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LIST OF SYMBOLS 

A – cross-section area 
Ac – cross-section of the compressed part of the member 
Aeff – effective cross-section area     
B – bimoment 
b – I section flange width 
e0 – maximum amplitude of a member imperfection 
E – Young’s modulus of elasticity 
ET – Young’s modulus of elasticity at temperature T 
F – flexibility matrix 
F0 – equivalent stabilizing force for one braced element 
Fm – equivalent stabilizing force for m braced elements 
fd  – steel strength 
fdT – reduced steel strength at temperature T 
fy  – yield strength 
fyk  – characteristic yield strength 
G – shear modulus of elasticity 
h – depth of I section or frame storey height 
H – total horizontal load or reaction 
J – moment of inertia 
J0 – polar moment of inertia 
Jω – warping section constant 
Jd – torsion section constant 
K – stiffness matrix 
KG – initial stress stiffness matrix (geometrical matrix) 
k – stiffness of elastic spring 
kbr – stiffness of bracing element 
kv – stiffness of lateral restraint 
kΘ – stiffness of torsional restraint 
kΘ’ – stiffness of warping restraint 
kr – coefficient 
L – member length 
L0 – reference effective length 
l1 – brace spacing 
le – effective length 
m – number of restrained members or half-waves of buckling mode 
M – bending moment 
Ms – torque 
Mt – Saint-Venant torsional moment 
Mω – warping torque 
N – normal force 
Nc – normal force in the compressed part of the member 
Ncr – critical axial compression force 
NRc – load-bearing capacity of column cross-section 
Nb,Rd – design buckling resistance 
No,Rd  – design local buckling resistance 
p – load per unit length 
P – external load 
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Pcr – critical load 
Pbr – axial load-carrying capacity of column non-sway buckling mode 
Pubr – axial load-carrying capacity of column sway buckling mode 
q  – equivalent stabilizing load per unit length 
r0 – radius of gyration  AJr /00 =  

Rw – residual stress constant 
tf – thickness of I section flange 
tw – thickness of I section web 
T – shear force or cross-section temperature 
u – design variable 
u – design variables vector 
v – displacement in direction y 
v0  – amplitude of imperfection in direction y 
V – total potential energy or total vertical load 
z – nodal displacement vector 
α – ratio, factor or coefficient of bracing stiffness  
αm – reduction factor for m restrained members  
γ – partial safety factor, ratio 
δ(...) – first variation of (…) 
δi – displacement at i 
η – coefficient 
Θ – twisting angle of the cross-section 
κ – torsion parameter 

dGJ EJωκ =  

λ – slenderness ratio or Lagrangian multiplier 
λ  – relative slenderness ratio 

,crP uΛ  – under-integral sensitivity function of Pcr due to variation of u 

μ – buckling length factor 
ν – Poissson ratio 
σres – residual stresses 
σ1 – residual stresses parameter  
σ2 – residual stresses parameter 
σc – residual stresses parameter 
x,y,z – coordinate axes 
ϕ – angle, ratio or factor 
ϕT – reduced stability coefficient at temperature T 
ψF   – inclination of unbraced frame 
ψFbr – inclination of braced frame 
 
 



Chapter 1 

INTRODUCTION  

1.1. General remarks  

Steel structures, such as trusses, beams or frames have a much greater strength and 
stiffness in their plane where the load is applied than out-of their plane, and therefore those 
elements are designed to carry the loading in their plane. It is known that the effect of struc-
tural imperfections or various inaccuracies, residual post-welding or rolling stresses which 
occurs during the manufacturing process, often decrease the nominal load-carrying capacity 
of those structures. Bracing at discrete points or even along the whole length of the beams, 
columns or the trusses span is frequently used to increase the buckling strength. The pur-
pose of structural mechanics is to create and analyse some theoretical models of real engi-
neering structures. These models allow to obtain the relation between the design variables 
and the structure response such as: internal forces, displacements or buckling loads. There-
fore all kinds of design variables such as: cross-section dimensions, material characteristics, 
residual stresses or bracing parameters, and their influence on the structural carrying-
capacity are the subject of design codes (see, for example, Polish Code 1990, 2006, Euro-
code 3 1992, 2005, British Standard 5950 2000, Chinese Code GB50017 2003), and books 
(see, for example Biegus 1997, 2003, Bródka et al. 1999, 2004, Pałkowski 2009, Rykaluk 
1981, Thompson and Hunt 1973, Trahair 1993, Weiss and Giżejowski 1991).  

There have been numerous investigations of the effects of various elastic restraints on 
the buckling load of structures, and studies of structure models with some imperfections 
have been of great concern to researchers. The problem of bracing requirements for purlins 
was investigated  by Chu et al. (2005). In the research the influence of the lateral restraint 
provided by cladding on the lateral-torsional buckling of zed-purlin beams was considered. 
Analytical solutions of the problems of global and local buckling for cold-formed thin-
walled channel beams with open or closed profile of drop flanges were presented by Mag-
nucki and Paczos (2009). Kołakowski and Kowal-Michalska (1999) discussed instabilities 
in composite thin-walled structures. The simplified formulas for buckling length factor of 
frame columns were proposed by Giżejowski and Żółtowski (1986). The influence of vari-
ous inaccuracies of structure or stiffness or flexibility of connections between frame mem-
bers on the buckling load was studied among others by Giżejowski et al. (1987), Giże-
jowski (1998), Kozłowski (1999) or Giżejowski et at. (2008). The decrease of buckling 
load when an influence of elastic-plastic behavior of frames is taken into account was the 
subject of research by Cichoń and Waszczyszyn (1979) and Giżejowski et at. 2006a. Buck-
ling of thin-walled frames with partial warping restraints has been studied by Cichoń et al. 
2000. The studies of braced frames conducted by Özmen and Girgin (2005) and Girgin et 
al. (2006) indicated that simplified formulae for buckling length of frames, present in  
design codes might yield erroneous results. The storey buckling approach of frames has 
been the subject of research by Mageirou, et al. (2006). In the work conducted by Tong and 
Shi (2001), or Tong and Ji (2007) stability of multi-storey frames braced by vertical beams 
was analysed. Numerical analyses of bracing requirements for inelastic castellated beams 
were carried out by Mohebkhah and Showkati (2005), or in the case of cantilevers, by 
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Bradford (1998). Investigations of elastic flexural-torsional buckling of steel beams with 
rigid and continuous lateral restraints were presented by Larue et al. (2007). Both theoreti-
cal solutions and model tests of spatial stability problems of laterally and longitudinally 
braced steel I-section columns have been presented by Gosowski (1992) and (2003). Brac-
ing requirements of inelastic columns have been investigated by Gil and Yura (1999).  
Restrained distortional buckling of I-section beam-column with both lateral and torsional 
braces has been described by Vrcelj and Bradford (2006). 

     

Fig. 1.1. Industrial hall 

 

Fig. 1.2. Silo structure (Wójcik et al. 2010b) 

A similar problem of trusses with side supports was investigated only in few studies, 
as for example, in a numerical analysis by Jankowska-Sandberg, and Pałkowski (2002) or 
Biegus and Wojczyszyn (2004, 2005, 2006) or Jankowska-Sandberg et al. (2003a, 2003b). 
In the above mentioned research concerning trusses the side-supports were assumed to be 
rigid, and on the basis of this condition it has been found that the buckling length of truss 
chord is lower than the side-support distance. One of the reasons for that conclusion is force 
distribution along the chord. The normal force in chord is usually maximal in the middle of 
the truss, while near the supports the force is lower. For this reason part of the chord where 
the normal force is lower has a positive influence on reducing the buckling length in those 
parts with normal force reaching the maximal value. Another explanation for the buckling 
length reduction is the positive influence of verticals, diagonals and tension chord in stiff-
ening the compressed chord of the truss. To the best of the author’s knowledge only in  
experimental research carried out by Kołodziej and Jankowska-Sandberg (2006) or in  
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numerical studies conducted by Iwicki (2006, 2007a, 2007b, 2007d and 2007f, 2010a) the 
side supports of truss were considered to be elastic. 

In order to increase the limit load of trusses, beams or columns, those structures should 
be braced against lateral deflection and twisting. One can consider the side supports, like 
purlins or corrugated decking, as part of the bracing system (Bródka et al. 1999). Those 
elements bear the forces caused by imperfect beams or trusses onto the horizontal bracing 
installed at the ends of the roof. The bracing is usually constructed as a truss on the roof 
plane. Some examples of roof truss structures are presented in Fig. 1.1 and Fig. 1.3. The 
side supports of trusses and beams not only stabilize the roof trusses or beams against dis-
tortional buckling, but also carry vertical loads, as for example, the wind loading. In the 
case of columns the bracing is provided by wall rails or by corrugated plate of the walls, as 
for example, in a silo column stiffened by means of a wall plate (Fig. 1.2). 

There are various kinds of braces, as for example, restraints against lateral displace-
ment of the member axis, torsional restraints against the member cross-section rotation, and 
warping restraints against the cross-section warping.  All the mentioned kinds of bracing 
may reduce the column effective length and cause an increase of the buckling load. The  
rotational restraints are responsible for an interaction between the purlin bending and the 
truss torsion. The restraint stiffness depends on the connection between the truss and the 
purlins. Various structural elements, such as, purlins or the sheeting connected to the bear-
ing trusses, beams or columns affect specially the lateral torsional buckling of the main  
elements because torsion of one element is correlated with bending of another element. The 
restraints may be modelled as rotational springs (Iwicki 2007e, 2008b). It is worth noting 
that only a limited number of studies of buckling of various structures with torsional braces 
are available. Such studies of lateral-torsional buckling of I-girders with discrete torsional 
braces were presented by Trahair (1993) in the case of only one mid-span torsional  
restraint. The influence of torsional braces on stability of steel beams and columns was con-
ducted among others by Heins and Potocko (1979), Valentino et al. (1997), Valentino and 
Trahair  (1998), Pi and Bradford (2003) and Nguyen et al. (2010). Another kind of restraint 
is a warping brace. As a warping brace of the column or beam one can consider all ele-
ments that connect flanges and reduce warping of the cross-section. This type of brace may 
result in an increase of the torsional or lateral torsional buckling load of constructional  
elements (Chudzikiewicz 1961, Swensson and Plum 1983, Plum and Swensson 1993, 
Szewczak et al. 1983, Szymczak 1999a, Szymczak 2003b, Iwicki 2010b).  

     

Fig. 1.3. Roof construction 

The determination of the buckling loads and effective buckling length of frame col-
umns, truss compressed chords, or diagonals and verticals is the most important phase of 
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design because even small changes in the effective length may cause significant changes in 
the bearing coefficient of the member. According to the design codes (Polish Code 1990, 
2006, Eurocode 3 1992) the buckling length of truss members may not be calculated but in 
many cases may be assumed by the designer. In the case of the truss chords the buckling 
length in the out-of-truss plane may be regarded as distance between braces. In this  
approach a lower chord of the truss, the verticals and the diagonals are neglected, and bracing 
of truss chord is taken as a rigid side-support. In many researches (see, for example 
Jankowska-Sandberg, Pałkowski 2002 or Biegus and Wojczyszyn 2004, 2005, 2006 or 
Jankowska-Sandberg et al. 2003a, 2003b) it has been found that other elements of the truss, 
and the normal force distribution in the chord result in a decrease of the effective buckling 
length of the truss chord. Therefore the code procedure can ensure a safe design of the struc-
ture. Although the code assumptions take bracing of the truss as a rigid support and the buck-
ling length as equal to the side-support distance, the requirements of an equivalent stability 
loading for design of bracing, in fact, result in the design of elastic bracing (see Chapter 2). 

In the present research the problem of stability of various steel structures with bracing 
is considered, and in particular, attention is concentrated on the so-called full bracing condi-
tion, defined as the threshold bracing stiffness, needed to obtain maximal critical buckling 
force of the member. It means that a further increase of bracing stiffness does not cause an 
additional rise in buckling load. The problem of full bracing condition was analysed by 
Winter (1958), who introduced a simple model of a column with fictitious hinges at the 
brace joints. The use of the model allowed to calculate a bracing stiffness necessary for the 
column to support the load levels corresponding to an unbraced length equal to the distance 
between braces. Winter (1958) research was followed by the research conducted by Yura 
(1996). In the latter research the Winter method was extended to cases where less than full 
bracing occurred. Similar three column system with various kind of lateral and rotational 
linear and non-linear springs was used by Marcinowski (1999) to investigate technique of 
calculation of nonlinear equilibrium paths. The research conducted by Marcinowski (1999) 
was devoted to nonlinear stability of elastic shells. A practical importance of the threshold 
bracing stiffness is not only its use in the design of roof trusses or roof bracings but also its 
application to plane frames. According to the design codes it is also possible to determine 
the buckling length of frame columns by means of simple formulas or diagrams (see, for 
example, Polish design code (1990, 2006) or Eurocode 3 (1992, 2005). Frames are divided 
into two categories, sway and non-sway frames. Codes use simplified formulas or diagrams 
for the estimation of buckling length of frame columns. The application of code formulas 
has shown on several numerical examples that erroneous results may be encountered both 
in sway and non-sway modes (Özmen and Girgin 2005, and Girgin et al. 2006). Another 
drawback of design codes is that most codes  ignore the partially-sway behaviour of frames. 

In currently designed structures the statics of structure is well-developed, and many 
types of loading are taken into account and various results of static analyses are available to 
designers. Moreover the dimensioning of structures is executed according to design codes 
where the buckling length of the members in many cases is assumed. Modern commercial 
computer programs offer both stability analysis of multiple structures and the sensitivity 
analysis of stability problems. Therefore the design of structural elements and bracing may 
be more rational.  

In most roof constructions rigid braces are required. However, there are some struc-
tures where bracing should be flexible or even of non–linear characteristics. This situation 
occurs in roofs with sloping side-supports, as described by Iwicki and Kin (2000), Iwicki 
and Krutul (2006) or Iwicki (2007d). When the sloping side bracing of an important struc-
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tural element is rigid, the bracing, instead of stabilizing the structure, becomes a support of 
the main constructional element, and therefore bracing may be overloaded. In this case 
a minimal stiffness required for supports that provide stability of the main structural ele-
ment against distortional buckling should be determined. Moreover the sloping braces of 
the structure may result in a significant decrease of limit load for imperfect structures (see, 
for example Szymczak 2003a).  

It should be stressed that many modern halls or roof structures are relatively light and 
the influence of wind and snow loading in comparison with the dead weight is greater and 
for this reason the structure is sensitive to any randomness of climatic loading. Reliability, 
safety and also stability of structures with initial imperfections and random loading belong 
to most complex problems in applied mechanics, especially when the influence of climatic 
random loading increases in comparison with the dead weight of a structure. The design 
code procedures should be reliable, so it is important for designers that code requirements 
should be precise. Almost every winter in different countries some failures of steel structure 
occur. In Katowice in southern Poland a steel exhibition hall collapsed in January 2006 
(Fig. 1.4). The main reason for the disaster was the load of snow that was at that time of ab-
normal height. In addition there were also many design errors. According to experts analy-
sis (Biegus and Rykaluk 2006, 2009) there were some design errors concerning incorrect  
arrangement of the structure, unsufficient strength and rigidity of main structural elements 
and roof stiffening. Another example of failure of truss purlins under wind load is presented 
in Fig. 1.5. which confirms that the problem exists (see Hotała et al. 2007, Iwicki 2008c). 

 

Fig. 1.4. Catastrophe of Exhibition hall in Katowice 2006 

 

Fig. 1.5. Failure of a truss purlin under wind upward loading (Hotała et al. 2007) 

The buckling load of steel structures also depends on residual post-welding and post-
rolling stresses (see for example Rykaluk 1981, Valentino et al. 1997, Swedish design code 
1994, Eurocode 2001).  

The buckling load is also temperature-dependen. In the design codes the reduced steel 
strength, reduced elastic modulus and reduced stability coefficient are recommended for 
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analysis of steel structures at elevated temperature (see for example  Polish design code 
1990, and Eurocode 3 (2001) or British Standard 5950 1990). 

Many of the above described problems related to the stability of steel structures may 
be solved by means of the sensitivity analysis method. The aim of the sensitivity analysis is 
to describe the relation between a variation of the state variables due to changes of the  
design variables (Dems and Mróz 1983, Haug et al. 1986, Haftka and Mróz 1986, Mróz and 
Haftka 1994, Kleiber 1997). All variables that describe the behaviour of the structure, for 
example, displacements, internal forces, reactions, critical buckling loads, frequencies and 
modes of free vibrations can be assumed to be state variables. The values of state variables 
depend on parameters, known as, design variables, such as, cross-section dimensions, mate-
rial characteristics or the stiffness of bracing. The sensitivity analysis in the case of beams 
and frames being subject to bending is well known (see, Haug et al. 1986). The sensitivity 
analysis of thin-walled structures was developed in numerous problems of engineering 
practice, for example, in the stability problems of thin-walled columns of bisymmetric 
cross-section by Szymczak (1992, 1996, and 1999b) or Szymczak et al. (2000a). The prob-
lem of the sensitivity of buckling loads due to variation of residual stresses on buckling and 
initial post-buckling behaviour of thin-walled columns was studied by Szymczak (1998), 
Szymczak et al. (1998), and by Iwicki (2007c). The sensitivity analysis was applied to  
stability problems of structures supported by various elastic restraints. The effect of elastic 
restraints on the buckling load and the initial post-buckling behaviour of thin-walled col-
umns were investigated by Szymczak (1999a). The sensitivity of load bearing coefficient 
according to code PN-90/B-03200 was the object of studies by Szymczak and Iwicki 
(1996). The sensitivity analysis of critical torsional buckling load of thin-walled I-columns 
resting on elastic foundation was searched by Budkowska and Szymczak (1991, 1992) or in 
the case of an axially loaded pile with account on its varying length by Budkowska and 
Szymczak (1995). A review of problems related to sensitivity analysis of thin-walled mem-
bers was presented by Szymczak (2003b) and Szymczak et al. (2003). 

The present research deals with stability problems of braced steel structures. The  
parametric studies and sensitivity analysis of the buckling load of columns, trusses and 
frames are carried out. The effects of various design parameters, such as, cross-section  
dimensions, material characteristics, residual stresses, temperature, or the stiffness and  
location of braces are taken into account. 

1.2. Scope of the work 

The work is organized as follows. 
Chapter 1 presents introduction and scope of the work. Previous research devoted to 

the problem of bearing capacity of steel structures stiffened by means of various types of 
braces, and applications of the sensitivity analysis method to the stability problems are also 
described.  

Chapter 2 deals with the design codes and specifications where simplified formulas 
and diagrams for determining the buckling lengths of the frame columns or the compressed 
elements of trusses are given. In this section some selected codes requirements (Polish 
Code 1990, 2006, Eurocode 3 1992, 2005, British Standard 5950 2000, and Chinese Code 
GB50017 2003) concerning bracing of trusses and frames are presented. Code formulas  
defining additional equivalent loads needed to provide lateral stability of beams, columns 
or trusses and a ruling criterion for the frame classification into two groups, sway and non-
sway frames are given. In Chapter 2 the classical method to estimate a safe lower limit of 
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the necessary rigidity of bracing such that the braced column would attain a maximal criti-
cal force, proposed by Winter (1958) is presented. Attention is concentrated on the research 
conducted by Yura (1996) where the Winter method extended to cases with less than full 
bracing is provided.  

In Chapter 3 a sensitivity analysis method is considered (see, Dems and Mróz 1983, 
Haug et al. 1986, Haftka and Mróz 1986). This method is used to study the first variation of 
buckling load due to variation of the design variables. In Chapter 3 special attention is 
given to the sensitivity analysis of critical buckling loads of structures stiffened with vari-
ous kinds of bracing due to variations of the following design variables: 
⎯ cross-section dimensions, 
⎯ material characteristics, especially Young’s modulus variations related to cross-section 

temperature,  
⎯ post-rolling and post-welding stresses,  
⎯ stiffness of various elastic restraints, such as, transverse stiffeners and stiffeners that re-

strain warping and torsion of cross-section. 

The first order variation of critical loads of thin-walled columns with bisymmetric 
open cross-section due to some variations of the stiffness and location of stiffeners is  
derived. The assumptions of the classical theory of thin-walled members with non-
deformable cross-section (Vlasov 1961) are adopted. The sensitivity analysis of the buck-
ling loads for I-columns with continuous distribution of design variables and for discrete 
systems is considered.  

Chapter 3 presents some theoretical basics of the sensitivity analysis applied to various 
examples of Chapter 4–6. In Chapter 3 attention is concentrated on the finite elements used 
for the parametrical analysis of columns, frames and trusses. The parametrical analysis of 
various structures was conducted by means of commercial structural analysis program 
ROBOT STRUCTURAL ANALYSIS PROFESSIONAL (2010), MATLAB (2007), FEMAP 
with NX NASTRAN (2009) or the author’s own program SEAN (see, Iwicki 1997), for the 
sensitivity analysis of thin-walled structures. The stability analysis and the geometrically 
non-linear analysis used in the parametrical studies of various structures are described. 

The research is a continuation of the author’s earlier work devoted to the sensitivity 
analysis applied to the problem of statics of thin-walled beams of bisymmetric cross-section 
(see, for example Iwicki 1995, 1997). The outcomes presented in Chapter 3 resume the  
author’s studies of sensitivity analysis in stability problems (Iwicki 2000, 2002, 2003a, 
2003b, 2004a, 2004b, 2007c, 2010b, Iwicki et al. 1999b) or the research by Szymczak, 
Iwicki and Mikulski (see  Szymczak and Iwicki 1996, Szymczak et al. 1998, 1999a, 1999b, 
and 2000b). 

In Chapter 4 various examples of sensitivity analysis of columns are discussed. The 
first variations of critical forces of column due to a change of cross-section dimensions and 
the residual stress variations are investigated. The sensitivity of critical forces of column 
with various restraints are carried out. The lateral and  torsional  braces and the warping re-
straints are considered. Both the variation of stiffness and the location of restraints on the 
variation of buckling load are studied.  

Later the sensitivity analysis for predicting the critical buckling loads of steel columns 
under changing temperature conditions is described. A steel model according to the Polish 
code (1990) is applied. In the example sensitivity analysis is used to predict the column  
behaviour at elevated temperatures, taking advantage of the results of conventional analysis 
of column performed at ambient temperature.  
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In the examples presented in the Chapter 4 the influence lines of the variation of the 
critical buckling load due to the location of additional stiffeners of the unit stiffness or due 
to variation of the cross-section dimensions and temperature are determined, and the linear 
approximation of the exact relation of the critical loads due to variations of design variables 
is made. The accuracy of the approximate changes of the state variables achieved by sensi-
tivity analysis is also discussed. Some of the examples presented in Chapter 4 were pub-
lished by Iwicki (2003a, 2004a, 2004b, 2007c, 2010b). One of examples I-column is reana-
lysed here by FEMAP with NX NASTRAN (2009) by 3D shell elements. 

Chapter 5 is devoted to a buckling analysis of the plane frames. In this Chapter atten-
tion is focused on a parametrical analysis of the buckling loads, a sensitivity analysis, and 
on an analysis of the Winter – type model of braced frame. The effective buckling lengths 
of the frame columns and a reaction in bracing due to the bracing stiffness are also calcu-
lated. The relation between variations of the buckling load due to location of the unit stiff-
ness brace along the frame column is found. The linear approximation of the exact relation 
of the buckling loads due to the variations of the bracing stiffness is determined, and the 
approximation error is discussed. In this section a method based on the sensitivity analysis 
for the determination of the threshold bracing rigidity is proposed. The problem of frames 
buckling and the effective lengths of frame columns is very important in frame design, for 
the reason that the effective length of columns has a great effect on the design of the cross-
section profile. Some of the research results presented in Chapter 5 were published by 
Iwicki (2009a, 2010d). 

Chapter 6 is devoted to stability analysis of roof truss structures. The first example is 
a truss with elastic bracing. That truss with rigid bracing was previously analysed by 
Niewiadomski (2002). His research was focused on the influence of various imperfections 
of the truss statics. The next of the analysed trusses is a truss binder that is a bearing ele-
ment of a church roof structure, designed by Iwicki and Kin (2001) in cooperation with 
Swedish company MAKU AB in 1999. The design problems of that roof structure were de-
scribed by Iwicki and Kin (2001), and Iwicki and Krutul (2006). The problems that 
emerged during the design of that roof structure were also an inspiration for the stability 
and the sensitivity analysis of the truss with elastic bracing. Various research results related 
to the parametrical and sensitivity analysis of the above mentioned trusses (see Iwicki 2006, 
2007a, 2007b, 2007d, and 2007f) are verified, reanalysed and resumed in Chapter 6.  

The next truss is considered with a view to the stability analysis of typical roof trusses 
with linear and rotational elastic side-bracing. The rotational side-bracing of the truss is 
provided by roof purlins. The torsion of the truss is co-related with the flexural deformation 
of purlins resting on the truss. It is worth noting that in the design codes, as for example, 
PN-90/B-3200 (1990), Eurocode 3 (1992) the stabilizing effect of rotational bracing is not 
taken into account. The research results of the rotational bracing having influence on the 
roof truss stability were published by Iwicki (2007e, 2008a, 2008b).  

Next, a roof truss with side-supports placed both in the upper and lower chord is  
analysed. In the case of upward wind loading and especially when the roof construction is 
of low dead weight in such structures the compression force may also occur in the bottom 
truss chord, which in general, is not braced against loss of stability. A failure of the ana-
lysed truss was  described by Hotała et al. (2007). A problem for the designers is to calcu-
late an effective length of the chord especially when the chord is not horizontal, and to pre-
dict the necessary stiffness to support the lower truss chord. The results of a numerical 
analysis of that truss were published by Iwicki (2008c).   
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The sensitivity analysis of buckling loads of truss with side-bracing is also carried out. 
The influence lines of the unit change of the bracing stiffness on the buckling load are 
found. The approximations of the exact relation between the buckling load and the bracing 
stiffness are studied. The research is focused on numerical study of truss with elastic brac-
ing in order to obtain a full bracing condition of truss. The application of the sensitivity 
analysis to the problem of the out-of- plane truss buckling of braced trusses to the best of 
the author’s knowledge was published only by Iwicki (2010a). In Chapter 6 the sensitivity 
analysis of the truss with torsional and lateral braces is conducted and a sensitivity analysis 
carried out by the finite difference method (Chen and Ho 1994) is also presented.  

Another example of truss in Chapter 6 deals with a numerical verification of an  
experiment devoted to the bearing capacity of the truss with elastic bracing conducted by 
Kołodziej and Jankowska-Sandberg (2006).  

Next, a part of the roof with trusses and bracing is analysed. The analysis includes 
a numerical verification of some relevant code requirements. It is worth pointing out that in 
the calculation of a typical roof structure presented by Pałkowski (2007) according to codes 
PN-90/B03200 (1990) and PN-EN (2006) there have been shown some inaccuracies be-
tween the codes.  

In the studied truss examples use is made of both the geometrical non-linear static 
analysis of the 3D models (space model) and the eigen value analysis of trusses. The geo-
metrically non-linear static analysis allows for the determination of the limit loads of the 
truss (that may be compared to the buckling load) and the reaction in bracing. By the appli-
cation of the results of the eigen value analysis the critical load multiplier and the effective 
buckling length may be found.   

Final remarks and plans for future research are outlined in Chapter 7. 
The idea of this work and some of the presented results are based on the studies per-

formed by prof. dr hab. C. Szymczak, dr T. Mikulski and the author of the work, published 
in the form of projects (Polish State Committee for Scientific Research Problem, Sensitivity 
analysis in dynamics and stability problems of the thin-walled bars with open cross-section 
no. 7T07E 035 12 (Szymczak et al. 2000)), and some related papers (see References). In the 
project some theoretical basics of sensitivity analysis of critical buckling loads of thin-
walled bars with monosymmetric cross-section have been worked out. The cross-section 
dimensions, the bar material modulus, initial normal stresses, stiffness modulus and loca-
tion of the stiffeners or the bar ends were assumed to be the design variables. The torsional 
and the flexural-torsional buckling were taken into consideration. The effect of the initial 
normal stresses on the critical load of torsional buckling and the post-buckling behaviour of 
the I-bar were also investigated. The results obtained by means of the theory of thin-walled 
beams with non-deformable cross-section were compared with the aid of a more precise 
shell model of the bar. The verification concerned the critical load of torsional buckling, the 
localization phenomena of stability of the bar flanges and the effect of longitudinal stiffen-
ers on torsional vibration frequency. The computer program MSC/NASTRAN (2001) was 
used for this purpose. 

The results of the above described project constituted a theoretical background for the 
author’s research devoted to problems of the sensitivity analysis of trusses and frames, the 
full bracing condition of frames and trusses, and studies of the influence of elevated tem-
peratures on the critical buckling load sensitivities. The original elements – the results of 
the author’s scientific research are:  
⎯ the sensitivity analysis of critical forces due to post-rolling stresses and post-welding 

stresses according to Swedish codes (Boverkets handbok om stålkonstruktioner 1994),  
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⎯ sensitivity analysis of critical forces due to variation of brace location,  
⎯ application of sensitivity analysis to the problem of the truss out-of-plane buckling, 
⎯ application of sensitivity analysis to the determination of the threshold bracing stiffness 

of trusses and frames, 
⎯ verification of classical Winter approach to problems of stability of frames and trusses, 
⎯ identification of some inaccuracies of PN-90/B-03200 (1990) procedures concerning the 

design of trusses with elastic bracing especially related to effective lengths of com-
pressed chords and equivalent stabilizing loading,  

⎯ the problem of the required stiffness of bracing in the case of sloping roof bracings, 
⎯ requirements of bracing stiffness sufficient to stabilize lower truss chord, 
⎯ application of rotational restraints as additional bracings of compression truss chord. 

The presented work resumes the author’s research dealing with the problem of stabil-
ity of braced structures but it is not a complete answer to the problem. It should be pointed 
out that the application of the sensitivity analysis can result in a reduction of the laborious 
structural study and may be helpful in design of structures. It should also be stressed that 
engineering  experience plays an essential role in the field of design. 



Chapter 2 

REVIEW OF REQUIREMENTS CONCERNING BRACING 

In several design codes and specifications, some simplified formulaes and diagrams 
are given to determine the effective buckling length of frame columns or truss compression 
members. The buckling length equal to a compression member with both ends effectively 
held in lateral position, may conservatively be taken as equal to its system length L  
(PN-90/B-03200 1990, PN-EN 1993-1-1 (2006), Eurocode 3 1992, 2005). The subject of 
this section is a review of requirements for a constructional element to be effectively held in 
position, so as to be side-supported or braced, or in the case of frames, to be non-sway. 

In the research conducted by Özmen and Girgin (2005), and Girgin et al. (2006) it was 
proved that the formulas for determining the buckling length of the frame columns might 
yield erroneous results, especially for irregular frames, and it was found that the errors were 
almost of the same order due to the fact that all codes use similar formulae, accepting only 
the local (isolated) stiffness distributions. An effective length is dependent on: 
⎯ axial force distribution, 
⎯ geometry of structural member, 
⎯ position of an individual element, 
⎯ stiffness of bracing. 

The buckling length factor should be determined by taking into account all these factors, 
i.e. by considering not only the local stiffness distributions, but also the overall characteris-
tics of the structure. It is worth noting that even when the code requirements concerning 
bracing are fulfilled bracing is not rigid. 

Similar inaccuracies of code formulas concerning trusses have also been mentioned. 
With regard to trusses some inaccuracies of code procedures have been identified by some 
researchers (Biegus and Wojczyszyn 2004, 2005, Jankowska-Sandberg and Pałkowski 
2002, Niewiadomski 2002). In the mentioned researches it was found that codes allow us to 
obtain safe designs because the effective buckling length was lower than predicted by codes 
procedures. On the other hand opposite results have been indicated by other researchers 
(Biegus and Wojczyszyn 2006, Iwicki 2007b, 2007d, 2007f or 2010a). This is due to the 
fact that some researchers take bracing as rigid side-support, while in other studies, bracing 
is assumed to be elastic. The effective length was also greater than given in codes for some 
special truss geometry (Biegus and Wojczyszyn 2006).  

2.1. Code requirements concerning bracing  

In design codes an effective length of truss chord in the case of the out-of-plane truss 
buckling is regarded as a distance between braces, and the braces are considered as rigid 
side-supports (PN-90/B-03200 1990). A bracing system required to provide lateral stability 
of beams, columns or trusses should carry an additional equivalent load, as for example,  
according to the Polish steel design code (PN-90/B-03200 1990) one can consider that the 
member is side supported when a side-support is able to resist an additional force F0 given 
by formula: 
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 0 0.01 cF N= and 0 0.005 c dF A f≥ , (2.1) 

where: Nc is the normal force in the compression chord, Ac the cross-section of the com-
pression chord, fd is steel strength. According to the code the maximal displacement of the 
side support should not exceed l1/200, where l1 denotes the side-support distance (Fig. 2.1).  

 

Fig. 2.1. A bracing displacement allowed by code PN-90/B-03200 (1990) 

In the case of a few members braced by the same bracing the side-support should resist  
additional force Fm : 
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where m denotes the number of roof sections stabilized by bracing (Fig. 2.2). 

 

Fig. 2.2. A scheme for calculating an additional bracing load when bracing should stabilize a few 
structural elements against lateral buckling according to PN-90/B-03200 
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According to the Eurocode 3 (1992) a member can be considered to be side-supported 
when distributed equivalent load q can be transferred to the foundation by horizontal brac-
ing: 
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where δq denotes displacement of the bracing caused by load q and other horizontal load-
ings (Fig. 2.3). For multiple restrained members: 
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Fig. 2.3. A scheme for calculating the equivalent stabilising load according Eurocode 3 (1993) 

In Eurocode 3 (2005) or (PN-EN 2006) a slightly different formula for an equivalent 
stabilizing  force is presented in the following form: 
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In the above equation it is assumed that the member is bent in the out-of-plane direction 
and that the initial bow imperfection is: 
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 0 500me Lα= × . (2.6) 

Another assumption is that the normal force N is constant along the member length. Coeffi-
cient αm is responsible for taking into account the case of m members to be restrained:  
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Both Polish code PN-90/B-03200 (1990) and Eurocodes 3 (1992), (2005) describe the con-
ditions that refer to the required stiffness of the side-supports. Significant differences in the 
design of bracings according to above described codes were described by Pałkowski 
(2007).

2.2. Code requirements concerning sway and non-sway frames 

In design codes the effective lengths of frame columns are based on the sway classifi-
cation into two groups, sway and non-sway frames. The ruling criterion for qualifying the 
frame for sway or non-sway is based on  relation between frame and bracing stiffness. In 
the Polish design code PN-90/B-03200 (1990) when stiffness of braced frame is five times 
greater or is equal to the stiffness of the frame without bracing, then the frame can be con-
sidered as non-sway:  

 
1 5

FBr Fψ ψ
≥ , (2.8) 

where ψFBr and ψF  denote the inclination of braced frame and unbraced frame respectively. 
Condition (2.8) describes the lateral stiffness of a bracing system (such as a shear wall, 
a vertical beam or a reinforced concrete core) and when the stiffness of the braced frame is 
equal to or five times greater than  the frame itself, the frame is regarded as non-sway. Oth-
erwise the frame is classified as sway.  

According to Tong and Ji (2007) a similar condition is present in Chinese design code 
(GB50017-2003). By this rule, in many braced frame structures where the lateral stiffness 
of the bracing system is five times smaller than the frame stiffness (weakly braced frame), 
the effect of the bracing stiffness on the lateral stability of the frame is entirely neglected.  

According to Eurocode 3 (1992) a frame may be classified as being non-sway in 
a given load case if the elastic critical load ratio satisfies the following condition: 

 0.1Sd

cr

V

V
≤ , (2.9) 

where VSd  is the design value of the total vertical load, and Vcr is the elastic value for failure 
in a sway mode.  

The beam and the column-type plane frames according to Eurocode 3 (1992) may be 
classified as non-sway for a given load case when the horizontal displacements in an indi-
vidual storey due to the design loads plus the initial sway imperfection that is applied to the 
frame in the form of horizontal load, satisfy the following condition:  
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where δH is the horizontal displacement of the individual storey, h denotes the storey 
height, H is horizontal, and V is the vertical reaction at the bottom of the storey. 

According to to Tong and Ji (2007) in Chinese code GB50017 (2003) for the design of 
steel structures when the lateral rigidity of bracing in storey kbr satisfies the following rela-
tion: 
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the frame is non-sway, where Pbr and Pubr denote the axial load carrying capacity of column 
non-sway and sway buckling mode respectively, m is the number of columns in a storey, 
and h is the storey height. If Eq. (2.11) is not satisfied, the storey will buckle in a sway 
mode, but the effect of the lateral bracing on the storey stability may be taken into account 
by the following equation: 

 

( )
1

( )

3 1.2

br
sway nonsway sway m

bri ubri
i

k

P P h

ϕ ϕ ϕ ϕ

=

= + −
⎛ ⎞−⎜ ⎟
⎝ ⎠
∑

. (2.12) 

The sway stiffness of frames may be supplied by stiffness of frame or rigid-joints of col-
umns and beams, or may result from the shear walls, the stiff cores, or some other kind of 
bracing. The bracing systems in the braced frames should resist the horizontal loads and 
forces that arise from the frame imperfections. Under horizontal loads, the bracing in 
a bracing frame system fulfils two functions, to carry the horizontal loads, and to create lat-
eral supports for the frame. 

2.3. Classical approach concerning bracing  

Most code requirements concerning bracing are based on principles formulated by 
Winter (1958). The Winter research was focused on the estimation of a safe lower limit of 
bracing rigidity necessary to ensure a maximal critical force for the column with bracing. 
Winter concentrated his attention on full bracing requirements defined as minimal bracing 
stiffness needed to force the buckling of column to take place between braces. A simple 
model with fictitious hinges at the brace joints was introduced (Fig. 2.4). As a consequence 
of the location of the fictitious hinges in the column the bracing importance increases and 
therefore the bracing stiffness calculated in the model is expected to be a safe lower limit of  
the required stiffness. The use of the model makes it possible to calculate a full bracing 
necessary for the column to support the load level corresponding to an unbraced length 
equal to the distance between braces. The compression force is assumed to be constant 
along the column. The basic concepts of the Winter approach can be explained on a simple 
model of a simply supported column with only a single brace in the middle of the column. 
The equilibrium at hinge is given as: 
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Then the full bracing stiffness condition causing the column to buckle between braces is: 
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Fig. 2.4. Buckling mode for a braced column according to the Winter (1958) model 

At brace stiffness smaller than the full bracing condition, buckling occurs with lateral 
movement in the direction of brace point. For brace stiffness greater than the full bracing 
condition the column buckles between supports and the brace, and the critical force is:  
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The relation between the relative critical force and the coefficient of support stiffness is 
presented in Fig. 2.5. The full bracing is obtained for bracing stiffness parameter α = 2. The 
difference between the Winter model of the column and the column without fictitious hinge 
in the analysed case is very small (Fig. 2.5). The classical Winter’s approach was focused 
on full bracing requirements and not on cases of lower bracing stiffness than the full brac-
ing condition. In the research conducted by Yura (1996) the Winter method was extended 
to cases when braces have unequal spacing.   
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Fig. 2.5.  Relative buckling load vs. bracing stiffness parameter 

In Winter’s (1958) and Yura’s (1996) research the normal force was constant along 
a compressed member. The results of research conducted by Gil and Yura (1999) showed 
that Winter’s simplified method to determine the full brace requirements can be applied to 
inelastic members as well as to elastic ones. The Winter model of column with fictitious 
hinges at bracing was adopted by Yura (1996) to calculate the critical load of column when 
less than a full bracing stiffness is provided. In the research conducted by Yura (1996) the 
column presented in Fig. 2.6 was analysed. The column has three intermediate braces of 
constant stiffness.  
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Fig. 2.6. Buckling mode for truss chord analysed as isolated member 

At a low brace stiffness the column buckles into a single wave. When the brace stiffness in-
creases the column buckles into two, then three and four waves for maximal stiffness of 
braces. An equilibrium of the bending moments in the fictitious hinges can be written as 
(Fig. 2.6): 
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By solving a set of Eqs (2.16) three solutions that describe three modes of buckling for the 
Winter model can be obtained (Fig. 2.7). Using three modes of buckling the lower bound of 
the required bracing stiffness for critical force of column, lower than the maximal force can 
be found.  

 

Fig. 2.7. Buckling modes for column with three braces 
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The relation between the critical force and the stiffness of braces are found by means of 
construction lines. The lines run between the starting points that describe the critical force 
at zero brace stiffness for column without fictitious hinges and the end-points which  
describe the stiffness of bracing when the maximal buckling load is reached for the Winter 
model. Depending on the required critical force level the bracing stiffness changes and  
according to the Winter model can be presented as a polyline that is a lower bound of the 
construction lines (Fig. 2.8). The poly-line constructed by means of the Winter model is 
compared with the relation between the relative critical buckling force and the bracing 
stiffness parameter found by using program Matlab (2007). A full bracing condition in the 
examined column is obtained for coefficient α = 3.41. In the next sections the Winter 
model is adopted to plane frames and to truss chord model. The threshold bracing stiffness 
found by means of the Winter method for frames and trusses is compared with parametrical 
analysis of these structures with bracing. 
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Fig. 2.8. Winter poly-line between relative buckling force and coefficient of bracing stiffness

2.4. Column on elastic foundation 

In many steel structures the bracing is continuously distributed along a member length. 
This kind of bracing is usually provided by corrugated plate and is modelled by elastic 
foundation. Let us consider a simply supported column with rigid supports at the ends and 
an elastic foundation in the column span (Fig. 2.9). The column is compressed by a force P 

 

Fig. 2.9. A simply supported column resting on elastic foundation  

The following differential equation is valid: 

 0,IV
crEJy P y ky′′+ + =  (2.17) 

where Pcr is the column axial compression force, EJ is the bending stiffness of columns and 
k denotes the foundation stiffness. Assuming that the buckled shape of the column has the 
following form: 
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where m is the number of half-waves. Eq. (2.17) can be expressed by: 
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thus: 
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The critical buckling force N depends on the column stiffness, the height, the foundation 
stiffness, and the number of half-waves of the column buckling mode. The minimum of the 
column critical force with respect to the number of half-waves is described by the following 
condition: 
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Thus, the critical number of half-waves is: 
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The buckling load of the column resting on an elastic foundation is given by the formula:  

 

 

2crP EJk= . (2.23) 

The same formula is recommended in code PN-EN 1993-4-1 (2007) for load bearing capac-
ity of the column stiffened by corrugated plate. The application of above derived formula 
for the stability analysis of bridge bracing was presented by Pałkowski and Kołodziej 
(1995). 



Chapter 3 

SENSITIVITY ANALYSIS OF BUCKLING LOADS  
OF THIN-WALLED STRUCTURAL MEMBERS 

Thin-walled members are parts of beams, columns, frames or trusses. These members 
are often subjected to axial loads or are subjected to normal forces as a result of the load of 
the whole structure and therefore it is important to determine its buckling loads. 

The buckling load of the structural elements depends on: 
⎯ the geometrical dimensions,  
⎯ material characteristics,  
⎯ residual post welding and post rolling stresses, 
⎯ stiffness and position of the bracing elements,  
⎯ temperature of the structure. 

The above listed parameters are called design variables. The degree of accuracy of the 
manufacturing process or changes in the bracing elements stiffness or their location can be 
described as some variations of the design variables.  

The variations of the design parameters may significantly change the buckling resis-
tance of the member. For example, an increase of cross-section dimensions may result in 
a decrease of the member critical load. Such paradox for I column was found by Cywiński 
and Kollbrunner (1971), Dąbrowski (1981), Szymczak (1983) or Szymczak et al. (2003a). 

The buckling load of steel structures also depends on residual post-welding and post-
rolling stresses (see, for example, Rykaluk 1981, Valentino et al. 1997, Swedish design 
code 1994, Eurocode 2001).  

The buckling load is also temperature-dependent because an increase of the tempera-
ture of structural element reduces steel strength and elastic modulus. Steel characteristics at 
elevated temperature are described in codes, as for example, PN-90/B-03200 (1990), and 
Eurocode 3 (1992, 2005) or British Standard 5950 (1990). 

The structural elements, such as, beams, columns, trusses or frames are supports for 
other elements, like purlins, wall girders or corrugated sheeting, which can be regarded as 
stiffeners, and together with the bracing systems provide stability for the whole structure. 
Bracing of the main structural elements may be modelled as elastic side-supports. All the 
above mentioned braces lead to an increase in the critical loads. It is therefore important to 
know how the elements influent the stability of the structure. There are many research  
activities related to requirements of bracing stiffness in order to stabilize structural ele-
ments. The problem of bracing stiffness on buckling load of I-columns has been analysed 
by Gosowski (1992), (2003) or by Gil and Yura (1999). In the case of  braced frames  
research conducted by Özmen and Girgin (2005) and Girgin et al. (2006) or Mageirou, et 
al. (2006), Tong and Shi (2001) or Tong and Ji (2006) was published. Similar numerical 
analyses of bracing requirements for inelastic castellated beams were carried out by Mo-
hebkhah and Showkati (2005). The requirements according to bracing are also present in 
design codes (see section 2). The minimal stiffness of stiffeners needed to consider a full 
bracing condition of a compressed member was derived by Winter (1958) or Yura (1996).  



 29 

Any variations of the design variables may change the stability of the structure. As there 
are many design variables that may affect the stability of the structure it is significant for the  
designers to determine the relation between the structure performance variation due to the varia-
tions of the design variables. This is a subject of the sensitivity analysis that was first developed 
by Haug et al. (1986), Dems and Mróz (1983), Haftka and Mróz (1986) or Szefer (1983). In this 
Chapter attention is paid to the basis of sensitivity analysis making it possible to predict changes 
in the buckling load of a structure due to the variation of cross-section dimensions and material 
characteristics or residual stress variation and the bracing parameters. 

The relation between the buckling load of the structure and the design variables may 
also be found by the use of standard commercial programs of the structural analysis. In  
order to obtain the relations the designer must repeat the analysis for different values of the 
design variables. Such analysis is called a parametrical study of a structure. Parametrical 
analyses of columns, frames and trusses are conducted in Chapters 4–6. Both the stability 
analysis and the geometrically non-linear statical analysis are described in the Chapter 3. In 
this section the finite elements used in the parametrical analysis are outlined.  

In the present section the application of the sensitivity analysis to the research of criti-
cal loads of I-column with stiffeners is presented. This method was successfully used by 
Szymczak (1992, 1996, 1999a, 1999b, 2003) or Szymczak and Iwicki (1996), Szymczak et 
al. (1998b, 2003) in the static and stability analyses of thin-walled members. The applica-
tion of the sensitivity analysis to problems of structural stability presented by in the chapter 
resumes the author previous research (Iwicki 2000, 2002, 2003a, 2004b, 2007a, 2007c, 
2007d, 2010a, 2010b).  

The problem investigated in this section is devoted to an analysis of the first order 
variation of critical loads of I-section column due to variations of the design variables. The 
following structural characteristics were considered to be the design parameters: 
⎯ cross-section dimensions,  
⎯ Young’s modulus E,  
⎯ shear modulus G, 
⎯ stiffness and location of the stiffeners, 
⎯ initial welding and rolling  stresses, 
⎯ cross-section temperature. 

The considerations are based on the classical assumptions of the thin-walled beam 
theory with non-deformable cross-section (Vlasow (1961)). Material is perfectly linear elas-
tic. It is assumed that the dimensions of the cross-section, except for the web height may be 
variable along the member axis but the bisymmetry condition of the cross-section is ful-
filled. The member rests on elastic Winkler-type foundation that restrain warping, torsion 
and lateral displacement of the cross-section.  

In this section the first variation of the buckling load for the distributed parameter 
structural systems is determined. Later the case of variation of restraints localization is con-
sidered. The position of the restraints is assumed to be a design variable. The variactions of 
the buckling load for a discrete structural system are also analysed. 

The application of formulas derived in this section are presented in the following sec-
tions, where buckling load sensitivity is illustrated by a set of examples concerning the  
stability of columns, frames and trusses.  

As a result of the sensitivity analysis the influence lines of the variation of buckling 
loads due to the variations of the design variables are found. These lines allow us to predict 
changes of buckling loads of various structures due to the variations of the design variables.
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3.1. First variation of buckling load due to variation  
of continuously distributed design variables 

In this section the first variation of the buckling load for the distributed parameter struc-
tural systems are determined. The buckling loads of a thin-walled column braced by different 
means of restraining elements are considered. Three kinds of elastic stiffeners are taken into 
account: lateral side supports, warping prevention stiffeners and torsional stiffeners.  

As a lateral brace of a constructional element one can consider such elements as 
purlins, wall rails or corrugated decking that are connected to a constructional member to 
prevent its side displacements at the brace points. The influence of bracing stiffness on the 
buckling load of I-columns has been analysed by Gosowski (1992) and by Gil and Yura 
(1999), Waszczyszyn et al. (1990), Weiss and Giżejowski (1991), or Trahair (1993). It is 
also possible to take the bridging members as torsional braces. The members provide 
a lateral side-support and are subject to bending when the column twists. Research on the 
influence of those restraints on the stability of steel beams and columns was conducted 
among others by Heins and Potocko (1979), Trahair (1993),  Valentino et al (1997), Valen-
tino and Trahair  (1998), Nguyen et al. (2010). 
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Fig. 3.1. Thin-walled column with out-of-plane multiple-restraints 

All elements that connect flanges and reduce warping of the cross-section can be con-
sidered to be a warping brace of the column. Warping prevention restraints in the form of 
transverse stiffeners, longitudinal edge stiffeners or box stiffeners of stiffness k ′Θ are pre-

sented in Fig. 3.1. The behaviour of those stiffeners and its effect on column statical per-
formance was analysed, among others, by Chudzikiewicz (1961) and later by Svensson and 
Plum (1983), Szewczak et al. (1983), Gosowski (1992), Plum and Svensson (1993) and 
Szymczak et al. (2003). In the research conducted by Iwicki (1997) a sensitivity analysis of 
static problem of thin-walled members with various kinds of the above mentioned stiffeners 
was performed. In Szymczak et al. (2003) the research of the previously simplified models 
of the warping type stiffeners was modified with the aid of a more precise shell model and 
a concept of a superelement was developed. All the above mentioned stiffeners lead to an 
increase in the critical buckling loads.  

In the present work, the sensitivity analysis method is used to predict changes in the 
buckling load of columns as a result of the variation of brace localisation and the stiffness. 
It is worth noting that in the design code procedures, as for example in code PN-90/ 
B-03200, the effective buckling length of compression members is required and therefore 
both the flexural and torsional buckling loads have to be calculated. All types of braces af-
fect the buckling load level and the effective buckling length. Thus the designer needs 
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a tool for predicting the points where braces should be applied in order to efficiently  
increase the buckling load. The investigated problem is devoted to the analysis of the first 
order variation of critical loads of I-section column due to variations of stiffness and loca-
tion of the bracing elements. The sensitivity analysis is used to determine the influence 
lines describing the location of the braces with unit stiffness on the critical buckling load of 
the column. The linear approximation of the exact relation of the critical load due to the 
variation of the stiffness and location of braces is determined.   

3.1.1. First variation of flexural-torsional buckling load due to variation  
of cross-section dimensions or variation of bracing stiffness 

At first a column with continuously distributed restraints subjected to compressive  
load P shown in Fig. 3.2a is considered. Three kinds of elastic restraints are taken into  
account, the lateral side-supports, the warping prevention braces, and the torsional braces. 
The lateral braces are situated at distance zt from the centroid. The total potential energy of 
the column can be written as (Weiss and Giżejowski (1991) or Trahair (1993)): 
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 (3.1) 

where: E – Young’s modulus, G – shearing modulus, A – cross-section area, Jy , Jz , J0, Jω, 

Jd, moments of inertia, polar moment of inertia, warping and torsion section constants, 
, ,vk k k ′Θ Θ  – stiffnesses of the continuously distributed restraints, z0 is coordinate of shear 

centre. The primes denote the differentiation with respect to coordinate x. The first order 
variation of the above equation due to a change in design variable u can be written as:  
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The variation of the total potential energy at buckling state vanishes, and the first three 
integrals of Eq. (3.2) are zero because of virtual work theorem. The first variation of the 
critical load for flexural-torsional buckling resulting from a change of the design variable u 
takes the following form (see also Iwicki 2010b): 
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 (3.3) 

The under-integral functions ,crP uΛ  describe the influence of a column design variable 

variation on the buckling load. In order to find the first variation of the column buckling 
load it is necessary to solve the eigen-value problem for the initial values of the design  
parameters ( ( ) ( ) ( ), , ,crP v x w x xΘ are known), and than for assumed variation of the design 

parameter ( uδ ) it is possible to calculate crPδ . The integral in denominator of Eq. (3.3) can 

be calculated or is equal one depending on normalization of the buckling mode. 
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Fig. 3.2. Axially compressed I-section column with continuously distributed restraints  
a) lateral brace is shifted from the shear centre, b) lateral braces at the centroid. 

3.1.2. First variation of torsional buckling load 

Let us consider a column with continuously distributed restraints presented in Fig. 
3.2b. The column is axially loaded and stiffened by means of continuously distributed elas-
tic restraints that affect torsion and warping of the cross-section. All the restraints are loca-
ted in the centroid of the cross-section. Because of bisymmetry of the cross-section, ben-
ding and torsion are not coupled and the buckling modes can be considered independently. 
The total potential energy of the column is: 
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The first order variation of the above equation due to variation of design variable is: 
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The variation of the total potential energy at buckling state vanishes, and the first two inte-
grals of Eq. (3.5) are zero because of virtual work theorem. The first variation of the critical 
load of torsional buckling takes the following form: 
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where u denotes the design variable and (...), stands for the differentiation with respect to 
the design variable, Pcr is the critical load of the torsional buckling. The under-integral 
function ΛPcr,u describes the influence of variation of the design variable u as cross-section 
dimension, material characteristic or location of warping stiffener or torsional stiffener of 
the unit stiffness along the column length, on the critical load of torsional buckling. 

3.1.3. First variation of flexural buckling load 

Consider now an axially loaded column with continuously distributed elastic lateral re-
straints. The total potential energy of the column is: 
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The first variation of the critical load for flexural buckling can be derived in a similar way 
to the torsional buckling: 
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The variation of the total potential energy at buckling state vanishes, and the last two inte-
grals of Eq. (3.8) are zero because of virtual work theorem. The first variation of the critical 
load of the flexural buckling takes the following form: 
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The under-integral functions ( ),crP u xΛ describe the influence of variation of the cross-

section dimension, the material characteristics or the location of the transverse stiffener of 
the unit stiffness along the column length on the flexural buckling load.  

3.1.4. First variation of critical loads due to variation of residual stresses  

The critical buckling load of thin-walled columns depends on the design variables, 
such as, residual post-welding or rolling stresses. During the manufacturing process there 
are some variations of the cross-section dimensions (imperfections), material characteris-
tics, or residual post-welding or rolling stresses. The inaccuracy of some of the above men-
tioned values are the object of codes describing basic requirements of constructional steel-
work specification, as for example, Swedish design code Boverkets handbok om stalkon-
struktioner (1994). The aim of the present analysis is to show advantages of the design sen-
sitivity analysis (Haug et al. (1986)) as a tool to describe the influence of the degree of  
accuracy of the manufacturing process on the critical load. Sensitivity analysis is used for 
many practical problems concerned with thin-walled members (Szymczak 2003), and the 
application of the sensitivity analysis to the stability problems due to the residual stresses 
was investigated in several researches, as for instance,  Szymczak (1998), Szymczak et al. 
(1998b) or Iwicki (2002, 2007c). In the present section the influence of the residual post-
welding or post-rolling stresses on the critical load of torsional buckling is taken into  
account. Three models of residual stress distribution in the column cross-section are 
adopted according to Rykaluk (1981), Valentino et al. (1997), and  the Swedish design code 
according to Boverkets handbok om stalkonstruktioner (1994).  

It is well known that cooling of a steel member after rolling or welding causes some 
residual normal stresses (Rykaluk (1981)). The reason for residual stresses is different rate 
of cooling in different parts of the member. The flange tips and the centre of web in the  
I cross-section cool more rapidly. Those regions where cooling is faster becomes a kind of 
restraint for other parts of the member and causes tension after cooling. The distribution of 
the residual stresses depends on cross-section geometry and the cooling processes. The dis-
tribution of the residual stresses should be an object of the design codes. In Polish design 
code (1990) there is no suggestion about the distribution of residual stresses across the 
cross-section. Other codes, as for example, the Swedish ones provide designers with that  
information. In the present paper it is assumed that the self-equilibrated residual stress dis-
tribution in the cross-section is bisymmetric as adopted by Rykaluk (1981), Valentino et al. 
(1997), and the Swedish code (1994). The governing torsional differential equation of the 
column with respect to the influence of the residual stresses could be written in the follow-
ing form (Rykaluk (1981)): 
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where Rw is the residual stress constant defined as follows:  
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The three possible distributions of residual welding stresses xresσ  in the cross-section are 

considered (see also Iwicki 2002, 2007c). For the distribution of the residual stresses shown 
in Fig. 3.3. constant  wR can be obtained in the form of: 
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Fig. 3.3. The distribution of residual rolling stresses in the cross-section (alternative 1) 

For the stress distribution shown in Fig. 3.4. the formula for stress constant can be obtained 
as follows: 
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Due to the fact that stress distribution is self-equilibrated one can calculate stresses 3σ , pre-

sent in Fig. 3.3. and Fig. 3.4. from the equilibrium condition.  It should be emphasized that 
the sign of the  wR constant depends on the stress relation 1 2/σ σ  and the cross-section  

dimensions.  

 

Fig. 3.4. The distribution of residual rolling stresses in the cross-section (alternative 2) 
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The sign of the stress constant depends on the relationship between the stresses in the 
cross section. Relationships described by Eq. (3.12) and Eq. (3.13) for I-column with b = h, 
tw = tf, in function of the stress relation in the cross-section are shown in Fig. 3.5. Similar 
conclusions are presented by Szymczak (1998), where the initial post-buckling behaviour 
of column with residual stresses is also investigated. 
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(Eq. 3.12 and Eq. 3.13) of residual stress distribution  

 

Fig. 3.6. The distribution of residual rolling stresses in the cross-section [MPa] 
(Boverkets handbok om stalkonstruktioner 1994) 

For residual stress distribution according to Swedish code (1994),  there is no doubt about 
the sign of constant wR  (Fig. 3.6). For the stress distribution shown in Fig. 3.7. the formula 

for the stress constant can be obtained as follows: 
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where  cσ is the stress that can be calculated from equilibrium condition in normal direc-

tion,  ykf is the yield strength.  

 

Fig. 3.7. The distribution of residual welding stresses in the cross-section  
(Boverkets handbok om stalkonstruktioner 1994) 

The first variation of critical load of torsional buckling due to the residual stress variation 
may be derived in a similar form to Eq. (3.6). Thus, 
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where u denotes the design variable, as for example, residual stress parameters. The under-
integral function ΛPcr,u describes the influence of variation of the residual stresses on the 
critical load of torsional buckling. 

3.1.5. Sensitivity analysis of buckling load of thin-walled columns due  
to temperature change 

The objective of the numerical modelling, the analytical methods and the experimental 
tests of steel columns and frames at elevated temperature is the estimation of the construc-
tion critical temperature and the critical time for the construction to resist fire. In the analy-
sis of the load-bearing capacity of columns, beams and frames at elevated temperature loss 
of the material strength, stiffness and internal force redistribution due to thermal expansion 
should be taken into account. The effects of various parameters, such as, relative slender-
ness ratio, load eccentricity, steel grade, residual stresses and initial imperfections should be 
considered. In practical design problems it is useful to have a simple method to obtain  
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a realistic estimation of the column fire resistance. The finite element programs offer a wide 
range of applications, but for design purposes a simplified analysis that can be performed 
manually is needed, because it enables engineers to calculate quickly the column buckling 
loads. Such simple approach based on the Rankine interaction formula was proposed by 
Tang et al. (2001), and later developed by Toh et al. (2003) or Huang and Tan (2003). The 
problem of fire resistance is also present in many design codes. In Polish steel structures 
design rules (PN-90/B-03200 1990), in Eurocode 1993-1-2 (2001) or in British Standard 
5950 the reduced steel strength, the reduced elastic modulus and the reduced stability coef-
ficient are recommended for analysis of steel structures at elevated temperature.  

Columns under fire conditions are usually exposed to non-uniform temperature distri-
bution in the longitudinal direction. The difference in temperature between the top and the 
bottom ends of a column can be quite significant and therefore in numerical calculations the 
gas layers are artificially divided into zones of different temperatures. In multistorey frames 
fire protection may have different thicknesses in different zones and due to this the struc-
ture is subjected to non-uniform temperature in various zones. Only in few researches the 
temperature distribution along the member length is taken into account, as for example in 
the work conducted by Tan & Yuan (2008, 2009) where analytical derivations of the stabil-
ity of columns being subject to longitudinal temperature variations are presented. 

In the present paper the sensitivity analysis (Haug et al. 1986) is used to predict the 
column behaviour at elevated temperature, on the basis of the results of conventional analy-
sis of column performed at ambient temperature. The sensitivity analysis of critical force 
due to Young’s modulus is calculated and then the description of the material model in 
function of the member temperature is implemented to obtain the critical force sensitivity in 
function of cross-sectional temperature. The assumptions of the classical theory of thin–
walled members with non-deformable cross-section (Vlasov 1961) are adopted in this  
research. Across a column section, the temperature is assumed to be uniform. The sensitiv-
ity analysis makes it possible to find functions describing the influence of the temperature 
variation in the cross-section on the critical loads. The influence line gives a possibility to 
find parts of the column where the temperature change causes the largest variation of the 
critical force. Using the influence line one can divide the column into a fire zone with dif-
ferent fire protection thicknesses or in design of fire zone in multi-storey frames. The linear 
approximation of the exact relation of the critical loads due to variation of the cross-section 
temperature is determined. The sensitivity analysis enables engineers to predict the critical 
force of column undergoing non-uniform temperature distribution along its length on the 
basis of the conventional statical analysis for columns with uniform temperature distribu-
tion. The research presented in this section gives some possible applications of the sensitiv-
ity analysis rather than some exact solutions of structural stability in the case of fire. The 
correctness and accuracy of the presented method also depend on the functions describing 
the material characteristics related to temperature.  

The load – bearing capacity of an axially loaded column 

The load-bearing capacity of an axially compressed column at elevated temperature 
depends on the temperature variation along the column and over its cross-section, the mate-
rial expansion due to temperature variation and the reduction of material strength and stiff-
ness. When the column is affected by a rising temperature the load-bearing coefficient  
calculated at ambient temperature decreases. It is therefore useful in design practice to  
approximate the relation between the load-bearing coefficient and the temperature of the 
column. The sensitivity analysis makes it possible to derive such a relation. The first order 
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variation of the load-bearing coefficient (according to Polish Code PN-90/B-03200) of an 
axially compressed column at ambient temperature due to a variation of the design vari-
ables was derived, using the sensitivity analysis, by Szymczak and Iwicki (1994) in the  
following form: 

 ( )1 ,Rc cr

Rc cr

N NN

N N N

δ δδρ δ η η
ρ

= − − −  (3.16) 

where: 

 ( ) 1-2n= 1+ .η λ
−

 (3.17) 

N, RcN are the applied axial load and the load-bearing capacity of the column cross-section, 

Ncr is column critical force, n stands for the imperfection index and λ is the column relative 
slenderness ratio. The first variation of (...) is denoted by (...)δ . 

The first term of the above equation describes the variation of the column axial force 
δN. In the case of a statically determined structure it depends only on the external load. For 
statically un-determined structure the axial force variation may be caused by restrained ma-
terial expansion due to temperature variation and may be calculated by means of design 
sensitivity methods (see Haug et al., 1986). This problem arises when fire is localised only 
in one part of a bigger structure and when free thermal expansion is restrained by 
a surrounding structure. The second term of Eq. (3.16) describes the variation of the load 
bearing capacity of the column cross-section. The load bearing capacity depends on the ma-
terial strength that is function of the cross-section temperature. The loss of steel strength 
connected with the rise of temperature is essential for stocky columns. The third term of 
Eq. (3.16) describes the influence of the column critical force variation and is substantial in 
slender columns. Therefore it is important to know the first variation of the column critical 
force arising from the cross-section temperature variation. The third term of Eq. (3.16) will 
be evaluated using the sensitivity analysis and the material properties set out in the Polish 
Code PN-90/B-03200 (1990).  

Steel property model 

In order to perform an analysis of steel structure in fire it is necessary to have informa-
tion about the steel properties at elevated temperatures. According to the Polish Code (PN-90/ 
B-03200 1990) to carry out an analysis of steel structures at elevated temperatures of 70°C 
≤ T ≤ 600°C the reduced steel strength fdT, the reduced elastic modulus ET , and the reduced 
stability coefficient ϕT of steel should be taken into account as the following functions of 
steel temperature: 

 ( )263 10857.110300.0987.0 TTEET
−− ×−×+= ,    (3.18) 

  ( )263 1059.110197.0022.1 TTff ddT
−− ×−×−= , (3.19) 
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where E, fd are steel characteristics and ϕ  stability coefficient at ambient temperature.  

Reduction factors of steel characteristics at elevated temperatures according to  
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(PN-90/B-03200 1990) are presented in Fig. 3.8. Similar factors are given in Eurocode 3 
(2001). A comparison of the reduction factor for Young’s modulus given in PN (1990) and 
Eurocode 3 (2001) are presented in Fig. 3.9. 
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Fig.  3.8. The reduced steel strength fdT , the reduced elastic modulus ET , and the reduced stability  
coefficient  Tϕ of steel in function of steel temperature according to code (PN-90/B-03200 1990) 
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Fig. 3.9. The reduced elastic modulus according to the Polish Code (PN-90/B-03200 1990)  
and Eurocode 3 (2001) 

First variation of torsional and flexural buckling load due to variation  
of cross-section temperature 

Consider a thin-walled column with bisymmetric open cross-section shown in 
Fig. 3.10. The column is subjected to end loads P and is influenced by elevated tempera-
ture. Assume that the temperature is constant in the column cross-section. The design vari-
able u can be taken for the cross-section dimension or the Young’s modulus. Assuming the 
relation between the Young’s modulus and the cross-section temperature to be consistent 
with Eq. (3.18), the temperature can be used as the design variable, and so the first variation 
of the critical forces of the torsional and flexural buckling due to the cross-sectional tem-
perature may be found from Eq. (3.6) and Eq. (3.9). 
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Fig. 3.10. Thin walled column at elevated temperature 

The first variation of the critical torsional force due to variation of the cross-sectional tem-
perature can be written as follows: 
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The first variation of the critical force of the flexural buckling due to variation of cross-
sectional temperature can be expressed in the form of: 
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The under-integral function ΛPcrT(x) is the influence line of the critical buckling load varia-
tion due to unit variation of the cross-sectional temperature. The above equation may be 
used as a tool for predicting the influence of the cross-section temperature variation for 
critical force variation. When the first variation of the buckling load is known, then the pre-
sented method gives a possibility to calculate the approximate critical force for a larger 
variation in the cross-sectional temperature and to obtain the most sensitive parts of the 
column for the temperature change. The most important information that can be concluded 
from the above analysis is the influence line of the unit change of the cross-sectional tem-
perature on the buckling load. It allows for the determination parts of the construction 
where the variation of the cross-sectional temperature may cause a significant change in the 
buckling load. 
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3.2. The first variation of the buckling loads due to the variation  
of stiffeners location 

3.2.1. The first variation of the critical load of torsional buckling due to the 
variation of stiffeners location 

Let us consider a column with an in-span elastic restraint situated at position x0 

(Fig. 3.11). The variation δx0 is assumed to be the design variable. The derivation of the 
critical force variation is based on functional analysis (Gelfand and Fomin 1970). 

 

Fig. 3.11. Axially compressed thin-walled column with stiffeners of changed location:  
(a) warping stiffener, (b) torsional, and (c) lateral 

The brace divides the column into two parts. In each part of the column the differential 
equilibrium equation has the form well known in the literature (Vlasov 1961): 
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 (3.23) 

where index i=L, P denotes part of the column on the left and on the right side of the brace 
position. The multiplication of the above equation by λ and its integration provides: 
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where λ is Lagrangian multiplier, l1 , l2  are the lengths of parts of the column on the left 
and on the right side of the brace, and: 
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i i i i i i i i i di
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 (3.25) 

The increment of Eq. (3.24) due to change of brace location 0xδ  is: 
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 (3.26) 

Expanding Eq. (3.26) into power series, and taking into account only the linear part of it, 
after integration by parts one can obtain the following relation for the first variation of the 
torsional buckling load: 
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where the following relation for the boundary values of variations, and the notations are 
used: 
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and  
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Since the first variation of the objective functional should be independent of the displace-
ment function and the Lagrangian multiplier variations  and δ δλΘ , the under-integral part 
of Eq. (3.27) is zero. The under-integral parts of Eq. (3.27) represent a differential equation 
of the primary and adjoint system. In the case of critical load variation, the primary and  
adjoint systems have the same buckling mode of the column. Taking into account the natu-
ral boundary conditions in the following form: 
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one can finally obtain the first variation of the torsional critical load of the column due to 
a change of brace location: 
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First variation of the torsional critical load due to the variation  
of warping restraint location 

Let us consider at first a column with braces of a bimoment type (Fig. 3.11a). Accord-
ing to Plum and Svensson (1993) the brace of a bimoment type causes a discontinuity of the 
bimoment in the beam. The warping stiffener connected to beam flanges undergoes torsion 
enforced by warping of beam-column flanges. In recent research by Szymczak et al. (2003) 
the stiffeners have been modelled by means of shell elements and their stiffness was set 
with a better accuracy. Aside from stiffener modelling, the warping restraining elements 
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cause a torsional angle of rotation, its first and third derivative, and also the torsional mo-
ment become continuous in the cross-section with a bimoment-type stiffener applied. Thus, 

 ( )0B k x′Θ ′Δ = Θ . (3.32) 

Taking into account the continuity conditions (3.32), the first variation of the tosional criti-
cal load due to the variation of warping restraining stiffener location, 0xδ  takes the follow-

ing form:  

 
( )

( )( )

0

0

2 2
0 0

0

2 2
0 0 0

0

  

 

l

cr L L P P x

l

L P x

P B B x r dx

k x x r dx

δ δ

δ′Θ

′′ ′′ ′= − Θ + Θ Θ

′ ′′ ′′ ′= Θ Θ + Θ Θ

∫

∫
 (3.33) 

First variation of the torsional buckling load due to the variation  
of torsional stiffener location 

Let us consider now a column with torsional stiffener (Fig. 3.11b). In the case of tor-
sional stiffener with stiffness kΘ , the torsional angle and its first and second derivatives are 

continuous in the cross-section. Thus, 

 .
i ix x

M kΘΔ = Θ  (3.34) 

Making use of Eq. (3.31), the first variation of torsional critical load due to the variation of 
torsional stiffener location 0xδ  can be written in the following form: 
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3.2.2. First variation of the flexural buckling load due to the variation  
of lateral brace location 

Let us consider now a column with lateral braces (Fig. 3.11c). The deflection  and its 
first and second derivatives are continuous in the cross-section. Thus, 
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where T is shear force. The first variation of the flexural critical load related to the variation 
of the lateral brace location can be expressed in the following form: 
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Examples of sensitivity of critical buckling loads of columns due to variations of stiffeners 
location are presented in Section 4. 
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3.3. Sensitivity analysis of critical buckling loads  
of discrete structural systems 

Let us now consider a discrete structural system. The equilibrium equation for the 
structural systems can be written as follows: 

 ( )G- =  , crPK K z 0  (3.38) 

where K  is the initial stiffness matrix component, KG is initial stress stiffness matrix (geo-
metrical matrix), z denotes the nodal displacement vector, and Pcr is the critical load multi-
plier. Initial stiffness and initial stress matrices for a member undergoing torsion were de-
rived by Szymczak (1978, 1980), Waszczyszyn et al. (1990) or Weiss and Giżejowski 
(1991). Assuming that the displacement vector is normalized with respect to geometrical 
matrix by the condition: 
 G 1,  T =z K z  (3.39) 

and that the global stiffness and geometric matrices are positive definite and differentiable 
with respect to design variables vector u, it is possible to differentiate Eq. (3.38) with  
respect to design variable u: 

 G G G, = , , . T T T T T
u u cr u cr u cr uP P P+ + +z K z z Kz z K z z K z z K z  (3.40) 

Using normalization condition (3.39) one can obtain the first derivative of the buckling load 
with respect to the design variable in the form  

 G G, ( , , ) ( ) .T T
cr u u cr u cr uP P P= − + −z K K z z K K z  (3.41) 

The second term of the above equation is zero because the structure must satisfy the equi-
librium condition (Eq. (3.38)). On the basis of the first derivative of the buckling load with 
respect to the arbitrary design variable, the equation for the first variation of the critical 
load with respect to the variation of the design variables vector can be obtained (see also 
Iwicki 2010a) 

 ( )G ,, , , .
cr

T
cr cr cr PP P Pδ δ δ δ= = − =u u u uu z K K z u Λ u   (3.42) 

The ,crP uΛ  vector describes the influence of the unit change of the design on the buckling 

load. The above equation may be used as a tool to determine the influence of the manufac-
turing inaccuracies, the variations of the cross-sectional dimensions, the residual stresses or 
the cross-section temperature variation on the variation of the buckling load. 

The Eq. (3.42) may be used to determine a change in the structural response in the dis-
cretized systems, due to variation of such design variables as degree of accuracy of the 
manufacturing (variation of the cross-section dimensions) or imperfections, the cross-
section temperature, stiffness and position of braces or the residual stresses. The variation 
of the following design parameters might be taken as degree of accuracy: the web thickness 
and width, the flange thickness and the width as well as Young’s modulus. Many of the 
above parameters are included in the Polish Code (PN-B-06200). For example, the cross-
section height may vary about 0.3%, and the width of the flange may vary about 1%. The 
use of the presented method makes it possible to calculate the approximate structural re-
sponse to a larger variation in the design and to obtain most sensitive parts of the column 
responding to the inaccuracy of the manufacturing process. Eq. (3.42) might be helpful, for 
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example, in the estimation of structure response to other changes of cross-section dimen-
sions caused by corrosion. The most important information that can be concluded from the 
above analysis is the influence of the unit change of the design on the buckling load. 

3.4. Linear approximation of exact relation between critical load and 
design variable 

The first variation of the critical load of column crPδ due to the variation of the design 

variables may by used to determine the linear approximation of an exact relation between 
the critical buckling load of the column and the magnitude of the design variable u in the 
following form: 
 ( ) ( ) ( )cr cr 0 cr 0( 1)P u P u P u u uδ δ= + = × − , (3.43) 

where: u – actual magnitude of the design variable, u0 – initial magnitude of the design 
variable. The linear approximation of the exact relation between the critical buckling load 
of the column and the brace location can be written in a similar form to the variation of 
other design variables. It yields: 

 ( ) ( ) ( )cr cr 0 cr 0 0 0( ) ( ) ( ( 1))P k x P k x P k x x x xδ δ= + + = × − , (3.44) 

where: x – actual coordinate of brace that changes its position, x0 – initial coordinate of brace.

3.5. Parametrical analysis of structures  

The sensitivity analysis are compared to “exact relation” between the critical buckling 
loads and the design parameters. This relation is found by means od a parametrical analysis 
carried out for different magnitudes of the design parameters. The parametrical analysis of 
various illustrative examples of columns presented in Section 4 are calculated by means of 
program SEAN, developed by Iwicki (1997) for the sensitivity analysis of statical prob-
lems, and then adopted by the author to the stability problems of thin-walled structures with 
a bisymmetric open cross-section (Szymczak et al. 2000). The beam element applied in the 
program takes into account the warping effect of the cross-section. Part of initial stiffness 
matrix component and the initial stress stiffness matrix responsible for torsion and the 
warping effects  were derived by Szymczak (1978, 1980), Waszczyszyn et al. (1990) or 
Weiss and Giżejowski (1991) are: 
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(3.45) 

where 
dGJ EJωκ = is torsion parametr. 

In the parametrical analysis of trusses, columns or frames presented in Chapter 5, 6 
a commercial finite element program ROBOT STRUCTURAL ANALYSIS PROFESSIONAL 
(2010) has been used. Spatial beam elements with six degrees of freedom in node were 
used to model the trusses and frames. Positive displacements and nodal forces in 3D frame 
element are presented in Fig 3.12. 

 

Fig. 3.12. The 3D beam element used in the program  
ROBOT STRUCTURAL ANALYSIS PROFESSIONAL (2010) 

By the use of the stability analysis it is possible to calculate the critical load multiplier 
Pcr (Eq. (3.38)). Once the critical load multiplier Pcr is determined, the buckling length le 
and the effective length factor μ of an individual column can be computed as: 

 ,
cr

e
e

l
l

l

EJ

P
π μ= = . (3.46) 

The buckling length of the compressed elements is necessary for the designer to calcu-
late the slenderness ratio λ , and than the stability coefficientϕ , that is needed to find the 

load – bearing capacity of an axially loaded member. The effective buckling length may 
also be compared with some simplified code requirements. However in the case of torsional 
of flexural-torsional buckling, a more general formula for the slenderness ratio is used: 

 
cr

Rc

N

N
15.1=λ , (3.47) 

where Ncr is the normal force in the member corresponding to the buckling load and NRc is 
the load-bearing capacity of the cross-section. 

The stability analysis allows finding the buckling modes of structure, but does not 
provide information about the forces in bracing. Therefore a geometrically non-linear 
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analysis was performed. The non-linear large displacement analysis was carried out by  
using the program ROBOT STRUCTURAL ANALYSIS PROFESSIONAL (2010). In the 
analysis the load control method was applied (in some examples the arch length method 
was used). As a result of the analysis the maximal load that could be reached due to the loss 
of convergence on the equilibrium path was obtained. This load is called “limit load” never-
theless the arch length method was not always applied to confirm that maximum at the 
equilibrium load-displacement path was reached (such analysis was performed only in 
a few examples). This is due to the fact that the main reason for using the non-linear analy-
sis was to find the forces in braces. It is also important to note that in many cases of the 
truss with bracing of higher rigidity, the “limit load” many times exceeded the design plas-
tic resistance of the members so the bracing was stiff enough to provide the stability of the 
structure. The elastic “limit load” was also used to confirm the results of the stability analy-
sis. In the case of sloping braces the differences between the buckling and non-linear  
analysis were significant. Many inaccuracies of the structure may decrease the “elastic limit 
load”. Both the magnitude and the shape of the initial imperfection affect the limit load. 
Various kinds of imperfection were applied in the analysed examples. The differences  
between the limit load and the critical load are illustrated in Fig. 3.13. 

 

Fig. 3.13. The limit load and the critical load of the column according  
to ROBOT STRUCTURAL ANALYSIS PROFESSIONAL (2010) 

Some results of parametrical static and stability analysis obtained by means of the  
theory of thin-walled beams with non-deformable cross-section were compared with the aid 
of a more precise 3D shell model of the bar. The verification concerned the buckling loads, 
and the effect of the bar flanges and stiffeners localization. Similar analysis was performed 
for one of the analysed trusses. The verification was conducted by program ROBOT 
STRUCTURAL ANALYSIS PROFESSIONAL (2010). In the model a standard shell four-
node element, with 6 degrees of freedom in node is applied. In some examples a similar 
verification was carried out by programe FEMAP with NX NASTRAN (2009) where the 
four-node shell element QUAD4 (with 6 degrees of freedom in node) was used. 



 

 

Chapter 4 

BUCKLING OF BRACED COLUMNS 

In this section some numerical examples dealing with the sensitivity analysis of col-
umn critical loads due to the variations of different design variables are presented. The first 
order variation of critical loads of bisymmetric I-section columns arising from some 
changes of the cross-section dimensions, the residual stresses, the stiffness and location of 
various bracing elements and the cross-section temperature is found. Both lateral braces and 
braces that restrain warping and torsion of the cross-section are taken into account. The 
graph of the function describing the influence of the variation of the above mentioned  
design parameters along the column on the critical torsional and flexural buckling loads is 
found. The linear approximation obtained by means of the sensitivity analysis is compared 
with the exact relation (found by means of a parametrical analysis) between the structural 
performance and the design variables. The approximation error is discussed. One example 
is devoted to the sensitivity analysis of the buckling load of a column that is a part of an  
existing silo structure. During a recharge of particulate material stored in the silo a failure 
of the silo shell wall stiffened by the use of the columns was observed. The sensitivity 
analysis was performed to investigate a method of column strengthening. 

4.1. Sensitivity analysis of buckling loads of I-section columns due  
to variation of cross-section dimensions and residual stresses  

Let us consider an I-section column shown in Fig. 4.1 compressed by forces P1, P2. 
The column is simply supported in both the horizontal and vertical planes and is prevented 
from twisting at the supports, but warping of the cross-section at the supports is not  
restrained. The variation of the torsional buckling load due to the variations of the flange 
dimensions or the residual welding stresses is investigated (see also Iwicki 2007c). 

 

Fig. 4.1. Thin-walled I-column compressed by forces P1 and P2 

At first the sensitivity of the critical load of torsional buckling due to the flange width 
variation is considered. The influence lines of the first variation of the torsional buckling 
load caused by the unit variation of the flange width for different relationships between 
compressed forces are presented in Fig. 4.2. It is worth noting that there are some regions 
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of the column where the influence lines magnitudes are negative. Thus, an increase of the 
flange width in those regions of the column will cause a decrease of the critical force. For 
P2 = 4P1 and P2 = 7P1 part of the column near x = 3.8 m and  for xœ (7.2 m, 8 m) has 
a negative sign of the influence line. The same effect for P2 = 0 is found in the vicinity of 
the supports and for P2 = P1 only near the right support. All lines are related to the critical 
force of column (P1) for initial value of design variable b0 = 0.2 m. It should be pointed out 
that the increase of flange width near the column centre is most responsible for increasing 
the critical torsional load (for P2 = 0). 
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Fig. 4.2. The influence lines of the column torsional buckling load variation due  
to the unit variation of the flange width for different compressive load relationships 
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Fig. 4.3. The influence sensitivity function of the column torsional buckling load variation due to the 
unit variation of the flange width found for the column divided into 20 elements (for P2 = P1) 

The sensitivity influence lines allow to find the variation of the buckling load. An applica-
tion of Eqs (3.6), (3.42), for the first variation of the buckling load is illustrated in Fig. 4.3. 
The influence sensitivity function is found for the column divided into 20 elements. The  
influence of the unit change of the flange width along the element is found by means of Eq. 
(3.6), and then the first variation of the torsional buckling load for the whole structure is 
calculated by means of Eq. (3.42) (the variation of the flange width may be different along 
the column, but constant for each element). It is assumed that the flange width variation 
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δb ∈ const ∈ (3.6 m, 8 m), and that P2 = P1, and then the reference value Pcr01 = 1315.8 kN. 
As the flange variation δb is assumed for x > 3.6, only this part of the sensitivity function is 
integrated (outlined part of the Fig. 4.3).  

The linear approximation of the relative torsional buckling load of the column due to 
the flange width variation, found by using the sensitivity analysis method, is compared with 
the exact relationship between the torsional buckling load and the flange width obtained by 
a parametrical study (Fig. 4.4).  
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Fig. 4.4. The linear approximation of the exact relation of the relative torsional buckling load due  
to the constant change of the flange width for xœ (3.6 m, 8 m), for the compressive  

load relationship P2 = P1 

Then the above mentioned effect of the critical force decrease after adding the flange 
width is numerically verified for the relationship between compressed forces P2 = 7P1. It is 
assumed that the flange width is changed only close to the right support for x ∈ (7.2 m, 
8 m). The linear approximation found by means of the sensitivity method and an exact rela-
tionship of the critical load due to the variation of the flange width in this part of the  
column is obtained (Fig. 4.5). It is assumed that the reference value is the critical load of 
torsional buckling for the initial flange width Pcr01 = 383.13 kN. 
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Fig. 4.5. The linear approximation of the exact relation of the relative torsional buckling load due to  
constant change of the flange width for ( )7.2 m,  8 mx ∈ , for the compressive load relationship P2 = 7P1 
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This effect was also confirmed in a spatial analysis of the column modelled in program 
ROBOT STRUCTURAL ANALYSIS PROFESSIONAL (2010) by means of shell  
elements (Fig. 4.6). In this analysis a decrease of the critical load is 3.2% for an increase of 
flange width from 0.2 m to 0.3 m. For the same change of flange width in the column mod-
elled by means of beam element the decrease of buckling load is 8%. One can draw  
a conclusion that in the column modelled by the beam and by the shell elements the effect 
predicted by the sensitivity analysis is confirmed, but in the column modelled by the shell 
element the decrease of the buckling load is lower than in the column modelled by the 
beam elements. The differences between the critical forces of a I-section beam-column 
found by means of the theory of thin-walled members and from the non-linear 6-parameter 
theory of shells was presented and discussed by Chróścielewski et at. (2006). It is worth 
noting that this paradox was found by Cywiński and Kollbrunner (1971), Dąbrowski 
(1981), Szymczak (1983) or Szymczak et al. (2003a). 

 

Fig. 4.6. Part of the column with a changed width of flange modelled by shell elements 

The investigations are followed by a sensitivity analysis of the critical buckling load 
due to the flange thickness. The influence line of the torsional buckling load resulting from 
the unit variation of the flange thickness for different relationships between compressed 
forces is found (Fig. 4.7.). One can conclude that an increase of the flange thickness near 
the supports causes the largest rise of the torsional buckling load. 
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Fig. 4.7. The influence lines of the column torsional buckling load variation due to the unit variation 
of the flange thickness for different compressive load relationships 
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The linear approximation of the exact function of relative buckling load due to the 
flange thickness variation δt f  = const along the column is derived (Fig. 4.8). It is assumed 
that P2 = P1 (the initial value of the critical normal force of torsional buckling 
Pcr01 = 1315.8 kN for an initial value of flange thickness t0 = 0.01 m). 
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Fig. 4.8. The linear approximation of the exact relation of the relative critical torsional load due  
to a constant change of the flange thickness along the column for compressive load relation k = 2 

The last case under investigation is the sensitivity analysis of the torsional buckling 
load due to a variation of the residual stresses. It is assumed that the cross-section residual 
stress distribution is shown in Fig. 3.3. The maximum value of stresses is initially 
σ10 = σ20 = 100 MPa. The critical buckling load, for an initial value of residual stress, is  
Pcr1 = 1295.2 kN (P2 = P1). The influence line of the variation of the torsional buckling 
load, for different values of the relation between compression forces P2 and P1 due to the 
unit variation of the residual stress parameter σ1 is found (Fig. 4.9). All lines are related to 
the torsional buckling load of the column for the initial value of residual stress and for each  
relation between compression forces P2 and P1. 
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Fig. 4.9. The influence lines of the column torsional buckling load variation due to the unit variation 
of the residual welding stresses for different compressive load relationships 
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Next the linear approximation of the exact relation between the critical load and the 
residual welding stress parameter 1σ  is obtained (Fig. 4.10). The approximation is related 

to the critical load for the column with initial value of residual welding stresses and for the 
relation between the compression forces P2 = P1.  

For σ1 = σ2 = fyk = 210 MPa constant Rw is calculated for three assumed residual stress 
distributions (Figs 3.3, 3.4, 3.7) by means of Eqs 3.12–3.14. It was found that Rw indicated 
the lowest value for stress distribution shown in Fig. 3.4 (Table 4.1).  
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Fig. 4.10. The linear approximation of the exact relationship of the relative torsional buckling load 
due to a constant change of the residual welding stresses along the column (load relationship P2 = P1) 

Table 4.1 

Comparison of constant R w for different self-equilibrated residual stress distribution  
when 1 2 210 MPaykfσ σ= = =  

Residual stress distribution 
 

alternative 1 (Fig. 3.3) alternative 2 (Fig. 3.4) alternative 3 (Fig. 3.7) 

Rw [kNm2] –0.7 –0.875 –0.233 

The above presented example of the sensitivity analysis of the column due to variation 
of the cross-sectional dimensions or residual stress variation makes it possible to draw the 
following conclusions: 
⎯ In the example under consideration the influence line of the torsional buckling load  

variation due to the unit variation of the flange width indicates that a increase of the 
flange width near the supports causes a decrease of the critical force. The most effective 
growth in the torsional buckling load is obtained by increasing the flange width in the 
middle of the column. 

⎯ The influence line of the variation of the torsional buckling load due to the unit varia-
tion of the flange thickness makes it possible to conclude that an additional growth of 
the flange thickness near the supports is responsible for the largest increase of the buc-
kling load.  

⎯ In the analysed example the initial stresses cause a decrease of the critical force. The  
influence of the variation of the torsional buckling load due to the welding stresses  
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depends on the sign of the stress constant Rw. In the design codes there should be no  
doubt about the sign of the constant.  

⎯ The approximation of the exact relation between the buckling load and the design para-
meter variation found using the sensitivity analysis is correct.  

⎯ The sensitivity analysis may be helpful in predicting the structure response due to some 
manufacturing inaccuracy. It could be used to define the allowable manufacturing accu-
racy and the preparation of the welding scheme.  The design sensitivity method can be 
used to divide the construction into parts where the possible manufacturing accuracy 
may cause a large change in the structure response. It is possible to divide the structure 
into some zones of higher and lower manufacturing accuracy. 

4.2. Sensitivity analysis of buckling loads of I-section columns with 
bracing elements 

4.2.1. Column with discrete lateral braces  

Let us consider, another example of a simply supported in both the horizontal and  
vertical plane I-section column with two lateral braces placed at positions x = 1.6 m and 
x = 3.6 m (Fig. 4.11). The column is prevented from twisting at the supports, while the 
warping of the cross-section is free. Three variants of braces stiffness are analysed (see also 
Iwicki 2010b). At first it is assumed that the stiffness of the lateral braces is kv = 100 kN/m, 
and then this stiffness is set to be 500 kN/m and 1000 kN/m. The magnitude of the assumed 
stiffness may be verified according to a design code formula. For example in the Polish  
design code PN-90/B-03200 the compressed element may be regarded as side supported 
when the support is able to carry a force equal to 1% of the normal force magnitude in 
a compressed part of the member, and when the lateral displacement is less than 1/200 of 
distance between braces. 

 

Fig. 4.11. Axially compressed thin-walled I-section column with two lateral braces 

For the analysed column the design normal force is about 700 kN. Assuming that the brace 
distance is l0 = 4.4 m the magnitude of the approximated stiffness of the lateral brace is:  
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N
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l
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The numerical calculations were carried out with the finite element code SEAN 
(2000). The column was divided into 20 elements. The influence lines of the flexural  
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critical load variation due to the location of a new unit stiffness brace are presented in Fig. 
4.12. The influence lines are related to the critical load of the column, namely: 
Pcr0 = 642 kN, 1300 kN and 1594 kN, respectively for three analysed cases of the brace 
stiffness.  

The linear approximation of the exact relation (found by means of a parametrical 
analysis) of the relative flexural buckling load due to a change of the lateral brace stiffness 
for the column with stiffeners kv = 100 kN/m and kv = 500 kN/m is calculated. The lines are 
related to the critical load for the column with  brace stiffness kv0 = 100 kN/m (Fig. 4.13). 
The linear approximations are determined according to Eq. (3.43).  
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Fig. 4.12. The influence lines of the column flexural buckling load variation due to the location  
of the lateral restraint with unit stiffness for the column with two stiffeners at x = 1.6 m and x = 3.6 m 

of stiffness kv = 100 kN/m,  kv = 500 kN/m, kv = 1000 kN/m 
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Fig. 4.13. The linear approximation of the exact relation of the relative flexural buckling load due to 
changes of the stiffness of lateral restraints at x = 1.6 m and x = 3.6 m for a column with stiffeners 

kv = 100 kN/m, or kv = 500 kN/m 

Next, the linear approximation of the relation of the relative critical load of the column 
due to a change of the brace location at initial position x = 1.6 m with stiffness kv = 100 
kN/m is drawn (Fig. 4.14). The approximation is determined according to Eq. (3.44). 
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Fig. 4.14. The linear approximation of the exact relation of the relative flexural buckling load  
of the column with two lateral restraints due to changes of the restraints location at x = 1.6 m  

of stiffness kv = 100 kN/m 

4.2.2. Column with warping stiffeners 

The simply supported I-section column with two warping stiffeners placed in cross-
sections at x = 1.6 m and x = 3.6 m is investigated (Fig. 4.15). It is assumed that the warp-
ing stiffness of the stiffeners is 

0
k ′Θ = 100 kNm3. The stiffness range of the warping stiffener 

for the assumed I-section given in Fig. 4.15 is determined by means of relations proposed 
by Gosowski (1992). Taking the above into account two variants of the column have been 
investigated: the column without warping stiffeners and the column with the stiffeners of 
stiffness 

0
k ′Θ = 100 kNm3. The torsional buckling load of the column with stiffeners is 

0crP = 2868.5 kN. The critical load of torsional buckling is 2047.2 kN for the column with-

out stiffeners, and 2604.6 kN for the column with warping stiffeners of stiffness 50 kNm3. 
The influence lines of the variation of torsional buckling load due to the location of 

a new stiffener with the unit warping stiffness are presented in Fig. 4.16. The lines are  
related to the critical buckling load of each of the analysed columns. These lines show that 
the points on the column where the warping stiffeners are most effective in increasing the 
buckling load are near the supports. 

In the course of time, the linear approximation of the exact relation of the critical load 
due to the variation of the stiffeners stiffness is examined. The approximation is determined 
according to Eq. (3.43) for both the columns with no stiffeners and the one with two warp-
ing stiffeners whose stiffness is k ′Θ = 100 kNm3 (Fig. 4.17). The approximation is related to 

the critical load for the columns with two stiffeners of stiffness k ′Θ = 100 kNm3.   

The critical load change resulting from the change of location of the stiffener at 
x = 1.6 m is investigated. A linear approximation of the relation between the relative buck-
ling load and the stiffener’s position is found using Eq. (3.44). A comparison of the exact 
and the approximated results is shown in Fig. 4.18. 
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Warping brace (a): 
g = 3–10 mm, 
h = 190 mm,  
b = 100–200 mm, 
kΘ’ = 0.01–1.02 kNm3 

Warping brace (b): 
d =  5–15 mm, 
w = 190 mm,  h = 190 mm, 
b = 50–150 mm 
kΘ’ = 12–336 kNm3 

 

h = 0.2 m

b = 0.2 m

t = 0.01 m
g = 0.01 m

 

Warping brace (c): 
t1, t2 = 5–7.5 mm.  h = 190 mm,  b1 = 35–260 mm 
b2 = 80–190 mm,  kΘ’ = 10–1248 kNm3 

Fig. 4.15. Axially compressed thin-walled I-section column with two warping restraints 
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Fig. 4.16. The influence lines of the column relative torsional buckling load variation due  
to the location of  an additional restraint with unit warping stiffness for the column without  

any restraints and with two restraints of stiffness kΘ' = 50 kNm3, and  kΘ' = 100 kNm3   
situated at x = 1.6 m and x = 3.6 m 
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Fig. 4.17. The linear approximation of the exact relation of the relative torsional critical load due  
to changes of the stiffness of warping restraints at x = 1.6 m and x = 3.6 m, for the column without 

any restraints, and with restraints  kΘ' = 100 kNm3  
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Fig. 4.18. The linear approximation of the exact relation of the relative torsional critical load  
of the column with two restraints due to changes of location of the warping restraint kΘ' = 100 kNm3 

at position x = 1.6 m 

4.2.3. Column with torsional stiffeners 

A simply supported I-section column with two torsional stiffeners positioned in the 
cross-sections at x = 1.6 m and x = 3.6 m is investigated (Fig. 4.19). It is assumed that the 
stiffnesses of the stiffeners are 0kΘ = 10 kNm/rad and 100 kNm/rad. The torsional buckling 

load for the column without any stiffeners is 2047.5 kN and for the column with stiffeners 
of stiffness 10 kNm/rad, Pcr0 = 3207.5 kN and for stiffness 100 kNm, Pcr0 = 3717.3 kN.  

Deformation of column is interrelated with deformation of the lateral braces, such as, 
purlins or wall rails resting on the column. On the assumption that the connectors between 
the lateral brace and the column are stiff enough and are able to carry arising forces, the  
rotation of the lateral brace is interrelated with torsion of the column. Thus the magnitude 
of stiffness of the torsional brace could be estimated as at least 2EJbr/Lbr for symmetrical 
deformation of one span lateral element or as 4EJbr /Lbr for restraining elements fixed at one 
end or in the case of a middle support, of two span lateral braces 6EJbr /Lbr 
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where (…),br denotes the brace characteristics. So the magnitude of the torsional brace 
stiffness is at least 2–32 kNm/deg (100–1800 kNm/rad) for a 3–6 m long lateral brace. 

 

Fig. 4.19. Axially compressed thin-walled I-section column with two torsional restraints 

The influence line of the variation of the torsional buckling load due to the location of 
an additional torsional stiffener of unit stiffness is shown in Fig. 4.20. All influence lines 
are related to the critical torsional load of each column. The lines show that in the middle of 
the unbraced part of the column, the torsional stiffeners are most effective in increasing the 
buckling load.  
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Fig. 4.20. The influence lines of the column relative torsional buckling load variation due  
to the location of an additional torsional restraint with unit stiffness for the column without  
any restraints, and with two  restraints of stiffness kΘ = 10 kNm/rad, or  kΘ = 100 kNm/rad 

Let us assume that the stiffness of torsional stiffeners increases. By means of the sensi-
tivity analysis the linear approximation of the exact relation of the critical load due to some 
variations of the stiffeners stiffness is found (Eq. (3.43)). The approximation is determined 
for the column with the stiffeners of stiffness kΘ0 = 10 kNm/rad. The approximation is  
related to the critical load of torsional buckling of the column (Fig. 4.21).  
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Fig. 4.21. The linear approximation of the exact relation of the relative torsional buckling load due  
to changes of the stiffness of torsional restraint at x = 1.6 m  

and x = 3.6 m of stiffness  kΘ = 10 kNm/rad 

The critical load of torsional buckling variation due to a change of the location of the 
stiffener placed initially at x = 3.6 m was also investigated. The function of linear approxi-
mation is evaluated by means of Eq. (3.44). It was assumed that the stiffness of both stiff-
eners was 20 kNm/rad. A comparison of the exact and the approximated results is shown in 
Fig. 4.22. 
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Fig. 4.22. The linear approximation of the exact relation of the relative torsional buckling load  
of the column with two torsional restraints due to changes of the location of torsional restraint  

at x = 3.6 m with stiffness kΘ = 20 kNm/rad 

The results obtained by the stability analysis of the column modelled by use of beam-
column elements with 6 degrees of freedom in node were compared to the similar analysis 
of the column modelled by shell elements, restraints modelled by rotational springs. The 
analysis was performed by program FEMAP with NX NASTRAN (2009). The element size 
was 25×25 mm2 (320 elements were taken along the column, and 8 elements were taken 
along the wall in the column cross-section).  The relation between the column critical load 
of torsional buckling for the two models of column is presented in Fig. 4.23. The critical 
force of torsional buckling for the 1D column model with torsional braces of stiffness 
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kΘ0 = 10 kNm/rad is assumed to be a reference value. The critical loads for 3D model are 
up to 9% lower than in the case of the column modelled by means of beam elements. The 
difference is larger for braces of higher magnitude. The buckling mode for the 3D shell 
model with torsional braces of kΘ0= 10 kNm/rad is presented in Fig. 4.24. 
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Fig. 4.23. The relative torsional buckling vs. torsional braces at x = 1.6 m and x = 3.6 m  
relative stiffness   kΘ0 = 10 kNm/rad 

 

Fig. 4.24. The buckling mode of column with torsional braces at x = 1.6 m and x = 3.6 m  
of stiffness kΘ = 10 kNm/rad 
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4.2.4. Column braced by corrugated plate 

The examples in this chapter presented so far are rather theoretical. Therefore in the 
next example a column of an existing silo structure is analysed. The silo is one part of 
a battery of eight such structures that are connected at their tops (Fig. 4.25). During the  
recharge of some particulate material stored in the silo a failure of the silo shell wall stiff-
ened by means of columns was noted. After unloading the displacement of the silo wall was 
still evident (Fig. 4.26). A detailed description of the silo damage is described by Wójcik et 
al. (2010b).  

 

Fig. 4.25. A battery of silos  

 

Fig. 4.26. The silo shell wall stiffened by columns after the silo failure 
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The main problem analysed in this section is devoted to the investigation of a method 
of strengthening the silo columns. The sensitivity analysis is applied to predict the location 
of additional column restraints (some circumferential horizontal rings along the silo pe-
rimeter). The numerical calculations were carried out with the finite element code ROBOT 
STRUCTURAL ANALYSIS PROFESSIONAL (2010) and program MATLAB (2007). 
The column was divided into 24 elements. The silo structure is a cylindrical shell of 
a 20.11 m height and of 12.48 m diameter. The silo mantle in a vertical direction consists of 
24 horizontally corrugated sheets 890×2940 mm2. The properties of the silo plate vary 
along its height. The silo plate is vertically stiffened by means of twenty-eight columns of 
open cross-sections. The column cross-section along its height is variable (see Table 4.2 
and Fig. 4.27). 

Table 4.2 

Geometrical characteristics of the silo column and plate along the silo height 

Section number from the silo top Column cross-section Plate thickness [mm] 

1 C1.5 1,00 
2 C1.5 0,75 
3 C1.5 0,75 
4 C2.0 0,75 
5 C2.0 1,00 
6 C2.0 1,00 
7 C3.0 1,00 
8 C3.0 1,25 
9 C3.0 1,25 

10 V4.0 1,25 
11 V4.0 1,25 
12 V4.0 1,50 
13 V4.0 1,50 
14 V4.0 1,50 
15 V4.0 1,50 
16 V5.0 1,50 
17 V5.0 1,50 
18 V5.0 1,75 
19 V6.0 1,75 
20 V6.0 1,75 
21 V6.0 1,75 
22 B7.0 1,75 
23 B7.0 1,75 
24 B7.0 1,75 

The analysis is conducted according to code PN-EN 1993-4-1 (2007) where it is assumed 
that the horizontal load is transferred onto the silo walls causing tension. The vertical com-
ponent of the particulate material generates pressure which is acting on the columns. The 
silo corrugated walls provide a continuous elastic support along the column length in hori-
zontal direction (perpendicular to the silo wall). The stiffness of continuous foundation  
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according to code PN-EN 1993-4-1 (2007) is determined as a reaction of the corrugated 
plate caused by unit deflection of the column as presented in Fig. 4.28. Thus: 

 
3

6 pl
v

s

EJ
k

d
= , (4.3) 

where ds is the distance between columns, and EJpl is the corrugated plate stiffness and kv  
denotes the stiffness of the column elastic foundation provided by the bending stiffness of 
sheets between vertical columns. The stiffness of the silo column foundation is presented in 
Table 4.3. 

 

 

 

Fig. 4.27. Column cross-section profiles along wall height (dimensions in [mm]) 
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Fig. 4.28. A scheme for the determination of the stiffness of the column foundations according  
to code PN-EN 1993-4-1 (2007) 

Table 4.3 

Geometrical characteristics of corrugated silo plate 

Silo plate thickness  Foundation 
stiffness 0.75 [mm] 1.00 [mm] 1.25 [mm] 1.50 [mm] 1.75 [mm] 

2[kN / m ]vk  4.48 5.97 7.46 8.95 10.45 

Plate 
characteristics 

S350GD+Z (Fe E 350 G)  fyk = 350 MPa,  fu = 420 MPa 

 

d = 10 mm,  l = 119 mm

 

The silo contained wheat and was concentrically filled and emptied and it was designed for 
funnel flow to avoid large loads on walls and vertical columns. The horizontal and vertical 
discharge loads due to particulate materials were greater than in the case of the filling loads 
of the silo. The discharge loads acting on the silo walls, calculated according to Eurocode 1 
(1995), are presented in Fig. 4.29.  

0 10 20 30 40 50 60

[kN/m2]
0

5

10

15

20

x 
[m

]

pv

ph

 

Fig. 4.29. Horizontal ph and vertical pressure pv acting on the silo wall during axisymmetric emptying 
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During axisymmetric emptying, the standard maximum wall normal and shear stress were 
in the bin pw=23.0 kPa and ph=54.2 kPa, respectively. When considering possible non-
symmetric emptying, they increased up to pw=32.7 kPa and ph=65.6 kPa (Wójcik et al. 
2010b).  

Accordind to code PN-EN 1993-4-1 (2007) the maximal normal force of the silo col-
umn under axial compressive stresses is calculated by means of the following relation   

 ( ), ,min ,Rd b Rd o RdN N N= , (4.4) 

where Nb,Rd  is the design buckling resistance of a compression member similar to the criti-
cal force for the column resting on elastic foundation of stiffness kv   (Eq. (2.23))  
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and No.Rd denotes the design local buckling resistance of the cross section 
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EJz is the bending stiffness of the column, and Aeff is the effective cross-section area of the col-
umn, yield strength fy = 350 MPa and coefficient γM1 = 1.10 (Table 2.2, PN-EN 1993-4-1 2007).  

It is found that the load bearing capacity of the silo columns is exceeded between 
101% and 248% depending on the column cross-section and even without any safety factor 
(see Table 4.4). Therefore the silo columns need strengthening. The restraint of the silo col-
umn analysed in this section consists in applying additional circumferential horizontal rings 
that would provide a new horizontal support of the column. In order to find the best loca-
tion of this restraint, the sensitivity analysis of the buckling load of the column is con-
ducted. Two static models of the column are considered. In the first model it is assumed 
that the column is simply supported at both ends of the column (model A), and in the sec-
ond model (B) the column is fixed at the bottom. 

Table 4.4 

Characteristics of the column cross-section (Wójcik et al. 2010b) 

Cross-section profile C1.5 C2.0 C3.0 V4.0 V5.0 V6.0 B7.0 

Aψ [m2] 3.72E-04 4.99E-04 7.58E-04 1.49E-03 1.88E-03 2.27E-03 2.99E-03 

Jz  /  Jy [cm4] 
21.6 
47.4 

29.4 
64.3 

46.2 
99.9 

225.8 
668.8 

288.6 
851.9 

354.1 
1041.7 

574.4 
1555.0 

EJ z [kNm2] 45.36 61.74 97.02 474,18 606.06 743.61 1206,24 

25.91 30.23 43.76 108.15 133.94 160.25 204.10 Critical normal force  
according to Eqs (4.5–
4.6) .b RdN  .o RdN [kN] 118.36 158.77 241.18 474.09 598.18 722.27 951.36 

Normal force  
in column Nw.max   [kN]  

(Nw.max/1.5) 

39.7 
(26.4) 

112.4 
(74.6) 

202.8 
(134.7) 

412.4 
(273.9) 

525.9 
(349.4) 

643.2 
(427.3) 

763.5 
(507.1) 

Load bearing  
coefficient [%] 

153 
(101) 

371 
(246) 

461 
(307) 

381 
(253) 

393 
(261) 

401 
(267) 

374 
(248) 
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The underintegral sensitivity function of the silo column buckling load variation of the 
first model due to the location of a new unit stiffness support is presented in Fig. 4.31a. One 
can draw a conclusion that the most effective location of the new support is between 4 and 
5 m from the bottom of the column. The first support is assumed to be located 5 m from the 
bottom of the column. In order to find the required stiffness of the new support a parametric 
analysis of the column with different stiffnesses of the new support is carried out (Fig. 
4.30). The buckling load (the maximum wall vertical load in the bin) for the column with 
initial elastic foundation provided by the corrugated plate is assumed to be the reference 
value (pv cr0 = 12.49 kPa). The increase of the column buckling load due to the stiffness of 
additional support K is greater for lower support stiffness (K < 60 kN/m). Also an assump-
tion is made that the new support stiffness is K = 200 kN/m. Such a support would be  
secured by an additional circumferential horizontal ring. The stiffness of the ring was calcu-
lated according mechanism presented in Fig. 4.28, and in code PN-EN 1993-4-1. The ring 
stiffness is equal to EJ = 91.47 kNm2 (J = 44.62 cm4). 
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Fig. 4.30. Relative column buckling load vs. stiffness of additional elastic support situated  
at coordinate x = 5.025 m from the bottom of the silo 

Then the sensitivity analysis is applied to determine the most effective location for 
second additional support (Fig. 4.31b). One can conclude that the next ring should be  
located at x = 9.2 m from the bottom of the column. Similar investigations of the most ef-
fective location of a third and fourth additional support to increase the column buckling 
load are presented in Fig. 4.31c, d, e. In all of the analysed cases the additional spring stiff-
ness provided by the horizontal ring around the silo is 200 kN/m.  

A comparison of the vertical component of a particulate material pressure correspond-
ing to the buckling load multiplier pvcri for a different number of additional side support is 
presented in Table 4.5. For an initial condition, buckling occurs at 38% load acting on the 
silo wall. Additional supports result in a buckling load increase of about 216% but the load 
acting on the silo is still greater. 
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Fig. 4.31. The influence lines of the column relative buckling load variation (model A) due  
to the location of a new unit stiffness support K for a column at each strengthening step 
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Table 4.5 

Vertical component of a particulate material pressure 

Additional support of K = 200 kN/m Buckling load pvcri [kPa] pvcri / pvcr0 

0 12.49 1.00 

1 18.83 1.51 

2 20.90 1.67 

3 26.27 2.10 

4 26.96 2.16 

load acting on the silo wall 32.50  

It is therefore needed to strengthen the column of the silo with additional restraints. 
Therefore the second model (B) of the silo column with a fixed support at the bottom is 
analysed. The sensitivity analysis of the column buckling load due to the location of a new 
side support is conducted. In the first step of the column strengthening two additional sup-
ports at x = 6.7 m and 13.4 m are introduced. Moreover, two additional supports at 
x = 10.5 m and 15.9 m are added. The influence lines of the column relative buckling load 
variation, due to the location of a new unit stiffness support for each step of column 
strengthening are presented in Fig. 4.32.  

The vertical component of the particulate material pressure corresponding to the buck-
ling load for different locations and stiffness of the additional side supports are given in 
Table 4.6. Four additional supports of 400 kN/m stiffness would result in an increase of the 
buckling resistance of the silo column being equal to the particulate material load acting on 
the silo wall.  

Table 4.6 

Vertical component of the particulate material pressure 

Additional support Buckling load pvcri [kPa] pvcri / pvcr0 

0 17.36 1.00 

1 and 2 K = 200 kN/m 21.39 1.23 

3 and 4 K = 200 kN/m 30.84 1.78 

1, 2, 3, 4 K = 300 kN/m 31.86 1.84 

1, 2, 3, 4 K = 400 kN/m 32.43 1.87 

load acting on the silo wall 32.50 1.87 

All of the above presented calculations are based on  PN-EN 1993-4-1:2007 code as-
sumption that the stiffness of horizontal supports of the silo column provided by the corru-
gated plate or by the additional ring is calculated by using Eq. (4.3) according to the mecha-
nism presented in Fig. 4.28.  

In order to verify that assumption a 3D model of the silo is built. The silo wall is mod-
elled by means of standard ROBOT STRUCTURAL ANALYSIS PROFESSIONAL 
(2010) orthotropic shell elements (Fig. 4.33). It is taken for granted that only the vertical 
load component acts on the silo wall.  
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Fig. 4.32. The influence lines of the column relative buckling load variation (model B),  
due to the location of  a new unit stiffness support K for a column at each strengthening step 

The buckling load and the buckling mode are determined (Fig. 4.34). The first buckling 
load of the 3D silo model corresponds to the vertical load of the silo wall of about 
84 kN/m2 (about 258% of the load acting on the wall). The difference between the buckling 
load of the 3D silo model and the silo column resting on elastic foundation adopted accord-
ing to code PN-EN 1993-4-1 (2007) may be explained as a different number of half-waves 
of the buckling modes of the models. According to the code the number of half-waves in 
the horizontal projection of the buckling modes would be 14 (half of the column number) 
and in the 3D analysis it is 20 half-waves, so the stiffness of the elastic foundation would be 
greater. It is likely that the code approach makes it possible to obtain a safe result, but it 
should also be added that in the above presented analysis the eccentric discharge of bulk 
solids from the silos was not taken into account. This eccentric discharge can lead to local 
pressure variations that in codes is referred to as patch loads. The load may affect the buck-
ling strengths of the silos (see, for example Song and Teng 2003). Various imperfections 
may also significantly lower the silo strength (see Wójcik et al. 2010a).  
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Fig. 4.33. The FEM model of a silo 
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Fig. 4.34. The first buckling mode of the silo structure loaded by the vertical component  
of the particulate material pressure 

From the example of the sensitivity analysis of columns with different stiffeners the 
following conclusions can be drawn: 
⎯ In the presented examples, the influence line of the torsional buckling load due to the 

location of the unit warping stiffeners enables us to conclude that the location of the 
stiffeners close to the supports is of primary significance in increasing the torsional 
critical load. 

⎯ For a column with torsional stiffeners, the influence line of the torsional buckling load 
makes it possible to note that the location of the stiffeners near the middle of the unre-
strained part of the column causes the most effective increase of the critical load. 

⎯ In the case of a column with lateral bracing, one can state that the location of braces 
near the middle of the unrestrained part of the column causes the most effective increase 
of the flexural critical load. 

⎯ A comparison of the relative influence lines of the buckling load with respect to the 
warping stiffeners allows us to conclude that the lines are of equal significance for col-
umns with or without stiffeners. 

⎯ In the case of a column with torsional and lateral bracing, the magnitude of the relative 
influence lines decreases with an increase of the bracing elements stiffness. 

⎯ The sensitivity analysis makes it possible to find the approximation of the exact relation 
between the buckling load and the stiffness and location of the brace elements. 

⎯ The sensitivity analysis may be helpful in the column design to place the stiffeners most 
effectively as it is illustrated in the analysis of the silo column buckling load. 
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4.3. Sensitivity of buckling loads of I-section columns due  
to temperature variations 

As the last numerical example a two-span thin-walled I-column subjected to two axial 
loads P is considered (Fig. 4.35). It is assumed that the column temperature is constant 
along its length and is initially equal to 100°C and then a case of initial temperature of 
300°C is considered.  

 

Fig. 4.35. Two-span thin-walled I-column 

At first the critical flexural buckling force of the column and its first variation due to 
the variation of the column cross-section temperature is investigated (Iwicki 2003a).  
The Young’s modulus reduction related  to temperature is assumed according to  
PN-90/B-03200 (1990). The numerical calculations were carried out with the authors finite 
element code SEAN (Iwicki 1997, Szymczak et al. 2000a). The column was divided into 20 
elements. The influence lines of the variation of critical force of the flexural buckling for 
the temperature variation are calculated and presented in Fig. 4.36. The influence lines are 
related to the critical load of the flexural buckling calculated for the column at initial tem-
peratures, that is 1118.9 kN for a column at 100°C, and 1019.6 kN at 300°C. It is worth 
noting that the lines magnitude near x = 2 m, 6 m, 12 m is low, so the temperature variation 
at these regions of the column cause only a small variation of the buckling load. For 
x = 0 m, 4 m, 9 m there are much higher values of influence lines, so in these parts of the 
column a temperature change causes the largest change of the buckling force.  
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Fig. 4.36. Influence lines of the column relative flexural buckling load variation due  
to a unit temperature variation in the column cross-section 
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The approximation of the exact relation (found by means of a parametrical analysis) 
between the critical load of the flexural buckling and the column temperature is found (Fig. 
4.37). The approximation error is less than 20% when the initial column temperature is 
100°C for temperatures up to 400°C. In the case of approximations of the exact relation be-
tween the critical load of the flexural buckling and the column initial temperature of 300°C 
the approximation error is less than 2%, for temperatures variations 100°C (Fig. 4.38). 
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Fig. 4.37. Comparison of exact relative critical load of flexural buckling vs. temperature  
of column cross-section with its approximations obtained by means of sensitivity analysis  

100 200 300 400

temperature [oC]

0

5

10

15

20

er
ro

r 
of

 a
pp

ro
xi

m
at

io
n 

[%
]

T = 100 oC

T = 300 oC

 

Fig. 4.38. Error of approximations of exact relative critical load of flexural buckling vs. temperature 
of column cross-section 

The variation of the torsional buckling load due to the variation of column cross-
section temperature was also under investigation. By means of the sensitivity analysis the 
influence lines of the variation of the critical load of torsional buckling caused by tempera-
ture variation were established (Fig. 4.39). The influence lines are presented with reference 
to the critical loads of the torsional buckling calculated for columns at initial temperatures: 
1209.3 kN for a column at 100°C, 1178.1 kN for a column at 200°C, 1102 kN for a column 
at 300 °C temperature. An increase in values of the influence lines with the rise of the col-
umn initial temperature can be observed. For example, values of the influence line for the 
initial temperature of 300°C are 12.5 times higher than for the temperature of 100°C. It 
should be noticed that the shape of the influence line for different temperatures is similar, 
so the conclusion drawn from the sensitivity analysis of the buckling loads of a column for 
one initial temperature should be valid for different temperatures as well. The values of the 
influence lines are higher in the column first span (0< x <6 m) than in the second span and 
for x between 4.5 m and 6 m there are the highest values of the influence lines. Thus in 
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these parts of the column an increase of temperature causes the largest decrease of  the  
torsional buckling force. 

Assume now a constant variation of the cross-section temperature along the column. 
After integration of the influence lines the first variation of the critical load of the torsional 
buckling is obtained and the approximation of the relative torsional buckling load due to the 
column temperature can be found (Fig. 4.40). Such an approximation was calculated for 
a column at initial temperature equal to 100°C and 200°C. A relative error of approxima-
tion obtained by the sensitivity analysis is presented in Fig. 4.41. The  approximation error 
at initial temperature reaching 100°C is less than 8% for temperatures up to 300°C, and for 
an approximation at an initial temperature of 200°C the error is less than 3% for tempera-
tures up to 300°C.  
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Fig. 4.39. Influence lines of the column relative torsional buckling load variation due to unit  
temperature variation of the column cross-section for three initial temperatures 

100 200 300

temperature [oC]
0.9

1.0

P
cr
 / 

P
cr

 (T
 =

 1
00

 0 C
)

approximation T = 100 0C

approximation T = 200 0C

exact

 

Fig. 4.40. Comparison of exact relative critical load of torsional buckling vs. temperature  
of column cross-section with its approximations obtained by sensitivity analysis  

By the use of the example of the sensitivity analysis of critical forces of column due to 
variations of cross-section temperature one can draw the following conclusions: 
⎯ The sensitivity analysis may be used to predict the variation of the critical buckling load 

of the steel column undergoing non-uniform heating along its length.  
⎯ By the sensitivity analysis it is possible to find the function describing the influence of 

the temperature variation in the cross-section on the critical load of the column. The  
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influence line calculated by means of the sensitivity analysis makes it possible to find 
some regions of the column where the temperature variation causes the largest varia-
tions of the critical load. Parts of the column where the temperature variation causes the 
largest decrease in the critical forces may by protected by thicker thermal insulation. 
Consequently the sensitivity influence lines may be used by designers to divide the  
column into zones with different fire protection thicknesses.  

⎯ The sensitivity analysis gives an opportunity to predict the column critical force at ele-
vated temperatures on the basis of the results of stability analysis of column performed 
at ambient temperature, and the steel model that describes the material behaviour in 
function of temperature. Such a model is described in the design codes.  

⎯ In the numerical examples the first variation of buckling loads of thin-walled column 
due to the temperature variation was investigated. Owing to the accuracy of the  
approximation of the relation between the buckling forces and the column temperature 
it is possible to conclude that the results obtained by means of the sensitivity method in 
the examined cases gave sufficiently good results. 

⎯ Similar sensitivity analysis may be conducted for load bearing capacity coefficient of an 
axially compressed column due to temperature variation. In the analysis of the load  
bearing capacity of column it is necessary to take into account not only the loss of mate-
rial strength but also the stiffness and the normal force redistribution due to thermal  
expansion. Thus the presented example shows a possible application of the sensitivity 
analysis to  the structure performance at elevated temperature. 

⎯ Before the proposed method could be used in practical applications a further research 
especially by means of a 3D shell elements model of the column is planned. This verifi-
cation would determine a range of temperatures where the structure performance  
obtained for the ambient temperature may approximate its performance for elevated 
temperatures. 
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Fig. 4.41. Error of approximations of exact relative critical load  
of torsional buckling vs. temperature of column cross-section 



Chapter 5 

BUCKLING OF BRACED FRAMES 

Determination of the buckling load and then the effective lengths of frame columns is 
one of the most important phases of frame design. The effective length of frame columns 
has a great influence on the design of cross-section profiles. Even small changes in effec-
tive length may cause significant changes in the bearing coefficient of structural elements. 
Various braces may reduce the frame columns effective length. In many practical design 
problems the buckling length is not calculated but it is assumed by the designer.  

The buckling length of an individual column that is part of the frame structure should 
be determined by calculating the buckling load of the whole frame. It can be evaluated us-
ing some engineering software based on linear or non-linear procedures, in terms of large 
displacements and material yielding, or with analytical methods. The present computer 
programs usually provide a tool for stability calculation. Both critical loading and effective 
buckling lengths of frame columns may be numerically found for each frame. This analysis 
is usually computed with the application of geometrical matrix. Thus the result depends on 
the adopted model for a discrete structural system and sometimes it is not exact.  

In many practical applications, some simplified formulae and diagrams are needed and 
therefore such tools for determining the effective buckling lengths of frame columns are 
present in most design codes and specifications. Buckling lengths of columns may therefore 
be calculated by means of a simple formula, as found, for example, in Polish design code 
(1990) or Eurocode 3 (1992). The code simplified formulas for effective buckling lengths 
were investigated by Giżejowski and Żółtowski (1986), Girgin et al. (2006) or Mageirow 
and Gantes (2006). According to the design codes the effective lengths of frame columns 
depend on the sway classification. Frames are divided into two groups, sway and non-sway 
structures. In many braced frame structures where the lateral stiffness of bracing system is 
less than the required value for  a non-sway frame, the effect of the bracing stiffness on the 
lateral stability of the frame is entirely neglected and effective lengths of frame columns are 
calculated as for sway-frames. This approach is  not economical but provides a safe design.  

Only very limited researches on the buckling of braced multistorey frames are available 
in the literature. In the research conducted by Özmen and Girgin (2005) and Girgin et al. 
(2006) it is shown that simplified formulas used for determining the buckling length of frame 
columns may yield erroneous results, especially for irregular frames. The application of code 
formulas has proven on several numerical examples that the erroneous results may appear 
both in sway and non-sway modes. This problem occurs mainly because, only local stiffness 
distributions are considered in these formulae, while the general behaviour of the frame is not 
taken into account. The above mentioned investigations carried out on a number of numerical 
examples have indicated that buckling length multipliers are dependent on:  
⎯ axial force distribution, 
⎯ number of storeys, 
⎯ position of an individual element. 

It can be concluded that the buckling length multipliers should be determined by  
taking into account all these factors, i.e., by considering not only the local stiffness distribu-
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tions, but also the overall characteristics of the structure. In the research work by Özmen 
and Girgin (2005) and Girgin et al. (2006) a simplified procedure for determining an  
approximate value for system buckling load has been developed. The proposed procedure is 
based on the results of a fictitious lateral load analysis.  

In the work conducted by Tong and Shi (2001) the stability of frames, weakly braced 
by shear-type bracings, was investigated. 

The research carried out by Tong and Ji (2006) was devoted to stability of multistorey 
frames braced by vertical columns. The investigations were focused on finding a simplified 
formula for the buckling loads of dual structural systems where frames are braced by verti-
cal columns. An approximated formula of the threshold rigidity for the vertical bracing  
column sufficient to make the frames buckle in a non-sway mode was  proposed.  However, 
these formulas do not take into account the effect of imperfections in the members or the 
lateral sway of the building. According to Tong and Ji (2006) prior to the use of the pro-
posed formula in practice a large safety margin should be therefore retained.   

In the research conducted by Aristizabal-Ochoa (1995), (1997) a storey model was  
applied and a bracing condition for individual storey was established. In the research con-
ducted by Tong and Xing (2007) the instability of braced frames was studied by geometric 
and material nonlinear analysis accounting for the residual stresses, initial sway imperfec-
tions and members of initial bow, and a threshold stiffness for the bracing being sufficient 
to make frames buckle in a non-sway mode was obtained. 

Mageirou et al. (2006) proposed a simplified approach to the evaluation of the critical 
buckling load of multi-storey frames with semi-rigid connections. The restriction provided 
by other members of the frame were modelled as rotational springs at the bottom and top 
nodes of the analysed columns, while resistance provided by the bracing system to the rela-
tive transverse translation was modelled by translational springs. 

It should also be noted that various inaccuracies of structure (imperfections) or stiff-
ness or flexibility of connections between frame members may affect the effective buckling 
length or buckling load of frame structures (Giżejowski et al. 1987, 2008, Giżejowski 1998, 
Kozłowski 1999).  

The buckling load may decrease when an influence of elastic-plastic behavior of plane 
frames is taken into account (Cichoń and Waszczyszyn 1979). Successive formation of 
plastic hinges may also deteriorate a frame stability behavior (Giżejowski et at. 2006) 

In this section a study of the stability analysis of braced frames is presented. The frame 
structures with braces modelled by elastic springs and by a vertical bracing column are  
considered. A relationship between the frame critical load and the bracing rigidity is estab-
lished. The research is a continuation of the author’s study related to the stability of the 
frame braced by elastic springs (see Iwicki 2009c, 2010d). 

In order to obtain a safe lower limit of the buckling load of the braced frame in func-
tion of the bracing stiffness, the classical Winter (1958) model according to the method 
proposed by Yura (1996) is developed. Such a model is proposed both for the frame braced 
by elastic springs located at joints and for the frame with a bracing column. The results are 
compared with the parametrical study of braced frames.  

The sensitivity analysis (see Haug et al. 1986, Dems and Mróz 1983, Haftka and Mróz 
1986 or Szefer 1983) is used to establish the variations of the lowest buckling loads due to 
the bracing stiffness variations. The changes of buckling modes dependent on an increase 
of the bracing stiffness are analysed. In the worked numerical examples the functions  
describing the influence of location of the unit stiffness brace or the unit stiffness variation 
along the bracing column on the first variation of critical loads of the frame are found. The 
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linear approximations of the exact relation of the buckling loads due to the variations of the 
bracing stiffness are determined.  

The threshold rigidity of bracing is also under consideration. The threshold rigidity de-
fined as bracing stiffness sufficient to make the frames buckle in a non-sway mode is 
found. A method, based on the sensitivity analysis, for the estimation of the threshold brac-
ing stiffness for full bracing of the frames is proposed. The threshold bracing stiffness de-
termined by the proposed method is compared with the stiffness found by means of para-
metrical study of the frames. An advantage of the proposed method is that the maximal 
magnitude of the frame first buckling load in function of the bracing stiffness may be de-
termined for the unbraced frame. Another advantage of the proposed method is that the 
threshold bracing condition can be found in a few approximation steps, and a labour-
consuming parametrical stability analysis for the frame with various bracing stiffnesses is 
not necessary. It is worth noting that the application of a sensitivity analysis appears in 
many publications (see, for example Szymczak 2003), but its use in the analysis of the 
threshold condition of full bracing of frames cannot be found in literature.  

In the present section the stiffness of bracing required for the frame stability is under 
consideration, but other effects, such as horizontal loading, nonlinearity, or initial sway are 
not taken into account. The above mentioned effect should be used for practical applica-
tions to increase the threshold bracing condition. 

5.1. Frame with bracing modelled as elastic springs 

5.1.1. Description of the model 

As the first parametric study consider a two-storey frame presented in Fig. 5.1 (see also 
Iwicki 2009a, 2010d). All beams and columns have constant cross-sections. The frame  
columns are loaded on their tops by forces P. The storey height is h, and the beam span is l. 
The frame is supported by horizontal linear springs on each floor level. It is assumed that the 
stiffness of bracing on each floor is constant and that the bracing characteristics are linear. 

 

Fig. 5.1. Frame with horizontal bracing 

Next the frame is modified to obtain a Winter – type model (Fig. 5.2). At first some 
fictitious hinges at column and beam joints are used. The purpose of the development of the 
Winter-type frame model is to calculate a safe lower limit of braces stiffness necessary to 
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obtain a maximal possible critical load of the frame. In the present analysis the classical 
Winter’s approach (see section 2) is extended to cases where less than a full bracing is ap-
plied. In Yura’s (1996) research a similar model of columns provided a safe lower bound of 
the relation between the buckling load and the required bracing stiffness. The critical forces 
calculated for the Winter-type model of column were lower than for a similar column  
without hinges for the same bracing stiffness. The purpose of development of the Winter-
type model for the frame was aimed to calculate similar relationships between the critical 
forces and the necessary bracing stiffness. 

 

Fig. 5.2. The Winter-type model of braced frame, and laterally distributed position of the frame 

5.1.2. Results of numerical simulation 

In the application of the Winter model proposed by Yura (1996) a set of equilibrium 
equations at brace joints was introduced. This operation was followed by solving these 
equations to provide modes of buckling for the Winter model and the Winter poly-line that 
describes the relation between the buckling load and the brace stiffness. Below a similar so-
lution for frame is proposed using the energy method.  

The fictitious hinges at the column and the beam joints introduced in the Winter model 
of the frame allow us to consider the frame beams and columns to be rigid. With this in 
view the total potential energy for the Winter-type model of the frame consists of an  
increase in the strain energy stored in the elastic springs and a decrease in the potential  
energy of external forces P: 
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When the variation of total potential energy vanishes at the equilibrium position the follow-
ing condition can be written: 
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The determinant of the above matrix is equal to zero: 
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This gives two critical loads that correspond to the buckling modes of the Winter-type 
frame shown in Fig. 5.3. 
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Fig. 5.3. Buckling modes corresponding to the calculated buckling loads  
and to the maximal buckling load for the Winter-type model of frame  

The Winter poly-line that describes the relation between the buckling load and the bracing 
stiffness is constructed by means of construction lines. Assuming that the brace stiffness in-
creases, an increment of the critical force given by Eq. (5.4) is obtained. When that force is 
equal to the buckling force for the simply supported column of length h, then the buckling 
mode changes to a mode shown in Fig. 5.3c. and the critical load is constant with a further 
increase of the bracing stiffness. This idea provides a basis for finding the end points of the 
construction lines of the Winter poly-line. The coordinates of the end points of the lines are 
(5.236,1) and (0.764,1) (see Fig. 5.4). The starting points of the construction lines appear as 
the first two critical loads of the analysed frame without bracings and without hinges: 
(0.1845,0) (0.6111,0). The poly-line calculated for the Winter-type model of frame is com-
pared with the exact relation between the critical force and the coefficient of bracing (Fig. 
5.4). Buckling loads are related to critical forces of a simply supported column of length h 
(Pcr0). The above presented analysis gives a reason for a conclusion that for bracing stiff-
ness parameter α between 0.4–1.2, the buckling load predicted by means of the Winter 
method is greater than the calculated one for frame model without fictitious hinges. Hence, 
for this stiffness of bracing, the Winter method does not provide a safe lower limit of criti-
cal load of frame. The same example was previously analysed by Iwicki (2009c), where the 
Winter-type model was analysed using the parametrical study.  

The sensitivity analysis of the buckling load due to the bracing stiffness variation is  
also carried out. According to the sensitivity analysis the first variation of the critical load 
of flexural buckling is found in the form of Eq. (3.9) for the system with continuously dis-
tributed design parameters, or in the form of Eq. (3.42) for a discrete system. The analysis 
may be performed by means of any commercial structure analysis program aimed at finding 
the buckling mode normalized by the condition of Eq. (3.39) and the spreadsheet program, 
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such as EXCEL (2010). This is connected with the fact that partial derivative of matrix  
relevant to the design variable in brackets of (Eq. (3.42)) in the case of braces modelled as 
springs is equal to one. The design sensitivity analysis can be used to predict the buckling 
load variation resulting from the location of the new  unit stiffness brace along the column 
length. The under-integral function ΛPcr,k(y) describes the influence of the unit change of 
the design variable on the buckling load. The influence lines of variation of critical load of 
flexural buckling due to location of the new unit stiffness brace were found. The influence 
lines are related to the critical load of simply supported column of length h, that is 98.7 kN 
(EJ/h2 = 10). The influence lines of the flexural buckling load variation caused by the unit 
variation of the location of the unit stiffness brace for different stiffnesses of bracing  
initially installed in the frame  are presented in (Fig. 5.5).  

 

Fig. 5.4. Relationship of relative critical load due to bracing rigidity 
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Fig. 5.5. Influence lines of the relative variation of critical load of flexural buckling due to the loca-
tion of new unit stiffness brace for various initial bracing parameters α  

It is worth pointing out that the lines magnitude depends on the initial bracing stiffness.  
In the case of a frame without bracing the influence line has a maximal value at the top of 
the frame. For this reason the location of new bracing near the top of the frame is most ef-
fective in increasing the buckling load. The same analysis is carried out for a frame with 
bracing of stiffness k = 20 kN/m (α = 2.0264). It is found that in this case the most effective 
growth of the buckling load may be obtained after locating the brace at coordinate 
y = 7.5 m measured from the bottom of the frame. The third influence line is found for the 
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frame with bracing of stiffness k = 110 kN/m (α = 11.145). One can conclude that increas-
ing the stiffness of bracing at the joints between beams and columns does not cause a rise 
of the buckling load. The lines show that a further increase of the buckling load would be 
attained if additional bracing was located in the middle of the unbraced part of the columns. 
The parametrical analysis of the relation between the first three critical buckling loads and 
the coefficient of bracing stiffness are presented in Fig. 5.6. 
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Fig. 5.6. Relation of relative critical loads (1–3) to bracing rigidity coefficient α 

The first variation of the second and third buckling load due to the stiffness variation 
of the brace located in the frame joints is also carried out. The relation between the first 
variation of the buckling loads and the bracing stiffness are presented in Fig. 5.7–5.9 for the 
first, the second and the third buckling load respectively. It is interesting to note that when 
the rigidity of the bracing is low (α < 0.82), the third buckling load is not sensitive to an in-
crease of the bracing stiffness, and the second buckling load becomes insensitive to a rise of 
the bracing stiffness if the coefficient of bracing is between 0.82 < α < 6.2. And finally 
when the initial stiffness of bracing is greater than k > 62 (α > 6.28), the first buckling load 
becomes insensitive to changes of the bracing stiffness. This stiffness is a threshold value 
of stiffness required for non-sway buckling mode of the frame.  

An interesting observation is, that increasing the bracing stiffness causes an increase in 
the first buckling load, but the maximal critical force that may be reached is equal to the 
value of critical buckling load of higher order of initially unbraced frame that is not sensi-
tive to changes in the bracing stiffness. Consequently, when a maximum of the first buck-
ling load is to be determined it is only necessary to carry out a sensitivity analysis of  the 
buckling load for an unbraced frame and to find the buckling load that is insensitive to the 
location of the new unit stiffness brace. The level of the critical buckling load, that is not 
sensitive to the bracing stiffness variations is constant. It is also necessary to explain the  
insensitivity of the buckling load due to the initial stiffness of the frame bracing. The rela-
tion between the buckling loads and the bracing stiffness may be explained as changes of 
the overall mode of the frame buckling. At a low bracing stiffness the first mode of the 
frame buckling is a sway mode. The third mode of buckling is a non-sway buckling mode. 
Then with an increase of the bracing stiffness the non-sway buckling mode corresponds to 
the second buckling load and finally to the first buckling load when the buckling  load for 
sway buckling is greater than that for the non-sway buckling mode (Fig. 5.10).  
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Fig. 5.7. Relative variation of the first buckling load vs. bracing stiffness parameter α 
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Fig. 5.8. Relative variation of the second buckling load vs. bracing stiffness parameter α 
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Fig. 5.9. Relative variation of the third buckling load vs. bracing stiffness parameter α 
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a) 

                   
b) 

        
c) 

                            
d) 

                        

Fig. 5.10. The first three buckling modes for  a) k = 0, α = 0,   b) α = 1.1, k = 11 kN/m,  
c) α = 6.59, k = 65 kN/m d) α = 110, k = 11.15 kN/m 
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The sensitivity analysis may be helpful in calculating the full bracing condition that is 
defined as a threshold bracing stiffness needed to obtain the maximal critical load of the 
frame. The condition may also be interpreted as a non-sway condition of the frame. In order 
to calculate the threshold bracing stiffness, the following method is recommended. At the 
beginning of the analysis, the frame without bracing is studied. The first variation of the 
first few critical buckling loads should be calculated. Two important results should be dis-
tinguished from the sensitivity analysis. The first information concerns a specific buckling 
load that is insensitive to the changes of bracing stiffness. The load value is the maximal 
magnitude of the first critical buckling load that may be reached due to an increase in the 
bracing stiffness. The second result is the first variation of the first critical buckling load 
due to a variation of the bracing stiffness. Then, a linear approximation of the exact relation 
between the critical load and bracing stiffness k can be found using the following relation: 

 1
1 1,0 .cr

cr cr
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P P k
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δ∂

= +
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 (5.5) 

The first increment of the bracing stiffness can be obtained after assuming that the  
approximation of the first buckling load is equal to the maximal value of the buckling load 
(the buckling load of a higher buckling load for an unbraced frame that is not sensitive to 
the bracing variation). Moreover, the first buckling load and its first variation for a new 
bracing stiffness should be determined, and on this basis an increment of the bracing stiff-
ness can be calculated. The calculation must be repeated until a required accuracy is 
reached. In that way the threshold value of the bracing stiffness for a full bracing condition 
is obtained. The approximation procedure is graphically illustrated in Fig. 5.11. The calcu-
lation results are presented in Table 5.1. The coefficient of the bracing stiffness required for 
a full bracing condition is α = 6.161 when bracing stiffness k = 60.803 kN/m.  
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Fig. 5.11. Relative first buckling load vs. relative bracing stiffness  
and its approximations constructed to find the threshold bracing stiffness condition 

When buckling load Pcr has been determined, the buckling length of an individual  
column can be computed from Eq. (3.46). The buckling length related to the storey height 
of the frame columns due to the bracing stiffness is also investigated (Fig. 5.12). That buck-
ling coefficient for a non-sway frame is 0.875, and in the case of a sway-frame it is 2.328. 
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According to the design codes for weakly braced frames, this coefficient is calculated as for 
sway frames (excepting Chinesse code GB50017 2003). This approach gives a safe value of 
the coefficient but it is not precise and may cause an uneconomical design. 

Table 5.1 

The calculation of the threshold value of bracing stiffness 

k Pcr1 Pcr3 δPcr1 δk 

0.000 18.213 129.030 10.703 10.354 

10.354 66.275 129.030 1.835 34.394 

44.354 113.640 129.030 1.106 13.910 

58.264 127.030 129.030 0.813 2.460 

60.724 128.970 129.030 0.759 0.079 

60.803 129.030 129.030 0.758  
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Fig. 5.12. Effective buckling length of frame columns vs. bracing stiffness parameter α 
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Fig. 5.13. The relative bracing no.1 reaction due to vertical load of the frame 
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Fig. 5.14. The relative bracing no. 2 reaction due to vertical load of the frame  

The reactions in braces necessary to carry on forces to stabilize a frame is a significant 
factor in the design of frame structures. In order to calculate the reaction the frame with  
imperfection assumed as a horizontal force on the top of the frame equal to 0.2% of the ver-
tical load is analysed. The magnitude of the reaction in braces related to the frame vertical 
loading obtained from the geometrically non-linear static analysis for different stiffnesses 
of bracing is presented in Fig. 5.13 and Fig. 5.14. 

5.2. Frame braced by a vertical column 

Multistorey frames may be braced by a vertical column, a rigid core or a vertical truss. 
In such dual structural systems, frequently used in multistorey or high-rise buildings, one or 
a number of vertical bracings (such as vertical trusses, concrete or steel shear walls, cores) 
are connected to frames and work together. In such structural systems, the bracing carries 
not only most of the horizontal load, but also provides lateral support to frames to prevent 
the latter from premature sway buckling. In this case a relationship between the buckling 
load and the bracing rigidity is subject of stability analysis. Such analysis was presented by 
Tong and Ji (2005), where a frame connected to a bracing column was analysed. The stiff-
ness of the bracing column may have a constant rigidity or it may vary along its height.  

5.2.1. Description of the model 

The following example is a frame system presented in Fig. 5.15. The beams and col-
umns have constant cross-sections. The stiffness of the bracing column is also constant 
along its height. The storey height is h, and the beam span is l. The frame columns are 
loaded at their tops by forces P. The Winter-type model of the frame is presented in Fig. 
5.16. 

5.2.2. Results of numerical simulations 

The fictitious hinges at column and beam joints introduced in the Winter model of the 
frame make it possible to consider that the frame beams and columns are rigid and the  
equilibrium conditions may be formulated for the assumed displacement vector in the  
following form: 

 ( )cr GP− =K K z 0 , (5.6) 
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where: 
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Fig. 5.15. Frame with bracing column 

 

Fig. 5.16. Winter-type model of the frame with bracing column and the model  
of bracing column with unknown displacements q1, q2 

The buckling loads of the frame are determined by the condition: 

 det( ) 0GP− =K K . (5.8) 

Thus: 
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Using the above calculated two buckling loads it is possible to construct the end points 
of the Winter construction lines. Assuming that the buckling loads are equal to Pcr0, one can 
obtain the required stiffness of the bracing column. In order to present the result of the  
example in a similar form as the outcomes found in section 5.1, an elastic spring at the dis-
placement q1 at bracing column is defined. Introducing the spring stiffness k1 the bracing 
stiffness parameter α can be defined by means of the bracing column characteristics as: 
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It should be added that similar elastic support situated at the top of the bracing column pro-
vides an elastic support of the frame that would have 8-times lower stiffness than k1. The 
buckling modes corresponding to the forces given by Eq. (5.9) are presented in Fig. 5.17. 
The end point of the construction line is (9.2427,1) (Fig. 5.18). The starting point of the 
construction line is set out as the first buckling load related to Pcr0  for frame without brac-
ings and without hinges: (0.18, 0).   

 

Fig. 5.17. The first two buckling modes for the Winter-type frame  (Jbr  / J = 1) 
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Fig. 5.18. Relationship of relative critical load due to bracing stiffness parameter α 

The poly-line calculated for the Winter-type model of frame is compared with the exact  
relationship (found by parametrical analysis) between the buckling load and the coefficient 
of bracing (Fig. 5.18). Unlike the previous example the Winter poly-line is a safe lower 
limit of the buckling load of the braced frame in function of the bracing stiffness. This is 
due to the fact that the first buckling mode corresponds to overall sway mode both for the 
Winter-type and the original frame (Figs 5.19, 5.20). This is different from the buckling of 
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the frame braced by a multiple lateral bracing where the first buckling mode is changed 
from one half-wave to multiple half-waves when the bracing stiffness increases. 

The sensitivity analysis of the frame with a bracing column due to the variation of the 
stiffness of that column can be performed by the formula of Eq. (3.42). According to 
Eq. (3.42) the buckling mode normalized by condition Eq. (3.39) and partial derivatives of 
the initial stiffness and initial stress stiffness matrix due to the design variable are needed.  
The sensitivity analysis of the frame was performed by program MATLAB (2007). 

 

Fig. 5.19. The first two buckling modes for frame (Jbr / J = 0.01) 

a) b) c) 

 

Fig. 5.20. The first buckling mode:  a) α = 0.00299, Jbr / J = 0.01,  
b) α = 1.4955, Jbr / J = 5,  c) α = 8.973, Jbr / J = 30  

The influence lines of the buckling load variation due to the unit stiffness variation 
(δEJB = 1) of bracing column along its length were found (Fig. 5.21). The influence lines 
are related to the critical load of a simply supported column of length h: Pcr0. The lines 
magnitude depends on the initial bracing column stiffness. In the case of a frame with 
a bracing column of low stiffness the influence line has a maximal value at the bottom of 
the column and at coordinate y = 11 m. Then the same analysis is carried out for a frame 
with a bracing column of stiffness k1 = 17.71 kN/m (α = 1.79). It has been found out that in 
this case the most effective increase of the buckling load may be obtained after an increase 
of the column stiffness at the bottom. The third influence line is found for the bracing col-
umn stiffness k1 = 109.22 kN/m (α = 11.79). One can conclude that the increase of the  
column stiffness does not cause a rise of the buckling load.  
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Fig. 5.21. Influence lines of the critical load relative variation of the flexural buckling due to variation 
of the bracing column stiffness for various initial coefficients of the bracing column rigidity α  

The parametrical analysis of changes in the first three buckling loads of the frame due 
to the stiffness of vertical bracing column was carried out. As a result the relationship  
between the buckling loads and the bracing stiffness parameter was estimated (Fig. 5.22). 
For an unbraced frame the third buckling load is insensitive to the bracing stiffness varia-
tion (horizontal line in Fig. 5.22) for α < 0.8. Thus with an increase of the bracing stiffness 
the second and finally the first buckling load become insensitive to the bracing column 
stiffness variation. The magnitude of the bracing stiffness enough to obtain a maximal  
value of the first buckling load is the threshold condition for full bracing. 
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Fig. 5.22. Relationship of relative buckling loads (1–3) to bracing stiffness parameter α  
for the frame with a bracing column 

The sensitivity analysis was used to determine the full bracing condition that appeared 
to be the threshold bracing stiffness needed to obtain a maximal critical load of the frame. 
In order to calculate the threshold bracing stiffness the method described in section 5.1.2. 
was applied. At the beginning of the analysis, a frame without bracing is considered. The 
first variation of a few lowest critical buckling loads should be calculated. In the examined 
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frame it was noted that the third buckling load is insensitive to the changes of the bracing 
column stiffness. This observation allows us to conclude that the third buckling load, for 
the unbraced frame, is the maximal magnitude of the first buckling load for the braced 
frame, that might be reached due to the increase in the bracing stiffness. Then the first 
variation of the first buckling load due to a variation of the bracing column stiffness was 
determined and the linear approximation of the exact relation between the buckling load 
and bracing stiffness was found (Eq. 5.5). The first increment of the bracing stiffness could 
be evaluated after assuming that the approximation of the first buckling load was equal to 
the magnitude of that of the higher buckling loads for an unbraced frame, that was not sen-
sitive to the bracing variation. Consequently, the first buckling load and its first variation 
for a new bracing stiffness was obtained and then an increment of the bracing stiffness 
could be calculated. The calculation was repeated until a required accuracy was attained. 
The approximation procedure is graphically illustrated in Fig. 5.23. The coefficient of brac-
ing stiffness required for the full bracing condition is α = 7.6 at bracing stiffness 
k1 = 75.5 kN/m.  

The effective buckling length of the frame columns is found by using Eq. (3.46). The 
buckling length related to the storey height of the frame columns vs. the bracing stiffness is 
presented in Fig. 5.24. The effective buckling length for non-sway frame is 0.88, and in the 
case of a sway-frame it is 2.34. 

0 1 2 3 4 5 6 7 8 9 10 11 12

α = kL0/Pcr0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

P
cr
 / 

P
cr

0 Pcr1 / Pcr0

approximation 1

approximation 2

approximation 3

 

Fig. 5.23. A scheme for calculating the threshold bracing stiffness required  
for full bracing condition of the frame braced with bracing column 
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Fig. 5.24. Buckling length factor of columns related to frame storey height  
vs. bracing stiffness parameter α for frame with bracing column
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5.3. One-storey frame with bracing 

In professional literature and in design codes the method called “storey buckling  
approach” is included. The method accounts for a horizontal interaction between columns 
in a storey. Such an approach is used, for example, in the research conducted by Yura 
(1971), Aristizabal-Ochoa (1997). In the analysis conducted by Tong and Xing (2007) 
a one-storey frame with tensile bracing was considered. The material was assumed to be 
elastic-perfectly-plastic, the frames with stocky and slender columns were taken into  
account. The material and the geometrical nonlinearities, the residual stresses and the initial 
bow were considered in the analysis. The aim of the study was to determine the minimum 
bracing stiffness to make the frame buckle in a non-sway mode. It has been found that the 
requirement for the bracing to provide a lateral support for the frame and the requirement 
for the bracing to bear the horizontal load are linearly additive. In multistorey frames in the 
“storey buckling approach” the buckling condition is checked for every storey. 

The next example is a one-storey frame that may be treated as an individual storey in 
a multistorey frame (Fig. 5.25). The frame is similar to the one analysed previously by 
Tong and Xing (2007) but the bracing is modelled as an elastic spring and the material is 
elastic. The sensitivity analysis of the buckling load is carried out.  

In the case of a frame without bracing the second buckling load is insensitive to the 
bracing stiffness variation, and so this is the maximal magnitude of the first buckling load 
that can be attained with the rise of the bracing stiffness. The threshold bracing stiffness is 
k = 23.3 kN/m (α = 2.36) (Figs 5.26, 5.27). A simplified formula for the required bracing 
stability could be written in the following form  

 

Fig. 5.25. One-storey frame with horizontal elastic bracing  
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where Pbr P ubr are critical force for braces (non-sway) and unbraced (sway) buckling mode 
and m the number of columns. The above formula is similar to the one obtained by Tong 
and Ji (2007) and according to Tong and Ji (2007) similar to the formula given in the  
Chinese design code (2003). The formulas for the threshold rigidity present in the design 
code should not only take into account the bracing requirements for sway or non-sway 
structure classification, but also a safety margin for other effects, such as, horizontal load-
ing that is carried out by bracing. 
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Fig. 5.26. Relative variation of first and second buckling load vs. bracing stiffness parameter α 
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Fig. 5.27. First and second relative buckling load vs.  
bracing stiffness parameter α

5.4. Ten-storey braced frame with columns of constant stiffness 

5.4.1. Description of the model 

The next frame under consideration is presented in Fig. 5.28a. The frame is loaded at 
each beam and column connections. The beams and the columns stiffness are constant. The 
frame is braced by a column of stiffness EJbr that is constant along its height.  
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Fig. 5.28. The frame with bracing column: a) constant stiffness along the frame height Jn =J1, 
Jbr n= Jbr 1,  b) variable stiffness along the frame height Jn = n × J1, Jbr n = n × Jbr 1 

5.4.2. Results of numerical simulation 

The relation of the first, the second, the third, the fourth and the eighth buckling load 
to the relative stiffness of the bracing column is shown in Fig. 5.29. The magnitude of the 
buckling load that is insensitive to the bracing stiffness is constant. For the initially  
unbraced frame the eighth buckling load is constant in function of the bracing stiffness, but 
this is not visible in Fig. 5.29 because of the assumed scale. And thus other lower buckling 
forces become insensitive to the bracing column stiffness variations, and in the end the first 
buckling load at the threshold bracing stiffness is also insensitive to the changes of the 
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bracing stiffness. The variation of the first fifteen buckling loads due to the stiffness of the 
column for an initially unbraced frame is presented in Fig. 5.30.  
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Fig. 5.29. Relation of  critical loads (1–4, 8) to the relative rigidity of the bracing column  
for the frame braced by the column with constant stiffness (model of Fig. 5.28a) 
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Fig. 5.30. The first fifteen frame buckling load variations due to the bracing column stiffness variation 
for the initially unbraced frame (model of Fig. 5.28a)  

The sensitivity analysis of the buckling load due to the bracing stiffness variation is 
carried out. The numerical calculations were carried out with the commercial finite element 
code ROBOT STRUCTURAL ANALYSIS PROFESSIONAL (2010) and MATLAB (2007). 
The frame was divided into 50 elements along its height. 

The influence lines of the flexural buckling load variation due to the unit stiffness 
variation of the bracing column are found. The influence line of the variation of the first 
flexural buckling load due to the unit variation of the stiffness bracing column is presented 
in Fig. 5.31. One can conclude that the increase of the bracing column stiffness in the part 
of the column where y < 5 m and 12 m < y < 21 m is most effective in the increase of the 
buckling load. 
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Fig. 5.31. The influence line of the frame buckling load variation due to the bracing column stiffness 
variation for the frame with bracing column of stiffness Jbr  / J0br1= 0.0035 (model a) 

The sensitivity analysis was applied to determine the full bracing condition of the 
frame. At the beginning of the analysis, the frame without bracing was considered. The first 
variation of the first few critical buckling loads allow us to find that the eighth buckling 
load is not sensitive to an increase of the bracing column stiffness. Then the iteration de-
scribed in sections 5.1 and 5.2 is carried out. The threshold value of the bracing stiffness for 
a full bracing condition was determined. The calculation results are presented in Table 5.2. 
The threshold value of the bracing stiffness required for a full bracing condition is 
EJbr /EJ0br1 = 365.96 and for that stiffness of bracing the first buckling load multiplier is 
52.44 (99% of the eighth buckling load). 

The buckling modes of the frame were also under consideration. When the relative 
stiffness of the bracing column increases from zero to 365.96, the first buckling mode of 
the frame corresponds to the overall sway buckling mode. At the threshold bracing stiffness 
the first buckling mode is changed to non-sway buckling mode (Fig. 5.32). This is different 
in comparison with the buckling of a column braced by multiple lateral bracings (as in sec-
tion 5.1), where the first buckling mode is changed from a one half-wave to multiple half-
waves with a rise of the bracing stiffness. It is worth noting that the threshold bracing stiff-
ness is determined in three approximation steps. 

An effective buckling length of the frame columns is found by means of Eq. (3.46). 
The buckling length related to the storey height of the frame columns due to the bracing 
stiffness is presented in Fig. 5.33. The buckling length factor for the unbraced sway-frame 
is between 1.32–4.17 and for a non-sway frame 0.72–2.27, depending on the storey of the 
frame (Fig. 5.33). 
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Table 5.2 

The calculation of the threshold value of the bracing stiffness for the frame with  
a constant stiffness along the frame height 

EJbr1 / EJ0br1 Pcr1 Pcr8 δPcr1 (δEJbr = 1) δEJbr1 / EJ0br1 

000.0035 15.48 53.21 0.0006694 057.27 

057.2800 27.97 53.21 0.0001376 186.43 

243.7100 44.60 53.21 0.0000716 122.25 

365.9600 52.44 53.21 0.0000002  

a) b) c) 

 

Fig. 5.32. The first buckling mode for a) Jbr /J0br1 = 0.0035,  b) Jbr/J0br1 = 200,  c) Jbr/J0br1 = 500  
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Fig. 5.33. Buckling length factor vs. relative bracing stiffness (model of Fig. 5.28a)
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5.5. Ten-storey braced frame with columns of variable stiffness 

5.5.1. Description of the model 

The frame presented in Fig. 5.28b is the object of consideration. The multistorey 
framed structure is braced by a vertical column. The frame is loaded at each beam and the 
column connections. The sectional properties of the frames and the bracing columns change 
along the height, but the stiffness of the horizontal beams is constant. It is assumed that the 
sectional properties of the frame and the bracing column vary linearly along the frame 
height being constant at each storey. This assumption is more realistic because it is similar 
to the normal force distribution along the frame columns.  

5.5.2. Results of numerical simulation 

The relationship of the first four and eleventh buckling loads to the relative stiffness of 
the bracing column is shown in Fig. 5.34.The relationship of the first buckling load to the 
stiffness of the bracing column increases almost linearly with the stiffness of the bracing 
column and then the buckling mode changes to a non-sway mode. The magnitude of the 
buckling load that is insensitive to the bracing stiffness variation is constant. For the  
initially unbraced frame the eleventh buckling load is constant in function of the bracing 
stiffness. With an increase of the bracing column stiffness other buckling forces become  
insensitive to the bracing column stiffness variations.  Finally, at the threshold bracing stiff-
ness, the first buckling load is also insensitive to the changes of the bracing stiffness. The 
variation of the first fifteen buckling loads due to the stiffness of the column for initially 
unbraced frame is presented in Fig. 5.35. 
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Fig. 5.34. Relationship of  critical loads (1-4,11) to the relative rigidity of the bracing column for the 
frame braced by the column with variable stiffness along its height (model of Fig. 5.28b) 

The sensitivity analysis of the buckling load due to the bracing stiffness variation is 
carried out. The analysis is performed by means of program ROBOT STRUCTURAL 
ANALYSIS PROFESSIONAL (2010) and MATLAB (2007). The frame was divided into 
50 elements along its height. The influence lines of variation of the first buckling load due 
to the unit stiffness variation of the bracing column are found (Fig. 5.36). One can conclude 
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that the increase of the bracing column stiffness in the first two storeys of the frame is most 
effective in the increase of the buckling load. The increase of column stiffness at fifth and 
sixth storey may also result in the increase of the buckling load, but this effect is several 
times lower than the influence of the stiffness at the first two storeys of the frame. 
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Fig. 5.35. The first – fifteenth frame buckling load variations due to the bracing column stiffness 
variation for the initially unbraced frame (model of Fig. 5.28b)  
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Fig. 5.36. The influence line of the frame buckling load variation due to the  bracing column stiffness 
variation for the frame with bracing column of stiffness Jbr1/J0br1 = 0.00055 (model of Fig. 5.28b) 

By the use of the sensitivity method the full bracing condition of the frame was deter-
mined. At first the frame without bracing was studied. The first variation of the first few 
critical buckling loads made it possible to note that the eleventh buckling load was  insensi-
tive to an increase of the bracing column stiffness. The iteration described in sections 5.1 
and 5.2 is carried out. The threshold value of the bracing stiffness for a full bracing condi-
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tion was determined. The calculation results are presented in Table 5.3. The threshold value 
of the bracing stiffness required for a full bracing condition is EJbr1 /EJ0br1 = 542.1, and the 
first buckling load multiplier is 306.99 (98% of the eleventh buckling load). It is worth  
noting that the threshold bracing stiffness is determined in only two approximation steps. 

Table 5.3 

The calculation of the threshold value of the bracing stiffness  
for the frame with variable stiffness along its height (model Fig. 5.28b) 

EJbr1 / EJ0br1 Pcr1 Pcr11 δPcr1 (δEJbr) δEJbr1 / EJ0br1 

000.0035 032.85 312.66 0.0019544 145.49 

145.5000 120.19 312.66 0.0004932 396.59 

542.1600 306.99 312.66 0.0000024  

The buckling modes of the frame were also taken into consideration. When the relative 
stiffness of the bracing column increases from zero to 542.1, the first buckling mode of the 
frame is an overall sway buckling. At the threshold bracing stiffness the first buckling  
mode changes to non-sway buckling mode (Fig. 5.37). This is different in comparison with 
the buckling of a column braced by multiple lateral bracings (as in section 5.1), where the 
first buckling mode changes from one half-wave to a multiple half-waves with an increase 
of the bracing stiffness. 

a) b) c) 

 

Fig. 5.37. The first buckling mode for  a) Jbr1/J0br1 = 1,  b) Jbr1/J0br1 = 100,  c) Jbr1/J0br1 = 600  

The effective buckling length of the frame columns found using Eq. (3.46), related to the 
storey height, due to the bracing stiffness is illustrated in Fig. 5.38. The buckling length factor 
for the unbraced sway frame is about 2.87, and for a non-sway frame 0.94 (Fig. 5.38). 
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Fig. 5.38. Buckling length factor vs. relative bracing stiffness (model of Fig. 5.28b) 

In this chapter the stability of the frame braced by lateral braces and by vertical  
columns is investigated.  A relationship between the buckling load and the bracing stiffness 
is determined by using numerical simulations. The Winter-type model of frames with ficti-
tious hinges at the beam and the column joints is constructed in order to investigate a safe 
lower limit of the relation between the buckling load and the bracing stiffness. The sensitiv-
ity analysis of the buckling load due to the bracing stiffness is carried out. A method  
based on the sensitivity analysis to determine the threshold stiffness for the bracing to be 
sufficient to make the frames buckle in a non-sway mode is proposed.  
The results of the numerical analysis give a reason for some conclusions to be drawn re-
garding  the effect of the bracing stiffness on the critical buckling load. The main of them 
may be summarized as follows: 
⎯ According to the relationship between the buckling load and the bracing stiffness it is 

possible to account for a positive effect of bracing also for weakly braced frames, classi-
fied in codes as sway structures.  

⎯ The Winter-type model of frame with fictitious hinges does not provide a safe lower  
limit of the critical load for a frame braced by lateral braces (discrete springs) for a full 
range of bracing stiffnesses. 

⎯ In the case of dual structural systems where frames are braced by vertical columns the 
Winter-type model of frame provides a safe lower limit of critical load of frame for 
a full range of bracing stiffnesses. 

⎯ By the use of the sensitivity analysis of the buckling load it is possible to obtain the  
influence lines of the buckling load variation due to the bracing stiffness variation. The 
lines depend on the stiffness of bracing. The influence lines obtained for the frame with 
multiple lateral braces are different from some similar lines for dual structural systems 
where the frames are braced by vertical columns. The difference is essential because the 
largest increase of the first buckling load of the frame with lateral braces is obtained 
after location of a new brace at the top of the initially unbraced frame, and in the case of 
a dual frame-bracing column system an increase of the buckling load is achieved when 
the stiffness of the bottom part of the bracing column rises. 

⎯ The proposed method based on the sensitivity analysis to determine the threshold stiff-
ness of bracing for a full bracing condition can help to obtain the maximal magnitude of 
the first buckling load and of the threshold bracing stiffness that is defined as the bra-
cing stiffness at which the braced frames buckle in a non-sway mode. 

⎯ In the proposed method of applying the sensitivity analysis to the calculation of the 
threshold bracing condition only the stability requirements of the frame are taken into 
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account. In the calculation of the threshold bracing stiffness the effect of various imper-
fections must be considered prior to its use in practice. In practical structures bracing 
carries also the horizontal loading that induces stresses both in the bracing member and 
in the frame as well. This load may cause a decrease of the stiffness of the bracing 
member. When the bracing column is loaded by vertical forces, part of its lateral stiff-
ness must be used to prevent buckling by the axial force. In this case the stiffness used 
to strengthen the lateral stability of the frame decreases. The above mentioned effects 
should be taken into account and verified before the proposed method can be used in 
practice.  

⎯ The buckling length factor for columns of weakly braced frames is lower than the one 
for sway structures and this effect is neglected in simplified code formulas.  

⎯ The buckling mode for dual frame – bracing column system  is different in comparison 
with the buckling of a column braced by multiple lateral bracing where the first buc-
kling mode is changed from a one half-wave to multiple half-waves when the bracing 
stiffness increases. 



Chapter 6 

BUCKLING OF BRACED TRUSSES 

Steel trusses have a much greater strength and stiffness in their plane than out of their 
plane, and therefore should be braced against lateral deflection and twisting. The problem 
of bracing requirements necessary to provide lateral stability of compressed members  
appears in code PN-90/B-03200 (1990) or PN-EN 1993-1-1 (2006), and in Eurocode 3 
(1992, 2005). Some simplified design code requirements make it possible to assume that 
the out-of-plane buckling length of trusses compression chords is equal to the distance  
between braces. In this approach only the truss top chord is considered. The effect of lower 
chords, verticals and diagonals on the truss stability is neglected. The verticals and diago-
nals are assumed to be vertical supports for the truss top chord, while the side-bracing of 
the truss chords is a rigid side-support, and the normal forces in the truss chords are  
assumed to be constant along their lengths. The flexural in-plane and out-of-plane buckling 
of the compressed chord is considered. Under the above described conditions the buckling 
length of the compressed truss chords is usually lower than described in the design codes. 
The codes should give a safe method to design the truss structures.  

The buckling of real truss structures is more complex than the buckling of compressed 
truss chords and involves deformation of all truss elements. The stability analysis should 
therefore account for torsion and bending of the diagonals, verticals and the lower truss 
chord. In real truss structures the “web members” and bottom chord partially restrain the 
top chord against the out-of-plane buckling. The stiffness of connections between the truss 
chords, diagonals and verticals, and the boundary conditions at the supports are of funda-
mental importance to the stability of the whole structure. The normal force in the truss top 
chord is usually maximal only in the middle of the truss span and lower near the supports. 
This variation in the member forces has also a positive effect on the truss top chord stabil-
ity. The above described problems motivated many researchers to investigate the stability 
of trusses more carefully. All the above mentioned effects were the subject of many  
researches in Polish scientific literature, as for example, Jankowska-Sandberg and 
Pałkowski (2002), Biegus and Wojczyszyn (2004–2006) or Niewiadomski (2002). The 
problem was also experimentally investigated in a research carried out by Jankowska-
Sandberg et al. (2003a, 2003b). In most of the above researches it has been found that the 
buckling length of the truss top chord is lower than the distance between braces. Another 
explanation of the buckling length reduction found in the papers mentioned before is 
a positive influence of the torsional restraints at the truss supports. In the researches the 
truss bracing was assumed to be rigid. This conclusion is consistent with the code recom-
mendations where the buckling length of the truss chords in the case of the out-of-plane 
truss buckling can be regarded as the distance between braces. Only the research carried out 
by Biegus and Wojczyszyn (2004–2006) has shown that for short trusses the buckling 
length is about 10–20% greater than the side-support distance.  

However, in real structures bracing is usually considered to be elastic or even the 
braces may be described by non-linear force-displacement characteristic. This is due to 
various inaccuracies or connection tolerance. In the literature there are many solutions  
oriented to the stability of restrained structures. A review of stability analysis problems of 
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various structures, such as, columns, beams or frames with bracing was given in Chapter 1. 
Similar problems concerning bracing requirements of trusses are presented only in a few 
publications. The stability of trusses with elastic bracing was investigated in an experimen-
tal research by Kołodziej and Jankowska-Sandberg (2006). The tests were verified by a nu-
merical analysis conducted by Iwicki (2007b). Some extended results of such verification 
are presented in section 6.7. Other examples of roof structures where braces are not rigid 
but should even be elastic or of non-linear force-displacement characteristics were  
presented by Iwicki and Kin (2000) or Iwicki and Krutul (2006). This situation occurs, for 
example, in sloping roof constructions where the truss bracing may be situated at an angle 
to the horizontal plane. The results of the author’s numerical studies (2007d) of two roof 
trusses with horizontal and sloping elastic bracing indicate that the effective buckling 
length of truss compressed chords is greater than the side-support spacing. The non-linear 
static analysis of the trusses designed according to code PN-90/B-03200 (1990) has shown 
that the stability of the truss is provided even when the out-of-plane buckling length of truss 
chords is greater than the side-support spacing (see, for example, Iwicki 2007b, 2007d, 
2007f). Similar results were obtained in the case of an analysis of roof trusses stabilised by 
corrugated sheets (Iwicki 2010c). The lateral braces, as for instance, purlins or bridging ele-
ments may be taken also as torsional braces of the truss. The stability of the truss with both 
lateral and torsional braces was analysed by Iwicki (2008b). The limit normal force in 
chords was between 20% and 70% greater than that of a truss without torsional braces.  

The present research is focused on the determination of the relation between the limit 
and the buckling load of trusses due to the bracing stiffness. A full bracing condition for 
trusses with elastic bracing is investigated. The basic problem under consideration is  
devoted to the study of the required bracing stiffness that ensures the out-of-plane truss 
buckling to occur between braces, or to be prevented. At the threshold bracing stiffness 
other truss elements, such as, compressed diagonals, or verticals, or the truss top chord may 
buckle in the truss plane. The full bracing condition may also be defined as the bracing 
stiffness necessary to obtain the maximal buckling load of the truss, or when an increase in 
bracing stiffness does not cause any further increase of the buckling load. The threshold 
condition of truss bracing is therefore needed, and such condition in the design codes 
should be described in an applicable form.  

The geometrically non-linear static analysis of various braced trusses is also  
conducted. The analysis allows us to determine a bracing stiffness necessary to ensure that 
the maximal truss top chord normal forces in a limit state is greater than a similar force 
caused by design load. The analysis make it possible to find the reaction in braces of  the 
imperfect trusses. 

In the present Chapter some solutions of restrained column and beam buckling inves-
tigated by Trahair (1993) are compared with the stability of braced trusses. The model of 
braced column introduced by Winter (1958) and extended by Yura (1996) is used to predict 
the buckling load of the truss compressed chord and to calculate a necessary stiffness of 
braces. Various roof trusses are considered. The examples are selected from the trusses  
previously analysed by Niewiadomski (2002) or Hotała et al. (2007). These trusses are re-
analysed here, but with elastic bracing, instead of a rigid one (sections 6.1, 6.4). In section 
6.7 the experimental research conducted by Kołodziej and Jankowska-Sandberg (2006) are 
examined in a parametrical study. The trusses analysed in sections 6.2, 6.3 and 6.5 are simi-
lar to some roof trusses designed by the author in real roof structures. Most of the trusses 
are designed in a similar way, e.g. the chords are made of the same profile, usually from 2L 
rolled profiles, verticals and diagonals from channel sections, only the most loaded  
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compression diagonals are made of 2L rolled profiles. Such trusses are used in many real  
constructions and are produced by well-known factories, as for example, MAKU in Sweden. 

In various worked examples of truss structures with side-bracing the following inves-
tigations are conducted: 
⎯ for different bracing stiffnesses the elastic limit and the buckling load of the truss are 

calculated,  
⎯ the reactions in braces in function of the normal force in the truss chord are found, 
⎯ the effective buckling lengths of the truss top chord in the out-of-plane direction of the 

truss are determined. 

In the analysed trusses, the lateral braces of the truss top chord, the sloping braces, the 
torsional braces and the braces located both in the upper and lower truss chord, are consid-
ered. 

The sensitivity of the buckling and limit load of trusses due to the bracing stiffness is 
also analysed. The functions describing the effect of the braces stiffness variation on the 
limit and critical load of truss are found. The linear approximations of the exact relationship 
of the limit and the buckling truss load due to the variations of the braces stiffness are  
determined. A method for the determination of the threshold stiffness of bracing that is 
necessary to obtain the maximal buckling load is proposed. The method is based on the 
sensitivity analysis solutions applied to a truss without bracing. Both the trusses with brac-
ing modelled as elastic springs, and a part of the roof structure with trusses braced by  
flexural bracing located in the roof plane are studied. 

6.1. Truss with horizontal elastic braces 

In the first example a typical roof truss is considered (Fig. 6.1). A similar truss was  
earlier studied by Niewiadomski (2002), who focused his research on static analysis of the 
truss with various imperfections. However, it was assumed that the truss braces were rigid. 
The non-linear analysis of this truss with elastic braces for different imperfections and brac-
ing stiffnesses was presented by Iwicki (2006, 2007b, 2007d). Some comments concerning 
the results found by Iwicki (2007b) were published by Pałkowski et al. (2008). The com-
ments assured the author that the problem investigated was important and required more  
attention (Iwicki 2008d). The comments also provided inspiration for the present analysis. 
The purpose of the present parametric analysis is to determine the critical and the limit load 
of the truss in function of braces stiffness. The reaction in braces and the effective buckling 
length of the truss top chord in function of the braces stiffness is also investigated. The pre-
sent parametric study is intended to determine the minimal stiffness of bracing that prevents 
the truss from the out-of-plane buckling.  

6.1.1. Description of the model 

The truss under investigation is 24 m long, its height in the middle is 3 m, and 1.8 m at 
the supports (Fig. 6.1). The truss chords and two diagonals near the supports consist of 2L 
80×80×8 rolled profiles. The diagonals and verticals are made of U80 profiles. At the truss 
joints, a U profile is placed between the L profiles. The two verticals at the supports are 
made of HEA110. The connections between all truss elements are assumed to be rigid. The 
load is applied to the truss top chord joints in the form of 9 concentrated forces, and its 
magnitude representing the dead weight, and the snow loading of the roof structure is 
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21.7 kN. The truss top chord is laterally braced every 3 m at joints by elastic side-braces of 
stiffness amounting in the range up to 200 kN/m. It is assumed that the braces are  
connected with the truss top chord cross-section centre. The case of the truss without brac-
ing is also considered. The truss is designed according to the code PN-90/B-03200 (1990). 
The normal force in truss top chord under snow and dead weight loading is N0 = 181.52 kN. 
The plastic resistance of chords is Npl = 750 kN. Both the truss with perfect geometry 
(without imperfections) and a model with some imperfections are analysed. The results of 
a large displacement static analysis are sensitive to initial imperfections. Both the magni-
tude and the shape of initial imperfections affect the limit load of the truss. In the analysed 
model the truss top chord appears as a poly-line and the truss joints are located on a parab-
ola of maximal magnitude in the middle being equal to L/500 (in the out-of-plane direction 
of the truss) . 

Two discrete models of the truss are assumed. In the first model (I) each truss member 
is modelled by means of only one beam element with six degrees of freedom in node (see 
section 3.5). It should be noted that this kind of model is often generated by structural 
analysis programs as a typical structure from type library. In the second model (II) each 
truss member is divided into four spatial beam elements. The braces are modelled as linear 
elastic springs.  

 

Fig. 6.1. Truss with bracing 

6.1.2. Results of numerical simulation  

The geometrically non-linear static analysis of the truss is carried out. The analysis is 
performed by means of program ROBOT STRUCTURAL ANALYSIS PROFESSIONAL 
(2010). The limit load of the truss is found by means of the non-linear analysis and the load 
control method. For different stiffnesses of braces the non-linear relations between the 
normal force in the truss top chord and the out-of-plane displacement of the truss (at 
midspan of the truss top chord) are found. The relations for the first model of the truss are 
presented in Fig. 6.2. The limit force rises with an increase of the braces stiffness. Even for 
braces of low stiffness, for example k = 10 kN/m, the normal force in the top chord corre-
sponding to the limit load is greater than the normal force caused by a static load of the roof 
(N0). In the case under consideration normal forces in the truss top chord at limit state, for 
the braces stiffness lower than 120 kN/m, are lower than the top chord plastic resistance.  

The non-linear relations between the normal force in the truss top chord and the braces 
stiffness for second model is presented in Fig. 6.3. It is worth pointing out that there are sig-
nificant differences in the results of the two models. The truss limit load for the second 
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truss model with a bracing stiffness greater than 40 kN/m is almost of the same magnitude. 
The normal forces in the truss top chord, corresponding to the limit load of the truss, calcu-
lated for the two models are compared in Fig. 6.4a. It can be concluded that the limit loads 
found for the assumed discrete models are similar with regard to low bracing stiffness. The 
differences are up to 7.7% for bracing stiffness less than k = 30 kN/m (α = 0.0361), and 
hence the differences are up to 81% for k = 200 kN/m (α = 0.241). Thus, the type of the 
discrete model may affect the results. Special attention should therefore be paid if a stan-
dard library type of structural model is generated. The reason for the difference between the 
limit loads of the two models consist in ignoring  the local deformation of the truss top 
chord in the first model. The deformations of the truss at the limit state for the two models 
are presented in Fig. 6.5.  
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Fig. 6.2. Normal force in the truss top chord vs. the out-of-plane displacement of truss (at midspan) 
for different stiffnesses of braces (model I) 
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Fig. 6.3. Normal force in the truss top chord vs. the out-of-plane displacement of truss (at midspan) 
for different stiffnesses of braces  (model II) 
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Fig. 6.4. The limit (a) and the critical (b) normal force in the truss top chord vs. bracing stiffness  
parameter α for two models of the truss 

 

 

Fig. 6.5. Deformation at the limit state of the two models of the truss  a) model I,  b) model II 

The stability analysis of the truss is also carried out. In the analysis a buckling load 
multiplier is found according to the method described in section 3.2. The critical loads for 
the two models in function of the braces stiffness are also determined. The differences in 
the buckling load of the two models of the truss are smaller than in the case of the non-
linear static analysis, but for braces of higher stiffness the differences in the buckling loads 
are up to 30% (Fig. 6.4b).  

Moreover, the relationship between the normal forces in the truss top chord, corre-
sponding to the five buckling loads and the bracing stiffness parameter α are found (Fig. 
6.6). The maximal magnitude of the first buckling load of the truss is equal to the magni-
tude of the third buckling load of the truss without bracing. The minimal bracing stiffness 
required to obtain the maximal first buckling load is equal to about 27.25 kN/m 
(α = 0.0328).  

The buckling mode corresponding to the first buckling load depends on the bracing stiff-
ness. For a low stiffness of braces the buckling mode is the flexural–torsional truss deforma-
tion in the out-of-plane direction in the form of one half-wave (Fig. 6.7a). For stiffer braces 
(k > 20.42 kN/m, α > 0.025) the buckling mode changes into two half-waves (Fig. 6.7b) and 
hence, at the threshold stiffness of bracing, the shape of buckling mode consist in the defor-
mation of the truss top chord, the verticals and the diagonals in the truss plane (Fig. 6.7c).  
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Fig. 6.6. Relationship of the truss top chord normal forces, corresponding to the first five critical 
buckling loads vs. bracing stiffness parameter α (for model II) 

 

Fig. 6.7. Buckling mode corresponding to the first critical load for different stiffnesses of bracing 
a) 0 < α < 0.025, b) 0.025 < α < 0.0328, c) 0.0328 < α 

The critical buckling load may be used for the calculation of the effective truss chord 
buckling length. The effective length of the top truss chord is found by the use of Eq. (3.46) 
which is presented in Fig. 6.8. The braces distance is assumed to be the reference value. 
The relative out-of-plane truss chord buckling length factor is greater than the one  
described in design codes and is between 2.49 and 5.14. It should be mentioned that in the 
paper presented by Pałkowski et al. (2008) the buckling length factor for a similar truss was 
0.9 for rigid bracing. The difference between the above results depends on the calculation 
method used for the effective length factor. In the present analysis the normal force  
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corresponding to the lowest buckling load is employed to calculate the effective length  
factor. A lower effective buckling length would be obtained if it was assumed that other 
elements of the truss might not buckle locally and that the braces were rigid. However, in 
the present analysis a 3D truss model is under consideration and therefore the local buck-
ling of only one member causes buckling of the whole structure. Moreover, the main prob-
lem is to find a minimal required bracing stiffness that should prevent the out-of-truss plane 
buckling. For that stiffness the effective buckling length in the out-of-plane buckling is 2.49 
and a further increase of bracing stiffness would not cause a rise in the first buckling load 
because the buckling is taken over by the truss in-plane buckling.  
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Fig. 6.8. Effective out-of-plane truss top chord buckling length related to brace spacing vs. bracing 
stiffness parameter α 

The reaction in braces is also under consideration. The relative brace reaction located 
in the truss top chord centre in function of the normal force in the compressed chord for dif-
ferent brace stiffnesses is presented in Fig. 6.9 for model I and in Fig. 6.10 for model II. For 
all the examined brace stiffnesses the non-linear relationship between the support reaction 
and the compressed force in the upper chord was obtained. The side-support reaction in the 
middle of the truss is between 0.5% and 3.5% (model I) and 0.25–2% (model II) of com-
pressed force in the chord. The forces in bracing should also be found for the load magni-
tude corresponding to the design load level when the normal force in chord is N0. For other 
side braces the magnitude of the reaction is different than in the middle of the truss (Fig. 
6.11), so the average magnitude of brace reaction related to the mean value of the normal 
force in the truss top chord due to the bracing stiffness parameter α is determined (Fig. 
6.12). It can be concluded that for both models the reactions in braces are similar. The reac-
tion according to code PN-90/B-03200 (1990) is 1% and for Eurocode 3 (2005) it is  
0.2–0.5% of the compressed force in the chord. Similar differences between the codes  
requirements for other roof structure were found by Pałkowski (2007). One can draw 
a conclusion that for a design magnitude of normal force (N0) in the truss top chord the 
code ensures a safe design of the truss braces. But when the force in the truss chord is 
higher, the force in the side-supports can be greater up to two-three times than the predicted 
value in the code. 
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Fig. 6.9. Relative reaction in brace in the middle of the truss vs. normal force in the chord (model I) 
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Fig. 6.10. Relative reaction in brace in the middle of the truss vs. normal force in the chord (model II)  
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Fig. 6.11. Relative reaction in braces vs. location of brace calculated for the design load  
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Fig. 6.12. Mean relative reaction in braces vs. bracing stiffness parameter (model II) 

The results of numerical geometrically non-linear statics and stability analysis of 
trusses with elastic side supports have shown that: 
⎯ Both the limit and the critical buckling load depend on the stiffness of braces. 
⎯ At some magnitude of bracing stiffness the buckling load reaches a maximal magnitude, 

and a further increase of its stiffness does not cause any further larger change in the 
buckling load. 

⎯ The out-of-plane buckling length factor at threshold bracing stiffness of compressed 
chord is greater than the side-supports spacing because of the local buckling of the truss 
chord. 

⎯ The spatial  stability of the truss sized according to code PN-90/B-03200 (1990) is  
provided even for a side-support regarded as an elastic and even for a buckling length of 
truss chord greater than the side-support spacing. 

⎯ The relation between the side-support reaction and the normal force in the compressed 
chord is non-linear and depends on the bracing stiffness. For a truss top chord normal 
force level corresponding to the design load the truss side-support reaction is between 
0.25 and 0.5% of the normal force which is more than 50% lower than the codes PN 
(1990) requirements and is consistent with Eurocode 3. 

6.2. Truss with sloping elastic braces  

In most roof constructions a rigid bracing is necessary. But there are some structures 
where the bracings should be elastic or even with non–linear characteristics. Consider 
a roof structure presented in Fig. 6.13. Here the trusses that rest upon two truss binders and 
the church walls are regarded as the side supports of the binder.  

When the supports on the walls are not slideable the normal forces in the truss-binders 
cannot rise up to the design level. In other roof trusses a normal force distribution arises 
rather unexpectedly as presented in Fig. 6.14a. In the trusses that are located in the middle 
of the roof the magnitude of normal force in the top chord is very low and in the bottom 
chord there is even noted a compression force. Such a situation can be dangerous because 
the bottom chord of the middle trusses is not prevented against buckling (only the bracing 
in the middle). The trusses that rest on the truss binder and the church walls are also over-
loaded. The reason for that force distribution is the prevention of horizontal displacements 
at the supports on church walls. The truss binder cannot bend freely and some trusses  
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become vertical supports of the binder instead of resting upon it. When the supports on the 
walls are slideable or flexible, the roof structure can bend as long as the truss binders  
participate in bearing the load of the roof. The forces in the truss binders are presented in 
Fig. 6.14b. When the truss supports on the walls are slideable, then there is a question if 
those trusses can still be regarded as side supports of the truss-binder and what stiffness of 
the side-supports is needed to provide stability of the truss binder against the out-of-plane 
buckling (see, Iwicki and Kin 2000, Iwicki and Krutul 2006). 

 

 

Fig. 6.13. Roof construction (Iwicki and Krutul 2006) 

A similar problem arises in all roof structures where the sloping bracing is designed to 
prevent the out-of-plane buckling of the main structural elements, because the rigid braces 
relieves the main bearing member and becomes overloaded itself. Since the problems of 
sloping bracing are also likely to occur in other roof structures it is important to study it in 
view of the stability of the main structural elements. 
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a) 

 

b) 

 

Fig. 6.14. Normal force distribution in the roof trusses for two types of supports  
(Iwicki and Krutul 2006): a) horizontal supports not slideable, b) slideable horizontal supports 

6.2.1. Description of the model 

The truss under consideration is a truss binder of a real roof construction. The truss 
binder is similar to the one presented in Fig. 6.13. The binder length is 25 m, and its height is 
1.5 m. For simplicity, all members in the same chord are made of the same profile.  The com-
pression chord consists of 2L 160×160×15. The tension chord is made of 2L 150×150×15. 
The diagonal members are made of U180 profiles. The binder is prevented against torsion at 
the supports. It is assumed that the loads are applied as concentrated forces to the top chord 
joints and their magnitude corresponds to the dead load of the roof structure together with the 
snow load (Fig. 6.15). The normal compression force in chord is N0 = 2194 kN. The truss is 
stiffened in the upper chord by elastic side-supports. The stiffness of braces is in the range 
from 0 up to 8000 kN/m. The side-supports are situated at angle α = 0°, 15°, 30°, 45° meas-
ured from the horizontal line. The stiffness of supports approximated according to the relation 
presented in  PN-90/B-03200 (1990) is about: 
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0.01 2194 kN 0.01 2194 kN

351.04 kN/m 983.86 kN/m
12.5 m 4.46 m

200 200

k
× ×= < < = . (6.1) 

The case with bilinear side-supports is also taken into account. The initial stiffness of sup-
ports is 300 kN/m up to horizontal displacements 0.055 m, when the stiffness of supports 
increases to 5500 kN/m, which means that the support is not slideable (Fig. 6.16). This sup-
port allows the roof structure to deflect as long as the truss binders participate in bearing the 
load of the roof.  The truss binder is designed according to code PN-90/B-03200 (1990).  

 

Fig. 6.15. Truss binder with sloping braces 

 Two models of the truss binder are considered. An assumption is made that the first 
model is ideal, with no imperfections. For that model the buckling load of the truss is 
searched for and the effective length factor of the truss top chord is calculated. Then, the 
model with imperfections shown in Fig. 6.17 is studied. In the present example the imper-
fections in the form of horizontal loading are assumed. The horizontal concentrated forces 
perpendicular to the truss plane are located in the bottom truss chord and their magnitude is 
0.53% of the resultant vertical forces. A non-linear large displacement analysis of truss was 
carried out by program ROBOT STRUCTURAL ANALYSIS PROFESSIONAL (2010). 
The spatial beam elements with six degrees of freedom in node were used to model the 
truss and a linear spring as a model of the side-supports. In the model 4 elements were 
taken along the truss members (diagonals, top chord between nodes)  In the non-linear 
analysis the load control method was applied. The maximal load obtained from the large 
displacement analysis was taken as the limit load of the truss. By this analysis it was possi-
ble to calculate the bracing reaction. 
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Fig. 6.16. Brace with non-linear characteristics  

 

Fig. 6.17. The load imperfection applied to the truss binder with sloping braces  

6.2.2. Results of the numerical simulation  

Using the stability analysis of the truss binder it was possible to calculate the buckling 
load multiplier in function of the bracing stiffness and the angle measured from the  
horizontal plane. The relationship between the normal forces in the truss top chord corre-
sponding to the four critical loads due to the bracing stiffness parameter α for different 
slopes of bracing are found (Figs 6.18, 6.19). The maximal magnitude of the first buckling 
load of the truss binder is equal to the magnitude of the third buckling load of the truss 
binder without bracing. The threshold stiffness of bracing able to provide the maximal 
buckling load depends on the slope of braces.  
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Fig. 6.18. Relationship of the truss top chord relative normal forces, corresponding to the first four 
critical buckling loads, vs. bracing stiffness parameter α for braces located at an angle of 45°  

measured from the horizontal plane    
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Fig. 6.19. Relationship of the truss top chord relative normal forces, corresponding to the first  
four critical buckling loads, vs. bracing stiffness parameter α for braces located at an angle of 30° 

measured from the horizontal plane 

The truss braced by side-supports located at a greater slope requires larger stiffness of  
bracing to provide a maximal buckling load (Fig. 6.20). The maximal relative buckling load 
for all the angles of bracing, except 45°, is equal to 0.433. For a slope of 45° the maximal 
relative buckling load is 0.44. It was assumed that the reference value was a buckling load 
of the column with the same profile as the truss top chord and a buckling length of 
L0 = 4.46 m, because in this section of the binder the normal force is maximal. The refer-
ence force is 19292 kN. The minimal required stiffness of bracing is equal to about 
1350kN/m (α = 0.31) for the truss with horizontal bracing, and 4300 kN/m (α = 0.99) for 
bracing located at angle of 45° (Fig. 6.21). 
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Fig. 6.20. Comparison of the truss top chord relative normal forces, corresponding  
to the first buckling load, vs. bracing stiffness parameter α for different angles of bracing inclination  
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Fig. 6.21. The threshold bracing parameter vs. angle of braces inclination  

The buckling modes corresponding to the first three buckling loads for the truss binder with 
braces of stiffness 1000 kN/m situated at an angle of 45° are presented in Fig. 6.22. The 
buckling mode adequate to the first buckling load is a flexural – torsional truss deformation 
in the out-of-plane direction in the form of a one half-wave Fig. 622a. The buckling mode 
corresponding to the second buckling load presented in Fig. 6.22b has the form of two half-
waves in the truss top chord, while the deformation of the truss bottom chord is relatively 
small. This buckling mode becomes the first mode for stiffer bracing, and then, at the 
threshold stiffness of bracing, the first buckling mode of the truss is similar to the buckling 
mode in Fig. 6.22c which is the mode of buckling corresponding to the third buckling load 
for the truss braced by braces of 1000 kN/m situated at an angle of 45°. This mode of buck-
ling is related to a local deformation of the two compressed diagonals. A further increase of 
the stiffness of braces does not cause an additional increment of the buckling load. 
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a) 

 
b) 

 
c) 

 

Fig. 6.22. Buckling modes corresponding to the first three critical loads for brace stiffness 
k = 1000kN/m  (α = 0.2312, φ = 45°)  a) first buckling mode, b) second buckling mode,  

c) third buckling mode 

The effective length factor of the truss top chord calculated by the use of Eq. (3.46) in 
function of the bracing stiffness for different bracing inclinations is presented in Fig. 6.23. 
In the threshold bracing condition the effective buckling length factor is 1.52 and 1.50 for 
bracing at an angle of 45°. The effective length increases with the rise of the bracing incli-
nation (Fig. 6.24).  

The results of the non-linear static analysis of the 3D truss model provide a basis to 
conclude that for all of the analysed stiffnesses and inclinations of braces the limit force of 
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the truss is greater than the normal force caused by the static load of the roof (Fig. 6.25). 
For the truss-binder with a bracing situated at an angle of 300 the horizontal displacements 
corresponding to the design load are about 7.5 cm, and for the truss with braces at an  
inclination of 45° the horizontal displacement is over 13 cm, even for braces of greater 
stiffness. An increase of the bracing stiffness does not cause a significant decrease of the 
displacements.  

0 0.2 0.4 0.6 0.8 1 1.2

α = kL0/Pcr0

1.4

1.5

1.6

1.7

1.8

1.9

2.0

μ 
(φ

=
00 ,

15
0 ,

30
0 ,

45
0 )

φ=00

φ=150

φ=300

φ=450

L0 = 4.46 m
Pcr0 = 19292 kN

 

Fig. 6.23. The out-of-plane truss top chord effective length factor μ vs. bracing stiffness parameter α 
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Fig. 6.24. The out-of-plane truss top chord effective length factor μ vs. angle of braces inclination  
for a different stiffness of braces 

In order to reduce these displacement an additional bracing at a different angle should be 
applied. For other supports angles the load carrying condition is fulfilled at displacements 
in the out-of-plane direction smaller than 3.5 cm. This condition is also fulfilled for bilinear 
support characteristics (Fig. 6.16). This type of bracing allows the truss binders to bend in 
the vertical plane and to cooperate in bearing the load of the roof. Then the bracing stiffness 
increases and stabilises the truss binder against the out-of- plane truss buckling.  
In the case under consideration the elastic limit forces for truss with braces located at an  
inclination lower than 30° are greater compared with the plastic resistance of the truss top 
chord which is Npl = 2968.8 kN. From the non-linear analysis one can draw a conclusion 
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that the truss is dimensioned correctly. The normal forces at the limit state for different  
angles and stiffnesses of bracing are presented in Fig. 6.26. The limit force increases with 
the rise of the side-support stiffness, and decreases with an increase of the angle of the side-
support measured from the horizontal plane. The significant decrease of the truss limit load 
in relation to the buckling load has been noted.  
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Fig. 6.25. Normal force in compressed chord due to the out-of-plane displacement  
for different stiffnesses and angles of side-supports 
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Fig. 6.26. Comparison of the truss top chord normal force at the limit state vs. bracing stiffness  
parameter α for different bracing inclinations  

The reaction in braces was also analysed. The relative side-support reaction due to the 
truss top chord normal force for different slopes and stiffnesses of bracing is presented in 
Figs 6.27–6.29. An assumption has been made that the compression force in the truss top 
chord is a reference value. In all of the examined trusses the non-linear relationship  
between the reaction in the brace and the compressed force in the truss top chord has been 
obtained. The side-support reaction is less than 2.0% of the compressed force in the chord. 
For the designers it is important to know the forces in bracing corresponding to the design 
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load level. These forces are less than 0.43% of the corresponding normal forces in the truss 
top chord (Table 6.1).  
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Fig. 6.27. Relative brace reaction vs. normal force in truss top chord for bracing stiffness 
k = 500 kN/m and a different support angle, and for non-linear support characteristics 
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Fig. 6.28. Relative brace reaction vs. normal force in truss top chord for bracing stiffness 
k = 1000 kN/m and a different support angle 

The numerical results of the non-linear static and stability analysis of the truss with 
sloping elastic braces have shown that: 
⎯ The effective length factor of the truss top chord for all stiffnesses and angles of braces 

is greater than spacing of the braces. 
⎯ The spatial  stability of the truss sized according to code PN (1990) is provided even for 

effective buckling length of truss chord greater than the braces spacing. 
⎯ The relation between the reaction in braces and the normal force in the compressed truss 

chord is non-linear. For a force level corresponding to the design load of the truss the 
reaction in braces is more that two times lower than the one described by code  
PN-90/B-03200 (1990), but for larger forces the reaction rises up to 2% of the normal 
force in a compressed chord. 
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⎯ The side supports reaction increases with the rise of supports inclination measured from 
the horizontal plane. In this case the side-supports participates in bearing of the truss 
vertical load instead of stiffening the truss binder. 

⎯ The implementation of non-linear side supports of the truss binder ensures the  partici-
pation of the roof load to be taken over by the binder and to provide spatial stability. 

⎯ The threshold stiffness of bracing depends on the bracing angle and increases with gre-
ater angles of braces inclination. 
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Fig. 6.29. Relative brace reaction vs. normal force in truss top chord for bracing stiffness 
k = 1500 kN/m and a different support angle 

Table 6.1 

The reaction in brace (at distance x = 11.62 m from the right support) related to the truss top chord 
normal force corresponding to the design load level for different brace stiffnesses 

k [kN/m] α 
F0/N0 [%]  
(φ = 45±) 

F0/N0 [%]  
(φ = 30±) 

F0/N0 [%]  
(φ = 15±) 

F0/N0 [%]  
(φ = 0±) 

0500 0.116 –0.376 –0.205 –0.105 –0.017 

1000 0.231 –0.382 –0.224 –0.114 –0.013 

1500 0.347 –0.434 –0.269 –0.135 –0.009 

6.3. Truss with lateral and torsional braces 

In the present section the lateral buckling of truss with lateral and torsional braces is 
analysed. The lateral braces such as purlins, corrugated decking, wall rails or bridging ele-
ments are side-supports of trusses. These elements, apart from bearing the vertical load, are 
part of the bracing system, which stabilises the roof trusses against distortional buckling. 
The above mentioned elements can be modelled as linear, and depending on stiffness of 
connections, as rotational elastic springs. The rotational elastic springs are responsible for 
the interaction between the purlins bending and the truss torsion, and therefore are called 
torsional braces. The linear springs model the horizontal truss bracing. 

The worked example includes:  
⎯ an analysis of the limit and buckling loads of a truss due to the stiffness of the above  

described braces, 
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⎯ the brace reaction in relation to the force in the truss compressed chord and the effective 
buckling length related to the distance of braces, 

⎯ the stability and non-linear static analysis of the 3D truss model compared with 
a similar analysis of the truss top chord model, resting on diagonals and verticals that 
are assumed to be vertical supports, and on the braces that are side-supports and rotatio-
nal supports, 

⎯ the results of the stability analysis of the described above models are compared with  
similar results of the Winter-type model of the truss top chord with fictitious hinges  
being introduced at braces connections . 

The described in this section parametrical analysis of a truss braced by lateral and torsional 
braces is a continuation of some previously published studies by Iwicki (2008b). In the  
present research some new aspects have been added. The 3D truss stability analysis is com-
pared with the Winter-type model of the truss chord. Relations between the buckling and 
limit loads and the bracing stiffness are determined. In the present analysis the effective 
length factor is set with better accuracy especially for bracing of higher stiffnesses. This is 
due to some more precise discrete models (see comments in Section 6.1). The average reac-
tion in lateral and torsional braces is found.   

6.3.1. Torsional brace  

The deformation of truss is interrelated with deformations of purlins, wall rails or 
bridging elements, resting on the truss. On the assumption that connectors between those 
elements and the truss are stiff enough and are able to carry arising forces the rotation of 
purlins is interrelated with torsion of truss as presented in Fig. 6.30. Then the stiffness  
of torsional brace of the truss can be estimated as 2EJbr/Lbr for symmetrical deformation of 
one bay purlin or as 6EJbr/Lbr in the case of a middle support of two spans simply supported 
purlin 

 0 2 6
 = br br

br br

M
k

EJ EJ

L LΘ = ÷
Θ

 (6.2) 

 

Fig. 6.30. Truss-purlin system 

6.3.2. Description of the model 

In the present parametric study the roof truss illustrated in Fig. 6.31 is considered. The 
height of the truss in the middle is 1.61 m, and 0.9 m near the supports. The compression 
chord consists of 2L 90×90×9, the tension chord is made of 2L 80×80×8 rolled profiles. 



6.3. Truss with lateral and torsional braces 129 

Two compression diagonals near the supports are made of 2L 65×65×7 rolled profiles. 
Other diagonals are built of U65 profiles. The truss is made of steel fd  = 305 MPa. The con-
nections between the truss chord, the diagonal, and the vertical elements are rigid, so the 
bottom chord, the diagonals and the verticals interact together with the truss top chord and 
partially restrain the top chord against the out-of-plane buckling. The truss is simply sup-
ported with additional torsional restraints that prevent the truss against twisting at the  
supports. It is assumed that the load is applied as 9 concentrated forces of 25 kN at the top 
chord joints, and its magnitude represents the dead load and the snow load acting on the 
roof structure. The top chord is braced at joints by lateral and rotational braces spaced 
2.4m. The built-up top chord section is battened every 0.6 m to avoid buckling of individual 
members. The batten consists of U 65 profile and is located between profiles of the truss 
top chord. The compression chord of the truss is sized according to code PN-90/B-03200 
(1990) on the assumption that the out-of-plane buckling length is 2.4 m.  

 

Fig. 6.31. Truss with lateral and torsional braces 

The maximal allowed design value of the axial force in the chord is 700 kN, while the 
normal load corresponding to the design load is 482.9 kN. The out-of-plane truss chord 
buckling force is 4465.41 kN at a buckling length of 2.4 m, while the buckling force of the 
top chord in the truss plane is 3259.71 kN at a buckling length of 1.2 m. The stability and 
geometrically non-linear static analysis of the 3D truss model was carried out by means of 
the ROBOT STRUCTURAL ANALYSIS PROFESSIONAL (2010) program. Spatial beam 
elements with six degrees of freedom at each node were used to model the truss, and the 
linear rotational springs were employed to construct a model of the braces.  

As in the numerical truss model the braces are assumed to be linear elastic springs, the 
stiffness of the springs is needed. The range of the brace stiffness has been approximated 
according to codes PN-90/B-03200 (1990) and EC3(1992) as a relation between the force 
acting on the brace and the limited brace displacement (see Section 2 and Table 6.2). 
The approximation is determined for the model of a column with only one brace but with 
changed displacement δq (EC3) and for a different brace – support distance L0 in the case of 
PN-90/B-03200 (1990). The approximation is a rough estimation of the brace stiffness 
rather than an exact determination of that stiffness and, in fact, this stiffness is needed only 
as a starting point for the parametrical analysis of the truss with bracing. According to code 
PN (1990) the linear supports stiffness may vary from 117 to 583 kN/m depending on the 
assumed distance between the braces. According to Eurocode 3 (2005) the side-support 
stiffness ranges between 205 and 705 kN/m depending on the displacements of bracing 
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caused by the stabilising load. An equivalent stabilising force that the bracing should resist 
is according to Eurocode 3(2005) about 0.2–0.4% of the maximal design normal force in 
the truss top chord, and 1% of that force according to PN-90/B-03200 (1990). It is assumed 
that the stiffness of torsional braces is 20 kNm/deg (1145 kNm/rad). This stiffness has been 
estimated on the assumption that the purlin is a continuous beam with a 6 m long span, de-
signed for a standard roof loading and that the connections between the purlin and the 
trusses are rigid. A case without lateral braces, and only with torsional braces of stiffness 5, 
10, 50, 100 kNm/deg is also considered. The results of the 3D truss nonlinear analysis are 
compared with the stability analysis of an isolated truss top chord resting on vertical sup-
ports placed at diagonals and verticals and the side-supports at braces. (Fig. 6.32). The plas-
tic resistance to normal force of the compressed truss chord is 945 kN. 

Table 6.2 

Approximation of lateral and torsional brace stiffness according to codes PN-90/B-03200 (1990)  
and Eurocode 3 (1992) (Eq.(2.3)) 

N = 700kN Eurocode 3 

δq [m]  α q [kN/m] 
q

Lq
k

δ
2/×=  [kN/m] 

0.010 0.21 0.59 705 

0.015 0.31 0.64 510 

0.020 0.42 0.69 413 

0.025 0.52 0.74 355 

0.030 0.63 0.79 316 

0.035 0.73 0.84 288 

0.040 0.83 0.89 267 

0.045 0.94 0.94 251 

0.050 1.04 0.99 238 

0.055 1.15 1.04 228 

0.060 1.25 1.09 219 

0.065 1.35 1.14 211 

0.070 1.46 1.20 205 

 
 

PN-90/B-03200 [kN/m] 

L0 L0 /200 
200/

01.0

0L

N
k

×=  [kN/m] 

2.4 0.012 583 
4.8 0.024 292 
7.2 0.036 194 
9.6 0.048 146 

12.0 0.060 117 
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Fig. 6.32. Truss chord with linear and rotational elastic side- supports 

Next the top truss chord is analysed according to the Winter (1958) method. Some  
fictitious hinges at the brace joints were introduced and the compression force was assumed 
to be constant along the chord. The diagonals were used to be vertical supports of the chord 
and the diagonals and the tension chord were assumed to have no influence on the stabiliza-
tion of the compressed chord against the out-of-plane truss buckling (Fig. 6.33). The truss 
in this model was regarded as horizontal. 

 

Fig. 6.33. The Winter fictitious hinge model for the truss chord with bracing 

The non-linear large displacement analysis of truss was carried out using the program 
ROBOT STRUCTURAL ANALYSIS PROFESSIONAL (2010). The limit load of truss is 
found in the non-linear static analysis by means of the load control method. Both the mag-
nitude and the shape of the initial imperfection affect the limit load of truss. It was assumed 
that the top and the bottom truss chord were bent in the out-of-plane truss direction, and the 
maximal horizontal imperfection was L/500 (v0 = 4.8 cm). The shape of imperfection is 
a poly-line with nodes located on a parabola that has opposite values in the top and the  
bottom truss chord.   

6.3.3. Results of numerical simulations 

For different stiffnesses of the side-supports a non-linear relation between the normal 
force in the compressed chord due to the out-of- plane truss displacement has been obtained 
(Fig. 6.34). The limit normal force increases with an increase of the bracing stiffness. For 
all the considered stiffnesses of the lateral braces, except 50 kN/m, the limit normal force of 
the truss chord is greater than the design value of the normal force. Comparing the truss 
with the lateral and torsional braces and the truss only with the lateral braces one can draw 
a conclusion that additional torsional braces are responsible for an approximate 77%  
increase of the limit normal force for supports of stiffness 50 kN/m, and about 20% for sup-
ports of stiffness 1000 kN/m. The braces of a sufficient stiffness should also reduce the  
out-of-plane displacements at the serviceability limit state. For braces of the stiffness 
amounting to 100 kN/m the out-of-plane displacements corresponding to the design value 
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of the normal force are less than L/200. For supports of a higher stiffness the displacements 
are less than L/1000. In the case of the lateral braces of stiffness 100 kN/m and the rota-
tional stiffness of 20 kNm/deg the out-of-plane displacements for a design value of normal 
force are less than L/700.  
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Fig. 6.34. Normal force in the compressed chord of truss due  to the out-of-plane displacement  
for different stiffnesses of braces  

The truss deformation corresponding to the limit state is presented in Fig. 6.35. For  
lateral braces of stiffnesses up to about 340 kN/m there are three half-waves and for higher 
brace stiffnesses there appear five half-waves in the deformation of the truss top chord. It is 
worth noting that for braces of stiffnesses greater than 340 kN/m the displacements of the 
bottom chord are greater than the ones in the top chord. Therefore instead of an additional 
increase of braces stiffness in the top chord a localization of braces in the bottom chord 
could be considered.  

       
 30 < k < 340  k > 340 

Fig. 6.35. Horizontal projection of the truss deformation corresponding to limit load 

The Winter model of the truss top chord consists of a column side-supported by braces 
in fictitious hinges at the brace joints. As a consequence of location of the fictitious hinges 
in the chord the significance of braces increases and therefore the buckling load calculated 
in the Winter-type model is expected to be a safe lower limit of the truss buckling load.  
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The relation between the bracing stiffness and the buckling load according to the Winter 
model can be presented as a poly-line that is a lower bound of construction lines. These 
construction lines are obtained as lines between the starting points that describe the critical 
force at zero brace stiffness for the column without fictitious hinges and the end-points that 
are described by the bracing stiffness when the maximal buckling load is reached for the 
Winter model (see section 2). Such construction lines are found for the first nine buckling 
modes because it has been found that only the first nine buckling modes indicate displace-
ments at the bracing joints. For that reason only the first nine critical buckling loads are 
sensitive to the changes of the bracing stiffness. All lines are related to the buckling load of 
the column length equal to brace spacing Pcr0 = 4465 kN (Fig. 6.36).  
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Fig. 6.36. Relation between the relative critical force and the coefficient  
of the required bracing stiffness for the Winter model 
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Fig. 6.37. Relation between the relative critical force and the coefficient of bracing stiffness  
for the Winter model, the truss chord and the 3D truss 

The relation between the buckling load and the bracing stiffness found by means of the 
Winter model is compared with the results calculated for the 3D truss model with lateral 
and torsional braces, and with the model of the truss chord separated from the whole struc-
ture (Fig. 6.37). This relation obtained for the Winter model is also compared with the rela-
tion between the limit normal force in the compressed chord and the bracing stiffness 
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(Fig. 6.38). The Winter model of the truss compressed chord used to determine the relation 
between the buckling load and the bracing stiffness does not provide a safe result for the 
whole range of the bracing stiffnesses. In the case of an isolated truss chord with rotational 
and linear supports the Winter model gives a safe result for coefficient α lower than 1.5.  
In the case of the 3D truss analysis the Winter model is secure only for bracing stiffnesses 
up to about α < 0.6. The buckling loads found for the truss top chord model (Fig. 6.32) with 
only lateral braces (k) are lower than for similar Winter type model (for the same bracing 
sfiffness). It may be caused by the difference in the normal force distribution (in Winter 
model  N = const, in the truss top chord model N is variable along the length). 
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Fig. 6.38. Relation between the relative critical force and the coefficient  
of the bracing stiffness for the Winter model and a 3D truss 
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Fig. 6.39. Normal force in the truss top chord vs. the out-of-plane displacement  
for different stiffnesses of torsional braces 

In this case of the truss only with the torsional braces the limit normal force is between 
40% and 60% of the design value of a normal force (Fig. 6.39). It is worth noting that there 
is no significant difference between the force-displacement relation for torsional stiffness 
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braces 50 kNm/deg and 100 kNm/deg and that the difference in the limit truss load with 
torsional braces of stiffness 5 and 10 kNm/deg is about 15%. 

The effective buckling length of the truss chord is also analysed. The normal forces, 
corresponding to the buckling loads, for the models without imperfections made it possible 
to calculate the effective buckling length of the truss top chord (Eq. (3.46)). The buckling 
length factor is presented in (Fig. 6.40). 
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Fig. 6.40. Buckling length factor μ vs. bracing stiffness parameter for the 3D truss,  
the truss chord and for the Winter model 

For all the bracing stiffnesses the buckling length factor is greater than one, that is 
a value of the buckling length factor described in the codes. In the case of an isolated truss 
chord or the 3D truss model only with the lateral braces, the buckling length factor is 
greater than the calculated one according to the Winter model. Even for rigid side bracing 
the buckling length factor of the truss chord for an isolated truss chord model is 1.14. An 
additional increase of the stiffness of braces does not cause a rise of the buckling load for 
the reason that the chord buckles in the truss plane. 

The reactions in braces were also under consideration. The reactions, in the brace  
located in the middle of the truss, related to normal force in the truss compressed chord for 
different side-support stiffnesses are presented in Fig. 6.41. In all the examined braces stiff-
nesses a non-linear relationship between the reaction in braces and the compression force in 
the upper chord was obtained. The reaction in braces in the middle of the truss ranged  
between 0,11% and 1,54% of the design value of the normal force in the chord depending 
on the stiffness of support. 

In other lateral braces the relation between the brace reaction and the normal force in 
the truss is different than in the middle of the truss, because this reaction corresponds to the  
deformation of the top chord of the truss. From a practical point of view it is therefore im-
portant to know the average force in braces. That force in relation to an actual normal force 
in the truss chord at each lateral brace due to the bracing stiffness parameter is presented in 
Fig. 6.42. As there are discontinuities in the truss top chord normal forces, the reaction in 
the braces are related to the higher normal force magnitude (a) or to mean magnitude of the 
chord normal forces at the brace joints (b). The average force in bracing is lower than 0.4% 
of the normal force in the truss chord, and even less than 0.18% for the support of stiffness 
described by α > 0.2 (k > 370kN/m). The average force in the lateral braces was calculated 
for the design load level of the truss. 
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Fig. 6.41. Relative reaction in the middle of the truss top chord brace due to normal force 
 in the chord for different brace stiffnesses 
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Fig. 6.42. Relative average reaction in lateral braces vs. bracing stiffness parameter  
for the design load level  

The relation between the moment in the torsional brace in the middle of the truss and 
the normal force in the compressed chord is also nonlinear (Fig. 6.43). For allowable design 
valuees of the truss load the moment in the torsional brace is between 0.2–1.96 kNm, only 
for a lateral brace of stiffness 50 kN/m the moment magnitude is higher and is equal to 
4.16 kNm. For a higher load level the moment rises up to 10–20 kNm, but then the normal 
force in the compressed chord is greater than the plastic resistance of the chord. Since the 
moment in the torsional braces depends on the torsion of the truss top chord, this relation is 
different for different braces. 
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Fig. 6.43. Moment in the torsional brace in the middle of the truss top chord vs. normal force  
in compressed chord for different brace stiffnesses 

Therefore the relation between the average moment in bracing related to the design moment 
of purlins, due to the coefficient of bracing stiffness was calculated (Fig. 6.44). The magni-
tude of the moment in a 6m long purlin caused by a typical dead load and snow load acting 
on the roof structure is about M0 = 18.75 kNm. The relation presented in Fig. 6.44 was  
calculated for the design load level. It can be concluded that the moment in torsional braces 
is less than 2.8% of design moment of purlin and a connection should be designed to resist 
that moment. One can also conclude that it is possible to consider the purlins to be the  
torsional braces of the truss on condition that the connectors between the purlins and the 
truss are designed to carry an arising moment. 
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Fig. 6.44. Relative average moment in torsional brace due to bracing stiffness parameter  
for the design load level 

The boundary condition concerning the torsional restraints at the supports has also 
been verified. In order to verify the assumption that the bolts at the supports can be  
regarded as a torsional restraint, the support reaction obtained for the design load level was 
calculated (Fig. 6.45). The level of that moment made it possible to conclude that the  
assumed restraint was correct. 
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Fig. 6.45. Average reaction in the truss supports due to coefficient of bracing stiffness  
for the design load level 

The results of the conducted analysis of the truss with lateral and torsional braces have 
proved that: 
⎯ The limit load of truss increases with an increase of the brace stiffness.  
⎯ The simplified Winter model of the truss top chord used to determine the required bra-

cing stiffness for an assumed buckling load does not guarantee that a safe lower limit of 
bracing stiffnesses for the whole range of buckling load can be obtained.   

⎯ The difference between the Winter model and other analysed models is greater for  
larger bracing stiffnesses. The difference in buckling loads found using the Winter  
model and the 3D truss models may be explained in terms of diagonals buckling at 
a certain bracing stiffness. This means that at some (threshold) bracing stiffness the 
buckling of most loaded diagonals occurs and a further increase of the bracing stiffness 
does not cause a rise in the truss buckling load. All elements of the truss are interrelated 
and therefore it is not possible to take into account only the positive effect of such mem-
bers, as diagonals and verticals in reduction of the effective buckling length of the truss 
chord, and to neglect the risk of buckling of those members. 

⎯ The buckling length of the truss top chord is greater than the distance of the braces. So 
code requirements are not precise and in fact predict higher buckling loads in compres-
sed chords than the ones obtained by calculations.  

⎯ Buckling length factor calculated for the truss chord modelled as an isolated member resting 
on elastic braces is higher than those found in the 3D truss model up to α < 1.1, then for 
α > 1.1 the buckling length factor for an isolated truss model is lower than for the 3D one.  

⎯ A reduction of the buckling length in the 3D truss analysis (for α < 1.1) results from 
a positive influence of verticals, diagonals and the tension chord in stiffening the com-
pressed chord of the truss. The relation between the brace reaction and the normal force 
in the compressed chord is non-linear.  

⎯ In the examined truss example with both lateral and torsional braces the limit normal 
force in the truss chord is 20–70% greater than in the case without rotational springs.  

⎯ The average lateral brace reaction corresponding to the design load of the truss is about 
two times lower than described by code PN-90/B-03200 (1990) and is comparable with 
the brace reaction described by Eurocode 3 (1992).  

⎯ The moment in the rotational supports is lower than 2.5% of the bending design  
moment of purlins, caused be typical gravity loads, so it is possible to consider purlins 
as the rotational supports of the truss.  
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6.4. Truss with braces placed in top and bottom chord 

The next example is devoted to a study of the out-of-plane buckling of truss purlins 
under upward wind load. The purlin is supported by linear elastic braces located in the top 
and bottom truss chords. The stability of the bottom chord is considered. The critical load 
of the truss purlin for different bracing stiffnesses is calculated. It is assumed that the  
stiffness in the top and bottom chord may vary. In a real structure these stiffnesses are inter-
related because the bottom truss chord stiffness is usually connected to the roof plane.  
A geometrically non-linear static analysis and a stability analysis of the 3D truss model are 
carried out. The reaction in the bottom chord brace in function of force in the compressed 
chord and the buckling length are calculated. In light weight constructions the influence of 
upward wind loading may be quite significant and may cause compression in the truss 
purlin bottom chord. However, the truss bottom chord is, in general, not designed for such 
loading and therefore is not always stabilized by bracing. The force needed to stabilize the 
bottom truss chord is not anticipated in codes either. There is no information about 
a required bracing stiffness. An effective buckling length of the bottom truss chord when 
the chord is not horizontal, as in the worked example given below, is not predicted in codes 
either. All of above mentioned problems cause difficulties in the design. An observed fail-
ure of truss purlins under wind load presented in Fig. 6.46 confirms that the problem exists 
(Hotała et al. 2007). The truss under consideration is exactly the same as the one described 
first by Hotała et al. (2007) where a damage under upward wind loading is reported. The 
non-linear static and linear stability analysis of the truss was also performed by Iwicki 
(2008c).  

 

Fig. 6.46. Failure of truss purlins caused by wind load  
(Hotała et al. 2007) 
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6.4.1. Description of the model 

In the present parametric study a roof truss purlin shown in Fig. 6.46 and in Fig. 6.47 
is considered. The height of the truss is 0.8 m. The top truss chord consists of C120, and the 
bottom chord is made of C65. Two diagonals (or bottom chord elements) near the supports 
are made of 2L 50×50×6 profiles. The built-up section is battened  by means of three  
battens. The diagonals near the supports are made of L 50×50×6 profiles, and other diago-
nals are of L 45×45×5. In the numerical model the connections between the truss elements 
are rigid. It is assumed that the loads are applied as concentrated forces in the truss top 
chord joints. The top chord is laterally braced in joints by lateral braces of stiffness between 
0-50 kN/m. The case with rigid side braces and the truss with bracing located in the bottom 
chord are also considered. In the 3D model of truss, rotational supports that prevent torsion 
of the truss at supports are implemented.  

Two models of the truss were analysed. In the first model (I) the built-up section of the 
bottom truss chord is modelled as a member of cross-section of 2L 50×50×6, so in this 
model a member may be considered to be battened along its length. In the second model 
(II) the member is modelled as two parallel members of sections 50×50×6 without battens. 
In the geometrically non-linear analysis, imperfections in the form of horizontal forces  
located in the truss joints (W1) in the direction perpendicular to the truss plane are  
assumed. In order to find a lower limit load the imperfection forces equal to 0.03 kN are 
symmetrical or asymmetrical depending on the stiffness of brace in the middle of the  
bottom chord. For a lower stiffness of bracing the imperfection is symmetrical and for  
a higher bracing stiffness (greater than 30 kN/m), the imperfection is asymmetrical. In the 
discrete numerical model used for the truss stability analysis the truss elements (between 
joints) are divided into four finite elements in order to improve the precision of the results. 

 

 

Fig. 6.47. Truss purlin (Hotała et al. 2007) 
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6.4.2. Results of numerical simulations  

The buckling load and appropriate normal  forces for the perfect model of the truss 
purlin are calculated. The numerical analysis is conducted by means of program ROBOT 
STRUCTURAL ANALYSIS PROFESSIONAL (2010). The truss buckling load increases 
with a rise in the bracing stiffness. The relative normal force in the truss bottom chord, cor-
responding to the buckling load, due to bracing stiffness parameter α is presented in Fig. 
6.48 for model I and in Fig. 6.49 for model II. The critical force for the simply supported 
member of length L0 = 6 m, and the same cross-section as in the truss purlin bottom chord, 
was assumed to be the reference force. 
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Fig. 6.48. Relative normal force in the truss bottom chord, corresponding  
to the buckling load vs. brace stiffness parameter α (model I) 
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Fig. 6.49. Relative normal force in the truss bottom chord, corresponding  
to the buckling load vs. brace stiffness parameter α (model II) 

As a result of the geometrically non-linear analysis of the truss-purlin model I, 
a relation between the normal force in the chord and the out-of-plane displacement in the 
middle of the truss bottom chord and in joint W1 was computed (Figs 6.50, 6.51). In the 
non-linear static analysis an equal stiffness of lower and upper truss chords was assumed.  
It was observed that for a bracing stiffness larger than 20 kN/m (α ≅ 3.7) the displacement 
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in the out-of-plane truss direction in the middle of the lower truss chord for model I is 
blockaded.  

The results of the non-linear analysis of model II are presented in Fig. 6.52. The limit 
forces obtained for model II are 8–15% lower than in model I. In the second model of the 
truss chord the relation between the normal force and the out-of-plane truss displacement 
reaches a maximum followed by normal force decrease. The relations in the members of 
a built-up cross-section are different. This may be interpreted as a local buckling of the 
built-up section. The design value of the normal force in the bottom truss chord is equal to 
21.6 kN in the middle of the chord and 13.5 kN close to the supports (in the built-up  
section) (Hotala et al. 2007).  
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Fig. 6.50. Normal force in the middle of bottom chord of the truss vs. the out-of-plane truss  
displacement v for different stiffnesses of braces (equal for the truss bottom and the top chord) 
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Fig. 6.51. Normal force in the built-up section of bottom truss chord vs. the out-of-plane truss  
displacement v1 at W1 for different braces stiffnesses (equal in the truss top and the bottom chord) 

The limit forces calculated in the non-linear analysis are greater than the design normal 
forces and lower than the plastic resistance of the cross-section that is equal to 194 kN in 
the middle and 245 kN in the built-up section (fy = 215 MPa), which indicates that in the 
analysed example the truss chord is elastic.  
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The buckling length of the compressed chord is calculated (Fig. 6.53). In the case of 
build up section the buckling length is 8.8–12.70 m and for the truss bottom chord 3.07–4.4 
m. The buckling length is greater than the distance between the support and the brace  
located in the middle of the truss bottom chord. 

The reaction in bracing was also under consideration. The reaction in bracing related 
to normal force in the chord due to the bracing stiffness is presented in Fig. 6.54. In the 
analysed range of stiffness of bracing the nonlinear relation between the reaction in bracing 
and the normal force in the truss chord has been obtained. The reaction in bracing corre-
sponding to the design load was about 0.25% of the normal force in the chord. 
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Fig. 6.52. Normal force in both members of built-up section (model II) of bottom truss chord vs. the 
out-of-plane truss displacement v1 at W1 for different braces stiffnesses  

(equal in top and bottom chord)  
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Fig. 6.53. Comparison of  buckling length of truss bottom chord vs. stiffness of braces  
(equal in top and bottom chord)  

The results of the conducted studies were used for the verification of code PN (1990) 
requirements of the load-bearing coefficient of the built-up lower chord section (Table 6.3). 
The  critical forces calculated for truss model II were used to calculate the effective length 
of the built-up section of truss chord l1. Then the load-bearing coefficient of the built-up 
member was calculated. The results are different from the calculations carried out by  

a       b 
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Hotała et al. (2007). This is due to the fact that the assumed buckling lengths of the truss 
compressed members of the above mentioned research were not confirmed by the present 
stability analysis. The present results are also different from the earlier research conducted 
by the author (Iwicki 2008), this is because of some differences in the discrete model of the 
truss mentioned earlier (section 6.1). The present results are obtained for a model with 
a larger number of elements (4 elements for member between truss joints). It should be 
noted that in the earlier results, the buckling length (l1) of  the members of the built-up 
cross-section was estimated by the use of a non-linear analysis for imperfect truss, whereas 
in the present research the buckling length is determined for a “perfect” structure. In the 
previous research a larger buckling length was estimated. In the analysed truss with bracing 
of stiffness greater than 10 kN/m the load-bearing condition is fulfilled. A failure of the 
truss purlin that was observed cannot be explained by means of PN-90/B-03200 (1990) 
procedure. It is also possible that the failure occurred because of an extremely high wind 
load not predicted by codes. 
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Fig. 6.54. Relative reaction in bottom chord brace vs. normal force in bottom chord  
for different braces stiffnesses (equal in top and bottom chord) 

Table 6.3 

Load bearing condition of lower truss chord according PN-90/B-03200 (1990)  

Research N [kN] ly [cm] l1 [cm] 
Load bearing  

coefficient 

Hotała et al. (2007) 13.5 197 197 0.35 
Hotała et al. (2007) 13.5 617 617 3.36 

Present research, ktop = kbottom [kN/m] 

0 13.5 1272 197*) 0.98 
0 13.5 1272 249 1.27 

10 13.5 1007 206 0.85 
20 13.5 916 193 0.73 
30 13.5 886 185 0.68 
50 13.5 881 176 0.64 

*) assumed buckling length of a member of build up section 
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The results of the numerical studies conducted for truss purlin with linear elastic brac-
ing located in bottom and top truss chords allow us to draw the following conclusions: 
⎯ The threshold full bracing condition of the bottom truss chord in the case of the upward 

loading was determined. 
⎯ The buckling length of the bottom truss chord is greater than the bracing distance (for 

C65 profile) and the buckling length of an individual member of a built-up section is 
greater than the member length (for some of the assumed brace stiffnesses). 

⎯ Application of design code procedure does not explain the observed failure of the truss 
because for all of the analysed bracing stiffnesses aside from the case of truss without 
bracing load-bearing condition is fulfilled. The code procedure is not precise. 

⎯ It is also possible that codes describing the wind load predict too small loadings. 
⎯ The reaction in bracing corresponding to the design load was about 0.25% of the normal 

force in the chord. 
 

6.5. Sensitivity analysis of buckling load of truss with braces 

The present section is devoted to the sensitivity analysis of buckling load of trusses. 
The method of the sensitivity analysis developed by Haug, Choi, and Komkov (1986), 
Dems and Mróz (1983), Haftka and Mróz (1986) or Szefer (1983) enables us to obtain the 
influence lines of the buckling load variation due to a unit change in the bracing stiffness.  
It allows us to determine parts of the truss where a possible application of a new brace may 
result in the largest variation of the buckling load. Such influence lines of the buckling load 
variation due to the unit change of the brace stiffness for different initial brace stiffnesses 
are found. Owing to the influence lines an approximate buckling load due to the bracing 
stiffness variation can be calculated.  

An important conclusion that can be drawn from an earlier parametrical analysis of the 
“weakly braced” trusses conducted in some previous sections is that the effective buckling 
length of the truss top chord is greater than the one described by codes. Another conclusion 
to be drawn from the parametrical studies of truss stability is the possibility of defining the 
threshold condition of bracing necessary to obtain the maximal buckling load. This  condi-
tion should be described in the design codes in an applicable form. The present section is 
focused on the determination of a full bracing condition for a truss with elastic bracing. 
A case of lateral and torsional braces is considered. The basic problem under consideration 
is devoted to investigation of the required bracing stiffness which ensures that the out-of-
plane truss buckling occurs between braces, or is prevented, so that the buckling can take 
place in the truss plane. The full bracing condition may also be defined as bracing stiffness 
that causes a maximal buckling load of the truss, or when an increase in bracing stiffness 
does not cause a further rise of the buckling load. In the present section the sensitivity 
analysis method is used to determine the full bracing condition of the truss. The application 
of the sensitivity analysis and the analysis of a truss braced by lateral restraints described in 
this section was previously published by Iwicki (2010a). The same method was later used 
for an analysis of a truss braced only by torsional braces or by lateral and torsional braces.  

The results of the sensitivity analysis are compared with a parametrical study of the 
truss buckling load. For different stiffnesses of bracing, the critical load, and the effective 
buckling length of the truss chord are calculated and the threshold bracing stiffness is 
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found. In the case of lateral braces the results are also compared with an established solu-
tion presented by Trahair (1993) and Winter (1958).  

The proposed application of the sensitivity analysis may easily be applied to most 
commercial structural analysis programs, such as, ROBOT STRUCTURAL ANALYSIS 
PROFESSIONAL (2010). In order to calculate variations of critical forces due to linear 
bracing variations, a buckling mode normalized according to Eq. (3.39) is needed. The  
calculation of the critical forces first variation may be conducted by means of a commercial 
spreadsheet program EXCEL (2010). 

6.5.1. Truss with lateral braces  

In this parametric study, a roof truss shown in Fig. 6.55 is considered. The truss was 
previously analysed in section 6.3, where both the lateral and torsional braces were taken 
into account. Here only the truss with lateral braces is analysed. The geometry of the truss 
is described in section 6.3. In the analysis an assumption is made that the truss top chord is 
laterally braced at joints only by linear elastic side – supports spaced 2.4 m and the built-up 
top chord section is battened every 0.6 m to avoid buckling of individual members. This 
truss is torsionally relatively weak, because the only torsional restraint at the supports  
consists of two constructional bolts spaced 0.18 m that prevents the truss against twisting at 
the supports (Fig. 6.55). The out-of plane chord buckling force is 4465.41 kN at a buckling 
length of 2.4 m, while the buckling force of the chord in the truss plane is 3259.71 kN at 
a buckling length of 1.2 m. The stability analysis of the 3D truss model was carried out by 
means of ROBOT STRUCTURAL ANALYSIS PROFESSIONAL program. Spatial beam 
elements with six degrees of freedom at each node were used to model the truss, and the 
linear springs to model the side-supports. 

 

Fig. 6.55. Truss with lateral braces 

First variation of critical buckling load due to bracing stiffness variation 

The first critical buckling load variation due to the variation of the bracing stiffness 
was calculated using Eq. (3.42). In the analysis different initial bracing stiffnesses were 
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considered. The influence lines of the variation of the maximal normal force in the truss top 
chord, corresponding to the buckling load, due to the location of a new unit stiffness spring, 
in the upper and lower chord (Fig. 6.56) for several initial stiffnesses of bracing were 
found. Such influence lines for the truss without bracing are presented in Fig. 6.57. The  
influence lines for the truss with a bracing stiffness of 100 kN/m, 500 kN/m and 1000 kN/m,  
located as shown in Fig. 6.55, are presented in Figs 6.57–6.60. The above mentioned influ-
ence lines are related to the normal force in the top chord, corresponding to the buckling 
load, for each initial bracing stiffness. It is worth noting that the magnitude of the lines  
depends on the initial bracing stiffness. In the case of a truss without bracing (k = 0) the in-
fluence line has the maximal magnitude at  the midspan of the truss, so a new bracing at 
this point will be most effective in increasing the buckling load. For a truss with bracing 
stiffness k = 100 kN/m the optimum location of an additional single brace of unit stiffness 
moves away from the truss midspan. The most effective increment in the buckling load 
may be obtained if new braces are located at truss joints 7.2 m and 16.8 m measured from 
the left support.  

 

Fig. 6.56. Truss with additional braces of stiffness δk = 1 
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Fig. 6.57. The influence lines of the truss top chord relative normal force variation,  
corresponding to the buckling load, due to the location of a new unit stiffness brace (δk = 1 kN/m)  

for the unbraced truss 
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Fig. 6.58. The influence lines of the truss top chord relative normal force variation, corresponding  
to the buckling load, due to the location of a new unit stiffness brace (δk = 1 kN/m)  

for a truss with bracing stiffness k = 100 kN/m 
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Fig. 6.59. The influence lines of the truss top chord relative normal force variation, corresponding  
to the buckling load, due to the location of  a new unit stiffness brace (δk = 1 kN/m)  

for a truss with bracing  stiffness k = 500 kN/m 
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Fig. 6.60. The influence lines of the truss top chord relative normal force variation, corresponding  
to the buckling load, due to the location of a new unit stiffness brace (δk = 1 kN/m)  

for a truss with bracing stiffness k = 1000 kN/m  
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The difference in the shape of the influence lines is caused by changes in the buckling 
modes of the truss. When the bracing stiffness k = 100 kN/m, the truss chord will buckle 
into 2 half-waves of an antisymmetric shape. Since the influence line of the normal force 
variation, corresponding to the buckling load, due to the variation of the bracing stiffness is 
a square of the buckling mode function, the magnitude of the influence line at the midspan 
of the truss chord is zero. In the case of a higher support stiffness, e.g. 1000 kN/m (see Fig. 
6.60) the location of a new brace in the truss lower chord joints may result in a larger in-
crease in the buckling load than with a truss of lower bracing stiffness. 

Threshold bracing stiffness of the truss  

Sensitivity analysis is helpful in the determination of a full bracing condition that is 
defined as threshold bracing stiffness necessary to obtain the maximal buckling load of the 
truss. In the beginning the first variation of higher-order critical buckling loads for the truss 
without bracing due to the location of a new unit stiffness bracing has to be calculated. The 
influence lines of the truss top chord normal force variation, corresponding to higher-order 
critical loads, caused by the variation of braces stiffness are presented in Figs 6.61, 6.62. 
The lines are related to appropriate normal forces in the truss top chord, for an initial  
bracing stiffness.  
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Fig. 6.61. The influence lines of the first, second, and third truss top chord relative normal  
force variations, corresponding to the buckling load, due to the location of a new unit stiffness brace 

(δk = 1 kN/m) for an unbraced truss 

The purpose of the analysis was to find the lowest critical buckling load that was insensi-
tive to the bracing stiffness variation. It was found that the seventh critical force was not 
sensitive to an increase in the bracing stiffness. A parametric analysis of the relation  
between higher-order critical loads and the bracing stiffness confirms the results of the con-
ducted sensitivity analysis. The relationship between the truss top chord normal forces,  
corresponding to the first seven critical buckling loads and the bracing stiffness parameter 
is presented in Fig. 6.63. The critical buckling force for a simply-supported truss chord of 
a length equal to the braces distance is regarded as a reference value (Pcr0 = 4465.41 kN). 
The bracing stiffness parameter is given in the form of a non-dimensional coefficient  
defined according to the Winter paper (1958). For a low value of bracing stiffness the rela-
tionship between the normal force in the truss top chord, corresponding to the seventh  
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critical buckling load and the bracing stiffness, is constant. Therefore the seventh critical 
load in not sensitive to an increase of the bracing stiffness. At a certain level of the bracing 
stiffness, lower critical buckling loads become insensitive to the rise of the bracing  
stiffness. In the end, at the threshold bracing stiffness, the first buckling load becomes  
insensitive to the bracing stiffness variation. The magnitude of the bracing stiffness should 
be described as a design code requirement.  
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Fig. 6.62. The influence lines of the fourth-seventh truss top chord relative normal force variations, 
corresponding to the buckling load, due to the location of a new unit stiffness brace (δk = 1 kN/m)  

for a truss without bracing 
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Fig. 6.63. Relationship between the truss top chord normal forces, corresponding  
to the first seven critical buckling loads vs. bracing stiffness parameter α 

An interesting observation is, that a rise of the braces stiffness results in an increase in the 
first buckling load. However, the maximal first buckling load that may be reached is equal 
to that of the buckling loads of a higher order, for an initially unbraced truss, that is not sen-
sitive to the changes in the bracing stiffness. The level of the critical buckling load insensi-
tive to the bracing stiffness variations is constant. An advantage of the sensitivity analysis 
is that the maximal critical buckling load may be obtained from the sensitivity analysis of 
the truss with no bracing. The procedure for the determination of the full bracing condition 
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is illustrated in Fig. 6.64. In order to calculate the threshold bracing stiffness at the  
beginning of the analysis, the truss without bracing is considered. The first variation of the 
first few critical buckling loads should be calculated. Then, two results should be secured 
by the sensitivity analysis. The first piece of information concerns the buckling load that is 
insensitive to the change of the bracing stiffness. That load level is the maximal value of 
the first buckling load that may be reached due to an increase in the bracing stiffness. The 
second result is related to the first variation of the first buckling load due to a variation of 
the bracing stiffness. A linear approximation of the exact relationship between the buckling 
load and bracing stiffness k can then be found as belows 
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cr cr
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The first increment of the bracing stiffness can be calculated after assuming that the  
approximation of the buckling load is equal to the maximal buckling load (the critical buck-
ling load that is insensitive to the bracing stiffness variation). In the next approximation 
step the first variation of the first critical buckling load for an increased bracing stiffness 
has to be determined and a new increment of bracing stiffness may be calculated. 

Table 6.4  

Approximation of threshold bracing stiffness obtained by sensitivity analysis  
for the truss with 9 lateral braces 

Approximation 
number α k [kN/m] Pcr [kN] Pcr max δPcr [kN] δPcr/Pcr0 δk [kN/m] 

1 0.000 0.00 104.41 2420.65 28.395 0.272 81.57 

2 0.044 81.57 753.91 2420.65 4.056 0.039 410.89 

3 0.265 492.46 1664.23 2420.65 1.400 0.013 540.14 

4 0.555 1032.60 2287.25 2420.65 0.997 0.010 133.81 

5 0.627 1166.41 2417.70 2420.65 0.955 0.009 3.09 

6 0.629 1169.50 2420.64 2420.65 0.552 0.005 0.01 
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Fig. 6.64. Relative truss top chord normal force corresponding to the first critical buckling load vs. 
relative lateral bracing stiffness and its approximations constructed to find the threshold  

full bracing condition 
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The calculation should be repeated until the required accuracy is reached. In that way 
the threshold value of bracing stiffness for the full bracing condition is determined and  
presented in Table 6.4 and in Fig. 6.64. The calculation was conducted until the relative 
variation of the critical buckling force was less than 0.5%. The bracing stiffness parameter 
required for the full bracing condition is α = 0.629 (k = 1169.50 kN/m). 

Application of sensitivity influence lines  

Let us consider a truss with an initial bracing stiffness of 1000 kN/m. The influence 
lines of  the location of a new unit stiffness brace for the variation of the critical buckling 
load of the truss are presented in Fig. 6.60. As an example of the application of the influ-
ence lines let us assume two possible modifications to the truss bracing. In the first model 
(a) two additional braces are introduced in the lower truss chord, where the influence line 
has a relatively high magnitude. In the second model (b) the stiffness of the two braces  
located in the truss top chord with zero influence line magnitude is increased (Fig. 6.65). 
The additional braces stiffness increases. As a result, the relationship between the normal 
force in the truss top chord, corresponding to the first critical buckling load due to a larger 
bracing stiffness for the two models considered is found (Fig. 6.66). 

 

Fig. 6.65. Two alternatives of the truss bracing modification  
for initial bracing stiffness k = 1000 kN/m 
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Fig. 6.66. Relationship between the truss chord normal force, corresponding  
to the first critical buckling load, due to an increase of bracing stiffness for two alternatives  

of the truss bracing modification 
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It can be concluded that the same increase of bracing stiffness does not cause a rise in 
the buckling load in the case of model (b) but an increase in the critical buckling load of 
about 2% in model (a).  

Effective length of braced truss chord 

Although the present software allows us to model the whole roof structure and the 
bracing, some simplified diagrams or formulae for buckling length and equivalent stability 
force in the design of bracing are needed and are given in design codes. The truss top chord 
normal force, corresponding to the critical buckling load, makes it possible to determine the 
effective buckling length of the chord by Eq. (3.46). The effective buckling length related 
to the spacing of braces is presented in Fig. 6.67. The effective buckling length factor for 
a truss without bracing is 6.54 and in the case of a full bracing 1.36. The effective buckling 
length factor calculated for the 3D truss is greater than the one described in codes  
PN-90/B-03200 (1990) or Eurocode 3 (2005). The code requirements in fact give a greater 
critical force for the compressed chord than the one obtained by calculations for the ana-
lysed truss. Similar results were described by Iwicki (2006, 2007a, 2007b, 2007d, 2008a), 
where a non-linear static analysis was conducted.  
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Fig. 6.67. Buckling length related to brace distance vs. bracing stiffness parameter α 

Comparison of the results of the 3D braced truss analysis  
with the established solutions 

The threshold stiffness of the truss bracing is compared with the solution of the braced 
column presented by Trahair (1993). Trahair’s (1993) results are based on the Winter 
model (1958), that was extended by Yura (1996) to cases of bracing of stiffness smaller 
than the full bracing condition. In Winter’s paper the fictitious hinges were placed at the 
braced joints of the compressed column as shown in Fig. 6.33. The critical buckling force 
found for Winter’s column model is considered to be a safe, lower limit of buckling load 
for the assumed bracing stiffness. The compressed truss top chord is modelled as a column 
with vertical supports at diagonals and verticals, and is side-supported by braces. Some  
fictitious hinges at braced joints are introduced. In this model the truss diagonals, verticals 
and tension chord has no influence on the stabilization of the compressed chord against  the 
out-of-plane buckling of the truss. It should be noted that in this case the model of the truss 
chord is horizontal. In the Winter model both a constant distribution of the normal forces 
along the chord and the distribution of the normal forces, as in the 3D truss model, are  
considered. A comparison of the results of the 3D truss analysis and Winter’s fictitious 
hinge models of the truss chord are presented in Fig. 6.68 (see, also Iwicki 2009b) . 



6. Buckling of braced trusses 154 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

α = kL0/Pcr0
0.0

0.2

0.4

0.6

0.8

1.0

P
cr
 / 

P
cr

0

3D truss model

Winter model

Winter model variable N

Pcr0 = 4465.41 kN
L0 = 2.4m

 

Fig. 6.68. A comparison between the truss top chord normal forces, corresponding  
to the first critical buckling load with respect to the bracing stiffness parameter α  

for the 3D truss model and the two Winter’s models  

A similar analysis was conducted in section 6.3, but for a larger number of different braces 
and for a 3D truss, and the truss top chord model. For a low magnitude of bracing stiffness, 
the normal forces corresponding to the buckling load, obtained from the analysis of the 3D 
truss are about 10–15% higher than in the Winter model with constant normal force. This is 
caused by the variations of the normal forces in the truss top chord. The Winter model with 
variable normal forces gives almost the same result as in the 3D truss model. The restrain-
ing effect of the diagonals, verticals and the bottom truss chord is in this case not signifi-
cant. For a higher magnitude of bracing stiffness, the normal forces, corresponding to the 
buckling load of the 3D model are lower than the critical forces obtained by the Winter 
models. This is the effect of local buckling of compressed diagonals. The simplifications 
adopted in the Winter model of the truss chord for a larger bracing stiffness are responsible 
for an insecure result. 

Comparison of the stability analysis results of the truss modelled by 1D  
and 3D by shell elements 

The results obtained by the stability analysis of the truss modelled by beam-column 
elements with 6 degrees of freedom in node (ROBOT STRUCTURAL ANALYSIS 
PROFFESIONAL 2010) were compared to the similar analysis of the truss modeled by 
shell elements and program FEMAP with NX NASTRAN (2009). The 4-node shell ele-
ments  QUAD4 (with 6 degrees of freedom in node) were employed. In the truss modelled 
by beam-column elements the chords and two diagonals were assumed to be elements of 
built-up cross-section. This model does not take into account a possibility of local buckling 
of a single element of the built-up section. Therefore in the truss modelled by shell ele-
ments braces between the truss top chord profiles were introduced. Two models are ana-
lysed. In the first model (I) there are 16 braces along the truss top chord, in the model II 
there are 12 braces along the most compressed part of the chord. The braces are made of the 
same profile as the diagonals (U65 rolled profile). This approach was also used in real 
trusses. It was out of scope of the present analysis to investigate the influence of the braces 
length on the truss stability, but it should be stressed that those braces are important in the 
buckling resistance of the truss. It should be noted that in the dimensioning procedure  
according code PN(1990) such braces are also taken into account. The most loaded built-up 
compressed diagonals were unbraced. The above described models of the truss are pre-
sented in Fig. 6.69. The total amount of finite elements was 30 000. The minimum 3 shell 
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elements were used to describe the walls of the chord cross-sections and 2 elements on the 
walls of the U-diagonals cross-section. The element size on the U diagonals was about 
20×30mm. For the truss top chord, the elements size was about 30×30 mm2 (800 elements 
are taken along the chord length). A linear buckling analysis of the perfect truss is  
conducted. Connections between the truss elements are modeled by rigid links between the 
adjacent members. The relation between the buckling load, for the truss modeled by 1D and 
3D elements, and the stiffness of lateral braces is presented in Fig. 6.70. One can conclude 
that the stability analysis of the truss modeled by shell elements confirms the results of 
similar analysis of the truss modeled by beam-column elements.  

 

Fig. 6.69. A truss modeled by 3D shell elements  
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The difference between the buckling load for the truss modeled by shell and beam-column 
elements is 30–45% for the unbraced truss, 9–13% for k = 400kN/m and less than 1% at the 
threshold condition for full bracing of the truss (when the buckling load reaches maximal 
magnitude) (Fig. 6.71). The threshold bracing stiffness for full bracing condition found for 
the model I is the same as for the truss modelled by linear elements, but for the model II 
this condition is about 16% higher. The changes of buckled shape of the truss with the  
increase of the braces stiffness is also observed (Fig. 6.72). With the increase of the braces 
stiffness the buckled shape of the truss top chord increases from a one half-wave to five 
half-waves for k = 1000 kN/m. At the full bracing of the truss a local buckling of the most 
compressed diagonal made of U profile occurs. In the truss modelled by shell elements a 
more precise deformation of the truss has been obtained. The buckled shape of the truss 
confirms that at a threshold bracing stiffness local buckling of diagonal is interrelated with 
the deformation of the truss top chord Fig. 6.73. 
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Fig. 6.70. Relative truss top chord normal force corresponding to the first critical buckling load vs. 
relative lateral bracing stiffness for the truss modeled by beam-column and shell elements 
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Fig. 6.71. Relative difference between buckling load found  

for the truss modeled by 1D and 3D elements 
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Fig. 6.72. Buckling mode corresponding to the truss buckling load for different stiffnesses of braces 

Effect of the number of braces on threshold bracing stiffness 

A stability analysis of the truss with different locations of braces was also carried out. 
It was assumed that the truss was side-supported at 1–9 nodes of the compressed chord, 
therefore in some of analysed cases the spacing between braces is not constant along the 
truss top chord. The truss with a continuous distribution of braces is also considered. The 
relationship between the truss top chord normal force, corresponding to the first buckling 
load, due to the bracing stiffness for trusses with different brace locations is presented in 
Fig. 6.74. For the truss with 1–5 braces the threshold condition for full bracing corresponds 
to the out-of-plane buckling of the truss between braces. In the case of the truss with 
a larger number of braces (6–9) the threshold condition for full bracing corresponds to 
a local buckling of the most compressed diagonals made of profile U65.  
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Fig. 6.73. Buckled shape of the truss corresponding to the buckling load at stiffness  
of braces equal to 1400kN/m 
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Fig. 6.74. Comparison between the truss top chord normal forces, corresponding to the first buckling 
load, with respect to the bracing stiffness parameter α for a different number of braces 

The results of the analysis are compared with the formula for bracing stiffness required to 
ensure that the chord buckles between braces. The formula was proposed by Trahair (1993) 
for columns with constant normal force 
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where nbr denotes the number of braces, and L is the column length (Fig. 6.75). The relative 
normal force corresponding to the first buckling load, determined for the 3D truss  model, 
together with the following relation for the column with discrete restraints: 
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is compared in Fig. 6.76. The effect of local buckling of the diagonals can be seen in 
Figs 6.75, 6.76. 
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Fig. 6.75. Threshold bracing stiffness vs. number of braces for a 3D braced truss  
and for the column model according to Trahair (1993) 
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Fig. 6.76. Critical buckling force at full bracing condition vs. number of restraints for a 3D  
truss and a similar column model  

The threshold bracing stiffness in the case of the analysed 3D truss is higher than in the 
column with the same number of braces. The relative normal force, corresponding to the 
buckling load of the 3D braced truss model is higher than for a similar column model with 
the same number of braces. The results of the buckling analysis for several configurations 
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of braces are summarized in Table 6.5. The threshold bracing stiffness was determined by 
the sensitivity analysis on the assumption that the calculation was stopped when the relative 
variation of buckling force due to the variation of bracing stiffness parameter was less than 
0.1. The calculated normal forces, corresponding to the buckling load, for the threshold 
bracing stiffness are compared with the forces for the rigid side-support truss model. 

Table 6.5 

Critical normal forces in the truss top chord at the threshold bracing stiffness  
and at rigid bracing for several lateral braces 

Braces localization 
Number 

of  
braces 

Threshold 
bracing 
stiffness 
[kN/m] 

Threshold 
bracing 

parameter 
α 

Pcr 

[kN] 0cr

cr

P

P  
0cr

crk

P

P ∞=  
∞=crk

cr

P

P
 

[%] 

 0 – – 104.41 0.023 0.023 100.0 

 

 

1 45.8 0.025 354.51 0.079 0.079 100.0 

 

2 600.0 0.322 546.42 0.122 0.125 97.9 

 

3 1220.0 0.656 917.32 0.205 0.211 97.1 

 

4 2020.0 1.086 1245.17 0.279 0.289 96.5 

 

5 2590.0 1.392 2101.07 0.471 0.481 96.5 

 

6 3060.0 1.645 2420.65 0.542 0.542 100.0 

 

7 1740.0 0.935 2420.65 0.542 0.542 100.0 

 

8 1280.0 0.688 2420.65 0.542 0.542 100.0 

 

9 1166.4 0.627 2420.65 0.542 0.542 100.0 
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The results of the performed parametrical and sensitivity analyses provide a basis for 
drawing some conclusions regarding  the effect of bracing stiffness on the critical buckling 
load.  
⎯ The critical buckling load of the truss depends on the stiffness and spacing of  braces.  
⎯ The sensitivity analysis opens up an opportunity to obtain the influence lines of the 

buckling load variation due to location of a new unit stiffness brace. The sensitivity in-
fluence lines may be helpful in the design of bracing. 

⎯ The sensitivity influence lines of the truss top chord normal force, corresponding to the 
buckling load variation, related to bracing stiffness variation depend on the initial brac-
ing stiffness. 

⎯ The threshold bracing stiffness of the truss top chord can be calculated by means of the 
sensitivity analysis. A higher-order critical load, calculated for the truss without  
bracing, that is insensitive to a change in bracing stiffness is the maximum of the first 
critical load to be reached by a rise in bracing stiffness.  

⎯ In an examined truss with less than 5 braces the threshold condition for full bracing  
corresponds to an out-of-plane buckling of truss between braces. At a certain number of 
braces, local buckling in truss plane may occur. In such a case a further increase in  
bracing stiffness or the number of braces is not necessary, because it does not improve 
the stability of the structure.  

⎯ The main difference in the stability analysis between the 3D truss model and the esta-
blished solutions of the truss chord models consists in an effect of local buckling of 
other truss elements, neglected in models of the truss chords. 

⎯ The threshold bracing stiffness and the truss top chord normal force, corresponding to 
the buckling load, of the braced 3D truss are greater than in similar column models with 
the same number of braces.  

⎯ The stability analysis of the classical Winter model (with constant normal force) ensures 
that it is possible to obtain lower critical forces for the same bracing stiffness than for 
the 3D truss model with a low magnitude of bracing stiffness.  

⎯ The critical forces obtained for the Winter model with variable normal force distribution 
and for the 3D truss model with the same bracing stiffness are similar for a low magni-
tude of bracing stiffness 

⎯ In the examined example the buckling length of the truss chord is greater than the  
distance between braces. The buckling length factor for truss chords is greater than the 
one predicted in design codes. 

⎯ The use of the sensitivity analysis makes it possible to carry out the calculation of the 
threshold bracing stiffness and the maximal critical load in the truss chord by means of 
standard commercial structural analysis programs and commercial spreadsheet  
programs. 

6.5.2. Truss with torsional braces 

The same truss as analysed in the previous section but with torsional braces is investi-
gated (Fig. 6.77). Roof purlins resting on a truss that undergoes bending when the truss is 
twisted are assumed to be a torsional brace, so the bending of the purlin is interrelated with 
the torsion of the truss. The roof truss may be restrained only with the torsional braces 
when there is no bracing at the end of the roof structure and under such circumstances the 
side displacements of the truss are not restrained. The first buckling load variation due to 
the variation of torsional braces stiffness was found. In the analysis different initial  
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stiffnesses of torsional braces were considered. The influence lines of the variation of the 
maximal normal force in the truss top chord, corresponding to the buckling load, due to the 
location of a new unit stiffness torsional brace, in the truss top chord, for several initial 
stiffnesses of braces are presented in Fig. 6.78. One can draw a conclusion that the most  
effective increase in the buckling load may be obtained when an additional torsional brace 
or an increase of the existing brace stiffness in the middle of the truss top chord is assumed. 
The most effective increase of the buckling load is obtained for the truss without braces. 
One can also conclude that the shape of the influence lines is similar for different initial 
stiffnesses of braces. This is different in comparison with the case of the truss with lateral 
braces where the shape of the influence line depends on the initial braces stiffness (see for 
examples Figs 6.57–6.62).  

 

Fig. 6.77. Truss with torsional braces 
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Fig. 6.78. The influence lines  of the truss top chord relative normal force variation, corresponding  
to the buckling load due to the location of a new unit stiffness torsional brace for a truss with braces 

of stiffness 113.64 kNm/rad, 418.52 kNm/rad and for a truss with no torsional braces 

In the truss with torsional braces the first buckling mode is similar for the whole range of 
the braces stiffnesses. Even for the truss with rigid torsional restraints, so when the torsion 
of the truss top chord is restraint, the truss buckles symmetrically as shown in Fig. 6.79. 
Higher buckling load multipliers were also investigated. The relation between the buckling 
loads and the torsional brace stiffness is different than the one of the lateral braces (com-
pare Fig. 6.63 and Fig. 6.80). This is connected with the fact that the shape of the first 
buckling mode of the truss is the same for all of the analysed  stiffnesses of the torsional 



6.5. Sensitivity analysis of buckling load of truss with braces 163 

braces.  The seventh and the eighth buckling load are insensitive to the variation of the  
torsional brace stiffness for the initially unbraced truss (Fig. 6.81).  

 

Fig. 6.79. Buckling mode corresponding to the first buckling load for torsional braces  
of stiffness kθ = 1000 kNm/rad 
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Fig. 6.80. Relationship of the truss top chord normal forces corresponding  
to the first eight buckling loads vs. bracing stiffness parameter α  
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Fig. 6.81. The first variation of the 1-8 buckling loads due to the variation  
of torsional braces stiffness 



6. Buckling of braced trusses 164 

0 100 200 300 400 500 600 700 800

αθ = kθL0/GJd

0.02

0.04

0.06

0.08

0.10

0.12

P
cr
 / 

P
cr

0

exact

approximation 1

approximation 2

approximation 3

approximation 4

L0= 2.4 m
Pcr0 = 4465.41 kN

 

Fig. 6.82. Relative truss top chord normal force corresponding to the first buckling load vs. relative 
torsional bracing stiffness and its approximations constructed  

to find the threshold full bracing condition 

The bracing stiffness parameter αθ according to Trahair (1993) is introduced, and as the 
reference force, the critical force of the truss chord in the out-of-plane flexural buckling at 
buckling length L0 = 2.4 m is used. The threshold bracing stiffness may also be determined 
by the sensitivity analysis as in the case of the truss braced by lateral braces but at the  
beginning  of the analysis an assumption is made, that the maximal first buckling load is con-
sistent with the buckling load for the truss with rigid torsional braces (Fig. 6.82, Table 6.6).  

Table 6.6  

Approximation of threshold bracing stiffness obtained by sensitivity analysis  
for the truss with 9 torsional braces   

Approximation 
number 

kθ 

 [kNm/rad] 
Pcrmax  

[kN] 
Pcr 

[kN] 
δPcr(δk)  

[kN] 
δkθ 

[kNm/rad] 

1 0.000 551.14 104.41 3.9310 113.6 

2 113.641 551.14 295.65 0.8380 304.9 

3 418.515 551.14 422.91 0.1988 645.1 

4 1063.605 551.14 487.90 0.0478 1 322.1 

5 2385.742 551.14 518.44 0.0128 2 562.9 

The normal force, corresponding to the first buckling load at the threshold bracing condi-
tion for the truss braced only by torsional braces, is equal to 23% of a similar force for the 
truss braced by lateral braces. The magnitude of a normal force in the truss top chord at 
buckling, is 551.14 kN, which is greater than the maximal normal force caused by the  
design load of the truss being equal to 482.9 kN. 
It should also be pointed out that the out-of-plane truss displacement found in the geometri-
cally non-linear analysis of the truss braced only by torsional braces (Fig. 6.39) is  
80–120 cm large, so the conclusion of  Section 6.3 was positively verified by means of the 
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sensitivity analysis. The torsional braces can improve the stability of the truss. However, 
the use of only the torsional braces would not satisfy  the limit serviceability state. 

6.5.3. Truss with torsional and lateral braces  

The same truss as analysed in the previous sections but with both torsional and lateral 
braces is investigated (Fig. 6.31). In the analysis, different stiffnesses of lateral and  
torsional braces were considered. The stiffness of torsional braces depends on the braces 
span and the cross-section. For a typical roof purlin of 6m length this stiffness may be  
expected to range between 500 and 1500 kNm/rad. 

The first critical buckling load variation due to the bracing stiffness variation is found 
by using Eq. (3.42). The influence lines of the variation of the maximal normal force in the 
truss top chord, corresponding to the buckling load, due to the location of a new unit stiff-
ness lateral brace, in the upper and lower chord found in section 6.5.1 (Figs 6.58–6.60), for 
the truss with lateral braces 100 kN/m, 500 kN/m and 1000 kN/m, are compared with simi-
lar lines for the truss with additional torsional braces of stiffness 500 kNm/rad (Figs 6.83–
6.85). The lines are related to the normal force in the truss top chord, corresponding to the 
buckling load, for each initial bracing stiffness.  

0 4 8 12 16 20 24

x[m]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Λ
P

cr
,k
 / P

cr
  [

%
]

k=100
kΘ=500 

upper 
chord 

lower 
chord 

k=100
upper 
chord 

lower 
chord 

k [kN/m], kΘ[kNm/rad], Pcr0 (k, kΘ)= 1123.41 kN

Pcr0 (k) = 825.93 kN

 

Fig. 6.83. The influence lines of the truss top chord relative normal force variation, corresponding to 
the buckling load, due to the location of a new unit stiffness lateral brace (δk = 1) for truss with lateral 

bracing k = 100 kN/m and truss with lateral and torsional bracing k = 100 kN/m, kΘ = 500 kNm/rad 

It is worth pointing out that the shape of the influence lines for the truss with additional  
torsional braces is different than in the case of the truss with only lateral braces. The differ-
ences are quite significant. The regions of the truss where it is possible to use a unit lateral 
brace, differ in respect of location and magnitude. The largest difference between the influ-
ence lines is in the truss with bracing k = 1000 kN/m. The torsional braces are responsible 
for the truss to become insensitive to the variation of the lateral bracing stiffness. The dif-
ferences in the buckling load multiplier caused by applying the torsional braces of stiffness 
500 kNm/rad is between 36.02% for the truss with lateral braces of 100 kN/m to 11.15%, 
for k = 500 kN/m to 7.37% for the truss with lateral braces of 1000 kN/m.  
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Fig. 6.84. The influence lines of the truss top chord relative normal force variation, corresponding  
to the buckling load, due to the location of  a new unit stiffness brace for a truss with lateral bracing 

stiffness of k = 500 kN/m and a truss with lateral and torsional bracing of k = 500 kN/m, 
kφ = 500 kNm/rad 
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Fig. 6.85. The influence lines of the truss top chord relative normal force variation, corresponding to 
the buckling load, due to the location of  a new unit stiffness brace for a truss with lateral bracing  
of k = 1000 kNm/rad and a truss with lateral and torsional bracing of stiffness k = 1000 kNm/rad,  

kΘ = 500 kNm/rad 

The bracing stiffness parameter, at the threshold bracing condition when the truss  
appears only with the lateral bracing, is α = 0.629 (see Table 6.4.), and due to the torsional 
bracing stiffness of 1200 kNm/rad, this coefficient is reduced by about 20% to α = 0.5. 
A comparison of the relation between critical buckling load for the truss with lateral and 
torsional braces is presented in Fig. 6.86 andFig. 6.87.  
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Fig. 6.86. Relative truss top chord normal force corresponding to the first buckling load vs. relative 
torsional bracing stiffness for different stiffnesses of lateral braces 
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Fig. 6.87. Relative truss top chord normal force corresponding to the first buckling load vs. relative 
lateral bracing stiffness for different stiffnesses of torsional braces 
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Fig. 6.88. Relative truss top chord normal force corresponding to the first buckling load vs. relative 
lateral bracing stiffness for different stiffnesses of torsional braces 
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The results of the performed parametrical and sensitivity analyses allow us to draw 
some conclusions regarding the effect of the torsional bracing on the critical buckling load: 
⎯ The sensitivity analysis may be applied in the case of the truss with both lateral and tor-

sional braces. 
⎯ By the use of the sensitivity analysis it is possible to obtain the influence lines of the 

buckling load variation caused by the location of a new unit stiffness brace. The sensi-
tivity influence lines may be helpful in the design of bracing. 

⎯ The sensitivity influence lines of the truss top chord normal force, corresponding to the 
buckling load, due to bracing stiffness variation depend on the initial bracing stiffness.  

⎯ The mean increase of the critical buckling load arising from the torsional braces is  
between 10–30% depending on the stiffness of the torsional braces (100–1200 
kNm/rad) (Fig. 6.88). 

6.6. Sensitivity analysis of limit loads of truss with elastic braces 

The present section is devoted to the sensitivity analysis of the truss limit load due to 
the bracing stiffness variation. The analysis is performed by means of the method presented 
by Chen and Ho (1994). This method is simple and can be carried out using the commercial 
finite element programs. The influence lines of the limit load variations due to a unit 
change of the brace stiffness are found. Those lines allow us to determine parts of the truss 
where the application of a brace may cause the largest variation of the limit load. By the use 
of the influence lines it is also possible to calculate an approximate limit load in function of 
the brace stiffness. A similar truss sensitivity analysis was performed by Iwicki (2007d) but 
the imperfections were slightly different and the discrete model had a lower number of  
finite elements that affected the results, especially for a higher magnitude of bracing stiff-
ness (see comparison of the two models in section 6.1). The sensitivity of the truss limit 
loads concerns the non-linear analysis of the imperfect truss. The basic problem under  
consideration is devoted to the investigation of a required stiffness and the location of 
braces that ensures the limit truss load not to increase with the rise of bracing stiffness. The 
results of the sensitivity analysis are compared with a parametrical study of the truss limit 
load. The proposed sensitivity analysis may easily be applied to most commercial structural 
analysis programs.  

In order to determine the influence line a nonlinear analysis of the truss both for initial 
stiffness kj and a new stiffness of brace with a given perturbation Δkj has to be carried out. 
The under-integral function ΛPcr,kj(x) is found by means of the finite difference method. The  
change of the limit load due to the brace stiffness perturbation according to Chen and Ho 
(1994) is computed as: 

 
,

( ) ( )
cr kj

cr j j cr j
P

j

P k k P k

k

+ Δ −
Λ =

Δ
 (6.6) 

The calculations were performed by means of commercial finite element method program 
ROBOT STRUCTURAL ANALYSIS PROFESSIONAL (2010). In this method there is no 
need to differentiate the displacement vector or the stiffness matrix with respect to the  
design variable. The method is simple and can be performed by means of commercial finite 
element programs but all possible variations of the design vector must be assumed.  

The geometry and the loading of the analysed truss are the same as in section 6.1 (Fig. 
6.1). First the sensitivity of the truss limit load for the truss without bracing is carried out. 
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The influence lines of the variation of the maximal normal force in the truss top chord,  
corresponding to the limit load, due to the location of a new unit stiffness brace, in the up-
per and lower chord are presented in Fig. 6.89. One can conclude that an employment of 
any brace in the compressed chord near to the middle of the truss causes the largest rise  
of the limit truss load. The lines are related to the normal force in the truss top chord at 
midspan, corresponding to the unbraced truss limit load, that is equal to 84,59 kN.  
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Fig. 6.89. The influence lines of the truss top chord relative normal force variation, corresponding to 
the limit load, due to the location of a new unit stiffness brace in the joints of the top and bottom 

chord for the unbraced truss 

Later it was assumed that new braces were located in the truss top chord joints and the 
brace stiffness increased. By using Eq. (3.43) the sensitivity analysis makes it possible to 
obtain a linear approximation of the relation between the truss top chord normal force at the 
limit load and the braces stiffness. Such  approximations for the initially unbraced truss are 
presented in Fig. 6.90. 

The same analysis has been performed for the truss with braces located in the truss top 
chord joints of an initial stiffness of 40 kN/m. Also in this case the linear approximation of 
the relation between the truss limit load and the braces stiffness is found (Fig. 6.90). For the 
truss with braces k = 40 kN/m an additional increase of braces stiffness results in a smaller 
rise in the relative limit load than for the truss without bracing. One can conclude that for 
bracing stiffness k = 50 kN/m (α = 0.06) an additional rise of the stiffness does not cause 
any further increase of the limit load, so this stiffness may be considered as a threshold 
bracing stiffness.  

Since the use of a new brace in the compressed chord near the truss midspan causes 
the largest increase of the limit load, the truss with one brace in the middle of upper chord 
is considered (Fig. 6.91). The relation between the normal force corresponding to the truss 
limit load and the stiffness of the brace is presented in Fig. 6.92. The threshold stiffness of 
the brace that causes the maximal normal force in the top truss chord is about 36 kN/m. The 
sensitivity analysis of the truss limit load due to the location of a new unit stiffness brace in 
the truss chord joints is carried out. Two possible modifications of the truss are taken into 
account. In the first model a new brace is located in the truss top chord, and in the second 
model two unit stiffness braces are symmetrically placed in the truss top chord (see Fig. 
6.91).  
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Fig. 6.90. Relative truss top chord normal force corresponding to the limit load vs. bracing stiffness 
parameter and its approximations for the truss with no braces and for brace k = 40 kN/m (α = 0.048) 

 

Fig. 6.91. Truss with brace k = 40 kN/m in the middle of the top chord  
and with additional unit stiffness braces located in other truss joints  

The influence line of the relative limit load due to the application of a new brace is  
presented in Fig. 6.93. The lines are related to the limit normal force of the truss with 
a side-support in the middle (with stiffness k = 40 kN/m) equal to 280.55 kN. It can be con-
cluded that an additional increase of the brace stiffness in the middle does not cause an  
increase in the limit load. It is also interesting to analyse the sign and the shape of the influ-
ence lines. One can conclude that the use of only one brace in the truss top chord results in 
a decrease of the maximal normal force in the midspan of the truss top chord in limit state 
conditions. The introducing of the two braces located symmetrically can improve the 
strength of the truss. It is also worth noting that one of the lines is not symmetrical. This is 
a difference in comparison with the influence lines found in the previous section. This may 
be explained by the fact that the normal force under investigation is not in the middle of the 
truss, but in an adjacent element (Fig. 6.91), and a new brace causes an asymmetrical  
normal force distribution in the non-linear analysis. 
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Fig. 6.92. Relative truss top chord normal force corresponding to the limit load vs. bracing stiffness 
for the truss with one middle top chord brace  
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Fig. 6.93. The influence lines of the truss top chord relative normal force variation, corresponding  
to the limit load (for the truss with one middle brace k = 40 kN/m), due to the location of one unit 

stiffness brace or two unit stiffness braces located symmetrically in the joints of the top chord  
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Fig.6.94. Relative truss top chord normal force corresponding to the limit load vs. variation  
of additional bracing stiffness located at x = 18 m  

An important fact is that in other nodes of the truss the line has a negative sign and for this 
reason an additional side-brace introduced in these nodes may cause a decrease of the 
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maximal normal force and may lower the limit loading of the truss. One can conclude that 
sometimes too many stiffeners placed in the wrong position do not increase the limit loads 
or may even cause a reduction of the load-bearing capacity of the truss. This effect was also 
verified by means of a parametrical study of the truss according to model I where an addi-
tional brace is located in the node at x = 18 m from the left support (Fig. 6.94). The  
parametic study confirms the phenomenon predicted in the sensitivity analysis where the 
decrease of the limit load is equal to 1.74% for the new brace stiffness 40 kN/m.  

6.7. Numerical verification of experimental research  
of truss with elastic braces  

6.7.1. Description of model 

In the research conducted by Kołodziej and Jankowska-Sandberg (2006) a stability of 
truss braced by elastic bracing was investigated. The truss model presented in Fig. 6.95 was 
tested. The main purpose of the experimental investigations was to determine the load-
deflection relationship for different stiffnesses of bracing. The lateral bracing was modelled 
in the form of springs situated in the truss top chord joints. The springs characteristics were 
determined using a separate testing procedure. A detail of the brace attachment to the top 
truss chord is presented in Fig. 6.96.  

 

Fig. 6.95. Experimental set-up of truss with elastic braces investigated by Kołodziej  
and Jankowska-Sandberg (2006) 

The experimental investigation described above was verified in numerical studies by 
Iwicki (2007b). The results of the verification for another discrete model of the truss 
(4 elements / member) are presented in this section. The theoretical model of the experi-
mentally tested truss that was a subject of the numerical analysis is presented in Fig. 6.97. 
The truss length L is equal to 7 m and its height is 0.7 m. It is assumed that the connections 
of the diagonals, the verticals, the lower and upper truss chords are rigid. The load is  
applied to the lower truss joints (7×1.9 kN). The truss chords and the verticals near the  
supports are made of profile 25×25×2, other truss elements consist of 20×20×2 profile. 

Both the stability and the geometrically non-linear static analyses of the truss are  
performed. The model used for the stability analysis has no inaccuracies. In the non-linear 
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analysis the truss with imperfection is considered. It is assumed that the top truss chord is 
bent out of the truss plane and the maximal imperfection is equal to L/500. The imperfec-
tions assumed in the numerical analysis are consistent with code PN-B-06200. The bracing 
stiffnesses are assumed according to the research conducted by Kołodziej and Jankowska-
Sandberg (2006) to be 0.8, 2.47, 5.5,  8.75, 12.90, 15, 20 kN/m.  

 

Fig. 6.96. A detail of the brace modelled in the form of an elastic spring located at the truss top chord 
joints according to the research conducted by Kołodziej and Jankowska-Sandberg (2006)  

 

Fig. 6.97. Truss with bracing  

6.7.2. Results of numerical and experimental tests 

For different bracing stiffnesses the relation between the normal forces in the truss 
compressed chord due to the out-of-plane truss displacements was determined by means of 
the geometrically non-linear static analysis (Fig. 6.98). In the analysis the load and arch 
length control method is used. One can conclude that an increase of bracing stiffness results 
in an increment of the limit force in the top truss chord. For a lower stiffness of bracing 
(k = 0.8 kN/m) the limit force in the truss chord is 7.71 kN and for bracing stiffness 
k = 20 kN/m it is 20.05 kN. The plastic resistance of the truss chord is 37.4 kN. Thus, in all 
of the analysed bracing stiffnesses the investigated buckling of truss is elastic. By the  
stability analysis of the truss it is possible to find the buckling load and the corresponding 
normal force in the truss chord. The relation of the limit and the critical normal force in the 
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truss top chord due to bracing stiffness is presented in Fig. 6.99. The compressed truss 
chord deformation at the limit state according to the research conducted by Kołodziej and 
Jankowska-Sandberg is presented in Fig. 6.100. 
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Fig. 6.98. Relation between the normal force in the truss top chord due  
to the out-of-plane truss displacement for different stiffnesses of bracing 
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Fig. 6.99. Limit and critical normal force in the truss top chord in relation to bracing stiffness 

Using Eq. (3.46) an effective length factor of the truss chord is calculated (Fig. 6.101). 
The buckling length factor of the truss chord depends on the bracing stiffness and is in the 
range between 0.70 for bracing stiffness of 20 kN/m and 1.01 for stiffness k = 0.8 kN/m. 
The difference between experimental results (Kołodziej and Jankowska-Sandberg 2006) 
and the present analysis are between 0.64% and 2.5%. The difference in numerical and  
experimental results may be caused by differences in the imperfection of the analysed truss. 
In the paper of Kołodziej and Jankowska-Sandberg (2006) no information related to the 
measured imperfection was presented.  
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Fig. 6.100. The compressed truss chord deformation at the limit state according  
to the research conducted by Kołodziej and Jankowska-Sandberg (2006)  
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Fig. 6.101. The effective length factor of the truss compressed chord vs. the bracing stiffness  

The buckling length factor found in the tests by Kołodziej and Jankowska-Sandberg (2006) 
verified in the present section are lower then predicted by the code PN-90/B-03200 (1990). The 
results obtained for other trusses in the present chapter are different. In order to investigate 
the differences in the buckling length factor some modifications of the truss presented in 
Fig. 6.97 are assumed. The modifications of the truss geometry are as follows (see Fig. 
6.102): 
a) a change of the diagonals and verticals bending and torsional stiffness (reduction factor: 

22 – in out-of-plane direction, 16 – in the truss plane dirrection, 4.5 – reduction of  
torsional stiffness), the described modification allow to obtain a similar relation of stiff-
nesses between the truss members, as in the previously investigated trusses, 

b) change of the truss load location from the bottom chord to the top chord, 
c) modification of the supports (the supports are at the top chord), 
d) additional reduction of the torsional stiffness of diagonals (reduction factor: 211) 
e) modification of braces (L0 = 0.875m). 

Then three models of the truss with different combinations of above described changes 
are  analysed (Table 6.7, Fig. 6.102).  
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Table 6.7 

Modified models of a truss  

MODEL 1 A B C   

MODEL 2 A B C D  

MODEL 3 A B C D E 

 

Fig. 6.102. Truss with modified geometry 
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Fig. 6.103. Buckling loads of modified models of the truss 

The results of the stability analysis: the buckling load and the buckling length of the 
truss compressed chord are presented in Fig. 6.103, and Fig. 6.104. The buckling length 
factor and the bracing stiffness parameter α are calculated for L0 = 1.75 m (model 1, 2) and 
0.875 m (model 3). The decrease of  the buckling load was obtained in the case of the 
model 1 and 2. For model 3 the buckling load is at first greater than for the truss model 
(Fig. 6.97), but then is constant with the increase of the bracing stiffness parameter α. The 
buckling length factor for the truss “initial” model and the models 1, 2 are lower than one 
for α > 2. In the case of the model 3 the similar effect as in the previously analysed trusses 
has been obtained. At a certain bracing stiffness a local buckling occurs and further increase 
of the bracing stiffness doesn’t result in an increase of the buckling load, and buckling 
length factor is constant. In the model 3 the buckling length factor was greater than one. 
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Fig. 6.104. Buckling length factor of modified models of the truss  

The reaction in braces was also taken into consideration. The result of the numerical 
analysis of the bracing reaction in function of the truss top chord normal force (at the brace) 
is presented in Fig. 6.105. This relation is non-linear and depends on the bracing stiffness.  
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Fig. 6.105. Relative reaction in the truss braces vs. normal force  
in the truss top chord for different brace stiffnesses  

On the basis of the results of the conducted studies it is possible to conclude that: 
⎯ the effective length, the limit force and the reaction in truss bracing depend on the  

stiffness of bracing,  
⎯ the experiment and the numerical results are coincidental, 
⎯ the effective length of the top truss chord is in the range between 0.7 and 1.01, so the 

effective length of the compression chord is considerably less than the distance between 
braces, 

⎯ the analysed truss does not correspond to the practically designed trusses. Therefore the 
conclusion related to the effective length factor may not be generalized. An important 
fact is that the test confirms the numerical analysis and consequently the proposed  
method of the numerical research and the results presented in other analysed examples 
are reliable. 
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6.8. Part of 3D roof structure with bracing 

The present section is devoted to a non-linear static analysis (Section 6.8.1) and to 
a stability analysis (Section 6.8.2) of two models of part of a 3D roof structure consisting of 
trusses, purlins and bracing. The results of the present parametric study are compared with 
the outcomes of previously analysed 3D truss with lateral or torsional braces modelled as 
linear elastic springs (Section 6.3).  

6.8.1. Part of the roof structure with truss bracing 

In the parametric study a segment of the roof structure shown in Fig. 6.106 is con- 
sidered. The main constructional elements of the roof are the trusses that were analysed in 
Section 6.3 and 6.5. It is assumed that the load is applied to the top chord joints. The purlin 
is made of HEA120 rolled profiles, and two models of bracing are taken into account, the 
diagonals of L20×20×3 and 40×40×4. The case of a rigid and hinged (in one direction) 
truss (A) – purlin connection is studied. In the non-linear statics the upper and lower truss 
chords are bent in the truss out-of-plane direction in the opposite sides in the upper and 
lower truss chords, and the shape of imperfection is a poly-line with nodes located on  
a parabola with a maximal value of L/500 (same for all trusses). The compressed chord of 
the truss is dimensioned according to code PN-90/B-03200 (1990) for a maximal design 
value of axial force 700 kN, and the plastic resistance to normal force being Npl = 945 kN.  

  

Fig. 6.106. Part of roof structure with bracing 

The geometrically non-linear relation between the normal force in the truss com-
pressed chord due to the out-of-truss plane displacement v calculated for the previously 
analysed truss with braces of different stiffnesses (Fig. 6.34) has been compared with simi-
lar results for part of the roof structure (Fig. 6.107). The maximal normal (found by means 
of load control method) force increases with the rise of the braces stiffness.  
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Fig. 6.107. Normal force in compressed chord due to the out-of-plane displacement  
for different stiffness of braces, and for a 3D model of part of the roof 

The maximal loads of the roof structure with L20×3 and L40×4 bracing with hinged and 
rigid truss-purlin connection are greater  than the plastic resistance of the chord.  

The normal force in purlins was also under consideration. The bracing reaction that is 
a normal force in purlin is different depending on the purlin location. The normal force  
in purlins related to the mean values of the normal force in the truss top chord is presented 
in Fig. 6.108. 

1 2 3 4 5 6 7 8 9 10 11

purlin number
-1.0

-0.5

0.0

0.5

1.0

1.5

F
0  
/ N

av
 [%

]

40 x 4 (rigid)

40 x 4 (hinged)

20 x 3 (rigid)

20 x 3 (hinged)

Nav = 394 - 397 kN

 

Fig. 6.108. Normal force in purlins related to mean values of normal force  
in truss top chord at purlin connection for different models of bracing 

The maximal relative moment in torsional braces is 7% of bending design moment of 
purlins, caused by typical gravity loads (assumed to be M0 = 18.75 kNm). The maximal 
moment is in the torsional braces near the truss supports (Fig. 6.109). For this reason it is 
possible to consider the purlins to be rotational supports of the truss on condition that the 
connectors between the purlins and the truss are stiff enough and are designed to carry an 
arising moment. It should also be added that due to the fact that the truss is loaded in the 
top chord nodes, the obtained moments in purlins represents an increase of the moment 
needed to stabilize the truss. In the design, a moment due to the bending of the purlin 
should be added.  
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Fig. 6.109. Relative moment in truss-purlin connection for different models of bracing 

The results of the conducted studies make it possible to conclude that: 
⎯ The limit (maximal force in the non-linear analysis by load-control method) normal  

force increases with a rise of the side bracing stiffness.  
⎯ In the case of a roof model with purlins and truss bracing, an increase of the limit nor-

mal force obtained for a rigid and hinged connection between the truss and the purlin 
was greater than the plastic resistance of the chord.  

⎯ The moment in rotational supports is lower than the bending design moment of purlins, 
caused be typical dead loads, therefore one can regard the purlins as rotational supports 
of the truss on condition that the connectors between the purlins and the truss are desi-
gned to carry an arising moment.   

⎯ The maximal reaction in the purlins for the design load level of the truss is 0.7–1.2% of 
average value of the normal force in the truss top chord (average reaction in braces is 
0.1% of Nav). 

6.8.2. Part of the roof structure with flexural bracing 

The last example is a set of two trusses with purlins (HEA140) and flexural bracing. 
The truss-purlins connection is hinged. It is assumed that the flexural stiffness of one of the 
trusses top chord represents a flexural bracing located in the roof plane (Fig. 6.110). The 
stability of the roof is investigated in  function of the flexural bracing stiffness. The geome-
try of the truss is the same as in the previous section. The buckling loads in function of the 
bracing stiffness are presented in Fig. 6.111. The functions are similar to the results given 
in the previous sections, since both the threshold stiffnesses of bracing and the changes of 
the relations between higher buckling loads due to the bracing stiffness are obtained. In the 
present example the first buckling mode is in the form of a one half-wave (Fig. 6.112a)  
until the stiffness of the bracing reaches the threshold value of bracing. Then the buckling 
mode changes to the mode of the second buckling load for the truss with braces of a lower 
stiffness (Fig. 6.112b).  

The results of the conducted analysis allow to conclude that the main difference  
between the truss braced by flexural bracing and braced by a set of lateral braces, that have 
been analysed before, is the buckling mode of the structure. In the trusses with lateral 
braces modelled as linear springs the buckling mode changes from a one half-wave to  
multiple half-waves with an increase of the bracing stiffness.  
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Fig. 6.110. A set of two trusses with flexural bracing 
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Fig. 6.111. Relationship of the truss top chord normal forces, corresponding  
to the 1–4 and 7 critical buckling loads vs. stiffness of flexural bracing  
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Fig. 6.112. Buckling modes corresponding to the first and the second buckling load  

for bracing stiffness Jbr/Jz = 65 a) first buckling mode, b) second buckling mode 



Chapter 7 

FINAL REMARKS 

The presented research is devoted to some selected problems of stability analysis of 
various steel structures. In the study the influence of various design parameters on the criti-
cal and limit load are considered. The analysis is conducted by means of both the sensitivity 
analysis method and the parametrical studies.  

The work presents capabilities of the sensitivity analysis in solving the problem of sta-
bility of various steel structures.  

The sensitivity analysis provides a tool to anticipate changes in the critical forces due 
to variations of the design variables. In the studies the following design variables have been 
taken into account: 
⎯ initial imperfection that models the design inaccuracies,  
⎯ the material characteristics, 
⎯ dimensions of the cross-section, 
⎯ residual stresses, such as, post-welding or post-rolling stresses, 
⎯ cross-section temperature, 
⎯ position and stiffness of bracing. 

By the use of the sensitivity analysis it is possible to determine: 
⎯ the influence line of the variation of the critical and limit load of the structure due to  

variation of the design parameters, 
⎯ approximation of the relation between the critical forces and the design parameters, 
⎯ the threshold bracing stiffness for a full bracing condition, 
⎯ the threshold condition for full bracing may be found by the sensitivity analysis of an 

initially unbraced structure, 
⎯ the sensitivity analysis allows us to calculate the maximal buckling load that may be  

obtained as a result of an increase in the bracing stiffness. 

The sensitivity influence lines of the critical forces due to variation of cross-section 
dimensions, cross-section temperature, and location of various kinds of stiffeners for some 
selected structures are presented. The sensitivity analysis has shown a “paradox” that by 
adding some material or stiffeners to the structure it results in a decrease of the critical 
forces. 

Studies devoted to the influence of elastic bracing on buckling of various structures, as 
for instance, beams, columns and frames can be found in professional literature, but in the 
case of trusses there is a lack of similar research. Only a very limited number of papers deal 
with the problem of stability of trusses stiffened by elastic braces.  This was a motivation 
for undertaking these studies. 

The results of geometrically nonlinear static, stability and sensitivity analysis of  
various selected steel structures restrained by various kinds of bracing make it possible to 
draw the following conclusions: 
⎯ critical forces, effective lengths and the bracing reaction depend on bracing stiffness, 
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⎯ the minimal required bracing stiffness, called the threshold condition of full bracing, 
enables us to obtain the maximal critical forces, and for this reason an additional incre-
ase of the bracing stiffness does not result in an increase of the structure buckling load, 

⎯ the structure with braces of stiffness of the threshold bracing condition, buckles between 
braces or may buckle locally, 

⎯ various simplified code requirements concerning an effective length of some compres-
sed members and equivalent stability forces are not precise and may sometimes cause 
erroneous results,  

⎯ in the examined trusses the effective buckling length of the compressed truss chords  
with elastic bracing of stiffness corresponding to the data given in the design codes is 
greater than the braces spacing, 

⎯ in most of the design codes the problem of effective lengths of weakly braced frames in 
not taken into account, 

⎯ rotational restraints and warping prevention restraints may have positive effects on  
stabilizing the structures, 

⎯ in the examined trusses the spatial stability of trusses dimensioned according codes is 
provided even for side-supports assumed to be elastic springs and even for effective 
buckling length of truss chords greater than side-supports spacing, 

⎯ the bracing reaction for the design load level in the worked examples is lower than the 
values  predicted in code (PN-90/B-03200 1990), 

⎯ there is a lack of code requirements concerning the sloping side-supports, and side-
bracing of lower (normally tensioned) truss chords, or some other kind of bracing, as for 
example, warping preventing bracing and torsional bracings. 

The designers need a simple formula for the required stiffness for full bracing and the 
relation between a coefficient of buckling lengths and the bracing stiffness. The codes re-
quirements concerning bracings and buckling length of columns are presented in the form 
of tables or graphs or formulas that are not easily applicable. 

There are plans for continuation of the presented research. The continuation will be 
focused on a verification of the proposed methods by means of 3D shell models of some  
selected structures, as it was successfully performed in the case of two I-columns and one 
of the analysed trusses. A further research may also be devoted to a threshold full bracing 
condition of warping stiffeners of columns and beams, or threshold condition for full brac-
ing of space frames. An experimental verification of the presented research is also planned. 
In the future research of the buckling and the limit loads of the restrained structures, such 
problems as, the non-linear behaviour of braces, as it was presented in the case of the truss-
binder, the stiffness of joints or the plasticity of material, should be also taken into account. 
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SELECTED PROBLEMS OF STABILITY  
OF STEEL STRUCTURES 

In the presented work the results of research concerned with stability of selected steel structures are 
investigated. The problem of stability analysis is significant in the design of various steel structures,  
because the structural elements are usually responsible for bearing loading in their plane and are rela-
tively weak out of this plane. Therefore those elements must be braced against the out-of-plane buckling. 
The stiffness of bracing, the cross-section dimension, the post-welding or post-rolling stresses, or the 
cross-section temperature may affect the load-bearing capacity, or the buckling load of steel structures. 
The problem is noted in the design codes. Various code requirements are devoted to the requirements 
concerning bracing and the effective lengths of the compression members. The buckling length of steel 
members related to critical elastic buckling load of a structure is therefore of crucial importance in the 
design code procedures. The elastic critical buckling load and the limit load of geometrically non-linear 
statics is under consideration. The research is based on the classical linear theory of thin-walled beams 
with non-deformable cross-section. The influence of various design parameters on  buckling and the 
limit load of structures in both the parametric geometrically non-linear static, stability and sensitivity 
analyses are investigated. 

The first order variation of the buckling load of thin-walled columns with bisymmetric open 
cross-section due to the following variations of the design variables is derived: 
⎯ cross-section dimensions,  
⎯ material characteristics, 
⎯ the stiffness and location of the stiffeners, both the lateral stiffeners and the ones that restrain 

warping and torsion of the cross-section,  
⎯ residual welding or rolling stresses. 

In the numerical examples dealing with an I-column the functions describing the effect of varia-
tion of the dimensions of the cross-section, the variation of some parameters defining the residual 
post-welding or post-rolling stresses, the cross-section temperature, or the influence of the location of 
various kinds of stiffeners with unit stiffness on the critical load of torsional and flexural buckling are 
found. The linear approximations of the exact relationship of critical loads due to variations of the  
design variables are determined and the approximation errors are discussed. The sensitivity analysis 
of a silo column buckling load is also investigated  

In the research some results of parametrical analyses of trusses with bracing are also presented. 
A nonlinear analysis of an illustrative truss with imperfections is also carried out, and limit loads and 
maximal forces in compressed chord due to stiffness of side supports are  calculated.   

The analysis is devoted to a study of lateral buckling of truss with linear elastic and rotational 
side-supports. In the research various localizations of bracing of truss are taken into account. The  
effect of slope of side-support on the limit and buckling load of trusses is also considered. 

For different stiffnesses of bracing the following relations are determined: 
⎯ the relation between a normal force in the truss chord and the out-of-plane truss displacements, 
⎯ the elastic support reaction in relation to the force in a compressed chord, 
⎯ buckling length related to side-support distance. 

The design sensitivity analysis of the limit load and the critical load of some exemplary trusses 
due to side-support stiffness is carried out.  The influence line of the variation of the limit load of the 
truss due to the use of side-supports of unit stiffness at chord joints,  is found. It has been noted that 
for some side-support localization some additional new side-supports may cause a decrease of the 
limit load.  

The lateral buckling of the 3D truss model and the one of the isolated truss chord were  
compared. The results are set against the design code requirements and the classical Winter bracing 
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requirements. It has been shown that the buckling length of the truss chord with side-supports  
regarded as elastic elements, is larger than the assumed one in the design codes. It has been found that 
the Winter method applied to an isolated truss chord does  not give a safe condition for the truss brac-
ing for a full range of bracing stiffness. 

In this research the sensitivity analysis of critical buckling loads of truss due to bracing stiffness 
is carried out and the threshold bracing stiffness condition for full bracing of a truss is found. For 
various initial stiffnesses of bracing the influence lines of the unit change of bracing stiffness on the 
buckling load are found. The approximations of the exact relation between the buckling load and the 
bracing stiffness are determined.  

In this paper the classical Winter model, developed originally for columns is applied to frame 
structures and compared with the results of a parametric study of frame with bracing. The sensitivity 
analysis of critical loads of a frame due to bracing stiffness is carried out, and the threshold bracing 
stiffness for full bracing is found. In the non-linear statical analysis the forces in bracing are calcu-
lated. 
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WYBRANE PROBLEMY STATECZNOŚCI  
KONSTRUKCJI STALOWYCH  

W pracy przedstawiono wyniki badań dotyczących stateczności wybranych konstrukcji stalo-
wych. Problemy stateczności są szczególnie ważne przy projektowaniu konstrukcji stalowych,  
ponieważ nośne elementy konstrukcyjne są zwykle projektowane do przenoszenia obciążeń w swojej 
płaszczyźnie i muszą być zabezpieczone przed utratą stateczności z tej płaszczyzny. Sztywność stę-
żeń, charakterystyki przekroju poprzecznego, naprężenia pospawalnicze lub powalcownicze i tempe-
ratura konstrukcji mogą wpływać na wielkość obciążeń krytycznych konstrukcji. Dlatego też proble-
my te są ujęte w normach projektowania konstrukcji. Kluczowe znaczenie w normowych procedurach 
projektowania konstrukcji stalowych ma długość wyboczeniowa elementów konstrukcyjnych, która 
jest wyznaczana na podstawie obciążeń krytycznych konstrukcji. Prezentowane rozważania są oparte 
na klasycznych założeniach teorii prętów cienkościennych o nieodkształcalnym przekroju poprzecz-
nym. 

Wyznaczono pierwszą wariację sił krytycznych pręta cienkościennego o bisymetrycznym otwar-
tym przekroju poprzecznym uwzględniając następujące zmienne projektowe: 
⎯ wymiary przekroju poprzecznego, 
⎯ charakterystyki materiałowe, 
⎯ sztywność i lokalizacja różnego typu stężeń, jak na przykład stężeń poprzecznych lub stężeń 

ograniczających skręcenie lub spaczenie pręta, 
⎯ naprężenia pospawalnicze lub powalcownicze. 

W przykładach numerycznych dotyczących słupów o przekroju dwuteowym wyznaczono funk-
cje opisujące wpływ wariacji wymiarów przekroju poprzecznego, naprężeń pospawalniczych lub  
powalcowniczych, wpływ wariacji temperatury przekroju poprzecznego lub lokalizacji różnego typu 
stężeń na siłę krytyczną wyboczenia skrętnego lub giętnego. Wyznaczono liniowe aproksymacje  
zależności sił krytycznych od zmiennych projektowych i zbadano dokładność  tych aproksymacji. 

W pracy przedstawiono wyniki badań stateczności i geometrycznie nieliniowych analiz statycz-
nych kratownic ze stężeniami. Przeprowadzono analizy przykładowych kratownic dachowych  
z imperfekcjami i wyznaczono obciążenia graniczne i odpowiadające im siły w pasach ściskanych 
kratownic oraz w stężeniach w zależności od sztywności stężeń.  

W analizie zwichrzenia kratownic uwzględniono usztywnienia poprzeczne i stężenia ogranicza-
jące skręcenie. W badaniach analizowano wpływ usytuowania tych stężeń w różnych miejscach kon-
strukcji oraz wpływ pochylenia stężeń na nośność krytyczną i graniczną kratownic. 

Dla różnych sztywności stężeń wyznaczono: 
⎯ zależności pomiędzy siłą normalną w pasie ściskanym kratownic w funkcji przemieszczeń 

z płaszczyzny kratownic,  
⎯ reakcje w stężeniach w zależności od siły w pasie ściskanym kratownic, 
⎯ współczynnik długości wyboczeniowej pasa ściskanego w odniesieniu do rozstawu stężeń. 

Przeprowadzono analizę wrażliwości sił krytycznych i granicznych kilku kratownic w zależno-
ści od sztywności stężeń poprzecznych. Dla różnych początkowych sztywności stężeń wyznaczono 
funkcje podcałkowe wrażliwości przedstawiające wpływ wprowadzenia kolejnych stężeń o jednost-
kowej sztywności na zmiany sił krytycznych. Wyznaczono liniowe aproksymacje zależności sił kry-
tycznych od sztywności stężeń. Stwierdzono, że w pewnych przypadkach dodanie dodatkowych stę-
żeń może spowodować spadek obciążeń granicznych konstrukcji.  

Porównano zachowanie się kratownicy przestrzennej z modelem opisującym tylko pas ściskany. 
Wyniki badań numerycznych porównano z wymogami norm projektowania konstrukcji i klasyczną 
metodą Wintera. Wykazano, że długości wyboczeniowe pasa ściskanego ze sprężystymi podporami 
bocznymi są większe niż to założono w normach. Wykazano ponadto, że klasyczna metoda Wintera 
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zastosowana do analizy wyizolowanego pasa górnego kratownicy nie zapewnia bezpiecznego warun-
ku stężenia kratownic. 

W pracy zaproponowano również metodę wyznaczania minimalnej sztywności stężeń, zapewnia-
jącej stateczność kratownicy, opartą na analizie wrażliwości. Metoda ta pozwala na wyznaczenie obcią-
żeń krytycznych kratownic na podstawie analizy konstrukcji bez stężeń.  

W pracy przedstawiono też analizę parametryczną i analizę wrażliwości ram ze stężeniami.  
Wyniki analiz  numerycznych i analiz wrażliwości porównano z klasyczną metodą Wintera. Wyzna-
czono też progowy warunek sztywności stężeń zapewniający nieprzesuwność konstrukcji ramowej.
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