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Chapter 1

Game theoretic negotiation

models

Individuals, who collaborate in a network organization, work together for a
common purpose using some computer-mediated communication facility to
link across boundaries, interact and exchange information. They are often
called knowledge workers and exchange documents constituting units of in-
formation, and more recently, also units of interaction [17]. This dichotomy
has become more apparent with the advent of active documents.

The �rst architectural model of the active document has been proposed
by Phelps [51], who de�ned a multivalent document (MVD) architecture.
MVD incorporated layers of functionality that could be added dynamically by
users during the entire document lifecycle from various physically distributed
locations in order to de�ne document behaviors. This concept paved the way
for reactive documents, capable of supporting complex interaction with users.

The idea of behaviors embedded in a document evolved further into active
properties of placeless documents introduced by Dourish [10]. Active prop-
erties provided users with speci�c services attached to the document, which
could be invoked regardless of its actual location � changed each time the
document was emailed or copied.

The concept of a mobile document-agent, as a truly proactive entity, ca-
pable of traveling from computer to computer under its own control, has been
demonstrated by Satoh [60] with his MobiDoc compound document frame-
work. The agent's body was a program de�ning document's behavior, while
its services de�ned various APIs for document components.

With advances in wireless communication and mobile devices the concept
of a document agent has been �rmly established at the beginning of this
century. Clear distinction between reactive and proactive documents has
been acknowledged and the focus has been put on the middleware enabling
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proactive documents to coordinate activities with other active documents [6].
The underlying model has been coordination of agent activities by exchanging
structured tuples in a logic data space, e.g., MARS-X [4], building on the
concept introduced by the Linda coordination language [15].

Explicit representation of work�ow activities as steps applied to docu-
ments in a really distributed manner appeared in the WorkSpaces system
developed by Tolksdorf [65]. Steps were described there with the use of a
mark-up language and retrieved (along with documents providing content to
work on) by special WorkSpace engines distributed over the network from a
tuple space mentioned before. Owing to that, work�ows could be designed in
an orderly fashion prior actual process execution as graphs comprising both:
basic steps, representing the �work� on document content, and coordination
steps, representing the ��ow� of work between collaborators. WorkSpace
engines introduced also a distinction between automatic steps, performed
within the system (most likely by the document itself), and external steps,
performed by a local application or user with the document as input.

LWE

LWE

LWE

LWE

Figure 1.1: Mobile documents with embedded work�ows

Mobile interactive documents MIND [19] used a coordination model based
on autonomous mobile agents, which could carry both, the content to be
worked on and description of steps to be interpreted by local user devices.
Each document has an embedded description of its migration path, which
describes activities and transitions that must be followed during its lifetime.
An activity represents a piece of work to be performed by the worker on
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the incoming document content, whereas a transition indicates where the
outgoing document (or documents), constituting a result of the just com-
pleted activity, should migrate next. This idea is outlined in Figure 1.1,
where activities are represented by rectangles, transitions by arrows, and
two distinguished start and termination activities by �lled and outlined cir-
cles respectively. Workers may interact with the content of MIND documents
using any device currently at their disposal, from workstations to laptops,
to tablets, smartphones or even cellphones. Each device has a Local Work-
�ow Engine (LWE) client installed, capable of unpacking and packing the
documents and sending them to other workers of the organization.

1.1 Motivation

A single activity performed in the execution context provided by the device
on which the mobile document is currently located, depends on the pol-
icy of the document originator, operational characteristics of the currently
used worker's device, and preferences of the knowledge worker responsible
for the current processing step. Proactive MIND documents may handle
that in several ways: activity may be performed automatically by the embed-
ded document code, if only allowed by the worker or his/her device, it may
be performed manually by the worker, using local services or tools installed
on his/her device, also the document or the worker may call some external
(third party) service indicated by the document � if only Internet connection
is available or practical at the time of executing the activity.

The proactive document MIND architecture developed in the �rst phase
of the MeNaID project [43] opened a new interesting research perspective
for this Thesis, motivated by the fact that beliefs, desires and intentions of
MIND document-agents expressed in their embedded migration paths and
services [18] may often generate con�icts with execution devices. In the
Thesis we postulate that these con�icts can be resolved with negotiations [32].
This problem is not trivial, as:

• execution contexts may vary, since the same worker may use di�erent
devices when performing activities of the same business process, e.g.,
using a workstation when in o�ce, a smartphone during travel between
o�ce and home, and a laptop at home.

• user preferences for the same device may depend on its current location,
e.g., when out of the o�ce and accessing an untrusted network.

Document agents arriving to the particular device may have incomplete
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information on the speci�c execution context for several reasons, which may
be classi�ed along the lines proposed in [57]:

• laziness, when too much about the current context must be known by
the agent, i.e. it has not enough resources to acquire all the information
on the context whereabouts;

• declarative ignorance, when the agent has been programmed by its orig-
inator in the way that it does not attempt to collect all available infor-
mation on the context;

• procedural ignorance, when both the document-agent and the execution
device do not attempt to predict consequences of their current activities
because of the lack of complete information on the execution context.

Importance of the problem of incomplete information indicated above may
be contrasted to the problem of providing an optimal viewing experience for
users of a wide range of personal devices (from cellphones to workstation
monitors), willing to read and navigate arbitrarily complex Web documents
with a minimum of resizing, panning, and scrolling, which has been addressed
by the Responsive Web Design approach advocating the media queries [21].
Media queries allow documents to use di�erent CSS style rules based on
characteristics of the device the document is being displayed on. However,
the problem investigated in the Thesis is far more complex than the one
addressed by media queries because incomplete information about the ex-
ecution context may prevent originators of document agents from making
media queries realistically implementable, i.e. agents must remain lazy or
ignorant, as classi�ed before.

Throughout the rest of the Thesis we will argue that negotiations can pro-
vide a solution to the problem of reaching an agreement between a document-
agent and execution device not only when simple querying may not be ap-
plied because of incomplete information, but also when the two parties may
have con�icting requirements on how the MIND document should perform
its current activity.

1.2 Formal statement of the problem

Phases of the local lifetime of a document have been speci�ed by a �nite
state machine in Figure 1.2. State transitions specify a generic functionality
of LWE, which is just an email client to the knowledge worker, driven by
embedded functionality of incoming MIND documents [18].
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Figure 1.2: Proactive MIND document states on the worker's device

The initial state (S1) of LWE corresponds to the phase of a document
lifetime when a message is received, i.e. placed in the respective worker's
mailbox hosted by some email server. Depending on the particular collabo-
ration pattern [18], transition to the next state (S2) may require delivery of
one or more messages to the mailbox. LWE identi�es in that e�ect all rele-
vant messages in the mailbox and retrieves them to the (local) inbox at the
knowledge worker's device. Making document components ready to unpack
(S3) may require authentication of the worker. Unpacking of the retrieved
messages enables assembling the hub document (S4), which involves creation
of the local folder structure to place document components. Activation of
the document enables its embedded functionality, so that it may interact
with LWE, the knowledge worker and his/her local system, as well as ser-
vices of external servers (S5). This interaction begins with obtaining the
document path component (S6) and determining the activity to be started
based on its internal data (S7). This state involves also resolving of con�icts
(if any) between the activated document and the device on options currently
available for the activity. The enabled activity is started and performed us-
ing the document services (S8): automatically, or via interaction with the
knowledge worker. When the required work is done the current activity is
considered complete (S9). This implies determining the next activity to be
performed and the respective worker responsible for that (S10). If the worker
is the same the content of local folders is re�ned (cleaned) to prepare docu-
ment components processed so far for the next activity, which is eventually
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enabled (S7) for the next cycle. Otherwise, the document components are
serialized (S11), depending on the particular collaboration pattern packed
in one or more messages (S12), submitted to the email server and sent out
(S13).

Throughout the rest of this Thesis we will focus on state S7 in the diagram
in Figure 1.2, when the activated document and the worker's device exchange
o�ers that represent optional values of the common set of attributes describ-
ing the negotiated service. Let us consider o�ers exchanged by negotiating
parties as m-vectors of items:

o = 〈item1, item2, . . . , itemm〉 (1.1)

Each itemk, where k = 1, . . . ,m, can be assigned a value of any attribute
speci�c type chosen from the set of values:

Ak = {ak1 , ak2 , . . . , akn}, (1.2)

where kn = |Ak|. Operator | | denotes cardinality of its argument set, Ak
represents a k-th attribute of the negotiated service. Set A of all m-vectors

A = A1 × A2 × . . .× Am (1.3)

is called a space of o�ers. Based on that we can de�ne o�ers in a more formal
fashion:

De�nition 1. O�er oj ∈ A, where j = 1, . . . , |A| is a vector of attribute
values

oj = 〈vj1, v
j
2, . . . , v

j
m〉 (1.4)

where vjk ∈ Ak and k = 1, . . . ,m.

Each single attribute value has an assigned numerical value, which re�ects
utility of the related attribute value. Utility of attribute value aki ∈ Ak, for
ki = 1, . . . , |Ak|, is calculated with function uk : Ak → N. Each party has its
own set of functions {u1, u2, . . . , um} to calculate utility of each item in the
o�er.

Given that, utility of each o�er oj is calculated as:

Ui(oj) =
m∑
k=1

ui(v
j
k) (1.5)

where according to formulas 1.3 and 1.4, j = 1, . . . , |A|
Throughout the rest of this thesis we will use values of the utility function,

normalized against maxj(Ui(oj)), so that

Ui : A→ (0, 1] (1.6)
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The problem is to �nd the best o�er oc ∈ A that is acceptable to both
parties, P1 and P2, in other words maximizes their utility; we denote that as

oc = arg max
o∈A

U1(o)U2(o). (1.7)

We will call o�er oc the contract between negotiating parties P1 and P2.
Unfortunately, the problem of �nding a contract cannot be stated just

as solving Equation 1.7 because neither P1 nor P2 knows each other's utility
function.

Through the Thesis we will argue that negotiations can provide a solu-
tion to Equation 1.7 when parties do not know one another's utility function.
Note that according to De�nition 1, o�ers consist of many items. Negotiation
between two parties that exchange o�ers of the form described by Formula 1.4
are called in the literature multi-issue bilateral negotiations [27]. Because of
the use of utility functions in the negotiation process, it is usually called
bargaining [45]. Since o�ers considered in our bargaining model specify exe-
cution contexts provided by devices to proactive documents we will call the
contract oc ∈ A the collaboration agreement.

The following statement will be investigated in this thesis:

Selection of negotiation strategies based on the bargain-
ing model enables e�ective generation of collaboration
agreements between con�icted parties.

1.3 Formulation of the problem as a game

The bargaining model considered in this Thesis derives several important
game theoretic notions introduced in the following subsections.

1.3.1 Simple Bargaining Game

First, we have to introduce the concept of rationality, which implies that
each party, termed a player, is rational and assumes that its opponent is also
rational. Given that, each player has a complete contingent plan for choosing
o�ers from the space of o�ers. We will call such a plan a strategy. A formal
de�nition of a strategy will be provided later in this section.

We de�ne shortly a two person game (after [66]) as a tuple G = 〈P, S,Π〉
consisting of the set of players P = {P1, P2}, each with the associated �nite
set of strategies S = {S1, S2} and payo�s πi ∈ Π corresponding to each
player Pi, which is the result of a special function that maps strategies into
real numbers.
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Each single player's choice will be called a move, denoted as αki where
i = 1, 2 indicates a player and k denotes a move number k ∈ N∪{0}, or Z≥0

for brevity.
A sequence of two moves, each one for each player, starting from P1 is

called a stage and denoted as (αk1, α
k+1
2 ). Since n ∈ Zge0, k = 2n for player's

P1 moves and k = 2n + 1 for player's P2 moves, where n denotes the stage
number. A multi-stage game is a game for which n ≥ 0.

In order to make a choice of o�er o ∈ A after making move αki player Pi
will valuate it with its payo� function πi : A × N → [0, 1]. This function
di�ers from utility function Ui in that it takes a context of choosing o�er
o, in particular A re�ects whether o has been proposed before, i.e. in some
preceding step k′ ≤ k.

Discounting is a mechanism which is used to compare values in di�erent
stages of the same game. The value of the o�er from stage n equals the value
of the o�er from stage n+ 1 multiplied by the given player's discount factor.
The value of an o�er is multiplied by a discount factor each time when the
given player rejects an o�er. Let us consider a multistage game G and player
P1 sending its o�er. If P2 accepts that o�er, it is not discounted. If P2

rejects the o�er and submits its own o�er, the o�er has to be discounted. If
P1 rejects the o�er by submitting its own o�er, the new player's P1 o�er is
also discounted.

When describing various players' activities we use the indexes 1 and 2 to
emphasize to whom the given activity belongs. However, sometimes we are
not interested in assigning an activity to the player but rather contrasting
the player's and its opponent's activities. Then we use index i for the current
player and −i for its opponent.

To recapitulate, o�ers are discounted when player Pi receives opponent's
P−i o�er o−i ∈ C and decides to reject it. Then in order to compare utility
Ui(o−i) with utility Ui(oi) of the new o�er oi made by player Pi, utility Ui(oi)
has to be discounted with δi.

Let us introduce the following de�nition:

De�nition 2. Factor δi ∈ (0, 1] used to calculate payo� πi : C×Z≥0 → [0, 1]
for o�er o by player Pi in the (k + 2)-th move as:

πi(o, k + 2) = δi · πi(o, k)

is called a discount factor. Each player has its own discount factor that
remains constant throughout the entire game

Recall that each player Pi, i = 1, 2 has its own utility function Ui(o) for
each o ∈ A. Realistically, players will continue choosing o�ers from a certain
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subset of o�ers C ⊂ A, which we call the bargaining set. In each move either
player attempts to maximize its own utility function by complying with the
rules of a simple bargaining game. We will de�ne such a game formally later,
below we just specify its rules (given originally in [35]):

Rules of a simple bargaining game (SBG)

1. The game is started by player P1.

2. Players Pi, i = 1, 2 keep in secret their private information, including
Ui, δi and πi, but share knowledge on the bargaining set C (a set of
o�ers that players negotiate over).

3. Values of players' o�ers are discounted at each transition to the next
stage.

4. Players exchange o�ers until the game is concluded, i.e., one of the
players accepts an o�er or quits the game.

5. The game is concluded by player Pi when:

(a) Pi repeats its own o�er o′ what means quitting the game by Pi
with the payo� πi(o

′, k) = π−i(o
′, k − 1) = 0 for each player.

(b) Pi repeats player's P−i o�er o
′′ what means accepting it as the

contract and exiting.

A simple bargaining game can provide a solution to Equation 1.7, known as
the Nash equilibrium [46], which players may �nd even when not knowing
one another utility functions. The rules presented above are implemented
by Algorithm 1.1 in procedure playSBG(). The algorithm will be used later
in the experiments. One of the parameters required by the procedure is an-
other procedure � submitOffer(). This parameter will indicate values im-
plementation of the submitOffer() procedure, namely submitOffer(SAlg)

implementing Algorithm 1.2 and submitOffer(EAlg) implementing Algo-
rithm 1.4. They are optional negotiation algorithms investigated in this
Thesis. We will specify formally several such algorithms later in the current
Chapter. Algorithm 1.1 will run as follows:

1. In the �rst step the bargaining set is created by intersecting both play-
ers' option trees,

2. Next a loop is executed. In the body of the loop procedure submitOffer()
is called. First o�er o1 is created by calling the procedure for arguments
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belonging to player P1 and o�er o2. Next o�er o2 is created by calling
the procedure for arguments belonging to player P2 and o�er o1.

3. The loop ends when o�er o1 equals o2, i.e. when players agree the o�er.
Additionally the loop may be broken if a player submits an o�er which
was sent already.

Algorithm 1.1: playSBG()

1 Data: structures representing players Pi, with sets of sent Pi.CS and
received o�ers Pi.CR (i indicates the player's number),
bargaining set C shared by players, player's Pi o�er oi, move
number k.

2 procedure submitO�er()
3 Result: chosen o�er oi and move number mNo
4 while o1 6= o2 do
5 o1 ← submitOffer(C,P1.CR, P1.CS, o2, k);
6 if o1 = o2 then
7 return [o1,k];

8 k ← k + 1;
9 o2 ← submitOffer(C,P2.CR, P2.CS, o1, k);

10 if o1 = o2 then
11 return [o2,k];

12 k ← k + 1;

Bargaining set in Algorithm 1.1 is agreed by both players before starting the
bargaining game. We will explain the problem in more detail in Section 3.3.

De�nition 3. Strategy is a function:

si : Z≥0 → C

which associates all possible moves of player Pi that follow move αki ,
0 ≤ k ≤ |C|, with the relevant o�ers.

We will de�ne the Nash equilibrium as the strategy pro�le 〈s′i(k), s′−i(k + 1)〉
representing the best responses to the opponents' strategies. We de�ne the
best response as strategy s′i which is better than any other strategy s in the
sense of payo� they provide to the player. Namely, strategy s′ is better than
any other strategy s if the payo� of the o�er returned by strategy s′ is greater
than the payo� of the o�er returned by strategy s.
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De�nition 4. Strategy pro�le 〈s′i(k), s′−i(k + 1)〉 is the Nash equilibrium of
SBG if

(s′i, s
′
−i) � (s, s′−i) (1.8)

for any s ∈ S; by `�' we denote a pairwise comparison operator of 2-element
vectors.

Strategies that satisfy Equation 1.8 will be called equilibrium strategies.
The advantage of using a Nash equilibrium is that the knowledge of the

opponents' strategies is not needed to �nd it: the player needs only to express
beliefs on its opponent's strategies. On the other hand, a Nash equilibrium
de�ciency with regard to Equation 1.7 is that players may be interested
only in maximizing their own payo�s. We may illustrate that after de�ning
function map:

De�nition 5. Function map : f,X → Y where f is a function and X =
〈x1, x2, . . . , xn〉, calculates Y = 〈f(x1), f(x2), . . . , f(xn)〉
Let us consider the following example:

Example 1. Players P1 and P2 choose o�ers from bargaining set C = {o1, o2};
let utilities of the respective players be calculated map(U1, C) = {0.2, 0.1} and
map(U2, C) = {0.1, 0.2}. Moreover, let respective discount factors be δ1 = 0.7
and δ2 = 0.6.

The game from Example 1 is illustrated in Figure 1.3 as a tree. Its root
represents the initial state of the game, where the �rst (starting) player's P1

move is to be made. All possible sequences of moves start from the root.
Upon starting, each sequence goes down the tree to a distinguished terminal
node. In other words, each complete sequence of moves, from the starting one
to the concluding one is represented in a game tree by a tree path, going from
the root to one of its leafs. Non-terminal nodes are called decision nodes. A
label of each node consists of the index of the player who makes a decision
at the given node, and separated by colon, the name of the node denoted by
a character. Additionally of each terminal node the respective payo� vector
〈π1, π2〉 is displayed. Edges are labeled with symbols representing o�ers.

• In move α0
1 at node 1:a player P1 makes its �rst choice.

• If it chooses o1, then node 2:b is reached, that is where the decision is
made by P2.

• In move α1
2 player P2 may accept its opponent's P1 o�er by choosing

it or reject it and choose o�er o2. By choosing o1, i.e. accepting the
opponent's o�er, P2 gets π2 = 0.1 and the game will be over because
of the game rules. Its opponent gets π1 = 0.2.
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Figure 1.3: Game in the extensive form

• If in move α1
2 player P2 chooses o2 node 1:e is reached; now P1 makes

its choice in move α2
1.

• P1 may now repeat its �rst o�er o1 and receive π1 = 0 by reaching node
2:h, or accept its opponent's P2 o�er o2 to get π1 = 0.14 and reach node
2:i. Its opponent P2 gets then π2 = 0.06. At node 2:i both o�ers are
discounted.

• If P1 chooses o2 at node 1:a , node 2:c is reached. Now P2 has to choose
between o1 and o2.

• If P2 chooses o�er o2, the game is concluded. Reaching node 1:g gives
the respective payo�s π1 = 0.1 and π2 = 0.2.

• If P2 chooses o�er o1, node 1:f is reached.

• At node 1:f player P1 chooses between the o�ers o1 and o2. If it chooses
o1, it gets π1 = 0.12 and its opponent π2 = 0.07. At node 2:j both
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o�ers are discounted.

Representation of games with trees, like the one shown in Figure 1.3, is
often called the extensive form [66]. This form is suitable for �nding a game
solution with a backward induction method. A solution obtained in this way
is called a Perfect Nash Equilibrium(PNE). A strategy pro�le is PNE if it
determines a Nash equilibrium in every subgame of the given game, where
a subgame is a game, which tree starts in any node of the original game
tree [68].

Let us continue with the tree shown in Figure 1.3 and consider:

• node 1:f; in the game the only decision is taken by player P1. Player P1

chooses strategy o1, since it gives π1 = 0.12, while choosing o2 would
give it π1 = 0. We mark strategy of choosing o1 with a thick line.

• node 2:c; the decision is taken by P2. Player P2 knows that P1 is rational
and it chooses o1 in subgame 1:f. It means that π2 = 0.7. However, if
P2 chooses o2, it gets π2 = 0.20. So, P2 chooses o2 and we mark that
fact in the tree with a thick line.

• node 1:e; player P1 chooses o2, what gives it payo� π1 = 0.6 compared
to payo� π1 = 0 received it choosing o1. We mark it also with a thick
line.

• node 2:b; player P2 chooses o2 rather than o1. Since P1 is rational, P2

knows, that in 1:e player P1 chooses o2. So, the choice of o2 gives it
payo� π2 = 0.14, while o1 would give it π2 = 0.10. Player's P2 strategy
is to choose o2, as marked with a thick line.

• node 1:a; player P1 makes the decision. It knows that P2 is rational
and all decisions made by it so far were rational and knows all previous
choices. It knows that if it chooses o1 it can get π1 = 0.06. The choice
of o2 will give π1 = 0.10, so P1 chooses o2, as marked with a thick line.

A strategy pro�le determined by equilibria in all subgames is the PNE of the
given game. In Figure 1.3 that pro�le is represented by path (1:a,2:c,1:g),
marked with a thick line.

Unfortunately, the approach described before is not applicable to play
SBG, which rules were described before on page 15. First, there would be
a problem drawing a game tree when the bargaining set has more than two
elements. Moreover, to draw a tree, such as the one shown in Figure 1.3, a
common knowledge about both players' payo�s is necessary. So, we have to
�nd another way to solve our game.
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Games in which players have the full knowledge on their opponents, in
particular their payo�s, are called the games with perfect information. More-
over, according to rule 2 players do not know their opponents' payo�s, so SBG
is the game with imperfect information [13].

The game in Example 1 is multi-stage and has been presented in Fig-
ure 1.3 in the extensive form. The main advantage of the extensive form
is the possibility to present games graphically. Unfortunately this feature
fails short in the case of even a slightly larger bargaining set. Let us then
consider games with richer bargaining sets than in Example 1 and attempt
to �nd Nash equilibrium for them.

1.3.2 Multi-stage games

Let us now de�ne our game in a more formal way:

De�nition 6. A simple bargaining game (SBG) is a two-person multi-stage
game with imperfect information, represented as:

SBG = {P,D,U,C, S,Π, T} (1.9)

where:

• set of players P = {P1, P2} and P1 begins the game.

• D = {δ1, δ2} is a set of their respective discount factors

• U = {U1, U2} is a set of their respective utility functions; we denote
U1 ≡ U−2 and U2 ≡ U−1.

• C ⊂ A is the bargaining set. Furthermore, Ci ⊂ C will denote o�ers
submitted by Pi and C−i o�ers submitted by its opponent P−i.

• S = Si ∪ S−i is a �nite set of strategies of players Pi, i = 1, 2, at each
stage of the game, where Si = {si,j(k)|j = 1, . . . , |C|, k = 0, 2, . . . , 2nmax}
and S−i = {s−i,j(k)|j = 1, . . . , |C|, k = 1, 3, . . . , 2nmax + 1}, where
nmax = d|C|/2e is the maximum number of stages. There are |C| pos-
sible strategies in S.

• Π = 〈π1, π2〉 is a vector of players' payo�s calculated according to
De�nition 2 as

πi(o, k) =

{
δ
bk/2c
i · Ui(o), if o ∈ C−i

0 if o ∈ Ci
(1.10)
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• T (o) denotes a condition for concluding the game.

T (o) =

{
false if o 6∈ (Ci ∪ C−i)
true otherwise

(1.11)

1.3.3 A naive negotiation algorithm

We have introduced Algorithm 1.2 (SAlg) enabling players to �nd a solution
of the bargaining game [35]. It may be termed naive, as neither player makes
any attempt to guess if the submitted o�er may be accepted by its opponent:

1. Opening o�er is the highest player's o�er.

2. If player Pi receives o�er o
′, it compares its utility with the discounted

utility of its highest o�er:

(a) if Ui(o
′) is greater or equal, incoming o�er o′ is accepted, otherwise

(b) o�er o′ is rejected and a new o�er o′′ = arg maxo∈C−i
Ui(o) is sub-

mitted.

Algorithm 1.2 may be illustrated with the following example:

Example 2. Let two players, P1 and P2, choose o�ers from bargaining
set C = {o1, o2, o3, o4, o5, o6, o7, o8}. Their respective utilities calculated with
their utility functions are map(U1, C) = {0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1}
and map(U2, C) = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, discount factors are
δ1 = δ2 = 0.9.

The bargaining process would run as shown in Table 1.1. In stage n = 4
player P1 has already o�ered o1, o2, o3 and o4, so repeating them would end
the game by P1 with payo� 0. O�er o5 has the highest value of the rest of the
o�ers, so in move α8

1 player P1 should choose o�er o5 for which U1(o5) = 0.4
and π1(o5) = δ1 · U1(o5) = 0.26244 as shown in Table 1.2.

An advantage of Algorithm 1.2 is its simplicity. However, it omits some
important data which should be taken into consideration. Consider a game
over bargaining set C = {o1, o2, o3, o4}, and the following players' P1 and P2

utilities: map(U1, C) = {0.8, 0.6, 0.4, 0.2} andmap(U2, C) = {0.2, 0.4, 0.6, 0.8}.
Moreover, assume δ1 = 0.95 and δ2 = 0.8. Now consider that P1 has o�ered
o2. Algorithm 1.2 takes into consideration the value of player's P2 discount
factor and the value of its highest o�er when deciding to continue the game.
Since δ2 · U2(o4) > U2(o2) as 0.8 · 0.8 > 0.4, P2 decides to continue the
game. It is because P2 assumes the future value of the game to be higher
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Algorithm 1.2: submitO�er(SAlg)

1 Data: set of all o�ers C,
2 set of received o�ers CR,
3 set of sent o�ers CS,
4 player's discount factor δ1,
5 received opponent's o�er o (if the procedure is called the �rst time the
value is empty)

6 Result: The chosen o�er c. If the opponent's o�er is accepted, the
incoming opponent's o�er is returned, otherwise the
counter-o�er is returned.

7 if o = null then
8 // if it is the initial move find the highest offer

9 c← max(C);
10 return c;

11 else
12 if o ∈ CS then
13 // If opponent accepted the offer

14 return o;

15 CR ← CR ∪ {o};
16 o← max(CR);
17 // set of offers not presented and received by player

CN ← C − (CR ∪ CS);
18 if isEmpty(CN) then
19 // accept the best received offer

20 return o;

21 else
22 c← max(CN);
23 if Ui(o) ≥ δi · Ui(c) then
24 // If the incoming offer is better than a

discounted value of future proposal

25 return o;

26 else
27 CS ← CS ∪ {c};
28 return c;
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Table 1.1: An SBG example
stage move player o�er U1 U2 δ1 δ2

0
α0
1 P1 o1 0.8 0.1 0.90 = 1.0000 0.90 = 1.0000
α1
2 P2 o8 0.1 0.8 0.91 = 0.9000 0.91 = 0.9000

1
α2
1 P1 o2 0.7 0.2 0.91 = 0.9000 0.91 = 0.9000
α3
2 P2 o7 0.2 0.7 0.92 = 0.8100 0.92 = 0.8100

2
α4
1 P1 o3 0.6 0.3 0.92 = 0.8100 0.92 = 0.8100
α5
2 P2 o6 0.3 0.6 0.93 = 0.7290 0.93 = 0.7290

3
α6
1 P1 o4 0.5 0.4 0.93 = 0.7290 0.93 = 0.7290
α7
2 P2 o5 0.4 0.5 0.94 = 0.6561 0.94 = 0.6561

than U2(o2) = 0.4. But it is wrong, because its o�er o4 is likely to be re-
jected. Player P1 has relatively high discount factor and it prefers to wait,
rather than accepting a less pro�table o�er. This example illustrates that
the opponent's discount factor matters.

Table 1.2: Continuation of an SBG example
stage move player o�er U1 U2 δ1 δ2

4 α8
1 P1 o5 0.5 0.5 0.94 = 0.6561 0.94 = 0.6561

So let us then consider an algorithm that respects both players' discount
factors.

1.3.4 The best response negotiation algorithm

Let us assume the following:

1. All estimations are made from the player's Pi point of view.

2. If the player's Pi move is considered, it assumes that the best response
is the choice of its most valued o�er. Since player Pi knows the value,
it only has to �nd the o�er which gives the highest payo�.

3. If the player's P−i move is considered, we assume that its best response
is also the choice of its most valued o�er. However, since player's
P−i utility function is unknown to Pi, it can only assume that P−i is
rational and maximizes its payo�. Since Pi views player's P−i o�ers
equally probable, and the range of their utility values assumed by P−i
the same as its own range, statistically the payo� should be equal to
the average of that range. We will be calculating that average with the
auxiliary function:
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ρ(o, C, f) =
1

|C|
∑
o∈C

f(o) (1.12)

An alternative to calculating the arithmetic average of the range would
be �nding the median o�er instead. Closer to the end of the game, when
most of the o�ers from the bargaining set have been submitted and none was
accepted by the opponent, choosing the median may seem to be better. On
the other hand, at the beginning of the game, when most of the o�ers from
the bargaining set have not been submitted yet the o�er with the average
payo� would be better. For the sake of simplicity of the algorithms developed
further in this chapter we have assumed to choose the average o�er.

The above brings us to the issue of choosing the best o�er by the player
to be submitted in the current move. The major dilemma in each move it has
to resolve during the game is to decide whether to accept one of the o�ers
already received from the opponent or choose a new one from the part of the
bargaining set not attempted yet by any player. There are four speci�c types
of moves of the player in the SBG game that have to be considered when
looking for the best response strategies [33]: the last move, when there are no
new o�ers left in the bargaining set, the penultimate move, when exactly one
such o�er remained, the intermediate move, when at least one o�er has been
submitted and more than one o�er remains to be chosen in the bargaining
set, and the �rst move, when none of the o�ers from the bargaining set has
been submitted yet.

Lemma 1. In the last move, k = kmax, the best response strategy for Pi is:

si(k) = arg max
o∈C−i

πi(o) (1.13)

and for P−i is:

s−i(k) = argo∈Ci
[πi(o) = ρ(o, Ci, πi)] (1.14)

Proof. In order to prove that Equations 1.13 and 1.14 expressing the best
response strategies we consider �rst Pi choosing its o�er with si(k). In the last
move, Pi chooses one o�er from all o�ers that have been already presented,
i.e. C = Ci ∪ C−i. Since repeating any o�er from Ci (any of its own o�ers)
gives it payo� 0, player Pi has to choose the o�er from C−i. Since it maximizes
its payo� it must be arg maxo∈C−i

πi(o).
If the last move is made by player P−i, the choice has to be made from

Ci. However, the o�er of the average payo� in Ci is chosen, since π−i is not
known to Pi. �
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Lemma 2. In the penultimate move k = kmax−1 the best response strategies
for Pi and P−i are determined respectively by Equations 1.15 and 1.16.

si(k) = arg max
o∈{o′i,o′′i }

(πi(o
′
i), δi · πi(o′′i )) (1.15)

s−i(k) = argo∈C−C−i
[πi(o) =

πi(o
′
−i) + δ−i · πi(o′′−i)

2
] (1.16)

where auxiliary variables o′i, o
′′
i , o

′
−i and o

′′
−i are determined by the following

equations:

o′i = arg max
o∈C−i

πi(o) (1.17)

o′′i = argo∈(C−C−i)
[πi(o) = ρ(o, C − C−i, πi)] (1.18)

o′−i = argo∈Ci
[πi(o) = ρ(o, Ci, πi)] (1.19)

o′′−i = argo∈(C−Ci)
[πi(o) = ρ(o, C − Ci, πi)] (1.20)

Proof. In the penultimate move, a player has a choice between accepting an
opponent's o�er and submitting its own o�er and continuing the game. Then
the game will be concluded in the next stage by the opponent's move.

Equations 1.15 and 1.16 show strategies in the penultimate move from
the players' Pi and P−i point of view. Both equations represent the choice
between accepting the opponent's o�er and submitting its own o�er. Since
submitting its own o�er means the transition to the next move, the second
element of both equations has to be discounted (see the rules of the game).

In the case of the �rst equation the choice is made by the player Pi. Since
Pi knows its utility, the choice can be expressed as the choice of the maximum
utility, what is compatible with p.2 of our assumptions on page 23.

In the case of the second equation the choice is made by the player P−i.
Therefore the choice is expressed by the average value of the elements of the
equation, what is compatible with p.3 of our assumptions on page 23.

Variables o′i and o
′′
i , in Equation 1.15, are the results of Equations 1.17

and 1.18. Variable o′i expresses the highest o�er received by Pi. The o�er has
been chosen from C−i, since set C−i is the set of o�ers submitted by P−i and
received by Pi. Variable o′′i expresses the choice from the rest of all o�ers,
i.e. C − C−i. Since the choice is made by P−i, the average is calculated.

If the penultimate move is made by P−i the latter has to choose be-
tween accepting o�er from Pi and submitting its own. It is explained by
Equation 1.16. Variables o′−i and o′′−i, in Equation 1.16, are the results of
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Equations 1.19 and 1.20. Variable o′−i expresses the highest o�er received
by P−i observed from the player's Pi point of view. Since Pi does not know
the player's P−i utility function, according to our assumptions, the average
had to be calculated. The choice has been made from o�ers belonging to Ci,
because Ci is the set of o�ers submitted by Pi and received by P−i.

Variable o′′−i expresses the choice from the rest of all o�ers, i.e. C − Ci.
Although the choice is made by Pi, the calculation is made from the player's
P−i point of view, so the average from C − Ci has to be calculated.

Equation 1.15 determines the rational player's Pi choice, thus it is the
best response. Equation 1.16 calculates the payo� resulting from the rational
strategy, utilized by the recursive expressions presented in the intermediate
move, what is necessary to obtain the best response. Therefore si(k) and
s−i(k), where k is the penultimate move, are the Nash equilibrium.

�

Lemma 3. In the intermediate move, 0 < k < kmax − 1, the best re-
sponse strategies for Pi and P−i are determined respectively by Equations 1.21
and 1.22:

si(k) = arg max
o∈{o′i,o′′i }

(πi(o
′
i), δi · πi(o′′i )) (1.21)

s−i(k) = argo∈C−C−i
[πi(o) =

πi(o
′
−i) + δ−i · πi(o′′−i)

2
] (1.22)

where auxiliary variables o′i, o
′′
i , o

′
−i and o

′′
−i are determined by the following

equations:

o′i = arg max
o∈C−i

πi(o) (1.23)

o′′i = argo∈C′ [πi(o) = max(1− δ−i)πi(o) + δ−i · Ui(s−i(k + 1))] (1.24)

o′−i = argo∈Ci
[πi(o) = ρ(o, Ci, πi)] (1.25)

o′′−i = argo∈C′ [πi(o) = (1− δi)ρ(o, C ′) + δi · πi(si(k + 1)))] (1.26)

where C ′ = C − (Ci ∪ C−i) includes o�ers not yet submitted by any player.

Proof. The only di�erence between formulas concerning penultimate move
and ones concerning the intermediate move concerns two auxiliary equations:
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Equation 1.24 and 1.26, so we will need to explain only the rationale of the
equations, since we regard the rest of equations as explained.

Variable o′′i calculated by Equation 1.24 re�ects later the fact of continuing
the game by Pi and rejecting player's P−i o�er. In the case of the penultimate
move, P−i had to accept player's Pi o�er by the fact that the player's P−i
move was the last one. In the case of the intermediate move, the o�er may be
accepted as well as rejected. Equation 1.24 says that continuing the game can
be calculated as the weighted sum of the average value of not yet submitted
o�ers and the value of recursive calling Equation 1.22.

The weights are expressed by the opponent's discount factor and its com-
pletion to 1, i.e. δ−i and 1− δ−i.

In order to illustrate the impact of the opponent's discount factor on the
fact of the accepting or rejecting an o�er consider two hypothetical situations.
The �rst is that opponent's discount factor δ−i ≈ 0. Then P−i will accept
each player's Pi o�er, since in the next stage of the game its payo� will be
close to 0 (recall that the player's P−i payo� is calculated by multiplying the
utility of its o�er by δ−i). Now consider that δ−i ≈ 1. Then P−i will reject
almost every player's Pi o�er, except for the player's P−i most valued one.

Therefore Equation 1.24 is built in the way that the greater the value of
δ−1 the greater value of continuing the game and the less the value of δ−1 the
greater the value of accepting the o�er submitted by Pi.

Variable o′′−i explained in Equation 1.26 expresses the value of continuing
the game by P−i and rejecting player's Pi o�er. Equation 1.26 says that
continuing the game can be calculated as the weighted sum of the average
value of not yet submitted o�ers and the value of recursive calling Equa-
tion 1.21. The weights are created from δi by analogy to the weight created
in Equation 1.24.

The remaining equations have been explained describing the penultimate
move. So, similarly, Equation 1.21 determines the rational player's Pi choice,
thus it is the best response. Equation 1.22 calculates the payo� resulting
from the rational strategy, utilized by the recursive call in the both equations.
Therefore si(k) and s−i(k), where k is the intermediate move, are the Nash
equilibrium.

�

Lemma 4. In the �rst move the best response strategy is determined by the
equation:

si(0) = arg max
o∈C

Ui(o) (1.27)

Proof. Because player Pi makes the choice, its highest utility is calculated
according to p.2 of the list on page 23. Since this is the �rst choice, the
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entire bargaining set C is taken into consideration. In result Equation 1.27
is obtained. �

Algorithm 1.3 implements the best response strategies, introduced by
Lemmas 1� 4. Its use, however, may be limited to devices with su�cient
memory resources, due to its recursive character. For mobile devices some
possible simpli�cations may have to be considered. It may be readily seen
that Equation 1.26 involves the recursive call δ−i · U(s−i(k + 1)).

Let us introduce function

λ(k, δi, δ−i) =

{
(1− δ−i) if k = 1
(1− δ−i · λ(k − 1, δ−i, δi)) otherwise

(1.28)

and replace the recursive part of o′′i in Equation 1.24 by

χ = argo∈C′−{õ}[πi(o) = ρ(o, C ′ − {õ}, πi)] (1.29)

where õ is the o�er submitted in non-recursive part of Equation 1.24. Then
we get

o′′i = argo∈C′ [πi(o) = maxλ(l, δi, δ−i)πi(o) + (1− λ(l, δi, δ−i)) · χ] (1.30)

where l = kmax − k − 1, which is less computationally demanding than For-
mulas 1.24 and 1.26. So after substituting o′′i from Equation 1.30 in place
of o′′i from Equation 1.24 into Formula 1.21 we receive the required simpli-
�cation of our solution. The newly obtained version of Formula 1.21 does
not include any recursive calls to Formula 1.22, and so it is self-reliant. If
the utility values of the o�ers not yet submitted are distributed evenly, using
the average utility instead of the recursive estimate of the opponent's o�er
in Equation 1.21 is a reasonable approximation.

Algorithm 1.4 (EAlg) implements the best response negotiation expressed
by the substitution of Formula 1.30 into Formula 1.21; it has been used in
the experiments described later in the Thesis. The algorithm calls procedure
discount() which implements Equation 1.28. We will present the procedure
in Appendix B. For short, the work of EAlg relies on that:

• Player P2 receives o�er o submitted by P1 and decides on its acceptance.

• Payo� π2(o) is compared with discounted payo� π2(o′′i ) (the result of
calculating Equation 1.30). If π(o) > π2(o′′i ) then o is accepted,

• otherwise P2 submits its own o�er.
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Algorithm 1.3: submitO�er(equilibrium)

1 Data: Bargaining set C, received o�ers CR, sent o�ers CS, player's
discount factor δi, opponent's discount factor δ−i, bargaining
set size n, current move k, incoming o�er o

2 Result: The value of the chosen o�er.
3 CR ← CR ∪ {o};
4 if ¬(k mod 2) then /* Player Pi */

5 o← max(C − (CS ∪ CR));
6 c← max(C − CR);
7 if k ≤ n− 2 then /* the intermediate move */

8 contValue ← /* Equations 1.23 and 1.24 */

getContValue(estimateOffer(c,k + 1),δ−i);
9 if o ≥ δi·contValue then /* Equation 1.21 */

10 return o;
11 else
12 CS ← CS ∪ {c};
13 return contValue;

14 else if k = n− 1 then /* the penultimate move */

15 avgValue ←getAvgVal(C − (CR));
16 if o ≥ δi·avgValue then /* Equation 1.15 */

17 return o;
18 else
19 CS ← CS ∪ {c};
20 return avgValue;

21 else /* Player P−i */

22 avgRecValue ← getAvgVal(CR) ;
23 if k ≤ n− 2 then /* the intermediate move */

24 // Equation 1.26

25 contValue ←
getOpContValue(estimateOffer(getAvgVal(C − (CS ∪
CR)),k + 1),δi);

26 // Equations 1.25 and 1.22

27 sentValue ←(avgRecValue +δ−i·contValue)/2;
28 CS ← CS + getAvgOffer(sentValue,C − CS);
29 return sentValue;

30 else if k = n− 1 then /* the penultimate move */

31 // Equation 1.16

32 avgValue ←avgRecValue +δ−imax(C − CR))/2 ;
33 CS ← CS ∪ {getAvgOffer(avgValue,C − CS)};
34 return avgValue;
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Algorithm 1.4: submitO�er(EAlg)

1 Data: set of all o�ers C, set of received o�ers CR, set of sent o�ers
CS, player's discount factor δ1, opponent's discount factor δ2,
received opponent's o�er o (if the procedure is called the �rst
time the value is empty), current move number k

2 Result: The chosen o�er c. If the opponent's o�er is accepted, the
incoming opponent's o�er is returned, otherwise the
counter-o�er is returned. If the process is prolonged, an
updated value of k is returned, too.

3 if o = null then
4 // if it is the initial move find the highest offer

5 c← max(C);
6 return c;

7 else
8 CN ← C − (CR ∪ CS);
9 c ← max(CN);

10 if c = o then
11 // accept the opponent's offer

12 return o;

13 else
14 // updating the content of the sets of offers

15 CN ← CN − {c, o};
16 CN ← CN − {o};
17 CR ← CR ∪ {o};
18 o ← max(CR);
19 Usum ← 0;
20 /* Function expressed by Equation 1.28.Its first

argument is number l appearing in Equation 1.30 */

21 λ← discount(|CN | − k − 1,δ1, δ2);
22 foreach ocurrent in CN do
23 Usum ← Usum + δ1·(λ · ocurrent+(1− λ)·o);
24 // if more than half offers is better than

opponent's offer

25 if (Usum/|CN |) > U(o) then
26 // Continue the game and present your offer

27 return c;

28 else
29 // Accept opponent's offer

30 return o;
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1.4 The economic model

To this point we have pursued �nding a solution to Equation 1.7 in a game
theoretic fashion, by modeling the negotiation process between the active
document and its execution device with a simple bargaining game. Because
of that our document-agents may be considered economic agents. Alterna-
tively they could be modeled as cognitive agents, which communicate prefer-
ences one to another until a solution satisfying both parties could be found
by the means of programming in logic. This approach, however, would re-
quire de�ning a complete logic system involving relations and inference rules
representing respectively agent intentions or goals and arguments exchanged
until an agreement can be reached. One example of such a practical system
is PERSUADER, capable of resolving con�icts by agents persuading each
other to change their intentions [39].

Building a system enabling interpretation of logical expressions is quite
demanding, and such a system may require relatively more computational
power than quite simple computation of the payo� function. This is an
important issue, since our document-agents and their execution devices (most
often personal mobile devices) have limited capabilities in terms of both, the
available RAM and CPU power.

Document agents considered in this Thesis can travel in a distributed
system and perform various activities with the help of their internal func-
tionality in the execution contexts provided by visited devices. It would be
highly desired to exploit that capability of proactive documents to augment
them not only with the negotiation capability, but also machine learning.

1.5 An intelligent negotiation algorithm

The best o�er negotiation Algorithms 1.3 and 1.4 have a certain limitation,
related to the fact that the player does not know its opponent's payo� func-
tion. Estimates based on the average payo� of the player have been used in
Formulas 1.14� 1.26, under the assumption that the opponent is su�ciently
rational not to choose any `worse o�er' strategy instead. The question arises,
whether it would be possible to �nd a better method for predicting the op-
ponent's o�ers than `throwing a dice' � given the fact that π−i is not known
to Pi. Later in the Thesis we will investigate the possibility of using machine
learning techniques for that.

Usually documents-agents can perform their activities many times. Re-
spective contexts con�gurations can thus repeat themselves as the total num-
ber of devices in a system is practically �nite. In consequence that various
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bargaining processes may be executed repeatedly arbitrary many times. We
consider such situations repeated encounters of negotiating agents. A ques-
tion arises whether an agent could learn from its previous encounters how
to negotiate in the current one � in particular, whether it can recognize the
current execution context based on the negotiation history. If so, a doc-
ument agent should reach agreements faster, without repeating the entire
negotiation process and consuming less resources of the execution device.

Earlier in the chapter we have introduced negotiation algorithms that
approximate equilibrium strategies based on the assumption of equal dis-
tribution of o�er choices by opponents. The repeated encounters give the
possibility of approximating them better, based on the recorded history of
negotiations concluded by them before.

Given the development of this Chapter the outline of the rest of the Thesis
is the following. In Chapter 2 we investigate several candidate AI approaches
which may provide a vehicle to improve the basic best o�er negotiation algo-
rithm developed in Subsection 1.3.4. Next in Chapter 3 coding of multi-issue
o�ers will be introduced to enable representation of the execution contexts
that may be handled by the negotiation algorithm. In Chapter 4 we will
present the intelligent negotiation algorithms that uses neural networks to
recognize devices and predict contracts. Finally in Chapter 5 results of the
experiments with negotiation algorithm developed in the Thesis will be eval-
uated, and in Chapter 6 the development of the Thesis will be compared
and contrasted to existing state of the art in the area of bilateral multi-issue
negotiation models and intelligent negotiation algorithms.
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Chapter 2

Machine learning and arti�cial

intelligence strategies

In the current chapter we will consider the concept of using arti�cial intelli-
gence techniques to answer two questions: how to classify groups of execution
devices and how to discover sorting of o�ers in the bargaining set re�ecting
preferences of the player's opponent.

Let us focus on the �rst problem. The task of dividing a set of objects
into smaller subsets in such a way that objects in each subset are similar one
to another with some respect is called clustering. The way how we de�ne
their similarity implies a speci�c method of clustering.

Recall from De�nition 1 that o�er o consisted ofm values, 〈v1, v2, . . . , vm〉,
each one selected from the respective attribute set, i.e. vk ∈ Ak, k = 1, . . . ,m.
Let us index each possible value that may occur in any o�er as follows:

v1 ∈ {a11, a12, . . . , a1|A1|}
v2 ∈ {a21, a22, . . . , a2|A2|}

...
vm ∈ {am1, am2, . . . , am|Am|}

(2.1)

Consider bit �elds ωi of length |Ai|, i = 1, . . . ,m, indicating which value
of the respective set Ai occurs in the o�er; if the j-th bit of ωi, j = 1, . . . , |Ai|,
is set to 1 it indicates that value aij occurs in the o�er, otherwise it is set to
0.

By concatenating all respective bit �elds, we get the bit word

β = ω1ω2 . . . ωm (2.2)

of length n = |A1|+ |A2|+ . . .+ |Am|, which we call the occurrence vector. By
B we denote a set of all possible words β for A. We will use occurrence vectors
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to measure how close o�ers are one to another in the space of o�ers. We use
the term `vector' because of the data type used in the implementation of
the algorithms proposed in this Thesis (in high-level programming languages
the type vector stands for a collection similar to the array but dynamically
allocated and resizable).

Any bit word ωi corresponds then to the vector, which elements indicate
which element aki of attribute set Ak occurs in the o�er. So, ωi would
canonically contain exactly one bit set to 1, with all other bits set to 0. To
subsume alternative values of one o�er we may relax that limitation and
allow more bits of ωi to be set to 1.

In Chapter 1 we have de�ned the structure of o�ers. We have described
the negotiation process and the role of the order of submitted o�ers. In the
current chapter we will explain speci�c methods of grouping o�ers by their
structure as well as the order of their appearance. We begin our investigations
from the methods of grouping o�ers according to how they are built.

2.1 The k-means algorithm

A popular algorithm for grouping elements in a set with regard to their
similarity, measured formally with some distance metric, is the k-means al-
gorithm [42]. The following de�nition of the Hamming distance [22] may be
used:

De�nition 7. Distance

d : B ×B → Z≥0

calculated for any pair of m-bit words β1, β2 ∈ B is a number of bit positions
in which the two words di�er.

It may be readily seen that in order to calculate a number of bits any
two words β1, β2 di�er, it su�ces to calculate the number of bits in β1 ⊕ β2

where operator ⊕ denotes bitwise XOR (exclusive or) of β1 and β2. We will
denote a distance between β1 and β2 by d(β1, β2)

We can eliminate parameter m (length of the bit word) from further

consideration by normalizing the distance metric. With ∆ = d(β1,β2)
m

we get
a range of distances [0, 1], where 0 is a distance between two identical words
and 1, respectively, between two words di�erent on all m positions.

We de�ne input data matrix R a matrix, which rows are built of occur-
rence vectors.
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2.1.1 An overview of the algorithm

Procedure kMeans() speci�ed by Algorithm 2.1 calculates the k-means algo-
rithm [58].

There are k target clusters and n = |A| of m-bit words that have to be
divided into k clusters. The algorithm relies on modifying contents of the
clusters according to k-bit vectors, called centroids, which provide axis of
each division. New centroids are updated until they reach the termination
condition.

We start by initializing the �rst k centroids, i.e., the �rst k vectors from
vector data. Then we have to create the �rst set of clusters according to the
new centroids. It is implemented by procedure updateClusters() calculated
by Algorithm 2.2 (the pseudo-code presented in the Chapter speci�es the
algorithms implemented by us for the experiments described in Chapter 5).
For each data vector its distance to each centroid is examined. Then, the
nearest centroid is chosen. Vectors, for which the same centroid has been
chosen, belong to the same cluster.

Next, the following operation is performed: in each cluster the new cen-
troids are determined by calculating the mean distance to each vector in the
cluster. It is implemented by procedure updateCentroids() calculated by
Algorithm 2.5.

After that procedure updateClusters() is called again. The clusters
are re-created according to the new created centroids. As long as centroids
change, procedures updateClusters() and updateCentroids() are called.

2.1.2 The algorithm at work

The main purpose of data clustering is the division of the examples into
categories in such a way that it assures their maximal similarity in each
category [7]. The pseudo-code shown in the current chapter refers to the real
code which was utilized to build the software (among others in procedure
kMeans()), in the CD Rom included in this Thesis.

Below we exercise the k-means algorithm applied to analyzing sets of
o�ers from the space of o�ers by negotiating parties. Table 2.1 shows twelve
bit words. They belong to one of three classes: 0, 1 or 2, what is indicated by
numbers in column class. The classes correspond to the device or document
classes which a given o�er belongs to. We would like to see if the k-means
algorithm can divide o�ers in a meaningful way. If it can, its result should
agree with the expected class membership presented in Table 2.1.
The division into the three classes is a consequence of the following facts
related to Table 2.1:
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Algorithm 2.1: kMeans()

1 Data: input data data,
2 vector of clusters clusters,
3 the number of clusters kcount
4 // The first k-points - centroids - are the first k points

from data vector.

5 initializeCentroids (centroids);
6 // The first clusters are appointed according to the first

centroids.

7 updateClusters (centroids, data, clusters);
8 repeat
9 // Copy the current centroids.

10 oldCentroids ← centroids;
11 // Create new centroids

12 updateCentroids (centroids,clusters);
13 // Update clusters according to the new centroids.

14 updateClusters (centroids,data, clusters);
15 // Until centroids stop changing.

16 until oldCentroids = centroids;

Algorithm 2.2: updateClusters()

1 Data: current centroids,
2 input data data,
3 vector of clusters clusters
4 foreach dataRow in data do
5 chooseCentroid (centroids, dataRow, clusters);
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Algorithm 2.3: chooseCentroid()

1 Data: current centroids,
2 input data dataRow,
3 vector of clusters clusters
4 distance ← 100000;
5 properIndex ← −1;
6 for i← 0 to centroids.size do
7 temp← getDistance (dataRow,centroids[i]);
8 if temp < distance then
9 distance← temp;
10 properIndex ← i;

11 i← i+ 1;

12 clusters[properIndex].insert(dataRow);

Algorithm 2.4: updateCentroids()

1 Data: current centroids,
2 vector of clusters clusters
3 foreach dataRow in data do
4 updateCentroid (centroids, clusters);

Algorithm 2.5: updateCentroid()

1 Data: current centroid,
2 cluster cluster
3 initializeCentroid (0);
4 foreach bits in cluster do
5 for i← 0 to bits.size do
6 if bits[i] > 0 then
7 centroids[i]← centroids[i] + 1;
8 else
9 centroids[i]← centroids[i]− 1;

10 foreach bit in centroid do
11 if bit > 0 then
12 bit← 1;
13 else
14 bit← 0;
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Table 2.1: Desired classi�cation of data
l b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 class

1 1 0 0 1 0 0 1 0 0 1

0
2 1 0 0 0 0 1 0 0 0 1
3 0 0 0 1 0 1 1 0 0 0
4 1 0 0 1 0 1 1 0 0 1

5 1 1 0 1 0 0 0 0 0 0

1
6 1 0 1 1 0 0 0 0 1 0
7 1 1 1 0 0 0 0 0 1 0
8 1 1 1 1 0 0 0 0 1 0
9 0 1 1 1 0 0 0 0 1 0

10 0 0 1 0 1 1 1 1 0 0
211 1 1 0 0 0 1 1 1 0 0

12 0 1 0 0 0 1 1 1 0 0

1. Each row in is occurrence vector β = ω1, ω1 = b1 . . . b10. Since each
occurrence vector is a bit word, we will use both terms interchangeably.

2. Each β is a logical sum (a bitwise OR) of occurrence vector of all o�ers
in the related bargaining set.

3. The rows which �elds b2 = b3 = b5 = b9 = 0 belong to class 0.

4. The rows which �elds b5 = b6 = b7 = b10 = 0 belong to class 1.

5. The rows which �elds b4 = b9 = b10 = 0 belong to class 2.

If we want to use the k-means algorithm, we have to choose the value of k,
which is the number of partitions we want to reach. Then the �rst step is
the choice of the �rst k centroids ; recall that a centroid is a bit word which is
the center of some group of bit words. The way of calculating the centroids
will be shown later, after introducing necessary de�nitions.

In our notation we adopt the following convention: given matrix A, its
i-th row i = 1, . . . , n, will be denoted as Ai•, while its j-th column, j =
1, . . . ,m, as A•j. Each row and column at matrix A are respectively m- and
an n-vectors.

De�nition 8. Mean φ is function

φ : B → {0, 1} (2.3)

which maps a bit vector β into {0, 1} and indicates whether bit 0 or 1 occurs
more often in β, where B is a set of bit words.
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Let us denote the number of bits equal to 1 in any bit word β as η(β),
and its length, respectively, by ι(β). Then function φ may be calculated as:

φ(β) =

{
1 if η(β)

ι(β)
> 1

2

0 otherwise
(2.4)

De�nition 9. Let L ⊂ R, L 6= ∅ be a matrix consisting of any subset of rows
in R. Centroid is the bit vector Φ built of the mean value of each column of
matrix L:

Φ = 〈φ(L•1), φ(L•2), . . . , φ(L•m)〉 (2.5)

where m ∈ N is the length of any row Li•

De�nition 10. Consider subset {Φ1,Φ2, . . . ,Φk} including any k > 1 rows
of R. For each Φi, i = 1, . . . , k, we select a subset of rows in R which are
the closest to Φi with regard to the distance metric d. We will call each Φi a
centroid and the related set of rows Ψi a cluster.

At the beginning of the process the centroids can be chosen randomly �
it can be any bit word from the group we want to partition. Let it be the
�rst three bit words from Table 2.2.

Table 2.2: Initial k centroids
βi b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

1 1 0 0 1 0 0 1 0 0 1

2 1 0 0 0 0 1 0 0 0 1

3 0 0 0 1 0 1 1 0 0 0

In order to assign β to the appropriate cluster Ψ, distances between β
and each respective centroid Φi, i = 1, . . . , k, should be compared and the
shortest one chosen, as shown by Formula 2.6:

β ∈ Ψi ⇔ ∀
j≤k,j 6=i

d(β,Φj) ≥ d(β,Φi). (2.6)

Next, new clusters are built on the basis of the created centroids. It
is done by Algorithm 2.1 in the following way: there are k initially empty
clusters, each of them associated with a relevant centroid. For each bit
word β distance d between β and each centroid Φi, i = 1, . . . , k in group
of k centroids, is calculated; β is assigned to the cluster to which centroid
distance d is the smallest.
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Table 2.3: Distances of bit words from clusters

Ψi
Bit words β

1 2 3 4 5 6 7 8 9 10 11 12

1 0 2 3 1 3 4 6 5 6 7 5 6

2 2 0 4 2 4 5 5 6 7 6 4 5

3 3 4 0 2 4 5 7 6 7 4 4 3

Distances between bit words listed in Table 2.1 and centroids listed in
Table 2.2 are listed in Table 2.3; it can be seen for example that d(Ψ1, β1) = 0,
while d(Ψ2, β3) = 4 and d(Ψ3, β9) = 7.

Based on the table of distances (like the example Table 2.3) Algorithm 2.1
can build clusters corresponding to centroids shown in Table 2.2; for example,
the cluster for centroid Ψ1 in Table 2.2 will contain bit words shown in
Table 2.4.

Table 2.4: Members of cluster Ψ1 (�rst round)

l b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

1 1 0 0 1 0 0 1 0 0 1

4 1 0 0 1 0 1 1 0 0 1

5 1 1 0 1 0 0 0 0 0 0

6 1 0 1 1 0 0 0 0 1 0

8 1 1 1 1 0 0 0 0 1 0

9 0 1 1 1 0 0 0 0 1 0

A new centroid is chosen in the next round based on the cluster created
in the previous one, using the mean function φ de�ned before: if the number
of 1-bits in a given column is greater than the half of the number of all its
bits function φ returns 1, otherwise 0.

Let us look at column b1 in Table 2.4. All columns consist of six elements.
In column b1 in Table 2.4 there are η(L•1) = 5 bits set to 1 and according
to Formula 2.4, φ(L•1) = 1. Next, for the next column b2, η(L•2) = 3
and φ(b2L•2) = 0. In that way we can create three new centroids shown in
Table 2.5.

In the second round, again the respective clusters for the new centroids in
Table 2.5 are found. Distances between the new centroids and all bit words
are presented in Table 2.6.

Now, when distances are calculated, the new clusters can be determined.
They are chosen according to the nearest centroid, as was shown earlier. The
new clusters are listed in Table 2.7.
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Table 2.5: Next k centroids (second round)

βi b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

1 1 0 0 1 0 0 1 0 0 0

2 1 1 0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 1 1 1 0

Table 2.6: Distances of bit words from Table 2.5

Ψi
Bit words β

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 3 3 1 2 4 3 4 7 5 6

2 5 2 4 4 2 5 3 4 5 6 2 3

3 5 4 2 5 6 6 7 8 7 2 2 1

Table 2.7: Clusters found in Table 2.1

Ψi βi
1 1, 4, 5, 6, 8, 9
2 2, 7, 11
3 3, 10, 12

Because clusters determined in this step do not di�er from the clusters
calculated in the earlier step, the algorithm terminates and returns them as
the result.

Unfortunately, the results listed in Table 2.1 do not match data presented
in Table 2.7; contents of clusters Ψ1, . . . ,Ψ3 do not correspond to device
classes presented originally in Table 2.1.

The unsatisfactory result of the above clustering exercise stems from the
problem of �nding a proper de�nition of the mean function φ given by For-
mula 2.4, which may require a speci�c a priori knowledge on the possible
structure of bit words coding attribute values in each respective o�er. Gain-
ing such a knowledge may require analyzing a su�ciently large set of previ-
ously agreed contracts or even a set of all possible contracts. Once de�ned,
it may be used for clustering as demonstrated in the example. For this
de�ciency, this approach would be impractical for solving the problem of
classifying categories of similar o�ers raised in the previous chapter; it is not
clear if it is possible in general to de�ne function φ in such a way that it
will suite all con�icting situations between active document agents and their
execution devices. Therefore we would like to investigate methods allowing
us to derive functions that can separate o�ers into categories.

41



2.2 Decision trees

Deriving of functions that can separate o�ers into categories is the matter of
supervised learning. It consist of two stages: training to derive classi�cation
rules based on prede�ned data and next applying these rules to other data. In
the �rst stage occurrence bit words β that code o�ers observed in the past will
be associated with prede�ned classes of o�ers based on our understanding of
execution contexts. In the second stage bit words coding o�ers not classi�ed
yet will be assigned to one of the prede�ned classes based on the classi�cation
rules developed in the �rst stage.

In Chapter 3 we will present a detailed structure of o�ers based on con-
crete options of services provided by real execution devices. At this point let
us just acknowledge the fact that in some cases two bit words shall be con-
sidered di�erent because of just one bit value, while in other cases only the
speci�c bit pattern would be required to di�erentiate them. Thus instead of
grouping data by measuring their average distance, it can make more sense
to teach agents successively which bits really matter.
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Figure 2.1: Decision tree built of the data from Table 2.1

Learning based on a decision tree relies on building a tree based on train-
ing data [23]. An example decision tree T has been built of the data from
Table 2.1 is presented in Figure 2.1. It contains elements of the following
kinds:
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• Leaf L, which is a terminal node of tree T. It has one �eld, class of
index i ∈ Z≥0.

• Edge E, which connects nodes with descendant nodes. Each edge is
labeled with an appropriate category F . Category F is the value of the
corresponding attribute value bit, so F ∈ {0, 1}.

• Node N , which has descendant nodes connected with edges. The name
of the node is an attribute name, held in the respective �elds:

Besides the elements listed above, some numerical values in braces that
label nodes of the tree, are shown in Figure 2.1. They are the numbers of
rows in Table 2.1, which are used by the process of building the tree, speci�ed
formally by Algorithm 2.6. Procedure addNode() works in the following way:

1. Gets the most important attribute a in the data table,

2. Creates new node N and assign it the name of attribute a,

3. If node N is not the root, adds N to the parent node, connects it using
edge E and assigns to E category F , which is the value of attribute a,

4. Divides the table into so many subtables as many values a given at-
tribute may have (in our case the number is always two),

5. Proceeds to call procedure addNode() on each subtable,

6. Otherwise creates a leaf and assigns it the name of the class.

Two points have to be made here. One is that the termination condition
is satis�ed when each row in the table belongs to the same class. Another
is that the most important attributes have been mentioned. In our case, the
criterion of the most importance is the information gain; we will measure it
with entropy.

2.2.1 Creation of the tree

Let us introduce the following notions (without losing generality we will
consider matrix R a set, since in the real implementation we have used
generic types, (a collection may be generalization of an array as well as a
set). Since matrix R is an array of arrays, it can be easily converted to a set:

• Rc is the subset of training set R, consisting of elements of a class of
index c. For example, R2 means subset of set R which elements belong
to class of index 2,
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Algorithm 2.6: addNode

1 Data: given matrix matrix,
2 given node node
3 terminal node terminalNode
4 newMatrices ← divideMatrix (matrix);
5 foreach newMatrix in newMatrices do
6 if hasMoreThanOneClasses (newMatrix) then
7 node ← newNode ();
8 setNodeName (node,getHighestEntropy (newMatrix));
9 addNode (newMatrix);

10 else
11 terminalNode ← newNode ();
12 setNodeClass (terminalNode,newMatrix);

• RbiF , i = 1, . . . ,M , M is the length of bit word β, F ∈ {0, 1}, is the
subset of the training set R, which contains only these rows, which
have the attribute value bit bi = F ; for example, Rb41 is the subset of
R where bit b4 has value 1.

• Rc
biF

is the subset of training set R, containing only the rows, which
belongs to class of index c that have attribute value bit bi = F .

Entropy I(bi) of attribute value bit bi is a sum of partial entropies EF (bi)
of subsequent categories F , calculated as:

I(bi) =
∑
F

E(bi) ·
|RbiF |
n

(2.7)

where n is a number of rows in matrix R.
Partial entropy EF (bi) is a sum of probabilities multiplied by the loga-

rithm of the probabilities of �nding data of a given class of index c among
subset of data of one of the categories RbiF , calculated as:

EF (bi) = −
∑
c

|Rc
biF
|

|RbiF |
log2

|Rc
biF
|

|RbiF |
(2.8)

For example, let us calculate the value of entropy for data from column b1

of Table 2.1 considered before. The number of training examples is n = 12.
The length of vector made of non-occurrence of attribute b1 (number of zeros
in the column) is |Rb10| = 4. The occurrence vector length is |Rb11| = 8.
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The lengths of non-occurrence vectors for respective classes 0, 1 and 2 are:
|R0

b10| = 1, |R1
b10| = 1 and |R2

b10| = 2. So, the value of entropy E0(b1) due to
non-occurrence of the attribute value bit b1 is:

E0(b1) =
|R0

b10|
|Rb10|

+
|R1

b10|
|Rb10|

+
|R2

b10|
|Rb10|

= −1

4
· log2

1

4
− 1

4
· log2

1

4
− 1

2
· log2

1

2
= 1.5

Further, the length of vector made of occurrence of attribute b1 (number of
ones in the column) is |Rb11| = 8. The lengths of occurrence vectors for
respective classes 0, 1 and 2 are: |R0

b11| = 3, |R1
b11| = 4 and |R2

b11| = 1. So,
the value of entropy E1(b1) due to the occurrence of attribute b1 is:

E1(b1) =
|R0

b11|
|Rb11|

+
|R1

b11|
|Rb11|

+
|R2

b11|
|Rb11|

= −3

8
· log2

3

8
− 4

8
· log2

4

8
− 1

8
· log2

1

8
= 1.4056

Finally, entropy is a weighted sum of entropies E0(b1) and E1(b1):

I(b1) = E0(b1) + E1(b1) =
4

12
· 1.5 +

8

12
· 1.4056 = 1.437067.

Consider the following exercise of building a tree of data from Table 2.1;
we will use for that Algorithm 2.6 calculated by procedure addNode():

1. The root is created; it is not a leaf, since there are more classes.

2. The attribute value bit with the highest entropy is chosen. It is b1, so
the root is assigned b1.

3. Because b1 can have two possible values, two subtables are created.
These are Table 2.8 for category (value of attribute) F = 0 and Ta-
ble 2.9 for F = 1.

Procedure addNode() is called for each of these subtables.
Table 2.8 is the subtable of Table 2.1 made of rows 3, 9, 10 and 12.

Table 2.8: Table for b1 = 0

l b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 class

3 0 0 0 1 0 1 1 0 0 0 0

9 0 1 1 1 0 0 0 0 1 0 1

10 0 0 1 0 1 1 1 1 0 0
2

12 0 1 0 0 0 1 1 1 0 0

Calling addNode() implies the following:
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1. The new node is created. It is not a leaf, since there are more classes.
The node is connected to its parent using edge, labeled with category
F = 0.

2. The attribute value bit with the highest entropy is b5 and it is the label
of the new node.

3. Two subtables are created, one for F = 0 for rows where b5 = 0, i.e.
rows 3, 9 and 12, and another for category F = 1, for rows where
b5 = 1, i.e. row 10. Procedure addNode() is called for each of these
subtables.

Table 2.9: Table for b1 = 1

l b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 class

1 1 0 0 1 0 0 1 0 0 1
02 1 0 0 0 0 1 0 0 0 1

4 1 0 0 1 0 1 1 0 0 1

5 1 1 0 1 0 0 0 0 0 0

1
6 1 0 1 1 0 0 0 0 1 0
7 1 1 1 0 0 0 0 0 1 0
8 1 1 1 1 0 0 0 0 1 0

11 1 1 0 0 0 1 1 1 0 0 2

When calling procedure addNode() for Table 2.9, which is the subtable of
Table 2.1 made of rows 1, 2, 4, 5, 6, 7, 8 and 11, we get:

1. The new node is created; it is not a leaf, since there are more classes.
The node is connected to its parent using edge, labeled with category
F = 1.

2. The attribute value bit with the highest entropy is b4 and it is the label
of the new node.

3. Two subtables are created, one for category F = 0, for rows where
b5 = 0, i.e. rows 2, 7 and 11, and another for category F = 1, for rows
where b5 = 1, i.e. rows 1, 4, 5, 6 and 8. Procedure addNode() is called
for each of these subtables.

Procedure addNode() is called until the table cannot be divided any more,
i.e. the attribute value bit with the highest entropy belongs to one category.

The tree shown in Figure 2.1 is the �nal result of the above exercise.
It should be able to classify occurrence vectors not belonging to Table 2.1.
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Consider then example β = 1111000110. According to our assumptions listed
on page 35 word β should be assigned to class 1; our procedure starts from
the root and checks the value of b1. It is 1, so the procedure goes to b4. It
checks the value of b4. The value is 1 and the procedure goes to b9, which
equals 1, so the given vector belongs to class of index 1. Let us compare
the result with our presumptions included in Section 2.1.2 on page 43. Our
example is compatible with step 4 of the procedure addNode() (see page 43),
because �elds b5, b6,b7 and b10 of β are equal to 0. It means that β belongs
to class 1. So, the example classi�cation result produced with the decision
tree is correct.

Let us consider another example with β′ = 0011000010. The value of
b1 is 0, so the procedure goes to b5. It checks the value of b5, which is 0.
Then the procedure goes to b2. The value of b2 is 0. Since edge 0 of node
b2 indicates class 0, it can be deduced that β′ belongs to class 0. There,
however, the classi�cation result, produced by the decision tree contradicts
our expectation expressed in Section 2.1.2, as according to p.4 on page 43,
word β′ should belong to class 1.

The reason of the above incompatibility underlies in the fact that the
decision tree classi�cation works well when di�erences between classes are
related to a single feature. However, the division included in Section 2.1.2 is
more complex, and involves multiple features. So we have to look for a yet
another classi�cation mechanism.

2.3 Arti�cial neural network

In this approach, supervised learning is used to train the network, instead of
to build a tree as in the previous section. Essentially, training the network
and building a tree represents deriving the classi�cation rules, when applying
these rules is classi�cation of input data � either as input to the network or
the tree. The approach based on neural networks may, however, provide a
more attractive alternative, because they take into account all elements of
the input during classi�cation, thus may be expected to handle o�ers with
interrelated attribute values better than decision trees.

2.3.1 Neural network architecture

A neural network consists of layers of neurons, where each neuron calculates
a function:

y : X → R (2.9)
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Its arguments are n-vectors 〈x1, x2 . . . xn〉 of real numbers called stimulations.
We will denote a single neuron by Li, where L indicates a particular layer

of the network, while i indexes the neuron within the layer. A structure of
Li is shown schematically in Figure 2.2.

x1

x2

· · ·

xn

Σ ϕi yi

wi1

wi2

win

ei

Figure 2.2: A single neuron

Block Σ calculates a weighted sum of stimulations; if we neglect for a
while the neuron's order number within the layer, its formula would be the
following:

e =
n∑
j=1

wjxj + w0, (2.10)

where weights wj, j = 1, .., n, and bias w0, are real numbers. Output y is
calculated as y = ϕ(e), where ϕ is called a transfer function. Function ϕ and
vector W = 〈w1, w2 . . . wn〉 of weights de�ne a neuron. Consequently, ϕi and
Wi = 〈wi1, wi2 . . . wni〉 de�ne neuron Li, as shown in Figure 2.2. Concrete
values of weights are set during a training phase. Inputs 〈x1, x2 . . . xn〉 are
connected to respective weights 〈w1, w2 . . . wn〉. Products of the respective
inputs and weights are summarized. An output of the operation is denoted
by symbol e. Next, function ϕi takes ei as an argument and returns output
yi.

The individual neuron can be trained to recognize single objects. How-
ever, neurons may be better trained if they are joined in a layer [64]. The
number of layers has an impact on the network capability to generalize [24].
When several layers are joined in the way that the output of the preceding
layer provides input to the next layer, amulti-layer neural network is created.
The last layer is the output layer. The other layers are hidden.

An example of a two layer network is shown in Figure 2.3, in which for
i = 1, ..., 10, xi are inputs and Hi neurons of the input (hidden) layer, and for
j = 1, ..., 3, Oj are neurons of the output layer. Each single neuron Hi has
its ϕi transfer function and a 10-element vector of weights Wi, which fully
specify the hidden layer.
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x1

x2
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x5

x6

x7

x8

x9
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H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

O1 y1

O2 y2

O3 y3

Input/hidden layer Output layer

Figure 2.3: An example neural network with one hidden layer

2.3.2 Training of the neural network

Users of any neural network software package do not need to know details
of the supported learning processes. They are also beyond the scope of this
work. Below we only outline a general principle of putting a neural network
to work for the learning task considered in this Thesis, which is setting its
weights to classify o�ers in the bargaining set.

Training of a neural network uses the backpropagation method [24] which
relies on the following:

• Output values are computed for the set of training data using initially
randomly generated values of weights. In the next iteration the weights
are modi�ed according to the values calculated in the next step of the
algorithm. This stage is called forward propagation.

• The error in the output layer is calculated by comparing output values
with expected targets. Next, the values of errors are used to calcu-
late gradients of transfer function of the output layer. Based on the
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Table 2.10: Training data for the example neural network
l b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 class
1 1 0 0 1 0 0 1 0 0 1

001
2 1 0 0 0 0 1 0 0 0 1
3 0 0 0 1 0 1 1 0 0 0
4 1 0 0 1 0 1 1 0 0 1
5 1 1 0 1 0 0 0 0 0 0

010
6 1 0 1 1 0 0 0 0 1 0
7 1 1 1 0 0 0 0 0 1 0
8 1 1 1 1 0 0 0 0 1 0
9 0 1 1 1 0 0 0 0 1 0
10 0 0 1 0 1 1 1 1 0 0

10011 1 1 0 0 0 1 1 1 0 0
12 0 1 0 0 0 1 1 1 0 0

gradients of the output layer, gradients in hidden layers are computed.
The goal of this stage is to �nd the values we will use to alter current
weights and biases. The values are called deltas. Next, the weights are
modi�ed due to the calculated gradients. This stage is called backward
propagation.

In order to demonstrate the training process we will perform the following
exercise by using the same data which have been used to build the decision
tree in the previous section � with the last column in Table 2.1 slightly mod-
i�ed, i.e. with class labels coded by binary numbers, as shown in Table 2.10.

We built neural network like the one shown in Figure 2.3 consisting of
10 inputs, the hidden layer consisting of 10 neurons and the output layer
consisting of three neurons. As a transfer function for both layers, a popular
sigmoid function ϕ(x) = 1

1+e−x was chosen [24].
The initial weights, biases, input and target data as well as neuron outputs

and gradients necessary to calculate deltas are presented in Table 2.11. The
hidden neurons are denoted by a symbol H with appropriate index. The
output neurons are denoted by O.

The �rst input 10-element vector in Table 2.10 is X. Vector X, as well as
3-element target vector T , are placed in the �rst column of Table 2.11. The
�rst weights and biases are chosen randomly. The weights of the �rst neuron
of the hidden layer and the associated bias are displayed in the �rst row of
Table 2.11.

Each input is associated with the respective weight. Outputs are created
by summing up the products of associated inputs and weights. The transfer
function of the �rst layer is ϕ1 and of the transfer function of the second one
is ϕ2. Thus, the value of function e1 from Equation 2.10 in L1 neuron is:

50



T
ab
le
2.
11
:
In
it
ia
l
w
ei
gh
ts

an
d
b
ia
se
s

W
ei
gh
ts

Neuron

Input

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
1
0

Bias

O
u
tp
u
t

G
ra
d
ie
n
t

H
1

1
0
.0
4

0
.0
3

0
.0
4

0
.0
1

0
.0
2

0
.0
4

0
.0
3

0
.0
1

0
.0
3

0
.0
1

3
0
.9
5
6
4
7

0
.0
0
0
8
7
5
2

H
2

0
0
.0
5

0
.0
4

0
.0
5

0
.0
1

0
.0
5

0
.0
4

0
.0
4

0
.0
2

0
.0
5

0
.0
3

2
0
.8
9
3
7
8

0
.0
0
2
1
2
5
0

H
3

0
0
.0
5

0
.0
2

0
.0
2

0
.0
1

0
.0
4

0
.0
4

0
.0
5

0
.0
5

0
.0
5

0
.0
1

1
0
.7
5
3
9
8

0
.0
0
3
2
8
9
2

H
4

1
0
.0
3

0
.0
1

0
.0
2

0
.0
2

0
.0
4

0
.0
4

0
.0
2

0
.0
1

0
.0
3

0
.0
5

0
0
.5
2
9
9
6

0
.0
0
0
9
2
4
4

H
5

0
0
.0
4

0
.0
3

0
.0
3

0
.0
2

0
.0
5

0
.0
2

0
.0
4

0
.0
3

0
.0
3

0
.0
3

-1
0
.2
9
5
2
5

0
.0
0
1
5
9
7
2

H
6

0
0
.0
5

0
.0
1

0
.0
2

0
.0
4

0
.0
2

0
.0
2

0
.0
2

0
.0
3

0
.0
3

0
.0
4

-2
0
.1
3
5
8
7

0
.0
0
0
4
3
9
0

H
7

1
0
.0
5

0
.0
3

0
.0
1

0
.0
3

0
.0
4

0
.0
4

0
.0
3

0
.0
4

0
.0
3

0
.0
1

-3
0
.0
5
3
1
5

0
.0
0
0
0
2
4
1

H
8

0
0
.0
2

0
.0
4

0
.0
5

0
.0
5

0
.0
5

0
.0
3

0
.0
5

0
.0
1

0
.0
2

0
.0
2

-4
0
.0
2
0
6
3

0
.0
0
0
0
1
1
4

H
9

0
0
.0
5

0
.0
2

0
.0
2

0
.0
2

0
.0
1

0
.0
2

0
.0
5

0
.0
4

0
.0
5

0
.0
2

-5
0
.0
0
7
6
9

0
.0
0
0
0
0
1
2

H
1
0

1
0
.0
3

0
.0
4

0
.0
3

0
.0
4

0
.0
1

0
.0
1

0
.0
2

0
.0
5

0
.0
4

0
.0
1

-6
0
.0
0
2
7
3

0
.0
0
0
0
0
0
1

Target

O
1

0
0
.0
3

0
.0
2

0
.0
2

0
.0
1

0
.0
4

0
.0
4

0
.0
1

0
.0
5

0
.0
2

0
.0
2

-2
0
.1
2
8
5
2

0
.2
4
8
9
7
0
3

O
2

0
0
.0
5

0
.0
4

0
.0
5

0
.0
1

0
.0
4

0
.0
3

0
.0
1

0
.0
2

0
.0
5

0
.0
4

-6
0
.0
0
2
8
5

0
.2
4
9
9
9
9
4

O
3

1
0
.0
1

0
.0
5

0
.0
3

0
.0
1

0
.0
3

0
.0
5

0
.0
2

0
.0
5

0
.0
2

0
.0
5

-3
0
.0
5
2
1
6

0
.2
0
1
3
0
0
4

51



e1 = 1 · 0.04 + 0 · 0.03 + 0 · 0.04 + 1 · 0.01 + 0 · 0.02 + 0 · 0.04 + 1 · 0.03+
0 · 0.01 + 0 · 0.03 + 1 · 0.01 + 3 = 3.09

The output of L1 is ϕ2(e1) = 0.9564. All respective outputs of the hidden
layer, calculated in that way may be found in Table 2.11. Let us denote the
output vector of the hidden layer by Y .

Outputs of Oj, j = 1, ..., 3 are created in a similar way � the input to it
is provided by vector Y .

Further, products of the elements of vector Y and weights of neurons
O1, O2 and O3, with the same indexes, are summarized and function ϕ is
called. In this way each one of the three outputs of the network is obtained,
the complete output vector is V = 〈0.12852, 0.00285, 0.05216〉, and forward
propagation (the �rst stage of the algorithm) is performed.

The second, back propagation stage, involves calculations in the output
layer and the results are propagated in the hidden layer. It starts from
calculating errors. The error vector is a di�erence between the target and
the output:

E = T − V = 〈−0.128528,−0.002854, 0.947836〉

Derivative of the sigmoid function is:

ϕ(x)′ = ϕ(x) · (1− ϕ(x)). (2.11)

Gradients of the output layer are calculated by applying Formula 2.11 to
elements of error vector E calculated above. The results are listed in the last
three cells of the last column of Table 2.11. The gradient of a hidden layer
neuron is equal to the calculus derivative of the activation function of the
hidden layer evaluated at the output of the neuron multiplied by the sum of
the product of the outputs and their associated weights of the hidden layer.
The result is shown in the �rst ten cells of the last column of Table 2.11.

The last step of the backpropagation algorithm is calculating values which
have to be added to the current weights in order to update them, i.e. deltas.
They are calculated by multiplying the coe�cient η by the gradient associated
with the weight and the input value associated with the weight.

The coe�cient η is responsible for the speed of learning. Its value is
set experimentally. The value of another coe�cient, called momentum, is
also set experimentally. The momentum is a parameter having an impact
on the stabilization of learning process. In our case both parameters have
respectively values 0.9 and 0.4.
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Table 2.12: Weights and biases of the trained network

N
eu
ro
n

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 Bias
H1 1.54 3.04 -3.95 -3.42 -3.82 0.92 0.18 0.02 0.03 0.01 1.52

H2 -1.44 -0.73 -1.22 -0.89 2.15 0.16 0.1 0.03 0.05 0.03 -0.59

H3 -0.31 -0.3 -3.32 -2.86 0.71 0.27 0.14 0.06 0.05 0.01 5.56

H4 0.42 -1.06 -2.49 -1.89 -0.69 1.09 0.13 0.02 0.03 0.05 3.94

H5 0.11 -0.66 -1.92 -1.72 0.56 0.14 0.09 0.04 0.03 0.03 -0.27

H6 -0.29 -2.62 -2.55 -1.76 0.72 1.21 0.14 0.04 0.03 0.04 -2.31

H7 -0.39 -2.19 0.13 0.25 0.67 0.71 0.11 0.05 0.03 0.01 -2.95

H8 -1.26 -1.9 -0.27 -0.23 2.96 -0.17 0.08 0.02 0.02 0.02 -4

H9 -0.38 0.39 -1.36 -1.11 0.17 0.14 0.09 0.05 0.05 0.02 -5

H10 0.29 -2.59 1.95 1.91 -0.91 -0.26 0.01 0.04 0.04 0.01 -6

O1 0.3 4.26 -0.84 -4.16 3.22 1.23 -4.34 -4.46 6.67 -3.89 -1.23

O2 -3.15 5.16 5.06 -3.78 0.68 -0.02 2.8 -1.02 0.19 0.33 -2.45

O3 -0.19 0.08 0.11 -0.03 0.04 0.08 0 0.05 0.03 0.04 -4.1

After modifying the values of weights and biases, new outputs are com-
puted. The iteration ends, when the error is below a minimum � in our case
set up on value 0.03. The value has been reached after about 300 iterations.
The target weights and biases are presented in Table 2.12.

Detailed explanation of how the neural network works and the related
numerical content of Table 2.11 may seen a little bit redundant and obvious
in the context of this Chapter, but we would like to refer to it later on, when
considering in Chapter 5 the minimum computational capability of document
agents they have to exhibit in order to interact with execution devices.

Recall that the MIND system outlined in Figure 1.1 is a loosely coupled
distributed system where agents in general have no any speci�c computa-
tional support except their own embedded functionality, to perform all the
required calculations described above. The same refers to their memory re-
sources, as they would have to carry all the numbers listed in Table 2.11
during migration.

2.3.3 Utilization of software packages

In the experiments we used Matlab 2012b, which facilitated the creation of
the neural network [8].

Now we may examine it by classifying the same occurrence vector
β = 1111000110 we have used to test the decision tree. We will use the
training data from Table 2.10.

The required response of the network should be a zero-one vector. Recall
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Formula 2.9, which de�nes an arti�cial neuron. Its output is a real number.
Since the output layer of our network consists of three neurons, we receive
three real numbers. So, a function is needed, to convert the vector of the real
numbers into the required bit vector.

That task is performed by function κ, which encodes the output (a vector
of real numbers) in such a way that it creates a bit word with all bits set to
0 except the bit of the position corresponding to the maximum number of
the input vector set to 1.

κ : D → B (2.12)

D is an array of real numbers and B is a bit word.
Let us go back to the example we have started considering in Section 2.3.2.

The response of the neural network that we have obtained in that exercise
is Y = 〈0.0235, 0.9971, 0.0065〉. After interpretation made by function κ we
get κ(Y ) = 〈0, 1, 0〉. So, the classi�ed object belongs to class c = 010.

The above example demonstrates that an arti�cial neural network may
potentially provide a useful mechanism for making MIND documents capable
of learning to classify o�ers in the bargaining set. In particular its ability to
handle the entire o�er during analysis gives us a reason to believe that they
might learn faster and classify more precisely than decision trees. Moreover,
knowledge `learned' by the agent may be represented with engaging realistic
volume of its memory resources.

2.3.4 Recognizing sequences

In Chapter 1 we have used the notion of sequences of o�ers in connection
to trees representing games in an extensive form. Below we will continue
on that in order to �nd out if it is possible to classify execution devices
based on sequences of o�ers they return during negotiations. As mentioned
in Section 1.5 we consider repeated encounters of document-agents and exe-
cution devices, therefore a su�cient training set of negotiation histories may
reasonably be expected.

Origin of the sequence

A game tree, like the one shown in Figure 1.3, speci�es all possible sequences
of o�ers that player Pi may ever respond to its opponent P−i. Let us as-
sume that P1 starting a game is an execution device and its opponent P2 is a
document-agent. Each sequence of device responses corresponds to a speci�c
game tree path, from the �rst response to the initial player's P1 o�er down
to the last one, ending at the tree leaf if it happened that one of players Pi
concluded the game by repeating one of the previous o�ers made by P−i, or
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repeating one of its own o�ers. Each recorded sequence of o�ers returned by
player Pi during its interaction with P−i will be called a negotiation history
h. Negotiation history h is a sequence of two interleaving sequences ςi and
ς−i belonging respectively to P1 and to P2. Our goal is to predict the future
opponent's moves basing on the negotiation history, so we are in fact inter-
ested only in the order of moves made by the opponent. Thus in our further
development we will be considering only sequences made by one player, the
execution device. Moreover, whenever it may cause no confusion we will con-
sider a negotiation history just as a sequence of o�ers by Pi, or responses by
P−i.

De�nition 11. Sequence ςki determines the order of o�ers, submitted by
player Pi, ended with an agreed contract o�er.

Sequence ςki belongs to negotiation history hk, where k ∈ Z>0 indicates the
history number, an upper index k associates it with the respective negotiation
history.

In Section 1.3.3 we have shown how to make use of the knowledge about
sequences obtained during the negotiation process to calculate a Nash equi-
librium. Now we show how to make use of knowledge about sequences in our
classi�cation problem.

In the previous section we have classi�ed o�ers based on attribute values
occurring in the o�er. It is important to distinguish classes of o�ers in the
bargaining set from classes of execution devices and document-agents, which
exchange these o�ers. It may happen that two o�ers consisting of the same
attribute values may be selected from the bargaining set by execution devices
belonging to di�erent classes. They can be distinguished, but it requires a
document-agent to analyze not only the structure of each o�er returned by
the execution device (its opponent), but also the order in which they are
submitted.

Example 3. Consider information about negotiation histories and associated
classes stored in Table 2.13. When the bargaining process starts, player P1

submits its o�ers and observes player's P2 countero�ers (player's P1 o�ers
are omitted). Player's P1 reasoning may be the following:

1. When P2 submits o3, P1 excludes class 0 from further considerations,
since there is o�er o4 on the beginning of sequence ς0.

2. Player P2 submits o5. Player P1 concludes that submitted o�ers belong
to class 1, since only in the case of sequence ς1 o�er o5 follows o�er
o3.
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Table 2.13: Sequences of player's P1 o�ers (device)

sequence name sequence device class
ς0 o4o1o2o3o6o5 0
ς1 o3o5o1o2o6o4 1
ς2 o3o1o2o4o5o6 2

Certainly one cannot expect that sequences will always be identical as in
the simplistic example above. More likely, it would be realistic to attempt
machine learning techniques to use negotiation histories as the training ma-
terial � to train documents to recognize classes of execution devices and
possible contracts associated with them.

The structure of the sequence

Let us denote the j-th o�er in sequence ς returned by P2 by oj. The order
of elements in a sequence depends on utilities of o�ers in the sequence. If ςk

is subsequence of hk and hk represents behavior of player P2, then Ui(o
j) >

Ui(o
j+1) for j = 1, ..., N , where N is the length of sequence ςk.

Sequence encoding

Given sequence ς = o1 . . . oN , we get for player Pi:

Ui(o
1) > Ui(o

2) > . . . > Ui(o
N) (2.13)

We have demonstrated in the previous section (see page 52) how to code o�ers
to put a neural network to work. Now we would like to do the same with se-
quences to classify them. Let us represent sequences by precedence relations.
Then, taking into consideration Equation 2.13, sequence ς = o1o2 . . . oN−1oN

would correspond to the following set of inequalities:

Ui(o
1) > Ui(o

2)

Ui(o
2) < Ui(o

1)
... (2.14)

Ui(o
N−1) > Ui(o

N)

Ui(o
N) < Ui(o

N−1).

With that we can convert each k-element sequence into k ·(k−1) relations
including '>' and '<' operators. Next, the relation operator '>' may be
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encoded as 1, and respectively '<' as 0. For example, sequence ς1 = o1o2o3o4

may be transformed into the following twelve relations:

o1o2 = 1
o1o3 = 1
o1o4 = 1
o2o1 = 0
o2o3 = 1
o2o4 = 1
o3o1 = 0
o3o2 = 0
o3o4 = 1
o4o1 = 0
o4o2 = 0
o4o3 = 0.

Sequence as a system of equations

Equation 2.14 may be expanded using Formula 1.5 to obtain the expression
describing the classi�cation task:

ui(v
1
1) + · · ·+ ui(v

1
m) > ui(v

2
1) + · · ·+ ui(v

2
m)

... (2.15)

ui(v
N−1
1 ) + · · ·+ ui(v

N−1
m ) > ui(v

N
1 ) + · · ·+ ui(v

N
m)

where m is the o�er length and ui is the utility of a given attribute value.
Now recall that each vm is a value chosen from Am = {aim|i = 1, . . . , |Am|}.
We denote value of attribute index by xi, i = 1, . . . ,m. It allows to transform
Equation 2.15 above into the following form:

ui(a
1
x11) + · · ·+ ui(a

1
xmm) > ui(a

2
x11) + · · ·+ ui(a

2
xmm)

... (2.16)

ui(a
N−1
x11 ) + · · ·+ ui(a

N−1
xmm) > ui(a

N
x11) + · · ·+ ui(a

N
xmm)

Since indexes x unambiguously represent attributes, the transformation
of Equation 2.16 into the form presented below is straightforward.

x1
1 + · · ·+ x1

m > x2
1 + · · ·+ x2

m

... (2.17)

xN−1
1 + · · ·+ xN−1

m > xN1 + · · ·+ xNm
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Formula 2.17 provides a desired representation of our problem, with ne-
gotiation histories (training data) represented by a set of inequalities, where
operators '<' and '>' have been encoded respectively by 0 and 1.

Network training

Table 2.14 provides an example history including four sequences consisting
of four o�ers with �ve elements each.

Table 2.14: Coding of sequences of player's P1 (device) o�ers

sequences of o�ers
ς0 = o5o2o6o7 〈7, 2, 7, 15, 13〉 〈6, 2, 6, 0, 15〉 〈4, 2, 7, 15, 12〉 〈3, 9, 6, 1, 12〉
ς1 = o1o2o3o4 〈1, 2, 6, 3, 14〉 〈6, 2, 6, 2, 15〉 〈8, 2, 6, 3, 12〉 〈2, 9, 6, 1, 13〉
ς2 = o8o6o9o10 〈0, 2, 5, 10, 14〉 〈4, 2, 5, 10, 15〉 〈8, 9, 5, 9, 13〉 〈5, 9, 5, 8, 15〉
ς3 = o5o11o12o4 〈7, 2, 5, 11, 13〉 〈2, 2, 4, 5, 13〉 〈6, 9, 5, 4, 14〉 〈3, 9, 4, 4, 12〉

The o�ers have been coded as described in the previous paragraph in a
form suitable for neural networks. Originally, the o�ers are stored in the
symbolic form. However, neural networks require the numeric inputs. So,
the symbols have to be encoded into numbers. We will explain in detail how
to code the symbols in Chapter 3.

The leftmost column indicates the o�ers from which the sequences consist
of. Consider for example sequence ς1 = o1o2o3o4 and o�er o2.

After encoding, we obtain o�ers and their sequences in the numeric form,
what can be seen in Table 2.14, which is encoded as 〈6, 2, 6, 2, 15〉.

If the sequences of o�ers are to be trained, they have to be converted
into pairs of o�ers and the relations between them, what has been shown
in Section 2.3.4 (Algorithm 4.2 is presented in Chapter 4). It has been
shown there that a sequence consisting of four o�ers can be converted into
12 relations.

Table 2.14 contains four sequences, each of them consisting of four o�ers.
So the sequences can be converted into 48 pairs which are shown in Table 2.15.
One half of these relations are ‘ >′ relation (encoded as 1), while the second
one � ‘ <′ (encoded as 0).

Look at the �rst leftmost cell in Table 2.15. It includes the pair of two
o�ers, o2 = 〈3, 9, 4, 4, 12〉 and o1 = 〈2, 2, 4, 5, 13〉. Since the relation has been
coded as 0 then o2 < o1. The pairs of o�ers and associated with them
relations, as we can see in Table 2.15 are called the relation vectors.

The training of relations relies on introducing to the network an encoded
pair of o�ers, such as a row in Table 2.15 and the corresponding target class,
such as the relation in the table.
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Table 2.15: Sequences converted to pairs and relations (relation vectors)

sequences converted to pairs
pairs in relation 0 pairs in relation 1

3, 9, 4, 4, 12 2, 2, 4, 5, 13 2, 2, 4, 5, 13 3, 9, 4, 4, 12
6, 9, 5, 4, 14 2, 2, 4, 5, 13 2, 2, 4, 5, 13 6, 9, 5, 4, 14
3, 9, 4, 4, 12 6, 9, 5, 4, 14 6, 9, 5, 4, 14 3, 9, 4, 4, 12
2, 2, 4, 5, 13 7, 2, 5, 11, 13 7, 2, 5, 11, 13 2, 2, 4, 5, 13
3, 9, 4, 4, 12 7, 2, 5, 11, 13 7, 2, 5, 11, 13 3, 9, 4, 4, 12
6, 9, 5, 4, 14 7, 2, 5, 11, 13 7, 2, 5, 11, 13 6, 9, 5, 4, 14
8, 9, 5, 9, 13 4, 2, 5, 10, 15 4, 2, 5, 10, 15 8, 9, 5, 9, 13
5, 9, 5, 8, 15 4, 2, 5, 10, 15 4, 2, 5, 10, 15 5, 9, 5, 8, 15
4, 2, 5, 10, 15 0, 2, 5, 10, 14 0, 2, 5, 10, 14 4, 2, 5, 10, 15
8, 9, 5, 9, 13 0, 2, 5, 10, 14 0, 2, 5, 10, 14 8, 9, 5, 9, 13
5, 9, 5, 8, 15 0, 2, 5, 10, 14 0, 2, 5, 10, 14 5, 9, 5, 8, 15
5, 9, 5, 8, 15 8, 9, 5, 9, 13 8, 9, 5, 9, 13 5, 9, 5, 8, 15
8, 2, 6, 3, 12 1, 2, 6, 3, 14 1, 2, 6, 3, 14 8, 2, 6, 3, 12
6, 2, 6, 2, 15 1, 2, 6, 3, 14 1, 2, 6, 3, 14 6, 2, 6, 2, 15
2, 9, 6, 1, 13 1, 2, 6, 3, 14 1, 2, 6, 3, 14 2, 9, 6, 1, 13
2, 9, 6, 1, 13 8, 2, 6, 3, 12 8, 2, 6, 3, 12 2, 9, 6, 1, 13
8, 2, 6, 3, 12 6, 2, 6, 2, 15 6, 2, 6, 2, 15 8, 2, 6, 3, 12
2, 9, 6, 1, 13 6, 2, 6, 2, 15 6, 2, 6, 2, 15 2, 9, 6, 1, 13
3, 9, 6, 1, 12 6, 2, 6, 0, 15 6, 2, 6, 0, 15 3, 9, 6, 1, 12
4, 2, 7, 15, 12 6, 2, 6, 0, 15 6, 2, 6, 0, 15 4, 2, 7, 15, 12
3, 9, 6, 1, 12 7, 2, 7, 15, 13 7, 2, 7, 15, 13 3, 9, 6, 1, 12
6, 2, 6, 0, 15 7, 2, 7, 15, 13 7, 2, 7, 15, 13 6, 2, 6, 0, 15
4, 2, 7, 15, 12 7, 2, 7, 15, 13 7, 2, 7, 15, 13 4, 2, 7, 15, 12
3, 9, 6, 1, 12 4, 2, 7, 15, 12 4, 2, 7, 15, 12 3, 9, 6, 1, 12

2.3.5 Utilization of the learned knowledge

Utilization of the acquired knowledge for classifying sequences is a little bit
more complicated than in the case of classifying o�ers demonstrated before.
We need an algorithm that can transform relations recognized by the neural
network back to sequences. It consists mostly of conditional expressions.
For brevity we illustrate its basic idea with a graph shown in Figure 2.4.
Complete version of the algorithm is presented in Chapter 4 (Algorithm 4.3).

There is a list of relations on the right-most side of the �gure, which is
the source of data. The target data are the sequences on the left side of the
�gure:

1. The �rst relation in the queue is o1 > o3. Because the target sequence
is empty, we have to initialize it. Since elements with the higher utility
should be at the beginning of the sequence, we put o�er o1 at the
beginning of the new sequence and o�er o3 at the end.
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Figure 2.4: Inserting data stored in relations into a sequence

2. The second relation is o2 > o4. Because neither o2 nor o4 exist in the
recovered sequence, we cannot use it yet so we put the relation back to
the end of the queue � to use it later.

3. The next relation is o3 > o4. Because o3 is the last element in the
sequence, it means that it has the lowest utility. Relation o3 > o4

means, that element o4 is of even the lesser utility than element o3, so
we put it in the sequence as the last element.

4. Relation o2 > o3, unfortunately, does not provide enough information
to put it into the output sequence. We know that o2 should precede
o3 in the sequence, but we do not know, if on the �st or the second
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position. So, we put it in the bu�er waiting for more information from
other relations.

5. Relation o1 > o2 is not useful unless it is combined with the relation
stored in the bu�er. In the previous step it was not known if o2 should
be on the �rst or the second position. Now there is information that
o1 > o2, so we put o2 on the second position.

6. The last relation is o2 > o4. In step 2 above we were not able to
make use of this relation because o�ers o2 and o4 were not present in
the output sequence. Now both of them are in the sequence, o2 on
the second, and respectively, o4 on the last position � as it has been
inferred from other relations earlier.

The example in Figure 2.4 does not involve situations when analyzed
input relations are contradictory. Chances for that increase when the network
is insu�ciently trained � for example, instead of o1 > o2 it would return
o1 < o2. We counteract that by not taking contradictory (non-conclusive)
relations into account.

To this point we have presented a method of grouping o�ers and their
sequences using arti�cial intelligence approaches. We have investigated three
common techniques, unsupervised learning based on clustering with a plain
k-means algorithm, and two supervised learning techniques � decision trees
and arti�cial neural networks. These techniques have been illustrated with
practical examples, demonstrating how to utilize them in classifying o�ers
and sequences of o�ers. Neural networks have been indicated as the candi-
date for further development in this Thesis. Before utilizing them, however,
we have to analyze in full detail the structure of o�ers exchanged between
document-agents and execution devices.

61



Chapter 3

Bargaining Set

In Chapter 1 we have de�ned the problem of resolving a con�ict between
two parties that search in a certain set of elements the element that can best
satisfy each party with respect to some utility. We have assumed that either
party provides its own valuation of the utility of any element of that set, and
that no public information on the preferred elements is available a priori.
In consequence, narrowing the searched set of elements to some non-empty
intersection of subsets of the elements preferred most by both parties is not
possible.

We have proposed a method for �nding a solution to this problem with a
simple bargaining game that uses the notions of utility functions and discount
factors. Elements of the set in which the solution is searched are modeled as
tuples of items, where each single item is a value of a single attribute of the
solution being sought. Since a mobile interactive (MIND) document arrives
to its execution device (as shown in Figure 1.1) with the intention to complete
a relevant activity speci�ed in its work�ow and using whatever resources
of the device are available, the negotiated contract speci�es what device
resources will really be engaged and how the current document activity will
be performed. In other words, each tuple describes a speci�c set of options
available in the execution context provided by the device when performing
the activity.

Throughout the rest of this chapter we develop the concept of option
trees to handle hierarchical dependencies between attributes of negotiated
contracts. We start by distinguishing �ve attributes, which values indicate
all possible execution contexts:

1. Who shall be the performer of the activity?

2. What is the required availability of various resources to complete the
activity?
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3. What shall be the performance of the execution device hardware?

4. What security mechanisms will have to be involved when performing
the activity?

5. What functionality may contribute to interaction reliability when per-
forming the activity?

3.1 Option trees

The order of attributes listed before indicates how they should be taken into
account by parties when negotiating the contract. A question that may be
asked here is how to represent the hierarchy of attributes directly in the bar-
gaining set? In order to provide such a representation we have developed the
model inspired by the Collaboration Protocol Pro�le and Agreement (CPPA)
speci�cations used by the Electronic Business using eXtensible Markup Lan-
guage, commonly known as ebXML � an XML based standard sponsored by
OASIS and UN/CEFACT [47]. CPPA specify respective XML Schemas of
Collaboration Protocol Pro�le (CPP), and Collaboration Protocol Agreement
(CPA) documents. CPP is an XML tree with elements describing options
of a single party willing to be a side of a business transaction, while CPA
is an XML tree containing CPP elements agreed (or negotiated) by parties
participating in the transaction. CPPs of two collaborating parties are in
con�ict if the corresponding nodes of their XML trees di�er in content. A
simplistic solution (used for a long time by the ebXML community) has been
creating by one party a complete CPA document with empty places for an-
other party to �ll them out with missing data. Extension of the standard
proposed by OASIS to introduce negotiations as the means for reaching a
more precise agreement on elements of CPPs that should be incorporated
in CPA [16], called Automated Negotiation of Collaboration Protocol Agree-
ments, has never been published [44]. The model of option trees presented
in this chapter and the SBG scheme de�ned in Chapter 1 provides such an
extension [35].

Recall from Chapter 1 that bargaining set C consists of all o�ers that
parties may select during negotiations. Each party distinguishes o�ers in C
independently, with regard to the utility of each single o�er to the party.
Based on that, the party sorts all o�ers in C from the most to the least pre-
ferred ones. By denoting a single o�er of value options for the �ve attributes
de�ned before as a 5 × 1 column vector, the ordering of o�ers preferred in
C by the party may be represented as a 5× |C| matrix of attribute options.
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In Figure 3.1 �ve o�ers C = {oi|i = 1, .., 5} have been sorted in the order
{o3, o2, o1, o5, o4}.

o3 o2 o1 o5 o4

v1
5A5 : v2

5 v3
5 v4

5 v5
5

v1
4A4 : v2

4 v3
4 v4

4 v5
4

v1
3A3 : v2

3 v3
3 v4

3 v5
3

v1
2A2 : v2

2 v3
2 v4

2 v5
2

v1
1A1 : v2

1 v3
1 v4

1 v5
1

root

Figure 3.1: Building the option tree

Each row of the 5×|C| matrix speci�es the related attribute value options
considered by the party when determining its preference of o�ers. If for some
adjacent columns in the matrix it happens that values in a given section of
some row intersecting with these columns are equal, it will mean that when
evaluating utility of the o�ers represented by these columns this particular
attribute value dominates values of the next attribute of these o�ers, located
in the respective section of the row immediately below. This hierarchical
dependency may be represented by a tree, built of the matrix elements, where
each group of adjacent elements in a given row that are equal, represent a
single tree node, and each node which value dominates a value in the row
below is connected with the node of the latter value. For example, the
tree shown in Figure 3.1 has been built under the following assumptions:
v1

1 = v2
1 = v3

1 = v4
1 = v5

1, v
1
2 = v2

2, v
3
2 = v4

2 = v5
2, v

2
3 = v3

3, v
4
3 = v5

3. A tree built
of the matrix specifying argument value options of all o�ers in the bargaining
set, as shown above, will be called the option tree.

Before analyzing how the option trees may be sorted in a system of MIND
documents let us �rst consider what attribute value options they may consist
of. This idea has been published by the Author before in [32].
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3.1.1 Performer options

Depending on the document capability to perform certain actions on its own,
actual performers of a given activity may vary. Recall that MIND docu-
ments [18] are capable of performing services embedded in their code. With
that mechanism in place MIND documents can call external services, if only
the execution device can provide access to some network, as well as local
services, if only any are available on the execution device. If for some rea-
son embedded services are missing or inactive (e.g. switched o� by a local
antivirus system), a knowledge worker of the organization must take care of
completing the activity and work with a document content using tools avail-
able locally on the device. When doing that, he/she may still use whatever
local and external services are available. It may also happen that a document
with embedded services � in place and active � may still require a knowledge
worker to perform certain actions, beyond its standard capacity, in order to
properly complete the activity.

Table 3.1: Values of the attribute 'performer'
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Execution context
0 1 ∗ 0 ∗

Document (D)
0 1 0 0 0 D1

0 1 0 0 1 D2

0 1 1 0 ∗ D3

1 0 ∗ 1 ∗
Worker (W)1 0 0 1 ∗ W1

1 0 1 1 ∗ W2

1 1 ∗ ∗ ∗

Document and worker (J)
1 1 0 0 0 J1

1 1 0 0 1 J2

1 1 0 1 ∗ J3

1 1 1 ∗ ∗ J4

Based on the above, three execution contexts are possible with respect to
the performer attribute, as shown in Table 3.1: D, without any involvement
of the knowledge worker, W , without any involvement of the document em-
bedded services, and J , when the document and worker jointly perform the
activity. Its values are marked with labels in boldface at the right side of
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the table, while binary �ags at the left side represent availability of the re-
spective options used to calculate these values: knowledge worker, embedded
service, external service, local tool and local service. By '∗' we denote �ag
values which are irrelevant to the particular context, that may be either set
to 0 or 1.

3.1.2 Availability options

A detailed list of optional resources, required to complete a given activity
by a MIND document, strongly depends on document semantics and may
be di�cult to encode as set of values of a manageable size. Nevertheless,
a realistically small set of options may be speci�ed given the provenance
of MIND documents, which are in fact autonomous software agents with a
signi�cant degree of independence of their local execution environments. As
such, MIND documents may expect just a few key options available at the
execution device that may a�ect their mission. One is whether a network
connection is currently available at the execution device (or allowed by its
owner), and if so, whether the device's IP is currently local or external to
the organization of the knowledge worker who uses the device. Most likely,
if a network connection is needed by the document it may need access to a
locally available browser; it may be relevant whether a speci�c browser, with
some unique functionality, or just any browser, with a generic functionality, is
available. A similar type of option has to be considered if the document may
request yet another speci�c tool or accept an optional substitute tool. Finally
completion of the activity may require the execution device to provide the
full keyboard, or just selection buttons, either physical or emulated.

By combining these options we get three execution contexts with respect
to the availability attribute, as shown in Table 3.2: S, when the actual exe-
cution device is separated from the worker's organization (either physically
or on purpose by the worker), E, when the execution device is connected
from outside, and I, when connected from inside of the worker's organiza-
tion. Note that we do not distinguish options related to the availability of
browsers when the device is not separated from the organization; the reason
has been limiting the number of di�erent attribute values used to compose
o�ers and consequently to limit the size of the bargaining set when imple-
menting negotiation exercises further in the thesis. With that, however, we
are not loosing generality of the methodology for determining attribute values
presented in this chapter.
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Table 3.2: Values of the attribute 'availability'
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Execution context
0 0 0 0 ∗ ∗ ∗ ∗

Device separated from the
organization (S)

0 0 0 0 0 0 0 0 S1

0 0 0 0 0 0 0 1 S2

0 0 0 0 0 0 1 ∗ S3

0 0 0 0 0 1 0 0 S4

0 0 0 0 0 1 0 1 S5

0 0 0 0 0 1 1 ∗ S6

0 0 0 0 1 0 ∗ ∗ S7

0 0 0 0 1 1 ∗ ∗ S8

0 1 ∗ ∗ ∗ ∗ ∗ ∗

Device connected from outside of
the organization (E)

0 1 ∗ ∗ 0 0 0 0 E1

0 1 ∗ ∗ 0 0 0 1 E2

0 1 ∗ ∗ 0 0 1 ∗ E3

0 1 ∗ ∗ 0 1 0 0 E4

0 1 ∗ ∗ 0 1 0 1 E5

0 1 ∗ ∗ 0 1 1 ∗ E6

0 1 ∗ ∗ 1 ∗ ∗ ∗ E7

1 0 ∗ ∗ ∗ ∗ ∗ ∗

Device connected from inside of the
organization (I)

1 0 ∗ ∗ 0 0 0 0 I1

1 0 ∗ ∗ 0 0 0 1 I2

1 0 ∗ ∗ 0 0 1 ∗ I3

1 0 ∗ ∗ 0 1 0 0 I4

1 0 ∗ ∗ 0 1 0 1 I5

1 0 ∗ ∗ 0 1 1 ∗ I6

1 0 ∗ ∗ 1 ∗ 0 ∗ I7

3.1.3 Performance options

Hardware of the execution device may a�ect the current activity in several
ways. First of all, performance characteristics of the underlying network
would determine document capability in e�ective exploitation of external
services, if only allowed by the worker operating the execution device. In
order to capture the widest possible range of networking hardware types,
used by execution devices today, we distinguish several options. If the device
remains stationary during the activity it may be connected physically to the
network with a copper or �ber wire, as well as with a TV cable or telephone
line. These connections may be diversi�ed further with regard to speci�c
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technologies they use and throughput they provide; without loosing gener-
ality and for the sake of limiting the volume of this attribute values in the
experiments described further in the thesis we just assume the former to be
of better performance than the latter. On the other hand wire and cable/line
options do not di�er much in terms of data transfer fees to be paid by the
device user � the former usually is free of charge if used inside of the worker's
company, while the latter is charged monthly if used at home. The telephone
modem option o�ers typically a lower throughput and involves charging users
for the transferred data or for making a connection. Certainly, workers own-
ing execution devices may be less willing to allow arriving documents to make
such connections at their cost. On the other hand a cellular network (if a
mobile phone is used) o�ers a signi�cant range of mobility. Another option
to be considered is a wireless connection; it may be paid (e.g. in a hotel) or
free of charge (e.g. at the airport or inside the organization), and o�ers a
reasonable level of mobility to the worker.

Besides networking, other hardware options of the execution device that
have to be involved in composing o�ers shall refer to the processor speed
and the volume of available RAM. Again, for the sake of brevity we consider
just two cases for each such option: whether the document can get more
memory and processor power than it may initially expect. Such options
are not negligible in the case of battery operated devices, as using more
processing power may consume more energy.

By combining the options discussed above we get �ve execution contexts
with respect to the performance attribute, as shown in Table 3.3: U , when the
underlying network is unknown (i.e. not available or not recommended), and
R, M , A and N , when respectively some WiFi network, a device's telephone
or ADSL modem, and classic (say twisted pair) Erhernet connection, can be
used.

3.1.4 Security options

Performing of any activity speci�ed in the document's work�ow must pro-
vide a minimum security to both, the execution device and the document.
Security options of the underlying network shall concern encryption mech-
anisms that may be used to protect against various types of attacks on the
execution device � either when the document is about to be transferred to
it, or when already activated and attempting connections to some external
services. With regard to that we consider two available options: using a
protocol that enables secure communication of the execution device over a
computer network, like HTTPS, and if a wireless connection is considered,
a protocol enabling veri�cation who should be allowed to access to the net-
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Table 3.3: Values of the attribute 'performance'
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Execution context
0 0 0 0 ∗ ∗

Network unknown (U)
0 0 0 0 0 0 U1

0 0 0 0 0 1 U2

0 0 0 0 1 0 U3

0 0 0 0 1 1 U4

0 0 0 1 ∗ ∗

WiFi (R)
0 0 0 1 0 0 R1

0 0 0 1 0 1 R2

0 0 0 1 1 0 R3

0 0 0 1 1 1 R4

0 0 1 0 ∗ ∗

Telephone modem (M)
0 0 1 0 0 0 M1

0 0 1 0 0 1 M2

0 0 1 0 1 0 M3

0 0 1 0 1 1 M4

0 1 0 0 ∗ ∗

ADSL modem (A)
0 1 0 0 0 0 A1

0 1 0 0 0 1 A2

0 1 0 0 1 0 A3

0 1 0 0 1 1 A4

1 0 0 0 ∗ ∗

Twisted pair (N)
1 0 0 0 0 0 N1

1 0 0 0 0 1 N2

1 0 0 0 1 0 N3

1 0 0 0 1 1 N4

work, like WPA2-PSK. Besides these speci�c network security options more
of them may be included to re�ect how well the execution device and its sys-
tem are protected against the document itself, which may be forged by some
impostor or infected by a computer virus. Let the former option indicate
whether the document content has a digital signature, and the latter one,
whether the execution device has some antivirus system installed.

By combining the options discussed above we get four execution contexts
with respect to the security attribute, as shown in Table 3.4: P , when the
connection is insecure, K, when the wireless network is protected by the
access key, S, when the secure transfer protocol is used, and C, when both
the access key and secure transfer protocols are used.
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Table 3.4: Values of the attribute 'security'
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Execution context
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Insecure connection
(P)

0 0 0 0 P1

0 0 0 1 P2

0 0 1 0 P3

0 0 1 1 P4

0 1 ∗ ∗

Access key (K)
0 1 0 0 K1

0 1 0 1 K2

0 1 1 0 K3

0 1 1 1 K4

1 0 ∗ ∗

Secure transfer
protocol (T)

1 0 0 0 T1

1 0 0 1 T2

1 0 1 0 T3

1 0 1 1 T4

1 1 ∗ ∗

Secure connection (C)
1 1 0 0 C1

1 1 0 1 C2

1 1 1 0 C3

1 1 1 1 C4

3.1.5 Interaction reliability options

Reliable interaction of a document with its knowledge worker during the
activity requires some elementary support by the execution device system to
control reliability of interaction with the document content. It may include
enabling a speci�c widgets on the device screen that the document would like
to control with its embedded services, as well as providing by the execution
device some tools or services capable of doing that. We distinguish a minimal
set of four options related to reliable interaction between the worker and
document content: an acceptance button, which may help the user to control
termination of the activity, the autosave feature protecting the new document
content from being lost during edition, automatic check to prevent incorrect
input from the user, and the undo button facility allowing users to withdraw
their most recent input.

By combining these options we get four execution contexts with respect
to the interaction reliability, as shown in Table 3.5: L, when the execution
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Table 3.5: Values of the attribute 'reliability'
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Execution context
0 0 ∗ ∗

Low reliability (L)
0 0 0 0 L1

0 0 0 1 L2

0 0 1 0 L3

0 0 1 1 L4

0 1 ∗ ∗

Back-up content (B)
0 1 0 0 B1

0 1 0 1 B2

0 1 1 0 B3

0 1 1 1 B4

1 0 ∗ ∗

Failsafe (F)
1 0 0 0 F1

1 0 0 1 F2

1 0 1 0 F3

1 0 1 1 F4

1 1 ∗ ∗

High reliability (H)
1 1 0 0 H1

1 1 0 1 H2

1 1 1 0 H3

1 1 1 1 H4

context does not provide any support to protect the document content from
being lost by the user mistake, B, when some elementary back-up mecha-
nisms for the document content are in place, F , when the document content
is fail-safe, and H, when the execution device provides a su�cient level of
document content reliability.

3.2 Policies

To this end we have presented attribute options used to build option trees. It
may be readily seen in Tables 3.1-3.5 that due to the speci�city of execution
contexts implied by combinations of various options there may be many types
of devices and documents � their respective option trees will include values
from di�erent subsets of attribute value sets, and in consequence bargaining
sets for each speci�c pair of player types (devices and documents) may consist
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of di�erent o�ers.
Another issue is representing individual preferences of each party of each

speci�c type, which we model in the option tree by sorting its paths in a
certain order. Since each path in such a tree represents a single element of
the bargaining set, the `ordered' option tree represents preferences by the
player of each possible o�er it can respond to and re�ects in a complete way
utility of each attribute value in each o�er. Rules providing ordering of the
option tree constitute a party's policy.

De�nition 12. Policy is a set of rules of the form:

QAk
→ QAk+1

,

where QAk
, QAk+1

denote ordered sets of attribute Ak and Ak+1 value labels,
k denotes an option tree level and '→' denotes a parent-child relation between
any element of QAk

and QAk+1
.

With a set of rules of the form speci�ed by De�nition 12 we can build
option trees for each speci�c device and document type. When doing that
we will use the following notation. With X denoting any execution context
speci�ed in Tables 3.1-3.5, Xi will denote a single attribute value label,
X∗ = {X1, X2, ..., Xn} a set of all labels within that context, and Xi..j their
respective subset from Xi to Xj. We will assume ordering of labels within a
given context X as Xn,Xn−1, ..., X1 (lexically descending). An ordered set
of labels from several execution contexts of the same attribute Ak, e.g. X,
Y , Z, will be denoted using content inside curly braces, e.g. {X∗, Y i..j, Z∗}.
We will consider the content within curly braces to be partially ordered from
left to right, and the content within each context in the descending lexical
order of their labels.

3.2.1 Device policies

A major distinction of the device type is whether the device is connected to
the network or not, and in consequence whether it can grant the document
any access to external services if asked for. Besides that devices may di�er
in details of local services they can provide to documents. By taking that
into account we have distinguished ten types of devices speci�ed in Table 3.6.
Throughout the rest of this subsection we will specify policy rules for each
device type speci�ed in this table.

Workstation policy rules

Workstation is potentially the most powerfull device providing an execution
context for active documents. For that reason preference may be given to
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Table 3.6: Device types
Device Not Connected Connected

workstation x11 x12

laptop x21 x22

tablet x31 x32

smartphone x41 x42

cellphone x51 x52

documents with functionality supporting quite advanced interaction with
workers and execution devices, i.e. in J and D contexts, less often in W
contexts. Because of their immobility, workstations may either be located
in the worker's o�ce or at home. When in o�ce they are wired to the
organization's intranet (I and N contexts), and less often have to connect
directly to other networks (E and N contexts). When located at home they
may still be wired to the worker's organization intranet through a VPN tunnel
(I and N contexts), otherwise use modem connections (I or E combined with
A or M contexts). Alternatively, the workstation may be not connected to
any network. It may be a rare situation, however, e.g. a service break due to
some routine maintenance work. Nevertheless, speci�city of the local system
con�guration may become visible.

Security most often would involve T contexts, rarely P contexts. Finally
reliability contexts may be any of H, F , B, or L, depending on the particular
software used to handle active documents. However, the most likely H con-
texts seem to be. Based on the above, policy rules like the ones speci�ed in
Table 3.7, may be used to build the option tree for the workstation execution
device.

Table 3.7: Workstation policy

Attribute
Workstation

not connected (x11) connected (x12)
Performer {J∗, D∗,W ∗} {J∗, D∗,W ∗}
Availability {J∗, D∗,W ∗} → {S7, S3..1} {J∗, D∗,W ∗} → {I∗, E∗}
Performance {S7, S3..1} → U∗ I∗ → N∗, E∗ → {N∗, A∗,M∗}
Security U∗ → P ∗ {N∗, A∗,M∗} → {T ∗, P ∗}
Reliability P ∗ → {H∗, F ∗, B∗, L∗} {T ∗, P ∗} → {H∗, F ∗, B∗, L∗}

Laptop policy rules

Laptops used today are not less powerfull execution devices than stationary
workstations. Therefore if not connected to any network they provide the
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same execution contexts as not connected workstations. A subtle di�erence,
however, is that laptops are mobile, therefore may be outside of any network
more often than workstations. On the other hand, if connected, they pro-
vide diversi�ed execution contexts with regard to the performance attribute
options (R contexts). In fact their policy rules are workstation policy rules
extended by rules involving R contexts, in which preference is given to N
before R. Another di�erence might be that laptops are in general more `per-
sonal' than workstations, therefore a worker may want more control on what
an active document does when performing its activity on `his/her' personal
device and may prefer W contexts before J and D. Additionally, personal-
ization may also become visible when the laptop device is out of any network.
We re�ect that in our model with the availability context S options. Policy
rules satisfying the above are speci�ed in Table 3.8.

Table 3.8: Laptop policy

Attribute
Laptop

not connected (x21) connected (x22)
Performer {W ∗, J∗, D∗} {W ∗, J∗, D∗}
Availability {W ∗, J∗, D∗} → {S8, S6..1} {W ∗, J∗, D∗} → {I∗, E∗}
Performance {S8, S6..1} → U∗ I∗ → {N∗, R∗},

E∗ → {N∗, R∗, A∗,M∗}
Security U∗ → P ∗ {N∗, A∗,M∗} → {T ∗, P ∗},

R∗ → {C∗, T ∗,K∗, P ∗}
Reliability P ∗ → {H∗, F ∗, B∗, L∗} {C∗, T ∗,K∗, P ∗} → {H∗, F ∗, B∗, L∗}

Tablet policy rules

Tablets constitute a relatively new type of execution devices in between lap-
tops and smartphones. They lack the most classic components of a personal
computer, which have been for decades the keyboard and mouse, but ow-
ing to the advanced touch-up screen technology they can easily compensate
for that with novel interaction paradigms. They also can just emulate the
keyboard of a size compared to a small laptop. In general they are very
`personal' devices, therefore their software systems may be customized by
their users to the point that some local tools or services commonly installed
on workstations or laptops may not be available to documents willing to
complete their activities as in the case of the latter. For that reason the
dominant contexts with regard to the performer attribute would be W con-
texts, giving the worker full control over the document content. If, however,
active documents can limit their expectations to a less demanding set of ser-
vices, or can complete a simpler activity on their own, D and J contexts
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may be accepted by the tablet device. Because of their highly customized
local systems, tablets can provide most often only substitutes of speci�c tools
required by the document. Therefore only I4..6 and E4..6 contexts (see Ta-
ble 3.2) should be considered. Another issue is the networking hardware of
tablets. In the thesis we have assumed that tablets enable only WiFi and
ADSL modems, i.e. R and A contexts. Results of this analysis are listed in
Table 3.9.

Table 3.9: Tablet policy

Attribute
Tablet

not connected (x31) connected (x32)
Performer {W ∗, D∗, J∗} {W ∗, D∗, J∗}
Availability {W ∗, D∗, J∗} → S6..4 {W ∗, D∗, J∗} → {I6..4, E6..4}
Performance S6..4→ U∗ I6..4→ R∗,

E6..4→ {R∗, A∗}
Security U∗ → P ∗ R∗ → {C∗, T ∗,K∗, P ∗},

A∗ → {C∗, T ∗, P ∗}
Reliability P ∗ → {H∗, F ∗, B∗, L∗} {C∗, T ∗,K∗, P ∗} → {H∗, F ∗, B∗, L∗}

Smartphone policy rules

Contexts provided by smartphone devices di�er when compared to tablet de-
vices. Their touch-up screens can still enable interaction almost to the same
extent as their tablet counterparts, including keyboard emulation, but due to
their yet more customized functionality, many tools and services may never
be provided to the worker or to the document when performing a speci�c ac-
tivity. Therefore only I3 and E3 contexts are possible (see Table 3.2), with
the same order of preferred contexts related to the performer attribute as in
the case of tablet devices, i.e. W , D and J . For the same reason contexts
related to interaction reliability would realistically be L. Networking hard-
ware of smartphone devices enable access to wireless and cellular networks
alike, however preference shall be given to R contexts before M contexts for
economic reasons explained before. Based on this analysis we propose policy
rules for smartphone execution devices as listed in Table 3.10.

Cellphone policy rules

The least capable execution devices are plain cellphones. They typically lack
a touch up screen, have a signi�cantly small screen, often with resolutions
preventing using sophisticated graphics. Their imported software execution
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Table 3.10: Smartphone policy

Attribute
Smartphone

not connected (x41) connected (x42)
Performer {W ∗, D∗, J∗} {W ∗, D∗, J∗}
Availability {W ∗, D∗, J∗} → S3 {W ∗, D∗, J∗} → {I3, E3}
Performance S3→ U∗ I3→ R∗,

E3→ {R∗,M∗}
Security U∗ → P ∗ R∗ → {C∗, T ∗,K∗, P ∗},

M∗ → {C∗, T ∗, P ∗}
Reliability P ∗ → L∗ {C∗, T ∗,K∗, P ∗} → L∗

capabilities are strongly limited. With the same preference of execution con-
texts related to the performer attribute options as in the case of smartphone
devices, i.e. W , D and J , contexts related to the availability attribute are
limited to just an external access to the worker's organization and without
any tools or a keyboard available, i.e. E1..2 contexts (see Table 3.2). Be-
cause only a cellular network may be accessed by the cellphone device, its
processor may be of less power (including battery limitations), and the de-
vice may have a SD card installed or not, its preferences of contexts related
to the performance attribute would be M2 and M1 (see Table 3.3). Finally,
interaction reliability shall be the lowest, i.e. L1. Based on the above analy-
sis policy rules for the cellphone execution device may be like the ones listed
in Table 3.11.

Table 3.11: Cellphone policy

Attribute
Cellphone

not connected (x51) connected (x52)
Performer {W ∗, D∗, J∗} {W ∗, D∗, J∗}
Availability {W ∗, D∗, J∗} → S2..1 {W ∗, D∗, J∗} → E2..1
Performance S2..1→ U2..1 E2..1→M2..1
Security U1→ P ∗ M2..1→ {T ∗, P ∗}
Reliability P ∗ → L1 {T ∗, P ∗} → L1

3.2.2 Document policies

Objectives of document policies are in general di�erent from the objectives
of execution device policies. It may be seen from the analysis presented
above that devices concentrate mainly on what minimal resources they can
engage to satisfy documents asking for support when performing a given
activity. They have no global information on the process in which each
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document is involved � in many cases they may be even forbidden to get
that information. Moreover devices often have to optimize usage of their
resources when supporting many documents at the same time. On the other
hand a document is interested in how well its activity could be completed in
the context of the entire process it is involved in. For that reason a document
may characterize its objectives with di�erent preferences of attribute values
that the device it arrives to and without any attempt to interfere with its
internal policies � a common feature of open multi-agent systems [2]. In the
Thesis three types of documents have been considered to de�ne the document
policy rules:

(S) documents with a static content; they are passive and unable to perform
any operation on their own. A static content may be for example a plain
text �le, an image, a PDF or Word �le without any macros embedded in
it. The respective activity of their work�ow can be performed only by
the worker, who may read instructions what to do with the document
right from its text.

(R) documents with a reactive content; they can perform speci�c operations
in response to some stimulus, using their embedded code. A reactive
content may be for example an interactive form that can check lexical
correctness of input typed by the worker in its respective �elds or input
data automatically from the local worker's �les in reaction to pressing
by the latter the 'browse' activity button, a PowerPoint presentation
with embedded animations, or a more sophisticated piece of code ca-
pable of doing various operations on opening, like self-extraction of the
zipped content, even a virus infected PDF document [14]. The respec-
tive activity of their work�ow can be performed only by the worker or
jointly by the worker and the document.

(P) documents with a proactive content; they can initiate and perform var-
ious operations on their own, and are capable of controlling interaction
with human users or systems. A proactive document may be for ex-
ample a Flash ad popping up on a Web page, a Web crawler collecting
data [48], or a document-agent capable of recognizing the face of its
recipient [61]. Depending of the semantics of the respective activity of
its work�ow it may be performed only by the worker, jointly by the
worker and the document, or automatically by the document alone.

Results of the analysis of various combinations of options speci�ed above
are listed in Table 3.12. It may be seen that policies of reactive documents are
a proper subset of the proactive document policies, and respectively policies
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of static documents are a proper subset of the reactive document policies.
Indeed, document-agents may be designed by their originators to play various
roles in the business process they implement. For example if a speci�cs service
required by the proactive document to process its content in not available at
the current execution device it may provide its content for manual editing
by the worker. Therefore, not like in the case of device policy rules listed
in Tables 3.7-3.11 we do not assume any speci�c ordering of options de�ned
before in Tables 3.1-3.5 in the document policy rules. We denote that they
may be ordered arbitrary by symbol '|'. That order may change dynamically
for the same document from device to device with regard to the dynamics
of the process they implement. For example, due to some internal deadline
the document may choose to complete its activity on the currently available
device that prefers the W context instead of to refuse to cooperate with
the device currently used by the worker and wait until he/she will be using
another device, possibly preferring the J context.

3.3 Bargaining over option trees

Below we combine development of Chapter 1 with the concept of types of
execution devices and documents and their respective policy rules introduced
in this chapter. Note that option trees of two players determine a set of all
o�ers they may be bargained over. Formally, if Ci and C−i denote respective
sets of o�ers in which Pi and its opponent P−i are interested, bargaining set
C = Ci ∩ C−i. Agents agree to share such a set prior to each encounter by
performing the operation C = τP1∩τP2 . In order to �nd all bargaining sets of
interest in the system of MIND documents each respective set of o�ers in the
option tree built with policy rules for the each execution device type should
be combined with each respective set of o�ers in the option tree built with
policy rules for each respective document type. Moreover, the order of o�ers
in the option tree implicitly speci�es utility of each respective o�er to the
respective party. Of course the order of o�ers in each player's option tree is
not known to its opponent, but may be deduced by observing countero�ers
of the latter returned during negotiations, as proposed in Chapter 1.

Let us consider a simpli�ed SBG between a connected laptop (x22) and
the proactive document, which is encoded and light, i.e. not imposing sig-
ni�cant load on the execution device, with a bargaining set consisting of just
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�ve o�ers:

o1 = < D3, E1, A4, T4, H3 >,

o2 = < D3, E1,M4, T4, H3 >,

o3 = < D3, E1, R2, K4, F1 >,

o4 = < D3, E1, R4, C4, H1 >,

o5 = < D3, I1, N4, T4, H4 > .

Nodes of option trees in Figures 3.2 and 3.3 are labeled with the attribute
value labels listed in the respective Tables 3.1-3.5, while utility of each indi-
vidual attribute value to the player is speci�ed in square brackets. Utilities
of the respective o�ers of the bargaining set are listed at the bottom of the
tree in a normalized form, according to Formula 1.6.

Figures 3.2 and 3.3 indicate con�icting preferences of the execution device:
the active document willing to do everything on its own, most preferably from
outside of its home organization network, whereas the device prefers using
its company network.
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Figure 3.2: Example option tree of a proactive document

It can be seen that negotiations over multi-item o�ers, is a non-zero game,
where each party can win some wealth, even when starting from con�icting
o�ers. A SBG scheme de�ned in Chapter 1 can resolve such a con�ict and
enable �nding by the document and the execution device an o�er in the
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Figure 3.3: Example option tree of a connected laptop

Table 3.13: Bargaining over example option trees

Stage Player O�er oi Ui(oi) Ui(oi)

1
P1 o2 1.00 0.53
P2 o5 1.00 0.64

2
P1 o1 0.93 0.60
P2 o3 0.87 0.79

3 P1 o3 0.79 agreed

bargaining set that either party accepts as the one of as much of utility as it
can get in the current execution context. It can be seen in Table 3.13 that
the document (player P1) started negotiations by o�ering to the execution
device (player P2) its most valuable option o2. Then after several o�ers and
countero�ers option o3 o�ered by the device was accepted by the document.

In the above example we have used simpli�ed option trees to keep them
small. In real applications involving MIND documents the upper bound for
the maximum size of a single option tree could be as high as the product of
the numbers of attribute value labels used in Tables 3.1-3.5, which is well
over 5000, whereas the upper bound for the number of possible negotiation
histories is a product of their respective permutations, in the order of mag-
nitude of 1013. Two questions we would like to answer in the next chapter
are:
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1. whether machine learning techniques proposed in Chapter 2 can e�ec-
tively shorten the negotiation process, i.e. document agents can agree
contracts with execution devices in a reasonably short negotiation pro-
cess, and

2. when traveling over a distributed system of execution devices, docu-
ment agents would not be required to carry their negotiation histories
with them, or alternatively would not require access to the network
any time they need to consult some external service providing access
to such histories.
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Chapter 4

Negotiation protocols

At the beginning of this Chapter we would like to recall our problem and
methods we have been using to resolve it so far: documents travel among
network nodes and are opened (executed) on various devices. In order to
do that and take advantage of the device resources, the document as well as
the device are equipped with option trees which describe their capabilities.
The option trees are then negotiated between the document and the device
in order to choose the best option.

In Chapter 1 we have introduced the concept of a simple bargaining game
(SBG) and de�ned its rules. We have also introduced two algorithms: Al-
gorithm 1.2 and 1.4, thanks to which SBG players can �nd a solution to
Equation 1.7. The desired feature of SBG is that its underlying protocol
would prefer agreements that could be reached faster. One of the methods
that can speed up the negotiation process is to enable players to learn their
opponents' preferences. They could do this if they can meet more than once.
Then, when the player meets its opponent again, it should be able to guess
the contract faster.

In Chapter 2 we have investigated several arti�cial intelligence methods
to use them in the classi�cation process. We have chosen arti�cial neural
networks as the best candidate to reach the above mentioned goal. Below
we take advantage of neural networks in teaching the document agents to
recognize preferences of execution devices by policies de�ned in Chapter 3.

In Chapter 2 we have also introduced the concept of coding the training
sets, used to train the neural network. Next, in Chapter 3 we have de�ned
the concept of a sequence of o�ers, which we will call brie�y a sequence
(see De�nition 11). By combining that we de�ne training sets to contain
sequences, originating from a player which builds its o�ers using one of the
policies, de�ned in Chapter 3. Sequences have to be transformed into a form
required by the given classi�cation task, as described in Chapter 2. There
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are two kinds of tasks we are interested in: grouping of data and recognizing
the sequences.

4.1 Bargaining sets, sequences and training data

Our investigations will be focused on four domains of the application of
machine learning techniques in order to improve negotiation processes:

1. occurrence vector clustering enables grouping devices that belong to
the same device classes based on appearances of the given symbols in
o�ers,

2. sequence clustering enables grouping of devices basing on ordering of
sequences. If the document already knows the class of the device it
negotiates with, the next two approaches may be applied:

3. sequence prediction, which relies on guessing of ordering of sequences,

4. contract prediction, which relies on guessing the contract based on the
guessed sequence order.

In the current Chapter we will introduce algorithms that use AI. Before
doing that we have to describe how to keep o�ers in bargaining sets and se-
quences; we will also explain how to prepare data for the learning algorithms.

We have mentioned in Chapter 2 that prior to training the network,
the historical bargaining sets have to be �rst transformed to the occurrence
vectors. We de�ned Algorithm 4.1 for doing that. In order to explain it, let
us �rst consider data presented in Table 4.1, which are names of attribute
values and their encoded equivalents. Policies, �rst presented in Chapter 3,
determine which symbols are allowed to occur in each o�er. Understanding
of encoding of o�ers is crucial to understand the work of Algorithm 4.1.

4.1.1 Attribute values encoding

Recall Formula 2.10 which is the neuron equation. The equation determines
inputs of neurons as numeric values. Thus, symbols cannot be introduced
directly into the input of a neural network but they �rst need to be converted
into the numeric form. The conversion is speci�ed by Formulas 2.16 and 2.17.

A bargaining set contains o�ers, each one consisting of elements which are
attribute values. According to Chapter 3, the o�er consists of �ve elements,
each one corresponding to one attribute.
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Let us de�ne Function enc that encodes labels of attribute values using
values from Table 4.1. The table includes all symbols used in the examples
here (the current MIND implementation)

enc : Ak → Z≥0 (4.1)

where Ak is the set of the k-th attribute values.
Since Ak = {a1

k, . . . , a
|Ak|
k }, then o = 〈am1

1 , . . . , amn
n 〉 where n is the number of

attributes. So for k ∈ 1 . . . n we have mk ∈ 1, . . . , |Ak|. Thus mk = enc(amk
k ).

Table 4.1: Encoding of attribute values
Attribute Encoding
Performer D1 = 0; D2 = 1; D3 = 2; J1 = 3; J2 = 4; J3 = 5; J4 = 6; W1 = 7; W2 = 8
Availability E1 = 0; E2 = 1; E3 = 2; E4 = 3; E5 = 4; E6 = 5; E7 = 6; I1 = 7; I2 = 8

I3 = 9; I4 = 10; I5 = 11; I6 = 12; I7 = 13; S1 = 14; S2 = 15; S3 = 16
S4 = 17; S5 = 18; S6 = 19; S7 = 20

Performance A1 = 0; A2 = 1; A3 = 2; A4 = 3; M1 = 4; M2 = 5; M3 = 6; M4 = 7; N1 = 8;
N2 = 9; N3 = 10; N4 = 11; R1 = 12; R2 = 13; R3 = 14; R4 = 15; U1 = 16;
U2 = 17; U3 = 18; U4 = 19

Security C1 = 0; C2 = 1; C3 = 2; C4 = 3; K1 = 4; K2 = 5; K3 = 6; K4 = 7; P1 = 8
P2 = 9; P3 = 10; P4 = 11; T1 = 12; T2 = 13; T3 = 14; T4 = 15

Reliability B1 = 0; B2 = 1; B3 = 2; B4 = 3; F1 = 4; F2 = 5; F3 = 6; F4 = 7; H1 = 8;
H2 = 9; H3 = 10; H4 = 11; L1 = 12; L2 = 13; L3 = 14; L4 = 15

Function given by Equation 4.1 encodes values of the given attributes
with numbers like the ones from Table 4.1. The table presents names of at-
tribute values and their encoded equivalents. For example, when substituting
symbols in o�er o1 = 〈W1, S7, A1, C1, L1〉, by numeric values from Table 4.1
we get enc(o1) = 〈7, 20, 0, 0, 12〉.

Let us introduce function

Υ : Ak → Z≥0 (4.2)

which takes the attribute value and returns its index in the occurrence vec-
tor de�ned in Chapter 2. According to Equation 1.2 attributes de�ned in
Chapter 3 will be indexed by υ as shown in Table 4.2.

The rightmost column speci�es sizes of their respective sets of attribute
values speci�ed in Tables 3.1 � 3.5.

The attributes presented in Table 4.2 can have following values: A1 = {a1
1, a

2
1, . . . , a

9
1},

A2 = {a1
2, a

2
2, . . . , a

21
2 } etc..

Given Table 4.2 function Υ can be calculated as:

Υ(ak) =

{
enc(ak) if k = 1

Υ(ak) +
∑k

i=1 |Ai| if k > 1
(4.3)
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Table 4.2: Attribute value sets
Index k Attribute name Set Ak Size |Ak|

1 Performer A1 9
2 Availability A2 21
3 Performance A3 20
4 Security A4 16
5 Reliability A5 16

4.1.2 Creation of the occurrence vector

Now, when we know how an o�er is constructed, we are able to explain how
to transform it into an occurrence vector. All steps necessary to transform
training data into the required form are included in Algorithm 4.1. Procedure
CreateOccurrenceVector() in Algorithm 4.1 takes a collection of o�ers as
well as the number of all attribute values and returns the occurrence vector.

The �rst step of Algorithm 4.1 is a creation of the empty occurrence
vector which size is the number of attribute values and then initializing its
elements by assigning them 0 value.

Algorithm 4.1: createOccurrenceVector()

1 Data: input bargaining set BargainingSet,
2 number of all possible attribute values attributeV alueNumber
3 Result: the returned occurrence vector
4 occurrenceVector ←new occurrenceVector(attributeValueNumber);
5 for i← 1 to length(occurrenceVector) do
6 occurrenceVector [i]← 0;

7 foreach o�er in BargainingSet do
8 // attribute values are encoded

9 foreach attributeValue in o�er do
10 // procedure getAttributeValueIndex() is

11 // the implementation of function Υ()
12 index ← getAttributeValueIndex(attributeValue);
13 occurrenceVector [index ]← 1;

14 return occurrenceVector;

For each o�er in the input collection, each o�er element is taken. The ele-
ment is an attribute value, encoded in the way as explained before. Procedure
getAttributeValueIndex(), which implements Formula 4.3 and returns an
index in the occurrenceVector, is called then with the attribute value.
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Next value 1 is assigned to the element of the occurrence vector indi-
cated by the returned index. This value indicates that the given attribute
value occurs in the o�er. After examining all o�ers in the bargaining set the
complete occurrence vector is returned.

The following example demonstrates how the algorithm works. Consider
the bargaining set presented in Table 4.3. The attribute values in the respec-
tive o�ers o1, . . . , o8 have been encoded using values from Table 4.1.

In order to transform the bargaining set in Table 4.3 to an occurrence
vector, procedure createOccurrenceVector() is called. The sum of sizes of
all attribute values in the current MIND implementation is 82 (see Table 4.2),
so the length of the output occurrence vector will be 82 (see Algorithm 4.1).

Table 4.3: An example of the encoded bargaining set
Bargaining set

O�er Encoded o�er
o1 〈1, 16, 18, 10, 7〉
o2 〈4, 19, 18, 10, 1〉
o3 〈3, 15, 17, 10, 2〉
o4 〈0, 14, 17, 9, 7〉
o5 〈6, 17, 17, 9, 13〉
o6 〈8, 16, 18, 9, 12〉
o7 〈7, 14, 17, 11, 12〉
o8 〈4, 18, 17, 8, 2〉

After creation of occurrence vector β, the algorithm takes the �rst o�er
which can be also written as o1 = 〈a1

1, a
16
2 , a

18
3 , a

10
4 , a

7
5〉. The �rst attribute

value in the o�er is 1. The attribute value is then sent as the argument of
procedure getAttributeValueIndex(). The result is Υ(a1

1) = 1. So, the
element in the occurrence vector indexed by 1 receives value 1.

The next element of the o�er is 16, thus, the element which has index
Υ(a16

2 ) = 25 receives value 1. The step is repeated on each element of the
o�er. Next, o�er o2 is taken. The �rst element of o2 is 4. So, the element
which has index Υ(a4

1) = 4 in the occurrence vector receives value 1. Then,
the next element of the o�er is taken, which is 19. Since Υ(a19

2 ) = 28, then
bit b28 obtains value 1. Then the next attribute value is taken and so on,
until all elements of all o�ers are examined.

4.1.3 Occurrence vector training

The term `clustering' is generally reserved for unsupervised learning. How-
ever in this Thesis we use it for recognizing devices without distinguishing
the method.
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In Chapter 3 we have distinguished ten device types. The device policies
have been presented in Tables 3.7 � 3.11. Because policies of the not con-
nected workstation (x11) and not connected laptop (x21) make use of the
same symbols, we may consider them for a while to be in the same device
class; in consequence only nine device classes have to be considered further.
Each device class obtains a label. Table 2.10 shows how the labels look like
in case of three hypothetical classes of devices indicated in Table 2.1.

Occurrence vector based learning is illustrated in Figure 4.1.
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Figure 4.1: Training and classi�cation of occurrence vectors

Despite the fact of distinguishing ten device types (see Table 3.6), the
occurrence vector learning discovers only nine device classes. It is caused
by the fact that x11 and x21 device classes utilize the same symbols, thus
they are not distinguishable by this method. Therefore we have decided
to join these two classes temporarily and so x11/x21 device class has been
created. Later, x11 and x21 device classes will be distinguished using another
approach (see Section 4.1.4).

Before the appropriate training process can start, bargaining sets have to
be converted into occurrence vectors by Algorithm 4.1. Next, neural network
netI with 9-element output layer is created. Then, in the training process,
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occurrence vectors are associated with the proper device classes by binding
them with the proper label of the device class. The labels are the positional
representation of integer numbers. The positional notation of the integer
numbers relies on substituting the number k by n-element bit-word in which
the bit on the k-th position has value 1 and the rest of bit �elds have value
0 and where k, n ∈ N and k ≤ n.

So, when x11/x21 device class has the label which is equal 1, then its
positional representation is 9-th element bit word (9 is the number of the
device classes), which �eld indexed by 1 has value 1 and the rest of �elds has
value 0. Further, x12 device class has the index 2. Thus the 2-nd �eld of
its positional representation has the value 1� and the rest 0, and so on. The
training process relies on binding occurrence vectors with the target outputs
which are the labels of device classes.

In the experiments reported further in Chapter 5, the satisfactory results
have been reached when netI consisted of two hidden layers, built respectively
of 20 and 10 neurons and the output layer built of 10 neurons. As shown in
Chapter 5, the training with occurrence vectors built of 10 bargaining sets
was su�cient to produce the network capable of recognizing bargaining sets
without any error.

4.1.4 Sequence recognition

There are two goals of recognizing of sequences:

1. the goal of sequence clustering is the recognition of device which the
document-agent negotiate with by matching up a sequence created by
incoming o�ers to one of the guessed sequences assigned to the speci�ed
device class,

2. the goal of sequence prediction is the prediction of the opponent's move
by guessing its sequence.

Chronologically p.1 precedes p.2, since before sequence learning opponent's
device has to be recognized. However, in the logical order p.2 precedes p.1,
because a sequence before matching has to be guessed. So we start the
description from p.2.

The rules of SBG presented on page 15 and the de�nition of sequence on
page 55 determine that the maximum length of sequence is d|C|/2e. Never-
theless, let us assume that for simplicity in the current Chapter we assume
that sequence length equals bargaining set size. In Chapter 5 we will test
sequences which lengths are shorter than bargaining set sizes as well as se-
quences which lengths equal the bargaining set size.
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Classi�cation of o�ers using neural networks

From now we will distinguish two concepts: policy rules and the policy im-
plementation. The policy implementation is a policy with assigned utilities
of attribute values which conform to the requirements of the policy. The
learning process is based on training data which are the recorded histories of
games. The data may come from two possible sources:

1. They may come from the existing MIND agent system (the a posteriori
approach).

2. If there is no existing MIND system yet, training data may be generated
with any values of utilities that satisfy the prede�ned policies (the a
priori approach).

Case 1 is straightforward � if the agent system already works, MIND agents
leave behind them the historical data, which can be collected and used for
training, e.g. in the agency when they rest.

In Case 2 we have to use data generated from the training example pol-
icy implementations. Two example policy implementations are presented in
Tables 4.4 and 4.5. However, in order to use them in the learning process,
we have to remember that two approaches to learning are possible. The �rst
one may take advantage of that some attribute values occur in a given pol-
icy, while others do not. The second one may exploit the order of o�ers in
sequences to recognize policies they belong to as well as to guess the contract
of a higher utility. In the �rst case training with generated examples has the
same value as training with examples from an existing MIND system.

However, the order of o�ers in a sequence can di�er from the order of
o�ers in another sequence if they were generated from di�erent policy imple-
mentations, even if they were implementations of the same policy.

Consider the alternative x11 policy implementation to the one shown in
Table 4.4 and denote the two implementations respectively by Ξ′x11 and Ξ′′x11.
In Ξ′′x11 utilities of attribute Performance have the following values: U4 = 0.2,
U3 = 0.19, U2 = 0.18 and U1 = 0.17 and the rest of attributes have the
same utilities as in Ξ′x11. Now consider two o�ers: oi = 〈J4, S2, U3, P1, H1〉
and oj = 〈J3, S2, U4, P1, H1〉. In the case of Ξ′x11 policy implementation
UΞ′x11

(oi) = 0.2 + 0.15 + 0.15 + 0.05 + 0.1625 = 0.7125 and UΞ′x11
(oj) =

0.175 + 0.15 + 0.2 + 0.05 + 0.1625 = 0.7375. In Ξ′′x11 utilities UΞ′′x11
(oi) =

0.2 + 0.15 + 0.19 + 0.05 + 0.1625 = 0.7525 and UΞ′′x11
(oj) = 0.175 + 0.15 +

0.2 + 0.05 + 0.1625 = 0.7375. Thus, despite the fact that Ξ′x11 and Ξ′′x11 are
implementations of the same x11 policy, UΞ′x11

(oi) < UΞ′x11
(oj) but UΞ′′x11

(oi) >
UΞ′′x11

(oj).
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Table 4.4: Example policy implementation of the x11 device class
Attribute Utilities
Performer J4 = 0.2; J3 = 0.175; J2 = 0.15; J1 = 0.125; D3 = 0.1; D2 = 0.075;

D1 = 0.05; W2 = 0.025; W1 = 0.0125
Availability S7 = 0.2; S3 = 0.175; S2 = 0.15; S1 = 0.125; S6 = 0.1;

S4 = 0.075; S5 = 0.05
Performance U4 = 0.2; U3 = 0.15; U2 = 0.1; U1 = 0.05
Security P4 = 0.2; P3 = 0.15; P2 = 0.1; P1 = 0.05
Reliability H4 = 0.2; H3 = 0.1875; H2 = 0.175; H1 = 0.1625; F4 = 0.15; F3 = 0.1375;

F2 = 0.125; F1 = 0.1125; B4 = 0.1; B3 = 0.0875; B2 = 0.075; B1 = 0.0625
L4 = 0.05; L3 = 0.0375; L2 = 0.025; L1 = 0.0125

The above example indicates that assuming the opponent's policy is not
enough to predict its sequence since the same policy can provide di�erent
partial orderings of o�ers belonging to the same bargaining set. The policy
implementation decides on ordering of the sequence and the exploration of
the policy implementation is the unattainable goal of the sequence prediction.

Table 4.5: Example policy implementation of the x21 device class
Attribute Encoding
Performer W2 = 0.2; W1 = 0.175; J4 = 0.15; J3 = 0.125; J2 = 0.1; J1 = 0.075;

D3 = 0.05; D2 = 0.025; D1 = 0.0125
Availability S7 = 0.2; S6 = 0.175; S5 = 0.15; S4 = 0.125; S3 = 0.1;

S2 = 0.075; S1 = 0.05
Performance U4 = 0.2; U3 = 0.15; U2 = 0.1; U1 = 0.05
Security P4 = 0.2; P3 = 0.15; P2 = 0.1; P1 = 0.05
Reliability H4 = 0.2; H3 = 0.1875; H2 = 0.175; H1 = 0.1625; F4 = 0.15; F3 = 0.1375;

F2 = 0.125; F1 = 0.1125; B4 = 0.1; B3 = 0.0875; B2 = 0.075; B1 = 0.0625
L4 = 0.05; L3 = 0.0375; L2 = 0.025; L1 = 0.0125

Table 4.5 provides an example of x21 policy implementation. The values
will be utilized in our further considerations in the current chapter when the
sequences are compared.

Sequence prediction

The idea of sequence prediction is illustrated in Figure 4.2. Sequence recog-
nition di�ers from the occurrence vector clustering in that, for the latter so
many networks are created as many device classes are available. The upper
part of the �gure shows how the network is trained: the sequences are con-
verted to pairs and relations. The pairs are the input of the neural network,
the relations are its target. The lower part shows the classi�cation: the bar-
gaining set is converted to pairs, next the relations are recreated using the
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neural network. At last the pairs and the relations are converted to sequences
which are utilized by the negotiating algorithm.

Table 4.6: An example of the encoded sequence
Sequence

O�er Encoded o�er Utility priority
o1 〈1, 16, 18, 10, 7〉 8
o2 〈4, 19, 18, 10, 1〉 7
o3 〈3, 15, 17, 10, 2〉 6
o4 〈0, 14, 17, 9, 7〉 5
o5 〈6, 17, 17, 9, 13〉 4
o6 〈8, 16, 18, 9, 12〉 3
o7 〈7, 14, 17, 11, 12〉 2
o8 〈4, 18, 17, 8, 2〉 1
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Figure 4.2: Classi�cation of sequences

Sequence to relation

Recall the de�nition of sequence (De�nition 11). Sequence is the order of
submitted o�ers. The o�ers are submitted by the player which uses Algo-
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rithm 1.2 or 1.4. If we analyze the algorithms, we will see that the order of
o�ers is determined by their utilities. First the highest o�er is submitted,
then the next one. Nevertheless, the rule has an exception. If the player
accepts its opponent's o�er, then its last submitted o�er is a repeat of the
opponent's o�er and it may get out of the rule (see the rules of SBG). How-
ever, since it is not di�cult to �nd the acceptance o�ers and remove them
from the sequences, we omit the exception from our further investigations
and assume that ∀oa,ob∈ςia < b⇒ Ui(oa) ≥ Ui(ob), where a, b ∈ N are indexes
of o�ers in sequence ς.

Now consider Table 4.6, which shows how sequences are stored in �les.
One �le stores the information shown in column Encoded o�er. Column
Utility priority stores the information about the priority of o�er. Utility
priority function Γ : o → N re�ects the order of o�ers in a sequence (the
function assigns the o�er to a number): the higher the priority the higher its
position in the sequence.

∀o1,o2∈ςiUi(o1) > Ui(o2)⇒ Γ(o1) > Γ(o2) (4.4)

The di�erence between utility and priority underlies the fact that the �rst is
hidden for the player's opponent while the second is public.

The training of the network is performed as follows: �rst sequences as-
signed to the given device are taken from the stored histories. Then, each
sequence is converted to the relational form using Algorithm 4.2. Next, the
obtained pairs are associated with appropriate relations (relation `>' or `<')
according to the result returned by Algorithm 4.2 by binding the pairs with
the relations in network xijnetII inputs and outputs, where xij denotes the
respective device class, speci�ed in Table 3.6.

Algorithm 4.2 can be utilized to convert sequences into pairs and relations
as well as to convert bargaining sets into pairs. It works in the following way:
a sequence is stored in two data structures: one the collection of n o�ers,
and another the n element array of priorities of the respective o�ers in the
sequence. The higher is the o�er the higher the number in the array � if the
algorithm is used to convert the n-element bargaining set, the input is the
collection of n o�ers in the bargaining set and n element array of integers
from 1 to n. In general the steps are:

1. two new empty collections are created for storing the pairs of o�ers and
relations associated with them,

2. the priority of each o�er in the input sequence is compared with the
given priority in the priorities array of all other o�ers,
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Algorithm 4.2: sequence2Relations()

1 Data: input collection offers,
2 priorities of o�ers in sequence priorities,
3 Result: the collection of pairs pairs,
4 the collection of relations relations
5 relations ← new relations ();
6 pairs ← new pairs ();
7 for i← 0 to length(o�ers)−1 do
8 for j ← 0 to length(o�ers)−1 do
9 if j 6= i then

10 if priorities[i] 6= priorities[j] then
11 pair ← concatenate(o�ers[i], o�ers[j]);
12 pairs.add (pair);
13 relations.add (1);
14 pair ← concatenate(o�ers[j], o�ers[i]);
15 pairs.add (pair);
16 relations.add (0);

17 return (pairs, relations);

3. the new pair is created by concatenating the o�er with the compared
o�er,

4. if the priority of the �rst o�er is higher than the second one, the new
pair is associated with relation `>' which will be stored as 1,

5. if the priority of the �rst o�er is smaller than the second one, the new
pair is associated with relation `<' which will be stored as 0.

The output of Algorithm 4.2 is a two element tuple of the collection of pairs
and the collection of associated relations. If Algorithm 4.2 is utilized to
convert a bargaining set, we are interested only in the pairs.

The training relies on binding a pair of o�ers, which is written as a con-
catenation of two o�ers, with a target output, which is relation 0 or 1.

The following example can illustrate that:

Example 4. Consider o�ers o1 = {1, 16, 18, 10, 7} and o2 = {4, 19, 18, 10, 1}
belonging to the sequence from Table 4.6. They are concatenated and the
pair is created ζ1 = 〈1, 16, 18, 10, 7, 4, 19, 18, 10, 1〉. Since o1 > o2, the pair
is labeled by 1. Another pair ζ2 = 〈4, 19, 18, 10, 1, 1, 16, 18, 10, 7〉 can also
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be created for o�ers o1 and o2 . Relation `<' between the o�ers results in
creating label 0. The neural network is trained using pairs ζ1, ζ2 and labels 1
and 0 as the targets.

Relation to sequence

If we want to recreate the sequence, we need the bargaining set and the
trained network. The bargaining set has to be converted to the pairs of o�ers
using Algorithm 4.2. The result is the collection of pairs and the collection of
relations. The collection of relations may be omitted, since the appropriate
relations will be reproduced using the neural network. So the relations are
the output of the network, which input are pairs. The process is outlined in
Figure 4.2.

In the upper part of the �gure, which illustrates the training of the net-
work, we can see sequences isolated from the negotiation history, then con-
verted into pairs and relations by using Algorithm 4.2.

The lower part of the �gure shows the process of guessing the opponent's
sequence in order to boost the negotiation process. The �rst step is creating
the bargaining set by intersection of option trees of the document and the
device. We denote it in Figure 4.2 symbolically as τP1 ∩ τP2 , where τP1 and
τP2 are option trees. The algorithm for doing that was described in [35].
Then, the bargaining set is converted into pairs using Algorithm 4.2. Next,
the respective network is used to recognize the relations between the pairs.
Finally, the pairs and the obtained relations are converted into the sequence
form by Algorithm 4.3.

Algorithm 4.3 is the new version of the algorithm outlined in Figure 2.4.
The algorithm presented in Chapter 2 was based on inserting o�ers to the
list. Algorithm 4.3 omits problems connected with inserting values into the
middle of the collection.

The procedure relations2Sequence() implementing Algorithm 4.3 takes
a collection of pairs and relations associated with them. The �rst step is to
create an array containing all o�ers that occur in pairs. Next the array which
holds priorities of o�ers is created. After that it has to be counted how many
times each o�er occurs at the �rst place in the pair associated with relation 1.
Obtained numbers mean the priorities of o�ers. However, we have respected
only relations `1'. To use relations '0' we have to count zeros in the same
way as ones. Then the results have to be reversed in order to transform the
numbers of occurrences of '0' in the numbers of occurrences of `1'. Next both
obtained arrays have to be merged. The procedure returns the sequence the
array of o�ers and the array of priorities.
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Algorithm 4.3: relations2Sequence()

1 Data: input relations relations,
2 input more or less signs represented by 0 and 1 signs,
3 Result: the collection of o�ers offers,
4 the array of priorities of o�ers priorities
5 o�ers ← getAllOffers (relations);
6 n←length(o�ers);
7 // a collection which stores numbers of occurrence

8 // of respective offers

9 prioritiesOne ← new prioritiesOne[n];
10 for i← 1 to length(pairs) do
11 pair ← pairs[i];
12 if relations[i] = 1 then
13 // if the first clause of the pair is found among

14 // offers, an associated value is incremented

15 index← findIndex(getOffer(1, pair), o�ers);
16 if index > −1 then
17 prioritiesOne[index]← prioritiesOne[index] + 1;

18 // Do the same with relation 0
19 prioritiesZero ← new prioritiesZero[n];
20 for i← 1 to length(pairs) do
21 pair ← pairs[i];
22 if relations[i] = 0 then
23 // if the second clause of the pair is found among

24 // offers, an associated value is incremented

25 index← findIndex(getOffer(2, pair), o�ers);
26 if index > −1 then
27 prioritiesZero[index]← prioritiesZero[index] + 1;

28 m← max(prioritiesZero);
29 // We reverse the occurrences of zeros in order to obtain

30 // occurrences of ones.

31 foreach priority in prioritiesZero do
32 priority← m− priority;

33 // Priorities retrieved from ones and zeros are merged

34 for i← 0 to n− 1 do
35 prioritiesOne[i]← prioritiesOne[i] + prioritiesZero[i];

36 return (o�ers, prioritiesOne);
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Sequence clustering

Let us assume now that netI has recognized a sequence as belonging to
x11/x21 device class. Distinguishing between x11 and x21 device class re-
quires more re�nement.

Table 4.7 shows two sequences which are built of the same bargaining set.
The orderings of these sequences are based on implementations of policies of
x11 and x21 device classes. The ordering of x11 sequence is di�erent, when
compared to the x21 sequence because of the fact they have been created
according to di�erent policy implementations, e.g. like the example ones
speci�ed in Tables 4.4 and 4.5.

Table 4.7: Two sequences built of one bargaining set
sequence ordered

by x11 policy by x21 policy
〈4, 19, 18, 10, 1〉 〈1, 16, 18, 10, 7〉
〈1, 16, 18, 10, 7〉 〈4, 19, 18, 10, 1〉
〈8, 16, 18, 9, 12〉 〈3, 15, 17, 10, 2〉
〈7, 14, 17, 11, 12〉 〈0, 14, 17, 9, 7〉
〈6, 17, 17, 9, 13〉 〈6, 17, 17, 9, 13〉
〈4, 18, 17, 8, 2〉 〈8, 16, 18, 9, 12〉
〈3, 15, 17, 10, 2〉 〈7, 14, 17, 11, 12〉
〈0, 14, 17, 9, 7〉 〈4, 18, 17, 8, 2〉

The di�erence between sequences can be seen in the �rst element: a
sequence from x11 starts with o�er 〈4, 19, 18, 10, 1〉, whereas the one from
x11 starts with o�er 〈1, 16, 18, 10, 7〉. Thus, the sequences can be recognized
by observing how consecutive o�ers in a sequence are submitted. Therefore
the only thing one needs to know is the ordering of the sequences.

So, if the document cannot discriminate between x11 and x21 device class
before the negotiation process starts (using the occurrence vector learning de-
scribed above), it should wait for submitting an o�er by the device. Table 4.7
shows that if the device belongs to the x11 device class, it would start the
negotiation by submitting o�er o2 = 〈4, 19, 18, 10, 1〉; however if the device
belongs to the x21 device class, it would start the negotiation by submitting
o�er o2 = 〈1, 16, 18, 10, 7〉. So, to correctly guess the device class, the docu-
ment has to know the ordering of o�ers of the given policy implementation
of x11 and x21. To get that knowledge we use a neural network.

Now recall how to predict a sequence using neural network, as described
in Section 4.1.4. With that in mind, the problem of distinguishing x11 and
x21 can be resolved as follows:
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1. All o�ers from the bargaining set are converted into pairs using Algo-
rithm 4.2.

2. The pairs are introduced to the inputs of x11netII and x21netII.

3. Two obtained sets of relations are converted into two sequences: x11
and x21, using Algorithm 4.3.

The obtained sequences are the ordering we have been looking for.
Consider the bargaining set built of o�ers from Table 4.3. The o�ers are

converted into the pairs using Algorithm 4.2. So created collection of pairs
becomes the input of x11netII and x21netII networks. After converting the
pairs and relations returned by both networks, two sequences are returned;
they are identical to sequences presented in Table 4.7.

The device starts the negotiation by submitting its most preferred o�er,
which is o1 = 〈1, 16, 18, 10, 7〉. Because the sequence returned by x21netII
starts with the same o�er (see Table 4.7), the document concludes that its
opponent belongs to the x21 device class.
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Figure 4.3: Sequence clustering

The recognition process is outlined in Figure 4.3. There are two neu-
ral networks. The �rst one is trained with pairs and relations built of

98



the sequence belonging to the x11 device class, the second one with the
ones belonging to x21 . The input of both networks is the bargaining set
shown in Table 4.3 converted into pairs using Algorithm 4.2. Procedure
compareSequences() which implements Algorithm 4.4 is explained below.

Each neural network returns relations which are converted into sequences
by Algorithm 4.3. We call them ςA and ςB. The sequences are the inputs
to Algorithm 4.4. The algorithm has yet another input. This is a sequence
formed by o�ers submitted by the opponent (a device in this case).

So, the incoming sequence ς has to be compared to both sequences re-
turned by the networks. As it was mentioned before, sequence was stored in
two data structures: an array of o�ers and an array of integers which rep-
resent priorities. Now consider that sequence is stored in one array indexed
in such a way that the o�er which has the highest priority has index 1, the
o�er which has the second highest priority has index 2, and so on.

Algorithm 4.4: compareSequences()

1 Data: incoming sequence ς,
2 sequence returned by the 1-st network ςA,
3 sequence returned by the 2-nd network ςB
4 Result: recognized device class or −1 if the device was not recognized
5 stage← 1;
6 while stage < length(ς) do
7 if ς[stage] = ςA[stage] then
8 if ς[stage] 6= ςB[stage] then
9 return (x11,stage);

10 else if ς[stage] = ςB[stage] then
11 stage + +;

12 else if ς[stage] 6= ςA[stage] then
13 if ς[stage] = ςB[stage] then
14 return (x21,stage);

15 else if ς[stage] 6= ςB[stage] then
16 return (−1,stage);

17 return (−1, stage);

Procedure compareSequences() iterates through array ς starting from
element with index 1 and ending at the last element of array. The o�er
indexed by 1 is the highest o�er and the o�ers indexed by the following
numbers are the next o�ers what corresponds with the order of submitting
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the o�ers. So the indexes are consistent with the stages of the game. During
each iteration step the following conditions are examined:

1. if the o�er belonging to ς equals the o�er of sequence ςA, then:

(a) if the o�er of sequence ς does not equal the o�er of sequence ςB,
then the result is device class x11 acquired in the stage assigned
by the array index,

(b) otherwise the index is iterated;

2. if the o�er belonging to ς does not equal the o�er of sequence ςA, then:

(a) if the o�er of sequence ς equals the o�er of sequence ςB, then the
result is device class x21 acquired in the stage assigned by the
array index,

(b) otherwise no result is returned in the current stage.

The example below may seem trivial, however it explains well the under-
lying concept.

Example 5. Bargaining set presented in Table 4.3 is converted to pairs. The
pairs are inputs of two neural networks: one trained by examples from x11
device class, the second by examples from x21 device class. The outputs are
two sets of relations. The �rst of them creates the sequence returned by x11
device class, the second by x21. Both of them are presented in Table 4.7. We
interpret them in the following way: the �rst sequence means that if recognized
device class was x11, then the o�ers would submit according to x11 sequence;
the second sequence means that if the recognized device was x21, then the
o�ers would submit according to x21 sequences. We should recognize which
device class the sequence from Table 4.6 belongs to. Let us denote it by ς.
Now let us use procedure compareSequences() to assign to ς an appropriate
device class. The �rst o�er of ς is o1 = 〈1, 16, 18, 10, 7〉. It equals the �rst
o�er of the sequence ordered by x21 policy and does not equal the �rst o�er
of the sequence ordered by x11 policy what according to p.2a. means that ς
belongs to x21 device class.

4.2 Improved bargaining algorithm

In Chapter 1 we have presented the rules of SBG and Algorithm 1.1 to play
it. That algorithm assumed that both players utilized the same negotiation
algorithm. Now we would like to assume that player P2 (the document-
agent) utilizes AI techniques, while player P1 (the device-agent) does not.
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It is enough to send to procedure playSBG() (Algorithm 1.1) yet another
procedure as the parameter. Although the procedure does not change, the
bargaining process runs now di�erently: in the �rst step the bargaining set
is created by the intersection of the option trees belonging to both players.
Then the algorithm calls the negotiation procedure of the player not using AI
and then increments the move counter. The further step is the negotiation
procedure of the player which uses machine learning. It passes the name of
player's P1 negotiation procedure to P2 because the AI negotiation algorithm
(Algorithm 4.5) requires it. It controls the conditions of concluding the game
and terminates the game if it is necessary.

Let us look at Algorithm 4.5. Its work sums up all machine learning
techniques used in the Thesis. In Section 4.1 we have enumerated four re-
lated tasks. All of them are called in procedure submitAIOffer() which
implements Algorithm 4.5.

Algorithm 4.5: submitAIO�er()

1 Data: The bargaining set,
2 Received o�er,
3 The histories of recent negotiations
4 Result: Sent counter-o�er
5 // Guess player's P1 device class

6 device← guessDeviceClass();
7 if device 6= 0 then /* the device class is recognized */

8 // use neural network to predict the opponent's

sequence

9 networkResponse← useTrainedNetwork(C);
10 // send offer using the acquired knowledge

11 submitInformedOffer(networkResponse);

12 else /* not recognized device class */

13 // use one of algorithms not using AI

14 submitOffer();

Let us enumerate the steps of the algorithm:

1. In the �rst step the procedure tries to guess the device class.

2. If the device class is solved, the incoming sequence is guessed in order
to predict the future opponent's moves and �nd the best contract.

3. If the device class is not guessed, the negotiation procedure which does
not use AI is called.
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4.2.1 Classi�cation the of device class

In the �rst step of procedure submitAIOffer() (see p.1 of the enumeration
on page 101) the algorithm checks which device class the opponents belongs
to. The procedure guessDeviceClass() which implements Algorithm 4.6 is
called to this end.

The procedure runs as follows:

1. In the �rst step the occurrence vector is created of the bargaining set.

2. Then procedure resolveDeviceByOccVec() which implements Algo-
rithm 4.7 is called:

(a) Nine-element array containing names of device classes is created.

(b) The occurrence vector is the input of the neural network and the
output is an array.

(c) The index of the maximum element of the output array is found.

(d) The procedure returns the name of the device class which is the
name indicated by the found index in the array containing the
names of the device classes.

3. If any device class other than x11/x21 is found, then guessDeviceClass()
can return the appropriate device class.

4. If the found device class is x11/x21, then procedure compareSequences()
which implements Algorithm 4.4 is called. The procedure has been al-
ready described on page 100. It returns x11 or x21 device class.

The next step of Algorithm 4.5 is to check if the device was recognized. If
not, one of algorithms not using AI is called (the last line of the procedure)
by calling procedure submitOffer(). If the device is recognized, the player
may use the neural network in order to predict the incoming sequence, i.e.
o�ers that will be submitted by the opponent. We have described methods
of the sequence prediction in Section 4.1.4. In the next Section we will show
how to take advantage of the knowledge about the incoming sequence in the
aim of speeding up the negotiation.

4.3 Utilization of the acquired knowledge

In Chapter 1 we have promised to show how to make use of the knowledge
acquired during negotiations. By `knowledge' we mean here the order in
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Algorithm 4.6: guessDeviceClass()

1 Data: the bargaining set C,
2 the sequence,
3 neural networks trained by occurrence vectors,
4 neural networks trained by x11 and x21 sequences
5 Result: the recognized device class
6 occurrenceVector← createOccurrenceVector(C);
7 // Get the device class using occurrence vectors

8 dev← resolveDeviceByOccVec(occurrenceVector,netI);
9 // If the device belongs to x11 or x21 device class

10 if dev = x11/x21 then /* use the sequence clustering */

11 dev← compareSequences(seq,netResponseX11,netResponseX21);

12 return dev;

Algorithm 4.7: resolveDeviceByOccVec()

1 Data: occurrence vector,
2 trained neural network
3 Result: the recognized device class
4 // An array containing 9 device classes is created.

5 devs ← [x11/x21,x12,x22,x31,x32,x41,x42,x51,x52];
6 // Obtain the neural network response.

7 netResponseArray ← neuralNetwork(occurrenceVector);
8 // Find index of the highest element.

9 index← getMaximumIndex(netResponseArray);
10 // Get the name of the device class.

11 return netResponseArray[index];
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which an opponent will submit its o�ers - in other words the opponent's
sequence predicted by the player processing that knowledge.

So let us go back to Algorithm 4.5. In the case of the recognizing of the
device class procedure useTrainedNetwork() is called. The procedure sum-
marizes the steps described in Section 4.1.4. Thanks to using the procedure
we hide all the complexity bound with converting between sequences and
relations. Variable networkResponse is a sequence created from pairs made
from the bargaining set and relations returned by the neural network. It is
represented by an array of o�ers, which are indexed contrary to the utility
of the o�er: the lower the index the higher the o�er.

The variable is then sent to procedure submitInformedOffer() which is
the implementation of the Intelligent Algorithm which will be denoted further
by KAlg (for its `knowledge' component). Algorithm 4.8. Algorithm 4.8
makes the following assumptions:

1. Procedure submitInformedOffer() which implements the algorithm
is used by P2 (the document agent).

2. Player P1 (the device) uses procedure submitOffer() implementing
one of the earlier presented Algorithms 1.2 or 1.4.

3. P2 knows its opponent's discount factor.

4. Player P2 does not know exact values of its opponent's utilities, but
assumes the minimum and maximum player's P1 o�ers are compatible
with respective player's P2 o�ers.

5. The opponent's utilities are distributed evenly.

Now we can describe the steps of Algorithm 4.8, which is the key algo-
rithm for this Thesis. Thanks to it the knowledge gained in the sequence
recognition process can be utilized to speed up the negotiation process.

1. In its �rst steps the algorithm initializes the values of the parameters
sent to it and then it updates the values of the sets of received and
submitted o�ers. Then the value of the incoming o�er is updated to
the value of the maximum element of the received o�ers.

2. Structure P2 is initialized in order to run the simulation of SBG without
using AI. Structure P1 is sent to the algorithm as the parameter.

3. The order of the opponent's o�ers which has been sent to procedure in
variable networkResponse, is not enough to predict the result of the
game. In order to do it the exact values of the opponent's o�ers are
necessary. It is done by procedure genOpponentsOffers():
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Algorithm 4.8: submitInformedO�er()

1 Data: set of all o�ers C,
2 set of received o�ers CR,
3 set of submitted o�ers CS,
4 structure representing players P1, with sets of sent P1.CS, received
o�ers P1.CR,discounting δ1,

5 received opponent's o�er o (if the function is called the �rst time the
value is empty) ,

6 current move number k
7 procedure playSBG()
8 procedure submitO�er()
9 Result: The chosen o�er. If the opponent's o�er is accepted, the

incoming opponent's o�er is returned, otherwise the
counter-o�er is returned, which is the highest predicted o�er.

10 // here the player takes advantage of the

11 // knowledge acquired during negotiations

12 CN ← C − (CR ∪ CS);
13 CN ← CN − {o};
14 CR ← CR ∪ {o};
15 o ← max(CR);
16 // Initialization of structure P2 in order to use it in a

simulation

17 P2 ← P2.initialize(C,CS, CR, δ2);
18 P1.o�ers ← genOpponentsOffers(networkResponse);
19 Umax ← 0;
20 foreach ocurrent in CN do
21 // the simulation of SBG without AI

22 Utemp ← playSBG(ocurrent,P1,P2,k + 1,submitOffer);
23 if Utemp > Umax then
24 Umax ← Utemp;
25 c ← ocurrent;

26 if Umax > U2(o) then
27 CN ← CN - {c};
28 return c;

29 else
30 // Accept opponent's offer

31 CN ← CN - {o};
32 return o;
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(a) according to p.4 of presumptions of Algorithm 4.8 the minimum
and the maximum utilities are equal to the minimum and the
maximum player's P2 utilities;

(b) the remaining n − 2 values (where n is the length of sequence
networkResponse) are generated by incrementing the minimum
value. The incrementing step is calculated as step = Umax−Umin

n−1
,

where max and min are player's P2 maximum and minimum util-
ity.

4. Having estimated all necessary player's P1 data, player P2 can predict
the result of the negotiation. The prediction may be done by Algo-
rithm 1.1. Procedure playSBG(), which implements the algorithm,
requires also another parameter: the negotiation algorithm. Algo-
rithm 1.2 or Algorithm 1.4 may be used to implement the procedure
submitOffer().

5. Procedure playSBG() is called for each possible value of the player's
P2 o�er. The o�er for which procedure playSBG() returns the highest
value is compared to the opponent's o�er. The higher of the two values
is returned.

4.3.1 Experiments with the negotiation algorithm using

knowledge

In Chapter 1 we have de�ned two negotiation algorithms. Algorithm 1.4
�nds the solution of SBG by calculating a Nash equilibrium in its consecutive
round. We will refer to this algorithm further as the Estimated Algorithm
and it will be denoted by (EAlg). Algorithm 1.2 �nds solution of the game
by comparing incoming o�ers with the best player's o�er. We will refer to
this algorithm further as the Simple Algorithm for exchanging o�ers (SAlg).

We have generated 6400 bargaining sets; all of them have been included
in the attached CD and its content has been listed in Appendix A. The
bargaining sets were generated in series consisting of ten of them and they
have been used to test Algorithm 4.8 (KAlg) for all possible classes of docu-
ments and devices. Tables 4.8 � 4.11 include both players' utilities. We show
only the values of utilities, because from the point of view of KAlg only their
values matter.

KAlg assumes opponent to use either Algorithm 1.4 or 1.2 introduced
before. In other words, the document agent takes advantage of machine
learning when negotiating with devices, whereas devices do not. This as-
sumption is rational, as a single device may negotiate with many documents
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at the same time, use more sophisticated resource management techniques
than neural networks, and have considerably less training data to learn about
documents, that dynamically change their preferences.

KAlg is asymmetrical with regard to the information about the player's
opponent. The document agent player knows its opponent's sequence of
o�ers thanks to the knowledge obtained from the learning process.

We assume that KAlg is used by P2. In the experiments values from
Tables 4.8 � 4.11 discount factors of both players were set to 0.8.

The main di�erence between KAlg, SAlg and EAlg is that (KAlg) tends
to submit o�ers from a set of o�ers which can be accepted by its opponent
rather than the highest o�ers.

The bargaining sets used in the experiments to evaluate KAlg, in con-
trast to SAlg and EAlg were selected from the total of 6400 bargaining sets
mentioned before. Utilities of their elements by each player are listed in
Tables 4.8 � 4.11.

Table 4.8: Utilities of o�ers in bargaining set C1

O�er o1 o2 o3 o4 o5 o6 o7 o8
U1 0.95 0.975 0.30 0.25 0.70 0.213 0.55 0.925
U2 0.65 0.363 0.175 0.763 0.338 0.488 0.688 0.413

O�er o9 o10 o11 o12 o13 o14 o15 o16
U1 0.80 0.50 0.425 0.625 0.663 0.888 0.375 0.238
U2 0.70 0.438 1.00 0.875 0.45 0.15 0.988 0.425

Table 4.9: Utilities of o�ers in bargaining set C2

O�er o1 o2 o3 o4 o5 o6 o7 o8
U1 0.200 0.800 0.900 0.575 0.225 0.998 0.400 0.363
U2 0.788 0.138 0.175 0.688 0.625 0.563 0.713 0.963

Table 4.10: Utilities of o�ers in bargaining set C3

O�er o1 o2 o3 o4 o5 o6 o7 o8
U1 0.388 0.725 0.600 0.463 0.188 0.763 0.400 0.613
U2 0.175 0.200 0.213 0.800 0.913 0.688 0.238 0.700

O�er o9 o10 o11 o12 o13 o14 o15 o16
U1 0.700 0.213 0.225 0.538 0.488 0.938 0.688 0.638
U2 0.975 0.225 0.613 0.375 0.600 0.663 0.538 0.638

For all bargaining sets,C1, . . . , C4 the utilities of both players were sorted
in the reverse order, i.e. the exchange of o�ers could last longer. Tables 4.12
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Table 4.11: Utilities of o�ers in bargaining set C4

O�er o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
U1 0.350 0.900 0.725 0.600 0.288 0.300 0.188 0.850 0.675 0.563
U2 0.400 0.275 0.663 0.963 0.988 0.338 0.450 0.188 0.975 0.438

and 4.13 show results of negotiations using various algorithms: EAlg has
chosen o�er o1 in move α6

1, SAlg has chosen o�er o12 also in move α6
1, whereas

KAlg has chosen o�er o9 in move α2
1. Thanks to that the contract reached

by KAlg was the highest one (because in each player's move utilities are
discounted, thus the contract agreed in the earlier stage is likely to have the
higher payo�). Note that KAlg almost always gave the best payo�s except for
bargaining set C3, where reached the same payo� as SAlg. It is interesting to
see that for bargaining set C3 the EAlg algorithm got the agreement already
in the second move, i.e. faster than the other two. However, KAlg works to
optimize the payo� not the move number. Since, as we can see in Table 4.12,
player P2 receives the higher payo� in move α2

1 than in move α1
2, it chooses

rationally to continue the game. There is a similar situation in the case
of bargaining set C3. Player P2 preferred continuing the game rather than
accepting the o�er in move α6

1, since it knew that the next move would bring
it the higher payo�.

The tests were intended to check if data from the learning process are
able to improve the bargaining process. Results of the negotiation processes
between P1 and P2 concerning bargaining sets C1, . . . , C4, using EAlg, SAlg
and KAlg are compared in Tables 4.12 and 4.13. In the former table P1 used
EAlg, while P2 used KAlg. In the latter table P1 used of EAlg while P2 used
KAlg.

Both tables indicate the number of moves after which the agreement has
been reached and the contract negotiated.

Table 4.12: Results of EAlg vs. KAlg
Bargaining set C1 C2

Player Π1 Π2 move o�er Π1 Π2 move o�er
EAlg 0.33 0.27 α6

1 o1 0.14 0.27 α6
1 o7

KAlg 0.44 0.56 α2
1 o9 0.12 0.39 α7

2 o8
Bargaining set C1 C2

Player Π1 Π2 move o�er Π1 Π2 move o�er
EAlg 0.94 0.53 α1

2 o14 0.33 0.50 α4
1 o9

KAlg 0.49 0.62 α2
1 o9 0.47 0.62 α2

1 o9

From the document agent's (player P2) point of view the improvements
are meaningful. If P2 used KAlg (i.e. took advantage of machine learning) the
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contracts were reached twice faster and payo�s were twice higher than in the
case machine learning was not used. In one case the agreement was obtained
four times faster than when the machine learning was not used. Generally,
the more moves in the game variant without using machine learning, the
greater improvement in the case of taking advantage of the machine learning
techniques as the number of steps to negotiate a contract using AI tends
to be constant and small. We will provide detailed characteristics for this
observation in Chapter 5.

Table 4.13: Results of SAlg vs. KAlg
Bargaining set C1 C2

Player Π1 Π2 move o�er Π1 Π2 move o�er
SAlg 0.21 0.36 α6

1 o12 0.20 0.28 α7
2 o4

KAlg 0.56 0.45 α2
1 o2 0.99 0.45 α1

2 o6
Bargaining set C1 C2

Player Π1 Π2 move o�er Π1 Π2 move o�er
SAlg 0.49 0.62 α2

1 o9 0.33 0.50 α4
1 o9

KAlg 0.49 0.62 α2
1 o9 0.47 0.62 α2

1 o9

Results of the experiments reported in Tables 4.12 and 4.13 clearly in-
dicate that knowledge on the ordering of o�ers, learned from negotiation
histories, as explained in p. 4.1.1 and 4.1.4, can signi�cantly reduce the num-
ber of steps required to reach the agreement as well as increase the contract
value.

In Chapter 5 we will examine what is the minimum number of training
data to make a learning process e�ective, what could be the minimum length
of the sequence, what is the impact of errors in learning on the agreed con-
tracts, and how many sequences are necessary to train the document agent
on occurrence vectors.

4.3.2 Estimating the opponent's discount factor

In this chapter we have de�ned Algorithm 4.8, which takes advantage of
the acquired (learned) knowledge. Algorithms 1.4 and 4.8 have one com-
mon feature, namely they both require a knowledge about the opponent's
discount factor. It should be explained that estimation of discount factors is
not the primary goal of this Thesis as we would rather concentrate on pre-
dicting sequences. But it a�ects results of negotiation processes and cannot
be neglected at all. We will return to this issue further in this Section.

If players have similar preferences they can reach their agreement faster,
and the value of the discount factor does not matter so much, especially when
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they are equal. However, if the preferences of players di�ers signi�cantly, the
negotiation process will last longer. Then the value of the discount factor
should matter. That is why we have selected to the experiments such option
trees in which players' preferences are set in the reverse order one to another.
Then tuning of the value of the discount factor is the main element that can
speed up or slow down the negotiation process. Consider Figure 4.4, which
shows how discount factor can a�ect the move number in which the agreement
is obtained.

Figure 4.4: Number of moves and discount factors

In the experiment player's P2 (the document) parameters were not changed.
Its discount factor was δ2 = 0.8. The value of its opponent's discount factor
was changed, starting from 0.9 to 0.1. Values of discount factors are dis-
played on the X axis. The bargaining set consisted of 12 elements. Numbers
of moves are displayed on the Y axis. The �rst move is α0

1. The last possible
move is α12

1 . In the case of EAlg it was assumed that each player was able
to guess correctly its opponent's discount factor.

Based on the example we may propose a general method for estimating the
opponent's discount factor by the player not knowing it beforehand. We have
to �nd �rst in the recorded history all the games in which the document agent
(player P1) took part. Utilities of players that took part in the experiment,
were ordered in the opposite order one to another. We assume that if the
recorded history of player's P1 games is su�ciently long, there is at least
one recorded sequence for which respective utilities of players were ordered
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reversely. It must be the longest recorded sequence. Then it is enough to
compare the sequence with results of the experiment presented in Figure 4.4
or another similar one. In the experiment the negotiation between players
that used SAlg ended in the 9-th move (move α8

1) if player's P1 discount
factor was 0.5 or 0.6. The size of the bargaining set was 12.

Now assume that the size of the bargaining set is n and the bargaining
process has ended in the move number 3

4
· n. Then, assuming that player's

P2 discount factor is 0.8 (like player's P2 discount factor in the experiment),
it may be estimated that player's P1 discount factor is in between 0.5 and
0.6.

Figure 4.4 shows also that EAlg can reach the contracts faster than SAlg.
However, in the experiment we assumed that players assessed the opponents'
discount factor correctly. If the guess was wrong, SAlg could reach better
results.

Table 4.14: Discount factor in relation to ΛSAlg and ΛEAlg

Discount factor 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
ΛSAlg 0.92 0.92 0.85 0.69 0.69 0.54 0.38 0.23 0.23
ΛEAlg 0.85 0.85 0.69 0.69 0.54 0.38 0.23 0.23 0.23

The value of the opponent's discount factor was passed to submitInformedOffer()
as a parameter. Let us assume that before starting the bargaining process
we have run another procedure, discountFactorEstimation(), which was
utilized to retrieve the value of the discount factor from the history of the
games. Before presenting it consider data presented in Table 4.14. It presents
the result of the same experiment as shown by the diagram in Figure 4.4.
However, now discount factors are bound with function Λ = (k+1)/(|C|+1)
(where k is the move number in αki ) which is the relation of the move number
in which the agreement was reached to the maximum number of moves in
the given negotiation game.

Procedure discountFactorEstimation() will be presented in detail in
Appendix B; its steps are the following:

1. Run as many negotiation experiments as possible on generated data
for various values of discount factor. The experimental data should be
stored in the map data structure where the value of discount factor
can be assigned to the given coe�cient ΛEAlg. The data should be
collected in that way that for the given player (device) the highest value
of ΛEAlg coe�cient associated with the given discount factor is selected.
In result for each device the dictionary built of discount factor and the
associated ΛEAlg coe�cient is obtained, similar to the dictionary shown
in Table 4.14 (naturally without ΛSAlg coe�cient).
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Table 4.15: Sizes of bargaining sets
Execution Maximum Realistic
context size size
x11 16128 30

x12 129024 40

x21 16128 30

x22 258048 50

x31 6912 20

x32 69120 30

x41 576 12

x42 6336 20

x51 432 12

x52 864 12

2. We analyze the negotiation history for each device looking for the high-
est Λ. In result for each device the value of Λ is obtained.

3. We examine ΛEAlg coe�cients obtained in step 2 and check the discount
factor in the appropriate dictionary entry obtained in step 1.

In the next Chapter we will examine tests based on much bigger bargain-
ing sets as in examples presented in this Chapter. Based on the experiments
with bargaining sets of various sizes, their realistic sizes were determined,
i.e. su�cient to observe improvement in the number of moves required to
reach the contract when using intelligent bargaining compared to simple or
estimated bargaining algorithm. They are summarized in Table 4.15.
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Chapter 5

Protocol validation and

evaluation

In Chapter 4 we have presented the methods enabling documents to negotiate
with devices on the technical parameters of their execution, and the machine
learning methods which can help to speed up the negotiation process. Below
we present various characteristics that allow us to assess techniques proposed
in the Thesis and determine minimal requirements for training data.

5.1 Test plan

The goal of testing is evaluation of negotiation methods and learning ap-
proaches and especially an impact of learning on the negotiation capacity.

5.1.1 The subject of testing

Evaluation of the following learning approaches has been assumed:

1. occurrence vector clustering, i.e. distinguishing device classes based on
the appearance of speci�c symbols in o�ers,

2. sequence clustering, i.e. distinguishing device classes based on ordering
of sequences of o�ers,

3. sequence prediction, i.e. guessing of ordering of sequences of the oppo-
nent's o�ers,

4. utilization of learning in negotiation, i.e. contract prediction.
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Sequence clustering precedes sequence prediction. However, since the
clustering approach is based on sequence prediction methods, sequence pre-
diction methods has to be examined before sequence clustering. If we want
to refer further in this Thesis to both methods related to sequences, i.e.
sequence clustering as well as sequence prediction, we will term either one
sequence recognition.

Tests exclusions

The following simpli�cations have been considered:

• Algorithm 1.2 � the Thesis proposes three negotiation algorithms that
do not use AIbut only two two of them have been chosen for experi-
ments, namely SAlg (Algorithm 1.2) and EAlg (Algorithm 1.4). Since
Algorithm 1.2 has been introduced for its simplicity (in particular it
does not require knowledge about the opponent's discount factor), we
have decided to present only the comparison between EAlg and KAlg
(Algorithm 4.8 that uses AI ), instead of comparing SAlg to KAlg, since
the latter would be very similar to the former. However, the experi-
ments will show the comparison between negotiation agents that can
take advantage of AI and agents not utilizing AI.

• Intersection of option trees � since players are negotiating over the same
set of o�ers, their respective option trees must contain exactly the same
o�ers; the only di�erence is that both trees are sorted individually by
each player.We call such trees compatible, i.e. intersection of compatible
trees have the same set of elements as either one of them. Therefore,
in the tests, instead of generating two option trees and obtaining the
result of their intersection we generated the bargaining sets at once.

• Discount factors � in Chapter 4 we have presented a simple example
in Figure 4.4 of discovering the value of the discount factor of the de-
vice. Moreover, the example in Section 4.3.2 indicates that the value
of the opponent's discount factor may be discovered without using AI.
However, the primary goal of the tests is verifying whether AI tech-
niques can speed up reaching agreements by recognizing sequences of
o�ers. That is why we skip investigating that issue further in the The-
sis. Nevertheless, estimating of the opponent's discount factor shall be
a subject of the further research.

5.1.2 The �eld of testing

Testing experiments concentrated on:
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• e�ectiveness of learning, measured by the �tness level, measured as
the ratio of correctly guessed cases to all examined cases taken into
consideration.

• e�ectiveness of negotiation, measured by the payo� got by negotiating
parties (see the de�nition of payo� function in Section 1.3.1 In par-
ticular, we compare payo�s reached using algorithms that do not take
advantage of AI with payo�s obtained with the help of AI. We also
compare them with the payo�s that could be calculated directly from
Equation 1.7, when both Ui and U−i are known. This is the ideal case,
which we call fair.

• costs, measured by the time required to train document agents and the
step number in which the solution to Equation 1.7 has been obtained.

5.1.3 The testing methods

Testing to measure the above metrics adopted the quantitative approach,
tailored to the speci�city of the tested objects, listed in p. 5.1.1. For the
training phase a number of bargaining sets were generated. For the testing
phase a similar number of bargaining sets were also generated. Both groups
were generated automatically as uniformly distributed variations of options
for each respective device policies de�ned in Chapter 3, thus a single element
of each such group could be considered a statistically valid representative of
the group.

• Occurrence vector clustering ; 200 training bargaining sets were gener-
ated, converted into occurrence vectors (Algorithm 4.1), and introduced
to the input of the neural network. When the training of the network
was completed, the quality of training was examined using test data.
Results obtained from the network output (which is the number as-
signed to the device class) had to be compared with the device class
the given bargaining set was assigned to. The initial number of train-
ing examples was then gradually decreased and the training processes
were repeated for the new training data. If all test results matched, we
received 100% �tness.

• Sequence prediction; despite the fact of using the same training data
source as in the occurrence vector clustering, the number of sequences
used to train the network to predict sequences was 10 times less. The
reason was that the examples belonging to each device class had to
be trained separately, because each device class required to be trained
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by the dedicated neural network. The training data, apart from the
bargaining sets, consisted of the �le with stored priorities of o�ers (see
Section 4.1.4). The priorities determine the order of submitting o�ers.
The �rst step of preparing data to training is the creation of sequence
from the bargaining set and the priorities. Next the sequence has to
be converted into pairs and relations using Algorithm 4.2, and then
trained according to the description in Section 4.1.4. Nevertheless,
contrary to examples shown in Chapter 4, the network was trained with
sequences of various length. Similarly to the occurrence vector training,
the initial number of training examples was gradually decreased and
the training was repeated using new training data. The output of the
neural network was an array of relations. In order to obtain the hits
rate of the trained network the testing sequence had to be examined.
The testing sequence �rst had to be converted into the testing pairs
and the testing relations. The testing pairs were input of the trained
network. The received output array compared to the testing relations
was the expected hits rate.

• Sequence clustering ; only x11 and x21 device classes had to be ex-
amined, since they were not distinguishable based exclusively on their
bargaining sets. The hits rate was measured in the same way as in
the sequence prediction. Additionally, Algorithm 4.4 checked if, and in
which move, the proper device class could be identi�ed.

• Learning utilization in negotiation; negotiation methods that use and
do not use AI were compared by comparing the payo�s. Algorithms 1.4
and 4.8 were executed using the all generated test data. Next, the
results were compared to results of Equation 1.7. In general, examining
of the learning utilization relies on running the sequence prediction
procedures and then checking how the reached �tness level a�ects the
negotiation results. The steps were the following:

� The test sequences included in the �le with o�ers from a bargain-
ing set and in the ordering �le were �rst converted into the rela-
tional form. The set of pairs and associated with them relations
was created (Algorithm 4.2).

� The pairs were introduced to the input of the network. The set of
outputs was created.

� The outputs were compared with the relations (tasks described in
the last two items are executed by the following procedures, listed
in Chapter 4).
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� Next, Algorithm 4.3 was used to convert the pairs and relations
obtained from the output of the network to receive a sequence,
which was used in Algorithm 4.8. Because the network was trained
using a di�erent number of training examples, a number of the
training sequences was created, which was equal to the number of
the training sets.

� In order to see whether learning can improve the negotiation pro-
cess we compare payo�s that document agents got when using
Algorithm 4.8, which utilizes the knowledge gained during train-
ing to payo�s they could get when negotiating without any prior
training (Algorithm 1.4).

5.1.4 The testing resources

Generated bargaining sets

The training examples have been generated respectively for each device, in
series consisting of ten n-element sets of o�ers, where n is the number of
o�ers in the set. Each series had a property that all sequences of the n-th
element series were disjoint, i.e. any two sequences in the series did not
include the same o�er from the bargaining set. For the testing purposes the
same number of examples has been generated. Then reasonable subset of
them have been chosen as their statistical representative.

Training data were stored in two �les: one included encoded values of
o�ers, i.e. bargaining sets, while another included priorities containing the
information about ordering of o�ers in a given bargaining set sorted with
regard to their utilities. Based on that information it was known how each
possible sequence was built, i.e. it was known in what order a given device
would be submitting its o�ers.

In Chapter 4, when we have presented the sequence based learning, we
have assumed that the length of the respective sequences are equal to the
size of the corresponding bargaining sets. However, if we look at the rules of
SBG (see De�nition 6), the maximum number of moves in SBG is dnmax/2e,
which is also the maximum length of any sequence (see De�nition 11). That
was why we examined the behavior of the network for shorter sequences in
the training processes. So apart from examining sequences which had the
same sizes as the bargaining sets, we examined sequences which sizes were
equal a half of the bargaining set, or even smaller.

In sequence clustering as well as sequence prediction (see p.2 and 3 on
page 113) the size of the bargaining set, as well as the length of the sequence
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should matter. So both of them have to be presented in diagrams that
illustrate the sequence prediction.

Neural networks used

Neural networks have been utilized for two speci�c tasks: the clustering of
occurrence vector and the sequence recognition. For each task two types of
networks have been adopted with one, and respectively, two hidden layers.

Networks netI1 and netI2 used for occurrence vector clustering are shown
in Figures 5.1 and 5.2. Each one has 82 inputs. Network netI1, has one
hidden layer consisting of 20 neurons with the hyperbolic tangent sigmoid
transfer function (tansig). The 9-neuron output layer also uses the tansig
transfer function. Network netI2 consists of two hidden layers. The �rst,
20-neuron hidden layer, has the tansig transfer function, so does the second
10 neuron hidden layer. The 9-neuron output layer has the linear (purelin)
transfer function.

Layer 1
(hidden)

Layer 2
(output)

82
inputs

20
neurons

8
neurons

9
outputs

tansig tansig

Figure 5.1: Structure of the netI1 network

Layer 1
(hidden)

Layer 2
(hidden)

Layer 3
(output)

82
inputs

20
neurons

20
neurons

8
neurons

9
outputs

tansig tansig purelin

Figure 5.2: Structure of the netI2 network

Networks netII1 and netII2 used for sequence recognition are shown in
Figures 5.3 and 5.4. The �rst of them (netII1) is three layer network, whose
�rst hidden layer consists of 20 neurons and the second one consists of 7
neurons. Both hidden layers have the tansig transfer function. The output
layer, which consists of one neuron has the linear transfer function (purelin).
The network is shown in Figure 5.3.

The second one (netII2) is the 2-layer network, whose hidden layer con-
sists of 10 neurons. The hidden layer and the 1-neuron output layer also uses
the tansig transfer function. The network has 174 inputs.
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(hidden)
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Layer 3
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tansig tansig purelin

Figure 5.3: Structure of the netII1 network

Layer 1
(hidden)

Layer 2
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174
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1
neuron

1
output

tansig tansig

Figure 5.4: Structure of the netII2 network

Hardware and software

Further in the chapter several diagrams with results of tests are presented.
They illustrate the average time needed to train the networks. In these
tests an ordinary laptop with Intel I7 eight-core 1.87 GHz CPU and 16 GB
RAM was used. The Matlab 2012b neural network toolbox was used in
all the experiments and all major algorithms presented in this Thesis were
implemented in Matlab. For completeness, their pseudocode speci�cations
have been included in Appendix B.

5.2 Test design speci�cation

A comprehensive summary of all the tests performed in order to compare
and evaluate negotiation algorithms proposed in the Thesis were published
in [34]. Below the full account on all experiments performed is given.

5.2.1 Testing scenarios

In the experiments we use the following approach; start training the network
with a number of training examples and then gradually decrease their num-
ber. Next, the trained networks are tested. The testing data are introduced
to the input of the neural network and the output of the network is compared
with the expected results which were generated together with the tests.

In the case of the occurrence vector learning the starting number of exam-
ples was 2000, and then repeated for 1000, 500, 250, 200 and 100 examples.
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In the case of the sequence learning the starting number of examples was
200, and then repeated for 100, 50, 40, 20 and 10 examples.

Furthermore, we assume that the discount factor of each player was 0.8
and both players have discovered that fact before.

Scenario 1 Occurrence vector learning

1. First, each test bargaining set has to be converted into an occurrence
vector (Algorithm 4.1).

2. The given occurrence vector has to be examined in which device class
it belongs to. The mechanism of choosing the closest class has been de-
scribed in Chapter 2. It is realized by procedure strategy_chooserX(),
which source code may be found in the enclosed CD.

3. The given test is passed if the recognized device class (bargaining set)
is compatible with the name of the device class included in the �lename
the bargaining set is stored. The result is the ratio of the number of
passed tests to the number of all bargaining sets (the �tness level). It
is realized by procedure strategy_testerX(). If all tests pass, the
�tness level is 100%.

Scenario 2 Sequence clustering

1. The inputs of the sequence clustering are the examined bargaining set
and incoming o�ers that create a sequence seq0 (the sequence consist-
ing of o�ers included in the bargaining set). Moreover, we have two
trained networks: x11netII and x21netII. The complete scenario 2 is
implemented by procedures relations_train() or rel_train_bis()
listed in Appendix B.

2. The input bargaining set and the required ordering of its data, are
converted to the relational form (the set of pairs pset0 and associated
with them relations rset0) with Algorithm 4.2. The ordering is stored
in �le in the test purpose.

3. So created pairs are introduced to the inputs of networks x11netII and
x21netII.

4. We obtain two sets of pairs and relations associated with them. One
set comes from x11netII and another from x21netII. We denote them
respectively as pset11, rset11 and pset21, rset21 (pre�x `p' indicates
the set of pairs, pre�x `r' indicates the set of relations).

120



5. We convert pset11, rset11 and pset21, rset21 into sequences seq11 and
seq21, using Algorithm 4.3.

6. Now we have two sequences: seq11 which corresponds with the ordering
of o�ers submitted by the device which belongs to x11 device class
and seq21, which corresponds with x21 device class. We have only
to compare the incoming o�ers (sequence seq0) to both sequences to
answer the question, which device class seq0 belongs to.

7. We use Algorithm 4.4 to decide if o�ers from sequence seq0 belongs
to x11 or x21 device class. The input parameters of the algorithm are
sequences seq0, seq11 and seq21. Its output is the proper sequence
(or no solution) and the move number in which the solution has been
reached. Knowing the sequence implies knowing the device class.

8. Now we compare pset0 and rset0 with the adequate pairs and relations,
depending on the obtained solution. The hit rate is received, which is
the ratio of compatible relations to the number of all relations, i.e. the
percent of correct guesses.

9. So, the sequence clustering can give us the following statistics: the num-
ber of move in which the solution was obtained in relation to number
of training examples and the percentage of correct guesses in relation
to number of training examples.

Scenario 3 Sequence prediction

1. The input of the process is a bargaining set. The document agent
intends to obtain ordering of the o�ers in the set in order to create
sequence seqij and then compare it with information stored in the
ordering �le. The ordering �le is converted to the relational form and
rset0 is obtained.

2. The bargaining set is converted into pairs psetij.

3. Pairs psetij are introduced to the input of network xijnetII. The
output of the network is rsetij.

4. Comparing rsetij to rset0 shows the percent of correct guesses. This
result is presented in diagrams in relation to the number of the training
examples. The tests end at this point, however to obtain any useful
result we have to proceed further.

5. Algorithm 4.3 converts psetij and rsetij into sequence seqij which can
be exploited by Algorithm 4.8 in the negotiation process.

121



Scenario 4 Utilization of learning in negotiation

1. Scenario 3 provided sequences seqij and examined the di�erences be-
tween them and sequence seq0. In the current scenario we compare the
results of negotiation with the device agent whose o�ers are ordered
according to sequence seqij. However, the document agent's knowl-
edge about the ordering will di�er, depending on the fact, how good
its guess was.

2. First the result of Equation 1.7 is calculated. The result is called fair
because it is calculated from the point of view of someone who knows
utilities of both negotiation parties. The result is the primary point of
reference, since it is the best result that both players can obtain.

3. We run the negotiation process using Algorithm 1.4. The algorithm
does not require any knowledge about the opponents' sequences and
therefore the result is our second point of reference. We would reason-
ably respect that contracts negotiated by the document with the use
of AI could yield higher payo�s than for the second point of reference,
possibly close to the �rst point.

4. Sequences provided by Scenario 3 di�ered depending on the number
on training examples used in the experiment and its quality, i.e. the
obtained hits rate (see the list on page 115). We run the negotiation
processes using Algorithm 4.8 using all sequences obtained in Scenario
3.

5. The results are outcomes of the negotiation processes proceeded using
sequences created basing on the networks, trained using di�erent num-
ber of examples. They are compared to the fair results and the results
of the negotiation without using AI.

5.2.2 Testing criteria

The learning process is applied in two stages: device recognition and contract
guessing. Since errors made in the �rst stage may cause errors in the next
one, we have decided to accept only 100% �tness level in occurrence vector
clustering and sequence clustering. The remaining methods are assessed in
the following way:

• sequence prediction � we will present the relation between number of
the training examples and the learning quality (hits rate � the ratio of
correctly recognized examples to all examined examples),
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• utilization of learning in negotiation � we will show how decreasing of
learning quality a�ects the level of payo�s and compare the obtained
results.

5.2.3 Groups of test cases

In general the bigger the bargaining set the better the training material.
So we have considered to generate training data for di�erent sizes of the
bargaining sets. We divide the data into three groups depending on the size
of the bargaining sets that may be generated for policies de�ned in Chapter
3:

Group 1 Six element bargaining sets as the smallest cases worth to con-
sider. The number was chosen because during our initial experiment
it was the border value below which the learning would be unsuccess-
ful. The group was created since we wanted to examine if the results
of training could be successful in the case of using bigger number of
training examples.

Group 2 The eight element bargaining sets was chosen (based on the same
observation as before) that from this size of bargaining sets all learning
results should be good.

Group 3 The data collected in the actual target MIND system will rather
not have equal sizes. During the tests we identi�ed the sizes of bar-
gaining sets which appeared in the tests most frequently. They are
considered realistic and listed in Table 4.15.

5.3 Speci�cation of test cases

For each group listed in the previous subsection 2000 bargaining sets were
generated and additional statistically meaningful test bargaining sets were
created for testing. The test bargaining sets were generated by the same
generating function as the other examples.

The training data and the test data (bargaining sets) were generated
in series. One series consisted of ten bargaining sets, each one stored in a
separate �le. In this way each test could be easily identi�ed by its �lename.
Bargaining sets consisted of o�ers used to generate sequences by applying
the respective ordering information. So each bargaining set �le with o�ers
has one associated �le with its orderings.
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Table 5.1: Test �les name patterns
Training

O�ers Ordering

traits_mod_0**Xij.txt classes_mod_0**Xij.txt

Test
O�ers Ordering

tst_traits_mod_0**Xij.txt tst_classes_mod_0**Xij.txt

Generated data are stored in �les, which are identi�ed by four �lename
patterns, as shown in Table 5.1. The networks are trained using data con-
taining sets of o�ers and ordering of these o�ers, in two separate �les named
accordingly. The �rst �le speci�es o�ers and the second one their ordering.
The test data were stored in �les identi�ed by two similar names. The �rst
�le speci�es o�ers, while the second one their ordering. The testing examples
were stored in the same way as the training examples. The templates of �le
names are speci�ed in Table 5.1. Wild cards stand for 20 di�erent pairs of
digits from `00' to `19'. The �lename templates concern all three test groups.

Document types were described in Table 3.12 with regard to policies they
may want to follow. For the experiment we have to divide documents into
more speci�c groups, as speci�ed in Figure 5.5.

The static, reactive and proactive policies speci�ed in Table 3.12 char-
acterize the level of interactivity that documents may exhibit to the device.
Besides that we would like to investigate how their content may be accessed
by the device, by distinguishing whether the content is protected or open,
and what load they may want to put on the execution device, by classifying
it as heavy or light.

Figure 5.5: Generation scheme for document dictionaries

This detailed classi�cation re�nes the respective sets of attribute values
used in the policy rules listed in Table 3.12 into smaller ones. We call such sets
dictionaries and list them in Appendix A. Dictionaries for each respective
class of documents have been generated using the scheme shown in Figure 5.5.

Files d11.txt,...,d322.txt with document dictionaries, generated for the
experiments, indicated what options should be considered when generating
bargaining sets and making option trees compatible. For example d312.txt
includes options speci�c to the proactive document with the protected con-
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tent and which load is light.

Similarly, dictionaries for the execution devices have been generated as
�les X11.txt,...,X52.txt, according to Table 3.6.

5.4 Occurrence vector learning

Figure 5.6 shows results of training netI2 (the 3-layer network) with bargain-
ing sets belonging to Group 3. It may be seen that the occurrence vectors
made of at least 50 bargaining sets enable the negotiating document to rec-
ognize the device with 100% accuracy. When repeating the experiment with
netI1 (the 2-layer network) the results were of the similar shape, but reaching
the top of only 80% of correct hits (we skip the respective chart for brevity).
It shall be noted that the time required to train netI2, as shown in Figure 5.7
is practically negligible. This observation is quite important, as training was
performed using a laptop of a moderate computational power (see speci�ca-
tion on page 119). We will come to this issue later in the Chapter.
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Figure 5.6: Hits and training times for netI2 trained with examples of
Group 3

Figures 5.7 and 5.8 show results obtained with networks netI1 and netI2
trained with bargaining sets of Group 2. Network netI1 was able to achieve
perfect hits when trained with occurrence vectors made of at least 1000 bar-
gaining sets, again in a relatively short time.
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Figure 5.7: Hits and training times for netI1 trained with examples of
Group 2
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Figure 5.8: Hits and training times for netI2 trained with examples of
Group 2

In the case of netI2 perfect hits have been possible after training the net-
work with occurrence vectors made of 2000 bargaining sets and in a relatively
short time as before. The diagram is shown in Figure 5.8.

Figures 5.9 and 5.10 indicate that results of tests with the bargaining
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Figure 5.9: Hits and training times for netI1 trained with examples of
Group 1

sets of Group 1 were not satisfactory, although for both types of networks
occurrence vectors made of 2000 bargaining sets were close to the required
100%. It indicates that 6-element bargaining sets are too small to use them in
the occurrence vector training. On the other hand increasing of the number of
the training examples beyond 2000 seems pointless, so 6-element bargaining
have been excluded.

Network netI2 gave much better results than network netI1 for Group 1,
contrary to Group 2 and 3, where the latter worked better (see Figures 5.6
� 5.8).

In Section 5.2.2 we have required �tness level of the trained network to be
100%. This requirement is satis�ed by Groups 2 and 3; examples belonging to
Group 1 used for training netI1 and netI2 � even in the case of 2000 training
examples, reached just 99.5% �tness level. On the other hand, examples
of Group 3 returned very good results, especially when used to train with
netI2. The network got 100% �tness level even when trained with only 50
bargaining sets.

Figures 5.6 � 5.10 illustrate the most important result of experiments
performed in connection to Scenarios 1 and 2. For brevity we skip presenting
detailed results of the remaining experiments related to these scenarios, but
provide their synthetic summary in Tables 5.2 and 5.3.

We can see that network netI1 is better in the sense that it requires in
general less training examples to train the network, as well as requires less
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Figure 5.10: Hits and training times for netI2 trained with examples of
Group 1

Table 5.2: Learning summary

Minimum number of bargaining sets in
the occurrence vectors to reach 100% hits

Group netI1 netI2
1 2000* 2000*
2 1000 2000
3 40 50

* max hits close to 100%

Table 5.3: Time summary

Maximum time of training
to reach 100% hits

Group netI1 netI2
1 0.04s* 1.27s*
2 0.05s 1.25s
3 0.30s 3.36s

* max hits close to 100%

time to complete it.
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5.5 Sequence prediction

Logically, sequence clustering precedes sequence prediction. However, since
sequence clustering is based on sequence prediction, we need to describe
sequence prediction before describing sequence clustering. We will return to
the latter in Section 5.7.
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(b) Learning times for x11 device class (30-element bargaining set)

Figure 5.11: Network netII1 sequence
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Now let us assume for a while that the document-agent has recognized
the proper device class. In this phase of the experiment the same training
data might be used as before. Recall that learning of occurrence vectors
covered all training examples at once, and the number of tested bargaining
sets was 2000. Now training procedures a�ect only one device class, because
each device class has to be trained separately. Since there are 200 bargaining
sets belonging to one device class, ten separate neural networks have to be
trained � each one using 200 training examples, or less.

Before presenting diagrams concerning Scenarios 2 � 4 we would like to
recall the fact that the length of sequences may di�er from the size of the
bargaining sets. In the diagrams, which refer to sequence prediction the
size of the bargaining set and the length of the sequence are presented as
a fraction, in the form X/Y , where X denotes the bargaining set size and
Y the sequence length. The values are displayed on the vertical axis. The
horizontal axis shows the number of bargaining sets used for training.

The diagram shown in Figure 5.11(a) presents results of training netII1
with examples belonging to Group 3, while the times of training sequences
are shown in Figure 5.11(b). They are in general longer than in the case of
training networks to recognize device classes, but still within a reasonable
limit. In particular, sequence learning times for the number of 50 � 200
sequences required to reach perfect or almost perfect hits (see Figure 5.11(a))
could be measured in minutes, which is still a reasonable time given the fact
that training was performed on an ordinary laptop (see page 119).

The question what would be the impact of imperfect hits when predicting
sequences during negotiating on the contract �nally agreed, will be answered
in the next section. For the time being it may be said that imperfect hits in
Scenario 2 are of lesser importance than in the case of Scenario 1.

The diagram in Figure 5.12(a) shows the results of training network netII1
using examples that belong to the x12 device class (connected workstation),
while Figure 5.13(a) shows the results of training network netII1 with exam-
ples belonging to the x21 device class (disconnected laptop).

They illustrate stability of the training method. Note that the network
trained with 10 element sequences could reach almost perfect hits only when
trained with speci�c number of training examples. As the length of train-
ing sequences grows, quality of the training depends less on the size of the
training set. We will come to this issue later in the Chapter.

Figure 5.13(a) shows results of training, which look similar to the pre-
vious diagrams, except when training network net II1 with the ten element
sequence (30/10). In spite of training using 200 training examples we can
see the worse result than in the case of the other number of examples. The
results indicated the need to look for another network which could behave

130



97,57% 
99,01% 

99,99% 100,00% 100,00% 100,00% 

86,12% 

97,54% 

86,96% 

97,11% 
98,23% 

97,06% 

82,37% 

93,15% 
94,32% 93,38% 

99,75% 

82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

10 20 40 50 100 200

hi
ts

 

number of sequences 

   

40/40
40/20
40/15
40/10

(a) Recognition for x12 device class (40-element bargaining set)

00:00:00

00:14:24

00:28:48

00:43:12

00:57:36

01:12:00

01:26:24

01:40:48

10 20 40 50 100 200

tim
e 

number of sequences 

   

40/40
40/20
40/15
40/10
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Figure 5.12: Network netII1 sequence

better in the case of training using shorter sequences. For that we exploited
network netII2. The times of training network net II1 are shown in Fig-
ure 5.13(b). The times are compatible with the length of the sequence � the
longer the sequence the more time of training is necessary.

The diagrams in Figures 5.14(a) and 5.15(a) show results of training using
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Figure 5.13: Network netII1 sequence

network netII2.

Because we have expected better results of the network, we have decided
to examine more sequences. So, the x12 device class was examined using 40-,
20-, 15-, 10- and 5-element sequences, while the size of the bargaining set has
been 40. The x22 device class was examined using 50-, 25-, 20-, 15-, 10- and
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Figure 5.14: Network netII2 sequence

5-element sequences, while the size of the bargaining set has been 50. The
results are satisfactory: network netII2 trained using examples belonging
to the x22 device class obtained 100% result even if it was trained using
only ten sequences. The size of the sequence has been 25 whereas the size
of the bargaining set has been 50. Moreover, ten 5-element sequences could
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Figure 5.15: Network netII2 sequence

train network netII2 reaching 74% �tness level. Similarly the examples from
the x12 device class could train network netII2 well. Ten sequences, whose
length equals the half of the size of the bargaining sets, which is 40, can train
the network to the 100% �tness level. Furthermore, ten 5-element sequences
has given 90% result of learning.
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When comparing results of training networks netII1 and netII2 with ex-
amples from Group 3 and the x12 device class, it may be seen that sequences
40/40 and 40/20 gave 100% �tness level regardless of the number of the
training examples (network netII2 ). Network netII1 performed worse com-
paring to Network netII2. Times of learning of both networks, presented in
Figures 5.12(b) and 5.14(b), have been slightly longer in the case of network
netII2. Some exceptions may be observed. They relied on the fact that with
less training examples the training times were sometimes longer. It could
be caused by the fact that network netII2 had to initialize randomly more
weights then network netII1. However, Figure 5.14(b) shows that the excep-
tions occur only in the case of the longest sequences � 40/40 and 40/20. Thus,
since in practice the training examples will consist of shorter sequences, the
exceptions may have no practical meaning.

When testing with sequences relevant to the bargaining sets of Group
2, results obtained for network netII2 trained with 4− and 2− element se-
quences built on the 8-element bargaining sets are shown in Figure 5.16(a).

We can see that if the number of the training examples is 200, 4-element
sequences give the perfect hits and 2-element sequences - almost the perfect
�tness level.

Figure 5.16(b) shows the time needed to train the network, as presented
in the previous diagram. It may be seen that it is reasonably low.

Figure 5.17(a) concerns examples from Group 1. It shows that in the case
of 3-element sequences built of 6-element bargaining sets even 200 training
examples is not enough to obtain 100% results of learning, although they are
close to it (99.5%). Figure 5.17(b) shows the time of training of the network,
which is also reasonably low.

Table 5.4: Perfect hits of x12 device class trained with 40/x sequences

Minimum number of bargaining sets in
the sequence prediction to reach 100% hits

Sequence length netII1 netII2
40 50 10
20 � 10
15 � 50
10 � 50

To conclude this section we will compare netII1 and netII2 neural net-
works which were used in sequence prediction. We have chosen the examples
belonging to connected workstation device class (x12) to perform the com-
parison. This device class is complex enough to be the representative. Thus,
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Figure 5.16: Network netII2 sequence

Table 5.4 shows how many training examples is necessary to obtain 100%
hits in sequence prediction. The lengths of the bargaining sets in x11 device
class are 40.

The number of 40-elements sequences needed to train network netII1
to reach perfect hits is 50. Network netII2 needs �ve times less training
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Figure 5.17: Network netII2 sequence

examples to receive the same result. Moreover, netII2 can reach perfect hits
when trained with 20-, 15- or even 10-element sequences. Network netII1
did not reach the perfect hits but for 20−, 15− and 10− element sequences
what is indicated by `�'. Table 5.5 shows that netII2 needed the same time
to be trained with 50 sequences consisting of 10 elements as network netII1
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Table 5.5: Time to reach perfect hits of x12 device class trained with 40/x
sequences

Time of training the bargaining sets in
the sequence prediction to reach 100% hits

Sequence length netII1 netII2
40 9.48s 5.04s
20 � 3.03s
15 � 12.45s
10 � 9.40s

with 50 sequences consisting of 50 elements. It may be seen that network
netII2 reaches better results than netII1. Moreover, it can be trained using
sequences which lengths are several times smaller then the sizes of bargaining
sets.

5.6 Learning utilization in negotiation

Table 5.6 shows the payo�s of the device (P1) and the document (P2) for var-
ious �tness levels of the network, indicating how well the network is trained
to recognize sequences, the fair result and the payo� got by the document
not trained at all (0% �tness level). In each negotiation experiment the
device negotiated using Algorithm 1.4, which does not use any AI at all,
whereas the document used Algorithm 4.8. The respective payo�s of the
negotiation between proactive documents without distinguishing their sub-
classes, i.e. without considering speci�c ordering of their trees and the x11
device (not connected workstation) are listed in Table 5.6 and depicted in
Figure 5.18.

In Section 5.3 we have described how the tests were generated. We have
listed there the dictionary �les, where the values necessary to decode o�ers
are stored. Having an encoded o�er as well as the device and the document
dictionary, we can calculate the payo�s as shown in Tables 5.6 and 5.7.
Encoding of o�ers and the way of calculating the payo�s have been described
in Chapter 4 in Sections 4.1.1 and 4.1.4.

Table 5.7 shows the payo�s got when trained proactive documents, nego-
tiated with the x22 device class (connected laptop). The table shows various
�tness levels of the network, from 100% to the completely untrained network
(0% �tness level) and two fair results. It is because Equation 1.7 has two
fair solutions, i.e. 0.43 · 0.44 = 0.44 · 0.43 (see the respective fair values for
P1 and P2 in Table 5.7).
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Table 5.6: Payo�s got when negotiating with the x11 device class
Fitness level Fair 100% 99.89% 98.62% 97.93% 97.82%
P2 payo� 0.52 0.47 0.4608 0.4608 0.4608 0.4608
P1 payo� 0.77 0.36 0.384 0.384 0.384 0.384

Fitness level 97.36% 96.09% 93.68% 90.69% 81.49% 0%
P2 payo� 0.4608 0.4608 0.4736 0.2949 0.4736 0.2539
P1 payo� 0.384 0.384 0.36 0.2457 0.36 0.2918
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Figure 5.18: Impact of learning on the negotiation process based on x11
device class
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Figure 5.19: Impact of learning on the negotiation between the proactive
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The data presented in Tables 5.6 and 5.7 indicate clearly that payo�s got
by trained documents are signi�cantly better than the ones got by documents
without any learning capabilities. Moreover, the better learning (higher �t-

139



Table 5.7: Payo�s got when negotiating with the x22 device class
Fitness level Fair(1) Fair(2) 100% 95.75% 90.93%
P2 payo� 0.44 0.43 0.2624 0.2368 0.2816
P1 payo� 0.43 0.44 0.368 0.36 0.344

Fitness level 86.08% 80.65% 79.91% 58.93% 0%
P2 payo� 0.2368 0.2368 0.20992 0.1536 0.013
P1 payo� 0.36 0.36 0.2944 0.3328 0.014

ness level) the higher the payo� is.
Higher payo� values shown in Figures 5.18 and 5.19 indicate less negotia-

tion stages. For example, the outcome of the negotiation without AI shown
in Table 5.7 was agreed in the 31st move (15th stage), thus discounted 15-
times. In general, the obtained improvements follow from �nding solution in
less number of stages.

Figures 5.18 and 5.19 indicate that capability of the document to learn,
i.e. �tness level > 0% allows it to get better payo�s than it would not be
trained at all.

5.7 Assessment of sequence clustering

In the most cases considered earlier in this Chapter the problem of recog-
nizing the device class could be solved by the occurrence vector clustering.
One exception is distinguishing x11 and x21 device classes, as shown in Sec-
tions 4.1.1 and 4.1.4. Then sequence clustering can be used.

Sequence clustering has also di�erent application from occurrence vector
clustering. The occurrence vector approach can distinguish device classes
before a bargaining process starts whereas the sequence clustering one can
do it during the bargaining process � in the most cases in the �rst stage of
a game, however it is possible to notice the di�erence between device classes
in the later stage � look at Table 5.8.

The following experiment involves sequence clustering. We used the train-
ing examples of Group 2, since smaller sequences (as in the examples of Group
1), makes learning more di�cult, as indicated by Figure 5.17(a). Moreover,
examples of Group 1 could not pass the tests of occurrence vector learning,
as explained in Section 5.4.

The outcomes of the experiment are listed in Table 5.8. First, networks
x11netII2 and x21netII2 were trained using sequences built of all elements
of the bargaining set (8/8) and using 200 training bargaining sets. It could
make the networks to reach 100% �tness. Then the networks were trained
using two element sequences (8/2). The number of training examples was
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gradually decreased from 200 to 10. With that, �tness levels between 99%
and 70% were reached. Next Algorithm 4.4 was used for negotiations. We
can see that when the networks were trained using 400 training examples
(even with just two element sequences) 100% hits were obtained (the percent
of hits is measured in the same way as in the case of the sequence prediction).

The diagram presented in Figure 5.20 shows results of the experiment in a
graphical form. The cumulative height of the column indicates a percentage
of the correct guesses in each consecutive stage. It can be seen that at most
three stages were needed to obtain the solution (except one case where four
stages were needed).
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Figure 5.20: Sequence clustering

The �rst two rows include headers of o�ers. The upper one indicates the
size of the bargaining sets and the lengths of the sequences, the lower one
indicates numbers of training examples.

The row labeled `recognition %' indicates how many percent of the rela-
tions, which were created from the examined sequences, were correctly rec-
ognized. They were calculated in the same way as in the case of the sequence
prediction.

The next three rows, labeled `hit', `fail' and `no solution' denotes results
of sequence clustering: hit means the device was recognized, fail means the
device was recognized incorrectly, no solution means the device was not rec-
ognized.

The last four rows show percent of cases whose solution were found.
The conclusion drawn from their experiment is the following: to obtain
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Table 5.8: Sequence clustering
Bargaining set size
/sequence length 8/8 8/2 8/2 8/2 8/2 8/2 8/2

Samples 400 400 200 100 80 40 20
recognition % 100% 99.06% 96.34% 91.2% 86.07% 80.8% 70.45%

hit rate 100% 100% 95% 85% 82.5% 55% 47.5%
fail rate 0% 0% 2.5% 2.5% 10% 17.5% 20%

no solution % 0% 0% 2.5% 12.5% 7.5% 27.5% 32.5%
1-st stage % 72.5% 70% 70% 70% 80% 70% 85%
2-nd stage % 25% 30% 22.5% 20% 20% 20% 12.5%
3-rd stage % 2.5% 0% 5% 10% 0% 10% 2.5%
4-th stage % 0% 0% 2.5% 0% 0% 0% 0%

100% accuracy in recognizing devices only 400 training examples are neces-
sary. Moreover, only the �rst two elements of the 8-element sequence were
enough to recognize the correct device class.

Sequence clustering may be also compared to the occurrence vector clus-
tering. The sequence clustering examples presented in the current Chapter
concern Group 2. Results presented in Table 5.2 show that in the case of net-
work netI1 1000 training examples were necessary to distinguish the correct
device class. Thus 1000 examples belonging to all 10 device classes mean 100
examples of one device class. In the case of sequence clustering 400 examples
belonging to two device classes means 200 examples of one device class. So
we can see that occurrence vector clustering requires relatively less training
examples (with regard to one device class).

5.8 Assessment of the intelligent negotiation al-

gorithms

This section presents experiments which summarizes development presented
in this Thesis. The negotiations between documents belonging to four types
of pro-active documents (documents d311 . . . d322 according to the scheme
outlined in Figure 5.5) and ten device classes x11, . . . , x52 (according to
Table 3.6) were exercised with 2000 bargaining sets generated according to
the policy rules de�ned in Tables 3.7 � 3.11. Next the respective sets of
compatible option trees were generated and 1600 negotiation exercises were
performed, where documents were trained to recognize devices and sequences.
We generated 20 option trees of each pro-active document class and of each
device class. Since all generated option trees of documents and devices were
compatible, 80 bargaining sets were created for each pair document � device
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(4 documents negotiated with 20 devices). Because there were ten device
classes the number of such pairs was 800. Each negotiation utilized two
algorithms � with and without AI, so the number of exercises was 1600.
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Figure 5.21: Comparing contract prediction for various device classes

The main purpose of these experiments was the comparison of learning
utilization in negotiation with each device class. So similar learning condi-
tions for each device class had to be generated. That was why the training
examples belonging to Group 3 (the sizes of the training sequences were equal
to the lengths of the bargaining sets) were used.

The intermediate result of this comprehensive experiment is presented on
the diagram in Figure 5.21. It shows results of the sequence prediction of all
device classes with the use for network netII2.

The �rst conclusion is that all results are really good. The worst hit rate
(in the case of x51 device class) was above 96%. In the case of using 50 or
more training examples the hit rate reaches maximum.

Since Group 3 were used in these tests, the sizes of the training sequences
di�ered, depending on the device class. The shorter sequences were x52, x42
and x41, and these device classes gave worse results within the range of 10
� 40 training sequences. Although, even the `worse' results were, in fact,
acceptable. The results of the negotiations between documents and devices
are presented in Table 5.9.

As mentioned before (see page 119), the value of the discount factor of
both parties was assumed δ1 = δ2 = 0.8. In the negotiations two algorithms
were used: Algorithm 1.4 that did not use any AI and Algorithm 4.8 that
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Table 5.9: Utilization of learning in negotiation
dev.class x11 x12 x21 x22 x31
AI used no yes no yes no yes no yes no yes
d321 5.74 6.84 1.28 6.67 7.70 7.97 4.68 7.36 7.73 8.24

d322 7.49 7.91 2.88 7.2 5.40 7.05 2.27 6.81 5.40 7.35

d311 9.77 10.08 4.22 6.96 6.73 8.58 0.33 4.72 6.76 9.00

d312 7.64 8.92 2.71 6.35 5.10 8.07 0.09 4.05 8.99 9.71

dev.class x32 x41 x42 x51 x52
d321 5.70 7.11 9.74 9.74 7.33 8.66 10.37 10.39 9.57 9.80

d322 2.19 6.10 8.67 8.83 4.67 7.71 9.41 9.56 8.58 9.00

d311 3.66 5.57 10.28 10.47 5.38 6.98 11.32 11.32 7.85 8.95

d312 4.70 6.32 10.60 10.74 6.29 7.42 11.66 11.42 9.25 9.51

used neural networks. Since 20 negotiations between a document and the
device of the same class were run, their payo� were totaled and placed in
Table 5.9. The table lists the total values of payo�s agreed by each tested
pair of negotiators with documents respectively not trained (Algorithm 1.4)
and trained (Algorithm 4.8). It may be seen from Table 5.9 that:

1. The highest gain when using machine learning was reached by doc-
uments negotiating with x12 (connected workstation) and x22 (con-
nected laptop) devices, whereas the lowest one with x41 (smart phone)
and x51 (cellular phone) device classes.

2. In general, higher gains could be reached by documents when negoti-
ating with connected rather than disconnected devices (see Table 3.6).

The reason is that x12 and x22 device classes exploit the most of the possible
attribute values, i.e. their dictionaries consist of more di�erent symbols than
the other device classes. Also dictionaries of the connected devices have more
symbols, providing a richer material to train documents.

5.9 Implementability considerations

To this point all experiments indicated a signi�cant improvement of the bar-
gaining process when document-agents were properly trained to recognize
their opponent device class and sequences speci�c to it. However, in all 1600
experiments simulation was used instead of real agents � implemented as sep-
arate objects of code that have to travel on their own in a distributed system
of execution devices. The question arises whether limited CPU and RAM
resources of a mobile agent may prevent e�ective training of the agent to

144



generalize knowledge on its opponents, as well as make it unable to use that
knowledge to recognize opponents and contracts they may prefer. An alter-
native would be carrying the individual negotiation history by each agent, or
keep it at some remote site to consult during negotiation. It however would
be unrealistic, as the size of a typical bargaining set may be calculated as
the product of the number of symbols provided for each respective attribute
value, of the magnitude of 103, while the upper bound for the number of
possible negotiation histories is a product of their respective permutations,
of the magnitude of 1012 [32].

Also the negotiation histories kept at some remote site may not always
be accessible to the agent during negotiation, as the execution device may
not allow the agent to connect to any network.

Therefore our intelligent document-agent should be equipped with the
following software:

1. One netI1 or netI2 neural network trained to recognize device classes.

2. Ten netII1 or netII2 neural networks, each one trained to recognize
sequences.

Based on experiments described earlier in the Chapter network netI2
(shown in Figure 5.2) proved to perform better. Its size in bytes is the sum
of all weights and biases times the number of bytes needed to represent a
short �oating point number, as listed in Table 2.12.

Calculation of the number of �oating point numbers needed to represent
network netI2 is the following:

• Layer 1 consists of 20 neurons (see Figure 5.2). Each neuron of the
network is stimulated by 82 inputs. It gives 82 weights and 1 bias, so
20 · 83 = 1660 �oating point numbers are required.

• Layer 2 consists also of 20 neurons. Each neuron of the network is
stimulated by outputs of the �rst layer. Each neuron has 20 weights
and 1 bias, so 20 · (20 + 1) = 420 �oating point numbers are required.

• Layer 3 consists of 9 neurons. Each neuron is stimulated by 20 outputs
from the second layer, so (20 · 9) + 9 = 189 �oating point numbers are
required.

From the above, we get the total of 2269 �oating point numbers needed to
represent all weights and biases of network netI2.

Calculation of the weight of netII2 network (see Figure 5.4) are the fol-
lowing:
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• Layer 1 consists of 10 neurons. Each neuron is stimulated by 174 inputs.
It gives 174 weights and 1 bias, so 10 · (174 + 1) = 1750 �oating point
numbers are required.

• Layer 2 consists of 1 neuron. The neuron is stimulated by 10 outputs
from the �rst layer. The neuron has 10 weights and 1 bias. It gives so
1 · (10 + 1) = 11 �oating point numbers.

From the above we get for one network the total of 1766 �oating point num-
bers. Since as mentioned above the document agent would need ten networks
to recognize all possible sequences. In result we get the total of 17660 �oating
point numbers needed to represent of all weights and biases of ten networks
netII2.

Finally, in order to properly recognize the one of ten devices, and then a
sequence related to one of them, it needs 11 networks, so it must be able to
carry 19929 �oating point numbers to use Algorithm 4.8 during negotiation
with devices it may arrive to.

For example if 32-bit �oating point Java arithmetic is used, the document
would need to carry an extra load of 32 · 19929 = 637728 bits or nearly 80
KB of extra load. This amount is much less than the typical negotiation
history that the document might use for intelligent negotiations with the
device. Moreover, carrying the latter makes it vulnerable for the analysis
by the receiving device, thus would violate our assumptions on privacy of
document preferences. Besides, the extra load of slightly less than 80 KB
carried by the document-agent is practically nil, given the size of documents
measured in MB that are usually sent as email-attachments today. Since
the prototype MIND implementation uses email as the transport layer [20],
neural networks provide a very attractive mechanism to augment MIND with
the intelligent negotiation capability.
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Chapter 6

Thesis summary

In the Thesis we have investigated the issue of augmenting proactive docu-
ments with the negotiation capability, which can be their signi�cantly new
feature, not considered yet in the area of document engineering. However, the
concept of negotiating agents has been around for a longer time, and there
is an impressive publication record on the research on both: game theoretic
models [12] of negotiation and the use of machine learning do improve the
overall process [11]. Below we provide a comprehensive survey of the most
relevant ideas published in the world literature on the subject. It will allow
us to compare and contrast the development of this Thesis to the current
state of the art, and evaluate the concept of negotiating documents.

6.1 Related work

The active document that can negotiate technical capabilities of its execution
device, as described in the paper, is a novel concept in the context of docu-
ment engineering [32]. It has roots in the problem discovered a decade ago in
connection to implementing the ebXML standard for e-commerce [16]. The
standard enables business parties to engage in a transaction by providing
means to interchange technical information needed to reach an agreement on
terms of the transaction. Expectations of each party are speci�ed in ebXML
by the Collaboration-Protocol Pro�le (CPP) document, which is an XML
tree composed of a certain number of prede�ned elements and attributes.
When two parties want to conduct business with one another, they have to
reconcile their CPPs to form a Collaboration-Protocol Agreement (CPA). The
CPA document (also an XML tree) is used to con�gure the ebXML system
to execute the transaction as agreed by the parties.

When parties involved in a business transaction have di�erent expecta-
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tions about the required services and their technical parameters, reconcili-
ation of con�icting CPPs would require negotiation. Although automated
negotiation has been postulated by OASIS [59] as a method for resolving
such con�icts, the speci�cation of the CPA negotiation process has never
been made complete [44].

The reason for that has probably been the fact that reconciliation of
con�icting CPPs requires automated multi-attribute negotiation strategies,
constituting a relatively fresh subject of research [40]. To the best of our
knowledge there was only one solution proposed in the literature that ad-
dressed the negotiation problem in ebXML [25]; it adopted the concept of
modeling the negotiation problem as the Constraint Satisfaction Problem
(CSP) [38]. Several attributes of the standard CollaborationRole element of
CPP, two more elements de�ning the lifespan of CPA and two attributes of
the element ConversationConstraits of CPA [16] could be negotiated. One
disadvantage of the CSP based negotiation is the relatively high cost of cal-
culating the new o�er. Each respective party Pi makes a concession by sub-
tracting from the value of its recent o�er some concession value ∆ calculated
by a function speci�cally de�ned for the concession strategy assumed by the
party, i.e. formally by calculating v = Ui(o

j+1) = Ui(o
j)−∆. Next Pi must

select a set of new instantiations of items of the new o�er oj+1 by resolving
the equation v = Ui(o

j+1). It requires to assume �rst the class of the utility
functions, for which a solution method is to be used � usually a weighted
sum of utilities of the individual items is assumed. This approach, however,
limits the capability of execution devices to negotiate with document agents
that use only the prede�ned class of utility functions.

Our option trees introduced in the paper generalize the concept of CPPs,
allowing document agents to specify interest in any services and technical
parameters of execution devices they may want to execute during the work-
�ow. Moreover, they provide a computationally cost-e�ective data structure
to represent preferences of negotiating parties, without making any speci�c
assumptions on the class of their utility functions. This representation al-
lowed us to model automated bilateral negotiation between document agents
and execution devices with a (really) simple bargaining game (SBG) [35]. Ne-
gotiation is multiple-issue, no information about preferences of the opponent
is required by either party nor any assumption has to be made on the class of
functions used to calculate utility of o�ers � including their discrete values.
The only assumption on the negotiation process is that parties start with
the o�er of their highest utility and make gradual concessions by selecting
consecutive o�ers from their arbitrarily sorted option trees. One advantage
of our automated negotiation model is that SBG can be played by document
agents and execution devices without any support of external negotiation or
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mediation services. It is very important, since in our implementation of the
agent system documents and devices are often on their own � whenever no
Internet connection is available or is too costly to the owner of the mobile
device, if the cellular network is used.

6.1.1 Multi-issue negotiation

Although a generic approach to the problem of multiple issue negotiation
with no information about the opponent has been proposed in the litera-
ture [40], the formal mathematical proof of the convergence of the mono-
tonic concession strategy, which our SBG implements with option trees, was
not provided until [70]. The only property of utility functions of negotiating
parties assumed in the latter Reference is that they have to be concave, due
to the speci�c geometric interpretation of the space of o�ers A. The idea of
that proof has been to show that the distance between the o�ers of the two
negotiating parties decreases in each round until the contract is agreed. The
key notion is the indi�erence surface, de�ned as the set of all o�ers of the
lowest utility a given party Pi may accept in the current round; all o�ers of
the higher utility lie inside the surface in the m-dimensional space of o�ers
A. Because each party concedes in each consecutive round, their respective
indi�erence surfaces get closer until they �nally intersect to form the zone of
agreement, where the contract may be found � provided of course that after
making the concession the next least acceptable utility would not be less that
the reservation utility of the party.

This geometrical interpretation may be applied to our SBG game played
by document agents and devices negotiating over option trees. Recall the
example option trees in Figures 3.2 and 3.3 and the history of bargaining over
them listed in Table 3.13. Figure 6.1 illustrates how o�ers and countero�ers
are selected by the negotiating parties � in the manner known in the literature
as the alternating projection protocol [56]. It may be seen that o�ers and
countero�ers, selected by each party according to the amount of concession
either one can accept in the current round are getting closer in the utility
space until the contract (o�er o3) is agreed.

The following observations are in order:

1. o�ers selected by each agent from its option tree are fully bundled, i.e.
each o�er is complete and includes all items being negotiated in every
round;

2. our bargaining set C ∈ A is discrete and option trees provide strictly
monotonic ordering of complete o�ers for each respective negotiating
party;
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Figure 6.1: The alternating projection protocol in SBG.

3. utility values assigned to each o�er in the option tree may be calculated
by the each respective party in any way;

4. there is no reservation utility for either party, as the whole range o�ers
speci�ed by the option tree is negotiated.

Based on the existing literature Observation 1 can provide the argument
in favor of our approach to negotiate complete o�ers instead of negotiat-
ing them item-by-item. According to [28], agents prefer bargaining over all
items simultaneously, rather then separately. Moreover, it has been shown
in [5] that when the probability of negotiation breakdown is low, agents
always prefer to negotiate complete contracts. Since the cost of computing
o�ers and countero�ers during negotiation oven option trees is negligible, the
probability of breakdown in our system of document agents and devices is
virtually nil. This is because the realistic deadlines for completing respective
document work�ow activities are of several orders of magnitude higher that
reading o�ers from the tree or guessing the contract using machine learn-
ing. Moreover, because negotiating parties exchange fully-bundled o�ers the
outcome of our SBG game is Pareto-e�cient [27].

Observation 2 indicates that no speci�c assumptions on the properties of
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utility functions used by document agents and devices to valuate o�ers in
their respective option trees have to made, except to be injective in order
to enable sorting the tree and ensure the monotonicity of preferences. It
simpli�es the graphical interpretation of the monotonic concession strategy
used in SBG (as shown in Figure 6.1), and eludes the assumption on concavity
of utility functions � the property that may not be true in many realistic
settings [63].

Another important conclusion about our approach based on option trees
may be drawn from Observation 3. Note that any utility function may be
used to valuate o�ers in one option tree, even one speci�c function per each
particular o�er. Monotonicity of o�er preferences in the option tree is in fact
the only assumption that the negotiating agent has to make on its opponent.
The linear additive utility function de�ned by Formula 1.5 has been used
by us just to simplify generation of option trees for simulation experiments
and to generate training sets; in any realistic implementation of our system
of (active) document agents, however, option trees of negotiating documents
may be designed with any valuation of o�ers assumed by their originators.

Finally Observation 4 addresses the reservation utility and determines
the existence of the agreement zone and success of the negotiation. Since the
whole range of o�ers speci�ed by the option tree of each party is negotiated,
the agreement zone always exist in SBG, and both parties (the document
and the device) have to concede. It is possible, because of to the embedded
functionality of the document-agent, which can adopt execution of the cur-
rent work�ow activity to the current technical capabilities of the execution
device. In general the document agent is interested in performing the activity
in the best possible way, whereas the execution device is interested in doing
that at the lowest possible cost.

6.1.2 Intelligent negotiation

Our document-agent is augmented with learning capability to improve its
negotiation competence when reaching agreements with execution devices
and to speed-up the negotiation process. In other words, the document can
be taught to �nd the o�er of the value satis�cing both parties in the number
of steps which is less than when just bargaining over the option trees with
the device. This capability is important for negotiation scenarios involving
mobile execution devices, which computational resources are limited � in
particular throughput of the network they can access (if any), or their current
battery load.

The major problem to be solved for making negotiation agents intelli-
gent in the sense mentioned above is the lack of detailed knowledge on the
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opponent and its tactics, making negotiating behavior of the latter hard
to predict. That knowledge must be discovered by analyzing the recorded
historical data about the past behavior of the opponent agent, or when no
negotiation history is available, by implementing mechanisms enabling dy-
namic adaptation of the negotiation agent to the opponent's behavior during
the actual encounter.

Although the problem of machine learning in the area of game theory
has been addressed in the literature for a long time, starting from the works
such as [30] or [36], making the negotiation agent capable to predict its op-
ponent's behavior by learning from interactions is a challenge, because of
the arbitrary complex behavior patterns the agents may exhibit. The good
point to start to study them is the classi�cation of negotiation agents' tac-
tics proposed by [12]: time dependent, where o�ers generated by agents take
into account the amount of time remaining to reach the agreement, resource
dependent, where o�ers depend on the resources consumed so far, and behav-
ior dependent, where the agent imitates the behavior of its opponent. This
classi�cation is useful when building models of the opponent's behavior, se-
lecting their parameters and adopting methods to estimate them based on
available data. These classes of tactics may be mixed in many ways to model
arbitrary complex negotiation behaviors.

The negotiation agent may focus on one or more parameters of its oppo-
nent to directly calculate o�ers that are most likely to be accepted, through
modeling the more general characteristics (factors) of the opponent that may
drive its speci�c negotiation behavior, up to attempting to classify the op-
ponent and its preferences.

Learning of the opponent's parameters has been demonstrated in the lit-
erature with a variety of methods. For example, it has been shown in [69] that
the Bayesian belief network may be utilized by the intelligent agent to learn
the opponent's reservation price in multiple-issue negotiations. Non-linear re-
gression approach was successfully applied to predict the approximate value
of the opponent's deadline and reservation values [26]. Weights of the linear
additive utility function and the reservation price of the opponent can also
be learned, e.g. when based on reinforcement learning, or with a genetic
algorithm, as demonstrated respectively in [29] and in [9].

Modeling by the negotiation agent of the speci�c characteristics of its
opponent to enable the former to adapt to the behavior of the latter, so
that generated o�ers could lead to reaching the agreement faster, may be
represented as the optimization problem. For example, in [67], the best of-
fer in each round is searched in the set of possible o�ers using the particle
swarm optimization (PSO) method [37]. PSO is used to maximize the spe-
cially de�ned objective function, which is parametrized by the time pressure
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and eagerness factors; the latter aggregates history success-or-failure of the
last few transactions. Another example of modeling generation of o�ers as
the optimization problem may be found in [3]. Arbitrary complex behav-
iors may be represented by mixing two characteristics of the opponent: one
related to time and indicating to what extent the opponent responds to its
own time constraints, and another, called imitation, indicating to what ex-
tent the opponent responds to the negotiation agents actions. With these
two characteristics the negotiation may be modeled as a multi-state control
process, so the intelligent agent's task is to determine a sequence of optimal
controls, i.e. to predict future o�ers. One advantage of the optimization
approach proposed in [3] over the one proposed in [67] is a signi�cantly re-
duced number of computations, as the entire solution space does not have
to be searched all over again in each round. The negotiation agent may also
directly attempt to computationally approximate its opponent utility func-
tion, based on the o�ers received so far. For example, it has been shown that
just three regression functions, namely linear, power and quadratic ones, can
successfully estimate the opponent's utility values during the encounter, with
no prior training data [52].

Machine learning mechanisms may also be directly employed to generat-
ing o�ers by negotiation agents� in particular there exists a quite impressive
record of publications on using neural networks for learning from past o�ers
and assist in selecting appropriate tactics [62], [53], [54], [41], [49], [50], [55],
[1]. It is generally assumed in the literature that no a-priori knowledge on
opponents exists, thus proper o�-line training of the network with historical
data is not possible, and on-line training during the actual encounter must
be performed instead. In consequence major research e�orts on the learning
capability of negotiation agents have been concentrating on predicting bet-
ter o�ers, i.e. o�ers that may faster lead to the contract, based on the o�ers
submitted by the opponent during some initial series of rounds of the actual
encounter. Two problems arise with this approach. One is how many rounds
are needed to train the network during the encounter in order to enable it
to generate the o�er which may successfully conclude the negotiation, and
another at what computational cost it can be achieved, i.e. what the min-
imal size of the network may su�ce. Especially the latter is important for
any realistic implementation of mobile negotiation agents, which usually lack
any signi�cant computational resources. Of course, solutions based on exter-
nal services may be considered to aid the negotiation agent in that respect,
such as NaaS (negotiation-as-a-service) proposed in [1], but it may work only
when the document agent has (or is allowed to) access the network from its
current execution device. Some hints may be found [53], presenting results of
experiments with neural networks of various sizes in a single issue bilateral
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negotiation � in encounters of the number of rounds between 100 and 200
the network required just three neurons in the hidden layer and one in the
output layer to predict the contract.

Compared to the above our approach also relies on neural networks, as
they have been demonstrated to require moderate computational and storage
resources, but prefers training of document agents before rather then during
the actual encounter with the device. In general, neural networks should
perform far better than they are trained o�-line, owing to the obviously
much reacher set of o�ers used to train the network.

The following observations are on order:

1. The content of option trees is predetermined by the set of classes of
execution devices that the document-agent may encounter during its
work�ow;

2. Each execution device have some generic preferences imposed by the
policy speci�c to its class.

Based on Observation 1 it may be argued that o�ers in the bargaining
set of each respective class of execution devices combine values of various
attributes in the speci�c way. In consequence, if only the training set includes
su�ciently many o�ers from bargaining sets of each respective devices, the
network may be trained to recognize devices based on the o�ers returned
during the actual encounter.

Observation 2 indicates that predicting by the negotiation agent of the
exact sequence of o�ers leading to the agreed contract � the problem ad-
dressed before in [3], but from from di�erent premises � may be aimed at
recognizing the actual sequence of o�ers based on the ordering of initial of-
fers during the encounter. It requires the document to be trained o�-line to
classify sequences according to speci�c policies of device classes.

6.2 Research contribution

The research statement:

Selection of negotiation strategies based on the bargain-
ing model enables e�ective generation of collaboration
agreements between con�icted parties.

listed in Chapter 1 on page 13 and investigated through the Thesis has been
proved. Moreover, it has been shown that the monotonic concession strategy
modeled as a Simple Barganing Game may e�ectively utilize machine learning
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mechanisms to speed-up the negotiation process at the relatively low cost.
In particular the following novel concepts has been introduced in this Thesis
to the area of document engineering:

1. Augmenting active documents with the negotiation capability to re-
solve con�icts in setting up the execution context with their execution
devices [32].

2. Modeling the set of attributes of the execution context using option
trees [31], [35].

3. Modeling the negotiation as a simple bargaining game and developing
three algorithms to play it (naive, recursive and estimated bargain-
ing) [33], [35].

4. Improving the estimated algorithm with intelligent bargaining utilizing
machine learning of the document's opponent preferences based on:

• the notion of policies providing ordering of attribute preferences [33],

• neural networks that can recognize device classes and sequences [34].

5. Evaluating estimated and intelligent bargaining approaches in a series
of experiments, that proved [33], [34]:

• both approaches to be realistic in the context of active documents,

• e�ective in �nding a solution to the con�ict,

• intelligent bargaining based on neural networks performing bet-
ter in predicting contracts during negotiation then its estimated
bargaining counterpart.

6.3 Future work

The a priori approach considered in this Thesis allows learning the agents
before the negotiation process. An interesting question is whether agents
can acquire newq knowledge during the actual negotiation and bring it to
the agency to share with other agents. This is the a posteriori approach just
mentioned in this Thesis. The future work should take a closer look at this
concept. Certainly, di�erent machine learning mechanisms should be consid-
ered., namely reinforcement learning or genetic methods. This prospect is
currently investigated by the author.
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Appendix A

Supplementary data

All the respective �les are included in the enclosed CD for their voluminous
size. The included CD content is speci�ed in the README �le.
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Appendix B

Supplementary algorithms

Algorithm B.1: discount

1 Data: discount depth n,
2 player's 1 discount factor d1,
3 player's 2 discount factor d2

4 Result: value of the discount factor of the given depth
5 if n = 1 then
6 return (1− d2);
7 else
8 return d1(1− discount(n− 1, d1, d2));

Algorithm B.2: discountFactorsEstimation

1 Data: the map of discount factors dfmap,
2 Negotiation history of the given device history
3 Result: value of the discount factor δ
4 Λ← 0;
5 foreach negotiation in history do
6 tmp← getLambda(negotiation);
7 if tmp > Λ then
8 Λ← tmp;

9 δ ← getHighestKey(Λ, dfmap);
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