

The author of the PhD dissertation: Jakub Flotyński
Scientific discipline: computer science

DOCTORAL DISSERTATION

Title of PhD dissertation: Semantic Modeling of Interactive 3D Content

Title of PhD dissertation (in Polish): Semantyczne modelowanie interaktywnych treści 3D

Supervisor

signature

Second supervisor

signature

dr hab. inż. Krzysztof Walczak, prof. nadzw.
UEP

<Title, degree, first name and surname>

Auxiliary supervisor

signature

Cosupervisor

signature

<Title, degree, first name and surname> <Title, degree, first name and surname>

Gdańsk, 2015

Acknowledgements

I would like to thank my supervisor Professor Krzysztof Walczak for the excellent guidance and support
throughout the work on the dissertation.

I would also like to express my thanks to Professor Wojciech Cellary for the valuable remarks that
improved the final shape of the dissertation.

I say a word of thanks to the members of the Department of Information Technology at the Poznań
University of Economics for the collaboration within a few years.

Contents

Contents . 4

1. Introduction . 5

2. Creation of Interactive 3D Content . 10

2.1. Languages for 3D Content Creation . 10
2.1.1. Imperative Programming of 3D Content . 10
2.1.2. Declarative Programming of 3D Content . 11

2.2. Visual Environments for 3D Content Creation . 11
2.3. Multi-platform Representation of 3D Content . 14
2.4. Summary . 15

3. Semantic Modeling of 3D Content . 16

3.1. Semantic Content Representation . 16
3.2. Techniques for Representing Content Semantics . 17
3.3. The Concept of Semantic Modeling of 3D Content . 18
3.4. Taxonomy of Approaches to Semantic Modeling . 20

3.4.1. Taxonomy of Schemes . 21
3.4.2. Taxonomy of Methods and Tools . 22

3.5. Schemes for Semantic 3D Content Representation . 23
3.5.1. Concrete 3D Content Representation . 25
3.5.2. Conceptual 3D Content Representation . 27
3.5.3. Multi-layered 3D Content Representation . 30

3.6. Methods and Tools for Semantic Modeling of 3D Content . 31
3.6.1. Methods of Semantic Modeling . 33
3.6.2. Tools for Semantic Modeling . 36

3.7. Summary . 40

4. The SEMIC Approach . 42

4.1. Motivations and Requirements . 42
4.2. Outline of the SEMIC Approach . 43

5. The SEMIC Semantic 3D Content Model . 46

5.1. Overview of the SCM Model . 46
5.2. Semantic Web Definitions . 48
5.3. SCM Definitions . 50
5.4. Concrete 3D Content Representation . 52

5.4.1. Overview of Concrete 3D Content Representation . 52
5.4.2. Concrete Modeling Layers . 53
5.4.3. Formal Model of Concrete 3D Content Representation 56

5.5. Conceptual 3D Content Representation . 58
5.5.1. Overview of Conceptual 3D Content Representation . 58
5.5.2. Formal Model of Conceptual 3D Content Representation 59

5.6. Mapping 3D Content Representations . 59
5.6.1. Overview of Representation Mapping . 59
5.6.2. Mapping Concepts . 60

2

5.6.3. Formal Model of Representation Mapping . 61
5.7. Transformation of 3D Content Representations . 62

5.7.1. Overview of Transformation . 62
5.7.2. Transformation Concepts . 63
5.7.3. Formal Model of Transformation . 66

6. The SEMIC Semantic 3D Content Creation Method . 69

6.1. Outline of the SCCM Method . 69
6.2. Step 1: Designing a Concrete 3D Content Representation . 71

6.2.1. The Concept of Designing Concrete Representations . 71
6.2.2. Example of Designing a Concrete Representation . 72

6.3. Step 2: Mapping the Concrete 3D Content Representation to a Domain-specific Ontology 73
6.3.1. The Concept of Mapping Representations . 73
6.3.2. Mapping Patterns . 74
6.3.3. Mapping Guidelines . 76
6.3.4. Example of Mapping Representations . 79

6.4. Step 3: Designing a Conceptual 3D Content Representation . 80
6.4.1. The Concept of Designing Conceptual Representations 80
6.4.2. Example of Designing a Conceptual Representation . 81

6.5. Step 4: Expanding the Conceptual 3D Content Representation 82
6.5.1. The Concept of Expanding Conceptual Representations 82
6.5.2. The Expanding Algorithm . 83
6.5.3. Example of Expanding a Conceptual Representation . 84

6.6. Step 5: Customizing the 3D Meta-Scene . 85
6.6.1. The Concept of Customizing Meta-Scenes . 85
6.6.2. 3D Content Customization Patterns . 88
6.6.3. The Customization Algorithm . 91
6.6.4. Example of Customizing a Meta-Scene . 92

6.7. Step 6: Generating Platform-specific 3D Content Representations 94
6.7.1. The Concept of Generating Platform-specific Representations 95
6.7.2. The Transformation Algorithm . 96
6.7.3. Example of Generating Platform-specific Representations 98

7. The SO-SEMIC Environment . 102

7.1. System Architecture . 102
7.1.1. Client . 102
7.1.2. Server . 105

7.2. The Concrete Design Module . 106
7.2.1. Selecting a Repository of X3D Components . 106
7.2.2. Creating Concrete Components . 108
7.2.3. Inserting Concrete Components into a Scene . 109
7.2.4. Selecting Concrete Components . 109

7.3. The Mapping Module . 110
7.3.1. Creating Descriptive Classes . 110
7.3.2. Creating Mapping Data Properties . 111

7.4. The Conceptual Design Module . 111
7.4.1. Opening Conceptual Representations . 112
7.4.2. Creating Domain-specific Objects . 113
7.4.3. Manipulating Domain-specific Objects . 113
7.4.4. Removing Domain-specific Objects . 113

7.5. The Customization Module . 113
7.5.1. Creating Sub-Class Selectors . 114

3

7.5.2. Selecting Domain-specific Objects for Presentation . 115
7.6. Multi-platform 3D Content Representation Libraries . 115

7.6.1. 3D Content Representation Languages . 115
7.6.2. Transformation Description . 115
7.6.3. The Representation Compiler . 116

8. Evaluation of SEMIC . 117

8.1. Qualitative Evaluation . 117
8.1.1. Aspects of 3D Content . 117
8.1.2. Conceptual 3D Content Creation . 119
8.1.3. Knowledge-based 3D Content Creation . 119
8.1.4. Multi-platform 3D Content Creation . 119
8.1.5. The Use of 3D Content in Content Repositories . 120

8.2. Quantitative Evaluation . 120
8.2.1. The Semantic 3D Content Model . 120
8.2.2. The Semantic 3D Content Creation Method . 128
8.2.3. Computational Complexity of the Algorithms . 134
8.2.4. Performance of the Algorithms . 138

8.3. Discussion . 140

9. Conclusions . 142

Abbreviations . 145

Bibliography . 147

List of Figures . 159

List of Tables . 162

Listings . 163

4

1. Introduction

Widespread use of interactive 3D technologies, such as virtual (VR) and augmented (AR) reality,
has been enabled by the significant progress in hardware performance, the rapid growth in the available
network bandwidth as well as the availability of versatile input-output devices. VR/AR systems become
increasingly popular in various application domains, such as education, medicine, training, tourism,
entertainment, social media and cultural heritage. In comparison to other types of systems, VR/AR
systems are equipped with more advanced user interfaces, which offer the possibility of presenting data
in the form of animated three-dimensional models with complex behavior, permit flexible interaction of
users with the presented models and enable combination of the presented models with a view of the real
world.

The primary element of VR/AR systems, apart from interface technologies, is interactive
three-dimensional (3D) synthetic content. A number of programming libraries (e.g., OpenGL [9],
Direct3D [3], Java3D [186], WebGL [69] and Away3D [2]) have been developed to enable imperative
programming of 3D content with widely-used languages (e.g., C++, Java, JavaScript and ActionScript).
Imperative programming of 3D content relies on the specification of subsequent steps that must be
performed to achieve the desirable presentational effects. For instance, to put poles on the roofs of
buildings in a 3D city model, all the buildings need to be processed in a loop. Putting the poles is
performed explicitly by an algorithm that must be implemented by the content author. A different
approach is employed by declarative languages, such as VRML [222], X3D [223], XML3D [16] and
COLLADA [43]. Declarative programming of 3D content is based on the specification of the desirable
effects that must be achieved, instead of the steps that must be accomplished to achieve the effects. For
instance, a pole can be associated with a building of a particular class. Then, putting the poles on the
roofs is performed implicitly, on the basis of the constraint, by a reasoning algorithm that is typically not
implemented by the content author.

Interactive 3D content is characterized by diverse aspects such as geometry, structure, space,
appearance, animation and behavior. The diversity of the aspects, however, makes the creation of
interactive 3D content much more complicated than the creation of other types of web content such
as web pages, images, audio and video. Therefore, the potential of VR/AR applications accessible
on the web can be fully exploited only if efficient methods of modeling interactive 3D content are
available. A number of visual environments have been developed for modeling 3D content. Advanced
environments, which are intended for professional users (e.g., Blender [25] and 3ds Max [82]), offer rich
capabilities of designing various content elements (such as geometry, structure, space, appearance and
animation) with complex behavior described by imperative scripts. However, the complexity of such
environments requires author’s expertise in 3D modeling. 3D content creation may be facilitated by
narrowing the domain of application and the set of available operations. Environments of this type (e.g.,
Ghost Productions [48], Sweet Home 3D [65] and AutoCAD Civil 3D [23]), which have been designed
for domain experts (e.g., physicians, interior designers and engineers), provide tools enabling relatively
fast and efficient modeling, without requiring users’ extensive experience in computer graphics. This
approach, however, significantly reduces the generality of the method. Regardless of the generality of

5

the modeling method used, visual content creation with the aforementioned approaches demands user’
knowledge of issues related to computer graphics, and it requires the modeling of all content components
and properties to be presented.

Further simplification of 3D content creation requires separation of concerns between users with
different expertise in 3D modeling, who are equipped with different modeling tools. Previous works
in this area are based on parametrized templates (e.g., [228, 233, 234]) and permit content composition
from reusable elements (e.g., [229,230,232]). In such approaches, different modeling tasks are separated
between experts in 3D modeling and domain experts. Such approaches significantly facilitate modeling
of 3D content, but they still have important limitations, which follow from their orientation on computer
graphics instead of a particular application or domain.

Further progress in modeling of 3D content is possible through the use of semantic techniques
[218,248]. The research on the semantic web was initiated by T. Berners-Lee and the W3C (World-Wide
Web Consortium) in 2001 [85]. This research aims at the evolutionary development of the current web
towards a distributed semantic database linking structured content and documents. Semantic description
of web content makes it understandable for both humans and computers achieving a new quality in
building web applications that can ’understand’ the meaning of particular elements of content as well
as their relations. This leads to much better methods of indexing, searching and analyzing content. The
basis for the description of content and documents on the semantic web are ontologies. An ontology is
a specification of a conceptualization [147]. Ontologies define such concepts as classes, properties and
individuals as well as relations between them in a formal way. Applying the semantic web techniques to
3D web content is an important step towards building the 3D internet [76].

Semantic web techniques can be also used for modeling 3D content. The use of semantic techniques
for modeling 3D content provides several important advantages that go beyond the current state of the
art in 3D content creation. First, it enables declarative representation of 3D content [143], which is
typically based on facts and rules. The order of facts and rules in declarative content representations
is irrelevant, in contrast to the order of instructions in imperative content representations, e.g., loop,
switch and goto instructions. In addition, facts and rules express desirable presentational effects using
logical statements and implications. Therefore, their creation may be more intuitive for non-IT-specialists
than programming in an imperative language. Moreover, the use of semantic techniques for 3D content
representation can significantly facilitate management, analysis and processing of the content performed
by web agents and search engines.

Second, semantic techniques enable conceptualization of 3D content at different levels of abstraction.
Semantic concepts (e.g., classes, properties and individuals) defined in ontologies and knowledge bases
may be specific to different applications and domains (medical data, virtual museum, interior design,
building information models, etc.) or specific to computer graphics. Although the available programming
languages and visual environments permit creation of conceptual 3D content representations at different
levels of abstraction, such representations are expressed imperatively. It is not convenient for knowledge
extraction and reasoning on 3D content, thereby it limits the possibilities of management, analysis and
processing of content on the web.

The use of concepts related to different applications and domains, representing 3D content
at conceptual levels of abstraction, facilitates content creation by users with different skills and
experience—domain experts and IT-specialists. Due to the use of semantic techniques, different users
can collaborate on modeling by completing substantially different tasks related to different aspects of
the content and requiring different modeling tools. Although the available approaches permit separation
of tasks between different users (e.g., creating different content elements or writing different parts of

6

code), the tasks are typically specified on a common level of abstraction, thus requiring similar expertise
from all involved users (e.g., the use of a common visual environment or language) and limiting the
possibilities of involving experts in different domains.

Furthermore, semantic techniques enable discovery of tacit knowledge (classes and properties of
individuals), which is not explicitly specified, but is the logical implication of facts and rules that have
been explicitly specified in the modeled content representation. Tacit knowledge can be automatically
extracted from 3D content representations, liberating developers from the requirement to specify all
details of the created content [201, 202]. This aspect of modeling content is available neither for
imperative languages, including the languages used in the visual environments, nor for declarative
languages that have not been intended for reasoning on data, e.g., VRML and X3D.

Next, the use of semantic techniques can simplify customization of 3D content, which satisfies
requirements of different content consumers—users and applications. 3D content customized by
consumers may be created by different authors, using different schemes, retrieved from different sources
(e.g., databases, web documents and web services) and intended for different purposes (e.g., content
integration, readability and narrowing the scope of content). Existing modeling techniques, which are
mostly based on specific content formats (either binary or textual) or imperative languages, are not suited
to advanced analysis and use of complex formal content schemes (such as ontologies), which is necessary
for customization of content based on semantics of content elements.

Finally, the use of semantic techniques enables flexible and generic content transformation to
different content formats and languages enabling 3D content presentation on multiple platforms. In
such an approach, once 3D content is created, it can be presented on multiple platforms in different
hardware and software systems. Moreover, such an approach does not require users to install additional
software, but it can leverage well-established 3D content browsers and presentation tools that may
already be installed on the users’ systems (e.g., Adobe Flash Player and WebGL or X3DOM-compliant
web browsers). Currently, wide coverage of different hardware and software systems by 3D content
presentations is usually achieved by providing separate implementations of particular 3D content
browsers on individual systems, resulting in fragmentation of content and presentation technologies.
Although visual environments often support different content standards, and some of them (e.g., Blender
and 3ds Max) enable introduction of new standards (e.g., by implementing appropriate plug-ins), they
do not enable generic, platform-independent content representation that could be efficiently transformed
to different formats and languages.

The goal of this dissertation is to develop a new approach to modeling 3D content—Semantic
Modeling of Interactive 3D Content (SEMIC). SEMIC exploits the aforementioned opportunities,
which have not been exploited by the previous approaches to modeling 3D content. SEMIC enables
declarative conceptual modeling of 3D content using different domain-specific ontologies and knowledge
bases. SEMIC permits comprehensive 3D content representation including explicit knowledge and tacit
knowledge, which is discovered while modeling. Both the explicit and the discovered knowledge are
used to build generalized 3D content, which becomes the basis for on-demand content customization
according to the requirements of content consumers. The generated customized 3D content is finally
transformed to different content formats and languages, and can be presented on multiple platforms,
including various combinations of hardware and software. The overall process of modeling 3D content
with SEMIC is separated into a series of different tasks accomplished by different users, who have
different skills and expertise in 3D modeling, and are equipped with different modeling tools.

The SEMIC approach consists of two interrelated elements:

7

1. The Semantic 3D Content Model (SCM) enables conceptual representation of different aspects of
3D content (geometry, structure, space, appearance, animation and behavior) at different levels of
abstraction—specific to 3D content and specific to arbitrary applications or domains. 3D content
representations based on SCM are declarative, as they focus on the desirable properties and relations
between content elements.

2. The Semantic 3D Content Creation Method (SCCM) enables modeling of 3D content as a sequence of
steps that are performed by different users. In different steps, different parts of SCM are used. SCCM
permits knowledge discovery during modeling of content, on-demand customization of content and
flexible generation of final content representations, which can be presented on multiple platforms.

The thesis of this dissertation is formulated as follows:

The SEMIC approach enables efficient creation of interactive 3D content at the conceptual level,
using domain-specific ontologies.

The remainder of the dissertation is structured as follows. In Chapter 2, the state of the art in the
field of 3D content creation is outlined. First, languages and libraries for programming interactive 3D
content are discussed. Two groups of languages are distinguished according to the represented paradigm:
imperative languages and declarative languages. Second, visual environments for modeling 3D content
are presented. Visual environments offer various functions that simplify 3D content creation, such as
animation and script editors, toolkits, content preview in real-time, etc. In visual environments, diverse
operations on 3D content are performed manually, e.g., deployment of content objects, manipulation
of meshes, drawing images for textures. Different groups of visual environments are distinguished:
advanced environments, which are addressed mostly to experienced users, intuitive and user-friendly
environments, which are addressed to non-IT-specialists, environments specific to particular domains
(e.g., engineering, medicine and interior design), which are addressed to domain experts, and game
engines, which are addressed to developers of complex 3D/VR/AR applications.

In Chapter 3, the state of the art in semantic representation and semantic modeling of interactive 3D
content is presented. These two concepts are closely related. A semantic representation is a knowledge
base that describes 3D content, its components (materials, textures, animations, etc.), properties and
relations between components in a way that is sufficient to present the content. Semantic modeling is the
process of 3D content creation that involves semantic techniques and semantic content representations. In
Chapter 3, the main techniques of describing semantics of web content are presented. Next, a taxonomy
of techniques for semantic representation and semantic modeling of 3D content is proposed. The
taxonomy classifies the techniques in different ways, e.g., according to the addressed level of abstraction
and described aspects of 3D content (geometry, structure, space, etc.). Two main groups of techniques
are distinguished: schemes for semantic 3D content representation as well as methods and systems for
semantic modeling of 3D content. A method is a sequence of steps in which 3D content is created,
while a system is a set of interconnected software components, which differ in functions and are used to
produce 3D content.

In Chapters 4, 5 and 6, the new SEMIC approach is described. Chapter 4 explains the motivations and
requirements, and outlines the approach. The main advantages of SEMIC over the available approaches
cover the possibility of conceptual, declarative, knowledge-based modeling of content at different levels
of abstraction. SEMIC enables separation of concerns between different modeling users in content
creation, on-demand customization of the created content and presentation of the content at different
content presentation platforms. In Chapter 5, the SCM model is presented. SCM is a set of ontologies that

8

enable 3D content representation at a conceptual level, specific to an application or domain, the concrete
level, specific to 3D modeling, and the platform level, specific to a particular 3D content browser and a
content format or language. Some ontologies describe the levels of abstraction, while other ontologies
link 3D content representations specified at different levels.

In Chapter 6, the SCCM method is presented. SCCM comprises six steps, which are performed by
different users and different algorithms. In SCCM, first, concrete components, specific to 3D computer
graphics, are created by a modeler equipped with graphical and semantic editors. Concrete components
comply with the concrete level of SCM. Second, the components are mapped to classes and properties
defined in a domain-specific ontology by a technician equipped with a semantic editor. Third, 3D content
is modeled at a conceptual level (determined by a domain-specific ontology of SCM) by a domain expert
equipped with a semantic editor, possibly combined with a visual 3D modeling environment. Next,
the conceptual content representation is linked to the concrete components through mapping, and a
generalized 3D content representation is created. A generalized representation can include redundant
3D content components (to be removed in content customization), can lack some components (to be
added in content customization), and can be modified in content customization. In the next step, 3D
content is customized by content consumers (users and applications) by sending queries to generalized
content representations. Queries specify different requirements for 3D content, such as desirable content
components and properties to be presented. In the last step, the customized 3D content representation
is transformed to its final counterpart, which is encoded in a particular format (obj, 3ds, blend, etc.) or
language (Java, ActionScript, JavaScript, etc.) used at the platform level of SCM.

In Chapter 7, a prototype implementation of the SEMIC approach is presented. The environment,
called SO-SEMIC (Service-Oriented Semantic Modeling of Interactive 3D Content) comprises a server
and clients. The server performs computationally expensive activities, such as semantic processing of
3D content representations. The clients are used by users to design 3D content in a visual environment,
according to the SEMIC approach. The clients communicate with the server, retrieve and modify content
representations. The clients transform retrieved semantic content representations, which are expressed
at the conceptual and concrete levels, to equivalent representations, which are expressed at the platform
level, and present the representations to users. The server has been implemented using the Java language
and libraries for processing ontologies, while a client has been implemented in Python as an extension of
the Blender modeling environment. SO-SEMIC guides a user through the subsequent steps of SCCM in
which the user leverages different parts of SCM to create different 3D content representations. The steps
are enabled by different modules of SO-SEMIC.

In Chapter 8, the results of the evaluation of SEMIC are presented. Qualitative and quantitative
evaluations have been conducted. The qualitative evaluation is used to assess SEMIC in terms of
different aspects of representation and modeling of 3D content such as represented elements of 3D
content, capabilities of conceptual, knowledge-based and multi-platform content representation, and
capabilities of the use of 3D content in content repositories. In qualitative evaluation, the functionality
of SEMIC has been compared with the functionality of selected representative programming languages,
visual modeling environments and approaches to declarative 3D content creation. Quantitative evaluation
covers: different characteristics of semantic 3D content representations (based on SCM), efficiency of
3D content creation and customization (based on SCCM) as well as the computational complexity and
performance of the algorithms used in SCCM. The quantitative evaluation has been conducted using the
SO-SEMIC environment.

In Chapter 9, the dissertation is concluded, the main contribution and achievements are summarized,
and the possible directions of future research and development activities are indicated.

2. Creation of Interactive 3D Content

In this chapter, selected approaches to 3D content creation are discussed. The approaches are
categorized into three main groups: programming languages (both imperative and declarative) and
libraries, visual environments as well as solutions for multi-platform 3D content design. This review
is focused on approaches supporting creation of 3D content that can be presented using web tools, as
most often such approaches are currently used in modern VR/AR systems.

2.1. Languages for 3D Content Creation

A number of languages and libraries have been devised to enable imperative and declarative
programming of interactive 3D content. Imperative programming of 3D content focuses on steps that
must be performed to achieve the desirable presentational effects. Declarative programming of 3D
content focuses on the desirable presentational effects instead of the steps that must be performed to
achieve the effects. In the following subsections, the main approaches to imperative and declarative
programming of 3D content are discussed.

2.1.1. Imperative Programming of 3D Content

The Open Graphics Library (OpenGL) [9] is the primary cross-platform and open source API
designed for imperative programming of 3D content. OpenGL has been used in a large number of
projects—computer games, simulations and visualizations—as well as multiple frameworks and libraries
designed for 3D content creation. OpenGL-based applications may be launched on various operating
systems—Windows, Linux, Mac OS and Android—on both desktop and mobile devices. Another
API frequently used for 3D content creation and presentation, and the main competitor of OpenGL,
is Direct3D [3]. Unlike OpenGL, Direct3D is not open source and it is available under a proprietary
license.

There are several widely used imperative languages for creating 3D content embedded in web pages.
Several libraries have been elaborated for JavaScript. The primary library for programming 3D content
with JavaScript is WebGL [69], which is based on OpenGL. The use of the low-level API of WebGL
may be time-consuming in large projects. Therefore, other libraries have been developed on the basis of
WebGL—GLGE [49], JebGL [51] and O3D [70], which simplify programming of 3D content. 3D
content based on WebGL may be presented in the majority of web browsers without installing any
additional plug-ins. ActionScript is another increasingly used language for programming interactive
3D web content. Applications based on ActionScript may be presented in the Adobe Flash Player
plug-in. The following libraries are available for ActionScript: Papervision3D [58], Alternativa3D [22],
Away3D [2] and 3D Sandy [10]. Finally, 3D web content may be presented within Java-based applets
created with the Jogl [8] and Java3D [186] libraries.

10

2.1.2. Declarative Programming of 3D Content

Several approaches have been devised to enable declarative programming of 3D content. The
Virtual Reality Modeling Language (VRML) [222] is an open, textual language devised by the Web3D
Consortium to describe static and animated 3D content in a declarative way. A VRML scene is a graph
comprised of nodes reflecting different aspects of 3D content—geometry, structure, appearance, space,
logic and behavior. VRML also supports linking external multimedia resources—images, audio and
video. In addition to the use of specific behavioral VRML nodes (e.g., sensors and interpolators), logic
and behavior of 3D objects may be described by embedded imperative ECMAScript code. Several
VRML browsers are available, e.g., Cortona3D [44], BS Contact [24], FreeWRL [4] and Instant
Reality [6].

The Extensible 3D (X3D) [223] is the successor to VRML. X3D introduces several functional
extensions to VRML such as Humanoid Animation, NURBS and CAD geometry. Furthermore, it
supports additional binary and XML-based encoding formats as well as basic means of metadata
description. Depending on the desirable complexity of 3D content, different X3D profiles may be
selected—interchange, interactive, immersive and full. A few X3D browsers are available, e.g., BS
Contact, FreeWRL and InstantReality.

VRML and X3D enable standardized representation of 3D content on the web, which is attainable
with additional plug-ins to web browsers. To enable seamless integration of X3D content with web
pages, X3DOM [15] has been designed. It is an open source framework intended as a potential extension
to HTML5. 3D content encoded using X3DOM can be presented without additional plug-ins in majority
of the available web browsers (supporting WebGL), or with Instant Reality or Flash plug-ins—in other
browsers.

XML3D [16] is another solution designed for seamless integration of 3D content into web pages.
XML3D enables declarative programming of basic 3D content elements, such as groups of objects,
meshes, light sources and textures. XML3D content may be presented in web browsers supporting
WebGL, without installing additional plug-ins.

COLLADA [43] has been intended as a language for exchange of 3D content between different
tools. The language supports programming of geometry, shaders, physics, animations and kinematics.
Currently, numerous projects use COLLADA not for exchange of content but for publication of content,
e.g., GLGE, Unreal Engine [14] and Unity [12].

PDF3D is another approach to publishing 3D content. It utilizes the U3D [13] file format for encoding
3D objects, and a proprietary JavaScript API for programming behavior of objects [7]. A PDF document
with 3D content may be directly embedded in a web page, and presented with the Abobe Reader plug-in.

Presentation of 3D content created with the aforesaid languages is possible in the majority of web
browsers. Both the imperative and declarative languages, however, have significant limitations—are
inadequate for content management (indexing and searching) in online content repositories, and do not
permit modeling and adaptation of content based on reasoning and domain knowledge.

2.2. Visual Environments for 3D Content Creation

A number of visual environments have been developed for manual modeling of 3D content.
Advanced environments intended for professional users, such as Blender [25] (Figure 2.1) and 3ds
Max [82] (Figure 2.2), offer rich capabilities of modeling various content elements—geometry, structure,
appearance and animations. In addition, the environments enable implementation of complex logic

11

and behavior of 3D content by the use of imperative programming languages (e.g., Python in Blender
and MAXScript in 3ds Max). Both the environments can be extended with plug-ins developed using
appropriate APIs. In contrast to 3ds Max, Blender is open source, which favors its use and modification
in research projects.

Figure 2.1: The GUI of Blender

Figure 2.2: The GUI of 3ds Max (source: http://docs.autodesk.com/3DSMAX/16/ENU/3ds-Max-Help/images/
interface-overview/3dsmaxUI.jpg)

User-friendly environments for modeling 3D content typically offer more limited capabilities then
advanced environments, however, they are more intuitive and enable relatively quick and efficient
modeling without requiring users’ high technical skills. SketchUp [64] (Figure 2.3) enables creation
and manipulation of 3D objects, e.g., texturing, rotating and translating objects. Furthermore, it provides
a rich web repository of 3D objects that can be assembled into complex 3D scenes. 3DVIA [19] is
another user-friendly environment for 3D content creation. It permits modeling of geometry, appearance,
structure and animations of 3D objects.

Several user-friendly environments have been developed for modeling 3D content in specific
domains, e.g., medicine, interior design and engineering. Ghost Productions [5] permits modeling of
interactive 3D medical animations, e.g., surgical e-learning content. Sweet Home 3D [11] (Figure 2.4)
permits modeling of interiors by drawing and editing rooms, walls, doors, windows and furniture.
AutoCAD Civil 3D [1] permits creation of building information models (BIM) and modeling diverse
civil constructions, such as bridges, railway tracks, pipe networks, etc.

Another group of environments for 3D content creation are game engines equipped with IDE. In
comparison to environments for modeling 3D objects, game engines’ IDEs permit assembly of 3D

12

Figure 2.3: The GUI of SketchUp

Figure 2.4: The GUI of Sweet Home 3D (source: http://www.sweethome3d.com/images/userGuide/
addingFurniture.png)

objects into complex behavior-rich VR/AR applications that are collaboratively accessed by multiple
users. Hence, game engines offer a number of additional functions such as modeling physics, artificial
intelligence, networking, sounds, memory management and threading. Unity [12] (Figure 2.5) and
Unreal Engine [14] (Figure 2.6) are widely used powerful game engines that combine visual design of
3D content with imperative programming (with C# and JavaScript in Unity and C++ in Unreal Engine).
3D content created with the engines may be presented on the web using plug-ins to web browsers—Unity
Web Player and the Adobe Flash Player, respectively.

Figure 2.5: The GUI of Unity 3D (source: http://docs.unity3d.com/uploads/Main/GUI_Canvas_Screenspace_
Overlay.png)

13

Figure 2.6: The GUI of Unreal Engine (source: https://docs.unrealengine.com/latest/images/Engine/UMG/
QuickStart/1/UMGQS_1.jpg)

Although visual environments enable intuitive, manual modeling and assembly of 3D objects, they
do not permit declarative knowledge-based content description and flexible content transformation
to different formats and languages. Moreover, the lack of high-level conceptualization in visual
environments, prevents separation of concerns in content creation between users with different
skills—experts in 3D modeling and domain experts.

2.3. Multi-platform Representation of 3D Content

Several works have been devoted to 3D content representation on different hardware and software
platforms. In [182], a web-based client-server system for visualization of hybrid data (georeferenced
point clouds and photographs with viewpoints and camera parameters) in crisis management has been
proposed. The system can be used in emergency operations and training. A specific 3D browser
enables content presentation on heterogeneous devices. In [101], an approach to real-time multi-platform
visualization of 3D content has been proposed. 3D content is encoded in MPEG-4 and may be rendered
on platforms supporting Microsoft XNA, in particular Windows XP, Windows Vista and Xbox 360. In
[75], an approach to multi-platform visualization of 2D and 3D tourism information has been presented.
The system leverages a geo-multimedia database and web services, including Google Earth and Google
Maps, and provides content to mobile phones, PDAs, smartphones and GPS receivers. In [212], an
approach to adaptation of 3D content complexity with respect to the resources available in the target
terminal has been proposed. In the approach, 3D content may be delivered with different quality. An
optimization algorithm is used to ensure maximum quality for a given content rendering time. In [154],
the architecture of an on-line game has been proposed. The architecture encompasses 3D game engines
and a multi-platform game server. The game is accessible on PCs as well as mobile devices. In [158],
an approach to integrated information spaces combining hypertext and 3D content has been proposed.
The approach enables creation of dual-mode user interfaces embedding 3D scenes in hypertext, and
immersing hypertextual annotations into 3D scenes, which can be presented on multiple platforms on the
web. In [132], an approach to building multi-platform virtual museum exhibitions has been proposed.
The system employs a client-server architecture. It supports three presentation domains: X3DOM—for
presentation in web browsers without plug-ins, SWF—for presentation in browsers equipped with Adobe
Flash Player plug-in, and PDF3D—for presentation in browsers equipped with Adobe Reader plug-in.

14

The aforementioned works cover the development of 3D content presentation platforms as well as
contextual platform-dependent content adaptation. However, they do not address comprehensive and
generic methods of 3D content transformation to different formats and languages.

2.4. Summary

In this chapter, selected widely-used approaches to 3D content creation have been discussed. The
approaches fall into three groups: declarative and imperative languages for programming 3D content,
visual environments for manual creation of 3D content as well as approaches to multi-platform 3D
content representation. The analyzed solutions offer rich capabilities of creating various elements
corresponding to different aspects of 3D content, such as geometry, structure, space, appearance,
animations and behavior. Nevertheless, they have important limitations in the context of creation of
3D content to be used on the web. First, they do not enable declarative programming of content,
which exploits inference of tacit knowledge. In general, discovery of tacit knowledge can influence the
modeling process and liberates the modeling users from explicit specification of all required 3D content
details. Second, the approaches provide only limited capabilities of high-level conceptual modeling of
content. Although object-oriented imperative programming languages enable specification of arbitrary
classes and properties, the imperative approach is not suited to automatic analysis and exploration of
content (e.g., query-based), which is currently a key aspect of web applications. Moreover, the solutions
do not support separation of concerns between different users with diverse skills, who can contribute
to different stages of 3D content creation. Finally, the approaches do not enable generic and flexible
transformation of 3D content into different content representation formats and languages, to present
it in various content browsers and presentation tools. The available approaches to multi-platform
content representation focus mainly on particular use cases (e.g., tourism information), tools (e.g.,
web browsers) and formats (e.g., MPEG-4). Existing parsers and plug-ins to 3D modeling tools
(e.g., Blender) are specific to particular content formats and cannot be used for other formats. The
approaches do not provide comprehensive and general solutions for generating platform-independent
content representations, in particular when content must be created ad-hoc or adapted to specific contexts
of use.

3. Semantic Modeling of 3D Content

This chapter provides a review of the current state of the art in semantic modeling of 3D content.
The review has been structured according to a proposed taxonomy of semantic modeling approaches.
The taxonomy distinguishes two main categories of approaches—semantic schemes of 3D content,
which enable representation of different aspects of 3D content, and semantic methods and tools, which
enable creation of 3D content, typically using 3D content schemes. For both the categories, several
sub-categories have been distinguished with regards to the recent trends and achievements described in
the literature.

In the following subsections, first, the concept of semantic 3D content representation that is a data
model for 3D content, is explained. Second, the main techniques for representing the semantics of
web content, which provide a basis for semantic 3D content representation, are reviewed. Third, the
concept of semantic modeling of 3D content, which is the process of creating 3D content using semantic
representations, is explained. Next, the taxonomy of semantic modeling approaches is proposed. The
available approaches are classified and discussed according to the taxonomy. Finally, the review is
summarized, and the main shortcomings in the available approaches as well as open issues are indicated.

3.1. Semantic Content Representation

A semantic content representation is a knowledge base describing the meaning of the content
elements. A semantic representation conforms to an ontology that specifies a vocabulary of concepts
(e.g., classes, properties and individuals) as well as relations between concepts. Ontologies are designed
to be understandable and processable by both humans and computers and constitute the foundation of
the semantic web [221]. In modern web-based applications, ontologies can be seen as an extension
of typical metadata schemes that have been widely used, in particular, for content annotation and
retrieval, e.g., [79, 242, 244], [116] and [237]. In contrast to metadata schemes, ontologies are based
on formal logic and provide advanced means of expression, such as hierarchies of classes and properties,
operations on sets, and chains of properties [224, 226]. The use of ontologies enables reasoning on
content representations. It can lead to discovery of tacit knowledge, which has not been explicitly
specified while describing the content. For instance, the link between books and their authors may
enable query for the centuries when the books were written; the specification of the species of a tree
may imply its typical height. The versatility and expressive power of semantic representations based
on ontologies simplifies content creation, analysis and management in comparison to typical metadata
schemes as well as content representation formats and languages. The usefulness of ontologies has
been illustrated in multiple projects in various domains, including VR/AR, such as representing virtual
environments [165], representing real and virtual cultural objects [184], representing points of interests,
and facilitating navigation [163].

In the domain of virtual and augmented reality, methods of annotating, extracting, sharing and
retrieving semantic content representations [120, 211], languages for designing semantic content
representations as well as performance of processing semantic content representations [169] have been

16

regarded as the main issues of modern 3D/VR/AR applications. Research works are also conducted in
semantic design of behavior-rich 3D content: world representation, behavioral 3D objects and relations
between objects [214].

3.2. Techniques for Representing Content Semantics

A number of techniques have been devised to create semantic representations of web resources,
including multimedia, and also interactive 3D content. The approaches cover data models and languages
for encoding semantic representations. The primary technique for representing the semantics of different
types of web content is the Resource Description Framework (RDF) [225], which is a semantic web
standard devised by W3C. RDF introduces general rules for creating semantic representations by making
statements on resources. Each statement is comprised of three elements: a subject (a resource described
by the statement), a predicate (a property of the subject) and an object (the value of the property). Every
object may be either a literal value or a resource identified by an URI. RDF introduces classes, containers
and lists to provide basic concepts for creating semantic representations. However, these notions are
often insufficient for representing complex semantic dependencies. The RDF Schema (RDFS) [226]
and the Web Ontology Language (OWL) [224] are W3C standards based on RDF. RDFS and OWL
provide additional expressiveness, including hierarchies of classes and properties, constraints, property
restrictions as well as operations on sets. OWL, which is based on description logic, defines a set of
profiles, which differ in complexity and decidability. The possible selection of one of the available OWL
profiles makes the OWL-based representations more predictable in terms of computational time and
problems that are possible to solve.

The aforementioned standards enable creation of ontologies and content representations for a
variety of applications and domains. However, the standards have some limitations (e.g., they do not
enable calculations), which limits their expressiveness. Creation of content representations with higher
expressiveness requires the use of semantic rules. The Semantic Web Rule Language (SWRL) [227]
is an extension to OWL devised to represent semantic Horn-like rules [176]. SWRL offers additional
expressions that enable comparison of variables, calculations as well as operations on strings, lists, date
and time. Another standard which, to some extent, can be used to represent the semantics of content is the
Unified Modeling Language (UML) [185] devised by OMG. UML has been intended for visual design
of software. UML enables creation of diagrams based on elements representing structure, behavior and
interactions.

The aforesaid solutions are not limited to represent any specific type of content. Several standards
though, have been designed specifically to create semantic representations of multimedia content.
The Multimedia Content Description Interface (MPEG-7) [157] provides a set of tools for creating
metadata descriptions of multimedia content—Descriptors, Description Schemes, Coding Schemes and
the Description Definition Language. Also some languages for 3D content representation include
frameworks for describing data semantics. In VRML-based content, metadata may be embedded using
PROTO nodes as proposed in [175]. In X3D-based content, metadata is embedded using specific
nodes for encoding different data types (e.g., integer, float and string) and aggregating nodes [46]. In
COLLADA-based documents, metadata attributes of particular nodes can indicate the name, id and
type of the node content [42]. Specific formats of metadata are also available in some proprietary 3D
content representation formats, such as FBX [47] and 3ds [17]. Some problems arising from the use of
content representation frameworks and languages, such as MPEG-7 and VRML, e.g., sharing common
sub-elements of a scene by multiple parental elements, have been discussed in [153].

17

3.3. The Concept of Semantic Modeling of 3D Content

Semantic modeling of 3D content is a process of creating 3D content representation with respect
to the meaning of particular 3D content elements. Semantic modeling is a sequence of activities that
are performed by humans or software. Semantic modeling covers creation, modification and processing
of 3D content using semantic techniques. Due to the use of semantic techniques, semantic modeling
typically emphasizes the specification of the desirable presentational results to be achieved instead of
the concrete sequence of instructions that must be performed to achieve the results. Hence, semantic
modeling, along with modeling by constraints (e.g., [174, 246]), can be regarded as a specific kind of
declarative modeling [143], liberating developers from programming all details of the created content
[201, 202]. Semantic modeling leads to the creation of a final 3D content representation, which may be
presented using a 3D content presentation platform (e.g., browser or modeling tool). A final 3D content
representation does not need to be semantic, but instead, it may be encoded in an arbitrary 3D content
representation language (e.g., VRML, XML3D, JavaScript).

Semantics-based modeling paradigm for 3D media has been introduced in [126, 210]. In the
works, semantic modeling has been defined as a sequence of transitions between four universes: shape
universe and knowledge domain, mathematical universe, representation universe and implementation
universe. In the first universe, elements of 3D content are coupled with domain knowledge to provide a
conceptual world that is a form of 3D content representation at an arbitrarily chosen level of abstraction,
e.g., virtual museum, building information models and interior design. In the mathematical universe,
an appropriate mathematical model is used to represent the content. For instance, terrain may be
modeled using bi-dimensional scalar fields. A mathematical model may be transformed into different
representation models, e.g., solids may be represented using constructive solid geometry or boundary
representation. Finally, a representation model may be transformed into different implementation models
(data structures), e.g., a mesh is encoded using a structure with fields containing the coordinates of the
vertices. Semantic modeling of 3D content is an extension of geometrical modeling, in which 3D content
is typically created regardless of the meaning of its elements and without the use of semantic techniques
but with specific mathematical models and content representation schemes. The role of mathematical
models in geometrical modeling and a review of different content representation schemes is presented
in [206].

Incorporating knowledge into 3D content representations, which occurs in semantic modeling, is one
of the main aspects of building intelligent virtual environments, which may be efficiently explored with
respect to the meaning of the particular elements. It exceeds the capabilities of the available 3D content
representation techniques (in particular scene graphs) and requires new specific methods of mapping
conceptual objects onto collections of graphical primitives [178]. A knowledge-based representation
of a virtual environment can be created as an additional level of an application, enabling conceptual
processing of 3D objects at a higher level of abstraction [83], e.g., actors, actions and features.

Semantic modeling, in which semantic 3D content representations are processed, is typically
preceded by the creation of ontologies to which the representations conform. The creation of an
ontology used in modeling may cover: the specification of a target domain, the identification of
applications, gathering developers’ requirements for the ontology, the identification of the key concepts
of the ontology, the elicitation of competency questions for the ontology, and the initial design of the
ontology [190].

Semantic modeling can be also considered as an extension of the following groups of approaches
to modeling 3D content: imperative and declarative languages, visual modeling environments

18

(discussed in Chapter 2) as well as approaches to flexible assembly and configuration of 3D content
elements. In particular, the use of semantic techniques can potentially extend typical 3D content
creation with knowledge-based reasoning on content representations, high-level conceptualization and
platform-independence of content representations. This chapter provides an overview of the degrees to
which the opportunities provided by the semantic techniques are used in the available approaches to 3D
content creation.

On the basis of the available literature, semantic modeling can be regarded as a process encompassing
the following four activities: semantic reflection, semantic selection, semantic configuration and
semantic transformation of 3D content (Figure 3.1). Some approaches enable only single modeling
activities, e.g., [100], [160], [167, 183], [119, 191], while other approaches enable several activities,
e.g., [89], [74], [102], which create a content creation pipeline. Furthermore, in some approaches,
all activities are based on semantic techniques, e.g., [115], [161], whereas in other approaches some
activities leverage semantic techniques and other activities leverage non-semantic techniques, e.g.,
[91–93, 123–125, 164, 181, 196]. The activities are described below.

Semantic Reflection Semantic Selection

Content
Sources

Content Elements Semantic Content
Elements

Selected Semantic Content
Elements

Semantic Configuration

Configured Semantic
Content Representation

Semantic Transformation

Final Content
Representation

Figure 3.1: The activities of semantic modeling of interactive 3D content

Semantic Reflection

Semantic reflection is the creation of semantic 3D content elements that are equivalents of
non-semantic 3D content elements (shapes, coordinates, materials, animations, etc.) obtained from
different content sources (e.g., files, databases [102], graphics tablets, cameras [209], web services). The
created semantic elements are typically parametrized to enable configuration and generation of various
final 3D content representations (e.g., [229–231, 233–236, 240]). For example, some works have been
devoted to reflecting events and actions in virtual environments by semantic concepts [100], reflecting
different parts of human body [183] and reflecting indoor scenes [166]. The reflected non-semantic
elements are usually encoded in an arbitrary 3D content representation language (e.g., VRML, X3D,
XML3D, MPEG-4), e.g., [231, 232]. If semantic reflection is followed by the other activities, semantic
elements are usually encoded with a common semantic technique to preserve compatibility in the
further configuration and transformation. Semantic elements may represent different aspects of 3D
content, such as geometry, structure, space, appearance, animation and behavior at different—arbitrarily
chosen—levels of abstraction. Further, semantic elements can modify, extend and gather the meaning
of their prototype non-semantic elements, e.g., a set of meshes may be reflected as a piece of furniture;
textures, transparencies and shininess may be reflected by different kinds of materials.

Semantic Selection

In semantic selection, semantic 3D content elements are chosen to create a final content
representation. In the available approaches, selection usually involves only a subset of all the semantic
elements that are included in a repository, e.g., [89], [124, 164], [161], [217]. Selection is performed

19

at a level of abstraction that characterizes the elements being selected. The level may be either specific
to 3D content—its geometry, structure, space, appearance and animation, e.g., [89], [102], [126], or
specific to an application or domain, e.g, [74], [173,243]. Semantic selection typically precedes semantic
configuration in the modeling process.

Semantic Configuration

In semantic configuration, selected semantic 3D content elements are filled with values of parameters
and combined into a complex semantic representation. Similarly as in the case of selection, configuration
may be performed at different levels of abstraction depending on the level characterizing the configured
semantic elements—specific to 3D content, e.g. [126], [229,230,234–236,240], specific to an application
or domain, e.g., [161], [197, 199], and both, e.g., [115], [160], [204].

Semantic Transformation

In semantic transformation, semantic representations of 3D content are converted into final 3D
content representations, which are encoded in a 3D content representation language. Therefore, semantic
transformation can be seen as an inverse semantic reflection. Semantic transformation produces a
coherent content representation that may be presented, but does not necessarily consist of independent
reusable content elements. Although, transformation is an important activity of semantic modeling, it
is often performed without the use of semantic techniques, e.g., [98, 99, 105], [123]. In such cases,
transformation is not a part of semantic modeling, however, it is undeniably a part of a broader modeling
process.

In the approaches to semantic modeling that are presented in the next sections, the aforementioned
activities are performed either manually (by developers) or automatically (by specific software).
Automatic reflection usually requires advanced analysis (e.g., context of use) of content elements.
Automatic selection and configuration are often used in contextual content adaptation, which may
take into account such elements as, interaction, user preferences or profiles [231, 233] and geometrical
context [77, 166], [245].

3.4. Taxonomy of Approaches to Semantic Modeling

A number of research works have been devoted to different aspects of semantic modeling of
interactive 3D content. The solutions vary in several respects. In this section, a taxonomy of the
available approaches to semantic modeling of 3D content is proposed. The taxonomy has been elaborated
taking into account the aspects mentioned in Sections 3.1-3.3. It enables classification of the available
approaches as well as identification of the main challenges and open issues in the field of semantic
modeling of 3D content.

The taxonomy is depicted in Figure 3.2. Every approach is either a scheme of semantic content
representation or a method/tool for semantic modeling of 3D content. The distinction between schemes
and methods/tools corresponds to the distinction between data representing 3D content and logic
(activities and algorithms) used to create 3D content.

— A scheme of 3D content representation is a description of the structure of 3D content, its elements
as well as their properties and relations. For instance, an XML Schema (e.g., [115], [177]) or an
ontology (e.g., [112, 113], [188, 189]) may describe classes and properties, which can be used to
create 3D content representations.

20

— A method of modeling 3D content is a set of steps (e.g., [77, 166], [231, 232]) accomplished
sequentially or in parallel. Some steps may by performed manually—by a human using specific
hardware or software tools, while other steps may be performed automatically—by software.
Completing the steps results in a final 3D content representation. However, in the intermediary steps,
semantic representations are created and processed. For instance, a method of semantic reflection can
consist of two steps: detecting interconnected elements of a 3D model, and analyzing the connections
using a classifier [167, 183].

— A tool for modeling 3D content is a set of interconnected software modules that are used to interact
with users, store, retrieve and process data, to enable modeling of 3D content. For instance, a
modeling tool may be based on service-client architecture in which the client is implemented based
on a 3D content browser, while the server may comprise several services [161]. Typically, tools use
methods of modeling. However, in many works, methods are not explicitly presented, as the focus
is on software modules instead of the steps performed by the modules to produce 3D content, or the
steps are generally described, without sufficient details. Such works have been classified as tools in
this review.

Knowledge
Representation Explicit

Implicit

Level of
Abstraction

Concrete

Conceptual

Separation of
Concerns

Transitions Fixed

Flexible

Modeling
Activity

Scheme

Method / Tool

Location of
Annotations

Detached

Embedded

Application /
Domain of Use

Represented
Aspect

Geometry

Structure

Space

Appearance

Animation

Behavior

Semantic
Technique

Group of
Works

Type of
Classification

Classification criteria

Classification into

Configuration

Reflection

Transformation

Selection

Figure 3.2: The proposed taxonomy of approaches to semantic modeling of 3D content

3.4.1. Taxonomy of Schemes

Every scheme for semantic 3D content representation may be classified in terms of the level of
abstraction. On the one hand, 3D content may be represented by semantic concepts that are specific to
the domain of 3D modeling, e.g., color, texture, dimensions, orientation and LODs. In this dissertation,
representations that are specified at the low-level of abstraction, are referred to as concrete 3D content
representations, e.g., [92] [73,127,210]. Such schemes are further classified according to the represented
aspects of 3D content: geometry (e.g., coordinates, indices and shapes), structure (e.g., inclusion,

21

alternatives), space (e.g., position, rotation and size), appearance (e.g., transparency, color and texture),
animation (e.g., duration, motion trajectory, color interpolation) and behavior (e.g., activities of content
elements). On the other hand, 3D content may be represented by semantic concepts that are specific to
an application or domain, which is not directly related to 3D modeling, e.g., cars, furniture, exhibitions
and clothes. In this dissertation, representations that are specified at a high-level of abstraction, are
referred to as conceptual 3D content representations. Such schemes are classified in terms of the
application or domain of use, e.g., virtual museum [236] [200], modeling buildings [84] [86–88] and
interior design [188, 189] [74].

Furthermore, every scheme may be classified in terms of the semantic techniques used (e.g., semantic
web standards, UML) as well as the location of semantic annotations. Detached semantic annotations
form a 3D content representation that is separated from the represented final 3D content. For example,
OWL knowledge bases can represent separate X3D models [160]; documents encoded in the SNIL
language can represent separate 3D models [168, 171]. Embedded semantic annotations are included
within the described document. In comparison to detached annotations, embedded annotations are
more concise, reduce specification of redundant data (e.g., object IDs in both representations), and
facilitate management of final representations that are inextricably linked to semantic representations.
For instance, RDFa-based annotations may be embedded in X3D documents [130, 133, 135, 136];
interaction of 3D models may be represented within MIM documents [107–111].

3.4.2. Taxonomy of Methods and Tools

Methods and tools are classified in terms of the supported modeling activities, which may be one or
several of: semantic reflection, semantic selection, semantic configuration and semantic transformation
(cf. Section 3.3). In the methods and tools that enable several modeling activities, the activities form
a content creation pipeline. For example, 3D content elements may be sequentially configured and
transformed to a final representation [231, 232]. Such methods and tools are classified in terms of the
supported transitions between activities. In the case of fixed transitions, 3D content is typically presented
to end-users in the form obtained from the source (e.g., [91–93, 123–125, 164, 181, 196], [217]), and it
is not dynamically adapted to specific requirements. In the case of flexible transitions, 3D content can
be adapted to satisfy requirements obtained from different sources, which can be specified by different
users (e.g., [89], [102], [103]). Flexible transitions are useful, in particular, in adaptation of commonly
available 3D content that is performed on-demand, taking into account individual user preferences and
the context of use (location, device, etc.).

Due to the use of knowledge representation techniques, every method and tool for semantic
modeling may be classified in terms of knowledge representation. In explicit knowledge representation,
the final content representation is based only on the knowledge (facts) that has been explicitly
specified while modeling. For instance, in [92, 123], the mapping of domain-specific concepts to
3D content-specific concepts is explicitly specified and further used in modeling content. In implicit
knowledge representation, the final content representation is based on both the knowledge that has been
explicitly specified and the knowledge that has not been explicitly specified, but may be inferred in the
reasoning process. For instance, in [245], an algorithm analyses a point cloud and derives contextual
data for modeling buildings.

Addressing different modeling activities and enabling content representation at different levels of
abstraction may permit separation of concerns between different modeling users who have different
modeling skills and experience, and are equipped with different hardware and software tools (semantic

22

editors, graphical editors, scanners, etc.). For instance, basic content elements may be scanned,
manipulated and mapped to high-level concepts by a developer; next, the high-level concepts may be
used to create a 3D content representation by a domain expert [229–231, 233, 234, 236, 244].

3.5. Schemes for Semantic 3D Content Representation

A number of projects have leveraged semantic representation of 3D content. The earliest projects
in this area addressed the development of knowledge-based tools for designing 3D content [128]; the
influence of semantically organized virtual spaces on the users’ cognition, interpretation and interaction
[104]; and modeling of historic monuments using geometrical elements combined with semantic
structures [148]. More recently, in the PRISM project [59, 203], 3D models have been segmented by
an algorithm and annotated by users to facilitate further analysis of the content. In the AIM@SHAPE
project [21], semantic tools have enabled representation of different aspect of content such as geometry,
structure, interaction and time. In the 3DSA project [18, 247], semantic approaches have been used to
annotate 3D virtual museum artifacts. In this section, 3D content representation schemes are discussed
according to the taxonomy proposed in Section 3.4. An overall comparison of the schemes is presented
in Table 3.1. The schemes are discussed in three groups.

The schemes in the first group enable concrete representation of 3D content, which is based on
concepts that are specific to 3D modeling, such as LOD, coordinates, vertices, textures, etc. Concrete
content representations are typically used in methods and tools that require flexible, low-level access
to 3D content elements (e.g., for querying, analyzing and retrieving) with no respect to the high-level
semantics of the elements, [102], [112, 113], [121]. The aspects that are most frequently covered by
schemes for concrete representations are: geometry, structure, space and appearance. Animation and
behavior are the less addressed aspects, as they require more complex 3D content elements (e.g., sensors,
interpolators and sequencers), [197, 199], [220], or more complex languages (e.g., rule-based), [249].

The schemes in the second—largest—group enable conceptual representation of 3D content, which
is specific to a particular application or domain. Concepts used in such representations are typically
not directly related to 3D modeling. The use of application- or domain-specific knowledge in content
representations is an important advantage in comparison to the schemes for concrete 3D content
representation. It permits 3D content creation by domain experts who are not IT-specialists [92]
[231, 232].

The schemes in the third group enable multi-layered representation of 3D content, which
encompasses concrete and conceptual 3D content elements. To combine both types of representations,
mapping is typically used, [90, 92, 123, 125, 196]. Multi-layered representations are convenient for 3D
content that needs to be represented at different levels of abstraction, e.g., primitive actions (move, turn,
rotate, etc.) are combined to represent composite behaviors [125]. The majority of schemes in this group
enable creation of detached annotations, which liberalizes management of both semantic and final 3D
content representations, e.g., storage in different repositories.

23

Ta
bl

e
3.

1:
C

la
ss

ifi
ca

tio
n

of
sc

he
m

es
fo

rs
em

an
tic

3D
co

nt
en

tr
ep

re
se

nt
at

io
n

Sc
he

m
e

L
ev

el
of

A
bs

tr
ac

tio
n

L
oc

at
io

n
of

A
nn

ot
at

io
ns

Se
m

an
tic

Te
ch

ni
qu

e
A

pp
lic

at
io

n
/D

om
ai

n
of

U
se

C
on

ce
pt

ua
l

C
on

cr
et

e
G

eo
m

et
ry

St
ru

ct
ur

e
Sp

ac
e

A
pp

ea
ra

nc
e

A
ni

m
at

io
n

B
eh

av
io

ur
D

et
ac

he
d

E
m

be
dd

ed

1
[1

26
]

3
3

3
in

du
st

ri
al

de
si

gn
,g

eo
gr

ap
hi

ca
lm

od
el

in
g

2
[9

0,
92

,1
23

,1
25

,1
96

]
3

3
3

3
3

3
3

3
R

D
F,

D
A

M
L

+O
IL

/X
M

L
bo

w
lin

g
ga

m
e

3
[1

55
,1

68
,1

70
–1

72
]

3
3

SN
IL

/X
M

L
m

od
el

in
g

to
ol

s
4

[2
04

]
3

3
3

3
3

3
m

od
el

in
g

bu
ill

di
ng

s
5

[2
29

–2
31

,2
33

,2
34

,2
36

]
3

3
3

3
3

3
3

V
R

M
L

,X
3D

,M
PE

G
-4

vi
rt

ua
lm

us
eu

m
6

[7
3,

12
7,

21
0]

3
3

3
3

3
po

in
tc

lo
ud

s
re

pr
es

en
ta

tio
n

7
[8

4]
3

U
M

L
m

od
el

in
g

bu
ild

in
gs

8
[8

6–
88

]
3

3
3

3
3

M
PE

G
-7

/X
M

L
m

od
el

in
g

bu
ild

in
gs

9
[1

22
]

3
cr

ow
d

si
m

ul
at

io
n

10
[1

49
,1

52
]

3
3

3
3

3
M

PE
G

-7
,M

PE
G

-2
1

vi
rt

ua
lo

rc
he

st
ra

11
[1

44
,1

49
,1

50
]

3
3

3
3

3
3

R
D

F,
R

D
FS

,O
W

L
/X

M
L

vi
rt

ua
lh

um
an

s
12

[1
56

]
3

vi
rt

ua
lr

oo
m

13
[1

88
,1

89
]

3
3

R
D

F,
R

D
FS

in
te

ri
or

de
si

gn
14

[2
05

]
3

3
O

W
L

/X
M

L
m

ob
ile

to
ur

is
tg

ui
de

15
[1

15
]

3
3

3
3

3
3

3
3

X
SD

/X
M

L
in

te
ri

or
s

ad
ap

ta
tio

n
16

[1
60

]
3

3
3

3
3

3
3

R
D

F,
R

D
FS

,O
W

L
,A

cc
es

s-
L

im
ite

d
L

og
ic

ge
no

m
e,

ce
ll

de
sc

ri
pt

io
n,

co
m

po
un

ds
vi

su
al

iz
at

io
n

17
[1

83
]

3
vi

rt
ua

lh
um

an
s

18
[2

00
]

3
3

R
D

F.
X

3D
/X

M
L

vi
rt

ua
lm

us
eu

m
19

[8
0,

20
7]

3
3

R
D

F,
R

D
FS

,O
W

L
/X

M
L

vi
rt

ua
lh

um
an

s
20

[1
19

]
3

3
3

3
R

D
F,

R
D

FS
,O

W
L

vi
rt

ua
lf

ur
ni

tu
re

21
[1

21
]

3
3

3
3

3
M

ay
a

E
m

be
dd

ed
L

an
gu

ag
e

m
od

el
in

g
bu

ild
in

gs
22

[1
92

]
3

SM
IL

/X
M

L
ri

gi
d

bo
dy

si
m

ul
at

io
n

23
[1

06
–1

11
]

3
3

M
IM

/X
M

L
vi

rt
ua

lm
us

eu
m

24
[1

12
,1

13
]

3
3

3
3

O
W

L
/X

M
L

av
at

ar
s

an
im

at
io

n
an

d
in

te
ra

ct
io

n
25

[1
97

,1
99

]
3

26
[9

4–
97

,1
17

,1
18

]
3

3
3

3
3

3
IF

C
/X

M
L

B
IM

s
27

[1
59

]
3

cr
ow

d
si

m
ul

at
io

n
28

[1
77

]
3

C
ity

G
M

L
,X

SD
/X

M
L

cu
ltu

ra
lh

er
ita

ge
29

[1
62

,2
15

,2
16

]
3

ga
m

e
de

si
gn

30
[2

49
]

3
3

O
W

L
,S

W
R

L
or

de
rp

ro
ce

ss
31

[1
61

]
3

3
3

R
D

Fa
,O

W
L

/X
M

L
fa

ct
or

y
si

m
ul

at
io

n
32

[2
13

]
3

U
M

L
vi

rt
ua

ll
ab

or
at

or
y

33
[2

20
]

3
3

3
3

3
O

W
L

hu
m

an
bo

dy
,p

ro
du

ct
w

or
k-

flo
w

34
[7

4]
3

O
W

L
in

te
ri

or
de

si
gn

35
[1

73
,2

43
]

3
3

R
D

F,
R

D
FS

,O
W

L
ga

m
e

de
si

gn
36

[1
02

]
3

3
w

eb
pa

ge
de

si
gn

24

3.5.1. Concrete 3D Content Representation

A number of works have been devoted to concrete 3D content representation. In the AIM@SHAPE
project [21], a model combining final 3D content representations with corresponding concrete semantic
representations has been proposed [73, 127, 210]. The model introduces four concrete levels of
abstraction. The raw level covers basic content properties related to different aspects of the content such
as space and appearance, e.g., dimensions and colors. The geometric level covers diverse geometrical
elements, e.g., polygons, parametric surface models and structured point sets. The structural level
organizes both raw and geometrical levels by enabling, e.g., multi-resolution geometry, multi-scale
models and topological decompositions. Finally, the semantic level associates concrete content elements
specified at the lower levels with their semantic equivalents.

In the 3DSEAM annotation model [86–88], concrete 3D content representations encompassing
geometry, structure, space and appearance of the objects have been encoded as MPEG-7/XML
documents and linked to representations encoded in different languages (VRML, X3D, DXF and 3ds).
Similar possibilities have been offered by the Intermediate Model proposed in [126], which describes
shapes and their semantics in terms of geometry, structure and space. Another scheme for concrete 3D
content representation based on MPEG-7, and also on MPEG-21, has been proposed in [149, 152]. It
distinguishes the following elements of 3D content: scene, semantic descriptor, digital item (an entity
in a scene), geometric descriptor, shape and controller, which specifies the interactivity of digital items.
The scheme may be used to represent the geometry, structure, space, appearance and animation of 3D
models.

In [149, 150], an ontology for concrete representation of virtual humans has been proposed. The
ontology introduces specific classes and properties. The virtual human, which is the main class, is
linked to geometrical descriptors of vertices and polygons, structural descriptors of articulation levels, 3D
animations of face and body, and behavior controllers (animation algorithms). The extension of virtual
humans with semantically represented emotional body expressions is possible by applying the ontology
proposed in [144]. The ontology is built upon the Whissel’s wheel activation-evaluation space [241]. It
includes concepts combining passive/active and negative/positive adjectives related to human emotions,
e.g., despairing (very passive and very negative), furious, terrified and disgusted (very active and very
negative), serene (very passive and very positive), exhilarated, delighted and blissful (very active and
very positive).

In [112, 113], ontologies for representing multi-user virtual environments and avatars (Figure 3.3)
at the concrete level have been described. The ontologies focus on the geometry, space, animation
and behavior of 3D content. Virtual environments may be represented using a number of concepts that
are semantic counterparts to concepts incorporated in widely-used 3D content representation languages
(e.g., VRML and X3D). World objects, which are the main entities of the content, are described by such
elements as translation, rotation and scale. Avatars are described by names, statuses and UIs, while their
behavior is described by code bases.

In [197, 199], a graphical notation for modeling behavior of 3D content has been proposed. The
notation includes diagrams for behavior definition and behavior invocation (Figure 3.4). Diagrams
are configured according to design patterns that specify solutions to frequent design problems, e.g.,
suspend-resume pattern, path movement pattern and customized capture evade pattern.

The ontology proposed in [119, 191] permits concrete representation of non-manifold 3D models,
e.g., a spider-web on a window, an umbrella with wires, a cone touching a plane at a single point. The
ontology includes such properties as the number of vertices, number of non-manifold vertices, number

25

Figure 3.3: A virtual environment with an avatar represented using ontologies. Source: [112]. Courtesy of Y. Chu
and T. Li

Figure 3.4: A behavior definition diagram compatible with a semantic graphical notation. Source: [197]. Courtesy
of B. Pellens, O. De Troyer and F. Kleinermann

of edges, number of non-manifold edges, number of connected elements, etc. The Common Shape
Ontology [220], which also stresses representation of shapes, focuses on geometry, structure, shape and
animation of 3D content by providing such concepts as manifold and non-manifold shapes, point sets,
hierarchically structured groups of objects, position, orientation and key frame animations. In addition,
the ontology enables basic description of final content representations, e.g., creator, institution and file
information.

The scheme of concrete representation of historic buildings, proposed in [121] introduces such
concepts as dominant surface, transitions, repetition (which permits to organize elements according to
symmetry or rhythm) and mouldings. Semantic representations are embedded in the content using nodes
of the Maya Embedded Language. A 3D model representing a fragment of a historic building, which can
be described using the scheme, is presented in Figure 3.5.

In the Flex-VR approach [229–231,233,234,236], a wide range of aspects characterizing 3D content
(geometry, structure, space, appearance, animation and behavior) may be represented using generalized
and parametrized content objects (VR-Beans). VR-Beans are basic, configurable content elements
represented by scripts encoded in VRML, X3D or MPEG-4. VR-Beans may be linked to various
media elements, such as texts, images, audio and video. The behavior of VR-Beans is described using
the declarative VR-BML language [229]. Content representations in Flex-VR may be hierarchically
organized into presentation spaces (containers of objects) and presentation domains (corresponding to
different contexts of content presentation).

26

Figure 3.5: A reconstruction of a dominant surface, which can be described using a semantic scheme. Source:
[121]. Courtesy of L. De Luca, P. Véron and M. Florenzano

3.5.2. Conceptual 3D Content Representation

A number of the analyzed schemes enable conceptual 3D content representation. In the approach
presented in [90, 92, 123, 125, 196], conceptual 3D content representations may be designed on the
basis of different domain-specific ontologies. The proposed ontologies based on DAML+OIL [45] and
OWL are used to determine different aspects of the content. The ontologies mainly emphasize spatial
and structural dependencies between objects (position, orientation and connection) as well as primitive
content behavior (e.g., move, turn and resize).

The Knowledge Representation Layer (KRL) presented in [155,168,170,171] is used to incorporate
conceptual semantic representations into virtual environments. It specifies entities representing simulated
objects (e.g., rods), attributes of entities (e.g., color), concepts that are categories of objects (e.g., a class
of rods), and relations that are n-ary predicates of entities, attributes and concepts (e.g., is part of). KRL
has been implemented using the Semantic Net Interchange Language (SNIL), which is an XML dialect.

The ontology discussed in [156] enables conceptual 3D content representation based on classes and
properties related to interior design, e.g., table, lamp, teapot and floor. The properties specified in the
ontology are mostly related to space and behavior, e.g., relative location and degrees of freedom. Other
ontologies with concepts pertaining to interior design have been used in [188, 189] and [74].

In [183], concepts representing different parts of human body (legs, arms, fingers, neck, etc.) have
been proposed. Another ontology for conceptual representation of human body has been proposed
in [80, 207]. The ontology specifies a hierarchy of classes corresponding to different parts of body
(head, arm, leg, foot, etc.) as well as properties describing dependencies between different classes (e.g.,
is a and part of). The set of conceptual semantic attributes proposed in [102] are used to represent the
strengths of different features of 3D models, e.g., 3D models of animals that are scary to varying degrees
differ in the appearance of the snout.

A model combining conceptual 3D content representations (encoded in OWL) with X3D content
representations has been proposed in [200]. Three concepts are used within the ontologies to specify
the relative positions of content objects: contained, shared and bounded. The concepts are mapped
to particular nodes in the modeled X3D representations using nodes intended for metadata description
in X3D (MetadataSet and MetadataString). X3D metadata nodes enable semantic representations that
are directly embedded in the final content representations. In [192], a general idea of a content model
incorporating a scene graph (representing objects with spatial relations), a time graph (representing real

27

spaces with temporal relations) and an ontology (representing domain-specific knowledge with semantic
relations) has been proposed. In the model, ontologies are used to couple conceptual semantic elements
with their synthetic- and real-world counterparts.

In [173, 243], 3D content is represented using an actor model to enable real-time interactive
simulation. Actors are the main elements of the created content, which manage entities—collections
of semantic properties describing different content objects. The communication between actors is based
on events and shared variables. OWL-based ontologies are used to provide a knowledge representation
layer for conceptual representation of content elements.

In [161], conceptual semantic representations may be either detached or embedded in the final
representations. Semantic representations are encoded in XML using the RDFa and OWL standards.
Semantic representations used in the tool are linked to content objects encoded in XML3D documents.
In [133, 135], a method of creating semantic content representations that are directly embedded in the
final content representations has been proposed. The method uses metadata nodes and attributes that are
available in X3D. Embedded semantic representations can be extracted from the final representations
and combined into detached semantic representations depending on different aspects, e.g., the structure,
types and roles of the described content elements [130]. The method may be used to embed microformat-
and microdata-based semantic representations into final representations [136]. The schemes contain
different properties related to structure, space, logic, time and behavior, such as built-in media elements,
dimensions, packages required, interactivity and animations.

The ontology presented in [122] enables conceptual representation of crowd simulations. The
ontology includes such classes as agent, agent’s profile (e.g., employed adult, unemployed adult and
child), place (e.g., house, church and work) and schedule related to places (e.g., opening and closing
time). The properties of semantic individuals include, names, identifiers, dimensions, destinations, etc.
Another conceptual representation of crowd has been proposed in [159]. The representation includes
multiple layers. Data semantics is described at the semantic level, which is connected to the geometry
level, in three respects: the structure of the 3D scene (e.g., inclusion of floors, stairs and corridors), its
topology (e.g., connective relations between separate objects, such as stairs and the floor) and its height
coordinates (as the modeled environment may include several levels)—Figure 3.6.

Figure 3.6: Crowd in a multi-layered virtual environment, which is represented using ontologies. Source: [159].
Courtesy of H. Jiang, W. Xu, T. Mao, C. Li, S. Xia and Z. Wang

In [177], a scheme for conceptual 3D representation of buildings has been elaborated. The scheme
has been used in the 3D reconstruction of Forte San Giorgio on Capraia Island (Figure 3.7). The scheme
is encoded in CityGML [40] and XSD [71]. It represents different classes of parts of buildings, functions
and usage. Moreover, it specifies properties for content description, e.g., roof type, number of storeys,
year of construction and demolition. Also the ontology proposed in [205] is used to represent 3D

28

models at a high-level of abstraction, e.g., historic buildings. The ontology includes concepts describing
geometrical models with spatial properties.

Figure 3.7: A semantically represented and described 3D reconstruction of the Forte San Giorgio. Source: [177].
Courtesy of M. Lorenzini

The scheme for conceptual content representation proposed in [162,215,216] is used in game design.
It represents independent content elements as entities. Entities are divided into two groups: abstract
entities (without visual representation) and physical entities (with visual representation) which, in turn,
are divided into spaces and tangible objects (made of matter). Basic features of entities are described
by attributes, e.g., genre and number of pages. In addition, objects may have predicates (adjectives)
assigned, e.g., a comfortable chair, an antique closet. Objects may invoke services. For a service, an
event and an action are semantically represented. An event has an effect, e.g., a reaction, a change and
a transformation. Semantic content representations may be created using the Entika semantic editor
(Figure 3.8).

Figure 3.8: The user interface of the Entika semantic editor simplifying creation of semantic content
representations. Source: [162]. Courtesy of J. Kessing, T. Tutenel and R. Bidarra

In [249], an OWL- and SWRL-based ontology for modeling features of objects in different domains
has been proposed. The ontology specifies different types of features, compositions of features

29

(conjunction and alternative), attributes of features (variables associated with features), relations between
features (mandatory or optional) and constraints on features (e.g., excludes, implies, extends, equal,
greater and lesser). Furthermore, the created semantic 3D content representations may be verified in
terms of consistency, e.g., an object that is required by another object cannot exclude the use of that
requiring object.

In [213], a scheme for creating conceptual 3D content representations based on UML diagrams
combined with constraints encoded in the Object Constraint Language [55] has been proposed. The
concepts represented using UML correspond to different equipment of a physics laboratory, e.g., lenses,
mirrors and lights. Constraints are built and linked to UML-based elements in an object-oriented
fashion—by referring to the identifiers of the target objects. For instance, the relative position of the
zone of a transmitter, a lens and a mirror may be imposed by a constraint (Figure 3.9).

Figure 3.9: The visualization of different semantically specified subspaces between a transmitter, a lens and a
mirror: the zone before the lens and the mirror, the zone between the lens and the mirror, and the zone after the
lens and the mirror. Source: [213]. Courtesy of T. Trinh, R. Querrec, P. De Loor and P. Chevaillier

3.5.3. Multi-layered 3D Content Representation

A few of the analyzed schemes enable multi-layered semantic representation of 3D models
of buildings. In the Virtual Design Environment (VDE) presented in [204], conceptual content
representation is used to represent content elements that are specific to the domain of modeling buildings,
e.g., walls, doors and windows. Concrete content representations, which are combined with conceptual
representations, represent various aspects of the content, such as geometry, structure, space, appearance
and behavior. In [84], an UML-based scheme for conceptual representation of building models has been
proposed. The scheme includes different classes (e.g., wall, rooms, passages and storeys) and properties
(e.g., volume, surface, curve and LOD). Furthermore, mapping of the scheme to the Industry Foundation
Classes (IFC) has been presented. Another multi-layered scheme for representing buildings has been
proposed in [94–97, 117, 118]. The scheme is based on the Industry Foundation Classes IFC [50]. The
elements of the scheme describe geometry (e.g., bounding boxes, solid models, face sets, walls, windows
and columns), structure and space (e.g., aggregated objects and storeys).

A general-purpose scheme for 3D content representation has been proposed in [115]. Both
conceptual and concrete 3D content representations are encoded using the XML Schema and linked
to 3D content using XML attributes. 3D content is represented with the VRML and X3D languages.
In [160], an ontology providing concrete elements that are equivalent to elements specified in X3D
(e.g., group, transform, light, color, normal index and crease angle) has been proposed. In addition, a
set of semantic properties have been introduced to enable mapping of concrete elements to conceptual
elements, e.g., represents, equivalence, similarity and disjointness.

30

3.6. Methods and Tools for Semantic Modeling of 3D Content

In this section, methods and tools of semantic modeling of 3D content are discussed according to
the proposed taxonomy. An overall comparison of the methods and tools is presented in Table 3.2. The
majority of the works cover tools, which are sets of interconnected software modules developed for 3D
content creation. A smaller group of works cover methods, which are generic sequences of steps leading
to the creation of 3D content.

The considered methods and tools usually support only subsets of the semantic modeling activities
introduced in Section 3.3. The largest group encompasses works supporting content selection and
configuration, e.g., [126], [204], [250]. Another group comprises works that support semantic reflection
but do not support the other modeling activities, e.g., [167, 183], [80, 81, 207], [209].

About one-third of the works uses reasoning to enable discovery of tacit knowledge, e.g., [74], [100],
[160]. Such solutions are typically more flexible and require less effort in modeling than the works
that only make use of the explicit knowledge, e.g., [194], [204], [250]. Knowledge discovery permits
more comprehensive 3D content representation, e.g., indirect links between conceptual and concrete
representations.

A few works explicitly divide the modeling process into separate activities that may be accomplished
by different users. Separation of concerns is enabled more often by tools then by methods, e.g.,
[98, 99, 105]. In tools, different modeling activities are typically related to different software modules
which, in turn, can be used by users with different skills in 3D modeling.

The majority of the methods and tools do not enable flexible transitions between different modeling
activities. The methods and tools enable content creation based on data obtained from single sources.
A relatively small group of works enrich primary semantic content representations (specified in content
repositories) with queries dynamically specified by content users [89] or rules specified within separate
content adaptation profiles [115].

31

Ta
bl

e
3.

2:
C

la
ss

ifi
ca

tio
n

of
m

et
ho

ds
an

d
to

ol
s

fo
rs

em
an

tic
m

od
el

in
g

of
3D

co
nt

en
t

M
et

ho
d

/T
oo

l
M

od
el

in
g

A
ct

iv
ity

Se
pa

ra
tio

n
of

C
on

ce
rn

s
K

no
w

le
dg

e
R

ep
re

se
nt

at
io

n
Tr

an
si

tio
ns

A
pp

lic
at

io
n

/D
om

ai
n

of
U

se
R

efl
ec

tio
n

Se
le

ct
io

n
C

on
fig

ur
at

io
n

Tr
an

sf
or

m
at

io
n

E
xp

lic
it

Im
pl

ic
it

Fi
xe

d
Fl

ex
ib

le
1

[1
26

]
3

3
3

3
in

du
st

ri
al

de
si

gn
,m

od
el

in
g

sp
at

ia
ld

at
a

2
[1

45
]

3
3

in
te

ri
or

de
si

gn
3

[1
00

]
3

3
av

at
ar

s’
be

ha
vi

or
4

[9
8,

99
,1

05
]

3
3

3
3

3
ai

rc
ra

ft
si

m
ul

at
io

n,
cu

ltu
ra

lh
er

ita
ge

,tr
ai

ni
ng

fir
efi

gh
te

rs
5

[2
04

]
3

3
3

3
m

od
el

in
g

bu
ild

in
gs

6
[9

1–
93

,1
23

–1
25

,1
64

,1
81

,1
96

]
3

3
3

3
3

bo
w

lin
g

ga
m

e,
3D

sh
op

,s
ea

rc
h

en
gi

ne
7

[2
29

–2
31

,2
33

–2
36

,2
40

,2
44

]
3

3
3

3
3

3
vi

rt
ua

lm
us

eu
m

8
[1

49
,1

51
]

3
3

vi
rt

ua
lc

ha
ra

ct
er

s
9

[1
14

,1
95

,1
97

–1
99

,2
19

]
3

3
R

PG
ga

m
e,

dr
iv

in
g

si
m

ul
at

or
10

[1
15

]
3

3
3

3
3

in
te

ri
or

s
ad

ap
ta

tio
n

11
[1

60
]

3
3

ge
no

m
e,

ce
ll

de
sc

ri
pt

io
n,

co
m

po
un

ds
vi

su
al

iz
at

io
n

12
[1

67
,1

83
]

3
3

vi
rt

ua
lh

um
an

s,
sh

ap
e

se
gm

en
ta

tio
n

13
[8

0,
81

,2
07

]
3

3
vi

rt
ua

lh
um

an
s

14
[8

9]
3

3
3

3
m

od
el

in
g

bu
ild

in
gs

15
[1

19
,1

91
]

3
3

vi
rt

ua
lf

ur
ni

tu
re

16
[1

79
,1

80
]

3
3

flu
id

si
m

ul
at

io
n

17
[1

61
]

3
3

3
3

fa
ct

or
y

si
m

ul
at

io
n

18
[2

45
]

3
3

m
od

el
in

g
bu

ild
in

gs
19

[7
4]

3
3

3
3

3
3

in
te

ri
or

de
si

gn
20

[1
03

]
3

3
3

3
as

se
m

bl
in

g
sh

ap
es

21
[1

29
,1

73
,2

43
]

3
3

3
3

ga
m

e
de

si
gn

22
[7

7,
16

6]
3

in
te

ri
or

de
si

gn
23

[2
17

]
3

3
3

3
3

m
od

el
in

g
bu

ild
in

gs
24

[2
09

]
3

in
te

ri
or

de
si

gn
25

[1
02

]
3

3
3

3
3

m
od

el
in

g
sh

ap
es

26
[2

50
]

3
3

3
3

m
od

el
in

g
fu

rn
itu

re
27

[2
38

]
3

3
3

3
vi

rt
ua

lm
us

eu
m

28
[1

94
]

3
3

si
m

ul
at

io
n

32

3.6.1. Methods of Semantic Modeling

The methods of modeling 3D content have been divided into three groups in terms of input data.
The first group includes methods designed to create content representations based on 3D point clouds
and images. The second group includes methods that use 3D meshes for modeling 3D content. The
third group includes methods designed for modeling content with reusable 3D content elements. The
methods are presented with focus on particular steps that need to be performed to produce final 3D
content representations.

Semantic Modeling with Point Clouds and Images

Several works have addressed semantic representation of 3D point clouds (typically obtained from
laser scanners) and objects detected in images (typically obtained from RGB-D cameras). The works are
related to modeling of interiors and buildings. In [77, 166], a method of semantic annotation of indoor
scenes has been proposed (Figure 3.10). The view of a scene consists of multiple images obtained from an
RGB-D Kinect camera mounted on a robot. The following characteristics are detected in the view: visual
appearance (colors, textures, gradients, intensities, etc.), local shape and geometry (a table is horizontal,
a keyboard is uneven, etc.) and geometrical context (e.g., a monitor is usually on top of a table). The view
is segmented and semantic concepts are assigned to the segments using a maximum-margin classifier,
which maximizes a discriminant function calculated on the characteristics.

Annotating 3D scenes obtained from an RGB-D camera has also been addressed in [209] for semantic
modeling of 3D indoor scenes. The views are segmented, and the conditional random field algorithm
assigns conceptual annotations to the recognized elements. After the semantic reflection, 3D models
corresponding to the annotations are retrieved from a database and combined into a final representation.

Figure 3.10: (Left) Cornell’s Blue robot mounted with a camera (Microsoft Kinect). (Right) Predicted semantic
representations of the scene elements. Source: [77]. Courtesy of A. Anand, H. S. Koppula, T. Joachims and A.
Saxena

The method proposed in [245] uses contextual data for creating semantic 3D models of buildings on
the basis of scans. The method processes point clouds obtained from a laser scanner to detect planar
patches. The patches are classified using the conditional random field algorithm. The algorithm analyses
the relations between the neighbouring patches (contextual information) and assigns semantic elements
that are equivalents of the analyzed geometrical elements, e.g., walls, floors and ceilings. The resulting
model is a semantic reflection of the input point cloud.

Another method of creating semantic equivalents of 3D point clouds of buildings has been proposed
in [74]. In the first step of the method, an input point cloud is analyzed to discover planar patches, their
properties (e.g., locations) and relations. In the next step, an OWL reasoner processes a domain-specific

33

ontology including conceptual elements that potentially match the analyzed patches. Matching elements
are selected and configured to build a conceptual representation. The representation is a semantic
reflection of the input point cloud, which complies to the ontology. Finally, the representation is verified
against the input scan using the iterative closest point algorithm. In addition, the method enables the
separation of concerns in modeling, as the ontologies may be designed by a developer, while 3D scanning
and using the algorithm may be performed by domain experts.

Semantic Modeling with 3D Meshes

A few works have addressed semantic reflection of various properties of 3D meshes. In some works,
semantic reflection is performed after content segmentation, in which different elements of the content
are distinguished on the basis of their properties (geometry, colors, relative locations, etc.). In such cases,
the semantics of content elements is usually determined by their properties and the context of use within
the content, which is indicated by dependencies between the elements.

The method proposed in [167, 183] detects connections between elements of a 3D model and
generates a graph representing the analyzed content (Figure 3.11). The similarity between the walks
of different elements in the graph indicates similar semantics of the elements which, in turn, determines
their functionality. The functionality of content elements is analyzed using unsupervised classifiers,
e.g., the randomized cut algorithm, which assigns the most appropriate annotations to particular content
elements.

Figure 3.11: Part-wise semantic correspondences between 3D shapes. Source: [167]. Courtesy of H. Laga, M.
Mortara and M. Spagnuolo

In [80, 81, 207], after automatic segmentation of 3D content, the distinguished elements are
semantically annotated. Annotation may be performed automatically—by software considering
topological relations between features (e.g., adjacency and overlapping) and geometric aspects of content
features (e.g., orientation and size). Manual annotation may be performed by a user equipped with a
graphical tool. The authors discuss both keyword- (not formalized) and ontology-based (formalized)
approaches to annotating, and they present an example using an ontology of human body.

The method proposed in [119, 191] enables reflection of non-manifold 3D models using concrete
properties. The method identifies properties related to the following aspects of the models: non-manifold
singularities (e.g., isolated points and curves), one-dimensional parts, connected elements and maximal
connected elements. Once identified, the properties are mapped to a common shape ontology and form a
concrete representation of the analyzed model. In addition, the method offers flexible transitions between
modeling activities, since the analysis may be supported by a user who manually segments the model.

Semantic Modeling with Reusable Elements

Several works have addressed modeling of 3D content based on semantic reusable 3D content
elements. In [145], a method of automatic configuration of interior scenes based on constraints has been
proposed. In the method, semantic scene representations include conceptual individuals and properties,
e.g., table, floor and stands-on, as well as constraints on individuals and properties, e.g., a scene is valid if
no objects that are not connected by a constraint are colliding. The final scene representation is inferred

34

using an algorithm that operates on the semantic scene graph and dynamically assembles scene objects
according to their constraints.

The method proposed in [91–93, 123–125, 164, 181, 196] enables ontology-based modeling of 3D
content at a conceptual level. Content selection and configuration are performed with domain-specific
ontologies, which are mapped to a 3D content-specific ontology. Final content representations are
generated by the method in a way that is specific to a particular content representation language. The
separation of concerns in modeling is possible, since conceptual content representations may be created
by domain experts according to the domain-specific ontologies, while the 3D content-specific ontologies
may be used by a developer who is an expert in semantic modeling.

The method of modeling 3D content proposed in the Flex-VR approach [229–231, 233, 234, 236]
encompasses content reflection as well as selection and configuration of content elements. Content
configuration may be manual (performed by a user) or automatic (performed by software). Commonly
occurring problems are solved using content design patterns. Activities on generalized content objects
do not require advanced technical skills in 3D modeling. Therefore, separation of concerns is
possible—content objects may be prepared by developers and further used by domain experts building
3D scenes at a domain-specific level. An example of a virtual museum scene modeled by a domain
expert using Flex-VR is presented in Figure 3.12.

Figure 3.12: A virtual museum scene designed with Flex-VR. Source: [231]

The method proposed in [160] enables 3D content configuration. It uses ontologies encoded in
OWL as schemes for conceptual and concrete content representation. Concrete content representations
are created with concepts that are equivalents of concepts specified in X3D. Semantic rules, which
are encoded in the Access-Limited Logic language, permit flexible transitions between the modeling
activities. For example, to every object that is an instance of the shape class, assign a preferred
material. Both OWL statements and rules are processed by a reasoner to discover tacit knowledge,
which influences the final content representation.

In [103], a method of probabilistic reasoning for assembly-based modeling of 3D content has been
proposed. The method is based on a Bayesian network, and it has two stages. In the first stage,
preprocessing of a training set of segmented and annotated 3D models is performed to distinguish
different categories of models with similar geometrical features. In the second stage, probabilistic
reasoning is performed in real time, while modeling 3D content. Elements from the most appropriate
categories are selected and configured with the current form of the content when chosen by the modeling

35

user. For instance, after the selection of a fuselage, wings are proposed by the method to be selected (as
they are probable in this case), whereas no wings are proposed when the modeled plane already has two
wings (as the presence of more then two wings is unlikely in this case). Examples of models assembled
using the method are presented in Figure 3.13.

Figure 3.13: Examples of 3D models semantically assembled using probabilistic reasoning. Source: [103].
Courtesy of S. Chaudhuri, E. Kalogerakis, L. Guibas and V. Koltun

In the Smart Variations approach [250], 3D models are automatically generated on the basis of triplets
of other 3D models (Figure 3.14). Selection and configuration of basic shapes are based on geometrical
arrangements among symmetrically related substructures that determine the semantics of the shapes and
their parts.

Figure 3.14: Numerous 3D models generated using symmetric functional arrangements detected in three input
models. Source: [250]. Courtesy of Y. Zheng, D. Cohen-Or and N. J. Mitra

3.6.2. Tools for Semantic Modeling

The tools for semantic modeling of 3D content have been grouped in terms of the type of the content
produced. Three groups of tools have been differentiated. The first group includes tools designed to build
interactive 3D simulations. The second group includes tools designed for modeling buildings and spatial
data. The third group includes tools designed to create adaptable 3D content. The tools are presented
with the focus on particular modules that are used to produce final 3D content representations.

36

Semantic Modeling of 3D Simulation

Several works have addressed semantic modeling of interactive 3D simulations. In the REALISM
Artificial Intelligence Virtual Environment (RAIVE) tool [100], high-level (conceptual) representation
of events and actions is used for modeling the behavior of avatars. The semantics of behavior is reflected
by mappings between natural language constructs and sets of basic physical events, such as, moving,
changing direction, picking up an object, etc. The interpretation of a command invokes a sequence
of actions, e.g., interactions with the environment. Mappings are created using a finite-state transition
network (FSTN).

In [98, 99, 105], the MultiAgent System for Collaborative, Adaptive & Realistic Environments for
Training (MASCARET) has been presented. The selection and configuration of content elements
are performed by users equipped with a 3D modeling tool (Figure 3.15). The tool refers to UML
documents that specify semantic representations of content elements. The tool permits transformation
of UML-based scenes to final 3D scenes. The separation of concerns is possible, as the preparation
of UML-based content models is performed by a UML developer, while the modeling activities
are performed by a specialist in 3D modeling. Finally, the UML-based content representation is
automatically transformed and launched on a selected content presentation platform.

Figure 3.15: Semantic modeling 3D content with MASCARET. Source: [105]. Courtesy of P. Chevaillier, T. Trinh,
M. Barange, P. D. Loor, F. Devillers, J. Soler and R. Querrec

In [179, 180], a tool for creating knowledge-based simulations has been described. The tool uses
conceptual semantic representations of events and actions (Figure 3.16). It combines the Unreal
Tournament game engine (responsible for rigid-body physics and content presentation) with an inference
engine (responsible for reasoning and updating the scene representation when events occur) and a
behavioral engine (responsible for recognizing actions and changing objects in conceptual terms).

ISReal [161] is another tool for creating 3D simulations. The tool leverages semantic concepts,
services and hybrid automata to describe behavior of 3D content elements. The tool has a client-server
architecture. The client is based on a 3D content presentation tool, e.g., an XML3D browser, while the
server is built of several services enabling selection and configuration of content. A graphics environment
maintains and renders 3D scene graphs. A global scene environment manages global scene ontologies,
which represent the simulations. A verification environment checks spatial and temporal requirements

37

against properties of content objects. An agent environment manages intelligent avatars, e.g., their
perception of the scene. The user interface is capable of communicating with web-based and immersive
virtual reality platforms.

Figure 3.16: An example of a semantic action representation. Source: [180]. Courtesy of J. L. Lugrin and M.
Cavazza

The Simulator X [129, 173, 243] consists of several modules enabling content selection and
configuration: content model based on actors, which are the main elements of the created simulation; the
state of the simulation stored in shared variables; entities describing actors; binding for the integration of
artificial intelligence into the simulation; object-oriented scripts and a multimodal user interface. Another
tool for creating 3D simulation with respect to content semantics has been proposed in [194]. The tool
enables generation and injection of semantic properties into virtual environments using lexical ontologies
such as WordNet [20] or VerbNet [41].

Semantic Modeling of Buildings and Spatial Data

A few tools have been proposed to design 3D models of buildings and spatial data. In [126], a
feature-based modeling tool has been described. The tool is an implementation of the modeling paradigm
based on universes (cf. Section 3.3). It provides a graphical user interface for modeling content, including
selection and configuration of elements, in particular for spatial data modeling and industrial design. The
tool leverages an intermediate model that includes both shapes and their semantics. The semantics of
features is specified by geometric relations between entities representing features and feature parameters.

In [204], a semantics-based Virtual Design Environment (VDE) has been described. The tool is a
graphical application that enables selection and configuration of predefined content elements to create
3D models of buildings. The tool enables the incorporation of different semantic information into the
created 3D content. Functional semantics represents the purpose of the design and essential constraints
of different parts of the modeled building. Spatial semantics represents the contiguity between different
elements of the created model. Esthetical semantics includes visual dominance, symmetry and modality
(centrality, linearity and radiality). Environmental semantics covers lightning, acoustic as well as thermal
and air ventilation. Contextual semantics includes council regulations, e.g., driveway access.

In [217], a tool for semantic integration of procedural techniques for modeling buildings has been
described. The goal of the tool is to generate buildings that are complete (including both external and

38

internal elements such as facade, stairs, furniture, etc.) and congruent (without conflicting elements,
e.g., overlapping, with improper properties and functions). The tool includes several modules. Semantic
models of buildings are reflected by an ontology (stored in a library) that specifies such conceptual
elements as floors, walls, rooms, windows, chairs, etc. A semantic moderator checks consistency of the
3D model being created. Wrapping modules are used to provide a uniform generic access interface to the
semantic moderator for different procedural generation modules that are responsible for content selection
and configuration. Plans are documents describing the schemes of buildings, while a conductor is used
to accomplish the steps of the applicable plan. The tool enables separation of concerns between different
modeling users. While the procedural generation modules need to be implemented by a developer, plans
of buildings may be further created by an expert in modeling buildings.

Semantic Adaptation of 3D Content

Several works have addressed adaptation of interactive 3D content. Content adaptation encompasses
mainly the selection of content elements and properties to be presented as well as transformation of
content representations to different content representation formats and languages. In [149, 151], a tool
transforming virtual environments for multi-modal interfaces has been proposed. The tool supports
such interfaces as PDA, microphone or gestures-based. The tool uses XML-based device descriptors
that define parameters of interaction devices (IO channels). Device descriptors are mapped to virtual
entity descriptors (e.g., animated shapes, virtual characters and multimedia documents) and a virtual
environment descriptor (the world under control). Tool configuration may be completed using an
interface based on visual programming, which offers diagrams corresponding to different descriptors
and their properties (Figure 3.17).

Figure 3.17: Pen and gestures-based interfaces described by a diagram enable semantic manipulation of a 3D
object. Source: [151]. Courtesy of M. Gutiérrez, D. Thalmann and F. Vexo

In the Amacont tool [115], the modeling activities: selection, configuration and transformation are
available from a graphical interface. Content adaptation is performed according to rules registered in and
processed by different modules. Adaptation covers different aspects of the content (appearance, structure,
behavior and functionality), which are determined with respect to user preferences, device used and

39

the context of interaction (location, connection parameters, network users, temperature, etc.)—retrieved
from sensor elements.

In the 3DAF tool [89], which is based on the 3DSEAM content model, selection and configuration
are performed in a flexible way, on demand according to rules registered within the tool (Figure 3.18).
Once queries are issued by users invoking methods of the communication interface, the invocations are
translated into SQL-like queries and process by a query manager. Next, content objects are retrieved
from an annotation repository and a final 3D scene is created.

Figure 3.18: Result of the transformation of a campus following semantic adaptation rules. Source: [89]. Courtesy
of I. M. Bilasco, M. Villanova-Oliver, J. Gensel and H. Martin

The AttribIt tool [102] has been designed for modeling adaptable 3D content with semantic attributes.
In the tool, techniques of information retrieval, machine learning and computer vision are used to extract
implicit knowledge from 3D models and to reflect different parts and elements (e.g., related to geometry
and appearance) of 3D models by different strengths of attributes, e.g., aerodynamics or scary heads
(Figure 3.19). A graphical user interface enables flexible selection of content elements, choice of the
desirable strengths of attributes of the elements, and observation of the results. A statistical model
permits the simultaneous and coherent change of multiple content elements once the values of attributes
change.

Figure 3.19: Variants of 3D models with different strengths of semantic attributes reflecting aerodynamics and
scary heads. Source: [102]. Courtesy of S. Chaudhuri, E. Kalogerakis, S. Giguere and T. Funkhouser

3.7. Summary

Applying semantics to interactive 3D content receives increasing attention in research community
as one of the possible approaches to facilitating creation and manipulation of 3D content. Semantic
representation and modeling of 3D content is used in various applications and domains, such as cultural
heritage, entertainment, CAD and simulation. The available solutions have been classified according to
the proposed taxonomy. The following conclusions may be drawn on the basis of the survey.

40

The majority of the works focus on schemes for semantic representation of 3D content. The schemes
are usually XML-based ontologies encoded with the semantic web standards (RDF, RDFS and OWL),
which create a common space for representing the semantics of web content. The schemes enable content
representation at conceptual and concrete levels of abstraction. Schemes are used within methods and
tools for modeling 3D content. The previous works usually address tools for semantic modeling of 3D
content. A smaller group of works address methods of modeling, focusing on the way in which semantic
content representations are processed to produce final 3D content presentations. The available methods
and tools typically do not cover the whole modeling process, but enable only selected modeling activities
to be performed in semantic way.

In the available approaches little attention is paid to multi-layered 3D content representation at
different levels of abstraction—at the level that is specific to 3D modeling and at levels that are specific
to arbitrarily selected applications or domains. Multi-layered representation can enable more flexible
content creation and management (indexing, searching and analyzing) than in the case of only concrete
or only conceptual representation. Next, the available solutions do not strongly benefit from discovery of
tacit knowledge hidden in semantic 3D content representations, which could significantly reduce effort
in modeling the content. Furthermore, only few of the available methods and tools permit semantic
transformation of content to different 3D content representation languages. In contrast to transformations
based on typical grammar analysis, semantic transformation may be more convenient for semantically
represented content. It can offer new opportunities related to the meaning of content elements, e.g.,
transforming specific subgroups of 3D scenes or using common generic transformation rules for different
languages. Another gap is related to flexible content adaptation covering queries to semantic content
representations and contextual information, e.g., device used, user location and preferences.

4. The SEMIC Approach

In this chapter, the SEMIC approach—Semantic Modeling of Interactive 3D Content—is introduced.
First, the motivations and requirements for SEMIC are presented, then the general concept of the
approach is explained.

4.1. Motivations and Requirements

Although a number of approaches have been proposed for modeling interactive 3D content, they lack
general and comprehensive solutions for creating content for modern VR/AR systems. The following
shortcomings may be identified in the available approaches.

1. 3D content is typically created using a limited set of predefined concepts (specific to 3D content
or specific to an application or domain). Existing approaches do not enable conceptual 3D content
creation with arbitrary domain-specific concepts. The approaches lack generic methods of linking
domain-specific concepts with 3D content components and properties to enable use of a wide range
of ontologies for modeling 3D content.

2. 3D content components and properties are explicitly specified in both imperative and declarative
3D content representation languages. Existing approaches do not provide declarative 3D content
representation combined with discovery of tacit knowledge, which would enable inference of new
facts based on the stated facts. In particular, complex means of expressing semantics, e.g., restrictions
on classes, domains, ranges and cardinality of properties, rules and operations on sets, are not
employed in 3D content creation.

3. Existing approaches do not enable separation of concerns in modeling 3D content between different
users—IT-specialists as well as experts in particular domains. For example, geometrical shapes and
textures may be created by an expert in computer graphics, mapped to domain-specific concepts by
a developer and further used by a domain expert to create 3D scenes using only domain-specific
objects.

4. 3D content adaptation focuses mostly on contextual selection of values for 3D content properties.
Such adaptation typically addresses differences in hardware and software used. It does not cover
different aspects of 3D content represented at different levels of abstraction. Moreover, 3D content is
adapted according to predefined rules that cannot be combined with 3D content representations into
highly-expressive knowledge bases representing new adapted 3D content.

5. Transformation of 3D content representations to different formats is typically performed using
individual scripts implementing specific algorithms. The approaches do not enable generic
transformation to different formats of 3D content representation. A generic transformation can be
performed using an algorithm that is common for different target formats and sets of rules that are
specific to particular formats. For instance, VRML and X3D have similar structures but different
syntax of documents.

42

Recent trends in the development of the web provide new opportunities for efficient and flexible
content creation, which go beyond the current state of the art in modeling 3D content and enable meeting
functional requirements imposed by modern content creation scenarios. The main requirements are
summarized below.

— Requirement 1: Declarative modeling of 3D content, which emphasizes specification of the results
to be presented, but not the way in which the results are to be achieved. For instance, create a sphere
and a cube such that the cube is closer to the observer than the sphere, instead of—first create the
sphere and next create the cube so that a part of the sphere is hidden behind the cube, as seen by the
observer.

— Requirement 2: Conceptual modeling of 3D content components and properties at arbitrarily
chosen levels of abstraction, including aspects that are directly related to computer graphics as well
as aspects that are specific to a particular application domain. For instance, a car includes wheels,
doors, a windscreen and so on.

— Requirement 3: Knowledge discovery leading to revealing 3D content properties, dependencies
and constraints, which are not explicitly specified, but which may be extracted from the explicit facts
and have impact on the modeled content. For instance, present only sub-classes of guns in a virtual
museum.

— Requirement 4: Separation of concerns in 3D content creation, which may involve different
modeling users with different expertise, who are equipped with different modeling tools, e.g., to
facilitate content creation by domain experts who are not IT-specialists. For instance, a graphic
artist creates a texture, a technician maps it to a domain-specific concept of material and a furniture
designer applies the material to different pieces of virtual furniture.

— Requirement 5: On-demand customization of 3D content including selection of particular content
objects to be presented, selection of the desirable features and behavior of objects, extension of
content objects with new features and behavior as well as composition of selected content elements
into more complex content objects. Content customization may be performed regarding user
requirements and preferences, the context of interaction, client device used, etc.

— Requirement 6: Multi-platform representation of 3D content, which covers different hardware
and software platforms. 3D content may be described using different content representation formats
and languages, and presented within multiple content browsers and presentation tools.

The fulfillment of the requirements can lead to the development of a new class of efficient methods
and systems of creating interactive 3D content that can contribute to wider dissemination and use of 3D
content on the web.

4.2. Outline of the SEMIC Approach

The main contribution of this dissertation is the Semantic Modeling of Interactive 3D Content (the
SEMIC approach) [239]. SEMIC goes beyond the current state of the art in modeling 3D content by
satisfying the aforementioned requirements through the use of the semantic web techniques. SEMIC
enables declarative creation of 3D content based on different domain-specific ontologies. SEMIC
supports knowledge discovery in content representations and separation of concerns between different
users in content creation. The created content may be presented on different platforms. The general
concept of the approach is presented in Figure 4.1.

43

... Template Base
(TB) N

Template Base
(TB)

...

...

Platform-
specific

Representation
(PSR) N

Platform-
specific

Representation
(PSR)

Semantic 3D Content Model (SCM) Semantic 3D Content
Representation (SCR)

3D Content
Customization

Patterns
(CCPs)

Concrete
Ontology (CRO)

Co
n

ce
p

tu
al

Le

ve
l

C
o

n
cr

e
te

Le

ve
l

P
la

tf
o

rm

Le
ve

l

Links between SEMIC elements

SCCM activities

v

Ontology Ontology instance – knowledge
base

Representation
Mapping (RM)

Meta-Scene

Platform-
independent

Representation
(PIR)

Transformation
Knowledge

Base (TKB) N

Transformation
Knowledge
Base (TKB)

Domain-specific
Ontology (DSO)

Conceptual
Representation

(CpR)

Query

Figure 4.1: The concept of the Semantic Modeling of Interactive 3D Content (SEMIC)

SEMIC consists of two interrelated elements that address different aspects of 3D content creation and
representation. The first element—the Semantic 3D Content Model (SCM) [131, 134, 138]—provides
concepts that enable 3D content representation at different levels of abstraction. In SCM, 3D content
is represented at three levels. The Conceptual Level is determined by a Domain-specific Ontology
(DSO), which defines concepts that are abstract in the sense of presentation (are not specific to computer
graphics), e.g., buildings, cars, traffic lights, signs, etc. The Concrete Level is determined by the
Concrete 3D Content Ontology (CRO), which defines concepts that are specific to computer graphics,
e.g., meshes, light sources, materials, animations, etc. The Platform Level is determined by Template
Bases (TBs) encoded in different (arbitrarily chosen) 3D content representation languages. TBs define
concepts that are specific to 3D content representation at different hardware and software platforms, e.g.,
the Material node in VRML, the X3DMaterialNode node in X3D and the Material class in
Java3D.

The links between the neighboring levels are specified within ontologies and knowledge bases.
Different DSOs are mapped to the CRO by Representation Mappings (RMs), which are knowledge bases.
For instance, a car may be mapped to a set of meshes covered with textures, changes in the time of day
may be mapped to an animation of the intensity of a light source, etc. The CRO is mapped to different
TBs by different Transformation Knowledge Bases (TKBs). For instance, the cro:Navigation class
of the CRO is mapped to the NavigationInfo element of VRML and to a fragment of code of
ActionScript in 3D Adobe Flash presentations. SCM permits the use of domain- and application-specific
knowledge to simplify the content creation process at a high level of abstraction by domain experts who

44

are not IT-specialists. Knowledge, which is expressed at different levels of abstraction/semantics, is
modeled using linked (solid lines) ontologies and knowledge bases.

SCM is used within the second element of SEMIC—the Semantic 3D Content Creation Method
(SCCM) [137, 139]. SCCM is a sequence of steps (dashed lines in Figure 4.1), in which the concepts of
the SCM model are used to create 3D content. Some of the steps of the SCCM method are accomplished
manually by a human, whereas other steps are accomplished automatically—by software that transforms
3D content representations, enabling transitions between the subsequent steps.

In the SCCM method, the domain specific ontologies (DSOs) are used for designing Conceptual 3D
Content Representations (CpRs), which reflect content at the conceptual level in the forms specific to
arbitrarily selected domains. CpRs are processed with respect to RMs and transformed to meta-scenes.
A meta-scene is a generalized 3D content representation, which reflects content at both conceptual
(high) and concrete (low) levels of abstraction. Meta-scenes may be customized in terms of the
content components and properties that should be provided to a content consumer (user or application).
Requirements for the customization of a meta-scene are specified within queries that are prepared by
content consumers. For instance, a meta-scene of a city includes models of buildings and animated
models of cars. It may be customized into a scene that includes only buildings, buildings and cars
without animations, etc. Customization queries are created according to the 3D Content Customization
Patterns (CCPs) [238]. A Platform-independent 3D Content Representation (PIR) generated on the basis
of a meta-scene and a query is transformed to a Platform-specific 3D Content Representation (PSR),
which may be presented at particular hardware and software platforms, e.g., smartphones equipped with
browsers supporting WebGL, workstations equipped with X3D browsers, etc. PSRs are generated using
TKBs.

SEMIC is firmly based on the semantic web standards (RDF, RDFS and OWL). The restrictive use
of the formally specified semantic web standards is preferred over the use of other concepts (in particular
rules, which are flexible to use and have high semantic expressiveness) because of the following two
reasons. First, the semantic web standards provide concepts that are widely accepted on the web and can
be processed using well-established tools, such as editors and reasoners. Second, complexity measures
have been investigated and specified for these standards, including a number of typical reasoning
problems (such as ontology consistency, instance checking and query answering) [224], which permits
building applications with more predictable computational time. The particular elements of SEMIC are
presented in detail in the following sections.

5. The SEMIC Semantic 3D Content Model

In this chapter, the SEMIC Semantic 3D Content Model (SCM) is described [131, 134, 138–141].
SCM enables declarative, platform-independent representation of 3D content at different levels of
abstraction. In this chapter, first, an overview of SCM and formal definitions that are common to different
elements of SCM are presented. Second, particular elements of SCM are described in detail.

5.1. Overview of the SCM Model

SCM is a set of ontologies that enable creation of Semantic 3D Content Representations (SCRs)
at different levels of abstraction (Figure 5.1). An SCR is a knowledge base that is compliant with
SCM. SCM encompasses individual ontologies that are specific to different aspects of 3D content. The
ontologies enable creation of partial semantic content representations (knowledge bases) included in
an SCR. The semantic content representations reflect the content in a declarative way—by specifying
content elements, their properties and relations between them (Chapter 4/Requirement 1).

SCM consists of four ontologies as described below.

1. The Concrete 3D Content Ontology (CRO) enables direct representation of 3D content taking
into account different content modalities (e.g., visual, aural or haptic). In this dissertation, visual
presentations of content, which are based on computer graphics are addressed. Such presentations
include, among others geometrical components, materials, textures and animations. The CRO is used
to build Concrete 3D Content Representations (CrRs).

2. A Domain-specific Ontology (DSO) enables high-level 3D content representation based on
domain-specific classes and properties. The classes and properties are abstract in the sense of their
final presentation and, in general, are not specific to 3D computer graphics, e.g., buildings, cars,
artifacts and animals. A DSO is used to build Conceptual 3D Content Representations (CpRs). A
CpR is a knowledge base that represents 3D content at a conceptual level of abstraction. SCM may
include different DSOs. SCM introduces neither requirements for DSOs nor restrictions on DSOs
that can be used.

3. The Mapping Ontology (MO) enables mapping of domain-specific classes and properties (included
in a DSO) to concrete classes and properties (included in the CRO). Mapping is expressed by
Representation Mappings (RMs), which are knowledge bases that conform to the MO. RMs permit
modeling 3D content with domain-specific classes and properties that are not related to computer
graphics.

4. The Transformation Ontology (TO) enables transformation of statements on concrete components
and concrete properties to code fragments encoded in a particular 3D content representation language
(Java, ActionScript, X3D, etc.). A particular transformation is described by a Transformation
Knowledge Base (TKB), which conforms to the TO, and a Template Base (TB), which includes
parametrized code templates encoded in a 3D content representation language.

46

Domain-specific
objects

D
om

ai
n-

sp
ec

ifi
c

O
nt

ol
og

y
(D

SO
)

M
ap

p
in

g
O

nt
ol

og
y

(M
O

)
Co

nc
re

te
 3

D
 C

on
te

nt
 O

nt
ol

og
y

(C
RO

)

Domain-specific
Properties

Domain-specific
Classes

P1 P2

P3 P4

P6 Pk2

P5

Concrete Classes

Geometrical
Component

Structural
Component

Appearance
Component

Scene
Component

Animated
Component

Spatial
Component

Concrete Properties

Concrete 3D Content
Components

O1 O2

O3 Ok3

C1

C3 C4

C2

C5 Ck1

Semantic Rules

Data and Object
Properties (DPs/OPs)

P1 P2

P3 P4

Pk9P6

P5

Descriptive Classes (DCs)

DC1

DC3 DC4

DC2

DC7DC6

DC5

DCk4

Descriptive Individual (DI)
Classes

Relations (RLs)

RL1 RL2

RL3 RL4

RLk6RL6

RL5

Presentable Object
(PO) Classes

PO1

PO3 PO4

PO2

POk8

SR1 SRk10

DI1

DI3 DI4

DI2

DI6

DI5

DIk5

PO5

Behavioural
Properties

Pn6

Geometrical
Properties

Pn1

Structural
Properties

Pn2

Animation
Properties

Pn5

Scene
Properties

Pn4

Appearance
Properties

Pn3

Semantic
rule

IndividualPropertyClass Instances ofInherit from Described by Include

Descriptive Class
(DC)

Descriptive
Individual (DI) Class

Relation

Data/Object
Property

Presentable Object
(PO) Class

Semantic 3D Content Model (SCM) Semantic 3D Content Representation (SCR)

Conceptual 3D
 Content

Representation (CpR)

Representation M
apping (RM

)
Concrete 3D

 Co
ntent

Representation (CrR)

C1

C3 Ck7

C2

Tr
an

sf
or

m
at

io
n

Sc
he

m
es

Groups of
concepts

Transformation
Knowledge Base (TKB)

S1 Sk11

Template Base (TB)

Code Fragments

Platform
-specific

3D
 Content

Representation
(PSR)

T1 Tk13

CF1 CFk14

Statement
Template/
Code fragment

Transform
ation D

escription

3D Content Representation
Languages

Lk12L1

Transformation Ontology (TO)

S1 Sk10

Figure 5.1: The Semantic 3D Content Model (SCM)

47

The concepts of 3D content, 3D object and 3D scene, which are used across this dissertation are defined
as follows.

Definition 1. 3D content is a 6-tuple {G,ST ,P,SC,A,B}, where:

— G is a set of 2D and 3D geometrical elements, such as meshes, spheres, rectangles and arcs;
— ST is a set of structural elements (e.g., structures of multiple geometrical elements) as well as

transformations (e.g., rotation, scale, screw and intersection);
— P is a set of presentational elements and properties, such as textures, colors and light sources;
— SC is a set of elements related to spatial exploration of the content, such as viewpoints and navigation

modes;
— A is a set of animations, such as changes of colors, coordinates, normals and positions;
— B is a set of behavioral elements describing interactions between 3D content elements as well as

interactions between a user and 3D content elements, such as sensors and events.

An example of 3D content is a set of transformed meshes with textures, animations and interactions.
Specific kinds of 3D content are 3D object and 3D scene.

Definition 2. A 3D object is such 3D content that its G contains:

— a single 2D or 3D geometrical element, or
— multiple 2D and 3D geometrical elements that have a common root element.

Examples of 3D objects consisting of only a single geometrical element are a mesh, a cone and a sphere.
An example of a 3D object consisting of multiple elements with a common root is a complex structural
element representing an engine with pistons and valves.

Definition 3. A 3D scene is such a 3D object that its SC contains viewpoints and navigation modes.

Due to the presence of viewpoints and navigation modes, a 3D scene may be viewed by an observer. 3D
scenes typically have complex structures consisting of a number of geometrical elements. Examples of
3D scenes are: a virtual museum with exhibitions, a room with avatars in a game, a court with players,
etc.

A 3D content representation is a dataset describing the 3D content in a way that is sufficient to
present the 3D content. A 3D content representation may be encoded using:

— 3D content representation formats, e.g., obj [54], 3ds [17], VRML [222] and X3D [223];
— 3D content representation languages, e.g., C++, Java, JavaScript and ActionScript with appropriate

libraries, e.g., OpenGL [9], [186], WebGL [69] and Away3 [2];
— database models, e.g., X-VRML [234] and X-VRDB [233];
— semantic web techniques, e.g., RDF [225], RDFS [226] and OWL [224].

Examples of 3D content representations are: a VRML document, an X3DOM script embedded in a web
page, compiled classes based on Java3D [186] responsible for drawing shapes, and an X-VRML template
for dynamic 3D content generation. In the remainder of this dissertation, the focus is on semantic 3D
content representations that are encoded using the semantic web standards.

5.2. Semantic Web Definitions

SCM is based on a number of concepts defined in the specifications of the RDF [225], RDFS [62]
and OWL [56, 57] semantic web standards:

48

— rdfs:Class [62], which is the set of all RDF classes (referred to as classes in this dissertation);
— rdfs:Resource, which is the class of all RDF resources (referred to as resources in this dissertation)

[62];
— rdf:Property, which is the class of all RDF properties (referred to as properties in this dissertation)

[225];
— rdf:type [225], which is referred to as type in this dissertation;
— rdfs:Literal, which is the class of all RDF literal values (referred to as literal values in this

dissertation) [62], e.g., strings, integers and floats;
— rdfs:subClassOf [62], which is referred to as subclass in this dissertation. A class that has a subclass

is referred to as a superclass of the subclass in this dissertation;
— rdfs:subPropertyOf [62], which is referred to as subproperty in this dissertation. A property that

has a subproperty is referred to as a superproperty of the subproperty in this dissertation;
— rdfs:domain and rdfs:range of a property [62], which are referred to as domain and range in this

dissertation;
— owl:DatatypeProperty, which is a subclass of rdf:Property [57]. Its instances are referred to as data

properties in this dissertation;
— owl:ObjectProperty, which is a subclass of rdf:Property [57]. Its instances are referred to as object

properties in this dissertation;
— owl:NamedIndividual [56], which is a class of all OWL named individuals (referred to as

individuals in this dissertation).

To express knowledge, resources are used within statements. A statement expresses a fact. It
consists of a subject, a property and an object. The subject is a resource being described. The object
is a resource that describes the subject. The property specifies a relation between the subject and the
object. An example of a statement is: a sensor (subject) is assigned to (property) a mesh (object).

Following [225], a statement on subject S, property P and object O is a triple <S,P,O>, where:

— S is a resource,
— P is a property,
— O is a resource.

A statement is true (satisfied) if and only if the subject and the object are related by the property. The
existence of a property P between resources X and Y is denoted as: P(X ,Y)—X and Y are related by P.
In SEMIC, the open world assumption [208] is used, if not stated otherwise. Hence, a statement that is
specified is true. A statement that is not specified is not considered false.

Let S denote the set of all possible statements.

Multiple statements may be combined into a rule. A rule is interpreted as an implication, which
makes the satisfaction of some statements (contained in the head) conditional on the satisfaction of other
statements (contained in the body).

Following [227], a rule is a pair <body, head>, where:

— the body and the head are sets of statements, and
— if the conjunction of the statements of the body is true, then the conjunction of the statements of the

head is also true.

49

R = <body, head> :
body = {Sb1, ...,Sbn : ∀i ∈ {1, ...,n} : Sbi ∈ S}∧
head = {Sh1, ...,Shm : ∀ j ∈ {1, ...,m} : Sh j ∈ S}∧
Sb1∧ ...∧Sbn⇒ Sh1∧ ...∧Shm

If body is empty, the rule is a statement.

LetR denote the set of all possible rules.

An example of a rule is: if the x dimension of a box is greater then the y dimension (body—statement 1)
and the y dimension is greater then the z dimension (body—statement 2), the box is put on the side with
the edges x and y (head—statement 1) and its color is red (head—statement 2).

5.3. SCM Definitions

Multiple rules form an SCM knowledge base.

Definition 4. An SCM knowledge base is a non-empty set of rules.

Rules in SCM knowledge bases, describe classes, properties and individuals.

Let KB denote the set of all possible SCM knowledge bases.

The union of SCM knowledge bases is also an SCM knowledge base.
∀KB1 ∈ KB ∀KB2 ∈ KB(KB1∪KB2 ∈ KB)

A specific kind of SCM knowledge base is SCM ontology in which only classes and properties are
described. Unlike in SCM knowledge bases, in SCM ontologies no individuals are described.

Definition 5. An SCM ontology is such an SCM knowledge base that is a set of rules whose bodies and
heads have subjects that are either classes or properties.
O ∈ KB : ∀R ∈ O(R = <body, head>∧∀S ∈ body∪head
(S = <sub,prop,obj>∧ (rdf:type(sub,rdfs:Class)∨ rdf:type(sub,rdf:Property))))

Definition 6. Resource R is defined in an SCM knowledge base KB as an instance of a class C if and
only if there is a statement S in the KB such that the subject of S is R, the property of S is rdf:type and the
object of S is C.
∀R ∈ rdfs:Resource ∀KB ∈ KB ∀C ∈ rdfs:Class
(de f inedIn(R,KB)∧ instanceO f (R,C) ⇔ ∃S ∈ KB(S = <R,rdf:type,C>)

An SCM knowledge base KB1 is an instance of an SCM knowledge base KB2 if and only if KB1 uses a
class or a property defined in KB2.

Definition 7. An SCM knowledge base KB1 is an instance of an SCM knowledge base KB2 if and only
if there is such a statement in KB1 that either the subject or the property or the object of the statement is
defined in KB2.
∀KB1 ∈ KB ∀KB2 ∈ KB(instanceO f (KB1,KB2) ⇔ ∃S ∈ KB1

(S = <sub,prop,obj>∧ (de f inedIn(sub,KB2)∨de f inedIn(prop,KB2)∨de f inedIn(ob j,KB2))))

SCM consists of several SCM ontologies.

Definition 8. The Concrete 3D Content Ontology (CRO) is such an SCM ontology that:
CRO = GL∪ST L∪APL∪SCL∪ANL∪BL, where:

50

— GL (geometry layer) is an SCM ontology in which classes and properties related to the geometry of
3D content are defined,

— STL (structure layer) is an SCM ontology in which classes and properties related to the structure of
3D content are defined,

— APL (appearance layer) is an SCM ontology in which classes and properties related to the
appearance of 3D content are defined,

— SCL (scene layer) is an SCM ontology in which classes and properties related to spatial exploration
of 3D content are defined,

— ANL (animation layer) is an SCM ontology in which classes and properties related to animations of
3D content are defined,

— BL (behavior layer) is an SCM ontology in which classes and properties related to the behavior of
3D content are defined.

The layers correspond to distinct aspects of 3D content. The layers are described in Section 5.4.2.

Definition 9. The Mapping Ontology (MO) is a 5-tuple {RPOC,RDC,RMP,RDIC,RRLC}, where:

— RPOC is the Root Presentable Object Class from which all Presentable Object Classes (described in
Section 5.6.3) inherit;

— RDC is the Root Descriptive Class from which all Descriptive Classes (described in Section 5.6.3)
inherit;

— RMP is the Root Mapping Property from which all Mapping Properties (described in Section 5.6.3)
inherit;

— RDIC is the Root Descriptive Individual Class from which all Descriptive Individual Classes
(described in Section 5.6.3) inherit;

— RRLC is the Root Relation Class from which all Relations (described in Section 5.6.3) inherit.

Mapping a DSO to the CRO is described in Section 5.6.

Definition 10. The Transformation Ontology (TO) is a 5-tuple {SCPC,SPC,T SPC,T PC,T PPC},
where:

— SCPC is the Statement Collection Pattern Class of all Statement Collection Patterns (described in
Section 5.7.2);

— SPC is the Statement Pattern Class of all Statement Patterns (described in Section 5.7.2);
— TSPC is the Template Set Pattern Class of all Template Set Patterns (described in Section 5.7.2);
— TPC is the Template Pattern Class of all Template Patterns (described in Section 5.7.2);
— TPPC is the Template Parameter Pattern Class of all Template Parameter Patterns (described in

Section 5.7.2).

Multi-platform 3D content representation based on TO is described in Section 5.7.

Definition 11. The Core Semantic 3D Content Model (CSCM) is such an SCM ontology that:
CSCM =CRO∪MO∪TO, where:

— CRO is the Concrete 3D Content Ontology,
— MO is the Mapping Ontology,
— TO is the Transformation Ontology.

A Domain-specific Ontology (DSO) is an SCM ontology that describes 3D content in a way that
is specific to an application or domain and enables presentation of the content. Various domain-specific

51

ontologies can be used within SCM to represent 3D content. The role of domain-specific ontologies is
described in Section 5.5.

Definition 12. The Semantic 3D Content Model (SCM) is such an SCM ontology that:
SCM =CSCM∪DSO, where:

— CSCM is the Core Semantic 3D Content Model,
— DSO is a Domain-specific Ontology.

Definition 13. Semantic 3D Content Representation (SCR) is such an SCM knowledge base that is an
instance of SCM.

Definition 14. An SCM class is a class defined in SCM or in a SCR.

Like classes, SCM classes may form hierarchies. For example, every cone (subclass) is a shape
(superclass).

Definition 15. An SCM individual is an instance of an SCM class.

Different SCM classes of SCM individuals are distinguished (e.g., transformations, meshes and
animations).

Definition 16. An SCM property is a property defined in SCM or in a SCR.

SCM properties are used to describe SCM classes and SCM individuals. Like properties, SCM properties
may form hierarchies. For example, a car that runs on (subproperty) a road is on (superproperty) the
road. Two kinds of SCM properties are distinguished depending on the range—SCM data properties and
SCM object properties.

Definition 17. An SCM data property is an SCM property that is a data property.

Definition 18. An SCM object property is an SCM property that is an object property.

Examples of the use of SCM data and object properties are: a sphere (an SCM individual) has radius
(an SCM data property) 10 (a resource that is a literal value); a mesh (an SCM individual) has (an SCM
object property) a material (a resource that is an SCM individual).

Definition 19. An SCM resource is an SCM class or an SCM individual or an SCM property.

SCM resources are used in SEMIC to represent 3D content.

5.4. Concrete 3D Content Representation

In this section, the Concrete 3D Content Ontology (CRO) and Concrete 3D Content Representation
(CrR) are explained. First, an overview of the CRO and CrR is provided. Second, the formal model of
CrRs is described. Third, elements of the CRO and a CrR are presented in detail.

5.4.1. Overview of Concrete 3D Content Representation

A CrR is an SCM knowledge base that is an instance of the CRO [138]. While the CRO specifies
SCM properties and SCM classes that do not have concrete properties assigned, a CrR extends the CRO
by specifying concrete components, which are subclasses of SCM classes defined in the CRO, that have
SCM properties assigned. Concrete components have particular values of concrete properties assigned.
Hence, they are sufficient for building 3D content representations.

52

The CRO introduces concepts (SCM classes and SCM properties) for low-level 3D content
representation (Chapter 4/Requirement 2). Concepts related to distinct aspects of 3D content are
separated into several layers (Figure 5.2). The SCM classes and SCM properties defined in the CRO are
widely used in well-established 3D content representation languages and programming libraries, such as
X3D, VRML, Java3D and Away3D. Examples of CRO classes are: cro:GeometricalComponent,
cro:Material and cro:NormalInterpolator (the cro prefix indicates the definition of the
class in the CRO). Examples of CRO properties are: cro:coordinates, cro:specularColor
and cro:interpolationPeriod. In the current form, the CRO contains concepts that are sufficient
for designing majority of 3D content, but it could be extended with new concepts depending on particular
specific requirements. Although in general, the CRO could address different modalities of content
(including visual, aural or haptic elements), in this dissertation the focus in on the geometric modality of
content presentation.

5.4.2. Concrete Modeling Layers

The CRO consists of six layers, in which different SCM classes and SCM properties of 3D content are
defined—geometry layer, structure layer, appearance layer, scene layer, animation layer and behavior
layer. The subsequent layers are partly dependent—every layer uses only its concepts and concepts
defined in the lower layers (gray arrows), i.e., 3D content may encompass concrete components of a
particular layer without referring to its higher layers. For instance, a complex 3D scene with behavior
covers all the layers of the CRO; reusable structural 3D objects without appearance that are to be
injected into different complex 3D scenes can be created at layer 2. The layered structure of 3D content
imposed by the CRO reduces the complexity and the number of relations between concrete components
incorporated in different layers of a CrR. It facilitates the exchange of particular concrete components
and the overall creation of 3D content. In addition, possible profiles of CRO implementation may cover
only layers reflecting the required aspects of 3D context and their lower layers, e.g., only geometry,
geometry and structure, etc.

During the creation of a CrR, CRO classes (components) are extended by inheritance to concrete
components. To simplify the presentation of the layers, components are referred to using their
URIs (e.g., cro:DirectionalLight), whereas the instances of components are referred to using
lowercase letters (e.g., a spatial component is an instance of cro:SpatialComponent,
textures are instances of cro:Texture).

The Geometry Layer

The geometry layer is the base layer of SCM. It consists of components and SCM properties of
2D and 3D geometrical shapes that form 3D content. The primary cro:GeometricalComponent
is abstract, so that its descendants are used to represent 3D content. Different components related to
geometry are defined in the layer, e.g., arcs, circles, cylinders, boxes and meshes. Since the components
of this layer have no common point of spatial reference, their spatial SCM properties (position and
orientation) are not given.

As this layer does not address other aspects of 3D content (structure, appearance, scene, animation
and behavior), it only enables modeling of separated shapes (3D models of sculptures, buildings,
furniture, etc.). Hence, the layer is insufficient for building 3D content for practical presentations.

53

S
tru

c
t u

re
L

aye
r

 *action(n)

Component2D

ArcOpenArc
CloseArc CircularComponent

Disk

Polyline

Point Line

Polypoint

 *includes(n)

RectanglePlane

Text

Circle

Component3D

Box

Cone
Cylinder Grid

Sphere

Mesh3D

AppearanceComponent
* visibility

TwoSidedComponent

IlluminatedComponent

Environmental
Effect

LightSource

Material
*transitionMode

MediaComponent

Fog Rain Snow

AmbientLight

StructuralLight

DirectionalLight

Texture

ImageTexture MovieTexture

 *material_1

*illuminatedBy

 *material_2

GeometricalComponent

ºenvironmentalEffect

Navigation

*navigation

Viewpoint *viewpoint

ComplexComponent

G
e

o
m

etry L
a

ye
r

A
p

p
ea

ran
ce L

aye
r

Scene

*texture

StructuralComponent

LevelOfDetail
ºdisabledProperties(n)

ºlevelOfDetail(n)

S
ce

n
e

 L
a

ye r*representation

AnimatedComponent

Rule

RuleSequence

*consistsOf(n)

Activity

*consistsOf(n)

Statement

Event

UserEvent
ObjectEvent
SystemEvent
NavigationEvent Sensor

KeySensor
PickingSensor
PointingSensor
TimeSensor

ºgenerates(n)

B
eh

a
v io

r L
a yer

Component

Animation

InterpolatedAnimation
*inputValues
*outputValues

A
n

im
a

ti
o

n
 L

ay
er

 subclass relation
a union of classes

* - obligatory property
º - optional property
(n) – a-ary property

abstract class

definite class object property

Property
*properties(n)

 *target

SpotLight

 *consistsOf

PropertyEvent

*includes(n)

SpatialComponent
*position
*orientation
*size

 *isPartOf

Image AudioVideo

SceneComponent

 *isPartOf

T
h

e dir ection
 o

f re
fe

ren
ces be

tw
e

en
 la

y ers
*consistsOf(n)

Resource

Interpolator
 *consistsOf

PositionInterpolator
NormalInterpolator

...

Figure 5.2: The Concrete 3D Content Ontology (CRO)

The Structure Layer

The structure layer is the second layer of the CRO. It depends only on the geometry layer. While
geometrical components are used to represent basic shapes, structural components that are spatial
combinations of multiple geometrical components, are used to represent complex 3D content. Moreover,
structural components may recursively include other structural components as well as media resources
(images, audio and video) and spatial components. A spatial component is a geometrical component or a
structural component, and it has spatial SCM properties (cro:position, cro:orientation and
size), which are set relatively to its parent structural component.

Due to the specific meaning of the cro:include inverse functional SCM property, structural
components may be considered as a whole while assigning some SCM properties (subproperties of the

54

cro:structurallyTransitive property) in higher layers. In particular, a common appearance
may be set for all the subcomponents of a structural component, e.g., a car that comprises a number of
independent 3D meshes, is as a whole covered with a yellow material with specular highlights.

The components of this layer have no appearance and thereby they are insufficient for creating 3D
content in practical cases. However, they describe the structure of 3D content and are used in higher
layers, e.g., when determining animations and behavior.

The Appearance Layer

The appearance layer aims at adding appearance to instances of cro:GeometricalComponent
and cro:StructuralComponent, which are defined in the lower layers. An appearance component
may be either a single- or a two-sided object. Each side can be covered with textures (images or
movies) or described by appearance SCM properties (e.g., cro:color and cro:transparency).
Common appearance SCM properties may be set for whole structural components by specifying
cro:transitionMode—to ignore or respect individual SCM properties of the subcomponents. In
addition, appearance components may be illuminated by light sources (e.g., directional, ambient, spot
and structural) and enriched with environmental effects.

At this layer, 3D content is represented using components with appearance that have no animations
and behavior. Such 3D content may be sufficient for static presentations of individual models, e.g.,
museum artifacts, furniture or buildings.

The Scene Layer

The primary component of the scene layer is the cro:Scene, which is a subclass of the union of
cro:AppearanceComponent and cro:StructuralComponent. A 3D scene has viewpoints
and navigation modes assigned. A background and environmental effects of a scene may be specified
at the lower appearance layer. A scene may be presented with different levels of detail depending on
the current distance to the observer. Each level of detail indicates a set of appearance components
included in the scene that should be visible and a set of appearance SCM properties to be disabled
for the components.

At this layer, designing complex navigable 3D scenes (without animations and behavior) is feasible.
Hence, the layer is sufficient for creating 3D content with basic interaction with a user (navigation), e.g.,
virtual museum rooms and 3D models of cities.

The Animation Layer

The animation layer consists of components and SCM properties that introduce animations to
3D content representations embedded in the lower layers. As animation may be related to different
aspects of 3D content, the layer refers to all the lower layers. cro:AnimatedComponent extends
(by inheritance) the union of cro:GeometricalComponent, cro:StructuralComponent,
cro:AppearanceComponent and cro:Scene with an arbitrary number of animations.
Animations have input and output SCM properties given. An interpolated animation specifies sets of
values of input and output SCM properties. The changes of discrete attributes (e.g., texture path and
navigation mode) are stepwise. For numeric attributes with continuous domains (e.g., position, scale and
color), intermediate input and output values that are not explicitly specified, are calculated from their
neighboring values.

3D content represented at this layer covers animated 3D scenes and 3D objects, e.g., moving artifacts,
light sources changing colors, morphing, etc.

55

The Behavior Layer

The behavior layer consists of components and SCM properties that are used to describe behavior
and logic of instances of components that are specified in the other layers. The layer has been designed
according to the rule-based approach, which enables complex declarative description and reasoning on
3D content. The primary component of behavior descriptions is cro:Rule. A rule is interpreted as an
implication (if the body is satisfied then the head is also satisfied). Rules without a body (statements)
are convenient for describing the state of instances of components. Rules with bodies are mainly used
to describe sequences of rules. In a rule sequence, the head of a rule is the body of the next rule. A
rule sequence permits an ordered performance of consecutive steps, like in imperative programming.
In turn, several independent sequences may create an activity. Activities that depend on events, enable
programming interactions (user, object, navigation or system interactions). Events are generated by
sensors: key sensors or pointing sensors—for user interactions, collision sensors—for object interactions,
time sensors—for system interactions. cro:Event and Sensor, as well as the SCM properties defined
on them in the CRO are similar to the corresponding concepts that are widely-used in other languages
for describing 3D content, thus they are not presented in detail in Figure 5.2.

At this layer, the created 3D content covers dynamic 3D scenes and 3D objects with all the aspects
addressed in the CRO. The 3D content may change in time due to user interactions, system interactions
as well as interactions between components, etc.

5.4.3. Formal Model of Concrete 3D Content Representation

The CRO is the basis for building CrRs. The common superclass of all the SCM classes that are
defined in the CRO is cro:Component.

Definition 20. A 3D content component is such a subclass of cro:Component that is defined in the
CRO.

Two kinds of CRO classes are distinguished—abstract classes and definite classes. In SEMIC, 3D
content is comprised of instances of definite classes, as abstract classes lack properties required for
3D content presentation. For example, cro:CircularObject is an abstract class, since different
circular components are possible, e.g., disks, circles, spheres, etc. Its subclass cro:Circle is a definite
class, as it specifies all required properties to draw a component instance.

Definition 21. A concrete property of 3D content is such an SCM property that is defined in the CRO
and its domain is a subclass of cro:Component.

Definition 22. A concrete data property of 3D content is such a concrete property that is an SCM data
property.

Definition 23. A concrete object property of 3D content is such a concrete property that is an SCM
object property.

Definition 24. A Concrete 3D Content Representation (CrR) is such an SCM ontology that is an
instance of the CRO.

In a CrR, concrete 3D content components are defined.

Definition 25. A concrete 3D content component is such an SCM class that is a subclass of definite
classes and a subclass of restrictions on concrete properties.

56

Two kinds of logical constraints are distinguished.

Following [224], a value constraint on SCM property P and resource R is a pair <P,R>.

Following [224], a cardinality constraint on SCM property P and resource R is a triple <P,R,N>, where
N is an integer.

Following [224], a restriction with constraint C is an SCM class of resources for which C is satisfied.

C is the class of all possible constraints. Different subclasses of constraints are distinguished.

Following [224], a has-value constraint C=<P,R> is a value constraint that is satisfied for a resource
R2 if and only if R is related to R2 by P.
∀C ∈ Chas−value ∀R2 ∈ rdfs:Resource(satis f iedFor(C,R2)⇔C = <P,R>∧P(R2,R))

Following [224], a has-value restriction is a restriction with a has-value constraint. Has-value
restrictions are typically used to specify features of concrete components. For example,
crr:StatueComponent (defined in a CrR) is a concrete component that is a subclass of
(extends) cro:Mesh3D and a subclass of a has-value restriction with a has-value constraint on the
cro:coordinates concrete property, which determines the exact shape of statues.

Following [224], a some-values-from constraint C=<P,R> is a value constraint that is satisfied for a
resource R2 if and only if at least one resource X related to R2 by P is an instance of R.
∀C ∈ Csome−values ∀R2 ∈ rdfs:Resource(satis f iedFor(C,R2)⇔C = <P,R>∧∃X(P(R2,X)∧X ∈ R))

Following [224], a some-values-from restriction is a restriction with a some-values-from constraint.
Some-values-from restrictions are typically used in the SCCM method in content customization to
distinguish SCM individuals that are related to other SCM individuals by some SCM properties. For
example, SCM individuals that have an animation assigned are animated objects.

Following [224], an all-values-from constraint C=<P,R> is a value constraint that is satisfied for a
resource R2 if and only if any resource X related to R2 by P is an instance of R.
∀C ∈ Call−values ∀R2 ∈ rdfs:Resource(satis f iedFor(C,R2)⇔C = <P,R>∧∀X(P(R2,X)⇒ X ∈ R))

Following [224], an all-values-from restriction is a restriction with an all-values-from constraint.
All-values-from constraints are typically used to indicate specific concrete subcomponents that are to
be related to the concrete components. For example, all the elements included in an instance of
cro:StructuralComponent are instances of cro:SpatialComponent, as they have spatial
SCM properties (position and orientation) that are relative to their parents.

Following [224], a minimum-cardinality constraint C=<P,R,N> is a cardinality constraint that is
satisfied for a resource R2 if and only if there are at least N different instances of R that are related
to R2 by P.
∀C ∈ Cmin−card ∀R2 ∈ rdfs:Resource(satis f iedFor(C,R2)⇔C = <P,R,N>∧
∃R(|R| ≥ N∧∀R3 ∈R(P(R2,R3)∧R3 ∈ R))

Following [224], a minimum-cardinality restriction is a restriction with a minimum-cardinality
constraint. Minimum-cardinality constraints are typically used to describe concrete components
whose instances have structures that are obligatorily dependent on other concrete components.
For example, every instance of cro:StructuralComponent includes at least one instance of
cro:SpatialComponent.

57

Following [224], an exact-cardinality constraint C=<P,R,N> is a cardinality constraint that is satisfied
for a resource R2 if and only if there are exactly N different instances of R that are related to R2 by P.
∀C ∈ Cexact−card ∀R2 ∈ rdfs:Resource(satis f iedFor(C,R2)⇔C = <P,R>∧
∃R(|R|= N∧∀R3 ∈R(P(R2,R3)∧R3 ∈ R))

Following [224], an exact-cardinality restriction is a restriction with an exact-cardinality
constraint. Exact-cardinality restrictions are typically used to describe concrete components
whose instances have features dependent on other concrete components. For example, every
instance of cro:TextureMaterial has exactly one value of the cro:path property; every
cro:TwoSidedObject has exactly two instances of cro:Material assigned.

Following [224], a maximum-cardinality constraint C=<P,R,N> is a cardinality constraint that is
satisfied for a resource R2 if and only if there are at most N different instances of R that are related
to R2 by P.
∀C ∈ Cmax−card ∀R2 ∈ rdfs:Resource(satis f iedFor(C,R2)⇔C = <P,R>∧
∃R(|R| ≤ N∧∀R3 ∈R(P(R2,R3)∧R3 ∈ R))

Following [224], a maximum-cardinality restriction is a restriction with a maximum-cardinality
constraint. Maximum-cardinality restrictions are typically used to describe concrete components
whose instances have features that are optionally dependent on other concrete components. For
example, instances of concrete components whose materials have no cro:specularColor specified,
have no specular highlight. In contrast to the other restrictions, exact-cardinality restrictions and
maximum-cardinality restrictions require the closed world assumption, in which a statement that is not
specified is considered false.

Multiple concrete components can be combined using object properties to enable representation of
complex 3D content.

Definition 26. A concrete component C1 is a subcomponent of a concrete component C2 if and only if
C2 is a subclass of a restriction with a constraint on a concrete object property and C1.

For example, crr:TreeComponent that extends cro:AppearanceComponent, has multiple
subcomponents crr:TreeLevelOfDetail (that extend cro:LevelOfDetail) that determine
the presentation of the trees depending on the distance to the observer.

5.5. Conceptual 3D Content Representation

In this section, DSOs and CpRs that may be used in SEMIC are explained. First, an overview of a
DSO and a CpR is provided. Second, the formal model of CpRs is described. Third, the elements of
DSOs and CpRs are presented in detail.

5.5.1. Overview of Conceptual 3D Content Representation

A CpR is an SCM knowledge base that is an instance of a DSO. A CpR consists of domain-specific
individuals, which are described by domain-specific properties. Domain-specific classes and properties
are used to represent 3D content at an arbitrarily high (arbitrarily chosen) level of abstraction (Chapter
4/Requirement 2). Domain-specific classes and properties are abstract in the sense of their final
presentation, as—in general—they can be presented in various manners (e.g., 2D graphics, 3D models,
aural or haptic elements). Domain-specific classes and properties typically do not cover aspects related to

58

3D content, or such aspects are not directly indicated. For instance, a car does not need to be represented
by a particular 3D shape, though it may be considered as such in terms of its final presentation by
belonging to a subclass of concrete components that are 3D meshes. Since SEMIC is independent
of DSOs that can be used for modeling 3D content, neither the creation nor the selection of DSOs is
addressed in the dissertation. To enable 3D representation of domain-specific individuals and properties,
DSOs are mapped to CrRs by RMs.

5.5.2. Formal Model of Conceptual 3D Content Representation

Definition 27. A Conceptual 3D Content Representation (CpR) is such an SCM knowledge base that is
an instance of a DSO.

Definition 28. A domain-specific class is such an SCM class that is defined in a DSO.

Definition 29. A domain-specific property is such an SCM property that is defined in a DSO.

Definition 30. A domain-specific individual is such an SCM individual that is an instance of a
domain-specific class.

Different CpRs can be created using SCM classes and SCM properties defined in a DSO. A CpR is a
representation of some specific 3D content, which may be a 3D object or a 3D scene. Examples of CpRs
are: a model of a city with buildings, streets and cars; a game with different characters; a virtual museum
with rooms, exhibitions, artifacts and visitors.
A CpR comprises rules on domain-specific classes, domain-specific individuals and domain-specific
properties. Examples of statements on domain-specific individuals are: the earth (subject) goes around
(SCM property) the sun (object), an artifact (subject) stands on (SCM property) a monument (object), a
car (subject) runs on (SCM property) a road (object), etc.

5.6. Mapping 3D Content Representations

In this section, the MO and RM are explained. First, an overview of the MO and RM is provided.
Second, the formal model of representation mapping is described. Third, the elements of the MO and
RMs are presented in detail.

5.6.1. Overview of Representation Mapping

An RM is an SCM ontology that is an instance of the MO (proposed in [134]), which maps a DSO to a
CrR. The goal of RM is to make domain-specific classes and properties (included in the DSO) presentable
by associating them with concrete components and properties (included in the CrR). SEMIC does not
restrict the acceptable kinds or domains of DSOs, thus different DSOs may be used to create 3D contents
of different types, for different domains and applications. As the cases and contexts of use are already
well-defined, domain-specific concepts may be mapped to concrete components by RMs—similarly to
encapsulating low-level functions behind high-level objects’ interfaces in object-oriented programming.

Mapping domain-specific classes and properties used in CpRs to particular concrete components and
properties of a CrR improves modeling efficiency and reusability of the classes and properties in contrast
to defining individual 3D representations for particular domain-specific individuals.

59

5.6.2. Mapping Concepts

In this section, the mapping concepts are discussed. The creation of particular mapping concepts is
explained in the discussion of SCCM in Section 6.3.

Presentable Object Classes

Presentable objects (POs), which are instances of presentable object classes (POCs), are the
primary SCM individuals of a CpR. Every SCM class defined in a DSO, whose instances represent
independent entities in the created 3D content (having own geometry, structure and appearance) is
specified as a subclass of a POC. Every POC determines some SCM properties that are inherent
to its POs—form the POs and give a sense of them in the selected presentation modality, e.g.,
the color map of a picture, the geometry of a 3D shape, the structure of a complex object, the
sampling frequency of a sound, etc. A POC is a subclass of concrete components, at least
one of which inherits from cro:GeometricalComponent, cro:StructuralComponent or
cro:AppearanceComponent. Hence, a mapped domain-specific class is associated with the SCM
properties associated with the concrete components. Examples of POs are artifacts in a virtual museum
exhibition, avatars in an RPG game, UI controls in a visual interface and sounds in an aural interface.
POs in a CpR may be described by the other mapping concepts defined in the RM—DCs, DIs and MPs.
In contrast to POs, the remaining mapping concepts describe POs and reflect aspects of 3D content that
have no independent representations in the final 3D scene, e.g., a texture or an animation do not exists
independently in a 3D scene, but are always assigned to some objects.

Descriptive Classes

A descriptive class (DC) is a subclass of concrete components and a superclass of a domain-specific
class. Hence, SCM individuals that belong to the domain-specific class are described by the concrete
components from which the DC inherits. For example, by using a DC, the dso:OakWood class
is a subclass of a concrete component inheriting from cro:Material that is described by an
appropriate texture. The assignment of dso:OakWood to a domain-specific individual that describes
the appearance of furniture results in the assignment of the concrete component (with the texture) to
the furniture. Another example—dso:RotatingMotion is a subclass of a concrete component
inheriting from cro:InterpolatedAnimation that has a concrete subcomponent inheriting from
cro:PositionInterpolator. The assignment of dso:RotatingMotion to a domain-specific
individual that describes the behavior of planets results in the rotation of the planets.

DCs are not used to represent independent 3D objects or 3D scenes. Instead, they are used to enrich
POs with additional concrete components that cannot be defined inherently to a whole POC, but need to
be assigned selectively only to some POs of a POC. For example, all boxes (a POC) and doors (another
POC) in a magazine are made of wood (a DC); an SCM class of interactive rotating objects consists of
only selected exhibits (POs) that rotate after being touched.

Mapping Properties

POs can be described by mapping properties (MPs). An MP is a superproperty of a domain-specific
property. In addition, on every MP, has-value restrictions are specified. The restrictions associate
distinguished values of the MP with particular DCs. Hence, the SCM individuals with a particular
value of the MP belong to the DC and thereby, they are instances of the concrete components that are
superclasses of the DC. A mapping data property (MDP) is an MP whose range is a class of literal
values (floats, integers, strings, etc.), e.g., a pot is made of ’clay’, the size of a monument is ’large’,

60

the frequency of a pendulum is ’high’. A mapping object property (MOP) is an MP whose range is a
descriptive individual class (DIC), e.g., a descriptor of a table specifies the type of the tableware used and
the number of place settings. In general, different MPs and DCs that are assigned to a PO may determine
common concrete components of the PO. For example, the color of a waxen object depends on both its
temperature and the dye used; the appearance of the leafs of a tree depends on its species, the season and
diseases.

Descriptive Individual Classes

In addition to MPs, POs may be described by DIs, which are instances of DICs. A DI is an SCM
individual that is related to the described PO by an MOP. Although a DI may be described by numerous
MDPs and MOPs, the concrete properties assigned to a DI (through MPs) are applied to the described
PO—the DI only carriers the properties. For example, furniture can be made of different types of wood,
each of which is described by a few SCM properties such as age, species and shininess.

Relations

DIs may be related to POs by MOPs or two POs may be related by a MOP. In such cases, DIs/MOPs
are used to represent relations (RLs) between the POs. A relation combines at least two POs by
dependencies on some MDPs or MOPs of related POs. In every relation, at least one PO affects other
POs and at least one PO is affected by other POs. Moreover, each PO is either affecting or affected. An
n-ary RL is built on a DI that is related to multiple POs by MOPs. A binary RL is built on an MOP that
links two POs.

For example, a relation that determines the relative position of some POs specifies their relative
orientations and distances between them; an object that is placed on a table takes table’s height to
calculate one of the position coordinates and does not change any SCM properties of the table.

5.6.3. Formal Model of Representation Mapping

Instances of the MO are RMs. An RM enables mapping between a DSO and a CrR.

Definition 31. A Representation Mapping (RM) is such an SCM ontology that is an instance of the MO.

RMs are created using mapping concepts. Mapping concepts are SCM classes and SCM properties
used to map domain-specific classes and properties to concrete components and concrete properties. The
following mapping concepts are distinguished in the MO: presentable objects classes (POCs), descriptive
classes (DCs), mapping properties (MPs) and descriptive individual classes (DICs). Since the DSO
is mapped to a CrR, all domain-specific individuals used for modeling 3D content are instances of
descriptive classes.

Definition 32. A descriptive class (DC) is such an SCM class that is:

— a subclass of the Root Descriptive Class defined in the MO, and
— a subclass of concrete components, and
— a superclass of a domain-specific class.

A specific kind of DC is presentable object class.

Definition 33. A presentable object class (POC) is such a DC that is a subclass of the Root Presentable
Object Class defined in the MO, and a subclass of:

— cro:GeometricalComponent or

61

— cro:StructuralComponent or
— cro:AppearanceComponent.

Definition 34. A presentable object (PO) is an instance of a POC.

Hence, POs have presentational properties related to geometry, structure and appearance.
Domain-specific individuals are described by mapping properties and by other domain-specific
individuals (descriptive individuals).

Definition 35. A mapping property (MP) is such a domain-specific property that:

— it is a subproperty of the Root Mapping Property defined in the MO, and
— has-value restrictions with has-value constraints on MP and its particular values exist and they are

equivalent to some DCs, and
— the domain of MP is a DC.

Definition 36. A mapping data property (MDP) is such a mapping property that is an SCM data
property.

Definition 37. A mapping object property (MOP) is such a mapping property that is an SCM object
property.

MOPs are used to link different domain-specific individuals.

Definition 38. A descriptive individual class (DIC) is such an SCM class that is:

— a subclass of the Root Descriptive Individual Class defined in the MO, and
— a subclass of all-values-from restrictions, and
— a superclass of a domain-specific class.

Definition 39. A descriptive individual (DI) is an instance of a DIC.

A specific kind of DIs and MOPs are relations between PO.

Definition 40. A relation (RL) between POs is a subclass of the Root Relation Class defined in the MO,
and:

— a MOP whose domain and range are POCs, or
— a DIC that is a subclass of restrictions on at least two different POCs.

5.7. Transformation of 3D Content Representations

In this section, the TO, TKBs and TBs are explained. First, an overview of the TO, a TKB and a
TB is provided. Second, the relevant formal definitions are provided. Third, the particular elements of a
TKB and a TB are described in detail. The use of a TKB for transforming 3D content representations is
explained in detail in the discussion of SCCM in Section 6.7.

5.7.1. Overview of Transformation

Semantic 3D content representations are independent of particular 3D content representation formats
and languages. They may be transformed to be presentable on different content presentation platforms.
TO enables description of the transformation of Platform-independent 3D Content Representations

62

Platform-specific
Entities

Template Entities Platform-independent Entities Transformation Entities

Template (T)

Code Fragment
(CF)

Platform-specific
Content

Representation (PSR)

Template
Parameter (TP)

Template Set (TS)

Template Base
(TB)

Statement (S)

Statement
Collection (SC)

Platform-independent
Content

Representation (PIR)

Statement Set (SS)

Statement List
(SL)

Statement Set
Pattern (SSPt)

Statement List
Pattern (SLPt)

Statement Pattern
(SPt)

Statement
Collection Pattern

(SCPt)

Transformation
Knowledge Base

(TKB)

Inherits from Includes Matches Equivalent to
Created manually

Created
automatically

Template Pattern
(TPt)

Template
Parameter

Pattern (TPPt)

Template Set
Pattern (TSPt)

Links

Figure 5.3: The elements of a Transformation Knowledge Base (TKB) and a Template Base (TB)

(PIRs) to Platform-specific 3D Content Representations (PSRs) [140, 141], which can be presented on
specific platforms (Chapter 4/Requirement 6). A PIR is an SCM knowledge base that is an instance of a
CrR. PIRs are automatically generated by the Expanding Algorithm of SCCM (cf. Section 6.5). A PIR
consists of statements on concrete properties and instances of concrete components (defined in the CrR).
PIRs are automatically transformed to PSRs by the Transformation Algorithm of SCCM (cf. Section 6.7).

A transformation of PIRs to PSRs encoded in a particular 3D content representation language is
described by a TKB and a TB. While the transformation algorithm is platform-independent, TKBs and
TBs are platform-dependent. A TKB is a set of rules describing the transformation for a particular 3D
content representation language. A TKB is used with a TB, which includes parametrized templates of
code in the 3D content representation language. A new TKB and TB is created once every time a new
3D content presentation platform (a combination of hardware and software) that uses a new 3D content
representation language is introduced to the system. When a new TB and a new TKB are added, they
may be used to transform PIRs to PSRs that may be presented on the new platform. The generated PSRs
comprise templates of the TB combined and filled according to the TKB. PSRs are visualized using
diverse 3D content representation languages (e.g., X3D, Java), programming libraries (e.g., Java3D,
Away3D) and game engines (e.g., Unity, Unreal). The aforementioned concepts are described in detail
in Sections 5.7.3 and 5.7.2. The elements of a TKB, a TB, a PIR and a PSR as well as relations between
them are depicted in Figure 5.3.

5.7.2. Transformation Concepts

The particular elements related to transformation of PIRs to PSRs are discussed in the following
sections.

63

Platform-independent Content Representations

A PIR is an SCM knowledge base that is an instance of a CrR, thus it is presentation platform
agnostic. However, PIRs can be presented on particular platforms when transformed with appropriate
TKBs. A PIR includes statements on concrete properties and instances of concrete components. Both
the properties and the components reflect different aspects of 3D content, such as geometry, structure,
space, appearance, animation and behavior.

A statement is the basic entity of a PIR in terms of transformation. During the transformation,
statements are assembled into statement collections (SCs). Assembling statements into SCs enables
the elementary operations (setting TPs, nesting Ts and ordering Ts) on Ts that are associated with the
statements. Two kinds of SCs are distinguished: statement sets (SSs) and statement lists (SLs), which
are built with respect to SSPts and SLPts, respectively.

Transformation Knowledge Base

A TKB describes the transformation of PIRs to PSRs. An individual TKB is created for a particular
presentation platform or a group of presentation platforms that use a common 3D content representation
language or different languages that have equivalent structures of documents. Since the transformation
is generic and based on elementary operations on semantic statements and code templates, TKBs for
different—both declarative (e.g., VRML, X3D) and imperative (e.g., ActionScript, Java)—3D content
representation languages may be built.

The primary entity of a TKB is a statement pattern (SPt). Every SPt is a statement that is
matched by a group of statements that may potentially occur in a PIR. Matching an SPt by a group
of statements is enabled by semantic generalization. A generalization may pertain to the subject, the
SCM property or the object of statements. For instance, a possible generalization of S1 [object

scm:color "red"] in terms of SCM property, is S2 [object scm:appearanceProperty

"red"], while a possible generalization of S3 [object rdf:type scm:Mesh3D] in terms of
object, is S4 [object rdf:type scm:GeometricalComponent].

SPts include entities that determine the structure of the resulting PSR. An SPt may include a template
set pattern (TSPt) with a number of template patterns (TPts), each of which may contain a number
of template parameter patterns (TPPts). These concepts correspond to the entities of parametrized
code, which are used in transformation: template sets (TSs), templates (Ts) and template parameters
(TPs), respectively. However, the concepts do not explicitly indicate the entities of parametrized
code. In a TKB, the level of generality of SPts may be high to cover a number of statements in a
PIR. For instance, the SPt [?subject scm:dataProperty ?value] may cover the statements
[?subject scm:intensity "10"] and [?subject scm:color "red"]. In a PSR, these
statements are represented by different Ts. Hence, the selection of a T is done for a particular
statement. However, the general structure of both Ts may be known in advance and specified at the
semantically generalized level in a TKB. For instance, the aforementioned Ts may be specified as
[$object.intensity = $data] and [$object.color = $data]. Both the statements
use the object and data TPs.

The following elementary operations are performed on Ts to transform PIRs to PSRs:

(1) setting common values of TPs,
(2) nesting a T into another T,
(3) ordering Ts.

64

The operations are enabled by statement collection patterns (SCPts): operations (1) and (2)—by
statement set patterns (SSPts), while operation (3)—by statement list patterns (SLPts). Every SCPt
includes multiple SPts. As an SPt matches a single statement, an SCPt matches a group of statements in
a PIR.

For instance, the SLPt [?subject ?property ?value. ?subject rdf:type

?type.] matches the pair of statements [?light scm:intensity "10". ?light

rdf:type scm:DirectionalLight.]. The common subject (light) and the reverse order
needs to be set for an imperative 3D content representation language (e.g., ActionScript), while the T
of the first statement needs to be nested into the T of the second statement for a declarative 3D content
representation language (e.g., X3D). The resulting imperative code is [DirectionalLight light

= new DirectionalLight(); light.intensity = 10;]. To enable linking TPs and
nesting Ts between different statements of an SCPt, appropriate statements are specified for TPPts and
TPts (which reflect TPs and Ts) in an SCPt.

Template Bases

A TB is a set of parametrized code templates that may be used to create PSRs on the basis of
PIRs. The primary entity of a TB is a template set (TS), which consists of templates (Ts), which
are parametrized fragments of code—may include a number of template parameters (TPs). A TB
conforms to a 3D content representation language (e.g., X3D, Java), possibly with programming
libraries (e.g., Java3D, Away3D). Every statement in a PIR may be matched by a TS. Matching is
dynamic and based on the actual signature of the statement, which is a triple <class of the

subject, property, class of the object>. For every statement, the TS whose signature
matches the statement is selected. Since the selection of a TS requires a particular statement,
matching between TSs and statements cannot be given in a TKB in SPts. For instance, both the
statements: [?obj1 rdf:type cro:DirectionalLightSource] and [?obj2 rdf:type

cro:SpotLightSource] match the SPt [?obj rdf:type cro:LightSource]. However,
the first statement is matched to an X3D TS including the T <DirectionalLight ...>, while the
second statement—to a TS including the T <SpotLight ...>.

Every TS may include a number of Ts that need to be individually processed, e.g., injected into
different TPs of another T. The processing of particular Ts, which are included is a TS, is specified in
the TKB. For instance, for a presentation platform that uses an imperative 3D content representation
language without navigation implemented, it may be necessary to inject a T implementing proper
functions next to the main function and to inject another T invoking the functions within the main
function.

A TB and a TKB are created once every time a new presentation platform using a new content
representation language is added to the system. When a new TB and a new TKB are introduced, they
may be used to generate various PSRs that are presentable on the new platform.

Platform-specific 3D Content Representations

A PSR is a collection (a set or a sequence) of code fragments (CFs) encoded in a 3D content
representation language. A PSR is generated automatically by the transformation algorithm (cf.
Section 6.7) upon Ts by setting their TPs. Once created, a PSR may be presented on the selected 3D
content presentation platform.

65

5.7.3. Formal Model of Transformation

The TO is used to create Transformation Knowledge Bases (TKBs).

Definition 41. A Transformation Knowledge Base (TKB) is such an SCM ontology that is an instance
of the TO.

A TKB describes the transformation of Platform-independent 3D Content Representations, which are
semantic 3D content representations, to Platform-specific 3D Content Representations, which are 3D
content representations encoded in a 3D content representation language, which is a programming
language used to create 3D content representations. Different 3D content representation languages may
be used in SEMIC, e.g., Java, ActionScript, VRML and X3D. The 3D content representation languages
used determine 3D content presentation platforms, which are combinations of hardware and software that
enable presentation of 3D content. Examples of 3D content presentation platforms are: a smartphone
equipped with an Internet browser that supports WebGL, a desktop equipped with an X3D browser, a
CAVE system equipped with specific software for 3D content presentation, a powerwall equipped with
software enabling stereoscopic rendering, etc.

Definition 42. A Platform-independent 3D Content Representation (PIR) is such an SCM knowledge
base that is:

— an instance of a DSO, and
— an instance of a CpR, and
— an instance of a CrR.

A PIR consists of statement collections.

Definition 43. A statement collection (SC) is a collection of statements.

Two kinds of statement collections are distinguished.

Definition 44. A statement set (SS) is a set of statements.

Definition 45. A statement list (SL) is a sequence of statements.

In an SL, the order of statements matters, as opposed to an SS. Respecting the order of statements
is mostly required in the case of TBs encoded in imperative 3D content representation languages,
whereas it is not important in the case of TBs encoded in declarative 3D content representation
languages. An example of an SC is: [?light rdf:type scm:DirectionalLight.

?light scm:intensity "10".]. If the SC is an SL, the first statement must be processed before
the second statement (first, the object must be created), whereas if the SC is an SS, the order of processing
the statements does not matter.

A transformation of a PIR to a PSR that is described by a TKB uses a Template Base (TB), which
consists of parametrized code templates. A template (T) is a parametrized document encoded in a 3D
content representation language. A template parameter (TP) of template T is a named part of T. The
name of a TP is unique within the T. TPs are used to nest templates and to embed values in templates.
For example, in the following T (Listing 5.1):

Listing 5.1: A template with template parameters

<Appearance DEF=’DefaultAppearance’>

<Material diffuseColor=’$Color-Value’/>

$ImageTexture-TemplateParameter

</Appearance>

66

TPs are used to fill the T with a diffuse color as well as with another T representing an image texture.

Definition 46. A template parameter TP of template T is filled with a value V (or with a template T2) if
and only if V (or T2) occurs in T instead of TP.

Definition 47. A template is filled if and only if all its template parameters are filled.

For example, the filled T from Listing 5.1 is presented in Listing 5.2.

Listing 5.2: A filled template

<Appearance DEF=’DefaultAppearance’>

<Material diffuseColor=’1 0.4 0.9’/>

<ImageTexture DEF=’texture1’ url=’ ".../texture1.png" ’/>

</Appearance>

Definition 48. A template set (TS) is a set of templates.

Definition 49. A template base (TB) is a set of template sets.

Definition 50. A code fragment (CF) is a filled template.

For example, a CF responsible for specifying a normal interpolation in X3D includes the element with
some attributes:

<CoordinateInterpolator2D DEF=’CoordID’ key=’...’ keyValue=’...’/>

A Platform-specific 3D Content Representation (PSR) is a 3D content representation encoded in a 3D
content representation language.

Definition 51. A PSR is a collection (a set or a sequence) of code fragments.

Definition 52. A template parameter pattern (TPPt) is an instance of the Template Parameter Pattern
Class defined in the TO.

In a transformation, the name of each TPPt is equal to the name of a TP of a T. A TPPt, which is included
in a TPt, is a counterpart to a TP, which is included in a T.

Definition 53. A template pattern (TPt) is an instance of the Template Pattern Class defined in the TO.

A TPt represents a set of TPPts. A TPt, which is included in a TSPt, is a counterpart to a T, which is
included in a TS.

Definition 54. A template set pattern (TSPt) is an instance of the Template Set Pattern Class defined in
the TO.

A TSPt represents a set of template patterns. A TSPt is a counterpart to a TS, which is included in a TB.
The concepts defined in the TO and used to create TKBs correspond to the concepts distinguished within
PIRs.

Definition 55. The Statement Pattern class is a class of pairs <S,TSPt>, where:

— S is a statement,
— TSPt is a template set pattern.

Definition 56. A statement pattern (SPt) is an instance of the Statement Pattern Class defined in the TO.

Let SPt denote the set of all possible statement patterns.

67

Definition 57. Statement S <S1,P1,O1> matches statement pattern SPt < <S2,P2,O2>,TSPt> if and only
if:

— S1 is equal to S2 or S1 is an instance of S2 or S1 is a subclass of S2, and
— P1 is a subproperty of P2, and
— O1 is equal to O2 or O1 is an instance of O2 or O1 is a subclass of O2.

∀S ∈ S ∀SPt ∈ SPt(matches(S,SPt)⇔ S =< S1,P1,O1 > ∧SPt =<< S2,P2,O2 >,T SPt > ∧
(S1 = S2 ∨ instanceO f (S1,S2) ∨ subclass(S1,S2)) ∧ subproperty(P1,P2) ∧ (O1 = O2 ∨
instanceO f (O1,O2)∨ subclass(O1,O2)))

A statement S matches a statement pattern SPt if there are specific relations between their subjects,
SCM properties and objects. If the subject/object of S is an SCM individual, it should be equal to the
subject/object of SPt (S matches SPt that describes the SCM individual), or it should be an instance of the
subject/object of SPt (S matches SPt that describes the class of SCM individuals). If the subject/object
of S is an SCM class, it should be a subclass of the subject/object of SPt (S matches SPt that is a
generalization of S).

Definition 58. A statement collection pattern (SCPt) is an instance of the Statement Collection Pattern
Class defined in the TO.

An SCPt represents a collection of SPts. Two kinds of SCPts are distinguished (like in the case of SCs).

Definition 59. A statement set pattern (SSPt) is a set of statement patterns.

Definition 60. A statement list pattern (SLPt) is a sequence of statement patterns.

As a statement may match SPts, an SC may match SCPts: an SS may match SSPts and an SL may match
SLPts.

6. The SEMIC Semantic 3D Content Creation Method

In this chapter, the SEMIC Semantic 3D Content Creation Method (SCCM) is described [137, 139,
141, 238]. SCCM offers an important advantage over the previous approaches by enabling flexible
creation of interactive 3D content using domain-specific ontologies. SCCM supports separation of
concerns in content creation between different modeling users, on-demand 3D content customization by
different content consumers (users and applications), and discovery of tacit knowledge from 3D content
representations. First, the outline of SCCM is provided, then the subsequent steps of SCCM, which are
performed by different users and algorithms, are discussed.

6.1. Outline of the SCCM Method

SCCM enables flexible declarative creation of 3D content at an arbitrarily chosen level of abstraction
by using SCM and CCPs (Chapter 4/Requirements 1 and 2). In SCCM, 3D content is created within a
sequence of steps that correspond to different levels of semantic abstraction of the created content. The
following steps are distinguished in SCCM (Figure 6.1):

— Step 1: designing a concrete 3D content representation,
— Step 2: mapping the concrete 3D content representation to a domain-specific ontology,
— Step 3: designing a conceptual 3D content representation,
— Step 4: expanding the conceptual 3D content representation into a 3D meta-scene,
— Step 5: customizing the 3D meta-scene,
— Step 6: generating platform-specific 3D content representations.

The steps use different SCM ontologies and produce 3D content representations, which are compliant
with the SCM ontologies. 3D content creation based on SCCM may be performed using the SO-SEMIC
environment (cf. Chapter 7) or separate tools for modeling 3D content (e.g., Blender [25] or 3ds
Max [82]) and semantic descriptions (e.g., Protégé [60]). SCCM supports the division of responsibilities
in 3D content creation between different users and software procedures (Chapter 4/Requirement 4). The
succeeding steps of SCCM depend on the results of their preceding steps. Steps 1-3 are performed
manually by users with different skills in modeling of 3D content—a modeler, a developer and a domain
expert. Steps 4 and 6 are performed automatically by specific SCCM software procedures. Step 5
is performed in part manually by a content user and in part automatically by a software procedure.
The presented 6 steps precede the final 3D content presentation to a user, which may be performed
using various 3D content browsers and presentation tools, such as Bitmanagement BS Contact [24] and
Cortona3D [44]. The 6 steps of SCCM are briefly described below.

Step 1 provides concrete components of 3D content to enable representation of domain-specific
concepts (classes and properties) that will be further used in Step 3. The result of Step 1 is a CrR,
which is an SCM knowledge base compliant with the CRO. Concrete components included in a CrR are
grouped into several partly dependent layers that are specific to 3D content—geometry layer (e.g., shapes,
meshes, planes), structure layer (e.g., groups of objects, size, position, orientation), appearance layer

69

Data flowWork flow

Ontology/Language
[SCM]

Step Representation/
Document

2-Mapping

Representations

Domain-specific

Ontology (DSO)

Concrete Content

Ontology (CRO)

Mapping Ontology

(MO)

Representation

Mapping

(RM)

Concrete

Representation

(CrR)

Conceptual

Representation

(CpR)

Transformation

Knowledge Base

(TKB)

Platform-specific

Representation

(PSR)

3-Designing

Conceptual

Representation

6-Generating

Platform-specific

Representation

3D Content

Presentation

1-Designing

Concrete

Representation

Platform-indep.

Representation

(PIR)

3D Meta-Scene

Query [CCPs]
Customization

Ontology (CO)

Performed

manually
Performed

automatically

Template Base

(TB)

5-Customizing

Meta-Scene

4-Expanding

Conceptual

Representation

Figure 6.1: Creation of 3D content based on the Semantic 3D Content Creation Method (SCCM)

(e.g., textures, materials, light sources), scene layer (e.g., viewpoints, navigation), animation layer (e.g.,
interpolators) and behavior layer (e.g., mouse and keyboard events). This step is typically performed by a
developer with expertise in 3D modeling, who is equipped with specific tools, e.g., 2D and 3D graphical
editors for creating textures, meshes, etc.

Step 2 enables creation of 3D representations of conceptually modeled content (CpRs that will be
created in Step 3). The result of this step is an RM, which is compliant with the MO. Mapping is
performed by a developer once for a particular DSO and a CrR. An RM enables the reuse of concrete
components and properties for forming 3D representations of various domain-specific individuals, which
conform to the domain-specific ontology used.

Step 3 enables creation of 3D content at an arbitrarily chosen level of abstraction that is determined by
the DSO used. The resulting CpR is compliant with the DSO. This step can be performed multiple times
for a particular DSO, a CrR and an RM. This step requires the knowledge of particular domain-specific
concepts but not computer graphics concepts. Thus, it is typically performed by a domain expert, who is
equipped with a semantic modeling tool (possibly domain specific).

Step 4 combines the CpR with the CrR using the RM. It produces an overall semantic content
representation—a 3D meta-scene—which is an SCM knowledge base representing the content at both
concrete and conceptual levels of abstraction, i.e. how particular domain-specific individuals are
represented by particular concrete components and properties. This step is completed automatically
by the expanding algorithm.

70

Step 5 enables customization of content by selection of particular domain-specific individuals of the
meta-scene that are to be presented and specification which features and behavior of the SCM individuals
should be presented. Content customization may be accomplished at different levels of abstraction
(both concrete and conceptual), as permitted by the meta-scene. This step may be performed on
demand, by different content consumers (users and applications), which independently execute queries
to meta-scenes. Queries are built according to CCPs. Queries specify requirements for 3D content
customization. The result of this step is a PIR. A PIR is a customized content representation, which
satisfies the requirements. The resulting PIRs reflect both explicit and implicit (tacit) knowledge included
in the meta-scenes and the queries. The customization of a meta-scene on the basis of a query is
completed by the customization algorithm.

Step 6 is completed automatically using the transformation algorithm and a TKB that links concrete
components to their corresponding counterparts included in a TB. The transformation can cover a wide
range of target presentation platforms based on either declarative (e.g., VRML, X3D and XML3D) or
imperative (e.g., Java, ActionScript and JavaScript) content representation languages.

The following sections describe the subsequent steps of the modeling process, along with an example,
in which different 3D content representations of a virtual museum of agriculture are created by different
users and algorithms (Listings 6.1-6.9).

6.2. Step 1: Designing a Concrete 3D Content Representation

In this section, the concept and an example of designing CrRs in Step 1 of SCCM are discussed.

6.2.1. The Concept of Designing Concrete Representations

Designing a CrR provides concrete components of 3D content, which are a foundation for
the representation of domain-specific classes and properties, which will be constructed in Step 3
(Chapter 4/Requirement 2). A CrR is an SCM knowledge base compliant with the CRO (cf. Section 5.4),
which represents 3D content at the concrete level of abstraction. Concrete components, which are the
elements of a CrR, are specific to 3D content. Examples of concrete components are meshes, materials,
viewpoints, events and complex structural objects. A CrR may be created at an arbitrary layer of the
CRO, including concrete components based on SCM classes and SCM properties defined in this layer
and its lower layers, e.g., designing a mesh is related to the geometry layer, while designing a motion
trajectory is related to the animation layer. In general, formation of concrete components is complex,
and it may require the use of additional specific hardware or software tools. For instance, the creation
of a 3D mesh requires the use of a 3D scanner or a 3D modeling tool, while drawing a texture requires
a 2D graphical editor. CrRs created in this step represent neither particular coherent 3D scenes nor
particular compositions of 3D objects, but they include (possibly independent) templates of reusable
content elements that may be flexibly composed into representations of complex 3D objects and 3D
scenes.

In most cases, concrete components need to be designed with regards to the domain-specific classes
and properties that are to be presented, e.g., a particular 3D mesh represents specific car models,
a particular texture represents clay surface, etc. Hence, concrete components need to be created in
collaboration with domain experts, who will further use the components in Step 3.

As described in Section 5.4, every concrete component is a subclass of a CRO class and a subclass of
restrictions on concrete properties. Concrete properties may have literal values (concrete data properties)

71

or indicate subcomponents (concrete object properties), which are also described by concrete properties.
Literal values of concrete properties may be directly used (interpreted) in the content representation
(e.g., when representing coordinates or color maps) or they may indicate external data sets (e.g., paths
to documents including meshes or images). The specification of literal values, which in general, may
be complex, is done using the SO-SEMIC environment (presented in detail in Chapter 7) or additional
software (e.g., a 3D modeling tool) or hardware (e.g., a 3D scanner) for creating visual (2D or 3D),
haptic or aural elements, etc. This step is typically performed by a modeler with technical skills in 3D
modeling with the appropriate tools.

6.2.2. Example of Designing a Concrete Representation

In Step 1 of the considered example, a modeler creates several virtual objects that represent real
museum artifacts. First, the modeler uses specific modeling tools to create graphical elements required
for low-level 3D content representation—a 3D scanner to capture the geometry of: a granary, a woman
statuette, a sower, a smoker, a ring, a seal and a badge, and a 2D graphical tool—to prepare textures for
selected 3D models (Figure 6.2). Second, the modeler uses a semantic modeling tool (which may be a
plug-in to a modeling package, e.g., Blender [25] or 3ds Max [82]), to create a CrR, which semantically
represents the created graphical elements. Listing 6.1 presents an example CrR encoded in the RDF
Turtle format [61]. Some concrete components and properties that are not crucial for the example
have been skipped. The prefixes used in the listing correspond to different SCM ontologies and content
representations. For every 3D model and every texture in the example, concrete components described by
concrete properties are generated. The concrete components will be mapped in Step 2 to domain-specific
classes and properties used by domain experts in Step 3. In the example, the woman statuette is to be
used by domain experts in three different forms: as clay and glassy virtual artifacts (Lines 3-25) and as
a painted virtual artifact with the inherent texture mapping (27-34). The other 3D models are to be used
in single forms (36-44).

crr:WomanMesh

crr:PaintedWomanMesh crr:SowerMesh

crr:SmokerMesh

crr:SealMesh

crr:BadgeMesh crr:ClayMaterial

crr:GlassMaterial

crr:GranaryMesh

crr:RingMesh

Figure 6.2: An example of concrete 3D content components

72

Listing 6.1: A concrete 3D content representation (CrR)

1 Prefixes: Concrete 3D Content Ontology (cro), Concrete 3D Content Representation (crr)
2
3 crr:WomanMesh rdf:type owl:Class ;

4 rdfs:subClassOf cro:Mesh3D ,

5 [rdf:type owl:Restriction ;

6 owl:onProperty cro:meshData ;

7 owl:hasValue "woman.obj"].

8
9 crr:ClayMaterial rdf:type owl:Class ;

10 rdfs:subClassOf cro:TextureMaterial ,

11 [rdf:type owl:Restriction ;

12 owl:onProperty cro:texture ;

13 owl:hasValue "clay.png"] ,

14 [rdf:type owl:Restriction ;

15 owl:onProperty cro:transparency ;

16 owl:hasValue 0].

17
18 crr:GlassMaterial rdf:type owl:Class ;

19 rdfs:subClassOf cro:ColorMaterial ,

20 [rdf:type owl:Restriction ;

21 owl:onProperty cro:color ;

22 owl:hasValue "green"] ,

23 [rdf:type owl:Restriction ;

24 owl:onProperty cro:transparency ;

25 owl:hasValue 0.7].

26
27 crr:PaintedWomanMash rdf:type owl:Class ;

28 rdfs:subClassOf crr:WomanMesh ,

29 [rdf:type owl:Restriction ;

30 owl:onProperty cro:texture ;

31 owl:hasValue "statueTexture.png"] ,

32 [rdf:type owl:Restriction ;

33 owl:onProperty cro:textureCoordinates ;

34 owl:hasValue "..."].

35
36 {crr:GranaryMesh,..., crr:BadgeMesh}

37 rdf:type owl:Class ;

38 rdfs:subClassOf cro:Mesh3D ,

39 [rdf:type owl:Restriction ;

40 owl:onProperty cro:meshData ;

41 owl:hasValue "..."] ,

42 [rdf:type owl:Restriction ;

43 owl:onProperty cro:texture ;

44 owl:hasValue "..."].

6.3. Step 2: Mapping the Concrete 3D Content Representation to a Domain-specific
Ontology

In this section, the concept and an example of creating RMs in Step 2 of SCCM are discussed.

6.3.1. The Concept of Mapping Representations

Mapping a CrR (created in Step 1) to a DSO enables 3D presentation of domain-specific individuals
(created in Step 3) by linking them to concrete components of 3D content included in the CrR. The
result of this step is an RM, which comprises mapping concepts that inherit from SCM classes and SCM
properties defined in the MO (cf. Section 5.6). Mapping is performed once for a particular DSO and a
CrR. Mapping enables the reuse of concrete components for presenting various CpRs, which conform to

73

the DSO. An RM needs to cover all concepts (SCM classes and SCM properties) of the DSO that need
to be used in modeling of 3D content.

This step covers operations on the previously designed concrete components, e.g., linking an
animation to a domain-specific class, inclusion of meshes within a complex structural object, etc.
However, in terms of semantic structures that are created, mapping is more complex and requires more
semantic expressiveness than designing a CrR. This step is typically completed by a developer with
skills in semantic modeling, using the SO-SEMIC environment or a semantic editor (e.g., Protégé [60]).
Mapping is performed on the basis of mapping patterns (cf. Section 6.3.2), which are combined into
mapping guidelines (cf. Section 6.3.3).

Definition 61. A mapping pattern is an elementary sequence of activities that is frequently repeated by
modeling users in the creation of different mapping concepts.

Definition 62. A mapping concept is an SCM class or an SCM property that is used to represent a
domain-specific class or a domain-specific property with concrete components or concrete properties.

Mapping patterns are frequently repeated by a developer when mapping domain-specific classes and
properties to concrete components and concrete properties. Multiple mapping patterns are combined
into mapping guidelines, which are performed by modeling users to create mapping concepts.

Definition 63. A mapping guideline is a sequence of mapping patterns that is performed by users to
create a particular mapping concept.

6.3.2. Mapping Patterns

Mapping patterns (Figure 6.3) specify means of creating mapping concepts of an RM, which link
concrete components (included in a CrR) to domain-specific classes and properties (included in a DSO).
Mapping patterns are described in the following sections.

Classification Property

The classification property mapping pattern enables reflection of an SCM property P whose values
are literal values by a set of SCM classes. For every distinct classification value of P, an individual
SCM class is created and it is specified as an equivalent to a has-value restriction on P with the required
P value. Consequently, every SCM individual that has a particular classification value of P assigned,
belongs to one of the created SCM classes. For instance, objects made of metal, wood and plastic may
belong to different SCM classes. Every SCM class created may be further described with different SCM
properties, using other mapping patterns.

Multivalued Descriptor

The multivalued descriptor mapping pattern enables specification of the desirable SCM data
properties for SCM individuals of a common SCM class. To make an SCM class a multivalued descriptor,
it needs to be specified as a subclass of the intersection of has-value restrictions. Every has-value
restriction indicates a required value for one of the desirable SCM data properties. For instance, every
gold object is yellow and reflects light—one restriction specifies color, while the other specifies shininess.

Structural Descriptor

The structural descriptor mapping pattern enables creation of a complex structure of SCM classes
that are linked by SCM object properties. To make an SCM class a structural descriptor, the class

74

Intersection

SCM Property

SCM Class
Literal Value

Classification Property

Literal Value SCM Class

Multivalued
Descriptor SCM Data Propertyhas-value

Multivalued Descriptor
Literal Value

Structural
Descriptor

SCM Class
exact-/

minimum-/
maximum-cardinality

SCM Object
property

Structural Descriptor

Complex Descriptor
DescriptorDescriptor

Complex Descriptor

...

Semantic Rule

SCM
Class

all-values-from
SCM Class

all-values-from

SCM Object
Property

SCM Class

Property Chain

SCM
Property

Equivalent Property/
Inverse Property

SCM
Property

Equivalent/Inverse Property

...

SCM
Class

SCM
Property

Literal Value
Restriction

Rule / Facts

...

Intersection
of Classes

Semantic RuleHead Body

Value SCM Object
Property

Value

Figure 6.3: Mapping patterns used in mapping guidelines

needs to be specified as a subclass of the intersection of minimum-cardinality, exact-cardinality or
maximum-cardinality restrictions. For instance, every physical object is made of a material, every
animated object has an animation assigned. The linked SCM class may also be a structural descriptor,
thus creating a complex structure of linked classes. In addition, structural descriptors can be extended
with SCM data properties by applying the multivalued descriptor mapping pattern.

Complex Descriptor

The complex descriptor mapping pattern enables specification of the desirable SCM data properties
and SCM object properties of SCM individuals based on multiple SCM classes that are assigned to
the SCM individuals. In contrast to the previous patterns, which enable mapping one class-to-many
properties, complex descriptors enable mapping many classes-to-many properties, making desirable
SCM property values conditional on SCM classes assigned to the SCM individual and SCM classes
not assigned to the SCM individual. For instance, the color of a wooden object is brown, while the color
of a waxen object is, e.g., pink, but it also depends on the object temperature. For every distinguishable
combination of SCM classes, a separate SCM class (a complex descriptor) is created and it is specified
as an equivalent to the intersection of the SCM classes that are required and the complements of the
SCM classes that are not required. Due to the use of the complements of SCM classes, the close world
assumption has to be made to enable the use of this pattern. Every complex descriptor can be further

75

extended with SCM data properties and SCM object properties by applying the multivalued descriptor
and the structural descriptor mapping patterns.

Equivalent and Inverse Properties

The equivalent property mapping pattern enables specification of an SCM property as an equivalent
to another SCM property. Equivalent properties are processed in the same manner. A number of
SCM properties may be specified as equivalent. For instance, the includes, contains and
incorporates SCM properties may be equivalents even if defined in different SCM ontologies. The
inverse property mapping pattern enables the specification of an inverse SCM property [57].
Following [224], if an SCM property P1 is an inverse property of an SCM property P2, for every
resources R1 and R2 if R2 is related to R1 by P1, R1 is related to R2 by P2.
∀P1 ∈ rd f :Property ∀P2 ∈ rd f :Property(inverseO f (P1,P2) ⇒ ∀R1 ∈ rd f s:Resource ∀R2 ∈
rd f s:Resource(P1(R1,R2)⇒ P2(R2,R1)))

For instance, includes and is included in are inverse SCM properties.

Property Chain

The property chain mapping pattern enables connection between SCM individuals of two different
SCM classes by linking the classes via mediating SCM classes that are subclasses of all-values-from
restrictions. Every mediator SCM class is specified as a subclass of an all-values-from restriction that
indicates the next SCM class in the chain using an SCM object property. The linked SCM class is also
a subclass of an all-values-from restriction. For instance, in an example interior design project, a room
may include only objects made of wood. Indicating an object as included in the room indicates that the
object is wooden.

Semantic Rule

The semantic rule mapping pattern is the most general of all of the CCPs proposed. It overtakes
the previous patterns in terms of expressiveness. This pattern is used to create logical implications that
determine selected SCM properties of SCM individuals (in the head of the rule) on the basis of other
SCM properties of SCM individuals (in the body of the rule). For instance, every object standing on

a table has the y coordinate calculated on the basis of the y coordinate of the table and the heights of
both the objects.

6.3.3. Mapping Guidelines

The use of particular mapping patterns for creating particular mapping concepts on the basis of
concrete components and concrete properties is determined by mapping guidelines as depicted in
Figure 6.4. Mapping guidelines are described in the following subsections.

Creating Presentable Object Classes

For each domain-specific class C whose SCM individuals need to have independent representations
in the created content, create a separate POC (defined in 5.6.3) and specify it as a superclass of C. Specify
concrete data properties and concrete object properties that are inherent to the POs of the POC. Use the
structural descriptor pattern to link the POC with DIC using concrete object properties (Figure 6.4-I), e.g.,
incorporating subobjects, indicating materials and animations. Use the multivalued descriptor pattern to
assign the required concrete data properties, e.g., colors, coordinates and dimensions. In such a way,

76

Multivalued descriptor,
Structural descriptor

 Many-to-many

One-to-many

Classification
Classification property,
Multivalued descriptor,

Structural descriptor

Classification
Classification property,
Multivalued descriptor
Structural descriptor,
Complex descriptor

 Numerical
Semantic rule

Domain = DIC
Property chain

Many-to-many
Multivalued descriptor,
Structural descriptor,
Complex descriptor

Semantic rules

One-to-one

Equivalent
Equivalent
propertyOne-to-many

Multivalued descriptor,
Structural descriptor

Presentable Object
Classes

Descriptive Classes

Relations

Mapping Data Properties

Inverse property

Mapping Object Properties

II

I

III V

IV

Figure 6.4: Mapping guidelines for creating mapping concepts

every domain-specific individual of C, which will be created in Step 3, will be described by all the
concrete properties assigned to the POC.

If C occurs in a hierarchy of domain-specific classes, its ascendant domain-specific classes should
be described first. Additional presentational effects that are not inherent to the ascendant SCM classes,
should be described directly for C.

Creating Descriptive Classes

Each domain-specific class C that may be assigned to POs to specify their presentational properties
but does not identify independent entities to be presented, specify as a DC and apply one of the following
rules (Figure 6.4-II).

1. If C exclusively determines different concrete properties that are not collectively determined by
other domain-specific classes (mapping one class-to-many properties), describe the C individuals
by concrete object properties and concrete data properties using the structural descriptor and the
multivalued descriptor patterns, respectively.

2. If C collectively determines different concrete properties with other domain-specific classes (mapping
many classes-to-many properties), first, use the complex descriptor pattern to create a separate DC
for every considered combination of the SCM classes that are assigned and the SCM classes that
are not assigned to the SCM individual. Second, use the structural descriptor and the multivalued
descriptor patterns for each of these DCs to specify their concrete object properties and concrete data
properties.

Like in the case of mapping hierarchies of POCs, mapping hierarchies of DCs covers first mapping
the ascendant DCs and second mapping the descendant DCs.

Creating Mapping Object Properties and Descriptive Individuals

For each domain-specific object property that links DIs to other DIs or DIs to POs, use the inverse
property pattern to create its inverse object property, if it does not exist (Figure 6.4-III). Maintaining

77

bidirectional links (object properties and their inverse object properties) between SCM individuals (POs
and DIs) is necessary to enable application of the property chain mapping pattern (which uses SCM
object properties to link DIs to DIs and DIs to POs).

Creating Mapping Data Properties

To each domain-specific data property DP that needs to have presentational effects on the described
POs, apply one of the following rules (Figure 6.4-IV).

1. If DP exclusively determines particular concrete properties, regardless of other data properties, DCs
and DIs assigned to the described SCM individual (mapping one property-to-many properties), apply
one of the following rules.
a) If the domain of DP is a POC, apply one of the following rules.

i. If DP is equivalent to a concrete data property, indicate this fact using the equivalent property
pattern (mapping one property-to-one property).

ii. If DP is a classification property (its domain is a finite SCM class of literal values), use
the following combination of mapping patterns. First, use the classification property pattern
to create a separate DC for each distinct value of DP. Second, extend the DCs by applying
structural descriptors and multivalued descriptors to assign required concrete object properties
and concrete data properties to them.

b) If the domain of DP is a DIC and its range is a set of classification data, apply the following
combination of mapping patterns. First, use the classification property pattern to create a separate
DC for each distinct DP value. Second, use the property chain pattern to specify the path
between the DIC and the described POC. Third, extend the DCs using the structural descriptor
and the multivalued descriptor to specify the required concrete object properties and concrete
data properties of their POs.

2. If the range of DP is a set of numerical data, for which a formula can be specified to determine the
values of the linked concrete properties on the basis of DP, use the semantic rule pattern.

3. If DP collectively determines different concrete properties in combination with other SCM data
properties, DCs and DIs assigned to the POs (mapping many properties-to-many properties), perform
the following steps. First, use the classification property pattern to specify a separate DC for every
distinct value of every considered DP. Second, use the structural descriptor and the multivalued
descriptor patterns to specify concrete object properties and concrete data properties of the DCs.
Third, use the complex descriptor pattern to create a new DC that is the intersection of the appropriate
DCs.

Like in the case of hierarchies of POCs and DCs, mapping domain-specific data properties
starts with ascendant properties and only these domain-specific subproperties that introduce additional
presentational effects (in comparison to their superproperties) are additionally described.

Creating Relations

Each domain-specific object property whose domain and range are POCs, specify as an RL, and
create a rule for it, according to the semantic rule pattern (Figure 6.4-V), determining the values of
desirable concrete properties of the participants of the RL on the basis of domain-specific properties of
other participants.

78

Each domain-specific class C that has no independent representation in the created content, and for
which there are at least two domain-specific object properties that link C with some POCs, specify as an
RL and create a rule describing dependencies between particular properties of the POCs.

6.3.4. Example of Mapping Representations

In Step 2 of the considered example, a developer or a technician creates an RM (Listing 6.2—the
RDF Turtle and Prolog-like syntax) including semantic statements that map domain-specific classes and
properties (used in Step 3) to concrete components of the CrR (created in Step 1). The dso:Woman
(3-4) artifact is a POC and a subclass of the crr:WomanMesh, so it inherits the SCM properties related
to geometry that were specified in the Step 1. Every instance of dso:Woman can be made of clay
or glass (as indicated by dso:madeOf), thus having an appropriate material assigned using proper
DCs (6-16). In contrast to clay and glassy artifacts, every dso:PaintedWoman PO has a texture
assigned, as indicated by its superclass (18-19). Mapping the other classes of the DSO to POCs has been
performed in a similar fashion (21-22). Moreover, two basic shapes (rm:Box and rm:Cylinder) are
created (24-32) and assembled into the dso:Stand POC (34-42). Every rm:Box and rm:Cylinder
included in a dso:Stand has dimensions and a position (44-56). Furthermore, two RLs have been
specified. The dso:incorporates RL is an equivalent to the cro:includes (58-59), while the
dso:standsOn RL determines the x, y and z coordinates of an SCM individual by semantic rules
(61-77). The created mapping is depicted in Figure 6.5.

Listing 6.2: A representation mapping (RM)

1 Prefixes: Concrete 3D Content Ontology (cro), Concrete 3D Content Representation (crr),
Mapping Ontology (MO), Representation Mapping (RM), Domain-specific Ontology (dso),
Conceptual 3D Content Representation (cpr)

2
3 dso:Woman rdfs:subClassOf

4 mo:PresentableObject , crr:WomanMesh.

5
6 {rm:ClayObject,rm:GlassyObject}

7 rdf:type owl:Class ;

8 rdfs:subClassOf mo:DescriptiveClass ;

9 owl:equivalentClass

10 [rdf:type owl:Restriction ;

11 owl:onProperty dso:madeOf ;

12 owl:hasValue "{clay,glass}"] ,

13 [rdf:type owl:Restriction ;

14 owl:onProperty cro:material ;

15 owl:onClass {crr:ClayMaterial,crr:GlassMaterial} ;

16 owl:qualifiedCardinality 1].

17
18 dso:PaintedWoman rdfs:subClassOf

19 mo:PresentableObject , crr:PaintedWomanMesh.

20
21 {dso:Granary,...,dso:Badge} rdfs:subClassOf mo:PresentableObject ,

22 {crr:GranaryMesh, ..., crr:BadgeMesh}.

23
24 {rm:Box,rm:Cylinder} rdfs:subClassOf {cro:Box,cro:Cylinder} ,

25 [rdf:type owl:Restriction ;

26 owl:onProperty cro:size ;

27 owl:onClass {rm:BoxSize,rm:CylinderSize} ;

28 owl:qualifiedCardinality 1] ,

29 [rdf:type owl:Restriction ;

30 owl:onProperty cro:position ;

31 owl:onClass {rm:BoxPos,rm:CylinderPos} ;

32 owl:qualifiedCardinality 1].

79

33
34 dso:Stand rdfs:subClassOf mo:PresentableObject , cro:StructuralComponent,

35 [rdf:type owl:Restriction ;

36 owl:onProperty cro:includes ;

37 owl:onClass rm:Cylinder ;

38 owl:qualifiedCardinality 1] ,

39 [rdf:type owl:Restriction ;

40 owl:onProperty cro:includes ;

41 owl:onClass rm:Box ;

42 owl:qualifiedCardinality 1].

43
44 {rm:BoxSize,rm:CylinderSize} rdf:type owl:Class ;

45 rdfs:subClassOf cro:Vector ,

46 [rdf:type owl:Restriction ;

47 owl:onProperty x ;

48 owl:hasValue "..."] ,

49 [rdf:type owl:Restriction ;

50 owl:onProperty y ;

51 owl:hasValue "..."] ,

52 [rdf:type owl:Restriction ;

53 owl:onProperty z ;

54 owl:hasValue "..."].

55
56 {rm:BoxPos,rm:CylinderPos} rdf:type owl:Class ; ...

57
58 dso:incorporates rdfs:subPropertyOf mo:BinaryRelation ;

59 owl:equivalentProperty cro:includes.

60
61 dso:standsOn rdfs:subPropertyOf mo:BinaryRelation.

62 {cro:x(APos, AX),cro:z(APos, AZ)} :-

63 dso:standsOn(A, B) ,

64 cro:position(A, APos) ,

65 cro:position(B, BPos) ,

66 {cro:x(BPos, BX),cro:z(BPos, BZ)} ,

67 {AX=BX,AZ=BZ}.

68 cro:y(APos, AY) :-

69 dso:standsOn(A, B) ,

70 cro:position(A, APos) ,

71 cro:position(B, BPos) ,

72 cro:y(BPos, BY) ,

73 cro:size(B, BSize) ,

74 cro:sy(BSize, BSY) ,

75 cro:size(A, ASize) ,

76 cro:sy(ASize, ASY) ,

77 AY = BY + (ASY + BSY)/2.

6.4. Step 3: Designing a Conceptual 3D Content Representation

In this section, the concept and an example of designing CpRs in Step 3 of SCCM are discussed.

6.4.1. The Concept of Designing Conceptual Representations

Designing a CpR is a process of declarative creation of 3D content at an arbitrary level of abstraction
that is permitted by the DSO used (Chapter 4/Requirements 1 and 2). This step can be performed
multiple times for a particular DSO, a CrR and an RM, when new 3D content is required for a particular
3D/VR/AR application. This step focuses on the use of domain-specific classes and properties and does
not cover concrete components and concrete properties, which are hidden behind the RM.

80

crr:Painted
WomanMesh

crr:SowerMesh
crr:SmokerMeshcrr:SealMesh

crr:BadgeMesh crr:GlassMaterial crr:GranaryMesh

crr:RingMesh

dso:PaintedWoman

crr:WomanMesh

dso:Woman dso:Sower dso:Seal dso:Ring dso:Smoker

dso:Badge dso:madeOf
=”glass”

crr:ClayMaterial

dso:madeOf
=”clay”

dso:Granary

rm:Cylinder

rm:Box

dso:Stool

Figure 6.5: An example of mapping domain-specific concepts to concrete 3D content components

A CpR, which is an SCM knowledge base compliant with a DSO, consists of statements (interpreted
as facts) and rules (interpreted as implications), which declaratively represent 3D content at the
conceptual level of abstraction. Both statements and rules are on domain-specific individuals (instances
of domain-specific classes) and domain-specific properties. CpRs represent coherent 3D scenes and
3D objects—in contrast to CrRs including possibly independent concrete components, which do not
necessarily form coherent 3D content representations.

In general, this step is independent of the previous steps, and a CpR may be created before a CrR
and an RM are created, e.g., when a domain expert designs an accurate digital equivalent to a known real
object, using well-defined domain-specific concepts. However, when designing non-existing virtual 3D
objects or scenes (e.g., a planned virtual museum exhibition, 3D city model) the availability of the CrR
and the RM is desirable to enable preview while modeling.

This step is typically performed by a domain expert who does not need to have advanced technical
skills. A domain expert uses a DSO to focus only on domain-specific semantic concepts and does not
work with concrete components of 3D content.

6.4.2. Example of Designing a Conceptual Representation

In Step 3 of the considered example, a domain expert creates a CpR (Listing 6.3) including SCM
individuals of domain-specific classes, which are described by domain-specific properties. Both the
classes and the properties are mapped to concrete components and properties included in the CrR.
The domain expert creates three woman statuettes (8-12) and several other artifacts (3-6). The first
two statuettes are made of different materials (clay and glass), while the third statuette is inherently
covered by a texture (as specified in the RM). Furthermore, eight stands are created (14). Their x,
y and z coordinates are declaratively specified by assertions (16-24). In Line 23, the cut-off and the

81

negation-as-failure operators are used to determine a stand, for which no x coordinate has been specified.
Finally, all the artifacts and stands are incorporated in the cpr:granary (26-29).

Listing 6.3: A conceptual 3D content representation (CpR)

1 Prefixes: Domain-specific Ontology (dso), Conceptual 3D Content Representation (cpr)
2
3 {dso:Granary,...,dso:Badge} rdfs:subClassOf dso:Artifact.

4
5 {cpr:granary,...,cpr:badge}

6 rdf:type {dso:Granary,...,dso:Badge}.

7
8 {cpr:clayWoman,cpr:glassyWoman}

9 rdf:type dso:Woman ;

10 dso:madeOf "{clay,glass}".

11
12 cpr:paintedWoman rdf:type dso:PaintedWoman.

13
14 {cpr:stand1,...,cpr:stand8} rdf:type dso:Stand.

15
16 cpr:standPositions(Index, N) :-

17 Index<N, dso:Stand(S), cpr:noPosition(S),

18 X is Index div 4, assert(dso:x(S, X)),

19 Z is Index mod 4, assert(dso:z(S, Z)),

20 assert(dso:y(S, 0)),

21 NewIndex is Index+1,

22 cpr:standPositions(NewIndex, N).

23 cpr:noPosition(S) :- dso:x(S, X), !, false.

24 cpr:noPosition(S).

25
26 dso:incorporates(X, Y) :-

27 dso:Granary(X),

28 (dso:Artifact(Y) ; dso:Stand(Y)),

29 X!=Y.

6.5. Step 4: Expanding the Conceptual 3D Content Representation

In this section, the concept, the expanding algorithm and an example of expanding CpRs in Step 4 of
SCCM are discussed.

6.5.1. The Concept of Expanding Conceptual Representations

Steps 1-3 of modeling provide an SCR that represents 3D content at different levels of
abstraction—concrete and conceptual. These steps cover all the activities that must be resolved
by a human—the specification of how domain-specific concepts should be represented by concrete
components and the specification of what domain-specific individuals should form the modeled content.
So far, the concrete components of 3D content (designed in Step 1) are assigned to domain-specific
concepts (classes and properties) by mapping concepts (designed in Step 2). However, the concrete
components are not directly related to SCM individuals of domain-specific classes, which are described
by domain-specific properties (in the CpR designed in Step 3). To enable presentation of the
domain-specific individuals, the CpR is expanded according to the RM. Expanding is a process of
creating SCM individuals of concrete components, linking them to domain-specific individuals by
concrete object properties, and describing them by concrete data properties. Expanding is based on the
discovery of tacit knowledge (Chapter 4/Requirement 3) and is performed in the following three stages.
At Stage I, hidden facts are inferred from RLs. The facts may be related to SCM classes, properties

82

and individuals at different levels of abstraction. At Stage II, CDs are collected for the particular POs
to determine concrete object properties and concrete data properties of the POs. Finally, at Stage III,
individuals of concrete properties are generated and linked to POs by concrete object properties. Also,
concrete data properties are assigned to POs and to new SCM individuals generated to determine their
presentational effects.

In these three stages, the CpR is expanded to a 3D meta-scene. In contrast to a CpR, a meta-scene
specifies also the low-level details that are necessary for the presentation of the CpR and are imposed by
the CrR. The expanding algorithm is described in the following subsection.

6.5.2. The Expanding Algorithm

The input data of the expanding algorithm is the SCR created in Steps 1-3. The SCR consists of the
CrR, RM and CpR. The expanding algorithm consists of the following stages.

I. Reasoning on RLs: perform reasoning on RLs (created with the semantic rule mapping pattern).
Reasoning on RLs leads to the discovery of CDs, DIs and MPs assigned to POs. The discovered facts
will be used at the next stages.

II. Collecting CDs:
A. For all the domain-specific properties used, determine their equivalent properties (created with

the equivalent property mapping pattern).
B. For all the domain-specific object properties used, determine their inverse properties (created with

the inverse property mapping pattern).
C. For every statement on a domain-specific object property P1 <PO1,P1,PO2>, create the statement

<PO2,P2,PO1>, where P2 is an inverse SCM property of P1.
D. To every PO, assign CDs (created with the multivalued descriptor and structural descriptor

mapping patterns) on the basis of the DIs directly or indirectly linked to the PO (by
all-values-from restrictions created with the property chain mapping pattern).

E. To every PO, assign CDs (created with the classification property mapping pattern) on the basis
of the MPs of the PO.

F. To every PO, assign CDs (created with the complex descriptor mapping pattern) on the basis the
CDs already assigned in Steps II-D and II-E.

As the result of completing Stage II, appropriate CDs are assigned to particular POs. The CDs
describe concrete object properties and concrete data properties of the POs. Therefore, the CDs may
be used for generating SCM individuals of concrete components, linking them to the POs by concrete
object properties and setting concrete data properties of the POs—to provide 3D representations of
the POs.

III. Assigning properties: for every PO, set variable I to the PO and:
A. For every cardinality restriction with a constraint <P,R,N> that I belongs to:

1) if there is no other cardinality restriction on P and R that has already been processed for I,
create N individuals of SCM class R and link them to I by P;

2) for every created SCM individual I2 of R, set I to I2 and go to Step III-A.
B. For every has-value restriction <P,R> that I belongs to, add SCM property P with value R to I.
At this stage, inconsistencies between different restrictions should be reported, e.g., multiple
orientations specified for a PO. The resulting meta-scene represents SCM individuals described by
concrete data properties and related one to another by concrete object properties.

83

6.5.3. Example of Expanding a Conceptual Representation

In Step 4 of the considered example, the CpR is expanded according to the RM into a 3D meta-scene.
The meta-scene includes eight artifacts. It is generalized, as it does not include some elements that are
required for final 3D content presentation (the artifacts have no positions). Thus, only approximate
presentation of the meta-scene is possible (Figure 6.6). In expanding the CpR, new SCM individuals of
concrete components are generated and linked to the domain-specific individuals of the CpR by concrete
object properties. Next, concrete data properties of the generated SCM individuals are properly set
(Listing 6.4). All the artifacts are specified as SCM individuals of cro:Mesh3D (3). For the clay and the
glassy woman statuettes (5-7), appropriate SCM individuals representing materials are generated (9-12).
cpr:paintedWoman and its material are created in a similar way (14-17). Next, every dso:Stand is
expanded to a cro:StructuralComponent that includes a cro:Cylinder and a cro:Box with
appropriate dimensions and relative positions (21-37). For every dso:Stand a position is determined
(39-43). Finally, all the SCM individuals (artifacts and stands) are included in the cpr:granary (45).

Figure 6.6: An approximate presentation of a 3D meta-scene

Listing 6.4: A 3D meta-scene

1 Prefixes: Concrete 3D Content Ontology (cro), Conceptual 3D Content Representation (cpr),
3D meta-scene (ms)

2
3 {cpr:granary,...,cpr:badge} rdf:type cro:Mesh3D.

4
5 {cpr:clayWoman,cpr:glassyWoman}

6 rdf:type cro:Mesh3D ;

7 cro:material {ms:clayMaterial,ms:glassMaterial}.

8
9 {ms:clayMaterial,ms:glassMaterial}

10 rdf:type {cro:TextureMaterial,cro:ColorMaterial} ;

11 {cro:texture,cro:color} {"clay.png","green"} ;

12 cro:transparency {0,0.7}.

13
14 cpr:paintedWoman rdf:type cro:Mesh3D ;

15 cro:material ms:paintedWomanMaterial.

16
17 ms:paintedWomanMaterial rdf:type cro:TextureMaterial

18

84

19 {cpr:clayWoman,...,cpr:badge} cro:sensor {ms:touchSensor1,...,ms:touchSensor8}.

20
21 {cpr:stand1,...,cpr:stand8}

22 rdf:type cro:StructuralComponent ;

23 cro:includes {ms:cylinder1,...,ms:cylinder8} , {ms:box1,...,ms:box8}.

24
25 {ms:cylinder1,...,ms:cylinder8,ms:box1,...,ms:box8}

26 rdf:type {cro:Cylinder,cro:Box} ;

27 cro:size {ms:size1,...,ms:size16} ;

28 cro:position {ms:pos1,...,ms:pos16}.

29
30 {ms:size1,...,ms:size16}

31 rdf:type cro:Vector ;

32 cro:x "..." ;

33 cro:y "..." ;

34 cro:z "...".

35
36 {ms:pos1,...,ms:pos16}

37 rdf:type cro:Vector ;

38
39 {cpr:stand1,...,cpr:stand8}

40 cro:position {ms:stand1Pos,...,ms:stand8Pos}.

41
42 {ms:stand1Pos,...,ms:stand8Pos}

43 rdf:type cro:Vector ;... .

44
45 cpr:granary cro:includes {cpr:clayWoman,...,cpr:badge} , {cpr:stand1,...,cpr:stand8}.

6.6. Step 5: Customizing the 3D Meta-Scene

In this section, the concept, the customization algorithm and an example of customizing 3D
meta-scenes in Step 5 of SCCM are discussed.

6.6.1. The Concept of Customizing Meta-Scenes

3D content customization is the process of creating a semantic 3D content representation that satisfies
individual requirements of a content consumer (Chapter 4/Requirement 5) [238]. An outline of this step
is presented in Figure 6.7. A content consumer may be either a user or an application that retrieves a 3D
content representation for a specific purpose. Requirements for content customization are specified in
queries that conform to the Customization Ontology (CO).

Definition 64. A query is an SCM knowledge base that:

— is an instance of the CO, a DSO, the CRO, a CpR and a CrR,
— is created according to some 3D content customization patterns.

A query may include statements on SCM classes, properties and individuals defined in the SCM
ontologies and 3D content representations.

Definition 65. The Customization Ontology (CO) is an SCM ontology in which SCM classes and SCM
properties used for 3D content customization are defined.

Definition 66. A 3D Content Customization Pattern (CCP) is a sequence of activities performed by a
content consumer that lead to solving a problem frequently occurring in 3D content customization.

85

The idea of CCPs is similar to the idea of software design patterns [66]. A semantic 3D content
representation that can be customized using a query (i.e., a customizable semantic 3D content
representation) is referred to as a 3D meta-scene. The general scheme of a 3D meta-scene, which
complies with SCM is depicted in Figure 6.8.

Definition 67. A 3D meta-scene is an SCM knowledge base that is an instance the CRO, a DSO, a CrR
and a CpR.

3D meta-scene

Query 3

Query N

Platform-
independent
3D Content

Representation
(PIR) 1

...

Platform-
independent
3D Content

Representation
(PIR) 2

...

Step 5

Steps 1-4

Step 6

3D Content Presentation

Query 1

Query 2

Platform-
independent
3D Content

Representation
(PIR) 3

Platform-
independent
3D Content

Representation
(PIR) N

Customization
Algorithm

Figure 6.7: Step 5 of SCCM—customizing a 3D meta-scene

A 3D meta-scene is:

— flexible—it represents 3D content at different levels of abstraction: concrete—specific to 3D
computer graphics (imposed by a CrR)—and conceptual—specific to an arbitrarily chosen
application or domain (imposed by a DSO). For instance, a 3D scene of a virtual museum includes
various artifacts (statuettes, armor, coins, etc.), which are combinations of different 3D objects with
SCM properties;

— generalized—it represents a superset of presentable 3D content. For instance, a 3D meta-scene of a
city includes a large number of cars each of which is described by redundant materials. Only selected
cars with selected materials are presented;

86

PO

PO

PO

RL

DI

DI

PO

LV

RL

LV

LV

DI

LV

DI DIDILV

LV

DI
LV

LV

LV

RL Literal
Value

Descriptive
Individual

Presentable
Object

Relation

Mapping Object Property

Mapping Data Property

Chosen in selection

Chosen in projection

Inserted in extension

Inserted in composition

Figure 6.8: The scheme of a 3D meta-scene being customized

— abstract—it does not need to specify all elements that are required for final 3D content presentation.
For instance, animations or positions of some cars may be unspecified in the mentioned 3D
meta-scene;

— extensible—new elements may be added to it to create the customized 3D scene. For instance, some
of the unspecified animations and positions are added within a consumer’s query.

Both a 3D meta-scene and a query can be specified at different levels of abstraction by conforming
to different SCM ontologies and 3D content representations. The customization of a 3D meta-scene
is performed simultaneously, on demand, by different consumers independently executing individual
queries to the meta-scenes. The customization results are individual PIRs (which are customized
semantic 3D content representations) that satisfy the requirements of the particular consumers.
Customization may cover the following four activities:

— selection of SCM individuals that are to be presented;
— projection of SCM individuals by specifying their desirable SCM properties;
— extension of SCM individuals by adding new SCM properties;
— composition of different SCM individuals by adding new relations.

Elements of a 3D meta-scene that are processed in the particular activities are depicted in Figure 6.8.
The first activity (content selection) provides SCM individuals to be assembled in the generated PIR,
while the other activities configure and extend the selected SCM individuals determining their final
form. While content selection and content projection chose SCM individuals and SCM properties
to be presented, content extension and content composition modify the SCM individuals by inserting
additional SCM properties and relations.

CCPs used in content customization are depicted in Figure 6.9. In concrete CCPs, content consumers
use semantic concepts (SCM classes and SCM properties) to build queries. Abstract CCPs are not
directly applied to query design (are too general) but form the pattern hierarchy.

Two groups of CCPs are distinguished in terms of query processing. The first group includes
CCPs in which SCM individuals and SCM properties to be presented (POs, MPs, DIs and RLs) are
explicitly (directly) indicated. The processing of such CCPs is relatively simple, as it requires only
basic reasoning on SCM classes, properties and individuals (classification of SCM individuals into
SCM classes predefined in the CO) based on the subclass relations between SCM classes. The second
group includes CCPs, in which SCM individuals are implicitly indicated—by their SCM properties and
relations. The processing of such CCPs is more complicated, as in addition to the basic reasoning on

87

Class
Selector

Has-Value
Selector

All-Values-
From Selector

Some-Values-
From Selector

Sub-Class
Selector

Complex
Class Selector

Sub-
Projector

Individual
Selector

Restriction
Selector

Super-Projector

Intersection
Selector

Difference
Selector

Selector Rule

Conditional
Projector

Implicit choise of elements

Explicit choise of elements

Subpattern of Combines patterns

ProjectionSelection

Selector

Extender/
Composer

Individual
Ext./Comp.

Conditional
Ext./Comp.

Class
Ext./Comp.

Simple Class
Ext./Comp.

Complex
Class E/C

Extension and Composition

Projector

Abstract pattern

Concrete pattern

Figure 6.9: The 3D Content Customization Patterns (CCPs)

relations between classes, it also requires classification respecting SCM properties and relations of SCM
individuals. Activities within particular CCPs are described in detail in Section 6.6.2.

6.6.2. 3D Content Customization Patterns

The 3D Content Customization Patterns (CCPs) proposed within SEMIC cover three content
customization activities: content selection, content projection and content modification.

Content Selection

Selection of 3D content indicates desirable SCM individuals (POs, DIs and n-ary RLs) that occur in a
semantic 3D meta-scene and are to be included in the customized PIR. In general, SCM individuals for a
PIR may be selected explicitly or implicitly—depending on the complexity of the queried 3D meta-scene,
the acceptable complexity of the query and the consumer’s knowledge of the meta-scene.

Explicit Selection of Presentable Objects. In an explicit selection, SCM individuals to be presented
are directly indicated in a query. SCM individuals are explicitly selected using the individual selector
CCP in two steps. In the first step, a content consumer creates a new SCM class within the query and
specifies it as a subclass of the co:Selector SCM class, which is defined in the CO. In the second
step, every SCM individual that needs to be included in the generated PIR, is explicitly assigned to the
created SCM class. The inclusion of an SCM individual in the co:Selector SCM class is followed by
the inclusion of the SCM individual in the PIR. The individual selector CCP can be useful, in particular,
when generating PIRs that incorporate single representatives of POCs, DICs or n-ary RLs that are known
to the consumer (by URIs), e.g., present the models of the Empire State Building and the Statue of Liberty
from a 3D meta-scene of New York.

Implicit Selection of Presentable Objects. In an implicit selection, SCM individuals to be presented
are indirectly indicated in a query. SCM individuals are implicitly selected using the class selector
CCP. This CCP can be useful when generating scenes that incorporate all the SCM individuals that have
common features but are not known in advance or are not intended to be explicitly enumerated in the
query (e.g., because of their large number). In this CCP, a content consumer creates a new subclass of

88

the co:Selector SCM class. Furthermore, the new subclass may be used in three different ways
depending on the intended purpose of the content customization.

First, the subclass may be specified as a superclass of a POC, DIC or n-ary RL, selecting all the SCM
individuals that belong to this SCM class for the inclusion in the PIR (the sub-class selector CCP). This
CCP is useful when all the SCM individuals of a common SCM class need to be presented (included
in the generated PIR), e.g., present all the single-family houses included in a city model, present all the
artifacts located in a virtual museum, etc.

Second, the subclass may be specified as a restriction (the restriction selector CCP). This CCP is
useful when the presentation should include all the SCM individuals that have a common feature but
do not necessarily belong to a common existing SCM class. Three restriction selector CCPs have been
specified. The has-value selector CCP enables the presentation of SCM individuals that have a particular
value of a particular SCM property, e.g., present all sculptures made of wood. The some-values-from
selector CCP enables presentation of SCM individuals that may have multiple values of an SCM
property, at least one of which belongs to a desirable SCM class, e.g., present all the artifacts that include
at least one wooden element. The all-values-from selector CCP enables presentation of all the SCM
individuals that are related to some SCM individuals by an SCM property, e.g., present artifacts that
have only wooden elements.

Third, the aforementioned CCPs are based on SCM classes and SCM properties which, in general,
do not enable some specific complex queries, in particular queries that condition the selection of SCM
individuals from SCM properties of other SCM individuals. Semantically complex queries that combine
various SCM individuals, classes and properties, are created using rules that associate SCM individuals
with the created subclass of the co:Selector SCM class (the selector rule CCP). For instance, present
all the museum artifacts that are made of the same material as the material of the David sculpture.

SCM classes created according to the previous CCPs may be combined using set operators
(intersection and difference) according to the complex class selector CCP. This CCP is useful when
SCM individuals should satisfy logically complex requirements covering multiple features (but not
semantically complex requirements as in the case of the selector rule CCP), e.g., present all the
single-family houses that are made of wood and have double-glazed windows (the intersection selector
CCP), but their roofs are not made of asbestos (the difference selector CCP).

Content Projection

Projection of 3D content indicates desirable features of SCM individuals (chosen in content selection)
that are to be included in the PIR. The features of SCM individuals are encoded by MDPs with literals,
MOPs with DIs as well as RLs.

Content projection is performed in a few steps using the projector CCP, which permits the
choice of MPs and binary RLs. In the first step, a content consumer creates a new SCM property (an
SCM data property or an SCM object property) and specifies it as a subproperty/subrelation of the
co:Projector property defined in the CO. All the subproperties/subrelations of co:Projector
that are specified for some SCM individuals, are included in the generated PIR. Hence, all the MPs/RLs
that are the subproperties of the created property/binary RL become presentable. The second step of the
CCP depends on the complexity of the queried meta-scene and the acceptable complexity of the created
query.

First, the created SCM property/binary RL may be specified as a superconcept of the chosen
MP/binary RL (the sub-projector CCP). In this way, the MP will be included in the generated PIR,
as it becomes a subproperty of co:Projector. This CCP is convenient for presenting a particular

89

MP/binary RL as well as all MPs/binary RLs with a common root concept for all the SCM individuals
included in the generated PIR. For example, the CCP can be used to present all SCM properties related to
appearance (color, transparency, shininess, etc.) for all POs in the scene, present all RLs that determine
relative locations of POs, etc.

Second, the created SCM property/binary RL may be specified as a subproperty of a desirable MDP,
MOP or a binary RL and—in addition—as a subproperty of co:Projector (the super-projector
CCP). Next, for a statement in the meta-scene that needs to be included in the PIR, a new statement
is added to the query. The new statement includes the same subject and the same object as the base
statement, but exchanges the base MP/binary RL with the created SCM property/binary RL. The created
SCM property/binary RL inherits all presentational effects from its base concept, so it may be used in
the same way in modeling content. However, the explicit choice of the created SCM property/binary
RL instead of its base concept, enables the contextual presentation of the base concept (only for the
designated SCM individual) and prevents the presentation of the base concept for the other SCM
individuals. For instance, present all knights in a game but only the king should be clad in armour.

In addition to the aforementioned CCPs for the explicit choice of MPs and binary RLs, which is
unconditional—determined in advance in the query, it is also possible to implicitly choose MPs/binary
RLs depending on specific conditions. In the conditional projector CCP, a MP/binary RL is classified as
a subproperty of the created SCM property/binary RL by a rule, e.g., present colors of POs only if all the
POs in the meta-scene have colors (for preserving the consistency of the generated PIR).

Projection of n-ary RLs, which are encoded using DIs related to SCM individuals by MOPs, is
performed using CCPs designed for selection of SCM individuals (cf. Section 6.6.2/Content Selection).

Content Modification

Content modification encompasses content extension and content composition. Both activities
introduce new elements that are responsible for new features or behavior of the selected SCM individuals.
Content extension introduces new MPs describing selected SCM individuals, while content composition
introduces new RLs combining selected SCM individuals by specifying dependencies expressed by MPs.
Since the encoding of queries and the encoding of meta-scenes are uniform—based on the semantic web
standards—content modification may be performed in the same way as in the case of creating SCRs.

Neither an extension nor a composition may change the MPs and RLs that are already set to some
values. Otherwise, the specification of such MP/RL leads to an inconsistency in the generated PIR.
To enable the modification of an MP/RL that already has a value in the meta-scene, a new generated
PIR in which the SCM property/RL is filtered out, needs to be created by a query to the meta-scene.
Furthermore, the generated PIR should be used as a new meta-scene for a new query, which may extend
the new meta-scene with a new value of the desirable MP/RL (content customization chain).

Like content selection, content modification—including extension and composition—may be
accomplished explicitly or implicitly, using the extender/composer CCPs.

Explicit Content Modification. In explicit content modification, new MPs are directly assigned to
selected SCM individuals (the individual extender/composer CCP). For instance, present a particular
building from a geometrical model of a housing estate and assign a color to it; select a model of the Earth
and a model of the Moon and add an RL moving the Moon around the Earth.

Implicit Content Modification. In implicit content modification, new MPs are assigned to a POC, DIC
or n-ary RL (the class extender/composer CCP) using restrictions (like in the case of the restriction

90

selector CCP). If a MDP is modified, the simple class extender/composer CCP is used to create a new
has-value restriction that indicates a desirable value of the MDP. Next, the SCM class is specified as an
equivalent to a previously created class selector SCM class. In this way, all the SCM individuals that
belong to the class selector SCM class in query processing, also have the desirable MP indicated by the
created has-value restriction. For instance, select all wooden objects and add shininess to their materials.

If an MOP is modified, the simple class extender/composer CCP is used to create a new cardinality
restriction that indicates the desirable range the MP. Next, the SCM class is specified as an equivalent
to a previously created class selector SCM class (like in the case of modifying an MDP). In content
customization, a new SCM individual of the SCM class that is in the MOP range is created and connected
to the primary SCM individual by the MOP. For instance, select all POs that have no material specified
and assign wooden material to each of them.

Specification of multiple new SCM individuals to be introduced requires the use of the complex class
extender/composer CCP, which is created using the intersection of the SCM classes created according to
the simple extender/composer CCP—in a similar manner as in the complex class selector CCP.

A conditional modification of an SCM individual that depends on MPs of other SCM individuals, may
be performed similarly to a conditional projection of an SCM individual (using a rule—the conditional
extender/composer), e.g., set color of the ceiling to a value that is equal to the color of the walls in the
room.

6.6.3. The Customization Algorithm

The input data of the customization algorithm is the union of the meta-scene (generated in Step 4)
and a query. The customization algorithm has three stages related to different activities permitted by
the CCPs: content selection, content modification and content projection. Content selection and content
modification interlace. On the one hand, the results of a selection are used in succeeding modification,
e.g., add transparency (modification) to all objects that are covered by a texture (selection). On the other
hand, the results of a modification may affect the selection and projection, e.g., once red color is set to an
SCM individual, the SCM individual is selected for presentation as one of the colorful SCM individuals
in a meta-scene. Some tasks within the stages, which are mutually independent, are completed in parallel,
e.g., selecting SCM individuals or SCM properties using different selector/projector CCPs. To simplify
the description of the customization algorithm, SCM classes, SCM properties and rules created according
to CCPs are referred to using the names of the CCPs, e.g., an SCM class created with the sub-class
selector CCP is referred to as a sub-class selector, an SCM property created with the sub-projector CCP
is referred to as a sub-projector and so on. The exact description of the stages of the customization
algorithm is presented below.

I. Selecting content:
A. Create a PIR that is a copy of the input meta-scene.

The PIR will be further gradually reduced by removing statements that are neither on selected
SCM individuals nor on selected SCM properties.

B. Infer which SCM individuals are instances of co:Selector (as implicitly specified) by running
in parallel:
1) every SCM individual of an individual selector set as an instance of co:Selector;
2) every SCM individual of a subclass of a sub-class selector set as an instance of

co:Selector;

91

3) every SCM individual that satisfies the has-value constraint of a has-value selector set as an
instance of co:Selector;

4) every SCM individual that satisfies the all-values-from constraint of an all-values-from
selector set as an instance of co:Selector;

5) every SCM individual that satisfies the some-values-from constraint of a some-values-from
selector set as an instance of co:Selector;

6) every SCM individual that belongs to an intersection selector set as an instance of
co:Selector;

7) every SCM individual that belongs to a difference selector set as an instance of
co:Selector;

8) infer which SCM individuals belong to co:Selector, using selector rules.
The steps directly assign SCM individuals to the co:Selector class. Only such SCM
individuals will be included in the customized PIR.

II. Modifying content:
A. Run the expanding algorithm to generate new SCM individuals on the basis of extender/composer

classes that are equivalents of selector classes, and link the generated SCM individuals to the
appropriate SCM individuals that are already included in the meta-scene (cf. Section 6.5).
Running the expanding algorithm is necessary to complement the structure and the SCM
properties that are imposed by the modification.

B. If any SCM individual has been modified, go to Step I-B to select SCM individuals whose SCM
properties changed in the content modification in Step II-A, and which satisfy requirements given
in the query.
As the result of the modification, some new SCM individuals may satisfy requirements for
presentation. Such SCM individuals should be verified again at Stage I.

C. For every SCM individual I that does not belong to co:Selector, remove all the statements
on I (in which I is either the subject or the object) from the PIR.

III. Projecting content:
A. Infer which SCM properties are subproperties of co:Projector (as implicitly specified) by

running in parallel:
1) every subproperty of a sub-projector set as a subproperty of co:Projector;
2) infer which SCM properties belong to co:Projector by using the conditional projector

CCP.
B. For every SCM property P that does not belong to co:Projector, remove all the statements

on P from the PIR.

6.6.4. Example of Customizing a Meta-Scene

In Step 5 of the considered example, the meta-scene is customized according to requirements
specified in three queries: A, B and C. The queries were prepared according to CCPs (Listing 6.5).
All the queries select cpr:granary and all the SCM properties defined in the DSO for presentation
(Lines 3-4).

Query A uses the selector rule CCP to declaratively assign one artifact to one stand (7-11). Every
artifact that is not on any stand, is placed on a stand on which there is no artifact yet. It is only important
to deploy all the artifacts on some stands, but it is not important, on which stand a particular artifact
is placed. In the rules, negation as failure and cut-off are used. An artifact is placed on a stand by

92

calculating the X, Y and Z coordinates of the artifact with respect to the coordinates of the stand (13-16).
The resulting PIR is presented in Figure 6.10.

Query B extends Query A with the selection of only the artifacts that are made of clay and their
stands. The selection of the artifacts is achieved using the sub-class selector and some-values-from
selector CCPs (19-25). The selection of the stands is achieved by creating the inverse SCM property of
dso:standsOn (27-28) as well as the sub-class selector and restriction selector CCPs (30-36). The
resulting PIR is presented in Figure 6.11.

Query C extends Query B by using the selector rule CCP to chose only the artifacts between which
the distance is maximal (39-44). The rule verifying the maximal distance has been implemented using
negation as failure and cut-off (like in Lines 8,10), and it is skipped in the listing. Furthermore,
the simple class extender CCP is used. For every q:Object, concrete components responsible
for rotating the object after it is touched are created (according to the restrictions) and assigned
(46-50)—q:TouchSensor (52-57), which is activated by q:RotatingInterpolator (59-70),
which is controlled by q:TimeSensor (72-76). The resulting PIR is presented in Figure 6.12.

Listing 6.5: Queries to a 3D meta-scene

1 Prefixes: Concrete 3D Content Ontology (cro), Domain-specific Ontology (dso), Conceptual 3D
Content Representation (cpr), Customization Ontology (co), Query (q)

2
3 cpr:granary rdf:type co:Selector.

4 dso:Property rdfs:subPropertyOf co:Projector.

5
6 # --------- Query A ---------

7 q:standsOn(A, B) :- dso:Artifact(A), dso:Stand(B), q:notOnOthers(A), q:nothingOnIt(B).

8 q:notOnOthers(A) :- q:standsOn(A, B), !, fail().

9 q:notOnOthers(A).

10 q:nothingOnIt(B) :- q:standsOn(A, B), !, fail().

11 q:nothingOnIt(B).

12
13 cro:x(A, AX) :- q:standsOn(A, B), cro:x(B, BX), AX = BX.

14 cro:z(A, AZ) :- q:standsOn(A, B), cro:z(B, BZ), AZ = BZ.

15 cro:y(A, AY) :- q:standsOn(A, B), cro:y(B, BY), cro:height(B, BHeight), cro:height(A, AHeight),

16 AY = BY+(AHeight+BHeight)/2.

17
18 # --------- Query B ---------

19 q:ClayObject

20 rdf:type owl:Class ;

21 rdfs:subClassOf co:Selector.

22 owl:equivalentClass

23 [rdf:type owl:Restriction ;

24 owl:onProperty dso:madeOf ;

25 owl:hasValue "clay"] ;

26
27 q:inverseStandsOn rdf:type rdf:Property ;

28 owl:inverseOf dso:standsOn.

29
30 q:SelectedStand

31 rdf:type owl:Class ;

32 rdfs:subClassOf co:Selector.

33 owl:equivalentClass

34 [rdf:type owl:Restriction ;

35 owl:onProperty q:inverseStandsOn ;

36 owl:someValuesFrom q:ClayObject] ;

37
38 # --------- Query C ---------

39 q:remote(A, B) :-

40 cro:x(A, AX), cro:x(B, BX),

41 cro:z(A, ZX), cro:z(B, ZX),

93

42 Distance^2 = (AX-BX)^2 + (AZ-BZ)^2,

43 maximal(Distance^2).

44 co:Selector(A) :- q:remote(A, B).

45
46 q:Object rdfs:subClassOf

47 [rdf:type owl:Restriction ;

48 owl:onProperty cro:sensor ;

49 owl:onClass q:TouchSensor ;

50 owl:qualifiedCardinality 1].

51
52 q:TouchSensor rdf:type owl:Class ;

53 rdfs:subClassOf cro:TouchSensor ,

54 [rdf:type owl:Restriction ;

55 owl:onProperty cro:activates ;

56 owl:onClass q:RotatingInterpolator ;

57 owl:qualifiedCardinality 1].

58
59 q:RotatingInterpolator rdf:type owl:Class ;

60 rdfs:subClassOf cro:OrientationInterpolator ,

61 [rdf:type owl:Restriction ;

62 owl:onProperty cro:key ;

63 owl:hasValue "0 1.5 3"] ,

64 [rdf:type owl:Restriction ;

65 owl:onProperty cro:keyValue ;

66 owl:hasValue"0 0 0 0 3.14 0 0 0 0"],

67 [rdf:type owl:Restriction ;

68 owl:onProperty cro:controller ;

69 owl:onClass q:TimeSensor ;

70 owl:qualifiedCardinality 1].

71
72 q:TimeSensor rdf:type owl:Class ;

73 rdfs:subClassOf cro:TimeSensor,

74 [rdf:type owl:Restriction ;

75 owl:onProperty cro:interval ;

76 owl:hasValue 3].

Figure 6.10: An example of a customized PIR, in which every artifact is assigned to one stand

6.7. Step 6: Generating Platform-specific 3D Content Representations

In this section, the concept, the transformation algorithm and an example of generating PSRs upon
PIRs in Step 6 of SCCM are discussed.

94

Figure 6.11: An example of a customized PIR including only the artifacts made of clay and their stands

Figure 6.12: An example of a customized PIR including only the objects between which the distance is maximal,
and which rotate after being touched

6.7.1. The Concept of Generating Platform-specific Representations

Step 6 of SCCM enables generation of 3D content for a variety of content presentation platforms
(Chapter 4/Requirement 6) [132, 140, 141]. An outline of this step is presented in Figure 6.13. PIRs are
SCM knowledge bases that represent 3D content at both concrete and conceptual levels of abstraction,
using the CRO and a DSO, respectively. The transformation algorithm processes PIRs at the concrete
level of abstraction and generates PSRs using TKBs and TBs. PSRs are documents encoded in arbitrarily
selected 3D content representation languages, thus PSRs may be presented using various platforms—3D
content browsers and presentation tools installed on different devices. A pair of a TKB and a TB is
designed specifically for a particular content presentation platform that implements a particular language.
A TKB describes the rules of transformation. A TB is a set of parametrized templates encoded in a 3D
content representation language. During the transformation, templates are filled with parameters and
combined into PSRs according to the TKB. In SCCM, once a PIR is created, it may be automatically
transformed to several PSRs.

95

Platform-independent
3D Content

Representation (PIR)

Transformation
Algorithm

Transformation
Knowledge Base

(TKB) 1

Transformation
Knowledge Base

(TKB) N

Template Base
(TB) 1

Template Base
(TB) N

Platform-specific
3D Content

Representation (PSR) 1

......

Platform-specific
3D Content

Representation (PSR) N

...

Step 6

Steps 1-5

3D Content Presentation

Figure 6.13: Step 6 of SCCM—generating platform-specific 3D content representations

6.7.2. The Transformation Algorithm

The input data of the transformation algorithm is the PIR generated in Step 5, a TKB and a TB. In the
description of the transformation algorithm, the abbreviations introduced in Section 5.7 are used. The
general idea of the transformation algorithm is based on the following elementary operations on Ts:

1) setting common values of TPs that are associated with different Ss included in common SSs,
2) nesting Ts into other Ts that are associated with different Ss included in common SSs,
3) ordering Ts that are associated with different Ss included in common SLs.

The operations are performed regarding a description of transformation that is included in the
appropriate TKB (associated with the selected 3D content representation language). Due to the use
of basic operations on code templates, the transformation algorithm is generic and it can generate
3D content representations encoded in different languages—both imperative and declarative. The
transformation algorithm has five stages, each of which comprises several steps. First, semantic queries
are created on the basis of SSPts specified in the TKB. Second, the queries are issued against a PIR
to create SSs. Third, the values of TPs associated with the Ss included in the SSs are set. Next, Ts
associated with the Ss are nested one into another. Finally, Ts are enumerated in the required order. The
exact description of the stages of the transformation algorithm is presented below.

I. Creating Queries
At this stage, queries to PIRs are created on the basis of a TKB that is appropriate for the selected
3D content representation language. The queries are encoded in a semantic query language, e.g.,
SPARQL. Since SPARQL is the most common language for querying knowledge bases, in this
description, the queries are referred to as SPARQL queries. Each SPARQL query created at this

96

stage corresponds to an individual SSPt. The clauses of a SPARQL query (triples [subject,
property, object]) correspond to particular SPts that are included in the SSPt.
For every SSPt from the TKB, create a SPARQL query as follows:
A. Create an empty SPARQL query.
B. For every SPt from the SSPt, which is given as [?subject ?property ?object.]:

1) append the following clause to the SPARQL query
[?prop rdfs:subPropertyOf ?property.];

2) if the object of the SPt is a literal value or an individual, append the following clause to the
SPARQL query [?subject ?prop ?object.];

3) if the object of the SPt is an SCM class, append the following clauses to the SPARQL
query [?subject ?prop ?obj. ?obj rdfs:subClassOf ?object.].

Inserting the rdfs:subPropertyOf and the rdfs:subClassOf properties to the SPARQL
query permits not only to search for Ss of a PIR that exactly match the SPt (its SCM property and
its object), but also to search for Ss that use subproperties of the SCM property and subclasses
of the object that are in the SPt.

II. Creating Statement Sets
At this stage, the SPARQL queries created at Stage I are issued against a PIR to create SSs. Each
resulting SS is a group of logically related Ss.
For every SPARQL query created at Stage I:
A. Issue the SPARQL query against the PIR and create an SS incorporating all the Ss from the PIR

that are included in the result of the SPARQL query.
B. For every S, remember the SPt from the SPARQL query that has been matched to the S.
The SSs created at this stage will be further used for setting common TPs for different Ts and for
nesting some Ts into other Ts.

III. Setting Template Parameters
At this stage, TPs of logically related Ts are fixed regarding dependencies between the Ss the Ts are
associated with.
For every SS created at Stage II, for every S, which is given as [?subject ?property

?object] and is included in the SS:
A. Load a TS whose signature (the concatenation of the URI of the SCM class the subject belongs

to, the URI of the SCM property and the URI of the SCM class the object belongs to)
matches the S.

B. Query the TKB for TPPts that are included in the TPts that are included in the TSPt linked to the
SPt that is associated with the S:
[?TPPt to:isParameterOf ?TPt. ?TPt to:isIn ?TSPt.

?TSPt to:isTemplateSetOf ?SPt.].
Remember the determined template parameter pattern set (TPPtS) associated with the S.

C. For every TPPt1 that is included in the TPPtS and has not yet been set:
1) set a unique value of TPPt1;
2) if TPPt1 is a literal parameter of the S, replace the TP that is reflected by TPPt1 and is included

in a T with the literal value of the S (the S object);
3) query the TKB for TPPts that are equal to TPPt1 and are linked to SPts that occur in a

common SSPt with the SPt that is associated with the S:
[?TPPt1 to:equalTo ?TPPt2. ?TPPt2 to:isParameterOf ?TPt.

97

?TPt to:isIn ?TSPt. ?TSPt to:isTemplateSetOf ?SPt2.

?SPt2 to:isIn ?SSPt. ?SPt to:isIn ?SSPt.];
4) for every TPPt2 found, set the value of the reflected TP (which is included in a T) to the value

of TPPt1 and recursively go to Step III-C-3. A T whose all TPs are set is a CF.
As the result of this stage, Ts have TPs set to proper literal values and common identifiers of variables.
Recursive processing of TPs ensures assigning a common value to all equal TPs across different Ts.

IV. Nesting Templates
At this stage, Ts are nested one into another to create a hierarchical structure. Nesting is indicated
by assigning Ts to TPs.
For every SS created at Stage II, for every S that is included in the SS and has not yet been processed,
for every TPPt from the TPPtS (determined in Step III-B) that is associated with the SPt associated
with the S:
A. Query the TKB for TPts that are equal to the TPPt and are assigned to SPts included in a common

SSPt together with the SPt of the S:
[?TPPt to:equalTo ?TPt. ?TPt to:isIn ?TSPt.

?TSPt to:isTemplateSetOf ?SPt2. ?SPt2 to:isIn ?SSPt. ?SPt

to:isIn ?SSPt.].
B. For every TPt found, go recursively to Step IV-A.
C. Replace all the TPs that are reflected by the TPPts with the appropriate Ts that are reflected by

the TPts—to produce CFs.
As setting TPs, nesting Ts is performed recursively—processing a T continues until all Ts that are to
be nested in the T are processed (its appropriate TPs are set to appropriate Ts).

V. Ordering Templates
At this stage, Ts linked with mutually dependent Ss that need to occur in the generated PSR at the
same level (without nesting one T into another) are set in the PSR in a suitable order. First, the global
list of SPts is created. Second, the Ss of the PIR are sorted with respect to the global list.
A. Create the global SLPt list. Perform the step until all SPts that are included in different SLPts are

included in the global SLPt:
1) if the SPt is not yet included in the global SLPt, but it is included in any SLPt and there are

no other SPts that precede the SPt in at least one SLPt, add the SPt to the end of the global
SLPt.

B. Add the remaining SPts (the SPts that are not included in any SLPts) to the end of the global
SLPt in an arbitrary order.

C. Browse the global SLPt in the reverse order and for every SPt included in the list:
1) find Ss in the PIR that match the SPt and add their CFs (generated at the Stages I-IV) at the

beginning of the generated PSR.

6.7.3. Example of Generating Platform-specific Representations

In Step 6 of the considered example, a PSR is generated on the basis of the PIR that was
created using Query C in Step 5 (Figure 6.12, Listing 6.6—the X3D/XML syntax). For both
the artifacts (cpr:clayWoman and cpr:seal), Transform nodes with positions indicated by
translation attributes are generated (e.g., 8-28). The Transform nodes include Shape nodes
with Material and Texture nodes. Moreover, the cpr:clayWoman artifact is equipped with a
TouchSensor node, an OrientationInterpolator node and a TimeSensor node, which

98

are connected by ROUTE nodes. These nodes enable rotation of the artifact after touching it.
Stools are generated as Transform nodes including two shapes represented by Cylinder and
Box nodes with positions and scales (e.g., 38-51). All nodes are enclosed within the common
Transform node (6-54).

Listing 6.6: A generated platform-specific (X3D) content representation

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!DOCTYPE ...">

3 <X3D ... >

4 <head>...</head>

5 <Scene>

6 <Transform>

7 <Group>

8 <Transform DEF="clayWoman" translation="...">

9 <Shape>

10 <Appearance>

11 <Material transparency="0" />

12 <ImageTexture url="clay.png" />

13 </Appearance>

14 <IndexedFaceSet coordIndex="...">

15 <Coordinate point="..."/>

16 </IndexedFaceSet>

17 </Shape>

18 <TouchSensor DEF="touchSensor1" enabled="false"/>

19 <OrientationInterpolator DEF="rotatingInterp1" key="0 1.5 3"

20 keyValue="0 0 0 0 3.14 0 0 0 0" />

21 <TimeSensor DEF="timeSensor1" cycleInterval="3"/>

22 <ROUTE fromNode=’touchSensor1’ fromField=’touchTime’

23 toNode=’timeSensor1’ toField=’startTime’/>

24 <ROUTE fromNode=’timeSensor1’ fromField=’fraction_changed’

25 toNode=’rotatingInterp1’ toField=’set_fraction’/>

26 <ROUTE fromNode=’rotatingInterp1’ fromField=’value_changed’

27 toNode=’clayWoman’ toField=’rotation’/>

28 </Transform>

29
30 <Transform DEF="seal" translation="...">

31 <Shape>seal model ...</Shape>

32 </Transform>

33
34 <Transform DEF="granary" translation="...">

35 <Shape>granary model ...</Shape>

36 </Transform>...

37
38 <Transform DEF="stool1" translation="...">

39 <Transform DEF="box1" translation="..." scale="...">

40 <Shape>

41 <Appearance><Material /></Appearance>

42 <Box />

43 </Shape>

44 </Transform>

45 <Transform DEF="cylinder1" translation="..." scale="...">

46 <Shape>

47 <Appearance><Material /></Appearance>

48 <Cylinder />

49 </Shape>

50 </Transform>

51 </Transform>

52 <!-- stool2, ..., stool8 -->

53 </Group>

54 </Transform>

55 </Scene>

56 </X3D>

99

Generating the PSR is based on a TB and a TKB whose excerpts are presented in Listings 6.7 and
Listing 6.8. In the example, assigning the texture to cpr:clayWoman is explained. The TB includes
two templates: a template determining a shape (Listing 6.7, Lines 2-7) and a template determining
appearance (10-14). The templates may be combined by the use of the elements parameters.
The combination of the templates is described in the TKB. The TKB includes an SSPt (Listing 6.8,
Lines 3-4) incorporating three SPts. tkb:definitionSPt (6-23) is used to match Ss that define
meshes, e.g., [cpr:clayWoman rdf:type cro:Mesh3D.]. tkb:texturingSPt (25-39)
is used to match Ss that indicate textures of materials, e.g., [ms:clayMaterial cro:texture

"clay.png".]. Since tkb:pathTPP reflects a literal value, its corresponding TP is directly
exchanged with the matching value in the T. Both the SPts are connected by tkb:intermediarySPt
(41-44). tkb:intermediarySPt indicates that a defined subject is linked to an object by the
cro:material property. The SPARQL query generated for the SSPt, which matches the Ss in the
PIR is presented in Listing 6.9. After matching the Ss to the SPts, the Ts are matched to the Ss using the
signatures given in Listing 6.7 (Lines 1, 9). The remaining Ss of the PIR are processed in a similar way,
using Ts and SPts that have been omitted in the listings.

Listing 6.7: An excerpt of a template base for X3D

1 Template <cro:Component-rdf:type-rdf:Class>:
2 <Transform &attributes>

3 &elements

4 <Shape>

5 ...

6 </Shape>

7 </Transform>

8
9 Template <cro:TextureMaterial-cro:TexturePath-rdfs:Literal>:

10 <Appearance>

11 &elements

12 <Material &attributes/>

13 <ImageTexture url="&path" />

14 </Appearance>

Listing 6.8: An excerpt of a transformation knowledge base for X3D

1 Prefixes: Transformation Ontology (TO), Transformation Knowledge Base (TKB)
2
3 tkb:texturingSSPt a to:SSPt ;

4 to:hasSPt tkb:definitionSPt , tkb:texturingSPt , tkb:intermediarySPt ;

5
6 tkb:definitionSPt a to:SPt ;

7 rdf:subject "subject" ;

8 rdf:predicate rdf:type ;

9 rdf:object cro:Mesh3D ;

10 to:hasTemplateSetPattern tkb:tsp1 .

11
12 tkb:tsp1 a to:TemplateSetPattern ;

13 to:hasTemplatePattern tkb:tp1 .

14
15 tkb:tp1 a to:TemplatePattern ;

16 to:hasTemplateParameterPattern tkb:par1 , tkb:par2 .

17
18 tkb:par1 a to:TemplateParameterPattern ;

19 to:name "attributes" .

20
21 tkb:par2 a to:TemplateParameterPattern ;

22 to:name "elements" ;

23 to:equalTo tkb:texturingSPt .

100

24
25 tkb:texturingSPt a to:SPt ;

26 rdf:subject "object" ;

27 rdf:predicate cro:texture ;

28 rdf:object rdfs:Literal ;

29 to:hasTemplateSetPattern tkb:tsp2 .

30
31 tkb:tsp2 a to:TemplateSetPattern ;

32 to:hasTemplatePattern tkb:tp2 .

33
34 tkb:tp2 a to:TemplatePattern ;

35 to:hasTemplateParameterPattern tkb:pathTPP .

36
37 tkb:pathTPP a to:TemplateParameterPattern;

38 to:name "path" ;

39 to:isLiteral "true" .

40
41 tkb:intermediarySPt a to:SPt ;

42 rdf:subject "subject" ;

43 rdf:predicate cro:material ;

44 rdf:object "object" .

Listing 6.9: A SPARQL query generated upon the TKB

1 SELECT DISTINCT * WHERE {

2 ?subject ?prop1 ?obj1.

3 ?prop1 rdfs:subPropertyOf* rdf:type.

4 ?obj1 rdfs:subClassOf* cro:Mesh3D.

5
6 ?subject cro:material ?object.

7
8 ?object ?prop2 ?value.

9 ?prop2 rdfs:subPropertyOf* cro:texture. }

7. The SO-SEMIC Environment

The Service-Oriented Environment for Semantic Modeling of Interactive 3D Content (SO-SEMIC)
has been developed on the basis of the SEMIC approach and service-oriented architecture (SOA)
[142]. SOA is a technique that involves interaction between loosely coupled services that function
independently. [67]. SOA permits to implement flexible systems of modeling content, which enable
division of responsibilities between different services and clients distributed across the web. In SOA,
services may encompass complex, computationally intensive semantic processing on servers, while
clients (users’ applications) may perform graphical operations on users’ devices. Also, SOA facilitates
collaboration of users equipped with different devices on 3D content creation.

In this chapter, the implemented prototype environment SO-SEMIC is described. First, the overall
architecture of the environment is explained. Second, the particular modules of the environment, which
correspond to the subsequent steps of SCCM, are presented. Finally, libraries for generating PSRs are
described.

7.1. System Architecture

The architecture of SO-SEMIC is depicted in Figure 7.1. The environment comprises a client
(Client) and a server (Server) that implement a RESTful SOA. The Client is a Python-based application
that enables presentation and visual manipulation of 3D content in the Blender modeling tool [25], as
well as transformation of Blender PSRs to its equivalent PIRs. The Server is a Java application that
enables manipulation of SCRs (CrRs and CpRs) using the SCM ontologies (CRO, MO and DSO). Both
applications have multi-layered architectures, which are discussed in detail in the following sections.

7.1.1. Client

The multi-layered architecture of the Client conforms to the Model-View-Controller (MVC) [53]
design pattern. It consists of four layers: the Semantic Logic Layer (controller), the Presentation Layer
(view) as well as the Network Layer and the Data Layer (model). The Client has been implemented
using the Blender API [26]. Blender has been selected for the SO-SEMIC implementation because it is
an advanced, widely-used, open-source environment with extensive documentation, tutorials and several
versions available for different operating systems. However, the Client could be developed using other
3D content modeling environments.

The Presentation Layer is responsible for handling requests from a user and presenting 3D content
in Blender. It comprises new Blender GUI elements (panels) as well as the Blender Graphics Engine.
The Graphics Engine allows a user to present and manipulate 3D content in the graphical environment.
It enables access to a number of Blender tools, such as transformations, editors and scene graphs.
The Graphics Engine is accessible through specific classes and properties of the Blender API, e.g.,
bpy.data and bpy.context. The new GUI elements include: the Concrete Component Panel, the
Concrete Property Panel, the Class Mapping Panel, the Property Mapping Panel, the Conceptual Design

102

Other Clients

P
yth

o
n

 In
terp

re
ter

 Network
 Layer

Presentation
 Layer

User

 Semantic
 Logic Layer

Scene Object
Manager

Customization
Module

Conceptual Design
ModuleMapping ModuleConcrete Design Module

RESTful Service
Client

Concrete
Property

Panel

Concrete
Component

Panel

Property
Mapping

Panel

Class
Mapping

Panel

Conceptual
Design Panel

Customization
Panel

C
lie

n
t

Java V
irtu

al M
ach

in
e

 Data Layer

 Semantic
Logic Layer

 Network
 Layer

Customization Module

Conceptual Design Module

Mapping Module

Concrete Design Module

Knowledge Manager

Concrete
Content

Representa-
tions

Concrete
Content
Ontology

Conceptual
Content

Representa-
tions

Customiza-
tion

Ontology

Se
rv

er

Query

Mapping
Ontology

Domain-
specific

Ontologies

PIR

Library urllib

Data Layer

Blender
Mapping

Repository
of X3D

Compo-
nents

Request Manager

Library Apache Jena SPARQL

RESTful Service Server Library Restlet

Library json

Library json-io

JSON encoding

Semantic
Meta-
Scenes

Represen-
tation

Mapping

CrR CtRCpRRM

Graphics
Engine

Figure 7.1: Architecture of the SO-SEMIC environment. The arrows indicate the flow of information

Panel and the Customization Panel. The panels, which extend the standard Blender GUI are instances of
the bpy.types.Panel class, and they include buttons (instances of the bpy.types.Operator
class), menus (instances of the bpy.types.Menu class) as well as properties (instances of the
bpy.props.StringProperty and bpy.props.BoolProperty classes). Whereas the panels
included in the Presentation Layer are strictly related to the particular modules of the Client, the
components of the other layers are shared by different modules. The functions of particular panels
are discussed in detail in Sections 7.2-7.5, which are devoted to the modules of SO-SEMIC.

The Semantic Logic Layer is responsible for processing user requests as well as creating and managing
Blender PSRs that are to be presented to a user or converted into SCRs and sent to the Server. User’s
requests prepared with panels of the Presentation Layer (e.g., create a new domain-specific object) are

103

received by the Request Manager, which invokes appropriate methods of the Scene Object Manager
and uses the Network Layer to communicate with the Server (e.g., get the list of domain-specific
classes). The Scene Object Manager uses the Graphics Engine to create, modify or remove objects
in the Blender-specific scene. Further, the Scene Object Manager uses the Data Layer to perform
transformations between Blender-specific objects and scenes and their semantic counterparts. Therefore,
the Scene Object Manager is capable of processing the CRO, which is a common semantic notation of
3D content components and properties that is understandable to different clients connected to the Server.

The Data Layer is responsible for providing basic components for creating Blender PSRs. The
layer specifies links between Blender PSRs (including instances of Blender-specific components, e.g.,
bpy.data.lamps, bpy.data.cameras) and CrRs (including concrete components and concrete
properties, e.g., cro:LightSource, cro:Camera), which are readable and processable to the
Server. The links enable bi-directional transformation of both types of content representations. A Blender
PSR is transformed to its semantic equivalent (a PIR), e.g., when an object has been modified in Blender
and it should be updated in the corresponding CpR. The transformation of a PIR is performed every time
it is retrieved from the Server and should be loaded into Blender. The links are specified in the Blender
Mapping, an excerpt of which is presented in Listing 7.1.

Listing 7.1: An example of mapping Blender-specific properties to concrete semantic properties

1 #Blender-specific properties (the left side), concrete semantic properties (the right side)

2
3 #Geometrical Properties

4 angle = angle

5
6 #Presentational Properties

7 active_material = hasMaterial

8 active_texture = hasTexture

9 filepath = uri

10 image = _empty_image

11 diffuse_color = hasDiffuseColor

12 r = r

13 g = g

14 b = b

15 alpha = transparency

16
17 #Spatial Properties

18 scale = hasSize

19 location = hasPosition

20 rotation_euler = hasOrientation

21 x = x

22 y = y

23 z = z

24
25 #Structural Properties

26 parent = isIncludedIn

27
28 #Light Properties

29 energy = intensity

Repository of X3D Components is a collection of X3D documents that are encoded Blender-specific
equivalents of concrete components (included in a CrR). X3D has been selected to be used in SO-SEMIC,
because it is a widely-used standard with an extensive documentation and a number of examples.
X3D Components are retrieved from the Repository and combined by the Scene Object Manager into
complex Blender PSRs. For instance, a texture, which is an X3D Component and an equivalent to a

104

cro:Texture concrete component, is applied to a material, which is another X3D Component and
an equivalent to a cro:Material concrete component. X3D Components are partially independent
of their equivalent concrete components, since the properties that are not semantically specified in
a concrete component may be arbitrarily set for its equivalent X3D Component. For instance, at a
high level of abstraction, semantic content creation does not necessarily need to require access to the
coordinates of particular vertices of a mesh, which may be specified only in X3D Components. Hence,
different clients may have independent repositories of X3D Components that have different values of
properties that are unspecified for concrete components, e.g., Blender PSRs of a tree may differ in two
clients in terms of size, shape, color of leafs, etc.

The Network Layer is responsible for communication with the Server. The RESTful Client Service
leverages two Python libraries. The json library [52] is used to encode and decode PIRs in JSON.
The urllib library [68] is used to create, send and receive HTTP requests (which incorporate encoded
PIRs), e.g., semantic queries for on-demand content generation. As a response to a request, the RESTful
Client Service typically gets an acknowledgment or a PIR, which is further transformed and presented in
Blender.

7.1.2. Server

The Server manages and provides PIRs to clients. The Server is independent of particular 3D content
representation standards, content browsers and modeling environments. Hence, it could be used with
different software clients installed on various devices. The multi-layered architecture of the Server
consists of three layers: the Network Layer, the Semantic Logic Layer and the Data Layer.

The Network Layer is responsible for communication with clients. The RESTful Server Service
leverages two Java libraries. The Restlet library [63] is used to receive HTTP requests and to create and
send HTTP responses to clients. For every URI that may be the target of a client request, an individual
Java method has been implemented. A method is invoked once a request is handled for the URI. Every
method is implemented as a function of the Semantic Logic Layer. For instance, sending a request to
the URI /CpR1 may result in obtaining the whole CpR with all its domain-specific objects. The json-io
library is used to decode SCRs included in the incoming requests and to encode SCRs that are sent to
clients.

The Semantic Logic Layer is responsible for processing client requests as well as creating and
managing PIRs, which will be stored in the Data Layer or will be provided to a client. The Knowledge
Manager is based on the Apache Jena SPARQL library [78], and it retrieves, performs reasoning
on and modifies SCM ontologies and knowledge bases stored in the Data Layer. The implemented
inference is based on the SPARQL CONSTRUCT clause, which has been used instead of libraries strictly
designed for OWL-based reasoning. Such approach allowed to achieve better efficiency through precise
inferring only the required facts and avoiding the entailments that are not relevant to a particular case.
For instance, determining super-classes of a class in the CRO is based only on the analysis of the
rdfs:subClassOf property (explicitly specified) and does not require determining super-properties
of the SCM properties included in the SCM ontology.

The Data Layer is responsible for storing SCRs and PIRs as well as the SCM ontologies to which the
representations conform. Within the layer, the particular modules use different SCM ontologies that are

105

parts of SCM, and operate on different SCM knowledge bases that are parts of SCRs representing the
content at different levels of abstraction (as discussed in Chapters 5-6). Multiple content representations
within a module may be assigned to different clients or users modeling 3D content. The SCM ontologies
are only read for processing SCRs and PIRs, and are not modified, while SCRs and PIRs are read and
modified by the Knowledge Manager. Since the CRO specifies the basic elements of 3D objects and
scenes that are sent to clients, the clients must interpret this SCM ontology to transform SCRs and PSRs
to representations that are understandable to the clients (e.g., Blender PSRs).

Since the Client uses RESTful web services implemented in the Server, the names of HTTP methods
and fragments of URIs are used in the dissertation to identify appropriate web services, e.g., GET
/<ontology>/classes/<class>/properties retrieves all SCM properties of the class

specified in the ontology—both of which are parameters of the URI. Any HTTP request sent by the
Client to the Server is initiated by the Request Manager and consecutively encoded in JSON, transmitted
through the RESTful Service Client, handled by the RESTful Service Server and decoded. On the
server-side, user requests are processed by the Knowledge Manager. Any transformation between a
Blender PSR and an SCR or a PIR involves the Scene Object Manager, which uses the Blender Mapping
and X3D Components. Presentation of 3D content on the client-side is performed by the Graphics
Engine.

In the following sections, the particular modules of the environment are presented. The modules
enable the subsequent steps of SEMIC that are accomplished by modeling users. A typical view of the
Blender environment with the installed SO-SEMIC client is depicted in Figure 7.2. The SO-SEMIC
panels extend the Tools space in the 3D View region in Blender. The presented view is sufficient for
performing the main actions of modeling 3D content, including all actions permitted by the SO-SEMIC
environment (implemented panels—Figure 7.2/1) as well as setting the most common properties of 3D
content elements using the tools that are inherent to Blender (the panels Outliner—Figure 7.2/2
and Preferences—Figure 7.2/3). The results of modeling are visible in the User Perspective

window (Figure 7.2/4).

7.2. The Concrete Design Module

The Concrete Design Module enables accomplishment of Step 1 of SCCM—designing a CrR (cf.
Section 6.2). The GUI of the module consists of two panels (Figure 7.3)—the Concrete Component
Panel (Figure 7.3/1) and the Concrete Property Panel (Figure 7.3/2), which allow a user to perform
actions on CrRs. The panels communicate with the Request Manager, which uses the Scene Object
Manager to manage Blender-specific components and properties and produce their equivalent CrRs.
CrRs are delivered to the Server and further forwarded to the Knowledge Manager, which adds them
to the CrRs that are already stored on the Server. The Concrete Design Module permits the following
actions.

7.2.1. Selecting a Repository of X3D Components

Selection of a Repository of X3D Components, which includes Blender-specific counterparts to
concrete components, and to which new Blender-specific components may be added, is a necessary step
of designing a CrR (Figure 7.4/a/1). In the implemented prototype, the Repository is a local file system
directory, however, in general it could be a remote database. The selection of a Repository is performed

106

11 44

22

33

Figure 7.2: The main window of the Blender modeling tool with the installed SO-SEMIC client (1)

11

22

Figure 7.3: The panels of the Concrete Design Module

in the Client irrespectively of the Server. The X3D Components of the Repository should correspond to
concrete components of the CrR used, which is stored on the Server.

107

a)

11

b)

1

2

c)

1

d)

1

Figure 7.4: Actions available in the Concrete Design Module: selection of a Repository of X3D Components (a),
creation of a new concrete component (b), insertion of a new instance of a concrete component into a scene (c) and
selection of an instance of a concrete component (d)

7.2.2. Creating Concrete Components

Creation of a concrete component requires the selection of a Blender-specific object in the scene
that (or whose component) will be the prototype of the new concrete component. Depending on the
Blender-specific object selected, the actual list of the available SCM object properties is presented in
the Concrete Property Panel (Figure 7.4/b/1). The list is determined by the Scene Object Manager,
which analyses the currently selected Blender-specific object and links its Blender-specific properties to
concrete properties using the Blender Mapping. For instance, the Blender-specific property energy of a
Lamp object is mapped to the concrete property cro:intensity of the cro:LightSource class.
A user selects the desirable concrete properties in the list to be included in the new concrete component.
For instance, an cro:AppearanceComponent may be described by a cro:Material including
three color components (RGB). It is possible to create a component based on the entire scene or only on
the selected Blender-specific object (Figure 7.4/b/2).

After receiving the list of concrete properties selected, the Request Manager uses the service GET
/CRO/classes to retrieve the list of classes defined in the CRO. On the Server side, the classes
are obtained by the Knowledge Manager from the CRO. The user chooses one of the classes as the
base class of the new concrete component, e.g., cro:Mesh3D, cro:StructuralComponent,
cro:Texture, etc. If a user selects a class (e.g., cro:TextureMaterial) that does
not correspond to the selected Blender-specific object (e.g., cro:Mesh3D), the service GET

108

/CRO/classes/<selectedClass>/properties is invoked to get the list of the concrete
properties that are applicable to the selected class, against which the selected concrete properties
are verified. Only the successfully verified selected concrete properties are included in the concrete
component to preserve its consistency with the CRO.

Next, an X3D Component can be created and stored in the Repository. The creation of the X3D
Component facilitates further modifications of its equivalent concrete component, and determines the
properties of the concrete component that are not reflected semantically. Such an approach excludes
data that do not need to be semantically reflected (e.g., may be large in general—vertices of a mesh,
sub-objects of a complex structural object) from concrete components and enhances semantic processing
performed by the Knowledge Manager. If a user does not create the X3D Component, the use of
the concrete component in a scene only implies presentational effects that are determined by the
semantic statements of the concrete component. An X3D Component always encompasses the whole
Blender-specific object selected, even if only its sub-component has been used to create a concrete
component. For instance, a cube included in an X3D Component provides a means of presenting a
texture that has been selected to create a concrete component.

The Scene Object Manager retrieves the selected concrete properties and assigns the
values to them from the Blender-specific properties accessed through the Graphics Engine.
Upon receiving the concrete component, the Request Manager uses the service PUT

/<CrR>/individuals/<concreteComponent>. The Knowledge Manager adds the
received new concrete component to the CrR specified in the requested URI. Since a concrete
component is an OWL restriction class, the Knowledge Manager transforms the received CrR
describing an SCM individual with SCM properties into a CrR describing a class with restrictions
on SCM properties. For instance, the statement crr:compOrient cro:x 3.14 is transformed
into the OWL restriction class crr:CompOrientClass rdf:type owl:Restriction.

crr:CompOrientClass owl:onProperty cro:x. crr:CompOrientClass

owl:hasValue 3.14. (cf. Chapter 5).

7.2.3. Inserting Concrete Components into a Scene

The insertion of an instance of a concrete component into a scene requires a user to select the name
of the desirable concrete component and the name of the component instance that will be inserted into
the scene (Figure 7.4/c/1). The list of the concrete components specified in the CrR is obtained using
the service GET /<CrR>/classes and presented to the user. The Scene Object Manager loads from
the Repository the appropriate X3D Component (if exists) that is the counterpart to the inserted concrete
component, and injects it into the scene. Further, the properties of the concrete component are set to its
equivalent in the scene.

7.2.4. Selecting Concrete Components

The selection of an instance of a concrete component is accomplished using a combobox that includes
the identifiers of all instances of concrete components that have already been inserted into the scene
(Figure 7.4/d/1). The list is created by the Scene Object Manager, which analyses the scene using the
Graphics Engine. The selection performed by the Graphics Engine starts with the currently selected
objects and searches for an ascendant object (parent) that is a Blender-specific counterpart to the concrete
component. The selection of a concrete component instance facilitates its manipulation in Blender and
the creation of new concrete components derived from the selected concrete component.

109

7.3. The Mapping Module

The Mapping Module enables accomplishment of Step 2 of SCCM—mapping domain-specific
concepts to a CrR (cf. Section 6.3). The GUI of the module consists of two panels—the Class Mapping
Panel (Figure 7.5/1) and the Property Mapping Panel (Figure 7.5/2). Concrete components and concrete
properties linked to domain-specific concepts determine 3D representation of the domain-specific
concepts, which are abstract in the sense of presentation. A user specifies desirable mappings using
the panels. The mappings are delivered to the Knowledge Manager, which operates on the MO, CrRs
and RMs, to which new mappings are added. The Mapping Module permits the following actions.

1

2

3

4

Figure 7.5: The panels of the Mapping Module (1,2), Conceptual Design Module (3) and Customization Module (4)

7.3.1. Creating Descriptive Classes

The creation of a DC requires selection of a domain-specific class to be a DC, selection of a concrete
component to be a super-class of the new DC and specification of desirable links (MOPs) between
concrete components that will be used for 3D representation of the DC (Figure 7.6/1). For instance,
a green tree is a spatial component (a concrete component) that includes branches and leafs (concrete
sub-components). Such a specification is encoded as an RM, and it is transmitted to the Knowledge
Manager using the service PUT /<RM>/classes/<domain-specific-class>. An RM is
created according to the MO, in a way that is similar to the creation of a concrete component—using
OWL restrictions (as described in Chapter 5). The Knowledge Manager adds the received RM to the
overall RM used.

110

7.3.2. Creating Mapping Data Properties

The creation of an MDP requires selection of a domain-specific data property to become an MDP,
specification of a value of the SCM property and specification of a DC that has to be assigned to
an object, if the SCM property of the object is set to the value (Figure 7.6/2). For instance, a tree
whose dso:hasLeafs property is set to yes includes both leafs and branches (is a sub-class of the
dso:GreenTree class), in contrast to a tree with the value of dso:hasLeafs set to no, which
includes only branches. The created RM is transmitted to the Knowledge Manager using the service
PUT /<RM>/properties/<domain-specific-property>, which adds it to the RM used.
The new RM is based on the equivalence between the owl:hasValue restriction and the selected
domain-specific class (as described in Chapter 5).

1

2

Figure 7.6: Actions available in the Mapping Module: creation of a Descriptive Class (1) and creation of a Data
Property (2)

7.4. The Conceptual Design Module

The Conceptual Design Module enables accomplishment of Step 3 of SCCM—modeling 3D
content with domain-specific concepts (cf. Section 6.4). The GUI of the module consists of the
Conceptual Design Panel (Figure 7.5/3), which enables the use of DCs and MDPs. The module uses
combined representations of domain-specific objects—which are described by both domain-specific

111

and Blender-specific properties. For instance, the dso:light domain-specific property determines
the current state of a traffic light, while its position in the scene is determined by Blender-specific
coordinates, which do not need to have semantic counterparts. In the module, users can create, modify
and remove domain-specific objects. The Conceptual Design Module operates on DSOs, CpRs, RMs
and CrRs, and it permits the following actions.

a)

1

b)

1

c)

2

1

d)

1

Figure 7.7: Actions available in the Conceptual Design Module: opening a conceptual representation (a), creation
of a new domain-specific object (b), modification of a domain-specific object (c) and removal of a domain-specific
object (d)

7.4.1. Opening Conceptual Representations

Opening a CpR requires selection of the name of a CpR (Figure 7.7/a/1). The Request Manager
uses the Scene Object Manager and the Graphics Engine to clear the current Blender-specific scene.
Next, the service GET /<CpR> is invoked to receive the requested CpR. Upon receiving the request,
the Knowledge Manager combines the CpR with the RM and the CrR to obtain statements on concrete
components and concrete properties that represent particular domain-specific objects included in the
CpR. The generated PIR is sent to the Client and used to build Blender-specific equivalents of the
domain-specific individuals that are inserted into the empty scene.

112

7.4.2. Creating Domain-specific Objects

The creation of a domain-specific object requires specification of its name and selection of a
domain-specific class that has been specified as a DC using the Class Mapping Panel (Figure 7.7/b/1).
The list of the available domain-specific classes (included in the DSO) is retrieved using the service GET
/<DSOntology>/classes. The selected name and class URI are sent to the Knowledge Manager
using the service PUT /<CpR>/individuals/<name>. The new domain-specific object is added
to the CpR. The Knowledge Manager executes the expanding algorithm (cf. Section 6.5) to create a PIR
of the domain-specific object with all its concrete components and concrete properties determined by the
RM. Finally, the PIR is delivered to the Client and presented using the Graphics Engine.

7.4.3. Manipulating Domain-specific Objects

A manipulation of a domain-specific object requires selection of a Blender-specific object that is
a counterpart to the domain-specific object to be modified, as well as a domain-specific property that
has been specified as an MDP using the Property Mapping Panel (Figure 7.7/c/1), as well as selection
of a value of the MDP, whose assignment will imply presentational effects (Figure 7.7/c/2). The list
of the available domain-specific properties (included in the DSO) is retrieved using the service GET

/<DSOntology>/properties. Modification of a domain-specific object covers several steps,
and it relies on the combination of the selected Blender-specific object with its semantic complement
determined by the new value of the MDP. First, the RM and the CrR are used by the Knowledge
Manager to indicate concrete properties that are determined by the assignment of the new value to
the MDP and, therefore, their current values are redundant and will not be respected, as they will
be replaced with the new values. The redundant SCM properties are retrieved using the service
GET /<RM>/<property>/<value>. Second, the PIR of the object is created by the Scene
Object Manager, and it encompasses its concrete components and concrete properties without the
redundant SCM properties. The PIR is delivered to the Knowledge Manager using the service PUT

/<CpR>/individuals/<object>. The Knowledge Manager extends the CrR with the concrete
components and concrete properties determined by the new value of the MDP. For instance, the
assignment of the value large to the dso:size property results in a specific value of the object
scale, therefore the current value of scale may be omitted in the PIR passed to the Server. Finally, the
PIR of the object is generated, provided to the Client, converted into the Blender-specific equivalent and
used to replace the former Blender-specific object in the scene.

7.4.4. Removing Domain-specific Objects

Removal of a domain-specific object requires selection of a Blender-specific object whose semantic
domain-specific counterpart is to be removed from the CpR. The removal of an object is performed by
invoking the service DELETE /<CpR>/individuals/<object>. Upon receiving the request, the
domain-specific object is removed from the CpR by the Knowledge Manager, and its Blender-specific
counterpart is removed from the scene by the Scene Object Manager.

7.5. The Customization Module

The Customization Module enables accomplishment of Step 5 of SCCM—query-based customization
of 3D content based on semantic meta-scenes (cf. Section 6.6). The GUI of the module includes the

113

Customization Panel (Figure 7.5/4). The module enables a user to perform the sub-class selector CCPs
(cf. Section 6.6.2) for on-demand generation of 3D content based on meta-scenes. The sub-class selector
CCP results in the creation of an SCM class that permits filtering objects in meta-scenes. The objects
that belong to the SCM class are visible in the resulting CtR in contrast to objects that do not belong to
the SCM class. For instance, select only cars, yellow traffic lights and trees for presentation, and exclude
the other objects from the scene. Query-based generation of 3D content is performed by the Knowledge
Manager on the basis of the CO and a 3D meta-scene, which is a PIR.

a)

1

2

b)

1

c)

1

d)

1

Figure 7.8: Actions available in the Customization Module: creation of a sub-class selector (a) and selection of
domain-specific objects with sub-class selectors (b,c,d)

7.5.1. Creating Sub-Class Selectors

Creation of an SCM class according to the sub-class selector CCP requires selection of a name
(Figure 7.8/a/1) and domain-specific classes (Figure 7.8/a/2) that are to be sub-classes of the created
SCM class. The domain-specific classes that are available in the DSO are retrieved using the GET

/<DSOntology>/classes service and provided to the Customization Panel. The query responsible
for the creation of a selector, which includes its name and the list of sub-classes selected by the user, is
created using the service POST /queries/. The query identifier received in the response is used to
perform query-based content customization.

114

7.5.2. Selecting Domain-specific Objects for Presentation

Selection of domain-specific objects with the sub-class selector results in presentation of only the
objects that belong to the created SCM class and its sub-classes (Figure 7.8/b,c,d/1). For instance, the
choice of a selector whose sub-classes are green traffic lights and red traffic lights, causes the generation
of a scene that includes only such traffic lights. Selection of objects is accomplished using the service
GET /<CpR>/queries/<query-id>, where query-id is received from the response obtained
in the creation of the SCM class. The request is processed by the Knowledge Manager, which performs
the customization of the meta-scene using the customization algorithm (as described in Section 6.6). The
resulting CtR is provided to the Client and visualized by the Scene Object Manager.

7.6. Multi-platform 3D Content Representation Libraries

Java-based libraries have been implemented for generating PSRs according to TKBs. The
implementation of the TO and the transformation algorithm is discussed in terms of 3D content
representation languages, description of transformation rules and transformation software.

7.6.1. 3D Content Representation Languages

The following languages have been selected for encoding PSRs: ActionScript with the Away3D
library, VRML and X3D with XML encoding. PSRs encoded in ActionScript are presented using
Adobe Flash Player, while PSRs encoded in VRML and X3D are presented using VRML and X3D
browsers, e.g., Cortona3D and Bitmanagement BS Contact, respectively. The languages have been
chosen because of the following two reasons. First, they are implemented by a wide range of tools
for 3D content presentation. Second, the languages differ in the syntaxes and the approaches to 3D
content representation. ActionScript is an imperative language, which permits specification of steps
to be accomplished to obtain desirable presentational effects, whereas VRML and X3D are declarative
languages, which permit direct specification of desirable presentational effects to be obtained, without
specifying steps that must be performed to achieve the effects. Covering different syntaxes and
programming paradigms has allowed to achieve more thorough evaluation of the proposed method of
generating PSRs.

7.6.2. Transformation Description

TKBs for the selected languages have been implemented using the semantic web standards—the
Resource Description Framework (RDF), the Resource Description Framework Schema (RDFS) and
the Web Ontology Language (OWL). Similar schemes of VRML and X3D documents have allowed
a common TKB for these languages to be developed, while a separate TKB has been developed for
ActionScript. SSPts and SLPts are encoded as RDF bags and RDF sequences, respectively, while
the SPts are encoded using RDF reification. TSPts, TPt and TPPts are encoded as instances of appropriate
OWL classes and they are linked by OWL properties. Ts, which are included in TBs, are parameterized
documents. The signature of a T consists of its name. Ts with the same signatures create a common TS.
TPs, which occur within Ts, are indicated by specific symbols. The implemented TKBs and TBs cover
the main elements of the ML-SCM, such as shapes and meshes (geometry layer), groups of objects,
size, position and orientation (structure layer), textures, materials and light sources (appearance layer) as
well as navigation (scene layer). The conformance of the TKBs to the semantic web standards enables

115

transformation of PIRs with a semantic query language (e.g., SPARQL). In contrast to a typical grammar
analysis, the use of a query language permits processing of PIRs with regards to complex semantic
dependencies between particular statements of the PIR.

7.6.3. The Representation Compiler

A part of the prototype is the representation compiler, which is an implementation of the
transformation algorithm (cf. Section 6.7). The representation compiler transforms PIRs, which are
compatible with the CRO, to PSRs, which are compatible with the selected 3D content representation
languages. The representation compiler leverages several software libraries. The Pellet OWL reasoner
[193] is used in Step 1 of the transformation algorithm to discover implicit statements, which have not
been explicitly specified in the processed PIRs, but may be inferred and are necessary for building PSRs.
The Apache Jena SPARQL engine [78] is used in the next steps of the transformation algorithm to
execute queries to PIRs and TKBs when discovering SSs, SLs as well as links between TPts and TPPts.

8. Evaluation of SEMIC

Qualitative and quantitative evaluation has been performed to compare the SEMIC approach
with selected approaches to modeling 3D content presented in Chapters 2 and 3 and to discuss the
characteristics of SEMIC.

8.1. Qualitative Evaluation

The SEMIC approach has been compared to selected approaches to modeling 3D content in terms
of functionality. The analysis aims to indicate the major gaps in the available approaches to 3D content
creation, which are covered by SEMIC. The following solutions designed for 3D content creation have
been analyzed.

• The available approaches to semantic modeling of 3D content, which enable 3D content creation
according to the declarative paradigm, such as the approaches proposed by Latoschik et al., Troyer
et al. and Kalogerakis et al. presented in detail in Chapter 3.
• Languages that are widely-used for imperative programming of web applications with selected

libraries designed for 3D content creation, such as ActionScript with Away3D and Java with Java3D.
• Widely-used applications for visual modeling of 3D content:

— domain-specific modeling environments that have been intended to facilitate 3D content creation
by domain experts (e.g., architects, interior designers, engineers, etc.) without advanced technical
skills, by providing a number of intuitive and easy-to-use modeling tools, e.g., enabling the
creation of shapes, basic animations, interactions, etc.

— generic modeling environments that have been intended for modeling 3D content by professional
content developers, providing a number of comprehensive features, such as extensibility and
scripting languages.

SketchUp and 3DVIA have been selected in the first category, while Blender and 3ds Max have been
selected in the second category. These solutions are well-documented and they are used by large
communities, therefore, a number of internet fora, articles as well as textual and video tutorials are
attainable for them.

The analysis covers several aspects that are significant in the context of content creation and content
use in modern 3D/VR/AR applications (Figure 8.1).

8.1.1. Aspects of 3D Content

The primary aspects of 3D content creation, such as modeling basic and complex geometrical shapes,
appearance, structural objects, animations, interactions, complex behavior and physics, are covered by
the majority of the analyzed approaches to declarative, imperative and visual 3D content creation. Both
the imperative languages and the visual environments enable imperative scripts, which can express
arbitrarily complex content behavior. In contrast to them, the declarative approaches permit at most

117

Modeling paradigm

D
ec

la
ra

ti
ve

co
n

te
n

t

cr
ea

ti
o

n

Im
p

er
at

iv
e

co
n

te
n

t

cr
ea

ti
o

n

V
is

u
al

co
n

te
n

t

cr
ea

ti
o

n

Criterion \ Approach

SE
M

IC

La
to

sc
h

ik
 e

t
al

.

Tr
o

ye
r

e
t

al
.

K
al

o
ge

ra
ki

s
e

t
al

.

A
ct

io
n

Sc
ri

p
t

(A
w

ay
3

D
)

Ja
va

 (
Ja

va
3

D
)

Sk
et

ch
U

p
, 3

D
V

IA

B
le

n
d

er
, 3

d
s

M
ax

Addressed aspects of content creation

modeling geometry - - - - - x x

modeling basic geometrical shapes x x x x x x x

modeling appearance x x

x x x x

creating structural objects (assemblies) x x x x x x

creating animations x x x x x x x

describing interactions x x x x x x x

modeling complex behavior - o o

x x x

modeling physics - x x - x x x

Conceptual content creation

using concepts directly related to 3D
computer graphics

x x x x x x x

using abstract concepts (nonspecific to
3D computer graphics)

x x x x - x

using hierarchies of classes x x x x x - x

using hierarchies of properties x x x - x

representation of complex
features by classes

x x x x - x

representation of complex
features by properties

x x - x

representation of complex
features by individuals

x x - x

representation of complex features
by combinations of classes

x - - x

representation of complex
features by combinations of properties

x x - x

representation of complex features
by combinations of individuals

x x - x

representation of relations
between objects

x x - x

representation of complex
features by rules

x x - - -

specifying schemes of scenes x x x - x

separation of concerns in content creation x

specifying compatibility between objects x x x x - x

Knowledge-based content creation

content modeling based on constraints x x o o - - o

discovering object properties on
the basis of object classes

x o - -

discovering object classes on
the basis of object properties

x - - -

discovering dependencies between
objects on the basis of object classes
and object properties

x - - -

modifying objects on the basis of
properties of other objects

x x x - x

Multi-platform content creation

generating final content representations
for different platforms

x o - x x

generic description of content
transformation

x - - -

possible introduction of new
presentation platforms

x - - x

Support for the use in content repositories

convenient for indexing content x x x x - - -

convenient for searching content x x x x - x -

convenient for managing individual objects x x x x - - -

convenient for managing groups of objects x - - -

creating content with a query language x - - -

managing content with a query language x o - - -

convenient for exploring content with a
query language

x x x x - - -

reusing common concepts x x x x x x

‘x’ – the solution meets the criteria

‘o’ – the solution does not fully meet the criteria

‘-’ – the solution does not meet the criteria

‘ ’ – the information is not available

Figure 8.1: Comparison of selected approaches to modeling 3D content

118

limited modeling of behavior based on specific sets of concepts, such as templates of particular animation
types (e.g., walking). The SO-SEMIC environment does not currently enable modeling of complex
content behavior and physics. However, appropriate extensions of 3D content to 3D scenarios including
declarative descriptions of arbitrarily complex content behavior are planned for SO-SEMIC.

8.1.2. Conceptual 3D Content Creation

Conceptual content creation has been considered in terms of representation of 3D content at different
levels of abstraction (detail) and the use of the well-established semantic web concepts (such as classes,
individuals, properties and rules) in the 3D content creation process. Overall, the available declarative
approaches enable the use of basic semantic expressions (combinations of semantic concepts), such as
classes and properties at different levels of abstraction in modeling of content. However, they do not
permit a number of more sophisticated combinations of concepts, which are essential to visualization of
complex knowledge bases and which are covered by SEMIC (marked in blue in the table). The imperative
languages and generic modeling environments permit complex conceptual content representation at any
level of abstraction, however, expressed imperatively, which is not convenient for knowledge discovery
and content management in web repositories. The available approaches do not support separation of
concerns between different users, who have different modeling skills and experience and are equipped
with different modeling tools.

8.1.3. Knowledge-based 3D Content Creation

Knowledge-based 3D content creation has been considered in terms of building content
representations with regards to discovered properties and dependencies of content objects, which may be
hidden (not explicitly specified), but which are the logical implications of facts that have been explicitly
specified in the knowledge base. On the one hand, this aspect of content creation is not available in
imperative 3D content representation languages, including the languages used in the generic modeling
environments, as in these approaches, knowledge discovery must be implemented in advance. On the
other hand, although the available declarative approaches could be extended to enable knowledge-based
modeling, currently, they do not address content creation based on discovered data. In contrast to the
other approaches, SEMIC enables discovery of knowledge from various combinations of statements and
rules, and visualization of the inferred facts.

8.1.4. Multi-platform 3D Content Creation

Although, the analyzed visual environments support different content formats and the generic
modeling environments (Blender and 3ds Max) enable the introduction of new formats (e.g., by
implementing appropriate plug-ins), they do not enable generic description of content transformation
that is independent of particular presentation platforms. Such description could facilitate the introduction
of new content formats. Overall, the declarative approaches do not permit flexible and generic
content transformation for different platforms. In SEMIC, the description of content transformation is
generic—independent of particular 3D content presentation platforms. Only the rules of transformation
must be individually specified for particular platforms depending of the 3D content representation
language used.

119

8.1.5. The Use of 3D Content in Content Repositories

Due to the use of semantic techniques, the declarative approaches to content creation could be
potentially used in 3D content repositories to facilitate content creation and management using ontologies
and knowledge bases. However, the available declarative approaches do not enable content creation
and management with semantic query languages (e.g., SPARQL), which is an important shortcoming
in the context of the use of content in repositories. Overall, the generic modeling environments have
not been intended to be used together with shared content repositories. The domain-specific modeling
environments (SketchUp and 3DVIA) support basic searching for 3D models in repositories and retrieval
of 3D models from repositories. In contrast to the other approaches, SEMIC enables query-based 3D
content creation and management at different levels of abstraction (both concrete and conceptual).

8.2. Quantitative Evaluation

The quantitative evaluation covers different elements of SEMIC: the SCM and SCCM (including
the use of CCPs) with the focus on representations created by users and activities performed by users
as well as the algorithms, for which computational complexity and performance have been analyzed.
The elements are related to different aspects of 3D content creation and representation. The quantitative
evaluation has been conducted using the implemented SO-SEMIC environment.

8.2.1. The Semantic 3D Content Model

The evaluation of the SCM covers CpRs, PIRs and PSRs. The CpRs and PIRs have been encoded
with SCM using the RDF-Turtle format. The DSO used to build the CpRs provides different types of
complex objects and complex properties combining multiple concrete components of 3D content. PSRs
have been encoded with the VRML, X3D and ActionScript (with the Away3D library) languages.

The evaluation has been carried out starting with CpRs assembled from different numbers of objects.
The number of objects has varied over the range of 5 to 50 with the step equal to 5. For every number
of objects, 20 scenes have been randomly generated and the average results have been calculated. The
test environment used was equipped with the Intel Core i7-2600K 3.4GHz CPU, 8 GB RAM and the
Windows 7 OS.

The Size and Complexity of 3D Content Representations

The complexity of 3D content representations has been evaluated with the following metrics: the
Structured Document Complexity Metric [187], the number of bytes, the number of logical lines of code
(LLOC) [72] and the Halstead Metrics [146]. The first metric has been used to measure the complexity
of representation schemes of CpRs, CrRs and PSRs, whereas the other two metrics have been used to
measure the complexity of particular content representations.

Structured Document Complexity Metric. The Structured Document Complexity Metric has been
used to measure the complexity of representation schemes regarding unique elements and attributes,
required elements and attributes as well as attributes that need to be specified at the first position within
their parent elements. The metric may be calculated for grammar-based documents. The values of the
Structured Document Complexity Metric calculated for the schemes of CpRs, CrRs and PSRs (encoded
in VRML, X3D and ActionScript) are presented in Table 8.1.

120

Criteria VRML/X3D AS PIR CpR RM
Unique elements 15 24 24 7 36
Unique attributes 21 27 3 14 8
Required elements 1 1 12 4 4
Required attributes 8 5 3 2 2
Elements at position 1 0 0 0 0 0
Sum 45 57 42 27 50

Table 8.1: Structured Document Complexity Metric of 3D content representations

The results obtained for VRML and X3D representations are equal, because both languages use
schemes with equivalent basic elements and attributes. While in VRML and X3D representations,
different hierarchical document elements have been classified as unique elements, in ActionScript
representations, different classes and data types (potentially corresponding to different elements of
VRML/X3D) have been classified as unique elements. In PIRs, unique elements cover different RDF,
RDFS and OWL elements as well as semantic properties of 3D content, which are encoded by document
elements (according to the RDF syntax). In comparison to PIRs, CpRs include a lower number of unique
elements, which are semantic combinations of multiple elements of PIRs. Different properties occurring
in hierarchical VRML/X3D elements or properties of objects in ActionScript representations have been
classified as unique attributes in the metric calculation. Since, in PIRs the content properties are encoded
using document elements, only a few attributes, which are primary RDF, RDFS and OWL attributes,
may be classified as unique attributes in PIRs. In comparison to PIRs, CpRs have a higher number
of unique attributes, which is determined by the DSO used. RMs incorporate the highest number of
unique elements of all analyzed documents, because they indicate unique elements of both concrete and
conceptual representations. Unique attributes of RMs are semantic properties specified in the MO. In
VRML/X3D and ActionScript representations, the scene and the view are the only required elements,
and they have a few required attributes. The elements and the attributes that are required in CpRs,
PIRs and RMs, are basic RDF, RDFS and OWL elements and properties. The calculated values of the
Structured Document Complexity Metric show that the overall complexity of CpRs is much lower than
the overall complexity of PIRs, which is a little lower than the overall complexity of VRML/X3D and
much lower than the overall complexity of ActionScript representations. The overall complexity of RMs
is the highest of all the complexities calculated.

Size Metrics. The number of bytes and the number of logical lines of code (LLOC)—without
comments—have been used to measure the size of content representations (Figure 8.2). The graphs
present the metrics in relation to the number of domain-specific components included in CpRs. The tests
confirm the O(n) space complexity of semantic content representations created using the SCM, where n
is the number of components in the representations.

The differences in size are relatively high between different types of representations. In both
comparisons, CpRs are more than twice more concise than the corresponding PSRs, as the CpRs are
transformed to multiple concrete content components. PIRs are most verbose, which confirms that
RDF-turtle is the most verbose encoding format of all the encoding formats used, taking into account
that the elements of PIRs are semantic equivalents to the elements of the corresponding PSRs.

Halstead Metrics. The Halstead metrics have been used to measure the complexity of content
representations in several aspects: the size of vocabulary and length of the content representations,
volume corresponding to the size of the representations, difficulty corresponding to the error proneness

121

a)

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30 35 40 45 50 55

R
e

p
re

se
n

ta
ti

o
n

 s
iz

e
 [

b
yt

e
s]

Number of components

VRML X3D AS PIR CpR

b)

0

200

400

600

800

1000

0 5 10 15 20 25 30 35 40 45 50 55

R
e

p
re

se
n

ta
ti

o
n

 s
iz

e
 [

LL
O

C
]

Number of components

VRML X3D AS PIR CpR

Figure 8.2: The size of representation depending on the number of objects—in bytes (a) and in LLOC (b)

of the representations, effort in implementation and analysis of the representations as well as estimated
time required for the development of the representations. The particular Halstead metrics in relation to
the number of objects of CpRs are presented in Figures 8.3-8.8. The VRML and X3D representations that
have been considered in the presented evaluation are based on equivalent basic elements and attributes,
therefore they have been presented together.

Vocabulary (Figure 8.3), which is the sum of unique operators (n1) and unique operands (n2) of the
representation:

Voc = n1+n2 (8.1)

is lowest for CpRs and highest for VRML/X3D, because of a high number of unique operands, which are
individual scene graph nodes. In contrast to the other languages, in VRML/X3D, a relation between two
components in the generated representation is reflected by nesting one component in another component
with specifying all intermediate nodes, which are also classified as unique operands, e.g., applying a
Material to a Shape requires an intermediate Appearance node to be nested in the Shape node.
In the other languages, such associations are usually described directly—without any intermediate nodes.

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50 55

V
o

ca
b

u
la

ry

Number of components

VRML/X3D AS PIR CpR

Figure 8.3: The vocabulary of representation depending on the number of objects

122

Length (Figure 8.4), which is the sum of the total number of operators (N1) and the total number of
operands (N2) of the representation:

Len = N1+N2 (8.2)

is lowest for CpRs. VRML/X3D representations predominate PIRs and ActionScript representations,
as their operands typically occur once and all references to them are specified by nesting attributes and
other nodes in them. Therefore, the operands do not require to be additionally explicitly indicated (e.g.,
by proper instructions or statements), and thus the length of VRML/X3D representations is lower than
the length of the other representations, in which all references to operands must be explicitly declared by
referring to their identifiers.

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 40 45 50 55

Le
n

gt
h

Number of components

VRML/X3D AS PIR CpR

Figure 8.4: The length of representation depending on the number of objects

The graph of volume (Figure 8.5), which depends on the length and vocabulary of content
representations:

Vol = Len∗ log2(Voc) (8.3)

is similar to the graph of length for all types of representations.
In contrast to the other Halstead metrics discussed, difficulty (Figure 8.6), which is given by the

formula:

Diff =
n1
2
∗ N2

n2
(8.4)

has similar values for different numbers of components in the scene. It is lowest for conceptual and
VRML/X3D representations (low error proneness) because of the relatively low number of unique
operators and the total number of operands as well as the relatively high number of unique operands.
Relatively high difficulty of ActionScript representations (high error proneness) is caused by relatively
high values of the first two factors and the relatively low value of the third factor.

Effort (Figure 8.7) and time (Figure 8.8) required by a user to implement or analyze a representation,
which are the products of its difficulty and volume:

123

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35 40 45 50 55

V
o

lu
m

e

Number of components

VRML/X3D AS PIR CpR

Figure 8.5: The volume of representation depending on the number of objects

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50 55

D
if

fi
cu

lt
y

Number of components

VRML/X3D AS PIR CpR

Figure 8.6: The difficulty of representation depending on the number of objects

Eff = Diff ∗Vol (8.5)

Time[h] =
Eff

18∗3600
(8.6)

are lowest for CpRs because of the relatively low difficulties and volumes. Several times higher values
of effort and time occur for the other representations.

Multi-platform 3D Content Representation

The capability of generating multi-platform 3D content representations has been evaluated in terms
of the following four metrics:

• the profit from automatic generation of platform-specific representations;
• the cost of elementary changes in platform-specific representations;

124

100

1000

10000

100000

1000000

0 5 10 15 20 25 30 35 40 45 50 55

Ef
fo

rt

Number of components

VRML/X3D AS PIR CpR

Figure 8.7: The effort in analyzing the representation depending on the number of objects

0,001

0,01

0,1

1

10

0 10 20 30 40 50 60

Ti
m

e
 [

h
]

Number of components

VRML/X3D AS PIR CpR

Figure 8.8: Time of implementing the representation depending on the number of objects

• the cost of the introduction of a 3D content presentation platform;
• the profit from code generation for a new 3D content presentation platform.

The profit from automatic generation of platform-specific representations. The profit from
automatic generation of PSRs for different platforms in relation to the number of objects of the primary
representation (a PIR) has been calculated as the ratio of the overall size of the PSRs (encoded in VRML,
X3D and ActionScript), which have been generated on the basis of the primary PIR (implemented with
the CRO) and encoded with the selected 3D content representation languages, to the size of the PIR:

Pro f it =
Size(PSRs)
Size(PIR)

(8.7)

The metric shows, how much work on implementation can be saved when implementing a PIR and using
the proposed method to automatically generate the corresponding PSRs, rather than implementing the

125

desirable PSRs from scratch using the particular languages, independently one from another. The profit
is presented in Figure 8.9.

1,5

1,7

1,9

2,1

2,3

2,5

2,7

2,9

0 5 10 15 20 25 30 35 40 45 50 55

P
ro

fi
t

Number of objects

Profit [bytes] Profit [LLOC]

Figure 8.9: The profit from automatic generation of platform-specific representations

The values of the profit vary predominantly in the range 1.7 to 2.1—for the size expressed in the
number of bytes—and from 1.9 to 2.3—for the size expressed in the number of LLOC. Although the
profit values are decreased by the relatively high size of PIRs in comparison to the corresponding PSRs,
about 50% of work may be saved when using the proposed solution with the three presentation platforms.
A higher number of presentation platforms would result in higher values of profit.

The cost of elementary changes in platform-specific representations. The cost of elementary changes
in content representations is the average size of code that is required to be added, deleted or modified
to add, delete or modify a component or a property of a 3D content representation. It is assumed that a
change of a representation is related to at least one of its basic elements. A basic element of a PIR is an
S, while a basic element of a PSR that corresponds to the PIR is a TS associated with an S from the PIR.
Hence, the cost of an elementary change in a content representation is the average size of an S (for PIRs)
or the average size of a TS (for PSRs):

Cost = AvgSize(S|T S) (8.8)

The values of the metric have been calculated for the selected 3D content representation languages. The
results are presented in Table 9.2 (in bytes and LLOC).

Size VRML X3D ActionScript CRO
NoB 35 39 130 39
LLOC 2 2 4 1

Table 8.2: The cost of elementary changes in content representations

In SEMIC, Ss of the CRO typically gather multiple instructions (multiple LLOC) of the other 3D
content representation languages. ActionScript is the most verbose of the selected languages, as to
represent some aspects of 3D content on the Flash platform (e.g., navigation), a number of LLOC need
to be implemented to create an appropriate T. The most concise language is VRML, which is equivalent

126

to X3D in terms of the provided level of abstraction. A slight difference between VRML and X3D in the
number of bytes is caused by the difference in their syntaxes—the syntax of VRML is more concise than
the verbose XML-based syntax of X3D chosen for the evaluation.

The cost of the introduction of a 3D content presentation platform. The cost of the introduction of
a content presentation platform is the overall size of code that must be implemented to introduce a 3D
content presentation platform into the system. Hence, the cost incorporates the size of the TKB, which
describes the transformation of PIRs to PSRs, and a TB, which corresponds to the language of the new
platform introduced:

Cost = Size(T KB)+Size(T B) (8.9)

The metric has been calculated and expressed in the number of bytes and the number of LLOC for the
selected 3D content representation languages that determine the content presentation platforms to be
used (Table 9.3).

VRML X3D ActionScript
NoB LLOC NoB LLOC NoB LLOC

TKB 22291 789 22291 789 25290 943
TB 1193 71 1312 71 4957 152
Sum 23484 860 23603 860 30247 1095

Table 8.3: The cost of the introduction of a content presentation platform

On the basis of the calculated values of the metric, an estimated cost of the introduction of a new
platform into the system may be determined. A new platform, whose functionality (a set of content
components and properties) needs to be equivalent to the already implemented platforms, is anticipated to
require about 860-1095 LLOC. The lower bound is more probable for hierarchical declarative languages
(e.g., XML3D), whereas the upper bound is more probable for structural and object-oriented imperative
languages (e.g., Java3D). However, the exact value depends on the capabilities of a particular target
language (and programming libraries) used as well as the complexity of the CRO. The more advanced
the capabilities of the language and the libraries provided, the lower the cost should be, e.g., a single
instruction may enable one of several available navigation modes.

The profit from code generation for a new 3D content presentation platform. The profit from code
generation for a new platform is directly proportional to the number of PIRs that are available in the
system and that are to be transformed to PSRs compliant with the new platform, and the size of the
generated PSRs. The metric is given by the formula:

Pro f it =
N ∗Size(PSRs)

Cost(T KB+T B)
(8.10)

where: N—the number of PIRs that are available in the system and are to be transformed;
Size(PSRs)—the size of PSRs to be generated; Cost(TKB + TB) = Size(TKB) + Size(TB)—the overall
size of the TB and the TKB that enable the transformation (calculated in the previous section).

The metric has been calculated for a PIR including 50 objects. However, for larger scenes the profit
from transformation could be higher. The values of the profit in relation to the number of PIRs are
presented in Figure 8.10.

127

The profit increases linearly with the increase in the number of PIRs that are available in the system
and need to be transformed. The attainable profit is higher for the X3D and ActionScript languages, as the
size of X3D and ActionScript representations is typically larger than the size of VRML representations.

a)

0

10

20

30

40

50

60

0 20 40 60 80 100

P
ro

fi
t

[b
yt

e
s]

Number of PIRs

VRML X3D ActionScript

b)

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

P
ro

fi
t

[L
LO

C
]

Number of PIRs

VRML X3D ActionScript

Figure 8.10: The profit from code generation for a new platform: for PSR size in bytes (a) and for PSR size in
LLOC (b)

8.2.2. The Semantic 3D Content Creation Method

SCCM has been evaluated in terms of user’s effort in creation and customization of 3D content
in the visual environment. The efficiency of content creation and customization has been measured
with three metrics: the number of keystrokes and mouse clicks, mouse distance and time required to
accomplish modeling activities. While, in the evaluation, the number of keystrokes and mouse clicks is
representative mainly for measuring the complexity of the user interface (e.g., the design of and links
between windows and controls), mouse distance is representative mainly for measuring the complexity
of manual operations performed on the modeled content (e.g., zooming a view, dragging and dropping
content elements, etc.). Time covers the entire modeling process—both activities performed by the user
and the processing of content performed by the environment. The metrics have been measured for the
creation and customization of the following four 3D scenes.

1. Scene 1: Crossroads with cars, which have low and high beams (Figure 8.11).
2. Scene 2: Crossroads with cars, some of which are priority vehicles (Figure 8.12).
3. Scene 3: Crossroads with traffic lights, which are in different states (Figure 8.13).
4. Scene 4: A housing with trees, which have different scales and colors of leafs (Figure 8.14).

In the scenes, the models [27]- [39] have been used. [27–39]
Every scene has been individually modeled 10 times by a user using the Blender and SO-SEMIC

modeling environments, and the average results have been calculated for every metric and every
environment. Further, average gain has been calculated for every metric as the average ratio of the result
obtained in Blender to the result obtained in SO-SEMIC. The modeling environments offer different
capabilities and are characterized by different degrees of complexity of 3D content creation. Blender is
a complex modeling environment with a number of advanced functions directly related to 3D computer
graphics, requiring relatively high skills in 3D content creation. SO-SEMIC is an environment enabling
creation of 3D content by referring to high-level meaning of particular content components, which makes
3D content creation more intelligible to non-IT-specialists. The tests were performed using a computer
equipped with the Intel Core 2 Duo CPU 2.53GHz, 4GB RAM, NVIDIA GeForce 9500M and Windows

128

a) b)

c) d)

e) f)

g) h)

Figure 8.11: Crossroads with cars seen from different points (a-d), only cars with high beam are selected for
presentation (e-h)

7 Professional. On the computer, both modeling environments—Blender 2.71 as well as SO-SEMIC
(including the Client and the Server)—have been installed.

Designing Conceptual 3D Content Representations

The average values of the metrics have been calculated for the creation of the 3D scenes (Table 8.4).
The metrics depend on the number of objects in the scene, their structural complexity as well as the
number of SCM object properties set while creating the scene. In addition, time required for modeling
depends on the geometrical complexity of the objects, since the rendering of more complex shapes

129

a) b)

c) d)

e) f)

g) h)

Figure 8.12: Crossroads with cars seen from different points (a-d), only priority vehicles are selected for
presentation (e-h)

requires more computations. The number of objects is the lowest in Scene 2 and the highest in Scene
3, while the structural and geometrical complexity of objects is the lowest in Scene 2 (relatively simple
models of traffic signs and traffic lights) and the highest in Scene 4 (relatively complex models of trees
and houses). Modeling content with Blender requires almost four times more keystrokes and mouse
clicks then modeling content with SO-SEMIC. The high value of average gain is caused by the possibility
of determining a number of object features by setting single domain-specific properties in SO-SEMIC.
For instance, the color of leafs of a tree and their relative position to the branches are determined by
setting the leafs SCM property to green or yellow. Such capability is not available in Blender, in

130

a) b)

c) d)

e) f)

g) h)

Figure 8.13: Crossroads with traffic lights and signs seen from different points (a-e), only green traffic lights are
selected for presentation (f), only warning signs are selected for presentation (g), only warning and prohibition
signs as well as passenger cars are selected for presentation (h)

which particular properties must be specified independently. Conceptual modeling with domain-specific
properties also implies gain in mouse distance (2.68), as the user is liberated from performing manually
complex operations, such as selecting different components of a car, and navigating across different
controls of the environment to set individual coordinates of road signs. The average gain in the time
required for modeling 3D scenes (1.74) is also caused by the difference in the number of properties that
have to be changed in both environments.

131

a) b)

c) d)

e) f)

g) h)

Figure 8.14: A housing with trees seen from different points, the trees differ in species, size and color of leafs
(a-e), only big trees are selected for presentation (f), only trees with yellow leafs are selected for presentation (g),
only palms are selected for presentation (h)

Customizing 3D Meta-Scenes

The created 3D scenes have been customized to satisfy different requirements. For every 3D scene
created, the following customized scenes including only selected domain-specific objects have been
generated.

1. Scene 1: Crossroads with cars, which have low and high beams (Figure 8.11a-d) customized into:
• a scene including only cars with high beams (Figure 8.11e-h).

132

Metric Scene 1 Scene 2 Scene 3 Scene 4 Average gain (B/S)
B S B S B S B S

keystrokes and
mouse clicks

864 224 674 170 1311 316 1326 333 3,99

mouse distance
(inch)

2543 939 2235 951 4181 1653 4171 1340 2,68

time (s) 1390 854 1204 744 1721 1118 2504 1145 1,74

Table 8.4: Metrics calculated for the creation of 3D scenes (B—Blender, S—SO-SEMIC)

2. Scene 2: Crossroads with cars, some of which are priority vehicles (Figure 8.12a-d) customized into:
• a scene including only priority vehicles (Figure 8.12e-h).

3. Scene 3: Crossroads with traffic lights, which are in different states (Figure 8.13a-e) customized into:
• a scene including only green traffic lights (Figure 8.13f);
• a scene including only warning signs (Figure 8.13g);
• a scene including only warning and prohibition signs as well as passenger cars (Figure 8.13h).

4. Scene 4: A housing with trees, which have different scales and colors of leafs (Figure 8.14a-e)
customized into:
• a scene including only big trees (Figure 8.14f);
• a scene including only trees with yellow leafs (Figure 8.14g);
• a scene including only palms (Figure 8.14h).

The average values of the metrics (keystrokes and mouse clicks, mouse distance, and time) have been
calculated for the customization of the 3D scenes (Table 8.5).

Metric

Scene 1
only cars
with high
beam

Scene 2
only
priority
vehicles

Scene 3
warning
signs

Scene 3
green
lights

Scene 3
cars and
signs

Scene 4
big trees

Scene 4
yellow
trees

Scene 4
palms

Average
gain
(B/S)

B S B S B S B S B S B S B S B S
keystrokes
and mouse
clicks

110 5 68 5 15 5 21 5 12 4 6 4 8 4 7 5 6,34

mouse
distance
(inch)

237 10 138 12 53 12 73 12 36 10 42 11 29 12 22 10 7,22

time (s) 389 20 235 19 136 17 206 16 83 20 166 18 87 19 90 17 9,49

Table 8.5: Metrics calculated for the customization of 3D scenes (B—Blender, S—SO-SEMIC)

Unlike in the creation of 3D scenes, the number of keystrokes and mouse clicks (average gain 6.34)
as well as mouse distance (average gain 7.22) in the customization of 3D scenes with SO-SEMIC do
not depend on the complexity of the scenes being customized—since any customization requires only
the selection of a single sub-class selector by a user. Complexity of the scenes affects the number of
keystrokes and mouse clicks as well as mouse distance in content customization in Blender, because
each object must be individually modified by a user. Complexity of scenes also affects the customization
time (average gain 9.49) in both environments, as the more complex the scene, the more operations must
be performed to customize it (cf. Section 8.2.4). The differences between the results obtained for the
particular scenes are much bigger for Blender than for SO-SEMIC. In the customization of a scene, a
user always performs a similar number of actions, which do not take much time in comparison to the
actions performed by the customization algorithm. Hence, the average gain in time depends mostly on

133

performance of the devices used, and it could be improved by using more efficient devices on both client
and server sides. Average gain in the metrics increases with the increase of the number of objects to
be modified in the scene. Thus, the highest gains have been obtained for Scene 1, from which multiple
structural objects (cars) were removed, whereas the lowest gains have been obtained for Scene 4, from
which less objects were removed. Therefore, automatic customization of 3D content is useful especially
for complex scenes that require a large number of modifications, as it liberates users from completing
the activities manually (navigating across different panels and selecting values of multiple properties).

Profit in the Size of Content Representations

Profit in the size of content representations from conceptual modeling is directly proportional to the
number of modeled scenes and their size, and it is inversely proportional to the sum of the size of the RM
(that must be implemented) and the size of the primary CpRs that are transformed to PSRs. The metric
is given by the formula:

Pro f it =
Size(PSRs)

Size(RM)+Size(CpRs)
(8.11)

The values of profit in the size of representations in relation to the number of scenes are presented in
Figures 8.15-8.17. The creation of an RM is not profitable for low numbers of simple scenes (the values
of profit lower than 1) and it is profitable for high numbers of complex scenes (the values grater than 1).
The profit is higher for more verbose languages (ActionScript) and it is lower for more concise languages
(VRML).

Figure 8.15: The profit from conceptual content creation for VRML (for representation size in bytes)

8.2.3. Computational Complexity of the Algorithms

The analysis of the computational complexity of the algorithms is based on the description of the
stages of the algorithms presented in Sections 6.5.2, 6.6.3 and 6.7.2.

134

Figure 8.16: The profit from conceptual content creation for X3D (for representation size in bytes)

Figure 8.17: The profit from conceptual content creation for ActionScript (for representation size in bytes)

Computational Complexity of the Expanding Algorithm

In general, reasoning on RLs that are based on semantic rules, is undecidable, which implies that
the expanding algorithm is undecidable. The computational complexity of the expanding algorithm
may be determined, if no RLs are used in the processed SCR, and thereby, no undecidable reasoning is
performed. For each step of the expanding algorithm, computational complexity has been determined.
The following notation is used.

• nP—the number of distinct domain-specific properties used in the SCR;
• nOP—the number of distinct domain-specific object properties used in the SCR;
• nS—the number of distinct statements in the SCR;
• nS/OP—the number of distinct statements on domain-specific object properties in the SCR;
• nDI—the number of distinct DIs in the SCR;

135

• nPO—the number of distinct POs in the SCR;
• nPO/CD—the average number of POs per CD in the SCR;
• nCx—the number of complex descriptors in the SCR;
• nCD/Cx—the average number of CDs per complex descriptor in the SCR;
• nMP/PO—the average number of distinct MPs per PO in the SCR;
• nCD/PO—the average number of distinct CDs per PO in the SCR;
• nc—the number of distinct cardinality restrictions in the SCR;
• nhv—the number of distinct has-value restrictions in the SCR;
• N—the average cardinality of cardinality restrictions in the SCR.

1) In Step II-A, all the domain-specific properties used in the SCR are analyzed. Therefore, the
computational complexity is O(nP).

2) In Step II-B, all the domain-specific object properties used in the SCR are analyzed. Therefore, the
computational complexity is O(nOP).

3) In Step II-C, all the statements with object properties in the SCR are analyzed. Therefore, the
computational complexity is O(nS/OP).

4) In Step II-D, all the DIs are analyzed. Therefore, the computational complexity is O(nDI).
5) In Step II-E, for every PO, nMP/PO MPs are analyzed, on average. Therefore, the computational

complexity is O(nPO*nMP/PO).
6) In Step II-F, for every complex descriptor CD, nCD/Cx CDs are analyzed, on average. For every CD,

all of its POs are analyzed. Therefore, the computational complexity is O(nCx*nCD/Cx*nPO/CD).
7) In Step III-A, for every PO, nc cardinality restrictions are analyzed and for each of them N SCM

individuals are generated, on average. Therefore, the computational complexity is O(nPO*nc*N).
8) In Step III-B, for every PO, nhv has-value restrictions are analyzed. Therefore, the computational

complexity is O(nPO*nhv).

For the aforementioned formulas, the upper bound of computational complexity may be specified. The
number of distinct SCM classes or individuals is less or equal to 2*nS, since SCM classes and individuals
may occur in statements as either the subject or the object. The number of distinct SCM properties is less
or equal to nS, since in every statement, only one SCM property occurs. Thus, overall the computational
complexity of Stage II is polynomial with the upper bound O(nS

3). Overall computation complexity
of Stage III is polynomial with the upper bound O(nS

2). To conclude, the expanding algorithm is
undecidable when using RLs, and it has the polynomial computational complexity equal to O(nS

3), when
using no RLs.

Computational Complexity of the Customization Algorithm

Like the expanding algorithm, the customization algorithm is undecidable unless RLs are not
processed in Steps I-B-8, II-A and III-A-2. For each step of the customization algorithm, computational
complexity has been determined. The following notation is used.

• nI—the number of distinct individuals in the meta-scene;
• nIS—the number of distinct individual selectors in the query;
• nI/IS—the average number of distinct individuals per individual selector in the query;
• nI/C—the average number of distinct individuals per SCM class in the meta-scene;
• nP—the number of distinct SCM properties in the meta-scene;
• nSS—the number of distinct sub-class selectors in the query;
• nC/Sel—the average number of distinct SCM subclasses per selector in the query;

136

• nhv—the number of distinct has-value selectors in the query;
• navf—the number of distinct all-values-from selectors in the query;
• nsvf—the number of distinct some-values-from selectors in the query;
• nIS—the number of distinct intersection selectors in the query;
• nSel/IS—the average number of distinct selectors per intersection selector in the query;
• nDS—the number of distinct difference selectors in the query;
• nSel/DS—the average number of distinct selectors per difference selector in the query;
• nS—the number of distinct statements in the meta-scene;
• nS/MS∪Q—the number of distinct statements in the union of the meta-scene and the query;
• nSP—the number of distinct sub-projectors in the query;
• nP/SP—the average number of distinct subproperties per sub-projector in the query.

1) In Step I-B-1, for every individual selector, nI/IS individuals are analyzed, on average. Therefore, the
computational complexity is O(nIS*nI/IS).

2) In Step I-B-2, for every sub-class selector, nC/Sel subclasses are analyzed, on average. For every
subclass, nI/C individuals are analyzed, on average. Therefore, the computational complexity is
O(nSS*nC/Sel*nI/C).

3) In Step I-B-3, for every has-value selector, all individuals in the meta-scene are analyzed. Therefore,
the computational complexity is O(nhv*nI).

4) In Step I-B-4, for every all-values-from selector, all individuals in the meta-scene are analyzed.
Therefore, the computational complexity is O(navf*nI).

5) In Step I-B-5, for every some-values-from selector, all individuals in the meta-scene are analyzed.
Therefore, the computational complexity is O(nsvf*nI).

6) In Step I-B-6, for every intersection selector, nSel/IS selectors are analyzed, on average. For every
selector, nC/Sel SCM classes, each including nI/C individuals, are analyzed, on average. Therefore,
the computational complexity is O(nIS*nSel/IS*nC/Sel*nI/C).

7) In Step I-B-7, for every difference selector, nSel/DS selectors are analyzed, on average. For every
selector, nC/Sel SCM classes, each including nI/C individuals, are analyzed, on average. Therefore,
the computational complexity is O(nDS*nSel/DS*nC/Sel*nI/C).

8) In Step II-C, for every individual, all the statements in the mate-scene are analyzed. Therefore, the
computational complexity is O(nI*nS).

9) In Step III-A-1, for every sub-projector, nP/SP SCM properties are analyzed, on average. Therefore,
the computational complexity is O(nSP*nP/SP).

10) In Step III-B, for every SCM property in the meta-scene, all the statements are analyzed. Therefore,
the computational complexity is O(nP*nS).

Every factor in the aforementioned formulas is less or equal to nS/MS∪Q. Hence, without using RLs,
the overall computational complexity of content selection is O(nS/MS∪Q

4). The overall computational
complexity of content modification is equal to complexity of the expanding algorithm (which is used
within the customization algorithm), so it is O(nS

3). The overall computational complexity of content
projection is O(nS/MS∪Q

2). To conclude, the customization algorithm is undecidable when using RLs, and
it has polynomial computational complexity with the upper bound equal to O(nS/MS∪Q

4)—when using
no RLs.

137

Computational Complexity of the Transformation Algorithm

For each stage of the transformation algorithm, computational complexity has been determined. The
following notation is used.

• nSSPt—the number of SSPts in the TKB,
• nSLPt—the number of SLPts in the TKB,
• nSPt—the number of SPts in the TKB,
• nSS—the number of SSs in the TKB,
• nS/PIR—the number of Ss in the PIR,
• nS/TKB—the number of Ss in the TKB,
• nS/SS—the average number of Ss per SS,
• nSPt/SSPt—the average number of SPts per SSPt,
• nTP/S—the average number of TPs per S,
• nT/S—the average number of Ts per S.

1) At Stage I, every SPt occurring in an SSPt is processed once to be included in a SPARQL query.
Therefore, the computational complexity is O(nSSPt*nSPt/SSPt).

2) At Stage II, creating SSs requires, in the worst case, for every SSPt (which determines a single
SPARQL query), to check every SPt included in the SSPt against every S included in the PIR.
Therefore, the computational complexity is O(nSSPt*nSPt/SSPt*nS/PIR).

3) At Stage III, every TP must be set. Therefore, the computational complexity of this stage is
polynomial and it is equal to O(nS/PIR*nTP/S).

4) At Stage IV, in the worst case, every T must be nested into another T by a TP. Therefore, the
computational complexity of this stage is O(nS/PIR*nT/S).

5) At Stage V, creating a global SLPt requires, in the worst case, checking every SPt against every SLPt
for all SPts included in the TKB. Therefore, the computational complexity is O(nSLPt*nSPt

2).

Complexities of the consequent stages of the transformation algorithm are polynomial. The factors in the
formulas are less or equal to the numbers of statements in the PIR and TKB. Thus, overall complexity of
the transformation algorithm is polynomial with the upper bound O(nS/PIR

2+nS/TKB
3).

8.2.4. Performance of the Algorithms

Performance of the algorithms used in SCCM has been evaluated. The tests have been performed for
scenes whose number of objects changed over the range 5 to 50 with the step equal to 5. Every object
in the scene is described by a position, orientation, scale and material. For every number of objects, 20
scenes have been generated and average results have been calculated.

Expanding Algorithm

Performance of the expanding algorithm (cf. Section 6.5) has been evaluated in terms of time required
for creation of a PIR based on a CpR (Figure 8.18). Time required for expanding a CpR linearly increases
with the increase of the number of objects. The tests cover creation of interconnected instances of
concrete components for every domain-specific individual, on the basis of CDs (Section 8.2.3/Step II-E,
Stage III). Since the average number of distinct MPs per PO as well as the number of restrictions in the
SCR are constant, the computational complexity of expanding is linear O(nS), where S is the number of
statements in the created meta-scene. For instance, if every tree of a class includes two sub-objects of
some classes (leafs and branches), which have individual materials and relative positions (described by

138

other classes), the creation of a particular tree covers the creation of the SCM individuals representing
the sub-objects, their materials and relative positions, and assigning appropriate SCM data properties to
these SCM individuals.

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55

Ti
m

e
 [

s]

Number of objects

Efficiency of the expanding algorithm

Figure 8.18: Time of expanding conceptual 3D content representations

Customization Algorithm

Performance of the customization algorithm (cf. Section 6.6) has been evaluated in terms of the
time required for customization of a 3D meta-scene (Figure 8.19). The figure presents polynomial time
required for customization of meta-scenes. The dependency follows from the time required for finding
the selected SCM individuals and filtering out the statements that do not include either selected SCM
individuals or selected SCM properties (Section 8.2.3/Steps I-B-2, II-C and Stage 3). Since the number
of sub-class selectors, the average number of distinct SCM subclasses per selector and the number of
distinct SCM individuals per SCM class are constant, the computational complexity of customization
is O(nS/MS∪Q

2). For instance, selecting the dso:PassengerCar class as the sub-class selector CCP
entails finding all its SCM individuals with their required SCM properties indicating wheels, doors,
lights, materials, etc.

Transformation Algorithm

Performance of the transformation algorithm (cf. Section 6.7) has been evaluated in terms of time
required for the transformation of a PIR to a PSR (Figure 8.20). The graph presents polynomial time
required for the transformation of PIRs, which are encoded with the CRO, to PSRs, which are encoded
with the selected 3D content representation languages (X3D, VRML and ActionScript). Transformation
time for VRML and X3D is similar, as the languages are supported by a common TKB and structurally
equivalent TBs. Moreover, transformation time for VRML and X3D is more than twice lower than the
transformation time for ActionScript. The difference is caused by the remarkably different structures of
VRML/X3D and ActionScript representations. While transformation for VRML/X3D is based mainly
on nesting Ts, which is relatively low time-consuming, transformation for ActionScript is based mainly
on setting TPs, which is relatively high time-consuming, because the number of TPs is higher than the
number of Ts—on average, more than two TPs are included in a T. Since the number of statements in the

139

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 5 10 15 20 25 30 35 40 45 50 55

Ti
m

e
 [

s]

Number of objects

Efficiency of the customization algorithm

Figure 8.19: Time of customizing 3D meta-scenes

TKBs is constant, the overall computational complexity of transformation is O(nS/PIR
2)—as explained in

Section 8.2.3.

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30 35 40 45 50 55

Ti
m

e
 [

s]

Number of objects

Efficiency of the transformation algorithm

X3D VRML ActionScript

Figure 8.20: Time of transforming Platform Independent Representations to Platform Specific Transformations

8.3. Discussion

The tests carried out show that the SEMIC approach outperforms the previous approaches to
modeling 3D content in terms of functionality, properties of produced content representations and user’s
effort in modeling content.

The qualitative tests show the lack of advanced functionality related to conceptual knowledge-based
creation of multi-platform 3D content in the previous approaches. Functionality of the available solutions
mostly focuses on the basic semantic constructions, which are processed within specific systems, and do

140

not provide general methods that are capable of processing complex semantic statements to produce 3D
content.

The advantage in terms of the size and complexity of content representations follows from modeling
3D content at a higher level of abstraction and leads to creating high-level objects that combine multiple
low-level content components. Although the overall size and complexity of an RM and a CpR may
be higher than the size and complexity of the resulting VRML, X3D or ActionScript scene, the RMs
are created only once, they are common for all CpRs compliant with a particular DSO, and they are
the only documents created by domain experts in the process of modeling with SEMIC. The size of
CpRs is typically much smaller than the size of the corresponding PSRs, which have been encoded with
the widely-used 3D content representation languages and programming libraries. The smaller size can
enhance storage and transmission of 3D content to target users, e.g., from distributed web repositories to
content presentation platforms. The values of size, length, volume, difficulty, effort and time calculated
for PIRs are much higher than the values calculated for VRML/X3D representations. However, PIRs are
generated automatically on the basis of CpRs, so it is not a burden on content authors to create them.

Furthermore, SEMIC provides a significant advantage in implementation of content (requires less
effort and shorter time) by enabling the use of representation schemes whose complexity can be lower
than complexity of frequently used 3D content representation languages. As a result, the vocabulary,
length, volume and difficulty of content representations are lower and the creation as well as the
understanding of the representations requires less effort and time. Hence, SEMIC can be used to
accelerate and improve effectiveness of 3D content creation using domain-specific ontologies and tools
that are less complicated than the tools currently used for 3D content creation with the available 3D
content representation languages.

Moreover, SEMIC enables content creation by users without considerable expertise in 3D modeling,
in particular experts in different domains. The calculated values of the profit from conceptual creation
of 3D content show that the use of SEMIC is effective even for systems with relatively low numbers of
scenes that have to be designed, in comparison to modeling all the scenes using the available languages.

In the context of multi-platform content representation, the results show high profit from the
implementation and the use of a new transformation when adding a new platform in applications with
a high number of scenes in contrast to the implementation of the counterparts of the scenes with a new
3D content representation language supported by the new platform. The profit is also high when PSRs
are encoded using programming libraries that do not provide some required components and properties,
which need to be implemented from scratch. In such cases, the high profit is the result of high re-usability
of such components and SCM properties which, once implemented in Ts, may be reused multiple times.

The results show that the user’s effort in modeling of 3D content with SEMIC is much lower than
the effort in modeling of 3D content with other environments and languages. The advantage includes
both the modeling actions accomplished by the user (the number of keystrokes and mouse clicks as well
as mouse distance) as well as time required for modeling. The predominance follows from modeling
3D content at a conceptual level, with domain-specific classes and properties, which liberates users
from direct specification of details related to computer graphics. Hence, the modeling actions become
less complex and time-consuming—do not demand changing multiple properties attainable on different
panels of the modeling environment.

The tests carried out indicate relatively long time required for processing semantic 3D content
representations, in particular expanding and transforming them. However, performance of the algorithms
could be improved, e.g., by using multi-threading, by employing a more efficient SPARQL query
processing engine and more efficient devices.

9. Conclusions

Despite significant research effort in this domain and the development of numerous solutions
facilitating 3D content creation, creation of interactive 3D content is still a challenging task, as it requires
advanced technical skills in modeling various elements of 3D content, such as geometry, structure,
appearance, animation and behavior. The available solutions for modeling 3D content encompass:
imperative and declarative programming languages, visual modeling environments as well as approaches
to 3D content configuration based on reusable content components. Applying semantic techniques to
modeling of interactive 3D content receives increasing attention from the research community, as it
provides new opportunities that go beyond the current state of the art:

1) declarative modeling of 3D content based on knowledge discovery,
2) flexible conceptual representation of 3D content at different levels of abstraction,
3) separation of concerns in 3D content creation between different modeling users,
4) on-demand 3D content customization by different content consumers (users and applications),
5) multi-platform 3D content presentation.

The SEMIC approach to semantic modeling of interactive 3D content proposed in this dissertation,
leverages the semantic web standards to enable modeling of 3D content for modern VR/AR systems and
to satisfy the requirements specified in Section 4.1. SEMIC goes beyond the current state of the art in
semantic modeling of 3D content in several respects:

1. SEMIC enables declarative content creation, which is focused on the description of the results to be
achieved, instead of the manner in which the results are to be obtained.

2. SEMIC enables conceptual content creation at different levels of abstraction by the use of different
application- or domain-specific ontologies.

3. SEMIC permits inference of tacit knowledge, which is not explicitly specified by content authors, but
which can be discovered and which affects the results of modeling.

4. SEMIC makes possible separation of concerns in modeling content between different users with
different skills, who are equipped with different modeling tools.

5. SEMIC enables on-demand content customization by different content consumers based on
generalized 3D content representations.

6. SEMIC enables flexible multi-platform content presentation.

The main research achievements of this dissertation are the following:

1. The classification of the available approaches to semantic representation and modeling of interactive
3D content (Chapters 2 and 3). The classification is based on various criteria and covers a large
number of approaches. The classification and review of the available approaches has enabled
comprehensive discussion of the current state of the art in the field of semantic representation and
modeling of 3D content. It has also permitted to specify requirements for modeling 3D content for
modern 3D/VR/AR applications.

142

2. Declarative, conceptual representation of 3D content based on SCM (Chapter 5). The representation
leverages widely accepted semantic web standards as well as application- or domain-specific
ontologies. It has been shown that the conceptual content representation has lower size and
complexity than content representations encoded in existing 3D content representation languages
(Chapter 8).

3. Multi-platform representation of 3D content based on SCM (Chapter 5). The representation is
platform- and standard-independent and enables flexible generation of 3D content encoded in
different formats and languages. It has been shown that the transformation of multi-platform
content representations to representations encoded in selected languages has higher efficiency than
the modeling of individual representations in these content representation languages (Chapter 8).

4. Ontologies that enable semantic 3D content representation at different levels of abstraction and
are used in semantic transformation of 3D content to different content representation languages
(Chapter 5).

5. Semantic knowledge-based creation of 3D content with SCCM with the use of domain-specific
ontologies, which enable separation of concerns between different modeling users (Chapter 6). It
has been shown that the semantic creation of 3D content is more efficient in terms of the required
time and the number of operations than the creation performed using representative 3D modeling
environments (Chapter 8).

6. Semantic on-demand customization of 3D content with SCCM, which is based on domain-specific
ontologies (Chapter 6). It has been shown that the semantic customization of 3D content is more
efficient in terms of the required time and the number of operations than the customization performed
using representative 3D modeling environments (Chapter 8).

7. The SO-SEMIC environment, which enables efficient modeling of interactive 3D content (Chapter 7).

To summarize, the goal of this dissertation has been achieved. The evaluation presented in Chapter 8
proves that the SEMIC approach enables efficient creation of interactive 3D content at the conceptual
level, using domain-specific ontologies.

Possible directions of future research and development activities include several aspects.

1. Persistent link between semantic and final (non-semantic) 3D content representations can be
proposed to enable real-time synchronization of content representations. Such synchronization
can lead to the development of dynamically explorable and manipulable 4-dimensional 3D content
including space and time. Dynamic explorable and manipulable VR/AR scenarios could be accessed
by different users querying and changing the content through semantic interfaces, and observing the
results in real-time.

2. Transformation of declarative rule-based descriptions of complex content behavior to different 3D
content languages can be elaborated. Such transformation should be performed in a different manner
than the transformation of statements, as rules describing content behavior cannot be used for
inference before being transformed. Instead, the rules must be transformed to appropriate (e.g.,
conditional) instructions of the target language to maintain premises and consequences, which is
necessary to preserve the dynamism of content behavior.

3. Semantic representation of the context of interaction can be added to SEMIC to enable seamless
adaptation of 3D content with regards to user location, preferences, parameters of the hardware and
software platforms used, etc.

143

4. Distributed semantic 3D content representations can be proposed as an extension of the SCM-based
representations with possibly stateful 3D content components maintained in different hosts and
dynamically composed into 3D scenes over the network.

This research work has been supported by the Polish National Science Centre (NCN) Grants No.
DEC-2012/07/B/ST6/01523 and DEC-2014/12/T/ST6/00039.

Abbreviations

2D — Two-dimensional
3D — Three-dimensional
AR — Augmented Reality
BIM — Building Information Models
CCP — 3D Content Customization Pattern (SEMIC)
CF — Code Fragment (SEMIC)
CO — Customization Ontology (SEMIC)
CpR — Conceptual 3D Content Representation (SEMIC)
CRO — Concrete 3D Content Ontology (SEMIC)
CrR — Concrete 3D Content Representation (SEMIC)
DC — Descriptive Class (SEMIC)
DI — Descriptive Individual (SEMIC)
DIC — Descriptive Individual Class (SEMIC)
DSO — Domain-specific Ontology (SEMIC)
DXF — Data Exchange Format
IFC — Industry Foundation Classes
KRL — Knowledge Representation Layer
LLOC — Logical Lines of Code
MDP — Mapping Data Property (SEMIC)
MO — Mapping Ontology (SEMIC)
MOP — Mapping Object Property (SEMIC)
MP — Mapping Property (SEMIC)
MPEG-7 — Multimedia Content Description Interface
MVC — Model-View-Controller
OWL — Web Ontology Language
PIR — Platform-independent 3D Content Representation (SEMIC)
PO — Presentable Object (SEMIC)
POC — Presentable Objects Class (SEMIC)
PSR — Platform-specific 3D Content Representation (SEMIC)
RAIVE — REALISM Artificial Intelligence Virtual Environment
RDF — Resource Description Framework
RDFS — RDF Schema
RL — Relation (SEMIC)
RM — Representation Mapping (SEMIC)
S — Statement (SEMIC)
SC — Statement Collection (SEMIC)
SCCM — Semantic 3D Content Creation Method (SEMIC)
SCM — Semantic 3D Content Model (SEMIC)

145

SCPt — Statement Collection Pattern (SEMIC)
SCR — Semantic 3D Content Representation (SEMIC)
SEMIC — Semantic Modeling of Interactive 3D Content
SL — Statement List (SEMIC)
SLPt — Statement List Pattern (SEMIC)
SNIL — Semantic Net Interchange Language
SOA — Service-Oriented Architecture
SO-SEMIC — Service-Oriented Semantic Modeling of Interactive 3D Content (SEMIC)
SPt — Statement Pattern (SEMIC)
SS — Statement Set (SEMIC)
SSPt — Statement Set Pattern (SEMIC)
SWRL — Semantic Web Rule Language
T — Template (SEMIC)
TB — Template Base (SEMIC)
TKB — Transformation Knowledge Base (SEMIC)
TO — Transformation Ontology (SEMIC)
TP — Template Parameter (SEMIC)
TPPt — Template Parameter Pattern (SEMIC)
TPPtS — Template Parameter Pattern Set (SEMIC)
TPt — Template Pattern (SEMIC)
TS — Template Set (SEMIC)
TSPt — Template Set Pattern (SEMIC)
UML — Unified Modeling Language
VDE — Virtual Design Environment
VR — Virtual Reality
VRML — Virtual Reality Modeling Language
W3C — World-Wide Web Consortium
X3D — Extensible 3D

Bibliography

[1] Autocad civil 3d. http://www.autodesk.com/products/autocad-civil-3d/overview,
accessed March 20, 2015.

[2] Away3d. http://away3d.com/, accessed March 20, 2015.
[3] Direct3d 11.1 features. https://msdn.microsoft.com/en-us/library/windows/

desktop/hh404562%28v=vs.85%29.aspx, accessed March 20, 2015.
[4] Freewrl home page. http://freewrl.sourceforge.net/, accessed March 20, 2015.
[5] Ghost productions: Medical animation, illustration & interactive media. http://www.

ghostproductions.com/, accessed March 20, 2015.
[6] Instant reality. http://www.instantreality.org/, accessed March 20, 2015.
[7] Javascript for acrobat 3d annotations api reference. http://www.adobe.com/content/dam/

Adobe/en/devnet/acrobat/pdfs/js_3d_api_reference.pdf, accessed March 20, 2015.
[8] Jogl. http://jogamp.org/jogl/www/, accessed March 20, 2015.
[9] Opengl. https://www.opengl.org/, accessed March 20, 2015.

[10] Sandy: 3d engine for flash and haxe platforms. http://code.google.com/p/sandy/, accessed
March 20, 2015.

[11] Sweet home 3d. http://www.sweethome3d.com/, accessed March 20, 2015.
[12] Unity. http://unity3d.com/5, accessed March 20, 2015.
[13] Universal 3d file format. http://www.ecma-international.org/publications/files/

ECMA-ST/ECMA-363%204th%20Edition.pdf, accessed March 20, 2015.
[14] Unreal engine. https://www.unrealengine.com/what-is-unreal-engine-4, accessed

March 20, 2015.
[15] X3dom. http://www.x3dom.org/, accessed March 20, 2015.
[16] Xml3d. http://xml3d.org/, accessed March 20, 2015.
[17] 3d-studio file format. http://www.martinreddy.net/gfx/3d/3DS.spec, accessed March 24,

2015.
[18] 3dsa: Semantic annotations for 3d artefacts. http://www.itee.uq.edu.au/eresearch/

projects/3dsa, accessed March 24, 2015.
[19] 3dvia. http://www.3dvia.com/, accessed March 24, 2015.
[20] Aboutwordnet. http://wordnet.princeton.edu, accessed March 24, 2015.
[21] Aim@shape project. http://cordis.europa.eu/ist/kct/aimatshape_synopsis.htm,

accessed March 24, 2015.
[22] Alternativaplatform. http://old.alternativaplatform.com/en/technologies/

alternativa3d/, accessed March 24, 2015.
[23] Autocad civil 3d. http://www.autodesk.com/products/autocad-civil-3d/overview,

accessed March 24, 2015.
[24] Bitmanagement bs contact. http://www.bitmanagement.com/products/

interactive-3d-clients/bs-contact, accessed March 24, 2015.
[25] Blender. http://www.blender.org/, accessed March 24, 2015.
[26] Blender documentation. http://www.blender.org/api/blender_python_api_2_73_

release/, accessed March 24, 2015.
[27] Blends / base low-poly man. http://www.blendswap.com/blends/view/2949, accessed

March 24, 2015.
[28] Blends / bike. http://www.blendswap.com/blends/view/58595, accessed March 24, 2015.

147

[29] Blends / car 739. http://www.blendswap.com/blends/view/56683, accessed March 24,
2015.

[30] Blends / cottages pack. http://www.blendswap.com/blends/view/69406, accessed March
24, 2015.

[31] Blends / firetruck. http://www.blendswap.com/blends/view/69906, accessed March 24,
2015.

[32] Blends / fixed gear bike. http://www.blendswap.com/blends/view/68326, accessed March
24, 2015.

[33] Blends / house test. http://www.blendswap.com/blends/view/68817, accessed March 24,
2015.

[34] Blends / mitsubishi lancer x. http://www.blendswap.com/blends/view/71006, accessed
March 24, 2015.

[35] Blends / opel blitz kfz 305. http://www.blendswap.com/blends/view/66103, accessed
March 24, 2015.

[36] Blends / palm tree cycles ready. http://www.blendswap.com/blends/view/64383, accessed
March 24, 2015.

[37] Blends / pine tree. http://www.blendswap.com/blends/view/63269, accessed March 24,
2015.

[38] Blends / tree sketch tree #1. http://www.blendswap.com/blends/view/61605, accessed
March 24, 2015.

[39] Blends / uk road signs - pack 1 updated version. http://www.blendswap.com/blends/view/

67283, accessed March 24, 2015.
[40] Citygml. http://www.opengeospatial.org/standards/citygml, accessed March 24, 2015.
[41] A class-based verb lexicon. http://verbs.colorado.edu/, accessed March 24, 2015.
[42] Collada - digital asset and fx exchange schema. https://collada.org/mediawiki/index.

php/Extension, accessed March 24, 2015.
[43] Collada - digital asset schema release 1.4.1, specification (2nd edition). https://www.khronos.org/

files/collada_spec_1_4.pdf, accessed March 24, 2015.
[44] Cortona 3d. http://www.cortona3d.com/cortona3d-viewers, accessed March 24, 2015.
[45] Daml+oil (march 2001) reference description. http://www.w3.org/TR/daml+oil-reference,

accessed March 24, 2015.
[46] Extensible 3d (x3d), part 1: Architecture and base components, core component. http://www.web3d.

org/documents/specifications/19775-1/V3.2/Part01/components/core.html\

#Nodereference, accessed March 24, 2015.
[47] Fbx file structure. http://wiki.blender.org/index.php/User:Mont29/Foundation/

FBX_File_Structure, accessed March 24, 2015.
[48] Ghost productions. http://www.ghostproductions.com/, accessed March 24, 2015.
[49] Glge: Webgl for the lazy. http://www.glge.org/, accessed March 24, 2015.
[50] Industry foundation classes release 4 (ifc4). http://www.buildingsmart-tech.org/ifc/

IFC4/final/html/index.htm, accessed March 24, 2015.
[51] Jebgl: Java emulated webgl canvas. http://code.google.com/p/jebgl/, accessed March 24,

2015.
[52] json - json encoder and decoder. https://docs.python.org/2/library/json.html, accessed

March 24, 2015.
[53] Microsoft virtual academy, introduction to asp.net mvc. http:

//www.microsoftvirtualacademy.com/training-courses/

introduction-to-asp-net-mvc, accessed March 24, 2015.
[54] Obj specification. http://www.martinreddy.net/gfx/3d/OBJ.spec, accessed March 24,

2015.
[55] Object constraint language (ocl). http://www.omg.org/spec/OCL/, accessed March 24, 2015.

148

[56] Owl 2 web ontology language structural specification and functional-style syntax. http://www.w3.

org/TR/owl2-syntax/, accessed March 24, 2015.
[57] Owl web ontology language reference. http://www.w3.org/TR/owl-ref/, accessed March 24,

2015.
[58] Papervision3d: Open source realtime 3d engine for flash. http://code.google.com/p/

papervision3d/, accessed March 24, 2015.
[59] Prism - partnership for research in spatial modeling. http://prism.engineering.asu.edu/

research/3dk.php, accessed March 24, 2015.
[60] Protégé. http://protege.stanford.edu/, accessed March 24, 2015.
[61] Rdf 1.1 turtle. http://www.w3.org/TR/turtle/, accessed March 24, 2015.
[62] Rdf schema 1.1. http://www.w3.org/TR/rdf-schema/, accessed March 24, 2015.
[63] Restlet api platform. http://restlet.com/, accessed March 24, 2015.
[64] Sketchup. http://www.sketchup.com/, accessed March 24, 2015.
[65] Sweet home 3d. http://www.sweethome3d.com/, accessed March 24, 2015.
[66] Techtarget. http://searchsoftwarequality.techtarget.com/definition/pattern,

accessed March 24, 2015.
[67] Techtarget. http://searchsoa.techtarget.com/definition/service-oriented-

architecture, accessed March 24, 2015.
[68] urllib — open arbitrary resources by url. https://docs.python.org/2/library/urllib.

html, accessed March 24, 2015.
[69] Webgl. https://get.webgl.org/, accessed March 24, 2015.
[70] Webgl implementation of o3d. http://code.google.com/p/o3d/, accessed March 24, 2015.
[71] Xml schema. http://www.w3.org/XML/Schema.html, accessed March 24, 2015.
[72] Aivosto. Lines of code metrics (loc). http://www.aivosto.com/project/help/pm-loc.

html, accessed March 24, 2015.
[73] R. Albertoni, L. Papaleo, M. Pitikakis, F. Robbiano, M. Spagnuolo, and G. Vasilakis. Ontology-based

searching framework for digital shapes. In On the Move to Meaningful Internet Systems 2005: OTM 2005
Workshops, pages 896–905. Springer, 2005.

[74] Sven Albrecht, Thomas Wiemann, Martin Günther, and Joachim Hertzberg. Matching cad object models in
semantic mapping. In Proceedings ICRA 2011 Workshop: Semantic Perception, Mapping and Exploration,
SPME, 2011.

[75] Alexander Almer, Thomas Schnabel, Harald Stelzl, Jörg Stieg, and Patrick Luley. A tourism information
system for rural areas based on a multi platform concept. In Proceedings of the 6th International Conference
on Web and Wireless Geographical Information Systems, pages 31–41, Springer-Verlag Berlin Heidelberg,
October 25-29, 2006.

[76] Tansu Alpcan, Christian Bauckhage, and Evangelos Kotsovinos. Towards 3d internet: Why, what, and
how? In Cyberworlds, 2007. CW’07. International Conference on, pages 95–99. IEEE, 2007.

[77] Abhishek Anand, Hema Swetha Koppula, Thorsten Joachims, and Ashutosh Saxena. Contextually guided
semantic labeling and search for three-dimensional point clouds. Int. J. Rob. Res., 32(1):19–34, January
2013.

[78] Apache. Apache jena. http://jena.apache.org/, accessed March 24, 2015.
[79] ARCO. Virtual Museum System, accessed March 24, 2015.
[80] Marco Attene, Francesco Robbiano, Michela Spagnuolo, and Bianca Falcidieno. Semantic annotation of

3d surface meshes based on feature characterization. In Proceedings of the Semantic and Digital Media
Technologies 2Nd International Conference on Semantic Multimedia, SAMT’07, pages 126–139, Berlin,
Heidelberg, 2007. Springer-Verlag.

[81] Marco Attene, Francesco Robbiano, Michela Spagnuolo, and Bianca Falcidieno. Characterization of 3d
shape parts for semantic annotation. Comput. Aided Des., 41(10):756–763, October 2009.

[82] Autodesk. 3ds max. http://www.autodesk.pl/products/autodesk-3ds-max/

overview, accessed March 24, 2015.

149

[83] Ruth Aylett and Marc Cavazza. Intelligent virtual environments: a state-of-the-art report. In In:
Eurographics 2001, STAR Reports volume, pages 87–109, 2001.

[84] J. Benner, A. Geiger, and K. Leinemann. Flexible generation of semantic 3d building models. In
Proceedings of the 1st international workshop on next generation 3D city models, Bonn, pages 17–22,
2005.

[85] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific american, 284(5):28–37,
2001.

[86] Ioan Marius Bilasco, J. Gensel, M. Villanova-Oliver, and H. Martin. On indexing of 3d scenes using
mpeg-7. In Proceedings of the 13th annual ACM international conference on Multimedia, pages 471–474,
Singapore, November 06-12, 2005.

[87] Ioan Marius Bilasco, Jérôme Gensel, Marlène Villanova-Oliver, and Hervé Martin. An mpeg-7 framework
enhancing the reuse of 3d models. In Proceedings of the Eleventh International Conference on 3D Web
Technology, Web3D ’06, pages 65–74, New York, NY, USA, 2006. ACM.

[88] Ioan Marius Bilasco, Jérôme Gensel, Marlene Villanova-Oliver, and Hervé Martin. 3dseam: a model for
annotating 3d scenes using mpeg-7. In ISM, pages 310–319. IEEE Computer Society, 2005.

[89] Ioan Marius Bilasco, Marlène Villanova-Oliver, Jérôme Gensel, and Hervé Martin. Semantic-based rules
for 3d scene adaptation. In Proceedings of the Twelfth International Conference on 3D Web Technology,
Web3D ’07, pages 97–100, New York, NY, USA, 2007. ACM.

[90] Wesley Bille. Conceptual Modeling of Complex Objects for Virtual Environments. PhD thesis, Vrije
Universiteit Brussel, 2006-2007.

[91] Wesley Bille, Olga De Troyer, Frederic Kleinermann, Bram Pellens, and Raul Romero. Using ontologies to
build virtual worlds for the web. In Pedro T. Isaías, Nitya Karmakar, Luís Rodrigues, and Patrícia Barbosa,
editors, ICWI, pages 683–690. IADIS, 2004.

[92] Wesley Bille, Bram Pellens, Frederic Kleinermann, and Olga De Troyer. Intelligent modelling of virtual
worlds using domain ontologies. In Proceedings of the Workshop of Intelligent Computing (WIC), held in
conjunction with the MICAI 2004 conference, pages 272–279, Mexico City, Mexico, 2004.

[93] Wesley Bille, Olga De Troyer, Bram Pellens, and Frederic Kleinermann. Conceptual modeling
of articulated bodies in virtual environments. In H. Thwaites, editor, Proceedings of the 11th
International Conference on Virtual Systems and Multimedia (VSMM), pages 17–26, Ghent, Belgium, 2005.
Archaeolingua, Archaeolingua.

[94] A. Borrmann. From gis to bim and back again – a spatial query language for 3d building models and 3d city
models. In Proceedings of the International ISPRS Conference on 3D Geoinformation, Berlin, Germany,
2010.

[95] A. Borrmann and E. Rank. Query support for bims using semantic and spatial conditions. In J. Underwood
and U. Isikdag, editors, Handbook of Research on Building Information Modeling and Construction
Informatics: Concepts and Technologies. IGI Global, 2009.

[96] A. Borrmann and E. Rank. Specification and implementation of directional operators in a 3d spatial query
language for building information models. Advanced Engineering Informatics, 23(1):32–44, 2009.

[97] André Borrmann and Ernst Rank. Topological analysis of 3d building models using a spatial query
language. Adv. Eng. Inform., 23(4):370–385, October 2009.

[98] Cédric Buche, Ronan Querrec, Pierre De Loor, and Pierre Chevaillier. Mascaret: Pedagogical multi-agents
system for virtual environment for training. In CW, pages 423–431. IEEE Computer Society, 2003.

[99] Cédric Buche, Cyril Bossard, Ronan Querrec, and Pierre Chevaillier. Pegase: A generic and adaptable
intelligent system for virtual reality learning environments. International Journal of Virtual Reality,
9(2):73–85, 2010.

[100] Marc Cavazza and Ian Palmer. High-level interpretation in virtual environments. Applied Artificial
Intelligence, 14(1):125–144, 2000.

[101] Sasko Celakovski and Danco Davcev. Multiplatform real-time rendering of mpeg-4 3d scenes with
microsoft xna. In ICT Innovations 2009, pages 337–344, Springer-Verlag Berlin Heidelberg, October
25-29, 2010.

150

[102] Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, and Thomas Funkhouser. Attribit:
Content creation with semantic attributes. In Proceedings of the 26th Annual ACM Symposium on User
Interface Software and Technology, UIST ’13, pages 193–202, New York, NY, USA, 2013. ACM.

[103] Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen Koltun. Probabilistic
reasoning for assembly-based 3d modeling. ACM Trans. Graph., 30(4):35:1–35:10, July 2011.

[104] Chaomei Chen, Linda Thomas, Janet Cole, and Chiladda Chennawasin. Representing the semantics of
virtual spaces. IEEE MultiMedia, 6(2):54–63, 1999.

[105] Pierre Chevaillier, ThanhHai Trinh, Mukesh Barange, Pierre De Loor, Frédéric Devillers, Julien Soler, and
Ronan Querrec. Semantic modeling of virtual environments using mascaret. In SEARIS, pages 1–8. IEEE,
2012.

[106] Jacek Chmielewski. Metadata Schema of Interactions for Multimedia Objects. PhD thesis, Technical
University of Gdańsk, 2007.

[107] Jacek Chmielewski. Interaction descriptor for 3d objects. In Human System Interactions, 2008 Conference
on, pages 18–23. IEEE, 2008.

[108] Jacek Chmielewski. Interaction interfaces for unrestricted multimedia interaction descriptions. In
Proceedings of the 6th International Conference on Advances in Mobile Computing and Multimedia,
MoMM ’08, pages 397–400, New York, NY, USA, 2008. ACM.

[109] Jacek Chmielewski. Metadata model for interactions of 3d objects. In Information Technology, 2008. IT
2008. 1st International Conference on, pages 1–4. IEEE, 2008.

[110] Jacek Chmielewski. Describing interactivity of 3d content. In Wojciech Cellary and Krzysztof Walczak,
editors, Interactive 3D Multimedia Content, pages 195–221. Springer, 2012.

[111] Jacek Chmielewski. Finding interactive 3d objects by their interaction properties. Multimedia Tools and
Applications, pages 1–26, 2012.

[112] Yu Lin Chu and Tsai Yen Li. Realizing semantic virtual environments with ontology and pluggable
procedures. Applications of Virtual Reality, 2012.

[113] YuLin Chu and TsaiYen Li. Using pluggable procedures and ontology to realize semantic virtual
environments 2.0. In Proceedings of The 7th ACM SIGGRAPH International Conference on Virtual-Reality
Continuum and Its Applications in Industry, VRCAI ’08, pages 27:1–27:6, New York, NY, USA, 2008.
ACM.

[114] Karin Coninx, Olga De Troyer, Chris Raymaekers, and Frederic Kleinermann. Vr-demo: a tool-supported
approach facilitating flexible development of virtual environments using conceptual modelling. In
Proceedings of Virtual Concept. Springer-Verlag, 2006.

[115] Raimund Dachselt, Michael Hinz, and Stefan Pietschmann. Using the amacont architecture for flexible
adaptation of 3d web applications. In Proceedings of the Eleventh International Conference on 3D Web
Technology, Web3D ’06, pages 75–84, New York, NY, USA, 2006. ACM.

[116] Petros Daras, Apostolos Axenopoulos, Vasilios Darlagiannis, Dimitrios Tzovaras, Xavier Le Bourdon,
Laurent Joyeux, Anne Verroust-Blondet, Vincenzo Croce, Thomas Steiner, Alberto Massari, Antonio
Camurri, Steeve Morin, AmarDjalil Mezaour, Lorenzo Sutton, and Sabine Spiller. Introducing a unified
framework for content object description. IJMIS, 2(3/4):351–375, 2011.

[117] S. Daum and A. Borrmann. Checking spatio-semantic consistency of building information models by
means of a query language. In Proceedings of the International Conference on Construction Applications
of Virtual Reality, 2013.

[118] S. Daum and A. Borrmann. Definition and implementation of temporal operators for a 4d query language.
In Proceedings of the ASCE International Workshop on Computing in Civil Engineering. ASCE, 2013.

[119] L. De Floriani, A. Hui, L. Papaleo, M. Huang, and J. Hendler. A semantic web environment for digital
shapes understanding. In Semantic Multimedia, pages 226–239. Springer, 2007.

[120] Leila De Floriani and Michela Spagnuolo. Shape analysis and structuring. Springer, 2007.
[121] Livio De Luca, Philippe Véron, and Michel Florenzano. A generic formalism for the semantic modeling

and representation of architectural elements. The Visual Computer, 23(3):181–205, 2007.

151

[122] D. C. De Paiva, R. Vieira, and S. R. Musse. Ontology-based crowd simulation for normal life situations.
In Proceedings of the Computer Graphics International 2005, CGI ’05, pages 221–226, Washington, DC,
USA, 2005. IEEE Computer Society.

[123] Olga De Troyer, Wesley Bille, Raul Romero, and Peter Stuer. On generating virtual worlds from domain
ontologies. In Proceedings of the 9th International Conference on Multi-Media Modeling, pages 279–294,
Taipei, Taiwan, 2003.

[124] Olga De Troyer, Frederic Kleinermann, Haïthem Mansouri, Bram Pellens, Wesley Bille, and Vladimir
Fomenko. Developing semantic vr-shops for e-commerce. Virtual Reality, 11(2-3):89–106, 2007.

[125] Olga De Troyer, Frederic Kleinermann, Bram Pellens, and Wesley Bille. Conceptual modeling for virtual
reality. In John Grundy, Sven Hartmann, Alberto H. F. Laender, Leszek Maciaszek, and John F. Roddick,
editors, Tutorials, posters, panels and industrial contributions at the 26th International Conference on
Conceptual Modeling - ER 2007, volume 83 of CRPIT, pages 3–18, Auckland, New Zealand, 2007. ACS.

[126] Bianca Falcidieno and Michela Spagnuolo. A shape abstraction paradigm for modeling geometry and
semantics. In Computer Graphics International, pages 646–. IEEE Computer Society, 1998.

[127] Bianca Falcidieno, Michela Spagnuolo, Pierre Alliez, E Quak, E Vavalis, and C Houstis. Towards the
semantics of digital shapes: The aim@shape approach. In EWIMT, 2004.

[128] Steven Feiner, Blair Macintyre, and Dorée Seligmann. Knowledge-based augmented reality. Commun.
ACM, 36(7):53–62, July 1993.

[129] Martin Fischbach, Dennis Wiebusch, Anke Giebler-Schubert, Marc Erich Latoschik, Stephan Rehfeld,
and Henrik Tramberend. SiXton’s curse - Simulator X demonstration. In Michitaka Hirose, Benjamin
Lok, Aditi Majumder, and Dieter Schmalstieg, editors, Virtual Reality Conference (VR), 2011 IEEE, pages
255–256, 2011.

[130] Jakub Flotyński. Harvesting of semantic metadata from distributed 3d web content. In Proceedings of the
6th International Conference on Human System Interaction (HSI), June 06-08, 2013, Sopot (Poland). IEEE,
2013.

[131] Jakub Flotyński. Semantic modelling of interactive 3d content with domain-specific ontologies. Procedia
Computer Science, 35:531–540, 2014. 18th International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems.

[132] Jakub Flotyński, Jacek Dalkowski, and Krzysztof Walczak. Building multi-platform 3d virtual museum
exhibitions with flex-vr. In The 18th International Conference on Virtual Systems and Multimedia, pages
391–398, Milan, Italy, September 2-5, 2012.

[133] Jakub Flotyński and Krzysztof Walczak. Attribute-based semantic descriptions of interactive 3d web
content. In Leszek Kiełtyka, editor, Information Technologies in Organizations - Management and
Applications of Multimedia, pages 111–138. Wydawnictwa Towarzystwa Naukowego Organizacji i
Kierownictwa - Dom Organizatora, 2013.

[134] Jakub Flotyński and Krzysztof Walczak. Conceptual semantic representation of 3d content. Lecture Notes in
Business Information Processing: 16th International Conference on Business Information Systems, Poznań,
Poland, 19 - 20 June, 2013, 160:244–257, 2013.

[135] Jakub Flotyński and Krzysztof Walczak. Describing semantics of 3d web content with rdfa. In The First
International Conference on Building and Exploring Web Based Environments, Sevilla (Spain), January 27
- February 1, 2013, pages 63–68. ThinkMind, 2013.

[136] Jakub Flotyński and Krzysztof Walczak. Microformat and microdata schemas for interactive 3d web
content. In Maria Ganzha, Leszek Maciaszek, and Marcin Paprzycki, editors, Proceedings of the 2013
Federated Conference on Computer Science and Information Systems Kraków, Poland, 8 - 11 September,
2013, volume 1, pages 549–556. Polskie Towarzystwo Informatyczne, 2013.

[137] Jakub Flotyński and Krzysztof Walczak. Semantic modelling of interactive 3d content. In Proceedings of
the 5th Joint Virtual Reality Conference, Paris, France, December 11-13, 2013.

[138] Jakub Flotyński and Krzysztof Walczak. Semantic multi-layered design of interactive 3d presentations. In
Proceedings of the Federated Conference on Computer Science and Information Systems, pages 541–548,
Kraków, Poland, September 8-11, 2013. IEEE.

152

[139] Jakub Flotyński and Krzysztof Walczak. Conceptual knowledge-based modeling of interactive 3d content.
The Visual Computer, pages 1–20, August 2014.

[140] Jakub Flotyński and Krzysztof Walczak. Multi-platform semantic representation of 3d content. In
Proceedings of the 5th Doctoral Conference on Computing, Electrical and Industrial Systems, Lisbon,
Portugal, April 7-9 2014.

[141] Jakub Flotyński and Krzysztof Walczak. Semantic representation of multi-platform 3d content. Computer
Science and Information Systems, 11, No 4, October 2014:1555–1580, 2014.

[142] Jakub Flotyński and Krzysztof Walczak. Ontology-based creation of 3d content in a service-oriented
environment. Lecture Notes in Business Information Processing, International Conference on Business
Information Systems. Springer Verlag, 2015, accepted for publication.

[143] Véronique Gaildrat. Declarative modelling of virtual environments, overview of issues and applications.
In International Conference on Computer Graphics and Artificial Intelligence (3IA), Athenes, Grece,
volume 10, pages 5–15, 2007.

[144] A. García-Rojas, F. Vexo, D. Thalmann, A. Raouzaiou, K. Karpouzis, and S. Kollias. Emotional body
expression parameters in virtual human ontology. In Proceedings of 1st International Workshop on Shapes
and Semantics, Matsushima, Japan, June 2006, pp. 63-70, 2006.

[145] Michael Gosele, Wolfgang Stuerzlinger, et al. Semantic constraints for scene manipulation. In in
Proceedings Spring Conference in Computer Graphics’ 99 (Budmerice, Slovak Republic. Citeseer, 1999.

[146] GrammaTech. Halstead metrics. http://www.grammatech.com/codesonar/

workflow-features/halstead, accessed March 24, 2015.
[147] Tom Gruber. Encyclopedia of database systems. http://tomgruber.org/writing/

ontology-definition-2007.htm, accessed March 28, 2015.
[148] P Grussenmeyer, M Koehl, and M Nourel. 3d geometric and semantic modelling in historic sites, 1999.
[149] Mario Gutiérrez. Semantic virtual environments. 2005.
[150] Mario Gutiérrez, Alejandra García-Rojas, Daniel Thalmann, Frédéric Vexo, Laurent Moccozet, Nadia

Magnenat-Thalmann, Michela Mortara, and Michela Spagnuolo. An ontology of virtual humans:
Incorporating semantics into human shapes. Vis. Comput., 23(3):207–218, February 2007.

[151] Mario Gutiérrez, Daniel Thalmann, and Frédéric Vexo. Semantic virtual environments with adaptive
multimodal interfaces. In Yi-Ping Phoebe Chen, editor, MMM, pages 277–283. IEEE Computer Society,
2005.

[152] Mario Gutiérrez, Frédéric Vexo, and Daniel Thalmann. Semantics-based representation of virtual
environments. IJCAT, 23(2-4):229–238, 2005.

[153] Pavel Halabala. Semantic metadata creation. In Proceedings of 7th Central European Seminar on Computer
Graphics CESCG, pages 15–25, 2003.

[154] JungHyun Han, Ingu Kang, Chungmin Hyun, Jong-Sik Woo, and Young-Ik Eom. Multi-platform online
game design and architecture. In Proceedings of the 2005 IFIP TC13 international conference on
Human-Computer Interaction, pages 1116–1119, Springer Berlin Heidelberg, 2005.

[155] Guido Heumer, Malte Schilling, and Marc Erich Latoschik. Automatic data exchange and synchronization
for knowledge-based intelligent virtual environments. In Proceedings of the IEEE VR2005, pages 43–50,
2005.

[156] Sylvia Irawati, Daniela Calderón, and Heedong Ko. Semantic 3d object manipulation using object ontology
in multimodal interaction framework. In Proceedings of the 2005 international conference on Augmented
tele-existence, pages 35–39. ACM, 2005.

[157] ISO. Iso/iec 15938-1:2002 - information technology – multimedia content description interface – part
1: Systems. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_

detail.htm?csnumber=34228, accessed March 24, 2015.
[158] Jacek Jankowski and Stefan Decker. A dual-mode user interface for accessing 3d content on the world wide

web. In Proceedings of the 21st International World Wide Web Conference (WWW’12), pages 1047–1056.
ACM, April 16-20 2012.

153

[159] Hao Jiang, Wenbin Xu, Tianlu Mao, Chunpeng Li, Shihong Xia, and Zhaoqi Wang. A semantic environment
model for crowd simulation in multilayered complex environment. In Proceedings of the 16th ACM
Symposium on Virtual Reality Software and Technology, pages 191–198. ACM, 2009.

[160] E. Kalogerakis, Stavros Christodoulakis, and Nektarios Moumoutzis. Coupling ontologies with graphics
content for knowledge driven visualization. In VR ’06 Proceedings of the IEEE conference on Virtual
Reality, pages 43–50, Alexandria, Virginia, USA, March 25-29, 2006.

[161] Patrick Kapahnke, Pascal Liedtke, Stefan Nesbigall, Stefan Warwas, and Matthias Klusch. Isreal: An open
platform for semantic-based 3d simulations in the 3d internet. In International Semantic Web Conference
(2), pages 161–176, 2010.

[162] Jassin Kessing, Tim Tutenel, and Rafael Bidarra. Designing semantic game worlds. In Proceedings of the
The Third Workshop on Procedural Content Generation in Games, PCG’12, pages 2:1–2:9, New York, NY,
USA, 2012. ACM.

[163] Frederic Kleinermann, Olga De Troyer, Christophe Creelle, and Bram Pellens. Adding semantic
annotations, navigation paths and tour guides to existing virtual environments. In Theodor G. Wyeld,
Sarah Kenderdine, and Michael J. Docherty, editors, VSMM, volume 4820 of Lecture Notes in Computer
Science, pages 100–111. Springer, 2007.

[164] Frederic Kleinermann, Olga De Troyer, Haïthem Mansouri, Raul Romero, Bram Pellens, and Wesley Bille.
Designing semantic virtual reality applications. In In Proceedings of the 2nd INTUITION International
Workshop, Senlis, pages 5–10, 2005.

[165] Frederic Kleinermann, Haïthem Mansouri, Olga De Troyer, Bram Pellens, and Jesús Ibáñez-Martínez.
Designing and using semantic virtual environment over the web. IJVR, 7(3):53–58, 2008.

[166] Hema S. Koppula, Abhishek Anand, Thorsten Joachims, and Ashutosh Saxena. Semantic labeling of
3d point clouds for indoor scenes. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 244–252. Curran
Associates, Inc., 2011.

[167] Hamid Laga, Michela Mortara, and Michela Spagnuolo. Geometry and context for semantic
correspondences and functionality recognition in man-made 3d shapes. ACM Trans. Graph.,
32(5):150:1–150:16, October 2013.

[168] Marc Erich Latoschik, Peter Biermann, and Ipke Wachsmuth. Knowledge in the loop: Semantics
representation for multimodal simulative environments. In Smart Graphics, pages 25–39, 2005.

[169] Marc Erich Latoschik and Roland Blach. Semantic modelling for virtual worlds – a novel paradigm for
realtime interactive systems? In Proceedings of the ACM VRST 2008, pages 17–20, 2008.

[170] Marc Erich Latoschik and Christian Fröhlich. Semantic reflection for intelligent virtual environments. In
IEEE Virtual Reality Conference 2007, pages 305–306, Charlotte, USA, March 10-14, 2007.

[171] Marc Erich Latoschik and Christian Fröhlich. Towards intelligent vr: Multi-layered semantic reflection
for intelligent virtual environments. Proceedings of the Graphics and Applications GRAPP 2007, pages
249–259, 2007.

[172] Marc Erich Latoschik and Malte Schilling. Incorporating vr databases into ai knowledge representations:
A framework for intelligent graphics applications. In Proceedings of the Sixth IASTED International
Conference on Computer Graphics and Imaging, pages 79–84. Press, 2003.

[173] Marc Erich Latoschik and Henrik Tramberend. Simulator X: A Scalable and Concurrent Software Platform
for Intelligent Realtime Interactive Systems. In Proceedings of the IEEE VR 2011, 2011.

[174] O Le Roux, V Gaildrat, and R Caube. Constraint satisfaction techniques for the generation phase in
declarative modeling. In Geometric modeling: techniques, applications, systems and tools, pages 193–215.
Springer, 2004.

[175] Daniel Lipkin. Integrating xml and vrml: A technical discussion. http://xml.coverpages.org/
lipkin-vrmlxml.html, accessed March 24, 2015.

[176] John Wylie Lloyd. Foundations of logic programming. 1987.
[177] M Lorenzini. Semantic approach to 3d historical reconstruction. In Proceedings of the 3rd ISPRS

International Workshop 3D-ARCH 2009:" 3D Virtual Reconstruction and Visualization of Complex
Architectures" Trento, Italy, 25-28 February 2009, 2009.

154

[178] Michael Luck and Ruth Aylett. Applying artificial intelligence to virtual reality: Intelligent virtual
environments. Applied Artificial Intelligence, 14(1):3–32, 2000.

[179] Jean-Luc Lugrin. Alternative Reality and Causality in Virtual Environments. PhD thesis, University of
Teesside, Middlesbrough, United Kingdom, 2009.

[180] Jean-Luc Lugrin and Marc Cavazza. Making sense of virtual environments: Action representation,
grounding and common sense. In Proceedings of the 12th international conference on Intelligent user
interfaces, IUI ’07, pages 225–234, New York, NY, USA, 2007. ACM.

[181] Haithem Mansouri. Using Semantic Descriptions for Building and Querying Virtual Environments. PhD
thesis, Vrije Universiteit Brussel, 2004-2005.

[182] Caroline M. Mendes, Dyego R. Drees, Luciano Silva, and Olga R. Bellon. Interactive 3d visualization
of natural and cultural assets. In Proceedings of the second workshop on eHeritage and digital art
preservation, pages 49–54, Firenze, Italy, October 25-29, 2010.

[183] M. Mortara, G. Patané, and M. Spagnuolo. From geometric to semantic human body models. Comput.
Graph., 30(2):185–196, April 2006.

[184] Franco Niccolucci and Andrea D’Andrea. An ontology for 3d cultural objects. In Marinos Ioannides,
David B. Arnold, Franco Niccolucci, and Katerina Mania, editors, VAST, pages 203–210. Eurographics
Association, 2006.

[185] OMG. Unified modeling language (uml), accessed March 24, 2015.
[186] Oracle. Java3d. http://www.oracle.com/, accessed March 24, 2015.
[187] O’Reilly. Metrics for xml projects. http://www.oreillynet.com/xml/blog/2006/05/.
[188] Karsten Otto. Semantic virtual environments. In Special interest tracks and posters of the 14th international

conference on World Wide Web, pages 1036–1037, Chiba, Japan, May 10-14, 2005.
[189] Karsten Otto. The semantics of multi-user virtual environments. In Proceedings of the Workshop towards

Semantic Virtual Environments, 2005.
[190] L. Papaleo, R. Albertoni, S Marini, and F Robbiano. An ontology-based approach to acquisition and

reconstruction. In Workshop towards Semantic Virtual Environment, Villars, Switzerland, 2005.
[191] L. Papaleo, L. De Floriani, J. Hendler, and A. Hui. Towards a semantic web system for understanding real

world representations. In Proceedings of the Tenth International Conference on Computer Graphics and
Artificial Intelligence, 2007.

[192] Changhoon Park, TaeSeok Jin, Michitaka Hiroseo, and Heedong Ko. A framework for vr application based
on spatial, temporal and semantic relationship. In Virtual Reality, pages 329–337. Springer, 2007.

[193] Clark & Parsia. Pellet: Owl 2 reasoner for java. http://clarkparsia.com/pellet/, accessed
March 24, 2015.

[194] Cameron D Pelkey and Jan M Allbeck. Populating semantic virtual environments. Computer Animation
and Virtual Worlds, 25(3-4):405–412, 2014.

[195] Bram Pellens. A Conceptual Modelling Approach for Behaviour in Virtual Environments using a Graphical
Notation and Generative Design Patterns. PhD thesis, Vrije Universiteit Brussel, 2006-2007.

[196] Bram Pellens, Olga De Troyer, Wesley Bille, Frederic Kleinermann, and Raul Romero. An ontology-driven
approach for modeling behavior in virtual environments. In R. Meersman, Z. Tari, and P. Herrero, editors,
Proceedings of On the Move to Meaningful Internet Systems 2005: Ontology Mining and Engineering
and its Use for Virtual Reality (WOMEUVR 2005) Workshop, number 3762 in Lecture Notes in Computer
Science, pages 1215–1224, Agia Napa, Cyprus, 2005. Springer-Verlag, Springer-Verlag.

[197] Bram Pellens, Olga De Troyer, and Frederic Kleinermann. Codepa: a conceptual design pattern approach to
model behavior for x3d worlds. In Proceedings of the 13th International Symposium on 3D web technology,
pages 91–99, Los Angeles, August 09-10, 2008.

[198] Bram Pellens, Frederic Kleinermann, and Olga De Troyer. Intuitively specifying object dynamics in virtual
environments using vr-wise. In Proceedings of the ACM Symposium on Virtual Reality Software and
Technology, VRST ’06, pages 334–337, New York, NY, USA, 2006. ACM.

[199] Bram Pellens, Frederic Kleinermann, and Olga De Troyer. A development environment using behavior
patterns to facilitate building 3d/vr applications. In Proceedings of the Sixth Australasian Conference on
Interactive Entertainment, IE ’09, pages 8:1–8:8. ACM, 2009.

155

[200] Fabio Pittarello and Alessandro De Faveri. Semantic description of 3d environments: A proposal based on
web standards. In Proceedings of the Eleventh International Conference on 3D Web Technology, Web3D
’06, pages 85–95, New York, NY, USA, 2006. ACM.

[201] Dimitri Plemenos. Using artificial intelligence techniques in computer graphics. In International
Conference Graphicon, 1999.

[202] Dimitri Plemenos and Georgios Miaoulis. Artificial intelligence techniques for computer graphics, volume
159. Springer, 2008.

[203] Anshuman Razdan, Jeremy Rowe, Matthew Tocheri, and Wilson Sweitzer. Adding semantics to 3d digital
libraries. In EePeng Lim, Schubert Foo, Christopher S. G. Khoo, Hsinchun Chen, Edward A. Fox, Shalini R.
Urs, and Costantino Thanos, editors, ICADL, volume 2555 of Lecture Notes in Computer Science, pages
419–420. Springer, 2002.

[204] R Reffat. Semantic-based virtual design environments for architecture. Proceedings of Education of
Computer Aided Architectural Design in Europe (eCAADe), 2003.

[205] Gerhard Reitmayr and Dieter Schmalstieg. Semantic world models for ubiquitous augmented reality. In
Proceedings of Workshop towards Semantic Virtual Environments’ (SVE) 2005, 2005.

[206] Aristides G. Requicha. Representations for rigid solids: Theory, methods, and systems. ACM Comput.
Surv., 12(4):437–464, December 1980.

[207] Francesco Robbiano, Marco Attene, Michela Spagnuolo, and Bianca Falcidieno. Part-based annotation of
virtual 3d shapes. 2013 International Conference on Cyberworlds, 0:427–436, 2007.

[208] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson Education, 2
edition, 2003.

[209] Tianjia Shao, Weiwei Xu, Kun Zhou, Jingdong Wang, Dongping Li, and Baining Guo. An interactive
approach to semantic modeling of indoor scenes with an rgbd camera. ACM Transactions on Graphics,
31(6):136:1–136:11, November 2012.

[210] Michela Spagnuolo and Bianca Falcidieno. The Role of Ontologies for 3D Media Applications. Springer,
2008.

[211] Michela Spagnuolo and Bianca Falcidieno. 3d media and the semantic web. IEEE Intelligent Systems,
24(2):90–96, 2009.

[212] Klaas Tack, Gauthier Lafruit, Francky Catthoor, and Rudy Lauwereins. Platform independent optimisation
of multi-resolution 3d content to enable universal media access. The Visual Computer, 22, Issue 8:577–590,
August 2006.

[213] Thanh-Hai Trinh, Ronan Querrec, Pierre De Loor, and Pierre Chevaillier. Ensuring semantic spatial
constraints in virtual environments using uml/ocl. In Proceedings of the 17th ACM Symposium on Virtual
Reality Software and Technology, pages 219–226. ACM, 2010.

[214] Tim Tutenel, Rafael Bidarra, Ruben M Smelik, and Klaas Jan De Kraker. The role of semantics in games
and simulations. Computers in Entertainment (CIE), 6(4):57, 2008.

[215] Tim Tutenel, Ruben Michaël Smelik, Rafael Bidarra, and Klaas Jan de Kraker. Using semantics to improve
the design of game worlds. In AIIDE, 2009.

[216] Tim Tutenel, Ruben Michaël Smelik, Rafael Bidarra, and Klaas Jan de Kraker. A semantic scene description
language for procedural layout solving problems. AIIDE, 10:1–6, 2010.

[217] Tim Tutenel, Ruben Michaël Smelik, Ricardo Lopes, Klaas Jan de Kraker, and Rafael Bidarra.
Generating consistent buildings: a semantic approach for integrating procedural techniques. Computational
Intelligence and AI in Games, IEEE Transactions on, 3(3):274–288, 2011.

[218] Luc Van Gool, Bastian Leibe, Pascal Müller, Maarten Vergauwen, and Thibaut Weise. 3d challenges and a
non-in-depth overview of recent progress. In 3DIM, pages 118–132, 2007.

[219] Lode Vanacken, Chris Raymaekers, and Karin Coninx. Introducing semantic information during conceptual
modelling of interaction for virtual environments. In Proceedings of the 2007 Workshop on Multimodal
Interfaces in Semantic Interaction, WMISI ’07, pages 17–24, New York, NY, USA, 2007. ACM.

[220] George Vasilakis, Alejandra García-Rojas, Laura Papaleo, Chiara Eva Catalano, Francesco Robbiano,
Michela Spagnuolo, Manolis Vavalis, and Marios Pitikakis. Knowledge-based representation of 3d media.
International Journal of Software Engineering and Knowledge Engineering, 20(5):739–760, 2010.

156

[221] W3C. Building the web of data. http://www.w3.org/2013/data/, accessed March 24, 2015.
[222] W3C. Iso/iec 14772-1:1997. the virtual reality modeling language. http://www.web3d.org/x3d/

specifications/, accessed March 24, 2015.
[223] W3C. Iso/iec 19775-1:2008. extensible 3d (x3d) (2008). http://web3d.org/x3d/

specifications/, accessed March 24, 2015.
[224] W3C. Owl. http://www.w3.org/2001/sw/wiki/OWL, accessed March 24, 2015.
[225] W3C. Rdf. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/, accessed

March 24, 2015.
[226] W3C. Rdfs. http://www.w3.org/TR/2000/CR-rdf-schema-20000327/, accessed March

24, 2015.
[227] W3C. Swrl. http://www.w3.org/Submission/SWRL/, accessed March 24, 2015.
[228] Krzysztof Walczak. Database Modeling of Virtual Reality. PhD thesis, Technical University of Gdańsk,

2001.
[229] Krzysztof Walczak. Beh-vr: modeling behavior of dynamic virtual reality contents. In Interactive

Technologies and Sociotechnical Systems, pages 40–51. Springer, 2006.
[230] Krzysztof Walczak. Flex-vr: configurable 3d web applications. In Proceedings of the Conference on Human

System Interactions, pages 135–140. IEEE, 2008.
[231] Krzysztof Walczak. Configurable Virtual Reality Applications. Poznań, 2009.
[232] Krzysztof Walczak. Building configurable 3d web applications with flex-vr. In Wojciech Cellary and

Krzysztof Walczak, editors, Interactive 3D Multimedia Content, pages 103–136. Springer, 2012.
[233] Krzysztof Walczak. Dynamic database modeling of 3d multimedia content. In Wojciech Cellary and

Krzysztof Walczak, editors, Interactive 3D Multimedia Content, pages 55–102. Springer, 2012.
[234] Krzysztof Walczak and Wojciech Cellary. X-vrml for advanced virtual reality applications. Computer,

36(3):89–92, March 2003.
[235] Krzysztof Walczak, Wojciech Cellary, Jacek Chmielewski, Mirosław Stawniak, Sergiusz Strykowski,

Wojciech Wiza, Rafał Wojciechowski, and Adam Wojtowicz. An architecture for parameterised production
of interactive tv contents. In International workshopon systems, signals and image processing, ambient
multimedia, pages 465–468, 2004.

[236] Krzysztof Walczak, Wojciech Cellary, and Martin White. Virtual museum exhibitions. Computer,
39(3):93–95, March 2006.

[237] Krzysztof Walczak, Jacek Chmielewski, Miroslaw Stawniak, and Sergiusz Strykowski. Extensible metadata
framework for describing virtual reality and multimedia contents. In Hamza, MH, editor, Proc. of the
IASTED Int. Conf. on Databases and Applications, pages 168–175. Int Assoc Sci & Technol Dev; IASTED
Tech Comm Databases, 2006. IASTED Int. Conf. on Databases and Applications, Innsbruck, Austria, Feb
14-16, 2006.

[238] Krzysztof Walczak and Jakub Flotyński. On-demand generation of 3d content based on semantic
meta-scenes. In Lecture Notes in Computer Science; Augmented and Virtual Reality; First International
Conference, AVR 2014, Lecce, Italy, September 17-20, 2014, pages 313–332. Springer International
Publishing, 2014.

[239] Krzysztof Walczak, Dariusz Rumiński, and Jakub Flotyński. Building contextual augmented reality
environments with semantics. In Proocedings of the 20th International Conference on Virtual Systems
& Multimedia, Hong Kong, 9-12 September, 2014.

[240] Krzysztof Walczak, Rafał Wojciechowski, and A. Wójtowicz. Interactive production of dynamic 3d
sceneries for virtual television studio. In The 7th Virtual Reality IC VRIC - Laval Virtual 2005, pages
167–177, April 2005.

[241] C. M. Whissel. Emotion: Theory, research and experience. In The dictionary of affect in language,
volume 4, New York, 1989.

[242] Martin White, Nicholaos Mourkoussis, Joe Darcy, Panos Petridis, Fotis Liarokapis, Paul F. Lister, Krzysztof
Walczak, Rafal Wojciechowski, Wojciech Cellary, Jacek Chmielewski, Miroslaw Stawniak, Wojciech Wiza,
Manjula Patel, James Stevenson, John Manley, Fabrizio Giorgini, Patrick Sayd, and François Gaspard.

157

Arco - an architecture for digitization, management and presentation of virtual exhibitions. In Computer
Graphics International, pages 622–625. IEEE Computer Society, 2004.

[243] Dennis Wiebusch and Marc Erich Latoschik. Enhanced Decoupling of Components in Intelligent Realtime
Interactive Systems using Ontologies. In Software Engineering and Architectures for Realtime Interactive
Systems (SEARIS), proceedings of the IEEE Virtual Reality 2012 workshop, 2012.

[244] Rafal Wojciechowski, Krzysztof Walczak, Martin White, and Wojciech Cellary. Building virtual and
augmented reality museum exhibitions. In Proceedings of the Ninth International Conference on 3D Web
Technology, Web3D ’04, pages 135–144, New York, NY, USA, 2004. ACM.

[245] Xuehan Xiong and Daniel Huber. Using context to create semantic 3d models of indoor environments. In
BMVC, pages 1–11, 2010.

[246] Ken Xu, James Stewart, and Eugene Fiume. Constraint-based automatic placement for scene composition.
In Graphics Interface, volume 2, 2002.

[247] Chih-Hao Yu. Semantic annotation of 3d digital representation of cultural artefacts, accessed March 24,
2015.

[248] Theodore Zahariadis, Petros Daras, and Isidro Laso-Ballesteros. Towards future 3d media internet. NEM
Summit, pages 13–15, 2008.

[249] Lamia Abo Zaid, Frederic Kleinermann, and Olga De Troyer. Applying semantic web technology to feature
modeling. In Proceedings of the 2009 ACM Symposium on Applied Computing, SAC ’09, pages 1252–1256.
ACM, 2009.

[250] Youyi Zheng, Daniel Cohen-Or, and Niloy J Mitra. Smart variations: Functional substructures for part
compatibility. Computer Graphics Forum, 32(2pt2):195–204, 2013.

List of Figures

2.1. The GUI of Blender . 12
2.2. The GUI of 3ds Max . 12
2.3. The GUI of SketchUp . 13
2.4. The GUI of Sweet Home 3D . 13
2.5. The GUI of Unity 3D . 13
2.6. The GUI of Unreal Engine . 14

3.1. The activities of semantic modeling of interactive 3D content . 19
3.2. The proposed taxonomy of approaches to semantic modeling of 3D content 21
3.3. A virtual environment with an avatar represented using ontologies. Source: [112]. Courtesy of Y.

Chu and T. Li . 26
3.4. A behavior definition diagram compatible with a semantic graphical notation. Source: [197].

Courtesy of B. Pellens, O. De Troyer and F. Kleinermann . 26
3.5. A reconstruction of a dominant surface, which can be described using a semantic scheme.

Source: [121]. Courtesy of L. De Luca, P. Véron and M. Florenzano 27
3.6. Crowd in a multi-layered virtual environment, which is represented using ontologies. Source: [159].

Courtesy of H. Jiang, W. Xu, T. Mao, C. Li, S. Xia and Z. Wang . 28
3.7. A semantically represented and described 3D reconstruction of the Forte San Giorgio. Source: [177].

Courtesy of M. Lorenzini . 29
3.8. The user interface of the Entika semantic editor simplifying creation of semantic content

representations. Source: [162]. Courtesy of J. Kessing, T. Tutenel and R. Bidarra 29
3.9. The visualization of different semantically specified subspaces between a transmitter, a lens and a

mirror: the zone before the lens and the mirror, the zone between the lens and the mirror, and the
zone after the lens and the mirror. Source: [213]. Courtesy of T. Trinh, R. Querrec, P. De Loor and P.
Chevaillier . 30

3.10. Cornell’s Blue robot mounted with a camera, and predicted semantic representations of the scene
elements. Source: [77]. Courtesy of A. Anand, H. S. Koppula, T. Joachims and A. Saxena 33

3.11. Part-wise semantic correspondences between 3D shapes. Source: [167]. Courtesy of H. Laga, M.
Mortara and M. Spagnuolo . 34

3.12. A virtual museum scene designed with Flex-VR. Source: [231] . 35
3.13. Examples of 3D models semantically assembled using probabilistic reasoning. Source: [103].

Courtesy of S. Chaudhuri, E. Kalogerakis, L. Guibas and V. Koltun 36
3.14. Numerous 3D models generated using symmetric functional arrangements detected in three input

models. Source: [250]. Courtesy of Y. Zheng, D. Cohen-Or and N. J. Mitra 36
3.15. Semantic modeling 3D content with MASCARET. Source: [105]. Courtesy of P. Chevaillier, T.

Trinh, M. Barange, P. D. Loor, F. Devillers, J. Soler and R. Querrec 37
3.16. An example of a semantic action representation. Source: [180]. Courtesy of J. L. Lugrin and M.

Cavazza . 38
3.17. Pen and gestures-based interfaces described by a diagram enable semantic manipulation of a 3D

object. Source: [151]. Courtesy of M. Gutiérrez, D. Thalmann and F. Vexo 39
3.18. Result of the transformation of a campus following semantic adaptation rules. Source: [89]. Courtesy

of I. M. Bilasco, M. Villanova-Oliver, J. Gensel and H. Martin . 40

159

3.19. Variants of 3D models with different strengths of semantic attributes reflecting aerodynamics and
scary heads. Source: [102]. Courtesy of S. Chaudhuri, E. Kalogerakis, S. Giguere and T. Funkhouser 40

4.1. The concept of the Semantic Modeling of Interactive 3D Content (SEMIC) 44

5.1. The Semantic 3D Content Model (SCM) . 47
5.2. The Concrete 3D Content Ontology (CRO) . 54
5.3. The elements of a Transformation Knowledge Base (TKB) and a Template Base (TB) 63

6.1. Creation of 3D content based on the Semantic 3D Content Creation Method (SCCM) 70
6.2. An example of concrete 3D content components . 72
6.3. Mapping patterns used in mapping guidelines . 75
6.4. Mapping guidelines for creating mapping concepts . 77
6.5. An example of mapping domain-specific concepts to concrete 3D content components 81
6.6. An approximate presentation of a 3D meta-scene . 84
6.7. Step 5 of SCCM—customizing a 3D meta-scene . 86
6.8. The scheme of a 3D meta-scene being customized . 87
6.9. The 3D Content Customization Patterns (CCPs) . 88
6.10. An example of a customized PIR, in which every artifact is assigned to one stand 94
6.11. An example of a customized PIR including only the artifacts made of clay and their stands 95
6.12. An example of a customized PIR including only the objects between which the distance is maximal,

and which rotate after being touched . 95
6.13. Step 6 of SCCM—generating platform-specific 3D content representations 96

7.1. Architecture of the SO-SEMIC environment. The arrows indicate the flow of information 103
7.2. The main window of the Blender modeling tool with the installed SO-SEMIC client (1) 107
7.3. The panels of the Concrete Design Module . 107
7.4. Actions available in the Concrete Design Module: selection of a Repository of X3D Components (a),

creation of a new concrete component (b), insertion of a new instance of a concrete component into a
scene (c) and selection of an instance of a concrete component (d) 108

7.5. The panels of the Mapping Module (1,2), Conceptual Design Module (3) and Customization Module (4) 110
7.6. Actions available in the Mapping Module: creation of a Descriptive Class (1) and creation of a Data

Property (2) . 111
7.7. Actions available in the Conceptual Design Module: opening a conceptual representation (a), creation

of a new domain-specific object (b), modification of a domain-specific object (c) and removal of a
domain-specific object (d) . 112

7.8. Actions available in the Customization Module: creation of a sub-class selector (a) and selection of
domain-specific objects with sub-class selectors (b,c,d) . 114

8.1. Comparison of selected approaches to modeling 3D content . 118
8.2. The size of representation depending on the number of objects—in bytes (a) and in LLOC (b) 122
8.3. The vocabulary of representation depending on the number of objects 122
8.4. The length of representation depending on the number of objects . 123
8.5. The volume of representation depending on the number of objects 124
8.6. The difficulty of representation depending on the number of objects 124
8.7. The effort in analyzing the representation depending on the number of objects 125
8.8. Time of implementing the representation depending on the number of objects 125
8.9. The profit from automatic generation of platform-specific representations 126
8.10. The profit from code generation for a new platform: for PSR size in bytes (a) and for PSR size in

LLOC (b) . 128
8.11. Crossroads with cars seen from different points (a-d), only cars with high beam are selected for

presentation (e-h) . 129

160

8.12. Crossroads with cars seen from different points (a-d), only priority vehicles are selected for
presentation (e-h) . 130

8.13. Crossroads with traffic lights and signs seen from different points (a-e), only green traffic lights are
selected for presentation (f), only warning signs are selected for presentation (g), only warning and
prohibition signs as well as passenger cars are selected for presentation (h) 131

8.14. A housing with trees seen from different points, the trees differ in species, size and color of leafs
(a-e), only big trees are selected for presentation (f), only trees with yellow leafs are selected for
presentation (g), only palms are selected for presentation (h) . 132

8.15. The profit from conceptual content creation for VRML (for representation size in bytes) 134
8.16. The profit from conceptual content creation for X3D (for representation size in bytes) 135
8.17. The profit from conceptual content creation for ActionScript (for representation size in bytes) 135
8.18. Time of expanding conceptual 3D content representations . 139
8.19. Time of customizing 3D meta-scenes . 140
8.20. Time of transforming Platform Independent Representations to Platform Specific Transformations . . 140

List of Tables

3.1. Classification of schemes for semantic 3D content representation . 24
3.2. Classification of methods and tools for semantic modeling of 3D content 32

8.1. Structured Document Complexity Metric of 3D content representations 121
8.2. The cost of elementary changes in content representations . 126
8.3. The cost of the introduction of a content presentation platform . 127
8.4. Metrics calculated for the creation of 3D scenes (B—Blender, S—SO-SEMIC) 133
8.5. Metrics calculated for the customization of 3D scenes (B—Blender, S—SO-SEMIC) 133

162

Listings

Listings

5.1 A template with template parameters . 66
5.2 A filled template . 67
6.1 A concrete 3D content representation (CrR) . 73
6.2 A representation mapping (RM) . 79
6.3 A conceptual 3D content representation (CpR) . 82
6.4 A 3D meta-scene . 84
6.5 Queries to a 3D meta-scene . 93
6.6 A generated platform-specific (X3D) content representation . 99
6.7 An excerpt of a template base for X3D . 100
6.8 An excerpt of a transformation knowledge base for X3D . 100
6.9 A SPARQL query generated upon the TKB . 101
7.1 An example of mapping Blender-specific properties to concrete semantic properties 104

163

