


GDAŃSK 2011

GDANSK UNIVERSITY OF TECHNOLOGY

MAGDALENA RUCKA

GUIDED WAVE PROPAGATION
IN STRUCTURES

MODELLING, EXPERIMENTAL STUDIES
AND APPLICATION TO DAMAGE DETECTION



PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO 
WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ 
Romuald Szymkiewicz 

REDAKTOR PUBLIKACJI NAUKOWYCH 
Janusz T. Cieśliński 

REDAKTOR SERII 

Jerzy M. Sawicki 

RECENZENCI 
Wojciech Gilewski 
Tomasz Mikulski 

PROJEKT OKŁADKI 
Jolanta Cieślawska 

Wydano za zgodą 
Rektora Politechniki Gdańskiej 

Oferta wydawnicza Politechniki Gdańskiej jest dostępna na stronach 
www.pg.gda.pl/WydawnictwoPG 

© Copyright by Wydawnictwo Politechniki Gdańskiej 
Gdańsk 2011 

Utwór nie może być powielany i rozpowszechniany, w jakiejkolwiek formie 
i w jakikolwiek sposób, bez pisemnej zgody wydawcy 

ISBN  978−83−7348−346−0 



CONTENTS 

LIST OF SYMBOLS AND ABBREVIATIONS..............................................................................      5 

1. INTRODUCTION ..........................................................................................................................    9 
1.1. Damage detection in engineering structures ...........................................................................    9 
1.2. Guided wave application in damage detection .....................................................................    10 
1.3. Aim and scope of study ........................................................................................................    11 

2. ELASTIC WAVES IN STRUCTURAL ELEMENTS ................................................................    13 
2.1. Outline of bulk and guided waves ........................................................................................    13 
2.2. Axial waves in rods ..............................................................................................................    17 

2.2.1. Elementary rod theory ..............................................................................................    17 
2.2.2. Love rod theory ........................................................................................................    20 
2.2.3. Mindlin-Herrmann rod theory ..................................................................................    21 

2.3. Flexural waves in beams ......................................................................................................    22 
2.3.1. Euler-Bernoulli beam theory ....................................................................................    22 
2.3.2. Timoshenko beam theory .........................................................................................    23 

2.4. In-plane waves in plates .......................................................................................................    25 
2.4.1. Plane stress theory ....................................................................................................    25 
2.4.2. Kane-Mindlin plate theory .......................................................................................    27 

2.5. Flexural waves in plates .......................................................................................................    30 
2.5.1. Kirchhoff plate theory ..............................................................................................    30 
2.5.2. Mindlin plate theory .................................................................................................    31 

2.6. Summary and conclusions ....................................................................................................    34 

3. SPECTRAL ELEMENT METHOD ............................................................................................    36 
3.1. General formulation of the spectral element method ...........................................................    38 

3.1.1. Definition of element nodes .....................................................................................    39 
3.1.2. Definition of shape functions ...................................................................................    41 
3.1.3. Integration quadratures .............................................................................................    44 
3.1.4. Time integration .......................................................................................................    44 

3.1.4.1. The central difference method .....................................................................    45 
3.1.4.2. The Newmark method .................................................................................    46 

3.2. Formulation of one-dimensional spectral finite elements ....................................................    47 
3.2.1. Elementary rod element ............................................................................................    49 
3.2.2. Love rod element ......................................................................................................    49 
3.2.3. Mindlin-Herrmann rod element ................................................................................    49 
3.2.4. Timoshenko beam element .......................................................................................    50 
3.2.5. Frame element based on Mindlin-Herrmann and Timoshenko theories ...................    51 

3.3. Formulation of two-dimensional spectral finite elements ....................................................    52 
3.3.1. Plane stress element ..................................................................................................    53 
3.3.2. Kane-Mindlin extensional plate element ..................................................................    54 
3.3.3. Mindlin bending plate element .................................................................................    55 

3.4. Summary and conclusions ....................................................................................................    56 
 



Contents 
 

4 

4. WAVE PROPAGATION IN BARS ............................................................................................    57 
4.1. Experimental setup ...............................................................................................................    58 

4.1.1. Excitation signal .......................................................................................................    59 
4.1.2. Dispersion curves .....................................................................................................    62 

4.2. Experimental investigations on bars with discontinuities ....................................................    65 
4.3. Spectral element analysis of wave propagation in an intact bar ...........................................    71 

4.3.1. Guidelines for spectral element models on the example of longitudinal waves .......    71 
4.3.2. Simulations of longitudinal waves ...........................................................................    75 
4.3.3. Simulations of flexural waves ..................................................................................    75 

4.4. Spectral element analysis of wave propagation in bars with structural discontinuities ........    77 
4.5. Summary and conclusions ....................................................................................................    81 

5. WAVE PROPAGATION IN FRAME STRUCTURES ..............................................................    83 
5.1. Experimental setup ...............................................................................................................    84 
5.2. Damage detection in L-frame by guided waves ...................................................................    88 

5.2.1. Spectral element method model of L-frame .............................................................    88 
5.2.2. Longitudinal wave propagation in L-frame ..............................................................    89 
5.2.3. Flexural wave propagation in L-frame .....................................................................    94 

5.3. Damage detection in T-frame by guided waves ...................................................................    98 
5.3.1. Longitudinal wave propagation in T-frame ..............................................................    98 
5.3.2. Flexural wave propagation in T-frame ...................................................................    103 

5.4. Damage detection in portal frame by guided waves ...........................................................    107 
5.4.1. Longitudinal wave propagation in portal frame .....................................................    107 
5.4.2. Flexural wave propagation in portal frame .............................................................    111 

5.5. Summary and conclusions ..................................................................................................    115 

6. WAVE PROPAGATION IN PLATES ......................................................................................    117 
6.1. In-plane wave propagation in plate ....................................................................................    118 

6.1.1. Experimental setup .................................................................................................    118 
6.1.2. Dispersion curves ...................................................................................................    121 
6.1.3. Numerical model ....................................................................................................    124 
6.1.4. Damage detection in plate by in-plane waves ........................................................    124 

6.2. Flexural wave propagation in plate ....................................................................................    138 
6.2.1. Experimental setup .................................................................................................    138 
6.2.2. Dispersion curves ...................................................................................................    140 
6.2.3. Numerical model ....................................................................................................    142 
6.2.4. Damage detection in plate by flexural waves .........................................................    142 

6.3. Summary and conclusions ..................................................................................................    157 

7. FINAL REMARKS ......................................................................................................................  158 

ACKNOWLEDGEMENTS .............................................................................................................  160 

REFERENCES .................................................................................................................................  161 

SUMMARY IN ENGLISH ..............................................................................................................  169 

SUMMARY IN POLISH .................................................................................................................  170 

APPENDIX A ..................................................................................................................................  172 
 



LIST OF SYMBOLS AND ABBREVIATIONS 

Symbols 

A – cross-sectional area 
A0, A1, A2,… – antisymmetric Lamb modes 
b – vector of inertia forces 
b – width of a structure 
B – surface area 
B – strain-displacement matrix 
cg – group velocity 
cL – longitudinal wave speed in a plate 
co – thin-rod velocity 
cp – phase velocity (wave speed) 
cP – speed of P wave 
cR – speed of R wave 
cS – speed of S wave 
c – vector of damping forces 
C – structure damping matrix 
C(e) – element damping matrix in local element coordinates 

( )eC  – element damping matrix in global element coordinates 
d – half of plate thickness 
D – plate flexural rigidity 
D – differential operator matrix 
E – modulus of elasticity 
E – stress-strain matrix 
f – frequency 

xf , yf , zf  – distributed loads 
f – vector of distributed loads 
fb – vector of body forces 
fs – vector of surface forces 
G – shear modulus 
h – thickness of a plate 
H – shape function matrix 
i – imaginary unit 
I – moment of inertia 
J – Jacobian 
J – Jacobian matrix 
Jo – polar moment of inertia 
k – wavenumber 
K – structure stiffness matrix 
K(e) – element stiffness matrix in local element coordinates 

( )eK  – element stiffness matrix in global element coordinates 

LK  – adjustable parameter in the Love theory 
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1
M HK − , 2

M HK −  – adjustable parameters in the Mindlin-Herrmann theory 

1
TimK , 2

TimK  – adjustable parameters in the Timoshenko theory 
L – length of a structure 
Le – effective length of finite element 
LN – Lobatto polynomial of order N 
M – structure mass matrix 
M(e) – element mass matrix in local element coordinates 

( )eM  – element mass matrix in global element coordinates 
n – number of element interpolation nodes 
nel – number of elements 
nr , ns – number of integration points 
N – degree of interpolation polynomial 
p – excitation force signal (external force) 
pV – excitation voltage signal 
p – vector of external forces 
p(e) – vector of element external forces in local element coordinates 

( )ep  – vector of element external forces in global element coordinates 
PN – Legendre polynomial of order N 
q – vector of nodal displacements 
q(e) – vector of element nodal displacements 
r – vector of internal forces 
r(e) – vector of element internal forces 
S0, S1, S2,… – symmetric Lamb modes 
t – time 
T – kinetic energy 
T – transformation matrix from local to global coordinates 

xu , yu , zu  – translational displacements 
u – vector of displacements 
U – potential energy 
v – velocity of vibrations 
Wext – work of external forces 
x, y, z – Cartesian coordinates 
β , γ  – parameters in the Newmark method 

xyγ , xzγ , yzγ  – shear strains 

ijδ  – Kronecker delta 

δu  – vector of virtual displacements 

Wδ  – virtual work 

extWδ  – virtual external work 

dampWδ  – virtual damping work 

intWδ  – virtual internal work 

kinWδ  – virtual kinetic work 

δε  – vector of virtual strains 

tΔ  – time step 

crtΔ  – critical time step 

xxε , yyε , zzε  – normal strains 

tε  – transverse strain 
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ε  – vector of strains 

dη  – damping property parameter 
κ  – adjustable parameter in the Mindlin theory 

KMκ  – adjustable parameter in the Kane-Mindlin theory 
λ  – wavelength 
Λ , G  – Lamé constants of elasticity 

μ  – mass density matrix 
ν  – Poisson’s ratio 
ξ , η  – natural (parent) coordinate system 

ρ  – mass density 

xxσ , yyσ , zzσ  – normal stresses 

xyσ , xzσ , yzσ  – shear stresses 
ϕ , xψ , yψ  – rotations 

ψ  – lateral contraction 

ω  – circular frequency 

cω  – cut-off frequency 
 
Abbreviations 

1-D  – one-dimensional 
2-D  – two-dimensional 
3-D  – three-dimensional 
FEM  – finite element method 
FFT  – fast Fourier transform 
GLL  – Gauss-Lobatto-Legendre 
NDE  – nondestructive evaluation 
NDT – nondestructive testing 
PZT – lead zirconate titanate 
P wave  – primary, pressure, compressional, extensional, dilatational, irrotational, axial,  
  longitudinal wave 
R wave  – Rayleigh wave 
SEM  – spectral element method 
SFEM  – spectral finite element method 
SHM – structural health monitoring 
S wave  – secondary, shear, distortional, rotational, transverse wave 
SH wave  – shear horizontal wave 
SV wave  – shear vertical wave 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 1 

INTRODUCTION 

1.1. Damage detection in engineering structures 

Engineering structures undergo gradual destruction in the course of time as a result of 
static and dynamic loading, temperature, humidity, wind or corrosive factors. Under the 
influence of these environmental and operating conditions, structures are subjected to fa-
tigue, corrosion, creep and wear. Damage in structural elements may lead to improper op-
eration of any engineering object and it can be a potential threat of financial burden, envi-
ronmental contamination as well as human lives. After Adams (2007), damage is defined 
here as a permanent change in the mechanical state of a structural material or component 
that could potentially affect its performance. Damage detection is termed as identification 
of defects and their locations. Damage detection can extend the service life of structures, 
improve reliability and safety, reduce maintenance costs or even prevent a catastrophic 
failure. Therefore, the ability to detect structural damage at the earliest possible stage has 
been of great interest to civil, mechanical and aerospace engineering communities. 

The process of assessing the current damage state of a structural material or compo-
nent without accelerating the damage is termed as nondestructive evaluation (NDE) (Ad-
ams 2007). The most common method of a nondestructive assessment of the structure in-
tegrity is a periodic visual inspection, mandatory for important structures, for example 
bridges, which are regularly controlled by experienced engineers. Damage detection can be 
facilitated by nondestructive testing (NDT) which is the offline implementation of NDE 
methodologies (e.g. Brunarski and Runkiewicz 1983, Runkiewicz 1999). There are many 
methods for NDT including radiography (e.g. Lashkia 2001, Ghose and Kankane 2008), 
acoustic emission (e.g. Rogers 2005, Rahman et al. 2009), infrared thermography (e.g. 
Clark et al. 2003), ultrasonic testing (e.g. Yeih and Huang 1998, Hoła and Schabowicz 
2005), impact-echo techniques (e.g. Lin et al. 2004, Hoła et al. 2009, Rucka and Wilde 
2010) or eddy current methods (e.g. Gros 1995). Such diagnostic methods can be effec-
tively applied to damage detection in a few known a priori areas in a structure; however, 
they can be laborious in searching of potential damage in the whole engineering object. 

Further development in local NDT methods leads to so-called structural health moni-
toring (SHM), which is the online implementation of NDE. Vibration-based and wave 
propagation methods play a significant role in SHM strategies of dynamics-based global 
damage detection techniques, where the location of damage is not known. Vibration-based 
damage detection methods make use of dynamic characteristics of structures (e.g. 
Dimarogonas 1996, Salawu 1997, Doebling et al. 1998, Ren and Roeck 2002a, 2002b, 
Uhl 2005, Wilde 2008, Kawecki and Stypuła 2009, Tomaszewska 2010). Recently, many 
damage detection methods based on structural vibrations, especially combined with genetic 
algorithms (Kokot and Zembaty 2008, 2009), artificial neural networks (Waszczyszyn and 
Ziemiański 2001, Kuźniar and Waszczyszyn 2002), modal filters (Mendrok and Uhl 2010), 
virtual distortion methods (Świercz et al. 2008) or wavelet analysis (Knitter-Piątkowska 
et al. 2006, Ziopaja et al. 2006, Rucka and Wilde 2006, 2007) have been developed. The 



1. Introduction 
 

10 

second group of damage detection methods based on dynamics are guided wave propaga-
tion techniques, which are the subject of this study. Wave propagation is an extension of 
the NDT wave testing from the local to global approach of sending and sensing waves. The 
passage of waves through material thickness is extended to methods based on the long-
range guided wave propagation along the structure to inspect large areas rapidly. 

1.2. Guided wave application in damage detection 

Guided wave-based damage detection methods have been dynamically developed over 
last years. The term guided wave propagation refers to wave propagation in bounded 
media. In the guided wave propagation approach, a structure can be perceived as a 
waveguide, which directs the wave energy along its length. This technique utilizes 
excitation of high frequencies (of order a few dozen kHz to a few hundred kHz) in the form 
of an impulse or a wave packet. Ultrasonic excitation causes that waves are reflected and 
modes are converted inside a structure, and after some travel superposition causes 
formation of guided wave modes (Rose 1999). 

Since guided waves have the ability of propagation over long distances with a little 
amplitude loss, they are very suitable for inspecting large structures. Guided Lamb and 
Rayleigh waves, named after their investigators, are frequently used for damage detection 
purposes. The Raleigh waves, discovered by Lord Rayleigh (1885), can propagate in solids 
containing a free surface. The Rayleigh waves, called also guided-surface waves, travel 
close to the free surface with very little penetration in the depth, therefore these waves are 
particularly suitable for detection of surface defects. The Lamb waves, described by Lamb 
(1917), are guided waves propagating in solid plates with free boundaries. The Lamb wave 
technique enables to find internal, as well as surface defects, because Lamb waves produce 
stresses throughout the plate thickness and the entire thickness of the plate is interrogated 
(Giurgiutiu 2008). Guided waves can also exist in other types of thin-walled structures such 
as bars, shells and tubes. Other types of guided waves are Love waves travelling in layered 
materials and Stonley waves occurring at the interface between two media. 

Techniques of using Lamb waves for ultrasonic inspection were patented by Firestone 
and Ling (1951). Their invention was devoted to the method and means for generating and 
utilizing Lamb waves. Intensive experimental investigations with the use of Lamb waves 
were undertaken from the early 1960s. Worlton (1961) presented an experimental study on 
Lamb waves excited in a plate submerged in water. He discussed characteristics of the 
various modes in the light of potential nondestructive testing applications. In the same year, 
Grigsby and Tajchman (1961) described properties of Lamb wave propagation which are 
relevant to possible nondestructive testing application. An experiment was conducted on a 
steel plate with an artificial flaw using transmitting and receiving ultrasonic transducers. 
Thompson et al. (1972) developed and fabricated non-contact electromagnetic transducers 
that enabled to launch and detect ultrasonic flexural Lamb waves of frequency 130 kHz in 
gas pipelines. Victorov (1976) in his book described experimental research with the use of 
Rayleigh and Lamb waves for damage detection. He discussed methods for generating and 
detecting guided waves. Alleyne and Cawley (1992) presented a study of the interaction of 
Lamb waves with a variety of defects simulated by notches. The finite element results were 
checked experimentally on a steel 3 mm plate using two conventional wideband ultrasonic 
immersion transducers and the excitation was in the form of a tone burst modified by a 
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Hanning window function. Since the 1990s the idea of application of guided waves to 
damage detection has been followed by many research groups, and it successfully is used in 
a lot of practical applications, especially in plates (e.g. Giurgiutiu and Bao 2004, Yu and 
Giurgiutiu 2008), pipes (e.g. Cawley and Alleyne 1996, Lowe et al. 1998, Demma et al. 
2004, Rose et al. 2009), rails (e.g. Rose et al. 2004, Lee et al. 2009), composites (e.g. Su 
et al. 2002, 2009) or aircraft structures (e.g. Dalton et al. 2001, Giurgiutiu et a. 2004). 

1.3. Aim and scope of study 

The purpose of this research is to conduct detailed experimental and numerical inves-
tigations on ultrasonic guided wave propagation in steel structures. The particular aims of 
the present study are: 
— modelling of wave propagation phenomenon in structural elements undergoing disper-

sion effects, 
— developing of numerical models for wave propagation, 
— systematic experimental verification of the developed numerical models, 
— application of the guided wave-based technique to damage detection. 

The numerical simulations of wave propagation are performed by the time domain 
Legendre spectral element method. To model longitudinal, as well as flexural wave 
propagation taking lateral deformations, shear deformations and rotational inertia effects 
into consideration, special spectral elements based on higher order theories are formulated, 
in particular the frame spectral element based on the Mindlin-Herrmann rod theory and the 
Timoshenko beam theory, as well as the extensional plate element based on the Kane-
Mindlin theory and the bending plate element based on the Mindlin theory. 

An essential part of the study is devoted to experimental investigations of wave 
propagation. Longitudinal and flexural waves are excited by means of a piezoelectric 
actuator and propagating Lamb waves are sensed by a scanning laser vibrometer. A special 
emphasis is focused on damage detection aspects. Steel structures with discontinuity of 
material and cross-section are analysed and tested. As a result, this study discusses in detail 
the possibility of damage detection in bars, frames and plates and it compares the 
usefulness of longitudinal and flexural waves in nondestructive damage detection. 

The content is organized as follows. Chapter 1 reviews structural health monitoring 
methods and describes previous researches on the application of guided waves in damage 
detection. The aim and scope of the study are also presented. 

Chapter 2 describes elastic wave propagation in structural elements. Several models 
of rods, beams and plates providing approximated description of wave motion have been 
derived. The necessity of using higher order theories when analysing waves of ultrasonic 
frequencies is demonstrated. 

The formulation of the spectral element method is introduced in Chapter 3. The 
development of time domain spectral elements for a rod, beam, frame, as well as 
extensional and bending plates is carried out. 

In Chapter 4, longitudinal, as well as flexural wave propagation in a bar is 
investigated both experimentally and numerically. In particular, detection of damage in 
various forms of discontinuity of cross-section and material is considered by analysing 
wave speeds and time of reflections in guided wave response signals. 
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Chapter 5 deals with the mode conversion occurring during longitudinal and flexural 
wave propagation in planar frames. Three types of frames, namely an L-frame, a T-frame 
and a portal frame are analysed. Guidelines for SHM systems dedicated for the considered 
frames concerning the required number of actuators and measurement points are 
formulated. 

In Chapter 6, the numerical and experimental studies of Lamb wave propagation in a 
steel plate are presented. Detection of damage in the form of rectangular surface notch is 
considered by analysing surface vibration data in the form of A-scans (waveform data plot-
ted as a function of time), B-scans (time-position scans) and C-scans (two-dimensional 
plane views at selected time instants). 

Final remarks and plans for future research are presented in Chapter 7. 
The idea of the work was initiated by the studies performed by prof. dr hab. K. Wilde, 

prof. dr hab. J. Chróścielewski, dr W. Witkowski and the author of the work within the 
confines of the project of Polish Ministry of Science and Higher Education: Multilevel 
damage detection system in engineering structures, no. N506 065 31/3149 (Wilde et al. 
2009) and some related papers (see References). The research on guided wave propagation 
in structures was continued by the author of the work resulting in some journal papers 
(Rucka 2010a, 2010b, 2011) and finally in this monograph. 

The original elements – the results of the author’s scientific research – which have not 
been published in the joint papers are: 
— the experimental and numerical analyses of possibility of damage detection in frame 

structures indicating the minimum number of actuators and measurement points re-
quired to monitor a whole frame, 

— the experimental and numerical analyses of possibility of damage detection in plates 
using B-scans and C-scans, 

— the systematic construction of spectral element method models for wave propagation 
analysis with a special emphasis on dispersion effects and the systematic experimental 
verification of effectiveness of the proposed spectral element method models, 

— the development of the time domain spectral elements for longitudinal waves in rods 
based on the refined Love and Mindlin-Herrmann theories, as well as the frame spectral 
element based on the Mindlin-Herrmann rod and Timoshenko beam theories, 

— the development of the time domain spectral element for in-plane waves in plates based 
on the higher order Kane-Mindlin theory. 

 
 
 



 

Chapter 2 

ELASTIC WAVES IN STRUCTURAL ELEMENTS 

Waves are disturbances travelling from one part of a medium to another and they are 
characterized by the transport of energy through motions of particles about a state of equi-
librium. Energy, in the forms of kinetic and potential energies, can be transmitted over long 
distances by mechanical wave motion. This chapter focuses on elastic wave propagation in 
basic structural elements of rods, beams and plates. The governing equations are derived 
and then the spectrum relations are obtained for longitudinal and flexural modes. For more 
details see books by Achenbach (1975), Doyle (1997), Giurgiutiu (2008), Graff (1975), 
Hagedorn and DasGupta (2007), Kaliski (1986), Kolsky (1953), Kosiński (1981), Love 
(1920), Nowacki (1972), Rose (1999), Victorov (1967). 

2.1. Outline of bulk and guided waves 

Mechanical waves can exist as bulk waves or guided waves. Bulk wave propagation oc-
curs in infinite media, away from boundaries in the bulk of material. In contrast, guided 
waves require a boundary for their existence. The bulk waves and the guided waves are phys-
ically different, but they are governed by the same set of partial differential equations. For the 
bulk waves, there are no boundary conditions to be satisfied, whereas the solution to a guided 
wave problem must satisfy governing equations, as well as physical boundary conditions 
(Rose 1999). In this section, guided and bulk waves are outlined. Detailed wave solutions in 
isotropic elastic continua using the theory of elasticity are derived in Appendix A. 

Two types of waves can propagate in an unbounded isotropic solid, namely P waves 
(also known as primary, pressure, compressional, extensional, dilatational, irrotational, 
axial, longitudinal waves) and S waves (a.k.a. secondary, shear, distortional, rotational, 
transverse waves). These wave types are not coupled and they can exist independently of 
each other. Figure 2.1 visualizes the wave motion of a section of unbounded solid. For the 
P wave, the particle motion is parallel to the direction of wave propagation, i.e. along the x 
axis (Fig. 2.1a). For the S wave, particle motion occurs perpendicular to the direction of 
wave propagation. The shear wave can occur with particle motion along the y axis as the 
shear vertical wave (SV wave) or with particle motion along the z axis as the shear horizon-
tal wave (SH wave), as it is shown in Fig. 2.1b and Fig. 2.1c, respectively. For isotropic 
medium, the P wave speed Pc  and the S wave speed Sc  are given by the following equa-
tions (cf. Appendix A.1): 

 
(1 )

(1 )(1 2 )P

E
c

ν
ρ ν ν

−=
+ −

, (2.1) 

 
2 (1 )S

E G
c

ρ ν ρ
= =

+
, (2.2) 
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where E  is the modulus of elasticity, ρ  is the mass density, ν  denotes the Poisson’s ratio 
and G  is the shear modulus. 

 

Fig. 2.1. Propagation of bulk waves in a section of continuum: a) P wave; b) SV wave; c) SH wave 

Another type of waves, an R wave (a.k.a. Rayleigh wave, surface guided wave), ap-
pears in semi-infinite media. For practical purposes, a structure can be perceived as semi-
infinite if the wavelength of an excitation is small with respect to its thickness. The motion 
amplitude of R waves rapidly decreases with depth. The particle motion is elliptical and 
retrograde with respect to the direction of propagation (Fig. 2.2). The R wave propagates 
along a free surface of a solid with the speed Rc  approximated by the following relation 
(cf. Appendix A.3): 

 
0.87 1.12

1R Sc c
ν

ν
+≈
+

. (2.3) 

 

Fig. 2.2. Propagation of Rayleigh wave in a section of continuum containing free surface
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Guided Lamb waves refer to wave propagation between two parallel free surfaces. The 
P waves and the SV waves, simultaneously existed in a plate, through multiple reflections 
on plate surfaces and through constructive and destructive interference give rise to the 
Lamb waves. The guided Lamb waves can exist in two types: symmetric (S0, S1, S2, …) 
and antisymmetric (A0, A1, A2,…) modes, as it is illustrated in Fig. 2.3. The symmetric 
modes are termed as longitudinal, because the average displacement over a plate thickness 
is in the longitudinal direction. For the antisymmetric modes, the average displacement is in 
the transverse direction; hence these modes are termed as the flexural modes (Achenbach 
1975). At the lowest frequencies, two basic modes S0 and A0 simultaneously exist. The 
higher frequency, the larger number of Lamb modes can simultaneously exist and in gen-
eral, infinite number of modes is associated with a guided Lamb wave problem. Interaction 
of waves with boundaries causes, that the Lamb waves are dispersive, i.e. their velocity is 
frequency dependent. The Rayleigh-Lamb frequency equations can be used to determine 
dispersion relation, i.e. the velocities at which wave of particular frequency f  propagates 
within a plate of thickness 2h d=  (see Appendix A.5): 

 
( ) ( )

( )
2

22 2

tan 4 tan
0L L L

L
L

q d k p p d

q q k
+ =

−
, (2.4) 

 ( ) ( ) ( )22 2

2

tan
tan 0

4

L L

L L
L

q k p d
q q d

k p

−
+ = . (2.5) 

Equation (2.4) is related to symmetric modes, whereas Eq. (2.5) describes antisymmetric 
modes, and parameters Lp , Lq  are given by: 

 
2

2 2
L

P

p k
c

ω⎛ ⎞
= −⎜ ⎟
⎝ ⎠

,         
2

2 2.L
S

q k
c

ω⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (2.6) 

The wavenumber k  is equal to: 

 
p

k
c

ω= , (2.7) 

where pc  is the phase velocity (a.k.a. wave speed) of the wave mode and ω  denotes the 
circular frequency. The phase velocity pc  is related to the wavelength λ  by the relation: 

 
2pc f

k

ω ω λ λ
π

= = = ,      
2

f
ω
π

= , (2.8) 

where f  denotes frequency. For Lamb waves, the phase speed, i.e. speed at which individ-
ual waves in a packet move, is not constant with respect to frequency, therefore the Lamb 
waves are dispersive. The group velocity gc  is the velocity at which the wave packet prop-
agates and it is defined as: 

 g

d
c

dk

ω= . (2.9) 
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Fig. 2.3. Propagation of plate Lamb waves: a) symmetric form of motion; 
b) antisymmetric form of motion 

 

Fig. 2.4. Propagation of shear horizontal wave in the plate: a) coordinate system and particle motion; 
b) symmetric modes; c) antisymmetric modes 
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Another type of waves occurring in plates are SH waves (shear horizontal waves). The 
particle motion of SH waves is polarized parallel to the plate surface and perpendicular to 
the direction of wave propagation (Giurgiutiu 2008). As it is shown in Fig. 2.4, the particle 
wave motion occurs along the z axis while the wave propagation occurs along the x axis. 
The SH waves can exist as symmetric (SH0, SH2,…) and antisymmetric (SH1, SH3,…) 
modes. The dispersion relation for the SH waves is given by (see Appendix A.4): 

 
2

2( ) 1 ( ) S
g S

c
c c h

h
ω η

ω
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

, (2.10) 

where / 2η π=h n  and 0, 2, 4,6,...n =  for symmetric modes and 1,3,5,7...n =  for anti-
symmetric modes. The examples of group velocity dispersion curves for Lamb modes as 
well as shear horizontal modes in a 5-mm steel plate (investigated next in Chapter 6) are 
given in Fig. 2.5. 

 

Fig. 2.5. Group velocity dispersion curves for symmetric and antisymmetric Lamb modes and shear 
horizontal modes for a plate of thickness h = 5 mm, E = 205.35 GPa, ρ = 7872 kg/m3, ν = 0.28 

Since the exact treatment of Lamb wave motion in structural elements is rather compli-
cated, several models of rods, beams and plates are derived in the following sections. These 
models provide approximated description of wave motion. However, application of higher 
order theories ensures that obtained results cover with the exact guided Lamb modes. 

2.2. Axial waves in rods 

2.2.1. Elementary rod theory 

The elementary wave theory for a thin rod assumes the presence of 1-D (one-
dimensional) uniform axial stress only and neglects the lateral contraction (Doyle 1997). 
Consider a rod of length ,L  axial stiffness EA  and mass per unit length ,Aρ  where A  
denotes the cross-sectional area. The time-varying axial displacement of the rod is denoted 
as ( , )xu x t , where x  is the spatial variable and t  denotes the temporal variable. The axial 
strain corresponding to the deformation ( , )xu x t  is given by: 
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 x
xx

u

x
ε ∂

=
∂

. (2.11) 

The kinetic energy T and the strain energy U  are formulated as follows: 

 21
2 x

L

T ρAu dx= ∫ & , (2.12) 
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L

u
U EA dx

x

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∫ . (2.13) 

The governing equation can be derived using the Hamilton’s principle (cf. Achenbach 
1975, Doyle 1977, Nowacki 1970): 

 ( )
2

1

ext 0
t

t

T U W dtδ − + =∫ , (2.14) 

where extW  is the work done by external forces ( , )xf x t : 

 ext x x
L

W f u dx= ∫ . (2.15) 

By substituting the energies (2.12) and (2.13), as well as the work of external forces (2.15) 
into the Hamilton’s principle (2.14), the governing equation can be written as: 

 
2

2
x

x x

u
EA Au f

x
ρ∂

= −
∂

&& . (2.16) 

To obtain the spectrum relation, the displacement is assumed to have the solution in 
the form: 

 ( )ˆ( , ) i kx t
x xu x t u e ω− −=∑ , (2.17) 

where the summation is over the angular frequency ω , k  denotes the wavenumber, 
1i = − , and the amplitude spectrum ˆxu  is frequency dependent. Substitution of Eq. (2.17) 

into the homogeneous differential equation of motion (2.16) yields the characteristic equa-
tion for determining k: 

 2 2k
E

ρ ω= . (2.18) 

Therefore, the spectrum relation for the elementary rod is given by the expression: 

 
o

k
c

ω= , (2.19) 

where the velocity oc E ρ=  is called the thin-rod velocity. The dispersion relation for 
the elementary rod theory is: 

 p o

E
c c

k

ω
ρ

= = = ,      g o

d E
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ρ

= = = , (2.20) 
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Fig. 2.6. Spectrum relation for the elementary, Love and Mindlin-Herrmann rod theories 
(for a steel rod of cross-section A = 6×6 mm, E = 200.11 GPa, ρ = 7556 kg/m3, ν = 0.33) 

 

Fig. 2.7. Dispersion relation for the elementary, Love and Mindlin-Herrmann rod theories 
(for a steel rod of cross-section A = 6×6 mm, E = 200.11 GPa, ρ = 7556 kg/m3, ν = 0.33): 

a) in terms of phase velocity; b) in terms of group velocity 
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where the phase velocity pc  and the group velocity gc  are constant with respect to the 
frequency and equal to the thin-rod velocity oc . Therefore, the result of the wave equation 
(2.16) is a non-dispersive signal, i.e. the signal that does not change shape as it propagates. 
The plot of the wavenumber variation with the frequency, called the spectrum relation, is 
shown in Fig. 2.6. The dispersion relation, i.e. the plot of the wave velocity against the 
frequency, is presented in Fig. 2.7. The spectrum and dispersion relations are calculated for 
a rod investigated in Chapter 4. The results of the elementary rod theory are compared with 
the exact Lamb modes calculated from Eq. (2.4). In the frequency range 0–800 kHz, pre-
sented in Fig. 2.6 and Fig. 2.7, there exist three Lamb symmetric modes (S0, S1, S2), while 
the elementary rod reveals only one propagating mode S0. Moreover, the elementary theory 
coincides with the Lamb S0 mode only at low frequencies. 

2.2.2. Love rod theory 

An improvement of the elementary one mode rod theory can be achieved by taking 
into consideration the effects of the lateral inertia. The rod not only deforms in longitu-
dinal direction, but it also contracts due to the Poisson’s ratio effect. The transverse 
strain tε  and the axial strain xxε  are connected through the relation t xxε νε= − , where 
ν  denotes the Poisson’s ratio. Such modified theory is called the Love theory after its 
investigator (Love 1920). In the Love theory, the strain energy is the same as for the 
elementary theory, given by Eq. (2.13), whereas the kinetic energy takes into account 
the component related with the lateral deformation (see Love 1920, Nowacki 1972, 
Doyle 1997): 
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∫

&
& , (2.21) 

where oJ  is the polar moment of inertia of the rod cross-section and LK  is the adjust-
able parameter, introduced after Doyle (1997). Reasoning that the lateral deformation is 
represented not sufficiently accurately in the Love theory, the kinetic energy term associ-
ated with transverse motion is modified by the parameter LK . Thus the governing differ-
ential equation becomes: 

 
2 2

2 2
2 2
x x

o L x x

u u
EA J K Au f

x x
ν ρ ρ∂ ∂

+ = −
∂ ∂

&&
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The spectrum relation for the Love theory is given by: 
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k

EA J K

ρω
ν ρ ω

= ±
−

, (2.23) 

and it is nonlinear to the frequency ω , therefore, the Love theory is characterized by 
dispersive waves, i.e. waves for which the wave speed changes with frequency, what is 
illustrated in Fig. 2.6 and Fig. 2.7. The adjustable parameter LK  was set as 1.05 in this 
example. It was determined by the method of the least squares to give the best fit with 
the exact S0 Lamb mode in the frequency range 50–300 kHz. The one mode Love model 
can give a reasonable approximation for the S0 Lamb mode; however, it should be noted, 
that the Love theory is unable to coincide exactly with the first symmetric Lamb mode 
in such wide frequency range. 
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2.2.3. Mindlin-Herrmann rod theory 

The one mode Love rod theory takes into account contraction of a rod, but it retains 
the Poisson’s ratio relation between the axial and transverse strains. A more general ap-
proach introduces the Mindlin-Herrmann theory (Mindlin and Herrmann 1952), in which 
the lateral contraction ( )ψ x,t  is assumed to be independent of the axial deformation 

( )xu x,t . The 2-D deformations xu , yu  in this theory can be approximated by (Mindlin and 
Herrmann 1952, Doyle 1997): 

 
( , , ) ( , ),

( , , ) ( , ) .
x x

y

u x y t u x t

u x y t x t yψ
≈
≈

 (2.24) 

The strains corresponding to the above deformations are: 
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x
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=
∂

,     yyε ψ= ,     xy y
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ψγ ∂=
∂

. (2.25) 

The kinetic and strain energies are, respectively: 
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∫ , (2.27) 

where I  is the moment of inertia and G  denotes the shear modulus. The constants 1
M HK −  

and 2
M HK −  are adjustable parameters set to compensate the approximate form of the dis-

placement field (2.24) and they are associated with the lateral contraction energies. Differ-
ent rules to establish the correction factors 1

M HK −  and 2
M HK −  were considered by Doyle 

(1997) and Martin et al. (1994), nevertheless due to approximate character of the consid-
ered theory, neither approach can be judged more right than the other. Marin et al. (1994) 
proposed to select 1

M HK −  and 2
M HK −  based upon comparison with the 2-D finite element 

results. In studies, in which experimental investigations are performed, the parameters 

1
M HK −  and 2

M HK −  can be chosen to give the best correspondence with the experimental 
results in the considered frequency range (Rucka 2010a, 2010b). 

The governing equations for the Mindlin-Herrmann rod theory follow from the Hamil-
ton’s principle as: 
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 (2.28) 

Spectral analysis represents the solutions ( , )xu x t  and ( , )x tψ  in the form: 

 ( )ˆ( , ) i kx t
x xu x t u e ω− −=∑ ,     ( )ˆ( , ) i kx tx t e ωψ ψ − −=∑ . (2.29) 

Substitution of Eqs. (2.29) into the homogeneous differential equations of motion (2.28) 
results in the characteristic equation for determining the wavenumber k: 
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 (2.30) 

The equation (2.30) is quadratic in respect of 2k , and therefore there are two propagating 
modes in the Mindlin-Herrmann rod theory. The first mode is characterized by decreasing 
speed with the frequency. The second mode appears above the cut-off frequency cω : 
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IK
ω
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−

. (2.31) 

The spectrum and dispersion relations for the Mindlin-Herrmann theory, given in Fig. 2.6 
and Fig. 2.7, were obtained using the parameters 1 0.68M HK − =  and 2 1.54M HK − = . The 
parameters, determined by the method of least squares, were chosen to give the best fit 
with the first and second symmetric Lamb modes in the frequency range from 50 kHz to 
500 kHz. Both modes of the Mindlin-Herrmann rod theory reveal good agreement with the 
exact Lamb modes. 

2.3. Flexural waves in beams 

2.3.1. Euler-Bernoulli beam theory 

A beam is a slender member undergoing transverse displacements, and the dynamic 
behaviour of beams is called flexural motion. The Euler-Bernoulli theory considers only the 
effects of bending moments on the dynamics of a beam and neglects any shear deformation 
as well as rotary inertia effects. In the Euler-Bernoulli theory of bending it is assumed that 
plane cross-sections initially perpendicular to the beam axis remain plane and perpendicular 
do the neutral axis during bending. The vertical deflection yu  is assumed to be constant 
through a beam thickness whereas the horizontal displacement xu  follows the assumption 
of plane sections (cf. Doyle 1997): 
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where ( , )yu x t  is the vertical deflection of the centre line. The only non-zero strain is: 
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The kinetic energy for the Euler-Bernoulli beam is defined as: 
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and the strain energy is:  
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The equation of motion for the Euler-Bernoulli beam under the transverse load ( , )yf x t  
becomes: 
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Spectral analysis represents the solution ( , )yu x t  in the form: 

 ( )ˆ( , ) i kx t
y yu x t u e ω− −=∑ , (2.37) 

which leads to the characteristic equation for determining the wavenumber k: 

 4 2 0EIk Aρ ω− = . (2.38) 

There is a one propagating mode in the Euler-Bernoulli beam and the spectrum relation is 
given by: 
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which results in a dispersive solution. 

2.3.2. Timoshenko beam theory 

The Timoshenko beam theory takes into account the effects of the shear deformation, 
as well as the rotational inertia. The 2-D displacement field xu  and yu  is approximated by 
two independent functions, namely rotation ( , )x tϕ  and vertical displacement ( , )yu x t : 
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The axial and shear strains corresponding to the deformations (2.40) are: 
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The kinetic energy T  and the strain energy U  can be stated as: 
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By employing the Hamilton’s principle, the following set of governing equations for a 
beam flexural motion can be obtained: 
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Fig. 2.8. Spectrum relation for the Euler-Bernoulli and Timoshenko beam theories 
(for a steel beam of cross-section A = 6×6 mm, E = 200.11 GPa, ρ = 7556 kg/m3, ν = 0.33) 

 

Fig. 2.9. Dispersion relation for the Euler-Bernoulli and Timoshenko beam theories 
(for a steel beam of cross-section A = 6×6 mm, E = 200.11 GPa, ρ = 7556 kg/m3, ν = 0.33): 

a) in terms of phase velocity; b) in terms of group velocity 



2.3. Flexural waves in beams 
 

25

 
1

2

1 22

,

.

yTim
y y

yTim Tim

u
K GA Au f

x x

u
EI K GA K I

xx

ϕ ρ

ϕ ϕ ρ ϕ

∂⎛ ⎞∂ − = −⎜ ⎟∂ ∂⎝ ⎠
∂⎛ ⎞∂ + − =⎜ ⎟∂∂ ⎝ ⎠

&&

&&

 (2.44) 

The constants 1
TimK  and 2

TimK  are adjustable parameters. There are different rules to estab-
lish these parameters (see Gopalakrishnan et al. 1992, Doyle 1997). Values of the parame-
ters 1

TimK  and 2
TimK  can be chosen based upon comparison with the 2-D finite element 

results or based on the comparison with the experimental results within the frequency range 
of interest. 

Spectral analysis represents solutions in the form: 

 ( )ˆ( , ) i kx t
y yu x t u e ω− −=∑ ,   ( )ˆ( , ) i kx tx t e ωϕ ϕ − −=∑ . (2.45) 

The dispersion relation for the Timoshenko beam can be found from the equation: 
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Thus, the Timoshenko theory is characterized by two propagating antisymmetric modes. 
The first mode has increasing speed with the frequency, while the second mode appears 
above the cut-off frequency cω : 
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IK
ω
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Figures 2.8 and 2.9 illustrate the spectrum and dispersion relations for both the Euler-
Bernoulli and Timoshenko beam theories and their comparisons with the exact antisymmet-
ric A0 and A1 Lamb modes calculated from Eq. (2.5). The dispersion and spectrum relations 
for the Timoshenko theory were obtained using the parameters 1 0.89TimK = , 

2
2 112 /Tim TimK K π= . These parameters were chosen to ensure the best fit with the exact A0 

and A1 Lamb modes in the frequency range 50–300 kHz. It can be seen that both modes of 
the Timoshenko beam theory reveal good agreement with the exact Lamb modes, whereas 
the Euler theory does not show the presence of the second mode and the velocity of the first 
mode differs considerably from the velocity obtained by the Timoshenko theory. 

2.4. In-plane waves in plates 

2.4.1. Plane stress theory 

Force applied normal to a plate edge results in propagation of both in-plane waves, 
namely a longitudinal wave and a shear horizontal wave, which propagate with different 
speeds. Consider a plate of surface area B  and thickness h. The plate lies in the xy  plane 
bounded by planes / 2z h= ±  and is subjected to in-plane loads ( , , )xf x y t  and ( , , ).yf x y t  
In-plane displacements xu  and yu  are assumed to be uniform across the plate thickness: 
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The normal and shear strains are: 
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The kinetic and strain energies associated with the in-plane behaviour are: 
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The governing equations for a plate in-plane motion are formulated as: 
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where xf  and yf  are the external forces in the x and y directions, respectively. 
To determine velocities of waves moving simultaneously in the x and y direction, the 

straight-crested waves are analysed. First straight-crested axial waves are considered which 
have particle motion in the direction of wave propagation. Taking the y-axis along the wave 
crest yields a y-invariant problem that depends on x variable only (cf. Giurgiutiu 2008): 
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where the particle motion is assumed to be parallel to the x-axis. Substitution of Eqs. (2.53) 
into homogeneous part of Eqs. (2.52) yields: 
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The spectrum relation for the plane stress is given by: 
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where Lc  is the longitudinal wave speed in a plate. As in the case of the elementary rod, the 
phase velocity pc  and the group velocity gc  are constant with respect to the frequency and 
equal to the longitudinal wave velocity Lc , therefore the resulting waves are non-
dispersive. The second considered type of waves are straight-crested shear waves. In this 
case particle motion is perpendicular to the direction of wave propagation. Taking the y-
axis along the wave crest yields a y-invariant problem that depends on x only: 
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where the particle motion is assumed to be parallel to the y-axis. Substitution of Eqs. (2.56) 
into homogeneous part of Eqs. (2.52) yields: 
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The spectrum relation for the plane stress theory can be expressed as: 

 Sk G cω ρ ω= = ,      Sc G ρ= , (2.58) 

where Sc  is the shear wave speed. The phase velocity pc  and the group velocity gc  are 
constant with respect to the frequency and equal to the shear wave velocity Sc , thus the 
resulting waves are non-dispersive. 

2.4.2. Kane-Mindlin plate theory 

In-plane waves in plates described by the equations of the plane stress theory provide 
non-dispersive signals. An improvement of the plane stress theory can be achieved by in-
cluding the thickness-stretch effect. Kane and Mindlin (1956) developed a higher order 
plate theory, which takes into account coupling between extensional motion and the first 
mode of thickness vibration. The 3-D components of displacements (in-plane displace-
ments xu , yu  and out-of-plane displacement zu ) in the Kane-Mindlin theory are approxi-
mated by the relations: 
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The strains corresponding to the above deformations are: 
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The formulae for the kinetic and strain energies become: 
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Fig. 2.10. Spectrum relation for the plane stress and Kane-Mindlin plate theories 
(for a steel plate of thickness h = 5 mm, E = 205.35 GPa, ρ = 7872 kg/m3, ν = 0.28) 

 

Fig. 2.11. Dispersion relation for the plane stress and Kane-Mindlin plate theories 
(for a steel plate of thickness h = 5 mm, E = 205.35 GPa, ρ = 7872 kg/m3, ν = 0.28): 

a) in terms of phase velocity; b) in terms of group velocity 
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where Λ , G  are the Lamé constants. Substituting these energies into the Hamilton’s prin-
ciple, the governing equations for the Kane-Mindlin theory can be derived: 
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where xf  and yf  are the external forces in the x and y directions, respectively. The con-
stant KMκ  was inserted in the expression for the strain energy to compensate for the ap-
proximation of displacement field given by Eq. (2.59). Kane and Mindlin (1956) chose the 
value of KMκ  as / 12π  by equating the frequency of pure thickness vibration obtained 
from the plate equation of motion with the corresponding frequency obtained from three-
dimensional equations. 

Analysis of the straight-crested axial waves: 
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gives the dispersion relation in the form of the following equation: 
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The equation (2.65) is quadratic in 2k , thus the Kane-Mindlin theory is characterized by 
two axial propagating modes S0 and S1. Both modes are dispersive. The first mode reveals 
decreasing speed with frequency, while the second mode appears above at the cut-off fre-
quency cω  given by the relation: 
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Analysis of the straight-crested shear waves: 
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gives the dispersion relation for the non-dispersive shear wave: 
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The spectrum and dispersion relations for the plane stress and the Kane Mindlin theo-
ries are compared with the Lamb modes in Fig. 2.10 and Fig. 2.11 (for a steel 5 mm thick 
plate investigated next in Chapter 6). The plane stress theory models two modes: the 
fundamental extensional mode and the fundamental shear horizontal mode. The shear 
horizontal mode is the SH0 mode but the extensional mode only approximates the exact 
S0 mode at low frequencies, because it reveals a non-dispersive character. For the 
Kane-Mindlin theory three modes exist, namely the first and second extensional modes 
and the fundamental SH0 mode. Two extensional modes of the Kane-Mindlin theory 
correctly approximate the dispersion behaviour of the S0 and S1 Lamb modes. In 
Figs. 2.10 and 2.11, the parameter KMκ  in the Kane-Mindlin theory was chosen as 0.73 to 
give the best compatibility with the exact Lamb mode for the frequency range 50–300 kHz. 

2.5. Flexural waves in plates 

2.5.1. Kirchhoff plate theory 

Flexural waves in a plate appear as a result of bending action. The plate lying in the xy 
plane is subjected to the transverse load ( , , )zf x y t  in the z direction. The Kirchhoff theory 
assumes that the transverse shear deformation is negligible. It is also assumed, that plane 
sections remain plane and perpendicular to the mid-plane after deformation. For flexural 
motion, the 3-D in-plane displacements xu , yu  and out-of-plane displacement zu  are ap-
proximated by the following relations: 
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The normal and shear strains corresponding to the deformations (2.69) are: 
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The kinetic energy and the strain energy for the out-of-plane flexural behaviour become: 
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where D  denotes the plate flexural rigidity: 
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The governing equation for plate flexural motion is formulated as: 
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For determination of the spectrum relation, the straight-crested flexural plate waves 
are considered. Taking the y-axis along the wave crest yields a y-invariant problem depend-
ing on x only (Giurgiutiu 2008): 
 ( , , ) ( , )z zu x y t u x t→ . (2.75) 

The dispersion relation can be found from the following equation: 

 4 2 0Dk hρ ω− = . (2.76) 

There is one propagating mode in the Kirchhoff plate theory and the spectrum relation is 
obtained as: 
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which results in dispersive solution. 

2.5.2. Mindlin plate theory 

The Mindlin plate theory (Mindlin 1951) takes the shear deformation and the effects of 
rotatory inertia into account. The 3-D displacements xu , yu  and zu  at any location z in the 
plate thickness can be approximated by: 
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where xψ  and yψ  are the rotations of the mid-plane and zu  is the transverse (out-of-plane) 
displacement of the plate mid-plane. The normal and shear strains corresponding to above 
deformations become: 
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The kinetic and strain energies are: 
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The flexural motion of a Mindlin plate is governed by the following three equations: 
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where κ  is a shear correction factor set by Mindlin (1951) as / 12κ π=  by matching the 
cut-off frequency of the plate flexural mode with the second antisymmetric mode of 3-D 
elastic theory. 

Analysis of straight-crested flexural plate waves: 
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gives the spectrum relation in the form of the following equation: 
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Fig. 2.12. Spectrum relation for the Kirchhoff and Mindlin plate theories 
(for a steel plate of thickness h = 5 mm, E = 205.35 GPa, ρ = 7872 kg/m3, ν = 0.28) 

 

Fig. 2.13. Dispersion relation for the Kirchhoff and Mindlin plate theories 
(for a steel plate of thickness h = 5 mm, E = 205.35 GPa, ρ = 7872 kg/m3, ν = 0.28): 

a) in terms of phase velocity; b) in terms of group velocity 
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There exist two propagating flexural modes. The second mode appears above cut-off fre-
quency cω : 
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Analysis of straight-crested shear waves: 
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gives the spectrum relation for the dispersive shear wave (SH2 mode): 
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which appears above the cut-off frequency cω : 
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Spectrum and dispersion relations for the Kirchhoff and Mindlin plate theories are pre-
sented in Fig. 2.12 and Fig. 2.13, respectively. For the Kirchhoff plate theory, only one 
propagating flexural mode exists. The dispersion relation shows that only for low frequen-
cies the Kirchhoff theory agrees with the first antisymmetric Lamb mode (A0 mode). For 
the higher frequencies, velocity of the first mode based on the Kirchhoff theory differs 
considerably from the velocity of the Lamb A0 mode. The Mindlin theory provides three 
modes: two antisymmetric modes (A0 and A1) and one shear mode (SH2). These three 
modes reveal good agreement with the exact Lamb modes. The parameter κ  for the 
Mindlin plate theory was determined by the method of least squares and its value was set to 
0.94. This value ensures the best compatibility to the exact Lamb modes for the frequency 
range 50–300 kHz. 

2.6. Summary and conclusions 

In this chapter, a review of elastic wave propagation in structural elements has been 
conducted. Several models of rods, beams and plates, providing approximated description 
of wave motion, have been derived. The necessity of using higher order theories when 
analysing ultrasonic frequency ranges has been demonstrated. It was found that approxi-
mated higher order theories can adequately account for dispersive behaviour of the lowest 
symmetric and antisymmetric modes over the substantial range of frequencies in bars and 
plates. 

Damage detection should be based on single wave propagation mode, if possible, be-
cause existence of a few modes complicates localization of defects. Therefore, an effort 
should be made on the development of an approximate description of wave motions that 
provides the first mode behaviour compatible with the exact Lamb mode.  
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The elementary rod theory gives non-dispersive wave results, thus it coincides with the 
first symmetric Lamb-wave mode only at low frequencies. The Love model provides a 
reasonable approximation for the first symmetric mode (S0 mode), however this theory 
reveals a drawback, when the spectral element method is used, which will be discussed in 
Chapter 3. Therefore, the Mindlin-Herrmann theory is suggested to be used in damage 
detection systems, because it has excellent the S0 mode behaviour. When analysing flexural 
waves in beams, the Timoshenko beam theory should be used instead of the Euler-
Bernoulli theory. In the case of in-plane wave propagation in plates, the plane stress theory 
cannot describe dispersion. Similarly, for flexural motion in plates the Kirchhoff theory is 
applicable only for low frequencies. Higher order theories: the Kane-Mindlin theory for in-
plane waves and the Mindlin theory for flexural waves yield very good convergence with 
the exact Lamb modes over a substantial range of frequencies. 

 
 
 
 
 



 

Chapter 3 

SPECTRAL ELEMENT METHOD 

Modelling of wave propagation in structural elements and structures has been the 
subject of intensive investigations over the years. Many analytical techniques have been 
developed for treating wave motion. However, wave propagation in engineering objects 
with aspects of complex geometry, connection of members, boundaries and discontinuities 
is still an open area of research. 

It is possible to model wave propagation phenomena in both time and frequency 
domains. One of efficient frequency-based methods is the spectral finite element method 
(SFEM) developed by Doyle (1988) for longitudinal wave propagation in an elementary 
rod. Doyle and Farris presented spectral element formulation of flexural waves in an Euler-
Bernoulli beam (Doyle and Farris 1990a) and 3-D frame structures (Doyle and Farris 
1990b). Spectral elements in the frequency domain for higher order Mindlin-Herrmann rod 
and Timoshenko beam theories were developed by Martin et al. (1994) and Gopalakrishnan 
et al (1992). The book of Doyle (1997) gives a broad reference on spectral analysis of wave 
propagation in structures. The SFEM technique is based on a Fourier spectral analysis. 
Here the spectral analysis denotes working in terms of the spectrum (Doyle 1997). In this 
method, the assembled system of equations is solved in the frequency domain and the 
inverse fast Fourier transform is utilized to convert the frequency domain results back to the 
time domain. The SFEM utilizes the exact solution of differential equations governing a 
problem, therefore the distribution of mass and rotational inertia of a structural element is 
exact. Very few elements are required to model the system, because only one spectral 
element needs to be placed between any two joints, which substantially reduces the total 
number of degrees of freedom in a system. To handle local regions of non-uniformity, the 
spectral finite element method can be extended by the introduction of a super-element 
(Gopalakrishnan and Doyle 1995). Numerical analyses of wave propagation by the SFEM 
in an isotropic cracked rod, a cracked beam and a plate with a crack can be found in papers 
by Krawczuk et al. (2003, 2004, 2006a, 2006b), Ostachowicz (2008), Palacz and Krawczuk 
(2002). The SFEM were extended by Gopalakrishnan et al. (2008) to anisotropic media. 
Other papers concerning wave propagation in composite media are directed to analysis of 
laminated composite beams (e.g. Mahapatra et al. 2000, Mahapatra and Gopalakrishnan 
2003, Palacz et al. 2005b), composite beams with delaminations and inclusions (e.g. 
Chakraborty et al. 2002, Mahapatra and Gopalakrishnan 2004, Palacz et al. 2005c) or 
laminated composite plates (e.g. Chakraborty and Gopalakrishnan 2005, 2006). The main 
disadvantage of the SFEM is the fact that the method is effective only to a few cases where 
the exact solutions can be found to the governing equations. In 2-D and 3-D domains of 
arbitrary geometries, the solution of wave equations is almost impossible and therefore the 
method cannot be used in the general sense (Gopalakrishnan 2000). Moreover, in the 
SFEM mainly infinite and semi-infinite elements are considered, because the use of the fast 
Fourier transform (FFT) always provides periodicity. To overcome these drawbacks of the 
conventional Fourier-based SFEM, Mitra and Gopalakrishnan (2005, 2006) proposed the 
use of the wavelet transform instead of the Fourier transform. Igawa et al. (2004) applied 
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the Laplace transform to avoid the problem of periodicity, which made the analysis of 3-D 
frame structures with finite-length beams based on the Euler-Bernoulli theory possible. 

Modelling of wave propagation can also be performed in the time domain by the finite 
element method (FEM), see e.g. papers by Moser et al. (1999), Kishore  et al. (2000), Hill 
et al. (2004), Bartoli et al. (2005) or Gao et al. (2006). The advantage of this approach is the 
availability of numerous commercial FEM codes, e.g. ANSYS (Gao et al. 2006, Moser et 
al. 1999), ABAQUS EXPLICIT (Bartoli et al. 2005), PAFEC-FE (Hill et al. 2004) and its 
great ability to analyse structures with complicated geometry. However, the application of 
the FEM to model wave propagation requires very fine mesh, i.e. it is recommended to use 
more than 20 nodes per the shortest wavelength (Moser et al. 1999). The improvement of 
the finite element method accuracy may follow two main strategies, either by decreasing 
the element size h remaining the polynomial order fixed (h-refinement) or by increasing the 
degree p of the polynomial remaining the element size fixed (p-refinement), cf. Bathe 
(1996), Boyd (2000), Campion and Jarvis (1996), Stein et al. (2004), Zienkiewicz  and 
Taylor (2000a). The combination of both above refinement approaches is classified as h-p-
refinement (see Zienkiewicz et al. 1989, Babuška and Suri 1990, Szabó 1990). Low order 
(p = 1, 2) h-type elements exhibit an algebraic convergence to the exact solution, i.e. the 
error is proportional to 1/ pN , where N  is the number of degrees of freedom in the model. 
Finite elements of h-type are preferred for their computational efficiency; however, in 
structural dynamics they have a serious deficiency in that they propagate elastic waves 
poorly (Sprague and Geers 2008). Standard p-elements have Lagrange shape functions 
defined over equispaced nodes and they show higher convergence rate than the h-type 
version. The p- and h-p methods can yield a highly desirable exponential rate of 
convergence with the error proportional to 1/ exp( )Nθα , where α  and θ  are positive 
constants (Stein et al. 2004). The exponential convergence is also referred to as spectral 
convergence or infinite-order accuracy. 

An expansion of the FEM is the time domain spectral element method (SEM) 
introduced by Patera (1984) in computational fluid mechanics. The SEM has the same 
viewpoint, as the p-version of the FEM, i.e. the main idea of the SEM is to use an 
interpolating polynomial of high degree. The term spectral means here that the numerical 
error decreases faster than any power of 1/ p , where p is the order of the polynomial 
expansion (Pozrikidis 2005). The SEM combines the accuracy of the global spectral 
methods with the ability of the FEM to solve problems involving complicated geometries. 
The essential difference between the p-version of the FEM and the SEM lies in the choice 
of interpolation nodes (cf. Canuto et al. 1998). In the spectral element method, the element 
interpolation nodes are placed at the zeros of an appropriate family of orthogonal 
polynomials (Pozrikidis 2005). There are two main approaches in the SEM. The first 
approach, called the Legendre spectral element method, employs Lagrange polynomials as 
shape functions applied at the Gauss-Legendre-Lobatto (GLL) nodes (e.g. Komatitsch and 
Vilotte 1998, Komatitsch et al. 1999, 2001, Kudela et al. 2007a, 2007b, Tromp et al. 2008, 
Chróścielewski et al. 2009, Rucka 2010a). As a consequence of the choice of the Lagrange 
interpolants at the GLL points in conjunction with the GLL integration rule, the element 
mass matrix is exactly diagonal by construction (Komatitsch et al. 2001). In the second 
approach, called the Chebyshev spectral element method, element shape functions are based 
on the Chebyshev polynomials and they pass through the Chebyshev-Gauss-Lobatto nodes 
(e.g. Dauksher and Emery 1997, 1999, 2000, Patera 1984, Sridhar et al. 2006). The element 
matrices are evaluated using the Gauss-Legendre integration, which provides a non-
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diagonal mass matrix. To obtain diagonal mass matrix, the diagonalization scheme based 
on a row-summing procedure can be applied, as proposed by Dauksher and Emery (1997). 

Spectral elements in the time domain are available for structural elements: elementary 
rods and beams (Kudela et al. 2007a), bending plates (Kudela et al. 2007b, Chróścielewski 
et al. 2010) or plane stress problems (Sridhar et al. 2006, Żak et al. 2006a, 2006b, 
Chróścielewski et al. 2011). An analysis of wave propagation in 3-D truss and 3-D frame 
structures is given in papers by Chróścielewski et al. (2009) and Witkowski et al. (2009). 
Peng et al. (2009) developed a 3-D spectral element and they used it to analysis of wave 
propagation in plates. A spectral element formulation for wave propagation in rods, beams 
and frames based on higher order theories was presented by Rucka (2010a, 2010b). Rucka 
(2011) developed a spectral plate element based on a higher order extensional plate theory. 

The aim of the present chapter is to develop a numerical tool in the form of the 
Legendre spectral element method. Novel spectral elements based on higher order rod 
theories (the Love rod theory and the Mindlin-Herrmann rod theory), as well as on the 
higher order Kane-Mindlin extensional plate theory are formulated. A family of computer 
programs incorporating the developed spectral element method formulation for wave 
propagation problems has been written in MATLAB® (for bars and frames) and in 
FORTRAN (for plates). In comparison with the classical FEM, beside the aforementioned 
fact that the mass matrix is diagonal, which allows to reduce significantly the algorithm 
cost, the very important advantage of the SEM is the possibility of reduction in grid points, 
i.e. in the SEM the required number of nodes per the shortest wavelength is of order of 10 
or less. 

3.1. General formulation of the spectral element method 

The spectral element method formulation discussed in this study is based upon a weak 
formulation of equations of motion. Following classical steps the weak formulation (here: 
the principle of virtual work) is obtained in the form (cf. Fung 1965, Reddy 2002): 

 kin damp int ext 0,W W W W Wδ δ δ δ δ= + + − =  (3.1) 

 0,
f

T T T T T
d b sW d d d d dδ δ ρ δ η δ δ δ

Ω Ω Ω Ω ∂Ω

= Ω + Ω + Ω − Ω − ∂Ω =∫ ∫ ∫ ∫ ∫u u u u ε Eε u f u f&& &  (3.2) 

where u  and ε  are displacements and strains, δu  and δε  are corresponding virtual dis-
placements and virtual strains, bf  are body forces, sf  are surface tractions, E  denotes the 
stress-strain matrix of the material, ρ  is the mass density and dη  is a damping property 
parameter. The solution domain is denoted as Ω  and its part of the boundary on which the 
surface forces are predescribed is denoted as f∂Ω . In the SEM, the domain Ω  can be 
approximated as a sum of eln  nonoverlaping elements ( )eΩ , i.e. 1 ( )

eln
e e=Ω ≈ ΩU  and 

( ) ( )i jΩ ∩ Ω = ∅  for i j≠ . Finite element approximations to displacements, virtual dis-
placements, strains and virtual strains are denoted by (cf. Bathe 1996, Hughes 2000, Liu 
and Quek 2003, Zienkiewicz and Taylor 2000a, 2000b): 

 ( )( , ) ( ) ( )et t=u x H x q ,     ( )( ) ( ) eδ δ=u x H x q , (3.3) 

 ( )( , ) ( ) ( )et t=ε x B x q ,     ( )( ) ( ) eδ δ=ε x B x q . (3.4)  
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In the above, ( ) ( )e tq  is the vector of element nodal displacements, ( )H x  is the matrix of 
interpolation functions (a.k.a. shape function matrix) of an element and ( )B x  is the strain-
displacement transformation matrix given by the following relation: 

 ( ) ( )=B x DH x , (3.5) 

where D  is the differential operator matrix. Substitution of Eqs. (3.3) and (3.4) into Eq. 
(3.2) provides the following set of equations on the local element level: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )e e e e e e e+ + =M q C q K q p&& & , (3.6) 

where ( )eK , ( )eC  and ( )eM  are the stiffness, damping and mass element matrices, and ( )ep  
is the vector of external forces acting on nodes of an element: 

 
( )

( )

e

T
e dρ

Ω

= Ω∫M H H , (3.7) 

 
( )

( )

e

T
e d dη

Ω

= Ω∫C H H , (3.8) 

 
( )

( )

e

T
e d

Ω

= Ω∫K B EB , (3.9) 

 
( ) ( )

( )

e f e

T T
e b sd d

Ω ∂Ω

= Ω + ∂Ω∫ ∫p H f H f . (3.10) 

Then the system of equations of motion is built in the course of standard aggregation of 
element matrices and vectors referred to the structural coordinate system: 

 ( )1

eln

ee
A =

=M M ,  ( )1

eln

ee
A =

=C C ,  ( )1

eln

ee
A =

=K K ,  ( )1

eln

ee
A =

=p p , (3.11) 

giving the global equations of equilibrium: 

 + + =Mq Cq Kq p&& & . (3.12) 

3.1.1. Definition of element nodes 

In the spectral element method approach, the choice of the coordinates of the element 
nodes plays a crucial rule. As it will be shown in this chapter, the appropriate distribution of 
element nodes can provide a diagonal mass matrix and avoid the Runge effect that occurs 
for high-order elements in the case of evenly distributed nodes. In this work, Legendre type 
spectral elements are studied, for which the 1n N= +  element interpolation nodes are 
defined in the parent (natural) coordinate system [ 1, 1]ξ ∈ − +  as the roots of the following 
equation (see Hilderbrand 1956, Canuto et al. 1998): 

 2 ( )
(1 ) 0NdP ξ

ξ
dξ

− = , (3.13) 

where NP  denotes the orthogonal Legendre polynomial of degree N. The first few members 
of the family of Legendre polynomials are (cf. Hilderbrand 1956, Pozrikidis 2005): 
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Fig. 3.1. Graphs of Lobatto polynomials LN for N = 1, 3, 5, 9 in the parent domain 

 

Fig. 3.2. Distribution of Gauss-Lobatto-Legendre element interpolation nodes: a) in one-dimensional 
elements with 3, 7, 11, 15 nodes; b) in two-dimensional elements with 7×7 nodes and 11×11 nodes 
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( ) ( )
( ) ( )

( )

0 1

2 31 1
2 32 2

2 4 3 51 1
4 58 8

2

( ) 1,                                    ( ) ,

( ) 1 3 ,                  ( ) 3 5 ,

( ) 3 30 35 ,       ( ) 15 70 63 ,

1
( ) 1 .

2 !

N N

N N N

P P

P P

P P

d
P

N d

ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ

ξ ξ
ξ

= =

= − + = − +

= − + = − +

⎡ ⎤
= −⎢ ⎥

⎣ ⎦

 (3.14) 

The derivatives of Legendre polynomials NP  define the Lobatto polynomials NL : 

 1( ) ( ) ,N NL dP dξ ξ ξ− =  (3.15) 

 

( ) ( )
( ) ( )

0 1

2 31 1
2 32 8

2 4 3 51 1
4 58 8

2

1

( ) 1,                                             ( ) 3 ,

( ) 3 15 ,                         ( ) 60 140 ,

( ) 15 210 315 ,          ( ) 210 1260 1386 ,

1
( )

2 ( 1)!

N

N N

L L

L L

L L

d
L

N

ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ

ξ
+

+

= =

= − + = − +

= − + = − +

=
+

2 1
2

( 1) ,N
Nd

ξ
ξ

+
+ −

 (3.16) 

which explains why this approach is also known as the Lobatto SEM. Therefore, the 
Eq. (3.13) can be rewritten for the one-dimensional problem in the parent domain with 
variable [ 1, 1]ξ ∈ − +  as: 

 2
1(1 ) ( ) 0Nξ L ξ−− = , (3.17) 

or in the two-dimensional problem in the natural coordinate system with variables 
[ 1, 1]ξ,η ∈ − +  as: 

 2
1(1 ) ( ) 0Nξ L ξ−− = ,   2

1(1 ) ( ) 0NLη η−− = . (3.18) 

Figure 3.1 presents the Lobatto polynomials of degree N = 1, 3, 5, 9. Zeros of the 
Lobatto polynomials determine the localization of 2n −  intermediate element interpolation 
nodes. The location of the first and the last node is fixed as 1 1ξ = −  and 1nξ = . 
Distribution of the GLL element interpolation nodes in one- and two-dimensional elements 
is illustrated in Fig. 3.2. Note that the GLL nodes are non-uniformly distributed, and the 
concentration of nodes reveals at the element ends. 

3.1.2. Definition of shape functions 

In the presented Legendre SEM formulation, all vector variables are interpolated using 
Lagrange interpolation. The Lagrange polynomial of degree N  is defined by: 

 
1

1,

( )
N

k
a

k k a a k

H
ξ ξξ
ξ ξ

+

= ≠

−
=

−∏ ,   1, 2, , 1a N= +L , (3.19) 

and satisfies the properties (cf. Hilderbrand 1956): 

 ( )a k akH ξ δ= ,    
1

1

( ) 1
N

a
a

H ξ
+

=
=∑ , (3.20) 
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Fig. 3.3. Graphs of Lagrange interpolation functions of degree N = 4 and degree N = 10: 
a) evenly spaced nodes; b) GLL nodes 

 

Fig. 3.4. Graphs of selected Lagrange interpolation functions of degree N = 10 and degree N = 20: 
a) evenly spaced nodes; b) GLL nodes 
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where akδ  is the Kronecker delta. In the case of the two-dimensional problem, the shape 
function can be expressed by: 
 ( , ) ( ) ( )a r sH H Hξ η ξ η= , (3.21) 

where ( )rH ξ  and ( )sH η  are the one-dimensional shape functions described by Eq. (3.19). 
A function of interest, can be approximated with the Nth degree interpolating polyno-

mial. It can be constructed in terms of specified unknown nodal values and the Lagrange 
polynomials as (cf. Hilderbrand 1956, Liu and Quek 2003): 

 
1

1

( ) ( )
N

a a
a

z H zξ ξ
+

=
= ∑ ,    

1

1

( , ) ( , )
N

a a
a

z H zξ η ξ η
+

=
= ∑ . (3.22) 

Figure 3.3 presents the Lagrange interpolation functions over the parent domain for 
data sets of 5n =  and 11n =  evenly distributed and GLL nodes. For low-order polynomi-
als (here of order 4N = ), the evenly spaced nodes can ensure the accurate interpolation. 
However, as the number of nodes is raised (for example to 11n = , as it is shown in 
Fig. 3.3a), the oscillation near the ends occurs if evenly spaced nodes are used. This phe-
nomenon is called the Runge effect and it may lead to an unreliable solution because the 
mass matrix for the evenly distributed nodes is significantly worse conditioned for polyno-
mial orders higher than 5 (Pozrikidis 2005). This effect does not appear when the GLL 
nodes are used. The application of the GLL nodes guarantees that the values of Lagrange 
polynomials of any order N  spanned over n  GLL nodes do not exceed one (see Fig. 3.3b), 
which ensures the reliability of the spectral element results. 

 

Fig. 3.5. An 81-node spectral finite element in the parent domain and selected shape functions 
N45(ξ,η) and N51(ξ,η) 

Selected Lagrange interpolants ( )aH ξ  associated with the ath abscissa are shown in 
Fig. 3.4 for the one-dimensional case. The abscissa was chosen as 0ξ = . It can be seen, 
that the Lagrange polynomial spanned over evenly spaced nodes achieves the largest values 
at the element ends, while the Lagrange polynomial spanned over the Gauss-Lobatto-
Legendre nodes coincides to zeros at the element ends and achieves the largest values for 
the middle node. Figure 3.5 presents selected Lagrange interpolants 45( , )H ξ η  and 

51( , )H ξ η  for a two-dimensional element having 9 9×  GLL nodes. 
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3.1.3. Integration quadratures 

To evaluate element matrices (3.7) to (3.10), numerical integration is employed. In the 
classical finite element method, the Gauss-Legendre quadrature is usually used. The 
distribution of 1n N= +  integration points in the Gauss-Legendre integration quadrature is 
determined as the roots of the Legendre polynomial of order n  (e.g. Hilderbrand 1956): 

 ( ) 0nP ξ = , (3.23) 

while the corresponding weights are found from the equation: 

 
[ ]

2

22
1

2(1 )

( 1) ( )
r

r

n r

w
n P

ξ
ξ+

−
=

+
. (3.24) 

In this quadrature, n  points enable to integrate exactly a polynomial of order (2 1)n − , 
thus the mass and stiffness matrices are integrated exactly if the number of 
interpolation nodes equals the number of integration points. 

As an alternative, the Gauss-Legendre-Lobatto quadrature (also known as the Lo-
batto quadrature) may be used. The coordinates of the Gauss-Lobatto-Legendre integra-
tion points rξ  are obtained as the roots of the Legendre polynomial according to Eq. (3.13) 
and the associated weights rw  are found from: 

 
[ ]2

2

( 1) ( )
r

N r

w
N N P ξ

=
+

,    1, 2,..., rr n n= ≡ . (3.25) 

In the GLL integration quadrature, the integration points are the same as the element inter-
polation nodes. Due to the Gauss-Lobatto-Legendre rule, interpolation carried out over 
the GLL nodes leads to a diagonal local mass matrix. In both stiffness and mass matrices 
the same shape functions are used for displacement field interpolation, therefore the result-
ing matrices are called consistent (Cook et al. 1989). However, in the GLL quadrature, n  
points enable to integrate exactly a polynomial of order (2 3)n − . Thus the stiffness matrix 
is integrated exactly while the mass matrix is integrated non-exactly, and the mass 
lumping present in this approach arises from the inexact integration of the element mass 
matrix (Pozrikidis 2005). Diagonal mass matrix integrated in such a way is said to be opti-
mally lumped (Cook et al. 1989). 

3.1.4. Time integration 

Time integration is performed in the standard form (e.g. Weaver and Johnston 1987, 
Bathe 1996, Hughes 2000, Chopra 2001). The initial-value problem for the system of ordi-
nary differential equations (3.12) consists of finding a displacement ( )t=q q  satisfying 
(3.12) and the given initial conditions: 

 0( 0)t = =q q ,  0( 0)t = =q q& & . (3.26) 

It is assumed, that the solution of the equation of motion (3.12) is satisfied only at discrete 
time intervals 1i it t t+Δ = −  apart as ( )i it≡q q . 
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3.1.4.1. The central difference method 

The central difference method is based on a finite difference approximation of the time 
derivatives of the displacement: 

 1 1

2
i i

i t
+ −−

=
Δ

q q
q& ,   1 1

2

2i i i
i

t
+ −− +

=
Δ

q q q
q&& . (3.27) 

The displacement solution for time 1i +  is obtained by considering Eq. (3.12) at time i: 

 i i i i+ + =Mq Cq Kq p&& & . (3.28) 

Substituting the velocity and acceleration expansions (3.27) into (3.28) yields the following 
equation for solution 1i+q : 

 1 12 2 2

1 1 2 1 1

2 2i i i it tt t t
+ −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ ΔΔ Δ Δ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
M C q p K M q M C q . (3.29) 

The above procedure is called an explicit integration method, because the solution 1i+q  is 
based on the equilibrium conditions at time i. The central difference method is condition-
ally stable and it requires the time step tΔ  to be smaller than the critical value crtΔ : 

 
2

cr
n

t t
ω

Δ ≤ Δ = , (3.30) 

where the nω  is the largest frequency of an assembled finite element mesh with n degrees 
of freedom. Therefore, for solutions of wave propagation problems, a relatively small time 
step must be used. In this study a damping matrix is assumed, after Kudela et al. (2007a), as 
proportional with respect to the mass matrix dη=C M , with a damping parameter dη . 
Hence, if the mass matrix is diagonal, as a result of using the GLL quadrature, time integra-
tion can be efficiently conducted. In such case, Eq. (3.29) reduces to 

 12

1
ˆ

2
d

i itt

η
+

⎛ ⎞+ =⎜ ⎟ΔΔ⎝ ⎠
Mq p , (3.31) 

where ˆ ip  is the effective load vector: 

 12 2

2 1
ˆ

2
d

i i i itt t

η
−

⎛ ⎞⎛ ⎞= − − − −⎜ ⎟ ⎜ ⎟ΔΔ Δ⎝ ⎠ ⎝ ⎠
p p K M q Mq . (3.32) 

To solve displacements 1i+q , the inverse of the mass matrix is not required and only matrix 
multiplications are used to obtain the vector ˆ ip . The displacement components are obtained 
as: 

 
2

1
2

2

k
k i
i kk

d

p t
q

tM η+
⎛ ⎞Δ= ⎜ ⎟+ Δ⎝ ⎠

, (3.33) 

where 1
k
iq +  and k

ip  are the kth components of the vectors iq  and ˆ ip , respectively, and 
kkM  denotes the kth diagonal element of the mass matrix M . 
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3.1.4.2. The Newmark method 

In the Newmark method (Newmark 1959) the solution at the time instant 1it +  consists 
of the following approximations: 

 1 1 1 1(1 )i i i i i iΔt γ Δtγ Δtγ+ + + += + − + = +q q q q v q& & && && &&% , (3.34) 

 2 2 21
1 1 1 12( ) (1 2 ) ( ) ( )i i i i i i iΔt Δt β Δt β Δt β+ + + += + + − + = +q q q q q d q%& && && && , (3.35) 

where γ  and β  are parameters specifying various integration schemes. These parameters 
are responsible for the stability and the accuracy of the integration scheme. In this study 
two methods are considered. The first one is the implicit average acceleration rule with the 
following values 1/4β = , 1/2γ=  that guarantee unconditional stability. The second method 
is the central difference scheme with 0β = , 1/2γ= . This method is explicit, when matrices 
M  and C  are diagonal. To obtain a solution for the displacements, velocities and accelera-
tions at time 1it + , the equilibrium equation (3.12) at time 1i +  is considered: 

 1 1 1 1i i i i+ + + ++ + =Mq Cq Kq p&& & . (3.36) 

Substituting (3.34) and (3.35) to (3.36) leads to the following equation with respect to ac-
celerations 1i+q&&  as the unknowns: 

 2
1 1 1 1( ) i i i iΔtγ Δt β + + + +⎡ ⎤+ + = − −⎣ ⎦M C K q p C v K d%&& % , (3.37) 

 1 1 1i i i+ + += −Mq p j%% && ,   1 1 1 1( , , )i i i i i i i+ + + += = +j j q q q C v K d% % %& && % . (3.38) 

It is known as the a-form. To obtain 1i+q&&  it is necessary to compute: 

 
11 2( )Δtγ Δt β

−− ⎡ ⎤= + +⎣ ⎦M M C K% . (3.39) 

The mass and damping matrices are diagonal in the Legendre SEM, but the problem re-
mains with the stiffness matrix K  due to the fact that it is of full structure by definition. In 
order to devise fast and efficient time integration scheme with diagonal matrices M  and 
C , useful in practical analysis of wave propagation analysis, it is reasonable to rephrase 
(3.36) in terms of vectors of internal forces r  (cf. Chróścielewski et al. 2009): 

 1 1 1 1( )i i i i+ + + ++ = −Mq Cq p r q&& & . (3.40) 

Here 1( )i+r q  is found directly from the equation: 

 ( )
T

e d
Ω

= Ω∫r B Eε , (3.41) 

 ( )1

eln

ee
A =

=r r , (3.42) 

and therefore, the stiffness matrix K  is not necessary in the time integration scheme. Due 
to the presence of 1i+q  on the right hand side of (3.40) the scheme is implicit, and therefore 
requires iteration. Substitution of iterative notation i.e. 

 ( 1) ( )
1 1

j j
i i δ+
+ += +q q q&& && && , (3.43) 
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 ( 1) ( ) ( )
1 1 1[(1 ) ]j j j

i i i i iΔt γ γ Δtγδ Δtγδ+
+ + += + − + + = +q q q q q q q& & && && && & && , (3.44) 

 ( 1) 2 ( ) 2 ( ) 21
1 1 12 ( ) [(1 2 ) 2 ] ( ) ( )j j j

i i i i i iΔt Δt β β Δt βδ Δt βδ+
+ + += + + − + + = +q q q q q q q q& && && && && , (3.45) 

into (3.40) and rearranging terms yields implicit equation with respect to δq&& : 

 [ ] ( ) ( ) ( ) 2
1 1 1 1( ( ) )j j j

i i i iΔtγ δ Δt βδ+ + + ++ = − − − +M C q p b c r q q&& && , (3.46) 

Where vectors of inertia forces and damping forces are given by: 

 ( ) ( )
1 1

j j
i i+ +=b Mq&& ,    ( ) ( )

1 1
j j

i i+ +=c Cq& . (3.47) 

To obtain correction of δq&& , the method of simple iteration is used: 

 [ ] ( )1 ( ) ( ) ( )
1 1 1 1( )j j j

i i i iδ Δtγ −
+ + + += + − − −q M C p b c r q&& . (3.48) 

It is clear that if M  and dη=C M  are by assumption diagonal, substantial efficiency of 
computation is gained. Once (3.48) is solved, the remaining state variables are updated 
through relations (3.43)–(3.45). The equation (3.48) is solved in the iterative way until the 
equilibrium condition becomes satisfied: 

 ( 1) ( 1) ( 1) ( 1)
1 1 1 1 1( )j j j j

i i i i i
+ + + +

+ + + + += − − − →j p b c r q 0 . (3.49) 

The iterations are terminated if the convergence is achieved. Since in view of (3.48), the 
equation (3.49) is equivalent to δ →q 0&& , the convergence is assessed using the relative 
criteria (cf. Chróścielewski et al. 2009): 

 1( 1)
1

|| ||

|| ||j
i i

δ ε+
+

<
−

q

q q

&&

&& &&
,   2( 1)

1

| |
max

| |
k

jk
k i k i

δq
ε

q q+
+

<
−
&&

&& &&
, (3.50) 

where || . ||  is the Euclidean norm of a vector, 1ε  and 2ε  are a-priori assumed. In wave 
propagation problems the resulting time step is very short. Then it is possible to exploit the 
condition if 0Δt → , which leads to 2( )Δtγ Δt β= + + →M M C K M% . The explicit central-
difference method follows directly from (3.48) and update rules (3.43)–(3.45) assuming 

0β = , 1/2γ=  and replacing iterative values by their incremental counterparts δ Δ→q q&& && , 
( 1) ( 1) ( 1)

1 1 1 1 1 1( , , ) ( , , )j j j
i i i i i i

+ + +
+ + + + + +→q q q q q q&& & && &  and ( ) ( ) ( )

1 1 1( , , ) ( , , )j j j
i i i i i i+ + + →q q q q q q&& & && & . As a result the 

iterative correction is omitted. 

3.2. Formulation of one-dimensional spectral finite elements 

Formulation of spectral elements is analogous to that of classical finite elements 
(e.g. Bathe 1996, Hughes 2000). For standard 0C  elements, interpolation of the 
displacement field ( , )x tu  for a finite element of length ( )eL  is: 

 ( )( , ) ( ) ( )ex t x t=u H q ,  [ ]1 2( ) ( ) ( ) ... ( )nx x x x=H H H H ,  

1

2
( )

( )

( )
( )

( )

e

n

t

t
t

t

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

q

q
q

q

M
, (3.51) 
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where n  is the number of element nodes, ( ) ( )e tq  is the element displacement vector, aq  is 
the vector of displacement for the node a ( 1,2,..., )a n= , ( )xH  denotes the element shape 
function matrix, ( )a xH  is the shape function matrix for the node a containing interpolation 
polynomials aH  of order 1N n= − . The strains are interpolated through the relation: 

 ( )( , ) ( ) ( )ex t x t=ε B q ,   ( ) ( )x x=B DH , (3.52) 

where ( )xB  is the strain-displacement matrix and D  is the differential operator matrix. 
To perform numerical integration, an element is mapped from the x-axis to the parent 

domain [ 1, 1]ξ ∈ − + , so that the formulae for the element stiffness and mass matrices, as 
well as for the element load vector become: 
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( ) ( ) ( ) ( ) ( )
e

T T
e

L

x x dx ξ J dξ ξ ξ
−

= =∫ ∫K B EB B EB , (3.53) 
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1
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( ) ( ) ( ) ( ) ( )
e

T T
e

L

x x dx ξ J dξ ξ ξ
−

= =∫ ∫M H μH H μH , (3.54) 

 
( )

1

( )
1

( ) ( ) ( ) ( ) ( )
e

T T
e

L

x x dx ξ ξ J ξ dξ
−

= =∫ ∫p H f H f , (3.55) 

where ( )xf  is the vector of distributed loads and J  is the Jacobian given by the following 
relation: 

 
x

J
ξ

∂=
∂

. (3.56) 

To evaluate the element matrices, the numerical integration is employed. The element 
matrices are integrated using the Gauss-Lobatto-Legendre (GLL) quadrature. The formulae 
for the stiffness matrix ( )eK , the mass matrix ( )eM  and the external force vector ( )ep  
become: 

 ( )
1

( ) ( ) ( )
rn

T
e r r r r

r

w Jξ ξ ξ
=

=∑K B EB , (3.57) 

 ( )
1

( ) ( ) ( )
rn

T
e r r r r

r

w Jξ ξ ξ
=

=∑M H μH , (3.58) 

 ( )
1

( ) ( ) ( )
rn

T
e r r r r

r

w Jξ ξ ξ
=

=∑p H f . (3.59) 

where rn  is the number of integration points, r  ( 1,2, , )rr n n= ≡K  is the label of rξ  i.e. 
the abscissa and rw  is the corresponding weight. The generalized stress-strain matrix and 
the mass density matrix are denoted as E  and μ , respectively. 

Below the spectral elements for the elementary, Love and Mindlin-Herrmann rod 
theories, as well as for the Timoshenko beam theory are formulated. Then the spectral 
frame element based on the Timoshenko beam and the Mindlin-Herrmann rod is 
developed. 
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3.2.1. Elementary rod element 

The strains within a rod based on the elementary rod theory are: 

 
( , )

( , ) ( , )xu x t
x t x t

x

∂⎧ ⎫= =⎨ ⎬∂⎩ ⎭
ε Du , (3.60) 

where the displacement vector ( , )x tu  and the differential operator D  are given by: 

 ( , ) ( , )xx t u x t=u ,   
x

∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦
D . (3.61) 

The shape function matrix and the vector of displacements for the node a ( 1,2,...,a n= ) 
become: 

 [ ]( ) ( )a ax H x=H ,    { }( ) ( )a
a xt u t=q . (3.62) 

The stress-strain matrix E  appearing in Eq. (3.57) and the mass density matrix μ  appear-
ing in Eq. (3.58) are defined through relations: 

 [ ]EA=E ,     [ ]ρA=μ . (3.63) 

3.2.2. Love rod element 

In the formulation of the spectral element method for the Love theory, the stiffness 
matrix is the same as for the elementary theory, while the mass matrix takes the following 
form: 

 
( )
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2 2

1

( ) ( ) ( )

       ( ) ( ) ( ) .
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n
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e r r r r
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n
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o L r r r r
r

A w J

J K w J

ρ ξ ξ ξ

ρν ξ ξ ξ

=

=

≈ +

+

∑

∑

M H H

B B

 (3.64) 

Due to the additional component related with the lateral deformation, the mass matrix 
loses its diagonal form after application of the numerical GLL integration. Therefore, 
the Love theory cannot be used efficiently in the spectral element method formulation 
even though it gives reasonable approximation for the first symmetric Lamb mode. 

3.2.3. Mindlin-Herrmann rod element 

The strains in the Mindlin-Herrmann rod can be written as: 

 

( , )

( , ) ( , ) ( , )

( , )

xu x t

x
x t x t x t

x t

x

ψ
ψ

∂⎧ ⎫
⎪ ⎪∂⎪ ⎪

= =⎨ ⎬
⎪ ⎪∂⎪ ⎪

∂⎩ ⎭

ε Du , (3.65) 
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where the displacement vector ( , )x tu  and the matrix of differential operators D  are: 

 
( , )

( , )
( , )

xu x t
x t

x tψ
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= ⎨ ⎬
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0 1
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x

x
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⎢ ⎥∂⎢ ⎥

= ⎢ ⎥
⎢ ⎥∂
⎢ ⎥

∂⎣ ⎦

D . (3.66) 

The same Lagrange polynomials are used to interpolate the axial displacement and the 
lateral contraction. The shape function matrix and the vector of displacements for the node 
a have the following form: 

 
( ) 0

( )
0 ( )
a

a
a

H x
x

H x

⎡ ⎤
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a
x

a
a
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t

ψ t

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

q . (3.67) 

The stress-strain matrix E  and the mass density matrix μ  are: 

 

2 2

2 2
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0
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0
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νEA EA
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ν ν

ν ν
−
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⎢ ⎥
⎢ ⎥⎣ ⎦
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0
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ρA

K ρI−
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= ⎢ ⎥
⎣ ⎦

μ . (3.68) 

3.2.4. Timoshenko beam element 

The strains in the beam based on the Timoshenko theory can be expressed by: 

 

( , )

( , ) ( , )
( , )

( , )y

x t

x
x t x t

u x t
x t
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ϕ
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∂⎧ ⎫−⎪ ⎪∂⎪ ⎪= =⎨ ⎬∂⎪ ⎪−⎪ ⎪∂⎩ ⎭

ε Du , (3.69) 

where the displacement vector ( , )x tu  and the differential operator matrix D  become: 
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x tϕ
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D . (3.70) 

The vertical displacement and the rotation are interpolated by the same Lagrange polyno-
mials. The shape function matrix and the vector of displacements for the node a are: 
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H x
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H x
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q . (3.71) 
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The stress-strain matrix E  and the mass density matrix μ  have the form: 

 
1

0

0 Tim

EI

K GA

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

E ,     
2

0

0 Tim

ρA

K ρI

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

μ . (3.72) 

3.2.5. Frame element based on Mindlin-Herrmann and Timoshenko theories 

The M-H-Tim frame element consists of the Mindlin-Herrmann rod (M-H) combined 
with the Timoshenko beam (Tim). The strains in the frame element can be written as: 

 ( , ) ( , )
M H M H M H

Tim Tim Tim
x t x t

− − −⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎢ ⎥= = =⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

ε D 0 u
ε Du

ε 0 D u
, (3.73) 

where strains M H−ε  and Timε  are given by Eqs. (3.65) and (3.69), respectively and dis-
placements M H−u  and Timu  are given by Eqs. (3.66)1 and (3.70)1, respectively. The differ-
ential operator matrices M H−D , TimD  are expressed by Eqs. (3.66)2 and (3.70)2. The stress-
strain matrix E  and the mass density matrix μ  are defined as follows: 

 
M H

Tim
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E 0
E

0 E
,    
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Tim
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μ 0
μ

0 μ
, (3.74) 

where M H−E  and M H−μ  are the stress-strain matrix and the mass density matrix for the 
Mindlin-Herrmann theory given by Eqs. (3.68), while TimE  and Timμ  are the stress-strain 
matrix and the mass density matrix for the Timoshenko theory given by Eqs. (3.72). The 
shape function matrix and the vector of displacements for the node a have the following 
form: 
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q . (3.75) 

The above-developed element is then transformed to the global coordinate system. The 
element transformation matrix T  enables rotation of the local axes to the structural axes by 
the angle α : 
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T . (3.76) 

Transformation of the local element matrices to the global matrices is given by: 

 ( ) ( )
T

e e=K T K T ,    ( ) ( )
T

e e=M T M T ,    ( ) ( )
T

e e=p T p . (3.77) 

Then the system of equations of motion is built in the course of the standard aggrega-
tion of the element matrices and vectors referred to the structural coordinate system. 
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3.3. Formulation of two-dimensional spectral finite elements 

Interpolation of the displacement field ( , , )x y tu  in a typical finite element of sur-
face area ( )eB  becomes: 

 ( )( , , ) ( , ) ( )ex y t x y t=u H q ,    

1

2
( )

( )

( )
( )

( )

e

n

t

t
t

t

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

q

q
q

q

M
, (3.78) 

where the matrix of interpolation functions ( , )x yH  for an element is: 

 [ ]1 2( , ) ( , ) ( , ) ... ( , )nx y x y x y x y=H H H H , (3.79) 

 [ ] [ ]( , ) diag ( , ) diag ( ) ( )a a r sx y H x y H x H y= =H . (3.80) 

In the above, ( , )aH x y  are Lagrange type interpolation polynomials, the label a  denotes 
nodal values ( 1,2,..., )a n=  and r sn n n= ⋅  is the number of element nodes, where rn  de-
notes the number of nodes in x  direction, whereas sn  in y  direction. 

Strains can be interpolated through the relation: 

 ( )( , , ) ( , ) ( )ex y t x y t=ε B q . (3.81) 

The strain-displacement matrix ( , )x yB  is defined as: 

 ( , ) ( , )x y x y=B DH , (3.82) 

where D  denotes the differential operator matrix. 
To perform numerical integration, an element is mapped from the xy-axes to the parent 

domain , [ 1, 1]ξ η ∈ − + , so that the formulae for the element stiffness and mass matrices, as 
well as the element load vector become: 
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 (3.83) 
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where J  is the Jacobian matrix defined by: 

 

x y

x y

ξ ξ

η η

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥=

∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

J . (3.86) 

Then, the element stiffness matrix ( )eK , the element mass matrix ( )eM  and the element 
load vector ( )ep  are integrated using the Gauss-Lobatto-Legendre quadrature: 

 ( )( )
1 1

( , ) ( , )det ( , )
sr nn

T
e r s r s r s r s

r s
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T
e r s r s r s r s
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3.3.1. Plane stress element 

The strains in the plane stress can be expressed as: 

 

( , , )

( , , )
( , , ) ( , , )

( , , )( , , )

x

y

yx

u x y t

x
u x y t

x y t x y t
y

u x y tu x y t

y x

⎧ ⎫∂
⎪ ⎪

∂⎪ ⎪
⎪ ⎪∂⎪ ⎪= =⎨ ⎬∂⎪ ⎪
⎪ ⎪∂∂
⎪ ⎪+

∂ ∂⎪ ⎪⎩ ⎭

ε Du , (3.90) 

where the displacement vector ( , , )x y tu  and the matrix of differential operators D  are 
given by: 
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The shape function matrix and the vector of displacements for the node a have the follow-
ing form: 
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The generalized stress-strain matrix E  appearing in Eq. (3.87) and the mass density matrix 
μ  appearing in Eq (3.88) become: 
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3.3.2. Kane-Mindlin extensional plate element 

The strains within the plate based on the Kane-Mindlin theory are expressed through 
the equation: 
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The displacement vector ( , , )x y tu  and the matrix of differential operators D  are given by 
the relations: 
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The shape function matrix ( , )a x yH  and the vector of displacements ( )a tq  for the node a 
have the following form: 
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The stress-strain matrix E  appearing in Eq. (3.87) and the mass density matrix μ  appear-
ing in Eq (3.88) are: 
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3.3.3. Mindlin bending plate element 

The strains within the plate based on the Mindlin theory become: 
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where the displacement vector ( , , )x y tu  and the matrix of differential operators D  are: 
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The shape function matrix ( , )a x yH  and the vector of displacements ( )a tq  for the node a 
are expressed by the relations: 
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The stress-strain matrix E  and mass density matrix μ  are defined as: 
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3.4. Summary and conclusions 

In this chapter, the spectral element method has been outlined. The development of 
time domain spectral finite elements for a rod, beam and frame, as well as extensional and 
bending plates has been carried out. 

The spectral element method is based upon high-order piecewise polynomial approxi-
mation of the weak formulation of the wave equation and combines high accuracy of spec-
tral methods with the flexibility of the finite element method to handle complex geometries. 
The wavefield of elements is discretized using Lagrange polynomials and integration of 
element matrices is performed by the Gauss-Legendre-Lobatto quadrature. The inexact 
integration effectively diagonalizes the mass matrix, so that the time integration can be 
efficiently conducted. 

Doyle (1997) suggested that for axial waves in a rod, a simple Love rod theory is suffi-
cient in structural analysis. However, the Love theory in the time domain SEM leads to a non-
diagonal mass matrix. Derived in this chapter spectral elements based on the higher order 
theories (the Mindlin-Herrmann rod, the Timoshenko beam, the Kane-Mindlin extensional 
plate and the Mindlin bending plate theories) provide optimally lumped mass matrix. 



 

Chapter 4 

WAVE PROPAGATION IN BARS 

Bars are the simplest components of many mechanical systems and civil engineering 
structures. In this chapter, wave propagation in steel bars with discontinuity of material and 
cross-section is analysed. Two forms of elastic wave propagation, namely longitudinal and 
flexural waves are investigated in detail. 

Earlier studies were related to numerical simulations in the SFEM formulation of 
longitudinal wave propagation based on the elementary theory on the examples of a rod 
with a crack of depth 5% of the rod height (Palacz and Krawczuk 2002) and 20% of the rod 
height (Krawczuk et al. 2006b). Experimental works were conducted on a rod with an 
additional mass equal to 4% and 12% of the total specimen mass (Palacz et al. 2005a). To 
take into account dispersion, modified rod theories were formulated in the frequency 
domain approach (e.g. Martin et al. 1994, Doyle 1997, Krawczuk et al. 2006a). Analytical 
and experimental study of compressional waves in a dispersive elastic rod was presented by 
Miklowitz and Calif (1957a) and Miklowitz et al. (1957b). They applied the Mindlin-
Herrmann theory and compared it with experimental results. In the experiment, a step 
pressure was applied to the end of an aluminium rod by means of a shock tube. Radial 
displacement measurements were made with a radial condenser microphone, while axial 
strain measurements were performed using strain gauges. In the time domain approach, a 
spectral element for a rod based on the elementary theory can be found in the paper by 
Kudela et al. 2007a. To model longitudinal wave propagation taking lateral deformations 
into consideration, time domain spectral elements for the Love and Mindlin-Herrmann rod 
theories were developed by Rucka (2010a). In the paper by Rucka (2010a) experimental 
investigations on wave propagation in rods with structural discontinuities were performed 
applying a piezoactuator and a modern laser vibrometer. 

In the case of flexural waves, earlier research concerned numerical, as well as 
experimental investigations. Doyle and Kamle (1985) performed an experimental study of 
the reflection of flexural waves at structural discontinuities. In their experiment, strain 
gages were attached to a beam and an incident pulse was created using a steel ball. 
Numerical simulations of flexural wave propagation in beams using the SFEM were 
initiated by Doyle and Farris (1990a). They developed a spectrally formulated element 
based on the Euler-Bernoulli beam theory. To take into account shear deformation, the 
spectral element based on the Timoshenko beam theory was formulated in the frequency 
domain approach by Gopalakrishnan et al. (1992). Numerical simulations of wave 
propagation in a cracked Timoshenko beam were presented by Krawczuk et al. (2003). 
They considered a crack with depth equal to 20% of the beam height and numerical 
simulations were performed by the SFEM in the frequency domain. Kudela et al. (2007a) 
presented a numerical study on the Timoshenko spectral element formulated in the time 
domain. However, they did not consider adjustable parameters for the Timoshenko beam 
theory and numerical results have not been compared with any experimental results. 
Experimental and numerical analyses of flexural wave propagation in beams with structural 
discontinuities were presented by Rucka (2010a). 
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The purpose of the present chapter is to conduct comprehensive experimental and 
numerical studies of the influence of different types of discontinuity on wave propagation, 
as well as the comparison of longitudinal and flexural waves and their usefulness for 
damage detection. Beside the results published by Rucka (2010a), this chapter contains 
measurements of experimental dispersion curves to update the SEM models and 
experimental Lamb-wave tuning to find frequencies at which waves are strongly excited 
and frequencies at which waves practically cannot be excited. Results of additional 
calculations concerning numerical dispersion, some guidelines for spectral element models 
and specifications concerning the shape of the excitation signals are also presented. 

4.1. Experimental setup 

A steel bar with dimensions 6 mm ×  6 mm ×  1000 mm was considered as the testing 
structure. The experimentally determined mass density ρ  was equal to 7556 kg/m3. The 
modulus of elasticity was also determined experimentally in a force-displacement test (ten-
sile test) using a strain gauge attached to the bar in the longitudinal direction and a testing 
machine to register a force level, and its value was identified as E  = 200.11 GPa. The 
Poisson’s ratio ν  was set as 0.33. The bar was placed on a flat surface. It had free bound-
ary conditions and there was no fixture, which could affect wave propagation. Since the 
excited waves had very low amplitudes, no rigid movement has occurred. 

The photo of the experimental setup is given in Fig. 4.1a. The bar was excited by 
means of a plate actuator Noliac CMAP11 of dimensions 5 mm ×  5 mm ×  2 mm bonded 
at the end of the bar using beeswax. The actuator was made with piezoelectric ceramics 
based on lead zirconate titanate (PZT). In piezoelectric materials, an applied electric field 
generates proportional strain. The Tektronix function generator AFG 3022 with the high 
voltage amplifier EC Electronics PPA 2000 created an excitation voltage signal ( )Vp t  
applied next to the actuator, which converted it into a mechanical force ( ).p t  
 

 

Fig. 4.1. Experimental setup for wave propagation: a) hardware and bar specimen; b) detail showing 
actuator in the case of longitudinal waves; c) detail showing actuator in the case of flexural waves 
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Non-contact sensing of propagating waves was achieved by a vibrometer. The Polytec 
Scanning Laser Vibrometer PSV-3D-400-M measured the velocity of the surface vibration 

( ).v t  Velocity signals were averaged 100 times to improve the signal-to-noise ratio. In the 
experimental investigations, both longitudinal and flexural waves were measured. The 
specimen was called the rod, when longitudinal waves were excited and the beam, when 
flexural waves were excited. The details showing actuators are presented in Fig. 4.1b and 
Fig. 4.1c. The locations of the actuators and the measurement points are shown in Fig. 4.2. 

 

Fig. 4.2. Locations of actuators and velocity measurement points in the bar: 
a) for longitudinal wave propagation; b) for flexural wave propagation 

4.1.1. Excitation signal 

The excitation signal ( )p t  considered in this study was chosen as a single-frequency 
smoothed tone burst (a.k.a. wave packet) obtained from the multiplication of a sinusoidal 
function of frequency f  and a window function ( )w t : 

 
sin(2 ) ( )          [0, ],

( )
0                                    ,

o w

w

p ft w t t T
p t

t T

π ⋅ ∈⎧
= ⎨ >⎩

 (4.1) 

where wT  denotes the length of a window and op  is an amplitude of a sinusoidal function. 
As ( )w t , the Hanning window was applied (cf. Maia et al. 1997, Giurgiutiu 2008): 

 ( )( )( ) 0.5 1 cos 2 / ,      [0, ]w ww t ft n t Tπ= − ∈ , (4.2) 

where wn  is the number of counts in the tone burst. 

 

Fig. 4.3. Example of ten-count tone burst excitation signal of frequency 100 kHz in time 
and frequency domains: a) raw tone burst; b) tone burst smoothed with the Hanning window 
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The Hanning window provides smoothed tone burst in order to reduce the excitation of 
side frequencies (Giurgiutiu 2008). Figure 4.3 shows a comparison of raw and smoothed 
10-count tone bursts and their FFT transforms. Both signals have the same central fre-
quency 100 kHz. The raw signal results in excitation of both the main beam and significant 
number of side lobes, while in the case of smoothed burst side lobes are not excited and 
only the main beam exists. This aspect of excitation coherent single-frequency waves is 
important, especially when dealing with dispersive Lamb waves. The effect of dispersion 
can be minimized by using narrow bandwidth input signals to concentrate input energy at a 
point on the dispersion curves in which dispersion is low (Wilcox et al. 2001, Wilcox 2003). 

The influence of the number of cycles in the tone burst, as well as the signal frequency 
and the window width is illustrated in Figs. 4.4 to 4.6. The excitation signals of frequency 
100 kHz and different number of cycles (2, 5, and 12 cycles) are presented in Fig. 4.4. The 
width of the main beam in the frequency domain changes depending on the number of 
cycles. For the established frequency of the sine wave, the narrowest main beam is for the 
largest length wT  of the window function ( )w t  (Fig. 4.4c). On the other hand, for the 
shortest window in the time domain, the main beam is the widest in the frequency domain 
(Fig. 4.4a). The comparison of the smoothed tone bursts for the established number of cy-
cles is given in Fig. 4.5. The frequency of the applied sine wave influences the width of the 
main beam in the frequency domain. The smaller the frequency of the time signal, the nar-
rower the main beam in the frequency domain. The last example concerns the signal with 
the established length of the window function in the time domain 0.1wT =  ms. In such 
case, independently of the sine frequency, the width of the main beam is the same 
(Fig. 4.6). As can be seen from the above examples, the intensity of dispersion depends on 
the length of a wave packet. Moreover, according to the Heisenberg uncertainty principle, the 
product of the time-domain duration and the frequency spread is constant (Giurgiutiu 2008). 

 

Fig. 4.4. Example of smoothed tone burst of frequency 100 kHz: a) 2 cycles; b) 5 cycles; c) 12 cycles 
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Fig. 4.5. Example of 5-count smoothed tone burst: a) signal of frequency 50 kHz; 
b) signal of frequency 100 kHz; c) signal of frequency 200 kHz 

 

Fig. 4.6. Example of smoothed tone burst with window length Tw = 0.1 ms: 
a) 5-cylce signal of frequency 50 kHz; b) 10-cylce signal of frequency 100 kHz; 

c) 20-cylce signal of frequency 200 kHz 
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4.1.2. Dispersion curves 

Group velocity dispersion curves were experimentally determined for the considered 
intact bar. The signal 1( )v t  was measured on the bar left end, in the position indicated in 
Fig. 4.2. The frequency of the excitation signal in the form of twelve-count burst was swept 
from 50 to 300 kHz in steps of 10 kHz. Figures 4.7 and 4.8 present examples of registered 
signals for frequencies 60, 100 and 250 kHz, in the case of longitudinal and flexural waves, 
respectively. In both cases, the influence of dispersion is visible. For longitudinal waves, 
time-of-flight increases with the increase of frequency, which can be clearly observed on 
the example of the third reflection in the signals shown in Fig. 4.7. On the other hand, for 
flexural waves, with the increase of frequency, time-of-flight decreases (Fig. 4.8). 

During the above tests, the measurements for all frequencies were made with the same 
gain level set on the amplifier. However, it can be noted in Fig. 4.7 and Fig. 4.8 that the 
amplitude of the excitation signal ( )Vp t  decreases with the increase of frequency. Conse-
quently, the tuning test for the amplifier was performed to establish the amplifier character-
istics. At first, signals on the amplifier output were collected. During this test, the actuator 
was disconnected from the amplifier. Figure 4.9 shows amplitudes of the excitation signal 
versus frequency. The obtained plot reveals small linear decay with the increase of fre-
quency (Fig. 4.9a). As the second, similar test was performed, but with the actuator con-
nected to the amplifier. This time, the amplifier revealed non-linear behaviour. The plot of 
amplitudes of the excitation signal versus frequency shows large exponential decay with the 
increase of frequency (Fig. 4.9b). 

Experimental longitudinal and flexural wave tuning in the considered bar in the fre-
quency range 50–300 kHz is shown in Figs. 4.10 and 4.11. The tuning test allows to find 
frequencies at which waves are strongly excited and frequencies at which waves practically 
cannot be excited in the considered bar. For each frequency, amplitudes of the incident 
wave, as well as the first reflection in 1( )v t  signal were collected and plotted in Fig. 4.10 
(for longitudinal waves) and in Fig. 4.11 (for flexural waves). In spite of the exponential 
decay of the excitation force, visible in Fig. 4.9b, the maximum value of the registered 
velocity signal does not occur for frequency of 50 kHz, where the excitation signal has the 
largest amplitude. The strongest excitation frequencies were identified at around 120 kHz. 

Experimental dispersion curves were obtained by dividing two lengths of the bar by 
the time-of-flight between incident wave and the first reflection in the 1( )v t  velocity signal. 
Figure 4.12 shows experimental and analytical dispersion curves for the longitudinal waves 
propagating in the considered rod. In the frequency range 50–300 kHz only one longitudi-
nal mode exists (S0 mode). The adjustable parameters for the Love and Mindlin-Herrmann 
theories were determined by the method of least squares to give the best fit with the 
experimental first mode in the frequency range 50–300 kHz and their values are: 

1.08LK = , 1 1.93M HK − = , 2 2.0M HK − = . It can be noted, that the experimental group ve-
locity reveals dispersive character and it covers very well with the first exact S0 Lamb 
mode, as well as the first S0 Mindlin-Herrmann mode. Dispersion curves for the flexural 
waves are shown in Fig. 4.13. In the range 50–300 kHz two flexural modes exist (A0 and 
A1) but identification of the second flexural mode was impossible due to excessive noise 
present at higher frequencies (cf. Fig. 4.8c). The experimental dispersion curve agrees with 
the exact A0 Lamb mode, as well as the first flexural mode of the Timoshenko theory. The 
adjustable parameters were determined as 1 0.95TimK = , 2

2 112 /Tim TimK K π= , based upon 
the comparison with the experimental results within the frequency range of interests. 
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Fig. 4.7. Time history of experimentally measured longitudinal waves for determination 
of dispersion curves: a) 60 kHz; b) 100 kHz; c) 250 kHz 

 

Fig. 4.8. Time history of experimentally measured flexural waves for determination 
of dispersion curves: a) 60 kHz; b) 100 kHz; c) 250 kHz 
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Fig. 4.9. Tuning test of the amplifier for frequency range 50–300 kHz: a) maximum value of 
the excitation signal pV(t) measured on the amplifier output in the case of actuator disconnected 
from the amplifier; b) maximum value of the excitation signal pV(t) measured on the amplifier 

output in the case of actuator connected to the amplifier 

 

Fig. 4.10. Experimental longitudinal wave tuning in the intact rod for frequency range 50–300 kHz: 
a) maximum value of incident wave in the velocity signal v1(t); b) maximum value of first reflection 

in the velocity signal v1(t) 

 

Fig. 4.11. Experimental flexural wave tuning in the intact beam for frequency range 50–300 kHz: 
a) maximum value of incident wave in the velocity signal v1(t); b) maximum value of first reflection 

in the velocity signal v1(t) 
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Fig. 4.12. Experimental and analytical dispersion relations for longitudinal waves in the considered rod 

 

Fig. 4.13. Experimental and analytical dispersion relations for flexural waves in the considered beam 

4.2. Experimental investigations on bars with discontinuities 

The measurements were made on four different bars (Fig. 4.14); three of them with 
discontinuities of cross-section or material. The specimens were as follows (Rucka 2010a): 
— bar no. 1: an intact specimen, 
— bar no. 2: with a local change of the cross-section in the form of welded steel elements 

with dimensions 10 mm ×  6 mm ×  2 mm on both sides of the bar (called the bar with 
the additional mass). The mass of additional elements equals 31.81 10−×  kg, which is 
0.67% of the total mass of the bar, 

— bar no. 3: with a rectangular notch of dimension 2 mm in length and 1 mm in height. 
The depth of the notch is 16.7% of the beam height, 

— bar no. 4: with a double V-groove weld of width 4 mm. The bar was cut in two parts, 
the edges of both pieces were chamfered doubly in two directions and welded using 



4. Wave propagation in bars 
 

66 

TIG welding technique. The weld was grinded after welding in such a way, that the bar 
got the same geometry as the intact bar. 

As an excitation, a twelve-peak sinusoidal signal modulated by the Hanning window 
was chosen. In the case of longitudinal wave propagation, the frequency of the excitation 
signal was 150 kHz (Fig. 4.15a). For the case of flexural waves, when the propagating 
wave velocity has a smaller value, the frequency of the excitation signal was chosen as 
100 kHz (Fig. 4.15b). 

 

Fig. 4.14. Geometry of experimentally tested bars and close-up of structural discontinuities: 
a) intact bar; b) bar with mass; c) bar with notch; d) bar with weld 

 

Fig. 4.15. Excitation voltage signal in time and frequency domains: 
a) signal of frequency 150 kHz; b) signal of frequency 100 kHz 
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Figure 4.16 shows the experimental results for longitudinal wave propagation. The ve-
locity signal 1( )v t  was measured on the left end of the rod, while the signal 2 ( )v t  was 
measured on its right end, as it is shown in Fig. 4.2a. The signal registered in the intact rod 
contains the first arrival and three echoes during the recorded period of 1.5 ms. For the rods 
with structural discontinuities, additional reflections appeared in the response signals. The 
greatest reflection was caused by the presence of additional mass, whereas the smallest 
reflection was caused by the groove weld. The discontinuities in the form of the notch and 
the weld caused additional reflections of an amplitude much smaller than the amplitude of 
reflections from the rod ends. Moreover, the amplitudes of reflections from the rod ends 
exponentially decreased, while the amplitudes of reflections from the notch or weld re-
vealed a rise with the time passage (Fig. 4.16c and Fig. 4.16d). The presence of the addi-
tional mass caused different type of reflections (Fig. 4.16b), for example in 2 ( )v t  signal, 
the amplitude of the reflection from the mass was higher than the amplitude of the reflec-
tion from the rod end. 

 

Fig. 4.16. Experimentally measured velocity signals v1(t) and v2(t) of longitudinal waves: 
a) intact rod; b) rod with mass; c) rod with notch; d) rod with weld 
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Fig. 4.17. Experimentally measured velocity signals v1(t) and v2(t) of flexural waves: 
a) intact beam; b) beam with mass; c) beam with notch; d) beam with weld 

Locations of defects can be identified based of the knowledge of the rod length and the 
group velocity. For the considered 150 kHz excitation, the analytical value of the group 
velocity was 4974.17 m/s (based on the Mindlin-Hermann theory), while the experimental 
one was 4980.54 m/s (cf. Fig. 4.12). Considering the rod with the additional mass, the re-
flection from discontinuity occurred at the time instant equal to 0.2031 ms, therefore the 
position of the mass was identified as 506 mm. In the case of the rod with the notch, the 
time of reflection from the notch was 0.2 ms, which means that the defect is situated at the 
distance of 498 mm. Finally, for the rod with the weld, the position of the defect was identi-
fied as 503 mm, since the reflection in the 1( )v t  velocity signal occurred at 0.202 ms. The 
actual position of the defect was 500 mm. The difference between the actual position and 
the position identified based on the experimental signals was 0.4% to 1.2%. 

The experimental velocity signals 1( )v t  and 2 ( )v t  for the flexural wave propagation 
are presented in Fig. 4.17. In the 1( )v t  signal for the intact beam, the incident wave and 
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Fig. 4.18. Time-position plane of response signals measured in 10 points for the intact beam 

 

Fig. 4.19. Time-position plane of response signals measured in 10 points for the beam with mass 
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Fig. 4.20. Time-position plane of response signals measured in 10 points for the beam with notch 

 

Fig. 4.21. Time-position plane of response signals measured in 10 points for the beam with weld 
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three reflections are visible during the recorded 2.5 ms period. Additional reflections in 
signals appeared for all beams with structural discontinuities. As in the case of longitudinal 
waves, the presence of the notch and the weld caused the reflections of an amplitude much 
smaller than the amplitude of reflections from the beam ends. However, for the beam with 
the weld, the additional reflection from the weld did not appear in the first wave passage. 
The reflection from the weld appeared at 1.32 ms and its amplitude was larger in every 
consecutive wave passage. In the beam with the mass, the amplitudes of reflections from 
the mass and the beam boundaries had similar values. The analytical flexural group velocity 
for the wave of frequency 100 kHz was 3012.06 m/s, whereas the experimental value was 
3029.59 m/s (cf. Fig. 4.13). The positions of defects were identified experimentally as 
506 mm, 502 mm, 502 mm, for the beam with the mass, with the notch and with the weld, 
respectively and the corresponding reflection times were: 0.334 ms, 0.3313 ms, 0.3316 ms. 

Finally, each beam was measured in 10 equally distributed points, as it is shown in 
Figs. 4.18 to 4.21, to observe wave propagation in the time-position plane. As a result of 
such test, the interaction of waves with boundaries or potential discontinuities may be ob-
served more precisely. Figure 4.18 illustrates flexural wave propagation in the intact beam, 
while Fig. 4.19, Fig. 4.20 and Fig. 4.21 give the results for the beams with the mass, the 
notch and the weld, respectively. The solid line indicates the centre of the wave packet 
reflected from boundaries, while the dashed line denotes the centre of the wave packet 
reflected from damage or other discontinuity. 

4.3. Spectral element analysis of wave propagation in an intact bar 

In this section, tests on the intact rod (described in Section 4.2) are performed. The 
aim of these simple tests is to experimentally validate the numerical models of wave propa-
gation, applied later for rods and beams with structural discontinuities, as well as frame 
structures. Both longitudinal and flexural waves are studied. In the considered frequency 
range (100–150 kHz) only one longitudinal mode and one flexural mode can propagate (see 
Fig. 4.12 and Fig. 4.13). Modelling of longitudinal wave propagation is conducted by the 
spectral element method based on the elementary, Love and Mindlin-Herrmann rod theo-
ries, whereas modelling of flexural waves is conducted by the SEM based on the Ti-
moshenko beam theory. The damping matrix is assumed as a proportional with respect to 
the mass matrix dη=C M  with damping parameter dη  set as 1000 1/s for longitudinal 
waves and 2000 1/s for flexural waves. Values of damping parameters are adopted to obtain 
the same relationship between amplitudes of reflected signals for experimental investiga-
tions and numerical simulations. The amplitude of the excitation force signal equals 1 N. In 
the case of flexural waves, the wave is impacted in 3rd node from the left edge, which coin-
cides with the actuator centre. The boundary conditions in the SEM models of the bar are 
established as free. 

4.3.1. Guidelines for spectral element models on the example of longitudinal 
waves 

For the analysis of wave propagation, the effective length eL  of the finite element, and 
the corresponding time step tΔ  must be able to represent accurately the travelling wave 
(Bathe 1996). The total time for the travel of the wave of wavelength λ  past a point is: 
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 /w pt cλ= . (4.3) 

To represent the travel of the wave, tn  time steps are necessary: 

 /w tt t nΔ = . (4.4) 

Therefore the effective length of a finite element is defined as (Bathe 1996): 

 e pL c t= Δ . (4.5) 

The number of used elements depends mainly on the wavelength of the propagating 
wave. The effective length of the 2-node finite element should satisfy the following equation: 
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n

λ=
−

, (4.6) 

where wn  denotes the number of nodes per wavelength. When analysing higher order ele-
ments of evenly distributed nodes, the effective length eL  denotes the distance between any 
two nodes of the element. However, the GLL nodes are not evenly distributed and in higher 
order elements (above 3 nodes) the number of nodes wn  per wavelength depends on the 
spatial localization within the rod. Figure 4.22 shows two cases of higher order spectral 
elements with GLL nodes: one 121-node element per rod and sixteen 11-node elements. 
For the 121-node element, 15 nodes are situated on the first wavelength, whereas in the 
middle of the rod there are only about 3 nodes (Fig. 4.22a). Considering 11-node elements 
(Fig. 4.22b), nodes are concentrated near the element ends, and the number of nodes per 
wavelength varies from about 4 to 7. Therefore, in the case of spectral elements it is not 
possible to say about the number of nodes per wavelength, the average number of nodes 
can be used instead. 

 

Fig. 4.22. Distribution of nodes in higher order spectral elements on half-length rod: 
a) 1 element with 121 GLL nodes; b) 16 elements with 11 GLL nodes 
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Numerical dispersion makes the wave velocity depend on features of the numerical 
model, i.e. mesh size, element type, time integration step (Semblat and Brioist 2000). In 
general, the spatial and temporal discretizations may interact and their total dispersive er-
rors may not be linear summation of dispersive errors due to two individual discretizations 
alone (Dauksher and Emery 2000). To analyse numerical errors, longitudinal wave propa-
gation in the rod has been studied. Simulations were conducted on the rod described by the 
elementary theory, because such rod does not exhibit physical dispersion. Two different 
cases of spectral elements were considered: namely one multi-node spectral element per rod 
and a few 11-node spectral elements per rod. When one multi-node spectral element per rod 
was used, the desirable minimum number of nodes was n = 121, which gives about 5.1 
nodes per wavelength. The resulting velocity signal for this case is presented in Fig. 4.23a. 
Next 11-node elements have been applied. When 12 elements with n = 11 nodes were used, 
which gives totally tN  = 121 nodes in the rod, the velocity signal of propagating wave was 
contaminated due to numerical dispersion (Fig. 4.23b), which means that there was not a 
sufficient number of nodes. The minimum number of nodes for the 11-node elements ap-
peared to be tN  = 161 (16 elements), which gives 6.5 nodes per wavelength. Additionally, 
a standard FEM analysis using 2-node elements was performed. For the case of 120 ele-
ments with 2 nodes, the results are not contaminated, but they are shifted due to numerical 
dispersion (Fig. 4.23c). To obtain results comparable to the results for the one 121-node 
element, 1200 elements with 2 nodes have to be used, which leads to use about 40 nodes 
per wavelength. The above simulations were performed using the central difference scheme 
with the same time step 84 10  s,t −Δ = ⋅  established according to (3.30) for the most unfa-
vourable case, i.e. 121tN n= = , 1eln = . It can be concluded, that higher order elements 
were found to have a much better efficiency towards numerical dispersion than linear ele-
ments (cf. Semblat and Brioist 2000). 

 

Fig. 4.23. Numerical velocity signals in elementary rod modelled by: a) 1 element with 121 GLL 
nodes; b) 12 elements with 11 GLL nodes; c) 120 elements with 2 nodes 
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Figure 4.24 presents the relationship between the number of the GLL nodes in a spec-
tral element and the required number of nodes per wavelength. It is visible, that it reveals 
the exponential character, and for the elements with 7 to 121 GLL nodes, the number of 
nodes per wavelength becomes from 7.6 to 5.1, respectively. 

 

Fig. 4.24. Relationship between the number of nodes in the element and the required number of nodes 
per wavelength for longitudinal waves in rod based on the elementary theory 

Numerical dispersion can also appear as a result of temporal discretization. In the 
analysis of wave propagation, if a conditionally stable algorithm is used, such as the central 
difference method, the numerical time step restriction for stability plays a limiting role. The 
applied critical time step crtΔ  follows from the stability criterion (3.30). Therefore, appli-
cation of e.g. 16 elements with 11 GLL nodes ( 73.4 10crt −Δ = ⋅  s), instead of e.g. one 121-
node element ( 84.2 10crt −Δ = ⋅  s) can be treated as a compromise between the multi-node 
spectral approach and the sufficiently large integration time step. 

If an implicit unconditionally stable time integration scheme is used, the time step tΔ  
can be assessed from the Courant condition e pt L cΔ ≤  (see Bathe 1996). To illustrate the 
numerical dispersion error connected with the temporal discretization, the numerical model 
of the rod with one 121-node element was analysed (Fig. 4.25). The numerical integration 
was performed by the Newmark method with parameters 1/4β = , 1/2γ= . Different time 
steps were applied, namely 81 10  s,t −Δ = ⋅  85 10  s,t −Δ = ⋅  71 10  s,t −Δ = ⋅  75 10  s,t −Δ = ⋅  

61 10  s.t −Δ = ⋅  The length of the time step calculated using Eq. (4.5) equals 84.9 10t −Δ = ⋅  s. 
The velocity responses for the time steps 81 10  s,t −Δ = ⋅  85 10  s,t −Δ = ⋅  71 10  st −Δ = ⋅  give 
similar non-dispersive results. Application of longer time steps 75 10  s,t −Δ = ⋅  

61 10  st −Δ = ⋅  causes strong numerical dispersion errors. 

 

Fig. 4.25. Numerical velocity signal in elementary rod modelled by one element with 121 GLL nodes 
with different time steps 
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4.3.2. Simulations of longitudinal waves 

The comparison of the experimental and numerical velocity signals for the intact rod is 
shown in Fig. 4.26 for the elementary, Love and Mindlin-Herrmann theories. The rod was 
modelled using 16 elements with 11 GLL nodes. The numerical integration was performed 
using the central difference method with the time step 71 10  s.t −Δ = ⋅  The adjustable pa-
rameters for the Love and Mindlin-Herrmann theories were chosen to give the best fit with 
the experimental first mode in the frequency range 100–150 kHz and their values are: 

0.99LK = , 1 1.07M HK − = , 2 2.0M HK − = . In Fig. 4.26 amplitudes of the experimental and 
the numerical velocity signals were normalized to 1. In the case of the experimental signal 

1( )v t , the normalization was carried out to the first reflection from the rod end, because the 
signal 1( )v t  was measured on the actuator. Additionally, only the signal envelopes are 
plotted for the sake of clarity. If the elementary rod theory is used, the experimental data 
are not compatible with the numerical ones. The experimental velocity signal is delayed 
with respect to the numerical signal. This indicates the presence of dispersion during the 
experiment. Considering the Love theory, it can be noted that numerical simulations are in 
good agreement with the experimental data. The velocity results using the Mindlin-
Herrmann theory coincide with results obtained by the Love theory. The difference between 
two above mentioned theories is connected with the mass matrix. For the elementary the-
ory, as well as the Mindlin-Herrmann theory the mass matrix has a diagonal structure, 
therefore the numerical integration using the central difference method can be efficiently 
conducted. Application of the Love theory results in non-diagonal mass matrix. 

 

Fig. 4.26. Comparison of experimental and numerical velocity signal envelopes for the elementary, 
Love and Mindlin-Herrmann rod theories: a) normalized signal v1(t); b) normalized signal v2(t) 

4.3.3. Simulations of flexural waves 

The intact specimen was modelled using 24 equal elements with 15 GLL nodes and 
the time step was set as 71 10  s.t −Δ = ⋅  Figure 4.27 shows comparison of the 1( )v t  velocity 
signal in the beam modelled by the SEM using the Timoshenko theory and the FEM using 
the Euler-Bernoulli theory. The signals are highly incompatible, which indicates that in 
such high frequency range the Timoshenko beam theory must be used. 
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Fig. 4.27. Numerical time velocity signals in the intact beam: a) Timoshenko theory (25 elements 
with 15 GLL nodes); b) Euler-Bernoulli theory (400 elements with 2 nodes) 

 

Fig. 4.28. Comparison of experimental and numerical velocity signal envelopes for the Timoshenko 
beam theory: a) signal v1(t); b) signal v2(t) 

Figure 4.28 illustrates the comparison of the experimental and numerical velocity sig-
nal for the intact beam. In the numerical simulations the spectral element based on the Ti-
moshenko beam theory was applied with two variants of adjustable parameters, i.e. 

1 0.95TimK = , 2
2 112 /Tim TimK K π=  and 1 1TimK = , 2 1TimK = . It can be observed that the ve-

locity calculated from the model without adjustable parameters does not cover with the 
experimental signal and the adjustable parameters can compensate the approximation of 
displacement fields. The comparison of experimental and numerical velocity signals in the 
time-position plane is illustrated in Fig. 4.29. In this case the beam was modelled by 9 ele-



4.3. Spectral element analysis of wave propagation in an intact bar 
 

77

ments with 35 GLL nodes. It can be seen, that the numerical and the experimental waves 
propagate with the same speed. 

 

Fig. 4.29. Time-position plane of response signals measured in 10 points for the intact beam: 
comparison of experimental and numerical velocity responses 

4.4. Spectral element analysis of wave propagation in bars                        
with structural discontinuities 

In this section, results of numerical calculations performed on the spectral element 
models of the previously experimentally tested bars with discontinuities are presented and 
the comparisons are carried out. The numerical integration was performed using the central 
difference method and the time step was chosen according to Eq. (3.30). Numerical simula-
tions concerned the longitudinal and flexural wave propagation. The rods with discontinui-
ties were modelled using 16 equal elements with 11 GLL nodes and one shorter element 
(with 11 GLL nodes) of different parameters in the middle of the rod. The beams with dis-
continuities were modelled using 24 equal elements with 15 GLL nodes and one element of 
different parameters with 15 GLL nodes. For the bar with the change of cross-section, the 
element of length 10 mm in the middle of the bar was applied and its height was enlarged to 
the value of 10 mm. In the case of the bar with the notch, 2 mm element with the height of 
5 mm was used. Considering the bar with the weld, it was assumed that the part of the bar 
with the weld has worse parameters (because of heating during the welding process). 
Therefore the 4 mm element in the middle of the bar has the modulus of elasticity 
E = 180.10 GPa, i.e. 10% smaller than the rest of the bar. 
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Fig. 4.30. Comparison of experimental and numerical normalized velocity signal envelopes for the 
elementary, Love and Mindlin-Herrmann rod theories: a) rod with mass, b) rod with notch; 

c) rod with weld  
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Fig. 4.31. Comparison of experimental and numerical normalized velocity signal envelopes 
for the Love and Mindlin-Herrmann rod theories for the rod with additional mass 

 

Fig. 4.32. Envelopes of numerical velocity signals v1(t) and v2(t) measured on both ends of 
the rod containing the notch at position Lr in the case of longitudinal wave propagation: 

a) notch at Lr = 0.25L; b) notch at Lr = 0.75L; c) notch at Lr = 0.25L or Lr = 0.75L 
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The numerical results of longitudinal wave propagation are compared with the ex-
perimental data in Fig. 4.30 for the elementary, Love and Mindlin-Herrmann theories. Ap-
plication of the elementary theory results in signals inconsistent with the experimental data. 
The experimental velocity signal is delayed with respect to the numerical signal, which is 
caused by physical dispersion. If the Love theory is used, the numerical simulations are 
generally in good agreement with the experimental data. Considering the Mindlin-
Herrmann theory, the results for the rod with the notch (Fig. 4.30b) and the rod with the 
weld (Fig. 4.30c) cover with the results obtained using the Love theory. The discrepancy 
between the two above-mentioned theories appears in the case of the rod with the additional 
mass, as shown in Fig. 4.31. It is visible, that the Mindlin-Herrmann theory better approxi-
mates the experimental signal. This is because the rotational effects are respected independ-
ently in the mass matrix. 

 

Fig. 4.33. Comparison of experimental and numerical velocity signal envelopes for the Timoshenko 
beam theory: a) beam with mass; b) beam with notch; c) beam with weld 

For the considered specimens with singularities, additional reflections appeared in the 
response signal and the position of damage in the rod can easily be identified from both 

1( )v t  and 2 ( )v t  velocity signals (Fig. 4.30). However, the situation is different when 
the defect does not occur in the middle of the rod. On the example of longitudinal wave 
propagation, two positions of damage, namely 0.25rL L=  and 0.75rL L=  were consid-
ered (Fig. 4.32). It can be seen, that only signal 1( )v t , registered at the same point as 
the actuator, makes an unambiguous localization of damage possible (Fig. 4.32a, 
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Fig. 4.32b). The velocity signal 2 ( )v t  registered at the opposite end is the same for 
both 0.25rL L=  and 0.75rL L=  damage positions (Fig. 4.32c). 

In the case of flexural waves, the numerical results are compared with the experimen-
tal data in Fig. 4.33. The proposed ways of damage modelling in the beams with the notch, 
the mass and the weld provided velocity results compatible with the experimental signals. 

4.5. Summary and conclusions 

In this chapter, longitudinal and flexural wave propagation in the bar has been investi-
gated both experimentally and numerically. Numerical simulations have been performed by 
the time domain spectral element method using the elementary, Love and Mindlin-
Herrmann rod theories, as well as the Timoshenko beam theory. In particular, detection of 
damage in various forms of discontinuity of cross-section and material has been considered 
by analysing wave speeds and time of reflections in the registered response signals. The 
proposed damage models have provided numerical velocity results consistent with the ex-
perimental signals. 

The results of numerical and experimental studies of guided wave propagation in bars 
lead to the following conclusions: 
— The spectral element method appears to be more effective than the finite element meth-

od. Higher order spectral elements reveal good efficiency towards numerical dispersion 
due to spatial discretization. For the established number of nodes per wavelength, nu-
merical dispersion is higher for elements with smaller number of GLL nodes. 

— Numerical dispersion also appears because of temporal discretization. For a condition-
ally stable algorithm (here the central difference method), the numerical time step re-
striction for stability plays a limiting role. If an implicit unconditionally stable time in-
tegration scheme is used, the time step should be determined from the Courant condi-
tion to avoid numerical dispersion errors. 

— The application of one multi-node spectral element per bar guarantees the smallest 
number of nodes per wavelength, but in such case the numerical time integration using 
the central difference method requires very small time step. The application of a few 
spectral elements per bar causes an increase of the number of nodes per wavelength. 
However, the critical time step is larger than for the case of one spectral element per bar. 

— For the considered excitation frequency equal to 150 kHz, for which only one longitu-
dinal mode could propagate in the analysed rod specimen, both the Love and Mindlin-
Herrmann theories are covered, however in general the Mindlin-Herrmann theory guar-
antees more accurate wave propagation results in wider frequency range than the Love 
theory and it allows the analysis of the second mode. 

— The comparison of results of the numerical simulations with the experimental ones has 
proved that the spectral element model based on the Love rod theory, as well as the 
Mindlin-Herrmann rod theory guarantees better approximation for the first longitudinal 
mode behaviour than the elementary theory. Therefore it is advised, that the numerical 
model intended as a part of the SHM system should be described in the SEM formula-
tion based on the Love or Mindlin-Herrmann theories to obtain proper time of reflec-
tions from potential damage. 

— For the elementary rod theory, the mass matrix has a diagonal structure, thus the time 
integration can be efficiently conducted. The application of the Love theory causes the 
mass matrix to lose its diagonal form. On the other hand, the Mindlin-Herrmann theory 
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provides the diagonal mass matrix but it requires an additional degree of freedom, 
which causes the size of element matrices to increase twice. 

— In the analysis of flexural wave propagation based on the Timoshenko beam theory, the 
mass matrix is diagonal, which enables the efficient time integration. The Timoshenko 
beam model, with adjustable parameters selected based on the comparison with the ex-
perimental results within the frequency range of interest, provides the velocity results 
compatible with the experimentally measured signals. 

— The experimental tuning test allows to find frequencies at which waves are strongly 
excited and frequencies at which waves practically cannot be excited in the considered 
specimen and the applied instrumentation. 

— Experimental dispersion curves enable to determine the adjustable parameters for the 
approximate Love, Mindlin-Herrmann and Timoshenko theories. These parameters can 
by calculated by the method of least squares to give the best fit with the experimental 
modes in the considered frequency range. Numerical results obtained from the models 
without the adjustable parameters do not cover with experimental signals. The adjust-
able parameters compensate the approximation of displacement fields giving results co-
inciding with experimental signals. 

— The excitation signal should ensure relatively narrow spectrum in the frequency do-
main. Application of the Hanning window provides reduction of side frequencies. Exci-
tation of single-frequency waves is very important, especially when dealing with disper-
sive Lamb waves and concentration of input energy at a point on the dispersion curves 
in which dispersion is low can minimize the effect of dispersion. 

Experimental investigations showed that for the considered bars with structural dis-
continuities additional reflections appeared in the guided wave response signal. The small-
est reflection was caused by the groove weld, whereas the greatest was caused by the pres-
ence of the additional mass. The discontinuity in the form of the notch and the weld caused 
additional reflections of amplitude much smaller than the amplitude of reflections from the 
bar boundaries. The presence of additional mass caused a different type of reflections. The 
longitudinal, as well as flexural waves were successfully used to localize the discontinuity 
in the form of the notch and the additional mass. However, in the case of small ”damage”, 
simulated through the grooved weld, the longitudinal waves appeared to be more sensitive 
than the flexural waves in damage detection. When the longitudinal waves were applied, 
the reflection from the weld was observed during the first wave passage, while in the case 
of flexural waves the weld detection was possible after passage of five bar lengths. The 
application of flexural waves to damage detection can be enhanced through the velocity 
measurements in a few points and the analysis of the time-position plane. 

For diagnostic purposes, in the performed experiments the velocity signals were meas-
ured at two opposite ends of the specimen (at the start point, on which the actuator was 
bonded and at the end point). The frequency of the applied incident wave was selected to 
ensure propagation of one longitudinal and one flexural mode. Damage detection in the bar 
was possible using longitudinal, as well as flexural waves and it was unambiguous, when 
the response signal was measured at the start point. The measurement of the wave propaga-
tion signal at the end point cannot provide unambiguous identification of damage position. 

 



 

Chapter 5 

WAVE PROPAGATION IN FRAME STRUCTURES 

Complexity met in investigations of wave propagation in engineering structures sug-
gests careful studies of simpler structural elements. Such element is for example a junction 
of two non-collinear rods, in particular an L-joint, i.e. a right angle joint. The L-joint can be 
a component of more complex engineering structures or it can represent the simplest frame 
structure. The analysis of wave propagation in the frame corner is of practical interest due 
to the mode conversion. An incident wave of one type, after reaching a junction generates 
propagation and reflection of waves of other types, which causes damage detection more 
difficult than for a simple bar. 

The earliest studies (Lee and Kolsky 1972) concerned an analytical model of wave 
propagation at the junction of two non-collinear rods. Lee and Kolsky (1972) used the ele-
mentary theory to describe propagation of longitudinal waves and the Timoshenko theory 
for flexural wave propagation. In their experiments, a steel rod was bent at 15-degrees in-
tervals from 15 to 90 degrees. Strain gages were attached to the specimen and an incident 
pulse was created by firing a projectile, so that axial impact was achieved. Atkins and 
Hunter (1975) presented an analytical model of wave propagation in an L-joint. In the per-
formed experiments, a longitudinal pulse was induced by a projectile and strains were 
measured by strain gauges. Liang and Chen (1998) studied theoretically reflection and 
transmission of the longitudinal wave around a right-angled joint of two rods. They con-
cluded that a force applied along a horizontal rod of an L-joint causes, that the longitudinal 
wave nearly cannot transmit into a vertical rod. Beccu et al. (1996) studied longitudinal 
waves in a bent bar. Experiments were performed on a bar with a sharp and smooth bend. 
The bars were impacted axially by a cylindrical carbon steel piston accelerated by an air 
gun and strain gages were applied to monitor strains. Experimental and theoretical wave 
propagation through the junction of three bars was studied by Desmond (1981). Impact 
experiments were performed to measure stress wave responses at the junction of two collin-
ear bars and one bar non-collinear to the first two. Doyle and Kamle (1987) analysed ex-
perimentally flexural waves for an arbitrary T-joint. An aluminium T-joint was impacted 
mechanically and strain gauges were used to monitor stress waves. Recently, experimental 
studies of wave propagation in the form of a wave packet in a damaged L-joint have been 
presented by Rucka (2010b). Longitudinal and flexural waves were excited by a piezoelec-
tric actuator and a vibrometer was used to non-contact measurements of velocity signals. 

Numerical simulations of wave propagation in an L-joint using the SFEM were initi-
ated by Doyle and Farris (1990b). They developed a spectrally formulated element for 
wave propagation in frames based on the elementary rod and the Euler-Bernoulli beam 
theories. This model was examined on an L-joint consisting of two semi-infinite members. 
To respect dispersion, modified rod theories were formulated. Martin et al. (1994) formu-
lated a frame element by combining the Mindlin-Herrmann rod with the Timoshenko beam 
in the frequency domain. Numerical simulations have been conducted on two semi-infinite 
rods connected with a 45 degree joint. To model longitudinal, as well as flexural wave 
propagation taking lateral deformations and shear deformations into consideration, the 
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special frame spectral element in the time domain based on the Mindlin-Herrmann rod and 
the Timoshenko beam theories was formulated by Rucka (2010b). 

This chapter is devoted to conduct experimental and numerical analyses of longitudi-
nal and flexural wave propagation in plane frame structures. The research is a continuation 
of the author’s study related to wave propagation in an L-joint (Rucka 2010b). Three type 
of frames, namely an L-frame (a.k.a. L-joint), a T-frame (a.k.a. T-joint) and a portal frame 
are analysed in this chapter. Particular attention is placed on damage detection aspects. As a 
result, this section presents guidelines for SHM systems dedicated for the considered 
frames concerning the required number of actuators and measurement points essential to 
monitor a whole frame structure. 

5.1. Experimental setup 

Wave propagation experiments were performed on three types of plane frames: an L-
frame, a T-frame and a portal frame. The L-frame was prepared through a welding process. 
It consists of two bars of cross-section 6 mm 6 mm×  and length L = 995 mm measured in 
axis, as shown in Fig. 5.1. The material parameters of the bars are the same as described in 
Section 4.1. The bars have been chamfered at 45 degree and joined in the L-frame corner 
with a butt weld. Then the weld was ground to obtain the origin cross-section. Two L-frame 
specimens were taken into investigation: the intact L-frame and the L-frame with a notch. 
The rectangular notch with dimensions 2 mm in length and 1 mm in height was obtained by 
a precision cut. The depth of the notch was 16.7 % of the rod height. The notch was intro-
duced at the distance 0.5rL L=  from the left edge of the specimen (Fig. 5.1). The second 
specimen was the T-frame shown in Fig. 5.2. The weld was performed at the junction of 
three rods. Three different specimens were prepared: the intact T-frame, the T-frame with 
the notch on the horizontal member and the T-frame with the notch on the vertical member. 
Geometry of the portal frame presents Fig. 5.3. Four specimens were taken into considera-
tion: the intact portal frame, the portal frame with the notch on the horizontal member, the 
portal frame with the notch on the vertical member and the portal frame with two notches. 

 

Fig. 5.1. Geometry of experimentally tested L-frame specimens: 
a) intact L-frame; b) L-frame with notch
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Fig. 5.2. Geometry of experimentally tested T-frame specimens: a) intact T-frame; b) T-frame 
with notch on horizontal member; c) T-frame with notch on vertical member 
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Fig. 5.3. Geometry of experimentally tested portal frame specimens: a) intact frame; b) frame 
with notch on vertical member; c) frame with notch on horizontal member; d) frame with two 

notches on vertical and horizontal members 

The photos of the experimental setup are shown in Fig. 5.4. To excite ultrasonic waves 
the piezoelectric plate actuator Noliac CMAP11 of dimensions 5 mm 5 mm 2 mm× ×  was 
bonded at one end of the specimen. The Tektronix function generator AFG 3022 with the 
amplifier EC Electronics PPA 2000 created an excitation signal. Propagating velocity sig-
nals were sensed and registered by one scanning head PSV-I-400 of the Polytec Scanning 
Laser Vibrometer PSV-3D-400-M. As an excitation, a twelve-peak sinusoidal signal modu-
lated by the Hanning window was chosen. In the L-frame, the T-frame and the portal frame 
specimens both longitudinal and flexural waves were excited and measured. In the case of 
longitudinal waves, the signal of frequency 120 kHz was excited, whereas in the case of 
flexural waves, the frequency of signal was 100 kHz. These frequencies were found to be 
more effective in the considered specimens and the used instrumentation. The excitation 
signals in time and frequency domains are shown in Fig. 5.5. 



5.1. Experimental setup 
 

87

 

Fig. 5.4. Experimental setup for wave propagation, hardware and specimens: 
a) L-frame; b) T-frame; c) portal frame 
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Fig. 5.5. Excitation voltage signals pV(t) in time and frequency domains for experiments 
on plane frames: a) signal of frequency 120 kHz; b) signal of frequency 100 kHz 

5.2. Damage detection in L-frame by guided waves 

Experimental and numerical investigations were performed for the intact L-frame, as 
well as for the L-frame with the notch (Fig. 5.1). Two positions of the notch were consid-
ered: the notch on the horizontal member and on the vertical member. A load in the form of 
the wave packet (Fig. 5.5) was induced in both axial and transverse directions. 

5.2.1. Spectral element method model of L-frame 

In the numerical simulations, the M-H-Tim spectral frame element was applied (cf. 
Section 3.2.5). The intact specimen was modelled using 24 equal elements with 15 GLL 
nodes (per each member), while the specimen with the notch was modelled using 24 equal 
elements with 15 GLL nodes and one element with 15 GLL nodes of length 2 mm with 
height reduced by 1 mm. For both the Mindlin-Herrmann and Timoshenko theories, the 
mass matrix has the diagonal structure, so the time integration using the central difference 
scheme can be efficiently conducted. The time step was chosen as 710 st −Δ =  for the intact 
specimen and 810 st −Δ =  for the specimen with the notch. This is so because for the speci-
men with the defect the largest frequency of an assembled finite element mesh is about ten 
times larger than for the intact specimen. For the applied mesh, the highest frequency, 
which affects the critical time step, is 2.93 MHz for the intact L-frame and 30.62 MHz for 
the L-frame with the notch. 

The L-frame contains a butt weld in the corner. In this study, it is proposed to model 
the welded part of a bar as a part with reduced modulus of elasticity. Justification of this 
assumption was presented in Section 4.4 on the example of wave propagation tests on a 
straight bar containing a weld. Following the experiment with the straight bar, the numeri-
cal model of the L-frame with the weld was prepared. It was assumed that two elements 
near the corner have 10% reduced modulus of elasticity compared with the remain-
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ing part of the L-frame. The length of each element was established as 2 cm, because the 
influence of the welding process was observed at this length. Additionally, the numerical 
analysis of the isotropic L-frame was performed. Figure 5.6 shows the comparison of the 
velocity signal 1( )v t  registered at node 1 (Fig. 5.7a) for the isotropic L-frame and for the 
L-frame with the weld. Both spectral models (for the isotropic L-frame and for the L-frame 
with the weld) provide comparable results. This is because the propagating waves reflect 
from the corner, and the reflection from the weld is masked by the reflection from the 
L-frame corner. Therefore, in further simulations, the SEM model of the L-frame was as-
sumed to be isotropic, despite of the presence of the weld in its corner. 

 

Fig. 5.6. Envelopes of numerical velocity signals for isotropic L-frame and L-frame with weld 
during longitudinal wave propagation 

5.2.2. Longitudinal wave propagation in L-frame 

The wave packet of frequency 120 kHz (Fig. 5.5a) was imposed in the longitudinal di-
rection at node 1, whereas the velocity of vibrations was measured in both nodes 1 and 2. 
One L-frame specimen with damage enabled analysis of two positions of the defect. The 
locations of actuators and measurement points are shown in Fig. 5.7. The analytical values 
of group velocity were 5045.61 m/s for the longitudinal wave and 3094.71 m/s for the flexural 
wave, whereas the experimental values were 5044.33 m/s and 3082.48 m/s, respectively. 

 

Fig. 5.7. Location of actuators and measurement points for the L-frame in the case 
of longitudinal wave propagation: a) intact L-frame; b) L-frame with the notch 
on the horizontal member; c) L-frame with the notch on the vertical member 
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At first, the intact frame was examined (Fig. 5.7a). The experimental and numerical 
signals are illustrated in Fig. 5.8. When the incident longitudinal wave reached the frame 
corner (node 3), both longitudinal and flexural waves propagated and reflected. In the 1( )v t  
signal (Fig. 5.8a), the incident wave and eight reflections (R1 to R8) are visible during re-
corded 2 ms time period. The 1st, 2nd, 4th and 6th reflections were caused by propagation 
of the longitudinal wave only, whereas the 3rd, 5th, 7th and 8th reflections contained both 
longitudinal and flexural components. Similarly, in the 2 ( )v t  velocity signal, the 1st, 2nd, 
4th and 6th waveforms were caused by propagation of longitudinal waves, while the 3rd, 
5th, 7th and 8th waveforms appeared from both longitudinal and flexural waves. In Fig. 5.8 
experimental and numerical signals in the form of signal envelopes are compared for the 
intact L-frame. It can be seen that the application of the numerical model based on the 
M-H-Tim spectral frame element provides the numerical data compatible with the experi-
mental ones with respect to time of reflections. 

 

Fig. 5.8. Comparison between experimental and numerical velocity time signals for the intact 
L-frame in the case of longitudinal wave propagation: a) velocity signal v1(t)  registered on 

the left end of the L-frame; b) velocity signal v2(t) registered on the right end of the L-frame 
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Fig. 5.9. Comparison between experimental and numerical velocity time signals for the L-frame 
with the notch on the horizontal member in the case of longitudinal wave propagation: 

a) velocity signal v1(t) registered on the left end of the L-frame; 
b) velocity signal v2(t) registered on the right end of the L-frame 

The second example concerned the L-frame with the notch on the horizontal member 
(Fig. 5.7b). The numerical and experimental results for this case are compared in Fig. 5.9. 
The reflections from the notch, visible in both 1( )v t  and 2 ( )v t  velocity signals, can be 
identified based on the knowledge of the L-frame geometry and the group velocity of axial 
and flexural waves. Two distinct reflections from the notch appeared in the 1( )v t  signal 
(Fig. 5.9a) at the time instant equal to 0.2 ms and 0.6 ms. Both reflections were caused by 
propagation of longitudinal waves. In the 2 ( )v t  signal (Fig. 5.9b), two reflections from the 
notch can also be observed. The first reflection occurred at 0.6 ms as a result of propagation 
of the longitudinal wave. The second reflection was caused by propagation of both longitu-
dinal and flexural waves and it occurred at the time instant equal to 0.73 ms (the longitudi-
nal wave from node 1 to node 3, next the flexural wave from node 3 to the notch and back, 
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finally the longitudinal wave from node 3 to node 2). Next reflections from the notch over-
lapped with the reflections from the corner and from the L-frame ends, thus they cannot be 
easily identified. In the experimentally measured signals, the reflections from the notch can 
also be observed in Fig. 5.9. The reflections contained in the 1( )v t  signal were very distinct, 
but the reflections from the notch in the 2 ( )v t  experimental signal were more contaminated. 

 

Fig. 5.10. Comparison between experimental and numerical velocity time signals for the 
L-frame with the notch on the vertical member in the case of longitudinal wave propagation: 

a) velocity signal v1(t) registered on the left end of the L-frame; 
b) velocity signal v2(t) registered on the right end of the L-frame 

In the third example, the notch on the vertical member of the L-frame was considered 
(see Fig. 5.7c) and results for this case are presented in Fig. 5.10. In the 1( )v t  numerical 
signal (Fig. 5.10a), the first reflection from the notch occurred at 0.6 ms and it was caused 
by longitudinal wave propagation. It has very small amplitude and its usefulness in damage 
detection is limited because the experimental measurement of a such small waveform ap-
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peared to be impossible. The second reflection from the notch in the 1( )v t  signal occurred 
at 0.73 ms and it was caused by propagation of longitudinal and flexural waves (the longi-
tudinal wave from node 1 to the corner, then flexural to the notch and back, and finally the 
longitudinal wave from the corner to node 1). This component can be used for the purpose 
of damage detection, and it was successfully registered in the performed experiment. The 
numerical velocity signal 2 ( )v t  (Fig. 5.10b) was identical as in the case of the notch on the 
horizontal element (Fig. 5.9b). Hence, for the considered position of damage, it was impos-
sible to indicate the precise localization of damage (i.e. whether it is on the vertical or on 
the horizontal element) based solely on information from the 2 ( )v t  signal. 

 

Fig. 5.11. Envelopes of numerical velocity signals for the L-frame containing the notch at 
different positions Lr  (Lr = 0.25L, Lr = 0.5L, Lr = 0.75L) in the case of longitudinal wave 

propagation: a) L-frame with the notch on the horizontal member; b) L-frame with the notch 
on the vertical member; c) L-frame with the notch on the horizontal or vertical member 
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The last example concerned the numerical simulations for various damage positions, 
namely 0.25rL L= , 0.5rL L=  and 0.75rL L=  (cf. Fig. 5.7b and c), for both the L-frame 
with the notch on the horizontal member and the L-frame with the notch on the vertical 
member. As in the case of the simple rod (cf. Section 4.4), the measurement of the velocity 
signal 2 ( )v t  cannot provide unambiguous identification of damage position (Fig. 5.11c). 
The velocity signal 2 ( )v t  was the same for both models of the L-frame, i.e. for the L-frame 
with the notch on the horizontal element and with the notch on the vertical element. The 
situation was different, when the 1( )v t  velocity signal was analysed. If damage was situ-
ated on the horizontal member of the L-frame (i.e. on the member, on which the actuator 
was bonded), the velocity signal 1( )v t  enabled easy localization of the notch position 
(Fig. 5.11a). Between incident wave and wave reflected from the L-frame corner, the single 
reflection from damage can be observed. However, when damage occurred on the vertical 
member, the reflection from damage was masked partially by the reflection from node 2. 
As shown in Fig. 5.11b, the localization of the notch was possible for all considered posi-
tions ( 0.25rL L= , 0.5rL L= , 0.75rL L= ), but the damage placed in the neighbourhood of 

0.6rL L=  to 0.7rL L=  would be completely masked by the reflection from node 2. This 
is caused by different values of the group velocities of the longitudinal (5046 m/s) and the 
flexural waves (3095 m/s). If the group velocity of the longitudinal wave was equalled to 
the group velocity of the flexural wave (here for the frequency of 312 kHz), this ambiguous 
situation could be eliminated. However, for the equal group velocities of the longitudinal 
and flexural waves, the second flexural mode appears, which makes the damage detection 
more difficult. 

5.2.3. Flexural wave propagation in L-frame 

The incident wave packet of frequency 100 kHz (Fig. 5.5b) was imposed in the transverse 
direction at node 1, while the velocity signals 1( )v t  and 2 ( )v t  were measured in both nodes 
1 and 2. The arrangement of actuators and velocity measurement points is illustrated in 
Fig. 5.12. The intact and two damaged L-frames were taken into consideration. For the 
excited waves of frequency 100 kHz, the analytical group velocities were 5079.59 m/s (for 
longitudinal waves) and 3012.06 m/s (for flexural waves), whereas the experimental values 
of group velocities were 5074.33 m/s (for longitudinal waves) and 3026.59 m/s (for flexural 
waves). 

 

Fig. 5.12. Location of actuators and velocity measurement points for the L-frame in the case 
of flexural wave propagation a) intact L-frame; b) L-frame with the notch on the horizontal 

member; c) L-frame with the notch on the vertical member 
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At the beginning, the intact L-frame was investigated (Fig. 5.12a). When the incident 
flexural wave reached the frame corner, both flexural and longitudinal waves appeared. The 
results of the numerical simulations and the experiments are given in Fig. 5.13. In the 1( )v t  
signal (Fig. 5.13a), the incident wave and six echoes (R1 to R6) are visible during the re-
corded 2 ms time period. The 1st and 3rd reflections were caused by propagation of the 
flexural wave, whereas the 2nd, 4th, 5th and 6th reflections contained both flexural and 
longitudinal components. The comparison of the numerical and experimental signals in the 
form of signal envelopes for the intact L-frame is illustrated in Fig. 5.13. Note that the 
application of the numerical model based on the M-H-Tim spectral frame element results in 
compatibility of times of reflections. 

 

Fig. 5.13. Comparison between experimental and numerical velocity time signals for the intact 
L-frame in the case of flexural wave propagation: a) velocity signal v1(t) registered on the left 

end of the L-frame; b) velocity signal v2(t) registered on the right end of the L-frame 
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Next, the L-frame with the notch was tested. The numerically obtained 2 ( )v t  velocity 
signal for the L-frame with the notch on the horizontal member (Fig. 5.14b) was identical 
as for the L-frame with the notch on the vertical member (Fig. 5.15b). The reflection from 
damage occurred at 0.86 ms. The experimental signals 2 ( )v t  were also very similar for the 
frame with the notch situated on the horizontal and the vertical member. The signal 1( )v t  
differed depending on the notch position (on the horizontal or on the vertical member). In 
the case of damage placed on the horizontal member, the reflection occurred at 0.33 ms, 
which was successfully registered in the experimental measurements (Fig. 5.14a). For dam-
age situated on the vertical element, the velocity signal 1( )v t  (Fig. 5.15a) contained the 
reflection from damage at 0.86 ms (the flexural wave from node 1 to the corner, then the 
longitudinal wave to the notch and back, and finally the flexural wave to node 1). 

 

Fig. 5.14. Comparison between experimental and numerical velocity time signals for the 
L-frame with the notch on the horizontal member in the case of flexural wave propagation: 

a) velocity signal v1(t) registered on the left end of the L-frame; 
b) velocity signal v2(t) registered on the right end of the L-frame 
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Fig. 5.15. Comparison between experimental and numerical velocity time signals for the 
L-frame with the notch on the vertical member in the case of flexural wave propagation: 

a) velocity signal v1(t) registered on the left end of the L-frame; 
b) velocity signal v2(t) registered on the right end of the L-frame 

In the last example, the numerical simulations for three various damage positions rL , 
i.e. 0.25rL L= , 0.5rL L=  and 0.75rL L=  were investigated (cf. Fig. 5.12b and c), for 
both the L-frame with the notch on the horizontal member and the L-frame with the notch 
on the vertical member. Damage situated on the horizontal member of the L-frame (i.e. on 
the member, on which the actuator was bonded) can be easily identified from the 1( )v t  
velocity signal (Fig. 5.16a) by analysis of the L-frame geometry and the velocity of the 
propagating flexural wave mode. For the notch situated on the vertical element of the 
L-frame (i.e. on the member without the actuator bonded), identification was also unambi-
guous for arbitrary damage position (Fig. 5.16b) until the group velocity of the longitudinal 
wave was larger than the group velocity of the flexural wave. 
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Fig. 5.16. Envelopes of numerical velocity signals v1(t) measured on the left end of the L-frame 
containing the notch at different positions Lr (Lr = 0.25L, Lr = 0.5L, Lr = 0.75L) in the case 

of flexural wave propagation: a) L-frame with the notch on the horizontal member; 
b) L-frame with the notch on the vertical member 

5.3. Damage detection in T-frame by guided waves 

The T-frame consists of three members: member I (between node 1 and 3) collinear to 
member II (between nodes 3 and 4) and member III (between nodes 2 and 3) perpendicular 
to them, as it is shown in Fig. 5.17. The experimental and numerical investigations were 
performed for the intact T-frame, as well as for the T-frame specimens with the notch (see 
Fig. 5.2). Two damaged T-frame specimens made analysis of three positions of the notch 
possible (Fig. 5.17), namely the frame with defect situated on member I, member II or 
member III. A load in the form of the wave packet was induced in both axial and transverse 
directions. In the numerical simulations, the M-H-Tim spectral frame element was applied. 
The T-type frames were modelled by the spectral element method in the same way as the 
L-frame (as described in Section 5.2). 

5.3.1. Longitudinal wave propagation in T-frame 

The wave packet of frequency 120 kHz was imposed in the longitudinal direction at 
node 1 and the velocity signal 1( )v t  was measured at the same node (Fig. 5.17). The ex-
perimental and numerical signals for the intact T-frame are illustrated in Fig. 5.18. In the 
velocity signal 1( ),v t  the incident wave and eight reflections are visible during the recorded 
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2 ms time period. As for the L-frame, the 1st, 2nd, 4th and 6th reflections (R1, R2, R4, R6) 
were caused by propagation of the longitudinal wave only, whereas the remaining reflec-
tions contained both longitudinal and flexural components. 

For the T-frame with damage introduced on member I, two additional reflections ap-
peared: between incident wave and reflection R1, as well as between reflection R1 and re-
flection R2 (Fig. 5.19). In the experimentally measured signal for this case, the first reflec-
tion from damage occurred at the time instant equal to 0.2 ms and it was more distinct than 
the second one, which occurred at the time instant equal to 0.6 ms. Analysing the T-frame 
with damage on member II, one reflection from damage can be observed in both numerical 
and experimental signals (Fig. 5.20). This additional reflection occurred at the time instant 
equal to 0.6 ms, between reflection R1 (from the frame corner) and reflection R2 (from 
nodes 2 and 4). In the last case, the notch was situated on member III and numerical and 
experimental results for this case are compared in Fig. 5.21. The reflection from the notch 
in the velocity signal 1( )v t  occurred at the time instant equal to 0.73 ms, and it was caused 
by propagation of longitudinal and flexural waves. However, this component was not quite 
clear in the experimental signal. Moreover, it was partially masked by reflection R2 (from 
nodes 2 and 4). 

Finally, the numerical simulations for various damage positions, namely 0.25rL L= , 
0.5rL L=  and 0.75rL L=  (cf. Fig. 5.17b, c and d) were conducted. For the defect situated 

on member I or member II, the velocity signal 1( )v t  enabled easy and unambiguous local-
ization of the notch position (Fig. 5.22a and Fig. 5.22b). However, when the damage was 
placed on member III, perpendicular to members I and II, the reflection from damage was 
partially masked by reflection R2 due to different values of the group velocities of the longi-
tudinal and flexural waves. 

 

Fig. 5.17. Location of actuators and measurement points for the T-frame in the case 
of longitudinal waves: a) intact; b) with notch on member I; c) with notch on member II;  

d) with notch on member III 
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Fig. 5.19. Comparison between experimental 
and numerical signals for the T-joint 

with the notch on member I 
during longitudinal wave propagation 

Fig. 5.18. Comparison between experimental 
and numerical signals for the intact T-joint 

during longitudinal wave propagation 
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Fig. 5.20. Comparison between experimental 
and numerical signals for the T-joint 

with the notch on member II 
during longitudinal wave propagation 

Fig. 5.21. Comparison between experimental 
and numerical signals for the T-joint 

with the notch on member III 
during longitudinal wave propagation 
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Fig. 5.22. Envelopes of numerical velocity signals of longitudinal wave propagation in T-frame 
for different damage positions Lr (Lr = 0.25L, Lr = 0.5L, Lr = 0.75L): a) T-frame with the notch 
on member I; b) T-frame with the notch on member II; c) T-frame with the notch on member III 
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5.3.1. Flexural wave propagation in T-frame 

The T-frame was excited with 100 kHz burst at node 1 in the transverse direction and 
the velocity signal 1( )v t  was measured at the same node 1 (Fig. 5.23). Figure 5.24 shows 
the experimental and numerical results for the intact frame, as well as the comparison be-
tween them in the form of signal envelopes. In the recorded 2 ms time period, the incident 
wave and six echoes (R1 to R6) are visible in the 1( )v t  velocity signal. 

If the notch was introduced within member I, the additional reflection appeared in both 
the experimental and numerical guided wave responses (Fig. 5.25), between the incident 
wave and reflection R1 at the time instant equal to 0.33 ms. Figure 5.26 presents the veloc-
ity time histories for the case with damage on member II. In this case, reflection from dam-
age occurred very close to reflection R2. This component had very small amplitude in the 
numerical signal. Moreover, it was not possible to measure such small waveform, thus its 
usefulness in damage detection was limited. Analysing the notch situated on member III, 
the reflection from damage was clear (Fig. 5.27). The reflection from damage occurred 
between reflections R1 and R2 at the time instant 0.86 ms, as a result of propagation of both 
longitudinal and flexural waves (the flexural wave from node 1 to node 3, then the longitu-
dinal wave to the notch and back, and finally the flexural wave to node 1). 

Figure 5.28 shows envelopes of numerical velocity signals of flexural wave propa-
gation in the T-frame for different damage positions: 0.25rL L= , 0.5rL L=  and 

0.75rL L=  (cf. Fig. 5.23b, c and d). For the defect situated on member I or member III 
identification of damage position was possible based on information contained in the 1( )v t  
velocity signal. Analysing the defect located on member II, collinear with member I, the 
reflection from damage was masked partially by the reflections from nodes 2, 3 and 4 due 
to different values of the group velocities of the longitudinal and flexural waves. 

 

Fig. 5.23. Location of actuators and measurements points for the T-frame in the case 
of flexural waves: a) intact; b) with notch on member I; c) with notch on member II; 

d) with notch on member III 
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Fig. 5.25. Comparison between experimental 
and numerical signals for the T-joint 

with the notch on member I 
during flexural wave propagation 

Fig. 5.24. Comparison between experimental 
and numerical signals for the intact T-joint 

during flexural wave propagation 
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Fig. 5.26. Comparison between experimental 
and numerical signals for the T-joint 

with the notch on member II 
during flexural wave propagation 

Fig. 5.27. Comparison between experimental 
and numerical signals for the T-joint 

with the notch on member III 
during flexural wave propagation 
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Fig. 5.28. Envelopes of numerical velocity signals of flexural wave propagation in T-frame for 
different damage positions Lr (Lr = 0.25L, Lr = 0.5L, Lr = 0.75L): a) T-frame with the notch on 
member I; b) T-frame with the notch on member II; c) T-frame with the notch on member III 
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5.4. Damage detection in portal frame by guided waves 

The portal frame consists of three members: member I (between node 1 and 2), mem-
ber II (between nodes 2 and 3) and member III (between nodes 3 and 4), as it is given in 
Fig. 5.29. The experimental and numerical investigations were conducted for the intact 
portal frame, as well as for the portal frame specimens with the notch (cf. Fig. 5.3). Three 
specimens with damage were used to consider five different cases of defect location (see 
Fig. 5.29): one notch on member I, II or III, as well as two notches on members I and II or 
on members II and III. Two forms of elastic waves were studied, namely longitudinal and 
flexural waves. The portal frames were modelled by the SEM in the same way as the 
L-frame (as described in Section 5.2). The numerical model was based on the spectral ele-
ment formulation with the application of the Mindlin-Herrmann rod and the Timoshenko 
beam theories (M-H-Tim spectral frame element). 

5.4.1. Longitudinal wave propagation in portal frame 

The portal frame was excited in the axial direction by the wave packet of frequency 
120 kHz at node 1. The velocity time history was measured at the same node 1, as it is 
illustrated in Fig. 5.29. The experimental and numerical signals for the intact frame are 
shown in Fig. 5.30. In the 1( )v t  signal, the first reflection R1 was caused by propagation of 
 

 

Fig. 5.29. Location of actuators and measurement points for the portal frame during longitudinal 
wave propagation: a) intact frame; b) frame with notch on member I; c) frame with notch on 
member II; d) frame with notch on member III; e) frame with notches on member I and II; 

f) frame with notches on member II and III 
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Fig. 5.30. Comparison between experimental 
and numerical signals for the intact portal 

frame during longitudinal wave propagation 

Fig. 5.31. Comparison between experimental 
and numerical signals for the portal frame 

with the notch on member I 
during longitudinal wave propagation 
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Fig. 5.32. Comparison between experimental 
and numerical signals for the portal frame 

with the notch on member II 
during longitudinal wave propagation 

Fig. 5.33. Comparison between experimental 
and numerical signals for the portal frame 

with the notch on member III 
during longitudinal wave propagation 
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Fig. 5.34. Comparison between experimental 
and numerical signals for the portal frame 

with the notches on members I and II 
during longitudinal wave propagation 

Fig. 5.35. Comparison between experimental 
and numerical signals for the portal frame 

with the notches on members II and III 
during longitudinal wave propagation 
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the longitudinal wave to node 2 and back. In the 2nd reflection R2, the wave reflected from 
node 3 was superposed with the wave reflected twice from node 2. The reflection of the 
longitudinal wave from node 4 was the 5th reflection in the 1( )v t  signal, and it was pre-
ceded by the reflections, which contained both longitudinal and flexural components. 

The results for the portal frame with damage on member I are shown in Fig. 5.31. Two 
distinct additional reflections appeared in the measured and calculated signals at 0.2 ms and 
0.6 ms. For the frame with damage on member II (Fig. 5.32), the additional reflection is 
visible at 0.73 ms, but it is very close to reflection R2, as in the case of the L-frame. If the 
notch was introduced on member III, no reflection from damage was registered in both 
numerical and experimental signals (Fig. 5.33) due to multiple reflections of longitudinal 
and flexural waves from the portal frame boundaries. 

Next, two cases with double notches were considered (Fig. 5.34, Fig. 5.35). Analysing 
the defects on member I and member II (Fig. 5.34), three reflections from the notches ap-
peared at 0.2 ms, 0.6 ms and 0.73 ms. Figure 5.35 shows results for the frame with notches 
on members II and III. In this case, results are the same as for the frame with one defect on 
member II, because identification of the notch on member III was impossible. 

5.4.2. Flexural wave propagation in portal frame 

The wave packet of frequency 100 kHz was imposed at node 1, and the velocity time 
history was measured at the same node (Fig. 5.36). The results for the intact portal frame 
 

 

Fig. 5.36. Location of actuators and measurement points for the portal frame during flexural 
wave propagation: a) intact frame; b) frame with notch on member I; c) frame with notch on 
member II; d) frame with notch on member III; e) frame with notches on member I and II; 

f) frame with notches on member II and III 
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Fig. 5.37. Comparison between experimental 
and numerical signals for the intact portal 
frame during flexural wave propagation 

Fig. 5.38. Comparison between experimental 
and numerical signals for the portal frame 

with the notch on member I 
during flexural wave propagation 
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Fig. 5.39. Comparison between experimental 
and numerical signals for the portal frame 

with the notch on member II 
during flexural wave propagation 

Fig. 5.40. Comparison between experimental 
and numerical signals for the portal frame 

with the notch on member III 
during flexural wave propagation 
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Fig. 5.41. Comparison between experimental 
and numerical signals for the portal frame 

with the notches on members I and II 
during flexural wave propagation 

Fig. 5.42. Comparison between experimental 
and numerical signals for the portal frame 

with the notches on members II and III 
during flexural wave propagation 
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are presented in Fig. 5.37. Results for the portal frame with damage on member I are 
shown in Fig. 5.38. Two distinct additional reflections appeared in the measured and calcu-
lated signals at 0.33 ms and 0.99 ms. For the portal frame with damage on member II 
(Fig. 5.39), one additional reflection from the notch occurred at 0.86 ms. Analysing the 
notch introduced on member III, no reflection from damage occurred in both numerical and 
experimental signals (Fig. 5.40). Figures 5.41 and 5.42 illustrate two cases with double 
notches. For the defects on member I and member II, three reflection from notches ap-
peared (Fig. 5.41), at 0.33 ms, 0.86 ms and 0.99 ms. Figure 5.42 shows results for the frame 
with notches at members II and III. In this case, results are the same as for the frame with 
defect on member II only, because identification of the notch on member III was impossible. 

5.5. Summary and conclusions 

In this chapter, longitudinal and flexural wave propagation in three types of plane 
frames (the L-frame, the T-frame and the portal frame) has been investigated both experi-
mentally and numerically. In particular, detection of damage has been considered by ana-
lysing wave speeds and reflection times in the recorded guided wave signals. 

Numerical simulations were performed by the spectral element method in the time 
domain using the M-H-Tim frame element based on the Mindlin-Herrmann rod combined 
with the Timoshenko beam. The application of the M-H-Tim spectral element guarantees 
that the mass matrix has a diagonal structure, thus time integration can be efficiently per-
formed. The spectral model based on the Mindlin-Herrmann rod and Timoshenko beam 
theories guarantees excellent approximation for the first longitudinal and first flexural mode 
behaviour, which was proved by the comparison with the experimentally measured signals. 
Therefore, the numerical model of an arbitrary joint or frame structure, intended as a part of 
the SHM system, should be described in the SEM formulation based on the Mindlin-
Herrmann rod and Timoshenko beam theories to obtain proper times of reflections from 
potential damage. 

Experimental and numerical investigations of damage detection were performed for 
the intact L-frame, as well as for the L-frame with the notch. The frequency of the applied 
incident wave was selected to ensure propagation of one longitudinal (S0) mode and one 
flexural (A0) mode. Localization of damage in the L-frame was more difficult than for a 
simple bar due to the mode conversion phenomenon. In the performed experiment, the 
velocity time signal was measured at two opposite ends of the L-frame specimen (at the 
start point, on which the actuator was bonded and at the end point). As in the case of the 
simple bar, the measurement of the wave propagation signal at the end point cannot provide 
unambiguous identification of damage position. For the longitudinal, as well as flexural 
incident waves, damage situated on the horizontal member of the L-frame (containing the 
excitation point) can be easily identified by the response measurement at the start point. 
When damage was situated on the vertical element (after passing of the wave through the 
corner), the signal register in the start point cannot always provide its precise localization. 
For the longitudinal incident wave, there was a region, in which the reflection from damage 
was masked by the reflection from the L-frame ends. The location of this region depends on 
the group velocities of the longitudinal and flexural waves. In the case of the flexural inci-
dent wave, identification of the notch was unambiguous for arbitrary damage position until 
the group velocity of the longitudinal wave was larger than the group velocity of the flex-
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ural wave. The results of the research on the effectiveness of the guided wave-based dam-
age detection technique led to the conclusion, that the SHM system designed for the con-
sidered L-frame structure can be equipped with a single actuator and a single measurement 
point (at the same place as the actuator) since detection of damage using the flexural inci-
dent wave was possible for an arbitrary damage position. 

Analysis of wave propagation in the T-frame led to the conclusion, that two actuators 
and two measurement points were required to unambiguous damage localization in the 
whole T-frame. Two actuators should be mounted at the same place, i.e. at the end of two 
collinear bars and the points of measurements of guided wave signals should be at the same 
position as the actuators. The actuators should operate interchangeably. One actuator should 
excite longitudinal waves, because the signal measured in the axial direction enables dam-
age diagnosis in two collinear bars (here member I and member II). For condition monitor-
ing of member I and member III, the second actuator should excite the flexural wave and 
the response in the transverse direction should be registered. 

The idea of monitoring of the portal frame is similar as for the L-frame. For diagnostic 
purposes it is not possible to excite a wave packet solely in one point. To monitor the whole 
portal frame two actuators should be mounted at the base of both columns and two meas-
urement points should be at the same positions as the actuators. One actuator and one 
measurement point enables condition monitoring of the whole column and half of the hori-
zontal beam. Both longitudinal and flexural waves can be used; however, in the performed 
experiments longitudinal waves appeared more sensitive for considered damage. Moreover, 
the results for the portal frame revealed that it is possible to identify defects situated on two 
different members. 

 
 
 

 



 

Chapter 6 

WAVE PROPAGATION IN PLATES 

Waves propagating in plates are reflected by structural boundaries or existing defects. 
Ultrasonic guided Lamb waves are very suitable for damage detection in plates due to the 
ability to be transmitted over relatively large distances and to identify both surface and inter-
nal defects. A wide range of studies has already been reported on the Lamb wave scattering 
from damage in the form of slots (e.g. Lee and Staszewski 2007a, 2007b), holes (e.g. Chang 
and Mal 1999, McKeon and Hinders 1999, Cegla et al. 2008), notches (e.g. Alleyne and Caw-
ley 1992, Jin et al. 2005, Benmeddour et al. 2008a, 2008b, Yang et al. 2009), delaminations 
(e.g. Ramadas et al. 2009) or cracks (e.g. Wang and Shen 1997, Lu et al. 2006). The Lamb 
wave technique, complicated by the existence of at least two modes (S0 and A0) at any given 
frequency and their dispersive character, causes additional difficulties, when waves interact 
with asymmetric discontinuities (e.g. Benmeddour et al. 2008b). As a result of an encounter 
with a structural defect, the incident Lamb mode can partially convert into other modes and 
these modes may interact and propagate out in either direction (Jin et al. 2005). 

Experimental investigations on Lamb wave propagation in plates have been performed 
by various researches. In general, two approaches have been applied to register Lamb 
waves. The first approach is directed towards non-contact techniques, based on dynamic 
photoelasticity (e.g. Graff 1975, Rossmanith and Fourney 1982), speckle interferometry 
(e.g. Lammering 2010) or laser vibrometry (e.g. Mallet et al. 2004, Staszewski et al. 2004, 
2007, Rucka 2010c). Another approach depends on using transducers on the plate surface 
(e.g. Alleyne and Cawley 1992, Wang et al. 2004, Wang et al. 2008, Benmeddour et al. 
2008a, 2008b, Lu et al. 2008, Ramadas et al. 2009). Conventional ultrasonic transducers are 
rather bulky and expensive, thus recently piezoelectric ceramic transducers (PZT) have 
been commonly used, since they are small, lightweight, unobtrusive and inexpensive, and 
can be produced in different geometries (Giurgiutiu 2008). The ultrasonic or PZT transduc-
ers can act as both actuators (transmitting transducers) and sensors (receiving transducers), 
and if a receiving transducer is bonded at a remote point of a structure, the received signal 
contains information about the integrity of the line between them (Alleyne and Cawley 
1992). Two methods can be used for damage detection: the pitch-catch method and the 
pulse-echo method. In the pulse-echo method, a transmitter and a receiver are situated at the 
same location and defects are detected in the form of additional echoes in a signal. In the 
pitch-catch method, a transmitter and receiver are placed at different positions, and changes 
in Lamb waves travelling through a damaged area are used as defect indicators (Giurgiutiu 
2008). In particular, several embedded PZT transducers can be arranged in distributed sen-
sor networks (e.g. Wang and Chang 2005, Lu et al. 2006), guided wave transducer arrays 
(e.g. Wilcox 2003, Kudela et al. 2008), or phased arrays that are a group of sensors located 
at distinct spatial locations in which relative phases of the sensor signals are varied in such 
way, that the effective propagation pattern is reinforced in the desired direction (e.g. Giur-
giutiu and Bao 2004, Yu and Giurgiutiu 2007, 2008, Ostachowicz et al. 2009). 

Numerical simulations of Lamb waves in plates performed in this chapter, have been 
conducted by the SEM. In earlier studies, Żak et al. (2006a, 2006b) presented an analysis of 
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in-plane waves by the SEM, based on the plane stress theory resulting in non-dispersive 
waves. They analysed an aluminium plate of thickness 1 mm and an excitation signal of 
frequency 100 kHz. Within such frequency-thickness ratio, the S0 mode is practically dis-
persionless and the plane stress theory provides appropriate results. However, for many 
civil engineering structures, for example for steel bridge plate girders, plates are thicker and 
dispersion occurs. To solve this problem, Peng et al. (2009) proposed a 3-D spectral ele-
ment, which makes the analysis of dispersive waves possible. Such 3-D model is very use-
ful in analysing structures of complicated geometries. However, for dispersive wave propa-
gation in plates, an alternative solution could be a 2-D plate model, which results in a sub-
stantial reduction of computational time in comparison with a 3-D model. Such SEM plate 
model should be based on higher order plate theories, in order to characterize propagation 
of ultrasonic waves over considerable range of frequencies. For flexural waves, the spectral 
element based on the Mindlin plate theory was developed by Kudela et al. (2007b) and 
Chróścielewski et al. (2010). However, in these works only numerical results were reported 
and a correction parameter for the Mindlin theory was not considered. Some experimental 
results of flexural wave propagation were presented by Rucka (2010c). To analyse in-plane 
waves, the higher order Kane-Mindlin extensional plate theory can be used (Kane and 
Mindlin 1956). The Kane-Mindlin theory includes the out-of-plane stress component and 
retains the simplicity of the 2-D model. In earlier research, the Kane-Mindlin theory was 
used in analytical studies of static and dynamic fracture problems of cracked plates (e.g. Jin 
and Batra 1997a, 1997b, Kotousov and Wang 2002, Kotousov 2007). Wang and Chang 
(2005) presented a study of waves scattering by a cylindrical inhomogeneity and compared 
analytical solutions based on the Kane-Mindlin theory with experiments performed on a 
plate with an added mass. McKeon and Hinders (1999) utilized the Kane-Mindlin theory to 
derive analytical solutions for the scattering of Lamb waves from a circular inclusion. 
Rucka (2011) developed the time domain spectral element based on the Kane-Mindlin theory 
and proved its efficiency on the example of in-plane waves in a plate measured in 17 points. 

In this chapter, results of experimental and numerical analyses of Lamb waves propa-
gating in a 5 mm-thick steel plate in the frequency range of 50–300 kHz are presented. 
Within such thickness-frequency ratio, S0 and A0 Lamb modes reveal dispersive character. 
The chapter resumes the author’s studies of damage detection in plates by in-plane waves 
(Rucka 2011). Results presented in this chapter are broadened to complete analysis of in-
plane and flexural (out-of-plane) waves interaction with defects located at three different 
positions and two different angles. Damage detection is considered by analysing velocity 
data in the form of A-scans, B-scans and C-scans. Finally, an application of in-plane and 
flexural waves for damage detection is discussed. 

6.1. In-plane wave propagation in plate 

6.1.1. Experimental setup 

Wave propagation experiments were performed on a steel plate of length 
1000 mmL = , width 1000 mmb =  and thickness 5 mmh =  (Fig. 6.1). The experimentally 

determined mass density ρ  is equal to 7872 kg/m3. The modulus of elasticity E and the 
Poisson’s ratio ν  were also determined experimentally in a force-displacement test using 
two strain gauges attached to the specimen of cross-section 20 mm 5 mm×  in both longi-
tudinal and transverse directions, and their values are: E = 205.35 GPa, ν  = 0.28. The plate 
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Fig. 6.1. Steel plate: a) geometry; b) photograph of plate with damage 

 

Fig. 6.2. Instrumentation for measurements of in-plane waves in the steel plate: a) experiment #1 
with the use of one scanning head; b) experiment #2 with the use of three scanning heads 
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was placed on four concrete blocks and all plate edges were free. The supporting blocks 
had no influence on the registered signals. Two plates were taken into investigation: the 
pristine plate and the plate with damage. In the damaged plate, the plate thickness was 
changed abruptly to 2.5 mm on the area of 250 mm 12.5 mm.×  Such rectangular notch, 
obtained by machine cutting, was introduced at the position given in Fig. 6.1a. This is an 
academic approach defect, but it can represent corrosion damage, which often occurs in 
civil engineering structures subjected to environmental conditions. 

The experimental setup is presented in Fig. 6.2. The ultrasonic in-plane waves were 
generated by the piezoelectric actuator Noliac CMAP11 bonded at the edge of the plate, at 
position x = 0, y = 500 mm. Buckwheat honey coupling was used for the actuator. A tone 
burst ( )Vp t , in the form of a five-peak sine of frequency 250 kHz modulated with the Han-
ning window (Fig. 6.3), was delivered to the PZT actuator by means of the arbitrary func-
tion generator Tektronix AFG 3022 with the amplifier EC Electronics PPA 2000. Lamb 
waves are typically excited by two transducers mounted on the upper and lower surface of 
the plate. If in-phase shear-stress boundary excitation signals are applied on both actuators, 
a pure symmetric mode is excited. To excite a pure antisymmetric mode, out-of-phase shear 
stress excitation signals are applied on both actuators. A PZT actuator mounted at one side 
of the plate surface, excited by a shear stress signal, generates both S0 and A0 modes simul-
taneously. In this study, the PZT actuators utilized the thickness-wise expansion effect were 
used and the actuator bonded to the cross-section of the plate enabled to excite mainly the 
fundamental S0 mode and the influence of the A0 mode was insignificant. Velocity signals 

( )v t  (velocity components parallel to the x axis) were recorded by the scanning laser vi-
brometer Polytec PSV-3D-400-M. In order to improve the signal-to-noise ratio, 500 aver-
ages in time were utilized. 

 

Fig. 6.3. A 250-kHz 5-count Hanning windowed burst in time and frequency domains 

Two instrumentation setups were considered. In the first (experiment #1), velocity sig-
nals were registered in evenly distributed points along the edge of the plate (Fig. 6.2a) by 
one scanning head of the vibrometer. The scanning head was shifted along the specimen 
from one point to another to register in-plane velocity component perpendicular to the plate 
edge. In this test, the pristine and damaged plates were measured. In the second instrumen-
tation setup (experiment #2), three scanning heads were used and the signals were meas-
ured on the plate surface. This test was performed on the plate with defect. Measurements 
were made on the intact surface, i.e. defect was underside of the object during test 
(Fig. 6.2b). The velocity signals were measured along line #1 and line #2, as indicated in 
Fig. 6.4. The one plate specimen with defect enabled analysis of three different locations of 
damage: damage #1 (Fig. 6.4b), damage #2 (Fig. 6.4c) and damage #3 (Fig. 6.4d). 



6.1. In-plane wave propagation in plate 
 

121

 

Fig. 6.4. Measurement lines for different damage locations in the plate for in-plane wave propagation: 
a) pristine plate; b) plate with damage #1; c) plate with damage #2; d) plate with damage #3 

6.1.2. Dispersion curves 

Group velocity dispersion curves were experimentally determined for the pristine 
plate. Velocity signals were measured on the plate edge (at x = 0, y = 500 mm) for frequen-
cies varying from 50 to 300 kHz with the increment of 10 kHz. Figure 6.5 presents exam-
ples of registered signals for frequencies 120, 200 and 250 kHz. The force applied normal 
to the plate edge results in propagation of both in-plane waves, namely an extensional wave 
and the shear horizontal wave. Since the measurements were made on the plate edge, a 
strong Rayleigh wave was also observed. In the measured signals, the first reflection is the 
 

 

Fig. 6.5. Time history of experimentally measured in-plane waves in the pristine plate 
for determination of dispersion curves: a) 120 kHz; b) 200 kHz; c) 250 kHz 
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non-dispersive Rayleigh wave, while the second reflection is the first symmetric S0 mode. 
Figure 6.5 reveals dispersive behaviour of the measured S0 mode. The S1 mode was not 
excited in the experiment. The SH0 mode was not directly registered on the plate edge. 
Based on the time-of-flight, group velocities of the S0 mode and the R wave were deter-
mined. Then the velocity of the SH wave was determined through the relation (2.3). 

To identify the optimal range of excitation frequencies, experimental in-plane wave 
tuning for the pristine plate was conducted (Fig. 6.6). During this test, the measurements for 
all frequencies were made with the same gain level set on the amplifier. The signals on the 
amplifier output, as well as velocity signals were collected for frequencies from 50 to 
300 kHz in steps of 10 kHz. With the increase of frequency, the voltage signal on the am-
plifier decreased, but at the same time, the R wave and the S0 mode amplitudes increased. 
Both the R wave and the S0 mode reached similar strength around 180–250 kHz. The am-
plitudes of the S0 mode in Fig. 6.6d were plotted in the frequency range 120–300 kHz, 
because for smaller frequencies the S0 mode coincided with the Rayleigh wave. Thereby 
the response for the R wave in Fig. 6.6c is a combination of the R wave and the S0 mode 
below frequency of 110 kHz. 

Figure 6.7 shows the experimental and analytical dispersion curves for the 5 mm 
plate. For the plane stress theory two modes exist: the fundamental extensional mode, 
which approximates the S0 mode only at low frequencies, and the shear horizontal 
mode which is the SH0 mode (non-dispersive for isotropic body). The Kane-Mindlin 
theory captures three modes: the SH0 mode, as well as the first and second extensional 
 

 

Fig. 6.6. Experimental in-plane wave tuning in the pristine plate for frequency range 50–300 kHz: 
a) maximum value of voltage excitation signal; b) maximum value of incident wave in velocity 

signal; c) maximum value of first reflection (R wave) in velocity signal; d) maximum value 
of second reflection (S0 mode) in velocity signal 
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modes, which correctly approximate the dispersion behaviour of the S0 and S1 Lamb 
modes. The parameter KMκ  in the Kane-Mindlin theory was chosen as 0.73 to give the 
best fit to the experimentally measured group velocity of the S0 mode for the frequency 
range 120–300 kHz. It can be noted in Fig. 6.7 that the Kane-Mindlin analytical disper-
sion curve for the S0 mode agrees with the experimental results; moreover, it agrees 
with the exact Lamb mode in the selected frequency range 120–300 kHz. 

 

Fig. 6.7. Experimental and analytical dispersion relation for in-plane waves for 5 mm steel plate 

 

Fig. 6.8. Propagation of in-plane wave of frequency 250 kHz – comparison between experimental 
and numerical velocity response signals: a) pristine plate; b) plate with damage 
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6.1.3. Numerical model 

Modelling of in-plane wave propagation in plates was performed by the time domain 
spectral element method. The plate was meshed to 80 80×  2-D spectral finite elements, 
each element with 9 9 81× =  GLL nodes. The boundary conditions were free on all edges. 
The defect was modelled using 20 elements with height reduced by 2.5 mm. The highest 
excitation frequency used in numerical simulations was 250 kHz, and for this frequency the 
applied mesh guaranteed 8.6 nodes per the shortest wavelength. Damping was not consid-
ered in this model. Temporal integration was performed using the Newmark scheme with 
the time step 85 10 s.t −Δ = ⋅  This algorithm uses accelerations as the primary variables and 
takes advantage of the diagonal structure of the mass matrix (cf. Section 3.1.4.2). 

In Fig. 6.8, experimental signals for in-plane wave propagation are compared with 
numerical results for the plane stress and Kane-Mindlin theories. The amplitudes of the 
experimental and numerical signals were normalized to 1, and only signal envelopes were 
plotted for clarity. The velocity signal ( )v t  was measured on the plate edge at position 
x = 0, y = 500 mm (see Fig. 6.1). If the plane stress theory is used, experimental data are 
not compatible with the numerical ones. It is visible in Fig. 6.8 that reflections (from defect 
or from plate edge) of extensional waves in the numerical signal are delayed with reference 
to the experimental signal. Considering the Kane-Mindlin plate theory, it can be noted that 
the numerical simulations are in good agreement with the experimental data and this theory 
guarantees better approximation for the S0 mode than the plane stress theory. 

6.1.4. Damage detection in plate by in-plane waves 

In experiment #1, velocity responses were measured in 17 nodes evenly distributed on 
the left edge of the plate (along line #1 in Fig. 6.4) from x = 0, y = 0 m to x = 0, y = 1 m. As 
a reference state, the pristine plate was firstly examined. Experimental and numerical veloc-
ity signals in the time and spatial domains are given in Fig. 6.9. They consist of particular 
A-scans, i.e. waveform data plotted as a function of time, registered in consecutive points. 
Fronts of the R wave and the S0 mode were registered on the plate edge. 

The second example concerned the plate with damage #1 (Fig. 6.10). In both the nu-
merical and experimental results, the fronts of the S0 mode reflected from damage were 
visible. Two fronts of the S0 mode were caused by the 1st and 2nd reflection from damage 
and they are marked by solid lines in Fig. 6.10. The first reflection in the numerical signal 
occurred at time t = 0.1149 ms and knowing the plate geometry and the group velocity of 
the S0 mode (4973.17 m/s) the location of the defect can be identified as 286 mm. In the 
case of experimental signal, reflection occurred at t = 0.1141 ms and the velocity of the S0 
mode was 5009.78 m/s, thus the identified position of damage was 286 mm. Two additional 
fronts of wave, marked with dashed line in Fig. 6.10, were caused by the S0 mode diffrac-
tion from defect ends. This S0 mode arose from a mode conversion upon interaction of the 
SH0 mode with defect. The fronts of diffracted waves enabled to estimate the defect length. 
Moreover, in the experimental signals an additional reflection appeared. It was the R wave 
reflected by damage (dotted line in Fig. 6.10b). This reflection was identified as coming 
from imperfect work of the equipment (electromagnetic coupling in the cabling). The am-
plifier created additional wave packet (of amplitude about 0.01 of the incident wave) at the 
moment of arriving the S0 mode reflected from defect. This wave packet induced propaga-
tion of new R wave, which provided the additional indicator of damage existence. 
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Fig. 6.9. Set of time signals collected at 17 points evenly distributed along the plate edge during 
propagation of in-plane waves of frequency 250 kHz in the pristine plate: a) spectral 

element method simulations based on the Kane-Mindlin theory; b) experimental results 
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Fig. 6.10. Set of time signals collected at 17 points evenly distributed along the plate edge during 
propagation of in-plane waves of frequency 250 kHz in the plate with damage #1: a) spectral 

element method simulations based on the Kane-Mindlin theory; b) experimental results 
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Fig. 6.11. Set of time signals collected at 17 points evenly distributed along the plate edge during 
propagation of in-plane waves of frequency 250 kHz in the plate with damage #2: a) spectral 

element method simulations based on the Kane-Mindlin theory; b) experimental results 
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Figure 6.11 shows propagation of in-plane waves in the plate with damage #2. Both 
numerical and experimental results revealed the existence of the reflection from the defect. 
The front of the S0 mode reflected from damage was partially covered with the R wave, but 
the identification of damage was still possible. The reflection in the numerical signal oc-
curred at time t = 0.2936 ms and the position of the defect was identified as 730 mm. For 
the experimental signal, the reflection occurred at time t = 0.2902 ms, so the identified 
position of damage was 727 mm. 

In experiment #2, velocity responses were measured in 161 evenly distributed points 
along each of lines #1 and #2 (see. Fig. 6.4). Lines #1 and #2 were situated on the plate 
surface and their lengths were insignificantly shorter than the plate length. Moreover, 
line #1 was shifted from the left edge of the plate at about 2.5 cm thus in the numerical 
simulations the velocity signals were calculated at the distance of 2.5 cm from the plate 
edge. The measurements were performed for the plate with damage #1, #2 and #3. Numeri-
cal and experimental results are presented in Fig. 6.12 to Fig. 6.18 in the forms of so called 
B-scans, which present data in the form of a time-position scan (a cross-sectional view). 

In Fig. 6.12, numerical results for the pristine plate are shown. The horizontal axis rep-
resents time while the vertical one gives the distance along the plate width (or length). The 
amplitudes of waves are displayed as the grey scale values. In the presented B-scans, the S0 
and SH0 modes, the R waves, as well as the head waves (a.k.a. PS waves) can be found. 

Numerical and experimental B-scans for the plate with damage #1 are presented in 
Fig. 6.13 and Fig. 6.14, respectively. Observation of the time-position plane enabled to 
identify both the position and the extent of damage. Fronts of the S0 mode caused by the 1st 
and 2nd reflection from damage, as well as diffraction from the defect ends are visible in 
Fig. 6.13a for line #1 based on the numerical data. This scan provided the estimation of the 
defect length. Figure 6.13b shows the numerical scan data for line #2. In this case, the plot 
provided information on the distance of damage from the plate edge. Based on the experi-
mental data (Fig. 6.14), it was possible to identify both damage position and its size, but the 
velocity signals did not exactly cover with the numerical ones. This was caused by the 
presence of the A0 mode in the experiment. The appearance of small amplitude A0 mode 
caused, that the waves diffracted on the defect ends cannot be clearly observed. 

Figures 6.15 and 6.16 give the B-scans for the plate with damage #2 for numerical and 
experimental data, respectively. Both the extent and position of the defect can be detected 
from the numerical, as well as the experimental signals. In the experimental results, the 
influence of the A0 mode was insignificant in comparison with the test on the plate with 
damage #1. This was caused by slightly different mounting of the actuator. Therefore it is 
visible, that the excitation of pure S0 mode depends on the quality of actuator mounting. 

Numerical and experimental B-scans for the plate with defect #3 are illustrated in 
Fig. 6.17 and Fig. 6.18, respectively. The defect #3 was situated perpendicularly to the plate 
left edge. Detection of such defect was more difficult than of the defects parallel to left 
plate edge (defect #1 and defect #2). The extent of the defect can be superficially assessed 
from the B-scan along line #2 and its position can be calculated from the B-scan along 
line #1, knowing the time of the reflection and the group velocity. Moreover, the B-scan 
along line #1 showed, that the defect occurs on the upper half of the plate. 

Finally, C-scans were analysed based on the numerical velocity signals. The C-scan 
provides a two-dimensional xy plane view at selected time instants. Velocity components 
parallel to the x axis are illustrated in Fig. 6.19 to 6.22. Results for the pristine plate are 
given in Fig. 6.19 at the time instants t = 0.12; 0.2; 0.25; 0.4 ms. The force applied normal to 
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Fig. 6.12. B-scans of numerical in-plane waves in the pristine plate: a) line #1; b) line #2 
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Fig. 6.13. B-scans of numerical in-plane waves in the plate with damage #1: a) line #1; b) line #2 
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Fig. 6.14. B-scans of experimental in-plane waves in the plate with damage #1: a) line #1; b) line #2 
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Fig. 6.15. B-scans of numerical in-plane waves in the plate with damage #2: a) line #1; b) line #2 
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Fig. 6.16. B-scans of experimental in-plane waves in the plate with damage #2: a) line #1; b) line #2 
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Fig. 6.17. B-scans of numerical in-plane waves in the plate with damage #3: a) line #1; b) line #2 
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Fig. 6.18. B-scans of experimental in-plane waves in the plate with damage #3: a) line #1; b) line #2 
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Fig. 6.19. C-scans of numerical in-plane waves in the pristine plate registered 
at selected time instants: a) t = 0.12 ms; b) t = 0.2 ms; c) t = 0.25 ms; d) t = 0.4 ms 

 

Fig. 6.20. C-scans of numerical in-plane waves in the plate with damage #1 registered 
at selected time instants: a) t = 0.12 ms; b) t = 0.2 ms 
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Fig. 6.21. C-scans of numerical in-plane waves in the plate with damage #2 registered 
at selected time instants: a) t = 0.17 ms; b) t = 0.2 ms 

 

Fig. 6.22. C-scans of numerical in-plane waves in the plate with damage #3 registered 
at selected time instants: a) t = 0.11 ms; b) t = 0.16 ms 

the plate edge results in propagation of cylindrical fronted S0 and SH0 modes, as indicated 
in Fig. 6.19. The straight-crested PS wave is the von Schmidt head wave, arising from the 
reflection of a grazing incidence P wave (Graff 1975). Moreover, the Rayleigh wave is 
visible. The R wave is not separated clearly from the SH wave due to the early stage of the 
wave development (Fig. 6.19a). Lamb wave interaction with defect #1 is shown in 
Fig. 6.20. The defect is indicated at position corresponding to its actual location. At time 
t = 0.12 ms (Fig. 6.20a) the S0 mode 1st reflection from damage approaches the plate left 
edge. It is also visible, that the SH0 mode after interaction with damage is converted into 
the S0 mode, which is then diffracted by the defect ends. The second reflection of the S0 
mode from damage is visible at t = 0.2 ms (Fig. 6.20b). The C-scans for the plate with 
damage #2 are presented in Fig. 6.21. Based on the C-scan at t = 0.17 ms both position and 
extent of damage can be identified. Figure 6.22 shows the numerical results for the plate 
with damage #3. The C-scan at t = 0.11 ms shows interaction of the S0 mode with damage. 
At the time instant t = 0.16 ms interaction of the S0 and SH0 mode with the defect is visible. 
Diffraction of waves on the defect ends indicates the defect length. 
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6.2. Flexural wave propagation in plate 

6.2.1. Experimental setup 

Two plate specimens were used in the experiments of propagation of flexural (out-of-
plane) waves: the pristine plate and the plate with damage. The geometry and material 
properties of plates were the same as described in Section 6.1.1. The experimental setup 
(Fig. 6.23) consisted of the arbitrary function generator Tektronix AFG 3022, the amplifier 
 

 

Fig. 6.23. Instrumentation for measurements of flexular waves in the steel plate: a) experiment #1 
with the use of one scanning head; b) experiment #2 with the use of three scanning heads 
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EC Electronics PPA 2000 and the scanning laser vibrometer Polytec PSV-3D-400-M. A burst 
signal in the form of a five-peak sine of frequency of 200 kHz modulated with the Hanning 
window (Fig. 6.24) was applied to the actuator Noliac CMAP11 bonded at the plate sur-
face, at x = 0, y = 500 mm (Fig. 6.23a), to excite flexural waves. The PZT actuator, utilizing 
the thickness-wise expansion effect, bonded to the plate surface, generated mainly the fun-
damental A0 mode and the influence of the S0 mode was insignificant. Velocity signals 
were averaged 500 times in the time domain to improve the signal-to-noise ratio. 

Two instrumentation setups were considered. In the first experimental setup (experi-
ment #1), velocity signals were registered by one scanning head of the vibrometer in 17 
evenly distributed points along the edge of both the pristine and damaged plates 
(Fig. 6.23a). The scanning head was shifted along the specimen from one point to another 
to register out-of-plane velocity component perpendicular to the plate surface. In the second 
instrumentation setup (experiment #2), three scanning heads were used for measurements 
of the plate with damage. The velocity signals (out-of-plane velocity components) were 
measured in 161 points distributed along each of lines #1 and line #2 (Fig. 6.25). One plate 
with defect enabled analysis of three different locations of damage: damage #1 (Fig. 6.25b), 
damage #2 (Fig. 6.25c) and damage #3 (Fig. 6.25d). Finally, C-scans were performed. The 
plate was scanned in 65 65 4225× =  points (Fig. 6.26). During all tests with flexural wave 
propagation, signals were measured on the intact surface, i.e. defect was underside of the 
object during test. 

 

Fig. 6.24. A 200-kHz 5-count Hanning windowed burst in time and frequency domains 

 

Fig. 6.25. Measurement lines for different damage location in the plate for flexural wave propagation: 
a) pristine plate; b) plate with damage #1; c) plate with damage #2; d) plate with damage #3 
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Fig. 6.26. Damaged plate with the indicated scanned area consisted of 65 65 4225× =  points 

6.2.2. Dispersion curves 

Group velocity dispersion curves were experimentally determined for the pristine 
plate. Velocity signals were measured on the plate surface, at position x = 0, y = 500 mm. 
The frequency of the wave packet was swept from 50 to 300 kHz in steps of 10 kHz. The 
examples of the registered signals are shown in Fig. 6.27 for frequencies 120, 200 and 
250 kHz. In the experimental signal, the incident wave and two reflections of the A0 mode 
are visible during 0.8 ms time period. The difference in the time-of-flight can be observed 
in the signals of frequency 120 kHz and 200 kHz, which indicates influence of dispersion. 
However, there is no significant difference in the time-of-flight in the signals of frequency 
200 kHz and 250 kHz because this frequency range lies in the non-dispersive region. 

The experimental flexural wave tuning for the pristine plate is shown in Fig. 6.28. The 
experimental results showed that a strong excitation of the A0 mode was observed around 
the frequency range 200–250 kHz. The experimental and analytical dispersion curves for 
the considered 5 mm thick steel plate are given in Fig. 6.29. For the Mindlin plate the-
ory, two flexural modes exist (A0 and A1 modes) and one shear horizontal mode (SH2 
mode). However, in the measured frequency range only the A0 mode was observed. The 
parameter κ  in the Mindlin theory was chosen to give the best fit to experimentally meas-
ured wave group velocity for the frequency range 50–300 kHz. It was determined by the 
method of least squares and its value was set as 0.94. Figure 6.29 shows that the Mindlin 
analytical dispersion curve for the A0 mode agrees with the experimental results; more-
over, it covers with the exact A0 Lamb mode. 
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Fig. 6.27. Time history of experimentally measured flexural waves in the pristine plate 
for determination of dispersion curves: a) 120 kHz; b) 200 kHz; c) 250 kHz 

 

Fig. 6.28. Experimental flexural wave tuning in a pristine plate for frequency range 50–300 kHz: 
a) maximum value of excitation voltage signal; b) maximum value of incident wave in velocity 

signal; c) maximum value of first reflection in velocity signal; d) maximum value of second 
reflection in velocity signal 
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Fig. 6.29. Experimental and analytical dispersion relation for flexural waves for 5 mm steel plate 

6.2.3. Numerical model 

Modelling of flexural wave propagation in the plate was performed by the time do-
main spectral element method with the use of the Mindlin bending plate theory. The plate 
was meshed in the same way, as described in Section 6.1.3. For the highest excitation fre-
quency used in numerical simulations (200 kHz) the applied mesh ( 80 80×  2-D spectral 
finite elements, each element with 9 9 81× =  GLL nodes) guaranteed 8.5 nodes per the 
shortest wavelength. 

6.2.4. Damage detection in plate by flexural waves 

In experiment #1, velocity responses were measured in nodes 1 to 17 evenly distrib-
uted on the plate surface along line #1, shown in Fig. 6.25. The first example used the pris-
tine plate. Figure 6.30 shows comparison of numerical and experimental time velocity sig-
nals (out-of-plane velocity components) in the time and spatial domains. The flexural wave 
(A0 mode) propagates along the plate left vertical edge (linear wavefront visible in 
Fig. 6.30), as well as it propagates through the plate and reflects from the plate right vertical 
edge (circular wavefront depicted in Fig. 6.30). 

For the plates with damage #1 and damage #2, additional circular wavefront appeared 
in the collected time signals in Fig. 6.31 and Fig. 6.32, respectively. In the case of plate 
with damage #1, the wavefront caused by the reflection from damage in the numerical 
signal occurred at the time instant equal to t = 0.1728 ms. The group velocity of the flexural 
wave was equal to 3176.62 m/s, therefore the identified damage position was 274 mm. 
Similarly, making use of the experimental signals, the position of the defect can be identi-
fied as 270 mm since time of the additional reflection was 0.173 ms and the group velocity 
was 3164.4 m/s. Considering the plate with damage #2, the reflection in the numerical 
signal occurred at the time instant equal to 0.4472 ms, and knowing the group velocity of 
the flexural wave, location of the defect can be identified as 710 mm. In the case of the 
experimental signal, reflection occurred at the time instant equal to 0.448 ms, therefore the 
identified position of damage was 709 mm. 

 



6.2. Flexural wave propagation in plate 
 

143

 

Fig. 6.30. Set of time signals collected at 17 points evenly distributed along line #1 
during propagation of flexural wave of frequency 250 kHz in the pristine plate: 

a) spectral element method simulations based on the Mindlin theory; b) experimental results 
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Fig. 6.31. Set of time signals collected at 17 points evenly distributed along line #1 
during propagation of flexural wave of frequency 250 kHz in the plate with damage #1: 

a) spectral element method simulations based on the Mindlin theory; b) experimental results 
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Fig. 6.32. Set of time signals collected at 17 points evenly distributed along line #1 
during propagation of flexural wave of frequency 250 kHz in the plate with damage #2: 

a) spectral element method simulations based on the Mindlin theory; b) experimental results 
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In experiment #2, the B-scans were performed by measurements of time velocity sig-
nals in 161 evenly distributed points along each of lines #1 and #2 (Fig. 6.25), situated on 
the plate surface. The length of the lines was insignificantly shorter than the plate length 
and the line #1 was shifted from the left edge of the plate by about 2.5 cm. The measure-
ments were performed for the plate with damage #1, #2 and #3. Numerical and experimen-
tal results in the form of the B-scans are shown in Fig. 6.33 to Fig. 6.39. In Fig. 6.33, the 
numerical results for the pristine plate are presented. The numerical and experimental B-
scans for the plate with damage #1 are illustrated in Fig. 6.34 and Fig. 6.35, respectively. 
Figure 6.34a shows the numerical scan data for line #1. The additional wavefront appeared 
as a result of the A0 mode reflection from damage and this plot provided information about 
the extent of the defect. The B-scan for line #2 (Fig. 6.34b) revealed the reflection of the A0 
mode from the defect, providing estimation of its position from the plate edge. In the ex-
perimental results, a small influence of the S0 mode can be observed. The reflection of the 
A0 mode from damage was preceded by the reflection of the S0 mode (Fig. 6.35a). How-
ever, both localization and extent of damage can clearly be detect. 

Figures 6.36 and 6.37 show the B-scans for the plate with damage #2 for the numeri-
cal and experimental data, respectively. The reflection of the A0 mode in the B-scan along 
line #1 indicated the extent of damage, whereas the reflection of the A0 mode in the B-scan 
along line #2 pointed its position with reference to the plate left edge. In the B-scans based 
on the experimental data, a small influence of the S0 mode can be observed (Fig. 6.37). 

The numerical and experimental B-scans for the plate with defect #3 are illustrated in 
Fig. 6.38 and Fig. 6.39. In the B-scan along line #1 based on the numerical signals, the 
reflection from defect is visible. Moreover, in the wavefront of the A0 mode reflected from 
the right vertical edge, the influence of damage can be observed as a local decrease in the 
signal amplitude, as a result of passing the wavefront through the long “crack” (Fig. 6.38a). 
Analysing experimental signals (Fig. 6.39a), the area of signals with decreased amplitude is 
clearly visible, but the reflection of the A0 mode is hardly visible. The B-scans along the 
line #2 (Fig. 6.38b, Fig. 6.39b) show the influence of damage in an insignificant range. 

The last test in experiment #2 concerned performing C-scans based on numerical and 
experimental signals. The comparison of the numerical and experimental results for the 
plate with damage #1 is given in Fig. 6.40, at the selected time instants. At the first time 
instant, t = 0.11 ms, the A0 mode interaction with damage is visible. The C-scan at the next 
time instant, t = 0.15 ms, reveals both reflected and diffracted waves, and finally at t = 0.23 
ms, the wave reflected from damage can be observed after reflection from the left vertical 
plate edge. In the C-scans based on the experimental measurements, the reflection from 
damage can also be observed, but observation of smaller amplitude diffracted waves is 
impossible due to excessive noise. The C-scans for the plate with damage #2 are presented 
in Fig. 6.41. At time t = 0.26 ms the interaction of the A0 mode with the defect occurs, and 
at the consecutive time instants the wave reflected from damage come back to the plate 
edge. Both the numerical and experimental scans made the identification of damage posi-
tion and its size possible. Figure 6.42 shows the numerical results for the plate with dam-
age #3. At time t = 0.17 ms, the A0 mode interacts with the left end of damage, resulting in 
the additional reflection. The interaction of propagating wave with the right end of the 
defect can be observed at t = 0.26 ms. The C-scan based on the numerical time signals 
enables to detect the position and the extent of the defect. In the experimental C-scans, no 
reflection from damage can be observed because the influence of measurement noise is 
larger than the influence of the reflection from defect. 
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Fig. 6.33. B-scans of numerical flexural waves in the pristine plate: a) line #1; b) line #2 
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Fig. 6.34. B-scans of numerical flexural waves in the plate with damage #1: a) line #1; b) line #2 
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Fig. 6.35. B-scans of experimental flexural waves in the plate with damage #1: a) line #1; b) line #2 
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Fig. 6.36. B-scans of numerical flexural waves in the plate with damage #2: a) line #1; b) line #2 
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Fig. 6.37. B-scans of experimental flexural waves in the plate with damage #2: a) line #1; b) line #2 



6. Wave propagation in plates 
 

152 

 

Fig. 6.38. B-scans of numerical flexural waves in the plate with damage #3: a) line #1; b) line #2 
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Fig. 6.39. B-scans of experimental flexural waves in the plate with damage #3: a) line #1; b) line #2 
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Fig. 6.40. Comparison of experimental and numerical C-scans of flexural wave propagation data 
in the plate with damage #1: a) t = 0.11 ms; b) t = 0.15 ms; c) t = 0.23 ms 
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Fig. 6.41. Comparison of experimental and numerical C-scans of flexural wave propagation data 
in the plate with damage #2: a) t = 0.26 ms; b) t = 0.30 ms; c) t = 0.42 ms 
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Fig. 6.42. Comparison of experimental and numerical C-scans of flexural wave propagation data 
in the plate with damage #3: a) t = 0.17 ms; b) t = 0.26 ms; c) t = 0.32 ms
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6.3. Summary and conclusions 

In this chapter, numerical and experimental studies of Lamb wave propagation in the 
steel plate have been presented. Detection of damage in the form of rectangular surface 
notch has been considered by analysing velocity signals in the form of A-scans, B-scans 
and C-scans. The interaction of Lamb waves with the defect located at three different posi-
tions and two different angles has been investigated. 

The numerical analyses were performed by the spectral element method based on 
higher order theories: the Kane-Mindlin plate theory for in-plane waves and the Mindlin 
plate theory for flexural waves. The higher order Kane-Mindlin and Mindlin theories pro-
vided a very accurate description of dispersive behaviour of the first mode of longitudinal 
and flexural waves, which was proved by the comparison with the experimentally measured 
signals. The approximate Kane-Mindlin and Mindlin theories were valid over the frequency 
range of interest in the performed experimental investigations. 

In the presented numerical and experimental examples, both symmetric and antisym-
metric Lamb modes were excited by a single actuator. A single point excitation located on 
the plate edge results in weak wave directivity, i.e. a wave propagates in all directions 
through a half-plane and along the plate edge. Therefore, information obtained by the pulse-
echo method cannot provide an angle at which a defect is located. To overcome this prob-
lem, measurements along selected lines containing the excitation point were conducted. In 
such a way from single time-traces (A-scans), time-space maps (B-scans) can be per-
formed. Two lines perpendicular to each other, along which the B-scans were performed, 
enabled identification of the distance of the defect from the plate edge, as well as estimation 
of the defect extent for both in-plane and flexural waves. In the experimental results, some 
influence of another mode (the A0 mode in the case of excitation of the S0 mode, and the S0 
in the case of excitation of the A0 mode) was observed. However, defect identification was 
still possible. In the case of damage situated perpendicularly to the plate edge, the axial 
waves appeared that were more sensitive to such direction of the defect. Monitoring of 
structure responses along selected lines appeared to be a good solution for damage detec-
tion in plates. 

A further improvement of guided wave-based damage localization presented in this 
chapter was obtained by a C-scan method, which provided a two-dimensional plane view at 
the selected time instants. The numerical C-scans showed the interaction of both in-plane 
and flexural waves with defects and enabled precise damage localisation. However, the 
experimental measurements, performed for the flexural waves, were successful only for 
defects situated parallel to the plate edge. Damage detection in the plate with the defect 
perpendicular to the plate edge based on the C-scan was impossible because the influence 
of measurement noise was larger than the influence of the reflection from the defect. 
 



 

Chapter 7 

FINAL REMARKS 

The presented study has been devoted to a computational method for wave propaga-
tion modelling and an application of ultrasonic guided waves to damage detection and lo-
calization. A special attention has been paid to modelling of dispersion effects and the ex-
perimental verification of developed numerical models. 

The first part of the study describes elastic wave propagation in structural elements. 
Several models of rods, beams and plates have been derived. Since damage detection 
should be based on a single wave propagation mode, an effort has been made on the devel-
opment of an approximate description of wave motions providing the first mode behaviour 
compatible with exact Lamb modes. The necessity of using higher order theories (the 
Mindlin-Herrmann theory for rods, the Timoshenko theory for beams, the Kane-Mindlin 
theory for extensional plates and the Mindlin theory for bending plates) when analysing 
ultrasonic frequency ranges has been demonstrated. It has been found that the approximated 
higher order theories can adequately account for dispersive behaviour of the lowest sym-
metric and antisymmetric modes over substantial range of frequencies. 

In the next part of the work, the spectral element method has been described. The time 
domain spectral element method combines the generality and the geometrical flexibility of 
the standard finite element method with the accuracy of spectral methods. In this study, the 
spatial discretization is based on high-degree Legendre interpolants spread over Gauss-
Legendre-Lobatto nodes and the spatial integration is performed using the Gauss-
Legendre-Lobatto quadrature. Such numerical strategy provides the exponential accuracy 
and a reduction of the computational cost because a mass matrix becomes exactly diagonal 
by construction as a result of the Gauss-Lobatto-Legendre integration rule. In the presented 
study, a systematic construction of the numerical Legendre spectral element models for the 
considered higher order theories for rods, beams, frames, as well as extensional and bend-
ing plates has been carried out. 

A substantial part of the work contains experimental and numerical analyses of wave 
propagation in bars, frames and plates. As an excitation, a sinusoidal wave packet modu-
lated by the Hanning window has been chosen to concentrate input energy. In the experi-
mental investigations, structural elements have been excited by means of the PZT actuator 
and the propagating wave signals have been detected and recorded by the scanning laser 
vibrometer. For each tested structure, the experimental wave tuning has been performed, 
which allowed to identify the optimal frequency range of excitation. The experimental dis-
persion curves have been obtained for the considered frequency range 50–300 kHz to deter-
mine adjustable parameters for the approximate theories applied in the numerical models. 

Numerical simulations of wave propagation have shown that the spectral element 
method appears to be more effective than the finite element method with regard to the re-
quired number of nodes per wavelength and better efficiency towards numerical dispersion. 
For the established number of nodes per wavelength, numerical dispersion due to spatial 
discretization is higher for elements with smaller number of GLL nodes. Numerical simula-
tions conducted for longitudinal waves in a simple bar have indicated, that application of 



Final remarks 
 

159

one multi-node spectral element per bar guarantees the smallest number of nodes per wave-
length, but in such case, the numerical time integration scheme using a conditionally stable 
algorithm (here the central difference method) requires very small time step. The applica-
tion of a few spectral elements per bar causes an increase of the number of nodes per wave-
length. However, the critical time step is larger than for the case of one spectral element per 
bar. Therefore, the spectral element with about 7 to 21 GLL nodes can be regarded as a 
compromise between the spectral accuracy and the relatively large time step. The effective-
ness of the proposed spectral element models has been experimentally confirmed. The 
model based on the Mindlin-Herrmann rod and Timoshenko beam theories guarantees 
reasonable approximation for the S0 and A0 modes behaviour, which has been proved by 
the comparison with the experimentally measured signals. Similarly, the Kane-Mindlin 
theory for extensional plate waves and the Mindlin theory for flexural plate waves provide 
a very accurate description of dispersive behaviour of the first mode of longitudinal and 
flexural waves. Therefore, the numerical model of an arbitrary frame or plate structure 
intended as a part of the structural health monitoring system should be described in the 
SEM formulation based on the higher order theories to obtain proper times of reflections 
from potential damage. 

In the presented study, detection of damage in various forms of discontinuity of cross-
section and material has been considered by analysing wave speeds and reflection times in 
the recorded response signals. For the bar and frame structures, damage has been simulated 
as the rectangular notch, the grooved weld and the additional mass. For the plate, the rec-
tangular surface defect has been obtained by a one-sided reduction of the plate thickness. In 
the performed experimental examples, both S0 and A0 modes have been excited by a single 
actuator. Detection of damage has been considered by analysing velocity data in the form of 
A-scans, B-scans and C-scans. Making use of the A-scan, damage detection in the bars has 
been unambiguous, when the response signal was measured at the start point (i.e. at the 
point at which the actuator was bonded). The experimental investigations have shown that 
for considered bars with structural discontinuities both longitudinal and flexural waves can 
detect the defect in the form of the notch of 16.7% depth of the bar height, as well as the 
defect in the form of the additional mass. However, in the case of ”small damage”, simu-
lated through the grooved weld, the longitudinal waves appeared to be more sensitive than 
the flexural waves in damage detection. Therefore, the application of flexural waves to 
damage detection can be enhanced through the response measurements in a few points and 
the analysis of the time-position plane (B-scan). As a result of such test, the interaction of 
waves with boundaries or potential discontinuities may be observed more precisely. 

The next group of experimental and numerical examples for damage detection have 
been plane frames, namely the L-frame, the T-frame and the portal frame. During wave 
propagation in frames, a mode conversion is observed. An incident wave of one type, after 
reaching a junction generates propagation and reflection of waves of other types, which 
causes damage detection to be more difficult than for a simple bar. Damage in the form of a 
single or doubled notch has been introduced at an arbitrary frame member. The results of 
experimental and numerical analyses have led to the conclusion, that the SHM system de-
signed for the L-frame structure can be equipped with a single actuator and a single meas-
urement point (at the same place as the actuator) since detection of damage using the flex-
ural incident wave has been possible for an arbitrary damage position. In the case of the 
T-frame, two actuators and two measurement points have been required to unambiguous 
damage localization in the whole T-frame. Two actuators should be mounted at the same 
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place, i.e. at the end of two collinear bars and the points of measurements of response sig-
nals should be at the same position as the actuators. The actuators should operate inter-
changeably. One actuator should excite and measure the longitudinal waves, while the 
second actuator should excite and measure the flexural waves. The idea of monitoring of 
the portal frame is similar as for the L-frame. For diagnostic purposes it is not possible to 
excite a wave packet solely in one point. To monitor the whole portal frame two actuators 
should be mounted at the base of both columns and two measurement points should be at 
the same positions as the actuators. One actuator and one measurement point have enabled 
condition monitoring of the whole column and half of the horizontal beam. Both longitudi-
nal and flexural waves can be used; however, in the performed experiments longitudinal 
waves have appeared to be more sensitive for the considered defects. 

For the plates, the interaction of Lamb waves with the defect located at three different 
positions and two different angles has been investigated. Both S0 and A0 modes represented 
in the form of B-scans have been able to detect defects situated parallel to the plate edge. 
However, in the case of damage situated perpendicularly to the plate edge, the S0 mode has 
appeared more sensitive to such direction of the defect than the A0 mode. The monitoring 
of selected lines has appeared to be a good solution for damage detection in plates. An 
improvement of guided wave-based damage location has been obtained by C-scans. The 
numerical C-scans have shown the interaction of both S0 and A0 modes with defects and 
have enabled excellent damage localisation. However, the experimental measurements, 
performed for the flexural waves, have been successful only for defects situated parallel to 
the plate edge. Damage detection in the plate with the defect perpendicular to the plate edge 
based on the C-scan has been impossible because the influence of measurement noise has 
been larger than the influence of the reflection from the defect. 

The presented researches are continued within the confines of the grant of the Euro-
pean Union and Polish Ministry of Science and Higher Education no. POIG.01.01.02-10-
106/09-00 (2010–2013). They are focused on the analysis of wave propagation in concrete 
structures. The main challenge is to design the SHM system based on ultrasonic waves for 
the real concrete structure that can handle all the complication included with material, ge-
ometry and environmental conditions. 
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GUIDED WAVE PROPAGATION IN STRUCTURES 
MODELLING, EXPERIMENTAL STUDIES  
AND APPLICATION TO DAMAGE DETECTION 

Engineering structures undergo gradual destruction in the course of time as a result of static and 
dynamic loading, temperature, humidity, wind or corrosive factors. Since damage in structural ele-
ments may lead to improper operation of any engineering object, various damage detection techniques 
have been investigated to improve reliability and safety of structures. The guided wave-based damage 
detection methods have been dynamically developed over last years, because guided waves are very 
suitable for inspecting large structures due to their ability of propagation over long distances with a 
little amplitude loss. 

The purpose of this study is to conduct detailed experimental and numerical investigations on 
ultrasonic guided wave propagation in steel structures. The particular aims are: (a) modelling of wave 
propagation phenomenon in structural elements including dispersion effects; (b) developing of nu-
merical models for wave propagation; (c) systematic experimental verification of the developed nu-
merical models; (d) application of the guided wave-based technique to damage detection. 

The first part of the work describes wave propagation in structural elements. The governing 
equations for several models of rods, beams and plates providing approximated description of wave 
motion are derived. Verification of the models is conducted by comparing dispersion relations with 
exact Lamb modes. The study indicates necessity of using higher order theories (the Mindlin-Herrmann 
rod theory, the Timoshenko beam, the Kane-Mindlin theory of extensional plates and the Mindlin theory 
of bending plates) when analysing waves of ultrasonic frequencies because the higher order theories can 
adequately account for dispersive behaviour of the lowest symmetric and antisymmetric modes. 

The next part of the work describes the spectral element method. The spatial discretization is 
based on high-degree Legendre interpolants spread over Gauss-Legendre-Lobatto (GLL) nodes and 
the spatial integration is performed using the GLL quadrature. Such numerical strategy provides the 
exponential accuracy and a reduction of the computational cost because a mass matrix is exactly 
diagonal by construction as a result of the GLL integration rule. Special spectral elements based on 
the considered higher order theories are formulated, in particular the frame spectral element based on 
the Mindlin-Herrmann rod and Timoshenko beam theories, as well as the extensional plate element 
based on the Kane-Mindlin theory and the bending plate element based on the Mindlin theory. 

A substantial part of the study contains experimental and numerical analyses of wave propaga-
tion in rods, beams, frames and plates. In the experimental investigations, structural elements are 
excited by means of the piezoelectric actuator and propagating velocity signals are detected and re-
corded by the laser vibrometer. Experimental dispersion curves are obtained for the considered fre-
quency range 50–300 kHz to determine adjustable parameters for the approximate theories applied in 
the numerical models. The effectiveness of the proposed spectral element models has been experi-
mentally confirmed. The model based on the Mindlin-Herrmann rod and Timoshenko beam theories 
guarantees reasonable approximation for the first longitudinal and flexural modes behaviour, which 
has been proved by the comparison with the experimentally measured signals. Similarly, the Kane-
Mindlin theory for extensional plate waves and the Mindlin theory for flexural plate waves provide a 
very accurate description of dispersive behaviour of the first mode of longitudinal and flexural waves. 
The results of the analyses show that the numerical model of an arbitrary frame or plate structure 
intended as a part of the SHM system should be described in the SEM formulation based on the high-
er order theories to obtain proper times of reflections from potential damage. 

Finally, an application of ultrasonic guided waves to damage detection is presented. Detection 
of damage in various forms of discontinuity of cross-section and material is considered by analysing 
guided wave response signals in the form of A-scans, B-scans and C-scans. As a result, the study 
discusses in detail the possibility of detection of damage in rods, beams, frames and plates and it 
compares the usefulness of longitudinal and flexural waves in nondestructive damage detection. 



 

PROPAGACJA FAL PROWADZONYCH W KONSTRUKCJACH 
MODELOWANIE, BADANIA EKSPERYMENTALNE  
ORAZ ZASTOSOWANIE DO WYKRYWANIA USZKODZEŃ 

Konstrukcje inżynierskie podlegają naturalnym procesom zużycia wraz z upływem czasu. Aby 
zapewnić bezpieczeństwo ich użytkowania, konieczne jest wczesne wykrycie oraz wskazanie lokali-
zacji potencjalnych uszkodzeń. Niezwykle istotną tematyką staje się zatem diagnostyka i monitoro-
wanie stanu technicznego obiektów infrastruktury. Rozwój aparatury pomiarowej, jak również tech-
nologii przetwarzania sygnałów umożliwia budowę urządzeń i systemów do precyzyjnej diagnostyki 
elementów konstrukcji inżynierskich. Jedną z metod diagnostyki konstrukcji jest technika wykorzy-
stująca propagację fal sprężystych. Moduł diagnostyczny bazujący na propagacji fal ultradźwięko-
wych może być wykorzystywany w sposób ciągły. Ultradźwiękowe fale prowadzone charakteryzują 
się zdolnością propagowania na znaczne odległości z nieznacznym spadkiem amplitudy. W metodach 
propagacji fal sprężystych konstrukcja wzbudzana jest za pomocą impulsu lub paczki falkowej, zaś 
położenie uszkodzenia identyfikowane jest na podstawie analizy odbić w zarejestrowanych sygnałach 
czasowych propagującej fali. 

Celem niniejszej pracy są eksperymentalne i numeryczne analizy propagacji prowadzonych fal 
sprężystych w stalowych konstrukcjach prętowych, belkowych, ramowych, tarczowych i płytowych. 
W szczególności praca poświęcona jest: (a) modelowaniu propagacji fal z uwzględnieniem zjawiska 
dyspersji; (b) budowie modeli obliczeniowych w formalizmie metody elementów spektralnych; (c) 
eksperymentalnej weryfikacji zaproponowanych modeli; (d) zastosowaniu technik propagacji fal 
prowadzonych do wykrywania uszkodzeń. 

Praca składa się z siedmiu rozdziałów: 
W rozdziale 1 opisano metody monitoringu technicznego, dokonano przeglądu literatury doty-

czącej detekcji uszkodzeń za pomocą ultradźwiękowych fal sprężystych oraz przedstawiono cel 
i zakres pracy. 

W rozdziale 2 wyprowadzono równania propagacji fal w prętach, belkach, tarczach i płytach. 
Przedstawione w dalszej części pracy wyniki pokazały, iż w modelowaniu propagacji fal szczególnie 
ważny jest wybór teorii opisującej ruch. Klasyczne teorie, jak elementarna teoria prętów rozciąga-
nych, teoria belek Eulera-Bernoulliego, płaskiego stanu naprężenia, czy też teoria płyt zginanych 
Kirchhoffa, nie umożliwiają dokładnego modelowania zjawisk falowych. Do precyzyjnego opisu 
propagacji fal wymagane jest uwzględnienie zjawiska dyspersji oraz efektów ścinania i bezwładności 
obrotowej, co umożliwiają teorie wyższych rzędów. Na podstawie porównania krzywych dyspersji 
dla rozważanych teorii ze ścisłymi rozwiązaniami fal Lamba oraz z wynikami eksperymentalnymi 
wykazano, iż przybliżone teorie wyższego rzędu (teoria pręta Mindlina-Herrmana, teoria belki Ti-
moshenki, teoria tarczy Kane-Mindlina oraz teoria płyty Mindlina) umożliwiają poprawny opis zjawi-
ska propagacji fal sprężystych, szczególnie w odniesieniu do najniższych postaci drgań: symetrycznej 
(S0) i antysymetrycznej (A0). 

Rozdział 3 poświęcono metodzie elementów spektralnych sformułowanej w dziedzinie czasu. 
Metoda ta jest rozwinięciem klasycznej metody elementów skończonych. W metodzie elementów 
spektralnych stosuje się w każdym z przestrzennych kierunków aproksymacji elementy wielowęzło-
we z rozkładem węzłów w punktach Gaussa-Lobatto-Legendre’a oraz z interpolacją Lagrange’a. 
Podejście to ma dwie znaczące zalety w analizie dynamicznej w zakresie wysokich częstotliwości. Po 
pierwsze wymagana liczba węzłów zmniejsza się do ok. 5-10 na długość fali (podczas gdy przy za-
stosowaniu elementów dwuwęzłowych liczba ta osiąga wartość 20 do 40). Drugą zaletą jest uzyska-
nie diagonalnej macierzy mas w wyniku całkowania numerycznego kwadraturą Gaussa-Lobatto-
Legendre’a, co powoduje znaczące przyspieszenie całkowania w czasie. W rozdziale 3 przedstawiono 
wyprowadzenia macierzy elementów spektralnych, w szczególności elementu ramowego na podsta-
wie teorii prętowej Mindlina-Herrmanna oraz belki Timoshenki, a także elementu tarczowego na 
podstawie teorii Kane-Mindlina i elementu płytowego na podstawie teorii Mindlina. 
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Numeryczne i eksperymentalne analizy propagacji fal podłużnych i giętnych w prętach oraz 
belkach przeprowadzono w rozdziale 4. W wykonanych badaniach doświadczalnych do wzbudzania 
fal użyto wzbudnika piezoelektrycznego, natomiast sygnał propagującej fali rejestrowany był bezsty-
kowo za pomocą wibrometru laserowego. Efektywność zaproponowanych numerycznych modeli 
spektralnych została potwierdzona na podstawie porównania z eksperymentalnymi krzywymi dysper-
sji. W rozdziale przedstawiono także dyskusję na temat doboru liczby węzłów w elementach wielo-
węzłowych oraz doboru fali wzbudzającej. Zaprezentowano eksperymentalne i numeryczne wyniki 
propagacji fal w prętach i belkach bez uszkodzeń oraz z uszkodzeniami. Detekcja uszkodzeń w for-
mie nieciągłości materiału bądź pola przekroju analizowana była na podstawie prędkości i czasów 
odbicia zarejestrowanych sygnałów propagujących fal. 

Rozdział 5 zawiera eksperymentalne i numeryczne wyniki propagacji fal w ramach płaskich 
typu L, T oraz w ramie portalowej. Badano wpływ zjawiska konwersji postaci drgań przez węzły 
ramy na możliwość wykrywania uszkodzeń. Na podstawie analizy różnych położeń i liczby uszko-
dzeń określono wskazówki dotyczące liczby i położenia wzbudników oraz punktów odbioru sygna-
łów czasowych, tak by monitoring obejmował całą analizowaną konstrukcję. 

W rozdziale 6 przedstawiono wyniki eksperymentalnych i numerycznych badań propagacji fal 
w tarczach i płytach z uszkodzeniem w formie powierzchniowej zmiany grubości. Badano trzy różne 
położenia uszkodzenia. Identyfikacja położenia uszkodzenia została wykonana na podstawie sygna-
łów prędkości fali w formie zobrazowań typu A (zobrazowanie wielkości amplitudy sygnału w funk-
cji czasu), B (zobrazowanie wielkości amplitud w funkcji czasu i położenia) oraz C (dwuwymiarowy 
obraz konstrukcji w wybranej chwili czasowej). 

Uwagi końcowe oraz kierunki dalszych prac zawarto w rozdziale 7. 
 
 
 



 

Appednix A 

WAVE SOLUTIONS IN ELASTIC CONTINUA 

The present appendix shows the wave solutions in isotropic elastic continua using the 
theory of elasticity. The exact solutions are obtained for waves propagated in unbounded 
continua, as well as for waves propagated in elastic continua with boundaries: Rayleigh 
surface waves in solids with a free surface, shear horizontal plate waves and Lamb plate 
waves. For more details, see books by Achenbach (1975), Giurgiutiu (2008), Graff (1975), 
Huber (1950), Nowacki (1970, 1972), Rose (1999), Timoshenko and Goodier (1962). 

A.1. Waves in infinite media 

Two types of uncoupled waves, dilatational waves (a.k.a. primary, pressure, compres-
sional, extensional, irrotational, axial, longitudinal, P waves) and distortional waves (a.k.a. 
secondary, shear, rotational, transverse, S waves) can propagate in isotropic infinite contin-
uum. In the absence of body forces, the Navier’s governing equations in the vector notation 
are given by (e.g. Graff 1975, Huber 1950, Nowacki 1970, Timoshenko and Goodier 1962): 

 2( )G G ρΛ + ∇∇ ⋅ + ∇ =u u u&& , (A.1) 

where Λ , G  are Lamé constants of elasticity, ρ  is mass density and x y zu u u= + +u i j k  is 
a vector of displacements. The del operator ∇  and the Laplace operator 2∇  are: 

 
x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

i j k ,    
2 2 2

2
2 2 2x y z

∂ ∂ ∂∇ = ∇ ⋅∇ = + +
∂ ∂ ∂

. (A.2) 

To calculate the dilatational waves, the vector operation of divergence is performed on the 
Eq. (A.1): 

 2( ) ( ) ( )G G ρΛ + ∇ ⋅ ∇∇ ⋅ + ∇ ⋅ ∇ = ∇ ⋅u u u&& . (A.3) 

Defining the dilatation Δ  as: 
 xx yy zzε ε εΔ = ∇ ⋅ = + +u , (A.4) 

and substituting the above result to Eq. (A.3), one can obtain the dilatational wave equa-
tion: 

 2( 2 )G ρΛ + ∇ Δ = Δ&& , (A.5) 

 2
2

1

Pc
∇ Δ = Δ&& , (A.6) 

which indicates that a change in the volume (dilatational disturbance), involving no rota-
tion, propagates with the pressure wave speed :Pc  
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2 (1 )

(1 )(1 2 )P

G E
c

ρ
ν

ρ ν ν
Λ + −= =

+ −
. (A.7) 

To calculate the rotational waves, the operation of curl on the Eq. (A.1) is performed: 

 2( ) ( ) ( )G G ρΛ + ∇× ∇∇ ⋅ + ∇× ∇ = ∇×u u u&& . (A.8) 

If the rotation vector is defined as: 

 
2

∇×= uω , (A.9) 

the distortional wave equation can be obtained as: 

 2G ρ∇ =ω ω&& , (A.10) 

 2
2

1

Sc
∇ =ω ω&& , (A.11) 

which indicates, that rotational waves (distortional disturbance), involving no volume 
changes, propagate with the shear wave speed :Sc  

 
2 (1 )S

G E
c

ρ ρ ν
= =

+
. (A.12) 

Another possibility to determine wave speeds is the application of wave potentials (see 
e.g. Achenbach 1975, Fung 1965, Graff 1975, Rose 1999). The vector of displacements 

x y zu u u= + +u i j k  can be expressed via the Helmholtz decomposition as the gradient of a 
scalar potential Φ  and a zero-divergence vector potential x y zH H H= + +H i j k : 

 = ∇Φ + ∇ ×u H ,   0∇ ⋅ =H . (A.13) 

or using indicial notation: 

 , ,i i ijk k ju e H= Φ + ,     , 0i iH = ,     , , , ,i j k x y z= . (A.14) 

By substituting Eq. (A.13) into Eq. (A.1), the Navier’s equation of motion can be expressed 
by potential functions: 

 2( ) ( ) ( ) ( )G G ρΛ + ∇∇ ⋅ ∇Φ + ∇× + ∇ ∇Φ + ∇× = ∇Φ + ∇×H H H&&&& , (A.15) 

 2 2( 2 ) 0G Gρ ρ⎡ ⎤ ⎡ ⎤∇ Λ + ∇ Φ − Φ + ∇× ∇ − =⎣ ⎦ ⎣ ⎦H H&&&& . (A.16) 

The Eq. (A.16) is satisfied, if both terms vanish. As the result, the wave equation is decom-
posed as two simplified wave equations: 

 2 2
Pc ∇ Φ = Φ&& , (A.17) 

 2 2
Sc ∇ =H H&& . (A.18) 



Appendix A 
 

174 

A.2. Z-invariant 3-D waves 

In this section, z-invariant wave propagation is presented. This case will be later used 
in studies of Rayleigh surface waves, as well as shear horizontal plate waves and Lamb 
plate waves. Consider 3-D waves that are invariant in one direction along the wavefront. 
The horizontal plane is denoted as Oxz, and the vertical plane as Oxy. The wavefront is 
assumed as parallel to the z axis and the wave disturbance is invariant along the z axis, 
which means that all the functions involved in the analysis do not depend on z, and their 
derivatives with respect to z are zero , i.e. (Giurgiutiu 2008): 

 0
z

∂ =
∂

,   
x y

∂ ∂∇ = +
∂ ∂

i j . (A.19) 

The potentials Φ , xH , yH  and zH  satisfy the wave equations: 
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c
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c H H

∇ Φ = Φ
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&&

&&

&&

 (A.20) 

and the zero-divergence condition: 

 0yx
HH

x y

∂∂
+ =

∂ ∂
. (A.21) 

For the z-invariant case, the components of the displacement vector are as follows: 

 ,z
x

H
u

x y

∂∂Φ= +
∂ ∂

    ,z
y

H
u

y x

∂∂Φ= −
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    .y x
z

H H
u

x y

∂ ∂
= −

∂ ∂
 (A.22) 

Therefore it is possible to partition the solution into two parts. The first solution, a shear 
horizontal wave (SH wave), is described in terms of potentials xH  and yH , and it accepts 
the zu  displacement only. The second solution is the combination of a pressure wave (P 
wave) and a shear vertical wave (SV wave). It accepts xu  and yu  displacements and it is 
described by potentials Φ  and zH  (Giurgiutiu 2008). 

For the elastic media the stress-displacements relations are (see e.g. Timoshenko and 
Goodier 1962): 
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 (A.23) 

Considering the SH wave solution, the wave motion is contained in the horizontal 
plane Oxz: 
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 0x yu u= = ,    0zu ≠ . (A.24) 

Substitution of Eqs. (A.22) and (A.24) into (A.23) yields stress components for the SH 
waves: 
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⎜ ⎟∂ ∂ ∂⎝ ⎠

 (A.25) 

Considering the P+SV wave solution, the wave motion is contained in the vertical 
plane Oxy: 
 0xu ≠ ,    0yu ≠ ,    0zu = . (A.26) 

Substitution of Eqs. (A.22) and (A.26) into (A.23) yields stress components for the P waves 
and the SV waves: 
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 (A.27) 

A.3. Rayleigh surface waves 

Rayleigh waves propagate in solids containing a free surface (cf. Victorov 1967, 
Nowacki 1972). The propagation occurs very close to the surface with a little penetration in 
the depth (cf. Fig. 2.2). Rayleigh waves are analysed under the z-invariant assumption (cf. 
Section A.2), i.e. / 0z∂ ∂ = . The particle wave motion, having elliptical trajectories, is 
contained in the vertical plane, hence the P+SV wave solution from Section A.2 is applied: 

 0xu ≠ ,    0yu ≠ ,    0zu = , (A.28) 

and only the Φ  and zH  potentials are required to describe Rayleigh wave motion: 

 2 2
Pc ∇ Φ = Φ&& ,     2 2

S z zc H H∇ = && . (A.29) 
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For Rayleigh wave propagation in the x direction with speed c  and wavenumber 
k , the potentials Φ  and zH  can be written as: 

 ( )( , , ) ( ) i kx tx y t f y e ω−Φ = ,     ( )( , , ) ( ) i kx t
zH x y t h y e ω−= . (A.30) 

Substitution of Eqs. (A.30) into Eqs. (A.29) yields: 

 2''( ) ( ) 0f y f yα− = ,     2''( ) ( ) 0h y h yβ− = , (A.31) 

where: 

 
2

2 2
2
P

k
c

ωα = − ,     
2

2 2
2
S

k
c

ωβ = − . (A.32) 

Solutions of Eqs. (A.31) are: 

 1 2( ) y yf y A e A eα α−= + ,     1 2( ) y yh y B e B eβ β−= + . (A.33) 

Substitution of Eqs. (A.33) into Eqs. (A.30), after discarding the impractical part of the 
solution which does not attenuate yields (Giurgiutiu 2008, Rose 1999): 

 ( )( , , ) y i kx tx y t Ae eα ω− −Φ = ,     ( )( , , ) y i kx t
zH x y t Be eβ ω− −= . (A.34) 

The boundary conditions for Rayleigh waves correspond to a tractions-free half-
plane surface (Giurgiutiu 2008): 

 ( 0) 0yy yσ = = ,     ( 0) 0xy yσ = = . (A.35) 

Substitution of (A.34) into (A.27)2 and (A.27)4 yields: 

 2 2 2 ( )( 2 )( ) 2 2y y y i kx t
yy G k Ae Gk Ae G ikBe eα α β ωσ α β− − − −⎡ ⎤= Λ + − + +⎣ ⎦ , (A.36) 

 2 2 ( )2 ( )y y i kx t
xy G ikAe k Be eα β ωσ α β− − −⎡ ⎤= − + +⎣ ⎦ . (A.37) 

Substitution of P wave and S wave speeds (A.7) and (A.12) into Eq. (A.32) gives: 

 2 2 2( )( 2 )k Gα ρω− Λ + = − ,   2 2 2G Gkβ ρω= − , (A.38) 

and therefore Eq. (A.36) can be simplified to: 
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 (A.39) 

Substitution of Eqs. (A.39) and (A.37) into the boundary conditions (A.35) leads to the 
equations: 

 
2 2

2 2

( ) 2 0,

2 ( ) 0.

k A ikB

ikA k B

β β
α β

+ + =

− + + =
 (A.40) 

It has the nontrivial solution if the determinant vanishes: 
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2 2
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2
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2

k ik
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β β
α β
+

=
− +

, (A.41) 

which gives the following characteristic equation: 

 2 2 2 2( ) 4 0k kβ αβ+ − = . (A.42) 

The above can be rewritten into: 
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, (A.43) 
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. (A.44) 

Defining the ratio of the wave speeds ϑ  as 
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Λ + −= = =
−

, (A.45) 

the Eq. (A.44) can be expressed by: 
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. (A.46) 

The Eq. (A.46) is cubic in 2 2/ Sc c , but for practical conditions only one real root is ac-
cepted, the Rayleigh wave speed Rc , depending on the shear wave speed Sc . A common 
approximation for the Rayleigh wave speed is (cf. Doyle 1997): 

 
0.87 1.12

( )
1R Sc c

νν
ν

+⎛ ⎞= ⎜ ⎟+⎝ ⎠
. (A.47) 

A.4. Shear horizontal plate waves 

Shear horizontal waves are characterized by a particle motion along the z axis (in the 
horizontal plane) and wave propagation along the x axis (cf. Fig. 2.4). The particle motion 
has only the zu  component given by (Giurgiutiu 2008): 

 ( )( , , ) ( ) i kx t
zu x y t h y e ω−= , (A.48) 

where ( )h y  represents a standing wave across the plate thickness and ( )i kx te ω−  represents a 
wave propagating in the x direction. The displacement zu  satisfies the wave equation: 

 2
2

1
z z

S

u u
c

∇ = && . (A.49) 

Since the problem is z-invariant, the Eq. (A.49) can be rewritten as: 
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u u
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⎛ ⎞∂ ∂+ =⎜ ⎟
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&& . (A.50) 

Substituting Eq. (A.48) into Eq. (A.50) results in: 

 2''( ) ( ) 0h y h yη+ = , (A.51) 

where: 

 
2

2 2
2
S

k
c

ωη = − . (A.52) 

The solution of the above equation has the general form: 

 1 2( ) sin cosh y C y C yη η= + . (A.53) 

The general form of the displacement is therefore given by: 

 ( ) ( )
1 2( , , ) sin cos i kx t

zu x y t C y C y e ωη η −= + . (A.54) 

The boundary conditions define the upper and lower plate surfaces to be free of tractions:  

 ( , , ) 0yz x d tσ ± = , (A.55) 

where the shear stress yzσ  is: 

 z
yz

u
G

y
σ ∂

=
∂

. (A.56) 

Substitution of Eq. (A.54) into Eq. (A.56) yields: 

 ( ) ( )
1 2cos sin i kx t

yz G C y C y e ωσ η η η −= − . (A.57) 

After imposing boundary conditions (A.55) one can obtain: 

 1 2

1 2

cos sin 0,

cos sin 0.

C d C d

C d C d

η η
η η

− =
+ =

 (A.58) 

The system of linear equations has nontrivial solution, if the determinant is zero, which 
results in the following characteristic equation: 

 cos sin 0d dη η = . (A.59) 

The solution of sin 0dη =  leads to symmetric modes (SH0, SH2, SH4,…): 

 0, , 2 ,..., ,
2

n
d

πη π π=      0, 2,4,...n = , (A.60) 

while the solution of cos 0dη =  leads to antisymmetric modes (SH1, SH3, SH5,…): 

 
3 5

, , ,..., ,
2 2 2 2

n
d

π π π πη =      1,3,5,...n = . (A.61) 

Recalling Eq. (A.52): 
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2 2 2
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ω ω ωη = − = − , (A.62) 

the dispersion relation can be written as: 
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, (A.63) 

or in terms of group velocity: 
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A.5. Lamb plate waves 

Lamb waves are waves of plain strain that propagates between two parallel free sur-
faces (e.g. Graff 1975, Nowacki 1972, Rose 1999, Victorov 1967). They arise as a result of 
simultaneous operation of P waves and SV waves, through their multiple reflections on 
plate surfaces and through their constructive and destructive interference. Lamb waves (see 
Fig. 2.3) consist of a pattern of standing waves in the y direction (Lamb wave modes) be-
having like travelling waves in the x direction (Giurgiutiu 2008). The derivation of Lamb 
waves is based on the z-invariant problem (cf. Section A.2) in terms of the Φ  and zH  
potentials (P+SV wave solution), which satisfy the wave equations: 
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The displacements and stresses can be expressed in terms of potentials as: 
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The potentials Φ  and zH  can be written as: 
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Substitution of Eqs. (A.69) into Eqs. (A.66) yields: 

 2''( ) ( ) 0Ly p yφ φ+ = ,   2''( ) ( ) 0Ly q yψ ψ+ = , (A.70) 

where: 
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Solutions of Eqs. (A.70) are given by: 
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Substitution of Eqs. (A.72) into Eqs. (A.69) yields: 
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Hence, the displacement and stresses can be rewritten as: 
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At this stage, the problem can be split into symmetric and antisymmetric solutions. 
The guided Lamb waves can exist as symmetric (S0, S1, S2, …) and antisymmetric (A0, A1, 
A2,…) modes. At the lowest frequencies two basic modes S0 and A0 simultaneously exist. 
With the increase of frequency, larger numbers of Lamb modes appear and in general, infi-
nite number of modes is associated with a guided Lamb wave problem. 

Symmetric solution. Eqs. (A.72), (A.74) and (A.75) can be simplified to: 
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The symmetric solution of the Lamb wave problem assumes that displacements and stresses 
are symmetric about the mid-plane (Giurgiutiu 2008): 
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and the symmetric boundary conditions are: 
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Upon substitution, the linear system of equations can be obtained: 
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which has a solution, if the determinant is zero, i.e.: 

 2 2 2 24 sin cos ( ) sin cos 0L L L L L L Lp q k p d q d k q q d p d+ − = . (A.80) 

The above is the Rayleigh-Lamb equation for symmetric modes, which can be rewritten as:  
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The Rayleigh-Lamb frequency equations can be used to determine the velocities at which 
wave of particular frequency f  propagates within a plate of thickness 2 .h d=  It is visible 
from the Rayleigh-Lamb frequency equations, that the wave speed depends on the fre-
quency, therefore Lamb waves are dispersive. 

Antisymmetric solution. Eqs. (A.72), (A.74) and (A.75) can be simplified to: 
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The antisymmetric solution of the Lamb wave problem assumes that displacements and 
stresses are antisymmetric about the mid-plane (Giurgiutiu 2008): 
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and the antisymmetric boundary conditions are: 
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Upon substitution, the linear system of equations can be obtained: 
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which has a solution, if the determinant is zero, i.e.: 

 2 2 2 24 sin cos ( ) sin cos 0L L L L L L Lp q k q d p d k q p d q d+ − = . (A.86) 

The above is the Rayleigh-Lamb equation for antisymmetric modes, which can be rewritten 
as:  
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