowane elektronicznym sterownikiem Zelio[®]. W przyjętym trybie pracy zachowano tę samą kolejność czynności, jak w ręcznie obsługiwanym reaktorze z tą różnicą, że powtarzalność cykli pracy następowała automatycznie. Schemat opracowanego dla reaktora harmonogramu działania przedstawiono na rys. 5.7.

Rys. 5.7. Schemat działania reaktora MBBR w trybie automatycznym

Start programu sterującego pracą reaktora zaczynał się od załączenia pompy recyrkulacji, na okres 2 min. W tym czasie po otwarciu elektrycznego zaworu kulowego następowało doprowadzenie ścieków ze złóż zraszanych do reaktora MBBR, a pływak przechodził z górnego położenia w dolne (nawet podczas intensywnego napływu ścieków). Po wyłączeniu pompy recyrkulacji włączała się pompka dozująca zewnętrzne źródło węgla. W czasie 18-22 min. elektryczny zawór kulowy oczekiwał na osiągnięcie wymaganego poziomu ścieków w reaktorze – tj. na górne położenie pływaka. Po napełnieniu ściekami reaktora, załączało się mieszadło mechaniczne. W okresie 18 min. zachodziła reakcja denitryfikacji, a po upływie tego czasu ponownie włączała się pompa recyrkulacji i cykl zaczynał się od nowa. Program sterujący pracą umożliwiał łatwą zmianę czasu trwania fazy recyrkulacji i fazy mieszania. Wyjątek stanowił czas trwania fazy napełniania, gdyż ta była uwarunkowana natężeniem przepływu ścieków.

Pompka dozująca pożywkę (zewnętrzne źródło węgla organicznego) posiadała regulację dozowanej dawki. Przy automatycznej pracy reaktora wykonywano pomiary, w których stosowano 3 różne nastawy czasu dozowania. Skutkowało to uzyskaniem trzech różnych stężeń ChZT wewnątrz reaktora: 300, 500 i 700 mgO₂/dm³.

5.2.2 Określenie liczby kształtek w jednym m³ wypełnienia Evu Perl

Z reaktora pobrano 90 sztuk losowo wybranych kształtek wypełnienia EvU Perl. Poddano je gotowaniu w wodzie (w temperaturze 100°C), aż do całkowitego oderwania się od ich powierzchni błony biologicznej (biofilmu). Pojedyncze kształtki zważono na wadze analitycznej z dokładnością do 0,0001 g. Następnie obliczono średnią masę pojedynczej kształtki. Wykorzystując podany przez producenta (EvU Kielce Sp. z o.o.) ciężar nasypowy złoża EvU Perl (250 kg/m³) obliczono liczbę kształtek w 1 m³ wypełnienia wg wzoru 5.2:

$$n_m = \frac{w}{m_{\acute{s}r}} \tag{5.2}$$

gdzie:

 n_m = liczba kształtek w 1 m³ złoża ruchomego w = ciężar nasypowy wypełnienia, g

5.2.3 Określenie konsumpcji substratów w procesie denitryfikacji

Celem tego doświadczenia było określenie ilości materii organicznej, która musi zostać dostarczona i skonsumowana przez bakterie denitryfikacyjne, aby mógł zostać usunięty ze ścieków 1 g azotu azotanowego.

W doświadczeniu założono, że w reaktorze MBBR będzie występowało znikome stężenie biomasy (X \approx 0) w momencie startu każdej serii pomiarowej. Niskie stężenia biomasy występowały zawsze wtedy, gdy do reaktora doprowadzano ścieki dobrze znitryfikowane po złożach zraszanych. Taki charakter ścieków powodował wymywanie z kształtek EvU Perl bakterii heterotroficznych odpowiedzialnych za denitryfikację. Osiągnięte w ten sposób warunki wykluczały udział węgla pochodzenia endogennego w usuwaniu azotanów V i pozwoliły na określenie stosunku konsumpcji obu substratów.

W sześciu seriach poprzez pomiary stężeń określono ubytki zewnętrznego węgla organicznego i azotanów V. Początek reakcji stanowił moment dodania do reaktora MBBR zewnętrznego węgla organicznego, zaś koniec reakcji następował po upływie 8 godzin. Z różnicy stężeń początkowych i końcowych zostały obliczone Δ ChZT i Δ NO₃⁻

-N. Stosunek Δ ChZT do Δ NO₃⁻-N nazwano współczynnikiem konsumpcji q, który został obliczony ze wzoru 5.3:

$$q = \frac{\Delta C_{ChZT}}{\Delta C_{NO3-N}}$$
(5.3)

gdzie:

 $q = \text{współczynnik konsumpcji, gChZT/gNO_3}-N$

 ΔC_{ChZT} = różnica pomiędzy stężeniami ChZT dla czasu: t_0 i t_k , gChZT

 $\Delta C_{NO3-N} =$ różnica pomiędzy stężeniami NO₃⁻-N dla czasu: t_0 i t_k , gNO₃⁻-N

Wartość współczynnika q dostarczała informacji jaką dawkę pożywki Brennta Plus należy dodać by osiągnąć w reaktorze wydajną denitryfikację.

5.2.4 Określenie wpływu dawki zewnętrznego węgla organicznego

Przeprowadzono trzy serie pomiarowe, w których za każdym razem stosowano inną dawkę zewnętrznego węgla organicznego w postaci preparatu Brennta Plus:

- dawka I: 0,5 dm³ czyli około: 78 mgO₂/dm³ ChZT
- dawka II: 1 dm³ czyli około: 154 mgO₂/dm³ ChZT
- dawka III: 3 dm³ czyli około: 468 mgO₂/dm³ ChZT

Zastosowano preparat Brennta Plus firmy Brenntag w postaci koncentratu, którego stężenie ChZT wynosiło około 1 000 000 mgO₂/dm³ (1kgO₂/dm³). Badanie to miało na celu określenie wpływu ilości dodanej pożywki na szybkość reakcji denitryfikacji.

Ocena jakości zastosowanej pożywki dla końcowej denitryfikacji, wymagała przeprowadzenia dodatkowej serii pomiarowej, w której nie dodawano preparatu Brennta Plus. Porównano otrzymaną szybkość denitryfikacji z szybkościami uzyskanymi podczas dozowania założonych dawek.

5.2.5 Określenie przyrostu biomasy

Biomasa osiadła na kształtkach EvU Perl

Z reaktora pobrano 390 kształtek, wygotowano w wodzie destylowanej w temperaturze 100°C i podzielono na 39 zestawów. Każdy z nich zawierał po 10 kształtek. Podzielone kształtki związano cienką żyłką, zważono i umieszczano w reaktorze. Po każdej serii pomiarowej pobierano po 3 zestawy kształtek i suszono w wagosuszarce MAC/1 firmy Radwag uzyskując masę kształtek powiększoną o suchą masą mikroorganizmów. Z różnicy mas określono masę biomasy w g s.m. Następnie z każdej przeprowadzonej serii pomiarów obliczano średnią masę biomasy mikroorganizmów zasiedlających 10 kształtek. Wyznaczoną biomasę przeliczono na masę mikroorganizmów obecnych w 1 m³ złoża:

Suchą masę biomasy, która osiadła na 10 kształtkach każdego zestawu obliczono korzystając z równania 5.3:

$$m_{smb} = m_t - m_0 \tag{5.3}$$

gdzie:

 m_{smb} - sucha masa biomasy, g

 m_t - masa zestawu 10 kształtek po czasie ekspozycji w reaktorze, g m_0 - masa zestawu 10 jałowych kształtek (bez mikroorganizmów), g

Średnią suchą masę biomasy uczestniczącą w procesie w danej serii pomiarowej obliczono korzystając z równania 5.4:

$$m_{\hat{s}rsmb} = \frac{\left(m_{smb1} + m_{msb2} + m_{msb3}\right)}{3}$$
(5.4)

gdzie:

 m_{srsmb} - średnia masa biomasy jednego zestawu zawarta na 10 kształtkach w seriach od I do VIII, g,

 $m_{smb1} + m_{smb2} + m_{smb3}$ - masy zestawów kształtek w kolejnych seriach pomiarowych, g

Masa biomasy zasiedlającej 1 m³ wypełnienia Evu Perl obliczono korzystając z równania 5.5:

$$X = \frac{n_m \cdot m_{\text{srsmb}}}{10} \tag{5.5}$$

gdzie:

X = masa biomasy w 1 m³ złoża, g s.m./m³

 n_m = liczna kształtek wypełnienia w 1 m³

Biomasa zawieszona w ściekach

Po każdej serii pomiarowej pobierano próbkę ścieków (bez kształtek) o objętości 1 dm³ i określono w niej stężenie zawiesiny ogólnej. Próbkę ścieków najpierw przesączano pod zmniejszonym ciśnieniem przez sączek o średnicy porów 0,045 mm. Przyjęto, że zatrzymana na sączku zawiesina ogólna w całości składała się z mikroorganizmów, których wzrost nastąpił w reaktorze. Sączek z zawiesiną poddano suszeniu na wagosuszarce MAC/1 firmy Radwag i oznaczono suchą masę, która odpowiadała stężeniu biomasy w badanej próbce. Obliczenia stężenia biomasy wykonano zgodnie z równaniem 5.6

$$m_b = m_2 - m_1 \tag{5.6}$$

gdzie:

 m_b - masa biomasy, g s.m.

 m_2 - masa zawiesiny i sączka przed suszeniem, g s.m.

 m_1 - masa zawiesiny i sączka po suszeniu, g s.m.

5.2.6 Wyznaczenie szybkości denitryfikacji

Szybkość usuwania azotanów V tj. szybkość procesu denitryfikacji (r_{su}) została określona na podstawie wyników pomiarów z zależności (5.7):

$$C_{ni} = f(t) \tag{5.7}$$

gdzie: n - numer serii pomiarowej, i - numer pomiaru, C – stężenie azotanów V, t - czas. Przyjęto, że zależność ta jest funkcją liniową o wzorze:

$$y = a \cdot x + b \tag{5.8}$$

Podstawiając wartości występujące w realizowanym eksperymencie będzie to:

$$C = tg\alpha \cdot t + C_0 \tag{5.9}$$

gdzie:

C – stężenie azotanów V w określonym czasie t (mgNO₃⁻-N/dm³),

 $tg\alpha$ – współczynnik kierunkowy prostej odpowiadający szybkości denitryfikacji (mgNO₃⁻-N/dm³·h),

t - czas (h),

 C_0 – stężenie początkowe azotanów V (mgNO₃⁻-N/dm³).

Szybkość denitryfikacji (r_{su}) podano w przeliczeniu na biomasę uczestniczącą w procesie według wzoru 5.10:

$$r_{su} = w \cdot \frac{tg\alpha}{X} \tag{5.10}$$

gdzie:

 r_{su} - szybkość usuwania azotanów (szybkość denitryfikacji) (gNO₃⁻-N/g s.m.·d), w - współczynnik przeliczenia jednostek (= 0,024),

 $tg\alpha$ - tg kąta nachylenia funkcji C = f(t) do osi X - współczynnik kierunkowy

prostej (mgNO₃⁻-N/dm³·h),

X - stężenie biomasy (g s.m./dm³).

W badaniach w skali technicznej w Gronowie Górnym przy obliczaniach szybkości usuwania azotanów V (r_{su}) postępowano podobnie jak w badaniach laboratoryjnych. Różnica polegała na dłuższym okresie czasu, dla którego analizowano zmiany stężenia azotanów V. Dla badań laboratoryjnych wynosił on od 1h do 1,25h, zaś dla badań w terenie serie pomiarowe trwały całą dobę. Inny był również sposób pomiaru azotanów V. W laboratorium stosowano testy kuwetowe a w oczyszczalni sondę pomiarową.

Szybkości denitryfikacji (r_{su}) wyznaczono odrębnie dla każdej serii pomiarowej. Wyznaczenie szybkości wymagało przeprowadzenia następujących działań:

 Nanoszono punkty (t_{ni}, C_{ni}) jako zależność C = f(t). Wartość C_{ni} odczytywano z fotometru (dla pomiarów w laboratorium) lub z miernika połączonego z sondą azotanów V (dla pomiarów w oczyszczalni).

- Uzyskiwano zależności (C = f(t))_n (gdzie: n numer serii pomiarowej). Na ich podstawie wybierano okresy, w których następował największy ubytek azotanów V (gdyż poszukiwaną wartością była m. in. maksymalna szybkość denitry-fikacji V_{max}).
- 3. Metodą najmniejszych kwadratów wyznaczono współczynniki kierunkowe odpowiadające wartościom szybkości denitryfikacji – r_{su} dla czasu Δt . Obliczenie współczynników kierunkowych oraz niepewności pomiarowych z nimi związanych wykonano za pomocą programu komputerowego SCI DAVIS, którego działanie szerzej opisano w rozdziale 5.4.

5.2.7 Wyznaczenie stałych w równaniu szybkości denitryfikacji

Uzyskane w dwóch doświadczeniach laboratoryjnych zbiory punktów ($C_{0,N}$; r_{su}) i ($C_{0,ChZT}$; r_{su}) stanowiły podstawę do wykreślenia funkcji Monoda dla obu substratów. Procedurę obliczeń wykonano według wskazówek podanych przez Klimiuk i in., (1995), Hartmann'a (1999) i Cemę i in., (2005).

Hamowanie wzrostu mikroorganizmów denitryfikacyjnych można opisać w zależności od limitującego substratu równaniami:

$$r_g = \frac{dX}{dt} = \mu(C_N) \cdot X$$
 dla azotanów V (5.11)

$$r_g = \frac{dX}{dt} = \mu(C_{ChZT}) \cdot X$$
 dla zewnętrznego węgla organicznego (5.12)

gdzie:

 r_{g} - szybkość wzrostu mikroorganizmów (g s.m./m³·d),

X - stężenie biomasy organizmów (g s.m./m³),

 $\mu(C_N)$ - szybkość wzrostu mikroorganizmów zależna od stężenia azotanów V (1/d),

 $\mu(C_{ChZT})$ - szybkość wzrostu mikroorganizmów zależna od stężenia zewnętrznego węgla organicznego (1/d).
Wielkość $\mu(C)$ jest specyficzną szybkością wzrostu mikroorganizmów (1/d) i zależy od rodzaju mikroorganizmu jak i od stężenia substratu limitującego. Zależność tę opisał Monod równaniem (5.13):

$$\mu(C) = \mu_{\max} \cdot \frac{C}{K_s + C} \tag{5.13}$$

gdzie:

 $\mu(C)$ - specyficzna szybkość wzrostu mikroorganizmów (1/d),

 μ_{max} - maksymalna specyficzna stała wzrostu mikroorganizmów (1/d),

 K_s - stała odpowiadająca stężeniu substratu, dla której specyficzna szybkość wzrostu mikroorganizmów osiąga połowę wartości maksymalnej (stała Monoda) (g/m³),

C - stężenie substratu limitującego tj. azotu azotanowego lub zewnętrznego węgla organicznego (g/m³).

Równanie Monoda (5.13) odnosi się do specyficznej szybkości wzrostu mikroorganizmów. Podobne równanie można również sformułować dla szybkości usuwania substratu. Przyjmuje ono postać:

$$-r_{su} = V_{\max} \cdot \frac{C}{K_s + C}$$
(5.14)

gdzie:

 r_{su} - szybkość denitryfikacji (gN/g s.m.·d),

 $V_{\rm max}$ - maksymalna szybkość denitryfikacji (gN/g s.m.·d),

 K_s - stała odpowiadająca stężeniu substratu, przy którym specyficzna szybkość wzrostu mikroorganizmów osiąga połowę wartości maksymalnej (stała Monoda) (g/m³),

C - stężenie substratu limitującego tj. azotanów V lub zewnętrznego węgla organicznego (g/m³),

Przyjęto, że w analizowanym procesie biologicznym należy uwzględnić wpływ obu substratów. Z tego powodu każdemu substratowi odpowiada odrębny człon w równaniu Monoda. Dalsze rozważania nad kinetyką denitryfikacji można zapisać za pomocą równania 5.15 podanego przez Henze'go i in. (2002):

$$-r_{su} = V_{\max} \cdot \frac{C_N}{K_{S,N} + C_N} \cdot \frac{C_{ChZT}}{K_{S,ChZT} + C_{ChZT}}$$
(5.15)

gdzie:

 V_{max} - maksymalna szybkość denitryfikacji (gN/g s.m.·d),

 C_N – stężenie azotanów V (gNO₃⁻-N/m³),

 $K_{S,N}$ – stała odpowiadająca stężeniu azotanów V, dla którego specyficzna szybkość wzrostu mikroorganizmów osiąga połowę wartości maksymalnej (stała Monoda) (gNO₃⁻-N/m³),

 C_{CHZT} – stężenie materii organicznej wyrażonej w ChZT (gO₂/m³),

 $K_{s,CHZT}$ – stała odpowiadająca stężeniu materii organicznej, przy którym specyficzna szybkość wzrostu mikroorganizmów osiąga połowę wartości maksymalnej (stała Monoda) (gO₂/m³),

W celu wyznaczenia stałych V_{max} , $K_{S,N}$, $K_{S,ChZT}$ poddano hiperboliczną funkcję Monoda linearyzacji. Istnieją trzy metody linearyzacji. Przedstawiono je na rys. 5.8.

• Lineweavera-Burke'a:

postać zlinearyzowana:

$$\frac{1}{r_{su}} = \frac{1}{V_{max}} + \frac{K_s}{V_{max}} \cdot \frac{1}{C_0}$$
(5.16)

współczynniki regresji liniowej:

$$a = \frac{K_s}{V_{\text{max}}} \tag{5.17}$$

$$b = \frac{1}{V_{\text{max}}} \tag{5.18}$$

• Hofstee-Eddie'go:

postać zlinearyzowana:	$r_{su} = -K_S \cdot \frac{r_{su}}{C_0} + V_{\max}$	(5.19)
	0	

współczynniki regresji liniowej:

$$a = -K_s \tag{5.20}$$

$$b = V_{\text{max}} \tag{5.21}$$

• Hanes'a

postać zlinearyzowana:

$$\frac{C_0}{r_{su}} = \frac{K_s}{V_{\max}} + \frac{1}{V_{\max}} \cdot C_0$$
(5.22)

$$a = \frac{1}{V_{\text{max}}} \tag{5.23}$$

$$b = \frac{K_s}{V_{\text{max}}}$$
(5.24)

Wg Szewczyka (2005) najmniejszy błąd obliczeniowy współczynników a i b występuje w linearyzacji Hofstee-Eadie'go. Błędy wynikające z linearyzacji zostały podane w tabeli 5.1.

Tabela 5.1: Błędy obliczeniowe dla różnych metod linearyzacji według Szewczyka (2005).

Doromotr	Metoda Line-	Metoda Hofstee-	Metoda Ha-
Falaneu	weavera-Burke'a	Eadie'go	nes'a
Błąd obliczeniowy w V _{max} [1/d]	3,0%	1,0%	1,7%
Błąd obliczeniowy w K _S [g/m³]	5,0%	1,9%	3,0%

Przedstawione metody linearyzacji dotyczą wyznaczenia maksymalnej szybkości denitryfikacji (V_{max}) i stałej Monoda (K_s) zależnych tylko od stężenia jednego z substratów. W związku z tym wykonano osobne linearyzacje dla dwóch doświadczeń laboratoryjnych. Linearyzację wykonano dla:

- zbioru punktów: (C_{0,N}; r_{su}) doświadczenie z nadmiarem zewnętrznego węgla organicznego
- zbioru punktów: $(C_{0,ChZT}; r_{su})$ doświadczenie z nadmiarem azotanów V

Rys.5.8 Trzy różne metody linearyzacji równania Monoda

5.2.8 Wyznaczenie stałych wzrostu mikroorganizmów denitryfikacyjnych

Dane potrzebne do wyznaczenia stałych kinetycznych opisujących wzrost bakterii denitryfikacyjnych uzyskano z pomiarów wykonanych dla reaktora MBBR pracującego w trybie automatycznym. Dzięki automatycznej pracy i płynnej zmianie cyklów działania uzyskano pożądane i powtarzalne warunki procesu wewnątrz reaktora. W czasie każdej wykonywanej przez reaktor sekwencji przyrastała biomasa i usuwał się węgiel organiczny. Z pomiarów początkowych i końcowych stężeń zewnętrznego węgla organicznego oraz z pomiarów początkowej i końcowej biomasy uzyskano przyrosty obu wartości. Posłużyły one do wyznaczenia tzw. stechiometrycznego współczynnika przyrostu biomasy – Y. Przeanalizowano 15 pełnych cyklów pracy reaktora. Do wyznaczenia średniej wartości Y zastosowano równanie 5.25:

$$Y = \frac{\sum_{i=1}^{n} (\frac{\Delta X}{\Delta C_{ChZT}})_i}{n}$$
(5.25)

gdzie:

Y - współczynnik przyrostu biomasy (wartość średnia), gs.m./gO2

 ΔX – przyrost biomasy w czasie jednej sekwencji , gs.m./m³ złoża

 ΔC_{ChZT} – ubytek zewnętrznego węgla organicznego w czasie jednego cyklu, ${
m gO_2/m^3}$

n – liczba cyklów pracy

W celu obliczenia dla reaktora MBBR specyficznej szybkości wzrostu mikroorganizmów μ_{max} wykorzystano jej proporcjonalność do stałej szybkości usuwania azotanów V (V_{max}). Wzajemną zależność obu wartości wyraża wzór 5.26:

$$\mu_{\max} = Y \cdot V_{\max} \tag{5.26}$$

gdzie:

 $\mu_{\rm max}$ - specyficzna szybkość wzrostu mikroorganizmów 1/d

 $V_{\rm max}$ - maksymalna szybkość denitryfikacji (gN/g s.m.·d),

Y – stechiometryczny współczynnik przyrostu biomasy (g s.m/gO₂).

5.3 Analizy fizyczno-chemiczne

W laboratorium wykonywano następujące oznaczenia:

- Azotany V (NO₃⁻) pomiar wykonywano za pomocą testów kuwetowych firmy HACH-LANGE. Do pomiaru absorbancji użyto fotometru DOCTOR LANGE tej samej firmy (90 pomiarów).
- ChZT zastosowano testy kuwetowe firmy HACH-LANGE i fotometru DOC-TOR LANGE (46 pomiarów).
- Stężenie biomasy oznaczenie przeprowadzono metodą wagową za pomocą wagosuszarki MAC 50/1 firmy RADWAG. (72 pomiary).

W terenie wykonywano następujące oznaczenia:

- Azotany V (NO₃⁻) pomiar wykonywano za pomocą zestawu miernika pH/ION 340i i sondy azotanów V NO800 firmy WTW (350 pomiarów).
- ChZT w zastosowano testy kuwetowe NANOCOLOR firmy MACHEREY-NAGEL. Do pomiaru absorbancji użyto przenośnego fotometru PF-11 tej samej firmy (80 pomiarów).
- Potencjał utleniająco-redukujący pomiar wykonywano drugim miernikiem pH/ION 340i i sondą SenTix ORP firmy WTW (350 pomiarów).
- Stężenie biomasy oznaczenie przeprowadzono metodą wagową za pomocą wagosuszarki MAC 50/1 firmy RADWAG (150 pomiarów).

Dodatkowo w terenie przeprowadzono pomiary kontrolne:

- Azot amonowy NH₄⁺ wykonano za pomocą testów kuwetowych NANOCO-LOR firmy MACHEREY-NAGEL (32 pomiary).
- BZT₅ pomiary realizowano metodą manometryczną z inhibitorem nitryfikacji przy użyciu przyrządu OXI DIRECT firmy OMC ENWAG (16 pomiarów).
- Zawiesina ogólna pomiar wykonano metodą wagową przy użyciu wagosuszarki MAC 50/1 firmy RADWAG (16 pomiarów).

5.4 Błędy pomiarowe i niepewności wykonanych pomiarów

Wszystkie pomiary wielkości fizycznych są obarczone błędami pomiarowymi wynikającymi z powodu niedokładności przyrządów i metod pomiarowych, niedoskonałości zmysłów, niekontrolowanej zmienności warunków otoczenia i innych przyczyn. Podając wynik pomiaru określonej wielkości należy koniecznie podać także pewną ilościową informację o jakości tego wyniku, a ściślej o jego dokładności (o stopniu przybliżenia do wartości prawdziwej) tak, aby korzystający z tego wyniku mógł ocenić jego wiarygodność.

Wynik pomiaru lub wynik wielkości wyznaczonej w sposób pośredni jest liczbą przybliżoną różną od wartości prawdziwej, więc można go interpretować jako przedział na osi liczbowej, wewnątrz którego znajduje się wartość prawdziwa, która pozostaje nieznana. Przedział ten, nazywamy przedziałem niepewności wyniku pomiaru lub przedziałem ufności.

W celu ilościowego opisu tego przedziału należy określić tzw. niepewność pomiaru dla wielkości mierzonych zarówno w sposób bezpośredni jaki i pośredni.

Określenie niepewności pomiarowych stężeń zanieczyszczeń w analizowanych ściekach

Niepewność pomiarową w oznaczeniu stężeń BZT₅, ChZT, NH₄⁺, NO₃⁻ przyjęto na poziomie \pm 10% od wartości mierzonej zgodnie z zaleceniami producentów fotometrów DOCTOR LANGE i PF-11 oraz przyrządu OXI DIRECT.

Określenie niepewności pomiaru liczby kształtek EvU Perl w jednym m³, przyrostu stężeń biomasy zawieszonej w ściekach i osiadłej na kształtkach oraz współczynnika przyrostu biomasy - Y

Ocenę niepewności pomiaru tych wielkości wykonano metodą estymacji przedziałowej w oparciu o rozkład t-Studenta. Przedziałem ufności nazywa się taki przedział, który z zadanym z góry prawdopodobieństwem (1-α), zwanym poziomem ufności (lub współczynnikiem ufności), pokrywa nieznaną wartość szacowanej wielkości. Przedział ufności jest zdefiniowany zależnością 5.27.

$$P(\bar{x} - t_{\alpha, n-1} \cdot \frac{s_{n-1}}{\sqrt{n}} < a < \bar{x} + t_{\alpha, n-1} \cdot \frac{s_{n-1}}{\sqrt{n}}) = 1 - \alpha$$
(5.27)

gdzie:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
(5.28)

$$s_{n-1} \approx \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 (5.29)

 $t_{\alpha,n-1}$ – wartość krytyczna odczytana z tablic rozkładu t- Studenta dla n-1 stopni swobody i założonego poziomu istotności α ,

 s_{n-1} – odchylenie standardowe,

 \overline{x} – średnia arytmetyczna z wykonanych pomiarów,

 x_i – pojedynczy pomiar,

n – ilość pomiarów w serii,

a – szacowana wielkość, której estymatorem jest średnia arytmetyczna wyników otrzymanych w serii pomiarowej.

Wyniki serii pomiarów określających wielkość *a* można zatem zapisać następująco:

$$a = x \pm \Delta a \tag{5.30}$$

gdzie Δa stanowi połowę przedziału ufności i określona jest wzorem:

$$\Delta a = t_{\alpha,n-1} \cdot \frac{s_{n-1}}{\sqrt{n}} \tag{5.31}$$

Wyrażenie to nosi nazwę maksymalnego błędu szacunku niepewności rozszerzonej.

Wybór poziomu istotności α jest subiektywny i zależy od dokładności z jaką chce się określić błąd pomiaru. Wartość poziomu ufności α może przyjmować następujące wartości: 0,60; 0,40; 0,20; 0,10; 0,05; 0,02; 0,01. Dla nauk technicznych i przyrodniczych przyjmuje się najczęściej $\alpha = 0,05$ (Kukiełka 2000). Wartość parametru t -Studenta zależna również od ilości pomiarów, który odczytuje się z tablic wartości krytycznych rozkładu t-studenta. W przypadku określenia niepewności pomiaru liczby kształtek EvU Perl w jednym m³ wykonano 90 pomiarów masy losowo wybranych kształtek. Określono średnią masę kształtki i niepewność pomiaru na podstawie zależności 5.30 i 5.31. Podzielono ciężar nasypowy 1 m³ kształtek przez średnią masę kształtki uzyskując wartość liczby kształtek w 1 m³. Następnie ciężar nasypowy podzielono przez największą możliwą masę kształtki (wartość średnia + błąd pomiaru). Z różnicy obu wartości uzyskano błąd ilości kształtek w 1 m³.

Przy określaniu stężeń biomasy zawieszonej w ściekach wykonano w sumie 24 pomiary zawiesiny ogólnej. Uzyskano 8 wartości średnich z trzech powtórzeń. Wyznaczono odchylenie standardowe wg wzoru 5.29 i błąd pomiaru dla przedziału ufności 0,05 wg wzoru 5.31.

Wartości stężeń biomasy osiadłej na kształtkach EvU Perl utrzymywały się na stałym poziomie, dlatego ze wszystkich uzyskanych pomiarów (łącznie 24 wyniki) wyciągnięto średnią arytmetyczną i policzono dla niej odchylenie standardowe i błąd pomiarowy wg zależności 5.30 i 5.31. Stężenie biomasy osiadłej na 1 m² powierzchni złoża ruchomego obliczono dzieląc średnie stężenie biomasy obecnej w 1 m³ przez powierzchnię właściwą wypełnienia. Obliczono również maksymalne możliwe stężenie biomasy osiadłej na 1 m². Z różnicy obu wartości obliczono niepewność pomiarową dla stężenia biomasy osiadłej w 1 m².

Przy określaniu błędu współczynnika przyrostu biomasy Y przyjęto założenie, że w reaktorze MBBR pracującym w trybie automatycznym każda sekwencja odbywała się w tych samych parametrach technologicznych. Wykonano 15 powtórzeń procesu (15 pełnych cykli pracy reaktora). Ze stosunków przyrostu biomasy do ubytku substratu obliczono Y. W celu wyznaczenia niepewności pomiarowej wartości Y obliczono od-chylenie standardowe wg 5.29 a następnie błąd wg 5.30 i 5.31 dla 15 powtórzeń.

Określenie niepewności pomiarowej stosunku substratów w denitryfikacji współczynnika kierunkowego i stałych w równaniu Monoda (V_{max}, K_{S,N}, K_{S,ChZT})

Stosunek obu substratów uczestniczących w procesie denitryfikacji został znaleziony jako współczynnik kierunkowy prostej wyznaczonej metoda najmniejszych kwadratów. Błąd współczynnika kierunkowego został obliczony za pomocą programu komputerowego SCI DAVIS. Na podstawie uzyskanego zbiór punktów (t_{ni}, C_{ni,N}) wykreślono funkcje $C_{ni} = f(t)$. Są to linie proste o wzorze $y = a \cdot x + b$, a więc równanie pojedynczej prostej ma postać $C = tg\alpha \cdot t + C_0$. Zarówno współczynnik kierunkowy $a(tg\alpha)$ jak i b(C_o) obarczone są błędami związanymi z aproksymacją prostoliniową. Współczynniki i ich błędy obliczono za pomocą programu SCI DAVIS. Formuły, z których korzystał program zostały podane poniżej, zależnościami od 5.32 do 5.36.

$$a = \frac{\sum x^{2} \sum y - \sum x \sum xy}{N \sum x^{2} - (\sum x)^{2}}$$
(5.32)

$$b = \frac{N\sum xy - \sum x\sum y}{N\sum x^{2} - (\sum x)^{2}}$$
(5.33)

$$\Delta y = \sqrt{\frac{1}{N-2} \sum_{i=1}^{N} (y_i - a - bx_i)^2}$$
(5.34)

$$\Delta a = \Delta y \sqrt{\frac{\sum x^2}{N \sum x^2 - (\sum x)^2}}$$
(5.35)

$$\Delta b = \Delta y \sqrt{\frac{N}{N \sum x^2 - \left(\sum x\right)^2}}$$
(5.36)

Funkcje Monoda nie są liniami prostymi, dlatego należało poddać je linearyzacji. Wybrano do tego celu metodę Hofstee-Eddie'go. Zlinearyzowane równanie miało postać: $r_{su} = -K_s \cdot \frac{r_{su}}{C_0} + V_{max}$, gdzie współczynniki a i b $(a = -K_s \text{ i } b = V_{max})$ były obarczone błędami związanymi z linearyzacją. Obliczeń dokonano za pomocą programu SCI DAVIS w podobny sposób jak dla współczynników kierunkowych odpowiadającym szybkościom denitryfikacji.

Wyznaczenie niepewności pomiaru dla szybkości denitryfikacji (r_{su}) i stałej μ_{max}

Szybkość denitryfikacji (r_{su}) podaje się w przeliczeniu na jednostkę s.m. biomasy. To powoduje, że jest ona wyznaczana w sposób pośredni jako wynik dzielenia dwóch wartości obarczonych błędem: współczynnika kierunkowego - $tg\alpha \pm \Delta tg\alpha$ i stężenia biomasy – X ± Δ X. W takiej sytuacji do obliczenia błędu pomiarowego szybkości denitryfikacji (r_{su}) zastosowano, według wytycznych Sobczyka i in. (1982), metodę rozwinięcia w szereg Tailora (5.37):

$$\Delta = \pm \left[\left| \left(\frac{\partial f}{\partial \overline{x}_1} \right) \Delta \overline{x}_1 \right| + \left| \left(\frac{\partial f}{\partial \overline{x}_2} \right) \Delta \overline{x}_2 \right| + \dots + \left| \left(\frac{\partial f}{\partial \overline{x}_n} \right) \Delta \overline{x}_n \right| \right]$$
(5.37)

uzyskując wzór 5.38 opisujący na wartość tej niepewności:

$$\Delta r_{SU} = \pm \left(w \cdot \left(\left| \frac{\Delta t g \alpha}{\overline{X}} \right| + \left| \frac{t g \alpha \cdot \Delta X}{\overline{X}^2} \right| \right) \right)$$
(5.38)

gdzie:

 Δr_{su} - błąd oznaczenia szybkości denitryfikacji [gNO3--N/g s.m.·d]

 $\Delta tg\alpha$ - błąd oznaczenia współczynnika kierunkowego [mg/dm³·h]

 ΔX - błąd oznaczenia stężenia biomasy [g s.m./dm³]

w - współczynnik przeliczenia jednostek (równy 0,024)

W niniejszej pracy błąd pomiaru szybkości denitryfikacji (Δr_{su}) obliczano w ten sposób w trzech doświadczeniach dotyczących badania kinetyki denitryfikacji:

- laboratorium: doświadczenie z nadmiarem zewnętrznego węgla organicznego
- laboratorium: doświadczenie z nadmiarem azotanów V
- teren oczyszczalni: praca reaktora MBBR w trybie manualnym

Niepewność pomiarową stałej μ_{max} obliczono korzystając z rozwinięcia w szereg Tailora (5.37), gdyż wartość tej stałej została wyznaczona w sposób pośredni poprzez pomnożenie dwóch innych stałych Y i V_{max}, z których każda jest obarczona pomiarowym. Uzyskana niepewność pomiarowa wartości μ_{max} wyraża się wzorem 5.39:

$$\Delta \mu_{\max} = \pm \left(\left| \overline{V_{\max}} \cdot \Delta Y \right| + \left| \overline{Y} \cdot \Delta V_{\max} \right| \right)$$
(5.39)

6. Wyniki badań

6.1 Badania kinetyki denitryfikacji w laboratoryjnym reaktorze MBBR

6.1.1 Doświadczenie z nadmiarem zewnętrznego węgla organicznego

W doświadczeniu do modelowego reaktora MBBR skonstruowanego w laboratorium dodawano w nadmiarze zewnętrzny węgiel organiczny w postaci pożywki Brennta Plus. Założono bowiem, że skoro zewnętrznego węgla organicznego będzie wielokrotnie więcej to reakcja denitryfikacji będzie zależała wyłącznie od drugiego z substratów – azotanów V.

Przeprowadzono łącznie 13 serii pomiarowych w okresie 5 dni. Wyniki tych badań podano w załączniku 10.2 w tabeli 10.1.

W każdej serii pomiarowej usuwały się azotany V, ale również następowało nieznaczne zmniejszanie się stężenia zewnętrznego węgla organicznego. Wartość stężenia biomasy w miarę dodawania do reaktora MBBR nowych dawek substratów regularnie wzrastała od 0,94 do 2,20 g s.m./dm³.

Największe zmiany w stężeniu azotanów V następowały w czasie pierwszej godziny od startu reakcji. Uzyskane punkty (t_{ni}, C_{ni,N}) układały się w taki sposób, że możliwe było przeprowadzenie przez nie linii prostej. Metodą regresji liniowej zostały wyznaczone współczynniki równania prostej, gdzie współczynnik przed "x" (współczynnik kierunkowy prostej) odpowiadał szybkości denitryfikacji w danej serii pomiarowej.

Na wykresach 6.1; 6.2; 6.3 przedstawiono trzy przykładowe serie pomiarowe. Zrezygnowano z pokazania wszystkich serii pomiarowych, gdyż uznano, że bardziej przejrzyste będzie łączne zestawienie współczynników kierunkowych z odpowiadającymi im szybkościami denitryfikacji w tabeli 6.1.

Rys. 6.1. Zmiany stężeń azotanów V przy stężeniu początkowym wynoszącym 28,3 mgNO₃/dm³

Rys. 6.2. Zmiany stężeń azotanów V przy stężeniu początkowym wynoszącym 80,0 mgNO_3/dm³

Rys. 6.3. Zmiany stężeń azotanów V przy stężeniu początkowym wynoszącym 349,1 mgNO₃/dm³

Zauważono, że niskie stężenia azotanów V (poniżej 4,5 mgNO₃⁻-N/dm³) hamowały szybkość denitryfikacji. Z tego powodu w wyznaczeniu współczynników kierunkowych nie brano pod uwagę stężeń z zakresu, w którym nie spadało stężenie azotanów V (w którym punkty (t_{ni} ; C_{Nni}) układały się poziomo względem siebie).

Dla wszystkich 13 serii pomiarowych zostały wyznaczone współczynniki kierunkowe. Zostały one podzielone przez stężenie biomasy uczestniczącej w procesie, przez co zostały określone szybkości denitryfikacji w danej próbie. Szybkości denitryfikacji zostały zebrane razem z odpowiadającymi im stężeniami początkowymi azotanów V w tabeli 6.1. Zostały podane również niepewności pomiarowe towarzyszące wyznaczanym wartościom. Wszystkie błędy pomiarowe, które popełniano w tym doświadczeniu zostały podane w załączniku nr 10.2 w tabeli 10.2.

Nr serii pomiarowej	Stężenie biomasy [gs.m./dm³]	Stężenie po- czątkowe azo- tanów V (C ₀) [mgNO ₃ ⁻ - N/dm ³]	Błąd po- miaru (ΔC₀)	tgα	Szybkość denitryfikacji (r _{su}) [gNO₃ ⁻ - N/g s.m.∙d]	Błąd pomiaru (Δr _{su})
1	0,940	16,10	1,61	14,90	0,38	0,12
2	0,940	7,70	0,77	9,80	0,25	0,03
3	0,940	3,60	0,36	5,00	0,13	0,05
4	0,940	84,60	8,46	27,00	0,69	0,14
5	1,580	26,50	2,65	39,80	0,60	0,16
6	1,580	28,30	2,83	23,40	0,36	0,05
7	1,580	42,30	4,23	33,10	0,50	0,06
8	1,960	138,50	13,85	63,00	0,77	0,17
9	1,960	97,10	9,71	58,20	0,71	0,07
10	1,960	80,00	8,00	53,60	0,66	0,06
11	2,080	209,70	20,97	74,30	0,86	0,10
12	2,200	430,80	43,08	79,00	0,86	0,10
13	2,200	349,10	34,91	83,60	0,91	0,11

Tabela 6.1. Szybkości reakcji denitryfikacji uzyskane w przeprowadzonych seriach pomiarowych w doświadczeniu z nadmiarem zewnętrznego źródła węgla organicznego

Na rys. 6.4 graficznie przedstawiono zależność szybkości denitryfikacji od stężenia początkowego azotanów V. Była to funkcja, którą można opisać równaniem Monoda po określeniu wszystkich stałych w nim występujących. Było to możliwe dopiero po przeprowadzeniu linearyzacji tej funkcji, co zostało przedstawione w rozdziale 6.3. Dla wartości od 0 do 200 mgNO₃⁻-N/dm³ szybkość denitryfikacji wzrastała razem ze zwiększającym się stężeniem azotanów V. Po przekroczeniu 200 gNO₃⁻-N/m³ szybkość reakcji stawała się niezależna od stężenia substratu - azotanów V i osiągała pewną wartość maksymalną. Ta wartość to stała, tzw. maksymalna szybkość denitryfikacji. Dążyła ona do maksimum, którym w przybliżeniu jest 0,9 gNO₃⁻-N/g s.m.·d.

Na podstawie rys. 6.4 można stwierdzić, że ograniczenie szybkości reakcji zachodzi poniżej 200 gNO₃⁻-N/m³. Wg autorów (Metcalf & Eddy, 1991; Henze i in., 2002) wartość stałej substratowej dla azotanów V – K_{S,N} (stężenie azotanów V, przy którym osiągana jest połowa szybkości reakcji) jest bardzo mała. Można powiedzieć, analizując rys 6.4, że stała ta przyjmowała w przybliżeniu wartość 20 gNO₃⁻-N/m³. Dlatego jest bardzo prawdopodobne, że w przeprowadzonym doświadczeniu szybkość reakcji zależała od dwóch substratów zarówno od azotanów V jak i zewnętrznego źródła węgla organicznego. Z tego powodu przeprowadzono kolejne badania związane z określeniem szybkości denitryfikacji uwarunkowanej stężeniem zewnętrznego węgla organicznego.

Rys.6.4. Zależność szybkości denitryfikacji od stężenia azotanów V

6.1.2 Doświadczenie z nadmiarem azotanów V

Druga część doświadczeń w laboratorium polegała na wykonaniu tych samych serii pomiarowych z tą różnicą, że do reaktora MBBR dodawano w nadmiarze azotany V a zewnętrzny węgiel organiczny występował w deficycie. W tym doświadczeniu również przyjęto założenie, że szybkość denitryfikacji będzie zależała od substratu, którego w układzie jest mniej.

Przeprowadzono w sumie 8 serii pomiarowych w 3 dni. Wyniki tych badań podano w załączniku nr 10.2 w tabeli 10.3.

W czasie badań w laboratoryjnym reaktorze MBBR znajdowało się mniej biomasy w porównaniu z poprzednim doświadczeniem. Zmiany w stężeniu biomasy przebiegały w zakresie od 0,11 do 0,16 g s.m./dm³. Z powodu niskiego stężenia biomasy zmiany w stężeniu azotanów V przebiegały bardzo wolno. Natomiast dość intensywnie usuwał się węgiel organiczny pochodzący z pożywki Brennta Plus. Oznacza to, że zastosowane źródło węgla było z łatwością konsumowane nawet przez niedużą liczbę mikroorganizmów.

Na rys. 6.5; 6.6 i 6.7 przedstawiono trzy przykładowe serie pomiarowe ze zmianami w stężeniach azotanów V i stężeniach zewnętrzego węgla organicznego. Tu również wykorzystano metodę regresji liniowej do obliczenia współczynników prostej przechodzącej przez punkty (t_{ni}, C_{ni,ChZT}), które były proporcjonalne do szybkości denitryfikacji w danej serii pomiarowej. Na osi pomocnieczej (po prawej stronie) każdego z wykresów pokazano stężenie zewnętrzenego źródła węgla oganicznego wyrażonego w ChZT. Można zauważyć, że zewnętrzny węgiel organiczny już po 0,25 h (15 min) ulegał znacznemu usunięciu. W przeprowadzonych próbach istotne było tylko jego stężenie początkowe, gdyż względem tej wartości był analizowany związek z szybkością denitryfikacji.

Rys. 6.5. Zmiany stężenia azotanów V przy stężeniu zewnętrznego węgla organicznego wyrażonego w ChZT wynoszącym 169 mg O_2/dm^3

Rys. 6.6. Zmiany stężenia azotanów V przy stężeniu zewnętrznego węgla organicznego wyrażonego w ChZT wynoszącym 249 mg O_2/dm^3

Rys. 6.7. Zmiany stężenia azotanów V przy stężeniu zewnętrznego węgla organicznego wyrażonego w ChZT wynoszacym $824 \text{ mgO}_2/\text{dm}^3$.

Stężenia początkowe dla zewnętrznego źródła węgla organicznego zostały określone jako całkowity ChZT występujący w reaktorze MBBR podczas startu reakcji. Wartość ChZT stanowiła sumę stężeń części łatwo rozkładalnej i trudno rozkładalnej. Różnice między stężeniem ChZT łatwo rozkładalnym i trudno rozkładalnym podano w tabeli 6.2. ChZT łatwo rozkładalny stanowił łatwo dostępne źródło pokarmu dla bakterii. Dlatego, analizę szybkości denitryfikacji przeprowadzono w odniesieniu do ChZT łatwo rozkładalnego.

Tabela 6.2. Początkowe stężenia ChZT zmierzone w poszczególnych seriach pomiarowych oraz stężenia ChZT łatwo rozkładalnego i trudno rozkładalnego

Nr serii pomiarowej	Stężenie początkowe (całkowite) ChZT [mgO ₂ /dm ³]	Stężenie trudno roz- kładalnej frakcji ChZT [mgO ₂ /dm ³]	Stężenie łatwo roz- kładalnej frakcji ChZT [mgO ₂ /dm ³]	
1	169	141	28	
2	138	124	14	
3	170	111	59	
4	4 249		127	
5 488		119	369	
6 283		192	91	
7 712		175	537	
8	824	234	590	

Wartości współczynników kierunkowych wszystkich serii pomiarowych (współczynniki przed "x") oraz błędy pomiarowe wynikające z ich określenia zostały zebrane tabeli 6.3. Wszystkie niepewności pomiarowe związane z przeprowadzonym dośwadczeniem podano w tabeli 10.4 w załączniku nr 10.2.

Nr serii pomiarowej	Stężenie biomasy [g s.m./dm ³]	Stężenie po- czątkowe ChZT łatwo rozkładal- nego (C ₀) [mgO ₂ /dm ³]	Błąd pomiaru (ΔC₀)	tgα	Szybkość deni- tryfikacji (r _{su}) [gNO ₃ ⁻ -N/s.m. d]	Błąd pomiaru (Δr _{su})
1	0,110	28,00	2,80	2,00	0,44	0,28
2	0,130	14,00	1,40	2,00	0,37	0,23
3	0,130	59,00	5,90	3,00	0,55	0,15
4	0,130	127,00	12,70	4,00	0,74	0,28
5	0,130	369,00	36,90	4,00	0,74	0,28
6	0,160	91,00	9,10	5,00	0,75	0,14
7	0,160	537,00	53,70	5,00	0,75	0,14
8	0,160	590,00	59,00	5,00	0,75	0,14

Tabela 6.3. Szybkości reakcji denitryfikacji uzyskane w przeprowadzonych seriach pomiarowych (zależne od łatwo rozkładalnej frakcji ChZT)

Na rys. 6.8. przedstawiono zależność szybkości denitryfikacji od stężenia początkowego łatwo rozkładalnej frakcji zewnętrznego węgla organicznego. W zakresie od 0 do 100 mgO₂/dm³ szybkość denitryfikacji wzrastała razem ze zwiększającym się stężeniem łatwo rozkładalnego substratu. Po przekroczeniu wartości 100 mgO₂/dm³ szybkość reakcji stawała się niezależna od stężenia substratu limitującego i dążyła do wartości maksymalnej równej 0,8 gNO₃⁻-N/g s.m.·d. Tą wartość nazywa się maksymalną szybkością denitryfikacji i jest ona jedną ze stałych występujących w równaniu Monoda.

Drugą szukaną stałą w równaniu Monoda była stała substratowa (stała Monoda) określająca dla jakiego stężenia węgla organicznego uzyskiwana jest połowa szybkości reakcji. Z rys. 6.8 można w przybliżeniu określić, że wartość ta była bliska 15 gO₂/m³. Dokładne określenie stałych i znalezienie równania Monoda dla prezentowanej zależności było możliwe dopiero po przeprowadzeniu linearyzacji. Zostało to wykonane w rozdziale 6.3.

Rys.6.8. Zależność szybkości denitryfikacji od stężenia łatwo rozkładalnego zewnętrznego węgla organicznego wyrażonego w ChZT

6.2 Badania reaktora MBBR w skali technicznej

6.2.1 Liczba kształtek w 1m³ wypełnienia Evu Perl

Po przeprowadzeniu ważenia 90 losowo wybranych kształtek stwierdzono, że kształtki stanowiące złoże ruchome EvU Perl różniły się między sobą masą i wymiarami. Masy analizowanego zbioru kształtek zmieniały się w przedziale od 0,159 g do 0,227 g. W porównaniu ze średnią masą kształtki wynoszącą 0,1974 \pm 0,0004 różnice w masie pojedynczych kształtek przekraczały 15% wartości średniej. Masy analizowanych kształtek zostały podane w tabeli 6.4. Podano również odchylenie standardowe i błąd pomiarowy.

Nr kształtki	masa [g]	Nr kształtki	masa [g]	Nr kształtki	masa [g]	
1	0,193	31	0,204	61	0,211	
2	0,192	32	0,216	62	0,207	
3	0,163	33	0,217	63	0,166	
4	0,19	34	0,2	64	0,216	
5	0,208	35	0,22	65	0,175	
6	0,203	36	0,196	66	0,161	
7	0,205	37	0,192	67	0,214	
8	0,173	38	0,191	68	0,202	
9	0,212	39	0,209	69	0,204	
10	0,193	40	0,176	70	0,172	
11	0,175	41	0,193	71	0,204	
12	0,203	42	0,194	72	0,163	
13	0,172	43	0,173	73	0,222	
14	0,176	44	0,204	74	0,217	
15	0,217	45	0,176	75	0,163	
16	0,188	46	0,206	76	0,195	
17	0,215	47	0,192	77	0,18	
18	0,2	48	0,227	78	0,206	
19	0,191	49	0,219	79	0,162	
20	0,216	50	0,212	80	0,214	
21	0,173	51	0,213	81	0,177	
22	0,199	52	0,215	82	0,198	
23	0,212	53	0,164	83	0,206	
24	0,19	54	0,194	84	0,213	
25	0,214	55	0,209	85	0,197	
26	0,207	56	0,21	86	0,213	
27	0,196	57	0,226	87	0,2	
28	0,159	58	0,221	88	0,223	
29	0,201	59	0,164	89	0,223	
30	0,216	60	0,165	90	0,213	
Srednia aryti	0,1974					
Odchylenie s	standardow	e:			0,0019	
Błąd pomiarowy:					0,0004	

Tabela 6.4: Masy 90 losowo wybranych kształtek użytych do określenia średniej masy kształtki EvU Perl

Ze względu na dużą liczbę przeanalizowanych kształtek średnia masa kształtki oraz niepewność pomiaru z nią związana została wyznaczona dość dokładnie (do jednej dziesięciotysięcznej).

Kolejny krok obliczeń miał na celu określenie liczby kształtek w jednym m^3 . Korzystając z wartości ciężaru nasypowego złoża ruchomego EvU Perl (250 kg/m³) podanego przez producenta (EvU Kielce Sp. z o.o.) obliczono liczbę kształtek w jednym m^3 wg wzoru 5.2:

$$n_m = \frac{250000g}{0,1974g \pm 0,0004g} = 1266464 \pm 2562$$

W jednym m³ złoża ruchomego znajdowało się 1266464 \pm 2562 sztuk kształtek. Określenie tej liczby było niezbędne do wykonania obliczeń stężenia biomasy osiadłej w 1 m³ złoża ruchomego EvU Perl.

6.2.2 Konsumpcja substratów w procesie denitryfikacji

W 6 seriach pomiarowych przeprowadzonych w reaktorze MBBR na terenie oczyszczalni określono na podstawie różnicy w stężeniach początkowych i końcowych ilości konsumowanych przez bakterie substratów. Wyniki badań podano w tabeli 10.5 w załączniku 10.2.

Zaobserwowano, że w ciągu trwania denitryfikacji stosunek ubytków obu substratów: azotanów V (ΔC_{NO3} -_N) i zewnętrznego węgla organicznego (ΔC_{ChZT}) był stały. Bakterie, które przeprowadzały proces usuwały proporcjonalną ilość azotanów V do dostępnego węgla organicznego.

Stosunek ΔC_{ChZT} do ΔC_{NO3} -N nazwano współczynnikiem konsumpcji q i obliczono ze wzoru (5.3):

$$q = \frac{\Delta C_{ChZT}}{\Delta C_{NO3-N}} = 4,67 \pm 0,21 \text{ gChZT/gN}$$

Podany współczynnik jest wartością odpowiadającą współczynnikowi kierunkowemu prostej łączącej punkty (ΔC_{NO3} -N; ΔC_{ChZT}) występującej w zależności pomiędzy oba substratami. W zależności tej stężenie ChZT przypadające na 1 g N_{us.} jest wartością szukaną, dlatego występuje na osi OY, zaś na osi OX podano stężenie azotanów V. Konsumpcja obu substratów została przedstawiona na rys. 6.9.

Rys. 6.9. Zależność konsumpcji ChZT od konsumpcji NO₃⁻-N w procesie denitryfikacji w reaktorze MBBR w oczyszczalni w Gronowie Górnym

Zależność została określona z wysokim współczynnikiem determinacji ($R^2 = 0.9$). Dzięki niej można wyciągnąć wniosek, że na usunięcie 1 gN wymagane jest dostarczenie 4,67 g materii organicznej wyrażonej w ChZT.

6.2.3 Wpływ dawki preparatu Brennta Plus na szybkość denitryfikacji

Doświadczenie miało na celu określenie w jaki sposób zwiększenie dawki zewnętrznego węgla organicznego w postaci preparatu Brennta Plus wpłynie na szybkość usuwania azotanów V. Na początku każdej serii pomiarowej występowała biomasa niezaadoptowana do procesu denitryfikacji. Było tak, ponieważ do reaktora MBBR dopuszczano ścieki ze złóż zraszanych wprost po nitryfikacji. Ścieki te były natlenione i zawierały mikroorganizmy charakterystyczne dla złóż nitryfikacyjnych. Bakterie denitryfikacyjne musiały się dopiero namnożyć lub zaadoptować, co oznacza, że w momencie startu reakcji stężenie biomasy zdolnej do przeprowadzenia procesu było bliskie zeru (X \approx 0).

Przy braku dozowania preparatu Brennta Plus azotany V usuwały się w ściekach bardzo wolno. Najpierw ścieki musiały się odtlenić. Dopiero po tym procesie źródłem tlenu dla mikroorganizmów stawały się azotany V. Dodatek małej dawki 0,5 dm³ pożywki Brennta Plus powodował, że azotany V usuwały się szybciej. Zwiększanie dawki do 1 dm³ i do 3 dm³ bardziej przyspieszało proces denitryfikacji. Zmiany szybkości usuwania azotanów V w zależności od dawki zewnętrznego węgla organicznego przedstawiono na rys. 6.10. Pomiary stężeń azotanów V wykonane dla tego doświadczenia zostały podane w tabelach 10.6 – 10.9 w załączniku 10.2.

Rys. 6.10: Zmiany szybkości usuwania azotanów V w zależności od podanej dawki preparatu Brennta Plus

Można powiedzieć, ze preparat Brennta Plus spełniał swoją rolę i stanowił dobre źródło węgla organicznego dla mikroorganizmów denitryfikacyjnych. Przyspieszał zapoczątkowanie procesu denitryfikacji i powodował szybszy rozwój właściwych bakterii. Można również przypuszczać, że preparat nie posiadał w swoim składzie związków zawierających tlen, gdyż powodował szybkie odtlenienie ścieków.

6.2.4 Stężenie biomasy w reaktorze MBBR

Znajomość stężenia biomasy uczestniczącej w denitryfikacji jest niezbędna do obliczenia szybkości tego procesu. Wynika to z jednostki w jakiej wyrażana jest szybkość denitryfikacji (gNO₃⁻-N/gs.m.·d). Zatem, aby prowadzić badania nad szybkością usuwania azotanów V w reaktorze MBBR trzeba było określić stężenie biomasy zarówno tej zawieszonej w ściekach jak i tej osiadłej na kształtkach złoża ruchomego EvU Perl.

Stężenie biomasy zawieszonej w ściekach podczas trwania badań wzrastało systematycznie od 0 do 2156 g s.m./m³. Szybkość przyrostu biomasy po 2 dniu zaczęła znacząco maleć, a między siódmym i ósmym dniem była bliska zeru. Biomasa mikroorganizmów zawieszonych w ściekach była w końcowych seriach 13 razy większa od biomasy osiadłej na kształtkach EvU Perl. Wzrost obu typów biomasy został przedstawiony na rys. 6.10.

Stężenie biomasy osiadłej na kształtkach utrzymywało się na jednakowym niskim poziomie. Jego średnia wartość wynosiła 170 ± 20 g s.m./m³. Wartość tą określono na postawie wzoru 5.5 znając masę biomasy, która zasiedliła 10 kształtek i liczbę kształtek w jednym m³. Stałe stężenie biomasy na kształtkach EvU Perl było spowodowane abrazją występującą między kształtami. Nowopowstała błona biologiczna została siłami abrazji mechanicznej oderwana od kształtki, dzięki czemu nadmiar biomasy osiadłej przechodził w postać zawieszoną.

Pomiary stężenia obu typów biomasy oraz dotyczące ich błędy pomiarowe zostały podane w załączniku nr 2 w tabeli 10.10.

Rys. 6.10: Zmiany stężenia biomasy osiadłej i biomasy swobodnej na kształtkach EvU Perl w reaktorze MBBR w okresie ośmiu dni

Skoro wiadomo, że w 1 m³ znajdowało się 0,17 \pm 0,02 kg s.m. biomasy i 1 m³ złoża ruchomego EvU Perl posiadał powierzchnię właściwą 800 m²/m³, można było obliczyć ile g biomasy znajdowało się na 1 m² złoża. Ilość mikroorganizmów zasiedlających złoże EvU Perl wynosiła 0,21 \pm 0,03 g s.m./m². Wartość ta umożliwiła przeliczenie szybkości denitryfikacji w gNO₃⁻-N/g s.m.·d na jednostkę gNO₃⁻-N/m²·d, którą posługuje się wielu autorów.

W reaktorze MBBR występowały dwa typy biomasy, dlatego do obliczenia szybkości denitryfikacji należy zsumować obydwa stężenia mikroorganizmów.

6.2.5 Zmiany stężenia azotanów V, ChZT i potencjału utleniająco - redukującego w reaktorze MBBR obsługiwanym ręcznie

Reaktor MBBR w Gronowie Górnym obsługiwano ręcznie zgodnie ze metodyką zastosowaną w laboratorium. Od momentu uruchomienia urządzenia, do zakończenia eksperymentu szybkość usuwania azotanów V i węgla organicznego oraz masa biomasy stopniowo wzrastały. Największe zmiany w stężeniu azotanów V i w stężeniu pożywki zachodziły w ciągu pierwszych 15 min (0,25 h) od startu reakcji.

Wykonane serie pomiarowe zostały przedstawione na rys. 6.11 – 6.18. Na głównej osi OY zaznaczono stężenie azotanów V a na osi pomocniczej stężenie zewnętrznego węgla organicznego.

Wyniki dotyczące tego doświadczenia zostały zgromadzone w tabelach (10.11 i 10.12) w załączniku 10.2. Zamieszczono tam również wszystkie dane odczytane z sondy pomiarowej azotanów V i potencjału oksydacyjno-redukcyjnego (tabele: 10.16 – 10.32).

Rys. 6.11. Zmiany stężenia azotanów V w reaktorze MBBR przy początkowym stężeniu zewnętrzengo węgla organicznego wynoszacym 150 mgO₂/dm³ ChZT

Rys. 6.12. Zmiany stężenia azotanów V w reaktorze MBBR przy początkowym stężeniu zewnętrzengo węgla organicznego wynoszacym 178 mg O_2 /dm³ ChZT

Rys. 6.13. Zmiany stężenia azotanów V w reaktorze MBBR przy początkowym stężeniu zewnętrzengo węgla organicznego wynoszacym 218 mgO_2/dm³ ChZT

Rys. 6.14. Zmiany stężenia azotanów V w reaktorze MBBR przy początkowym stężeniu zewnętrzengo węgla organicznego wynoszącym 224 mg O_2 /dm³ ChZT

Rys. 6.15. Zmiany stężenia azotanów V w reaktorze MBBR przy początkowym stężeniu zewnętrzengo węgla organicznego wynoszacym 226 mgO₂/dm³ ChZT

Rys. 6.16. Zmiany stężenia azotanów V w reaktorze MBBR przy początkowym stężeniu zewnętrzengo węgla organicznego wynoszącym 256 mg O_2 /dm³ ChZT

Rys. 6.17. Zmiany stężenia azotanów V w reaktorze MBBR przy początkowym stężeniu zewnętrzengo węgla organicznego wynoszacym 243 mgO₂/dm³ ChZT

Rys. 6.18. Zmiany stężenia azotanów V w reaktorze MBBR przy początkowym stężeniu zewnętrzengo węgla organicznego wynoszacym 279 mgO₂/dm³ ChZT

Analizując wyniki otrzymane w skali technicznej oraz mając na uwadze te wykonywane w laboratorium można stwierdzić, że w przeprowadzonym doświadczeniu wpływ na szybkość reakcji (r_{su}) miało tylko stężenie zewnętrznego węgla organicznego nie zaś azotany V. W skali technicznej reaktor zachowywał się tak, jakby dostarczono do niego azotany V w nadmiarze, a łatwo rozkładalny węgiel organiczny ciągle był w deficycie.

Dla przeprowadzonych serii pomiarowych wyznaczono szybkość denitryfikacji (r_{su}) metodą regresji liniowej i związane z nią błędy pomiarowe. Wartości podano w tabelach 10.13 i 10.14 umieszczonych w załączniku 10. 2.

Szybkość reakcji w reaktorze MBBR wzrastała od 0 do 0,67 gNO₃⁻-N/g s.m.·d. Zakres początkowych stężeń ChZT był niewielki od 150 do 279 gO₂/m³. Powodem tego było dodawanie w kolejnych seriach pomiarowych tej samej dawki preparatu Brennta Plus (1 dm³). Mimo to stężenie ChZT w reaktorze MBBR regularnie wzrastało. Świadczy to o nagromadzaniu się pewnej frakcji ChZT, która nie rozkładała się biologicznie.

Uzyskane szybkości denitryfkacji zostały przedstawione na rys 6.19. Można zauważyć jak szybkości denitryfikacji wzrastały pomino niedużych zmian w stężeniu ChZT. Oznacza to, że biomasa stopniowo adopowała się do warunków procesu.

Rys. 6.19 Zależność szybkości denitryfikacji od stężenia początkowego zewnętrznego węgla organicznego wyrażonego w ChZT dla reaktora MBBR w Gronowie Górnym

Zwiększające się stężenia ChZT były wynikiem nagromadzania w reaktorze pewnej części frakcji trudno rozkładalnej. Reaktor w miarę wykonywania kolejnych serii pomiarowych zwiększał swoje zapotrzebowanie na tlen, na co wskazuje rozkład wartości potencjału utleniająco-redukującego przedstawiony na rysunku 6.20. Pomiary w dwóch ostatnich seriach (dzień 7 i 8) zostały wykonywane w krótszych odstępach czasowych, stąd wyniki przedstawiają zmiany w potencjale tylko w okresie 15 min. od startu denitryfikacji.

Rys. 6.20: Zmiany potencjału utleniająco-redukującego w reaktorze MBBR obsługiwanym ręcznie w okresie 8 dni.

6.2.6 Zmiany stężenia azotanów V i potencjału utleniająco - redukującego w reaktorze MBBR pracującym w trybie automatycznym

Zgodnie z założonym planem badań, po uzyskaniu wysokiej sprawności ręcznie obsługiwany reaktor ze złożem ruchomym został przełączony w tryb automatyczny. Sekwencje (cykle pracy) następowały po sobie samoczynnie. Harmonogram działania reaktora MBBR przedstawiono we wcześniejszej części pracy, w rozdziale 5.2. W działaniu reaktora można wyróżnić trzy fazy:

- napełnianie, czas trwania: 10-12 min (zależny od natężenia dopływu ścieków),
- mieszanie (denitryfikacja), czas trwania: 8 min,
- recyrkulacja ścieków, czas trwania: 2 min.

Na rys. 6.21 przedstawiono zmiany stężenia azotanów V i wartości potencjału utleniająco-redukującego. W chwilach, gdy następowało automatyczne doprowadzenie ścieków do reaktora następował wzrost wartości potencjału z -170 mV do -100 mV, a następnie wartości te ulegały obniżeniu. Zebrane wyniki (potencjałów i azotanów V) zostały podane w tabeli 10.33 w załączniku 10.2.

Stężenie azotanów V rosło zawsze wtedy, gdy reaktor przechodził w fazę napełniania i ulegało obniżeniu, gdy zaczynała się denitryfikacja (faza mieszania). Stężenie azotu zmieniało się zakresie 32,0 - 3,0 gNO₃⁻-N/m³. Cykl zaczynał się od momentu dostarczenia azotanów do reaktora i trwał około 18 minut. Ten okres można nazwać czasem jednej sekwencji. Przykładowych pięć sekwencji pracy reaktora przedstawiono na rysunku 6.22.

Rys. 6.21: Zmiany stężeń azotanów V i wartości potencjału utleniająco-redukującego w reaktorze MBBR pracującym w trybie automatycznym

W celu analizy, przez punkty z zakresu trwania denitryfikacji w każdym cyklu, zostały poprowadzone proste i ponumerowane liczbami 1-5 (rys. 6.22). Wykonano w taki sposób 15 pełnych cyklów i wyznaczono dla nich szybkości denitryfikacji. Dane zostały umieszone w tabeli (10.15) w załączniku 10. 2.

Rys. 6.22: Cykle pracy reaktora MBBR w trybie automatycznym. Numerami od 1 do 5 oznaczono okresy trwania denitryfikacji w kolejnych sekwencjach

W zakresie ChZT od 300 do 700 mgO₂/dm³ szybkości denitryfikacji praktycznie się nie zmieniały. Pokazano to na rys. 6.23. Świadczy to o tym, że reaktor uzyskał już

maksymalną szybkość denitryfikacji, wynoszącą średnio 0,73 gNO₃⁻-N/g s.m.·d a w przeliczeniu na powierzchnię złoża 3,43 gNO₃⁻-N/m²·d.

Na rys 6.23 można również zaobserwować, że uzyskiwane w automatycznym reaktorze MBBR szybkości denitryfikacji leżą w bliskości uzyskanej w badaniach laboratoryjnych, funkcji Monoda.

Rys. 6.23: Porównanie szybkości denitryfikacji uzyskanych w automatycznym MBBR z funkcją Monoda

6.3 Wyznaczenie stałych w procesie denitryfikacji

W badaniach laboratoryjnych reaktora MBBR uzyskano dwie zależności: szybkości denitryfikacji (r_{su}) od początkowego stężenia azotanów V ($C_{0(N)}$) i szybkości denitryfikacji (r_{su}) od początkowego stężenia zewnętrznego węgla organicznego ($C_{0(ChZT)}$). W obydwu przypadkach uzyskane zależności poddano linearyzacji według metody Hofstee-Eadie'go, gdyż, jak to podano w tabeli 5.1, jest to metoda obarczona najmniejszym błędem związanym z przekształceniem do liniowej postaci.

W doświadczeniu z nadmiarem węgla organicznego zależność r_{su} od C_{0(N)} była funkcją opisaną równaniem Monoda. Stałe występujące w równaniu: V_{max} – maksymalna szybkość denitryfikacji i K_{S,N} – stała Monoda dla azotanów V znaleziono wyznaczając współczynniki regresji liniowej w jego zlinearyzowanej formie:

$$r_{su} = -K_{S,N} \cdot \frac{r_{su}}{C_0} + V_{\max}$$

Na rys 6.24 przedstawiono w jaki sposób po przekształceniu układają się punkty ($r_{su}/C_{0(N)}$; r_{su}). Przez punkty udało się przeprowadzić linię prostą ze zgodnością równą 0,81. Dla prostej tej wyznaczono współczynniki regresji liniowej a i b, których wartości odpowiadają stałym K_{S,N} i V_{max}. Wynoszą one: $a = -K_{S,N} = -19,87 \pm 1,96$ gNO₃⁻-N/m³ oraz $b = V_{max} = 0,86 \pm 0,03$ gN/g s.m.·d

Rys. 6.24. Wyznaczenie stałych V_{max} i $K_{S,N}$ metodą linearyzacji Hofstee-Eadie'ego w doświadczeniu z nadmiarem zewnętrznego węgla organicznego.

Wyznaczone wartości stałych pozwoliły na sformułowanie równania Monoda dla badań laboratoryjnych z nadmiarem zewnętrznego węgla organicznego:

$$r_{su} = V_{\max} \cdot \frac{C_N}{K_{S,N} + C_N} = 0,86(\pm 0,03) \cdot \frac{C_N}{19,87(\pm 1,96) + C_N}$$

gdzie:

V_{max} – maksymalna szybkość denitryfikacji [gN/g s.m.·d]

 $K_{S,N}$ – stała Monoda dla azotanów V [gNO₃⁻-N/m³]

Zależność szybkości denitryfikacji od początkowego stężenia azotanów V opisaną powyższym równaniem przedstawiono razem z punktami ($C_{0(N)}$, r_{su}) na rys. 6.25.

Rys. 6.25. Zależność szybkości denitryfikacji od początkowego stężenia azotanów V dla stałych $V_{max} = 0.86 \text{ gN/g s.m.} \cdot d \text{ i } K_{S,N} = 19.87 \text{ gNO}_3^{-} \cdot N/m^3$

Wysoka wartość stałej Monoda dla azotanów $K_{S,N} = 19,87 \text{ gNO}_3^-\text{-N/m}^3$ budzi wątpliwości, gdyż według innych autorów (Henze i in. 2002) stała ta powinna wynosić od 0,16 do 0,4 gNO_3^-N/m^3. Istnieje zatem podejrzenie, że w przeprowadzonym doświadczeniu azotany V nie determinują w pełni szybkości reakcji, lecz wspólnie z zewnętrznym węglem organicznym.

Podobny sposób wyznaczenia stałych w równaniu Monoda przyjęto w drugiej części badań laboratoryjnych reaktora MBBR – w doświadczeniu z nadmiarem azotanów V. Metodę linearyzacji Hofstee-Eadie'go przedstawia rys. 6.26, na którym umiesz-czono punkty ($r_{su}/C_{0(ChZT)}$; r_{su}). Poprowadzono przez nie prostą, której przebieg opisuje równanie:

$$r_{su} = -K_{S,ChZT} \cdot \frac{r_{su}}{C_0} + V_{max}$$

Ze zgodnością 0,84 wyznaczono współczynniki a i b odpowiadające stałym V_{max} i K_{S,ChZT}. Wynoszą one: $a = -K_{S,ChZT} = -16,97 \pm 6,97 \text{ gO}_2/\text{m}^3, b = V_{\text{max}} = 0,78 \pm 0,10$ gN/g s.m.·d

Rys. 6.26. Wyznaczenie stałych V_{max} i $K_{s,ChZT}$ metodą linearyzacji Hofstee-Eddie'ego w doświadczeniu z nadmiarem azotanów V

Po określeniu stałych równanie Monoda dla doświadczenia laboratoryjnego z nadmiarem azotanów V, gdzie szybkość zależy od zewnętrznego węgla organicznego, przyjmuje postać:

$$r_{su} = V_{\max} \cdot \frac{C_{ChZT}}{K_{ChZT} + C_{ChZT}} = 0,78(\pm 0,10) \cdot \frac{C_{ChZT}}{16,97(\pm 6,97) + C_{ChZT}}$$

gdzie:

 $\label{eq:Vmax} V_{max} - maksymalna szybkość denitryfikacji [gN/g s.m.\cdot d] \\ K_{S,ChZT} - stała Monoda dla zewnętrznego węgla organicznego wyrażonego w ChZT [gO_2/m^3]$

Wg powyższego równania wykreślono zależność szybkości denitryfikacji od początkowego stężenia zewnętrznego węgla organicznego i porównano z otrzymanymi punktami na rys. 6.27.

Rys. 6.27. Zależność szybkości denitryfikacji od początkowego stężenia zewnętrznego węgla organicznego dla stałych V_{max} = 0,78 gN/g s.m. \cdot d i K_{s,chzt} = 16,97 gO₂/m³

Wyznaczone stałe dla substratów limitujących proces denitryfikacji różną się od siebie. Różnica w wartościach maksymalnej szybkości denitryfikacji (V_{max}) w doświadczeniach z nadmiarem azotanów V i z nadmiarem zewnętrznego węgla organicznego wynosi 0,08 gN/g s.m.·d. V_{max} jest stałą (informującą o największej możliwej szybkości reakcji) zatem wyznaczone w obu doświadczeniach wartości powinny być takie same.

Stała K_{S,ChZT} wynosi 16,97 gO₂/m³ i odnosi się do stężenia, w którym osiągana jest połowa maksymalnej szybkości denitryfikacji. W badaniach laboratoryjnych z nadmiarem zewnętrznego węgla organicznego wyznaczona wartość K_{S,N} (równa 19,87 gNO₃⁻-N/m³) jest sumą wartości obu szukanych stałych substratowych (K_{S,N} i K_{S,ChZT}). Uzyskanie właściwej wartości stałej Monoda dla azotanów V (która wg Aesoy i Odegaard'a (1994), Lopez'a i in. (2000) oraz Bishop'a i in. (1995) mieści się w zakresie 0,2-1,4 gNO₃⁻-N/m³) wymaga przeprowadzenia dodatkowego działania. Sumaryczną wartość obu stałych (K_{S,N} i K_{S,ChZT}) należy pomniejszyć o stałą Monoda dla zewnętrznego węgla organicznego wg następującego równania:

$$K_{S,N} = K_{S,N,ChZT} - K_{S,ChZT}$$
$$K_{S,N} = 19,87(\pm 1,96) - 16,97(\pm 6,97) = 2,90(\pm 8,93) \text{ [gNO}_3^{-}-\text{N/m}^3\text{]}$$

Wyznaczona stała Monoda dla azotanów V wynosi 2,90 gNO₃⁻-N/m³ i wskazuje, że nawet bardzo niskie stężenia azotanów V w reaktorze MBBR nie ograniczają szybkość reakcji. Oznacza to, że stała ta ma mniejsze znaczenie w przebiegu procesu denitryfikacji w złożu ruchomym. Współczynnik przyrostu biomasy Y wyznaczono dla reaktora MBBR pracującego w trybie automatycznym. Wszystkie stosowane procedury (jak dozowanie węgla organicznego, włączanie i wyłączanie mieszadła, otwieranie elektrozaworu dopływu ścieków itp.) wykonywane były automatycznie. Dlatego każda sekwencja przebiegała podobnie i usuwane było podobne stężenie azotanów V i zewnętrznego węgla organicznego. Dla każdej takiej sekwencji został wyznaczony współczynnik przyrostu biomasy Y. Jednak otrzymywane wartości różniły się od siebie w znacznym stopniu. Dane te zostały podane w tabeli 5.18. Różnice wynikały z błędów oznaczeń biomasy jak i stężenia ChZT. Wobec tego, aby znaleźć prawdziwą wartość współczynnika Y określono średnią z uzyskanych wyników. Średnia wartość oraz niepewność pomiarowa współczynnika Y wyniosły 0,41 \pm 0,08 gs.m./gO₂.

Nr serii	Stężenie biomasy [mg s.m./dm ³]	Początko- we stężenie całkowitego ChZT [mgO ₂ /dm ³]	Końcowe stężenie całkowitego ChZT [mgO ₂ /dm ³]	Przyrost biomasy ΔX [mg/dm ³]	Usunięty ChZT ΔC [mgO ₂ /dm ³]	Współczynnik przyrostu biomasy Y [gs.m./gO ₂]
1	2781	296	255	15	41	0,37
2	2800	302	265	19	37	0,51
3	2820	286	217	20	69	0,29
4	2845	282	233	25	49	0,51
5	2869	284	222	24	62	0,39
6	2885	571	527	16	44	0,36
7	2909	512	463	24	49	0,49
8	2926	567	521	17	46	0,37
9	2944	497	438	18	59	0,31
10	2964	557	496	20	61	0,33
11	2987	664	614	23	50	0,46
12	3009	702	677	22	25	0,88
13	3026	711	652	17	59	0,29
14	3046	704	632	20	72	0,28
15	3061	683	637	15	46	0,33
Średnia:			20,00	52,00	0,41	
Odchylenie standardowe:			3,35	12,52	0,15	
Błąd pomiarowy:			1,86	6,93	0,08	

Tabela 5.18: Przyrosty biomasy, stężenia usuniętego ChZT oraz współczynniki Y w reaktorze MBBR podczas pracy automatycznej.

Znając wartość współczynnika Y i korzystając z zależności (5.25) można obliczyć specyficzną szybkość wzrostu mikroorganizmów denitryfikacyjnych. Wynosi ona:

$$\mu_{\text{max}} = Y \cdot V_{\text{max}} = 0.41(\pm 0.08) \cdot 0.78(\pm 0.10) = 0.32(\pm 0.11) \text{ [1/d]}$$

Wartość specyficznej szybkości wzrostu mikroorganizmów udziela informacji, z jaką szybkością rozmnażają się mikroorganizmy denitryfikacyjne. W przeprowadzonym eksperymencie specyficzna szybkość wzrostu mikroorganizmów wynosząca $0,32 \pm 0,11 \, 1/d$ oznacza, że pojedyncza komórka bakterii potrzebowała około 3 dni aby się podwoić.

6.4 Ilościowa charakterystyka reaktora MBBR

Na podstawie przeprowadzonych badań odnoszących się do warunków laboratoryjnych oraz rzeczywistych dokonano podsumowania uzyskanych rezultatów charakteryzujących działanie reaktora ze złożem ruchomym (MBBR):

- Charakterystyka ścieków dopływających do oczyszczalni Bioclere w Gronowie Górnym (wartości średnie):
 - $BZT_5 = 186 \text{ mgO}_2/\text{dm}^3$,
 - ChZT = 745 mgO₂/dm³,
 - Azot amonowy = $86 \text{ mgNH}_4\text{-N/dm}^3$,
 - Azotany $V = 0 \text{ mgNO}_3^3 \text{N/dm}^3$.
- Charakterystyka ścieków odpływających z oczyszczalni Bioclere w Gronowie Górnym przed doprowadzeniem do reaktora MBBR (wartości średnie):
 - $BZT_5 = 23 mgO_2/dm^3$,
 - $ChZT = 134 mgO_2/dm^3$,
 - azot amonowy = $23 \text{ mg NH}_4\text{-N/dm}^3$
 - azotany $V = 17 \text{ mgNO}_3^-\text{-N/dm}^3$.
- 3. Stężenie zanieczyszczeń w ściekach odprowadzanych z reaktora MBBR (biomasa niezaadoptowana do procesu):

- $ChZT = 180 mgO_2/dm^3$,
- azot amonowy = $10 \text{ mg NH}_4\text{-N/dm}^3$,
- azotany $V = 40 \text{ mgNO}_3^- \text{-N/dm}^3$.
- 4. Stężenie zanieczyszczeń w ściekach odprowadzanych z reaktora MBBR pracującego w trybie automatycznym (biomasa zaadoptowana do procesu):
 - $ChZT = 290 mgO_2/dm^3$,
 - azot amonowy = $6 \text{ mg NH}_4\text{-N/dm}^3$,
 - azotany $V = 6 \text{ mgNO}_3 \text{N/dm}^3$.
- Skuteczność usuwania związków azotu przez instalację Bioclere[®] bez reaktora MBBR – 53,5%.
- Skuteczność usuwanie związków azotu przez instalację Bioclere[®] współpracującą z reaktorem MBBR – 86,0%.
- 7. Charakterystyka wypełnienia ruchomego EvU Perl:
 - Średnia masa jednej kształtki EvU Perl: $0,1974 \pm 0,002$ g,
 - Liczba kształtek w 1 m³: $1.266.464 \pm 2.562$ szt.
- 8. Charakterystyka biomasy:
 - Stężenie biomasy swobodnej w reaktorze MBBR: 2,8 3,1 kg s.m./m³,
 - Stężenie biomasy osiadłej w 1 m³ złoża ruchomego EvU Perl: $0,17 \pm 0,02$ kg s.m./m³,
 - Stężenie biomasy zasiedlającej powierzchnię 1 m² złoża EvU Perl: 0,21 \pm 0,03 g s.m./m².
- 9. Wyznaczone stałe (proces denitryfikacji):
 - Dawka ChZT potrzebna na usunięcie 1 g azotu azotanowego: 4,67 ± 0,21 g,
 - Maksymalna szybkość denitryfikacji V_{max} : 0,78 ± 0,10 gNO₃⁻-N/g s.m.·d,

- Stała Monoda wspólna dla azotanów V i łatwo rozkładalnego ChZT $K_{S,N,ChZT}$: 19,87 ± 2,89 g/m³,
- Stała Monoda dla łatwo rozkładalnego ChZT K_{S,ChZT}: 16,97 \pm 6,97 $gO_2/m^3,$
- Stała Monoda dla azotanów V $K_{S,N}$: 2,90 ± 8,93 gNO₃⁻-N/m³,
- Współczynnik przyrostu biomasy Y: $0,41 \pm 0,08$ g s.m./gO₂,
- Specyficzna szybkość wzrostu mikroorganizmów $\mu_{max}:$ 0,32 \pm 0,11 1/d,
- Szybkość denitryfikacji w automatycznym reaktorze MBBR r_{su} : 0,73 ± 0,06 gNO₃⁻-N/g s.m.·d tj. 3,43 ± 0,28 gNO₃⁻-N/m²·d.

7. Omówienie wyników badań

Ścieki doprowadzane do oczyszczalni typu Bioclere[®] w Gronowie Górnym w ilości 26 m³/d były ubogie w materię organiczną i charakteryzowały się średnim stężeniem wynoszącym 186 mgO₂/dm³ BZT₅. Oznacza to, że ładunek materii organicznej wynosił 0,27 kgBZT₅/m³·d w przeliczeniu na objętość złoża. Na podstawie tabeli 2.2 odnoszącej się do podziału złóż biologicznych w zależności od ich obciążenia (wg Metcalf'a i Eddy'iego (1991)) określono, że zraszane złoża biologiczne w Gronowie Górnym były złożami średnio obciążonymi. Podobną odpowiedź można uzyskać w wytycznych sformułowanych w ATV A 135P (1989).

Ścieki surowe charakteryzowały się wysokim stężeniem azotu amonowego, którego średnia wartość wynosiła 86 mgNH₄⁺-N/dm³. Stosunek stężeń materii organicznej (wyrażonej w mgO₂/dm³ BZT₅) i azotu amonowego wynosił 2,2. Potwierdziło się więc przypuszczenie, że głównym źródłem ścieków były przede wszystkim sanitariaty. W dopływie do oczyszczalni występował w ściekach niewłaściwy stosunek ChZT do BZT₅ wynoszący 1:4. Wg Heidricha i in. (2008) i Dymaczewskiego i in. (2011) sprawny przebieg oczyszczania ścieków jest zapewniony, gdy stosunek obu wartości jest mniejszy niż 1:2. Na podstawie literatury można stwierdzić, że podane proporcje charakterystycznych zanieczyszczeń zapewniały jedynie intensywny przebieg procesu autotroficznej nitryfikacji. Efektywna denitryfikacja była niemożliwa z powodu wyczerpania jednego z substratów – węgla organicznego. W oczyszczalni w Gronowie Górnym stężenie azotu ogólnego (jako suma azotu amonowego i azotanowego) na odpływie przed procesem denitryfikacji końcowej wynosiło 40 mgN/dm³. W porównaniu do wartości na dopływie do oczyszczalni, usuwanie azotu wynosiło 53,5%. Oczyszczone ścieki charakteryzowały się niskim stężeniem materii organicznej (wyrażonej w BZT₅) wynoszącym średnio 23 mgO₂/dm³. W rezultacie stosunek BZT₅:N wynosił 0,57. W instalacjach, gdzie stosunek BZT₅:N jest < 3 jest potrzebne dawkowanie zewnętrznego źródła węgla organicznego, o czym donoszą Mąkinia i in., (2011); Cyganecka i in., (2008); Heidrich i Stańko, (2007); Henze i in., (2002); Aspergen i in., (1998).

Stężenie biomasy w 1 m³ złoża ruchomego określono korzystając ze średniej masy pojedynczej kształtki wypełnienia EvU Perl, wynoszącej 0,1974 g. Biorąc pod uwagę, podawany przez producenta, ciężar nasypowy 1 m³ złoża, wynoszący 250 kg (Materiały Informacyjne EvU Kielce Sp. z o.o., 2008) wykazano, że w pilotowym reaktorze MBBR w Gronowie Górnym znajdowało się 1.266.464 kształtek/m³.

W badaniach w skali technicznej wykazano, że na usunięcie 1 gN potrzeba 4,67 gO₂ (ChZT). Źródłem zewnętrznego węgla organicznego był preparat Brennta-Plus firmy Brenntag. Badania rozpoczynano zawsze dla znikomych stężeń biomasy (X≈0). Pomimo tego, że początkowa szybkość usuwania obu substratów tj. NO_3^- -N i ChZT była nieznaczna, to ich wzajemny stosunek w konsumpcji był wyraźny. Heidrich i in. (2008); Heidrich i Stańko (2007), Henze i Harremoes (2002); Łomotowski i Szpindor (1999) podają, że wartość ChZT obniża się o 4,7 gO₂ na każdy usunięty 1 gN. Podobne zapotrzebowanie na substrat (4,60 gO₂/gN_{us.}) został podany przez Stykę i Bieńko (2007) oraz Onnis-Hayden i Gu (2008) – 4,8 gO₂/gN_{us}.

Stężenie dodawanego zewnętrznego źródła węgla organicznego miało wpływ na przebieg procesu denitryfikacji w rektorze MBBR. Próby technologiczne z udziałem czterech różnych dawek pożywki Brennta Plus (0 dm³; 0,5 dm³; 1 dm³ i 3 dm³) pokazały, że przy X≈0 szybkość usuwania azotanów V wzrastała razem z ilością dostępnego węgla organicznego. Według Klimiuk i in. (1995), Henze i Harremoes (2002) i Cema i in. (2005), jeśli w reaktorze jeden ze substratów jest limitujący, to wzrost jego stężenia powoduje wzrost szybkości usuwania drugiego substratu (tj. NO₃⁻-N). Ścieki dopływające do reaktora MBBR były bogate w azotany V, dlatego szybkość denitryfikacji była uwarunkowana wyłącznie ilością dodawanego węgla organicznego. Wpływ endogennego źródła węgla został wykluczony, ponieważ doświadczenie rozpoczynano na jałowych kształtkach, bez zaadoptowanej do procesu biomasy swobodnej i osiadłej. Zwiększenie dawki zewnętrznego węgla organicznego zawsze powodowało wzrost szybkości jego usuwania. Oznacza to, że zastosowane źródło węgla organicznego – preparat Brennta Plus zawiera łatwo rozkładalny substrat i jego stężenie w reaktorze warunkuje odpowiednią szybkość denitryfikacji.

W badaniach laboratoryjnych stałych występujących w procesie denitryfikacji w pierwszej kolejności określono stężenie biomasy. Wykonane pomiary pozwoliły stwierdzić, że kształtki wypełnienia ruchomego EvU Perl nie są głównym nośnikiem biomasy. Kształtki były porośnięte bardzo cienką, wręcz znikomą błoną biologiczną. Miedzy kształtkami podczas mieszania występowała silna abrazja, powodująca przejście błony biologicznej w postać biomasy zawieszonej w ściekach. W laboratoryjnym reaktorze typu MBBR biomasy swobodnej było wielokrotnie więcej niż tej osiadłej na kształtkach. Dokumentuje to zdjęcie przedstawione na rys. 7.1. Podobny rozkład biomasy w reaktorach został opisany m. in. przez Aspergena i in. (1998), Anderotollę i in, (2000) i Rustena i in. (2006).

Rys. 7.1: Widok reaktora MBBR (a) i złoża ruchomego – kształtek EvU Perl (b) tuż po zatrzymaniu mieszadła. Biomasy swobodnej po sedymentacji było wielokrotnie więcej niż biomasy przytwierdzonej do kształtek

W badaniach w skali technicznej określono zmiany biomasy swobodnej i tej osiadłej na kształtkach EvU Perl. W ósmym dniu działania reaktora (wówczas urządzenie było obsługiwane ręcznie) stężenie biomasy swobodnej ustabilizowało się na poziomie 2,16 kg s.m./m³. Po pierwszych dwóch dobach wzrost był największy i wynosił 75% wartości końcowej. Stężenie biomasy osiadłej na kształtkach praktycznie się nie zmieniało i wynosiło średnio 0,17 kg s.m./m³. Określono, że udział biomasy swobodnej był 13-krotnie większy niż biomasy osiadłej. Uzyskano w ten sposób potwierdzenie obserwacji z laboratorium. Po przejściu reaktora z trybu ręcznego na pracę w trybie automatycznym stężenie biomasy zmieniało się nieznacznie w zakresie 2,8 – 3,1 kg s.m./m³. Uzyskane stężenie biomasy było porównywalne do klasycznego układu z osadem czynnym (z sedymentacją wstępną) wynoszącą od 1,5 do 3,0 kg s.m./m³ (Dymaczewski i in. 2011). Uzyskane wartości odpowiadają zakresom podanym przez Rustena i in. (1994), którzy wykazali, że stężenie biomasy na złożu Kaldnes[®] jest większe niż dla osadu czynnego i wynosi od 2 do 5 kg s.m./m³. Na podstawie uzyskanych wyników przez Andeottolę i in. (2000) można stwierdzić, że występuje mniejsze nagromadzenie biomasy w złożu, które ma niższą powierzchnię właściwą. Stężenia biomasy otrzymane przez innych autorów zostały zamieszczone w tabeli 7.1.

Autor	Urządzenie do denitryfikacji	Stężenie biomasy [kg s.m./m ³]
Dymaczewski i in. (2011)	Reaktor osadu czynnego	1,5 - 3,0
Styka (2004)	Reaktor SBR	3,0 - 4,0
Rusten i in. (1994)	Reaktor MBBR (Kaldnes)	2,0 - 5,0
Andreottola i in. (2000)	Reaktor MBBR (Flocor)	1,3 - 3,4
Badania własne (2012)	Reaktor MBBR (EvU Perl)	2,8-3,1

Tabela 7.1: Nagromadzenie biomasy dla niektórych urządzeń realizujących proces denitryfikacji

Obecność dużych stężeń biomasy swobodnej w reaktorze MBBR, nakazuje zastosowanie na odpływie z urządzenia osadnika wtórnego. Końcowe oddzielenie cząstek stałych przez użycie osadników wtórnych zalecali również, autorzy pracujący ze złożem ruchomym, Hem i in., (1994) oraz Odegaard i in., (1999).

W badaniach laboratoryjnych wykonano pomiary odnoszące się do działania reaktora MBBR w warunkach nadmiaru dodawanego zewnętrznego węgla organicznego (w sytuacji niedoboru NO_3^--N) oraz gdy azotany V dodawano w nadmiarze, a brakowało zewnętrznego węgla organicznego. Substrat, którego dawka jest niewystarczająca do przeprowadzenia reakcji z pełną szybkością nazywa się substratem limitującym wg Klimiuk i in. (1995) i Hartmann'a (1999). Na podstawie uzyskanych wyników pomiarów obliczono stałą - maksymalną szybkość denitryfikacji (V_{max}) oraz stałe Monoda dla azotanów V i zewnętrznego węgla organicznego (K_{S,N} i K_{S,ChZT}).

Maksymalna szybkość denitryfikacji (V_{max}) w badaniach z nadmiarem azotanów V wyniosła 0,78 gNO₃⁻-N/g s.m.·d, a w badaniach z nadmiarem zewnętrznego węgla organicznego 0,86 gNO₃⁻-N/g s.m.·d. W obu przeprowadzonych doświadczeniach, bez względu na substrat limitujący, wartość tej stałej powinna być taka sama (Klimiuk i in., 1995). Uzyskane wartości stałych dla nadmiaru azotanów V i nadmiaru zewnętrznego węgla organicznego wykazały, że różnica w obu wartościach V_{max} wynosiła 0,8 gNO₃⁻- N/g s.m.·d, co potwierdza przebieg zależności przedstawionej na rys. 7.2. Maksymalna szybkość denitryfikacji zależała tylko od stężenia łatwo rozkładalnego ChZT, co oznacza, że bardziej prawdziwa wydaje się być niższa wartość V_{max} (rys. 7.2 – zaznaczona kolorem niebieskim).

Mąkinia (2006, 2010) proponuje inną metodę obliczania szybkości denitryfikacji (r_{su}). Jej odmienność polega na tym, że odnosi się do innego sposobu obliczana stężenia biomasy uczestniczącej w procesie. Autor uważa, że bardziej prawidłowe jest określanie ilości zużywanego przez biomasę tlenu (Oxygen Utilization Rate – OUR, w procesie denitryfikacji: Nitrogen Utilization Rate - NUR). NUR odnosi się do stężenia aktywnej biomasy a nie do całkowitej biomasy wyrażonej w g s.m./dm³. Takie obliczanie biomasy jest stosowane w Modelu Osadu Czynnego nr 2 – ASM 2 podane przez Gujer'a i in (1995) i Henze'go i in. (2002). Zmieniają się wówczas nie tylko wartości stałej szybkości denitryfikacji (V_{max}), ale również wartości współczynnika przyrostu biomasy - Y i specyficznej szybkości wzrostu mikroorganizmów – μ_{max} (tabela 7.4).

W przeprowadzonych badaniach z nadmiarem zewnętrznego źródła węgla organicznego (zawierającego łatwo rozkładalny ChZT), reaktor MBBR zachowywał się tak, jakby nie brakowało mu azotanów V. Szybkość reakcji zależna była wyłącznie od obecności łatwo rozkładalnego węgla organicznego (łatwo rozkładalnego ChZT). Z tego powodu wartość domniemanej wcześniej stałej substratowej K_{S,N}, uznano za wspólną z łatwo rozkładalnym ChZT (K_{S,N,ChZT}). Jej wartość wyniosła 19,87 g/m³.

Dopiero po wykonaniu prób z limitowaniem procesu zewnętrznym węglem organicznym (a dosłownie mówiąc, łatwo rozkładalnym ChZT) okazało się, że stała Monoda – $K_{S,ChZT}$ wynosi 16,97 gO₂/m³. Z różnicy uzyskanej między $K_{S,N,ChZT}$ a $K_{S,ChZT}$ obliczono wartość stałej $K_{S,N}$. Sposób wyznaczenia tej wartości przedstawiono na rys. 7.3 zawierającym zbliżenie obszaru, gdzie można zobaczyć obie stałe $K_{S,N,ChZT}$ i $K_{S,ChZT}$. Uzyskana różnica wyniosła 2,90 gNO₃⁻-N/m³.

Rys. 7.2: Funkcje Monoda otrzymane dla obu laboratoryjnych doświadczeń (analizę zaznaczonego obszaru wykonano na rys. 7.3).

Rys. 7.3. Różnica w wartościach stałych Monoda $K_{S,N,ChZT}$ i $K_{S,ChZT}$ uzyskane w badaniach laboratoryjnych. Na podstawie uzyskanej różnicy wyznaczono stałą Monoda dla azotanów V – $K_{S,N}$

Równanie szybkości denitryfikacji zaproponowane przez Henze'ego i in. (2002) po wyznaczeniu stałych przyjmuje postać:

$$r_{su} = V_{\max} \cdot \frac{S_{ChZT}}{K_{S,ChZT} + S_{ChZT}} \cdot \frac{S_{NO3}}{K_{S,N} + S_{NO3}} = 0,78 \cdot \frac{S_{ChZT}}{16,97 + S_{ChZT}} \cdot \frac{S_{NO3}}{2,90 + S_{NO3}}$$
(7.1)

Stała V_{max} równa 0,78 gNO₃⁻-N/g s.m.·d odpowiada maksymalnej szybkości reakcji denitryfikacji w laboratoryjnym reaktorze typu MBBR. Wartość ta jest często przez innych autorów oznaczana symbolem "*k*" i zależy od zastosowanej technologii w realizacji denitryfikacji. Dlatego stała V_{max} jest zmienna w szerokim zakresie w zależności od rodzaju reaktora, jego umiejscowienia w szeregu technologicznym, rodzaju źródła węgla organicznego, warunków zewnętrznych (np. temperatury) i innych czynników. Względem dotychczas stosowanych źródeł zewnętrznego węgla organicznego najbardziej zbliżone wartości uzyskali dla etanolu Aspergen i in. (1998) – 0,80 gNO₃⁻-N/g s.m.·d i Pastorelli i in. (1997) – 0,71 gNO₃⁻-N/g s.m.·d. Rusten (2006) osiągnął zdecydowanie większą szybkość denitryfikacji wynoszącą 1,28 gNO₃⁻-N/g s.m.·d (dla etanolu), zaś bardzo niedużą dla materii organicznej obecnej w ściekach Isaccs (1995) – 0,02 gNO₃⁻-N/g s.m.·d. Porównanie uzyskanych stałych V_{max}, K_{S,ChZT}, K_{S,N} z wartościami uzyskanymi przez innych autorów podano w tabeli 7.2.

Na podstawie wartości stałej Monoda: $K_{S,ChZT}$, gdy analizy odnoszą się wyłącznie do łatwo rozkładalnej frakcji ChZT, można uzyskać odpowiedź dla jakiego stężenia substratu osiągana jest połowa szybkości maksymalnej (V_{max}). Wartość ta jest miarą podatności substratu na biodegradację. Uzyskana wartość stałej $K_{S,ChZT}$ wynosi 16,97 gO₂/m³ ChZT i jest porównywalna z wartościami podawanymi przez innych autorów. Henze i in., (2002) podają, że dla substancji organicznych $K_{S,ChZT}$ zmienia się od 10 do 20 gO₂/m³, Mąkinia, (2006) za Beccari i in. (1983), że dla glukozy wartość stałej wynosi 17,4 gO₂/m³, zaś Stensel i in., (1973), dla metanolu 12,6 gO₂/m³.

Stała K_{S,N} (stała Monoda dla azotanów V) wyniosła 2,90 gNO₃⁻-N/m³. Według niektórych autorów wartość tej stałej jest bardzo mała. Metcalf i Eddy (1991) podają, że wartość stałej K_{S,N} zmienia się w zakresie 0,06 – 0,2 gNO₃⁻-N/m³. Aesoy i Odegaard (1994), uzyskali wartość 1,4 gNO₃⁻-N/m³ dla złoża ruchomego (tabela 7.2). Uzyskana w badaniach większa wartość stałej K_{S,N} może być spowodowana ograniczeniami w dyfuzji w głąb błony biologicznej, o czym donoszą Aesoy i Odegaard (1994), Lopez i in. (2000) oraz Bishop i in. (1995). Niska wartość stałej K_{S,N} informuje o małym stężeniu substratu umożliwiającym przebieg procesu denitryfikacji z największą możliwą szybkością. Wartość stałej K_{S,N} ma zatem minimalny wpływ na szybkość denitryfikacji. Podane równanie (7.1) może zostać uproszczone do postaci:

$$r_{su} = V_{\max} \cdot \frac{S_{ChZT}}{K_{S,ChZT} + S_{ChZT}} = 0,78 \cdot \frac{S_{ChZT}}{16,97 + S_{ChZT}}$$
(7.2)

Podobny przebieg miały badania opisane przez Aesoy i Odegaard'a (1994), którzy uzyskali V_{max} wynoszącą 0,567 gNO₃⁻-N/g s.m.·d, wartość K_{S,ChZT} wynoszącą 3 gO₂/m³ i K_{S,N} – 1,4 gNO₃⁻-N/m³. Przebieg funkcji Monoda uzyskanej przez Aesoy i Odegaard'a (1994) porównano z wynikami badań własnych na rys. 7.4.

Rys. 7.4: Porównanie uzyskanych wyników badań z rezultatami Aesoy i Odegaard'a (1994)

Wartości stałych V_{max} , $K_{S,ChZT}$, $K_{S,N}$ podawane w literaturze wskazywane przez innych autorów oraz stosowane przez nich źródła węgla organicznego zostały podane w tabeli 7.2.

Producent zastosowanego źródła węgla organicznego - firma Brenntag nie podała składu chemicznego pożywki – preparatu Brennta Plus. Jednak na podstawie wartości zebranych w tabeli 7.2, a szczególnie wartości stałej K_{S,ChZT} można przypuszczać, że łatwo rozkładalnym substratem były związki podobne składem chemicznym do glukozy. Wg Baccari i in. (1983) wartość K_{S,ChZT} wynosi 17,4 gO₂/m³, gdy źródłem węgla organicznego była glukoza. Preparat Brennta Plus jest podatny na biodegradację podobnie jak materia organiczna rozpuszczona w ściekach np. lotne kwasy tłuszczowe – LKT). Wg Henze'go i in. (2002) LKT pozwalają uzyskać wartość stałej K_{S,ChZT} w przedziale 10 - 20 gO₂/m³ ChZT. Podobną wartość stałej (K_{S,ChZT} = 20 gO₂/m³) podają również Onnis i Gu (2008) dla innego komercjalnego źródła węgla organicznego stosowanego do denitryfikacji – preparatu MicroC TM.

Autor	V _{max} [gN/g s.m.∙d]	K _{s,chzt} [gO ₂ /m ³]	K _{s,N} [gO ₂ /m ³]	Źródło węgla org.
Henze i in. (1987)	0,24-0,48	-	-	mat. org. obecna w ściekach
Henze i in. (2002)	-	10,0-20,0	0,20-0,50	mat. org. obecna w ściekach
Metcalf i Eddy (1991)	-	-	0,06-0,20	mat. org. obecna w ściekach
Gujer i in. (1995)	-	4,0	0,50	mat. org. obecna w ściekach
Isaacs i in. (1995)	0,02	-	-	mat. org. obecna w ściekach
Hellness i Giswold (2001)	0,32	-	-	mat. org. obecna w ściekach
Ekama i Marais (1984)	0,07	-	-	mat. org. obecna w ściekach
Zubrowska - Sudoł (2002)	0,50	-	-	mat. org. obecna w ściekach
Henze i in. (2002)	-	5,0-10,0	-	metanol
Nyberg i in. (1996)	0,07	-	-	metanol
Stensel i in. (1973)	-	12,6	0,30	metanol
Aspergen i in. (1998)	0,60	-	-	metanol
Aspergen i in. (1998)	0,80	-	-	etanol
Nyberg i in. (1996)	0,24	-	-	etanol
Rusten i in. (2006)	1,28	-	-	etanol
Pastorelli i in. (1997)	0,71	-	-	octan
Isaacs i in. (1995)	0,08	-	-	octan
Beccari i in. (1983)	-	17,4	-	glukoza
Isaacs i in. (1995)	0,10	-	-	hydrolizat z osadu
Aesoy i Odegaard (1994)	0,57	3,0	1,40	hydrolizat z osadu
Onnis i Gu (2008)	-	20,0	-	pożywka - MicroC TM
Badania własne	0,78	17,0	2,90	pożywka - Brennta Plus

Tabela 7.2: Porównanie uzyskanych wartości stałych V_{max} , $K_{S,ChZT}$, $K_{S,N}$ z wartościami podawanymi przez innych autorów

W oczyszczalni ścieków w Gronowie Górnym wybudowano reaktor typu MBBR w pełnej skali z kompletnym wyposażeniem. Urządzenie pracowało w trybie manualnym (tzn. dodawano ręcznie zewnętrze źródło węgla organicznego, załączano mieszadło, otwierano i zamykano elektrozawór itp.). Okres rozruchu trwał aż do uzyskania wysokiej szybkości procesu. Następnie reaktor został przełączony na tryb automatyczny. Wszystkie działania kontrolowane były przez elektroniczny sterownik. Przeprowadzone badania w skali technicznej miały zweryfikować wartość uzyskanych stałych kinetycznych w warunkach laboratoryjnych. Badania laboratoryjne i techniczne miały dać odpowiedź na postawioną tezę, że reaktor MBBR jest w stanie skutecznie usuwać azotany V w ściekach po złożach zraszanych.

Podczas rozruchu reaktora MBBR stopniowo wzrastało usuwanie azotanów V. Jednocześnie zaobserwowano synchroniczne namnażanie biomasy. W reaktorze MBBR występowały dwa rodzaje biomasy: biomasa swobodna w ściekach i osiadła na kształt-kach EvU Perl. Po bezpośrednim uruchomieniu reaktora nie mógł wewnątrz przebiegać proces denitryfikacji, ponieważ ścieki po złożach biologicznych zawierały tlen. W reaktorze typu MBBR ścieki przed uruchomieniem denitryfikacji musiały zostać odtlenione. W pierwszych czterech dniach eksperymentu obliczane wartości szybkości denitryfika-cji były bardzo małe i nie przekraczały wartości 0,1 gNO₃⁻-N/g s.m.·d. Oznacza to, że biomasa swobodna i biomasa osiadła nie były jeszcze zaadoptowane do procesu. Obecne w biomasie mikroorganizmy denitryfikacyjne były nieliczne. Jak podaje Hartmann (1999), w takich sytuacjach uzyskuje się maksymalną szybkość wzrostu bakterii ($\mu = \mu_{max}$). Pomimo intensywnego rozwoju mikroorganizmów nie są wydzielone jeszcze wystarczające ilości enzymów komórkowych. Dopiero ich nadmiar pozwala uzyskać maksymalną szybkość reakcji (V_{max}).

W miarę wzrostu i adaptacji biomasy do procesu, szybkość denitryfikacji wzrastała i w ósmym dniu osiągnęła 0,67 gNO₃⁻-N/g s.m.·d. Od tego momentu zmieniono tryb pracy reaktora MBBR na automatyczny. Na podstawie przeprowadzonych trzech serii pomiarowych (złożonych z 5 sekwencji) uzyskano wartości średnie szybkości denitryfikacji (r_{su}) i średnie stężenia ChZT. Wyniki porównano z wynikami badań laboratoryjnych na rys 7.5.

Maksymalna szybkość procesu w pilotowym reaktorze zbliżała się do wartości uzyskiwanej w laboratorium. Dla początkowego stężenia 300 gO₂/m³ ChZT wynosiła 0,69 gNO₃⁻-N/g s.m.·d, a kolejno dla 500 gO₂/m³ ChZT wynosiła 0,76 gNO₃⁻-N/g s.m.·d, i wreszcie dla 700 gO₂/m³ ChZT jej wartość wynosiła 0,73 gNO₃⁻-N/g s.m.·d. Oznacza to, że szybkość denitryfikacji zmieniała się nieznacznie w szerokim zakresie stężeń ChZT. Maksymalną wartość uzyskiwano począwszy od stężenia ChZT wynoszą-cego 300 gO₂/m³. Średnio, dla reaktora MBBR w Gronowie Górnym, szybkość denitryfikacji wyniosła 0,73 gNO₃⁻-N/g s.m.·d, co w przeliczeniu na powierzchnię złoża odpowiadało wartości 3,43 gNO₃⁻-N/m²·d.

Jednak stała Monoda K_{S,ChZT} dla zewnętrznego źródła węgla organicznego wyrażonego w ChZT różni się od wartości określonej w warunkach laboratoryjnych. W pełnowymiarowym reaktorze MBBR w oczyszczalni w Gronowie połowa szybkości była osiągana, gdy wartość całkowitego ChZT wynosiła 250 gO₂/m³. (rys. 7.5). W badaniach laboratoryjnych uzyskano stałą K_{S,ChZT} wynoszącą 17 gO₂/m³ dla łatwo rozkładalnej frakcji ChZT. Dla całkowitej wartości ChZT połowę szybkości uzyskano dla stężenia ChZT wynoszącego 170 gO₂/m³. Wynika stąd, że ścieki w Gronowie Górnym dopływające do reaktora zawierały ok. 80 gO₂/m³ ChZT nierozkładalnego biologicznie.

Funkcja Monoda została wykreślona dla łatwo rozkładalnego ChZT. Jej wartość porównano z rezultatami pilotowego reaktora typu MBBR na rys 7.5. Dla porównania naniesiono tutaj również wyniki uzyskane w badaniach laboratoryjnych.

Rys. 7.5. Weryfikacja wyznaczonych w badaniach laboratoryjnych stałych z równania Monoda z wynikami uzyskanymi w badaniach z pilotowym reaktorem MBBR w Gronowie Górnym

Weryfikacja równania Monoda opisanego w badaniach laboratoryjnych z pilotowym reaktorem ze złożem ruchomym przebiegła zadowalająco. Wartości maksymalnych szybkości denitryfikacji są zgodne. Różnica w stałych Monoda dla całkowitego substratu wyrażonego w ChZT wynika stąd, że w warunkach laboratoryjnych stosowano wodę, zaś w Gronowie Górnym stosowano ścieki, w których była obecna nierozkładalna materia organiczna (rys. 7.5).

Denitryfikację w złożach ruchomych z biomasą osiadłą opisuje się za pomocą szybkość denitryfikacji, nie w $gNO_3^--N/g \text{ s.m.}\cdot d$, lecz w $gNO_3^--N/m^2\cdot d$. Porównanie wartości maksymalnej szybkości denitryfikacji w przeliczeniu na 1 m² (w którym obecna jest określona ilość biomasy) podano w tabeli 7.3.

Autor	Opis procesu	Rodzaj wy- pełnienia	Powierzchnia właściwa [m²/m³]	Szybkość usu- wania azotanów (V _{max}) [gN/m ² ·d]
Aspergen i in. (1998)	Denitryfikacja końcowa (dodatek etanolu)	Kaldnes K1	530	2,5
Aspergen i in. (1998)	Denitryfikacja końcowa (dodatek metanolu)	Kaldnes K1	530	2,0
Materiały Inf. Kaldnes Miljo- teknologi (2002)	Denitryfikacja końcowa (dodatek metanolu)	Kaldnes K1	530	2,3
Odegaard (1994)	Denitryfikacja wstępna (endogenne źródło wę- gla)	Kaldnes K1	530	1,3
Rusten i in. (1995b)	Denitryfikacja końcowa (dodatek octanu sodu)	Kaldnes K1	530	2,2
Rusten i in. (2006)	Denitryfikacja symulta- niczna (dodatek etanolu)	Kaldnes K1	530	4,0
Rusten i in. (2006)	Denitryfikacja symulta- niczna (dodatek metano- lu)	Kaldnes K1	530	2,1
Rusten i in. (2006)	Denitryfikacja symulta- niczna (dodatek glikolu)	Kaldnes K1	530	2,3
Weiss i in. (2005)	Denitryfikacja wstępna (endogenne źródło wę- gla)	Kaldnes K1	530	2,8
Helness i Gisvold (2001)	Denitryfikacja symulta- niczna (endogenne źró- dło węgla)	Kaldnes K1	530	1,0
Pastorelli i in. (1997)	Denitryfikacja końcowa (dodatek octanu sodu)	Flocor RMT	160	2,2
Żubrowska-Sudoł (2002)	Denitryfikacja symulta- niczna w SBR (endogen- ne źródło węgla)	EvU Perl	800	2,4
Badania własne	Denitryfikacja końcowa w reaktorze MBBR (do- datek Brennta Plus)	EvU Perl	800	3,4

Tabela 7.3: Porównanie uzyskanych szybkości denitryfikacji z wartościami uzyskanymi przez innych autorów na różnych rodzajach złóż ruchomych

Z przeprowadzonego porównania szybkości denitryfikacji uzyskanych przez innych autorów (tabela 7.3) wynika, że w próbach laboratoryjnych z reaktorem MBBR osiągnięto jedną z wyższych wartości V_{max} wynoszącą 0,73 gNO₃⁻-N/gs.m.·d, odpowiadającą wartości 3,43 gNO₃⁻-N/m²·d. Jedynie Rusten (2006) stosując etanol jako zewnętrze źródło węgla organicznego i złoże ruchome Kaldnes K1 uzyskał większą maksymalną szybkość denitryfikacji wynoszącą 4 gNO₃⁻-N/m²·d.

Na tej podstawie sformułowano harmonogram działania pilotowego reaktora MBBR pracującego w trybie automatycznym umożliwiającego przebieg efektywnej denitryfikacji. Należy:

- 1. zapewnić trzy fazy działania reaktora zgodnie z rysunkiem (5.7):
 - faza napełniania trwająca od 18 do 22 min (zależna od natężenia przepływu),
 - faza mieszania trwająca 18 min,
 - faza recyrkulacji trwająca 2 min.
- 2. utrzymać odpowiedniej proporcji ChZT:N > 5,
- zapewnić mieszanie umożliwiające rotację całego wypełnienia ruchomego w obrębie kubatury reaktora,
- zapewnić cykliczną wymianę objętości ścieków w reaktorze w proporcjach: 4,8 m³ ścieków stacjonarnych do 1,6 m³ świeżych ścieków zawierających azotany (stosunek 4:1),
- dozować zewnętrzny węgiel organiczny preparatu Brennta Plus w dawce odpowiadającej stężeniu 300 gO₂/m³ ChZT (wewnątrz reaktora),
- 6. utrzymać temperatury ścieków w zakresie 10-35 °C,
- 7. utrzymać pH w zakresie 6,5-8,
- 8. utrzymać potencjał utleniająco-redukującego < 0 mV,
- 9. zapewnić obecność azotanów w stężeniu nie większym niż 50 mgNO₃⁻-N/dm³.

Reaktor ze złożem ruchomym pracujący w trybie automatycznym posłużył do określenia współczynnika przyrostu biomasy - Y. Gdy zmiany stężenia biomasy były bardzo małe i szybkość denitryfikacji (r_{su}) ustabilizowała się na równym poziomie bliskim szybkości maksymalnej, stało się możliwe wyznaczenie stałej proporcji przyrostu biomasy do usuwanego substratu (Y). Jak podaje Metcalf i Eddy (2004) oraz Aesoy i Odegaard (1994) współczynnik przyrostu biomasy – Y jest współczynnikiem proporcjonalności pomiędzy szybkością ubywania substratu – V_{max} , a szybkością wzrostu mikroorganizmów – μ_{max} . Średnia wartość współczynnika przyrostu biomasy Y w sekwencjach wykonywanych przez reaktor MBBR odpowiadała wartości 0,41 g s.m./gO₂ ChZT podczas, gdy obliczona wartość μ_{max} na podstawie równania 5.26 wynosiła 0,32 1/d.

W tabeli 7.4 przeprowadzono porównanie wartości Y i μ_{max} uzyskane przez innych autorów stosujących różne źródła węgla organicznego.

Autor	Y [g s.m/gO ₂]	μ _{max} [1/d]	Źródło węgla organicznego
Aesoy i Odegaard (1994)	0,22	0,61	osad hydrolizowany
Barlindhaug i Odegaard (1996)	0,27	-	osad hydrolizowany
Gujer in. (1995)	-	3-6*	mat. organiczna w ściekach
Henze i in. (2002)	0,4-0,6	3-6*	mat. organiczna w ściekach
Metcalf i Eddy (1991)	0,8	0,3	mat. organiczna w ściekach
Henze i in. (2002)	0,5-0,65	-	metanol
Stensel i in. (1973)	0,17	0,52	metanol
Onnis i Gu (2008)	0,29	-	metanol
Dold i in. (2005)	-	0,56	metanol
Christensson i in. (1994)	0,23-0,25	0,77	metanol
Christensson i in. (1994)	-	1,89	etanol
Onnis i Gu (2008)	0,35	-	etanol
Kujawa i Klapwijk (1999)	0,66	-	octan
Onnis i Gu (2008)	-	1,43	ścieki z winiarni
Onnis i Gu (2008)	-	1,29	ścieki z mleczarni
Sage i in. (2006)	0,22-0,38	-	ścieki z mleczarni
Onnis i Gu (2008)	0,39	1,2	MicroC TM
Badania własne	0,41	0,32	Brennta Plus

Tabela 7.4: Porównanie wartości współczynników Y i μ_{max} z wartościami uzyskanymi przez innych autorów

* - wartości uzyskane na podstawie "Modelu Osadu Czynnego nr 2"

Wyznaczona w badaniach z pilotowym reaktorem średnia wartość współczynnika Y (0,41 g s.m./gO₂ ChZT) mieści się w środkowym zakresie wartości podawanych przez innych autorów. Mniejszą wartość współczynnika Y w zakresie 0,17 – 0,27 g s.m./gO₂ ChZT otrzymali Stensel i in. (1973), Aesoy i Odegaard (1994), Barlindhaug i Odegaard (1996), Christensson i in. (1994) i Sage i in. (2006). Porównywalne wartości współczynnika Y uzyskali Onnis i Gu (2008) dla preparatu MicroC TM – 0,39 gs.m./gO₂ ChZT oraz Henze i in. (2002) dla materii organicznej obecnej w ściekach – od 0,4 do 0,6 gs.m./gO₂ ChZT. Wyższe wartości współczynnika Y podali tylko Kujawa i Klapwijk (1999) wynoszącą 0,66 gs.m./gO₂ ChZT dla octanów oraz Metcalf i Eddy (1991) dla materii organicznej w ściekach – 0,8 gs.m./gO₂ ChZT.

Specyficzna szybkość wzrostu mikroorganizmów denitryfikacyjnych (μ_{max}) w pilotowym reaktorze MBBR była najbardziej podobna do tej, którą podali Henze i in. (2002) oraz Metcalf i Eddy (1991) dla materii organicznej obecnej w ściekach – 0,29 1/d. Stensel i in (1973) oraz Christensson i in. (1994) uzyskali wyższe wartości szybkości – 0,52 1/d i 0,77 1/d dla metanolu. Aesoy i Odegaard (1994) prowadzili badania nad denitryfikacyjnym złożem ruchomym. Jako zewnętrzne źródło węgla organicznego wykorzystali hydrolizowany osad i uzyskali dwukrotnie większą szybkość wzrostu bakterii denitryfikacyjnych – 0,61 1/d. Ponad czterokrotną szybkość wzrostu (1,2 1/d) została uzyskana przez Onnis i Gu (2008) w badaniach z alternatywnym źródłem węgla organicznego – preparatem MicroC TM.

Henze i in (2002) wraz z Gujerem i in. (1995) byli twórcami Modelu Osadu Czynnego nr 2 (ASM 2), który zakładał, że poprawne określenie stałych musi uwzględniać tylko tą biomasę, która rzeczywiście uczestniczy w procesie, a nie biomasę całkowitą. Dlatego, od 1995 roku nie podaje się biomasy w jednostce gs.m./dm³. W rezultacie wartości specyficznej szybkości wzrostu bakterii przyjmują odmienne wartości i wynoszą od 3 do 6 1/d. Wartości te uwzględniono w tabeli 7.4 (zostały oznaczone gwiazdką), lecz nie można ich porównywać z wartościami uzyskanymi w badaniach własnych.

Specyficzna szybkość wzrostu mikroorganizmów denitryfikacyjnych (μ_{max}) oraz stała Monoda dla zewnętrznego węgla organicznego ($K_{S,ChZT}$) zostały wykorzystane do opisania zależności funkcji Monoda przez innych autorów. Zostały one porównane z wynikami badań własnych (rys. 7.6).

Rys. 8.6. Porównanie otrzymanej zależności Monoda opisującej szybkość wzrostu bakterii denitryfikacyjnych z wynikami podanymi przez innych autorów

Podczas wykonywanych badań stwierdzono, że podczas eksploatacji reaktora MBBR pewne działania wymagają udoskonalenia. Sprawą niezwykle ważną jest skuteczne mieszanie złoża ruchomego. W analizowanym reaktorze zastosowano mechaniczne mieszadło kontenerowe, natomiast wg Rusten'a i in. (1997) i Odegaard'a (2005) do procesów anaerobowych powinno być zastosowane zanurzane mieszadło bananowe (rys. 2.7). Podane przez autorów rozwiązanie zapewnia optymalne mieszanie i zapobiega mechanicznemu uszkodzeniu kształtek. Użyte w badaniach własnych mieszadło kontenerowe było w stanie wprawić w ruch wyłącznie taką objętość złoża, która zajmuje 25% objętości czynnej reaktora. Wypełnienie reaktora kształtkami musiało być przez to mniejsze niż zalecali Rusten i in. (1992) i Aspergen i in. (1998).

Podczas konsumowania substratów przez obecne w reaktorze mikroorganizmy następował systematyczny przyrost nowej biomasy. Jej obecność w reaktorze MBBR może być tolerowana tylko do pewnego stopnia i potem powinna zostać odprowadzona jako osad nadmierny. Nie można natomiast dopuszczać do przedostawania się biomasy w postaci zawiesiny ogólnej do odpływu, gdyż powoduje to przekroczenia w dopuszczalnych wartościach stężeń. Z tego powodu złoże ruchome powinno być wyposażone w urządzenie do separacji cząstek stałych jak np. sita i filtry (np. dysk filtracyjny zaproponowany przez Persson'a i in. (2005)). Jednak częstym i najbardziej popularnym urządzeniem do usuwania zawiesin, oraz oberwanych kawałków błony biologicznej, jest osadnik wtórny, którego w Gronowie Górnym nie wybudowano z powodu braku środków finansowych. Zastosowanie osadników wtórnych po reaktorach MBBR opisywali Odegaard i in. (1994), Rusten i in. (1995), Helness i Gisvolt (2001) i Żubrowska-Sudoł (2002). W przypadku istniejących małych oczyszczalni ścieków, ich modernizacja o technologię reaktora MBBR z osadnikiem wtórnym wymaga dodatkowych nakładów finansowych.

Niepokojącym zjawiskiem była wciąż zmniejszająca się w czasie wartość potencjału utleniająco – redukującego. Na tej podstawie można przypuszczać, że wewnątrz reaktora zalegała część nieusuniętego osadu (który złożony był z martwych części błony biologicznej). Takie zmiany stwierdzono dla reaktora pracującego w trybie manualnym. Wartość potencjału utleniająco-redukującego osiągała niekiedy wartość - 450 mV. W takich warunkach w osadzie wewnątrz reaktora powstają siarczki (Aesoy, 1998b). Występowanie siarczków mogło mieć wpływ na rodzaj bakterii występujących w reaktorze i oddziaływać na szybkość zużywania dostępnego źródła tlenu – azotanów V. Rusten i in. (1994) podali, że w takim przypadku należy okresowo przeprowadzać czyszczenie dna reaktora MBBR z zalegającego osadu, a ścieki kierować do równoległego zbiornika. W przypadku małych oczyszczalni, szczególnie na terenach wiejskich, może być to trudne do wykonania, ponieważ zwykle takie obiekty nie posiadają możliwości omijania pracujących reaktorów. Stanowi to więc wadę technologii MBBR.

Nie mniej jednak na podstawie uzyskanych rezultatów w przeprowadzonych badaniach uzyskano wysoką efektywność usuwania azotu ogólnego. Stężenie azotu ogólnego doprowadzanego do oczyszczalni ścieków w Gronowie Górnym wynosiło średnio 86 NH₄⁺-N/dm³, zaś na odpływie w ściekach oczyszczonych uzyskano wartość 6 mg NO₃⁻-N/dm³ i 6 mg NH₄⁺-N/dm³. Efektywność usuwania azotu ogólnego wyniosła 86,0%. Porównując tę wartość z innym sposobami przeprowadzania denitryfikacji można stwierdzić, że efektywność procesu nie zależy od rodzaju reaktora, lecz od jego umiejscowienia w układzie oczyszczalni. Proces przebiega z największą efektywnością (na poziomie 85-90%), gdy denitryfikacja jest przeprowadzana symultanicznie albo na końcu układu z dodatkiem zewnętrznego źródła węgla organicznego. Mniej skuteczna jest metoda z denitryfikacją wstępną i w reaktorach typu SBR. Porównanie efektywności usuwania azotu ogólnego dla różnych sposobów realizacji procesu denitryfikacji podano w tabeli 7.5.

Autor (rok)	Opis procesu	% usunięcia azotu ogólnego
Odegaard (1994)	Denitryfikacja wstępna (reaktor MBBR)	70,0
Odegaard (1994)	Denitryfikacja końcowa (reaktor MBBR)	85,0
Rusten (1994)	Denitryfikacja wstępna (reaktor MBBR)	45,0
Odegaard (1999)	Symultaniczna denitryfikacja (reaktor MBBR)	70,0
Rusten (1999)	Symultaniczna denitryfikacja (reaktor MBBR)	80,0
Podedworna i Żubrow- ska-Sudoł (2001)	Symultaniczna denitryfikacja (SBR)	75,0
Helness i Gisvold (2001)	Symultaniczna denitryfikacja (reaktor MBBR)	80,0
Kaldnes Miljoteknologi (2002)	Denitryfikacja wstępna (reaktor MBBR)	85,0
Odegaard (2005)	Denitryfikacja wstępna (reaktor MBBR)	65,0
Odegaard (2005)	Denitryfikacja wtórna (reaktor MBBR)	91,0
Helness i Odegaard (2005)	Symultamiczna denitryfikacja (SBR)	59,0
Cema i in. (2005)	Symultaniczna denitryfikacja (anammox)	88,0
Bernat i in. (2005)	Symultaniczna denitryfikacja (SBR)	70,0
Makowska i in. (2002)	Symultaniczna denitryfikacja (reaktor MBBR)	75,0
Dymaczewski i in. (2011)	symultaniczna denitryfikacja (osad czynny)	90,0
Dymaczewski i in. (2011)	Symultaniczna denitryfikacja (osad czynny + anammox)	80,0
Badania własne	Denitryfikacja końcowa (reaktor MBBR)	86,0

Tabela 7.5: Porównanie efektywności usuwania azotu ogólnego dla różnych metod realizacji procesu denitryfikacji

Przeprowadzone badania pozwoliły określić dla reaktora MBBR przebieg funkcji Monoda opisującej zależność szybkości denitryfikacji od początkowego stężenia substratu. Badania w skali technicznej umożliwiły weryfikację uzyskanego równania Monoda w procesie denitryfikacji końcowej w oczyszczalni ścieków w Gronowie Górnym. Zostały określone zmiany stężenia biomasy i zmiany w szybkości procesu od momentu uruchomienia urządzenia (faza rozruchu) aż do osiągnięcia pełnej wydajności. Podjęte działania umożliwiły poznanie zmian zachodzących w układzie przed osiągnięciem stanu ustalonego. Wyznaczone wartości stałych kinetycznych dla procesu denitryfikacji mogą być pomocne w zrozumieniu wzajemnych zależności pomiędzy zachowaniem mikroorganizmów a dostępnymi substratami.

Konstruowanie stanowiska reaktora MBBR w laboratorium Katedry Technologii Wody i Ścieków oraz praca w terenie, gdzie przeprowadzano próby technologiczne, badania wstępne i badania zasadnicze w instalacji pilotowej w Gronowie Górnym były wykonywane w czasie od listopada 2009 do października 2012. Badania zostały poprzedzone pomiarami kontrolnymi zarówno w laboratorium jak i na obiekcie w skali pilotowej. W warunkach laboratoryjnych określono stałe kinetyczne charakterystyczne dla procesu denitryfikacji, zaś w terenie określono zmiany jakości ścieków po kolejnych etapach oczyszczania w Gronowie Górnym oraz liczbę kształtek wypełnienia w 1 m³ złoża EvU Perl. Zostały również wyznaczone stosunki substratów uczestniczących w procesie, stężenie biomasy swobodnej i osiadłej w złożu ruchomym. Łącznie wykonano ok. 1200 pomiarów.

Oceniając działanie reaktora ze złożem ruchomym można uznać, że jest to urządzenie zdolne do realizacji wydajnej denitryfikacji końcowej z efektywnością wynoszącą 86,0%. Potwierdza to tezę pracy.

Zaletą prowadzenia procesu jest możliwość dowolnego zmieniania stopnia wypełnienia reaktora, co sprawia że metoda ta jest niezwykle elastyczna. Dodatkową korzyścią jest immobilizacja aktywnej biomasy na kształtkach wypełnienia, która sprawia, że nie jest potrzebna intensywna recyrkulacja ścieków, a jedynie taka, która pozwoli na całkowite odprowadzenie osadu nadmiernego.

Występowanie dwóch typów biomasy, swobodnej i osiadłej w jednej przestrzeni reakcyjnej powoduje wzrost szybkości procesu denitryfikacji. Tłumaczy to, dlaczego w ostatnich latach bardzo często dostosowuje się istniejące oczyszczalnie do zwiększających się obciążeń przez dodatek do reaktorów z osadem czynnym złoża ruchomego (Aspergen i in.(1998); Andreottola i in. (2000), Odegaard i in. (1991-2005), Rusten i in. (1992-1999), Makowska (2002), Kurbiel (1996). Ponadto potencjał reaktorów MBBR może zostać wykorzystany do usuwania większych stężeń zanieczyszczeń, do oczyszczania odcieków z odwadniania osadów komunalnych lub do ścieków przemysłowych (Weiss, 2005).

Oceniając reaktor MBBR w aspekcie zastosowania w małych oczyszczalniach na terenach wiejskich stwierdza się, że jest to urządzenie zapobiegające przedostawaniu się tlenowych form azotu do wód powierzchniowych, a w związku z tym przyczynia się do poprawy ich jakości.

8. Wnioski

Na podstawie przeprowadzonych badań oraz analizy uzyskanych wyników dotyczących kinetyki przemian materii organicznej i związków azotu podczas procesu denitryfikacji końcowej sformułowano następujące wnioski:

- Reaktor ze złożem ruchomym (MBBR) zapewnia skuteczną denitryfikację w ściekach po nitryfikacyjnych złożach biologicznych. Efektywność usuwania azotu ogólnego wzrosła z 53,5% do 86,0%.
- Maksymalna szybkość denitryfikacji (V_{max}) dla reaktora MBBR wynosi 0,78 gNO₃⁻-N/g s.m.·d, a wartości stałych Monoda dla łatwo rozkładalnego ChZT (K_{S,ChZT}) i azotanów V (K_{S,N}) wynoszą odpowiednio: 16,97 gO₂/m³ i 2,90 gNO₃⁻-N/m³.
- Na podstawie pomiarów wykonanych w warunkach laboratoryjnych określono, że szybkość procesu denitryfikacji dla reaktora MBBR można opisać równaniem:

$$r_{su} = 0.78 \cdot \frac{S_{ChZT}}{16,97 + S_{ChZT}} \cdot \frac{S_{NO3}}{2,90 + S_{NO3}}$$

4. Szybkość denitryfikacji w reaktorze ze złożem ruchomym zależy przede wszystkim od stężenia łatwo rozkładalnego węgla organicznego. Znaczenie stężenia azotanów V jest mniejsze, jedynie śladowe stężenia wpływają inhibitująco na proces.

- 5. W pilotowym reaktorze MBBR pracującym w trybie automatycznym uzyskano średnią szybkość denitryfikacji wynoszącą 0,73 gNO₃⁻-N/g s.m.·d, co odpowiada wydajności jednostkowej złoża: 3,43 gNO₃⁻-N/m²·d.
- Na podstawie działania reaktora MBBR (pracującego w trybie automatycznym) określono współczynnik przyrostu biomasy (Y), wynoszący 0,41 gs.m./gO₂ i specyficzną szybkość wzrostu bakterii denitryfikacyjnych (μ_{max}) wynoszącą 0,32 1/d.
- Biomasa reaktora składała się z części aktywnej (biorącej udział w denitryfikacji) i części nieaktywnej. Stosunek aktywnej biomasy do nieaktywnej ulegał zmianom i wzrastał po wstępnej adaptacji mikroorganizmów do procesu.
- 8. Ruchome wypełnienie EvU Perl posiada zdolność akumulowania i immobilizacji aktywnej biomasy, co zapewnia wzmożony rozwój mikroorganizmów i szybkie przejście z błony w postać swobodnej biomasy. Stężenie biomasy swobodnej w przeprowadzonych badaniach było zmienne i wynosiło maksymalnie 3,1 kg s.m./m³. Stężenie biomasy osiadłej nie ulegało zmianie i wynosiło 0,17 kg s.m./m³, co odpowiada 0,21 g/m² złoża.
- 9. Zastosowane w badaniach łatwo dostępne zewnętrzne źródło węgla organicznego (pożywka Brennta Plus) zapewnia znaczny wzrost szybkości denitryfikacji końcowej, co potwierdzają wartości stałej substratowej (K_{S,ChZT} = 16,97 gO₂/m³) i szybkość procesu (V_{max} = 0,78 gNO₃⁻-N/g s.m.·d).
- W procesie denitryfikacji, w warunkach wykluczających wpływ węgla endogennego, do usunięcia 1g NO₃⁻-N/m³ wymagane jest doprowadzenie materii organicznej w dawce 4,67 gO₂/m³ ChZT.
- 11. Uzyskana wartość szybkości denitryfikacji i wyznaczone współczynniki równania opisującego kinetykę procesu w warunkach laboratoryjnych zostały potwierdzone w badaniach terenowych w pilotowym reaktorze MBBR. Stałe szybkości reakcji miały podobne wartości, zaś różnice w stałych substratowych wynikały z obecności nierozkładalnej frakcji ChZT w doprowadzanych ściekach.

- 12. Ścieki doprowadzane do reaktora MBBR (po biologicznych złożach zraszanych realizujących proces nitryfikacji) zawierały nierozkładalną materię organiczną, co powodowało konieczność utrzymywania w reaktorze stężenia całkowitego ChZT na poziomie nie mniejszym niż 300 gO₂/m³, ze względu na konieczność zapewnienia przyswajalnego źródła węgla.
- 13. W ciągu technologicznym, za reaktorem MBBR przeprowadzającym denitryfikację końcową, potrzebne jest urządzenie do usuwania zawiesin organicznych powstających w złożu ruchomym. Może to być osadnik wtórny lub dysk filtracyjny.
- 14. Połącznie technologii złoża ruchomego z dozowaniem zewnętrznego węgla organicznego jest rozwiązaniem umożliwiającym efektywną denitryfikację końcową i może być porównywalne w działaniu z reaktorami osadu czynnego realizującymi ten proces.
- 15. Efektywne działanie reaktora w trybie automatycznym było możliwe dzięki inwestycji w prostą automatykę, która umożliwiła kontrolę procesu denitryfikacji końcowej. Dozowanie zewnętrznego węgla organicznego – preparatu Brennta Plus w dawce: 300 gO₂ ChZT / 50 gNO₃⁻-N i zachowanie wysokiej proporcji tych substratów umożliwia wydajny przebieg denitryfikacji.
- 16. Reaktor ze złożem ruchomym jest urządzeniem skutecznie usuwającym azotany V ze ścieków. Może być urządzeniem produkowanym seryjnie i wykorzystywanym w powstających oczyszczalniach lub modernizowanych obiektach w celu zapewnienia wyższej efektywności usuwania związków azotu.

9. Literatura

- Aesoy A., Odegaard H., Haegh M., Risla F., Bentzen G., 1998a. Uprgading wastewater treatment plants by the use of bioflim carriers, oxygen addition and pre-treatment in the sewer network. Water Science and Technology 37, (9), s. 159-166.
- 2. Aesoy A., Odegaard H., Bentzen G., 1998b. The effect of sulphide and organic matter on the nitrification activity in a biofilm process. Water Science and Technology 37, (1), s. 115-122.
- Aesoy, A., Odegaard H., 1994. Denitrification in Biofilms with Biologically Hydrolyzed Sludge as Carbon Source. Water Science and Technology 29, (10-11), s. 93-100.
- Albertson O.E., 1989. Optimizing Rotary Distributor Speed for Trickling Filters. Water Pollution Control Federation, Operators Forum 2, s. 54-60.
- Albertson O.E., Okey R.N., 1988. Trickling filters need to breathe too. Water Pollution Control Fedration, Des Moines, June. s. 111-119.
- 6. Albertson O.E. Optimizing Speed for Trickling Filters. Water Pollution Control Fedration, Operators Forum, 2, (1), s. 31-38.
- Andreottola G., Foladori P., Nardelli P., Denicolo A., 2005. Treatment of winery i a full scale fixed bed biofilm reactor. Water Science and Technology 51, s. 71-79.
- Andreottola G., Foladori P., Ragazzi M., Tatano F., 2000. Experimental comparizon between MBBR and acitivated sludge system for treatment of municipal wastewater. Water Science and Technology 41, (4-5), s. 375-382.
- 9. Arvin E., 1985. Biological Removal of Phosphorus from Wastewater. CRC Critical Reviews in Environmental Control, 15, (1), s. 25-65.

- Aryan A.F., Johnson S.H., 1987. Discussion of: A comparizon of trickling filter media. Journal Water Pollution Control Federation, 59, (10). s. 754-761.
- Aspegren H., Nyberg U., Andersson B., Gotthardsson S., Jansen J.la Cour, 1998. Post denitrification in a moving bed biofilm reactor process. Water Science and Technology 38, (1), s. 31-38.
- ATV A 281P West German Ein Regelwerk der Abwassertechnishen Vereinsgung (ATV), 2001. Arbeitblatt, Tropfkorperbemessung. ss.25.
- ATV A 135P West German Ein Regelwerk der Abwassertechnishen Vereinsgung (ATV), 1989. Arbeitblatt, Tropfkorperbemessung. ss. 17.
- Ber C., Wang L.K., 1978 Activated sludge system using nitrate respiration design considerations, Water Pollution Control Federation 50, s. 2120-2130.
- Barlindhaug J., Odegaard H., 1996. Thermal hydrolysate as a carbon source for denitrification. Water Science and Technology 33, (12), s. 99-108.
- 16. Barnard J.L., 1982. The influence of nitrogen on phosphorus removal in activated sludge plants. Water Science and Technology 14, s. 31-45.
- 17. Bartoszewski K., 1994. Technologie oczyszczania ścieków i przeróbki osadów stosowane w warunkach krajowych. Ochrona Środowiska 3-4, (54-55), s. 43-48.
- Beccari M., Passino R., Ramadori R., Tandoi V., 1983. Journal Water Pollution Control Federation 55, (1), s. 58-64.
- Bernat K., Wojnowska-Baryła I., Dobrzyńska A., 2005. Usuwanie związków azotowych w warunkach stałego napowietrzania. Biotechnologia 1, (68), s. 194 206.

- Bishop P. L., Zhang T. C., Fu Y., 1995. Effects of biofilm structure, microbial distributions and mass transport on biodegradation process. Water Science and Technology 31, (1), s. 143-152.
- 21. Boaventura R.A.R., Rodrigues A.E., 1997. Denitrification kinetics in a rotating disk biofilm reactor. Chemical Engineering Journal 65, s. 227-235.
- 22. Boller M., Gujer W., Tschui M., 1994. Parameters Affecting Nitrifying Biofilm Reactors. Water Science and Technology 29, (10-11), s. 1-11.
- Borregard V.R., 1997. Experience with nutrient removal in a fixed-film system at full scale wastewater treatment plants. Water Science and Technology 36, (1), s. 129-137.
- 24. Bovendeur J., Eding E.H., Henken A.M., 1987. Design and performance of a water recirculation system for high-density culture of the African catfish. Aquaculture 63, s. 329-353.
- 25. Briggs G.E., Haldane J.B.S., 1925. A note on the kinetics of enzyme action, Biochemical Journal 19, s 338–339.
- Choiński A., 1991. Katalog Jezior Polski. Uniwersytet Adama Mickiewicza. Poznań. ss. 157.
- Cema G., Płaza E., Trela J., Surmacz-Górska J., 2011. Dissolved oxygen as a factor influencing nitrogen removal rates in one-stage system with partial nitration and Anammox process. Water Science and Technology 64, (5), s. 1009-1015.
- Cema G., Płaza E., Surmacz-Górska J., Trela J., Miksch K., 2005. Study on evaluation of kinetic parameters of Anammox proces. IWA International Conference on Nutrient Management in Wastewater Treatment Processes and Recycle Streams, Krakow, 19-21 September, s. 379-388.

- Choiński A., 1991. Katalog jezior Polski. Uniwersytet A. Mickiewicza. Poznań, ss. 197.
- Christensen M.H., Harremoes P., 1977. Biological denitrification of sawage. A Literature Review, Progress in Water Technology 8, (4-5), s. 509-555.
- Christensson, M., Lie E., Welander T., 1994. A Comparison between Ethanol and Methanol as Carbon-Sources for Denitrification. Water Science and Technology 30, (6), s. 83-90.
- 32. Cyganecka A., Podedworna J., Żubrowska-Sudoł M., 2008. Usuwanie azotu ze ścieków w procesie denitryfikacji defosfatacyjnej. Optymalizacja usuwania azotu - doświadczenia krajowe i i zagraniczne – II seminarium naukowo-techniczne z cyklu biologiczne usuwanie związków biogennych, Warszawa. s. 190-200.
- Czernawski D.S., Romanowski J.M., Stiepanowa N.W., 1979. Modelowanie matematyczne w biofizyce. Państwowe Wydawnictwo Naukowe, Warszawa. s. 346.
- Dold P., Murthy S., Takacs I., Bye C., 2005. Batch test method for measuring methanol utilizer maximum specific growth rate. Water Environmental Federation, Washington. s. 278-284.
- 35. Dymaczewski Z. (red.), 2011. Poradnik eksploatatora oczyszczalni ścieków praca zbiorowa, Polskie Zrzeszenie Inżynierów i Techników, Poznań, ss. 1152.
- Eding E.H., Kamstra A., Verreth J.A.J., Huisman E.A., Klapwijk A., 2006. Designand operation of nitrifying trickling filters in recirculating aquaculture: A review. Aquacultural Engineering 34, s. 234-260.
- 37. Eikebrokk B., Piedrahita R.H., 1997. Nitrification performance and ammonia excretion from salmonids, calculated from nitrogen mas balances in water reuse systems under field and laboratory conditions. Aquaculture 7, s. 15-32.

- Ekama G.A., Marais G.R., 1984. Biological nitrogen removal. In Theory, Design and Operation of Nutrient Removal Acitvated Slugde Processes. South African Water Research Commision. Pretoria. s. 1-26.
- EPA Environment Protection Agency, 1975. Process design manual of nitrogen control. Technology Transfer, ss. 456.
- 40. Fegner B., 1970. Aktiverede slamanlaeg og biologiske filtre (Activated Sludge Plans and Biofilters). Stads og Havneingenioren 61, s. 47-54.
- Fux C., Boehler M., Huber P., Brunner I., Siegrist H., 2002. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology 99, s. 295-306.
- 42. Garzon-Zuniga M.A., Gonzalez-Martinez S., 1996. Biological phosphate and nitrogen removal in a biofilm sequencing batch reactor. Water Science and Technology 34, (1-2), s. 293-301.
- 43. Gdańska Fundacja Wody i Bawarski Krajowy Urząd Gospodarki Wodnej. 2004.
 Mikroskopowa analiza i ocena biologicznych procesów oczyszczania ścieków.
 Gdańsk, ss. 163.
- Główny Inspektorat Ochrony Środowiska, 2010. Raport o stanie środowiska w Polsce 2008. Biblioteka Monitoringu Środowiska, Warszawa, ss. 123.
- 45. Gomółka E., Szynok A., 1982. Chemia wody i powietrza. Wrocław, Politechnika Wrocławska, ss. 472.
- 46. Golz, W.J., Rusch, K.A., Malone, R.F., 1999. Modeling the major limitations on nitrification in floating-bead filters. Aquacultural Engineering 20, s. 43–61.

- Greiner A. D., Timmons M.B., 1998. Evaluation of the nitrification rates of microbead and trickling filters in an intensive recirculating tilapia production facility. Aquacultural Engineering 18, s. 189–200.
- Gujer M., Henze M., Mino T., Matsuo T., Wentzel M.C., Marais G.v.R., 1995a. The activated sludge model. No. 2: Biological phosphorus removal. Water Science and Technology 31, s. 1-11.
- Gujer M., Henze M., Mino T., Matsuo T., Wentzel M.C., Marais G.v.R., 1995b.
 Wastewater and biomass characterization for the activated sludge. No. 2. Biological phosphorus removal. Water Science and Technology 31, s. 13-23.
- 50. Hall, A.G., 1999. A comparative analysis of three biofilter types treating wastewater produced in recirculating aquaculture systems. Master's Thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia, s. 67.
- Hamlin H.J., Michaels J.T., Beaulaton C.M., Graham W.F., Dutt W., Steinbach P., Lo-sordo T.M., Schrader K.K., Main K.L., 2008. Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aqua-culture. Aquacultural Engineering 38, s. 79–92.
- Harremoes P., 1989. Teoretisk Vandhygiejne (Water Chemistry), Third edition, Polyteknisk Forlag, Lyngby, Denmark. ss. 889.
- Harremoes, P., 1982. Criteria for nitrification in fixed film reactors. Water Science and Technology 14, s. 167–187.
- Harrison J.R., Daigger G.T., 1987. Comparison of trickling media filter. Journal Water Pollution Control Federation 59, (7), s. 678-685.
- 55. Hartmann L., 1999. Biologiczne oczyszczanie ścieków. Instalator Polski, Warszawa. ss. 271.

- Heidrich Z., Kalenik M., Podedworna J., Stańko G., 2008. Sanitacja Wsi. Seidel-Przywecki, Warszawa, ss. 374.
- Heidrich Z., Stańko G., 2007. Leksykon przydomowych oczyszczalni ścieków. Seidel-Przywecki, Warszawa, ss. 150.
- 58. Helness H., Odegaard H., 2005. Biological phosphorus and nitrogen removal from municipal wastewater with a moving bed biofilm reactor. IWA International Conference on Nutrient Management in Wastewater Treatment Processes and Recycle Streams, Krakow, s. 435-444.
- Helness H., Odegaard H., 2001. Biological phosphorus and nitrogen removal in a sequencing batch moving bed biofilm reactor. Water Science and Technology 43, (1), s. 233-240.
- Helness H., Gisvold B., 2001. Simultaneous nitrification and denitrification in a MBBR. SINTEF Report no. STF66 F01013 ss. 136.
- 61. Hem, L.J., Rusten, B., Ødegaard, H., 1994. Nitrification in a moving bed biofilm reactor. Water Research 28, (6), s. 1425–1433.
- Henze M., Harremoes P., Jansen J., Arvin E., 2002. Oczyszczalnie ścieków procesy biologiczne i chemiczne. Wydawnictwo Politechniki Świętokrzyskiej. Kielce. ss. 359.
- Henze M., Grady C.P.L., Gujer W., Marais G.v.R., Matsuo T., 1987. Abbreviated report: A general model for single-sludge wastewater treatment systems. Water Research 21, s. 505-515.
- 64. Hermanowicz W., Dojlido J., Dożańska W., Koziorowski B., Zerbe J., 1999. Fizyczno-chemiczne badanie wody i ścieków. Arkady, Warszawa, s. 556.
- 65. Huzarska K., Kopeć Ł., Węsławski J.M., 2006. Polysaccharides effect on the sediment sloping movement laboratory experiment with artificial EPS. 2-nd

Gordon Reserarch Conference on Permeable Sediments, Colby College, Waterwille, Maine, USA. s. 321-322.

- Isaacs S., Hansen J.A., Schmidt K., Henze M., 1995. Examination of the activated sludge model No. 2 with an alternating process. Water Science and Technology 31, s. 55-65.
- 67. Jansen J. la Cour, Jepsen E., Dahlgren Laursen K., 1994. Carbon utilization in denitrifying biofilters. Water Science and Technology 29, (10-11), s. 101-109.
- Klimiuk E., Lossow K., Bulińska M., 1995. Kinetyka reakcji i modelowanie reaktorów biochemicznych w procesach oczyszczania ścieków. Wydawnictwo. Art, Olsztyn. ss. 158.
- Kowal A. L. (red.), 1997. Odnowa wody. Podstawy teoretyczne procesów, Politechnika Wrocławska, Wrocław.
- 70. Krause T.L., Schmidtke D.E., Modrick S., 1988. Rock Trickling Filter Media Can Still Be Viable. Operations Forum, June. s. 1-10.
- 71. Kristensen G.H., Jensen J. la. Cour., 1980. Fixed Film Kinetics: Description of Laboratory Equipment. Danmarks Tekniske Hojskole. Denmark. s. 89.
- Kujawa, K. & Klapwijk B., 1999. A method to estimate denitrification potential for predenitrification systems using NUR batch test. Water Research 33, (10), s. 2291-2300.
- Kukiełka L, 2000. Podstawy badań inżynierskich. Politechnika Koszalińska, Koszalin, s. 411.
- Kurbiel J., 1996. Wdrażanie nowoczesnych technologii oczyszczania ścieków w Polsce. Materiały konferencyjne NFOŚ, październik, Dębica. s. 1-9.

- 75. Lekang O., Kleppe H., 2000. Efficiency of nitrification in trickling filters using different filter media. Aquacultural Engineering 21, s. 181–199.
- 76. Lohmeyer G.T., 1957. Trickling filters and operation tips. Water Environment Federation 29, (1), s. 89-98.
- 77. Lopez, F.A., Vieira, M.J., Melo, L.F., 2000. Biological kinetics parameters in a pure culture biofilm developed in an airlift reactor. Texts of Posters of the 1st World Congress of the International Water Association, Paris, France, s. 1-4,
- Loveless J.E., Painter H.A., 1968. The Influence of Metal Ion Concentrations and pH Value on the Growth of a Nitrosomonas Strain Isolated from Activated Sludge. Journal of General Microbiology 52, s. 1-14.
- Łagód G., Sobczuk H., 2006. Transformation and biodegradation of pollutants in sewer systems as a processes leading to sewage selfpurification, Ecological Chemistry And Engineering 13, (3-4), s. 247-254.
- Łomotowski J., Szpindor A., 1999. Nowoczesne systemy oczyszczania ścieków. Arkady, Warszawa, s. 64.
- Makowska M., 2002. Obliczanie reaktorów ze złożem ruchomym na podstawie obciążenia biomasy ładunkiem zanieczyszczeń organicznych. Gaz, Woda i Technika Sanitarna 9, s. 336-338.
- Malone, R.F., DeLos Reyes, A.A., 1997. Categories of recirculating aquaculture systems. Aquacultural Engineering Society Proceedings III, Advances in Aquacultural Engineering, a publication of the Northeast Regional Agricultural Engineering Service, s. 197–208.
- 83. Malone R.F., Pfeiffer T.J., 2006. Rating fixed film nitrifying biofilters used in recirculating aquaculture systems. Aquacultural Engineering 34, s. 389–402.

- Manthe, D.P., Malone, R.F., Kumar, S., 1998. Submerged rock filter evaluation using an oxygen consumption criterion for closed recirculating system. Aquacultural Engineering 7, s. 97–111.
- Matasci, R.N., Keampfer C., Heidman J.A., 1986. Full-scale Studies of the Trickling Filter / Solids Contact Process. Journal Water Pollution Control Federation 58, (11), s. 1043-1049.
- 86. Materiały Informacyjne Ekofinn-Pol Sp. z o.o., 2011. ss. 12.
- 87. Materiały Informacyjne EvU Kielce Sp. z o.o., 2008. ss. 8.
- 88. Materiały Informacyjne Kaldnes Miljoteknologi AS, 2002. ss. 20.
- Mąkinia J., 2010. Mathematical Modelling and Computer Simulation of Activated Sludge Systems. IWA Publishing. London, ss. 390.
- 90. Mąkinia, J., Swinarski, M., Trela, J., 2008. Porównanie konwencjonalnych i alternatywnych źródeł węgla zewnętrznego. Badanie długości okresu adaptacji osadu czynnego do wybranego źródła węgla. W: II Seminarium naukowotechniczne z cyklu Biologiczne usuwanie związków biogennych pt. "Optymalizacja usuwania azotu - doświadczenia krajowe i zagraniczne", Warszawa 2008, s. 1-37.
- Mąkinia J., Czerwionka K., Drewnowski J., Swinarski M., Chrzanowska M., Fordoński W., 2009. Porównanie tradycyjnych i alternatywnych źródeł węgla zewnętrznego dla poprawy efektywności procesu denitryfikacji. Forum Eksploatatora 2, s. 15-20.
- 92. Mąkinia J., Czerwionka K., Oleszkiericz J., Kulbat E., Fudala-Książek S., 2011. A distillery by-product as an external carbon source for enhancing denitrification in main stream and side stream treatment processes. Water Science and Technology 64, (10), s. 2072-2079.
- 93. Mąkina J., 2006. Performance prediction of full-scale biological nutrient removal systems using complex activated sludge models. Veröffentlichungen des Institutes für Siedlungswasserwirtschaft und Abfalltechnik der Universität Hannover, Institut für Siedlungswasserwirtschaft und Abfalltechnik. Hannover, zeszyt 136, ss. 334.
- McCarty P.L., 1975. Multi-process biological treatment model, Journal Water Pollution Control Federation, ss. 2652
- 95. Metcalf and Eddy, Inc., 1991. Wastewater Engineering, Treatment, Disposal, and Reuse, Third edition. McGraw Hill Inc., New York, ss. 1334.
- Metcalf and Eddy, Inc., 2004. Wastewater Engineering, Treatment and Reuse, Fourth Edition. McGraw Hill Inc., New York, ss. 1819.
- 97. Mino, T. Tsuzuki Y., Matsuo T., 1987. Effect of Phosphorus Accumulation on Acetate Matabolism in the biological Phosphorus Removal Process. Biological Phosphate Removal from Wastewaters. Proceedings of an IAWPRC specialized conference held in Rome, Italy, s. 27-28.
- Monod J., 1949. The growth of bacterial cultures. Annual review of microbiology 3, s. 371-394.
- 99. Munch E.V., Barr K., Watts S., Keller J., 2000. Suspended carrier technology allows upgrading high-rate activated sludge plans for nitrogen removal via process intensification. Water Science and Technology 41, (4-5), s. 5-12.
- Nicoll E. H., 1988. Small Water Pollution Control Works design and practice.
 Ellis Horwood Limited, Chichester, England, ss. 502.
- 101. Nijhof M., 1995. Bacterial stratification and hydraulic loading effects in a plugflow model for nitrifying trickling filters applied in recirculating fish culture systems. Aquaculture 134, s. 49-64.

- Nurse, G.R., 1980. Denitrification with methanol: microbiology and biochemistry. Water Research 14, (5), s. 531–537.
- Nyberg U., Andersson B., Aspergen H., 1996. Long term experiences with external carbon sources for nitrogen removal. Water Science and Technology 33, (12), s. 109-116.
- 104. Obarska-Pempkowiak H., Gajewska M., Wojciechowska E., 2010. Hydrofitowe oczyszczalnie wód i ścieków. Wydawnictwo Naukowe PWN, Warszawa. ss. 308.
- 105. Odegaard H., 2005. Combining CEPT and biofilm systems. IWA International Conference on Nutrient Management in Wastewater Treatment Processes and Recycle Streams, Krakow, s. 425-433.
- Odegaard, H., Gisvold B., Strickland J., 2000. The influence of carrier size and shape in the moving bed biofilm process. Water Science and Technology 41, (4-5), s. 383-391.
- 107. Odegaard, H., Rusten, B., Siljudalen, J., 1999. The development of the moving bed biofilm process—from idea to commercial product. European Water Management 2, (3), s. 36–43.
- 108. Odegaard, H., Rusten, B., Westrum, T., 1994. A new moving bed biofilm reactor
 applications and results. Water Science and Technology 29, s. 157–165.
- 109. Odegaard H., Rusten B., 1993. Norwegian experiences with nitrogen removal in a moving bed bioflim reactor. Documentation of 9 EWPCA – ISWA Symposium, Liquid Wastes Section, Munchen 11-14 May, s. 205-221.
- 110. Odegaard,H., Rusten B., Hem, L., 1991a. "Nitrogen removal in a moving bed biofilm reactor". Proceedings 4. Fachtagung Weitergehende Abwasserreinigung als Beitrag zum Schutz von Nord- und Ostsee, Lübeck-Travemünde, s. 1-12.

- 111. Odegaard H., Paulsrud B., Bilstad T., Pettersen J.N., 1991b. Norwegian Strategies in the treatment of municipal wastewater towards reduction of nutrient discharge to the North Sea. Water Science and Technology 24, (10), s. 179-186.
- 112. Oleszkiewicz J.A., Barnard J.L., 2006. Nutrient Removal Technology in North America and the European Union: A Review. Water Quality Research Journal of Canada 41, (4), s. 449–462.
- 113. Onnis-Hayden A., Gu A., 2008. Comparisons of organic sources for denitrification: biodegradability, denitrification rates, kinetic constants and practical implication for their application in WWTPs. Proceedings of the 81st Annual Water Environment Federation Technical Exhibition and Conference, Chicago, Illinois, Oct. 18-22; Water Environment Federation: Alexandria, Virginia. s. 253-273.
- 114. Painter H.A., 1970. A review of literature on inorganic metabolism in microorganisms. Water Research 4, s. 393-450.
- 115. Parker, D.S., Jacobs, T., Bower, E., Stoiwe, D.W., Farmer, G., 1997. Maximizing trickling filter nitrification rates through biofilm control: research review and full scale application. Water Science and Technology 36, s. 255–262.
- 116. Pastorelli G., Andreottola G., Canziani R., Darriluat C., de Fraja Frangipane E. and Rozzi A., 1997. Organic carbon and nitrogen removal in moving-bed biofilm reactors. Water Science and Technology 35, (6), s. 91-99.
- 117. Persson E., Ljunggeren M., la Cour Jansen J., Strube R., Jonsson L., 2005. Disc filtration for separation of flocs from a moving bed bio-film reactor. IWA International Conference on Nutrient Management in Wastewater Treatment Processes and Recycle Streams, Krakow, s. 425-433.
- 118. Podedworna J., Żubrowska-Sudoł M., 2001. Wstępne doświadczenia w usuwaniu azotu i fosforu w sekwencyjnym reaktorze porcjowym ze złożem zawieszonym. Gaz Woda i Technika Sanitarna 9, s. 336-338.

- 119. Pöpel F., 1988. Lehrbuch fur Abwassertechnik und Gewasserschulz (Textbook for Wastewater Engineering and Protection of the Aquatic Environment), Deutscher Fachschriften-Verlag, Wiesbaden. ss. 322.
- Qasim S.R., 1985. Waste Treatment Plants: Planning, Design and Operation. Holt, Rinehart and Winston. New York. ss.1111.
- Rusten B., Eikebrokk B., Ulgenes Y., Lygren E., 2006. Design and operations of the Kaldnes moving bed biofilm reactors. Aquacultural Engineering 34, s. 322– 331.
- 122. Rusten B., 2001. Water treatment and flow rates at the Aquacria Arousa fish farm – tests and observations from side visits in March 2001. Aquateam Report 1, ss. 36.
- 123. Rusten B., Johson C.H., Devall S., Davoren D., Cashion B.S., 1999. Biological pretreatment of a chemical plants wastewater in high-rate moving bed biofilm reactors. Water Science and Technology 39, s. 257-264.
- 124. Rusten, B., Kolkinn, O. and Odegaard, H. (1997). Moving bed biofilm reactors and chemical precipitation for high efficiency treatment of wastewater from small communities. Water Science and Technology, 35, (6), s. 71-79.
- 125. Rusten, B., Wien, A., Skjefstad, J., 1996. Spent aircraft deicing fluid as external carbon source for denitrification of municipal wastewater: From waste problem to beneficial use. In: Purdue Industrial Waste Conference Proceedings, vol. 51. s. 359-370.
- Rusten, B., Hem, L.J., Ødegaard, H., 1995a. Nitrification of municipal wastewater in moving-bed biofilm reactors. Water Environment Research 67, (1), s. 75–86.

- 127. Rusten, B., Hem, L.J., Ødegaard, H., 1995b. Nitrogen removal from dilute wastewater in cold climate using moving bed biofilms reactors. Water Environment Research 67, (1), s. 65-74.
- Rusten, B., Siljudalen, J.G., Nordeidet, B., 1994. Upgrading to nitrogen removal with the KMT moving bed biofilm process. Water Science and Technology 29, (12), s. 185–195.
- Rusten,B., Ødegaard,H., Lundar, A., 1992. Treatment of dairy wastewater in a novel moving bed biofilm reactor. Water Science and Technology 26, (3-4), s. 703-711.
- Sage, M., G. Daufin & G. Gesan-Guiziou, 2006. Denitrification potential and rates of complex carbon source from dairy effluents in activated sludge system. Water Research 40, (14), s. 2747-2755.
- 131. Schroeder E.D., Tchobanoglous G., 1976. Mass transfer limitation on trickling filter design. Journal Water Pollution Control Federation 48, (4), s. 771-775.
- 132. Sin G., Kaelin D., Kampschreur M.J., Takács I., Wett B., Gernaey K.V., Rieger L., Siegrist H., van Loosdrecht M.C., 2008. Modelling nitrite in wastewater treatment systems: a discussion of different modelling concepts. Water Science and Technology 58, (6), s. 1155-71.
- 133. Siegrist H., Gujer W., 1985. Mass transfer mechanisms in heterotrophic biofilm. Water Research 19, s. 1369-1378.
- Sharma B., og Ahlert R.C., 1977. Nitrification and nitrogen removal. Water Research, 11, s. 897-925.
- Sobczyk L., Kisza A., Gatner K., Koll A., 1982. Eksperymentlna chemia fizyczna. Państwowe Wydawnictwo Naukowe. Warszawa, ss. 516.

- Stensel, H. D., R. C. Loehr & A. W. Lawrence (1973) Biological kinetics of suspended growth denitrification. *Journal Water Pollution Control Federation* 45, s. 249.
 - 137. Strous M., van Gerven E., Zheng P., Kuenen G.,J., Jetten M.S.M., 1997. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation process in different reactor configurations. Water Science and Technology 31, (8), s. 1955-1962.
 - Styka W., Bieńko P., 2007. Wpływ gospodarowania wodami osadowymi na usuwanie azotu ze ścieków miejskich. Gaz Woda i Technika Sanitarna 9, s. 16-20.
 - 139. Styka W., 2004. Ocena udziału defosfatacji denitryfikacyjnej w usuwaniu fosforu w reaktorach SBR. Gaz Woda i Technika Sanitarna 12, s. 436-441.
 - Suschka J., 2000. Złoża i filtry biologiczne, Wydawnictwo Politechniki Łódzkiej Filia w Bielsku Białej. Bielsko-Biała ss. 177.
 - 141. Szatkowska B., Płaza E., Trela J., Bosander J., Hultman B., 2005. Application of conductivity measurements for monitoring of nitrogen removal in the partial nitritation / Anammox process. IWA International Conference on Nutrient Management in Wastewater Treatment Processes and Recycle Streams, Krakow, 19-21 September, s. 717-724
 - 142. Szatkowska, B., Cema, G., Plaza, E., Trela, J., Hultman, B., 2007. One-stage system with partial nitritation and Anammox processes in moving-bed biofilm reactor. Water Science and Technology, 55, (8-9), s. 19-26.
 - 143. Szewczyk K.W., 2005. Bilansowanie i kinetyka procesów biochemicznych. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, ss. 102.
 - Szwerinski, H., Arvin, E., Harremoës, P., 1986. pH-decrease in a nitrifying biofilm. Water Research. Volume 20, Issue 8, August 1986, s. 971–976.

- 145. Tomlinson E.J., Bruce A.M., 1979. Problems of septicity in biological traeatment. Proc. on the Symposium: Septic Sewage problems and solutions. The Institute of Water Pollution Control, Bournemounth, s. 84-95.
- 146. Tomlinson T.G., Boon A.G., og Trotman G.N.A., 1966. Inhibition of Nitrification in the activated sludge Process of Sewage Disposal. Journal of Applied Bacteriology 29, s. 266-291.
- 147. Tracy K.D., og Flammino A., 1987. Biochemistry and Energetics of Biological Phosphorus Removal. Biological Phosphate Removal from Wastewaters. Proceedings of an IAWPRC specialized conference held in Rome, Italy, s. 15-26.
- 148. Trela J., Płaza E., Sztkowska B., Hultman B., Bosander J., Dahlberg A.G., 2004. Pilot-plant experiments with combined nitritation and anaerobic ammonium oxidation (Anammox) in biofilm system. 4th IWA World Water Congress and Exhibition. Marrakech, s. 534-543.
- Ulgenes Y., 1997. Behandling og sikring av avlop fra innlandsoppdrett. SINTEF Report, Trondheim, Norway, ss. 29.
- 150. van Hulle S., Vandeweyer B.D., Meesscheart P.A., 2010. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chemical Engineering Journal 162, s. 1-20.
- Water Pollution Control Federation, 1988. OiM of Trickling Filters, RBCs, and Related Processes, Manual of Practice OM-10. ss. 124.
- 152. Weiss J.S., Alvarez M., Tang C., Horvath R.W., Stahl J.F., 2005. Evaluation of Moving Bed Biofilm Reactor technology for enhancing nitrogen removal in a stabilization pond treatment plant. Proceedings of 78th Annual Water Environment Federation Technical Expositing and Conference. Washington D.C., 29 October – 2 November. Aleksandria. Virginia: Water Environment Federation, s. 3889-3904.

- 153. Wentzel M.C., Lötter L.H., Ekama G.A., Loewenthal R.E., Marais G. v. R., 1991a. Evaluation of biochemical models of biological excess phosphorus removal. Water Science and Technology 23, s. 567-576.
- 154. Wentzel M.C., Ekama G.A., Marais G. v. R., 1991b. Kinetics of nitrification denitrification biological excess phosphorus removal systems – a review. Water Science and Technology 23, s. 555-565.
- 155. Wentzel M.C., Dold P.L., Ekama G.A., Marais G. v. R., 1985. Kinetics of biological phosphorus release. Water Science and Technology 17, s. 57-71.
- 156. Wheaton F.W., 1977. Aquacultural Engineering. Wiley–Interscience, Oxford, ss. 708.
- 157. Zhu, S., Chen, S., 1999. An experimental study on nitrification biofilm performances using a series reactor system. Aquacultural Engineering 20, ss. 245–259.
- 158. Žubrowska-Sudoł M., Cyganecka A., 2008. Proces defosfatacji denitryfikacyjnej jako alternatywna metoda usuwania ze ścieków związków biogennych. Biotechnologia 1, (80), s. 136-145.
- 159. Żubrowska-Sudoł M., 2003. Efektywność usuwania związków węgla, azotu i fosforu w reaktorze porcjowym ze złożem zawieszonym – Rozprawa doktorska, Politechnika Warszawska, Wydział Inżynierii Środowiska, ss. 158.
- Żubrowska-Sudoł M., 2002. Analiza przemian azotu w sekwencyjnym reaktorze porcjowym ze złożem zawieszonym, Gaz Woda i Technika Sanitarna 11, s. 420-426.

10. Załączniki:

10.1 Zdjęcia reaktora MBBR w laboratorium i w skali technicznej

Rys. 10.1: Widok stanowiska laboratoryjnego (reaktor MBBR)

Rys. 10.2. Laboratoryjny reaktor w czasie pracy, widoczna na zdjęciu piana świadczy o powstawaniu azotu atmosferycznego - N_2 (produktu denitryfikacji)

Rys. 10.3. Wnętrze reaktora MBBR w skali technicznej (Gronowo Górne)

Rys. 10.4. Widok na oczyszczalnię w Gronowie Górnym, na pierwszym planie naczynie ze ściekami oczyszczonymi, w dali: naziemna część reaktora MBBR i złoża biologiczne

10.2 Tabelaryczne zestawienie wyników

Tabela 10.1: Stężenia substratów w okresie pierwszej godziny od startu denitryfikacji w warunkach nadmiaru zewnętrznego węgla organicznego.

				Se	eria 1	Se	eria 2	Se	ria 3	Se	eria 4
Dzień	Stężenie biomasy [g s.m./dm³]	Nr pomiaru	Czas [h]	NO ₃ -N [mg/dm ³]	ChZT [mgO ₂ /dm ³]	NO ₃ -N [mg/dm ³]	ChZT [mgO ₂ /dm ³]	NO ₃ -N [mg/dm ³]	ChZT [mgO ₂ /dm ³]	NO ₃ -N [mg/dm ³]	ChZT [mgO ₂ /dm ³]
		1	0,00	14,9	1160,0	7,7	991,0	3,8	974,0	82,6	1082,0
		2	0,25	14,3	1130,0	5,3	-	2,0	-	78,4	-
1	0.94	3	0,50	8,2	1118,0	2,8	975,0	1,4	-	72,6	-
1	0,94	4	0,75	4,5	1193,0	1,6	-	1,3	-	67,8	-
		5	1,00	3,1	1197,0	1,5	947,0	1,4	956,0	54,8	777,0
		6	1,25	2,4	972,0		-		-	50,4	-
		1	0,00	27,6	1419,0	27,1	986,0	43,4	1136,0	-	-
2		2	0,25	14,3	-	24,6	-	33,6	-	-	-
	1,58	3	0,50	7,7	-	15,6	-	24,8	1147,0	-	-
		4	0,75	4,5	-	10,7	-	16,1	-	-	-
		5	1,00	2,9	1044,0	4,8	953,0	10,8	1033,0	-	-
		1	0,00	132,5	4520,0	99,5	6135,0	81,2	4835,0	-	-
		2	0,25	114,5	4270,0	80,0	-	65,8	-	-	-
3	1,96	3	0,50	113,0	4320,0	67,0	-	52,4	-	-	-
		4	0,75	92,5	4145,0	53,5	-	38,6	-	-	-
		5	1,00	81,5	4085,0	40,1	-	27,8	-	-	-
		1	0,00	205,0	4540,0	-	-	-	-	-	-
		2	0,25	199,0	-	-	-	-	-	-	-
4	2.09	3	0,50	169,5	4455,0	-	-	-	-	-	-
4	2,08	4	0,75	154,5	-	-	-	-	-	-	-
		5	1,00	136,5	4405,0	-	-	-	-	-	-
		6	1,25	115,5	-	-	-	-	-	-	-
		1	0,00	410,5	-	352,5	-	-	-	-	-
		2	0,25	397,0	-	325,0	-	-	-	-	-
5	2,2	3	0,50	392,0	-	308,0	-	-	-	-	-
		4	0,75	370,0	-	281,0	-	-	-	-	-
		5	1,00	352,5	-	270,0	-	-	-	-	-

Tabela 10.2: Wartości średnie i błędy pomiarowe w laboratoryjnym doświadczeniu z nadmiarem zewnętrznego węgla organicznego

	i i i i i i i i i i i i i i i i i i i	11 7 D 14 01 D							
L.p.	t	tgα	Δtgα	Х	ΔX	C _N	ΔC_N	r _{su}	Δr_{su}
1	0,75	14,90	3,00	0,94	0,10	16,10	1,61	0,38	0,12
2	0,50	9,80	0,20	0,94	0,10	7,70	0,77	0,25	0,03
3	0,50	5,00	1,40	0,94	0,10	3,60	0,36	0,13	0,05
4	1,25	27,00	2,50	0,94	0,10	84,60	8,46	0,69	0,14
5	0,50	39,80	7,70	1,58	0,10	26,50	2,65	0,60	0,16
6	1,00	23,40	1,90	1,58	0,10	28,30	2,83	0,36	0,05
7	1,00	33,10	1,90	1,58	0,10	42,30	4,23	0,50	0,06
8	1,00	63,00	11,00	1,96	0,10	138,50	13,85	0,77	0,17
9	1,00	58,20	2,80	1,96	0,10	97,10	9,71	0,71	0,07
10	1,00	53,60	1,80	1,96	0,10	80,00	8,00	0,66	0,06
11	1,25	74,30	4,70	2,08	0,10	209,70	20,97	0,86	0,10
12	1,00	79,00	5,20	2,20	0,10	430,80	43,08	0,86	0,10
13	1,00	83,60	6,20	2,20	0,10	349,10	34,91	0,91	0,11

				Se	eria 1	Se	eria 2	Se	ria 3	Se	eria 4
Dzień	Stężenie biomasy [g s.m./dm³]	Nr pomiaru	Czas [h]	NO₃-N [mg/dm³]	ChZT [mgO ₂ /dm ³]	NO₃-N [mg/dm3]	ChZT [mgO ₂ /dm ³]	NO₃-N [mg/dm3]	ChZT [mgO ₂ /dm ³]	NO₃-N [mg/dm3]	ChZT [mgO ₂ /dm ³]
		1	0,00	213,0	169,0	-	-	-	-	-	-
		2	0,25		119,0	-	-	-	-	-	-
1	0,11	3	0,50	212,0	95,5	-	-	-	-	-	-
		4	0,75		68,6	-	-	-	-	-	-
		5	1,00	211,0	83,8	-	-	-	-	-	-
		1	0,00	276,0	138,0	305,0	170,0	420,0	249,0	398,0	488,0
		2	0,25		95,2				219,0		442,0
2	0,13	3	0,50	275,0	85,7	303,0	141,0	417,0	199,0	395,0	412,0
		4	0,75		84,2				193,0		398,0
		5	1,00	274,0		302,0	111,0	416,0	181,0	394,0	386,0
		1	0,00	475,0	283,0	525,0	712,0	498,0	824,0	-	-
		2	0,25		201,0		685,0		686,0	-	-
3	0,16	3	0,50	472,0	193,0	522,0	631,0	495,0	630,0	-	-
		4	0,75		186,0		576,0		602,0	-	-
		5	1,00	470,0	197,0	520,0	554,0	493,0	626,0	-	-

Tabela 10.3: Stężenia substratów w okresie pierwszej godziny od startu denitryfikacji w warunkach nadmiaru azotanów V.

Tabela 10.4: Wartości średnie i błędy pomiarowe w laboratoryjnym w doświadczeniu z nadmiarem azotanów V

L.p.	t	tgα	Δtgα	Х	ΔX	C _{ChZT}	ΔC_{ChZT}	r _{su}	Δr_{su}
1	1,00	2,00	1,10	0,11	0,01	28,00	2,80	0,44	0,28
2	1,00	2,00	1,10	0,13	0,01	14,00	1,40	0,37	0,23
3	1,00	3,00	0,60	0,13	0,01	59,00	5,90	0,55	0,15
4	1,00	4,00	1,20	0,13	0,01	127,00	12,70	0,74	0,28
5	1,00	4,00	1,20	0,13	0,01	369,00	36,90	0,74	0,28
6	1,00	5,00	0,60	0,16	0,01	91,00	9,10	0,75	0,14
7	1,00	5,00	0,60	0,16	0,01	537,00	53,70	0,75	0,14
8	1,00	5,00	0,60	0,16	0,01	590,00	59,00	0,75	0,14

Tabela 10.5: Stężenia początkowe i końcowe substratów oraz ich konsumpcja (ΔNO_3 -N i $\Delta ChZT$) podczas denitryfikacji w reaktorze MBBR.

	Stężenie	Stężenie	Stężenie	Stężenie						
seria po-	NO ₃ ⁻ -N po-	NO ₃ -N	ChZT począt-	ChZT koń-	$\Delta NO_3 - N$	Δ ChZT				
miarowa	czątkowe	końcowe	kowe	cowe	[mg/dm ³]	[mgO ₂ /dm ³]				
	[mg/dm ³]	[mg/dm ³]	[mgO ₂ /dm ³]	[mgO ₂ /dm ³]						
1	25,0	1,6	205	106	23,4	99				
2	23,4	8,6	209	130	14,9	79				
3	8,6	0,5	626	578	8,1	48				
4	23,6	10,6	136	72	13,1	64				
5	21,6	1,4	258	166	20,3	92				
6	26,6	0,5	546	423	26,1	123				

ao aanna e a	p				
	0700		Stężenie azotu	Stężenie azotu	Błąd pomiaru
L.p	Czas [min]	Czas [h]	azotanowgo	azotanowego	azotu
	[[[]]]		[mgNO ₃ ⁻ /dm ³]	[mgNO ₃ ⁻ -N/dm ³]	azotanowego
1	0	0,00	118,0	26,6	2,66
2	20	0,33	115,0	25,9	2,59
3	60	1,00	118,0	26,6	2,66
4	120	2,00	85,0	19,1	1,91
5	150	2,50	94,0	21,2	2,12
6	190	3,17	82,0	18,5	1,85
7	240	4,00	76,0	17,1	1,71
8	300	5,00	64,0	14,4	1,44
9	360	6,00	52,0	11,7	1,17
10	420	7,00	44,0	9,9	0,99
11	480	8,00	34,0	7,7	0,77
12	540	9,00	21,0	4,7	0,47
13	600	10,00	11,0	2,5	0,25

Tabela 10.6: Zmiany stężenia azotu azotanowego w reaktorze ze złożem ruchomym po dodaniu 3 dm³ pożywki Brennta Plus (ChZT wewnątrz reaktora MBBR – 468 mgO₂/dm³)

Tabela 10.7: Zmiany stężenia azotu azotanowego w reaktorze ze złożem ruchomym po dodaniu 1 dm³ pożywki Brennta Plus (ChZT wewnątrz reaktora MBBR – 156 mgO₂/dm³)

-					U
			Stężenie azotu	Stężenie azotu	Błąd pomiaru
l.p	t [min]	t [h]	azotanowgo	azotanowego	azotu
			[mgNO ₃ ⁻ /dm ³]	[mgNO ₃ ⁻ -N/dm ³]	azotanowego
1	0	0,00	120,0	27,0	2,70
2	60	1,00	104,0	23,4	2,34
3	120	2,00	98,0	22,1	2,21
4	240	4,00	76,0	17,1	1,71
5	360	6,00	56,0	12,6	1,26
6	480	8,00	44,0	9,9	0,99
7	600	10,00	30,0	6,8	0,68

Tabela 10.8: Zmiany stężenia azotu azotanowego w reaktorze ze złożem ruchomym po dodaniu 0,5dm³ pożywki Brennta Plus (ChZT wewnątrz reaktora MBBR – 78 mgO₂/dm³)

uouumu o,	20 dania 0,0 ani pozy wie Brenna 1 las (Ch21 We winger Feaktora WBBR 70 mgo 2 ani)										
			Stężenie azotu	Stężenie azotu	Błąd pomiaru						
l.p	t [min]	t [h]	azotanowgo	azotanowego	azotu						
			[mgNO ₃ ⁻ /dm ³]	[mgNO ₃ ⁻ -N/dm ³]	azotanowego						
1	0	0,00	120,0	27,0	2,70						
2	60	1,00	108,0	24,3	2,43						
3	180	3,00	96,0	21,6	2,16						
4	300	5,00	75,0	16,9	1,69						
5	420	7,00	69,0	15,5	1,55						
6	540	9,00	61,0	13,7	1,37						

Tabela 10.9: Zmiany stężenia azotu azotanowego w reaktorze ze złożem ruchomym przy braku dozowania pożywki Brennta Plus (ChZT wewnątrz reaktora MBBR – 32 mgO_2/dm³)

l.p	t [min]	t [h]	Stężenie azotu azotanowgo [mgNO ₃ ^{-/} dm ³]	Stężenie azotu azotanowego [mgNO ₃ ⁻ -N/dm ³]	Błąd pomiaru azotu azotanowego
1	0	0,00	127,8	28,8	2,88
2	60	1,00	127,6	28,7	2,87
3	120	2,00	126,4	28,4	2,84
4	240	4,00	124,0	27,9	2,79
5	360	6,00	125,0	28,1	2,81
6	480	8,00	122,8	27,6	2,76
7	600	10,00	122,4	27,6	2,76

Tabela 10.10: Zmiany stężeń biomasy osiadłej na kształtkach EvU Perl i biomasy swobodnej w reaktorze ze złożem ruchomym

Czas [d] (nr serii)	Czas [h]	Masa kształtek z biomasą [g s.m.]	Masa jałowych kształtek [g s.m.]	Różnica mas [g s.m.]	Średnia różnica mas [g s.m.]	Stężenie biomasy w 1 dm ³ złoża [g s.m./dm ³]	Błąd pomiarowy stężenia biomasy w 1 dm ³ złoża [g s.m./dm ³]	Stężenie biomasy w ściekach [g s. m./dm ³]	Średnie stężenie biomasy w ściekach (biomasy swobodnej) [g s.m./dm ³]	Błąd pomiarowy stężenia biomasy swobodnej [g s.m./dm ³]
		2,1460	2,1450	0,0010				0,345		
1	24	2,2052	2,2040	0,0012	0,0011	0,139	0,020	0,453	0,379	0,098
		2,2032	2,2021	0,0011				0,338		
		2,2349	2,2340	0,0009				1,110		
2	48	2,2061	2,2045	0,0016	0,0011	0,139	0,020	1,225	1,130	0,132
	2,2329	2,2321	0,0008				1,055			
3 72	2,0998	2,0986	0,0012				1,420	4 405		
	72	2,2797	2,2786	0,0011	0,0012	0,156	0,020	1,378	1,405	0,035
		2,2168	2,2154	0,0014				1,416		
		2,0991	2,0976	0,0015				1,608	1,725	
4	96	2,1565	2,1545	0,0020	0,0017	0,211	0,020	1,803		0,157
		2,3118	2,3103	0,0015				1,765		
_		2,1792	2,1778	0,0014				1,888		
5	120	2,2023	2,2009	0,0014	0,0014	0,177	0,020	1,857	1,848	0,070
		2,2889	2,2875	0,0014				1,798		
6		2,1906	2,1891	0,0015	0.004.4	0.404	0.000	2,030	2,000	0.004
6	144	2,2388	2,2380	0,0008	0,0014	0,181	0,020	1,952	2,000	0,064
		2,2018	2,1998	0,0020	-			2,017		
7	100	2,1990	2,1978	0,0012	0.001.4	0.477	0.020	2,144	2 4 2 2	0.1.40
7 168	168	2,2537	2,2523	0,0014	0,0014	0,177	0,020	2,201	2,122	0,140
		2,2367	2,2351	0,0016				2,021		
0	102	2,3319	2,3304	0,0015	0.0013	3 0,169	0,020	2,162	2,156	0,012
8 192	192	2,14//	2,1461	0,0016	0,0013			2,147		
		2,2617	2,2608	0,0009				2,159		

			2						
	Seria nr	Seria nr	Seria nr	Seria nr	Seria nr	Seria nr		Seria nr	Seria nr
Czas [h]	1 [mgNO ₃]	2 [mgNO₃	3 [mgNO₃	4 [mgNO₃	5 [mgNO₃	6 [mgNO₃	czas [h]	7 [mgNO₃	8 [mgNO₃
(interwał	-N/dm ³]	-N/dm ³]	-N/dm ³]	-N/dm ³]	-N/dm ³]	-N/dm ³]	(interwał	-N/dm ³]	-N/dm ³]
5 min)	(int.*	(int.*	(int.*	(int.*	(int.*	(int.*	1 min)	(int.*	(int.*
	5min)	5min)	5min)	5min)	5min)	5min)		1min)	1min)
0,00	39,56	22,29	21,53	19,55	25,03	16,85	0,00	22,29	26,45
0,08	39,18	22,18	20,90	18,65	21,32	12,59	0,02	21,58	26,31
0,17	39,01	21,91	20,54	17,80	18,11	8,81	0,03	21,21	23,88
0,25	39,18	21,81	19,99	16,89	16,44	7,52	0,05	20,34	21,91
-	-	-	-	-	-	-	0,07	18,29	19,94
-	-	-	-	-	-	-	0,08	16,60	18,42
-	-	-	-	-	-	-	0,10	15,42	17,15
-	-	-	-	-	-	-	0,12	14,42	16,08
-	-	-	-	-	-	-	0,13	13,39	15,34
-	-	-	-	-	-	-	0,15	12,65	14,21
-	-	-	-	-	-	-	0,17	12,10	13,56
-	-	-	-	-	-	-	0,18	11,49	12,90
-	-	-	-	-	-	-	0,20	11,01	12,31
-	-	-	-	-	-	-	0,22	10,72	11,80
-	-	-	-	-	-	-	0,23	10,33	11,34
-	-	-	-	-	-	-	0,25	9,88	10,90

Tabela 10.11: Zmiany stężeń azotanów V w czasie pierwszych 15 min w reaktorze MBBR w oczyszczalni w Gronowie Górnym

Tabela 10.12: Zmiany stężeń zewnętrznego węgla organicznego wyrażonego w ChZT w czasie 1,25 h w reaktorze MBBR w Gronowie Górnym

	Seria nr 1	Seria nr 2	Seria nr 3	Seria nr 4	Seria nr 5	Seria nr 6	Seria nr 7	Seria nr 8
Czas [h]	[mgO ₂							
	/dm ³]							
0,00	150	178	218	224	226	256	243	279
0,25	128	172	178	210	198	230	237	216
0,50	104	152	166	204	188	222	220	207
1,25	102	140	182	162	174	196	213	202

Nr serii	Całkowite stężenie biomasy [g s.m./dm ³]	Stężenie całkowitego ChZT [gO ₂ /m ³]	Błąd pomiaru stężenia ChZT	tgα	Szybkość denitryfikacji [gNO₃⁻-N /g s.m. ·d]	Błąd pomia- ru szybkości denitryfikacji
1	0,50	150,00	15,00	1,57	0,07	0,06
2	1,24	178,00	17,80	2,06	0,04	0,04
3	1,54	218,00	21,80	5,97	0,09	0,01
4	1,89	224,00	22,40	10,58	0,13	0,01
5	2,03	226,00	22,60	34,77	0,41	0,05
6	2,13	256,00	25,60	38,11	0,43	0,07
7	2,29	243,00	24,30	53,95	0,56	0,06
8	2,32	279,00	27,90	64,42	0,67	0,05

Tabela 10.13: Szybkości reakcji denitryfikacji uzyskane w reaktorze MBBR w Gronowie Górnym

Tabela 10.14: Wartości średnie i błędy pomiarowe w doświadczeniu z reaktorem MBBR w trybie manualnym (teren oczyszczalni)

L.p.	t	tgα	Δtgα	Х	ΔX	C _{ChZT}	ΔC_{ChZT}	C _N	ΔC_N	r _{su}	Δr_{su}
1	0,25	1,57	1,00	0,50	0,06	150,00	15,00	39,57	3,96	0,08	0,06
2	0,25	2,06	1,70	1,24	0,09	178,00	17,80	22,29	2,23	0,04	0,04
3	0,25	5,97	0,50	1,54	0,02	218,00	21,80	21,53	2,15	0,09	0,01
4	0,25	10,58	0,30	1,89	0,10	224,00	22,40	19,55	1,95	0,13	0,01
5	0,25	34,77	3,80	2,03	0,05	226,00	22,60	25,03	2,50	0,41	0,05
6	0,25	38,11	5,70	2,13	0,04	256,00	25,60	16,85	1,69	0,43	0,07
7	0,25	53,95	3,20	2,29	0,09	243,00	24,30	22,29	2,23	0,57	0,06
8	0,25	64,42	4,30	2,32	0,01	279,00	27,90	26,45	2,64	0,67	0,05

Nr serii	Stężenie biomasy [g s.m./dm³]	Stężenie całkowitego ChZT [mgO2/dm³]	Τgα	Szybkość de- nitryfikacji [gNO₃ ⁻ -N /g s.m. ∙d]
1	2,78	296	59,41	0,513
2	2,80	302	88,37	0,757
3	2,82	286	69,79	0,594
4	2,85	282	107,22	0,904
5	2,87	284	80,4	0,673
6	2,89	571	82,4	0,685
7	2,91	512	103,73	0,856
8	2,93	567	98,12	0,805
9	2,94	497	85,21	0,695
10	2,96	557	94,33	0,764
11	2,99	664	91,43	0,735
12	3,01	702	114,89	0,916
13	3,03	711	78,76	0,625
14	3,05	704	83,16	0,655
15	3,06	683	94,03	0,737
Średnia:	0,73			
Odchyleni	0,11			

Tabela 10.15: Zestawienie szybkość denitryfikacji (r_{su}) osiąganych w automatycznym MBBR

Tabelaryczne zestawienie wyników pomiarów uzyskanych przy pomocy sond pomiarowych i testów kuwetowych (reaktor MBBR w trybie manualnym):

0,06

Seria pomiarowa nr 1:

Błąd pomiarowy:

Tabela 10.16: Stężenia azotanów V i potencjału utleniającoredukującego w pierwszej serii pomiarowej

	Czas	Czas	Stęże-	Stężenie	Wartość potencjału
L.p.	[min]	[h]	nie NO ₃ [mg/dm ³]	N-NO ₃ [mg/dm ³]	utleniająco- redukującego [mV]
1	0	0,00	168,20	37,86	40,50
2	5	0,08	168,60	37,95	39,00
3	10	0,17	170,30	38,33	35,20
4	15	0,25	169,00	38,04	33,50
5	20	0,33	172,00	38,71	32,80

6	25	0,42	173,70	39,10	28,20
7	30	0,50	175,00	39,39	23,50
8	35	0.58	174,10	39,19	21.10
9	40	0,67	173,70	39,10	17,10
10	45	0.75	173,70	39.10	15.80
11	50	0.83	173.30	39.01	16.30
12	55	0.92	174.10	39.19	13.10
13	60	1.00	173.30	39.01	12.10
14	65	1.08	174.10	39,19	13.20
15	70	1.17	175.40	39.48	11.60
16	75	1.25	176.30	39.68	10.70
17	80	1.33	175.40	39,48	10.00
18	85	1.42	175.80	39.57	8.30
19	90	1.50	174.10	39.19	8.00
20	95	1,58	173.30	39.01	8,90
21	100	1,67	174.10	39.19	8,90
22	105	1,75	173.70	39.10	9.50
23	110	1,10	173 30	39.01	9.60
23	115	1,00	173,30	39.01	8 90
25	120	2 00	174 50	39.28	8.60
26	125	2,00	172.80	38.80	8 50
20	120	2,00	172,00	30,03	7 90
28	135	2,17	173,30	38 51	8 30
20	140	2,23	171,10	38 / 2	7 70
29	140	2,33	160.00	38.24	8 10
30	150	2,72	170 70	38 / 2	7 50
51	130	2,30	1/0./0	J0,4Z	7,50
32	155	2 58	168 60	37 05	7 20
32	155 160	2,58	168,60	37,95 38.24	7,20
32 33	155 160	2,58 2,67	168,60 169,90	37,95 38,24	7,20 7,30
32 33 34 35	155 160 165	2,58 2,67 2,75	168,60 169,90 169,00	37,95 38,24 38,04 38,04	7,20 7,30 7,30 7,80
32 33 34 35 36	155 160 165 170 175	2,58 2,67 2,75 2,83 2,92	168,60 169,90 169,00 169,00 168,60	37,95 38,24 38,04 38,04 37,95	7,20 7,30 7,30 7,80 7,80
32 33 34 35 36 37	155 160 165 170 175 180	2,58 2,67 2,75 2,83 2,92 3,00	168,60 169,90 169,00 169,00 168,60	37,95 38,24 38,04 38,04 37,95 37,95	7,20 7,30 7,30 7,80 7,30 7,30
32 33 34 35 36 37 38	155 160 165 170 175 180 185	2,58 2,67 2,75 2,83 2,92 3,00 3,08	168,60 169,90 169,00 168,60 168,60 168,60	37,95 38,24 38,04 38,04 37,95 37,95 37,47	7,20 7,30 7,80 7,80 7,80 7,80 7,80
32 33 34 35 36 37 38 38	155 160 165 170 175 180 185 190	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,10	37,95 38,24 38,04 38,04 37,95 37,95 37,47 37,38	7,20 7,30 7,30 7,80 7,30 7,80 7,70 8,60
32 33 34 35 36 37 38 39 40	155 160 165 170 175 180 185 190 195	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,10 165,70	37,95 38,24 38,04 38,04 37,95 37,95 37,47 37,38 37,29	7,20 7,30 7,30 7,80 7,30 7,80 7,80 7,70 8,60 8,80
32 33 34 35 36 37 38 39 40 41	155 160 165 170 175 180 185 190 195 200	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33	168,60 169,90 169,00 168,60 168,60 166,50 166,10 165,70 165,30	37,95 38,24 38,04 37,95 37,95 37,47 37,38 37,29 37,20	7,20 7,30 7,80 7,80 7,80 7,80 7,80 7,70 8,60 8,80 8,80 8,80
32 33 34 35 36 37 38 39 40 41 42	155 160 165 170 175 180 185 190 195 200 205	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,70 165,30 165,30	37,95 38,24 38,04 37,95 37,95 37,47 37,38 37,29 37,20 37,20	7,20 7,30 7,80 7,80 7,80 7,80 7,70 8,60 8,80 8,80 8,90 8,50
32 33 34 35 36 37 38 39 40 41 42 43	155 160 165 170 175 180 185 190 195 200 205 210	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50	168,60 169,90 169,00 169,00 168,60 166,50 166,10 165,30 165,30 163,70	37,95 38,24 38,04 37,95 37,95 37,47 37,38 37,29 37,20 37,20 36,84	7,20 7,30 7,30 7,80 7,30 7,80 7,70 8,60 8,80 8,80 8,90 8,50 8,50 8,60
32 33 34 35 36 37 38 39 40 41 41 42 43 44	155 160 165 170 175 180 185 190 195 200 205 210 215	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,10 165,30 165,30 163,70 164,50	37,95 38,24 38,04 37,95 37,95 37,47 37,38 37,29 37,20 37,20 36,84 37,02	7,20 7,30 7,30 7,80 7,30 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,60 8,60 8,40
32 33 34 35 36 37 38 39 40 41 42 43 44 45	155 160 165 170 175 180 185 190 195 200 205 210 215 220	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67	168,60 169,90 169,00 169,00 168,60 166,50 166,50 165,30 165,30 163,70 164,50 164,50	37,95 38,24 38,04 37,95 37,95 37,47 37,38 37,29 37,20 37,20 36,84 37,02 36,84	7,20 7,30 7,30 7,80 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,60 8,70 8,70 8,70
32 33 34 35 36 37 38 39 40 41 42 43 44 45	155 160 165 170 175 180 185 190 195 200 205 210 215 220 225	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,10 165,30 165,30 164,50 164,50 164,10	37,95 38,24 38,04 37,95 37,95 37,47 37,38 37,29 37,20 37,20 36,84 37,02 36,93 36,93	7,20 7,30 7,30 7,80 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,60 8,70 9,20
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83	168,60 169,90 169,00 169,00 168,60 166,50 166,10 165,30 165,30 164,50 164,50 164,10 164,10 162,50	37,95 38,24 38,04 37,95 37,95 37,47 37,38 37,29 37,20 37,20 36,84 37,02 36,84 37,02 36,93 36,93	7,20 7,30 7,30 7,80 7,30 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,60 8,50 8,60 8,50 8,60 8,50 8,60 8,50 8,60 8,50 8,50 8,50 8,50 8,50 8,50 8,50 8,50 8,50 8,50
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,10 165,30 165,30 164,50 164,50 164,10 162,50	37,95 38,24 38,04 37,95 37,95 37,47 37,38 37,29 37,20 37,20 37,20 36,84 37,02 36,93 36,93 36,93	7,20 7,30 7,30 7,80 7,80 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,50 8,50 8,50 8,50 8,50 8,50 8,50 8,50 8,50 8,50 8,50 8,50 8,50 8,50 8,50 8,40
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	155 160 165 170 175 180 185 190 195 200 205 210 225 230 235 240	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,50 165,30 165,30 164,50 164,10 162,50 162,10	37,95 38,24 38,04 37,95 37,95 37,47 37,38 37,29 37,20 37,20 36,84 37,02 36,83 36,93 36,93 36,93 36,57 36,48 36,24	7,20 7,30 7,30 7,80 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,50 8,60 8,50 8,60 8,50 8,60 8,40 8,70 9,20 8,50 8,40 8,20
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	155 160 165 170 175 180 185 190 195 200 205 210 225 230 235 240 245	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4 09	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,10 165,30 165,30 164,50 164,10 162,50 162,10 160,90	37,95 38,24 38,04 37,95 37,95 37,47 37,38 37,29 37,20 37,20 36,84 37,02 36,84 37,02 36,93 36,93 36,57 36,48 36,21 36,20	7,20 7,30 7,30 7,80 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,50 8,60 8,50 8,40 8,70 9,20 8,50 8,40 8,30 8,40 8,30 8,20
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	155 160 165 170 175 180 185 190 195 200 205 210 225 230 235 240 245	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08	168,60 169,90 169,00 169,00 168,60 166,50 166,10 165,30 165,30 164,50 164,10 162,50 162,10 162,50 161,30	37,95 38,24 38,04 37,95 37,95 37,47 37,38 37,29 37,20 37,20 36,84 37,02 36,84 37,02 36,93 36,93 36,57 36,48 36,21 36,30	7,20 7,30 7,30 7,80 7,30 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,50 8,60 8,50 8,60 8,40 8,70 9,20 8,50 8,40 8,30 8,80 8,80 8,80
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,50 165,30 165,30 164,50 164,10 162,50 162,10 161,30 161,30	37,95 38,24 38,04 38,04 37,95 37,95 37,47 37,38 37,29 37,20 36,84 37,20 36,84 37,02 36,93 36,93 36,93 36,93 36,93 36,93 36,57 36,48 36,21 36,30 36,30 36,30	7,20 7,30 7,30 7,80 7,80 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,50 8,60 8,50 8,60 8,40 8,70 9,20 8,50 8,40 8,30 8,40 8,30 8,40 8,50 8,40 8,50 8,50 8,50 8,40 8,30 8,80 8,90 8,50
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	155 160 165 170 175 180 185 190 195 200 205 210 225 230 235 240 245 250 255	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,22	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,50 165,30 165,30 164,50 164,10 162,50 162,10 161,30 161,30 160,90 150,70	37,95 38,24 38,04 38,04 37,95 37,95 37,47 37,38 37,29 37,20 36,84 37,20 36,84 37,02 36,93 36,93 36,93 36,57 36,48 36,21 36,30 36,21 36,21 36,21	7,20 7,30 7,30 7,80 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,50 8,60 8,50 8,60 8,40 8,70 9,20 8,50 8,40 8,30 8,40 8,50 8,40 8,50 8,80 8,50 8,50 8,50 8,50
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	155 160 165 170 175 180 185 190 195 200 205 210 225 230 235 240 245 250 255 260 265	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,33 4,42	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,10 165,30 165,30 164,50 164,10 162,50 162,10 161,30 161,30 159,70	37,95 38,24 38,04 38,04 37,95 37,95 37,47 37,38 37,29 37,20 37,20 36,84 37,02 36,84 37,02 36,93 36,93 36,57 36,48 36,21 36,30 36,30 36,21 35,94 25,95	7,20 7,30 7,30 7,80 7,30 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,50 8,60 8,80 8,90 8,50 8,60 8,40 8,70 9,20 8,50 8,40 8,50 8,80 8,90 8,50 8,70 8,70 8,70 8,70 8,70 8,70 8,70 8,70 8,70 8,70 8,70 8,70
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	155 160 165 170 175 180 185 190 195 200 205 210 225 230 235 240 255 260 255 260 265 270	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,33 4,42	168,60 169,90 169,00 169,00 168,60 166,50 166,10 165,30 165,30 164,50 164,10 162,50 162,10 162,50 161,30 161,30 159,70 159,30	37,95 38,24 38,04 38,04 37,95 37,95 37,47 37,38 37,29 37,20 37,20 36,84 37,02 36,84 37,02 36,93 36,93 36,57 36,48 36,21 36,30 36,30 36,21 35,94 35,85 26,02	7,20 7,30 7,30 7,30 7,80 7,30 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,40 8,70 9,20 8,50 8,40 8,70 9,20 8,50 8,40 8,70 9,20 8,50 8,40 8,70 9,10 9,20
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	155 160 165 170 175 180 185 190 195 200 205 210 225 230 235 240 245 250 260 265 270 275	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,33 4,42 4,50	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,50 165,30 165,30 164,50 164,10 162,50 162,10 161,30 161,30 159,70 159,30 160,10	37,95 38,24 38,04 38,04 37,95 37,95 37,47 37,38 37,29 37,20 36,84 37,20 36,84 37,02 36,83 36,93 36,93 36,93 36,93 36,57 36,48 36,21 36,30 36,30 36,21 35,94 35,85 36,03 25,42	7,20 7,30 7,30 7,80 7,80 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,50 8,60 8,50 8,60 8,40 8,70 9,20 8,50 8,40 8,70 9,20 8,50 8,40 8,70 9,10 9,00 9,00
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	155 160 165 170 175 180 185 190 195 200 205 210 225 230 235 240 245 250 260 265 270 275	2,58 2,67 2,75 2,83 2,92 3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,33 4,42 4,50 4,58	168,60 169,90 169,00 169,00 168,60 168,60 166,50 166,50 165,30 165,30 164,50 164,10 162,50 162,10 161,30 161,30 159,70 159,70 157,70	37,95 38,24 38,04 38,04 37,95 37,95 37,47 37,38 37,29 37,20 36,84 37,20 36,84 37,20 36,84 37,02 36,93 36,93 36,57 36,48 36,21 36,30 36,21 36,30 36,21 35,94 35,85 36,03 35,49 25,49	7,20 7,30 7,30 7,80 7,80 7,70 8,60 8,80 8,90 8,50 8,60 8,50 8,60 8,50 8,60 8,40 8,70 9,20 8,50 8,40 8,70 9,20 8,50 8,40 8,70 9,20 8,50 8,40 8,60 8,60 8,60 8,60 8,60 8,60 8,60 8,60 8,60

58	285	4,75	157,30	35,40	8,90
59	290	4,83	156,90	35,31	9,20
60	295	4,92	156,10	35,13	8,70
61	300	5,00	155,80	35,07	8,80
62	305	5,08	155,80	35,07	9,10
63	310	5.17	156.10	35.13	8.70
64	315	5.25	155.00	34.89	8.80
65	320	5.33	154.60	34.80	9.20
66	325	5.42	153.50	34.55	9.20
67	330	5.50	152.70	34.37	9.20
68	335	5.58	152.30	34.28	9.60
69	340	5.67	151.60	34.12	9.60
70	345	5.75	152.00	34.21	9.90
71	350	5.83	150.80	33.94	9.90
72	355	5.92	149.00	33.54	10.60
73	360	6.00	149.30	33.60	10.00
74	365	6.08	148.20	33.36	9,90
75	370	6 17	147.90	33 29	10.20
76	375	6.25	147 50	33 20	10,20
77	380	6,20	146.80	33.04	10,30
78	385	6 42	146.80	33.04	10,00
79	390	6.50	147.50	33.20	10,10
80	395	6 58	145 70	32 79	10,20
81	400	6.67	144 30	32.48	10,00
82	405	6 75	144 30	32.48	10,00
83	400	6.83	145,00	32 64	10,10
84	415	6.92	144 30	32.48	10,40
85	420	7.00	142 10	31 98	9.80
86	425	7.08	143.90	32 39	10 10
87	430	7,00	142.80	32,00	10,10
88	435	7 25	141 80	31.92	10,00
89	440	7.33	141 10	31.76	10,00
90	445	7 42	140 70	31.67	10,00
91	450	7 50	139.30	31.35	10,00
92	455	7.58	139.30	31.35	10,20
93	460	7,67	137.30	30,90	10,20
94	465	7 75	137.30	30,90	10,30
95	470	7.83	137.30	30,90	10,30
96	475	7,00	135,90	30,59	10,50
97	480	8.00	135,30	30.45	10,00
98	485	8.08	133,90	30 14	10,30
99	490	8 17	133 60	30.07	10.80
100	495	8 25	133.90	30.14	10,00
101	500	8.33	132 30	29 78	10.40
102	505	8,42	132 60	29.84	10.20
103	510	8.50	132 30	29.78	10.30
104	515	8.58	130.30	29.33	10.20
105	520	8,67	129 70	29,19	10 10
106	525	8 75	129 40	29.12	10.30
107	530	8 83	129 10	29.06	10.60
108	535	8.92	129.40	29.12	10.80
109	540	9,00	127.80	28.76	10.90

110	545	9,08	127,80	28,76	10,80
111	550	9,17	126,20	28,40	10,60
112	555	9,25	127,20	28,63	10,80
113	560	9,33	125,90	28,34	10,80
114	565	9,42	125,90	28,34	11,10
115	570	9,50	124,70	28,07	11,20
116	575	9,58	124,70	28,07	11,20
117	580	9,67	124,70	28,07	11,10
118	585	9,75	122,80	27,64	10,90
119	590	9,83	123,40	27,77	10,90
120	595	9,92	122,20	27,50	10,70
121	600	10,00	122,50	27,57	10,80
122	605	10,08	121,30	27,30	10,90
123	610	10,17	119,80	26,96	11,00
124	615	10,25	119,20	26,83	11,30
125	620	10.33	118.90	26.76	11.10
126	625	10.42	118.60	26.69	11.00
127	630	10.50	118.30	26.63	11.10
128	635	10.58	117.20	26.38	11.10
129	640	10.67	116.90	26.31	11.10
130	645	10,75	116.30	26.18	11,10
131	650	10.83	115.50	26.00	11.00
132	655	10.92	116 60	26.24	11 10
133	660	11.00	114.30	25.73	11,10
134	665	11.08	114 00	25.66	11.30
135	670	11 17	114 30	25.73	10,90
136	675	11.25	113.20	25.48	11.00
137	680	11.33	113 20	25.48	11,00
138	685	11.42	111.80	25.16	11.20
139	690	11.50	112.10	25.23	11.30
140	695	11.58	111.80	25.16	11.20
141	700	11.67	111.20	25.03	10.80
142	705	11.75	109.90	24.74	11.20
143	710	11.83	110.20	24.80	11.70
144	715	11.92	109.10	24.56	11.60
145	720	12.00	109.30	24.60	11.60
146	725	12.08	108.80	24.49	11.60
147	730	12.17	108.00	24.31	11.70
148	735	12.25	106.40	23.95	11.40
149	740	12.33	106.90	24.06	11.50
150	745	12.42	106.10	23.88	11.60
151	750	12.50	105.60	23.77	11.60
152	755	12.58	105.40	23.72	11.60
153	760	12.67	104.30	23.48	11.80
154	765	12.75	103.80	23.36	11.50
155	770	12.83	103.30	23.25	11.40
156	775	12.92	103.00	23.18	11.60
157	780	13.00	102.80	23.14	11.60
158	785	13.08	101.80	22.91	11.50
159	790	13.17	102.00	22.96	11.60
160	795	13.25	100,50	22,62	11.70
161	800	13,33	100,80	22,69	11,70

162	805	13,42	99,77	22,46	11,70
163	810	13,50	99,03	22,29	11,80
164	815	13,58	99,03	22,29	11,70
165	820	13,67	98,54	22,18	11,70
166	825	13.75	97.81	22.01	12.10
167	830	13.83	97.09	21.85	11.80
168	835	13.92	96.61	21.74	11.70
169	840	14.00	95.90	21.58	11.50
170	845	14.08	96.37	21.69	11 70
171	850	14 17	96 13	21.64	11 70
172	855	14.25	94,95	21.37	11,80
173	860	14.33	94 72	21.32	11.80
170	865	14 42	94 25	21,02	11,50
175	870	14 50	93.78	21,21	11,60
176	875	14,50	93 32	21,11	11,50
170	880	14,50	02.86	20.00	11,00
170	995	14,07	92,00	20,90	11,40
170	000	14,75	91,72	20,04	11,40
179	090	14,00	91,95	20,70	11,50
100	000	14,92	91,04	20,49	11,40
181	900	15,00	91,27	20,54	11,50
182	905	15,08	90,59	20,39	11,10
183	910	15,17	89,04	20,04	11,40
184	915	15,25	89,26	20,09	11,20
185	920	15,33	88,82	19,99	11,40
186	925	15,42	88,60	19,94	11,30
187	930	15,50	87,94	19,79	11,20
188	935	15,58	87,29	19,65	11,20
189	940	15,67	87,08	19,60	11,10
190	945	15,75	86,86	19,55	11,20
191	950	15,83	86,22	19,41	11,10
192	955	15,92	85,79	19,31	11,10
193	960	16,00	84,74	19,07	11,20
194	965	16,08	84,53	19,03	11,20
195	970	16,17	83,70	18,84	10,90
196	975	16,25	83,49	18,79	10,90
197	980	16,33	83,08	18,70	10,90
198	985	16,42	82,26	18,51	10,70
199	990	16,50	81,85	18,42	11,00
200	995	16,58	81,05	18,24	10,90
201	1000	16,67	80,65	18,15	11,20
202	1005	16,75	80,25	18,06	11,20
203	1010	16,83	79,46	17,88	11,20
204	1015	16,92	79,46	17,88	11,10
205	1020	17,00	78,29	17,62	11,00
206	1025	17,08	78,67	17,71	11,00
207	1030	17,17	77,90	17,53	11,00
208	1035	17,25	77,90	17,53	10,60
209	1040	17,33	76,75	17,27	10,60
210	1045	17,42	76,18	17,15	10,70
211	1050	17,50	76,56	17,23	10,60
212	1055	17,58	75,25	16,94	10,30
213	1060	17,67	75,81	17,06	10,60

214	1065	17,75	74,51	16,77	10,50
215	1070	17.83	74.32	16.73	10.30
216	1075	17.92	74.14	16.69	10.00
217	1080	18.00	72.87	16.40	9.60
218	1085	18.08	72.51	16.32	9 70
210	1000	18 17	72,51	16 32	9.80
220	1000	18.25	72,01	16.24	9.60
220	1100	18.33	71.61	16.12	9.50
221	1105	18/12	70.01	15.06	9,50
222	1110	18.50	70,91	15,30	9,50
223	1110	19.50	70,04	15.24	9,40
224	110	10,00	70,39	15,04	9,00
220	1120	10,07	60.19	15,05	9,40
220	1120	10,70	09,10	15,57	9,30
227	1130	18,83	08,84	15,49	9,20
228	1135	18,92	68,16	15,34	9,10
229	1140	19,00	68,16	15,34	9,10
230	1145	19,08	67,82	15,26	9,10
231	1150	19,17	66,99	15,08	9,00
232	1155	19,25	66,16	14,89	8,90
233	1160	19,33	66,49	14,97	8,80
234	1165	19,42	65,84	14,82	8,80
235	1170	19,50	65,51	14,74	8,90
236	1175	19,58	65,51	14,74	8,50
237	1180	19,67	64,71	14,56	8,40
238	1185	19,75	64,07	14,42	8,50
239	1190	19,83	63,75	14,35	8,50
240	1195	19,92	63,13	14,21	8,40
241	1200	20,00	63,28	14,24	8,40
242	1205	20,08	62,04	13,96	8,40
243	1210	20,17	62,35	14,03	8,40
244	1215	20,25	61,74	13,90	8,50
245	1220	20,33	61,58	13,86	8,30
246	1225	20,42	61,28	13,79	8,00
247	1230	20,50	60,83	13,69	7,90
248	1235	20,58	60,83	13,69	8,00
249	1240	20,67	60,23	13,56	7,90
250	1245	20,75	60,23	13,56	7,80
251	1250	20,83	59,49	13,39	7,90
252	1255	20,92	58,76	13,23	10,60
253	1260	21,00	58,32	13,13	10,30
254	1265	21,08	58,61	13,19	10,40
255	1270	21,17	57,75	13,00	10,40
256	1275	21,25	57,60	12,96	10,30
257	1280	21,33	56,90	12,81	10.20
258	1285	21,42	57.04	12,84	10.70
259	1290	21.50	56.48	12.71	10.30
260	1295	21.58	56.20	12.65	10.30
261	1300	21.67	55.64	12.52	9.90
262	1305	21.75	55,51	12,49	9,90
263	1310	21,83	54,69	12.31	10.30
264	1315	21.92	54.55	12.28	10.20
265	1320	22.00	54.69	12.31	10.00

266	1325	22,08	53,88	12,13	10,00
267	1330	22,17	53,75	12,10	10,10
268	1335	22,25	53,48	12,04	9,60
269	1340	22,33	53,48	12,04	9,00
270	1345	22,42	52,31	11,77	9,60
271	1350	22,50	52,70	11,86	9,70
272	1355	22,58	52,05	11,72	9,60
273	1360	22,67	51,66	11,63	9,90
274	1365	22,75	51,79	11,66	10,00
275	1370	22,83	51,66	11,63	9,90
276	1375	22,92	51,28	11,54	10,40
277	1380	23,00	51,03	11,49	10,10
278	1385	23,08	50,78	11,43	10,90
279	1390	23,17	50,15	11,29	10,50
280	1395	23,25	50,15	11,29	10,40
281	1400	23,33	50,03	11,26	12,50
282	1405	23,42	49,78	11,20	13,30
283	1410	23,50	49,66	11,18	13,50

Tabela 10.17: Stężenie ChZT i NH_4^+ występujące w pierwszej serii pomiarowej

	6	
Czas [h]	Stężenie ChZT [mgO ₂ /dm ₃]	Stężenie N-NH₄ ⁺ [mg/dm³]
0,00	180	11,71
0,25	188	-
0,50	210	-
1,25	164	-
2,75	162	-
4,75	158	-
6,75	146	-
23,50	108	10,93

Seria pomiarowa nr 2:

Tabela 10.18: Stężenie azotanów V i potencjału utleniającoredukującego w drugiej serii pomiarowej

L.p.	Czas [min]	Czas [h]	Stężenie NO ₃ [mg/dm ³]	Stężenie N-NO ₃ ⁻ [mg/dm ³]	Wartość potencjału utleniająco- redukującego [mV]
1	0	0,00	47,50	10,69	38,90
2	5	0,08	47,73	10,74	42,30
3	10	0,17	48,09	10,82	34,80
4	15	0,25	48,81	10,99	24,90
5	20	0,33	46,11	10,38	24,10
6	25	0,42	47,50	10,69	17,50
7	30	0,50	83,70	18,84	17,00

8	35	0,58	98,06	22,07	15,70
9	40	0,67	99,03	22,29	16,60
10	45	0,75	98,54	22,18	10,20
11	50	0,83	97,33	21,91	8,00
12	55	0,92	97,33	21,91	7,30
13	60	1,00	96,85	21,80	6,80
14	65	1,08	96,13	21,64	6,80
15	70	1,17	95,42	21,48	6,60
16	75	1,25	94,95	21,37	6,20
17	80	1,33	94,25	21,21	6,10
18	85	1,42	92,40	20,80	5,90
19	90	1,50	92,17	20,74	5,70
20	95	1,58	90,82	20,44	5,20
21	100	1,67	89,92	20,24	4,30
22	105	1.75	89.48	20.14	4.00
23	110	1,83	88,82	19,99	4,60
24	115	1.92	87.94	19.79	4.70
25	120	2.00	87.72	19.74	4.50
26	125	2.08	86.22	19.41	4.10
27	130	2.17	86.00	19.36	3.60
28	135	2.25	85.16	19.17	3.40
29	140	2.33	83.28	18.74	3.20
30	145	2.42	83.28	18.74	3.00
31	150	2.50	82.05	18.47	3.20
32	155	2.58	81,45	18.33	3.20
33	160	2.67	80.25	18.06	2.90
34	165	2.75	79.65	17.93	2.70
35	170	2.83	78.48	17.66	2.70
36	175	2.92	77.32	17.40	2.40
37	180	3.00	77.13	17.36	2.60
38	185	3,08	75,43	16,98	2,50
39	190	3.17	75.06	16.89	2.20
40	195	3,25	73,96	16,65	1,90
41	200	3,33	73,05	16,44	2,20
42	205	3,42	72,87	16,40	1,50
43	210	3,50	71,79	16,16	1,30
44	215	3,58	70,21	15,80	1,80
45	220	3,67	69,35	15,61	1,30
46	225	3,75	69,01	15,53	1,30
47	230	3,83	67,65	15,23	1,30
48	235	3,92	66,99	15,08	1,00
49	240	4,00	66,16	14,89	0,70
50	245	4,08	64,71	14,56	0,40
51	250	4,17	63,44	14,28	0,40
52	255	4,25	63,13	14,21	0,30
53	260	4,33	61,89	13,93	0,00
54	265	4,42	60,98	13,72	-0,10
55	270	4,50	60,38	13,59	-0,60
56	275	4,58	59,05	13,29	-0,60
57	280	4,67	58,47	13,16	-1,00
58	285	4,75	58,03	13,06	-1,20
59	290	4,83	56,90	12,81	-1,60

60	295	4,92	55,37	12,46	-1,70
61	300	5,00	55,10	12,40	-1,80
62	305	5,08	54,42	12,25	-2,20
63	310	5,17	53,48	12,04	-2,30
64	315	5,25	52,31	11,77	-2,60
65	320	5,33	50,90	11,46	-2,90
66	325	5,42	50,28	11,32	-2,70
67	330	5,50	49,05	11,04	-3,30
68	335	5,58	48,33	10,88	-3,10
69	340	5,67	47,38	10,66	-3,60
70	345	5,75	46,68	10,51	-4,00
71	350	5,83	45,54	10,25	-4,50
72	355	5,92	43,99	9,90	-4,20
73	360	6,00	43,56	9,80	-5,00
74	365	6,08	42,49	9,56	-5,80
75	370	6,17	40,84	9,19	-6,20
76	375	6,25	40,14	9,03	-5,60
77	380	6,33	40,24	9,06	-6,00
78	385	6,42	39,36	8,86	-6,50
79	390	6,50	38,78	8,73	-6,80
80	395	6,58	37,46	8,43	-7,00
81	400	6,67	36,90	8,31	-7,90
82	405	6,75	35,74	8,04	-8,70
83	410	6,83	35,12	7,90	-8,70
84	415	6,92	34,10	7,67	-8,90
85	420	7,00	33,51	7,54	-9,20
86	425	7,08	31,97	7,20	-9,70
87	430	7,17	31,50	7,09	-10,80
88	435	7,25	30,73	6,92	-10,90
89	440	7,33	29,98	6,75	-11,60
90	445	7,42	29,10	6,55	-12,50
91	450	7,50	28,68	6,46	-13,20
92	455	7,58	27,84	6,27	-13,30
93	460	7,67	27,22	6,13	-15,20
94	465	7,75	26,69	6,01	-14,80
95	470	7,83	25,53	5,75	-14,70
96	475	7,92	25,15	5,66	-15,30
97	480	8,00	24,54	5,52	-15,80
98	485	8,08	24,24	5,46	-16,50
99	490	8,17	23,35	5,26	-16,90
100	495	8,25	23,12	5,20	-17,80
101	500	8,33	22,28	5,01	-18,70
102	505	8,42	22,06	4,97	-18,80
103	510	8,50	21,90	4,93	-19,70
104	515	8,58	21,68	4,88	-20,40
105	520	8,67	20,95	4,72	-21,20
106	525	8,75	20,89	4,70	-21,80
107	530	8,83	20,33	4,58	-22,50
108	535	8,92	20,33	4,58	-23,00
109	540	9,00	20,18	4,54	-24,00
110	545	9,08	19,98	4,50	-24,70
111	550	9,17	19,64	4,42	-25,10

112	555	9,25	19,54	4,40	-25,60
113	560	9,33	19,11	4,30	-25,90
114	565	9,42	18,88	4,25	-26,50
115	570	9,50	18,97	4,27	-26,90
116	575	9,58	18,79	4,23	-27,60
117	580	9.67	18.56	4.18	-27.90
118	585	9,75	18,33	4,13	-28,40
119	590	9.83	18.42	4.15	-29.10
120	595	9.92	18.24	4.11	-29.90
121	600	10.00	18.01	4.05	-30.60
122	605	10.08	18.10	4.07	-31.20
123	610	10.17	17.84	4.02	-31.80
124	615	10.25	17.75	4.00	-32.50
125	620	10.33	17.75	4.00	-33.30
126	625	10.42	17.62	3.97	-33 70
127	630	10,50	17,52	3.95	-34 40
128	635	10.58	17,80	3.92	-34 90
120	640	10,50	17,40	3.92	-35 30
130	645	10,07	17 27	3.80	-35 50
131	650	10,73	17,27	3 00	-35 50
132	655	10,00	17,31	3.88	-35,30
132	660	11.00	17,25	3.86	-35.80
124	665	11,00	17,14	2.97	-35,00
134	670	11,00	17,19	2.00	-30,00
130	675	11,17	17,23	3,00	-35,60
100	675	11,20	17,00	3,04	-35,00
137	660	11,33	10,93	3,01	-35,30
130	600	11,42	17,14	3,00	-35,00
139	690	11,50	16,97	3,82	-34,40
140	695	11,58	17,10	3,85	-34,50
141	700	11,07	16,93	3,81	-34,30
142	705	11,75	16,77	3,77	-34,20
143	710	11,83	16,81	3,78	-33,90
144	715	11,92	16,81	3,78	-33,90
145	720	12,00	16,85	3,79	-33,90
146	725	12,08	16,85	3,79	-34,50
147	730	12,17	16,64	3,75	-34,30
148	735	12,25	16,72	3,76	-34,40
149	740	12,33	16,72	3,76	-34,70
150	745	12,42	16,56	3,73	-35,20
151	/50	12,50	16,60	3,74	-35,40
152	/55	12,58	16,60	3,74	-35,90
153	760	12,67	16,48	3,71	-35,90
154	/65	12,75	16,56	3,73	-36,40
155	/70	12,83	16,48	3,71	-36,90
156	//5	12,92	16,48	3,71	-37,10
157	780	13,00	16,32	3,67	-37,10
158	785	13,08	16,40	3,69	-37,50
159	790	13,17	16,36	3,68	-38,10
160	795	13,25	16,24	3,66	-38,50
161	800	13,33	16,24	3,66	-38,70
162	805	13,42	16,28	3,66	-38,90
163	810	13,50	16,12	3,63	-38,90

164	815	13,58	16,04	3,61	-39,30
165	820	13,67	16,20	3,65	-39,70
166	825	13,75	16,00	3,60	-40,00
167	830	13,83	16,08	3,62	-40,30
168	835	13,92	16,00	3,60	-40,60
169	840	14.00	16.04	3.61	-41.30
170	845	14,08	15,92	3,58	-41,90
171	850	14.17	16.00	3.60	-42.50
172	855	14.25	16.00	3.60	-42.70
173	860	14.33	16.00	3.60	-43.00
174	865	14.42	15.84	3.57	-43.60
175	870	14.50	15.68	3.53	-43.70
176	875	14.58	15.72	3.54	-44.10
177	880	14.67	15.88	3.57	-44.50
178	885	14.75	15.68	3.53	-45.10
179	890	14 83	15,80	3 56	-45 40
180	895	14 92	15 64	3.52	-45 40
181	900	15.00	15 57	3 50	-45 40
182	905	15.08	15 57	3 50	-45 80
183	910	15 17	15,57	3 50	-46 20
184	915	15 25	15,57	3 50	-46 30
185	920	15 33	15,33	3.54	-47.00
186	925	15.00	15,72	3/0	-47,00
187	920	15,42	15,49	3.45	-47,30
188	935	15,50	15,34	3.44	-48.40
190	933	15,50	15,30	2.44	-40,40
109	940	15,07	15,30	2 4 2	-40,00
190	945	15,75	15,19	2.44	-49,10
102	950	15,03	15,30	3,44	-49,30
192	955	16.00	15,20	2.45	-49,00
193	900	16.09	15,54	2 /1	-50,10
194	903	16.17	15,15	2.41	-50,40
195	970	16.25	15,15	3,41	-50,60
190	975	16.22	14.06	3,40	-51,20
197	900	16.40	14,90	3,37	-51,50
190	965	16.50	15,11	3,40	-31,60
199	990	16,50	13,04	3,39	-52,10
200	995	10,00	14,93	3,30	-52,40
201	1000	16.75	14,90	3,37	-32,60
202	1005	16.00	14,02	3,34	-53,10
203	1010	16,03	14,70	3,33	-53,30
204	1015	10,92	14,70	3,33	-53,90
205	1020	17,00	14,62	3,34	-54,20
206	1025	17,08	14,82	3,34	-54,20
207	1030	17,17	14,71	3,31	-54,70
208	1035	17,25	14,71	3,31	-54,80
209	1040	17,33	14,63	3,29	-55,20
210	1045	17,42	14,60	3,29	-53,50
211	1050	17,50	14,49	3,26	-51,00
212	1055	17,58	14,49	3,26	-46,70
213	1060	17,67	14,60	3,29	-44,60
214	1065	1/,/5	14,49	3,26	-41,80
215	1070	17,83	14,63	3,29	-38,90

216	1075	17,92	14,60	3,29	-35,00
217	1080	18,00	14,67	3,30	-31,90
218	1085	18,08	14,49	3,26	-30,90
219	1090	18,17	14,49	3,26	-30,30
220	1095	18,25	14,56	3,28	-29,50
221	1100	18,33	14,56	3,28	-28,70
222	1105	18,42	14,56	3,28	-28,10
223	1110	18,50	14,53	3,27	-27,20
224	1115	18,58	14,60	3,29	-27,00
225	1120	18,67	14,49	3,26	-27,00
226	1125	18,75	14,49	3,26	-26,80
227	1130	18,83	14,56	3,28	-26,90
228	1135	18,92	14,45	3,25	-27,70
229	1140	19,00	14,42	3,25	-27,30
230	1145	19,08	14,49	3,26	-26,90
231	1150	19,17	14,38	3,24	-27,10
232	1155	19.25	14.42	3.25	-27.10
233	1160	19.33	14.31	3.22	-27.10
234	1165	19.42	14.35	3.23	-26.80
235	1170	19.50	14.45	3.25	-25.80
236	1175	19.58	14.42	3.25	-24.50
237	1180	19.67	14.45	3.25	-22.80
238	1185	19.75	14.45	3.25	-21.00
239	1190	19.83	14.38	3.24	-19.10
240	1195	19.92	14.28	3.21	-17.60
241	1200	20.00	14.35	3.23	-15.70
242	1205	20.08	14.49	3.26	-13.90
243	1210	20,17	14,49	3,26	-12,10
244	1215	20,25	14,45	3,25	-10,30
245	1220	20,33	14,45	3,25	-8,70
246	1225	20,42	14,38	3,24	-7,10
247	1230	20,50	14,49	3,26	-5,60
248	1235	20,58	14,35	3,23	-4,40
249	1240	20,67	14,49	3,26	-3,20
250	1245	20,75	14,38	3,24	-2,00
251	1250	20,83	14,45	3,25	-1,00
252	1255	20,92	14,35	3,23	-0,20
253	1260	21,00	14,53	3,27	0,70
254	1265	21,08	14,45	3,25	1,60
255	1270	21,17	14,42	3,25	2,40
256	1275	21,25	14,38	3,24	3,00
257	1280	21,33	14,35	3,23	3,60
258	1285	21,42	14,35	3,23	4,20
259	1290	21,50	14,35	3,23	4,80
260	1295	21,58	14,38	3,24	5,40
261	1300	21,67	14,42	3,25	5,80
262	1305	21,75	14,45	3,25	6,10
263	1310	21,83	14,35	3,23	6,30
264	1315	21,92	14,42	3,25	6,70
265	1320	22,00	14,38	3,24	6,90
266	1325	22,08	14,45	3,25	7,30
267	1330	22,17	14,38	3,24	7,40

268	1335	22,25	14,53	3,27	7,60
269	1340	22,33	14,56	3,28	7,80
270	1345	22,42	14,53	3,27	8,00
271	1350	22,50	14,53	3,27	8,00
272	1355	22,58	14,49	3,26	8,10
273	1360	22,67	14,56	3,28	8,10
274	1365	22,75	14,53	3,27	8,10
275	1370	22,83	14,53	3,27	8,20
276	1375	22,92	14,45	3,25	8,30
277	1380	23,00	14,42	3,25	8,10
278	1385	23,08	14,56	3,28	8,20
279	1390	23,17	14,45	3,25	8,10
280	1395	23,25	14,45	3,25	8,00
281	1400	23,33	14,60	3,29	7,80
282	1405	23,42	14,49	3,26	7,50
283	1410	23,50	14,45	3,25	7,40
284	1415	23,58	14,53	3,27	7,20
285	1420	23,67	14,45	3,25	6,90
286	1425	23,75	14,63	3,29	6,70
287	1430	23,83	14,56	3,28	6,40
288	1435	23,92	14,49	3,26	6,20
289	1440	24,00	14,60	3,29	6,00
290	1445	24,08	14,53	3,27	5,50
291	1450	24,17	14,56	3,28	5,30
292	1455	24,25	14,45	3,25	4,90
293	1460	24,33	14,60	3,29	4,70
294	1465	24,42	14,53	3,27	4,70
295	1470	24,50	14,49	3,26	3,90
296	1475	24,58	14,56	3,28	3,60
297	1480	24,67	14,42	3,25	3,30

Tabela	10.19:	Stężei	nia	ChZ	ĽΤ	i
$\mathrm{NH_4}^+$	występuj	ące w	dru	giej	ser	ii
nomia	rowei					

ponnarone	J	
Czas [h]	Stężenie ChZT [mgO ₂ /dm ³]	Stężenie N-NH4 ⁺ [mg/dm ³]
0,00	232	14,06
0,25	238	-
1,25	200	-
3,25	212	-
24,67	128	10,93

Seria pomiarowa nr 3:

					Wartość
	Czas	Czas	Stęże-	Stężenie	potencjału
L.p.	[min]	[h]	nie NO $_3$	N-NO ₃	utleniająco-
			[mg/am*]	[mg/am ⁻]	redukującego
1	0	0.00	14.62	2 20	[1117]
2	5	0,00	14,03	3,29	-04,40
2	5 10	0,08	14,71	3,31	-75,30
3	10	0,17	14,74	3,32	-27,20
4	15	0,25	38,39	8,64	2,60
5	20	0,33	96,13	21,64	16,50
6	25	0,42	125,00	28,13	16,10
1	30	0,50	117,20	26,38	0,80
8	35	0,58	101,00	22,73	-8,60
9	40	0,67	95,66	21,53	-17,10
10	45	0,75	92,86	20,90	-28,30
11	50	0,83	91,27	20,54	-35,30
12	55	0,92	88,82	19,99	-40,20
13	60	1,00	87,94	19,79	-44,30
14	65	1,08	85,16	19,17	-47,10
15	70	1,17	83,70	18,84	-48,50
16	75	1,25	82,67	18,61	-49,30
17	80	1,33	80,25	18,06	-49,80
18	85	1,42	78,09	17,58	-50,00
19	90	1,50	76,75	17,27	-51,60
20	95	1,58	74,32	16,73	-52,80
21	100	1,67	73,96	16,65	-53,60
22	105	1,75	71,97	16,20	-54,20
23	110	1,83	70,21	15,80	-55,00
24	115	1,92	68,16	15,34	-54,60
25	120	2,00	65,67	14,78	-55,00
26	125	2,08	63,75	14,35	-55,70
27	130	2,17	60,38	13,59	-55,90
28	135	2,25	58,03	13,06	-56,20
29	140	2,33	54,96	12,37	-56,60
30	145	2,42	52,31	11,77	-56,70
31	150	2,50	51,79	11,66	-56,90
32	155	2,58	49,78	11,20	-57,30
33	160	2,67	46,56	10,48	-57,70
34	165	2,75	43,77	9,85	-58,10
35	170	2,83	43,99	9,90	-58,50
36	175	2,92	41,15	9,26	-58,70
37	180	3,00	39,06	8,79	-58,90
38	185	3,08	37,27	8,39	-59,00
39	190	3,17	33,93	7,64	-59,20
40	195	3,25	31,74	7,14	-59,50
41	200	3,33	31,42	7,07	-59,60
42	205	3,42	30,13	6,78	-59,60
43	210	3,50	28,89	6,50	-59,80
44	215	3,58	28,04	6,31	-60,10

Tabela 10.20: Stężenie azotanów V i potencjału utleniającoredukującego w trzeciej serii pomiarowej

45	220	3,67	26,43	5,95	-60,20
46	225	3,75	24,78	5,58	-60,40
47	230	3,83	22,95	5,17	-60,70
48	235	3,92	21,74	4,89	-60,70
49	240	4,00	20,95	4,72	-61,10
50	245	4.08	20.03	4.51	-61.10
51	250	4,17	19,07	4,29	-61,30
52	255	4.25	18.65	4.20	-61.40
53	260	4.33	17.84	4.02	-61.70
54	265	4,42	17.02	3.83	-61.90
55	270	4.50	16.40	3.69	-61.80
56	275	4.58	16.60	3.74	-61.80
57	280	4.67	16.28	3.66	-61.90
58	285	4.75	15.68	3.53	-61.70
59	290	4.83	15.26	3.43	-61.20
60	295	4.92	15.04	3.39	-60.70
61	300	5.00	14 93	3.36	-60.20
62	305	5.08	14 82	3.34	-59.60
63	310	5 17	14 45	3 25	-59.20
64	315	5 25	14.28	3 21	-58.80
65	320	5 33	14,20	3.22	-58 30
66	325	5.42	14 21	3 20	-58 20
67	330	5 50	1/ 21	3 20	-58 10
68	335	5,50	14,21	3.20	-57,00
60	340	5,50	14.07	3 17	-57,90
70	240	5,07	12.90	2 12	-58,00
70	250	5,75	12.09	2 12	-58,00
70	255	5,05	12.09	2 1 2	-50,10
72	300	5,92	12.09	2 12	-30,20
73	265	6.09	12.09	2 11	-38,10
74	270	6.17	12.02	2.14	-30,20
75	275	6.25	12.95	2 1 2	-30,20
70	200	0,20	12.09	214	-36,40
70	295	6.42	12.90	2 12	-58,40
70	200	0,42	12,09	2 10	-50,50
79 00	205	0,50	12 70	3,10	-56,60
00	395	0,00	12.02	3,10	-59,00
01	400	0,07	13,93	3,14	-59,70
02	405	0,70	12.90	3,14 2,12	-01,00
03	410	0,00	13,09	3,13	-62,30
04	415	0,92	14,00	3,13	-64,00
00	420	7,00	14,00	3,13	-65,70
00	420	7,00	14,07	3,17	-67,10
00 00	430	7,17	14,00	3,10	06,80
88	435	7,25	14,00	3,15	-09,30
09	440	7,33	14,14	3,10 2,47	-70,20
90	445	7,42	14,07	3,17	-71,20
91	450	7,50	14,07	3,17	-12,10
92	455	7,58	14,17	3,19	-74,00
93	460	1,67	14,21	3,20	-78,30
94	465	1,15	14,21	3,20	-82,40
95	470	7,83	14,24	3,21	-89,00
96	4/5	7,92	14,42	3,25	-98,60

97	480	8,00	14,31	3,22	-106,90
98	485	8,08	14,31	3,22	-118,60
99	490	8,17	14,38	3,24	-130,50
100	495	8,25	14,49	3,26	-141,50
101	500	8,33	14,38	3,24	-147,90
102	505	8.42	14.42	3.25	-152.50
103	510	8.50	14,49	3.26	-156.70
104	515	8,58	14,56	3,28	-159,10
105	520	8.67	14.60	3.29	-161.40
106	525	8.75	14.71	3.31	-164.30
107	530	8,83	14,78	3,33	-166,40
108	535	8,92	14,78	3,33	-168,20
109	540	9,00	14,71	3,31	-170,30
110	545	9,08	14,93	3,36	-172,10
111	550	9,17	14,93	3,36	-173,70
112	555	9,25	14,85	3,34	-175,10
113	560	9.33	14.82	3.34	-177.00
114	565	9.42	15.04	3.39	-178.40
115	570	9.50	15.00	3.38	-179.40
116	575	9.58	15 11	3 40	-180,40
117	580	9.67	15 11	3 40	-181 60
118	585	9.75	15.00	3,38	-182.90
119	590	9.83	15 11	3 40	-184 10
120	595	9.92	15 19	3 42	-185 10
120	600	10.00	15 19	3.42	-186 20
122	605	10.08	15,30	3 44	-187 40
123	610	10,00	15 19	3 42	-188 40
120	615	10.25	15 22	3 43	-189,30
125	620	10.33	15,38	3 46	-190 10
126	625	10,00	15 41	3 47	-191 10
127	630	10,50	15 26	3 43	-192 20
128	635	10.58	15 49	3 49	-193 60
129	640	10,00	15 41	3 47	-194 60
130	645	10.75	15.34	3.45	-195.20
131	650	10.83	15.38	3.46	-196,10
132	655	10.92	15,45	3.48	-197.00
133	660	11.00	15.53	3.50	-198.00
134	665	11.08	15.61	3.51	-198.70
135	670	11.17	15.57	3.50	-199.30
136	675	11.25	15.64	3.52	-200.10
137	680	11.33	15.53	3.50	-200.70
138	685	11.42	15.64	3.52	-200.90
139	690	11.50	15.72	3.54	-201.70
140	695	11.58	15,61	3.51	-202.10
141	700	11.67	15.80	3.56	-201.70
142	705	11.75	15.84	3.57	-201.80
143	710	11.83	15.68	3.53	-202.20
144	715	11,92	15,84	3.57	-202.60
145	720	12.00	15,88	3.57	-203.20
146	725	12.08	15.96	3.59	-203.70
147	730	12.17	15.96	3.59	-204.30
148	735	12,25	15,84	3,57	-204,90

150 745 $12,42$ $16,00$ $3,60$ $-206,30$ 151750 $12,50$ $15,88$ $3,57$ $-207,40$ 152755 $12,58$ $15,96$ $3,59$ $-208,00$ 153760 $12,67$ $16,12$ $3,63$ $-208,60$ 154765 $12,75$ $16,16$ $3,64$ $-209,30$ 155770 $12,83$ $16,00$ $3,60$ $-210,10$ 156775 $12,92$ $16,20$ $3,65$ $-210,50$ 157780 $13,00$ $16,24$ $3,66$ $-211,20$ 158785 $13,08$ $16,08$ $3,62$ $-211,90$ 159790 $13,17$ $16,08$ $3,62$ $-213,10$ 161800 $13,33$ $16,28$ $3,66$ $-213,40$ 162 805 $13,42$ $16,16$ $3,64$ $-213,90$ 163 810 $13,50$ $16,20$ $3,65$ $-214,50$ 164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-214,90$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,42$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$
15175012,5015,883,57 $-207,40$ 15275512,5815,963,59 $-208,00$ 15376012,6716,123,63 $-208,60$ 15476512,7516,163,64 $-209,30$ 15577012,8316,003,60 $-210,10$ 15677512,9216,203,65 $-211,20$ 15778013,0016,243,66 $-211,20$ 15878513,0816,083,62 $-212,60$ 16079513,2516,083,62 $-213,10$ 16180013,3316,283,66 $-213,40$ 16280513,4216,163,64 $-213,90$ 16381013,5016,203,65 $-214,90$ 16381013,5016,203,66 $-214,90$ 16582013,6716,283,66 $-214,90$ 16582013,6716,323,67 $-217,20$ 16883513,9216,323,67 $-217,20$ 16984014,0016,283,66 $-217,80$ 17084514,4216,403,69 $-218,90$ 17386014,3316,563,73 $-219,20$ 17486514,4216,403,69 $-219,30$ 17587014,5016,483,71 $-219,80$ 17687514,5816,563,73 $-220,20$ 177 </td
15275512,5815,963,59-208,0015376012,6716,123,63-208,6015476512,7516,163,64-209,3015577012,8316,003,60-210,1015677512,9216,203,65-210,5015778013,0016,243,66-211,2015878513,0816,083,62-212,6016079513,2516,083,62-213,1016180013,3316,283,66-213,4016280513,4216,163,64-213,9016381013,5016,203,65-214,5016481513,5816,243,66-215,4016582013,6716,283,66-217,9016582013,6716,283,66-217,2016883513,9216,323,67-217,2016883513,9216,323,67-217,2016984014,0016,283,69-218,8017285514,2516,443,70-218,9017386014,3316,563,73-220,2017486514,4216,643,75-220,1017989014,8316,563,73-219,8017687514,5516,643,75-220,1017788014,6716,64<
152 1232 1612 $3,63$ $-208,60$ 153 760 $12,67$ $16,12$ $3,63$ $-208,60$ 154 765 $12,75$ $16,16$ $3,64$ $-209,30$ 155 770 $12,83$ $16,00$ $3,60$ $-210,10$ 156 775 $12,92$ $16,20$ $3,65$ $-211,20$ 157 780 $13,00$ $16,24$ $3,66$ $-211,20$ 158 785 $13,08$ $16,08$ $3,62$ $-211,90$ 159 790 $13,17$ $16,08$ $3,62$ $-213,10$ 160 795 $13,25$ $16,08$ $3,62$ $-213,10$ 161 800 $13,33$ $16,28$ $3,66$ $-213,40$ 162 805 $13,42$ $16,16$ $3,64$ $-213,90$ 163 810 $13,50$ $16,20$ $3,65$ $-214,50$ 164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-216,10$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,98$ $16,52$ $3,73$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174
150 120 120 160 120 $200,00$ 155 770 $12,83$ $16,00$ $3,60$ $-210,10$ 155 770 $12,83$ $16,00$ $3,65$ $-210,50$ 157 780 $13,00$ $16,24$ $3,66$ $-211,20$ 158 785 $13,08$ $16,08$ $3,62$ $-211,90$ 159 790 $13,17$ $16,08$ $3,62$ $-213,10$ 160 795 $13,25$ $16,08$ $3,62$ $-213,10$ 161 800 $13,33$ $16,28$ $3,66$ $-213,40$ 162 805 $13,42$ $16,16$ $3,64$ $-213,90$ 163 810 $13,50$ $16,20$ $3,65$ $-214,50$ 164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,73$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,80$ 176 875 $14,58$ $16,66$ $3,75$ $-220,50$ <tr< td=""></tr<>
100 $12,10$ $16,10$ $3,60$ $210,10$ 155 770 $12,83$ $16,00$ $3,60$ $-210,10$ 156 775 $12,92$ $16,20$ $3,65$ $-210,50$ 157 780 $13,00$ $16,24$ $3,66$ $-211,20$ 158 785 $13,08$ $16,08$ $3,62$ $-211,90$ 159 790 $13,17$ $16,08$ $3,62$ $-213,10$ 160 795 $13,25$ $16,08$ $3,62$ $-213,40$ 161 800 $13,33$ $16,28$ $3,66$ $-213,40$ 162 805 $13,42$ $16,16$ $3,64$ $-213,90$ 163 810 $13,50$ $16,20$ $3,65$ $-214,50$ 164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-216,10$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,42$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,44$ $3,70$ $-220,50$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178
133 170 $12,03$ $16,00$ $3,00$ $210,10$ 156 775 $12,92$ $16,20$ $3,65$ $-210,50$ 157 780 $13,00$ $16,24$ $3,66$ $-211,20$ 158 785 $13,08$ $16,08$ $3,62$ $-211,90$ 159 790 $13,17$ $16,08$ $3,62$ $-212,60$ 160 795 $13,25$ $16,08$ $3,62$ $-213,40$ 161 800 $13,33$ $16,28$ $3,66$ $-213,40$ 162 805 $13,42$ $16,16$ $3,64$ $-213,90$ 163 810 $13,50$ $16,20$ $3,65$ $-214,50$ 164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-215,40$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,42$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$
13017012,0216,203,03216,3015778013,0016,243,66 $-211,20$ 15878513,0816,083,62 $-211,90$ 15979013,1716,083,62 $-212,60$ 16079513,2516,083,62 $-213,40$ 16180013,3316,283,66 $-213,40$ 16280513,4216,163,64 $-213,90$ 16381013,5016,203,65 $-214,50$ 16481513,5816,243,66 $-214,90$ 16582013,6716,283,66 $-216,10$ 16783013,8316,363,68 $-216,70$ 16883513,9216,323,67 $-217,20$ 16984014,0016,283,66 $-217,80$ 17084514,0816,523,72 $-218,20$ 17185014,1716,403,69 $-218,80$ 17285514,2516,443,70 $-218,90$ 17386014,3316,563,73 $-220,20$ 17788014,6716,483,71 $-219,80$ 17687514,5816,643,75 $-220,10$ 17989014,8316,483,71 $-219,10$ 18089514,9216,563,73 $-218,90$ 18190015,0016,603,74 $-218,90$ 183
137 760 $13,00$ $16,24$ $3,00$ $7211,20$ 158 785 $13,08$ $16,08$ $3,62$ $-211,90$ 159 790 $13,17$ $16,08$ $3,62$ $-212,60$ 160 795 $13,25$ $16,08$ $3,62$ $-213,10$ 161 800 $13,33$ $16,28$ $3,66$ $-213,40$ 162 805 $13,42$ $16,16$ $3,64$ $-213,90$ 163 810 $13,50$ $16,20$ $3,65$ $-214,50$ 164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-216,10$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,20$ 171 850 $14,17$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ </td
136 $13,03$ $13,03$ $16,03$ $3,02$ $-211,30$ 159 790 $13,17$ $16,08$ $3,62$ $-212,60$ 160 795 $13,25$ $16,08$ $3,62$ $-213,10$ 161 800 $13,33$ $16,28$ $3,66$ $-213,40$ 162 805 $13,42$ $16,16$ $3,64$ $-213,90$ 163 810 $13,50$ $16,20$ $3,65$ $-214,50$ 164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-215,40$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,80$
133 $13,0$ $13,17$ $16,08$ $3,62$ $-212,00$ 160 795 $13,25$ $16,08$ $3,62$ $-213,10$ 161 800 $13,33$ $16,28$ $3,66$ $-213,40$ 162 805 $13,42$ $16,16$ $3,64$ $-213,90$ 163 810 $13,50$ $16,20$ $3,65$ $-214,50$ 164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-215,40$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,90$ <
160 795 $13,23$ $16,06$ $3,02$ $-213,10$ 161 800 $13,33$ $16,28$ $3,66$ $-213,40$ 162 805 $13,42$ $16,16$ $3,64$ $-213,90$ 163 810 $13,50$ $16,20$ $3,65$ $-214,50$ 164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-216,10$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,90$ 171 850 $14,17$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,92$ $16,56$ $3,73$ $-219,40$ 180 895 $14,92$ $16,56$ $3,73$ $-218,90$ </td
161 800 $13,33$ $16,28$ $3,66$ $-213,40$ 162 805 $13,42$ $16,16$ $3,64$ $-213,90$ 163 810 $13,50$ $16,20$ $3,65$ $-214,50$ 164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-215,40$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,20$ 171 850 $14,17$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,92$ $16,56$ $3,73$ $-218,50$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ 182 905 $15,08$ $16,72$ $3,76$ $-218,90$ </td
162 805 $13,42$ $16,16$ $3,64$ $-213,90$ 163 810 $13,50$ $16,20$ $3,65$ $-214,50$ 164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-215,40$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,20$ 171 850 $14,17$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,90$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ </td
163 810 $13,50$ $16,20$ $3,65$ $-214,50$ 164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-215,40$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,20$ 171 850 $14,17$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,50$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ 182 905 $15,08$ $16,72$ $3,76$ $-218,90$ </td
164 815 $13,58$ $16,24$ $3,66$ $-214,90$ 165 820 $13,67$ $16,28$ $3,66$ $-215,40$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,20$ 171 850 $14,17$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,50$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ 182 905 $15,08$ $16,72$ $3,76$ $-218,90$ 183 910 $15,17$ $16,56$ $3,73$ $-219,40$ </td
165 820 $13,67$ $16,28$ $3,66$ $-215,40$ 166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,20$ 171 850 $14,17$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,50$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ 182 905 $15,08$ $16,72$ $3,76$ $-218,90$ 183 910 $15,17$ $16,56$ $3,73$ $-219,40$ 184 915 $15,25$ $16,64$ $3,75$ $-219,80$ </td
166 825 $13,75$ $16,40$ $3,69$ $-216,10$ 167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,20$ 171 850 $14,17$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,50$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ 182 905 $15,08$ $16,72$ $3,76$ $-218,90$ 183 910 $15,17$ $16,56$ $3,73$ $-219,40$ 184 915 $15,25$ $16,64$ $3,75$ $-219,80$
167 830 $13,83$ $16,36$ $3,68$ $-216,70$ 168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,20$ 171 850 $14,17$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,50$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ 182 905 $15,08$ $16,72$ $3,76$ $-218,90$ 183 910 $15,17$ $16,56$ $3,73$ $-219,40$ 184 915 $15,25$ $16,64$ $3,75$ $-219,80$
168 835 $13,92$ $16,32$ $3,67$ $-217,20$ 169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,20$ 171 850 $14,17$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,50$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ 182 905 $15,08$ $16,72$ $3,76$ $-218,90$ 183 910 $15,17$ $16,56$ $3,73$ $-219,40$ 184 915 $15,25$ $16,64$ $3,75$ $-219,80$
169 840 $14,00$ $16,28$ $3,66$ $-217,80$ 170 845 $14,08$ $16,52$ $3,72$ $-218,20$ 171 850 $14,17$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,50$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ 182 905 $15,08$ $16,72$ $3,76$ $-218,90$ 183 910 $15,17$ $16,56$ $3,73$ $-219,40$ 184 915 $15,25$ $16,64$ $3,75$ $-219,80$
170 845 $14,08$ $16,52$ $3,72$ $-218,20$ 171 850 $14,17$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,50$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ 182 905 $15,08$ $16,72$ $3,76$ $-218,90$ 183 910 $15,17$ $16,56$ $3,73$ $-219,40$ 184 915 $15,25$ $16,64$ $3,75$ $-219,80$
171 850 $14,17$ $16,40$ $3,69$ $-218,80$ 172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,50$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ 182 905 $15,08$ $16,72$ $3,76$ $-218,90$ 183 910 $15,17$ $16,56$ $3,73$ $-219,40$ 184 915 $15,25$ $16,64$ $3,75$ $-219,80$
172 855 $14,25$ $16,44$ $3,70$ $-218,90$ 173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,50$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ 182 905 $15,08$ $16,72$ $3,76$ $-218,90$ 183 910 $15,17$ $16,56$ $3,73$ $-219,40$ 184 915 $15,25$ $16,64$ $3,75$ $-219,80$
173 860 $14,33$ $16,56$ $3,73$ $-219,20$ 174 865 $14,42$ $16,40$ $3,69$ $-219,30$ 175 870 $14,50$ $16,48$ $3,71$ $-219,80$ 176 875 $14,58$ $16,56$ $3,73$ $-220,20$ 177 880 $14,67$ $16,44$ $3,70$ $-220,50$ 178 885 $14,75$ $16,64$ $3,75$ $-220,10$ 179 890 $14,83$ $16,48$ $3,71$ $-219,10$ 180 895 $14,92$ $16,56$ $3,73$ $-218,50$ 181 900 $15,00$ $16,60$ $3,74$ $-218,60$ 182 905 $15,08$ $16,72$ $3,76$ $-218,90$ 183 910 $15,17$ $16,56$ $3,73$ $-219,40$ 184 915 $15,25$ $16,64$ $3,75$ $-219,80$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
17687514,5816,563,73-220,2017788014,6716,443,70-220,5017888514,7516,643,75-220,1017989014,8316,483,71-219,1018089514,9216,563,73-218,5018190015,0016,603,74-218,6018290515,0816,723,76-218,9018391015,1716,563,73-219,4018491515,2516,643,75-219,80
17788014,6716,443,70-220,5017888514,7516,643,75-220,1017989014,8316,483,71-219,1018089514,9216,563,73-218,5018190015,0016,603,74-218,6018290515,0816,723,76-218,9018391015,1716,563,73-219,4018491515,2516,643,75-219,80
17888514,7516,643,75-220,1017989014,8316,483,71-219,1018089514,9216,563,73-218,5018190015,0016,603,74-218,6018290515,0816,723,76-218,9018391015,1716,563,73-219,4018491515,2516,643,75-219,80
17989014,8316,483,71-219,1018089514,9216,563,73-218,5018190015,0016,603,74-218,6018290515,0816,723,76-218,9018391015,1716,563,73-219,4018491515,2516,643,75-219,80
18089514,9216,563,73-218,5018190015,0016,603,74-218,6018290515,0816,723,76-218,9018391015,1716,563,73-219,4018491515,2516,643,75-219,80
181 900 15,00 16,60 3,74 -218,60 182 905 15,08 16,72 3,76 -218,90 183 910 15,17 16,56 3,73 -219,40 184 915 15,25 16,64 3,75 -219,80
182 905 15,08 16,72 3,76 -218,90 183 910 15,17 16,56 3,73 -219,40 184 915 15,25 16,64 3,75 -219,80
183 910 15,17 16,56 3,73 -219,40 184 915 15,25 16,64 3,75 -219,80
184 915 15.25 16.64 3.75 -219.80
185 920 15,33 16,81 3,78 -220,20
186 925 15,42 16,60 3,74 -220,40
187 930 15,50 16,85 3,79 -221,20
188 935 15,58 16,64 3,75 -221,90
189 940 15,67 16,72 3,76 -223,10
190 945 15,75 16,68 3,75 -223,60
191 950 15.83 16.89 3.80 -224.00
192 955 15.92 16.93 3.81 -224.20
193 960 16.00 16.93 3.81 -224.90
194 965 16.08 16.85 3.79 -225.60
195 970 16.17 16.81 3.78 -225.70
196 975 16.25 16.97 3.82 -226.00
197 980 16.33 16.81 3.78 -226.70
198 985 16.42 16.93 3.81 -227.10
199 990 16.50 17.02 3.83 -227.70
200 995 16.58 17.02 3.83 -228.10

201	1000	16,67	17,02	3,83	-228,40
202	1005	16,75	16,97	3,82	-228,70
203	1010	16,83	16,97	3,82	-228,80
204	1015	16,92	17,10	3,85	-218,70
205	1020	17,00	17,10	3,85	-197,20
206	1025	17,08	16,93	3,81	-170,30
207	1030	17,17	16,93	3,81	-150,70
208	1035	17,25	16,72	3,76	-142,50
209	1040	17,33	16,77	3,77	-145,80
210	1045	17,42	16,77	3,77	-151,60
211	1050	17,50	16,72	3,76	-147,20
212	1055	17,58	16,60	3,74	-139,80
213	1060	17,67	16,81	3,78	-135,70
214	1065	17,75	16,81	3,78	-141,10
215	1070	17,83	16,77	3,77	-151,80
216	1075	17,92	16,72	3,76	-149,90
217	1080	18,00	16,81	3,78	-141,70
218	1085	18,08	16,56	3,73	-138,10
219	1090	18,17	16,77	3,77	-138,60
220	1095	18,25	16,56	3,73	-135,40
221	1100	18,33	16,77	3,77	-134,20
222	1105	18,42	16,77	3,77	-137,00
223	1110	18,50	16,64	3,75	-135,00
224	1115	18,58	16,77	3,77	-133,40
225	1120	18,67	16,77	3,77	-145,20
226	1125	18,75	16,77	3,77	-152,00
227	1130	18,83	16,81	3,78	-142,10
228	1135	18,92	16,81	3,78	-141,60
229	1140	19,00	16,64	3,75	-145,70
230	1145	19,08	16,81	3,78	-147,10
231	1150	19,17	16,72	3,76	-150,00
232	1155	19,25	16,81	3,78	-144,60
233	1160	19,33	16,64	3,75	-134,30
234	1165	19,42	16,72	3,76	-128,10
235	1170	19,50	16,85	3,79	-127,50
236	1175	19,58	16,72	3,76	-124,40
237	1180	19,67	16,68	3,75	-124,10
238	1185	19,75	16,68	3,75	-123,50
239	1190	19,83	16,64	3,75	-121,40
240	1195	19,92	16,85	3,79	-119,20
241	1200	20,00	16,85	3,79	-116,70
242	1205	20,08	16,72	3,76	-115,50
243	1210	20,17	16,85	3,79	-115,70
244	1215	20,25	16,81	3,78	-112,30
245	1220	20,33	16,72	3,76	-108,30
246	1225	20,42	16,68	3,75	-109,60
247	1230	20,50	16,85	3,79	-111,40
248	1235	20,58	16,89	3,80	-108,10
249	1240	20,67	16,85	3,79	-104,90
250	1245	20,75	16,85	3,79	-103,00
251	1250	20,83	16,89	3,80	-103,30
252	1255	20,92	16,93	3,81	-103,10

253	1260	21,00	16,77	3,77	-101,90
254	1265	21,08	16,93	3,81	-99,80
255	1270	21,17	16,81	3,78	-101,30
256	1275	21,25	16,93	3,81	-98,20
257	1280	21,33	16,93	3,81	-97,30
258	1285	21,42	16,77	3,77	-97,40
259	1290	21,50	16,89	3,80	-98,40
260	1295	21,58	16,97	3,82	-96,10
261	1300	21,67	16,93	3,81	-96,10
262	1305	21,75	16,81	3,78	-97,30
263	1310	21,83	16,72	3,76	-97,20
264	1315	21,92	16,85	3,79	-95,70
265	1320	22,00	17,02	3,83	-96,20
266	1325	22,08	16,85	3,79	-96,90
267	1330	22,17	16,93	3,81	-96,80
268	1335	22,25	16,97	3,82	-96,50
269	1340	22,33	16,89	3,80	-97,40
270	1345	22,42	16,97	3,82	-97,70
271	1350	22,50	17,14	3,86	-96,90
272	1355	22,58	16,97	3,82	-97,40
273	1360	22,67	17,19	3,87	-99,20
274	1365	22,75	17,19	3,87	-100,10
275	1370	22,83	17,10	3,85	-100,00
276	1375	22,92	17,14	3,86	-98,50
277	1380	23,00	17,23	3,88	-98,20
278	1385	23,08	17,02	3,83	-98,40
279	1390	23,17	17,06	3,84	-96,60
280	1395	23,25	17,06	3,84	-95,80
281	1400	23,33	17,06	3,84	-95,20
282	1405	23,42	17,31	3,90	-96,10
283	1410	23,50	17,14	3,86	-96,30
284	1415	23,58	17,14	3,86	-96,40
285	1420	23,67	17,31	3,90	-97,10
286	1425	23,75	17,23	3,88	-95,70
287	1430	23,83	17,36	3,91	-94,40

Tabela 10.21: Stężenia ChZT i NH_4^+ występujące w trzeciej serii pomiarowej

- · · · · · · · · · · · · · · · · · · ·							
Czas [h]	Stężenie ChZT [mgO₂/dm³]	Stężenie N-NH₄⁺ [mg/dm³]					
0,00	278	10,15					
0,50	226	-					
1,25	242	-					
3,50	222	-					
23,83	152	6,25					
Seria pomiarowa nr 4:

i e a anta jące		tej sem po	innarömej		
L.p.	Czas [min]	Czas [h]	Stężenie NO ₃ ⁻ [mg/dm ³]	Stężenie N-NO ₃ ⁻ [mg/dm ³]	Wartość potencjału utleniająco- redukującego [mV]
1	0	0.00	18 56	4 18	-202 60
2	5	0.08	18 74	4 22	-205 50
3	10	0.17	18.88	4 25	-137 70
4	15	0.25	28.04	6 31	-64.00
5	20	0,20	62.66	14 10	-43.90
6	20	0,33	85 70	10.31	-40,90
7	30	0,42	05,73	21 / 2	-35,30
7 	35	0,50	00.03	21,42	-32,40
0	40	0,50	102 50	22,29	-32,70
9 10	40	0,07	102,50	23,07	-30,40
10	40	0,75	105,60	23,11	-27,40
11	50	0,83	107,50	24,20	-25,10
12	55	0,92	108,80	24,49	-22,40
13	60	1,00	112,10	25,23	-23,40
14	65	1,08	111,20	25,03	-37,40
15	70	1,17	95,66	21,53	-49,30
16	75	1,25	86,86	19,55	-64,00
17	80	1,33	82,87	18,65	-71,10
18	85	1,42	79,07	17,80	-75,40
19	90	1,50	75,06	16,89	-77,40
20	95	1,58	72,15	16,24	-78,80
21	100	1,67	68,67	15,46	-80,50
22	105	1,75	64,87	14,60	-81,70
23	110	1,83	60,53	13,62	-82,70
24	115	1,92	55,51	12,49	-83,30
25	120	2,00	52,44	11,80	-84,30
26	125	2,08	48,21	10,85	-84,80
27	130	2,17	44,32	9,98	-85,30
28	135	2,25	41,45	9,33	-85,50
29	140	2,33	38,87	8,75	-86,20
30	145	2.42	36,18	8.14	-86.60
31	150	2.50	33.35	7.51	-87.10
32	155	2.58	30,58	6.88	-87.70
33	160	2.67	27.36	6.16	-87.90
34	165	2.75	25.21	5.67	-88.20
35	170	2 83	22.84	5 14	-88.30
36	175	2,92	21.85	4,92	-88 60
37	180	3.00	21.05	4 74	-88.60
38	185	3.08	19.69	4 43	-88.60
30	190	3 17	18.60	<u>4</u> 10	-88 50
40	195	3 25	19.07	4 20	-88.40
<u></u> 	200	3 33	17.07	4.04	-88 /0
42	205	3 42	17.84	4 02	-88 30
74	200	0,72			00,00

Tabela 10.22: Stężenia azotanów V i potencjału utleniającoredukującego w czwartej serii pomiarowej

43	210	3,50	16,89	3,80	-88,20
44	215	3,58	16,28	3,66	-88,10
45	220	3,67	16,60	3,74	-87,80
46	225	3,75	16,04	3,61	-87,40
47	230	3,83	15,76	3,55	-86,80
48	235	3,92	15,61	3,51	-86,00
49	240	4,00	15,72	3,54	-85,40
50	245	4,08	15,30	3,44	-85,30
51	250	4,17	14,96	3,37	-85,10
52	255	4,25	15,04	3,39	-84,90
53	260	4,33	14,85	3,34	-84,80
54	265	4.42	14.89	3.35	-84,90
55	270	4.50	14.74	3.32	-84,90
56	275	4.58	14.60	3.29	-84.90
57	280	4.67	14.63	3.29	-85.10
58	285	4.75	14.53	3.27	-85.70
59	290	4.83	14.67	3.30	-86.50
60	295	4.92	14.63	3.29	-87.00
61	300	5.00	14.60	3.29	-88.60
62	305	5.08	14 56	3.28	-90 50
63	310	5 17	14 74	3.32	-92 10
64	315	5.25	14 63	3 29	-93.30
65	320	5 33	14 67	3 30	-94.00
66	325	5 42	14.85	3.34	-95.00
67	330	5 50	14 78	3.33	-95.50
68	335	5 58	14 78	3 33	-95 90
69	340	5.67	15.00	3,38	-96.60
70	345	5 75	14 93	3 36	-98 40
70	350	5.83	15.04	3,39	-99.50
72	355	5.92	15.04	3 39	-102.90
73	360	6.00	15 19	3 42	-108 60
74	365	6.08	15.26	3 43	-117 90
75	370	6 17	15 22	3 43	-128 60
76	375	6.25	15 45	3 48	-139.80
77	380	6.33	15,38	3 46	-146 90
78	385	6 42	15 41	3 47	-152 20
79	390	6.50	15 49	3 49	-156 40
80	395	6.58	15 57	3 50	-160.60
81	400	6 67	15 76	3 55	-165 40
82	405	6 75	15,76	3 55	-170.00
83	410	6.83	15,80	3.56	-174 10
84	415	6,92	15,92	3 58	-178.00
85	420	7.00	15.80	3.56	-181 80
86	425	7 08	15.96	3 59	-185 40
87	430	7 17	16.08	3 62	-188 40
88	435	7 25	16.08	3.62	-191 40
89	440	7 33	16.00	3.60	-193 70
90	445	7 42	16 24	3.66	-196.00
Q1	450	7 50	16.20	3 65	-198 20
92	455	7.58	16.32	3 67	-200,20
93	460	7 67	16.36	3.68	-202 50
94	465	7.75	16.36	3.68	-204.50
~ '		.,	,	2,00	,

95	470	7,83	16,44	3,70	-206,60
96	475	7,92	16,52	3,72	-208,30
97	480	8,00	16,36	3,68	-210,20
98	485	8,08	16,48	3,71	-211,90
99	490	8,17	16,44	3,70	-213,30
100	495	8,25	16,64	3,75	-215,20
101	500	8,33	16,52	3,72	-216,80
102	505	8,42	16,60	3,74	-218,30
103	510	8,50	16,56	3,73	-219,80
104	515	8,58	16,64	3,75	-221,30
105	520	8,67	16,81	3,78	-222,90
106	525	8,75	16,72	3,76	-224,30
107	530	8,83	16,72	3,76	-225,70
108	535	8,92	16,89	3,80	-227,20
109	540	9,00	16,85	3,79	-228,60
110	545	9,08	16,93	3,81	-230,10
111	550	9,17	16,93	3,81	-231,10
112	555	9,25	17,02	3,83	-232,30
113	560	9,33	16,93	3,81	-233,60
114	565	9,42	16,93	3,81	-234,90
115	570	9.50	16.97	3.82	-236.40
116	575	9.58	17.14	3.86	-237.60
117	580	9.67	17.10	3.85	-238.90
118	585	9.75	17.27	3.89	-240.00
119	590	9.83	17.23	3.88	-241.00
120	595	9.92	17.23	3.88	-242.30
121	600	10,00	17,23	3,88	-243,40
122	605	10.08	17.31	3.90	-245.00
123	610	10,17	17,40	3,92	-246,10
124	615	10,25	17,31	3,90	-247,10
125	620	10,33	17,31	3,90	-248,30
126	625	10,42	17,36	3,91	-249,40
127	630	10,50	17,31	3,90	-250,50
128	635	10,58	17,31	3,90	-251,50
129	640	10,67	17,40	3,92	-252,50
130	645	10,75	17,53	3,95	-253,20
131	650	10,83	17,44	3,93	-254,10
132	655	10,92	17,49	3,94	-254,90
133	660	11,00	17,44	3,93	-256,00
134	665	11,08	17,44	3,93	-257,10
135	670	11,17	17,49	3,94	-258,00
136	675	11,25	17,57	3,95	-258,80
137	680	11,33	17,62	3,97	-259,50
138	685	11,42	17,62	3,97	-260,40
139	690	11,50	17,49	3,94	-261,00
140	695	11,58	17,62	3,97	-261,70
141	700	11,67	17,66	3,97	-262,30
142	705	11,75	17,66	3,97	-262,90
143	710	11,83	17,53	3,95	-263,50
144	715	11,92	17,70	3,98	-264,10
145	720	12,00	17,53	3,95	-264,60
146	725	12,08	17,53	3,95	-265,30

147	730	12,17	17,62	3,97	-266,20
148	735	12,25	17,62	3,97	-267,00
149	740	12,33	17,79	4,00	-268,10
150	745	12,42	17,57	3,95	-269,20
151	750	12,50	17,70	3,98	-270,20
152	755	12,58	17,62	3,97	-271,30
153	760	12,67	17,75	4,00	-272,10
154	765	12,75	17,62	3,97	-273,30
155	770	12,83	17,70	3,98	-274,40
156	775	12,92	17,75	4,00	-275,40
157	780	13,00	17,66	3,97	-276,40
158	785	13,08	17,70	3,98	-277,20
159	790	13,17	17,70	3,98	-278,00
160	795	13,25	17,75	4,00	-279,00
161	800	13,33	17,79	4,00	-280,30
162	805	13,42	17,75	4,00	-281,40
163	810	13,50	17,79	4,00	-282,50
164	815	13,58	17,84	4,02	-283,60
165	820	13.67	17.75	4.00	-284.70
166	825	13.75	17.84	4.02	-285.80
167	830	13.83	17.84	4.02	-287.40
168	835	13.92	17.92	4.03	-288.90
169	840	14.00	17.92	4.03	-288.80
170	845	14.08	17.79	4.00	-286.30
171	850	14.17	17.88	4.02	-275.50
172	855	14.25	17.92	4.03	-265.30
173	860	14.33	17.84	4.02	-259.20
174	865	14.42	17.88	4.02	-254.00
175	870	14,50	17,79	4,00	-238,80
176	875	14,58	17,75	4,00	-240,70
177	880	14,67	17,70	3,98	-232,80
178	885	14,75	17,79	4,00	-229,60
179	890	14,83	17,62	3,97	-230,40
180	895	14,92	17,70	3,98	-230,90
181	900	15,00	17,62	3,97	-228,80
182	905	15,08	17,62	3,97	-224,90
183	910	15,17	17,62	3,97	-227,00
184	915	15,25	17,70	3,98	-225,40
185	920	15,33	17,79	4,00	-221,70
186	925	15,42	17,79	4,00	-218,70
187	930	15,50	17,75	4,00	-221,50
188	935	15,58	17,70	3,98	-218,40
189	940	15,67	17,84	4,02	-212,30
190	945	15,75	17,70	3,98	-217,00
191	950	15,83	17,75	4,00	-223,50
192	955	15,92	17,79	4,00	-224,00
193	960	16,00	17,79	4,00	-221,70
194	965	16,08	17,75	4,00	-223,10
195	970	16,17	17,75	4,00	-228,60
196	975	16,25	17,84	4,02	-225,20
197	980	16,33	17,70	3,98	-221,10
198	985	16,42	17,88	4,02	-223,90

199	990	16,50	17,79	4,00	-221,40
200	995	16,58	17,84	4,02	-221,00
201	1000	16,67	17,84	4,02	-217,00
202	1005	16,75	17,88	4,02	-218,00
203	1010	16,83	17,79	4,00	-218,00
204	1015	16,92	17,70	3,98	-223,70
205	1020	17,00	17,88	4,02	-222,00
206	1025	17,08	17,84	4,02	-221,90
207	1030	17,17	17,97	4,04	-219,00
208	1035	17,25	17,79	4,00	-219,60
209	1040	17,33	17,84	4,02	-211,70
210	1045	17,42	17,88	4,02	-205,40
211	1050	17,50	17,79	4,00	-207,90
212	1055	17,58	17,79	4,00	-203,50
213	1060	17,67	17,79	4,00	-206,40
214	1065	17,75	17,84	4,02	-199,60
215	1070	17,83	17,97	4,04	-193,60
216	1075	17,92	17,92	4,03	-191,80
217	1080	18,00	17,84	4,02	-190,90
218	1085	18,08	17,97	4,04	-186,40
219	1090	18,17	17,88	4,02	-185,40
220	1095	18,25	17,92	4,03	-185,90
221	1100	18.33	17.88	4.02	-183.80
222	1105	18,42	17,88	4,02	-185,00
223	1110	18,50	17,84	4,02	-180,40
224	1115	18,58	17,92	4,03	-178,40
225	1120	18,67	17,88	4,02	-173,40
226	1125	18,75	17,97	4,04	-171,30
227	1130	18,83	17,79	4,00	-167,60
228	1135	18,92	18,01	4,05	-167,20
229	1140	19,00	17,97	4,04	-163,20
230	1145	19,08	18,01	4,05	-163,60
231	1150	19,17	17,84	4,02	-162,40
232	1155	19,25	18,06	4,06	-163,80
233	1160	19,33	17,92	4,03	-164,30
234	1165	19,42	17,88	4,02	-163,20
235	1170	19,50	17,88	4,02	-165,60
236	1175	19,58	17,88	4,02	-167,70
237	1180	19,67	17,97	4,04	-164,90
238	1185	19,75	17,92	4,03	-161,80
239	1190	19,83	17,88	4,02	-163,90
240	1195	19,92	18,01	4,05	-159,60
241	1200	20,00	18,06	4,06	-163,80
242	1205	20,08	17,97	4,04	-161,90
243	1210	20,17	18,10	4,07	-159,10
244	1215	20,25	18,01	4,05	-161,60
245	1220	20,33	17,97	4,04	-164,30
246	1225	20,42	17,97	4,04	-162,10
247	1230	20,50	17,97	4,04	-161,60
248	1235	20,58	18,06	4,06	-167,20
249	1240	20,67	18,10	4,07	-166,80
250	1245	20,75	18,19	4,09	-171,10

251	1250	20,83	18,06	4,06	-170,30
252	1255	20,92	18,15	4,09	-168,70
253	1260	21,00	18,19	4,09	-171,00
254	1265	21,08	18,19	4,09	-175,00
255	1270	21,17	18,19	4,09	-178,90
256	1275	21,25	18,19	4,09	-181,40
257	1280	21,33	18,01	4,05	-180,80
258	1285	21,42	18,01	4,05	-177,60
259	1290	21,50	18,06	4,06	-180,80
260	1295	21,58	18,24	4,11	-178,30
261	1300	21,67	18,01	4,05	-179,90
262	1305	21,75	18,06	4,06	-178,20
263	1310	21,83	18,19	4,09	-175,30
264	1315	21,92	18,24	4,11	-178,50
265	1320	22,00	18,19	4,09	-183,20
266	1325	22,08	18,06	4,06	-180,10
267	1330	22,17	18,24	4,11	-180,10
268	1335	22,25	18,10	4,07	-179,10
269	1340	22,33	18,10	4,07	-182,70
270	1345	22,42	18,28	4,11	-185,90
271	1350	22,50	18,33	4,13	-182,30
272	1355	22,58	18,24	4,11	-186,50
273	1360	22,67	18,15	4,09	-189,10
274	1365	22,75	18,33	4,13	-193,80
275	1370	22,83	18,19	4,09	-187,90
276	1375	22,92	18,19	4,09	-191,50
277	1380	23,00	18,24	4,11	-195,60

Tabela 10.23: Stężenia ChZT i NH₄⁺ występujące w czwartej serii pomiarowej

Czas [h]	Stężenie ChZT [mgO ₂ /dm ³]	Stężenie N-NH₄ ⁺ [mg/dm ³]
0,00	284	4,68
0,50	264	-
1,25	222	-
3,50	214	-
23,00	182	0,78

Seria pomiarowa nr 5:

					Wartość po-
	0725	0725	Stężenie	Stężenie	tencjału utle-
l.p.	[min]	[h]	NO ₃	N-NO ₃	niająco-
	[]	[··]	[mg/dm°]	[mg/dm°]	redukującego
4	0	0.00	10.00	4 50	
1	0	0,00	19,98	4,50	-258,20
2	5	0,08	19,74	4,44	-279,20
3	10	0,17	19,64	4,42	-113,90
4	15	0,25	22,78	5,13	-70,90
5	20	0,33	58,32	13,13	-54,60
6	25	0,42	87,29	19,65	-46,20
7	30	0,50	105,60	23,77	-44,50
8	35	0,58	111,20	25,03	-62,00
9	40	0,67	94,72	21,32	-72,20
10	45	0,75	80,45	18,11	-86,30
11	50	0,83	73,05	16,44	-97,60
12	55	0,92	66,99	15,08	-102,30
13	60	1,00	62,04	13,96	-104,60
14	65	1,08	57,32	12,90	-105,80
15	70	1,17	52,44	11,80	-106,80
16	75	1,25	47,50	10,69	-107,40
17	80	1,33	43,66	9,83	-108,00
18	85	1,42	39,45	8,88	-108,40
19	90	1,50	36,27	8,16	-108,90
20	95	1,58	32,61	7,34	-109,30
21	100	1,67	29,54	6,65	-109,70
22	105	1,75	27,16	6,11	-110,10
23	110	1,83	25,09	5,65	-110,50
24	115	1,92	23,35	5,26	-110,60
25	120	2,00	22,06	4,97	-110,80
26	125	2,08	21,26	4,79	-110,90
27	130	2,17	20,28	4,56	-110,90
28	135	2,25	19,54	4,40	-110,90
29	140	2,33	19,35	4,36	-110,80
30	145	2,42	18,46	4,15	-110,70
31	150	2,50	18,19	4,09	-110,60
32	155	2,58	18,06	4,06	-110,30
33	160	2,67	17,62	3,97	-109,90
34	165	2,75	17,19	3,87	-109,60
35	170	2,83	17,02	3,83	-109,40
36	175	2,92	16,52	3,72	-108,90
37	180	3,00	16,44	3,70	-108,40
38	185	3,08	16,36	3,68	-108,00
39	190	3,17	16,16	3,64	-107,50
40	195	3,25	16,12	3,63	-107,60
41	200	3,33	15,92	3,58	-107,80
42	205	3,42	15,92	3,58	-107,80
43	210	3,50	15,88	3,57	-107,90
44	215	3,58	15,84	3,57	-108,60

Tabela 10.24: Stężenia azotanów V i potencjału utleniająco-redukującego w piątej serii pomiarowej

45	220	3,67	15,88	3,57	-109,80
46	225	3,75	15,84	3,57	-111,40
47	230	3,83	15,88	3,57	-112,60
48	235	3,92	15,88	3,57	-114,20
49	240	4,00	15,92	3,58	-115,10
50	245	4,08	15,92	3,58	-116,00
51	250	4,17	15,92	3,58	-116,60
52	255	4,25	16,00	3,60	-117,30
53	260	4,33	16,08	3,62	-117,70
54	265	4,42	16,12	3,63	-119,90
55	270	4,50	16,00	3,60	-121,40
56	275	4,58	16,08	3,62	-122,00
57	280	4,67	16,16	3,64	-125,00
58	285	4,75	16,32	3,67	-130,10
59	290	4.83	16.28	3.66	-136.70
60	295	4.92	16.20	3.65	-144.00
61	300	5.00	16.40	3.69	-150.00
62	305	5.08	16,48	3,71	-156.00
63	310	5.17	16,52	3.72	-161.20
64	315	5.25	16.40	3.69	-166.00
65	320	5.33	16,48	3,71	-171.10
66	325	5 42	16,18	3 71	-178 10
67	330	5 50	16,10	3 74	-187 90
68	335	5 58	16,60	3 74	-201 30
69	340	5.67	16,00	3 76	-216 50
70	345	5,07	16,72	3 73	-229.40
70	350	5.83	16,50	3 74	-239.90
72	355	5.92	16,80	3 78	-248 70
72	360	6.00	16,01	3 77	-255.60
76	365	6.08	16,77	3.76	-261.50
75	370	6.17	16,72	3 77	-266.60
76	375	6.25	16.93	3.81	-271.00
70	380	6 33	16,89	3.80	-275.20
78	385	6.42	16,05	3.82	-278.90
70	390	6.50	17.02	3.83	-282.50
80	305	6.58	16.93	3,05	-286 30
81	400	6.67	16,97	3.82	-289.80
82	405	6 75	17.06	3.84	-293 30
83	400	6.83	16.93	3.81	-298.00
84	415	6,00	16.93	3.81	-302.00
85	420	7.00	16,00	3.81	-305.80
86	425	7,00	17 14	3.86	-310.80
87	430	7,00	17,11	3.84	-316.00
88	435	7.25	17,00	3.83	-319.20
89	440	7,20	17,02	3.88	-321.60
90	445	7 42	17.23	3.88	-323.60
91	450	7.50	17 19	3.87	-325 30
92	455	7.58	17 27	3.89	-326.90
93	460	7 67	17 27	3.89	-328 50
Q1	465	7 75	17 10	3.85	-329 60
94	470	7 82	17.10	3 86	-330 50
90	475	7 02	17.14	3.86	-331 /0
07	120	8 00	17.14	2 01	-322 70
ฮเ	400	0,00	17,00	3,91	-552,70

98	485	8,08	17,19	3,87	-333,70
99	490	8,17	17,36	3,91	-334,80
100	495	8,25	17,23	3,88	-335,70
101	500	8,33	17,23	3,88	-336,70
102	505	8,42	17,44	3,93	-337,50
103	510	8,50	17,44	3,93	-338,40
104	515	8,58	17,49	3,94	-339,20
105	520	8,67	17,31	3,90	-339,80
106	525	8,75	17,27	3,89	-340,50
107	530	8.83	17.44	3.93	-341.30
108	535	8.92	17.36	3.91	-341.80
109	540	9.00	17.53	3.95	-342.30
110	545	9.08	17.53	3.95	-342 70
111	550	9.17	17,53	3.95	-343.30
112	555	9.25	17,00	3.93	-343 70
112	560	9.20	17,44	3 91	-344 40
114	565	9.42	17,00	3.93	-344 90
115	570	9.50	17,44	3.97	-345.40
116	575	9,50	17,02	3,97	-346.00
117	580	9,50	17,02	3,97	-340,00
117	500	9,07	17,55	3,95	-340,40
110	500	9,75	17,00	3,97	-340,60
119	590	9,83	17,62	3,97	-347,20
120	595	9,92	17,49	3,94	-347,50
121	600	10,00	17,57	3,95	-347,70
122	605	10,08	17,66	3,97	-347,90
123	610	10,17	17,62	3,97	-348,30
124	615	10,25	17,53	3,95	-348,40
125	620	10,33	17,70	3,98	-348,40
126	625	10,42	17,62	3,97	-348,50
127	630	10,50	17,53	3,95	-348,50
128	635	10,58	17,53	3,95	-348,40
129	640	10,67	17,75	4,00	-348,40
130	645	10,75	17,53	3,95	-348,40
131	650	10,83	17,79	4,00	-348,20
132	655	10,92	17,75	4,00	-348,20
133	660	11,00	17,70	3,98	-348,40
134	665	11,08	17,79	4,00	-348,50
135	670	11,17	17,66	3,97	-348,80
136	675	11,25	17,62	3,97	-349,30
137	680	11,33	17,79	4,00	-349,70
138	685	11,42	17,66	3,97	-350,10
139	690	11,50	17,62	3,97	-350,30
140	695	11,58	17,84	4,02	-350,70
141	700	11,67	17,84	4,02	-351,00
142	705	11,75	17,84	4,02	-351,30
143	710	11,83	17,79	4,00	-351,60
144	715	11,92	17,79	4,00	-351,90
145	720	12,00	17,84	4,02	-352,20
146	725	12,08	17,88	4,02	-352,50
147	730	12,17	17,88	4,02	-352,90
148	735	12,25	17,70	3,98	-353,10
149	740	12,33	17,70	3,98	-353,50
150	745	12,42	17,79	4,00	-353,70
	•			•	

151	750	12,50	17,70	3,98	-353,90
152	755	12,58	17,92	4,03	-354,20
153	760	12,67	17,70	3,98	-354,50
154	765	12,75	17,79	4,00	-354,70
155	770	12,83	17,88	4,02	-355,00
156	775	12,92	17,84	4,02	-355,20
157	780	13,00	17,79	4,00	-355,40
158	785	13,08	17,75	4,00	-355,70
159	790	13,17	17,88	4,02	-355,80
160	795	13,25	17,92	4,03	-356,00
161	800	13.33	17.88	4.02	-356.20
162	805	13.42	17.88	4.02	-356.40
163	810	13.50	18.01	4.05	-356.60
164	815	13 58	18.01	4 05	-356.90
165	820	13.67	18,01	4 05	-357 10
166	825	13 75	17 84	4 02	-357 40
167	830	13.83	17,81	4 02	-357 50
168	835	13 92	18.01	4,02	-357.70
160	840	14.00	17 79	4,00	-357.80
109	845	14,00	17,73	4,00	-358.00
170	850	14,00	17,97	4,04	-330,00
171	855	14,17	17,97	4,04	-558,50
172	000	14,20	17,04	4,02	-336,60
173	000 865	14,33	17,97	4,04	-356,90
174	000	14,42	10,10	4,07	-359,00
175	070	14,50	17,04	4,02	-359,20
170	0/5	14,00	17,04	4,02	-359,30
177	880	14,07	17,88	4,02	-359,40
178	885	14,75	18,15	4,09	-359,60
179	890	14,83	17,88	4,02	-359,70
180	895	14,92	17,88	4,02	-359,80
181	900	15,00	17,97	4,04	-360,10
182	905	15,08	18,15	4,09	-360,10
183	910	15,17	17,92	4,03	-360,20
184	915	15,25	18,06	4,06	-360,50
185	920	15,33	18,19	4,09	-360,50
186	925	15,42	18,10	4,07	-360,60
187	930	15,50	18,15	4,09	-360,90
188	935	15,58	18,01	4,05	-361,00
189	940	15,67	18,15	4,09	-361,20
190	945	15,75	17,92	4,03	-361,30
191	950	15,83	18,19	4,09	-361,40
192	955	15,92	17,97	4,04	-361,50
193	960	16,00	17,92	4,03	-361,50
194	965	16,08	18,15	4,09	-361,60
195	970	16,17	18,19	4,09	-361,50
196	975	16,25	18,15	4,09	-361,50
197	980	16,33	18,19	4,09	-361,40
198	985	16,42	17,92	4,03	-361,30
199	990	16,50	18,10	4,07	-361,20
200	995	16,58	17,97	4,04	-361,20
201	1000	16,67	18,10	4,07	-361,10
202	1005	16,75	18,19	4,09	-360,90
203	1010	16,83	18,19	4,09	-360,70

204	1015	16,92	18,19	4,09	-360,10
205	1020	17,00	18,15	4,09	-359,40
206	1025	17,08	17,97	4,04	-358,40
207	1030	17,17	18,06	4,06	-357,20
208	1035	17,25	18,10	4,07	-356,00
209	1040	17,33	18,01	4,05	-355,20
210	1045	17,42	18,24	4,11	-354,60
211	1050	17,50	18,24	4,11	-354,80
212	1055	17,58	18,01	4,05	-355,40
213	1060	17,67	18,19	4,09	-356,40
214	1065	17,75	18,24	4,11	-357,10
215	1070	17,83	18,06	4,06	-358,00
216	1075	17,92	17,97	4,04	-358,60
217	1080	18,00	18,24	4,11	-359,40
218	1085	18.08	18.01	4.05	-360.00
219	1090	18.17	18.01	4.05	-360.60
220	1095	18.25	18.10	4.07	-361.40
221	1100	18.33	17.97	4.04	-362.10
222	1105	18,42	18,10	4.07	-362.20
223	1110	18.50	18,10	4.07	-362.60
224	1115	18.58	17.97	4.04	-363.30
225	1120	18.67	18.06	4.06	-363,80
226	1125	18 75	18.24	4 11	-364 20
227	1130	18,83	18.01	4.05	-364 40
228	1135	18,00	17 92	4 03	-364 90
229	1140	19.00	17,92	4 04	-365.30
230	1145	19.08	17,97	4 04	-365.60
231	1150	19 17	17,92	4 03	-366.00
232	1155	19.25	17.92	4 03	-366 20
233	1160	19.33	18,15	4.09	-366.50
234	1165	19.42	18.24	4 11	-366.90
235	1170	19.50	18 19	4 09	-367 10
236	1175	19.58	18.06	4 06	-367 40
237	1180	19.67	18,00	4 11	-367.60
238	1185	19,75	17 92	4.03	-367.80
239	1190	19.83	17,82	4 02	-367,80
240	1195	19.92	18 10	4 07	-367.90
241	1200	20.00	18,10	4.05	-368.20
241	1200	20,00	18,01	4 09	-368.00
243	1210	20.17	18.06	4.06	-368.00
240	1215	20.25	18.06	4.06	-368.00
245	1210	20.33	17.88	4 02	-368 20
245	1225	20,00	17.84	4 02	-368 40
240	1230	20,72	18.01	4.02	-368.80
248	1235	20,50	17 88	<u>4</u> 02	-360 10
240	1233	20,00	18 15	4 00	-360 10
250	1245	20,07	17.88	4 02	-368 70
250	1250	20,73	17 07	4.02	-360.60
251	1255	20,00	17.88	4 02	-331 50
252	1260	21.00	17 70	4.00	-34/ 10
255	1265	21,00	17 75	4,00	-349.70
254	1200	21,00	12 01	4.05	-330.20
255	1270	21,17	18.06	4,00	-350,20
200	12/0	Z1,Z0	10,00	4,00	-200,90

257	1280	21,33	18,10	4,07	-232,70
258	1285	21,42	17,97	4,04	-215,70

Tabela 10.25: Stężenia ChZT i NH₄⁺ występujące w piątej serii pomiarowej

Czas [h]	Stężenie ChZT [mgO₂/dm³]	Stężenie N-NH₄ ⁺ [mg/dm³]
0,00	286	0,78
0,50	248	-
1,25	234	-
3,50	216	-
21,42	180	0,39

Seria pomiarowa nr 6:

Tabela 10.26: Stężenia azotanów V i potencjału utleniającoredukującego w szóstej serii pomiarowej

					Wartość
L.p.	Czas [min]	Czas [h]	Stęże- nie NO ₃ ⁻ [mg/dm ³]	Stężenie N-NO ₃ ⁻ [mg/dm ³]	potencjału utleniająco- redukującego
4	0.00	0.00	40.07	4.00	
1	0,00	0,00	19,07	4,29	-307,40
2	5,00	0,08	18,97	4,27	-341,20
3	10,00	0,17	18,93	4,26	-188,10
4	15,00	0,25	29,76	6,70	-76,70
5	20,00	0,33	62,66	14,10	-59,40
6	25,00	0,42	74,88	16,85	-97,30
7	30,00	0,50	55,92	12,59	-128,90
8	35,00	0,58	39,16	8,81	-136,20
9	40,00	0,67	33,43	7,52	-139,40
10	45,00	0,75	29,47	6,63	-140,70
11	50,00	0,83	26,96	6,07	-140,70
12	55,00	0,92	24,97	6,00	-140,50
13	60,00	1,00	23,47	5,28	-140,00
14	65,00	1,08	22,12	4,98	-139,40
15	70,00	1,17	21,21	4,77	-139,00
16	75,00	1,25	20,54	4,62	-138,70
17	80,00	1,33	20,03	4,51	-138,40
18	85,00	1,42	19,50	4,39	-138,20
19	90,00	1,50	19,02	4,28	-137,70
20	95,00	1,58	18,74	4,22	-137,50
21	100,00	1,67	18,37	4,13	-137,20
22	105,00	1,75	18,15	4,09	-136,70
23	110,00	1,83	17,97	4,04	-136,10
24	115,00	1,92	17,70	3,98	-135,50
25	120,00	2,00	17,62	3,97	-134,90
26	125,00	2,08	17,36	3,91	-134,50

27	130,00	2,17	17,40	3,92	-134,30
28	135,00	2,25	17,49	3,94	-134,90
29	140,00	2,33	17,49	3,94	-136,00
30	145,00	2,42	17,36	3,91	-138,10
31	150,00	2,50	17,49	3,94	-140,30
32	155,00	2,58	17,57	3,95	-141,20
33	160,00	2,67	17,49	3,94	-142,80
34	165,00	2,75	17,57	3,95	-146,40
35	170,00	2,83	17,53	3,95	-149,10
36	175,00	2,92	17,70	3,98	-151,70
37	180,00	3,00	17,75	4,00	-159,10
38	185,00	3,08	17,62	3,97	-172,90
39	190,00	3,17	17,62	3,97	-184,40
40	195,00	3,25	17,66	3,97	-198,00
41	200,00	3,33	17,66	3,97	-220,90
42	205,00	3,42	17,88	4,02	-244,90
43	210.00	3.50	17.88	4.02	-259.60
44	215.00	3.58	17.75	4.00	-271.80
45	220.00	3.67	17.79	4.00	-280.80
46	225.00	3.75	17.75	4.00	-287.60
47	230.00	3.83	17.79	4.00	-292.80
48	235.00	3.92	17,79	4.00	-296.70
49	240.00	4 00	17 79	4 00	-300 40
50	245.00	4 08	18.01	4 05	-305 10
51	250.00	4 17	17.92	4 03	-315 20
52	255.00	4 25	17 97	4 04	-323.60
53	260,00	4.33	17.92	4 03	-327 30
54	265.00	4 42	17 92	4 03	-329 70
55	270.00	4 50	18.01	4 05	-331.80
56	275.00	4 58	17.92	4 03	-333.60
57	280.00	4.67	18.01	4.05	-335.30
58	285.00	4 75	17.97	4 04	-336.90
59	290.00	4 83	17.97	4 04	-338 50
60	295.00	4.92	18.10	4.07	-340.00
61	300.00	5.00	17.97	4.04	-341.40
62	305.00	5.08	18.06	4.06	-342.50
63	310.00	5.17	18.24	4.11	-343.50
64	315.00	5.25	18.19	4.09	-344.50
65	320.00	5.33	18.06	4.06	-345.70
66	325.00	5.42	18.06	4.06	-347.00
67	330.00	5.50	18.01	4.05	-348,10
68	335.00	5.58	18.24	4,11	-349.20
69	340.00	5.67	18.28	4.11	-350.20
70	345.00	5.75	18.10	4.07	-351.10
71	350.00	5.83	18.28	4.11	-352,10
72	355.00	5.92	18.24	4.11	-353,10
73	360.00	6.00	18,15	4.09	-353.80
74	365.00	6.08	18.37	4.13	-354,70
75	370.00	6.17	18.37	4.13	-355.60
76	375.00	6.25	18.42	4.15	-356.30
77	380.00	6.33	18.37	4.13	-357.10
78	385,00	6,42	18,19	4,09	-357,70

79	390,00	6,50	18,46	4,15	-358,30
80	395,00	6,58	18,28	4,11	-358,90
81	400,00	6,67	18,33	4,13	-359,40
82	405,00	6,75	18,24	4,11	-360,00
83	410,00	6,83	18,28	4,11	-360,50
84	415,00	6,92	18,28	4,11	-361,10
85	420,00	7,00	18,46	4,15	-361,40
86	425,00	7,08	18,33	4,13	-361,90
87	430,00	7,17	18,51	4,17	-362,20
88	435,00	7,25	18,51	4,17	-362,50
89	440,00	7,33	18,56	4,18	-362,80
90	445,00	7,42	18,46	4,15	-363,10
91	450,00	7,50	18,51	4,17	-363,50
92	455,00	7,58	18,46	4,15	-363,70
93	460,00	7,67	18,65	4,20	-364,10
94	465,00	7,75	18,65	4,20	-364,30
95	470.00	7.83	18.69	4.21	-364.50
96	475.00	7.92	18.65	4.20	-364.70
97	480.00	8.00	18.65	4.20	-364.80
98	485.00	8.08	18.56	4.18	-365.20
99	490.00	8,17	18,74	4.22	-365.40
100	495.00	8.25	18.51	4.17	-365.60
101	500.00	8.33	18 74	4 22	-365.90
102	505.00	8 42	18.51	4 17	-366 10
103	510.00	8.50	18 79	4 23	-366 20
104	515.00	8,58	18 79	4 23	-366.50
105	520.00	8 67	18 60	4 19	-366 60
106	525.00	8 75	18.60	4 19	-366 70
107	530.00	8.83	18.69	4,13	-367 10
108	535.00	8.92	18.60	4 19	-367 10
109	540.00	9.00	18 69	4 21	-367 40
110	545.00	9.08	18.88	4 25	-367 70
111	550.00	9 17	18 65	4 20	-367.90
112	555.00	9.25	18 74	4 22	-368 10
113	560.00	9.33	18.65	4 20	-368,30
114	565.00	9.42	18.83	4 24	-368 50
115	570.00	9.50	18.93	4 26	-368 70
116	575.00	9.58	18 74	4 22	-368.90
117	580.00	9.67	18 69	4 21	-369 10
118	585.00	9 75	18.83	4 24	-369.20
119	590.00	9.83	18.88	4 25	-369 40
120	595.00	9,92	18.93	4 26	-369 70
121	600.00	10.00	18.97	4 27	-369.90
122	605.00	10.08	18.83	4 24	-369.90
123	610.00	10,17	18,93	4,26	-370 20
124	615.00	10.25	18.88	4 25	-370 40
125	620.00	10.33	18.83	4 24	-370.60
126	625.00	10.42	19.07	4 29	-370 80
127	630.00	10.50	19.07	4 29	-370.90
128	635.00	10.58	18.83	4 24	-371 00
129	640.00	10.67	18,97	4.27	-370,90
130	645.00	10.75	19.07	4.29	-370.90

131	650,00	10,83	19,02	4,28	-370,70
132	655,00	10,92	19,07	4,29	-370,60
133	660,00	11,00	19,02	4,28	-370,50
134	665,00	11,08	19,11	4,30	-370,40
135	670,00	11,17	19,02	4,28	-370,30
136	675,00	11,25	18,93	4,26	-370,30
137	680,00	11,33	19,16	4,31	-370,30
138	685,00	11,42	19,16	4,31	-370,20
139	690,00	11,50	19,11	4,30	-370,30
140	695,00	11,58	19,21	4,32	-370,40
141	700,00	11,67	19,21	4,32	-370,60
142	705,00	11,75	18,93	4,26	-370,90
143	710,00	11,83	19,21	4,32	-371,10
144	715,00	11,92	19,07	4,29	-371,20
145	720,00	12,00	19,02	4,28	-371,40
146	725,00	12,08	19,26	4,33	-371,70
147	730.00	12.17	19,16	4.31	-372.00
148	735.00	12.25	19.07	4.29	-372.10
149	740.00	12.33	19.21	4.32	-372.50
150	745.00	12.42	19.07	4.29	-372.60
151	750.00	12.50	19.21	4.32	-372.90
152	755.00	12.58	19.11	4.30	-372.90
153	760.00	12 67	19.30	4 34	-373 10
154	765.00	12.75	19.35	4.36	-373.30
155	770.00	12.83	19.07	4.29	-373.50
156	775.00	12.92	19.30	4.34	-373 80
157	780.00	13.00	19.30	4.34	-374.20
158	785.00	13.08	19.11	4.30	-374.30
159	790.00	13.17	19.11	4.30	-374.60
160	795.00	13.25	19.35	4.36	-374.80
161	800.00	13.33	19.21	4.32	-375.00
162	805.00	13.42	19.16	4.31	-375.30
163	810.00	13.50	19.16	4.31	-375.60
164	815.00	13.58	19.35	4.36	-375.90
165	820.00	13.67	19.30	4.34	-376.10
166	825.00	13.75	19.40	4.37	-376.30
167	830.00	13.83	19.35	4.36	-376.60
168	835.00	13.92	19.21	4.32	-376.60
169	840,00	14,00	19,35	4,36	-376,90
170	845.00	14.08	19.45	4.38	-377.00
171	850.00	14.17	19.26	4.33	-377.20
172	855,00	14,25	19,50	4,39	-377,60
173	860,00	14,33	19,26	4,33	-377,70
174	865,00	14,42	19,50	4,39	-377,90
175	870,00	14,50	19,54	4,40	-378,00
176	875.00	14.58	19,45	4.38	-378.30
177	880.00	14,67	19.26	4.33	-378,40
178	885.00	14,75	19.26	4,33	-378,70
179	890.00	14,83	19.50	4,39	-378.80
180	895.00	14,92	19.30	4,34	-379.10
181	900,00	15,00	19,30	4,34	-379,30
182	905,00	15,08	19,45	4,38	-379,60

183	910,00	15,17	19,30	4,34	-379,90
184	915,00	15,25	19,40	4,37	-380,00
185	920,00	15,33	19,64	4,42	-380,40
186	925,00	15,42	19,59	4,41	-380,50
187	930,00	15,50	19,54	4,40	-380,90
188	935,00	15,58	19,30	4,34	-381,30
189	940,00	15,67	19,59	4,41	-381,50
190	945,00	15,75	19,35	4,36	-381,90
191	950,00	15,83	19,50	4,39	-381,90
192	955,00	15,92	19,64	4,42	-382,20
193	960,00	16,00	19,45	4,38	-382,30
194	965,00	16,08	19,45	4,38	-382,50
195	970,00	16,17	19,35	4,36	-382,80
196	975,00	16,25	19,50	4,39	-383,00
197	980,00	16,33	19,69	4,43	-383,20
198	985,00	16,42	19,50	4,39	-383,60
199	990,00	16,50	19,35	4,36	-383,80
200	995,00	16,58	19,59	4,41	-384,00
201	1000,00	16,67	19,50	4,39	-384,20
202	1005.00	16.75	19.69	4.43	-384.40
203	1010.00	16.83	19.54	4.40	-384.60
204	1015.00	16.92	19.40	4.37	-384.80
205	1020.00	17.00	19.59	4.41	-385.00
206	1025.00	17.08	19.45	4.38	-385.40
207	1030.00	17.17	19.64	4.42	-385.60
208	1035.00	17.25	19.64	4.42	-385.70
209	1040,00	17,33	19,59	4,41	-386,00
210	1045.00	17.42	19.45	4.38	-386.30
211	1050,00	17,50	19,74	4,44	-386,70
212	1055,00	17,58	19,54	4,40	-386,90
213	1060,00	17,67	19,74	4,44	-387,20
214	1065,00	17,75	19,69	4,43	-387,60
215	1070,00	17,83	19,69	4,43	-388,00
216	1075,00	17,92	19,50	4,39	-388,50
217	1080,00	18,00	19,59	4,41	-388,90
218	1085,00	18,08	19,50	4,39	-389,40
219	1090,00	18,17	19,69	4,43	-390,50
220	1095,00	18,25	19,50	4,39	-391,50
221	1100,00	18,33	19,54	4,40	-393,20
222	1105,00	18,42	19,64	4,42	-395,50
223	1110,00	18,50	19,79	4,45	-399,20
224	1115,00	18,58	19,50	4,39	-404,10
225	1120,00	18,67	19,79	4,45	-409,50
226	1125,00	18,75	19,54	4,40	-413,10
227	1130,00	18,83	19,69	4,43	-415,30
228	1135,00	18,92	19,50	4,39	-416,60
229	1140,00	19,00	19,50	4,39	-417,50
230	1145,00	19,08	19,59	4,41	-418,30
231	1150,00	19,17	19,84	4,47	-418,90
232	1155,00	19,25	19,54	4,40	-419,60
233	1160,00	19,33	19,74	4,44	-420,00
234	1165,00	19,42	19,69	4,43	-420,60

235	1170,00	19,50	19,79	4,45	-421,00
236	1175,00	19,58	19,69	4,43	-421,50
237	1180,00	19,67	19,59	4,41	-421,60
238	1185,00	19,75	19,84	4,47	-422,10
239	1190,00	19,83	19,69	4,43	-422,50
240	1195,00	19,92	19,79	4,45	-422,90
241	1200,00	20,00	19,59	4,41	-423,20
242	1205,00	20,08	19,64	4,42	-423,60
243	1210,00	20,17	19,84	4,47	-423,80
244	1215,00	20,25	19,69	4,43	-424,10
245	1220,00	20,33	19,74	4,44	-424,30
246	1225,00	20,42	19,89	4,48	-424,60
247	1230,00	20,50	19,59	4,41	-424,90
248	1235,00	20,58	19,64	4,42	-425,10
249	1240,00	20,67	19,89	4,48	-425,40
250	1245,00	20,75	19,64	4,42	-425,80
251	1250,00	20,83	19,69	4,43	-426,00
252	1255,00	20,92	19,69	4,43	-426,30
253	1260,00	21,00	19,79	4,45	-426,50
254	1265,00	21,08	19,64	4,42	-426,80
255	1270,00	21,17	19,84	4,47	-427,00
256	1275,00	21,25	19,84	4,47	-427,10
257	1280,00	21,33	19,64	4,42	-427,40
258	1285,00	21,42	19,79	4,45	-427,60
259	1290,00	21,50	19,93	4,49	-427,90
260	1295,00	21,58	19,79	4,45	-428,10
261	1300,00	21,67	19,93	4,49	-428,30
262	1305,00	21,75	19,69	4,43	-428,50
263	1310,00	21,83	19,89	4,48	-428,80
264	1315,00	21,92	19,79	4,45	-428,90
265	1320,00	22,00	19,79	4,45	-429,10
266	1325,00	22,08	19,93	4,49	-429,40
267	1330,00	22,17	19,69	4,43	-429,50
268	1335,00	22,25	19,69	4,43	-429,70
269	1340,00	22,33	19,84	4,47	-429,90
270	1345,00	22,42	19,79	4,45	-430,00
271	1350,00	22,50	19,84	4,47	-430,20
272	1355,00	22,58	19,93	4,49	-430,50
273	1360,00	22,67	19,69	4,43	-430,60
274	1365,00	22,75	19,79	4,45	-430,90
275	1370,00	22,83	19,98	4,50	-431,00
276	1375,00	22,92	19,69	4,43	-431,20
277	1380,00	23,00	19,74	4,44	-431,50
278	1385,00	23,08	19,69	4,43	-431,60
279	1390,00	23,17	19,98	4,50	-431,80
280	1395,00	23,25	19,69	4,43	-431,80
281	1400,00	23,33	19,98	4,50	-432,10
282	1405,00	23,42	19,84	4,47	-432,20
283	1410,00	23,50	19,79	4,45	-432,40
284	1415,00	23,58	19,69	4,43	-432,60
285	1420,00	23,67	19,93	4,49	-432,70
286	1425,00	23,75	19,89	4,48	-432,80

287	1430,00	23,83	19,93	4,49	-432,90
288	1435,00	23,92	19,89	4,48	-433,10
289	1440,00	24,00	19,74	4,44	-433,10
290	1445,00	24,08	19,84	4,47	-433,20
291	1450,00	24,17	19,98	4,50	-433,40
292	1455,00	24,25	20,03	4,51	-433,60
293	1460,00	24,33	19,74	4,44	-433,60
294	1465,00	24,42	19,74	4,44	-433,70
295	1470,00	24,50	19,89	4,48	-433,80
296	1475,00	24,58	20,03	4,51	-433,90
297	1480,00	24,67	19,93	4,49	-434,10
298	1485,00	24,75	19,98	4,50	-434,20
299	1490,00	24,83	19,93	4,49	-434,40
300	1495,00	24,92	20,13	4,53	-434,50

Tabela 10.27: Stężenia ChZT i NH₄⁺ występujące w szóstej serii pomiarowej

Czas [h]	Stężenie ChZT [mgO ₂ /dm ³]	Stężenie N-NH₄ ⁺ [mg/dm ³]
0,00	316	0,78
0,50	282	-
1,25	256	-
2,50	236	-
24,92	228	0,39

Seria pomiarowa nr 7:

Tabela 10.28: Stężenia azotanów V i potencjału utleniająco-redukującego w siódmej serii pomiarowej

L.p.	Czas [min]	Czas [h] (interwał - 1 min)	Stężenie NO ₃ [mg/dm ³]	Stężenie N-NO ₃ [mg/dm ³]	czas [h] (interwał - 5 min)	Wartość po- tencjału utle- niająco- redukującego [mV]
1	0	0,00	22,23	5,00	0,00	-438,60
2	1	0,02	22,06	4,97	0,08	-439,10
3	2	0,03	21,90	4,93	0,17	-295,20
4	3	0,05	21,85	4,92	0,25	-220,90
5	4	0,07	21,74	4,89	0,33	-180,10
6	5	0,08	21,63	4,87	0,42	-198,10
7	6	0,10	21,52	4,84	0,50	-198,80
8	7	0,12	21,42	4,82	0,58	-194,30
9	8	0,13	21,36	4,81	0,67	-189,00
10	9	0,15	21,31	4,80	0,75	-184,20
11	10	0,17	21,26	4,79	0,83	-180,00
12	11	0,18	21,21	4,77	0,92	-176,10
13	12	0,20	20,89	4,70	1,00	-172,70
14	13	0,22	22,28	5,01	1,08	-169,80
15	14	0,23	28,53	6,42	1,17	-167,20

1716 0.27 49.05 11.04 1.33 -162.70 1817 0.28 60.68 13.66 1.42 -160.70 1918 0.30 70.39 15.84 1.50 -159.00 2019 0.32 79.46 17.88 1.58 -157.20 2120 0.33 86.65 19.50 1.67 -155.80 2221 0.33 95.42 21.48 1.83 -152.20 2423 0.38 99.03 22.29 1.92 -150.50 2524 0.40 95.90 21.58 2.00 -148.70 2625 0.42 94.25 21.21 2.08 -147.30 2726 0.43 90.37 20.34 2.17 -146.70 2827 0.45 81.25 18.29 2.55 -147.20 2928 0.47 73.77 16.60 2.33 -148.10 3029 0.48 68.50 15.42 2.42 -149.20 3130 0.55 53.75 12.10 2.75 -151.50 34 33 0.55 53.75 12.10 2.75 -152.20 36 35 0.58 48.93 11.01 2.92 -154.50 3736 0.60 47.61 10.72 3.00 -154.90 3332 0.55 42.70 9.61 3.25 -174.40 44 40 0	16	15	0.25	38 20	8 60	1 25	-164 80
18 17 0.28 60.68 13.66 1.42 -160.70 19 18 0.30 70.39 15.84 1.50 -159.00 20 19 0.32 79.46 17.88 1.58 -157.20 21 20 0.33 86.65 19.50 1.67 -155.50 22 21 0.35 93.09 20.95 1.75 -153.80 23 22 0.37 95.42 21.48 1.83 -152.20 24 23 0.38 99.03 22.29 1.92 -148.70 26 25 0.42 94.25 21.21 2.06 -147.20 29 28 0.47 73.77 16.60 2.33 -146.70 31 30 0.50 64.07 14.42 2.50 -150.10 32 31 0.52 59.49 13.39 2.58 -151.50 34 33 0.55 53.75 12.10 2	10	16	0.27	49.05	11 04	1,20	-162 70
19180,3070,3915,841,50159,0020190,3279,4617,881,50-157,2021200,3386,6519,501,67-155,5022210,3539,0920,951,75-153,8023220,3795,4221,481,83-152,2024230,3899,0322,291,92-180,5025240,4095,9021,582,00-148,7026250,4294,2521,212,08-147,3027260,4390,3720,342,17-146,7028270,4581,2518,292,25-147,2029280,4773,7716,602,33-148,1030290,4868,5015,422,42-149,2031300,5064,0714,422,50-150,1032310,5259,4913,392,58-151,5034330,5553,7512,102,75-152,0035340,5751,0311,492,83-153,5036350,5848,9311,012,92-154,5037360,6047,6110,723,00-154,9038370,6245,8810,333,08-154,7039380,6542,709,613,25-174,4041	18	17	0.28	60.68	13.66	1 42	-160.70
10100,32179,4617,881,501357,2021200,3386,6519,501,67-155,5022210,3593,0920,951,75-153,8023220,3795,4221,481,83-152,2024230,3899,0322,291,92-156,5025240,4095,9021,582,00-148,7026250,4294,2521,212,08-147,3027260,4390,3720,342,17-146,7028270,4581,2518,292,25-147,2029280,4773,7716,602,33-148,1030290,4866,5015,422,42-149,2031300,5064,0714,422,50-150,1032310,5259,4913,392,58-151,5034330,5553,7512,102,75-152,0035340,5751,0311,492,83-154,7036350,5848,9311,012,92-154,5037360,6047,6110,723,00-154,9038370,6245,8810,333,08-154,7039380,6542,709,613,25-174,4041400,6741,879,423,33-195,4042 <td< td=""><td>10</td><td>18</td><td>0,20</td><td>70.39</td><td>15,84</td><td>1,12</td><td>-159.00</td></td<>	10	18	0,20	70.39	15,84	1,12	-159.00
2013 0.32 $13,10$ $11,05$ $11,05$ $11,05$ $11,105$ 2120 0.33 $86,65$ $19,50$ 1.75 $-153,80$ 2322 0.37 $95,42$ $21,48$ $1,83$ $-152,20$ 2423 0.38 $99,03$ $22,29$ $1,92$ $-160,50$ 2524 $0,40$ $95,90$ $21,58$ 2.00 $-148,70$ 2625 $0,42$ $94,25$ $21,21$ 2.08 $-147,20$ 2928 $0,47$ $73,77$ $16,60$ $2,33$ $-148,70$ 2928 $0,47$ $73,77$ $16,60$ $2,33$ $-148,10$ 30 $0,50$ $64,07$ $14,42$ $2,50$ $-150,10$ 3130 $0,55$ $59,49$ $13,39$ $2,58$ $-151,30$ 3332 $0,53$ $56,20$ $12,65$ $2,67$ $-151,50$ 34 $30,55$ $53,75$ $12,10$ $2,75$ $-152,00$ 3534 $0,57$ $51,03$ $11,49$ $2,83$ $-153,50$ 3635 $0,58$ $48,93$ $11,01$ $2,92$ $-154,50$ 37 36 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 38 37 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 39 8 $0,63$ $43,88$ $9,86$ $3,17$ $-162,80$ 40 39 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 41 40 $0,67$ <	20	10	0,30	79.46	17.88	1,50	-157.20
21 20 0,35 30,90 19,50 1,75 -153,80 23 22 0,37 95,42 21,48 1,83 -152,20 24 23 0,38 99,03 22,29 1,92 -150,50 25 24 0,40 95,90 21,58 2,00 -148,70 26 25 0,42 94,25 21,21 2,08 -147,30 26 27 0,45 81,25 18,29 2,25 -147,20 29 28 0,47 73,77 16,60 2,33 -148,10 30 29 0,48 68,50 15,42 2,42 -149,20 31 30 0,50 64,07 14,42 2,50 -150,10 32 31 0,52 59,49 13,39 2,58 -151,50 34 33 0,55 53,75 12,10 2,75 -152,00 35 34 0,57 51,03 11,49 2	20	19	0,32	75,40 96.65	10,50	1,50	155 50
22 21 0,33 95,42 21,48 1,83 -152,20 24 23 0,38 99,03 22,29 1,92 -150,50 25 24 0,40 95,90 21,58 2,00 -148,70 26 25 0,42 94,25 21,21 2,08 -147,30 27 26 0,43 90,37 20,34 2,17 -146,70 28 27 0,45 81,25 18,29 2,25 -147,20 29 28 0,47 73,77 16,60 2,33 -148,10 30 29 0,48 68,50 15,42 2,42 -149,20 31 30 0,50 64,07 14,42 2,50 -151,10 32 31 0,51 53,75 12,10 2,75 -151,30 33 32 0,53 56,20 12,65 2,67 -154,50 37 36 0,60 47,61 10,72 3	21	20	0,33	00,05	19,50	1,07	-155,50
2322 0.37 $39,03$ $22,29$ $1,92$ $-150,50$ 2524 $0,40$ $99,03$ $22,29$ $1,92$ $-150,50$ 2625 $0,42$ $94,25$ $21,121$ $2,08$ $-147,30$ 2726 $0,43$ $90,37$ $20,34$ $2,17$ $-146,70$ 2827 $0,45$ $81,25$ $18,29$ $2,25$ $-147,20$ 2928 $0,47$ $73,77$ $16,60$ $2,33$ $-148,10$ 3029 $0,48$ $68,50$ $15,42$ $2,42$ $-149,20$ 3130 $0,50$ $64,07$ $14,42$ $2,50$ $-150,10$ 3231 $0,55$ $59,49$ $13,39$ $2,58$ $-151,30$ 3332 $0,53$ $56,20$ $12,65$ $2,67$ $-151,50$ 3433 $0,55$ $53,75$ $12,10$ $2,75$ $-152,00$ 3534 $0,57$ $51,03$ $11,49$ $2,83$ $-154,70$ 3736 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 38 37 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 3938 $0,63$ $43,88$ $9,88$ $3,17$ $-162,80$ 4039 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 41 40 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 42 41 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 43 42	22	21	0,35	93,09	20,95	1,70	-153,60
24 23 $0,36$ $39,03$ $22,19$ $1,32$ $-130,370$ 25 24 $0,40$ $95,90$ $21,58$ $2,00$ $-148,70$ 26 25 $0,42$ $94,25$ $21,21$ $2,08$ $-147,30$ 27 26 $0,43$ $90,37$ $20,34$ $2,17$ $-146,70$ 28 27 $0,45$ $81,25$ $18,29$ $2,25$ $-147,20$ 29 28 $0,47$ $73,77$ $16,60$ $2,33$ $-148,10$ 30 29 $0,48$ $68,50$ $15,42$ $2,42$ $-149,20$ 31 30 $0,50$ $64,07$ $14,42$ $2,50$ $-150,10$ 32 31 $0,52$ $59,49$ $13,39$ $2,58$ $-151,50$ 34 33 $0,55$ $53,75$ $12,10$ $2,75$ $-152,00$ 35 34 $0,57$ $51,03$ $11,49$ $2,83$ $-153,50$ 36 35 $0,58$ $48,93$ $11,01$ $2,92$ $-154,50$ 37 36 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 38 37 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 39 38 $0,63$ $43,88$ $9,86$ $3,17$ $-162,80$ 40 39 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 41 40 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 42 41 $0,68$ $41,15$ $9,22$ $3,3$	23	22	0,37	95,42	21,40	1,03	-152,20
25240,4095,9021,382,00 $-148,70$ 26250,4294,2521,212,08 $-147,30$ 27260,4390,3720,342,17 $-146,70$ 28270,4581,2518,292,25 $-147,20$ 29280,4773,7716,602,33 $-148,10$ 30290,4866,5015,422,42 $-149,20$ 31300,5064,0714,422,50 $-150,10$ 32310,5259,4913,392,58 $-151,30$ 34330,5553,7512,102,75 $-152,00$ 35340,5751,0311,492,83 $-153,50$ 36350,5849,9311,012,92 $-154,50$ 37360,6047,6110,723,00 $-154,70$ 38370,6245,8810,333,08 $-154,70$ 39380,6343,889,883,17 $-162,80$ 40390,6542,709,613,25 $-174,40$ 41400,6741,879,423,33 $-195,40$ 42410,6841,159,263,42 $-202,00$ 43420,7040,049,013,58 $-247,50$ 45440,7338,498,663,67 $-268,10$ 46450,7537,188,373,75 -2	24	23	0,38	99,03	22,29	1,92	-150,50
26 25 $0,42$ $94,25$ $21,21$ $2,03$ $-144,70$ 27 26 $0,43$ $90,37$ $20,34$ $2,17$ $-146,70$ 28 27 $0,45$ $81,25$ $18,29$ $2,25$ $-147,20$ 29 28 $0,47$ $73,77$ $16,60$ $2,33$ $-148,10$ 30 29 $0,48$ $68,50$ $15,42$ $2,42$ $-149,20$ 31 30 $0,50$ $64,07$ $14,42$ $2,50$ $-150,10$ 32 31 $0,55$ $59,49$ $13,39$ $2,58$ $-151,30$ 33 32 $0,53$ $56,20$ $12,65$ $2,67$ $-151,50$ 34 33 $0,55$ $53,75$ $12,10$ $2,75$ $-152,00$ 35 34 $0,57$ $51,03$ $11,49$ $2,83$ $-154,50$ 36 35 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 38 37 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 39 38 $0,63$ $43,88$ $9,88$ $3,17$ $-162,80$ 40 39 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 41 40 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 42 41 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 43 42 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 44 43 $0,72$ $39,06$ $8,79$ $3,58$ <	25	24	0,40	95,90	21,58	2,00	-148,70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	25	0,42	94,25	21,21	2,08	-147,30
28 27 $0,45$ $81,25$ $18,29$ $2,25$ $-147,20$ 29 28 $0,47$ $73,77$ $16,60$ $2,33$ $-148,10$ 30 29 $0,48$ $68,50$ $15,42$ $2,42$ $-149,20$ 31 30 $0,50$ $64,07$ $14,42$ $2,50$ $-150,10$ 32 31 $0,52$ $59,49$ $13,39$ $2,58$ $-151,30$ 34 33 $0,55$ $53,75$ $12,10$ $2,75$ $-152,00$ 35 34 $0,57$ $51,03$ $11,49$ $2,83$ $-153,50$ 36 35 $0,58$ $48,93$ $11,01$ $2,92$ $-154,50$ 37 36 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 38 37 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 39 38 $0,63$ $42,70$ $9,61$ $3,25$ $-174,40$ 41 40 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 42 41 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 43 42 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 44 43 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 45 44 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 45 $0,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 47 46 $0,77$ $36,36$ $8,18$ $3,83$ $-294,5$	27	26	0,43	90,37	20,34	2,17	-146,70
2928 $0,47$ $73,77$ $16,60$ $2,33$ $-148,10$ 3029 $0,48$ $68,50$ $15,42$ $2,42$ $-149,20$ 3130 $0,50$ $64,07$ $14,42$ $2,50$ $-150,10$ 3231 $0,52$ $59,49$ $13,39$ $2,58$ $-151,30$ 3332 $0,53$ $56,20$ $12,65$ $2,67$ $-151,50$ 3433 $0,55$ $53,75$ $12,10$ $2,75$ $-152,00$ 3534 $0,57$ $51,03$ $11,49$ $2,83$ $-154,50$ 36 35 $0,58$ $48,93$ $11,01$ $2,92$ $-154,50$ 3736 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 38 37 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 3938 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 40 39 $0,65$ $42,70$ $9,61$ $3,25$ $-247,50$ 41 40 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 42 41 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 43 42 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 44 43 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 45 44 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 44 43 $0,72$ $39,06$ $8,79$ $3,52$ $-349,70$ 50	28	27	0,45	81,25	18,29	2,25	-147,20
30 29 $0,48$ $68,50$ $15,42$ $2,42$ $-149,20$ 31 30 $0,50$ $64,07$ $14,42$ $2,50$ $-150,10$ 32 31 $0,52$ $59,49$ $13,39$ $2,58$ $-151,30$ 33 32 $0,53$ $56,20$ $12,65$ $2,67$ $-151,50$ 34 33 $0,55$ $53,75$ $12,10$ $2,75$ $-152,00$ 35 34 $0,57$ $51,03$ $11,49$ $2,83$ $-153,50$ 36 35 $0,58$ $48,93$ $11,01$ $2,92$ $-154,90$ 37 36 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 38 37 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 39 38 $0,63$ $43,88$ $9,88$ $3,17$ $-162,80$ 40 39 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 41 40 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 42 41 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 43 42 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 44 43 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 45 44 $0,75$ $37,18$ $8,37$ $3,75$ $-268,10$ 46 $6,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 47 46 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$	29	28	0,47	73,77	16,60	2,33	-148,10
31300,5064,0714,422,50-150,1032310,5259,4913,392,58-151,3033320,5356,2012,652,67-151,5034330,5553,7512,102,75-152,0035340,5751,0311,492,83-153,5036350,5848,9311,012,92-154,5037360,6047,6110,723,00-154,9038370,6245,8810,333,08-164,8040390,6542,709,613,25-174,4041400,6741,879,423,33-195,4042410,6841,159,263,42-202,0043420,7040,049,013,50-223,9044430,7239,068,793,58-247,5045440,7338,498,663,67-268,1046450,7537,188,373,75-285,0047460,7736,368,183,83-298,3048470,7835,217,923,92-313,6049480,8034,437,754,00-329,4050490,8233,597,564,08-338,3051500,8333,267,494,17-344,705251 <td< td=""><td>30</td><td>29</td><td>0,48</td><td>68,50</td><td>15,42</td><td>2,42</td><td>-149,20</td></td<>	30	29	0,48	68,50	15,42	2,42	-149,20
32 31 $0,52$ $59,49$ $13,39$ $2,58$ $-151,50$ 33 32 $0,53$ $56,20$ $12,65$ $2,67$ $-151,50$ 34 33 $0,55$ $53,75$ $12,10$ $2,75$ $-152,00$ 35 34 $0,57$ $51,03$ $11,49$ $2,83$ $-153,50$ 36 35 $0,58$ $48,93$ $11,01$ $2,92$ $-154,50$ 37 36 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 38 37 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 39 38 $0,63$ $43,88$ $9,88$ $3,17$ $-162,80$ 40 39 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 41 40 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 42 41 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 43 42 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 44 43 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 45 44 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 46 45 $0,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 47 46 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 48 47 $0,78$ $35,21$ $7,92$ $39,2$ $-313,60$ 49 48 $0,80$ $34,43$ $7,75$ $4,00$ <	31	30	0,50	64,07	14,42	2,50	-150,10
3332 $0,53$ $56,20$ $12,65$ $2,67$ $-151,50$ 3433 $0,55$ $53,75$ $12,10$ $2,75$ $-152,00$ 3534 $0,57$ $51,03$ $11,49$ $2,83$ $-153,50$ 3635 $0,58$ $48,93$ $11,01$ $2,92$ $-154,50$ 3736 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 3837 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 3938 $0,63$ $43,88$ $9,88$ $3,17$ $-162,80$ 4039 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 4140 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 4241 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 4342 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 4443 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 4544 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 46 45 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 47 46 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 48 47 $0,78$ $35,21$ $7,92$ $3,92$ $-313,60$ 49 48 $0,80$ $34,43$ $7,75$ $4,00$ $-329,40$ 50 49 $0,82$ $33,59$ $7,56$ $4,08$ $-338,30$ 51 50 $0,87$ <td>32</td> <td>31</td> <td>0,52</td> <td>59,49</td> <td>13,39</td> <td>2,58</td> <td>-151,30</td>	32	31	0,52	59,49	13,39	2,58	-151,30
3433 $0,55$ $53,75$ $12,10$ $2,75$ $-152,00$ 3534 $0,57$ $51,03$ $11,49$ $2,83$ $-153,50$ 3635 $0,58$ $48,93$ $11,01$ $2,92$ $-154,50$ 3736 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 3837 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 3938 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 4039 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 4140 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 4241 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 4342 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 4443 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 4544 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 4645 $0,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 4746 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 4847 $0,78$ $35,21$ $7,92$ $3,92$ $-313,60$ 49 48 $0,80$ $34,43$ $7,75$ $4,00$ $-329,40$ 50 49 $0,82$ $33,59$ $7,56$ $4,08$ $-338,30$ 51 50 $0,85$ $32,85$ $7,39$ $4,25$ $-349,70$ 52 51 $0,85$ <td< td=""><td>33</td><td>32</td><td>0,53</td><td>56,20</td><td>12,65</td><td>2,67</td><td>-151,50</td></td<>	33	32	0,53	56,20	12,65	2,67	-151,50
3534 $0,57$ $51,03$ $11,49$ $2,83$ $-153,50$ 3635 $0,58$ $48,93$ $11,01$ $2,92$ $-154,50$ 3736 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 3837 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 3938 $0,63$ $43,88$ $9,88$ $3,17$ $-162,80$ 4039 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 4140 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 4241 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 4342 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 4443 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 4544 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 46 45 $0,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 4746 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 48 47 $0,78$ $35,21$ $7,92$ $3,92$ $-313,60$ 49 $0,82$ $33,59$ $7,56$ $4,08$ $-338,30$ 51 50 $0,83$ $33,26$ $7,49$ $4,17$ $-344,70$ 52 51 $0,85$ $32,85$ $7,39$ $4,25$ $-349,70$ 53 52 $0,87$ $31,89$ $7,18$ $4,33$ $-353,40$ 54 53 $0,88$ $31,35$	34	33	0,55	53,75	12,10	2,75	-152,00
36 35 $0,58$ $48,93$ $11,01$ $2,92$ $-154,50$ 37 36 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 38 37 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 39 38 $0,63$ $43,88$ $9,88$ $3,17$ $-162,80$ 40 39 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 41 40 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 42 41 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 43 42 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 44 43 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 45 44 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 46 45 $0,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 47 46 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 48 47 $0,78$ $35,21$ $7,92$ $3,92$ $-313,60$ 49 48 $0,80$ $34,43$ $7,75$ $4,00$ $-329,40$ 50 49 $0,82$ $33,59$ $7,56$ $4,08$ $-338,30$ 51 50 $0,83$ $33,26$ $7,49$ $4,17$ $-344,70$ 52 51 $0,85$ $32,85$ $7,39$ $4,25$ $-349,70$ 53 52 $0,87$ $31,89$ $7,18$ $4,33$	35	34	0,57	51,03	11,49	2,83	-153,50
37 36 $0,60$ $47,61$ $10,72$ $3,00$ $-154,90$ 38 37 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 39 38 $0,63$ $43,88$ $9,88$ $3,17$ $-162,80$ 40 39 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 41 40 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 42 41 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 43 42 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 44 43 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 45 44 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 46 45 $0,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 47 46 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 48 47 $0,78$ $35,21$ $7,92$ $3,92$ $-313,60$ 49 48 $0,80$ $34,43$ $7,75$ $4,00$ $-329,40$ 50 49 $0,82$ $33,59$ $7,56$ $4,08$ $-338,30$ 51 50 $0,83$ $33,26$ $7,49$ $4,17$ $-344,70$ 52 51 $0,85$ $32,85$ $7,39$ $4,25$ $-349,70$ 53 52 $0,87$ $31,89$ $7,18$ $4,33$ $-353,40$ 54 53 $0,88$ $31,35$ $7,06$ $4,42$ $-$	36	35	0,58	48,93	11,01	2,92	-154,50
38 37 $0,62$ $45,88$ $10,33$ $3,08$ $-154,70$ 39 38 $0,63$ $43,88$ $9,88$ $3,17$ $-162,80$ 40 39 $0,65$ $42,70$ $9,61$ $3,25$ $-174,40$ 41 40 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 42 41 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 43 42 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 44 43 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 45 44 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 46 45 $0,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 47 46 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 48 47 $0,78$ $35,21$ $7,92$ $3,92$ $-313,60$ 49 48 $0,80$ $34,43$ $7,75$ $4,00$ $-329,40$ 50 49 $0,82$ $33,59$ $7,56$ $4,08$ $-338,30$ 51 50 $0,83$ $33,26$ $7,49$ $4,17$ $-344,70$ 52 51 $0,85$ $32,85$ $7,39$ $4,25$ $-349,70$ 53 52 $0,87$ $31,89$ $7,18$ $4,33$ $-353,40$ 54 53 $0,88$ $31,35$ $7,06$ $4,42$ $-356,40$ 55 54 $0,90$ $30,88$ $6,95$ $4,50$ -3	37	36	0,60	47,61	10,72	3,00	-154,90
39380,6343,889,883,17-162,8040390,6542,709,613,25-174,4041400,6741,879,423,33-195,4042410,6841,159,263,42-202,0043420,7040,049,013,50-223,9044430,7239,068,793,58-247,5045440,7338,498,663,67-268,1046450,7537,188,373,75-285,0047460,7736,368,183,83-298,3048470,7835,217,923,92-313,6049480,8034,437,754,00-329,4050490,8233,597,564,08-338,3051500,8333,267,494,17-344,7052510,8532,857,394,25-349,7053520,8731,897,184,33-353,4054530,8831,357,064,42-356,4055540,9030,886,954,50-359,1056550,9230,356,834,58-361,7059580,9729,106,554,83-367,0060590,9828,396,394,92-368,4061601,00 <td>38</td> <td>37</td> <td>0,62</td> <td>45,88</td> <td>10,33</td> <td>3,08</td> <td>-154,70</td>	38	37	0,62	45,88	10,33	3,08	-154,70
40 39 0.65 42.70 9.61 3.25 -174.40 41 40 0.67 41.87 9.42 3.33 -195.40 42 41 0.68 41.15 9.26 3.42 -202.00 43 42 0.70 40.04 9.01 3.50 -223.90 44 43 0.72 39.06 8.79 3.58 -247.50 45 44 0.73 38.49 8.66 3.67 -268.10 46 45 0.75 37.18 8.37 3.75 -285.00 47 46 0.77 36.36 8.18 3.83 -298.30 48 47 0.78 35.21 7.92 3.92 -313.60 49 48 0.80 34.43 7.75 4.00 -329.40 50 49 0.82 33.59 7.56 4.08 -338.30 51 50 0.83 33.26 7.49 4.17 -344.70 52 51 0.85 32.85 7.39 4.25 -349.70 53 52 0.87 31.89 7.18 4.33 -353.40 54 53 0.88 31.35 7.06 4.42 -356.40 55 54 0.90 30.88 6.95 4.50 -359.10 56 55 0.92 30.35 6.83 4.58 -361.70 57 56 0.93 29.76 6.70 4.67 -36	39	38	0,63	43,88	9,88	3,17	-162,80
4140 $0,67$ $41,87$ $9,42$ $3,33$ $-195,40$ 4241 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 4342 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 4443 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 4544 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 4645 $0,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 4746 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 4847 $0,78$ $35,21$ $7,92$ $3,92$ $-313,60$ 4948 $0,80$ $34,43$ $7,75$ $4,00$ $-329,40$ 5049 $0,82$ $33,59$ $7,56$ $4,08$ $-338,30$ 5150 $0,83$ $33,26$ $7,49$ $4,17$ $-344,70$ 5251 $0,85$ $32,85$ $7,39$ $4,25$ $-349,70$ 5352 $0,87$ $31,89$ $7,18$ $4,33$ $-353,40$ 5453 $0,88$ $31,35$ $7,06$ $4,42$ $-356,40$ 5554 $0,90$ $30,88$ $6,95$ $4,50$ $-359,10$ 5655 $0,92$ $30,35$ $6,83$ $4,58$ $-361,70$ 5756 $0,93$ $29,76$ $6,70$ $4,67$ $-363,90$ 58 57 $0,95$ $29,39$ $6,61$ $4,75$ $-368,40$ 61 60 $1,00$ $28,04$ <	40	39	0,65	42,70	9,61	3,25	-174,40
42 41 $0,68$ $41,15$ $9,26$ $3,42$ $-202,00$ 43 42 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 44 43 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 45 44 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 46 45 $0,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 47 46 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 48 47 $0,78$ $35,21$ $7,92$ $3,92$ $-313,60$ 49 48 $0,80$ $34,43$ $7,75$ $4,00$ $-329,40$ 50 49 $0,82$ $33,59$ $7,56$ $4,08$ $-338,30$ 51 50 $0,83$ $33,26$ $7,49$ $4,17$ $-344,70$ 52 51 $0,85$ $32,85$ $7,39$ $4,25$ $-349,70$ 53 52 $0,87$ $31,89$ $7,18$ $4,33$ $-353,40$ 54 53 $0,88$ $31,35$ $7,06$ $4,42$ $-356,40$ 55 54 $0,90$ $30,88$ $6,95$ $4,50$ $-359,10$ 56 55 $0,92$ $30,35$ $6,83$ $4,58$ $-361,70$ 57 56 $0,93$ $29,76$ $6,70$ $4,67$ $-363,90$ 58 57 $0,95$ $29,39$ $6,61$ $4,75$ $-368,40$ 61 60 $1,00$ $28,04$ $6,31$ $5,00$ -36	41	40	0,67	41,87	9,42	3,33	-195,40
4342 $0,70$ $40,04$ $9,01$ $3,50$ $-223,90$ 4443 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 4544 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 4645 $0,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 4746 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 4847 $0,78$ $35,21$ $7,92$ $3,92$ $-313,60$ 4948 $0,80$ $34,43$ $7,75$ $4,00$ $-329,40$ 5049 $0,82$ $33,59$ $7,56$ $4,08$ $-338,30$ 5150 $0,83$ $33,26$ $7,49$ $4,17$ $-344,70$ 5251 $0,85$ $32,85$ $7,39$ $4,25$ $-349,70$ 5352 $0,87$ $31,89$ $7,18$ $4,33$ $-353,40$ 5453 $0,88$ $31,35$ $7,06$ $4,42$ $-356,40$ 5554 $0,90$ $30,88$ $6,95$ $4,50$ $-359,10$ 5655 $0,92$ $30,35$ $6,83$ $4,58$ $-361,70$ 5857 $0,95$ $29,39$ $6,61$ $4,75$ $-365,40$ 5958 $0,97$ $29,10$ $6,55$ $4,83$ $-367,00$ 6059 $0,98$ $28,39$ $6,39$ $4,92$ $-368,40$ 61 60 $1,00$ $28,04$ $6,31$ $5,00$ $-369,80$ 62 61 $1,02$ $27,56$ <	42	41	0,68	41,15	9,26	3,42	-202,00
44 43 $0,72$ $39,06$ $8,79$ $3,58$ $-247,50$ 45 44 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 46 45 $0,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 47 46 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 48 47 $0,78$ $35,21$ $7,92$ $3,92$ $-313,60$ 49 48 $0,80$ $34,43$ $7,75$ $4,00$ $-329,40$ 50 49 $0,82$ $33,59$ $7,56$ $4,08$ $-338,30$ 51 50 $0,83$ $33,26$ $7,49$ $4,17$ $-344,70$ 52 51 $0,85$ $32,85$ $7,39$ $4,25$ $-349,70$ 53 52 $0,87$ $31,89$ $7,18$ $4,33$ $-353,40$ 54 53 $0,88$ $31,35$ $7,06$ $4,42$ $-356,40$ 55 54 $0,90$ $30,88$ $6,95$ $4,50$ $-359,10$ 56 55 $0,92$ $30,35$ $6,83$ $4,58$ $-361,70$ 57 56 $0,93$ $29,76$ $6,70$ $4,67$ $-363,90$ 58 57 $0,95$ $29,39$ $6,61$ $4,75$ $-365,40$ 59 58 $0,97$ $29,10$ $6,55$ $4,83$ $-367,00$ 60 59 $0,98$ $28,39$ $6,39$ $4,92$ $-368,40$ 61 60 $1,00$ $28,04$ $6,31$ $5,00$ -36	43	42	0,70	40,04	9,01	3,50	-223,90
45 44 $0,73$ $38,49$ $8,66$ $3,67$ $-268,10$ 46 45 $0,75$ $37,18$ $8,37$ $3,75$ $-285,00$ 47 46 $0,77$ $36,36$ $8,18$ $3,83$ $-298,30$ 48 47 $0,78$ $35,21$ $7,92$ $3,92$ $-313,60$ 49 48 $0,80$ $34,43$ $7,75$ $4,00$ $-329,40$ 50 49 $0,82$ $33,59$ $7,56$ $4,08$ $-338,30$ 51 50 $0,83$ $33,26$ $7,49$ $4,17$ $-344,70$ 52 51 $0,85$ $32,85$ $7,39$ $4,25$ $-349,70$ 53 52 $0,87$ $31,89$ $7,18$ $4,33$ $-353,40$ 54 53 $0,88$ $31,35$ $7,06$ $4,42$ $-356,40$ 55 54 $0,90$ $30,88$ $6,95$ $4,50$ $-359,10$ 56 55 $0,92$ $30,35$ $6,83$ $4,58$ $-361,70$ 57 56 $0,93$ $29,76$ $6,70$ $4,67$ $-363,90$ 58 57 $0,95$ $29,39$ $6,61$ $4,75$ $-365,40$ 59 58 $0,97$ $29,10$ $6,55$ $4,83$ $-367,00$ 60 59 $0,98$ $28,39$ $6,39$ $4,92$ $-368,40$ 61 60 $1,00$ $28,04$ $6,31$ $5,00$ $-376,20$ 64 63 $1,05$ $26,69$ $6,01$ $5,25$ -37	44	43	0,72	39,06	8,79	3,58	-247,50
46 45 0.75 37.18 8.37 3.75 $-285,00$ 47 46 0.77 $36,36$ 8.18 $3,83$ $-298,30$ 48 47 0.78 $35,21$ 7.92 3.92 $-313,60$ 49 48 $0,80$ $34,43$ 7.75 $4,00$ $-329,40$ 50 49 0.82 $33,59$ $7,56$ $4,08$ $-338,30$ 51 50 0.83 $33,26$ $7,49$ $4,17$ $-344,70$ 52 51 0.85 $32,85$ $7,39$ $4,25$ $-349,70$ 53 52 $0,87$ $31,89$ $7,18$ $4,33$ $-353,40$ 54 53 $0,88$ $31,35$ $7,06$ $4,42$ $-356,40$ 55 54 $0,90$ $30,88$ $6,95$ $4,50$ $-359,10$ 56 55 $0,92$ $30,35$ $6,83$ $4,58$ $-361,70$ 57 56 $0,93$ $29,76$ $6,70$ $4,67$ $-363,90$ 58 57 $0,95$ $29,39$ $6,61$ $4,75$ $-365,40$ 59 58 $0,97$ $29,10$ $6,55$ $4,83$ $-367,00$ 60 59 $0,98$ $28,39$ $6,39$ $4,92$ $-368,40$ 61 60 $1,00$ $28,04$ $6,31$ $5,00$ $-376,80$ 62 61 $1,02$ $27,56$ $6,20$ $5,08$ $-371,00$ 63 62 $1,03$ $27,22$ $6,13$ $5,17$ -37	45	44	0,73	38,49	8,66	3,67	-268,10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	45	0,75	37,18	8,37	3,75	-285,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47	46	0,77	36,36	8,18	3,83	-298,30
49 48 $0,80$ $34,43$ $7,75$ $4,00$ $-329,40$ 50 49 $0,82$ $33,59$ $7,56$ $4,08$ $-338,30$ 51 50 $0,83$ $33,26$ $7,49$ $4,17$ $-344,70$ 52 51 $0,85$ $32,85$ $7,39$ $4,25$ $-349,70$ 53 52 $0,87$ $31,89$ $7,18$ $4,33$ $-353,40$ 54 53 $0,88$ $31,35$ $7,06$ $4,42$ $-356,40$ 55 54 $0,90$ $30,88$ $6,95$ $4,50$ $-359,10$ 56 55 $0,92$ $30,35$ $6,83$ $4,58$ $-361,70$ 57 56 $0,93$ $29,76$ $6,70$ $4,67$ $-363,90$ 58 57 $0,95$ $29,39$ $6,61$ $4,75$ $-365,40$ 59 58 $0,97$ $29,10$ $6,55$ $4,83$ $-367,00$ 60 59 $0,98$ $28,39$ $6,39$ $4,92$ $-368,40$ 61 60 $1,00$ $28,04$ $6,31$ $5,00$ $-369,80$ 62 61 $1,02$ $27,56$ $6,20$ $5,08$ $-371,00$ 63 62 $1,03$ $27,22$ $6,13$ $5,17$ $-372,30$ 64 63 $1,05$ $26,69$ $6,01$ $5,25$ $-373,40$ 65 64 $1,07$ $26,30$ $5,92$ $5,33$ $-374,30$ 66 65 $1,08$ $26,23$ $5,90$ $5,42$ -37	48	47	0,78	35,21	7,92	3,92	-313,60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	48	0,80	34,43	7,75	4,00	-329,40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	49	0,82	33,59	7,56	4,08	-338,30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	50	0,83	33,26	7,49	4,17	-344,70
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	52	51	0,85	32,85	7,39	4,25	-349,70
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	53	52	0,87	31,89	7,18	4,33	-353,40
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	54	53	0,88	31,35	7,06	4,42	-356,40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55	54	0,90	30,88	6,95	4,50	-359,10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	55	0,92	30,35	6,83	4,58	-361,70
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	57	56	0,93	29,76	6,70	4,67	-363,90
59 58 0,97 29,10 6,55 4,83 -367,00 60 59 0,98 28,39 6,39 4,92 -368,40 61 60 1,00 28,04 6,31 5,00 -369,80 62 61 1,02 27,56 6,20 5,08 -371,00 63 62 1,03 27,22 6,13 5,17 -372,30 64 63 1,05 26,69 6,01 5,25 -373,40 65 64 1,07 26,30 5,92 5,33 -374,30 66 65 1,08 26,23 5,90 5,42 -375,30 67 66 1,10 25,78 5,80 5,50 -376,20	58	57	0,95	29,39	6,61	4,75	-365,40
60590,9828,396,394,92-368,4061601,0028,046,315,00-369,8062611,0227,566,205,08-371,0063621,0327,226,135,17-372,3064631,0526,696,015,25-373,4065641,0726,305,925,33-374,3066651,0826,235,905,42-375,3067661,1025,785,805,50-376,20	59	58	0,97	29,10	6,55	4,83	-367,00
61 60 1,00 28,04 6,31 5,00 -369,80 62 61 1,02 27,56 6,20 5,08 -371,00 63 62 1,03 27,22 6,13 5,17 -372,30 64 63 1,05 26,69 6,01 5,25 -373,40 65 64 1,07 26,30 5,92 5,33 -374,30 66 65 1,08 26,23 5,90 5,42 -375,30 67 66 1,10 25,78 5,80 5,50 -376,20	60	59	0,98	28,39	6,39	4,92	-368,40
62611,0227,566,205,08-371,0063621,0327,226,135,17-372,3064631,0526,696,015,25-373,4065641,0726,305,925,33-374,3066651,0826,235,905,42-375,3067661,1025,785,805,50-376,20	61	60	1,00	28,04	6,31	5,00	-369,80
63621,0327,226,135,17-372,3064631,0526,696,015,25-373,4065641,0726,305,925,33-374,3066651,0826,235,905,42-375,3067661,1025,785,805,50-376,20	62	61	1,02	27,56	6,20	5,08	-371,00
64631,0526,696,015,25-373,4065641,0726,305,925,33-374,3066651,0826,235,905,42-375,3067661,1025,785,805,50-376,20	63	62	1,03	27,22	6,13	5,17	-372,30
65641,0726,305,925,33-374,3066651,0826,235,905,42-375,3067661,1025,785,805,50-376,20	64	63	1,05	26,69	6,01	5,25	-373,40
66 65 1,08 26,23 5,90 5,42 -375,30 67 66 1,10 25,78 5,80 5,50 -376,20	65	64	1,07	26,30	5,92	5,33	-374,30
67 66 1,10 25,78 5,80 5,50 -376,20	66	65	1,08	26,23	5,90	5,42	-375,30
	67	66	1,10	25,78	5,80	5,50	-376,20

69 68 $1,12$ $2,0,7$ $5,62$ $5,67$ $-377,60$ 70 69 $1,15$ $24,72$ $5,56$ $5,75$ $-378,50$ 71 70 $1,17$ $24,60$ $5,54$ $5,83$ $-379,30$ 72 71 $1,18$ $24,42$ $5,50$ $5,92$ $-380,40$ 73 72 $1,20$ $24,12$ $5,43$ $6,00$ $-381,70$ 74 73 $1,22$ $24,00$ $5,40$ $6,08$ $-383,40$ 75 74 $1,23$ $23,70$ $5,33$ $6,17$ $-386,00$ 76 75 $1,25$ $23,59$ $5,31$ $6,25$ $-391,00$ 77 76 $1,27$ $23,18$ $5,22$ $6,33$ $-399,50$ 78 77 $1,28$ $23,07$ $5,19$ $6,42$ $-409,10$ 79 78 $1,30$ $22,78$ $5,13$ $6,50$ $-415,70$ 80 79 $1,32$ $22,67$ $5,10$ $6,58$ $-419,20$ 81 80 $1,33$ $22,26$ $5,08$ $6,67$ $-421,20$ 82 81 $1,35$ $22,28$ $5,01$ $6,75$ $-422,40$ 83 82 $1,37$ $22,12$ $4,98$ $6,83$ $-423,20$ 84 83 $1,38$ $21,90$ $4,93$ $6,92$ $-424,00$ 85 84 $1,40$ $21,95$ $4,94$ $7,00$ $-424,60$ 86 85 $1,42$ $21,79$ $4,90$ $7,08$ -42
70 69 $1,15$ $24,72$ $5,56$ $5,75$ $-378,50$ 71 70 $1,17$ $24,60$ $5,54$ $5,83$ $-379,30$ 72 71 $1,18$ $24,42$ $5,50$ $5,92$ $-380,40$ 73 72 $1,20$ $24,12$ $5,43$ $6,00$ $-381,70$ 74 73 $1,22$ $24,00$ $5,40$ $6,08$ $-383,40$ 75 74 $1,23$ $23,70$ $5,33$ $6,17$ $-386,00$ 76 75 $1,25$ $23,59$ $5,31$ $6,25$ $-391,00$ 76 75 $1,25$ $23,70$ $5,19$ $6,42$ $-409,10$ 77 76 $1,27$ $23,18$ $5,22$ $6,33$ $-399,50$ 78 77 $1,28$ $23,07$ $5,19$ $6,42$ $-409,10$ 79 78 $1,30$ $22,78$ $5,13$ $6,50$ $-415,70$ 80 79 $1,32$ $22,67$ $5,10$ $6,58$ $-419,20$ 81 80 $1,33$ $22,26$ $5,08$ $6,67$ $-421,20$ 82 81 $1,35$ $22,28$ $5,01$ $6,75$ $-422,40$ 83 82 $1,37$ $22,12$ $4,98$ $6,83$ $-423,20$ 84 83 $1,38$ $21,90$ $4,93$ $6,92$ $-424,00$ 85 84 $1,40$ $21,95$ $4,94$ $7,00$ $-424,60$ 86 85 $1,42$ $21,79$ $4,90$ $7,08$ -42
10 10 $1,10$ $2,1,12$ $5,00$ $6,10$ $616,00$ 71 70 $1,17$ $24,60$ $5,54$ $5,83$ $-379,30$ 72 71 $1,18$ $24,42$ $5,50$ $5,92$ $-380,40$ 73 72 $1,20$ $24,12$ $5,43$ $6,00$ $-381,70$ 74 73 $1,22$ $24,00$ $5,40$ $6,08$ $-383,40$ 75 74 $1,23$ $23,70$ $5,33$ $6,17$ $-386,00$ 76 75 $1,25$ $23,59$ $5,31$ $6,25$ $-391,00$ 76 75 $1,27$ $23,18$ $5,22$ $6,33$ $-399,50$ 78 77 $1,28$ $23,07$ $5,19$ $6,42$ $-409,10$ 79 78 $1,30$ $22,78$ $5,13$ $6,50$ $-415,70$ 80 79 $1,32$ $22,67$ $5,10$ $6,58$ $-419,20$ 81 80 $1,33$ $22,56$ $5,08$ $6,67$ $-421,20$ 82 81 $1,35$ $22,28$ $5,01$ $6,75$ $-422,40$ 83 82 $1,37$ $22,12$ $4,98$ $6,83$ $-423,20$ 84 83 $1,38$ $21,90$ $4,93$ $6,92$ $-424,00$ 85 84 $1,40$ $21,95$ $4,94$ $7,00$ $-424,60$ 86 85 $1,42$ $21,79$ $4,90$ $7,08$ $-425,20$
72 71 $1,17$ $2,30$ $0,04$ $0,06$ $0,06$ $0,06$ 72 71 $1,18$ $24,42$ $5,50$ $5,92$ $-380,40$ 73 72 $1,20$ $24,12$ $5,43$ $6,00$ $-381,70$ 74 73 $1,22$ $24,00$ $5,40$ $6,08$ $-383,40$ 75 74 $1,23$ $23,70$ $5,33$ $6,17$ $-386,00$ 76 75 $1,25$ $23,59$ $5,31$ $6,25$ $-391,00$ 77 76 $1,27$ $23,18$ $5,22$ $6,33$ $-399,50$ 78 77 $1,28$ $23,07$ $5,19$ $6,42$ $-409,10$ 79 78 $1,30$ $22,78$ $5,13$ $6,50$ $-415,70$ 80 79 $1,32$ $22,67$ $5,10$ $6,58$ $-419,20$ 81 80 $1,33$ $22,56$ $5,08$ $6,67$ $-421,20$ 82 81 $1,35$ $22,28$ $5,01$ $6,75$ $-422,40$ 83 82 $1,37$ $22,12$ $4,98$ $6,83$ $-423,20$ 84 83 $1,38$ $21,90$ $4,93$ $6,92$ $-424,00$ 85 84 $1,40$ $21,95$ $4,94$ $7,00$ $-424,60$ 86 85 $1,42$ $21,79$ $4,90$ $7,08$ $-425,20$
73 72 $1,10$ $24,12$ $5,00$ $6,02$ $300,40$ 73 72 $1,20$ $24,12$ $5,43$ $6,00$ $-381,70$ 74 73 $1,22$ $24,00$ $5,40$ $6,08$ $-383,40$ 75 74 $1,23$ $23,70$ $5,33$ $6,17$ $-386,00$ 76 75 $1,25$ $23,59$ $5,31$ $6,25$ $-391,00$ 77 76 $1,27$ $23,18$ $5,22$ $6,33$ $-399,50$ 78 77 $1,28$ $23,07$ $5,19$ $6,42$ $-409,10$ 79 78 $1,30$ $22,78$ $5,13$ $6,50$ $-415,70$ 80 79 $1,32$ $22,67$ $5,10$ $6,58$ $-419,20$ 81 80 $1,33$ $22,28$ $5,01$ $6,75$ $-422,40$ 82 81 $1,35$ $22,28$ $5,01$ $6,75$ $-422,40$ 83 82 $1,37$ $22,12$ $4,98$ $6,83$ $-423,20$ 84 83 $1,38$ $21,90$ $4,93$ $6,92$ $-424,00$ 85 84 $1,40$ $21,95$ $4,94$ $7,00$ $-424,60$ 86 85 $1,42$ $21,79$ $4,90$ $7,08$ $-425,20$
73 72 $1,20$ $24,12$ $3,43$ $0,00$ $-301,70$ 74 73 $1,22$ $24,00$ $5,40$ $6,08$ $-383,40$ 75 74 $1,23$ $23,70$ $5,33$ $6,17$ $-386,00$ 76 75 $1,25$ $23,59$ $5,31$ $6,25$ $-391,00$ 77 76 $1,27$ $23,18$ $5,22$ $6,33$ $-399,50$ 78 77 $1,28$ $23,07$ $5,19$ $6,42$ $-409,10$ 79 78 $1,30$ $22,78$ $5,13$ $6,50$ $-415,70$ 80 79 $1,32$ $22,67$ $5,10$ $6,58$ $-419,20$ 81 80 $1,33$ $22,56$ $5,08$ $6,67$ $-421,20$ 82 81 $1,35$ $22,28$ $5,01$ $6,75$ $-422,40$ 83 82 $1,37$ $22,12$ $4,98$ $6,83$ $-423,20$ 84 83 $1,38$ $21,90$ $4,93$ $6,92$ $-424,00$ 85 84 $1,40$ $21,95$ $4,94$ $7,00$ $-424,60$ 86 85 $1,42$ $21,79$ $4,90$ $7,08$ $-425,20$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
79 78 1,30 22,78 5,13 6,50 -415,70 80 79 1,32 22,67 5,10 6,58 -419,20 81 80 1,33 22,56 5,08 6,67 -421,20 82 81 1,35 22,28 5,01 6,75 -422,40 83 82 1,37 22,12 4,98 6,83 -423,20 84 83 1,38 21,90 4,93 6,92 -424,00 85 84 1,40 21,95 4,94 7,00 -424,60 86 85 1,42 21,79 4,90 7,08 -425,20
80 79 1,32 22,67 5,10 6,38 419,20 81 80 1,33 22,56 5,08 6,67 -421,20 82 81 1,35 22,28 5,01 6,75 -422,40 83 82 1,37 22,12 4,98 6,83 -423,20 84 83 1,38 21,90 4,93 6,92 -424,00 85 84 1,40 21,95 4,94 7,00 -424,60 86 85 1,42 21,79 4,90 7,08 -425,20
81 80 1,33 22,36 5,08 6,67 -421,20 82 81 1,35 22,28 5,01 6,75 -422,40 83 82 1,37 22,12 4,98 6,83 -423,20 84 83 1,38 21,90 4,93 6,92 -424,00 85 84 1,40 21,95 4,94 7,00 -424,60 86 85 1,42 21,79 4,90 7,08 -425,20
82 81 1,35 22,28 5,01 6,75 -422,40 83 82 1,37 22,12 4,98 6,83 -423,20 84 83 1,38 21,90 4,93 6,92 -424,00 85 84 1,40 21,95 4,94 7,00 -424,60 86 85 1,42 21,79 4,90 7,08 -425,20
83 82 1,37 22,12 4,98 6,83 -423,20 84 83 1,38 21,90 4,93 6,92 -424,00 85 84 1,40 21,95 4,94 7,00 -424,60 86 85 1,42 21,79 4,90 7,08 -425,20
84 83 1,38 21,90 4,93 6,92 -424,00 85 84 1,40 21,95 4,94 7,00 -424,60 86 85 1,42 21,79 4,90 7,08 -425,20
85 84 1,40 21,95 4,94 7,00 -424,60 86 85 1,42 21,79 4,90 7,08 -425,20
86 85 1,42 21,79 4,90 7,08 -425,20
87 86 1,43 21,58 4,86 7,17 -425,70
88 87 1,45 21,42 4,82 7,25 -426,20
89 88 1,47 21,42 4,82 7,33 -426,60
90 89 1,48 21,31 4,80 7,42 -427,00
91 90 1,50 21,15 4,76 7,50 -427,50
92 91 1,52 21,15 4,76 7,58 -427,70
93 92 1,53 21,00 4,73 7,67 -428,10
94 93 1,55 20,74 4,67 7,75 -428,30
95 94 1,57 20,84 4,69 7,83 -428,60
96 95 1,58 20,54 4,62 7,92 -429,00
97 96 1,60 20,69 4,66 8,00 -429,20
98 97 1,62 20,43 4,60 8,08 -429,40
99 98 1,63 20,59 4,63 8,17 -429,60
100 99 1,65 20,28 4,56 8,25 -429,90
101 100 1,67 20,23 4,55 8,33 -430,00
102 101 1,68 20,23 4,55 8,42 -430,20
103 102 1,70 20,23 4,55 8,50 -430,30
104 103 1,72 20,13 4,53 8,58 -430,50
105 104 1,73 20,13 4,53 8,67 -430,40
106 105 1,75 20,13 4,53 8,75 -430,50
107 106 1,77 19,98 4,50 8,83 -430,50
108 107 1,78 20,18 4,54 8,92 -430,50
109 108 1,80 20,03 4,51 9,00 -430,30
110 109 1,82 19,93 4,49 9,08 -430,20
111 110 1,83 19,84 4,47 9,17 -430,00
112 111 1,85 19,84 4,47 9,25 -429,80
113 112 1,87 19,89 4,48 9,33 -429,70
114 113 1,88 19,74 4,44 9,42 -429,60
115 114 1,90 19,59 4,41 9,50 -429,30
116 115 1,92 19,74 4,44 9,58 -429,10
117 116 1,93 19,50 4,39 9,67 -429,00
118 117 1,95 19,54 4,40 9,75 -428,80
119 118 197 19 <i>4</i> 0 437 983 - <i>1</i> 28.60

120	119	1,98	19,50	4,39	9,92	-428,40
121	120	2,00	19,50	4,39	10,00	-428,20
122	121	2,02	19,35	4,36	10,08	-428,20
123	122	2,03	19,26	4,33	10,17	-428,10
124	123	2,05	19,40	4,37	10,25	-428,10
125	124	2.07	19.16	4.31	10.33	-428.20
126	125	2.08	19.30	4.34	10.42	-428.20
127	126	2.10	19.35	4.36	10.50	-428.40
128	127	2.12	19.26	4.33	10.58	-428.50
129	128	2.13	19.11	4.30	10.67	-428.70
130	129	2.15	19.11	4.30	10.75	-428.80
131	130	2.17	19.30	4.34	10.83	-428.90
132	131	2.18	19.30	4.34	10.92	-428,90
133	132	2.20	19.21	4.32	11.00	-429.10
134	133	2.22	19.30	4.34	11.08	-429.20
135	134	2.23	19.35	4.36	11.17	-429.40
136	135	2 25	19 11	4 30	11 25	-429 50
137	136	2.27	19.26	4.33	11.33	-429.70
138	137	2.28	19.30	4 34	11 42	-429.90
139	138	2.30	19,11	4.30	11.50	-430,10
140	139	2.32	19.07	4.29	11.58	-430.30
141	140	2.33	19.30	4.34	11.67	-430.50
142	141	2.35	19.07	4.29	11.75	-430,70
143	142	2.37	19.30	4 34	11.83	-430 70
144	143	2.38	19,21	4.32	11.92	-430.90
145	144	2 40	19.11	4.30	12 00	-431.00
146	145	2.42	19,16	4.31	12.08	-431.10
147	146	2.43	19.30	4.34	12.17	-431.30
148	147	2.45	19.21	4.32	12.25	-431.50
149	148	2.47	19.26	4.33	12.33	-431.60
150	149	2.48	19.21	4.32	12.42	-431.70
151	150	2.50	19.26	4.33	12.50	-431.80
152	151	2.52	19.11	4.30	12.58	-431.90
153	152	2.53	19.21	4.32	12.67	-432.20
154	153	2.55	19.26	4.33	12.75	-432.30
155	154	2.57	19.21	4.32	12.83	-432.40
156	155	2.58	19.35	4.36	12.92	-432.60
157	156	2,60	19,16	4,31	13,00	-432,70
158	157	2,62	19,26	4,33	13,08	-432,80
159	158	2.63	19.35	4.36	13.17	-432.90
160	159	2,65	19,40	4,37	13,25	-433,10
161	160	2.67	19.21	4.32	13.33	-433.20
162	161	2.68	19.21	4.32	13.42	-433.50
163	162	2,70	19.26	4.33	13.50	-433.60
164	163	2,72	19.30	4,34	13.58	-433.80
165	164	2,73	19,21	4,32	13.67	-433.90
166	165	2,75	19,26	4,33	13,75	-434,20
167	166	2,77	19.35	4,36	13.83	-434.30
168	167	2,78	19,35	4,36	13,92	-434,40
169	168	2,80	19.50	4,39	14.00	-434,70
170	169	2,82	19,35	4,36	14,08	-434,70
171	170	2,83	19,40	4,37	14,17	-434,90
L	1		· ·			

172	171	2 85	19 40	4 37	14 25	-435.00
172	172	2,80	19,50	4.39	14.33	-435.10
174	173	2.88	19.35	4.36	14.42	-435.30
175	174	2,00	19.54	4 40	14.50	-435.40
176	175	2.92	19.50	4 39	14 58	-435.60
177	176	2.93	19.40	4.37	14 67	-435.60
178	177	2.95	19.35	4.36	14 75	-435.80
170	178	2,00	19,00	4 36	14,70	-436.00
180	179	2.98	19.54	4 40	14 92	-436 10
181	180	3.00	19.45	4.38	15.00	-436.30
182	181	3.02	19,40	4,00	15.08	-436.40
183	182	3.03	19,00	4 38	15,00	-436 50
184	183	3.05	19,40	4,00	15.25	-436 70
185	184	3.07	19,04	4 38	15 33	-436.80
186	185	3.08	19,40	4.40	15,00	-436.90
187	186	3 10	10,04	/ 30	15,42	-437.00
107	100	2 1 2	19,50	4,39	15,50	-437,00
180	188	3.12	19,59	4,41	15,50	-437,10
109	190	2 15	19,50	4,39	15,07	-437,30
190	109	2 17	19,04	4,40	15,75	-437,40
102	190	2.10	19,04	4,42	15,03	-437,00
192	191	3,10	19,09	4,43	16,92	-437,00
193	192	3,20	19,09	4,43	16,00	-437,70
194	193	3,22	19,74	4,44	10,00	-437,90
195	194	3,23	19,59	4,41	10,17	-438,00
196	195	3,25	19,69	4,43	16,25	-438,10
197	196	3,27	19,69	4,43	16,33	-438,20
198	197	3,28	19,74	4,44	16,42	-438,40
199	198	3,30	19,59	4,41	16,50	-438,60
200	199	3,32	19,74	4,44	16,58	-438,70
201	200	3,33	19,84	4,47	16,67	-438,80
202	201	3,35	19,84	4,47	16,75	-438,90
203	202	3,37	19,69	4,43	16,83	-439,00
204	203	3,38	19,89	4,48	16,92	-439,20
205	204	3,40	19,89	4,48	17,00	-439,40
206	205	3,42	19,69	4,43	17,08	-439,70
207	206	3,43	19,79	4,45	17,17	-439,60
208	207	3,45	19,74	4,44	17,25	-439,70
209	208	3,47	19,79	4,45	17,33	-439,80
210	209	3,48	19,84	4,47	17,42	-440,00
211	210	3,50	19,74	4,44	17,50	-440,10
212	211	3,52	19,79	4,45	17,58	-440,20
213	212	3,53	19,74	4,44	17,67	-440,30
214	213	3,55	19,79	4,45	17,75	-440,50
215	214	3,57	19,79	4,45	17,83	-440,50
216	215	3,58	19,89	4,48	17,92	-440,70
217	216	3,60	19,93	4,49	18,00	-440,80
218	217	3,62	19,84	4,47	18,08	-441,00
219	218	3,63	19,93	4,49	18,17	-441,20
220	219	3,65	19,79	4,45	18,25	-441,10
221	220	3,67	19,98	4,50	18,33	-441,30
222	221	3,68	19,84	4,47	18,42	-441,40
223	222	3,70	19,93	4,49	18,50	-441,50

-						
224	223	3,72	19,89	4,48	18,58	-441,60
225	224	3,73	19,93	4,49	18,67	-441,80
226	225	3,75	19,89	4,48	18,75	-441,90
227	226	3,77	20,03	4,51	18,83	-442,00
228	227	3,78	20,08	4,52	18,92	-442,10
229	228	3,80	20,08	4,52	19,00	-442,20
230	229	3,82	19,89	4,48	19,08	-442,40
231	230	3,83	20,13	4,53	19,17	-442,40
232	231	3,85	20,08	4,52	19,25	-442,60
233	232	3,87	19,98	4,50	19,33	-442,70
234	233	3,88	20,13	4,53	19,42	-442,70
235	234	3,90	19,98	4,50	19,50	-442,90
236	235	3,92	20,18	4,54	19,58	-442,90
237	236	3,93	20,08	4,52	19,67	-443,00
238	237	3,95	19,98	4,50	19,75	-443,00
239	238	3,97	20,18	4,54	19,83	-443,40
240	239	3,98	20,18	4,54	19,92	-442,20
241	240	4,00	20,03	4,51	20,00	-443,20
242	241	4,02	19,98	4,50	20,08	-443,10
243	242	4,03	20,03	4,51	20,17	-442,70
244	243	4,05	19,98	4,50	20,25	-443,10
245	244	4,07	20,18	4,54	20,33	-442,90
246	245	4,08	20,18	4,54	20,42	-441,30
247	246	4,10	20,18	4,54	20,50	-437,40
248	247	4,12	20,18	4,54	20,58	-441,10
249	248	4,13	20,18	4,54	20,67	-442,60
250	249	4,15	20,18	4,54	20,75	-442,70
251	250	4,17	20,18	4,54	20,83	-441,70
252	251	4,18	20,03	4,51	20,92	-441,30
253	252	4,20	19,98	4,50	21,00	-441,40
254	253	4,22	20,13	4,53	21,08	-439,70
255	254	4,23	20,18	4,54	21,17	-415,30
256	255	4,25	20,18	4,54	21,25	-431,30
257	256	4,27	20,18	4,54	-	-
258	257	4,28	20,23	4,55	-	-
259	258	4,30	20,23	4,55	-	-
260	259	4,32	20,13	4,53	-	-
261	260	4,33	20,03	4,51	-	-
262	261	4,35	20,03	4,51	-	-
263	262	4,37	20,23	4,55	-	-
264	263	4,38	20,18	4,54	-	-
265	264	4,40	20,23	4,55	-	-
266	265	4,42	20,03	4,51	-	-
267	266	4,43	20,03	4,51	-	-
268	267	4,45	20,28	4,56	-	-
269	268	4,47	20,08	4,52	-	
270	269	4,48	20,28	4,56	-	-
271	270	4,50	20,28	4,56	-	-
272	271	4,52	20,08	4,52	-	-
273	272	4,53	20,28	4,56	-	-
274	273	4,55	20,28	4,56	-	-
275	274	4,57	20,28	4,56	-	-

276	275	4,58	20,18	4,54	-	-
277	276	4,60	20,28	4,56	-	-
278	277	4,62	20,28	4,56	-	-
279	278	4,63	20,08	4,52	-	-
280	279	4,65	20,33	4,58	-	-
281	280	4,67	20,13	4,53	-	-
282	281	4,68	20,23	4,55	-	-
283	282	4,70	20,28	4,56	-	-
284	283	4,72	20,33	4,58	-	-
285	284	4,73	20,13	4,53	-	-
286	285	4,75	20,33	4,58	-	-
287	286	4,77	20,33	4,58	-	-
288	287	4,78	20,18	4,54	-	-
289	288	4,80	20,13	4,53	-	-
290	289	4,82	20,28	4,56	-	-
291	290	4,83	20,13	4,53	-	-
292	291	4,85	20,18	4,54	-	-
293	292	4,87	20,13	4,53	-	-
294	293	4,88	20,33	4,58	-	-
295	294	4,90	20,23	4,55	-	-
296	295	4,92	20,38	4,59	-	-
297	296	4,93	20,13	4,53	-	-
298	297	4,95	20,13	4,53	-	-
299	298	4,97	20,13	4,53	-	-
300	299	4,98	20,18	4,54	-	-
301	300	5,00	20,18	4,54	-	-
302	301	5,02	20,28	4,56	-	-
303	302	5,03	20,38	4,59	-	-
304	303	5,05	20,28	4,56	-	-
305	304	5,07	20,28	4,56	-	-
306	305	5,08	20,23	4,55	-	-
307	306	5,10	20,38	4,59	-	-
308	307	5,12	20,28	4,56	-	-
309	308	5,13	20,23	4,55	-	-
310	309	5,15	20,23	4,55	-	-
311	310	5,17	20,28	4,56	-	-
312	311	5,18	20,33	4,58	-	-
313	312	5,20	20,33	4,58	-	-
314	313	5,22	20,33	4,58	-	-
315	314	5,23	20,43	4,60	-	-
316	315	5,25	20,43	4,60	-	-
317	316	5,27	20,43	4,60	-	-
318	317	5,28	20,33	4,58	-	-
319	318	5,30	20,23	4,55	-	-
320	319	5.32	20,48	4,61	-	-
321	320	5,33	20,43	4,60	-	-
322	321	5,35	20,33	4,58	-	-
323	322	5.37	20.38	4.59	-	-
324	323	5,38	20,33	4,58	-	-
325	324	5,40	20.38	4,59	-	-
326	325	5,42	20,48	4,61	-	-
327	326	5.43	20,43	4.60	-	-
L		, -	, -	, -	1	1

328	327	5,45	20,33	4,58	-	-
329	328	5,47	20,48	4,61	-	-
330	329	5,48	20,38	4,59	-	-
331	330	5,50	20,38	4,59	-	-
332	331	5,52	20,48	4,61	-	-
333	332	5,53	20,43	4,60	-	-
334	333	5,55	20,38	4,59	-	-
335	334	5,57	20,33	4,58	-	-
336	335	5,58	20,54	4,62	-	-
337	336	5,60	20,54	4,62	-	-
338	337	5,62	20,54	4,62	-	-
339	338	5,63	20,54	4,62	-	-
340	339	5,65	20,54	4,62	-	-
341	340	5.67	20.59	4.63	-	-
342	341	5.68	20.38	4.59	-	-
343	342	5.70	20.43	4.60	-	-
344	343	5.72	20.38	4.59	-	_
345	344	5,73	20.43	4.60	-	_
346	345	5,75	20.38	4,59	_	-
347	346	5,77	20.59	4.63	-	-
348	347	5 78	20.43	4 60	-	-
349	348	5 80	20.59	4 63	-	-
350	349	5.82	20.48	4 61	-	-
351	350	5.83	20.48	4 61	-	-
352	351	5.85	20,40	4,01	-	_
353	352	5.87	20,00	4,00		
354	353	5.88	20,40	4,00	_	_
355	354	5,00	20,04	4,05	-	-
356	355	5.02	20,04	4,00		_
357	356	5.92	20,43	4,00	-	-
358	357	5.95	20,54	4,02		_
350	358	5.95	20,59	4,05	_	-
360	350	5.08	20,04	4,05		-
361	360	5,90 6,00	20,04	4,05	_	-
262	361	6.02	20,54	4,02	-	-
363	362	6.02	20,39	4,05		-
364	362	6.05	20,43	4,00	-	-
265	303	6.07	20,43	4,00	-	-
366	265	6.09	20,34	4,02	-	-
300	303	6.10	20,04	4,00	-	-
269	300	6.12	20,04	4,02	-	-
300	269	6.12	20,43	4,00	-	-
270	300	0,13	20,04	4,00	-	-
370	309	0,10 6 17	20,09	4,00	-	-
371	370	0,17	20,46	4,01	-	-
372	371	6,18	20,54	4,62	-	-
373	372	0,20	20,69	4,00	-	-
3/4	3/3	0,22	20,59	4,63	-	-
3/5	3/4	0,23	20,48	4,61	-	-
3/6	3/5	0,25	20,69	4,66	-	-
3//	3/6	6,27	20,69	4,66	-	-
3/8	3//	6,28	20,54	4,62	-	-
379	378	6,30	20,64	4,65	-	-

380	379	6,32	20,54	4,62	-	-
381	380	6,33	20,59	4,63	-	-
382	381	6,35	20,54	4,62	-	-
383	382	6,37	20,64	4,65	-	-
384	383	6,38	20,59	4,63	-	-
385	384	6,40	20,74	4,67	-	-
386	385	6,42	20,59	4,63	-	-
387	386	6,43	20,69	4,66	-	-
388	387	6,45	20,74	4,67	-	-
389	388	6,47	20,54	4,62	-	-
390	389	6,48	20,59	4,63	-	-
391	390	6,50	20,74	4,67	-	-
392	391	6,52	20,69	4,66	-	-
393	392	6,53	20,69	4,66	-	-
394	393	6,55	20,64	4,65	-	-
395	394	6,57	20,69	4,66	-	-
396	395	6,58	20,54	4,62	-	-
397	396	6,60	20,69	4,66	-	-
398	397	6,62	20,79	4,68	-	-
399	398	6,63	20,64	4,65	-	-
400	399	6,65	20,54	4,62	-	-
401	400	6,67	20,79	4,68	-	-
402	401	6,68	20,79	4,68	-	-
403	402	6,70	20,74	4,67	-	-
404	403	6,72	20,59	4,63	-	-
405	404	6,73	20,64	4,65	-	-
406	405	6,75	20,59	4,63	-	-
407	406	6,77	20,69	4,66	-	-
408	407	6,78	20,79	4,68	-	-
409	408	6,80	20,79	4,68	-	-
410	409	6,82	20,69	4,66	-	-
411	410	6,83	20,79	4,68	-	-
412	411	6,85	20,69	4,66	-	-
413	412	6,87	20,69	4,66	-	-
414	413	6,88	20,59	4,63	-	-
415	414	6,90	20,79	4,68	-	-
416	415	6,92	20,79	4,68	-	-
417	416	6,93	20,79	4,68	-	-
418	417	6,95	20,79	4,68	-	-
419	418	6,97	20,74	4,67	-	-
420	419	6,98	20,69	4,66	-	-
421	420	7,00	20,64	4,65	-	-
422	421	7,02	20,84	4,69	-	-
423	422	7,03	20,74	4,67	-	-
424	423	7,05	20,84	4,69	-	-
425	424	7,07	20,74	4,67	-	-
426	425	7,08	20,79	4,68	-	-
427	426	7,10	20,64	4,65	-	-
428	427	7,12	20,64	4,65	-	-
429	428	7,13	20,64	4,65	-	-
430	429	7,15	20,74	4,67	-	-
431	430	7,17	20,69	4,66	-	-
	•	-			-	

432	431	7,18	20,74	4,67	-	-
433	432	7,20	20,84	4,69	-	-
434	433	7,22	20,69	4,66	-	-
435	434	7,23	20,84	4,69	-	-
436	435	7,25	20,64	4,65	-	-
437	436	7,27	20,69	4,66	-	-
438	437	7,28	20,89	4,70	-	-
439	438	7,30	20,69	4,66	-	-
440	439	7,32	20,89	4,70	-	-
441	440	7,33	20,84	4,69	-	-
442	441	7,35	20,84	4,69	-	-
443	442	7,37	20,79	4,68	-	-
444	443	7,38	20,84	4,69	-	-
445	444	7,40	20,69	4,66	-	-
446	445	7,42	20,74	4,67	-	-
447	446	7,43	20,95	4,72	-	-
448	447	7,45	20,95	4,72	-	-
449	448	7,47	20,89	4,70	-	-
450	449	7,48	20,74	4,67	-	-
451	450	7,50	20,74	4,67	-	-
452	451	7,52	20,95	4,72	-	-
453	452	7,53	20,74	4,67	-	-
454	453	7,55	20,95	4,72	-	-
455	454	7,57	20,79	4,68	-	-
456	455	7,58	20,89	4,70	-	-
457	456	7,60	20,89	4,70	-	-
458	457	7,62	20,89	4,70	-	-
459	458	7,63	20,74	4,67	-	-
460	459	7,65	20,74	4,67	-	-
461	460	7,67	20,84	4,69	-	-
462	461	7,68	20,79	4,68	-	-
463	462	7,70	20,89	4,70	-	-
464	463	7,72	20,79	4,68	-	-
465	464	7,73	20,89	4,70	-	-
466	465	7,75	20,84	4,69	-	-
467	466	7,77	20,79	4,68	-	-
468	467	7,78	21,00	4,73	-	-
469	468	7,80	21,00	4,73	-	-
470	469	7,82	20,79	4,68	-	-
471	470	7,83	20,95	4,72	-	-
472	471	7,85	21,00	4,73	-	-
473	472	7,87	20,79	4,68	-	-
474	473	7,88	20,79	4,68	-	-
475	474	7,90	20,89	4,70	-	-
476	475	7,92	20,84	4,69	-	-
477	476	7,93	21,00	4,73	-	-
478	477	7,95	20,95	4,72	-	-
479	478	7,97	21,05	4,74	-	-
480	479	7,98	20,84	4,69	-	-
481	480	8,00	21,05	4,74	-	-
482	481	8,02	20,79	4,68	-	-
483	482	8,03	21,05	4,74	-	-

484	483	8,05	20,95	4,72	-	-
485	484	8,07	21,00	4,73	-	-
486	485	8,08	20,89	4,70	-	-
487	486	8,10	20,84	4,69	-	-
488	487	8,12	20,84	4,69	-	-
489	488	8,13	20,89	4,70	-	-
490	489	8,15	21,05	4,74	-	-
491	490	8,17	21,05	4,74	-	-
492	491	8,18	20,95	4,72	-	-
493	492	8,20	20,84	4,69	-	-
494	493	8,22	21,00	4,73	-	-
495	494	8,23	21,05	4,74	-	-
496	495	8,25	20,95	4,72	-	-
497	496	8,27	21,10	4,75	-	-
498	497	8,28	20,89	4,70	-	-
499	498	8,30	20,89	4,70	-	-
500	499	8,32	20,84	4,69	-	-

Tabela 10.29: Stężenia ChZT i NH₄⁺ występujące w siódmej serii pomiarowej

Czas [h]	Stężenie ChZT [mgO ₂ /dm ³]	Stężenie N-NH₄ ⁺ [mg/dm³]
0,00	303	2,34
0,25	297	-
1,50	273	-
3,50	242	-
21,25	238	0,78

Seria pomiarowa nr 8:

pomilarone	-J					
L.p.	Czas [min]	Czas [h] (interwał - 1 min)	Stęże- nie NO ₃ [mg/dm ³]	Stężenie N-NO ₃ [mg/dm ³]	czas [h] (interwał - 5 min)	Wartość potencjału utleniająco- redukującego [mV]
1	0	0,00	27,97	6,30	0,00	-446,30
2	1	0,02	27,77	6,25	0,08	-313,20
3	2	0,03	27,56	6,20	0,17	-269,40
4	3	0,05	27,43	6,17	0,25	-225,20
5	4	0,07	27,29	6,14	0,33	-224,70
6	5	0,08	27,09	6,10	0,42	-220,40
7	6	0,10	27,02	6,08	0,50	-213,50
8	7	0,12	26,82	6,04	0,58	-207,20
9	8	0,13	26,56	5,98	0,67	-201,00
10	9	0,15	26,17	5,89	0,75	-194,90

Tabela 10.30: Stężenia azotanów V i potencjału utleniająco-redukującego w ósmej serii pomiarowej

11	10	0,17	26,17	5,89	0,83	-188,70
12	11	0,18	26,56	5,98	0,92	-183,00
13	12	0,20	28,96	6,52	1,00	-178,00
14	13	0,22	36,27	8,16	1,08	-174,00
15	14	0,23	47,50	10,69	1,17	-170,40
16	15	0,25	61,74	13,90	1,25	-167,30
17	16	0,27	74,88	16,85	1,33	-164,40
18	17	0,28	86,43	19,45	1,42	-161,60
19	18	0,30	94,48	21,26	1,50	-158,90
20	19	0,32	98,06	22,07	1,58	-156,30
21	20	0,33	109,60	24,67	1,67	-153,50
22	21	0,35	114,90	25,86	1,75	-150,90
23	22	0,37	116,90	26,31	1,83	-148,70
24	23	0,38	117,50	26,45	1,92	-146,60
25	24	0,40	116,90	26,31	2,00	-144,70
26	25	0,42	106,10	23,88	2,08	-143,10
27	26	0,43	97,33	21,91	2,17	-143,10
28	27	0,45	88,60	19,94	2,25	-143,40
29	28	0,47	81,85	18,42	2,33	-144,40
30	29	0,48	76,18	17,15	2,42	-146,20
31	30	0,50	71,44	16,08	2,50	-148,20
32	31	0,52	68,16	15,34	2,58	-149,30
33	32	0,53	63,13	14,21	2,67	-149,80
34	33	0,55	60,23	13,56	2,75	-150,00
35	34	0,57	57,32	12,90	2,83	-149,50
36	35	0,58	54,69	12,31	2,92	-149,80
37	36	0,60	52,44	11,80	3,00	-150,10
37 38	36 37	0,60 0,62	52,44 50,40	11,80 11,34	3,00 3,08	-150,10 -150,30
37 38 39	36 37 38	0,60 0,62 0,63	52,44 50,40 48,44	11,80 11,34 10,90	3,00 3,08 3,17	-150,10 -150,30 -150,50
37 38 39 40	36 37 38 39	0,60 0,62 0,63 0,65	52,44 50,40 48,44 47,26	11,80 11,34 10,90 10,64	3,00 3,08 3,17 3,25	-150,10 -150,30 -150,50 -151,10
37 38 39 40 41	36 37 38 39 40	0,60 0,62 0,63 0,65 0,67	52,44 50,40 48,44 47,26 46,22	11,80 11,34 10,90 10,64 10,40	3,00 3,08 3,17 3,25 3,33	-150,10 -150,30 -150,50 -151,10 -151,40
37 38 39 40 41 42	36 37 38 39 40 41	0,60 0,62 0,63 0,65 0,67 0,68	52,44 50,40 48,44 47,26 46,22 44,21	11,80 11,34 10,90 10,64 10,40 9,95	3,00 3,08 3,17 3,25 3,33 3,42	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90
37 38 39 40 41 42 43	36 37 38 39 40 41 42	0,60 0,62 0,63 0,65 0,67 0,68 0,70	52,44 50,40 48,44 47,26 46,22 44,21 42,60	11,80 11,34 10,90 10,64 10,40 9,95 9,59	3,00 3,08 3,17 3,25 3,33 3,42 3,50	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20
37 38 39 40 41 42 43 44	36 37 38 39 40 41 42 43	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30
37 38 39 40 41 42 43 44 45	36 37 38 39 40 41 42 43 44	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 2,24	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80
37 38 39 40 41 42 43 44 45 46	36 37 38 39 40 41 42 43 44 45	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 2,25	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75	-150,10 -150,30 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70
37 38 39 40 41 42 43 44 45 46 46 47	36 37 38 39 40 41 42 43 44 45 46	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,59 9,38 9,21 9,01 8,75	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 2,22	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70 -193,60
37 38 39 40 41 42 43 44 45 46 47 48	36 37 38 39 40 41 42 43 44 45 46 47	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 27,26	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80
37 38 39 40 41 42 43 44 45 46 47 48 49 50	36 37 38 39 40 41 42 43 44 45 46 47 48	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,80	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 37,36 27,00	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,22	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80 -244,50
37 38 39 40 41 42 43 44 45 46 47 48 49 50 50	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,80 0,82	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 37,36 37,00 26,27	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,33 8,16	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80 -244,50 -268,60 202,50
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 37,36 37,00 36,27 25,01	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,33 8,16 8,08	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80 -215,80 -244,50 -268,60 -292,50 -221,20
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85 0,87	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 37,36 37,00 36,27 35,91 35,04	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,33 8,16 8,08 7,80	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,32	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80 -244,50 -244,50 -268,60 -292,50 -321,30 -337,60
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85 0,85 0,87	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 37,36 37,00 36,27 35,91 35,04 24,52	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,33 8,16 8,08 7,89 7,77	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,33 4,42	-150,10 -150,30 -150,50 -151,40 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80 -244,50 -268,60 -292,50 -321,30 -337,60 -348,00
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85 0,85 0,87 0,88 0,90	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 37,36 37,00 36,27 35,91 35,04 34,52 33,84	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,33 8,16 8,08 7,89 7,77 7,62	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,33 4,42 4,50	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80 -215,80 -244,50 -268,60 -292,50 -321,30 -337,60 -348,00 -355,10
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,77 0,78 0,80 0,82 0,83 0,85 0,87 0,88 0,88 0,90	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,94 40,04 38,87 38,11 37,36 37,00 36,27 35,91 35,04 34,52 33,84 33,50	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,33 8,16 8,08 7,89 7,77 7,62 7,56	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,33 4,42 4,50 4,58	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80 -215,80 -244,50 -268,60 -292,50 -321,30 -321,30 -337,60 -348,00 -355,10 -360,60
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85 0,83 0,85 0,87 0,88 0,88 0,90 0,92 0,93	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 37,36 37,00 36,27 35,91 35,04 34,52 33,84 33,59 33,10	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,33 8,16 8,08 7,89 7,77 7,62 7,56 7,45	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,33 4,42 4,50 4,58 4,67	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80 -244,50 -268,60 -292,50 -321,30 -337,60 -348,00 -355,10 -360,60 -364,80
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,77 0,78 0,80 0,82 0,83 0,85 0,85 0,87 0,88 0,90 0,92 0,93 0,95	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 37,36 37,00 36,27 35,91 35,04 34,52 33,84 33,59 33,10 32,45	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,33 8,16 8,08 7,89 7,77 7,62 7,56 7,45 7,30	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,33 4,42 4,50 4,58 4,67 4,75	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80 -244,50 -268,60 -292,50 -321,30 -337,60 -348,00 -355,10 -360,60 -364,80 -367,70
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,77 0,78 0,80 0,82 0,83 0,85 0,85 0,87 0,88 0,85 0,87 0,88 0,90 0,92 0,93 0,95 0,97	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 37,36 37,00 36,27 35,91 35,04 34,52 33,84 33,59 33,10 32,45 32,05	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,33 8,16 8,08 7,89 7,77 7,62 7,56 7,30 7,21	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,00 4,08 4,17 4,25 4,33 4,42 4,50 4,58 4,67 4,58 4,67 4,75 4,83	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80 -215,80 -244,50 -268,60 -292,50 -321,30 -337,60 -348,00 -355,10 -360,60 -364,80 -367,70 -370,30
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,77 0,78 0,80 0,82 0,83 0,85 0,83 0,85 0,85 0,87 0,88 0,90 0,92 0,93 0,95 0,97 0,98	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 37,36 37,00 36,27 35,91 35,04 34,52 33,84 33,59 33,10 32,45 32,05 31,50	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,33 8,16 8,08 7,89 7,77 7,62 7,56 7,45 7,30 7,21 7,09	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,33 4,42 4,50 4,58 4,67 4,58 4,67 4,75 4,83 4,92	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -153,20 -165,80 -169,70 -193,60 -215,80 -244,50 -244,50 -268,60 -292,50 -321,30 -321,30 -337,60 -348,00 -360,60 -364,80 -367,70 -370,30 -371,40
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,77 0,78 0,80 0,82 0,83 0,85 0,85 0,85 0,87 0,88 0,85 0,87 0,88 0,90 0,92 0,93 0,95 0,97 0,98 1,00	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 37,36 37,00 36,27 35,91 35,04 34,52 33,84 33,59 33,10 32,45 32,05 31,50 31,27	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,33 8,16 8,08 7,89 7,77 7,62 7,56 7,30 7,21 7,09 7,04	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,33 4,42 4,50 4,58 4,58 4,67 4,75 4,83 4,92 5,00	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80 -244,50 -268,60 -292,50 -321,30 -337,60 -348,00 -348,00 -360,60 -364,80 -367,70 -370,30 -371,40 -374,90
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	0,60 0,62 0,63 0,65 0,67 0,68 0,70 0,72 0,73 0,75 0,77 0,78 0,80 0,82 0,83 0,85 0,85 0,87 0,88 0,85 0,87 0,88 0,90 0,92 0,93 0,95 0,97 0,98 1,00 1,02	52,44 50,40 48,44 47,26 46,22 44,21 42,60 41,66 40,94 40,04 38,87 38,11 37,36 37,00 36,27 35,91 35,04 34,52 33,84 33,59 33,10 32,45 32,05 31,50 31,27 30,88	11,80 11,34 10,90 10,64 10,40 9,95 9,59 9,38 9,21 9,01 8,75 8,58 8,41 8,33 8,16 8,08 7,89 7,77 7,62 7,56 7,45 7,30 7,21 7,09 7,04	3,00 3,08 3,17 3,25 3,33 3,42 3,50 3,58 3,67 3,75 3,83 3,92 4,00 4,08 4,17 4,25 4,33 4,42 4,50 4,58 4,67 4,58 4,67 4,75 4,83 4,92 5,00 5,08	-150,10 -150,30 -150,50 -151,10 -151,40 -152,90 -153,20 -159,30 -165,80 -169,70 -193,60 -215,80 -244,50 -268,60 -292,50 -321,30 -337,60 -348,00 -355,10 -360,60 -364,80 -364,80 -367,70 -370,30 -371,40 -374,90 -376,80

63	62	1,03	30,81	6,93	5,17	-378,50
64	63	1,05	30,35	6,83	5,25	-380,60
65	64	1,07	29,83	6,71	5,33	-384,00
66	65	1,08	29,76	6,70	5,42	-390,00
67	66	1,10	29,61	6,66	5,50	-400,80
68	67	1,12	29,10	6,55	5,58	-412,00
69	68	1,13	28,68	6,46	5,67	-419,60
70	69	1,15	28,39	6,39	5,75	-423,70
71	70	1,17	28,18	6,34	5,83	-426,00
72	71	1,18	28,18	6,34	5,92	-427,60
73	72	1,20	27,97	6,30	6,00	-428,80
74	73	1,22	27,70	6,23	6,08	-429,80
75	74	1,23	27,56	6,20	6,17	-430,50
76	75	1,25	27,29	6,14	6,25	-431,30
77	76	1,27	27,36	6,16	6,33	-431,80
78	77	1,28	27,22	6,13	6,42	-432,20
79	78	1,30	27,09	6,10	6,50	-432,50
80	79	1,32	26,76	6,02	6,58	-432,90
81	80	1,33	26,43	5,95	6,67	-433,20
82	81	1,35	26,36	5,93	6,75	-433,50
83	82	1,37	26,30	5,92	6,83	-433,80
84	83	1,38	26,17	5,89	6,92	-434,00
85	84	1,40	25,91	5,83	7,00	-434,10
86	85	1,42	25,91	5,83	7,08	-434,10
87	86	1,43	25,65	5,77	7,17	-434,20
88	87	1,45	25,40	5,72	7,25	-434,10
89	88	1,47	25,40	5,72	7,33	-434,10
90	89	1,48	25,15	5,66	7,42	-434,20
91	90	1,50	25,34	5,70	7,50	-434,00
92	91	1,52	24,97	5,62	7,58	-433,90
93	92	1,53	25,15	5,66	7,67	-433,90
94	93	1,55	25,28	5,69	7,75	-433,50
95	94	1,57	25,03	5,63	7,83	-433,50
96	95	1,58	24,97	5,62	7,92	-433,40
97	96	1,60	24,84	5,59	8,00	-433,20
98	97	1,62	24,54	5,52	8,08	-433,00
99	98	1,63	24,66	5,55	8,17	-433,10
100	99	1,65	24,60	5,54	8,25	-432,90
101	100	1,67	24,60	5,54	8,33	-432,70
102	101	1,68	24,48	5,51	8,42	-432,40
103	102	1,70	24,48	5,51	8,50	-432,50
104	103	1,72	24,18	5,44	8,58	-432,50
105	104	1,73	24,18	5,44	8,67	-432,40
106	105	1,75	24,12	5,43	8,75	-432,40
107	106	1,77	24,06	5,42	8,83	-432,50
108	107	1,78	24,06	5,42	8,92	-432,50
109	108	1,80	24,00	5,40	9,00	-432,70
110	109	1,82	23,94	5,39	9,08	-432,80
111	110	1,83	23,94	5,39	9,17	-433,00
112	111	1,85	24,06	5,42	9,25	-433,20
113	112	1,87	23,82	5,36	9,33	-433,30
114	113	1,88	23,76	5,35	9,42	-433,50

115	114	1,90	23,94	5,39	9,50	-433,50
116	115	1,92	23,70	5,33	9,58	-433,70
117	116	1,93	23,94	5,39	9,67	-433,90
118	117	1,95	23,70	5,33	9,75	-434,20
119	118	1,97	23,82	5,36	9,83	-434,20
120	119	1,98	23,88	5,37	9,92	-434,40
121	120	2,00	23,88	5,37	10,00	-434,50
122	121	2,02	23,76	5,35	10,08	-434,70
123	122	2,03	23,70	5,33	10,17	-434,80
124	123	2,05	23,47	5,28	10,25	-434,90
125	124	2,07	23,53	5,30	10,33	-435,00
126	125	2,08	23,64	5,32	10,42	-435,20
127	126	2,10	23,64	5,32	10,50	-435,30
128	127	2,12	23,47	5,28	10,58	-435,50
129	128	2,13	23,70	5,33	10,67	-435,60
130	129	2,15	23,41	5,27	10,75	-435,80
131	130	2,17	23,47	5,28	10,83	-435,90
132	131	2,18	23,64	5,32	10,92	-436,00
133	132	2,20	23,59	5,31	11,00	-436,10
134	133	2,22	23,53	5,30	11,08	-436,30
135	134	2,23	23,53	5,30	11,17	-436,30
136	135	2,25	23,30	5,24	11,25	-436,50
137	136	2,27	23,53	5,30	11,33	-436,70
138	137	2,28	23,30	5,24	11,42	-436,70
139	138	2,30	23,59	5,31	11,50	-436,90
140	139	2,32	23,41	5,27	11,58	-437,00
141	140	2,33	23,30	5,24	11,67	-437,10
142	141	2,35	23,53	5,30	11,75	-437,20
143	142	2,37	23,47	5,28	11,83	-437,40
144	143	2,38	23,59	5,31	11,92	-437,60
145	144	2,40	23,35	5,26	12,00	-437,70
146	145	2,42	23,47	5,28	12,08	-437,80
147	146	2,43	23,47	5,28	12,17	-437,90
148	147	2,45	23,35	5,26	12,25	-438,10
149	148	2,47	23,59	5,31	12,33	-438,30
150	149	2,48	23,47	5,28	12,42	-438,30
151	150	2,50	23,35	5,26	12,50	-438,50
152	151	2,52	23,41	5,27	12,58	-438,60
153	152	2,53	23,64	5,32	12,67	-438,70
154	153	2,55	23,64	5,32	12,75	-438,80
155	154	2,57	23,53	5,30	12,83	-438,90
156	155	2,58	23,41	5,27	12,92	-439,00
157	156	2,60	23,41	5,27	13,00	-439,10
158	15/	2,62	23,47	5,28	13,08	-439,30
159	158	2,63	23,41	5,27	13,17	-439,40
160	159	2,65	23,53	5,30	13,25	-439,70
161	160	2,67	23,64	5,32	13,33	-439,70
102	101	2,00	23,70	5,33	13,42	-439,90
103	162	2,70	23,10	5,33	13,50	-439,90
104	103	2,12	23,59	5.31	13,50	-440,10
100	104	2,13	23,04	5.32	10,07	-440,20
100	165	2,75	23,16	হ,১১	13,75	-440,30

167	166	2,77	23,59	5,31	13,83	-440,50
168	167	2,78	23,76	5,35	13,92	-440,60
169	168	2,80	23,76	5,35	14,00	-440,70
170	169	2,82	23,82	5,36	14,08	-440,70
171	170	2,83	23,64	5,32	14,17	-440,80
172	171	2,85	23,88	5,37	14,25	-441,00
173	172	2,87	23,76	5,35	14,33	-441,10
174	173	2,88	23,76	5,35	14,42	-441,20
175	174	2,90	23,64	5,32	14,50	-441,30
176	175	2,92	23,82	5,36	14,58	-441,40
177	176	2,93	23,76	5,35	14,67	-441,50
178	177	2,95	23,76	5,35	14,75	-441,70
179	178	2,97	24,00	5,40	14,83	-441,80
180	179	2,98	24,00	5,40	14,92	-441,90
181	180	3,00	24,00	5,40	15,00	-442,00
182	181	3,02	23,82	5,36	15,08	-442,10
183	182	3,03	24,00	5,40	15,17	-442,20
184	183	3,05	24,12	5,43	15,25	-442,30
185	184	3,07	23,88	5,37	15,33	-442,50
186	185	3,08	24,12	5,43	15,42	-442,50
187	186	3,10	24,12	5,43	15,50	-442,60
188	187	3,12	23,94	5,39	15,58	-442,80
189	188	3,13	23,94	5,39	15,67	-442,90
190	189	3,15	24,06	5,42	15,75	-442,90
191	190	3,17	24,18	5,44	15,83	-443,00
192	191	3,18	24,18	5,44	15,92	-443,10
193	192	3,20	24,24	5,46	16,00	-443,20
194	193	3,22	24,30	5,47	16,08	-443.30
195	194	3,23	24,30	5,47	16,17	-443,50
196	195	3,25	24,18	5,44	16,25	-443,50
197	196	3,27	24,30	5,47	16,33	-443,70
198	197	3,28	24,12	5,43	16,42	-443,80
199	198	3,30	24,24	5,46	16,50	-443,90
200	199	3,32	24,24	5,46	16,58	-444,00
201	200	3,33	24,24	5,46	16,67	-444,10
202	201	3,35	24,30	5,47	16,75	-444,20
203	202	3,37	24,42	5,50	16,83	-444,30
204	203	3,38	24,48	5,51	16,92	-444,40
205	204	3,40	24,48	5,51	17,00	-444,50
206	205	3,42	24,42	5,50	17,08	-444,60
207	206	3,43	24,36	5,48	17,17	-444,70
208	207	3,45	24,36	5,48	17,25	-444,80
209	208	3,47	24,42	5,50	17,33	-444,90
210	209	3,48	24,54	5,52	17,42	-445,00
211	210	3,50	24,42	5,50	17,50	-445,10
212	211	3,52	24,48	5,51	17,58	-445,20
213	212	3,53	24,66	5,55	17,67	-445,30
214	213	3,55	24,42	5,50	17,75	-445,40
215	214	3,57	24,66	5,55	17,83	-445,50
216	215	3,58	24,54	5,52	17,92	-445,70
217	216	3,60	24,60	5,54	18,00	-445,70
218	217	3,62	24,72	5,56	18,08	-445,80

219	218	3,63	24,54	5,52	18,17	-445,80
220	219	3,65	24,78	5,58	18,25	-446,00
221	220	3,67	24,72	5,56	18,33	-446,00
222	221	3,68	24,78	5,58	18,42	-446,20
223	222	3,70	24,66	5,55	18,50	-446,30
224	223	3,72	24,90	5,60	18,58	-446,30
225	224	3,73	24,78	5,58	18,67	-446,40
226	225	3,75	24,84	5,59	18,75	-446,50
227	226	3,77	24,97	5,62	18,83	-446,60
228	227	3,78	24,78	5,58	18,92	-446,70
229	228	3,80	25,03	5,63	19,00	-446,80
230	229	3,82	24,84	5,59	19,08	-446,90
231	230	3,83	24,84	5,59	19,17	-447,00
232	231	3,85	25,09	5,65	19,25	-447,00
233	232	3,87	25,09	5,65	19,33	-447,00
234	233	3,88	24,97	5,62	19,42	-447,10
235	234	3,90	25,03	5,63	19,50	-447,30
236	235	3,92	25,09	5,65	19,58	-447,30
237	236	3,93	25,15	5,66	19,67	-447,30
238	237	3,95	25,21	5,67	19,75	-447,50
239	238	3,97	25,15	5,66	19,83	-447,60
240	239	3,98	25,28	5,69	19,92	-447,60
241	240	4,00	25,28	5,69	20,00	-447,60
242	241	4,02	25,21	5,67	20,08	-447,70
243	242	4,03	25,21	5,67	20,17	-447,90
244	243	4,05	25,34	5,70	20,25	-447,90
245	244	4,07	25,21	5,67	20,33	-448,00
246	245	4,08	25,21	5,67	20,42	-448,00
247	246	4,10	25,34	5,70	20,50	-448,10
248	247	4,12	25,21	5,67	20,58	-448,10
249	248	4,13	25,34	5,70	20,67	-448,10
250	249	4,15	25,34	5,70	20,75	-448,20
251	250	4,17	25,21	5,67	20,83	-448,20
252	251	4,18	25,28	5,69	20,92	-448,30
253	252	4,20	25,47	5,73	21,00	-448,40
254	253	4,22	25,47	5,73	21,08	-448,50
255	254	4,23	25,34	5,70	21,17	-448,40
256	255	4,25	25,53	5,75	21,25	-448,50
257	256	4,27	25,47	5,73	21,33	-448,60
258	257	4,28	25,34	5,70	21,42	-448,60
259	258	4,30	25,65	5,77	21,50	-448,70
260	259	4,32	25,53	5,75	21,58	-448,70
261	260	4,33	25,47	5,73	21,67	-448,80
262	261	4,35	25,59	5,76	21,75	-448,80
263	262	4,37	25,59	5,76	21,83	-448,90
264	263	4,38	25,47	5,73	21,92	-448,90
265	264	4,40	25,72	5,79	22,00	-448,90
266	265	4,42	25,78	5,80	22,08	-448,90
267	266	4,43	25,65	5,77	22,17	-448,90
268	267	4,45	25,72	5,79	22,25	-448,90
269	268	4,47	25,59	5,76	22,33	-448,90
270	269	4,48	25,85	5,82	22,42	-448,80

271	270	4,50	25,85	5,82	22,50	-448,80
272	271	4,52	25,65	5,77	22,58	-448,70
273	272	4,53	25,72	5,79	22,67	-448,80
274	273	4,55	25,78	5,80	22,75	-448,70
275	274	4,57	25,91	5,83	22,83	-448,70
276	275	4,58	25,78	5,80	22,92	-448,70
277	276	4,60	25,91	5,83	23,00	-448,70
278	277	4,62	25,78	5,80	23,08	-448,60
279	278	4,63	25,85	5,82	23,17	-448,50
280	279	4,65	25,91	5,83	23,25	-448,40
281	280	4,67	25,91	5,83	23,33	-448,30
282	281	4,68	26,04	5,86	23,42	-448,00
283	282	4,70	25,78	5,80	23,50	-447,90
284	283	4,72	25,78	5,80	23,58	-447,70
285	284	4,73	25,97	5,85	23,67	-447,70
286	285	4,75	25,97	5,85	-	-
287	286	4,77	26,10	5,87	-	-
288	287	4,78	26,04	5,86	-	-
289	288	4,80	25,91	5,83	-	-
290	289	4,82	26,10	5,87	-	-
291	290	4,83	26,10	5,87	-	-
292	291	4,85	25,97	5,85	-	-
293	292	4,87	26,17	5,89	-	-
294	293	4,88	26,23	5,90	-	-
295	294	4,90	25,97	5,85	-	-
296	295	4,92	26,17	5,89	-	-
297	296	4,93	26,23	5,90	-	-
298	297	4,95	26,23	5,90	-	-
299	298	4,97	26,23	5,90	-	-
300	299	4,98	26,30	5,92	-	-
301	300	5,00	26,04	5,86	-	-
302	301	5,02	26,10	5,87	-	-
303	302	5,03	26,17	5,89	-	-
304	303	5,05	26,30	5,92	-	-
305	304	5,07	26,23	5,90	-	-
306	305	5,08	26,10	5,87	-	-
307	306	5,10	26,17	5,89	-	-
308	307	5,12	26,36	5,93	-	-
309	308	5,13	26,36	5,93	-	-
310	309	5,15	26,36	5,93	-	-
311	310	5,17	26,23	5,90	-	-
312	311	5,18	26,36	5,93	-	-
313	312	5,20	26,43	5,95	-	-
314	313	5,22	26,43	5,95	-	-
315	314	5,23	26,17	5,89	-	-
316	315	5,25	26,23	5,90	-	-
317	316	5,27	26,49	5,96	-	-
318	317	5,28	26,43	5,95	-	-
319	318	5,30	26,30	5,92	-	-
320	319	5,32	26,36	5,93	-	-
321	320	5,33	26,56	5,98	-	-
322	321	5,35	26,49	5,96	-	-

÷	÷					-
323	322	5,37	26,56	5,98	-	-
324	323	5,38	26,49	5,96	-	-
325	324	5,40	26,69	6,01	-	-
326	325	5,42	26,62	5,99	-	-
327	326	5,43	26,56	5,98	-	-
328	327	5,45	26,43	5,95	-	-
329	328	5,47	26,69	6,01	-	-
330	329	5,48	26,62	5,99	-	-
331	330	5,50	26,43	5,95	-	-
332	331	5,52	26,56	5,98	-	-
333	332	5,53	26,69	6,01	-	-
334	333	5,55	26,49	5,96	-	-
335	334	5,57	26,56	5,98	-	-
336	335	5,58	26,76	6,02	-	-
337	336	5,60	26,62	5,99	-	-
338	337	5,62	26,62	5,99	-	-
339	338	5,63	26,56	5,98	-	-
340	339	5,65	26,56	5,98	-	-
341	340	5,67	26,56	5,98	-	-
342	341	5,68	26,56	5,98	-	-
343	342	5,70	26,62	5,99	-	-
344	343	5,72	26,56	5,98	-	-
345	344	5,73	26,62	5,99	-	-
346	345	5,75	26,89	6,05	-	-
347	346	5,77	26,89	6,05	-	-
348	347	5,78	26,89	6,05	-	-
349	348	5,80	26,96	6,07	-	-
350	349	5,82	26,69	6,01	-	-
351	350	5,83	26,89	6,05	-	-
352	351	5,85	26,76	6,02	-	-
353	352	5,87	26,89	6,05	-	-
354	353	5,88	26,69	6,01	-	-
355	354	5,90	26,89	6,05	-	-
356	355	5,92	26,89	6,05	-	-
357	356	5,93	27,02	6,08	-	-
358	357	5,95	26,82	6,04	-	-
359	358	5,97	26,96	6,07	-	-
360	359	5,98	27,02	6,08	-	-
361	360	6,00	26,96	6,07	-	-
362	361	6,02	26,96	6,07	-	-
363	362	6,03	26,96	6,07	-	-
364	363	6,05	26,96	6,07	-	-
365	364	6,07	27,16	6,11	-	-
366	365	6,08	27,16	6,11	-	-
367	366	6,10	27,09	6,10	-	-
368	367	6,12	27,09	6,10	-	-
369	368	6,13	27,09	6,10	-	-
370	369	6,15	27,16	6,11	-	-
371	370	6,17	27,09	6,10	-	-
372	371	6,18	27,16	6,11	-	-
373	372	6,20	26,96	6,07	-	-
374	373	6,22	27,09	6,10	-	-

375	374	6,23	26,96	6,07	-	-	
376	375	6,25	27,29	6,14	-	-	
377	376	6,27	27,16	6,11	-	-	
378	377	6,28	27,09	6,10	-	-	
379	378	6,30	27,02	6,08	-	-	
380	379	6,32	27,02	6,08	-	-	
381	380	6,33	27,16	6,11	-	-	
382	381	6,35	27,29	6,14	-	-	
383	382	6,37	27,02	6,08	-	-	
384	383	6,38	27,16	6,11	-	-	
385	384	6,40	27,36	6,16	-	-	
386	385	6,42	27,09	6,10	-	-	
387	386	6,43	27,22	6,13	-	-	
388	387	6,45	27,09	6,10	-	-	
389	388	6,47	27,43	6,17	-	-	
390	389	6,48	27,36	6,16	-	-	
391	390	6,50	27,09	6,10	-	-	
392	391	6,52	27,43	6,17	-	-	
393	392	6,53	27,29	6,14	-	-	
394	393	6,55	27,36	6,16	-	-	
395	394	6,57	27,43	6,17	-	-	
396	395	6,58	27,36	6,16	-	-	
397	396	6,60	27,43	6,17	-	-	
398	397	6,62	27,36	6,16	-	-	
399	398	6,63	27,29	6,14	-	-	
400	399	6,65	27,29	6,14	-	-	
401	400	6,67	27,36	6,16	-	-	
402	401	6,68	27,43	6,17	-	-	
403	402	6,70	27,22	6,13	-	-	
404	403	6,72	27,43	6,17	-	-	
405	404	6,73	27,29	6,14	-	-	
406	405	6,75	27,29	6,14	-	-	
407	406	6,77	27,22	6,13	-	-	
408	407	6,78	27,29	6,14	-	-	
409	408	6,80	27,22	6,13	-	-	
410	409	6,82	27,49	6,19	-	-	
411	410	6,83	27,43	6,17	-	-	
412	411	6,85	27,49	6,19	-	-	
413	412	6,87	27,36	6,16	-	-	
414	413	6,88	27,49	6,19	-	-	
415	414	6,90	27,29	6,14	-	-	
416	415	6,92	27,29	6,14	-	-	
417	416	6,93	27,29	6,14	-	-	
418	417	6,95	27,29	6,14	-	-	
419	418	6,97	27,36	6,16	-	-	
420	419	6,98	27,56	6,20	-	-	
421	420	7,00	27,49	6,19	-	-	
422	421	7,02	27,49	6,19	-	-	
423	422	7,03	27,36	6,16	-	-	
424	423	7,05	27,63	6,22	-	-	
425	424	7,07	27,36	6,16	-	-	
426	425	7,08	<u>2</u> 7,49	6,19	-	-	
-							
----	----	-----	------	-------	------	---	---
42	27	426	7,10	27,29	6,14	-	-
42	28	427	7,12	27,36	6,16	-	-
42	29	428	7,13	27,43	6,17	-	-
43	30	429	7,15	27,63	6,22	-	-
43	31	430	7,17	27,63	6,22	-	-
43	32	431	7,18	27,63	6,22	-	-
43	33	432	7,20	27,49	6,19	-	-
43	34	433	7,22	27,70	6,23	-	-
43	35	434	7,23	27,56	6,20	-	-
43	36	435	7,25	27,56	6,20	-	-
43	37	436	7,27	27,43	6,17	-	-
43	38	437	7,28	27,70	6,23	-	-
43	39	438	7,30	27,70	6,23	-	-
44	40	439	7,32	27,49	6,19	-	-
44	41	440	7,33	27,70	6,23	-	-
44	42	441	7,35	27,63	6,22	-	-
44	43	442	7,37	27,63	6,22	-	-
44	44	443	7,38	27,56	6,20	-	-
44	45	444	7,40	27,70	6,23	-	-
44	46	445	7,42	27,63	6,22	-	-
44	47	446	7,43	27,63	6,22	-	-
44	48	447	7,45	27,77	6,25	-	-
44	49	448	7,47	27,84	6,27	-	-
4	50	449	7,48	27,84	6,27	-	-
4	51	450	7,50	27,77	6,25	-	-
4	52	451	7,52	27,63	6,22	-	-
4	53	452	7,53	27,77	6,25	-	-
4	54	453	7,55	27,56	6,20	-	-
4	55	454	7,57	27,70	6,23	-	-
4	56	455	7,58	27,84	6,27	-	-
4	57	456	7,60	27,84	6,27	-	-
4	58	457	7,62	27,84	6,27	-	-
4	59	458	7,63	27,63	6,22	-	-
46	60	459	7,65	27,84	6,27	-	-
46	61	460	7,67	27,84	6,27	-	-
46	62	461	7,68	27,97	6,30	-	-
46	63	462	7,70	27,70	6,23	-	-
46	64	463	7,72	27,91	6,28	-	-
46	65	464	7,73	27,70	6,23	-	-
46	66	465	7,75	27,91	6,28	-	-
46	67	466	7,77	27,84	6,27	-	-
46	68	467	7,78	27,91	6,28	-	-
46	69	468	7,80	27,97	6,30	-	-
4	70	469	7,82	27,97	6,30	-	_
4	71	470	7,83	27,70	6,23	-	-
4	72	471	7,85	27,97	6,30	-	-
4	73	472	7,87	27,77	6,25	-	-
4	74	473	7,88	27,91	6,28	-	-
4	75	474	7,90	27,84	6,27	-	-
4	76	475	7,92	28,04	6,31	-	-
4	77	476	7,93	27,84	6,27	-	-
4	78	477	7,95	28,04	6,31	-	-

479	478	7,97	27,84	6,27	-	-
480	479	7,98	27,97	6,30	-	-
481	480	8,00	27,84	6,27	-	-
482	481	8,02	27,91	6,28	-	-
483	482	8,03	28,04	6,31	-	-
484	483	8,05	27,91	6,28	-	-
485	484	8,07	27,97	6,30	-	-
486	485	8,08	27,91	6,28	-	-
487	486	8,10	28,18	6,34	-	-
488	487	8,12	27,97	6,30	-	-
489	488	8,13	28,04	6,31	-	-
490	489	8,15	28,18	6,34	-	-
491	490	8,17	27,91	6,28	-	-
492	491	8,18	27,91	6,28	-	-
493	492	8,20	27,97	6,30	-	-
494	493	8,22	28,18	6,34	-	-
495	494	8,23	27,91	6,28	-	-
496	495	8,25	27,91	6,28	-	-
497	496	8,27	28,11	6,33	-	-
498	497	8,28	28,04	6,31	-	-
499	498	8,30	27,97	6,30	-	-
500	499	8,32	27,97	6,30	-	-

Tabela 10.32: Stężenia ChZT i NH₄⁺ występujące w ósmej serii pomiarowej

Czas [h]	Stężenie ChZT [mgO ₂ /dm ³]	Stężenie N- NH4 ⁺ [mg/dm ³]
0,00	339	3,91
0,25	267	-
1,50	262	-
2,50	270	-
23,67	284	0,78

Tabelaryczne zestawienie wyników pomiarów uzyskanych przy pomocy sond pomiarowych (reaktor MBBR w trybie automatycznym):

				Wartość
	Czas [min]	Czas [h]	Stężenie	potencjału
L.p.			NO ₃ -N	utleniająco-
			[g/m°]	redukującego
4	0	0.00	04.00	
1	0	0,00	31,93	-165,85
2	1	0,02	28,51	-168,23
3	2	0,03	28,51	-169,50
4	3	0,05	28,51	-170,23
5	4	0,07	27,35	-170,50
6	5	0,08	25,56	-170,15
7	6	0,10	26,18	-171,19
8	7	0,12	25,56	-171,27
9	8	0,13	23,15	-169,54
10	9	0,15	20,67	-171,19
11	10	0,17	24,40	-171,50
12	11	0,18	25,02	-171,35
13	12	0,20	21,91	-170,46
14	13	0,22	24,40	-170,12
15	14	0,23	22,53	-170,77
16	15	0,25	24,40	-170,58
17	16	0,27	24,40	-170,85
18	17	0,28	23,77	-170,88
19	18	0,30	24,40	-171,00
20	19	0,32	25,56	-170,58
21	20	0,33	26,80	-170,00
22	21	0,35	25,56	-169,85
23	22	0,37	25,56	-170,73
24	23	0,38	27,97	-170,58
25	24	0,40	25,56	-168,92
26	25	0,42	26,18	-169,58
27	26	0,43	29,14	-169,77
28	27	0,45	30,30	-167,88
29	28	0,47	29,14	-130,08
30	29	0,48	28,51	-108,42
31	30	0,50	27,35	-105,19
32	31	0,52	26,80	-104,42
33	32	0,53	25,56	-104,12
34	33	0,55	26.18	-106.08
35	34	0,57	23.77	-111.96
36	35	0,58	22.53	-127.92
37	36	0,60	20.67	-140.42
38	37	0.62	20.67	-147.38
39	38	0.63	21.29	-152.96
40	39	0,65	20,04	-161.35

Tabela 10.33: Odczyty z sondy azotanów i potencjału utleniająco-redukującego w serii pomiarowej dla reaktora pracującego automatycznie

1				
41	40	0,67	18,18	-164,88
42	41	0,68	17,56	-166,38
43	42	0,70	14,29	-167,19
44	43	0,72	16,24	-167,92
45	44	0,73	12,27	-166,85
46	45	0,75	10,88	-168,85
47	46	0,77	10,88	-169,27
48	47	0,78	11,58	-169,12
49	48	0,80	10,88	-169,69
50	49	0,82	10,25	-169,96
51	50	0,83	12,90	-170,12
52	51	0,85	12,90	-170,08
53	52	0,87	11,58	-170,19
54	53	0,88	15,54	-170,31
55	54	0,90	13,60	-169,50
56	55	0,92	14,92	-169,65
57	56	0,93	14,29	-169,81
58	57	0,95	18,18	-169,81
59	58	0,97	16,24	-168,69
60	59	0.98	16.86	-169,19
61	60	1.00	19,42	-168.96
62	61	1,02	19,42	-168,65
63	62	1.03	23.15	-169.08
64	63	1.05	20.04	-168.69
65	64	1.07	20.67	-167.50
66	65	1.08	25.02	-167.96
67	66	1.10	25.02	-167.38
68	67	1.12	23.15	-168.04
69	68	1.13	26,18	-167.46
70	69	1.15	28.51	-167.04
71	70	1,17	28,51	-118,62
72	71	1.18	29.68	-105.62
73	72	1.20	31.93	-103.00
74	73	1.22	28.51	-102.88
75	74	1.23	29.14	-104.88
76	75	1.25	30.30	-115.12
77	76	1.27	25.56	-132.92
78	77	1.28	26,18	-143.69
79	78	1,30	26,18	-149,42
80	79	1,32	22,53	-158,12
81	80	1,33	22,53	-163,54
82	81	1,35	16,24	-165,96
83	82	1,37	17,56	-167,23
84	83	1,38	13,60	-167,96
85	84	1,40	12,90	-168,19
86	85	1,42	8.86	-168,58
87	86	1,43	10.88	-169,00
88	87	1,45	9,55	-169.35
89	88	1,47	8,86	-168.85
90	89	1,48	10.88	-168.96
91	90	1,50	6,76	-170,23
92	91	1,52	4,58	-170,42

93	92	1,53	10,25	-169,73
94	93	1,55	7,46	-170,54
95	94	1,57	8,86	-169,19
96	95	1,58	9,55	-169,96
97	96	1,60	10,88	-169,92
98	97	1,62	12,90	-168,88
99	98	1,63	14,29	-168,35
100	99	1,65	13,60	-168,12
101	100	1,67	14,92	-168,00
102	101	1,68	16,86	-167,38
103	102	1,70	18,80	-164,38
104	103	1,72	18,80	-168,23
105	104	1,73	19,42	-168,38
106	105	1,75	17,56	-166,73
107	106	1,77	19,42	-166,08
108	107	1,78	20,67	-167,73
109	108	1,80	21,91	-153,65
110	109	1,82	23,77	-137,62
111	110	1,83	21,29	-130,27
112	111	1,85	22,53	-121,35
113	112	1,87	25,02	-109,62
114	113	1,88	25,56	-117,08
115	114	1,90	25,02	-133,46
116	115	1,92	22,53	-144,50
117	116	1,93	22,53	-151,88
118	117	1,95	20,04	-158,77
119	118	1,97	18,80	-163,85
120	119	1,98	18,80	-166,15
121	120	2,00	13,60	-167,23
122	121	2,02	10,88	-167,65
123	122	2,03	12,27	-167,73
124	123	2,05	6,76	-167,81
125	124	2,07	7,46	-167,69
126	125	2,08	8,16	-167,58
127	126	2,10	8,16	-165,12
128	127	2,12	5,36	-167,42
129	128	2,13	8,16	-167,50
130	129	2,15	5,36	-167,81
131	130	2,17	8,86	-165,81
132	131	2,18	7,46	-168,15
133	132	2,20	9,55	-167,46
134	133	2,22	12,27	-166,81
135	134	2,23	12,90	-167,62
136	135	2,25	12,90	-167,27
137	136	2,27	16,86	-167,35
138	137	2,28	18,80	-166,58
139	138	2,30	19,42	-167,15
140	139	2,32	20,67	-166,58
141	140	2,33	21,29	-166,85
142	141	2,35	23,77	-160,50
143	142	2,37	23,77	-165,54
144	143	2,38	23,15	-166,15

145	144	2,40	24,40	-165,81
146	145	2,42	25,02	-166,35
147	146	2,43	26,80	-165,35
148	147	2,45	26,80	-167,04
149	148	2,47	27,97	-163,73
150	149	2,48	27,97	-131,77
151	150	2,50	30,30	-116,04
152	151	2,52	27,97	-117,08
153	152	2,53	30,84	-129,38
154	153	2,55	28,51	-142,35
155	154	2,57	26,80	-150,85
156	155	2,58	26,80	-157,38
157	156	2,60	23,15	-163,23
158	157	2,62	22,53	-166,00
159	158	2,63	20,04	-167,23
160	159	2,65	17,56	-167,77
161	160	2,67	11,58	-168,04
162	161	2,68	8,16	-168,19
163	162	2,70	8,86	-168,04
164	163	2,72	4,58	-168,08
165	164	2,73	4,58	-168,08
166	165	2,75	3,88	-168,15
167	166	2,77	6,06	-168,35
168	167	2,78	3,88	-168,42
169	168	2,80	5,36	-168,62
170	169	2,82	5,36	-168,69
171	170	2,83	8,16	-168,69
172	171	2,85	8,86	-166,69
173	172	2,87	7,46	-168,12
174	173	2,88	11,58	-168,15
175	174	2,90	9,55	-167,85
176	175	2,92	9,55	-167,12
177	176	2,93	12,90	-167,65
178	177	2,95	10,88	-167,92
179	178	2,97	16,86	-167,46
180	179	2,98	16,24	-167,85
181	180	3,00	20,04	-167,81
182	181	3,02	21,29	-164,65
183	182	3,03	20,67	-167,00
184	183	3,05	22,53	-166,46
185	184	3,07	22,53	-167,69
186	185	3,08	22,53	-167,54
187	186	3,10	23,15	-167,85
188	187	3,12	23,15	-162,96
189	188	3,13	25,56	-142,00
190	189	3,15	27,35	-139,19
191	190	3,17	29,14	-140,15
192	191	3,18	27,35	-153,12
193	192	3,20	29,14	-157,04
194	193	3,22	30,30	-161,69
195	194	3,23	31,39	-164,27
196	195	3,25	27,35	-165,81

197	196	3,27	26,18	-167,35
198	197	3,28	24,40	-168,12
199	198	3,30	19,42	-168,69
200	199	3,32	17,56	-169,08
201	200	3,33	14,92	-169,35
202	201	3,35	13,60	-169,58
203	202	3,37	9,55	-169,69
204	203	3,38	8,86	-169,77
205	204	3,40	8,86	-169,77
206	205	3,42	11,58	-169,73
207	206	3,43	11,58	-169,54
208	207	3,45	10,25	-169,77
209	208	3,47	9,55	-170,00
210	209	3,48	8,86	-170,19
211	210	3,50	11,58	-169,23
212	211	3,52	13,60	-169,65
213	212	3,53	14,92	-169,62
214	213	3,55	14,92	-168,15
215	214	3,57	15,54	-166,92
216	215	3,58	13,60	-168,23
217	216	3,60	15,54	-167,35
218	217	3,62	16,24	-166,38
219	218	3,63	20,04	-167,92
220	219	3,65	20,04	-167,38
221	220	3,67	19,42	-167,12
222	221	3,68	22,53	-167,85
223	222	3,70	22,53	-167,58
224	223	3,72	25,02	-168,12
225	224	3,73	25,02	-168,00
226	225	3,75	27,35	-167,92
227	226	3,77	29,14	-167,92
228	227	3,78	30,30	-168,04
229	228	3,80	31,93	-168,00