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Adaptive system for recognition of sounds indicating threats to security

of people and property employing parallel processing of audio data streams
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A system for recognition of threatening acoustic events employing parallel processing

on a supercomputing cluster is featured. The methods for detection, parameterization

and classification of acoustic events are introduced. The recognition engine is based on

threshold-based detection with adaptive threshold and Support Vector Machine classi-

fication. Spectral, temporal and mel-frequency descriptors are used as signal features.

The algorithms are implemented in a supercomputing environment utilizing a specialized

framework for processing multimedia data streams. The recognition engine is evaluated

in various conditions, both using pre-recorded signals and real-world events. First, an

evaluation in laboratory conditions is performed to simulate selected acoustic environ-

ments and evaluate the recognition rates in noise. Subsequently, the recognition rates

are assessed in various practical situations (related to indoor and outdoor surveillance)

and compared with the results obtained in simulations. The adaptation of event detec-

tion evaluated by comparing different approaches to adapting the detection thresholds.

Finally, parallel processing is introduced to improve the performance of the developed

recognition engine. The experiments utilizing a supercomputing platform are intro-

duced, which show that the employment of parallel processing leads to significant short-

ening of the time required to make the decision. The possible practical applications of

the developed methods are outlined, including surveillance of urban space, public events

or private property.
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Chapter 1

Introduction

In traditional human-operated surveillance human security personnel is prone to over-

looking dangerous situations, for instance due to limited attention span or technical

limitations (such as the insufficient number of monitors for displaying video signals).

Automated computer-based surveillance (also referred to as smart surveillance) comes

as an aid in such situations. Obviously, it is best to think of such techniques as a re-

inforcement, not the replacement of human supervision. Modern systems for automatic

surveillance are mostly based on video-based event detection. In this thesis, the sound

recognition methods which can be used in acoustic-based surveillance are examined.

The analysis of sound, which is a separate modality, provides rich information which

can enhance the efficiency of detection of hazardous events. The introduction of audio

to surveillance enables detecting events which are not apparent in the video data. Such

events include firing weapons, explosions or screams. The other advantage of incorpo-

rating the acoustic medium is that the sound is not affected by the conditions which

significantly deteriorate the audio image, such as obscured, crowded or dark scenes.

In this dissertation the methods for automatic acoustic event detection for surveillance

purposes are introduced and their efficiency is examined in the environment of a super-

computing cluster. In the introductory chapter, first the historical background of the

problem is outlined. Next, the goals and scientific theses are posed. Subsequently, the

organization of the thesis is outlined. At the end of the chapter the author’s publications

are listed, being the results of a five-year-long research on the subject.

1
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1.1 Audio in surveillance

Even though audio surveillance nowadays is not as popular as the ubiquitous video-

based surveillance, it is worth noting that using sound to monitor the activity of people

precedes the visual systems by a couple of decades. It was only when telephony was

invented, that people started to listen to each other’s conversations. Later, in the late

1890’s, a device called the telegraphone was invented, which comprised a telephone

and a magnetic recorder. From the 1920’s to 1950’s video became to take over as a

surveillance medium. Efforts were made to connect the camera to the CRT (cathode

ray tube) monitors for live video streaming and to record the image on magnetic tape.

Thus, Closed-Circuit Television (CCTV) was invented, which became the prevailing

surveillance technology in the latter half of the 20th century [1].

The massive deployment of CCTV systems started in the 1960’s. Up to nowadays,

Closed-Circuit Television is understood as a technology for transmitting the live feed

from multiple cameras, installed e.g. in cities or inside buildings, to a control center,

where the operator views the streams on one or multiple screens. To detect the violation

of law or any other abnormal and threatening situations, human attention is necessary.

However, due to the human’s limited attention span, an automatic image analysis was

later incorporated to reinforce the detection of abnormal situations. The development of

IP CCD (Charge-Coupled Device) cameras, computer vision and video analytics enabled

implementing image recognition, object detection and video event detection algorithms

in surveillance systems [2].

The development of IP cameras allowed for transmitting sound and vision in the same

telecommunication channel. Typically, the sound is either recorded with an external

microphone connected to the camera or with a built-in microphone. Two-way audio is

also frequent in IP cameras, enabling the operator to send voice back to the monitored

area. Similarly to the video event detection, methods for detecting acoustic events in

the audio stream are incorporated into the audio-visual surveillance system. The prior

goal was to start recording vision after a sound had been detected. In such a case,

the detection algorithm reacted only to the level of the signal. While the automatic
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sound recognition technology matured, more sophisticated event detection algorithms

were incorporated. As a result, modern systems have the capability of detecting acoustic

events automatically and also localizing them, i.e. indicating the location of the sound

source. A review of the current state of the art in this matter is featured in Chapter 2.

1.2 Goals and scientific theses

The primary goal of this thesis is to examine the performance and efficiency of automatic

sound event recognition in real conditions operating on a supercomputing cluster. To

achieve this goal, the algorithms for detection and classification of acoustic events are

engineered. The developed methods are implemented in a supercomputing environment.

The sound recognition engine is then evaluated in practical conditions, in the presence

of noise. The influence of the conditions on the recognition accuracy is examined. The

performance of the algorithms in real-life conditions is evaluated. Finally, the bene-

fits of employing the supercomputing cluster are investigated. The parallel processing

techniques are utilized to accelerate the decision making, which ensures faster and more

reliable security surveillance.

The hardware platform for implementing the developed methods is a supercomputing

cluster, namely Galera+ cluster located in Gdańsk University of Technology. The moti-

vation for employing a supercomputer for automatic surveillance is the growing number

of streams from surveillance cameras and microphones. Large processing powers are

needed to handle multiple video and audio streams. This thesis aims to show that the

employment of supercomputing leads to more efficient analysis of audio stream as far as

hazardous event recognition is concerned. The majority of the work is carried out within

the project Mayday Euro 2012 conducted in Gdańsk University of Technology [3]. The

author of the dissertation worked in the project from 2009 to 2012. The methods de-

scribed in the thesis are implemented in the framework for analysis of multimedia data

streams created in the project, named KASKADA. The KASKADA platform, described

more deeply in Chapter 5, facilitates the creation and the exploitation of multimedia

stream processing services.



Chapter 1. Introduction 4

The recognition engine developed in this work is capable of recognizing one of predefined

classes of events: explosion, broken glass, gunshot, scream and other. The methods

employed are suited for an online operation and, thanks to the use of a supercomputing

platform, processing multiple streams simultaneously. The engine is intended to work

both in indoor and outdoor conditions. It also provides the possibility of localizing the

sound source in addition to recognizing the type of event, provided a specific acoustic

vector sensor is used. Another key feature of the developed algorithms is adaptation,

i.e. the feature of adapting the detection thresholds, to the changing acoustic conditions

of the environment. This feature improves the performance of the sound recognition

engine in practical conditions.

The author of the dissertation aims to prove the following scientific theses:

1. The developed methods for detection, parameterization and classifi-

cation of selected hazardous acoustic events enable sufficiently low loss

achieved in practical conditions to be used for security surveillance pur-

poses.

The aim is to assert that the methods employed by the author are a correct tool

for discerning between the selected classes of acoustic events. To prove this thesis,

a series of experiments is conducted, both employing the signals from the training

set and real-world events. The work is considered successful if the loss generated

by the developed decision system in practical conditions is sufficiently low for

the methods to be usable in an automatic security surveillance system, i.e. the

methods employed enable a reliable detection of sounds related to danger.

2. The proposed way of adaptation of the detection threshold to the vari-

ance and dynamics of the level of the acoustic background reduces the

detector’s equal error rate compared to the adaptation to average sound

level.

The recognition engine is designed to be flexible and adaptive. In particular, the

designed algorithms for detecting acoustic events are developed in such a way that

the detection threshold is automatically adjusted to the changes in the acoustic
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environment. In the developed methods, not only is the detector adapted to the

average sound level of the acoustic background, but also to its variance and tem-

poral change rate. It is shown in experiments that such an approach improves the

performance of the event detector by lowering the equal error rate.

3. The implemented parallel processing schemes on a supercomputing clus-

ter enable nearly real-time performance of the hazardous sound recog-

nition algorithmic chain.

The work featured in this dissertation is pioneering as far as the recognition of

hazardous acoustic events on a supercomputing cluster is concerned. The aim of

this thesis is to prove that such algorithms can be successfully implemented in the

cluster environment and benefit from employing parallel processing. It is shown

in experiments that the employment of supercomputing improves the performance

of the recognition engine, as far as the decision making time is concerned. The

specialized framework for processing multimedia data streams and the parallel

execution of operations related to sound recognition reduces the latency to a min-

imum, thus enabling nearly real-time performance. In other words, the goal is for

the recognition engine to operate with a latency comparable to the state-of-the-art

achievements in the field, including low-latency audio.

1.3 Outline of the dissertation

The dissertation is composed of 9 chapters. Chapters 2 and 3 constitute the theoretical

part. In Chapter 2 the techniques used for automatic sound event recognition are de-

scribed. A theoretical background concerning some of the algorithms used in this work

is also provided. Chapter 3 introduces the topic of parallel processing of audio data,

employing multi-core and multi-processor systems, as well as supercomputing clusters.

In the first of the practical chapters - Chapter 4 - the developed sound recognition engine

is described. The algorithms utilized for detection, feature extraction and classification

are discussed in detail. In order to evaluate the proposed methods the recognition engine

is implemented on the supercomputing cluster. In Chapter 5 the hardware architecture
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and software framework employed in the supercomputing environment are presented.

The methods are first evaluated on a set of training signals, which is featured in Chap-

ter 6. The set of signals used to train the sound event recognition engine is described,

as well as the results of evaluation of the developed algorithms on the training data.

The evaluation of the performance of the engineered methods in practical conditions is

given in Chapter 7. Next, in Chapter 8 the experiments concerning parallel processing

on the supercomputing cluster are described to show the benefits of employing a super-

computing platform for the task of sound event recognition. Finally, in Chapter 9 the

conclusions are drawn and the results of the thesis are discussed.
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The author of the thesis has been signed as co-author of the following publications

related to the topic of the dissertation published in the years 2010-2015:
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tions, vol. 2, ch. Applications for recognition of persons and events. Gdansk University of Technology,
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Chapter 2

State of the art in sound event

recognition

This chapter contains a review of the techniques and algorithms employed in automatic

recognition of acoustic events. It also serves as a theoretical background providing the

Reader with helpful information to understand the thesis. In the first section we intro-

duce the problem of sound event recognition. Next, we mention the operations which

have to be carried out to recognize the type of the event, namely feature extraction,

detection of foreground events and pattern recognition by means of statistical classi-

fication. In the following section the metrics used to assess the accuracy of acoustic

event detection and classification are introduced. The chapter is concluded by a review

of the most representative approaches featured in the literature and some commercial

applications.

2.1 Basic concepts

Two terms are often distinguished: acoustic event detection (AED) and acoustic event

classification (AEC). The term AED is also often used to indicate the recognition process

as a whole. Lyon also dubbed this field of research ”Machine hearing” [21].

9
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DETECTOR

DETECTOR

DETECTOR

no event

event detected

no event

CLASSIFIER decision: 
broken glass

Figure 2.1: Illustration of the detection-and-classification approach

CLASSIFIER

CLASSIFIER

CLASSIFIER

silence

broken glass

silence

decision:
broken glass

Figure 2.2: Illustration of the detection-by-classification approach

As assumed in this dissertation. the detection term refers to the process of separating

the event from the acoustic background, i.e. indicating that an acoustic event took

place at a specified time. The classification operation determines the type of event

which was observed. Two approaches to acoustic event detection are present in the

literature: detection-and-classification and detection-by-classification [22]. In the first

approach, depicted in Figure 2.1, the recognition process consists of two steps - first the

event is sought in the acoustic background by the detector and subsequently, after it

has been detected, the type of the event is recognized by the classifier. In the detection-

by-classification approach, shown in Figure 2.2, the sound is processed online by the

classification algorithm and when the classifier recognizes an event of specified type -

the decision is made that such event took place.

A vast majority of the state-of-the-art approaches employ statistical pattern recognition

to recognize the type of event. The principle of statistical classification is to identify

the type of the object on the basis of a feature vector comprising a limited number of

parameters [23, 24]. The parameters are calculated from the signal during the feature
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extraction operation. The signal features constitute a feature vector, which contains pa-

rameters whose purpose is to underline the distinct properties which allow for discerning

between the different classes of events. The features are fed into the pattern recognition

algorithm (classifier) which produces the decision.

In the statistical approach the classification process requires establishing a model which

is generated from a set of exemplary observations, i.e. the training set. The operation

of creating a model basing on the features extracted from the objects belonging to

the training set is referred to as training of the classifier. Both the feature extraction

operation, the choice of the training vectors and the structure of the classifier have a

large influence on the performance of the sound event recognition engine.

2.2 Related fields and applications

From the historical point of view the field of sound event recognition originates partially

from speech recognition and partially from musical instrument recognition [25]. In fact,

some techniques have been adopted directly from these two domains, which will be

indicated throughout the chapter. Initially, recognition of acoustic events was in the

shadow of speech recognition. Since the late 1990s, the task of acoustic event recognition

has grown into a separate field of research and the researchers have developed original

methods and approaches.

The relationship with Automatic Speech Recognition (ASR) is a very obvious one.

The similarity lies in the signal processing and pattern recognition algorithms employed.

A vast majority of ASR engines relies on Mel-Frequency Cepstral Coefficients as signal

features and Hidden Markov Models for classification [26]. Such an approach is often

encountered in sound event recognition as well. One can also conceive that the task of

recognizing words is similar to recognizing sound events. However, it is probably more

appropriate to compare sound event recognition to speaker recognition, in which

we focus on the type of sound source instead of the content of the signal. Jonathan

Dennis provides a remarkable discussion of similarities and differences between ASR

and AED in his PhD dissertation [27]. He claims that the major differences are in
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the recording environment, the approach to feature extraction and pattern recognition

techniques employed. In the case of ASR the signals are often close field with little noise,

whereas in AED the distance from the microphone is much larger, thus deteriorating the

Signal-to-Noise Ratio. The granularity of feature extraction is also different. In ASR

the features are extracted on very short-time frame basis (typically 25 ms), whereas in

AED the frames are slightly longer (100 - 500 ms), thus covering a whole segment of

sound. In fact, the ASR engines are typically organized based on the phonetic structure

of speech. This paradigm is not possible to adopt in AED, since sound events lack the

repeatable systematic structure, which is present in speech. As far as pattern recognition

is concerned, apart from Hidden Markov Models, structures such as Support Vector

Machine and Artificial Neural Networks are prominent in the field of acoustic event

recognition. It is worth noting that such structures, however almost non-existent in

ASR, are often utilized in speaker recognition.

A controversy lies in the fact that ASR is often regarded as a solved problem. Such

conviction stems from the high performance of commercial ASR engines. Thus, the

detection of acoustic events, (which may deceptively seem less complicated) appears

trivial to those loosely familiar with the subject. One should note that even though

very efficient continuous speech recognition engines exist, automatic speech recognition

is still a great challenge in difficult conditions, such as reverberation, far field or noisy

environments [28]. It has to be noted that such conditions are almost always the case in

real-life acoustic event recognition. Moreover, the intra-class variance of sound events

is much greater than that of speech units. A sound of a certain type (e.g. gunshot)

may have totally different character, depending on the type of weapons used, type of

ammunition, firing conditions etc. Yet, it is still expected to be recognized as the same

class of sound. Due to its difficulty, the problem can be compared to recognizing speech

units, independent of the speaker, for all possible accents and pronunciation variants.

Another field which is closely related to sound event recognition is Music Information

Retrieval (MIR). In MIR the signal features (MPEG-7 descriptors are predominant)

and classifiers are employed to recognize different aspects of music, such as: genre, artist,

instrument type, mood etc. [29]. It is typical in MIR systems that a very large database
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of musical recordings is parsed [30–32]. Both in MIR and in AED, similar features (Mel-

Frequency Cepstral Coefficients, MPEG-7 low-level descriptors) and classifiers (Support

Vector Machine, Artificial Neural Network) are often used. The difference is that whereas

musical tracks typically last for a few minutes, the sound events only last for up to a

few seconds. Therefore, Music Information Retrieval is less time-critical. Moreover,

in MIR it is a common paradigm to directly compare the patterns of known musical

recordings, e.g. with a kNN (k-Nearest Neighbors) classifier. Such approach is regarded

too expensive for AED, as far as computational time is concerned. Finally, some features

which are particularly useful in MIR, are hardly usable in AED, e.g. parameters related

to harmonics or musical key.

Acoustic event recognition benefits from the field of Machine Learning and Pattern

Recognition [24]. The art of learning classification algorithms is employed to build

classifiers which discern between the various types of sounds. The specific structures

employed in this process are outlined further in this chapter, in Section 2.5. It has

to be underlined that the recognition of sound events is a task which much differs

from other problems encountered in pattern recognition, namely text categorization,

classification of medical data, etc. The feature representations of sound events tend to

be very different, even if the sounds sound much alike to human ear. This is precisely

what makes recognizing the type of acoustic event a difficult problem to be solved.

The first application of sound event recognition was in underwater acoustics. From the

1980s the sound recognition methods have been employed to analyze the sonar signals

and identify targets, especially maritime vessels [33]. Nowadays, the applications are

widely spread from home automation [34] through meeting room assistance [35], infant

cry detection [36] and aids for the hearing-impaired [37] to acoustic-based surveillance

[38–40]. In the field of audio surveillance the events related to danger are most often

recognized, e.g. gunshots [38, 41, 42] or screams [42, 43]. Nevertheless, except from

expert systems (such as those presented by Maher regarding gunshots [44]), the state-

of-the-art techniques encountered in the literature can be used regardless of the type of

the recognized event and the application. In this dissertation the acoustic surveillance
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application is emphasized. The review of existing approaches to the task of sound event

recognition, both academic and commercial, is provided at the end of this chapter.

2.3 Signal features

First, let us consider that all acoustic events are stochastic processes, which we measure

as time-variable acoustic pressure pa(t). After digitalization the acoustic pressure signal

is stored in the computer memory as a series of samples x[n], i.e. a digital signal. The

signal itself and its values can be considered a random variable. The values of signal x

for a limited range of sample indices n1 ≤ n ≤ n2 form a vector:

x =

[
x[n1] x[n1 + 1] ... x[n2 − 1] x[n2]

]T
(2.1)

The feature extraction operation transforms the vector x of length N = n2 − n1 + 1 to

another vector v which has different dimensionality K:

v =

[
v1 v2 ... vK−1 vK

]T
= FE(x) (2.2)

where FE(x) denotes the feature extraction operation. The elements of the feature

vector are called signal features or parameters. The feature extraction function FE

is in fact a number of K functions, each of which extracts a separate feature value

vk = FEk(x) where k ∈ {1; 2; ..;K}. The feature values and the feature vector are

also considered random variables. However, the feature extraction operation should

be precisely defined mathematically to ensure repeatable non-deterministic calculation

of parameters. It means that if the exact same set of samples is offered for feature

extraction twice, the results should be identical in both cases.

The signal features, which are used for detection or classification, are essential in the

recognition process. The purpose of the features is to mathematically express the qual-

ities which humans attribute to known classes of sound, thus enabling us to discern
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between them. A whistle, e.g., is highly tonal, high-pitched, and has a very narrow fre-

quency spectrum (close to a simple tone). Expressing these qualities in terms of signal

features would lead to formulation of the following parameters: periodicity, fundamental

frequency and spectral spread. By feeding these features into the classifier, it would be

possible to distinguish the whistle sound from, e.g. a motor noise, which is atonal, bassy

and broad-banded. In practice, however, the choice of features is seldom that straightfor-

ward. This simple example also does not take into consideration the temporal features

of sound, such as signal envelope or transients.

The features are typically calculated employing short-time (possibly overlapping) sample

frames, which is referred to as the bag-of-frames approach (a term derived from the bag-

of-words methods known in the domain of natural language processing [45]). In such

approach the input samples are divided into a number of frames of fixed length (typically

ca. 100 ms, which is longer than the frame used in speech recognition). The features are

calculated from each frame and fed into the pattern recognition algorithm. In case of

the detection-by-classification approach, the samples are constantly fed into the classifier

(e.g. Gaussian Mixture Model), which performs both the detection and classification of

acoustic events [42]. When the detection-and-classification technique is employed, only

the fragment of the input signal, which contains the foreground event, is subject to

feature extraction. It is also possible to treat the acoustic event holistically and extract

the features from the entire acoustic event, instead of the short-time frames. However,

due to the often non-stationary character of the signal representing the acoustic events

and long durations of the events (even up to a few seconds), such an approach often

yields unsatisfactory performance.

2.3.1 Features taxonomy

The features used in sound event recognition are often adopted from other domains such

as speech and speaker recognition or music information retrieval. The features can be

divided into the following categories:
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• temporal features - are extracted from the time domain representation of the signal.

They often reflect the shape of the waveform or the simple qualities of the sound

wave. The most widely used features include: Zero Crossing Density (ZCD),

Temporal Centroid (TC), High Zero Crossing Rate (HZCRR), Low Short-Term

Energy Ratio (LSTER), Log Attack Time (LAT) [40, 42, 46, 47].

• spectral shape descriptors - whose purpose is to reflect the shape of the power spec-

tral density (PSD) function. The features in this group provide rich information

about the spectral content of the analyzed signal. The most commonly employed

features of this group are: spectral kurtosis, spectral slope, spectral roll-off, Spec-

tral Flatness Measure (SFM) and spectral moments, including Audio Spectrum

Centroid (ASC) and Audio Spectrum Spread (ASS) [46–48].

• spectro-temporal features - it is a rather new trend to utilize features which simul-

taneously capture the spectral and temporal properties of sounds. Such features

can be derived e.g. from the spectrogram [27, 37] or cochleogram [49]. Another

example is the time-frequency distribution utilized by Ghoraani and Krishnan [50].

• Mel-frequency cepstral coefficients (MFCC) - adopted from speech recognition,

the MFCC descriptors provide the information about the spectral envelope of the

signal in the transformed logarithmic mel-scale frequency domain [46, 51]. The

MFCC features are successfully used in various sound event recognition applica-

tions [25, 34, 38, 40, 42, 52–55].

• Linear Predictive Coding Coefficients (LPCC) are the coefficients of the autore-

gressive filter whose characteristics matches the spectral envelope of the signal

spectrum. The LPC analysis, originating from speech processing, is used by some

researchers for discerning between acoustic events [43, 53]. The LPCCs are ob-

tained by performing linear prediction analysis of the signal in short time frames.

• other types of features can also be derived from various representations of the

signal, Discrete Wavelet Transform (DWT) [54], log-filterbank representation [35,

55] or autocorrelation function [42].
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A great number of audio features are defined in the MPEG-7 standard [48, 56]. It

covers both temporal and spectral descriptors, e.g. temporal centroid, spectral flatness,

spectral envelope etc. The researchers often use the MPEG-7 descriptors as state-of-the

art parameterization method [34, 40, 42]. To take into account the time variation of the

signal features, in the bag-of-frames approach, the delta and delta-delta features are often

used [35, 38, 53, 54]. The delta features are obtained by computing the difference of the

parameter value in the current and previous frame (first order derivative). The delta-

delta (or acceleration) features are calculated as the difference between delta features in

the current and previous frame (second order derivative).

It is a subject for discussion which types of features are more appropriate for the task

of acoustic event detection. On one hand, it is known that the human auditory system

is sensitive to the spectral characteristics of sound. The human ear has been proved to

react to formants or critical band stimulation. Thus, the popularity of MFCC features.

On the other hand, the differences in time-domain representations of the hazardous

acoustic events are very apparent. Consider a gunshot and a scream sound. The different

temporal qualities of such events can be easily reflected by temporal features. As far

as typical spectral descriptors are concerned, it may seem that they are more suitable

for recognizing music sounds. However, studies show that they also provide important

information in the process of discerning between different classes of acoustic events.

2.3.2 Feature selection

In a typical machine learning task the initial feature vector contains a large number

of coefficients. It is because often there is no a priori knowledge of which parameters

are best for the recognition task. Therefore, at some point in the process of creating a

recognition system, one has to deal with a set of observations, which are scattered in

a highly dimensional space (each containing tens or even hundreds of features). This

problem, commonly referred to as the dimensionality curse leads to increased computa-

tional cost and data storage requirements, but most importantly - to overfitting of the

classifier [57]. Hence, it is beneficial to reduce the dimensionality of the feature space

by employing the so-called feature selection methods. The aim of all feature selection
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algorithms is to chose a subset of the initial feature set, which maximizes the result of

classification. Two approaches are present in the literature: filter methods and wrapper

methods [58, 59].

In the filter approach the statistical intrinsic qualities of the parameters are examined,

regardless of the classification algorithm employed. A universal metrics is employed to

assess the discriminative power of each feature individually. The χ2 statistics, informa-

tion gain or Fisher measure are often used to that end [58–60]. Subsequently, ranking

methods or space search methods are employed to choose the subset of the feature space

[60]. The advantage of filter methods is low computational complexity and that they

can be used with any classification algorithm. The drawback is that the individual dis-

criminative power of each feature is only assessed. In practice, it is possible that even

though some features are not statistically important, their combination contributes to

the learning or classifying process.

In the wrapper methods the specific classifier is used. The features are ranked by

assessment of their direct performance in the classification task [61]. Typically, in an

iterative manner, several subsets of the feature set are used to train the classifier, and

the evaluation on the training set is used to compare these subsets. Such approach

is highly time-consuming, but it is well-suited to the particular recognition task. To

facilitate the computations, heuristic methods are employed, such as forward/backward

search, simulated annealing etc. [61].

The alternative approach to the dimensionality reduction is to transform the feature

space into another space, in which the features are decorrelated and their number re-

duced. Such algorithms as Principal Component Analysis (PCA) or Linear Discriminant

Analysis (LDA) are often employed [57]. The approach is especially profitable when the

input is raw data, such as the coefficients of DCT (Discrete Cosine Transform) or DWT

(Discrete Wavelet Transform) of the training signals. It is also worth noting that some

classifies, such as SVM, have a form of feature selection embedded in the learning pro-

cess. Therefore, advanced dimensionality reduction can be considered superfluous in

such cases. Guyon et al. also proposed a method for feature selection based on the
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weights assigned to each feature in the SVM optimization procedure [62]. A number of

dimensionality reduction techniques were reviewed in a study by van der Maaten [63].

2.4 Detection methods

In case of online acoustic event recognition most of the audio data do not concern any

acoustic events. It is referred to as an acoustic background and comprises typical sounds

which can be encountered in a given environment (e.g. vehicle sounds in urban area,

cocktail-party noise in crowded public spaces, natural sounds in rural surroundings).

The task of discerning between the foreground events and the acoustic background is

referred to as detection. The detection problem can be approached in two ways:

• threshold methods;

• detection-by-classification.

In the next subsections, these approaches are explained. Moreover, the issue of adaptive

detection is addressed.

2.4.1 Threshold-based detection

The other approach is to compare a selected signal feature (or a group of features)

with a threshold. The approach is less computationally demanding than detection-by-

classification. The threshold methods originate from the Voice Activity Detection (VAD)

algorithms utilized in telephony [64]. In the simplest approach the detection parameter

is the signal level [53, 65, 66]. Such a straightforward approach, however, relies strongly

on SNR. It is virtually impossible to detect the events whose level is lower than the

noise floor. A more sophisticated choice of features can aid to abate this difficulty.

Example features used for threshold-based detection of acoustic events are voicedness

[67], variance of signal power [65] or DWT features [54].
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2.4.2 Detection-by-classification

Numerous state-of-the-art solutions do not employ a detection algorithm per se, but

rely on a selected pattern recognition algorithm to discern between the background and

the foreground event. The statistical classifier analyzes the online audio data frames

and produces decision: event, noise or silence. The most popular pattern recognition

algorithm for this task is Gaussian Mixture Model (GMM) [38–40, 42, 43]. However,

other structures are also used, e.g. SVM [35] or hybrid ANN-HMM structure [68].

The algorithm typically uses a vector of features whose number can vary from a dozen

or so [42] to over one hundred [35]. The large number of features theoretically yields

high accuracy, however the employed pattern recognition algorithms can be prone to

false alerts. The other disadvantage of such approach is relatively high computational

complexity, since every frame of audio data has to be fed into a pattern recognition

algorithm. The solution is also not flexible, i.e. a separate classifier has to be trained to

discern between a given class of events and the background noise.

2.4.3 Adaptive detection

The adaptation of the acoustic event detection is a feature which is not always consid-

ered in published works. It was reported in the literature that only two of the eight

state-of-the-art sound recognition engines addressed the issue of adaptation [40]. The

research closely related to the scope of this article was performed in the field of Voice

Activity Detectors (VAD) that often employ a detection algorithm based on adaptive

thresholding. A comprehensive review of VAD adaptation techniques was presented in

the literature [64]. The presented algorithms were in majority based on exponential

averaging.

The adaptive detection aims at following the changes of the acoustic environment for

more robust separation of foreground events from the acoustic background. As far as

the detection-by-classification approach is concerned, the adaptation can be achieved

employing the capabilities of machine learning algorithms. If, during training, diverse

sound examples are used (e.g. recorded in different conditions) the detection algorithm
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will have the ability to work in changing conditions robustly. Another approach is

to introduce an adaptation loop, in which the parameters of the employed model are

adjusted [40]. In the threshold-based method, the adaptation can be achieved e.g. by

adapting the detection threshold to the new background characteristics using exponential

averaging:

Tnew = (1− α) · Told + α · Tcurr (2.3)

where Tnew is the new threshold value, Told is the last threshold value, Tcurr is the

threshold calculated basing upon the current background characteristics and α is the

adaptation constant, which determines the inertia of the threshold adaptation process

[64]. If we define the time step of the adaptation Ts as the difference in time between cur-

rent and previous step, then Ts/α can be understood as the averaging time constant. The

adaptation formula in Equation 2.3 can also be used in the detection-by-classification

approach to adapt the parameters of the Gaussian distributions in the GMM [39].

Since adaptation is a key feature of the algorithms designed in this work, close attention

needs to be paid to the choice of the adaptation strategy. The adaptive threshold-based

detection is less computationally demanding than adaptive detection-by-classification.

We find its capability to follow the subtle changes of the background characteristics more

suitable to the task of online real-world acoustic event detection. Another advantage

of the adaptive threshold approach is the ability to start the analysis without the prior

need for establishing a model of background sounds and foreground events.

2.5 Classification algorithms

In general, classification (or pattern recognition) is a problem of assigning to an ob-

servation, of unknown nature, a discrete quantity which identifies this observation as

belonging to one of the known classes [69]. The observation is a vector of signal fea-

tures. The feature vector, extracted according to the definition in Equation 2.2, is from
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now in the chapter denoted x. The mapping of the feature vector to a class is represented

by a classification function g(x):

g : <k 7→ {1, ..., I} (2.4)

where K is the dimension of the so-called feature space and I is the number of recog-

nized classes [69]. The function g is an equivalent to the mathematical structure of the

classifier. Moreover, the classification function can be non-deterministic. The optimum

classification function is sought in the training phase. If X is a set of exemplary ob-

servation vectors {x1,x2,...,xN} and Y is the set of desired responses of the classifier

{y1, y2, ...yN}, the training can be understood as a minimization task:

g∗ = arg min
g:<K 7→{1,...,I}

P{g(X) 6= Y} (2.5)

where P{g(X) 6= Y} is the probability of error of the classifier [69] and g∗ is the optimum

classification function. Practically, the minimization of the error function is performed

(e.g. mean squared error).

In the field of acoustic event recognition the observation comprises a vector of features

of the audio signal. In the literature three structures are most widely used as classifiers:

• Gaussian Mixture Models [40, 42, 54, 70, 71],

• Hidden Markov Models [65, 68, 72],

• Support Vector Machines [70, 73–75].

Other classification algorithms are also encountered, such as: Dynamic Time Warping

[25], Artificial Neural Networks [65], Nearest Neighbour [47], decision trees [76, 77],

rule-based methods [78] or Learning Vector Quantization (LVQ) [25].
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2.5.1 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) employs a probabilistic model (probability density

function - PDF) of the signal features in each class. Provided that x = [x1..xk] is the

vector value of random variable, representing the vector of k features of the acoustic

event, the PDF for the considered class is expressed as a superposition of Gaussian

distributions:

p(x) =

M∑
i=1

wipi(x) (2.6)

where M is the number of Gaussians used in the model, wi is the weight assigned to

the Gaussian component and pi(x) is the i-th Gaussian distribution [24]. This PDF is

expressed by a so-called multivariate Gaussian distribution:

pi(x) =
1

(2π)k/2|Σi|1/2
e−(1/2)(x−µi)

TΣi
−1(x−µi) (2.7)

where µi is the mean vector and Σi is the covariance matrix of the distribution.

During training the µi and Σi parameters of the distributions are estimated using the

Expectation Maximization (EM) algorithm and the features extracted from the example

audio data [70]. The result of the EM algorithm is a PDF which best fits the given

training data, according to the so-called maximum likelihood criterion [79]. A number

of N Gaussian Mixture Models are created, where N equals the number of recognized

classes. To discern between the considered class and noise (e.g. gunshot from noise,

scream from noise [42]) a threshold is applied to the PDF of the considered class. To

discern between multiple classes of acoustic events the maximum a posteriori (MAP)

probability criterion is used to determine the type of the acoustic event.

The Gaussian Mixture Models are widely used in sound event recognition applications,

both in the detection-by-classification approach to separate foreground events from noise

[39, 40, 42] and to discriminate between different classes of acoustic events [54, 70]. They

are reported to yield high recognition rate - comparable to other algorithms, such as

SVM [70] or ANN [25]. Compared to HMM, they can yield similar or slightly worse
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Figure 2.3: Example structure of a HMM [81]

accuracy, depending on the usage scenario [80]. The GMMs are strongly dependent on

noise, since the addition of noise changes the values of the attributes. It is reported that

the recognition rate in noisy conditions can be improved by using noisy training samples

[42].

2.5.2 Hidden Markov Models

Gaussian Mixture models, described in the previous subsection, are an efficient tool to

describe the statistics, i.e. probability density functions, of the parameters of acoustic

events. However, they do not store any information about how these parameters be-

have over time [65]. Therefore, another structure is often used, which incorporates the

knowledge of the dynamics of the process into the classification model, namely - Hidden

Markov Models (HMM).

Markov models are a well-known mathematical tool for modelling time series. The

example structure of a Hidden Markov Model is presented in Figure 2.3. The model

produces a series of observations ot, where t is a monotonous index corresponding to a

point in time. In a discrete system, the observations are elements of a finite set. In sound

event recognition continuous models are used, in which the calculated feature vectors are

understood as observation. The model incorporates the following parameters [81, 82]:
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• N states, showed as nodes in the graph. In sound event recognition the states are

connected to the distinct phases in the event (e.g. attack, sustain release [65]).

The initial and final states are often non-emitting, i.e. it is assumed that they

do not produce observations. Typically, 3-5-state HMMs are used for sound event

recognition;

• transition probabilities aij from state i to j - the transition probabilities are derived

from the knowledge of the dynamics of the process. To illustrate, let us assume

that a HMM models the event of breaking glass. The states of the model can be:

silence, attack (knock on the glass), decay (shattering glass). The silence state will

most probably remain in itself or transition into the attack state. The transition

directly into the decay state will be far less likely. Moreover, the attack state will

quickly transition into the decay state, which on the other hand, lasts for a longer

time period and can remain in itself for some time. If the attack state transitioned

back into silence, without the decay state, it would mean that the event is most

likely some other impulsive event, e.g. gunshot;

• emission probabilities bi(ot) of an observation ot from state i. In a continuous

model, which are used in sound recognition, the emission probabilities are repre-

sented as PDFs of the values of signal features which are observed in each state.

It is most often expressed as a multivariate Gaussian, as defined in Equation 2.7.

Therefore, it is often said that a HMM-GMM engine is employed, in which HMMs

model the evolution of acoustic events and GMMs model the probability distribu-

tion of features in each HMM state.

Provided the parameters of the model are known and the sequence of observations

O = [o1,o2, ...,oT ] is observed, the probability of this sequence modelled by the model

M is given by the formula:

P (O|M) =
∑
S

[
as(0)s(1)

T∏
t=1

bs(t)(ot)as(t)s(t+1)

]
(2.8)
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where S(t) is the state of the model in time t = 1, ..., T and S = [s(1) s(2) ... s(T )]

is the state sequence [81]. The sum in Equation 2.8 indicates summing over all possible

sequences of states. This is necessary, because in the recognition task the state sequence

is not known (hence - Hidden Markov Model). Only the observation is known and there

is more than one possible state sequence which can produce this observation.

To employ the HMMs for sound event recognition, a model has to be trained to represent

each known class of acoustic events: M1,M2, ...,MI . The transition probabilities aij

and emission PDFs bi(o) are adjusted during the training procedure. During training,

the maximum likelihood criterion is used to maximize the probability of producing the

training observation sequences given the established parameter models. The Baum-

Welch algorithm is most often used to that end[82].

Once the HMMs M1,M2, ...,MI , where I is the number of recognized classes, are estab-

lished, the output class is simply that which maximizes the a posteriori probability of

the observed sequence:

i = arg max
i∈{1,...,I}

P{O|Mi} (2.9)

However, the estimation of the a posteriori probability, according to Equation 2.8, re-

quires iterating over all possible state sequences, which yields a vast number of math-

ematical operations. Hence, several algorithms have been developed to enable efficient

estimation of the most probable HMM to model the given time series (commonly re-

ferred to as HMM decoding). The most widely used is the Viterbi algorithm [81]. It is

worth noting, that solving the problem in Equation 2.9 does not provide the optimum

state sequence, which best models the given observation. This information, however, is

not needed in the classification process.

Hidden Markov models have been used in speech recognition since the 1960s and still

yield unbeatable efficiency in this domain. This mathematical structure has also been

successfully adopted to sound event recognition. Many researchers report high accuracy

and strong noise robustness with HMMs. However, negative opinions are also present in

the literature. Cowling and Sitte claim that HMMs are not suitable for recognition of
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sound events, since it is impossible to establish an alphabet of sound events, similar to

speech alphabet [25, 27]. Dennis also points out that a narrow time window employed

in HMM-based classification is a problem. The features of overlapping events (or events

mixed in noise) are often treated together, which deteriorates the performance of the

HMM classifier in less than ideal conditions [27]. In the opinion of the author of this

dissertation, the HMM is an efficient tool for modeling the time-varying structure of

the signal, but may fail to capture the general properties of sound. It is believed that

the general spectral qualities of sound are more important than the temporal structure.

Consider for example a breaking glass event. The temporal properties, such as the power

of impact, length of the decay etc. depend on the structure of the material, the type of

tool used to break the glass etc. However, beyond these temporal aspects, there is some

general spectral quality that enables us to discern between a breaking glass event and

any other impulsive sound. Another example is the scream event. If an HMM is used to

recognize screams, there is a possibility that the Markov chain will model the content

of the scream, yet the goal is to recognize a person screaming regardless of which word

they are shouting.

2.5.3 Support Vector Machines

Support Vector Machine (SVM) is a binary classifier, which discriminates between two

classes by creating a hyperplane in the k-dimensional feature space [83]. The separation

of an example 2-dimensional space by a hyperplane (here: a line) is depicted in Fig-

ure 2.4. In the case in which the data are linearly separable, the data vectors xi and

their corresponding decisions yi are assumed to satisfy the following condition:

yi =

 1 for w · xi + b > 1

−1 for w · xi + b 6 −1
(2.10)

where w is the weight vector normal to the hyperplane w · x + b = 0 [84]; the index i

corresponds to the number of observation vector; and the coefficient b is the constant

term of the hyperplane equation w · x + b = 0. Thus, it is assumed that the positive

data lie on the one side of the hyperplane and the negative data - on the other. The
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data vectors which lie on the hyperplanes w · x + b = 1 and w · x + b = −1 are referred

to as support vectors.

w

positive data

negative data

support vectors

margin

support vectors

Figure 2.4: Separation of negative and positive data by a hyperplane in SVM method

In the training phase the margin between the support vectors and the hyperplane is

maximized. It can be shown that this margin equals 2
‖w‖ [84]. Hence, the optimum

hyperplane is defined by the weight vector:

w∗ = arg min ‖w‖2 (2.11)

which satisfies the constraint 2.10. This optimization is achieved by solving the La-

grangian formulation of the problem:

LP ≡
1

2
‖w‖2 −

l∑
i=1

αiyi (xi ·w + b) +
l∑

i=1

αi (2.12)

where l is the number of constraints and αi is the i-th Langrangian multiplier. The

problem in (2.12) can be transformed into a dual problem, which is easier to solve:

LD =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjxi · xj (2.13)

in which i, j ∈ {1, 2, ..., l} where l is the length of the problem. The details of this

solution have been extensively studied in the literature [73, 84, 85].

In the case where the data are not linearly separable in the current feature space, a

kernel function is applied to map the data into a new space with higher dimensionality:
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K(xi,xj) = Φ(xi) · Φ(xj) (2.14)

where xi and xj are two data vectors and Φ is the transformation of the data vectors

into a different feature space [84]. In the Lagrangian dual problem, the data vectors

are only present as dot products between two vectors (see Equation 2.13). Thus, if

we replace these products with the kernel function K(xi,xj), the optimization is done

on the mapped data vectors Φ(xi) and Φ(xj). Applying the kernel trick to all the

data vectors leads to solving the SVM problem in another feature space. If the data are

inseparable in the linear space, transforming them into a nonlinear space usually enables

separation of the data with an optimum hyperplane found in the nonlinear space. The

most frequently used kernel functions mapping the data vectors to non-linear spaces are:

• Polynomial function with degree d

K(x,y) = (γ · x · y + δ)d (2.15)

• Radial-Basis Function (RBF)

K(x,y) = e−γ‖x−y‖
2

(2.16)

• Sigmoidal function

K(x,y) = tanh(γ · x · y + δ) (2.17)

The symbols γ and δ in Equation 2.15-2.16 correspond to the parameters which alter

the shape of the kernel functions and influence the classification process. More details

concerning kernel functions can be found in the literature [83].

When dealing with real data, it is hardly possible to linearly separate 100% of the data

vectors, in any space. The solution is to allow some points to be left on the wrong side

of the hyperplane and penalize them by introducing the cost parameter (C) into the

optimization procedure. The higher the C parameter, the less smooth is the separating
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hyperplane. The γ parameter influences how much the classifier fits to the single sample.

In general, high values of C and γ lead to overfitting of the classifier.

Since SVM is by definition a binary classifier, a modification has to be introduced to

recognize more than one class. In the case of recognizing M ≥ 2 classes the following

methods can be used [86]:

• one-vs-all - in which M classifiers are constructed. For each classifier, the class

m ∈ {1..M} is treated as positive and the remaining class is treated as negative

data. The winner is the class, which yields the highest output of the classification

function;

• one-vs-one - in which M · (M − 1)/2 classifiers are trained - one for each pair of

classes. The winner is the class which was most frequently the winner of one-vs-one

comparison.

• other methods, e.g. pairwise coupling of SVM outputs [86] or rooted graphs of

SVM classifiers [85].

The main advantage of is little computational cost, especially compared to HMMs. An-

other strength is that, unlike many other pattern recognition algorithms, SVM training

always leads an optimum solution, provided the model is convergent. As far as accuracy

of acoustic event classification is concerned, SVMs are reported to yield equal or better

performance than HMMs [87].

2.6 Localization of acoustic events

The term localization concerns the calculation of the position of the sound source, based

upon the received signals. It is directly related to determining the acoustic Direction of

Arrival (DoA). The localization is often treated as a complimentary part of the event

recognition engine [42]. Apart from surveillance, localization is also exploited in such

fields as military, robotics, speech recognition or gaming systems. There is a multitude
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of methods for sound source localization described in the literature. They can be divided

into the following groups, based on the configuration of transducers employed:

• sensor networks,

• transducer arrays,

• sound intensity measurement.

2.6.1 Sensor networks

The sensor network approach utilizes a net of spaced transducers nodes, connected by a

transmission medium (recently: wireless). Due to wave propagation, the acoustic signals

are received at spaced sensors and different time and with different energy. Thus, the

signals received at each sensor are compared by the means of time of arrival (TOA),

angle of arrival (AOA) or received signal strength (RSS) [88]. Next, the position of

sound sources is obtained using the maximum likelihood criterion [89].

The main drawbacks of the sensor network approach are low noise robustness, com-

plicated and costly infrastructure and dependence on terrain. However, the technique

has been successfully used both in research and in commercial applications (e.g. in the

ShotSpotter system [90]).

2.6.2 Transducer arrays

It is a common practice to use transducer arrays (microphone arrays) for the localization

of sound sources. One of the most popular methods is called the Time Difference of

Arrival (TDOA) [91]. It exploits the time differences in the arrival of the sound wave

at the spaced microphones. Generalized cross-correlation can be used for estimating

the TDOA, as shown by Stachurski et al. [92] The methods based on interaural level

difference (ILD) and Head-Related Transfer Functions (HRTF) are also present [93].

The physical limitation of the microphone array methods is related to the wavelength

of the analyzed signal. If the distance between the microphones is comparable to the
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wavelength, the localization is no longer precise. The next approach is free of such

drawback.

2.6.3 Sound intensity measurement

The spherical wave field in open space propagates according to the following solution of

the wave equation [94] - for acoustic pressure pa:

pa(r, t) = (A/r)exp [i(ωt− kr)] (2.18)

where A is the complex amplitude, r is the distance from the point source, ω is the

angular frequency and k is the wavenumber; and for particle velocity u [94]:

u(r, t) = (A/ωρ0r)(k − i/r)exp [i(ωt− kr)] (2.19)

where ρ0 is the density of fluid particles measured at equilibrium. The sound intensity

vector is defined as:

I(t) = pa(t) · u(t) (2.20)

It can be shown, that the active (i.e. real) component of the sound intensity vector is

proportional to the gradient of the phase [95]:

I = −|pa|
2

2ρc

∇Φ

k
(2.21)

where c is the propagation speed. It means that I is perpendicular to the surfaces of

equal phase, i.e. the wavefronts [95]. Thus, the direction of the sound intensity vector is

identical with the acoustic direction of arrival. In practice, the time averaged intensity

vector is used rather than its time-varying form [95]:
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< I >t=

t2∫
t1

pa(t)u(t)dt (2.22)

where <>t denotes average value over time.

The monograph of Fahy [94] and the book chapter by Jacobsen [95] cover a multitude

of approaches to measurement of sound intensity. The intensity measurement is sub-

stantially different from measuring acoustic pressure, which can be done with a single

microphone. In addition to acoustic pressure, particle velocity has to be measured pre-

cisely at the same point. Three methods for such measurement can be distinguished

[95]. In the p− p approach the intensity is determined by analyzing the pressure gradi-

ent from two microphones. In the p−u strategy a specific sensor is employed to measure

particle velocity, apart from a typical pressure sensor. Finally, the u − u method relies

on estimating the acoustic pressure from the divergence of the particle velocity.

An apparatus for sound intensity measurement is commonly referred to as a sound

intensity probe or acoustic vector sensor. Currently, the leading sensor is manufactured

by Microflown [96, 97]. It follows the p− u approach, comprising a pressure sensor and

three orthogonally placed particle velocity sensors. It has been shown in related research

that the Microflown sensor can be successfully used to measure noise [98] or to localize the

sounds on the battlefield [99]. The acoustic vector sensor is also applicable to detection of

threatening sounds for surveillance purposes [6, 17]. It is shown in experiments by Kotus

and Czyzewski that the accuracy of DoA estimation employing the intensity probe is very

good - error in moderate noise conditions counts in single degrees [100]. The advantages

of the vector sensor, compared to the traditional microphone array or sensor network

approach is the incomparably smaller size of the apparatus, greater accuracy, and lack

of wavelength limit. Hence, the intensity probe is a favorable instrument for the sound

source localization.
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2.7 Measures of detection and classification accuracy

In the process of evaluating the acoustic event recognition engine, the metrics which

reflect the system’s ability to correctly detect and classify the events need to be defined.

In this chapter we define the metrics which are suitable for the evaluation of the designed

algorithms, which is provided later in the dissertation. These metrics are also encoun-

tered in the state-of-the-art work, regardless of the classification algorithm employed

and event type detected.

2.7.1 Detection metrics

The following metrics are the most frequently used in evaluation of the task of detection

of acoustic events, similarly as in the evaluation of detection of visual events:

• True Positive Rate - TP - represents the ratio of correctly detected events; an

event is counted as a true positive detection if it was present in the signal and it

was detected in the correct time;

TP =
number of correctly detected events

number of all present events
(2.23)

• False Positive Rate - FP - also referred to as false alert rate (FAR) - represents

the ratio of all events which were wrongfully detected, i.e. those which were not

present in the signal, yet the detection was indicated;

FP =
number of incorrectly detected events

number of all detected events
(2.24)

• False Negative Rate - FN - also denoted miss probability or false rejection rate

(FRR) - represents the ratio of events which were not detected, although they

were present in the signal

FN = 1− TP =
number of missed events

number of all present events
(2.25)
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As in all detection tasks, the TP and FP rates influence one another in a manner referred

to as the detection error tradeoff (DET) problem [101]. If the TP rate is increased, e.g.

by lowering the threshold of the detection algorithm, FP rate is bound to rise. On

the other hand, if the threshold is elevated, the FP rate will drop, but the rate of TP

detections will also be lowered. The tradeoff is often depicted by the so-called DET

curve [101]. The DET curve is a plot of the relation between the false positive detection

rate (or, more often, false rejection probability) and the false positive detection rate, in

which the sensitivity of the detector is a variable parameter. An example DET curve is

presented in Figure 2.5. It shows the results of detecting screams in a noisy environment.

The miss probability and false alarm probability are expressed in logarithmic scales,

which improves the clarity of the plot. Several lines are drawn, each for a different

experiment condition. Such a presentation can be used to compare the performance of

the algorithm in varying conditions (e.g. SNR, type of noise) or with different parameters

or methods. The line which is closest to the center of the coordinate system is considered

the best, since it provides the highest TP rate and the lowest FP rate at the same time.

The DET curve is a variation of the Receiver Operating Characteristics (ROC) curve

known from the domain of decision systems and telecommunication [102].

Another important measure is equal error rate (EER). The EER metrics is related to

the point in the DET plot, in which the false rejection rate and false alert rate achieve

the same value. The smaller the EER, the better the algorithm’s ability to correctly

detect acoustic events.

2.7.2 Classification metrics

In decision systems theory loss is often considered as a measure of how many errors the

classifier produces. In Bayesian theory for a two-class problem the 0-1 loss is defined

as: [103]

L0/1(x, y) = sgn(−y · g(x)) (2.26)
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Figure 3: DET curves. Target classes are explosion, gunshot, screamed, and normal speech. Background is subway noise under different
SNRs.

Figure 2.5: Example detection error tradeoff curve [40]

where x is the observation vector, y ∈ {0; 1} is the desired label and g(x) is the classifier’s

decision function. Another approach to loss estimation is to assign the costs to particular

errors. For example, it can be defined that false positive gunshot detection costs 100,

a false negative scream costs 50, etc. Hence, the average loss can be computed as the

average cost of classification errors [104].

Most often, loss can be used interchangeably with other metrics. For instance, it can

be noted that the overall 0-1 loss of a classifier equals 1 minus its accuracy. Therefore,

throughout the thesis, the term loss will be used to describe the classifier’s performance,

yet other measures, i.e. accuracy F1 score or Kappa will be used to evaluate the clas-

sification. Hence, the following classification metrics are defined which will serve as a

measure to estimate the loss achieved in the examined decision system.

• confusion matrix - provides the most complete information about classification re-

sults. An example of a confusion matrix, with 3 classes, is shown in Figure 2.6.
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classified as:

class: 1 2 3

1 tp1 fp12 fp13

2 fp21 tp2 fp23

3 fp31 fp32 tp3

13121

1
1 fpfptp

tp
recall

++
=

3 fp31 fp32 tp3

31211

1
1 fpfptp

tp
precision

++
=

Figure 2.6: Example confusion matrix and formulae for recall and precision

All confusion matrices featured further on in the dissertation are formatted ac-

cordingly. Rows correspond to events which actually belong to a given class and

columns pertain to the assigned classes. The elements on the main diagonal are

the numbers of correctly classified instances in each class - denoted tpi where i is

the class index. The elements outside the main diagonal are the numbers of incor-

rect classifications. They are denoted fpij and indicate the numbers of elements

which belong to class i, but are erroneously assigned to class j;

• recall - denotes the ratio of events that belong to a given class and were correctly

classified; it is also referred to as the sensitivity of the classifier;

recalli =
number of correct classifications in class i

number of all events belonging to class i
=

tpi
tpi +

∑
j
fpij

(2.27)

• precision - expresses the ratio of correct classifications in all events assigned to a

given class; it is also called the specificity of the classifier. The higher the precision

rate, the more certain the decision of the classifier;

precisioni =
number of correct classifications in class i

number of all events assigned to class i
=

tpi
tpi +

∑
j
fpji

(2.28)

• accuracy - is a metrics indicating the ratio of correctly classified elements from all

classes. It is typically expressed in %;

accuracy =

∑
i
tpi∑

i
tpi +

∑
i

∑
j
fpij

· 100% (2.29)
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• F-score (or F-measure) is computed from precision and recall according to the

formula:

Fβ = (1 + β2) · precision · recall
(β2 · precision+ recall)

(2.30)

Where β is a non-negative real number and the higher it is, the more emphasis

is put on recall. For β = 1 the F1 score is obtained, which equals the harmonic

mean of precision and recall and is frequently used in this dissertation.

F1 = 2 · precision · recall
precision+ recall

(2.31)

• Cohen’s κ statistics can be used to validate the confusion matrix as a whole,

instead of evaluating each class separately. The coefficient can be used to assess the

agreement of two raters [105]. In the case of classification the two raters considered

are actual and predicted class. The formula for κ is given by the equation:

κ =
na − ne
N − ne

(2.32)

where na is the number of agreements (elements on the main diagonal of the

confusion matrix), ne is the number of agreements by chance and N is the total

number of classified objects. The number of agreements by chance for class i is

calculated as:

ne(i) =
1

N

I∑
j=1

cij ·
I∑
j=1

cji (2.33)

where cij is the element of the confusion matrix located in row i, column j.

2.7.3 Classifier validation methods

To validate a classification algorithm, two sets of observation vectors have to be estab-

lished:
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• training set - which is used in the training procedure, when the classes of observa-

tions are known to the classifier;

• test set - which is used to validate if the classifier can correctly predict new data.

Provided that a set of N observations is available, the following protocols can be used

to validate the classifier [65]:

1. Testing on the training set - in this case the training set and the test set are

identical and both containN vectors. This procedure does not assess the classifier’s

ability to recognize unknown data, but it provides the useful information about

the correctness of the training procedure or about the usefulness of the employed

signal features;

2. Division into the training and testing set - the training set is composed of x · N

randomly chosen vectors and the test set contains the remaining (1−x)·N vectors,

where 0 < x < 1. This method validates the algorithm’s ability to recognize new

data. However, the disadvantage is that not all vectors are used for testing. In

a variation of this method the division is performed multiple times to limit the

influence of randomness on the evaluation results and to include more vectors in

the testing set.

3. Cross-validation - in this method the operation of dividing the set into training

set and test set is repeated k times. In each iteration N/k observations are used

for testing in such a way, that each vector is exactly once present in the test set.

2.8 Real-world sound event recognition

It is worth noting that most of the published work in the field of acoustic event recogni-

tion is based on experiments on a database of recorded signals, often containing isolated

events. One approach is to utilize an open database of benchmark signals, such as

CLEAR (Classification of Events, Activities, and Relationships evaluation campaign)

[35]. Some of the published results are obtained from the analysis of signals recorded by
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the authors themselves [43, 49, 53]. Another approach is to use the signals from films,

radio or sound effects libraries [38, 42]. The task of recognizing the recorded events is

much simpler than online detection. In case of online detection most of the input audio

data constitute the acoustic background and is easily confused with threatening evetns,

thus leading to false alarms. The task of online detection is sometimes referred to as

real-world acoustic event recognition [52, 68, 80]. In real-world recognition the noise

added to the signal is a crucial factor, which influences the recognition accuracy. Hence,

many researchers evaluate the dependence of the classifier’s performance on Signal-to-

Noise Ratio (SNR). In case of outdoor propagation other phenomena are also present

which influence the characteristics of sound. Works of Embleton [106], Attenborough

[107] and Berengier [108] provide exceptionally good reviews of the matter. In general,

the following phenomena can be identified:

• loss of energy with distance - according to the inverse square law, sound

intensity, and thus also sound pressure level decreases by 6 dB with doubling of

distance [106]. The consequence of this rule is quite intuitive - the events which

are farther away, yield lower SNR.

• sound absorption in air - some of the energy of the acoustic wave in scattered

on the molecules of gas [106]. The effect is more prominent for higher frequencies.

As a result, sounds recorded from a distance have different spectral features than

the close ones, which can significantly influence the recognition accuracy.

• reflections from the ground - it is shown in the literature than the sound

characteristics is subject to significant change depending on the distance between

the microphone and the ground. In some cases, interference can occur, which leads

to colorization of sound, again influencing the spectral features [108].

• change of propagation speed with temperature - the gradient of propagation

speed in the horizontal or vertical direction leads to refraction of the wave [108].

This phenomenon can have an impact on the results of localization of the acoustic

events.
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• dispersion of sound in air - differences of propagation speed due to frequency are

also apparent. The impulsive sound become more and more smeared as distance

increases. This is one of the reasons that a gunshot or explosion heard from afar

sound differently than those heard nearby. Changes in the temporal features of

sounds make it difficult to robustly recognize an impulsive event from a distance.

Obviously, the above list is not complete. The outdoor sound field is very complex and

difficult to predict, due to a multitude of factors to consider. Numerical approaches

have been made to take the propagation factors into consideration, e.g. while creating

noise maps [109, 110]. In the opinion of the author of this dissertation, at the current

state of knowledge it is impossible to substantially improve sound recognition accuracy

by taking these phenomena into account analytically. It is due to the fact that the

propagation phenomena and noise addition occur simultaneously. However, some effort

should be made to allow for the distortion of sounds due to propagation. An examination

of the robustness of the features against the variable distance between the source and

the microphone could be considered. Also, a separate classifier model trained on close

and on far events could be employed to improve the recognition rates.

2.9 Audiovisual event recognition

The methods for detecting events in audio and video data streams are well-known and

described in the literature. There is also a research trend devoted to joining the two

modalities for more robust analysis. The concept of joining the audio and video data

stretches beyond the domain of event detection. Audio-visual fusion has been used in

such fields as e.g. video indexing [111] or emotion recognition [112]. There are not many

published works on audiovisual event detection, particularly in the surveillance domain.

In this section most representative researches illustrating the two prevailing approaches

are listed.

One of the approaches is to join the acoustic and visual modalities at the feature level,

which is referred to as early fusion. An example of such work is described in a paper

by Cristani et al. [113]. The histogram features from the image are concatenated with
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Figure 1. System flowchart

A multi-camera and multi-microphone dataset contain-
ing a large number of instances of the AEs to be analyzed
has been recorded and released for research purposes. Man-
ual annotation of these data, together with some well ac-
cepted metrics [21], allowed testing the performance of
the proposed algorithms proving the convenience of mul-
timodal fusion in the AED task.

2. Monomodal Acoustic Event Detection
A first stage of our multimodal AED system is to de-

termine the most informative features related to the AEs
of interest for every input modality. Although audio and
localization are originated from the same physical acous-
tic source, they are regarded as two different modalities in
this paper. AEs presented in Tab.1 will be taken into ac-
count. The obtained features are afterward employed to
train a classification module at each information source (au-
dio, localization, and video).

2.1. Spectro-temporal audio features

When dealing with continuous audio streams, two ap-
proaches are found to analyze AEs [20]. The first one
consists in detecting the AE endpoints by means of some
heuristic rules and classifying the obtained audio segment
afterward. The second approach classifies consecutive au-
dio segments of fixed size producing a continuous output as
the set of probabilities associated to every AE. Most AED
systems prioritize this second technique due to its robust-
ness and simplicity. Moreover, the detection task is con-
verted into a classification problem.

This detection-by-classification technique becomes
preferable when fusion is needed in future steps, since
combining decisions made on audio segments of the same
size is straightforward. According to Fig.2, some parame-
ters have to be selected when applying this technique: the
extracted features at every audio segment, the length of the
analysis window, and the classification algorithm.

Acoustic Event Audio Localization Video
Applause (ap) + + + (Hands motion)
Cup clink (cl) + +
Chair moving (cm) − − + (Tracking)
Cough (co) + + + (Hands motion,

Face detection)
Door slam (ds) + − + (Door activity)
Key jingle (kj) + +
Door knock (kn) + +
Keyboard typing (kt) − − + (Object detection)
Phone ringing (pr) + + − (Hands motion)
Paper wrapping (pw) − − + (Paper motion)
Footsteps (st) − − + (Tracking)

Table 1. AEs analyzed in the present work together with their ab-
breviations. + and − express the detection complexity of every
AE for every modality.

First of all, a set of spectro-temporal features are ex-
tracted to describe every audio frame. It consists of the
16 frequency-filtered (FF) log filter-bank energies with their
first time derivatives [14], which represent the spectral en-
velope of the audio waveform within the frame, as well as
its temporal evolution within 5 consecutive frames. Regard-
ing the analysis window, a Hamming window has been em-
ployed and its size empirically set to 30 ms. The window
shift is set to 20 ms, that is, allowing some window overlap.

In automatic speech recognition, Gaussian Mixture
Models (GMM) and Hidden Markov Models (HMM) clas-
sifiers are commonly employed. In both cases, audio seg-
ments are modelled via continuous density Gaussian mix-
tures. An alternative approach presented in [20] exploits
Support Vector Machines (SVM) for binary classification.
In the present work, we use a GMM-based classifier as it
is well suited to model the audio segments of fixed length
(unlike HMM) and it can be easily applied to a multi-class
classification problem. Moreover, it explicitly provides the
probabilities per each acoustic class for posterior multi-
modal fusion.

The obtained spectro-temporal features are used to train
a GMM-based AE classifier using 5 Gaussians per each
AE model with diagonal covariance matrices, using the
expectation-maximization algorithm. Finally, the sequence
of decisions is post-processed to get the detected events. In
this step, the decisions are made on a 320 ms segment by
assigning to the current decision segment the label that is
most frequent.

2.2. Localization features

The spatial localization of a sound source can be used to
enhance the detection of AEs. Although the global positions
of the subjects in the analyzed scenario can be accurately re-
trieved using video information, this modality cannot easily
determine whether a sound has been generated or at which
z coordinate it has been produced, being this information a
useful cue for AE classification.

82

Figure 2.7: Diagram of the multimodal event detection system proposed by Canton-
Ferer et al. [115]

the acoustic spectral parameters and form an Audio-Video Concurrence matrix, which

is fed into a k-NN classifier. Everyday events were considered such as making/receiving

a phone call, entering/exiting the room etc. The authors report a substantial increase in

classification accuracy (ca. 20 pp.). Jhuo et al. proposed integration at an even earlier

level [114]. A bi-modal codebook was constructed and the resulting audio-visual words

were fed into a MKL (Multiple Kernel Learning) classifier.

Another approach is late fusion, i.e. to classify the data originating from each modality

separately and join the information at the decision level. Such paradigm is followed by

Canton-Ferrer et al. [115]. They utilized three GMM classifiers for video, audio and

localization data respectively. The flowchart of the system developed by Canton-Ferrer

is shown in Figure 2.7. The authors focused on meeting room events such as applause,

chair moving, footsteps etc. The modalities were fused using two methods: weighted

arithmetical mean (WAM) and fuzzy integral (FI). The authors observed an increase in

classification performance (by means of F-score) in comparison with the baseline AED

system, but not for all events. For example, the F-score for door slam is improved from

0.92 to 0.95 but for cough event no improvement is observed. The reason is probably

that cough has no distinctive visual cues. The importance of each modality for event

detection was also assessed. The results show that the acoustic modality is the most

important one.
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This brief review of the known approaches to multimodal event detection shows that sig-

nificant improvement is attainable thanks to fusion of information from audio and video

data streams. Such gain should also be apparent for the threatening events considered in

this dissertation. The KASKADA framework, exploited in this work, provides efficient

tools for multimodal audiovisual event detection (see Section 5.1). However, the topic of

multimodal event detection is not in the scope of the thesis. Nevertheless, some works

carried out with the participation of the thesis author concern the multimodal approach.

In one of the author’s publications methods for multimodal detection of traffic events

were proposed [13]. The acoustic event detection methods featured in this thesis were

used to detect car horn sound and video analysis was performed to detect sudden stop-

ping of a vehicle, thus enabling automatic detection of collision. In some other works

the localization data was employed to point the moveable PTZ (Pan-Tilt Zoom) camera

in the direction of the detected event [7, 10, 17]. This concept is mentioned again in the

dissertation in Section 7.2.4.

2.10 Review of existing approaches to sound event recog-

nition

The section provides the review of the most representative works described in literature

concerning sound event recognition. The survey is focused on the approaches to detection

and classification of events, as well as features and algorithms employed. According to

the author’s knowledge, none of the known solutions utilizes a supercomputing platform

for audio stream processing. The summary of the discussed approaches is presented in

Table 2.1 at the end of the section.

Temko and Nadeau proposed a SVM-based technique for acoustic event detection in

meeting room environemnts [35]. They follow a detection-by-classification approach by

employing two SVM classifiers with the bag-of-frames scheme, as illustrated in Fig-

ure 2.8. The first classifier discerns between silence and non-silence classes. The second

classifier recognizes 14 types of events, including speech, steps, door knocking, chair
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Figure 2.8: Detection-by-classification approach proposed by Temko and Nadeau [35]

moving, phone ring, key jingle etc. The feature vector comprises 60 features, includ-

ing MFCC, log-filterbank, temporal and spectral shape features. The actual size of the

feature vector equals 120, since means and standard deviations of the chosen 60 fea-

tures are calculated. The research utilizes a database of meeting room recordings from

the CLEAR (Classification of Events, Activities, and Relationships evaluation campaign

workshop) evaluation sets and on real-life recordings from seminars. The decision sys-

tem proposed by the authors is compared to a HMM-GMM-based classifier, yielding

significantly better results, especially in low SNRs. The approach is similar to the one

proposed by the author of this dissertation, as far as bag-of-frames technique and SVM

classifier is concerned. However, our work differs by means of other type of acoustic

events detected and different operational environment.

Zhuang et al. proposed a different approach to the problem of meeting room events

recognition [68]. Their work exploits a combination of HMMs and Artificial Neural

Networks. The ANN processes the signal features (derived from the spectrogram) in a

bag-of-frames approach and outputs the probabilities for respective event classes. These

probabilities are subsequently fed into the HMM engine which analyzes the events in a

wider context. The authors claim that such approach, adopted from speech recognition,

can boost the efficiency of event detection.

Valenzise et al. published the results of their work on a scream and gunshot detection and

localization system [42]. It is an example of a straightforward detection-by-classification

approach. Two GMM classifiers are used to recognize screams and gunshots respec-

tively. A small feature vector is employed, comprising 13 elements for screams and

14 elements for gunshots. Feature selection is performed, starting with the initial set

of 49 features, which include MFCCs, spectral shape descriptors, temporal parameters
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Figure 2.9: Architecture of the sound recognition system introduced by Ntalampiras
et al. [40]

and correlation features. We find that the GMM approach to sound event detection

is less flexible than the threshold-based detection proposed in this thesis. Also, the

detection-by-classification approach is more prone to false alerts and generates higher

computational load than the techniques adopted in this dissertation.

An interesting solution was proposed by Ntalampiras et al. [40]. They employ a cascade

structure of Gaussian Mixture Models to discern between threatening sound events such

as scream, gunshot and explosion. Separate classifiers are used to separate vocalic

from non-vocalic sounds, screams from other vocalic sounds, gunshots from non-vocalic

sounds etc. As far as features are concerned, MFCCs and MPEG-7 descriptors, as well as

intonational features are utilized. Ntalampiras et al. try to simulate the online operation

of the event recognition system. Hence, they prepare a test signal comprising a number

of events, which are mixed with military, urban and metro noise. To reduce the rate of

false alerts, they introduce the adaptation loop in which the probability distributions of

the GMMs are modified to adapt to the background conditions. The experiments show

that the adaptation contributes to a significant improvement of EER (ca. 60-70%). The

adaptation of the Gaussian model inspired the choice of one of the adaptation strategies

described in Section 4.1.3.

The work of Cristani et al. [39] introduces a novel approach to the detection of acoustic

events. Cristani et al. propose an algorithm for detection of foreground events, without

determining the type of event. An adaptive mixture of Gaussians is employed. A vector
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of 8 PSD (Power Spectrum Density) features, representing the energy in logarithmically

spaced frequency bands, is considered. Each feature is modeled by an adaptive GMM.

The parameters of the model are updated to allow for changes in the environment.

The probability obtained from the GMM and the features of the currently analyzed

frame are used to determine whether the sound constitutes the acoustic background or

a foreground event.

In the PhD thesis presented by Dufaux an elaborate system for recognition of impulsive

sound events is introduced [65]. The recognized classes of events include door slams,

explosions, glass breaking, gunshots, phone rings, screams etc. Original detection algo-

rithms are introduced, based on threshold methods. The detection of impulsive events

is performed with the use of normalized power sequence, variance or median filtering.

Spectrogram features, LPC, cepstral and perceptual features (including MFCCs) are

used as signal parameters. A feature selection technique based on PCA (Principal Com-

ponent Analysis) and LDA (Linear Discriminant Analysis) is employed. The size of the

feature vectors varies from 10 (after reduction with PCA) to 16384 (for spectrogram fea-

tures without reduction). Several classification algorithms are investigated: Bayesian,

GMM, HMM and Multi-Layer Perceptron neural network. It is shown that a 3-state

HMM classifier achieves nearly 100% efficiency for clean signals from a limited number

of classes (i.e. 3, 6 or 10). The efficiency drops to 80% when noise is added to the signal

(at 10 dB SNR), provided the noise is added to the training signals as well. The work of

Dufaux, however wide and thorough, fails to face the problem of real-world detection,

unfortunately. The experiments with a database of sounds were only presented, whereas

in this dissertation it is also an aim to evaluate the performance of the sound recognition

engine in practical conditions.

Rabaoui et al. [75] focus on finding robust features to discriminate between 9 classes

of acoustic events, both threatening and everyday sounds (i.e. screams, gunshots, glass

breaks, explosions, door slams, phone rings etc.) Perceptual Linear Prediction (PLP)

features with RASTA compression are used. Also, wavelet-based features are investi-

gated. The precise size of the feature vector is not given. A multiclass SVM is used as

a classifier with 1-vs-all and 1-vs-1 approaches. The classifier is compared to a Hidden
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Markov Model. It is shown that the SVM classifier outperforms the HMM. Moreover,

RASTA features yield better robustness against noise than wavelet features. The detec-

tion of events is not considered, since the experiments are conducted on a database of

isolated events.

In their work on audio classification and segmentation Lu et al. [47] propose a recog-

nition algorithm discriminating between the following classes of sounds: speech, music,

environmental sounds and other. The purpose of this solution is to enhance indexing of

video material. A vector of 9 features is used, including temporal parameters (e.g. high

zero-crossing rate HZCRR), spectral flux, band periodicity or Linear Spectral Pairs

distance (LSP). The speech/nonspeech discrimination is performed with a k-Nearest

Neighbour (kNN) classifier, whereas the environmental/music classification is achieved

with threshold methods. In addition, speaker segmentation algorithm based on GMM

is implemented. The authors report that the overall recall rate is up to 89.89% wheras

the precision is up to 83.66%. Such choice of classification techniques and a rather short

feature vector, raises doubts it their system would be able to robustly detect real-life

events in practical conditions. We believe that more advanced machine learning algo-

rithms (such as SVM or ANN) and larger feature vectors enable much more accurate

recognition.

Tran and Li propose a novel approach to recognition of acoustic events [87]. Instead of

the common feature extraction/pattern recognition scheme, they introduce probabilistic

distance SVMs which serve as a measure of distance between subband temporal envelope

of events. Tran and Li point out that MFCC-HMM-based engine, which is the prevailing

approach in speech recognition, may not be appropriate for sound event recognition. The

recognized events include: speech, music, breaking glass, explosion, cry, laugh, scream

and knock. A thorough analysis of the general characteristics and subband temporal

envelope of the events is given. The experiments on a database of recordings with added

noise are reported. The probabilistic distance SVM approach outperforms the MFCC-

SVM and MFCC-GMM approach by 1-3%, reaching a maximum efficiency in cross

validation of 96.7%. It is also reported that the probabilistic distance SVM approach is
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computationally effective, which favors this method in the context of online sound event

recognition.

The detection of gunshots has been a popular research topic. The works of Simon, Maroti

et al. are worth mentioning [116, 117]. They utilized a network of spaced sensors (in

the number of tens) to detect gunshots in an urban area. Their system is claimed to be

robust against reverberation and able do determine both the location of the shooter and

the direction of the shot. Time difference of arrival between sensors is used to indicate

the position of gunfire. The reported accuracy equals 1 meter. The sensor networks,

however able of covering large areas, are costly and not as accurate as acoustic vector

sensors, as far as determination of acoustic direction of arrival is concerned [97]. In

the previous research conducted in Multimedia Systems Departmentan acoustic vector

sensor was used to localize the events in an indoor space [6]. The utilized techniques

can also be successfully used in an outdoor space. The experiments utilizing an acoustic

vector sensor are mentioned in Section 7.2.4. The latency of the system introduced

by Maroti et al. is said to be less than 2 seconds [116]. Our experiments described

in Section 8.2 lead to a much shorter latency, thanks to employing a supercomputing

cluster.

As far as the analysis of gunshot is concerned, credit is due to Maher, who published

some comprehensive papers on the acoustics of gunfire [41, 44]. Although this work does

not cover the recognition engine, it provides information which can be used to recognize

gunshots and to improve forensic analysis of gunshot recordings. In Figure 2.10 an

example analysis of a two-channel recording of a gunshot is presented. The following

intervals are marked: 1) time between shock wave and its reflection (left channel) 2)

offset between the shock wave in left and right channel, 3) time between shock and blast

wave, 4,5) offset between blast and blast reflection in left and right channel respectively.

Maher points out that the main difficulty in analyzing gunshots in realistic conditions

is the influence of noise. The forensic analysis of gunshot recordings allows for assessing

the distance between the shooter and the microphone and the shot angle, if two or more

microphones are employed.

http://www.multimed.org
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Figure 2.10: Two-channel acoustic recording of a gunshot as analysed by Maher [41]
(solid line - left, dashed line - right)

The proof that the sound event recognition constantly expands to new platforms is the

work of Nirjon et al. which features Auditeur platform for acoustic event detection in

mobile devices [76]. Auditeur is a framework for developers, researchers and users which

allows for configuring and creating sound recognition applications for smartphones. A

variety of features is implemented, including temporal (ZCR, RMS, low energy fea-

tures), spectral (Energy, Rolloff, Centroid, Flux) and MFCC. Moreover, classifiers such

as Bayes, decision tree, GMM, ANN, SVM and HMM are available as building blocks.

The audio data processing is handled by the mobile phone processor, but the system

also utilizes cloud storage for exchanging data (e.g. recorded events and XML processing

schemas) between users.

2.11 Existing commercial acoustic surveillance solutions

The development of the mentioned methods for sound event recognition enabled the

creation of efficient practical applications. In this section the known commercial solu-

tions which feature automatic detection and classification of acoustic events are briefly

mentioned. The applications stem from the theoretical foundations described through-

out the chapter. It is visible that gunshot detection systems are most popular on the
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market, since they have the best ability to attract a potential customer such as military

or law authorities.

The ShotSpotter Gunshot Location System [90] is considered the leader on the market

of acoustic surveillance. The system is based on a network of dedicated sensors, which

cover a large urban area. In case a gun is fired within such area, the signals from

the sensors are sent to the incident review center, where triangulation is performed to

pinpoint the location of the detected gunshot. The information sent to the respective

authorities includes the location of the shot, number and times of rounds fired and the

direction of movement, provided the shooter is moving. The system is popular in the

USA, being deployed in many cities, including Washington D.C. and Los Angeles. A

report from 1998 published by the United States Department of Justice states that the

ShotSpotter system is able to detect 80 % of the shots and localize 75 % of the shots

with a 25-foot (7.5 meters) margin [118].

The company NetLogix introduced a Video-Integrated Gunshot Detection System (viGDS)

[119]. The product is a continuation of the system priorly developed by the company

SafetyDynamics (named SENTRI). It has the capability of detecting gunshots, local-

izing the shooter and pointing the camera in the direction of the shot. The hardware

utilized in the viGDS system is presented in Figure 2.11. The manufacturer reports that

the solution can recognize almost any sound, e.g. gunshot, breaking glass or human

voice. The Dynamic Synapse Neural Network is used for pattern recognition. Apart

from recognizing the type of event, the invention utilizes an array of four microphones

to calculate the acoustic direction of arrival. It is said that the location is correctly

estimated for distances from two inches to two football fields. The system is also linked

with GPS and transmits the exact location of the shooter to the police.

One of the most widely known military systems for gunshot detection is called Boomerang

[120]. The setup of the device is presented in Figure 2.12. According to the manufac-

turer, it can also be installed on a manned or unmanned vehicle. The Boomerang system

detects and localizes shooters from maximum weapon ranges. It also has the capability

of detecting the passing bullet and assessing its trajectory. The device comprises an
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NetLogix is taking remote policing to the next level with video-integrated Gunshot Detection Systems (viGDS) that far exceed competitive 

alternatives.  The NetLogix viGDS is able to identify a gunshot and instantaneously direct a video surveillance camera to a pinpointed 

location.  Dispatch can capture crime scene details immediately, making positive identi�cation easier.  By integrating with new and existing 

video surveillance systems, the NetLogix viGDS is by far the most intelligent real-time criminal analytic solution available to law enforcement 

agencies.

At the core of the NetLogix viGDS is a unique sensor-based technology developed by Safety Dynamics, the leading manufacturer of acoustical 

recognition products and the SENTRI line of gunshot detection systems.  The intelligence driving SENTRI was developed at the University 

of Southern California’s Laboratory for Neural Dynamics, and is based upon a Dynamic Synapse Neural Network (DSNN) model.  Based on 

neurobiological principles of signal processing, the DSNN model provides accurate temporal pattern recognition of acoustic signals – even 

in high noise.  

The state-of-the-art DSNN technology contains inherent bene�ts that surpass the competition’s alternatives:

Functions independently and portable 4  – no “mesh” or triangulation required

Integrated, real-time GPS mapping 4  – Each event is geocoded and immediately displayed with an accuracy of ±1°.

Street light mountable 4  – “Context Dependent Recognition” allows for identi�cation of events in noisy environments.

Open architecture 4

Integrates with existing Network Management Systems 4  (Milestone, Verint, OnSSI, Genetec, etc.)

Adaptable to recognize almost any sound 4  – gunshots, broken glass, voices, etc.

Designed for upgrades 4  – sensors for biochemical, seismic activity, perimeter fencing, and more

Minimized false-positives 4  – identi�es acoustic pro�les matching speci�c target sounds

Windows-based platform 4

Acoustical Microphone Array 4

viGDS Acoustical System 4

Wireless Client 4

Camera Enclosure 4

IP Video Camera  4

Humidity Absorber Pack 4

Enclosure dimensions, L x W x H

Weight (Enclosure + GDS)

Enclosure construction

Lens

Power source

14.9” x 11.7” x 13.2”

7 lbs

Thermal-plastic resin

High-impact acrylic,

.125” thickness 

110-220 VAC, 12 VDC

NetLogix is the recognized leader in Municipal and Public Safety broadband networks and applications.  Our full lifecycle management 

services encompass all layers of network infrastructures.  With these services, we work with our clients to implement a comprehensive 

solution, complete with advisory and dispatch capabilities.

NetLogix understands the blend of Wireless and IP networks.  We have worked on numerous high-pro�le projects across the USA, and each 

are highly successful engagements.  We assist Homeland Security and Public Safety agencies with the implementation of licensed microwave, 

WiMAX and WiFi mesh networks, and provide applications-driven solutions.  While many companies have come and gone during the early 

wireless broadband and municipal wireless hype cycle, NetLogix has #ourished and continues to grow based upon customer satisfaction 

and the successful deployment of well-architected solutions. 

SYSTEM OVERVIEW

SPECIFICATIONS

NetLogix viGDS
SYSTEM SPECIFICATIONS

TECHNOLOGY

SYSTEM ADVANTAGES

COMPREHENSIVE SOLUTION

 

Safety Dynamics
Powered by:

Safety Dynamics

Standard system includes:

Figure 2.11: The hardware utilized in the NetLogix viGDS system [119]

Figure 2.12: Fixed site setup of the Boomerang system [120]

array of microphones and a signal processing unit, contained in a black box, which ana-

lyzes the signals from the microphones and determines the acoustic direction of arrival

of the detected gunshot.



Chapter 3

Audio supercomputing

In the following sections the state of the art in parallel processing of audio data will be

introduced. First, a brief theoretical introduction to the subject of parallel processing is

performed. Next, in Section 3.2 the solutions employing local processors (such as GPU

or DSP) are introduced. Subsequently, in Section 3.3 the existing trends in utilizing

supercomputing platforms for audio analysis are outlined. The chapter is concluded

with some critical remarks.

3.1 Introduction to parallel processing

The term parallel processing refers to executing a computer program on more than one

computing node. The nodes may be part of one machine (e.g. multiple cores of single

processors), or can be distributed on different, homogeneous or heterogeneous computers.

Proficz names the following typical distributed computing architectures [121]:

• cluster computing - a cluster comprises a group of homogeneous nodes connected

with a fast computer network;

• grid computing - a grid is composed of heterogeneous nodes, geographically dis-

persed and connected with a wide area network (typically Internet);

53



Chapter 3. Audio supercomputing 54

• cloud computing - cloud computing is oriented on delivering the computing in-

frastructure as a service, the computers are also heterogenous and geographically

dispersed, the service provider delivers the infrastructure, software and license;

• sky computing - comprising multiple clouds and thus different software and stan-

dards providers.

The machines employed for parallel computing comply with one of the following archi-

tectures (the so-called Flynn’s taxonomy [122]):

• Single Instruction Single Data - SISD,

• Single Instruction Multiple Data - SIMD,

• Many Instructions Single Data - MISD,

• Many Instructions Multiple Data - MIMD.

The above terms are also commonly used to express the manner in which a piece of

computer code can be executed in parallel. According to Flynn, the MIMD approach has

the highest capability of accelerating the computations, however it also has the largest

demands, since both the multiple processing units and data must be available at low

level [122]. In fact, the MIMD architecture is the most popular among supercomputing

clusters.

The ability of a distributed system to increase the efficiency of computations by expand-

ing the resources is referred to as scalability [123]. The resources can be expanded either

horizontally by connecting additional nodes or vertically by improving the structure of a

single node [121]. The increase in computational efficiency can be understood as speedup

which is defined as follows [124]:

S(n) =
T1

Tn
(3.1)

where T1 is the execution time on a single node and Tn is the time elapsed for program

execution on n nodes. In case of processing multimedia data stream, it is better to
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employ another metrics for scalability, such as the one proposed by Jogalekar [125]. The

scalability of the cluster should be evaluated as the ratio of productivity F (n), defined

as follows:

F (n) =
λ(n) · f(n)

C(n)
(3.2)

where λ is the throughput (e.g. in frames per second), f is the measure of quality of

service and C is the running cost per second. The scalability at scale n can then be

calculated according to the formula:

ψ(n) =
F (n)

F (1)
(3.3)

Such criterion is employed by Proficz in his doctoral thesis to evaluate the scalability of

the KASKADA platform [121].

3.2 Centralized parallel processing of audio data

In this section, the methods for parallel audio processing which exploit the local comput-

ing nodes of a given machine will be discussed. The mentioned solutions do not employ

grid computing or supercomputing, which will be discussed further on.

3.2.1 Vectorization of audio algorithms

One of the basic ways to speed up the computation time in audio algorithms is to

perform the operations which take vectors as input in parallel mode. This scheme

is of SIMD architecture. It is worth noting that most operations executed in audio

signal processing algorithms (in particular, vector multiplication, addition, dot product

etc.) are highly vectorizable. It is possible to benefit from vectorized computing by

using the processor’s vector instructions. In case of CPUs, the instruction sets like

SSE (Stream SIMD Extension) or AVX (Advanced Vector Extensions) are found in

products manufactured by Intel and AMD [126]. These instructions support, among



Chapter 3. Audio supercomputing 56

other, addition, summing and scalar product of vectors. In case of DSPs, it is a standard

to support SIMD operations, hence appropriate instructions are found in almost any

digital signal processor.

3.2.2 Audio applications for GPU

Many works have been published in the recent years concerning the employment of GPU

(Graphics Processing Unit) to support the parallel processing of audio data. The CUDA

(Compute Unified Device Architecture) toolkit released by the leading graphics card

manufacturer NVIDIA contributed greatly to the popularity of such applications [127].

The operations which are offloaded to the graphics processor are recommended to be

SIMD type. Tsingos et al. provide a remarkable review of existing and possible audio

applications for GPU [128]. The following can be named:

• signal processing and filtering - some of the existing audio workstations also utilize

GPU apart from vector instructions. The trick to use graphics API for audio pro-

cessing is to substitute pixels with time samples and RGBA (Red, Green, Blue and

Alpha) color components with frequency bands. The GPU is also appropriate for

performing multiplications and additions needed in FIR (Finite Impulse Response)

filtration [129].

• sound synthesis - an interesting work was published by Savioja et al. concerning

additive synthesis of sound [130]. A GPU was utilized to compute the sinusoidal

components and thanks to the employment of parallel processing a superposition

of one million sinusoids was achieved, which contributed to the good quality of

the synthesized signal. Spatial synthesis is also considered by Tsingos et al. in

the context of processing the sound with multiple HRTFs (Head-Related Transfer

Functions) and synthesizing a complex acoustic scene [128].

• room acoustics - the Finite-Difference Time-Domain technique has been success-

fully employed on a GPU in a number of works [131, 132]. The acoustic ray tracing

method has also been employed in a manner imitating the ray tracing performed

in graphics [133].
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• computational auditory scene analysis (CASA) - in another application parallel

processing with the aid of a GPU was applied to source signal separation, acceler-

ating the computationally demanding Independent Component Analysis [134].

• audio feature extraction - in a work by Schmadecke et al. [135] it was shown that

employing a GPU for audio feature extraction leads to a substantial speedup. The

MFCCs were considered and a speedup of up to 30 times was achieved with a

448-node GPU.

The rather new trend of employing GPU for processing audio data is clearly opening

up to new applications and we can surely expect more interesting works in the near

future. Tsingos et al. believe that one of such applications will be wave field synthesis

or microphone array techniques [128]. It is also reported that GPU is employed for

decoding speech using Hidden Markov Models [136]. This is very close to the acoustic

event recognition addressed in this dissertation.

3.2.3 Other approaches

A solution closely related to the algorithms described in this thesis was proposed by

Chen et al. [137]. Parallel processing on a multiprocessor CPU was employed to speed

up searching for a known audio clip in a large data stream. The method is illustrated

in Figure 3.1. The audio data stream was divided into chunks and each chunk was

processed by a different processor. The acoustic fingerprint technique was employed to

recognize the known audio data. Acoustic features (here MFCCs) were calculated from

the stream and compared to the fingerprint of the sought clip with the use of a Common

Component Gaussian Mixture Model (CCGMM). Chen et al. reported that employing

multiple processors allows for achieving linear speedup on 2 or 4 processors and up to

11.3 times shorter computation time when 16 processors are employed.

It is shown in the literature that numerous operations concerning audio data processing

can be run in parallel. Schimmel finds that in a typical PC sound processing application,

i.e. a digital mixing console (included in every Digital Audio Workstation), mostly con-

sists of time-consuming multiplications and additions of samples from numerous logical
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audio channels [138]. Thanks to the proposed parallel implementation of the mixing

functions the almost constant speedup is achieved for a multicore desktop CPU. The

multiprocessor support for audio effects exploited in audio synthesis and editing is in-

corporated into the software designed by such companies as Native Intruments, Avid,

Steinberg and other.

Another platform which is successfully used for parallel execution of audio data process-

ing is a Field Programmable Gate Array (FPGA). The works of Maka and Dziurzanski

are particularly relevant to the topic of this dissertation. They introduced a System-

on-Chip (SoC) for parallel execution of several audio and video processing algorithms,

including speech recognition [139, 140]. The methods for feature extraction and classi-

fication were implemented on an FPGA. A separate work was devoted to parallel audio

feature extraction [141]. Among others, spectral descriptors, MFCCs and LPC features

were considered. It was shown that the computation time was reduced by a factor of

60% thanks to parallel execution. Schmidt et al. also introduced an FPGA for acoustic

feature extraction for the purpose of Music Information Retrieval [142]. MFCCs and

spectral descriptors were extracted from the signal, including spectral centroid, spectral

flux and spectral rolloff (which are also used in this dissertation, as shown in Section 4.3.

In another relevant work the FPGA was used for acoustical simulations according to the

Digital Huyghens Model for predicting the sound field within a room [143].

Another work, rather distantly related to the system presented in this dissertation, was

described by Blechmann in his master’s thesis [144]. An audio synthesis engine is in-

troduced which exploits the supercomputing abilities through a specialized environment

called SuperCollider. Blechmann introduced an extension to the SuperCollider frame-

work, which allowed for parallel execution of SIMD instructions, pipelining and other

mechanisms. The results show that nearly 4 times speedup is achieved when 4 processors

are used.

Technologies which lie on the boundary of local and distributed processing are also

present. An example of such solution is SoundGrid developed by Intel and Waves [145].

It uses the Audio-over-Ethernet technique to connect devices like mixing consoles, com-

puters, broadcasting stations and processing servers. The processing is offloaded to
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Figure 3.1: Parallel processing employed for audio data retrieval [137]

dedicated servers which handle the operations on audio data stream. The system yields

high performance and very low latency (0.8 milliseconds) and is intended for professional

live audio applications.

Interesting results have been published concerning parallel speech recognition. However

it is not the topic of this dissertation, there is some connection between the field of

speech recognition and sound event recognition. As it was shown in Section 2.2, some

methods, including feature extraction and classification, are common. Kisun You et al.

utilize an Intel i7 multicore processor (with 4 hyper-threaded cores) and an NVIDIA

manycore processor (with 128 pipelines) [146]. The speedup of 3.4× on multicore and

10.5× on manycore processor is achieved. The operation which benefits the most from

parallel processing as far as speech recognition is concerned, is Viterbi decoding [147].

This can be considered the contrary of the problem addressed in this thesis, in which

feature extraction consumes significantly more processing time that classification (see

Section 8.2).
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3.3 Audio processing in distributed architectures

In the recent years supercomputing platforms have gained much popularity. Since the

massive breakthrough in the 1990s more and more powerful machines have been used

to accelerate computations in numerous fields, including particle physics, chemistry, ge-

netics and meteorology. Grid computing is a considerable trend, which extends the

processing power by connecting a few supercomputer clusters together in a computa-

tional grid.

Applications of supercomputing to processing audio data are not frequent. In a very

early work, dating back to 1989, the Cray supercomputing platform is used to model

the sound propagation in oceans [148]. In 2000 a research was reported, in which the

simulation of ultrasonic field is accelerated [149]. A cluster of 24 dual-core Pentium III

processors is used, which compared to the current state of the art can hardly be consid-

ered supercomputing. In another publication concerning acoustic modelling the finite

element method is implemented on two clusters [150]. The first cluster consists of 10

nodes of 2 processors, whereas the second cluster consists of 8 nodes of 2 processors.

The OpenMP library and MPI protocol are employed. It is also worth noting that the

DEISA (Distributed European Infrastructure for Supercomputing Applications) initia-

tive, funded in 2002, reports the research on employing supercomputers to study the

noise in vehicles by means of computational aeroacoustics [151].

Music Information Retrieval (MIR) is a field which often employs supercomputing. How-

ever, in most architectures, the feature extraction operation, closely related to the algo-

rithms described in this thesis, is performed on the client’s side. The supercomputing

servers handle the pattern recognition by comparing the signature of an audio file with

the signatures of the files stored in the database. Relevant research was published by

Jang et al. [32]. In the works of Downie and Futrelle real large scale supercomputing is

employed [31]. A grid of five supercomputers is used with a total of 5000 processors and

40 TB of RAM. The computing power of the grid is estimated to reach 30 Teraflops.

Nowadays the cloud computing paradigm is becoming more and more popular. Such ser-

vices as Google Cloud [152] or Microsoft Azure Cloud [153] facilitate the implementation
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400 A. Czyżewski, J. Kotus, M. Szczodrak

The total excess attenuation AE is a combination of all propagation factors,
mainly meteorological conditions, influence of ground, vegetation. The described
model uses a concept of the sound propagation paths representing the schematic,
straight-line tracks of the sound waves between source and receiver points, where
point sources are obtained by segmentation of the linear source.
Finally, the model yields the total, short-term, A-weighted noise level at the

receiver point which is determined by summing up all contributing point sources
over the propagation paths.

3. The system

This section presents a general overview of the created system. Apart from
describing the main components of the system and on outlining their function-
ality, the main focus is put on presenting the internal structure of main system
modules and outlining techniques used to implement them.

3.1. System architecture

The system architecture is shown in Fig. 1. The system was designed to
conform to international standards, and to ensure robustness, scalability and
open architecture demands (Harmon, Anderson, 2003).

Fig. 1. System architecture.

The engineered system is based on a grid of noise monitoring stations. Those
devices are based on a miniature, nevertheless efficient, industrial PC and set of
sensors to a acquire sound pressure level, together with associated traffic para-
meters and meteorological data. Utilized sound acquisition devices are Class-1,
sound meters implementing the authors’ concept (Czyzewski et al., 2005). Noise
monitoring stations are also equipped with a GPS receiver and means of wire-

Figure 3.2: Architecture of the system employing a supercomputing platform for
dynamic noise map creation [109]

of various algorithms in the computing cloud. In a related field Wenyu et al. imple-

mented an audio fingerprinting algorithm in the cloud [154]. The audio fingerprinting

was employed to search for an audio clip similar to the one presented by the service user.

A notable example of employing supercomputing to sound processing is the work of

Czyżewski et al. [109]. A supercomputing cluster platform is used to calculate dynamic

noise maps. The diagram of the system is presented in Figure 3.2. The data from noise

monitoring stations located in selected places in the metropolitan area of Gdańsk are

collected. Next, the measurement data are sent via GSM network to a server. To obtain

the noise map for the whole metropolitan area a sound propagation model is employed

to estimate the noise levels between the measurement points. The very computationally

demanding operation of calculating the sound distribution in free air, considering the

terrain model, is performed on a supercomputer. Finally, the HTTP server provides

the user with the visualization of acoustic maps. Thanks to the employment of the

supercomputing platform the dynamic noise map is refreshed in an unprecedentedly

short time. The methods employed in the mentioned work are different than those used

in this dissertation, however the resources of the same Academic Computer Center TASK

in Gdańsk are employed, including the Galera cluster. A more detailed description of

this particular supercomputing environment is provided in Chapter 5.

The ”MAYDAY Euro 2012” project, carried out between 2009 and 2012 in Gdańsk

University of Technology, introduces the framework for parallel processing of multimedia
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data streams in a supercomputer environment [3]. The hardware platform, namely

Galera and later Galera+ cluster, is located in Gdańsk University of Technology. One

of the features of the developed framework (named KASKADA) is online processing

of audio and video data streams [155]. During the project, with the participation of

the thesis author, multimedia stream processing services have been implemented on the

supercomputing cluster. Among other services, acoustic and visual surveillance services

are implemented. The usage of the supercomputing cluster allows for significant increase

in the efficiency of multimedia stream processing, which is proved by the results presented

in this thesis.

3.4 Remarks on audio supercomputing

It is a common conviction that audio processing is not the most computationally de-

manding task, especially compared to video processing. However, it is shown in this

chapter that there are several applications in which very time-consuming operations

from the audio domain benefit greatly from parallelism (e.g. sound synthesis, room

acoustics). The question in the context of this dissertation is: is sound event recognition

one of such operations?

It has to be admitted that the signal processing methods which are used for sound event

recognition (mentioned in Chapter 2) and outlined in Chapter 4) are not so computa-

tionally costly that they require parallelism to be executed online. However, parallelism

is still considered in this thesis. As it is shown in Chapter 8, the advantage is scalability

and acceleration of decision making. Thus, acoustic event recognition is proved to be

another successful application of audio supercomputing, which is discussed again at the

end of the dissertation.



Chapter 4

Developed sound recognition

engine

In this chapter the sound recognition engine developed in the work is described in detail.

The variety of algorithms and methods which can be used for the task of acoustic event

recognition have been mentioned in Chapter 2. Basing on the literature studies the

author chooses the best methods for recognizing the considered hazardous events in

practical conditions. Before the specific methods employed can be explained in detail,

some assumptions need to be made regarding the developed engine.

1. Recognized events - It is assumed that the system should recognize 4 classes of

events related to danger, i.e. explosion, broken glass, gunshot and scream. The

fifth class comprises other, typical sound events which do not indicate threatening

situations and is denoted other. The chosen events represent the most frequently

encountered dangerous situations. Such choice of events is also followed in many

related works [42, 65, 80]. Nevertheless, the developed engine is not limited to the

mentioned event classes. It can be easily adopted to recognize other types of events

simply by adding them to the training set. In fact, an example application in which

the proposed methods are used to recognize other types of sound is featured in

Section 7.2.3 (bank operating hall surveillance). A deepened discussion on the

recognized signals is provided further on in Section 6.1.

63
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2. Working conditions - The developed engine should work online on real world

data. It is one of the objectives of the thesis that the algorithms should adapt

to the changing acoustic conditions. Therefore, the engine is capable of both

indoor and outdoor operation. As far as outdoor operation is concerned, the

system is intended to work in urban soundscape. The example indoor environment

featured in the experiments is a hall in which public events take place. As it was

mentioned in Section 2.8, recognizing the events in real-world circumstances is very

challenging and is not addressed by all researchers working in the field of acoustic

event detection.

3. Sample format - Throughout the dissertation we assume that the samples are

provided in floating point 32-bit format and with a sampling rate equal to 48000

samples per second. All engineered algorithms work in the digital domain.

4. Program code - due to the implementation in online mode all algorithms are

written in C++. The library LibSVM [85] is used for Support Vector Machine

classification and FFTW [156] is used for computing the Fourier Transform. The

sound source localization code is the work of a coworker from Multimedia Systems

Department, dr. Józef Kotus. The KASKADA framework, explained in depth in

Chapter 5, was created by the team of the project Mayday Euro 2012. Apart from

that, the code for all algorithms, including the tools for detection, parameterization

and validation of results was developed by the author of the thesis.

5. Localization - The localization of the sound source is treated as an addition to

the recognition system. Hence, the methods for sound source localization are not

featured in this chapter. However, some of the experiments outlined in Chapter 7

feature the localization of acoustic events. The techniques used for localizing the

acoustic events are explained in the sections devoted to pertinent experiments.

The general concept diagram of the designed engine is shown in Figure 4.1. The input

samples are first processed by the detection algorithm. The aim of this algorithm is to

determine, whether the currently processed frame contains the acoustic background (i.e.

typical sounds in a given environment) or a foreground event, which we understand as a

http://www.multimed.org
http://www.multimed.org
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sound whose features are different from typical sounds. The detector’s output equals 1 if

a foreground event is detected and 0 otherwise. At this stage it is yet unknown whether

the event is threatening or not. The frames, for which the detection algorithm yields

positive values, are stored in a buffer. Next, once the event has finished and detector

yields 0 again, feature extraction is performed on the buffered samples. Finally, the

extracted features are fed into the classifier which determines if the event is considered

hazardous and to which class it belongs.

The following sections of this chapter are devoted to the main building blocks of the

engine, namely: detection, buffering, feature extraction and classification.

4.1 Detection

In Section 2.4 the approaches to sound event detection known from the literature were

reviewed. The two prevailing techniques are detection-and-classification and detection-

by-classification. It is more favorable to use the detection-and-classification approach

in this thesis. Firstly, this approach is computationally lighter since it does not require

the classifier to constantly process the input audio data. Moreover, it enables threshold-

based event detection mechanism which is highly flexible. As it is shown in the following

subsections, to design a new detector, the decision parameter has to be redefined only,

with no need for establishing a new model (as it is required e.g. in GMM-based detec-

tion). Finally, the threshold-based detection enables computationally simple and highly

efficient adaptation of detection threshold, which, as the experiments featured in the

dissertation prove, contributes to the robustness of the recognition engine.

DETECTION 

BUFFERING 
FEATURE 

EXTRACTION 
CLASSIFICATION 

input: samples 

output: decision 
N 

Y 

Figure 4.1: General concept diagram of the sound recognition engine
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4.1.1 Detection principle

According to the principle known from the literature, the detection of acoustic events

is performed by comparing the value of the detection parameter d with the threshold

value t. The detection parameter can be of various nature (e.g. sound level, periodicity,

kurtosis etc.) and its choice depends on the type of event which we want to focus

on. If the detector should recognize e.g. short impulsive sounds, sound level calculated

in short frames would be a good choice of the detection parameter. However, if the

detector should respond to tonal sounds, a periodicity-related parameter would be a

better choice. Nevertheless, the detection methodology and the adaptation mechanisms

presented in this section are universal, as far as the choice of the feature which determines

the detection is concerned. Henceforth, we will refer to the detection parameter as d. The

definitions of specific detection parameters are featured in Section 4.1.2. The decision

function, which yields 1 if the currently analyzed sound is a foreground event and 0

otherwise, can be defined as follows:

D(i) =


1 if d ≥ t

0 if d < t

(4.1)

where i is the index of the sample frame for which the detection parameter is calculated.

The length of the detection frame is also dependent on the purpose of the detector.

Short frames (25-100 ms) are useful for detection of impulsive sounds whereas longer

frames (up to 1 second) will yield better results of detection of periodic sounds.

The block diagram of the detection algorithm is presented in Fig. 4.2. The initial phase

is learning, in which the detector is insensitive to acoustic events and gathers the profile

of the acoustic background. The length of the learning phase can be adjusted depending

on the characteristics of the acoustic background and the complexity of the model. The

typical learning time is 30-60 seconds. Once the learning phase is completed, the detector

compares the detection parameter of the current frame with the threshold value. If the

threshold is exceeded, the algorithm yields a positive detection result. If the current

detection parameter value is below the threshold, it is used to update the background
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learning mode over threshold detection
Y

update
threshold/profile

N

N

Y

calculate detection
parameter

detection lock

Y

Figure 4.2: Block diagram of the acoustic event detection algorithm

profile, thus influencing the adaptive threshold. It is possible in this architecture that the

detection parameter exceeds the threshold for too long and since no update is performed

while detection is triggered, the algorithm becomes locked in detection state. To avoid

this deadlock, a detection time counter is employed. If the detection is triggered for an

excessive amount of time (e.g. 30 seconds), the detector goes back to learning mode in

order to adapt to the new background.

The key parameter of the detection algorithm is sensitivity, denoted s. This parameter

determines how far from the typical values of detection parameter the threshold should

be set. The lower the sensitivity, the lower number of events events will be detected.

The higher the sensitivity, the more events will be detected, but at the cost of increased

false alert rate. Therefore, the sensitivity parameter influences the rates of True Positive

(TP) and False Positive (FP) detections. It is defined that the sensitivity of the detector

ranges from 0 to 1. How these values are translated to the value of detection threshold

t, it depends on the intrinsics of the detection algorithm and adaptation approach em-

ployed. The details concerning this mapping are featured in the following subsection.

4.1.2 Detection algorithms

The choice of detection parameter is an important aspect and should be matched to

the types of events we intend to detect (see the work of Dufaux for deepened discussion

of the subject [65]). In a series of draft experiments several features for detecting the

considered hazardous events were compared. As a result, four detection parameters and

thus four detection methods were arrived at. All the described detectors are compliant
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with the principle outlined in Section 4.1.1. The differences lie in the definition of the

detection parameter d and threshold t, as well as on the mapping of sensitivity s to

threshold value t.

Impulse detector

The Impulse detector algorithm is designed to detect short impulsive sounds, e.g. gun-

shots. The detection parameter is the equivalent sound level in a time frame containing

N samples:

d = Leq[dBSPL] = 10 · log

(
1

N

N∑
n=1

x[n]2

)
+ Lnorm (4.2)

where n is the sample index and the normalization constant Lnormensures that the sound

level is expressed in decibels relative to 20 µPa. Throughout the dissertation N = 512

samples is most often used, which corresponds to 10.6 ms at 48000 samples per second.

The threshold level t is obtained by adding a margin to the equivalent sound level. For

sensitivity s equal to 0, the margin is 20 dB, whereas for s = 1, the margin equals 5 dB.

t[dB] = d+ 20− s/15 (4.3)

Speech detector

The detector suited for discerning vocal sounds from the acoustic background is based

on the Peak-Valley Difference (PVD) parameter. The parameter is defined in (4.27)

in Section 4.3. It expresses the distance between the peaks and troughs in the power

spectrum of the signal. The PVD parameter yields high values for periodic signals,

whereas it yields small values for noisy signals, which typically constitute the acoustic

background. Therefore it is a good parameter for detecting such events as screams. To

obtain the threshold t the PVD value is multiplied by 2 for sensitivity s equal to 1, and

by 20 for sensitivity equal to 0.



Chapter 4. Developed sound recognition engine 69

t = d · (20− 18s) (4.4)

The frame, in which the PVD parameter is calculated, should be long enough to ensure

adequate spectral resolution of the Fourier analysis. Typically throughout the disser-

tation, 4096-point-frame is used. Therefore, the temporal resolution of this detection

algorithm is worse than that of Impulse Detector.

Variance detector

The Variance detector is conceived to detect sudden changes in the spectral structure

of the signal. It was established in draft experiments, that the occurrence of an acoustic

event leads to changes in the relation of energy in some specific frequency bands. Also in

the course of the work 8 features were identified, which reflect distinctive energy ratios.

Hence, in this detection algorithm we use spectral energy features SE1 − SE8, defined

later on in Section 4.3, to calculate the detection parameter. The variance of the SE

features is examined, defined as:

dn =
1

I

I∑
i=1

(
SEn(i)− SEn

)2
(4.5)

where SEn(i) is the value of the n-th spectral energy feature in frame i, I is the number

of recent frames considered, and SEn is the mean value of SEn from last I frames. In

fact, 8 detection parameters are calculated, for 8 spectral energy features. The threshold

is obtained by multiplying the current variance by 2 for sensitivity s equal to 1 and by

16 for sensitivity equal to 0.

tn = dn · 24−3s (4.6)

A sudden change in the spectrum of the signal causes the feature variance from last I

frames to rise. If variance of any of the 8 examined features exceeds the threshold, the

detector’s output equals 1.
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Histogram detector

The Histogram detector algorithm resembles the GMM detector [42]. The signal is

analyzed in 30 1/3-octave bands. A histogram of the SPL values in each 1/3-octave

band is created. The detection parameter is an estimate of the probability of the current

spectrum of the signal:

d = −
30∑
i=1

hi(Xi) (4.7)

where hi(Xi) is the value of the normalized histogram for band i and for SPL value Xi

in i-th 1/3-octave band. The minus sign is added for compliance with the definition

4.1. The threshold t is obtained by dividing the current detection parameter by 2 for

maximum sensitivity and by 32 for minimum sensitivity.

t = d · 2−5+4s (4.8)

4.1.3 Adaptation

It is shown in related works that adapting the detector to the changing conditions is

beneficial in the context of sound recognition [40]. Several adaptation strategies were also

employed in voice activity detectors [64]. In this work original approaches to adaptation

of detection thresholds are featured. In general, the aim of adaptation is to automatically

update values of the threshold t to match the changes of the acoustic background. The

assumptions for this operation are:

• the threshold should follow the changes in the level of the detection parameter in

the environment, i.e. it should be lowered when the background level of d is low

and elevated when the background level of d is high;

• the threshold should react to a general trend over time rather than to instantaneous

characteristics of the acoustic background, hence a time constant needs to be

introduced in order to achieve smooth course of t;
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• the threshold should be adapted more slowly when the background is quiet and

more rapidly if there are sudden changes of d present in the background;

• the threshold should also be matched to the dispersion of d values in the environ-

ment in order to control the rate of false alerts.

From these assumptions, three different strategies for adaptation of the detection thresh-

old are implemented.

Single adaptation

In the case of single adaptation the value of t is updated to match the changes in the

acoustic background using exponential averaging. The initial value of the threshold is

calculated as in Equation 4.3, 4.4, 4.6 or 4.8. Next, for every frame of sound samples

a new value of threshold is determined by substituting d with the up-to-date value,

calculated in the current frame. The current value of t is calculated as follows:

t = tnew · α+ told · (1− α) (4.9)

The constant α ∈ (0; 1) is related to the adaptation time of the detector, i.e. the time

constant of averaging. The adaptation time in seconds is defined as:

Ta[s] =
N

SR · α
(4.10)

where N denotes the number of samples in the detection frame and SR is the sampling

rate of the acoustic signal (here 48000 samples per second). The lower the value of Ta

(higher α), the faster the threshold is adapted to the changes in the acoustic background.

The time step in seconds between new and previous value equals N/SR.

Double adaptation

The concept behind double adaptation is that the threshold should be adapted not only

to match the mean level of the detection parameter, but also to match its dispersion. If

the dispersion of d is large, the threshold should be higher, in order to reduce the rate
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of false alerts. Contrary, if the dispersion is low, the threshold can be lowered, so as

to detect more subtle changes in the acoustic background. First, we assume a normal

distribution of random variable D with the probability density function (PDF):

p(d) =
1

σ
√

2π
e−

(d−µ)2

2σ2 (4.11)

The PDF is adapted by exponential averaging of the mean µ and standard deviation σ

of the distribution:

µ = µnew · α+ µold · (1− α) (4.12)

σ = σnew · α+ σold · (1− α) (4.13)

The advantage of this approach is that the probability of false alarm (PFA) can be

controlled by setting the threshold to a value according to the cumulation distribution

function (CDF):

F (t;µ, σ) = P (D > t) =
1

2

[
1 + erf

(
t− µ
σ
√

2

)]
= PFA (4.14)

where erf denotes the error function. Hence, the value of t is obtained using the inverse

CDF (quantile function):

t = F−1(1− PFA) = µ+ σ
√

2erf−1(1− 2PFA) (4.15)

while the following approximation of the inverse error function is used ([157]):

erf−1(x) ≈ sgn(x)

√√√√√( 2

πa
+
ln(1− x2)

2

)
− ln(1− x2)

2
−
(

2

πa
+
ln(1− x2)

2

)
(4.16)

with a ≈ 0.147. The µnew and σnew are calculated over a time constant, equal to one

second.

Another benefit of this adaptation strategy is that there is no longer need for mapping the

sensitivity to threshold arbitrarily, as it was defined in Section 4.1.2 (see Equation 4.3,

4.4, 4.6 and 4.8). Thanks to the employment of the quantile function, only the false alert
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rate has to be determined a priori, regardless of the definition of detection parameter.

We assume that the minimum sensitivity s = 0 maps to PFA = 10−6 whereas s = 1

translates to PFA = 10−2.

Triple adaptation

In the first two approaches exponential averaging of both threshold values, mean µ

and standard deviation σ was performed with the constant α related to the adaptation

time defined in Equation 4.10. In the last presented approach the adaptation time also

depends on the acoustic background. Let us consider a situation in which the average

level of the detection parameter rises slowly, but fast enough to exceed the threshold,

thus yielding a false alert. At some point in time, the mean µ starts to ascend due

to a change in the environment. The rate of this rise can be determined by a linear

regression:

aµ =

I
I∑
i=1

i · µ(i)−
I∑
i=1

µ(i)
I∑
i=1

i

I
I∑
i=1

i2 −
(

I∑
i=1

i

)2 (4.17)

where i is the frame index and I is the number of frames taken into calculation, which

should be large enough to cover at least one second. We can assume that µ will meet

the current threshold value t roughly after a time equal to:

T [s] =
N (t− µnew)

aµ · SR
(4.18)

where N denotes the frame size in samples, SR denotes the sampling frequency and µ

denotes the mean value of the PDF of the detection parameter. We assume that this

value should be assigned to the new adaptation time in order to enable the threshold to

update its value before the noise floor exceeds its level. Once again taking Equation 4.10

into consideration we obtain the following formula for α:

α =
|aµ|

t− µnew
; t > µnew (4.19)
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It is advisable to limit the adaptation time to predefined minimum and maximum values

(e.g. 5-60 seconds) in order to avoid too fast adaptation or incorrect values of α. After

obtaining the adapted α, the parameters (µ, σ) are adapted as in Eqs. (4.12) and (4.13).

Next, the procedure presented in double adaptation approach is followed.

Adaptation example

The example of detection threshold adaptation is shown in Figure 4.3. The figure shows

the changes of the detector’s threshold during 24 hours of operation for three different

adaptation times: 10 min, 30 min and 60 min. The detection parameter in this example

is equivalent sound level in 10 ms frames. The employed adaptation approach is single

adaptation. The analyzed audio data originates from a microphone installed near a busy

street (traffic noise is present). It is visible that the detector adjusts its threshold to the

changes in the acoustic environment. At night the detection threshold is ca. 15 dB lower

than during rush hours. It enables the detection of more quiet sounds. The longer the

adaptation time Ta, the smoother the threshold curve. However, the time the algorithm

needs to react to a change in the acoustic environment is extended.

In Figure 4.4, an example of threshold changes depending on the adaptation strategy

employed are presented. A signal with varying acoustic background and distinct spikes

related to foreground events is utilized. In this example the Impulse detector is con-

sidered. It can be seen that the threshold obtained with double adaptation follows the

changes in the acoustic background more closely than the detector with single adap-

tation, which would yield a few false detections in this case. In the triple adaptation

approach the changes in adaptation rate are also apparent. The threshold rises faster

for more quickly varying parts of the analyzed signal.

4.2 Buffering

Due to assuming the detection-and-classification approach, a buffer needs to be im-

plemented, which stores the samples of the detected events before they are offered for

feature extraction and classification. The principle of the buffering algorithm is simple.
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Figure 4.3: Changes of adaptive threshold during 24 hours of detector’s operation
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The frames in which the detection parameter exceeds the threshold are stored in the

memory until the parameter falls below the threshold, or until the maximum length is

exceeded. The maximum length of the buffer (blen) determines the maximum capacity

of the buffer. If this length is exceeded, one buffer is closed and offered for feature ex-

traction. whereas the next samples are written into the second buffer. From the point of

view of the sound recognition engine, the samples in the second buffer constitute another

sound event. The purpose of this mechanism is to avoid treating two events, which are

close together in time, as one event. However, it also leads to dividing acoustic events

which are longer than blen into more than one event (see Figure 4.5). Fortunately, such

events can be later joined after the final decision is obtained.
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Figure 4.5: Example of buffering of acoustic events: a) buffer long enough to fit whole
event b) event too long to fit in one buffer

4.3 Feature extraction

As it was outlined in the literature review, all considerable sound recognition applica-

tions follow the paradigm of describing the signal in the feature space (see Section 2.3).

Moreover, there are several groups of features which are repeatedly used for sound event

recognition (e.g. spectral shape features, MPEG-7 descriptors, MFCCs). This approach

is also followed in this thesis. We consider the typical features used in related work with

an addition of some original parameters formulated as a result of draft experiments. All

the features defined in this section constitute the large feature vector, which is later

subject to feature selection, performed in Section 6.2.2. The reduced feature vector is

then employed for classifying the events.

In Section 2.3 it was mentioned that in online natural sound events classification it is

beneficial to extract the features in short-time overlapping frames rather than from the

whole signal containing the event. The feature vector is extracted from each short-time

frame xi and the vectors are put together in a feature matrix F. If FE denotes the
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feature extraction function, the process can be formally written as in Equation 4.20:

F(x) =


|

FE(x1)

|

|

FE(x2)

|

...

|

FE(xi)

|

...

|

FE(xI)

|


xi =

[
x[i · h] x[i · h+ 1] ... x[i · h+ af − 2] x[i · h+ af − 1]

]T
(4.20)

where af denotes the length of the analysis frame and h denotes the analysis hop, i.e.

the distance between the two adjacent frames. In further consideration we will use the

quantity of the overlap factor (OL) instead of the analysis hop. The overlap factor

equals (af − h)/af . The length of the analysis frame and, in particular, the overlap

factor have a strong influence on required processing time. For instance, changing the

overlap factor from 25% to 75% leads to a triple increase in the number of short-time

frames, which extends the time needed to extract the features from the buffered event.

In the following subsections we discuss the different types of features considered for the

task of acoustic event classification. Both temporal, spectral and cepstral features are

considered. It is shown in the literature that all types of features can provide important

information in the process of acoustic event recognition. All features considered in the

work are listed in Table 4.1. The reference to the equation with the feature definition

or the literature from which it is adopted is also provided.

4.3.1 Spectral shape features

As it was shown e.g. in the work of Peeters [46], the spectral shape features reflect

the shape of the power spectrum of the signal, which is useful for discerning between

different types of events. Most of the considered spectral features are compliant with

the MPEG-7 audio standard [56]. The MPEG-7 descriptors have been successfully used

for acoustic event recognition in a number of works [34, 40, 42]. The calculation of the

spectral features is preceded by Power Spectral Density estimation. In this thesis Welch’s

method is used [161]. The employed length of the DFT (Discrete Fourier Transform) is

equal to 4096 points and 50% overlap is used. In notation we use either Px[k] (where k

denotes spectral bin index) or Px(f) (where f is discrete and denotes frequency bin in
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Table 4.1: List of all audio features

symbol feature count reference

Spectral Shape Features
ASC Audio Spectrum Centroid 1 4.22 [56]
ASE Audio Spectrum Envelope 34 4.23
ASS Audio Spectrum Spread 1 4.24 [56]
PVD Peak-Valley Difference 1 4.27 [37]
SE Spectral Energy 8 4.25 [158]

SFM Spectral Flatness Measure 1 4.26 [56]
SFMa Spectral flatness Measure in bands (A) 24 4.26
SFMb Spectral flatness Measure in bands (B) 7 4.26
KRT Spectral kurtosis 1 4.28 [159]
SRF Spectral Roll-Off 1 4.31 [46][160]
SSL Spectral Slope 1 4.32 [46]
SPE Speech Energy 1 4.33

Temporal features
LAT Log-Attack Time 1 4.34 [56]
CF Crest Factor 1 4.35 [46]

PRD Periodicity 1 4.36 [46]
TC Temporal Centroid 1 4.37

ZCR Zero Crossing Rate 1 4.38 [46]
Cepstral features

CCF Cepstral Crest Factor 1 4.39
MFCC Mel-Frequency Cepstral Coefficients 24 4.43 [51]

total: 112

Fourier analysis) to express the power spectral density function of signal x. The relation

between k and f is as follows:

k

N
=

f

SR
(4.21)

where N is number of points in DFT (here 4096) and SR is the sampling rate (here

48000 samples per second). The resolution of the Fourier analysis is therefore equal to

r = SR/N = 11.7 Hz.

The Audio Spectrum Centroid (ASC) feature is calculated as a 1-st order normalized

spectral moment according to Equation 4.22.

ASC =

∑
f

Px(f) · f∑
f

Px(f)
(4.22)
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The Audio Spectrum Envelope group of features expresses the signal’s energy in 1/3-

octave bands relative to the total energy. Provided that the limits of the 1/3-octave

band equal f1 and f2, the ASE feature in m-th band can be extracted according to

Equation 4.23.

ASEm =

f2∑
f1

Px(f)∑
f

Px(f)
(4.23)

A total of 33 1/3-octave bands were taken into consideration spanning from 11 Hz to

24000 Hz.

The Audio Spectrum Spread Parameter equals the 2-nd order normalized central spectral

moment and is calculated according to Equation 4.24.

ASS =

∑
f

Px(f) · (f −ASC)2

∑
f

Px(f)
(4.24)

In his research Żwan found out that hazardous events (scream, broken glass or gunshot)

have distinctive frequency bands, whose energy ratio differs from one event type to

another [158]. This leads to the formulation of Spectral Energy (SE) features. They are

calculated from the power spectral density Px(f) as a ratio of energy in two frequency

bands - [f1; f2] and [f3; f4] according to the formula in Equation 4.25.

SE =

f2∑
f1

Px(f)

f4∑
f3

Px(f)

(4.25)

The limits of the frequency bands are shown in Table 4.2.

The next descriptor, the Spectral Flatness Measure, contains the information about the

shape of the power spectrum. The SFM features yields values close to 1 when the

signal is noise-like and close to 0 when the signal has strong harmonic components. The

formula for SFM calculation is given in Equation 4.26:
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Table 4.2: The limits of frequency bands for Spectral Energy features calculation

feature f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz]

SE1 100 1000 0 24000
SE2 1000 2000 0 24000
SE3 1300 1700 0 24000
SE4 4000 7000 0 24000
SE5 7000 12000 0 24000
SE6 4000 7000 1000 2000
SE7 2000 4000 1000 2000
SE8 100 500 7000 12000

SFMm =

k2−1∏
k1

Px[k]
1

k2−k1

1
k2−k1

k2−1∑
k1

Px[k]

(4.26)

where k1 and k2 denote the limits of the m-th frequency band. The indices k1 and k2

translate to frequencies f1 and f2 with the formula in Equation 4.21. The feature is

calculated in 3 variants. The broadbanded parameter SFM is calculated over the whole

spectrum (f1 = 0; f2 = 24000Hz). The SFMa features are obtained from 1/3-octave

bands (24 bands from 71 to 16000 Hz). The SFMb parameters are determined in 7

1-octave bands from 500 Hz to 16000 Hz.

The Peak-Valley Difference feature is a modification of the parameter described in the

literature [37] and is calculated according to Equation 4.27.

PV D =

N/2∑
k=1

Px[k] · V [k]

N/2∑
k=1

V [k]

−

N/2∑
k=1

Px[k] · (1− V [k])

N/2∑
k=1

(1− V [k])

(4.27)

where P [k] denotes the power spectrum of the signal, N equals the number of DFT

points and V [k] is a binary vector, in which ones are located in the points in which

spectral peaks are detected. To find the locations of the spectral peaks, a grid search is

performed. Assuming the peaks are equally spaced and the space between the peaks lies

in the range between 80 Hz and 800 Hz, the space between peaks which yields maximum

PVD is chosen.
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Spectral Kurtosis is a useful parameter for non-stationary signals [159]. The feature is

calculated from the 2-nd order centralized moment of the power spectrum M2c and 4-th

order centralized moment of the power spectrum M4c according to Equation 4.28.

KRT =
M4c

M2
2c

− 3 (4.28)

where:

M4c =

∑
f

Px(f) · (f −ASC)4

∑
f

Px(f)
(4.29)

M2c =

∑
f

Px(f) · (f −ASC)2

∑
f

Px(f)
= ASS (4.30)

The next parameter is Spectral Rolloff and it denotes the frequency under which 95%

of the total energy is accumulated [46]. It was largely used by Kos et al. [160] for sound

event recognition.

SRF = min{fc :

fc∑
0

Px(f) ≥ 0.95 ·
∑
f

Px(f)} (4.31)

The Spectral Slope parameter is the slope of the linear regression of the power spectrum

[46]. It is calculated according to the formula:

SSL[1/Hz] =

N
∑
k

fk · Px[k]−
∑
k

fk ·
∑
k

Px[k]

N
∑
k

f2
k −

(∑
k

fk

)2 (4.32)

where fk denotes the center frequency of the k-th spectral bin.

The final spectral shape parameter introduced reflects the ratio of energy in the speech

band to the whole energy of the signal. It is meant for discerning between speech and

non-speech sounds. The feature Speech Energy is defined as follows:
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Figure 4.6: Example spectral shape parameters of breaking glass (left) and scream
(right) event

SPE =

3400∑
300

Px(f)

24000∑
0

Px(f)

(4.33)

An example interpretation of the chosen spectral shape features is shown in Figure 4.6.

The power spectra of a breaking glass and scream event are plotted - normalized, in

decibel scale. Four parameters are depicted: Audio Spectrum Centroid ASC, Audio

Spectrum Spread ASS, Spectral Roll-Off SRF and Spectral Slope SSL. The difference in

the values of the parameters are apparent. The energy of the breaking glass event is

concentrated in higher parts of the spectrum, compared to scream event. Hence, it yields

higher values of both ASC and SRF features. Moreover, the spectrum of glass sound

is wider spread, which is reflected by the value of the ASS parameter. In contrast, the

energy of scream is concentrated in lower frequencies, and the spread of the spectrum

is smaller. Also, the energy of scream diminishes faster in the frequency scale, which is

reflected by the value of the Spectral Slope descriptor. Such differences in the parameter

values are a basis for training the classifier to discern between different types of events.

4.3.2 Temporal features

The temporal features are calculated directly from the time-domain representation of

the event - the digital signal x[n]. They reflect the shape of the waveform and can be
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very useful for discerning between different types of acoustic events.

The Log-Attack Time (LAT ) feature is calculated from the signal’s envelope. The RMS

envelope is calculated in 512 sample frames (10.7 milliseconds at 48000 S/s). The max-

imum of the envelope is sought. According to the MPEG-7 standard, the LAT feature

is determined according to the formula:

LAT = log10(imax) (4.34)

where imax is the index of the frame in which the maximum of the envelope is found.

The lower the imax, the closer to the beginning of the signal is the peak located. Thus,

the attack time is considered shorter.

The Crest Factor parameter is a simple descriptor of signal shape. Here it is defined as

a ratio of the signal’s RMS (root-mean-square) value to the peak value:

CF =

√
1
N

N∑
n=1

x[n]2

N
max
n=1
|x[n]|

(4.35)

where N is the number of samples in the signal. The lower the CF parameter, the more

impulsive the character of the signal. While many sources define crest factor as peak to

rms, we use rms to peak instead, since it is by definition constrained to the interval [0;1].

Periodicity is a feature typically calculated from the autocorrelation function [46]. The

autocorrelation of the digital signal is calculated according to the formula:

Rxx(m) =


N−m−1∑
n=0

x(n+m) · x(n); m ≥ 0

Rxx(−m); m < 0

(4.36)

Next, the maximum of the autocorrelation is sought between the indicesm1 = SR/700,m2 =

SR/80, where SR denotes the sampling rate. The limits correspond to the pitch range

between 80 Hz and 700 Hz which is enough to cover the pitch range of human voice and
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Figure 4.7: Example of searching for the maximum of the autocorrelation function

many other sounds. The Periodicity feature equals the maximum of the autocorrelation

function in that range. The process of searching for the maximum of the Rxx function

is shown in Figure 4.7.

The Temporal Centroid feature is calculated as a 1-st order moment of the signal’s energy

in the time domain:

TC[s] =
1

SR

N∑
n=1

n · x[n]2

N∑
n=1

x[n]2
(4.37)

where SR denotes the sampling rate, n is the sample index and N is the number of

samples in the signal.

Zero Crossing Rate is a well-known feature used for identifying noisy and deterministic

signals. It is calculated according to the formula:

ZCR =
1

2N

N∑
n=2

|sgn (x[n])− sgn (x[n− 1])| (4.38)

where N is the total number of samples in the signal x[n].
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Figure 4.8: Example temporal parameter of gunshot (left) and scream (right) event

In Figure 4.8 example temporal parameters of gunshot and scream event are depicted.

The differences in the time domain representations of these event are reflected by the

values of the illustrated parameters: Crest Factor CF, Temporal Centroid TC and Zero

Crossing Rate ZCR. The gunshot event is impulsive, so it yields lower crest factor (note

in Equation 4.35 that crest factor is here defined as the reciprocal of its most common

form). The temporal centroid of the scream event is also much higher and approximately

in the middle of the event, which shows that the energy is evenly distributed in time.

Finally, the ZCR parameter for the high-pitched tonal scream event is higher than for

the noisy gunshot event.

A common technique to describe the temporal properties of sound bases on the so-

called ADSR envelope. It divides the sound into four stages: Attack (A), Decay (D),

Sustain (S) and Release (R). Even though the ADSR envelope was originally observed

for musical sounds, the four phases can also be distinguished in other sound events.

For example, as visible in Figure 4.8, scream event has all the ADSR phases, yet the

gunshot sound lacks the sustain phase. The temporal properties of the considered sound

are analyzed in more detail further on in Section 6.1. Thus, the analysis in means of the

ADSR envelope could lead to some distinction between the mentioned classes of sounds.

However, the ADSR parameters are not considered in this work due to the assumed

approach to feature extraction. As it was defined in Section 4.3, the parameters are

extracted in short-time frames and then fed into the classifier. Hence, the sound event

is not analyzed as a whole and the features describing the overall shape of the event
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are not considered in the classification process. Moreover, the signal envelope is easily

distorted by additive noise. It could be difficult to extract the information about the

ADSR envelope i noisy conditions. Nevertheless, the holistic temporal properties of

sounds, including the ADSR envelope, should be considered in future research.

4.3.3 Cepstral features

The cepstral features are known to depict the shape of the spectral envelope and have

been employed in a number of related works. Apart from the widely used MFCCs,

we introduce Cepstral Crest Factor - CCF. Calculating the crest factor in the cepstral

domain provides information about the noisiness of the signal. Tonal (or close to tonal)

signals have a distinct peak in the upper part of the cepstrum. The CCF feature is

calculated according to the formula:

CCF =

√
1
K

K∑
k=1

C[k]2

K
max
k=1
|C[k]|

(4.39)

where C[k] is the cepstrum of the signal:

C[k] = F {F{x[n]}} (4.40)

where F denotes the Fourier transform (here DFT); k is the quefrency bin index and K

is the number of quefrency bins (equal to half the number of frequency bins in DFT).

The feature vector is completed with Mel-Frequency Cepstral Coefficients - MFCC. The

MFCC features are calculated with a generic method described in the literature [51, 91].

First, a mel filterbank is applied to the power spectrum of the signal to calculate the

energy in each of the mel-frequency bands. The following formula for calculating the

mel-scale frequency is used:

M(f) = 1127 · ln
(

1 +
f

700

)
(4.41)
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where f is the frequency in Hz. Next, M = 24 triangular filters placed uniformly in

the mel-scale are applied. The energy of the m-th mel-frequency band is calculated as

follows:

Em =
∑
k

Hm[k] · Px[k] (4.42)

where Hm[k] is the digital frequency response of the m-th triangular filter, Px[k] is

the power spectral density in terms of frequency bin index k. Finally, the MFCCs are

obtained by applying logarithm and DCT to the calculated energy coefficients.

MFCCm =
M−1∑
k=0

w(k) logEk · cos
[
πm(2k + 1)

2M

]
(4.43)

where k is the frequency bin index, m is the index of computed MFCC coefficient, M

denotes the number of subbands considered and the weight w(k) equals
√

1
M for k = 0

and
√

2
M for k > 0.

4.3.4 Normalization

The normalization of the signal features is essential for correct operation of the SVM

classification algorithm employed in this work. We employ min-max normalization. The

normalized parameter value vnorm is calculated according to the formula:

vnorm =
v − vmin

vmax − vmin
(4.44)

where vmin and vmax are the global minimum and maximum values of the parameter.

The normalized feature ranges from 0 to 1. If possible, the vmin and vmax values should

be defined a priori. If not, the maximum and minimum values of the signal feature are

extracted from the training set and stored together with the classification model.
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4.4 Classification

From a number of classification techniques featured in the literature and described in

Section 2.5, the Support Vector Machine (SVM) classifier is employed for discerning be-

tween the different types of acoustic events. This algorithm is reported to yield compara-

ble or better accuracy than HMM [75, 87]. Its great advantage is smaller computational

cost than HMM or GMM and faster training than ANN. It renders the SVM algorithm

particularly suitable for online operation, which is assumed in this work. Finally, SVM is

a good tool for modeling the general properties of sounds, rather than the fine temporal

structure. In the author’s opinion it is a good trait as far as sound event classification

is concerned.

The LibSVM C++ library is used [85] for implementation. The classifier is fired sep-

arately for a feature vector obtained from each short-time frame (whose length equals

af and overlap factor equals OL). Thus we follow the bag-of-frames approach. A mul-

ticlass SVM model with one-vs-one technique is employed. So, in fact for 5 classes

of sounds, 10 binary SVM classification models are created (for each pair of classes).

LibSVM also enables the use of a probability model, which outputs class probabilities.

The probability output reflects the certainty that the classified signal belongs to one of

the predefined classes: explosion, broken glass, gunshot, scream and other. The exam-

ple output of the classifier recognizing a scream event is presented in Figure 4.9. The

certainties pertaining to each class for each short time frame are plotted.

The maximum certainty rule is used for making the decision based on results from the

respective short-time frames. Moreover, the thresholds for each class need to be defined,

to limit the rate of false alerts. It is required that the probability of event belonging to a

certain class exceeds a predefined threshold for this class to be taken into consideration

while making the decision. Thus, the sensitivity of the classifier can be adjusted. By

lowering the threshold for a given class, more events can be qualified into this class,

which potentially increases the TP rate, however at the cost of increasing the false

alert rate. An experiment aiming at finding the optimum class thresholds is featured in

Section 6.3.2.
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Figure 4.9: Example output of the SVM classifier

The important issue concerning classification is the critical section of the classifier. The

operations required for recognition of acoustic events constitute a processing flow which

is expressed with the following pseudocode:

• Detection thread

if detection_parameter > threshold

start buffering

end

if buffering & detection_parameter < threshold

stop buffering

end

• Classification thread

if buffer_ready

if classifier_busy

wait

else

classifier_busy := true
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classify buffer

classifier_busy := false

end

end

The detection and the classification of acoustic events constitute separate threads. The

analysis of the code indicates a possibility that, in cases where a new event has been

detected and the classifier is still busy, the program has to wait until the classifier is

free. The aim is to avoid conflicts in access to the memory, in particular in accessing the

signal samples by the feature extraction functions. The sound events which are waiting

for classification are organized in a FIFO queue. The phenomenon of the critical section,

can in some cases lead to backlogs and increase the decision time. This problem is dealt

with in Section 8.2.



Chapter 5

Implementation on a

supercomputing cluster

The algorithms introduced in Chapter 4 are implemented in the environment of a su-

percomputing cluster. In this chapter the details regarding the implementation are

provided. The technical infrastructure and the software framework utilized in the work

are presented. Also, the supercomputing services created by the author of the thesis

are introduced. The sources of audio stream, providing the input data, are specified.

Finally, the client application with a specialized graphical interface developed in Mul-

timedia Systems Department, which enables to the user to execute the services and

observe the results, is presented.

It has to be noted that before the implementation on the supercomputing platform all

the engineered algorithms were prepared for online operation. The created C++ code

was analyzed and adjusted to ensure fast and reliable execution as well as cross-platform

compilation.

5.1 KASKADA platform

The experiments featured in this dissertation are carried out in the environment of

a supercomputing cluster, exploiting a specialized framework for parallel processing of

91
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Figure 5.1: Concept diagram of the KASKADA platform [155]

multimedia data streams - KASKADA platform [121, 162–165]. The Polish abbreviation

KASKADA stands for Context Analysis of Camera Data Streams for Alert Defining

Applications. Both the framework and the supercomputer constitute the infrastructure

of the project MAYDAY Euro 2012. In the following subsections the architecture of the

platform and the mechanisms designed to facilitate multimedia stream processing, are

described.

5.1.1 Platform architecture

The concept diagram of the KASKADA platform is shown in Figure 5.1. The data

sources, i.e. cameras and microphones, provide the input data for the platform. The

infrastructure of the platform comprises the supercomputing cluster and the stream

and message servers. Outside the platform, an application server is set up. The ap-

plication server is equipped with a user’s console (UC), accessible by Internet. The

application server offers the KASKADA services as web services, according to the Soft-

ware as a Service principle. The user’s applications also have the access to multimedia

data streams and messages. The scenarios specified in the applications are realized by

complex services. The complex services are composed of simple services, which com-

prise computational tasks. The tasks are executed on the supercomputing cluster, thus

performing the processing required in the application.
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For better understanding of this concept, let us consider a scenario related to sound

recognition. The application offers a functionality of recognizing hazardous acoustic

events in a chosen audio stream. The user chooses the source, configures the parameters

(e.g. sensitivity of event detection, type of detected events) and starts the application.

The application sends a request to the KASKADA platform to start a pertinent service.

The complex service related to recognition of acoustic events comprises three simple

services: one for preprocessing of audio data stream, one for sound recognition and one

for presentation of results (see Section 5.1.3). The computational tasks required by the

service are related to the actual operations on the input data which are needed to detect

the acoustic events. These operations, i.e. detection, buffering, feature extraction and

classification, are described in Chapter 4. The input data for the processing tasks is

delivered by the stream server, which on the other end connects to the data sources

(i.e. microphones). When a hazardous acoustic event is detected, a message is sent to

the message server, which passes it on to the client’s application. The user is able to

listen (or watch) the input stream and to see the incoming events in the application’s

graphical interface.

The layer model of the KASKADA plaftorm, shown in Figure 5.2, gives more insight

into the organization of the framework. The top layer is the application layer, which

is seen from the user’s point of view. The scenarios exploited in applications are real-

ized by complex services. These comprise simple services, which execute computational

tasks. The computational tasks are the specific implementation of the stream analysis

algorithms [163]. The processing tasks may be single threads, or may be composed of

several processes or threads. The process/thread layer exploits the standard parallelism

mechanisms (e.g. POSIX threads) to execute computational tasks [163].

It is worth mentioning that, thanks to the ability to connect both acoustic and visual

data sources, the KASKADA platform is a suitable environment for developing multi-

modal analysis (as mentioned in Section 2.9). The platform architecture enables services

operating on audio and video data to communicate, exchange processing results and thus

reinforce the event detection. Experiments devoted to such application of the framework

were presented in related work [13].
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Apart from the sound event detection methods outlined in this dissertation, the KASKADA

platform has also been successfully used for the following applications:

• video event detection, including object detection and tracking [166, 167] or crowd

behavior analysis [168, 169];

• supporting medical examination, by analyzing the images from endoscopic capsules

[170];

• protection of intellectual rights - comparing the document with the documents

from the repository for detection of intellectual property infringement [170].

The experiments presented in the thesis were performed in the environment of the clus-

ter Galera and later Galera Plus, both located in Academic Computer Network Center

(TASK) in Gdańsk University of Technology. In the project, initially the Galera cluster

was utilized, but later another cluster Galera Plus was purchased and employed specifi-

cally for the MAYDAY Euro 2012 project. The resources of both clusters are compared

in Table 5.1.

5.1.2 Resource allocation

The essential feature of the KASKADA platform is that it comprises mechanisms for

allocating resources within the supercomputing cluster [165]. The developer, not to
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Table 5.1: Resources of Galera and Galera Plus cluster

Galera Galera Plus

number of nodes 336 192
number of CPUs 1344 384
number of cores 5376 2304
cores per node 8 12

CPU type Intel Xeon Quad Core 2.33 GHz Intel Xeon Six-Core 2.27 GHz
physical memory 10752 GB 3072 GB

disk space 107.5 TB 512 TB
network InfiniBand InfiniBand

network bandwidth 20 Gb/s 40 Gb/s
operating system Linux Linux

mention the user of the service, is not concerned with the CPU and memory availabil-

ity. Moreover, separate simple services constituting a complex service or separate slave

algorithms can be executed on different cluster nodes, depending on the available re-

sources. The synchronization and communication between the tasks is handled by the

framework.

The resource allocation process is presented in Figure 5.3. The process can be divided

into the following steps [163]:

1. Creation of simple services. In the initial step the scenarios and complex services

are divided into simple services. Each simple service handles a logical operation on

the multimedia stream, e.g. detection of acoustic events, classification of acoustic

events, etc. (see Section 5.1.3).

2. Estimation of resource requirements. The demand of a simple service for compu-

tational resources depends not only on the intrinsics of the algorithms employed,

but also on the parameters of the input stream, e.g. resolution or bitrate. In this

step the resource requirements of the individual simple services are considered and

computational tasks are created. Note in Figure 5.3b that one simple service may

comprise more than one computational task.

3. Assigning computational tasks to cluster nodes. Basing on the requirements com-

puted in step 2., the processing tasks are assigned to available cluster nodes. It
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processes or threads [163]

is important to mention that the architecture of the platform demands that all

threads of a single simple service have to be executed on the same node.

4. Starting computational tasks. The processing tasks are executed on respective

cluster nodes. Each task may consist of one or more process or threads (see

Figure 5.3d). When a task consists of multiple processes or threads, parallelism

mechanisms are employed to execute them in parallel on different cores.

5. Monitoring of tasks. The KASKADA platform monitors the running tasks in terms

of physical memory and processor load. When the declared load is exceeded, the

task is terminated and an exception is thrown.

6. Termination. The processing is finished at user’s request or when the task is

completed or end of stream is reached. The platform terminates all tasks belonging

to the scenario and frees the allocated resources.

One service can be run in parallel on multiple sources. In the case of sound recognition

algorithms, it is a key benefit. The supercomputer allows for processing a large number

of streams and passing the information about the detected anomalies to the person

responsible, employing the framework’s messaging system.

The employed resource allocation mechanisms ensure that the KASKADA platform is

scalable. With the increase of the number of sources and (proportionally) the processing

nodes, the scalability of the cluster, as defined in Equation 3.3, is maintained at a

constant level, which was proved by Proficz [121].
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5.1.3 Services and algorithms

From the developper’s point of view, The KASKADA framework provides the following

components dedicated to processing multimedia data streams [155]:

• Stream algorithms implement methods for the real-time processing of audio and

video data. Given the proper input, in the form of audio or video frames, they

perform the pertinent data processing tasks. In this case a stream algorithm is

used to handle the input audio data and execute sound recognition algorithms.

• Slave algorithms - in cases when a large portion of data needs to be processed, a

slave process can be executed. After the processing is finished the result is returned

to the master algorithm. However, slave algorithms are not dedicated to online

stream processing. The execution of the slave task requires an amount of time,

which is unacceptable in time-critical decision making.

• Master algorithms - master algorithms have the ability to start slave processes

and receive their result. All stream algorithms also inherit from master algorithms.

• Simple services - a simple service can acquire stream output, process the data

employing the algorithm attached to the service and produce stream output, as

well as generate events. A service to be executed requires to run a task working

according to a defined algorithm. The service can be made available to the user

who has a demand for its result. A simple service is also the basic building block

of complex services.

• Complex services - two or more simple services can form a complex service.

The output of one service in this chain becomes the input of another. This schema

is particularly useful in the case of connecting operations which are performed

sequentially (e.g. detection and classification of acoustic events).

The mentioned processing units are exploited in the work described in the thesis. There-

fore, the presented terms will be referenced throughout the dissertation, especially in

Chapter 8.
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Figure 5.4: Block diagram of a stream processing algorithm in the KASKADA frame-
work [121]

From the point of view of this work, the most important class of algorithm is the stream

algorithm. The general block diagram of a stream algorithm is shown in Figure 5.4.

The algorithm executes in a loop, in which stream elements are received, processed

and sent to the output stream. In the case of audio stream processing algorithms, the

stream element is an audio frame, comprising a packet of audio samples, interleaved if

there are is more than one channel. The samples are represented by 32-bit floating point

numbers (float datatype). The operations pertaining to sound recognition are embedded

in the highlighted block Process stream element. Apart from outputting data stream,

the stream algorithm can also output events.

5.1.4 Communication

The objects in the KASKADA framework communicate, e.g. by exchanging input/out-

put data and processing results. Two types of communication can be distinguished [171]:
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• stream communication - intended for transmitting multimedia data. The endpoints

for this communication are two algorithms, most likely being parts of a complex

service. Any serializable data object can be transferred between two algorithms

using kbin protocol (internal protocol of the KASKADA framework). When the

data object is an audio or video frame it can also be sent via RTSP (Real-Time

Streaming Protocol). The kbin protocol is used to transmit uncompressed streams

between tasks, whereas the RTSP protocol is used for communication outside the

KASKADA platform. For transmitting the multimedia data from the sources

to the platform and from the platform to the users’ endpoints, compression is

necessary.

• event communication - XML events can be sent from and received by every

KASKADA algorithm. They are utilized e.g. to provide additional communi-

cation between blocks in a complex service. Events can also be sent from and

received outside the platform, thus enabling the user of the service to alter its

parameters or to receive the results. This mechanism is exploited in the client

application presented at the end of this chapter in Section 5.4. An ActiveMQ

server is used for queuing the messages. Due to the queuing mechanisms, event

messages are not suitable for real-time communication between processing blocks.

It is better to encode time critical data in the data object sent via kbin or RTSP

protocol.

5.2 Audio signal acquisition

The input data streams which are available in the framework are provided by sources

located within the Gdańsk University of Technology campus, i.e. cameras and acoustic

sensors. As far as audio data is concerned, two types of data sources are considered:

a pressure microphone and acoustic vector sensor (AVS), commonly referred to as a

Microflown. A microphone provides one channel stream, whereas an AVS produces

four stream of audio data, i.e. acoustic pressure p and three orthogonal components of

particle velocity ux, uy, uz. The data from the AVS are used in the localization services
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Figure 5.5: RTSP audio server comprising a single-board computer, external sound
card and conditioning module for acoustic vector sensor

Figure 5.6: Example setup of microphones used for audio data acquisition

(see Section 7.2.4). Due to a high resolution of audio samples needed in the sound

recognition algorithms, an assumption was made that the data should be transmitted

from the sources to the cluster with a sampling rate equal to 48000 S/s and 16-bit per

sample with PCM (Pulse Code Modulation) encoding.

In order to enable the transmission of four audio data streams with the desired resolution

a specialized software and hardware was engineered in Multimedia Systems Department.

The hardware consists of a multichannel sound card and a single board computer (Kon-

tron pITX). A RTSP streaming application constitutes the software. The device is

referred to as RTSP server [13, 20]. It is able to transmit up to 4 channels of audio

at 48000 S/s and up to 32 bit per sample. The RTSP server and example microphone

setups are visible in Figure 5.5 Figure 5.6 respectively.

http://www.multimed.org
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5.3 Sound recognition services

In this section the supercomputing services intended for processing of audio data streams

are introduced. The services have been designed employing the KASKADA platform

and programming environment.

5.3.1 Simple services

AudioForwarder The component serves as a first step in the signal processing chain.

Its purpose is to prepare the data stream for analysis with the sound recognition algo-

rithms, in particular by alignment of data chunks or demultiplexing a multichannel audio

stream. The output of this service is a stream of binary data, from which audio data

chunks, i.e. audio frames are extracted by means of deserialization. The service also

provides the functionality of registering the raw data stream on disk.

SoundRecognition The service is an implementation of the sound recognition al-

gorithm introduced in Chapter 4. It operates according to the diagram in Figure 4.1,

comprising both detection, buffering and classification operations. The input of the ser-

vice is audio data stream, whereas the output is a stream of audio data with parameters

concerning the results of detection and classification of events, as well as a stream of

events passed to the message queue. The XML syntax of an example event produced

by the service is shown in Figure 5.7. The XML event contains the data concerning the

type and location of detected event, the start and end time of the event and the name

of camera associated with the location, if available. The events which are considered

threatening are also assigned high priority, whereas typical events are assigned low pri-

ority. The service requires as a parameter the path to the configuration file which stores

the parameters needed to configure the sound recognition engine, such as types of used

detectors, classification models etc.

sound visualization The component is dedicated to visualizing the results of the

detection and recognition of acoustic events. The input of the service is a stream of
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<?xml version="1.0" encoding="UTF-8"?>  
<kaskada timestamp="20121205T131625.596" type="user" subtype="kaskada.framework.event" from-
id="409122" to-id="manager">  
    <event name="Sound event detected" service-
id="39170" hash="50ffef34d10ec49e51c857928d941517e5277b6f5c92eb0e15363f0c5675a058b5ab492e74893
fcaf5819d55202a3182c749abf27d7783c61868452515aa2552">  
        <parameter name="camera">  
        </parameter>  
        <parameter name="class">  
            scream  
        </parameter>  
        <parameter name="classIdx">  
            4  
        </parameter>  
        <parameter name="eventEnd">  
            20121205T141624.564724  
        </parameter>  
        <parameter name="eventStart">  
            20121205T141622.583197  
        </parameter>  
        <parameter name="location">  
            siedlicka  
        </parameter>  
        <parameter name="priority">  
            1  
        </parameter>  
    </event>  
</kaskada> 
 

Figure 5.7: XML syntax of an example event produced by the service SoundRecogni-
tion

Figure 5.8: Example output of the sound visualization service

audio frames with additional parameters concerning the results of events recognition.

The service renders a video image presenting the results of the audio stream analysis.

The example output is shown in Figure 5.8. The parameters visualized are i.a. current

sound pressure level (SPL), detection parameters, detector thresholds, waveform of the

detected event and type of detected event.
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Figure 5.9: Graph of the SoundRec complex service

audytorium The service is designed to analyze the multichannel audio data from the

AVS with a view to detecting and localizing threatening events in a public interior space

and pointing the PTZ camera in the direction of the detected event. The testbed was cre-

ated in a lecture hall in Gdańsk University ff Technology. The method

and its practical application is further described in Section 7.2.4 and in author’s publi-

cations [6, 7].

5.3.2 Complex services

SoundRec complex The service provides the functionality of recognizing acoustic

events and visualization of results. As it is shown in Figure 5.9, the complex service com-

prises 3 simple services: AudioForwarder, SoundRecognition and sound visualization.

The input of the SoundRec complex service is audio data, whereas the output is video

data stream (with visualization) and event stream with information concerning the re-

sults of event recognition.

audytorium complex The service is constructed similarly to the SoundRec complex

service. It comprises the audytorium simple service for detecting events in the audience

of a public space and the sound visualization service for presenting the results of the

analysis in a visual form.

5.4 User interface and client application

In order to facilitate the exploitation of the audio and video processing supercomputer

services a client application has been created [20]. The application is called KliK and was

developed with the participation of the author in Multimedia Systems Department. In

http://www.multimed.org
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Figure 5.10: Screen from the client application - choice of sources

this section the parts of the client application which are related to the sound recognition

services are briefly introduced.

Choice of sources The first step performed by the user to execute the sound recog-

nition service is the choice of signal sources. In Figure 5.10 the example screen from the

client application is presented. The map of Gdańsk University of Technology campus is

shown with the locations of the microphones marked. The service can be executed on

any of the available streams, also on all streams at once. If a camera is available close to

the microphone, it can be used to provide video feed when an acoustic event is detected.

Configuring the sound recognition engine In order to start the service, the

parameters of the sound recognition engine must be specified. The user can either start

the service with default configuration, choose one of the available presets or adjust the
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Figure 5.11: Screen from the client application - configuration of the service

parameters manually. In this mode, illustrated in Figure 5.11, the user can adjust the

parameters concerning detection, classification, service output and more. In the figure

the controls used for configuring the sound event detectors are shown. The temporal

resolution (frame size), sensitivity, learning time and adaptation time can be finely

tuned.

Presentation of results Once the service has been started from the client applica-

tion’s side, the results of the analysis can be observed in the following ways:

• by viewing the output stream of the SoundRec complex service (according to Fig-

ure 5.8),

• by viewing the received events in the program window (see Figure 5.7),

• by visual notifications, i.e. flashing icons and visual feed from the cameras installed

near microphones (if available).





Chapter 6

Evaluation on the training set

The methods for parameterization and classification of acoustic events featured in Chap-

ter 4 are verified using a set of representative signals. The signals which are used for

training the classifier are introduced. Subsequently, the optimum feature vector and the

optimum parameters of the SVM classification model are sought. The obtained clas-

sification model is used in real conditions in the experiments outlined in the following

chapters. Additionally, the results obtained in cross-validation on the training set are

discussed.

6.1 Training signals

We use a database of self-recorded signals. The event samples were gathered during the

work in various research projects conducted in both with and without the participation

of the author of the dissertation. Five classes of events are considered: explosion, broken

glass, gunshot, scream and other. The event samples were recorded in various conditions,

both indoors and outdoors. The locations of the recordings include i.a. the outside and

inside of the Faculty building, a street, a train station and the police training grounds

(for gunshot and explosion recording). As far as gunshots are concerned, various types

of weapons were used (both long- and short-barreled). For scream recording, calling

for help in different languages (Polish, English, Spanish, Russian) was used. As far as

scream is concerned, one has to distinguished between articulate speech and inarticulate

107
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scream. The sound which people make in a dangerous situation may be both articulate

(asking for help) and inarticulate (screaming in awe). In this work, speech is described

by features which express the general properties of sound (see Section 4.3) and thus

only the character of vocal activity is recognized, not the content. Both articulate and

inarticulate scream are expected to share the same or similar spectral and temporal

properties. In author’s related work, a fuzzy classifier was employed to discern between

different degrees of speech - from regular speech through raised voice - to scream [11].

To recognize the content of speech, a different approach should be used, i.e. the one

known from the domain of speech recognition (see Section 2.2 for comparison between

speech recognition and acoustic event recognition). Nevertheless, the content of speech

is not considered in this thesis.

Sounds from the class other contain typical non-threatening events encountered in urban

outdoor space and inside buildings. They were extracted from recordings of noise in such

locations as: busy street in Gdańsk, railway station, university building, canteen and

bank operating room. The types of events which are included in the other class are i.a.:

• vehicle noises registered in a busy street: e.g. trams, cars, trucks passing by;

• car alarms, horns, ambulance sounds etc.

• conversations of random people inside buildings;

• clanks and clatters of objects being put down or falling;

• doors closing, footsteps etc.

The signals were recorded using Bruel & Kjaer PULSE system with 65 kHz bandwidth

and 24-bit depth. Next, the signals were converted to 48000 S/s and 32-bit floating

point sample format. The summary of the training set is presented in Table 6.1. A total

number of 1301 event recordings are used. Not all samples of each signal are utilized for

classifier training. According to the principle described in Section 4.4, the short-time

sample frames are extracted from the signal (here 200 ms long, with 50 % overlap). To

avoid training the classifier against noise present at the beginning and the end of the
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recording, only the sample frames whose energy exceeds the 0.05 of the maximum energy

of each file are considered.

Table 6.1: Summary of the training set

no. class number of objects number of frames total length [mm:ss]

1 explosion 44 125 04:51
2 broken glass 193 452 19:43
3 gunshot 676 1370 66:56:00
4 scream 149 564 13:29
5 other 239 3694 60:22:00

total: 1301 6205 165:21:00

In Figure 6.1 the example time domain forms and power spectra of the considered threat-

ening events are depicted. The spectral representations were obtained from the whole

signal by calculating the powers spectrum density estimate according to the Welch’s

method with 4096-point DFT and 50% overlap. It is visible in the plots that there are

substantial differences in the shape of the events. Three of the hazardous event types

(explosion, broken glass and gunshot) have impulsive character. The scream event has

a sustain phase and is quasi-periodical. The shape of the power spectrum also enables

distinction between the events. For explosions the energy drops quickly as frequency

increases, whereas for broken glass it is sustained in the higher frequency range. In the

spectrum of scream distinctive formants can be observed, in this case around 1000 Hz

and 3000 Hz. The signal features should underline these differences in the properties of

the signals from different classes.

Even though the respective events have different shape in both time and frequency

domain, the distinction between them is not a trivial task. One of the reason is that it

is easy to confuse a non-threatening event with a dangerous one. In a similar plot in

Figure 6.2 the waveforms and spectra of non-threatening sounds are shown. Not that the

stamping sound, depicted in Figure 6.2a, looks a lot like explosion. The sound of door

closing, shown in Figure 6.2b, has similar properties to the sound of breaking glass. Next,

if we judge only by the plots in Figure 6.1c and Figure 6.2c, it is not impossible to confuse

the gunshot sound with the sound of a harmless object put down on desk. Finally, in

Figure 6.2d the car horn sound is shown, which is similar to high-pitched human scream

as far spectral and temporal properties are concerned. This example shows that the
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Figure 6.1: Example time-domain representations and power spectra of the hazardous
events: a) explosion, b) broken glass, c) gunshot, d) scream

spectro-temporal representation of sounds can in some cases be ambiguous and that the

choice of signal features should be very accurate to enable robust distinction between

the respective event classes.

6.2 Features evaluation

In this section more attention is devoted to the signal features employed. First, exam-

ples of feature values for the respective event classes are evaluated. Subsequently, the

experiment leading to an optimum feature vector is introduced.

6.2.1 Example feature values

To visualize the abilities of the considered signal features to discriminate between the

respective event classes, 2D Cartesian plots are prepared. The four pairs of features
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Figure 6.2: Example time-domain representations and power spectra of non-
threatening events: a) object clatter, b) door, c) stamp, d) car horn

are depicted in Figure 6.3. For clear visualization, parameters from only 1 in 5 event

samples are plotted. All parameter values are expressed in normalized scale [0;1] with

respect to minimum and maximum value from the training set (see Section 4.3.4).

In a first pair, shown in Figure 6.3a, the features CF (Crest Factor - Equation 4.35) and

ASC (Audio Spectrum Centroid - Equation 4.22) are compared. Explosions, gunshots

and the sounds of breaking glass have lower CF, which shows their impulsive character.

Screams on the other hand, yield higher ratios of rms to peak. The spectrum centroid

feature - ASC - also shows some differences between the events. Note that explosions

yield lower values of ASC than gunshots, since most of their energy is contained in the

low-frequency regions. Broken glass sounds yield high ASC, since they are rich in high

frequencies.
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The features Zero Crossing Rate (ZCR) and Speech Energy (SPE), defined in Equa-

tion 4.38 and Equation 4.33, are shown in Figure 6.3b. It is visible that scream sounds

yield higher values of SPE than other events, due to the fact that most of the scream’s

energy lies in the so-called speech frequency band (300 to 3400 Hz). The SPE parameter

also enables some discrimination between gunshots and explosions. Note that gunshots

also yield high values of SPE, since the energy of gunshots in more or less uniformly

spread over all frequencies, whereas for explosions, most of the energy is in the low fre-

quencies (see Figure 6.1). The ZCR parameter, on the other hand, yields higher values

for screams than for gunshots, since the quasi-periodic signal of scream crosses 0 more

often than the noisy sounds. Even higher values of ZCR are obtained for broken glass

since these sounds are generally rich in high frequencies.

Another parameter which yields different values for noisy and harmonic events is spectral

flatness. In a plot in Figure 6.3c the parameter SFMb2 (spectral flatness in band 1000

to 2000 Hz) is shown together with the spectral energy parameter, which expresses the

ratio of energy accumulated in the band 1000-2000 Hz to the whole frequency spectrum.

It is visible that scream events yield lower flatness than impulsive events like gunshots

due to the comb-like properties of the power spectrum.

Finally, in Figure 6.3d, the parameters CF (Crest Factor - also rms to peak) and SE8

(spectral energy in range 100-500 Hz to range 7000-12000 Hz, see Table 4.2) are com-

pared. This analysis shows the difference in the parameter values obtained form ex-

plosions and gunshots. While both these types of events yield low rms to peak ratio,

explosion sounds have significantly more energy in the lower part of the spectrum, which

is reflected by high values of the SE8 feature.

In a brief experiment the choice of auditory frequency scale is considered. Most of the

published works utilize the mel frequency scale and MFCC coefficients [25, 34, 38, 40,

42, 52–55]. However, the Bark scale is also considered in some works. Dufaux utilized

Bark spectrogram features and claimed that they yield comparable performance to mel-

frequency features, MFCC being slightly better [65]. It was also shown by Shannon and

Paliwal that bark scale features and mel scale features are equally efficient for automatic

speech recognition [172].
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Figure 6.3: Example values of event parameters

A draft experiment to compare the Bark scale and mel-scale. The 16 MFCC parameters

computed from the training set are considered and subsequently the mel scale is substi-

tuted by Bark scale. Thus, we compare the representation of the training signals in two

frequency scales. The recognition results in 3-fold cross validation are evaluated. Mel-

frequency features yield an overall accuracy of 84.93%, an average F1 score of 0.818 and

κ = 0.775. The Bark scale features on the other hand yield accuracy equal to 74.25%,

average F1 score of 0.673 and κ = 0.625. The results show that the mel scale performs

better for the considered features and types of events. However, the aspect of auditory

frequency scale should be evaluated more deeply in future research.

6.2.2 Feature selection results

The experiment for feature selection is conducted in two steps. In the first step, filter

feature selection is used to find the best feature vector (see Section 2.3.2 for reference
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on feature selection methods). It is temporarily assumed that a 50 element vector is

used. The initial feature vector FV0 containing all 112 defined features is considered,

as well as the vectors FV1 selected on the basis of χ2 statistics, FV2 selected on the

basis of information gain, and FV3 - obtained with SVM feature selection technique.

The latter feature selection method was proposed by Guyon et al. with the partici-

pation of Vapnik [62]. It uses the weights assigned to individual features in the SVM

optimization procedure as a criterion for ranking the features. Each feature vector is

evaluated against the training set in 3-fold cross validation. The results are shown in

Table 6.2. Classification accuracy and average F1-score are considered. It is visible

that the vectors FV1 and FV2 deteriorate the classifier’s performance, compared to the

initial feature vector. The vector FV3 performs slightly better than the initial feature

vector and therefore is the obvious choice. Two conclusions are drawn from this exper-

iment. Firstly, it is visible that the information gain and χ2 measures are not suitable

for feature selection in this classification task and concerning the SVM classifier. In the

process of feature elimination, some important information is discarded. The SVM fea-

ture selection technique does not worsen the classifier’s performance. Secondly, there is

only a minimal improvement after feature elimination. It shows that the SVM classifier

is robust against redundancy in the feature vector. In fact, it can be said that a feature

selection technique is already embedded in the SVM optimization (training) procedure.

Feature selection is still profitable, though. As it will be shown later, feature extrac-

tion is the most costly operation in the engineered algorithm. Limiting the number of

features reduces the computational requirements for this calculation step.

Table 6.2: Classifier’s performance with different feature vectors

vector description accuracy average F1-score

FV0 all 112 features (without elimination) 97.92% 0.972
FV1 50 top features according to χ2 97.54% 0.958
FV2 50 top features according to information gain 97.16% 0.957
FV3 50 top features according to SVM selection 98.23% 0.973

In the next step, the optimum size of the feature vector is sought. We focus on the

features selected by the SVM attribute elimination algorithm. The feature vector lengths

from 70 to 10 are considered. The results of the classifier’s performance in 3-fold cross

validation mode are shown in Figure 6.4. The performance achieved with the 50 element
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Figure 6.4: Classifier’s performance vs. feature vector size

feature vector is the best (accuracy 98.23%, F1-score 0.973). The full list of selected

parameters is given in Appendix A.

To illustrate the capability of the feature vector to discriminate between the considered

classes of acoustic events, a visualization is featured. For the purpose of visualization the

50-element feature vectors are projected onto a 2D plane using Sammon mapping [173].

In Sammon’s method nonlinear mapping (NLM) is used. Suppose there is a set of N

vectors of L dimensions xi; i ∈ {1, 2, ..., N}. We perform the mapping of the vectors

xi to N corresponding vectors yi in a space of 2 dimensions. The key of the Sammon’s

method is that the distance between vectors in reduced dimensionality space is kept as

close as possible to the distance between vectors in the original space. The error of the

mapping is defined by a formula [173]:

E =
1

N∑
j=1

j∑
i=1

dij
∗

N∑
j=1

j∑
i=1

(dij
∗ − dij)2

dij
∗ (6.1)

where dij is the distance between vectors xi and xj whereas dij
∗ is the distance between

vectors yi and yj and N is the number of data vectors. A Matlab implementation

published by van der Maaten is used [63]. It utilizes gradient algorithm to find the

parameters of the NLM algorithm which ensure the desired goal.

The results of Sammon mapping are shown in Figure 6.5. The training objects are
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Figure 6.5: Results of Sammon mapping of the training set parameters

represented by two-element vectors (points) with coordinates (y1; y2) in Cartesian space.

The coordinates are normalized to the interval [0; 1]. The separation between the data

points of different classes is visible, thus proving the features’ ability to discern between

the different types of hazardous events. In particular, the classes gunshot, scream and

other are well separated. The explosion and broken glass data points are not that

efficiently separable in 2D space. Please note that in Sammon’s mapping the class labels

are not taken into consideration. Therefore, the separation of data points in resulting

2D space is the result of the features’ discriminative power, not the result of mapping.

6.3 Classifier validation

In this section the brief experiments aiming at choosing the best classifier parameters

and the optimum feature vector are presented. The purpose is also to validate the SVM’s

ability to solve the given classification problem.
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6.3.1 SVM parameters evaluation

The purpose of this particular test is to determine which values of the SVM model

parameters are best for the given classification problem. The considered degrees of

freedom, according to Section 2.5.3, are:

• kernel function,

• degree d,

• gamma γ,

• cost C.

The methodology is as follows. We utilize grid search technique to find the optimum

kernel function, d, γ and C. Each time the classifier is evaluated in 3-fold cross validation

fold against the training set, with a feature vector containing all defined parameters. We

find it that accuracy, as defined in Equation 2.29, is not a good measure for assessment

of classifier performance in this case. The number of vectors in each class is significantly

different (see Table 6.1). Therefore, worse performance concerning the less numerous

classes has a much weaker impact on accuracy than errors in the more numerous classes.

For example, misclassification of 10 gunshots only lowers the gunshot recall rate by ca.

1.5%. On the other hand, 10 errors in the explosion class corresponds to nearly 1/4 of

the entire class. However, in the terms of accuracy, both errors are equally significant.

Hence, we use average F1-score rather than accuracy. The F1-score is calculated for all

5 classes according to Equation 2.31 and then the average value is computed.

Three kernel functions are considered: polynomial, RBF and sigmoid (see Equation 2.15,

Equation 2.16 and Equation 2.17). Four values of d and γ and five values of C are used

for comparison. For the polynomial kernel the degree was changed, whereas for the RBF

and sigmoid kernels - γ was considered. The γ of the polynomial kernel function was set

to 0.1 (which was found to be an optimum value in a brief experiment). The results are

shown in Table 6.3. The best performance achieved is in bold font. The performance

obtained with the sigmoid kernel is significantly worse. The polynomial and RBF kernel

yield comparable results, yet the polynomial kernel is slightly better.
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Table 6.3: Evaluation of SVM model parameters by means of average F1-score

polynomial kernel
d = 2 d = 3 d = 5 d = 8

C = 10−2 0.900 0.921 0.965 0.958
C = 10−1 0.907 0.954 0.961 0.962
C = 1 0.954 0.963 0.972 0.968
C = 10 0.961 0.959 0.956 0.971
C = 102 0.955 0.959 0.959 0.954

RBF kernel
γ = 0.01 γ = 0.1 γ = 1 γ = 10

C = 10−2 0.888 0.890 0.906 0.775
C = 10−1 0.894 0.891 0.922 0.789
C = 1 0.889 0.912 0.950 0.839
C = 10 0.913 0.970 0.971 0.873
C = 102 0.954 0.962 0.968 0.861

sigmoid kernel
γ = 0.001 γ = 0.01 γ = 0.1 γ = 1

C = 10−2 0.545 0.868 0.286 0.062
C = 10−1 0.873 0.877 0.420 0.062
C = 1 0.874 0.881 0.435 0.062
C = 10 0.872 0.885 0.412 0.062
C = 102 0.872 0.884 0.369 0.062

6.3.2 Class probability thresholds

As it is explained in Section 4.4, the SVM classifier outputs the probabilities for each

class. The decision is made based on these probabilities, according to the maximum

probability rule. The predefined class probability thresholds influence the false positive

and false negative rates. Here, an experiment is introduced to establish the optimum

values of probability thresholds for each class.

The classifier is tested in 3-fold cross validation mode on the whole training set. For

each class, the probability threshold is set to the following values: from 0.05 to 0.85 with

0.05 step and from 0.86 to 0.98 with 0.02 step. Then, the false positive (FP) and false

negative (FN) rates for this class are computed. These points are plotted in Figure 6.6.

The data in the DET plots are scattered, due to the following reasons. Firstly, adjusting

the class threshold does not only affect the results for the considered class, but also

for other classes. Secondly, the number of objects in some classes is relatively small.

Note that the data obtained for gunshots (676 objects) show a lot more regularity than
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those obtained for explosions (44 objects). Thirdly, there is some randomness in the

cross-validation operation, due to random division into training and testing set.

To obtain the DET (Detection Error Tradeoff) curves, trend estimation is performed.

The least squares method is adopted. The coefficient of determination R2 is used as a

measure of goodness of fit. The R2 measure is defined as [174]:

R2 = 1− SSreq
SSres

(6.2)

where SSreg is the explained sum of squares and SSres is the residual sum of squares. To

introduce the formulae for sums of squares, let us consider the observed data points yi

and the estimated data points ŷi where i ∈ {1..N} and N is the number of data points.

The residual sum of squares is defined as:

SSres =
N∑
i=1

(yi − ŷi)2 (6.3)

and the explained sum of squares is defined as:

SSreg =

N∑
i=1

(ŷi − ȳ)2 (6.4)

where ȳ is the arithmetical mean of y. The trend functions considered were: exponential,

logarithmic, linear, power and polynomial. It is established that the best fit is achieved

with the power function:

y = a · xb (6.5)

where the coefficients a and b are determined during the least squares optimization

procedure and the variables x, y correspond in this case to false positive and false negative

rate respectively. The obtained trend lines are shown in Figure 6.6 as solid lines.

The trend lines in the plots in Figure 6.6 enable the determination of equal error rates

(EER). Points of equal error are indicated by a dashed line. By definition, the EER is
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Figure 6.6: DET curves for classification of the events from the training set.

achieved when the false positive and false negative rates are equal. On the plot, it is the

point in which the solid line crosses the dashed line. The approximate EERs obtained

are: 0.13 for explosion, 0.05 for broken glass, 0.015 for gunshot and 0.017 for scream.

The class thresholds which yield those EERs are considered optimum and are equal to:

0.1 for explosion, 0.45 for broken glass and 0.75 for both gunshot and scream.

It should be noted that the EER is a point for which the loss of the decision system

is at a minimum, although it allows for missing some hazardous events. The classifier

could be configured in such a way that no threatening event would be missed. However,

it would in exchange yield a vast number of false positives. Therefore, even though the

recall rate of a certain threatening event would be close to 1, the overall loss achieved

in the classification process would be enormous.
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6.3.3 Performance on the training set

The final classification configuration for this problem is:

• polynomial kernel

• degree d = 5

• gamma γ = 0.1

• cost C = 1

• feature vector comprising 50 elements

With these parameters, the classifier is tested against the training set in 3-fold cross

validation procedure. The obtained results are shown in Table 6.4. The achieved per-

formance is very good. Minor errors are observed, mostly concerning classifications of

other events as dangerous events (false positives). False negatives (i.e. assignments of

threatening sounds into other class) are less frequent.

The example false positive classifications are results of the following errors:

• ambulance siren or car alarm classified as scream,

• whistle classified as scream,

• loud clatter classified as gunshot,

• machine hiss classified as broken glass.

Such errors could be eliminated by gathering more training examples for the classifier.

The more signals similar to the above there are in the training set, the less likely they

are to result in an incorrect classification.

To investigate the false positive classification results, an analysis of feature values is

presented. In Figure 6.7 the results of Sammon mapping of the training vectors are

depicted. In addition to the points shown in Figure 6.5, the false positive classifications

are marked by circles and the classes assigned to these events are printed. Each circled
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Table 6.4: Evaluation of the classifier on the training set in 3-fold cross validation -
confusion matrix

explosion glass shot scream other recall precision F1-score

explosion 43 0 1 0 0 0.977 0.935 0.956
glass 1 187 2 0 3 0.969 0.969 0.969
shot 1 0 675 0 0 0.999 0.990 0.994

scream 1 0 0 147 1 0.987 0.980 0.983
other 0 6 4 3 226 0.946 0.983 0.964

accuracy: 1278/1301 [98.23%]
average F1-score: 0.973

κ: 0.973

cyan dot represents an event from class other, which was erroneously classified as a

threatening sound. It can be seen that the false positive results are obtained for vectors

of the class other which lie close to threatening events in the transformed 2D space.

Due to the nature of Sammon mapping we deduce that these vectors are also close

to those classes in the original feature space. In practice it may mean that a non-

threatening event resembles a threatening one, as far as the considered sound parameters

are concerned. Such resemblance in terms of spectro-temporal properties has already

been indicated in Figure 6.2. To reduce the number of such false positive classifications,

a closer investigation of the feature values and appropriate feature selection should be

carried out in future work.

Basing on the presented results, it can be stated that the analyzed hazardous acoustic

events can be correctly discerned using the adopted methods. The results obtained on

the training set will be used as reference in further experiments. The sounds on which

the classifier is tested in the experiments described in this chapter, are considered clean.

In Chapter 7 the evaluation of the recognition engine in noisy conditions is provided.
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Chapter 7

Evaluation on noisy data

The evaluation presented in Chapter 6 concerned the classification of clean signals,

without additional noise. Deployment of the sound recognition engine in real conditions

raises new challenges. The noise present in the environment adds to the signal and

influences the values of the signal features. Such unpredictability can lead to false

detections. Moreover, in open acoustic space a number of phenomena are present which

influence the acoustic wave emitted by the event source. Some of these phenomena are

outlined in Section 2.8. Hence, we can anticipate that the performance of the algorithms

in real conditions will probably be worse than the performance on the training set.

The aim of the experiments presented in this chapter is to evaluate this performance

and to determine how different types of noise and different environmental conditions

influence the efficiency of sound event recognition. Basing on each experiment, the

conclusions regarding the possibility of practical application of the engineered methods

are drawn. The chapter is concluded by a series of general findings derived from the

practical experiments.

7.1 Evaluation in simulated conditions

In order to properly evaluate the influence of noise on the performance of the sound

recognition engine, the type and intensity of noise should be known and controllable.

In real life conditions it is very difficult to achieve. If the experiment is conducted

125
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in real life environment, the experimenter has no control over the level of background

noise. It is only possible, in some cases, to control the intensity of the acoustic events.

Nevertheless, the estimation of the Signal-to-Noise Ratio (SNR) would be prone to

significant errors. Hence, we propose a simulation environment which recreates the

acoustic ambiance of selected real-life surroundings and makes it possible to control and

estimate the SNR with adequate precision. The experiment and most of the figures and

tables featured in this section are reported in a related publication [9]. The setup of

this simulated environment, acoustic signals employed, experimental methodology and

results are presented in the following subsections.

7.1.1 Setup of the test environment

The setup of the measurement equipment employed in the experiment is presented in

Figure 7.1. In an anechoic chamber, 8 REVEAL 601p speakers, an Acoustic Vector

Sensor (AVS) and a type 4189 measurement microphone by Bruel & Kjaer (B&K) were

installed. The USP probe was fixed 1.37 meters above the floor. The measurement

microphone was placed 5 mm above the AVS. In the control room a PC computer with

Marc 8 Multichannel audio interface was used to generate the test signals and record

the signals from the AVS. The signals from the AVS were used to evaluate the accuracy

of sound source localization. Two SLA-4 type 4-channel amplifiers were employed to

power the speakers. Channels 1-4 and 5-8 were connected to respective speakers in the

8-speaker matrix. In addition, PULSE system type 7540 by B&K is used to record the

acoustic signals. The PULSE measuring system was calibrated before the measurements

using a type 4231 B&K acoustic calibrator. Part of the equipment utilized in the exper-

iment can be seen in the photograph in Figure 7.2. Five of eight loudspeakers, arranged

in a circle, the AVS and measurement microphone are visible.

7.1.2 Test signals

Audio events were combined into a test signal consisting of 100 events, randomly placed

in time, 20 examples of each of the 5 classes (explosion, breaking glass, gunshot, scream,

other). The average length of each event equals 1 second, and there is a 10 second space
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Figure 7.1: Setup of the experiment for testing the sound recognition engine in sim-
ulated conditions

Figure 7.2: Photograph of the equipment employed for testing the sound recognition
engine in simulated conditions

between the start and end of adjacent events. The length of the test signals equals 18

min 20 s. Four disturbing signals were prepared, each with a different type of noise:

• traffic noise, recorded in a busy street in Gdansk;

• cocktail-party noise, recorded in a university canteen;

• railway noise, recorded in Gdansk railway station;

• indoor noise, recorded in the main hall of Gdansk University of Technology.
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7.1.3 Experimental methodology

In the test signals the events are randomly assigned to one of four channels: 1,3,5,7.

The order of the events with the numbers of channels they are emitted from and classes

they belong to are stored in the Ground Truth (GT) reference list. At the same time,

the other channels (2,4,6,8) are used to emit noise. Each noise channel is shifted in time

to avoid correlation between channels. The gain of the noise channels is kept constant,

while the gain of events is set to one of four values: 0 dB, -10 dB, -20 dB and -30 dB.

This yields 16 recordings of events with added noise (4 types of noise x 4 gain levels).

In addition, the signals of four types of noise without events and 4 signals of events

without noise with different gain levels are recorded. These events are used to measure

the instantaneous SNR. On the whole 24 signals have been gathered. The total length

of the recordings equals 7 h 20 min. The summary of the recordings is presented in

Table 7.1. The recording of events at -30 dB with indoor noise (no. 24) was later

excluded from analysis due to too low level of SNR.

In recordings 9-24 the noise is added to the events acoustically. Each event in this

recording has a unique SNR. We are able to measure this SNR by comparing the energy

of clean events (in recordings 1-4) and noise (in recordings 5-8). The SNR is calculated

for each event according to the formula in Equation 7.1:

SNR = log10

m2∑
m=m1

s[m]2

m2∑
m=m1

n[m]2
(7.1)

where s[m] and n[m] are the signals with event and noise respectively and [m1;m2] is

the range of samples in which the event is present. Thus, the SNR is calculated in the

whole frequency spectrum and with varying time constant. To evaluate the influence of

SNR on the detection and classification metrics, we sort the events with respect to SNR.

The SNR values are then divided into 8 intervals. The limits of these intervals and the

number of events found in the respective SNR intervals are shown in Table 7.2.
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Table 7.1: List of recordings performed in simulated conditions

no. recording events number time
gain of events [hh:mm:ss]

1 Events without noise 0 100 00:18:20
2 Events without noise -10 100 00:18:20
3 Events without noise -20 100 00:18:20
4 Events without noise -30 100 00:18:20
5 traffic noise only 00:18:20
6 cocktail-party noise only 00:18:20
7 railway noise only 00:18:20
8 indoor noise only 00:18:20
9 events with traffic noise 0 100 00:18:20
10 events with traffic noise -10 100 00:18:20
11 events with traffic noise -20 100 00:18:20
12 events with traffic noise -30 100 00:18:20
13 events with cocktail-party noise 0 100 00:18:20
14 events with cocktail-party noise -10 100 00:18:20
15 events with cocktail-party noise -20 100 00:18:20
16 events with cocktail-party noise -30 100 00:18:20
17 events with railway noise 0 100 00:18:20
18 events with railway noise -10 100 00:18:20
19 events with railway noise -20 100 00:18:20
20 events with railway noise -30 100 00:18:20
21 events with indoor noise 0 100 00:18:20
22 events with indoor noise -10 100 00:18:20
23 events with indoor noise -20 100 00:18:20
24 events with indoor noise -30 100 00:18:20

total 1600 07:20:00

Table 7.2: Number of events in assumed SNR intervals

SNR [dB] (-∞;-5] (-5;0] (0;5] (5;10] (10;15] (15;20] (20;25] (25;∞) sum

explosion 11 35 23 38 30 43 24 96 300
broken glass 7 33 27 36 33 40 29 95 300

gunshot 2 21 15 35 26 47 29 125 300
scream 13 16 15 12 31 21 42 150 300
other 5 15 6 26 21 39 26 162 300

sum 38 120 86 147 141 190 150 628 1500
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The measures of detection accuracy are the True Positive (TP), and False Positive (FP)

rates. The TP rate equals the number of detected events which match the events in the

GT list divided by the total number of events in the GT list. The matching of event

is understood as the difference between detection time and GT time of the event being

not greater than 1 second. A FP result is considered when an event is detected which is

not listed in the GT reference and is classified as one of the four types of event that are

considered alarming (classes 1–4 in Table 6.1). The assumed measures of classification

accuracy are precision and recall rates. For more details concerning the evaluation

metrics, please refer to Section 2.7.

The direction of arrival of the acoustic wave was computed as a product of sound pressure

and particle velocity components received at the AVS, according to the methodology pre-

sented in Section 2.6. The output of the AVS is 4 synchronized signals: acoustic pressure

pa and particle velocity in three orthogonal directions ux, uy, uz [7]. The information

about the air particle velocity components is used to calculate the sound intensity vector

I, as defined in Equation 7.2:

I =


Ix

Iy

Iz

 =
1

N



N∑
n=1

pa[n] · ux[n]

N∑
n=1

pa[n] · uy[n]

N∑
n=1

pa[n] · uz[n]

 (7.2)

where N equals the number of samples in the analyzed frame. Here N = 4096 samples

(85 ms at 48000 samples per second). The direction of the sound intensity, received at

the AVS, is identical with the direction of arrival of the acoustic wave. Hence, it points

to the source of sound. Thus computed Cartesian coordinates can be transformed into

the polar coordinate system in order to express the direction of arrival as azimuth φ and

elevation θ.


I =

√
I2
x + I2

y + I2
z

φ = arctan
Iy
Ix

; 0 < φ < 2π

θ = arcsin IzI ; −π
2 < θ < π

2

(7.3)
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The ground truth values of the angle φ between the loudspeakers which were used to

emit the sound events and the AVS were measured and stored. The localization accuracy

is evaluated in terms of error of azimuth angle, i.e. the difference between the measured

value and the ground truth value:

∆φ = φmeas − φGT (7.4)

The elevation angle is not considered in this evaluation due to the setup of the experi-

ment, namely all sources being located roughly on the same plane.

7.1.4 Results

Detection results

First, we present the average results of event detection for all noise types. The TP rates

of each detection algorithm with respect to SNR are plotted in Figure 7.3. Please note

that the displayed SNR value corresponds to the upper limit of the interval, e.g. the label

5 dB denotes the interval (0 dB ; 5 dB]. The combination of all detection algorithms

yields high detection rates. The TP rate decreases significantly with the decrease of

SNR. The algorithm which yields the highest detection rates in good conditions (SNR

> 10 dB) is the Impulse Detector. It outperforms the other algorithms, which are more

suited to specific types of signal. However, the Impulse Detector is most affected by

added noise, since it only reacts to the level of the signal. Other algorithms, namely

Speech Detector and Variance Detector, maintain their detection rates at a similar level

while SNR decreases. It is a good feature, which allows the detection of events even if

they are below the background level (note the TP rate of 0.37 for SNRs smaller than -5

dB). It is also evident that the combination of all detectors performs better than any

of them alone, which proves that the engineered detection algorithms react to different

features of the signal and are complementary. The Histogram Detector is disappointing,

since its initial TP rate is the lowest of all detectors and falls to nearly 0 at 5 dB SNR.

The total number of detected events equals 1055 out of 1500 (for all SNRs combined)

which yields an average TP rate of 0.7.



Chapter 7. Evaluation on noisy data 132

<-5 [-5;0) [0;5) [5;10) [10;15) [15;20) [20;25) >25
0

0.2

0.4

0.6

0.8

1

SNR [dB]

T
P 

ra
te

 

 

all detectors
impulse detector
speech detector
variance detector
histogram detector

Figure 7.3: Averaged results of event detection in simulated conditions

The next analysis allows us to examine how different detectors react to different types

of event. In Figure 7.4 the TP rates of the detectors for different event class are shown.

The average results for all SNR values are presented. The presented dependencies once

again prove that the developed detection algorithms complement one another and are

well suited to recognizing specific types of events. The Speech Detector reacts to tonal-

ity which is present in screams, while Variance Detector reacts to sudden changes of

spectral features related to the event of breaking glass (see Section 4.1.2). It proves the

assumptions made while designing the detectors.

Subsequently, the evaluation of event detection in the presence of different noise types is

presented in Figure 7.5. The average results for all SNR values are shown. On average,

the detectors perform best in the presence of cocktail-party noise. The worst detection

rates are achieved in the simulated indoor environment. It can also be observed that

some classes of acoustic events are strongly masked by specific types of noise. Gunshots,

for example, have a TP rate of 0.45 in the presence of traffic noise and 0.74 in the

presence of railway noise.

A very important aspect, as far as sound event detection is concerned, is false alarms.

In our experiment a detection is treated as a FP value when the detected event was
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not present in the Ground Truth reference list and is recognized as one of the classes

related to danger (classes 1–4). The number of false alarms produced by each detection

algorithm and the classes that are falsely assigned to them are presented in Table 7.3.

The presented FP rates are calculated with respect to the total number of events detected

by the specific detector, for all SNR levels. It can be seen that Speech Detector and

Impulse Detector produce the majority of the false alarms. The fact is understandable,

since these algorithms react to the level of the signal and to tonality. Sudden changes in

the signal’s level and tonal components appear in the acoustic background frequently.

The lowest FP rate is achieved by the Histogram Detector, however it also yields the

lowest TP rate. The Variance Detector achieves satisfactory performance, as far as

FP rate is concerned. It is a good feature, demonstrating the fact that its TP rate is

robust against noise. The overall FP rate equals 0.08, which can be regarded as good

performance. In this experiment the relation between FP and TP detections is not

studied. We investigate the DET (Detection Error Tradeoff) curves of the detectors and

attempt to lower the FP rate in Section 7.2.2.

Table 7.3: False positive detections in simulated conditions

impulse histogram speech variance all
detector detector detector detector detectors

explosion 12 0 1 0 13
broken glass 26 0 27 8 50

gunshot 12 0 7 1 20
scream 3 1 9 1 9

sum 53 1 44 10 92
FP rate 0.07 0.01 0.12 0.02 0.08

Classification results

The adopted measures of classification accuracy, i.e. precision and recall rates, are

calculated with respect to SNR. The results are presented in Figure 7.6. The general

trend observed is that the recall rate descends with the decrease in SNR. It can be

seen, as far as explosion and broken glass are concerned, that the precision rate ascends

with the decrease in SNR. In very noisy conditions these classes are recognized with

greater certainty. The class of event which is least affected by noise is broken glass.

The recall rate remains high (ca. 0.8 or more) for SNRs greater than or equal to 5dB.
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Figure 7.6: Precision and recall rates achieved in simulated conditions

The low overall recall rate of explosions is caused by the fact that the events were

reproduced through loudspeakers, which significantly changes the characteristics of the

sound. This aspect is discussed further in the concluding paragraph. To examine the

event classification more thoroughly, we present more data. In Table 7.4 and Table 7.5

two confusion matrices are presented – at 20dB and at 0dB SNR respectively. It is

apparent that when the noise level is high, the threatening events are often confused with

other, non-threatening events. The errors between the classes of hazardous events are less

frequent. It can also be seen that at 20dB SNR there are frequent false alarms, especially

falsely detected explosions (in 10 cases) and screams (8 cases). In audio surveillance,

however, such false alarms should always be verified by the human personnel, therefore

such error is not as grave as classifying a hazardous event as non-threatening (false

rejection).
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Table 7.4: Confusion matrix obtained in simulated conditions at 20 dB SNR

explosion glass shot scream other recall precision F1-score

explosion 24 2 1 0 3 0.800 0.667 0.727
glass 0 26 0 0 2 0.929 0.765 0.839
shot 1 1 20 0 1 0.870 0.833 0.851

scream 1 0 0 33 0 0.971 0.805 0.880
other 10 5 3 8 12 0.316 0.667 0.429

accuracy: 115/153 [75.16%]
average F1-score: 0.745

κ: 0.696

Table 7.5: Confusion matrix obtained in simulated conditions at 0 dB SNR

explosion glass shot scream other recall precision F1-score

explosion 1 5 1 0 14 0.048 0.333 0.083
glass 0 21 2 0 11 0.618 0.568 0.592
shot 0 0 6 0 3 0.667 0.545 0.600

scream 0 6 1 11 13 0.355 1.000 0.524
other 2 5 1 0 16 0.667 0.281 0.395

accuracy: 55/119 [46.22%]
average F1-score: 0.439

κ: 0.309

Moreover, the Cohen’s κ metrics achieved at different SNR levels is examined. In Fig-

ure 7.7 the relation between the measured SNR and obtained κ is presented. The similar

trend is visible as observed for the precision and recall rates. The greater the SNR, the

higher the κ score. The maximum value of κ obtained equals 0.696 for the SNRs be-

tween 20 and 25 dB. It can be noted that for SNRs greater than 25 dB the measure

drops slightly. This irregularity is caused by the fact that the events were not evenly

distributed with respect to SNR. As it can be seen in Table 7.2, the events with the

highest SNR are in this experiment mostly scream and other events, whereas in other

SNR intervals impulsive events were more frequent.

The other aspect of the experiment is the performance of classification in the presence

of different types of noise. The results have been gathered in and in Table 7.6 (recall

rates) and Table 7.7 (precision rates). It can be observed that different types of noise

affect the results of classification of some event types more than others. The recall rates

of screams is e.g. lower in the presence of cocktail-party and railway noise compared to

traffic and indoor noise. This is caused by the spectral content of these types of noise,
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Figure 7.7: Relation between measured SNR and obtained κ measure

Table 7.6: Recall rates obtained in simulated conditions for different noise type and
event class

traffic noise

SNR [dB] (-∞;-5] (-5;0] (0;5] (5;10] (10;15] (15;20] (20;25] (25;∞)
explosion 0 0 0 0.2 0.64 0.88 0.78 0.5

broken glass 0.55 0.83 0.7 1 0.75 1 1 1
gunshot 0 0 1 0.75 1 1 0.92 0.8
scream 0.22 0 0.71 0.29 0.86 0.67 1 0.91

other 0 1 0.5 0.62 0.71 0.38 0.33 0

cocktail-party noise

SNR [dB] (-∞;-5] (-5;0] (0;5] (5;10] (10;15] (15;20] (20;25] (25;∞)
explosion 0 0 0 0.33 0.3 0.7 0.7 0.6

broken glass 1 1 0.8 0.86 1 0.82 1 0.92
gunshot 0 0 0.67 0.71 0.83 1 0.88 1
scream 0 0 0.18 0.44 0.64 0.67 1 1

other 0 1 0.82 0.63 0.92 0.25 0.42 0.11

railway noise

SNR [dB] (-∞;-5] (-5;0] (0;5] (5;10] (10;15] (15;20] (20;25] (25;∞)
explosion 0.17 0.33 0 0.17 0.63 0.57 0.9 0.67

broken glass 0.2 0.86 0.25 0.75 0.5 0.91 0.75 0.8
gunshot 0.57 0.44 0.5 0.85 0.67 0.81 0.67 0.78
scream 0.14 0 0.13 0.71 0.5 0.86 0.92 1

other 0.6 1 0.67 0.83 0.67 0.43 0.31

indoor noise

SNR [dB] (-∞;-5] (-5;0] (0;5] (5;10] (10;15] (15;20] (20;25] (25;∞)
explosion 0 0 0.25 1 0.88 0.75 1 0

broken glass 0.54 1 0.6 1 0.79 1
gunshot 0 0 0.67 0.33 0.73 1
scream 0.5 0 0.6 1 1 1 1

other 1 1 0.4 0.67 0.54 0.2 0.14 0.67
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which are rich in frequency components that are important for recognizing screams (i.e.

high and mid-high frequencies). Generally, traffic noise yields the highest recall rates.

A possible reason is that the training samples were recorded in the vicinity of a street.

Table 7.7: Precision rates obtained in simulated conditions for different noise type
and event class

traffic noise

SNR [dB] (-∞;-5] (-5;0] (0;5] (5;10] (10;15] (15;20] (20;25] (25;∞)
explosion 0 0 0 1 1 0.64 0.78 0.14

broken glass 0.46 0.63 0.54 0.47 0.75 0.73 0.79 0.5
gunshot 0 0 0.5 0.75 0.78 1 0.92 1
scream 1 0 1 1 0.86 0.75 1 0.67

other 0 0.33 0.17 0.57 0.56 0.63 0.67

cocktail-party noise

SNR [dB] (-∞;-5] (-5;0] (0;5] (5;10] (10;15] (15;20] (20;25] (25;∞)
explosion 0 0 0 1 1 0.7 0.78 0.43

broken glass 1 0.5 0.5 0.43 0.64 0.69 0.82 0.86
gunshot 0 0 0.67 0.83 0.83 0.71 0.88 0.79
scream 0 0 1 1 1 0.86 0.79 0.77

other 0 0.2 0.36 0.38 0.61 0.67 0.63 0.67

railway noise

SNR [dB] (-∞;-5] (-5;0] (0;5] (5;10] (10;15] (15;20] (20;25] (25;∞)
explosion 1 1 0 1 0.83 0.8 0.64 0.29

broken glass 0.33 0.86 0.17 0.67 0.33 0.83 0.67 0.67
gunshot 0.57 1 0.5 0.79 0.5 0.87 0.5 0.88
scream 1 0 1 1 0.83 0.67 0.85 0.92

other 0.17 0.14 0.29 0.45 0.57 0.43 0.67

indoor noise

SNR [dB] (-∞;-5] (-5;0] (0;5] (5;10] (10;15] (15;20] (20;25] (25;∞)
explosion 0 0 0.33 0.88 0.64 0.6 0.25

broken glass 1 1 0.9 0.67 0.92 0.6
gunshot 0 0 0.5 1 0.8 1
scream 1 0 1 1 0.8 0.86 0.57

other 0.15 0.4 0.17 1 0.64 1 1 1

Localization results

In Figure 7.8 the localization accuracy in relation to SNR is depicted. The plot is

prepared in the following way. For all 1600 events the azimuth angle error is computed.

Moreover, the SNR is calculated for each event. The events are then sorted in descending

SNR order. Thus, the SNR curve (dashed line) and the angle error plot (solid line) are

obtained. The average angle error is also shown, which is close to 0. It means that

the angle error distribution is symmetrical. It is visible that as the SNR decreases,
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In Fig. 10, the averaged angle localization error as a function of SNR level is pre-
sented. The graph is prepared for all recorded acoustic events for every disturbance 
condition. The events are sorted in order of descending SNR. The angle error curve is 
averaged with a time constant equal to 15 samples. The whole set contains 1500 
events. As indicated above, the significant increase in localization error starts for a 
SNR level lower than 15 dB. 
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Fig. 10. Localization  results for all sound source types as a function of SNR values for indoor 
noise 

Localization accuracy in relation to source position 
In this analysis the results obtained are grouped in relation to particular sound 

sources (i.e. loudspeakers) and presented in Fig. 11 and Fig. 12. The true position of 
the loudspeaker and the localization results are shown in the Cartesian coordinate 
system. SNR values were indicated by different types of marker and the length of the 
radius. Distinctions due to the type of event and disturbance noise are not shown it 
this case. The main purpose of this presentation is the visualization of the distribution 
of localization error in relation to the SNR level. It is important to emphasize that the 
loudspeakers employed are not an ideal point source of sound.  

Figure 7.8: Relation between azimuth angle error and Signal-to-Noise Ratio

the localization becomes less certain. The error of computed angle is less than 10◦ for

SNRs greater than 10 dB.It also has to be considered that the loudspeakers used for

emitting the sound events are not point sources. The angular width of the loudspeakers’

diaphragm, as seen from the AVS’s reference frame, equals ca. 2-3◦. Basing on these

results, it can be assessed that the engineered algorithms are suitable for calculating the

acoustic direction of arrival in moderate noise conditions.

A more insightful analysis of localization accuracy is provided in Table 7.8. The standard

deviations of computed angle are presented with respect to event type and SNR level.

Once again it is observed that the uncertainty of the localization substantially increases

when the SNR falls below 10 dB. Moreover, it is visible that some events, i.e. those of

longer duration (scream and broken glass) are localized better than the impulsive ones.

This phenomenon is due to the integration time needed to obtain proper localization

information (see Equation 7.2). It is also noticed that traffic and railway noise disturb

the localization more than indoor and cocktail-party noise. This fact can be explained

by the nature of the spectra of the said parts of noise - the wider the spectrum, the

more the localization is impaired. It can also be predicted that it would be easier to

localize events in interiors than outdoors. However, it is not always true, since in an

indoor space room reflections are an important factor which influences the localization

accuracy.
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Table 7.8: Standard deviations for computed azimuth angle (in degrees) vs. event
and noise type

SNR [dB] (-5;0] (0;5] (5;10] (10;15] (15;20] (20;25] (25;∞)

Explosion

Traffic 84.1 61.3 86.6 8.4 6.1 4 —
Cocktail-party 52 35.7 22.6 9.2 12.6 4.3 0.6

Railway 100.3 69.3 13.1 39.8 7.2 5.2 1.5
Indoor 91.1 52.4 44.1 18.4 5.5 — —

Broken glass

Traffic 66.6 44.6 53 9.4 4 6.4 —
Cocktail-party 37.7 37.3 8.6 28.3 5.6 6.5 1.2

Railway 64.1 70.5 18.1 26.8 4.8 3.8 —
Indoor 64.4 52.2 25 11.4 12.6 — —

Gunshot

Traffic 56.4 43 17.1 5.8 4.4 3.1 —
Cocktail-party 53.5 75.3 39.2 6.8 3.3 2.7 1.7

Railway 102.7 99 77.9 85.1 14.4 30.2 8.2
Indoor 64.4 34.4 54.8 16.4 22.3 — —

Scream

Traffic 48.7 52.7 7.4 3.2 2.7 1.4 1.8
Cocktail-party 16.8 34.6 6.2 3.7 4 2.2 3.5

Railway 72.3 66 8 5.8 4.6 3.8 4
Indoor 11.9 4.2 2.9 3.6 2.8 — —

Other

Traffic 68.2 48 7.7 3.8 2.6 3.7 1.9
Cocktail-party 25.1 27.1 3 4.2 2.8 3.4 1.5

Railway 91.1 65.3 6.5 12 4.4 3.2 1.5
Indoor 63.9 15.3 4.1 3.1 3.5 4.6 —

Conclusions

The analysis of the results points out that some conditions of the experiment impair the

performance of the methods employed. The most significant aspect is that the acoustic

events were played through loudspeakers. The characteristics of the sound which is

reproduced by speakers (especially dynamic and spectral features) are different from

those of real sounds. This yields a relatively low recall rate for gunshots and explosions.

These types of event are practically impossible to be reproduced through speakers with

enough fidelity to preserve the dynamics and spectral content of the sound. Therefore

the training samples, which were recordings of real events, in some cases do not match

the signals analyzed in this experiment in the space of acoustic features. The effect

is that gunshots and explosions are either confused with non-threatening events, or

confused with each other. The Signal to Noise Ratios of real gunshots and explosions
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will also be much greater than the SNRs achieved in this experiment, unless the events

are heard from a great distance. In the future research attempts will be made to analyze

the efficiency of sound event detection, classification and localization by employing real

signals. However, in such cases it is very difficult to measure and control the SNR, which

was the key aspect of this work. The values of SNR in this experiment are realistic, i.e.

such SNRs are encountered in environmental conditions. It appears that the precision

and recall rates achieved in the cross-validation check performed on the training set are

very difficult, if at all possible, to achieve in real conditions. The possible reasons for

such degraded performance are:

• insufficient noise robustness of features, whose values change significantly when

noise is added;

• low noise robustness of the classification algorithm (possibly overfitted to clean

signals);

• coincidence of the important spectral components of noise with the components of

the events which are substantial for recognizing them (low recall rate of screams

in the presence of cocktail-party noise);

• conditions of this experiment, namely reproducing the events through loudspeak-

ers.

Generally, the experiment shows that the developed sound recognition engine achieves

adequate accuracy to detect the threatening acoustic events in moderate noise condi-

tions. The detection rates can be considered satisfactory. The achieved precision and

recall rates depend on the type of event and disturbing noise. The best performance

was obtained for broken glass, gunshot and scream in the presence of traffic noise. Such

results are promising concerning the possible practical deployment of the system in ur-

ban environment. The further improvement of the performance can be achieved by

employing adaptation, which is considered in the following sections.



Chapter 7. Evaluation on noisy data 142

7.2 Evaluation in realistic conditions

Hitherto mentioned experiments provide the insight into the recognition engine’s perfor-

mance against the training set and noisy data in controlled conditions. For a complete

evaluation of the engineered algorithms, the efficiency of recognizing real life events

in realistic conditions is also examined. The experiments are focused on the following

possible practical usage scenarios:

• Outdoor urban space, i.e. detection and classification of threatening events in

an open area in the presence of traffic noise;

• Bank operation hall, i.e. surveillance of an indoor space, for detection of both

typical and threatening events;

• Public event, i.e. monitoring of mass events to detect and localize possibly

threatening sounds in the audience.

The following subsections are devoted to these usage scenarios. The conditions of the

performed experiments are outlined and the achieved recognition results are discussed.

7.2.1 Adaptive detection results

An experiment was conducted to evaluate the adaptation of the detectors and its influ-

ence on the efficiency of the sound event detection system. The aim is to show that the

proposed methods for adaptation of detection threshold, featured in Section 4.1.3 enable

the reduction of false positive detections while maintaining the true positive detection

rate, i.e. enables a decrease of equal error rate (EER).

Test signals employed in the experiment contain a 24-hour-long recording of traffic noise

performed near a busy street in Gdansk. The signals were recorded using Bruel&Kjaer

PULSE recorder in 48000 Hz 24-bit fixed point sample format. The sample format was

then changed to 32-bit floating pint. Recordings of gunshots from the training set were

added to the test set as example events to evaluate the detection. A gunshot signal

was mixed with the background every 60 seconds with random gain varying from 0 to
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30 dB. This yields 1440 total acoustic events with roughly random distribution of Signal

to Noise Ratio (SNR). Due to this conditions, some events are more difficult to separate

from the background and the better the detector’s ability to adapt the threshold to the

changing conditions, the more events are detected. Also, the efficiency of adaptation

influences the false alert rate.

The evaluation is performed employing the Impulse detector. Such algorithm is prac-

tically useful for detection of impulsive sounds. However, the evaluated adaptation

strategies can be successfully used with any other detection parameter, thus enabling

detection of different events in different environments.

The evaluation with a DET curve [101] is performed. The sensitivity of the detector is

changed from 0 to 1 with 0.05 step. The false alarm probability and miss probability

measures are considered:

miss probability =
total number of events− true positive detections

total number of events
(7.5)

false alert probability =
false positive detections

false positive detections + true positive detections
(7.6)

The plot of miss false alarm probability vs. miss probability constitutes a Detection

Error Tradeoff (DET) curve . Three adaptation strategies are evaluated, as introduced

in Section 4.1.3: single adaptation, double adaptation and triple adaptation. The simple

adaptation approach is based on following the average sound level. In the double adap-

tation method the variance of the sound level is also considered. Triple adaptation is

based on both average sound level, its variance, and the rate at which the sound level

changes with time.

The DET curves obtained with different adaptation strategies are plotted in Figure 7.9.

The detector with triple adaptation performs best for medium sensitivities. Also, the

equal error rate (EER) achieved with this adaptation technique is the lowest (0.064). The

single and the double adaptation strategies yield similar results. The single adaptation

method performs better for low and high sensitivities. However, the EER achieved

with double adaptation is slightly lower (0.074 - double, 0.076 - single). The EER is
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Figure 7.9: DET plots for sound detectors with different adaptation strategies

achieved for sensitivity equal to 0.22, 0.3 and 0.45 for single, double and triple adaptation

respectively. The achieved reduction in EER justifies the need for adapting the detection

threshold to variance and dynamics of the sound level instead of adapting the threshold

only to the average sound level. It should again be noted that the minimization of

EER is a task related to optimizing the cost of the decision system’s operation. In a

security surveillance system a missed event, as well as a false alarm cause losses, by

either endangering life and property, or unnecessarily engaging security personnel. In

such understanding, the system operating in EER conditions, yields minimum loss.

7.2.2 Recognition of events in outdoor conditions

An experiment was conducted to assess the accuracy of recognizing real life events in

actual acoustic conditions. Gunshot, broken glass and scream events were recorded near

a busy road in the presence of strong traffic noise. Explosion events were not evaluated

due to difficulties in reproducing such sounds. For gunshot emission a noise gun was

used.
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The following signals were recorded: two takes of screams, two takes of broken glass

and two takes of gunshots. In case of gunshots one recording contained shots heard

from a small distance (2-30 m) and one - from larger distance (60-100 m). The signals

were recorded with B&K PULSE system with type 4189 measurement microphones.

Five microphones were placed approx. 2, 4, 6, 8 and 32 meters from the source of

events. According to the inverse square law, a linear decrease in SNR is expected. The

samples from 5 different microphones were treated as separate events in the evaluation

methodology. The photographs from the recording process are shown in Figure 7.10.

As far as the accuracy assessment is concerned, a similar methodology to the one eluci-

dated in Section 7.1.3 is employed. The signals are processed with the developed sound

recognition engine and the results are compared with the GT description. The metrics

for sound recognition accuracy are calculated and aggregated with respect to SNR. The

SNR however, is calculated in a different manner, since in this case no reference noise

signal and clean event signal is available. Thus, the calculated measure is in fact the

relation of signal plus noise to noise. The process of SNR estimation is illustrated in

Figure 7.11. The energy of the fragment containing the event is compared with the

energy of a fragment of equal length just before the event.

Again, the estimated SNR values are divided into intervals, only in this experiments the

intervals are wider, due to a smaller number of events and lack of precise control over

the SNR values. The numbers of events in each SNR interval are shown in Table 7.9.

The distribution is not uniform, but the number of events can be considered sufficient

to provide the evaluation of recognition accuracy. Please note that the events from the

class other are not indexed, since they were not emitted intentionally in this experiment.

Therefore, the presented tables do not contain the row other concerning the results of

classifying non-threatening events (as opposed to hitherto presented results). Neverthe-

less, the false positive classifications are still taken into consideration by analyzing the

FP rate for each event class (see Table 7.10).

We begin by evaluating the detection rates. Two detectors are used in this experiment:

Impulse Detector with sensitivity equal to 0.6 and Speech Detector with sensitivity equal

to 0.7. The sensitivities were established in a draft experiment as a tradeoff between
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Figure 7.10: Photographs from recordings of real-world events
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Figure 7.11: Method for SNR estimation in practical conditions

Table 7.9: Number of events recorded in real conditions in respective SNR intervals

SNR [dB] (-∞;0] (0;10] (10;20] (20;∞) sum

broken glass 17 111 58 19 205
gunshot 78 96 19 172 365
scream 25 166 112 32 335

sum 120 373 189 223 905
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Figure 7.12: True positive rates of event detection achieved in practical conditions

false positive and false negative detections. The TP rates of event detection with respect

to event type are shown in Figure 7.12. The detection rates are very high for SNRs larger

than 10 dB. Unfortunately, the TP rate for screams and broken glass drops significantly

when SNR falls below 10 dB. The detection rate of gunshots remains close to 1, which

is a surprisingly good result. The spike of energy generated with the noise gun enables

correct detection of this type of sound even if the average energy of the event is lower

than the energy of noise. However, it should be noted that if the energy of the gunshot

was calculated in shorter time base (i.e. from the spike only), the SNR estimate would

be much higher.

In Table 7.10 the true positive and false positive detection rates for respective events are

aggregated. The results for all SNR levels combined are presented. Again, gunshots are

most reliably detected. The broken glass event yields the lowest TP and the highest FP

rate. The high false positive rate means that a lot non-threatening events, not present

in the GT list, were classified as broken glass. The classification algorithm should be

improved to reduce such false alerts. Screams yield an acceptably low FP rate. The

overall TP rate of screams can also be considered satisfactory, taking into consideration

the fact that many of the scream events were strongly masked by noise.
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Table 7.10: True positive and false positive detection rates achieved in practical
conditions

TP FP

broken glass 0.537 0.225
gunshot 0.992 0.095
scream 0.666 0.063

average 695/905 [76.8%] 85/780 [10.9%]

In the next analysis, the classification results are considered. The precision and recall

rates for broken glass, gunshot and scream are plotted in Figure 7.13. The lowest SNR

range (SNR<0) was only considered for gunshot event since for scream and broken glass

too few events were detected at this level. The recall rates achieved can be considered

satisfactory under such difficult conditions. The lowest recall rate (equal to 0.622) is

obtained for screams at SNR below 10 dB. The precision rate for broken glass at highest

SNR is surprisingly low. To account for this fact, the confusion matrix needs to be

examined - see Table 7.11. It is visible that 17 gunshots were classified as broken glass.

This error highly influences the precision factor for broken glass, despite the fact that it

only concerns ca. 10% of the analyzed gunshot events. The large number of gunshots

in this SNR interval is obviously the consequence of high energy of gunshots in general.

If the events were more evenly distributed, the precision rate for broken glass would not

be lowered that much.

Table 7.11: Confusion matrix for SNR > 20 dB in practical conditions

glass shot scream other recall precision F1-score

glass 17 0 1 0 0.944 0.500 0.654
shot 17 154 0 1 0.895 1.000 0.945

scream 0 0 32 0 1.000 0.970 0.985

accuracy: 203/222 [91.44%]
average F1-score: 0.861

κ: 0.666

In another confusion matrix, shown in Table 7.12, the classification results obtained for

SNR from the interval [0;10) dB are shown. The achieved precision and recall rates, as

well as the accuracy and F1-score yield high values. The comparison with the results

achieved in simulated conditions (Table 7.5) shows that the recognition engine performs

better than in the controlled environment. This is due to the fact that the reproduction
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Figure 7.13: Precision and recall rates achieved in practical conditions

of signals by loudspeakers distorts the qualities of sound, which was already mentioned

in Section 7.1.4. Finally, in Table 7.13 the confusion matrix for all events recorded in

this experiment is presented. Please note that only the events which were correctly

detected were taken into consideration (695 TP detections). To properly express how

many of the detected events were properly recognized one has to take into consideration

the TP and FP rates. The corrected values of precision and recall, taking into account

the detection rates, are shown in Table 7.14. It can be seen how the low FP rate impairs

the precision rate and how insufficient TP rate lowers the recall score.
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Table 7.12: Confusion matrix for SNR from the interval [0;10) dB in practical condi-
tions

glass shot scream other recall precision F1-score

glass 32 1 0 3 0.889 0.762 0.821
shot 8 86 0 0 0.915 0.796 0.851

scream 2 21 46 5 0.622 1.000 0.767

accuracy: 164/204 [80.39%]
average F1-score: 0.813

κ: 0.693

Table 7.13: Overall confusion matrix obtained in practical conditions

glass shot scream other recall precision F1-score

glass 105 1 1 3 0.955 0.739 0.833
shot 33 326 0 3 0.901 0.906 0.903

scream 4 33 179 7 0.803 0.994 0.888

accuracy: 610/695 [87.77%]
average F1-score: 0.875

κ: 0.801

Table 7.14: Recall and precision factors corrected with TP and FP rate

TP FP recall precision corrected recall corrected precision

broken glass 0.537 0.225 0.955 0.739 0.512 0.603
gunshot 0.992 0.095 0.901 0.906 0.893 0.819
scream 0.666 0.063 0.803 0.994 0.534 0.918

The conducted experiment leads to some important conclusions. Firstly, it is visible that

the recognition rates achieved in practical conditions, using real-life events, are slightly

better than the ones achieved in controlled environment during the simulation featured

in Section 7.1. A brief comparison is shown in Table 7.15, in which the results achieved

in real conditions at SNR from 0 to 10 dB are compared with the results achieved in

the simulated environment at an SNR from the interval [5;10) dB. This finding can be

explained by the fact that in the simulated environment the events were reproduced

by loudspeakers. The introduction of a loudspeaker to such signal chain apparently

inflicts significant distortions. Thus, the signal features are tampered and the recognition

results are impaired. It is also confirmed empirically that an event, especially a gunshot,

sounds differently when emitted from a loudspeaker than a real-life one. This leads to

a conclusion that the recognition of acoustic events is a fragile process, in which even

small changes in the signal can influence the classification accuracy and that to achieve
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robustness, close attention should be paid to the acoustic conditions of the recognition

process.

Secondly, frequent misclassifications are observed between the known classes of sound.

It can be noticed by examining the results in Table 7.13, that during the experiment as

much as 33 gunshot events were classified as broken glass and exactly the same number

of screams were classified as gunshots. To investigate this kind of errors, the outputs

of the classifier are presented. In Figure 7.14 the result of an incorrect classification in

which a gunshot event is classified as broken glass is presented. It is visible that generally

the analyzed sample frames are recognized as similar to gunshot, but they fail to exceed

the threshold, which according to the experiment featured in Section 6.3.2 equals 0.75

for gunshots. On the other hand, the classifier output for broken glass exceeds the

probability threshold for broken glass events (0.45) and thus leads to a false alarm.

An example of correctly recognized gunshot is shown in Figure 7.15. The output gunshot

probability exceeds the threshold for gunshots and the event is correctly classified. It

is visible that the initial phase of the event is crucial for correct recognition. In future

work more attention should be devoted to analyzing the attack phase of the sound.

The author of this dissertation believes, that such errors could be reduced by retraining

the model after including this incorrect classifications in the training set and repeating

the experiment. Moreover, an effort could be made to identify the signal features which

are suspected of contributing to such errors ad eliminate them from the feature vector.

Such investigation is one of the topics for future research on the subject.

Despite the observed errors, the achieved performance can be regarded as good. Even in

strong noise conditions, the considered threatening events are recognized with ca. 80%

certainty. It shows that the engineered methods have the potential to be employed in a

practical security surveillance system.

7.2.3 Recognition results in a bank operation hall

Several experiments were performed with the participation of the author of the disser-

tation in a bank operation hall. It served as a testbed for developing the technology of



Chapter 7. Evaluation on noisy data 152

0 0.5 1 1.5 2

explosion
broken glass

gunshot
scream

other

0

0.2

0.4

0.6

0.8

1

t [s]

pr
ob

ab
ili

ty

Figure 7.14: Example classifier output for a gunshot classified as broken glass
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Figure 7.15: Example classifier output for a gunshot correctly classified as gunshot

Table 7.15: Comparison of classification results achieved in simulated conditions and
in real acoustic environment

event recall precision

broken glass (real) 0.889 0.762
broken glass (simulation) 0.885 0.568

gunshot (real) 0.915 0.796
gunshot (simulation) 0.815 0.8

scream (real) 0.622 1
scream (simulation) 0.571 0.774
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acoustic surveillance of an indoor space. In case of a bank space, as well as many other

types of indoor spaces, the detection of both threatening and typical events is important.

As far as the bank is concerned, the information about typical events gives an insight

into the operational qualities of the institution. Such information can be processed from

the management point of view. In the bank operation hall, the following events are

considered typical:

• speech, often forming a so-called cocktail-party noise;

• stamping;

• other sounds, such as chairs moving with a squeak, safes beeping, people stepping,

objects being put down on desks etc.

As far as the alarming events are considered, screams or raised voice should definitely

raise attention. Gunshots are also considered, since they are sometimes present during

armed robberies. Therefore, in the task of surveillance of the bank operation hall, we

define the following events to be detected: speech, scream, gunshot, stamp, chair, beep,

other. Since the set of events is different from what was assumed before, obviously a

different set of training signals was employed in this experiment. Events recorded in the

bank operation hall were utilized rather than those described in Section 6.1.

Detection

Two detectors are used to detect sound events in the bank operation hall: Impulse

detector and Speech detector. The impulse detector uses a 512-sample frame, whereas the

speech detector uses a 4096-sample frame. The sampling rate is equal to 48000 samples

per second. The sensitivity of the impulse detector equals 0.2 whereas the sensitivity of

the speech detector equals 0.3. Double adaptation is employed. The adaptation time of

both detectors equals 10 minutes.

The changes of the detectors thresholds are presented in Figure 7.16. The results origi-

nate from the 13-hour online operation inside the bank operation hall. The bank is open

for customers from 9:00 to 18:00. Around 8:00 the bank employees start preparing for
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Figure 7.16: Adaptation of sound detectors in bank operation hall

work, thus generating some noise. It is visible in the threshold of the speech detector.

It can also be observed that the detection threshold is elevated during peak hours (ca.

13:00 to 14:30). The impulse detector threshold is ca. 10 dB higher during peak hours

than early in the morning. It shows that thanks to the adaptation technique employed

the detector is capable of detecting quiet events at night and is not prone to false alerts

when the level of the acoustic background is high. It is a very useful feature for the

surveillance of the indoor space. Provided a person broke into the bank at night, even

a very subtle noise would trigger detection. The same principle applies to the speech

detector. During the day, when lots of people speak and generate cocktail-party noise,

a regular voice would be less likely to trigger an alarm that outside opening hours.

Classification

During the same experiment as described in the above paragraph, the classifier was also

operating. The events were detected and recognized during and outside bank operating

hours. The numbers of detected events of each type are shown in Table 7.16. In total

1026 acoustic events were detected. It is visible that stamps (547 detections) are the

prevailing sounds. Other events are also frequently present (368 detections). Only 84

speech events were recognized, which can be explained by the fact that speech is often

present in the background as cocktail-party noise and the speech detector adapts to this
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Figure 7.17: Histogram of events detected during bank operating hours

background by adjusting the detection threshold. The sound of moving chairs and money

safe beeps were seldom detected (23 and 4 occurrences, respectively). No threatening

sound events were detected during that period, which means that the system did not

produce a false alarm.

Table 7.16: Number of events of each type detected in bank hall during operation

Type of event speech other stamp chair beep

number of detected events 84 368 547 23 4
total: 1026

In Figure 7.17 the distribution of events per hour of operation is presented. It is visible

that during the early hours – 7:00 to 9:00. – other sounds are more frequent than

stamping. Stamping becomes more frequent during the operating hours, which are 9:00

to 6 18:00. Information about the movement in the bank can also be derived from the

event distribution. The peak hour appears to be on 13:00. Speech events are evenly

distributed, since they are caused by both: the clients and the staff of the bank, who

are present during the whole period.

To evaluate the classification of alarming events, a situation was arranged in which

actors were asked to generate screams, talk in raised voice and fire guns. The goal was

to recreate an armed robbery event. during the 30 minutes of the staging, a number of

74 alarming events were detected. Sounds belonging to the following classes were present

in the test signal: speech, scream, gunshot and other. The analysis of the classification
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results is presented in Table 7.17. It can be observed that the threatening events are

recognized with an acceptable accuracy. However, the speech sounds are often confused

with other acoustic events. All gunshots were correctly classified, although only four

shots were emitted.

Table 7.17: Confusion matrix for recognizing threatening events in bank operation
hall

speech scream gunshot other recall precision F1-score

speech 24 7 0 10 0.585 1.000 0.738
scream 0 21 0 4 0.840 0.750 0.792
gunshot 0 0 4 0 1.000 1.000 1.000

other 0 0 0 4 1.000 0.222 0.364

accuracy: 53/74 [71.62%]
average F1-score: 0.723

κ: 0.58

7.2.4 Detection and localization of events in a public event space

The final use case considered is public event surveillance. During mass events such as

concerts or sports games a large number of people is crowded in a limited space. If a

threat occurs in such circumstances, the consequences may be fatal. Hence, the detection

and warning about possible threats is of utmost importance. The project MAYDAY Euro

2012 addressed such situations, e.g. by developing algorithms for detection of abnormal

behavior of crowd [168, 175]. The author of the dissertation was involved in the work on

the methods for detection and localization of acoustic events in the public event audience

[6, 7]. In this section the results of this work are briefly outlined. The goal is to detect

alarming events such as screams or gunshots and to localize its sources. The information

about the localization of the event source in the audience is considered, i.e. row and

seat number. Such data is particularly useful in the context of mass events, when row

and seat number can be connected with the name of the person occupying the seat. In

an example usage scenarios of such system, a gun is fired in a stadium. The localization

instantly pinpoints the seat in which the shooter is present and the PTZ camera zooms

in to the shooter. Such a functionality is realized by the developed KASKADA service

called audytorium complex (see Section 5.3).
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Setup and equipment

The testbed for developing the algorithms for detection and localization of events in

public event audience was a lecture hall in Gdańsk University of Technology. The ver-

tical section of the hall, the hardware setup and the employed coordinate system are

presented in Figure 7.18. The acoustic vector sensor (AVS) is mounted under the ceiling,

8.36 meters above the lowest floor of the auditorium. The AVS conditioning module,

comprising filters and preamplifiers for the signals from the AVS, receives the signals

from the AVS, being pressure signal p and three particle velocity signals ux, uy, uz. The

signals are encoded and sent to the KASKADA platform via a RTSP server mentioned

in Section 5.2. On the KASKADA platform the audytorium service is executed which

comprises signal processing algorithms capable of computing the localization of the de-

tected event in the audience. The information about the location of the source is then

translated to pan,tilt coordinates of the PTZ camera mounted in the hall. Thus, the

camera is automatically pointed in the direction of the detected event.

The detailed layout of the audience is shown in Figure 7.19. The center of the coordinate
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Figure 7.19: Top view of the audience with the employed coordinate system and
row/seat numbering

system (x = 0; y = 0; z = 0) is located 8.36 meters below the AVS, in the aisle at the

height of row 4.

Methods

As it was expressed in Equation 7.2, the signals from the AVS are utilized to compute

the coordinates of the sound intensity vector I. Knowing the dimensions of the room,

the exact seat from which the sound originates can be determined. The process of this

geometrical calculation is illustrated in Figure 7.20. The AVS location is marked as red

circle, whereas the sound source location is indicated by a blue filled circle. The height

H on which the AVS is mounted and the coordinates on the floor plane p are known.

The point of intersection of the direction of the sound intensity vector and the floor

plane is found. Next, the coordinates (x, y) of this point are converted to seat number

with the use of a look-up table prepared during the system calibration. The row and

seat number are then converted into the coordinates of the PTZ camera.

To evaluate the accuracy of sound source detection and localization in the indoor space

the following experiment was carried out. Noise gun was used to emit shots. Five shots

were emitted from each seat in the auditorium. The signals were processed online and
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for each signal the azimuth φ and elevation θ angle of the acoustic Direction of Arrival

(DoA) were calculated.

The calculated coordinates of the sound source are compared with the ground truth

values known from the mentioned look-up table used for converting coordinates to seat

number. The absolute error is considered ∆x = |xcomp − xGT | where xcomp denotes the

computed value and xGT denotes the reference value. The minimum of the five shots

fired from each seat is considered, denoted ∆xmin and ∆ymin.

Results

The results are presented on 2D plots which show how the localization error depends on

the location of the source in the audience. During the experiment it turned out that for

some seats the localization is more accurate than for others. It led to a conclusion, that

the observed errors depend on the qualities of the room. The possible ways in which the

conditions in the hall deteriorate the sound source localization procedure are as follows:

• In the assumed model the surface of the seats is a regularly sloped plane. In fact

the left side of the auditorium is sloped at a different angle than the right side.

• The air in the room is heated with heaters placed near the left wall. In such a

room the air temperature is not constant in relation to height. Therefore, sound

waves refract and do not propagate along straight lines, which leads to change in

the direction of coming sound.
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• The probe is located on the level of the sound directing panels hung under the

ceiling. It is possible that the panels reflect the direct sound from some localization

in such a way, that the reflections from the walls reach the probe first. Thus, the

angle of coming sound is calculated with error. There can also be reflections from

the ceiling present above the panels (possible cause of the elevation error in row

5).

• The error of calculating the y coordinate is probably caused by the inaccurate

assumption of the seat surface plane. The characteristic points in the hall, used

to find the formula of the plane p, were measured with some uncertainty.

• The error in localization can also be caused by the possible tilt of the AVS.

To compensate for the mentioned effects, a correction function was employed which

incorporates the general trend observed in the localization errors [6]. The error of the

calculated x coordinate of the sound source ∆xmin is shown in Figure 7.21. The results

with and without correction are presented. Initially, large errors are observed in the left

side of the auditorium. It is visible that the employed correction procedure leads to an

improvement of calculation accuracy of the position of the sound source in the lecture

hall. Such a calibration should be performed after the system is installed in a room.

The errors related to x, y coordinates which are smaller than 1 m can be interpreted as

a good accuracy, since it yields resolution of 1-2 seats in the audience, which is usually

satisfactory for the application of monitoring of public events.

In Figure 7.22 the accuracy of determining the y coordinate of the sound source is ex-

amined. Similarly to the case presented in Figure 7.21, before correction the localization

is more accurate on the right side. Also, large errors are observed in the back of the

hall. The employment of the correction function levels the accuracy. In most parts of

the auditorium the error is less than 0.5 m (approx. 1 seat). The errors in the last rows

still remain large after correction, though.
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Figure 7.21: Error of determining the x coordinate of the sound source in the audience
of a public event [6]

Example use case

A draft experiment is introduced to show how the developed technology, after required

adjustments, can be used to monitor the crowds during sports events. Let us assume

that a microphone (or an acoustic vector sensor) is installed in a stadium. The possible

threatening events are e.g. gunshot or crowd panic. In case of a gunshot it has already

been shown that the location of the shooter can be determined with adequate precision.

It is also shown in Section 7.2.2 that the gunshot can be detected in most cases even in

challenging acoustic conditions. The problem is however, the number of false positive

detections. To examine how the developed algorithms react to the sound recorded during

a football match, an example match recording was used, from an Internet database [176].

It is identified that the following events are typical during a football match:

• crowd cheering (reaction to goal, foul etc.),

• horn blowing,
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Figure 7.22: Error of determining the y coordinate of the sound source in the audience
of a public event [6]

• clapping,

• drums beating.

The first analysis of the recording resulted in a vast number of false positives. Therefore,

the events detected during the first half of the match, were used as examples of the

other class and the classifier was trained again taking into account these new events.

Subsequently, the analysis of the recording from the second half is performed. The

following types of false positives were observed:

• regular voice of person in crowd classified as scream,

• drum classified as explosion,

• clapping recognized as gunshot, and once as broken glass.

In general, the false positives are not frequent. During the 45 minutes of the match,

a number of 3 false explosions, 1 false broken glass event, 2 false gunshot and 5 false
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Figure 7.23: Example detection and recognition results from a recording of a football
match

screams were detected. The count of false positives could be lowered by lowering the

sensitivity of the detectors, which was not evaluated in depth in this draft experiment.

The example detection and recognition results of a fragment of match recording are

shown in Figure 7.23. The detection parameter of Impulse detector and its threshold

are shown. Some peaks and troughs are visible in the sound pressure level course, due

to changes in the acoustic environment. Most of the peaks do not exceed the threshold,

which is ca. 20 dB higher than the background level. However, around 43:40 the crowd

gets louder due to a situation at the end of the match. Some events exceed the threshold.

One false detection of scream is present when a person close to the microphone speaks

loudly. The example shows that if the detector’s sensitivity is low, the detection should

not be triggered by normal behavior of crowd. The impulse detector reacts mostly to

incidental bursts of acoustic energy.

7.3 Conclusions from practical experiments

In the chapter several experiments were featured whose aim was to assess the ability

of the engineered methods to detect, classify and localize threatening acoustic events in

practical conditions. The system can be considered flexible, since it can be adopted to

operate in varying conditions, both outdoors and indoors. The detection, recognition

and localization was examined employing the known methods and metrics. Satisfying



Chapter 7. Evaluation on noisy data 164

results were obtained in most conditions. However, some improvements are still needed

to improve the robustness against noise and changing environment. The most important

conclusions derived from the practical experiments are listed below:

1. High recognition results achieved during cross-validation on the training set are

not attained during practical experiments. It is obviously caused by the fact that

the acoustic environment influences the signal strongly. To achieve a more robust

system, the samples in the training set should be more diversified, i.e. recorded in

different environments, at different SNRs etc.

2. Detection is a crucial operation in the recognition process. If an event is missed

at this stage, there is no correction possible. It is a consequence of following the

detection-and-classification approach. The robustness of the detectors could still

be improved, thus improving the performance of the recognition engine as a whole.

3. The advantage of the assumed detection approach is the ability to employ adap-

tation. Adaptation is a significant advantage of the engineered methods. In the

featured practical experiments it was shown that the same recognition engine can

be used in such conditions as: outdoor space, bank operating room and auditorium

hall. In all the mentioned environments the events are correctly detected thanks

to adaptation.

4. As far as classification errors are concerned, it is more often observed that a non-

threatening event is classified as hazardous than vice versa. It is a good feature

regarding possible application in security surveillance. A false alert can always be

verified by human personnel, whereas a false negative value leads to an omission

of an alarming situation. It is also shown that the number of false alerts can be

reduced by employing adaptation of sound event detectors.

5. Localization is an improvement of the sound event recognition system. The infor-

mation about the direction of coming sound is highly useful in security surveillance.

It was shown that the employed methods, basing on the signal from the acoustic

vector sensor, are capable of localizing the sound source with adequate accuracy.
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Parallel processing experiments

In this chapter the experiments related to parallel processing of audio data on the

supercomputing cluster are introduced. Two experiments are featured. The first one

concerns the speedup of the analysis of large amount of audio data in offline mode. In the

second experiment the evaluation of decision making time in online mode is presented.

It is shown that employing parallel processing leads to shortening of the time needed to

recognize the event.

8.1 Speedup of offline analysis

In a possible usage scenario of the developed system, some security services need to

search through a recording from acoustic surveillance to find a fragment of interest, e.g.

pertaining to a hazardous event which happened in the past. Manual search of the

long audio material, possibly containing hours or even days of registered data, would

be extremely time-consuming. Automated hazardous sound event recognition can be

used to indicate the times in which atypical events occurred, thus facilitating the search

process. It is obvious that the faster such automatic search is, the better. Hitherto

presented methods can be used for processing registered stream from acoustic monitoring

[15]. In fact, a specific KASKADA service, called SoundRecFile, was created for such

purpose (see Section 5.3). It utilizes data-level parallelism to speed up the offline analysis

of large amount of registered audio data.

165
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Figure 8.1: Approach to offline analysis of registered audio data

The approach to the task offline analysis of registered audio data is presented in Fig-

ure 8.1. The large portion of acoustical data (presumably in many sound files like wave

or mp3 format) is divided into equal chunks. Each chunk processed by a separate thread

or process in parallel. After the processing tasks are completed, the results are sent back

to the master process. The output of each chunk is the data concerning the detected

acoustic events. The synchronization of results is performed and the final output is the

list of detected events in the whole audio material.

8.1.1 Parallel processing approaches

Four different approaches to parallel offline analysis are considered. The differences lie

in the assumptions regarding the employment of the supercomputer’s resources and the

KASKADA framework. The different strategies are evaluated later in the section. The

illustration of the employed approaches is provided in Figure 8.2.

A. Execution directly on supercomputing node - The program is executed man-

ually after logging on to the chosen supercomputer node. The program uses boost

thread library to execute operations in parallel. Only the resources available on the
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current node are available. At the date of the experiment evaluating this approach,

8 cores were available per supercomputing node.

B. Execution in KASKADA framework with threads - The program is exe-

cuted in the KASKADA framework, using the KASKADA user console. However,

it still uses boost threads and utilizes only the resources of a single node.

C. Execution in KASKADA framework with master-slave processes - The

KASKADA framework provides master-slave mechanism for offline processing tasks.

The master process is executed on a chosen node and then runs slave processes,

which handle the actual data processing. The slave processes may be allocated on

whichever node is available. The KASKADA framework handles the allocation of

the resources (see Section 5.1.2 for reference).

D. Execution in KASKADA framework with master-slave processes and

threads - In this approach the master-slave mechanism is utilized, but the slave

processes are also divided to boost threads. The KASKADA allocates each slave

process on a node with free resources. The threads of the slave process occupy the

cores available on the node.

In all approaches the slave processes or threads are given the information about the time

range from the registered data which they should operate on. All processes and threads

access the same audio files on disk.

8.1.2 Experiment for evaluation of the processing time

First, a draft experiment is performed to compare the strategies employed for parallel

computations. The experiment is conducted on Galera cluster (with 8 CPU cores per

node, see Table 5.1). In the draft experiment only up to 10 threads or processes are

employed. A 1-hour long recording is used as test signal. The results are shown in Fig-

ure 8.3. Three measurements of computation time are performed for each strategy. The

median value is taken into consideration. The speedup of computations is determined

in relation to the time of analysis on 1 CPU, according to the definition in Equation 3.1.
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Figure 8.2: Approaches employed to parallel offline analysis
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Figure 8.3: Draft comparison of offline processing strategies

More sophisticated methods for scalability evaluation are also presented in Section 3.1.

However, in this case of offline data processing the speedup metrics is believed to be

sufficient.

It is visible in Figure 8.3 that the results obtained with different parallel processing

strategies are similar. However, it can be noted that the execution of the program

outside the KASKADA framework (approach A) yields worse results. The remaining

strategies perform similarly up to 8 threads. The B approach (threads in KASKADA

framework) cannot be efficiently used with more than 8 threads, since only 8 CPU cores

per node are available. The strategy D (master-slave processes divided into threads)

appears better than C (master-slave processes), however the difference is not large.

Therefore, in more precise evaluation, the approaches C and D are compared.

The next experiment is carried out to assess the scalability of the solution. Since a

greater number of nodes is utilized, only strategies C (KASKADA master-slave) and

D (KASKADA master-slave + threads) are evaluated. The Galera Plus cluster is em-

ployed. A 24-hour long recording from a noise monitoring station, the one shown in
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Figure 8.4: Acceleration of computations in offline analysis

Figure 5.6 is used as test signal. The analysis is performed 5 times for each parallel pro-

cessing strategy and the median value of elapsed computation time is computed. Next,

the acceleration of computations is determined in relation to the processing time in a

single process. The obtained results are plotted in Figure 8.4.

Once again the approaches C and D yield very similar results. Differences are visible for

16 and 32 processes. Thus, it is difficult to determine which strategy performs better

in general. The obtained acceleration characteristics is far from the ideal one. The

maximum speedup achieved equals 30.8 for 128 instances and D approach (master slave

+ threads). A distinct deflection of the characteristics can be observed for C approach

(master-slave) between 8 and 16 instances. It is most probably caused by the need to

engage more than one processing node. The use of threads in D approach compensates

for such effect, yet a similar bend is visible for D approach between 16 and 32 threads.

In an additional plot in Figure 8.5 the elapsed times of computations for the master-slave

approach (C) are shown. Five measurements for each number of threads are marked and

the median line are plotted. It needs to be underlined that the elapsed time depends

on the configuration of the recognition engine. For example, a change in the sensitivity

of the detectors influences the numbers of events detected and thus, the time needed to
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Figure 8.5: Elapsed time of computations in offline analysis for master-slave ap-
proach (C)

classify the events. In this experiments speech detector and impulse detector were used,

both with a sensitivity equal to 0.7.

The time needed to analyze the 24-hour-long recording in a single threads equals ca. 25

minutes. Thanks to the employment of parallel processing on a supercomputing cluster,

this time is reduced to less than 1 minute (50.2 sec for 128 threads).

8.2 Acceleration of decision making

This section deals with the time needed to make the decision about the type of detected

event. The shorter the decision making time, the better the system’s ability to work

in practical conditions. For example, when a gunshot is fired in a public space, the

algorithms for automatic detection and localization of the acoustic event [6, 7] can

be used to instantly pinpoint the location of the shooter. However, every second of

delay introduced by the algorithm gives the assailant more time to escape. A reasonable

reference point for the decision making time is the human reaction time which, according

to general knowledge, varies from 0.1 to 0.3 seconds.
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An experiment is presented which evaluates the decision making time of the engineered

sound recognition algorithm with different approaches to parallel processing on a su-

percomputing cluster. First, the definitions and metrics used to evaluate the decision

time are presented. Next, the conditions of the experiment are introduced. Finally, the

obtained results are outlined and discussed.

8.2.1 Decision process

In general, as shown in Chapter 4, three operations are required to recognize a detected

acoustic event:

• buffering of the event’s samples,

• feature extraction,

• classification.

As far as the decision making time is considered, the feature extraction is the most

computationally expensive and influential operation. However, as it is shown in later

sections, the approach to buffering, namely the size of the buffer and how often the events

are divided into separate buffers, also has a strong impact on the decision time. The

classification operation, performed after the features have been calculated, is considered

less computationally demanding.

In the process of assessing the decision making time four time points are important:

• tES - event start time - which is defined as the moment at which the detection

algorithm starts to recognize abnormalities in the audio data stream;

• tEE - event end time - the time after which the event is ready for classification;

• tCS - classification start time - the moment at which the buffered samples are

passed to the classifier and feature extraction begins;

• tCE - classification end time - the time at which the event has been classified and

the decision is available.
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8.2.2 Decision time metrics

Based on the above, we define the metrics employed for assessing the decision making

time. Some of the measures can be expressed using absolute units (seconds [s]) and

some in relative units (seconds per second [s/s]), in which case the respective time is

divided by the duration of the event. The illustration of the decision process and the

defined metrics is presented in Fig. 8.6.

The first metrics relates to the total time needed for detecting, buffering, parameterizing

and classifying the event and is referred to as the processing time (PT).

PT [s] = tCE − tES (8.1)

PT [s/s] =
tCE − tES
tEE − tES

(8.2)

The next measure concerns the time needed to make the decision, i.e. the time after

the end of the event which is required to obtain the decision, and which it is referred to

as decision time (DT). During this time all necessary operations, i.e. buffering, passing

the event to the classifier, feature extraction and classification are completed. The DT

measure expressed in relative units answers the question: ”how long is it necessary to

wait for the classification of one second of audio event?” If this value exceeds 1, it is

inferred that the algorithm is so slow that the processing of the event lasts longer than

the event itself.

DT [s] = tCE − tEE (8.3)

DT [s/s] =
tCE − tEE
tEE − tES

(8.4)

Classification time (CT) is defined as the time needed to extract the features from the

buffered signal and to perform its classification. It does not include the time needed to
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Figure 8.6: The illustration of the decision process and decision time metrics

wait until the classifier is free, nor to run the classification task. The relative value (in

seconds per second) is important in practice, as feature extraction time depends strictly

on the duration of the event.

CT [s] = tCE − tCS (8.5)

CT [s/s] =
tCE − tCS
tEE − tES

(8.6)

In some cases, after the event has ended, the classifier is busy classifying the previ-

ous event and the new event has to wait in a queue before it can be classified. The

classification delay metrics (CD) reflects this waiting period.

CD[s] = tCS − tEE (8.7)

It is worth noting that DT = CD + CT .

8.2.3 Parallel processing strategies

In order to optimize the decision making time an effort is made to execute the im-

plemented sound recognition methods in parallel. Four different approaches to parallel
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processing are introduced. The four techniques (A,B, C and D) are presented in Fig. 8.7.

A Master-slave

In this approach a slave process is executed every time a new event is detected. The mas-

ter service (stream algorithm) handles the real-time data processing with the acoustic

event detection algorithm. Once detected, the buffered event is passed to a slave algo-

rithm. The slave process then handles the feature extraction and classification over the

received signal samples, as shown in Fig. 8.7a. The decision process is completed when

the slave algorithm returns the result to the master service. The aim of the master-slave

approach is to avoid backlogs in the event classification queue. The drawback is, how-

ever, the time required for the execution of the slave process, which makes this approach

inefficient as far as the purpose of this work is concerned.

B Complex service

Since master-slave processing is not intended for real-time data stream processing, an-

other approach is proposed, which utilizes a complex service. The approach is presented

in Fig. 8.7b. The complex service comprises two simple services: a detection service

which handles real-time input audio data processing and an acoustic event detection

and classification service, which realizes the functions of feature extraction and classi-

fication. When a new acoustic event is detected by the detection service, the buffered

samples of the event are passed to the second service in the chain - the classification

service. The goal of this approach is to shorten the time needed to execute the classifica-

tion task. The classifier object, allocated in the second service can handle the buffered

event data processing at the same time that the detection object handles the input

stream processing. However, if a new event is passed to the classification service while

the classifier is busy, the buffered data has to wait until the classifier is free.
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C Complex service with multithread classification

To overcome the problem mentioned in approach B, a modification is proposed. In this

approach each event data is classified by a separate thread (Fig. 8.7c). Each thread has

its own classifier object which has the resources required to parameterize and classify an

acoustic event. Once a new event is detected, it is buffered and passed to the classification

service. Subsequently, a classification thread is executed (TE) for the new event. The

threads are synchronized in a thread pool. When a thread finishes and provides its

result, the decision is made available.

D Complex service with sequential feature extraction

In the previous approaches the feature extraction (and the following classification) is only

started after the event has finished. The last approach incorporates another strategy

(shown in Fig. 8.7d). Whenever a frame of the detected event is present in the buffer,

feature extraction from this frame is performed. The length of the frame equals the

length of the classifier’s frame - af . After all frames comprising the detected acoustic

event have been gathered, classification is fired. The approach enables a significant

shortening of the decision process.

8.2.4 Experimental methodoloogy

To assess the speed of decision making a test signal was prepared. To simulate a stress

situation, in which there might be difficulties with online decision making, the following

settings of acoustic events are employed:

• A series of a few impulsive events (gunshots, explosions), i.e. 3-5 impulsive events

placed close in time (less than 1 second apart) - 4 sequences with 15 events were

used;

• A medium-long event (scream or breaking glass) surrounded by impulsive events

(gunshots, explosions) - 11 sequences with 36 events were used;
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• Very long events (noisy events, non-threatening, 8-16 seconds long) followed by

one or two threatening impulsive events (gunshot, explosion) - 10 sequences with

23 events;

• Very long events followed by another long or medium-long event - 3 sequences of

6 events;

• isolated events of all types, not pertaining to any of the mentioned sequences - 11

events.

A total number of 91 events are included in the experiment signal. The average duration

of the acoustic event is 1.9 seconds, with a minimum duration of ca. 300 ms and a

maximum duration of 16 seconds. The duration of the whole test signal equals 4 minutes

49 seconds. The break between events varies from 500 ms to 2.5 seconds.

The test signal is then analyzed by the sound recognition service in simulated online

mode, i.e. the data from the experimental signal is fed into the service according to the

sampling rate of 48000 samples per second. The detected events and their respective

start and end times (defined in Section 8.2.2 and Fig. 8.6) are written to a log file.

Next the timestamps are analyzed to calculate the decision time metrics: CT, CD,

DT and PT. Three parameters of the sound recognition engine are changed during the

experiment:

• analysis frame (af ) - two values are used: 200 ms and 500 ms;

• frame overlap factor (OL) is equal to 25, 50 or 75%;

• buffer length (blen) is assigned one of the three values: 2 s, 3 s and 5 s.

Each of these parameters has an impact on the decision time process, which is evaluated

in the conducted experiment. We use representative values which yield a reasonable

complexity and an adequate temporal resolution. The analysis frame has to be longer

than the employed block size in Welch’s method (equal to 85 ms). The buffer length

corresponds to the approximate length of average short, medium-length and long acous-

tic events. The overlap factor determines the amount of computation which has to be
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executed in order to parameterize the event. Larger overlap yields a deeper insight into

the temporal qualities of the signal, which can improve the efficiency of classifying non

stationary events. By changing the overlap, we intend stress testing of the algorithm

and determine by how much the decision making time is extended, when a larger overlap

is used. The combination of the values of these parameters yields 18 analyzes of the test

signal for every parallel processing strategy. For every set of values and a particular pro-

cessing method the maximum and mean values of the calculated decision time metrics

are extracted. The results are aggregated and presented in the following subsection.

8.2.5 Decision making time results

In this section the results obtained during the experiment are presented. We focus on

each of the defined decision time metrics and its dependence on the processing parame-

ters (af , blen and OL). The four employed strategies for parallel processing are compared

to the baseline algorithm, by which we understand the algorithm operating according

to the diagram in Figure 4.1, which introduces no parallel computations.

Decision time

Decision time is the most important metrics which tells us about the amount of time

needed to wait for the decision after the event has ended. Minimization of this measure

is the main purpose of the work presented in this section. The results of the average

decision time per second of event duration (DT [s/s]) for every parameter combination

and processing method are presented in Table 8.1. The desired values are under 1 second,

which means that the decision time is no longer than the duration of the event. This

requirement is met both by baseline algorithm, methods C (complex service with multi-

thread classification) and D (sequential feature extraction) and, with some exceptions, by

method B (complex service). Method A (master-slave approach) fails to yield reasonable

decision times. The cause of such poor performance is the amount of time needed to

execute the slave process in the KASKADA framework. Another observation that can

be made is that the decision time is strongly correlated with the overlap factor OL. The

greater the overlap, the greater the number of frames that need to be processed, which
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extends the decision making time. It can also be seen that, as a rule, the decision time is

longer for longer analysis frame af and buffer length blen. The influence of the analysis

frame length on DT can be explained by the fact that some features are calculated longer

for longer frames (e.g. temporal features). The buffer length is important in cases in

which two events are close in time to each other. If the buffer is longer, there is greater

probability that the classifier will still be occupied when a new event is detected, since

it takes more time to classify the last event. It is worth noting that this dependence is

apparent in the baseline algorithm (e.g. for 250 ms frame and 75 % overlap we have

0.650 s/s with 2 s buffer vs. 0.808 s/s with 5 s buffer) and method B - complex service

(0.746 s/s vs. 1.130 s/s), which are sensitive to mutual exclusions in classification loop

(explained in Section 4.4) and not noticeable for method C - multi-thread classification

(0.623 s/s vs. 0.6 s/s), which solves the problem of exclusions in the critical section of

the classifier.

Table 8.1: Decision time per second (DT [s/s]) for different parallelization strategies

blen [s] af [ms] OL baseline A B C D

2 250 25% 0.272 9.607 0.304 0.279 0.031
2 250 50% 0.363 9.235 0.375 0.427 0.048
2 250 75% 0.650 7.582 0.746 0.623 0.058
2 500 25% 0.282 11.371 0.302 0.294 0.031
2 500 50% 0.363 9.715 0.369 0.366 0.048
2 500 75% 0.596 8.297 0.718 0.568 0.053
3 250 25% 0.268 6.748 1.225 0.301 0.026
3 250 50% 0.376 5.771 0.646 0.350 0.025
3 250 75% 0.863 5.915 0.406 0.590 0.027
3 500 25% 0.277 7.301 0.381 0.272 0.041
3 500 50% 0.380 10.185 0.552 0.345 0.044
3 500 75% 0.774 5.749 1.243 0.552 0.048
5 250 25% 0.325 2.986 0.286 0.264 0.024
5 250 50% 0.485 3.523 0.550 0.343 0.020
5 250 75% 0.808 3.784 1.130 0.600 0.017
5 500 25% 0.323 3.589 0.318 0.249 0.032
5 500 50% 0.496 5.489 0.460 0.349 0.039
5 500 75% 0.742 4.043 1.049 0.615 0.049

As far as these results are concerned it is observed that neither method A (master-slave),

nor B (complex service) improves the decision making time. Some improvement is no-

ticed after employing the complex service with multi-thread classification (C), although

not in all cases. The last method (complex service with sequential feature extraction)
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Figure 8.8: Classification time (CT [s/s]) for different parallel processing strategies

clearly outperforms all previous strategies by reducing the decision time below 100 ms,

which equals the time needed to process the last short-time frame of the signal.

Classification time

Since the most significant operation in the decision making process is classification (here

treated together with feature extraction), we take a closer look at the time needed to

parameterize and classify the event. This time is reflected by the CT metrics defined

in Equation 8.5 and Equation 8.6. This measure does not include the possible delay

before the start of classification. The results of average classification time per second for

a chosen frame length and buffer length are presented in Figure 8.8. It is noticeable how

the classification time depends on the overlap factor. The dependence is similar to the

one observed in Table 8.1. It is worth noting that this metrics does not pertain to the

last processing method (D), since in this case feature extraction starts before the event

is finished and the classification time calculated according to Equation 8.5 would yield

negative values. The surprising finding is that for overlap factors equal to 50% and 75%

the parallel processing does not shorten the classification time compared to the baseline

algorithm. Some improvement is noticed for the 25% overlap for methods B and C. The

gain, however, is very small.
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Classification delay

As it was observed in the previous subsection, classification time per se does not signif-

icantly benefit from the employed time enhancement approaches. Therefore, it is noted

that classification delay (CD) is the factor which can be improved by optimization of

decision making. The measure was defined in Eq. (8.7). The results of CD evaluation for

a chosen frame length and overlap factor are presented in Figure 8.9 Only the baseline

algorithm and methods B and C are analyzed. Method A yields overly high values of

CD and the metrics does not apply to the method. The plots in Figure 8.9 are drawn in

relation to buffer length. It is noticeable that for the baseline method and method B the

dependence on blen is strong. Moreover, utilizing a complex service (B) does not shorten

the average classification delay. In contrast, the CD values are higher for method B than

for the baseline algorithm. The longer the event buffer, the higher the CD observed,

because longer events occupy the classifier’s resources for a longer time, thus leading

to a delay in the recognition process. The employment of multi-thread classification

(C), however, contributes to a significant decrease in classification delay. Moreover, the

dependence on blen is no longer apparent.

In Table 8.2 the average and maximum values of classification delay for all values of af ,

blen and OL are presented. It is also demonstrated how they contribute to the average

and maximum processing time (PT). It can be observed that method A introduces a

huge delay which significantly extends the decision process. One can also observe that

approach C does shorten the average and maximum classification delay, but it does not

relate to the average values of processing time (it does, however, improve the decision

making time in some cases, see Table 8.1 and Figure 8.10). Finally, it is worth noting

that the classification delay metrics does not apply to approach D. As it can be seen

in Figure 8.7d, the feature extraction in this method starts before the event has ended.

The results prove that it leads to a significant improvement in the decision making time.
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Figure 8.9: Classification delay (CD [ms]) for different parallel processing strategies

Table 8.2: Classification delay (CD) and processing time (PT) for different parallel
processing strategies

baseline A B C D

average CD [ms] 47.63 7322.79 116.84 26.29 N/A
maximum CD [ms] 1902.77 15423.21 3079.81 635.56 N/A

average PT [s] 3.310 10.572 3.532 3.489 3.111
maximum PT [s] 8.093 21.072 9.449 9.595 7.176

Processing time

Finally, we present the comparison of processing time per second of detected event. The

results are shown in Figure 8.10. The 500 ms frame and 75% overlap are chosen for this

analysis. It can be seen that the baseline method requires roughly 1.5-1.7 seconds of

processing for every second of detected event. Method A achieves values which do not

fall within the scale of the plot. Approach B performs slightly worse than the baseline

method. Method C, employing multi-thread classification, yields some improvement,

especially for a longer buffer. Method D again outperforms the other approaches, by

reducing the processing time per second close to the minimum of 1 s/s.

8.2.6 Conclusions from decision time evaluation

The following conclusions are drawn from the conducted experiment for decision making

time evaluation:
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Figure 8.10: Processing time (PT [s/s]) for different parallel processing strategies

1. The master-slave approach is not appropriate for accelerating the decision making

in online acoustic event recognition. It has been proved that executing the slave

tasks consumes too much time and introduces a significant delay, which is unaf-

fordable in time-critical decision making. Moreover, performing feature extraction

in the slave task does not speed up the parameterization process.

2. The time needed to extract the features from the signal is not shortened if the

feature extraction is performed by a slave task (method A) or another service

(methods B,C). To increase the speed of feature extraction, other techniques should

be used, e.g. the parallelization of the parameter calculation functions.

3. Employing the complex service scheme (approach B) does not lead to an improve-

ment in the decision making time. It was shown that both the average classification

time and the classification delay are extended in complex service approach com-

pared to the baseline system. Therefore, in order to benefit from the complex

service form additional mechanisms need to be implemented.

4. Parallel processing does, however, shorten the maximum classification delay, which

is a considerable benefit for an automatic sound recognition system.
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5. Employing multi-thread classification, in which a separate Classifier object is con-

structed for every event, leads to substantial improvements in classification delay

and total processing time (approach C).

6. The last approach, i.e. complex service with sequential feature extraction (method D),

outperforms the other presented methods by reducing the decision time to the de-

sired level. Because of this approach the decision is made instantly at the end of

an event.

The acceleration of decision making achieved with the employed parallel processing

strategies is significant. The approach D, in particular, ensures that the decision is

obtained almost instantly after the cessation of the event. It is also worth mentioning

that the developed mechanisms for acceleration of decision making do not influence the

recognition accuracy. The acoustic signal parameterization and classification operations

are identical in all approaches. Therefore, we do not observe any deterioration of the

recall, so that precision rates of the recognition engine compared to the baseline system.

However, the length of the analysis frame (af ) and overlap factor (OL) have an impact

on the classifier’s performance.

An important conclusion is that the performance could be improved even further pro-

vided that the feature extraction is executed in parallel. The research by Maka and

Dziurzański [141] shows that a significant gain on computational time can be achieved

when the features are extracted in parallel by utilizing standard OpenMP directives in

ANSI C code. Such mechanism could also be successfully used in a Linux-based super-

computing cluster such as the one used in this thesis. It is a very promising direction

for future research on the subject of accelerating the decision making in sound event

recognition.





Chapter 9

Conclusions

In the dissertation, the methods for sound event recognition were examined in the en-

vironment of a supercomputing cluster. The employed algorithms were introduced and

the experiments which validate the efficiency of recognition of hazardous events were

featured. The works aiming at reducing the time required to process the acoustic data

on a supercomputing cluster were presented. In the final chapter a discussion of the

goals of this work is provided, as well as the possible applications and plans for further

development.

9.1 Author’s original work

All algorithms and methods featured in the work, apart from code realizing mathematical

operations such as Fourier transform and SVM classification, are author’s original work.

The sound source localization methods, featured in Section 7.1 and in Section 7.2.4,

are an exception, since they were developed by a coworker, Dr. Józef Kotus, and are

evaluated together with sound event recognition in some experiments mentioned in this

dissertation. The methods developed by the author are results of literature studies and

original thoughts. Here, the most representative achievements are listed, which to the

best knowledge of the author extend the current state of the art.

187
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1. Flexible adaptive methods for detection of acoustic events - The sound

event detection algorithms, presented in Section 4.1, are both computationally light

(as opposed to detection-by-classification approach known from the literature) and

advanced as far as adaptation is concerned. The sophisticated adaptation of de-

tection thresholds, taking into account the complexity of the acoustic background,

surpasses the simple adaptation methods known from the literature [64]. In par-

ticular, the detection thresholds are adapted not only to average sound level in

the acoustic background, but also to its variance and temporal change rate (see

Section 4.1.3). Moreover, the introduced detectors are flexible when it comes to

choosing the detection parameter. Thus, the algorithms can be easily suited to

detect new types of events in new types of environments. The introduced detec-

tion approach was tested in realistic conditions and achieved good results. It was

shown in Section 7.2.1 that adaptation improves the performance of the detection

algorithm.

2. Implementation of a sound recognition engine on a supercomputing

cluster - according to the review presented in Chapter 3, the applications exploit-

ing parallel processing of audio data are more and more frequent, yet some fields

are still to be explored. This thesis presents pioneering work devoted to recogni-

tion of acoustic events on a supercomputing platform. It is based on a project,

in which an innovatory framework for processing multimedia data streams in a

supercomputing environment was created. The author’s work was focused on

developing supercomputing services related to sound recognition, executing and

evaluating them on real-world data and conducting experiments to prove the ef-

ficiency of supercomputing. The results presented in Chapter 8 show that the

employed methods for parallel processing of acoustical data improve the usability

of the engineered methods and reduce the time needed to make the decision.

3. Availability to operate online in different conditions - to the knowledge

of the author none of the published works featured a system operating online

and tested in such diverse acoustic conditions. The state of the art systems are

either tested on isolated events [43, 49, 53] or require fitting to specific events or
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noise types [42, 80]. The engine proposed in this dissertation has the capacity of

recognizing different types of events and work in various conditions, which was

confirmed by experiments. It also was tested in online operations while processing

acoustical data for multiple days.

4. Precise evaluation of recognition performance in noise - To properly in-

vestigate how the engineered methods react to different acoustic conditions, an

experiment methodology ensuring precise control over noise type and intensity

was proposed. The experiment featured in Section 7.1.3 is in itself innovatory and

more thorough than the evaluation methods presented in the literature. Thanks

to the employed approach precise calculation of SNR is possible, thus providing

valuable insight into the recognition performance in realistic conditions. However,

the environment simulated in an anechoic chamber is not identical with a real one.

Hence, the evaluation was also performed in real-world conditions, using real-life

events and noise. The achieved results were consistent with the ones achieved

during simulations, which proves the correctness of the assumed approach.

9.2 Discussion of scientific theses

Three scientific theses were posed in this work. Below, the discussion in support of each

of the theses is provided.

To reach the goal of establishing a system for efficient detection and recognition of

hazardous events, partial goals were achieved. Firstly, the algorithms for detecting and

classifying sound events were created. Secondly, the engineered methods were prepared

for online operation. Finally, the developed sound recognition engine was implemented

in the environment of a supercomputing cluster, in which it was evaluated.

Before the sound recognition engine was tested in realistic conditions, the evaluation

of the sound event classifier on the training set was performed. A database of signals

was utilized, comprising samples of such hazardous events as: explosion, breaking glass

gunshot and scream, as well as other, non-threatening sounds. The optimum size and
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composition of the feature vector was found and the optimum parameters of the classifi-

cation model were obtained. It was shown that the sound classifier employed is capable

of discerning between these classes of acoustic events with high accuracy. The results

obtained on the training set are presented in Chapter 6. A number of 1278 of all 1301

events from the training set were recognized correctly in cross-validation testing. The

achieved results confirm that the methods used for the analysis of acoustical signals were

chosen and implemented correctly.

The accuracy achieved on the training set served as reference for evaluating the engine

on real-world data. The practical conditions considered are indoor and outdoor environ-

ments. The developed methods were tested in such conditions as: outdoor urban space

(with traffic and railway noise), bank operating hall, public event hall and indoor space

with cocktail-party noise.

It needs to be underlined that achieving high efficiency of acoustic event recognition in

practical conditions is a challenging task, due to noise and distortions which affect the

signal, thus deteriorating the performance of the classifier. It was shown in Chapter 6

that in evaluation on the training set nearly 98% overall accuracy can be obtained, which

yields very small loss. In Chapter 7 several experiments were presented whose aim was

to determine the classification loss achieved in practical conditions. It was shown that

the performance of the sound recognition engine depends strongly on the type of noise

present and on the SNR. An experiment was conducted in a simulated environment in

which both these qualities were under precise control. The results showed that the recall

and precision rates are in some cases (i.e. for some values of SNR and some types of

events) as high as those achieved on the training set.

The experiments conducted in real-life conditions have yielded similar results to those

performed in the simulated environment. However, the SNR values in practical condi-

tions could not be precisely determined. As far as the recognition rates are considered,

high recall rate of gunshots was obtained in bank operating hall and in outdoor urban

conditions. The recall and precision rates for scream and broken glass are also high (ca.

0.9) provided the SNR equals 10 dB or more (see Section 7.2.2). Moreover, it is ob-

served that false positive classifications (i.e. classifying a non-threatening as hazardous)
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are more frequent in realistic conditions that false negative classifications (i.e. classi-

fying a dangerous sound as non-threatening). In the context of a security surveillance

system such false positive errors are of lesser concern. Although lowering the overall

classification accuracy, false alerts can be later discarded by the security personnel. The

rate of false alerts can also be efficiently lowered by employing adaptation. Therefore,

a substantially larger loss is generated by false negatives, which fortunately are not as

numerous. Again, it needs to be underlined that the number of false positives can always

be lowered at the cost of increasing false negatives and vice versa. From the practical

usability point of view it is important that the examined decision system can be config-

ured in such a way that the security of people and property is substantially increased

while the loss generated in the decision process is acceptable.

In the light of the achieved results it can be assessed that the engineered techniques are

applicable in real-world audio-based or audiovisual surveillance and are able to operate

with a reasonably low loss. The achieved recognition rates are high enough to detect

typical threatening events (such as explosion, breaking glass, gunshot and scream) in

practical circumstances, thus improving the security level. This proves the scientific

thesis of the dissertation:

1. The developed methods for detection, parameterization and classifi-

cation of selected hazardous acoustic events enable sufficiently low loss

achieved in practical conditions to be used for security surveillance pur-

poses.

The main difficulty in acoustic event detection in real-world conditions is that the major-

ity of the input audio data constitutes the acoustic background. It is very common that

these noisy sounds are recognized as threatening, thus leading to a false alarm. This un-

derlines the importance of sound detection algorithm, whose purpose is to separate the

relevant acoustic events from the background sounds. In the dissertation threshold-based

detection was employed with adaptation of the detector’s threshold to the parameters

of the acoustic background.
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The mechanisms for adapting the detection threshold to the changing conditions were

proposed in Section 4.1.3.. It was shown that the adaptation enables the detector to

closely follow the time-varying characteristics of the environment. The adaptation fea-

ture was successfully used both in indoor and outdoor environment (bank operating hall

and urban space). It was shown that thanks to adaptation of detection threshold the

security level of the area under surveillance is increased, e.g. by automatically lowering

the threshold at night.

In Section 7.2.1 efforts were presented to reduce the number of false positive results,

while maintaining the rate of true positives. It was shown that employing adaptation

leads to a decrease in the number of false positive detections. Moreover, three different

adaptation strategies were evaluated. The most simple one, simple adaptation, was based

on following the average sound level. In the double adaptation approach, the variance

of the sound level was also considered. Finally, the method called triple adaptation was

based on average sound level, its variance, and the rate at which the sound level changes

with time. The three approaches were compared in an experiment aiming at detecting

gunshots in outdoor urban noise based on sound level. The result is that the most

advanced adaptation method (triple adaptation) yields the most favorable performance

(lowest EER) of all the considered approaches.

The achieved performance of the adaptive sound event detector proves the scientific

thesis:

2. The proposed way of adaptation of the detection threshold to the vari-

ance and dynamics of the level of the acoustic background reduces the

detector’s equal error rate compared to the adaptation to average sound

level.

The most innovatory aspect of this thesis is the employment of a supercomputing cluster

for recognition of events in audio data streams. The engineered methods were imple-

mented in a specialized framework operating on a supercomputer. Supercomputing

services were created to make the developed sound recognition engine available to the
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end user, as described in Section 5.1.3. The implemented services were shown to operate

reliably in online mode in real-life conditions.

Parallel processing techniques were introduced to speedup the processing of audio data.

The shorter the time needed to recognize the audio data, the more time the security

authorities have to react to a threatening situation. The parallel approach was employed

in online sound event recognition in Section 8.2. Different parallel processing strategies

were implemented and assessed to reduce the decision making time. It was shown

that the decision making is efficiently accelerated compared to the baseline system and

the time needed to recognize the detected event equals ca. 0.1-0.2 seconds, which is

comparable to human reaction time.

It should be noted that the achieved time only corresponds to the latency introduced

by the sound recognition algorithmic chain, disregarding the latency of the KASKADA

platform (inside the supercomputing environment) and the delay introduced due to

transmitting signals via RTSP (outside the supercomputing platform). These factors

have not been extensively measured and are a topic for further investigation. Neverthe-

less, the delay introduced by transmission medium or the supercomputing platform are

independent of the work carried out by the author of this thesis.

The achieved result is also comparable to state-of-the-art achievements in the field.

Saraclar et al. published the research on a low-latency news transcription system [177].

The latency of their system consists of fixed latency (500 ms approx.) and variable

latency which equals ca. 1 second on average. In a work by Salvi on very low latency

speech recognition a constraint of maximum 100 ms delay is mentioned [178]. In a low-

latency speech recognition system introduced by Seward the optimum performance was

achieved for a latency equal to 150 ms [179]. It is also reasonable to compare the achieved

delay with low-latency audio applications. The source of latency in PC audio is similar

to the source of latency in the sound recognition engine examined in this work, namely

it is buffering. In ASIO (Audio Stream Input/Output) drivers the minimum latency of

25 ms can be achieved, whereas with other types of drivers (e.g. MME - MultiMedia

Extensions) a latency as high as 750 ms is encountered [180].
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Considering the state-of-the-art results, the performance the engineered sound recogni-

tion algorithmic chain can be regarded as nearly real-time. Such low latency is achieved

thanks to parallel processing of audio data employing the resources of the supercomput-

ing cluster. The scalability of the KASKADA platform also ensures that the performance

will be maintained if multiple sources are recognized simultaneously. The obtained re-

sults prove the scientific thesis:

3. The implemented parallel processing schemes on a supercomputing clus-

ter enable nearly real-time performance of the hazardous sound recog-

nition algorithmic chain.

9.3 Possible applications and further development

The developed sound recognition engine has a high potential for practical application.

The mechanism of supercomputing services is highly flexible and facilitates the exploita-

tion of the engineered methods. The KASKADA framework with the specialized software

and hardware architecture only requires the source of audio data stream to be connected

to the IP network. The fields in which the results of this work can be utilized are:

• Acoustic surveillance of urban space, e.g. detection of gunshots, traffic hazards,

disturbance, but also noise monitoring. The signals from acoustic sensors mounted

in the municipal infrastructure can be sent to the supercomputer center for analy-

sis. The results can be directly passed to the authorities. The processing capabil-

ities of the supercomputing platform enable efficient processing of numerous data

stream and fast online decision making.

• Acoustic surveillance of public events such as concerts or sports events. The system

is capable of processing numerous streams simultaneously, which make it particu-

larly useful for large events and spaces. It was shown that the localization algo-

rithms can be used to localize the sound source, in particular the person causing

the hazardous events.
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• On demand surveillance, e.g. ordered by private owners who have the need to

detect threats to their property. In such case, a non-trained user only requires

a microphone and a computer with Internet connection to send the audio data

stream to the supercomputing platform and receive the event recognition results.

• Offline analysis of registered audio data. The law enforcement authorities can

use the developed service for offline analysis of large amounts of registered data.

Thanks to employment of parallel processing the days of registered audio can be

analyzed in minutes and the relevant signals can be selected for further investiga-

tion.

Regarding the application in surveillance of outdoor urban space, the possible coverage

should be discussed. According to the website of the leading commercial gunshot de-

tection system [90], the gunshot detection solutions can be divided into two categories:

point protection and wide area protection. The former are based on single sensors and

enable 50-200 meters radius range. The latter are based on multiple sensors and cover

large areas, e.g. cities. In the experiments featured in this dissertation, described in

Section 7.2, gunshots were emitted from ca. 100 meters. The detection and recall rates

for gunshots were still very high, event from such large distance. Thus, it can be stated

that the recognition engine developed in this dissertation yields comparable performance

to the commercial ones, as far as range is concerned. Provided that one sensor enables

detection of hazardous events in 200 m radius (covering ca. 1/8 km2), it would take

about 50 sensors to cover a district of a city.

The successful implementation of the engineered sound recognition algorithms on a su-

percomputing platform opens the door for other distributed implementations. A particu-

larly interesting case is the employment of cloud computing. A number of geographically

spread sources could be connected via the Internet to the computing cloud, in which

the methods for detecting threatening audio events would be installed. The advantage

of such architecture is its high flexibility and scalability.

The results of the dissertation can also be useful in other fields than security surveillance.

The parallel processing of audio data streams can be utilized i.a. for context-based search
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of audio. By comparing the features extracted from the sample recording provided,

similar recordings can be found, e.g. recorded in similar conditions or involving the

same persons. Both the engineered feature extraction and classification techniques can

be used in such case. The related fields such as music information retrieval or speech

recognition can also benefit from parallel processing of audio data.

In further development it is essential to enhance the performance in noisy conditions.

A closer investigation of signal features could lead to identifying those which are more

affected by additive noise and deteriorate the classifier’s performance. Further and

more elaborated experiments devoted to evaluation of the recognition engine in real-life

conditions could also lead to valuable conclusions. In the context of parallel recognition

of audio streams it is an interesting notion to use multiple microphones to strengthen

the decision. Loud events, such as gunshots, should be heard over a large area. Hence,

the synchronization of recognition results from spaced sensors could be used to reduce

the false alert rate. Finally, a substantial improvement could be achieved by joining

the acoustic and visual modality. The topic was addressed in experiments featured in

Section 7.2.4, where the localization data were used to steer the PTZ camera. As it

was mentioned in Section 2.9 audio and video data can be used together to strengthen

the decision in automatic surveillance and could also be applied in the KASKADA

framework basing on algorithms presented in this thesis.

9.4 Privacy issues

In 1949 British writer George Orwell published his world-famous novel ”Nineteen eighty-

four” [181]. The book featured an all-knowing, all-seeing entity referred to as Big

Brother, who soon became the symbol of a police state and excessive surveillance pushed

to the point of invading the citizens’ private lives. Orwell’s concept has been often used

to discredit the development of surveillance systems. The main fear causing the society’s

hostile attitude towards surveillance technology is the loss of privacy. Therefore, visual

and acoustic monitoring of streets and public places is often subject to criticism. The

acoustic surveillance in particular, causes people to fear that their private conversations
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are being overheard or recorded, stored and analyzed. It needs to be underlined that

the technology used by the author of this dissertation and described in the literature,

namely acoustic event recognition, does not provide the means to analyze the content

of speech. As it is shown in the dissertation, the signal is analyzed in the domain of fea-

tures which provide the information about the spectral and temporal qualities of sound,

not the meaning of utterances. As far as human voice is concerned, the author of the

dissertation focuses only on determination if the sound is regular spoken voice or scream.

However, every surveillance system has to register data in order to operate. Such data

are often stored for a specified amount of time. Efforts are made to limit the need for

storing data which are not related to any threatening or illegal actions. The project

ADDPRIV (Automatic Data relevancy Discrimination for a PRIVacy-sensitive video

surveillance) was conducted in the years 2011-2014 [182]. Its aim was to erase the

multimedia data which are not relevant from the point of view of detection of abnormal

events in order to protect the privacy of the people involved in the recorded scenes.

Another method to improve the privacy level of automatic surveillance is to employ video

stream anonymization, which allows for hiding the faces or license plates present in the

recordings [183]. Reversible anonymization is a technique which allows the authorized

people (e.g. the police) to extract the original image from the anonymized recording

with the use of cryptography [184].

As far as the registered audio material used in this thesis is concerned, the author states

that the recorded data do not contain sensitive material such as private conversations of

unwitting persons. The recordings were performed either in public spaces where people

were located far from the microphone (with a pertinent disclaimer displayed in the area

under surveillance) or with actors who agreed to use the recordings of their voice for

experiments.





Appendix A

List of selected features

The following features are used in the decision process. See Section 4.3 for feature

definitions and formulae.

Audio Spectrum Envelope (ASE) 5,6,8,15,16,17,21,24,25,28,30,32,34
Audio Spectrum Centroid (ASC)
Cepstral Crest Factor (CCF)
Crest Factor (CF)
kurtosis
Log Attack Time (LAT)
MFCC 1,2,4,5,6,8
Peak-Valley Difference (PVD)
Periodicity
Spectral Energy (SE) 1,2,3,4,5,7,8
SFM
SFMa 10,15,16,18,19,23,24
SFMb 1,2,3,4,7
Spectral Roll-Off
Spectral Slope
Speech Energy
Zero Crossing Rate (ZCR)
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[10] J. Kotus, K.  Lopatka, A. Czyżewski, and G. Bogdanis, “Audio-visual surveillance system for
application in bank operating room,” in 6th Int. Conf. on Multimedia, Communications, Services
and Security, pp. 107–120, 2013.
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[12] J. Kotus, K.  Lopatka, A. Czyżewski, and H. Krawczyk, “Multimedia system assisting lecturers
and public speakers,” in INFOBAZY 2011, pp. 80–86, 2011.

[13] K.  Lopatka, J. Kotus, M. Szczodrak, P. Marcinkowski, A. Korzeniewski, and A. Czyżewski, “Mul-
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[16] K.  Lopatka, J. Kotus, and A. Czyżewski, “Improving automatic surveillance by sound analysis,”
in 5th Future Security Conference, pp. 51–51, 2010.

207



Bibliography 208

[17] J. Kotus, K.  Lopatka, K. Kopaczewski, and A. Czyżewski, “Automatic audio-visual threat detec-
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(A. Dziech and A. Czyżewski, eds.), vol. 368 of Communications in Computer and Information
Science, pp. 288–297, Springer Berlin Heidelberg, 2013.

[56] A. Lindsay and S. Quackenbush, “Overview of mpeg-7 audio,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 11, no. 6, pp. 725–729, 2001.

[57] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Mach. Learn.
Res., vol. 3, pp. 1157–1182, Mar. 2003.

[58] S. Li, R. Xia, C. Zong, and C.-R. Huang, “A framework of feature selection methods for text
categorization,” in Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume
2 - Volume 2, ACL ’09, (Stroudsburg, PA, USA), pp. 692–700, Association for Computational
Linguistics, 2009.

[59] L. Ladha and T. Deepa, “Feature selection methods and algorithms,” International Journal on
Computer Science and Engineering, vol. 3, pp. 1787–1790, 2011.

[60] C. Lazar, J. Taminau, S. Meganck, D. Steenhoff, A. Coletta, C. Molter, V. de Schaetzen, R. Duque,
H. Bersini, and A. Nowe, “A survey on filter techniques for feature selection in gene expression
microarray analysis,” IEEE/ACM Trans. Comput. Biol. Bioinformatics, vol. 9, pp. 1106–1119,
July 2012.

[61] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” ARTIFICIAL INTELLI-
GENCE, vol. 97, no. 1, pp. 273–324, 1997.

[62] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification using
support vector machines,” Machine Learning, vol. 46, no. 1-3, pp. 389–422, 2002.

[63] L. van der Maaten, E. O. Postma, and H. J. van den Herik, “Dimensionality reduction: A com-
parative review.” Tilburg University Technical Report, 2008.

[64] K. Sakhnov, E. Verteletskaya, and B. Simak, “Approach for energy-based voice detector with
adaptive scaling factor,” International Journal of Computer Science, vol. 36, no. 4, pp. 1–5, 2009.

[65] A. Dufaux, Detection and Recognition of Impulsive Sound Signals. PhD thesis, University of
Neuchatel, 2001.

[66] S. Pfeiffer, “Pause concepts for audio segmentation at different semantic levels,” in Proceedings
of the ninth ACM international conference on Multimedia, MULTIMEDIA ’01, (New York, NY,
USA), pp. 187–193, ACM, 2001.

[67] F. Beaufays, D. Boies, M. Weintraub, and Q. Zhu, “Using speech/non-speech detection to bias
recognition search on noisy data,” in Acoustics, Speech, and Signal Processing, 2003. Proceedings.
(ICASSP ’03). 2003 IEEE International Conference on, vol. 1, pp. I–424 – I–427 vol.1, april 2003.

[68] X. Zhuang, X. Zhou, M. A. Hasegawa-Johnson, and T. S. Huang, “Real-world acoustic event
detection,” Pattern Recognition Letters, vol. 31, no. 12, pp. 1543–1551, 2010.

[69] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition. Springer,
1996.

[70] J. A. Arias, J. Pinquier, and R. Andre-Obrecht, “Evaluation of Classification Techniques for Audio
Indexing ,” in 13th European Conf. on Signal Processing (EUSIPCO’2005) , Antalya, Turkey, 9
2005.

[71] A. Ito, A. Aiba, A. Ito, and S. Makino, “Detection of abnormal sound using multi-stage gmm for
surveillance microphone,” in Information Assurance and Security, 2009. IAS ’09. Fifth Interna-
tional Conference on, vol. 1, pp. 733–736, 2009.

[72] C.-F. Chan and E. W. Yu, “An abnormal sound detection and classification system for surveillance
applications,” in 18th european Signal Processing Conference, pp. 1851–1855, August 23-27 2010.



Bibliography 211

[73] G. Guo and S. Li, “Content-based audio classification and retrieval by support vector machines,”
Neural Networks, IEEE Transactions on, vol. 14, pp. 209 – 215, jan 2003.

[74] A. Temko and C. Nadeu, “Classification of acoustic events using svm-based clustering schemes,”
Pattern Recogn., vol. 39, pp. 682–694, Apr. 2006.

[75] A. Rabaoui, H. Kadri, Z. Lachiri, and N. Ellouze, “Using robust features with multi-class svms to
classify noisy sounds,” in Communications, Control and Signal Processing, 2008. ISCCSP 2008.
3rd International Symposium on, pp. 594–599, 2008.

[76] S. Nirjon, R. F. Dickerson, P. Asare, Q. Li, D. Hong, J. A. Stankovic, P. Hu, G. Shen, and
X. Jiang, “Auditeur: a mobile-cloud service platform for acoustic event detection on smartphones,”
in Proceeding of the 11th annual international conference on Mobile systems, applications, and
services, MobiSys ’13, (New York, NY, USA), pp. 403–416, ACM, 2013.

[77] T. Theodorou, I. Mporas, and N. Fakotakis, “Automatic sound classification of radio broadcast
news,” International Journal of Signal Processing, Image Processing and Pattern Recognition,
vol. 5, 2012 2012.

[78] I.-J. Ding, “Fuzzy rule-based system for decision making support of hybrid SVM-GMM acoustic
event detections,” International Journal of Fuzzy Systems, vol. 14, no. 1, pp. 118–130, 2012.

[79] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via
the em algorithm,” JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, vol. 39,
no. 1, pp. 1–38, 1977.

[80] S. Ntalampiras, I. Potamitis, and N. Fakotakis, “Probabilistic novelty detection for acoustic surveil-
lance under real-world conditions,” IEEE Transactions on Multimedia, vol. 13, no. 4, pp. 713–719,
2011.

[81] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. A. Liu, G. Moore, J. Odell, D. Ollason,
and D. Povey, “The HTK book (for htk version 3.4),” Cambridge University, vol. 2, no. 2, 2006.

[82] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recogni-
tion,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[83] V. N. Vapnik, “An overview of statistical learning theory.,” IEEE Transactions on Neural Net-
works, vol. 10, no. 5, pp. 988–999, 1999.

[84] C. J. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and
Knowledge Discovery, vol. 2, pp. 121–167, 1998.

[85] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Transac-
tions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[86] K. bo Duan and S. S. Keerthi, “Which is the best multiclass SVM method? an empirical study,”
in Proceedings of the Sixth International Workshop on Multiple Classifier Systems, pp. 278–285,
2005.

[87] H. Tran and H. Li, “Sound event recognition with probabilistic distance svms,” Audio, Speech,
and Language Processing, IEEE Transactions on, vol. 19, pp. 1556 –1568, aug. 2011.

[88] Z. Saric, D. Kukolj, and N. Teslic, “Acoustic source localization in wireless sensor network,”
Circuits, Systems and Signal Processing, vol. 29, no. 5, pp. 837–856, 2010.

[89] X. Sheng and Y.-H. Hu, “Maximum likelihood multiple-source localization using acoustic energy
measurements with wireless sensor networks,” Signal Processing, IEEE Transactions on, vol. 53,
pp. 44–53, Jan 2005.

[90] “Shotspotter brochure.” http://www.shotspotter.com/sites/default/files/SST ShotSpotter
Flex Brochure FPV.pdf (visited 2013-07-10).

[91] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing: A Guide To Theory, Algorithm
and System Development. Prentice Hall, 2001.

http://www.shotspotter.com/sites/default/files/SST_ShotSpotter_Flex_Brochure_FPV.pdf
http://www.shotspotter.com/sites/default/files/SST_ShotSpotter_Flex_Brochure_FPV.pdf


Bibliography 212

[92] J. Stachurski, L. Netsch, and R. Cole, “Sound source localization for video surveillance camera,”
2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, vol. 0,
pp. 93–98, 2013.

[93] A. Pourmohammad and S. M. Ahadi, “N-dimensional n-microphone sound source localization,”
EURASIP Journal on Audio, Speech, and Music Processing, vol. 2013, no. 1, p. 27, 2013.

[94] F. J. Fahy, ed., Sound Intensity. London: E & FN Spon, 1989.

[95] F. Jacobsen, “Sound intensity,” in Springer Handbook of Acoustics, pp. 1053–1075, Springer New
York, 2007.

[96] Microflown, “Microflown - acoustic vector sensors.” http://www.microflown-avisa.com/
acoustic-vector-sensors/ (visited 2014-05-21).

[97] D. H. de Bree and prof.dr.ir. W.F. Druyvesteyn, “A particle velocity sensor to measure the sound
from a structure in the presence of background noise,” in Proceedings of the International Confer-
ence FORUM ACUSTICUM, 2005.

[98] D. F. Comesana, E. Tijs, P. Cats, and D. Cook, “Visualization of acoustic intensity vector fields
using scanning measurement techniques.” September 2013.

[99] H.-E. de Bree and J. W. Wind, “The acoustic vector sensor: a versatile battlefield acoustics
sensor,” in Proc. SPIE, vol. 8047, pp. 80470C–80470C–8, 2011.
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[130] L. Savioja, V. Välimäki, and J. O. Smith, “Real-time additive synthesis with one million sinusoids
using a GPU,” in AES 128th Convention, (London, UK), 2010.

[131] L. Savioja, “Real-time 3D finite-difference time-domain simulation of low- and mid-frequency room
acoustics,” in Proc. Int. Conf. Digital Audio Effects, (Graz, Austria), 2010.

[132] A. Angus, Jamie A. S.; Caunce, “A GPGPU approach to improved acoustic finite difference time
domain calculations,” in Audio Engineering Society Convention 128, 5 2010.



Bibliography 214
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