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ABSTRACT

ABSTRACT

With the growth of accessible digital music libraries over the past decade, there is a
need for research into automated systems for searching, organizing and recommending
music. As mood of music is considered as one of the most intuitive criteria for listeners, this
work is focused on an approach based on the emotional content of music and its automatic
recognition. An overview of audio signal parametrization was carried out, with the main
focus on features related to music characteristics. In addition, a novel analysis of single
instruments tracks versus mix, aimed at mood of music recognition, was performed.
Moreover, original parameters describing rhythmic content in different frequency ranges
were proposed. Research presented in this work contains a series of experiments related to
models and description of emotions in music. As a result a graphical model dedicated to the
subjective evaluation of mood of music was proposed and created. A music set consisting of
154 excerpts from 10 music genres was evaluated in the listening experiment. Achieved
results indicated a strong correlation between subjective results and objective descriptors
and on that basis a vector of parameters related to mood of music was created. Automatic
mood recognition employing SOM and ANN and was carried out. The comparison between
outcomes achieved from both methods and subjective evaluation was performed and that
led to the conclusion that all methods returned coherent results. The accuracy of automatic
classification was satisfactory as it outperformed literature-based results, and its success

was particularly notable considering the subjective character of the analyzed material.



STRESZCZENIE

Gwattowny przyrost liczby bibliotek muzycznych (oraz ich zawarto$S¢ siegajaca
aktualnie milionéw utworéw muzycznych) tatwo dostepnych przez Internet spowodowat
rozw0j badan w kierunku automatycznych systeméw wyszukiwania, organizacji i
rekomendacji muzyki. Nastrdj muzyki jest uwazany za najbardziej intuicyjne kryterium
opisu muzyki przez stuchaczy, dlatego tez w prezentowanej pracy skoncentrowano sie na
organizacji muzyki w konteks$cie zawartych w niej emocji. Przeprowadzono przeglad
parametréow fonicznych ze szczegdélnym uwzglednieniem deskryptoréw opisujacych
strukture muzyczng. Wykonana zostata tez nowatorska analiza $ciezek poszczegd6lnych
instrumentow w porownaniu do cato$ci miksu ukierunkowana na emocje zawarte w
poszczegdlnych Sciezkach. Na tej podstawie zaproponowane zostaty oryginalne parametry
opisujace zawarto$¢ rytmiczng w poszczegélnych pasmach. W ramach pracy zostata
przeprowadzona seria eksperymentéw dotyczacych modeli i opisu nastroju muzyki,
wynikiem czego byt autorski graficzny model emocji dedykowany do subiektywnej notacji
emocji zawartych w muzyce. Baza 154 utworéw muzycznych nalezacych do 10 gatunkow
zostata poddana subiektywnym testom odstuchowym majgcym na celu okre$lenie nastroju
przypisanego do utworow. Uzyskane wyniki postuzyly do analizy korelacyjnej i uzyskania
wektora parametrow opisujacych nastréj muzyki. W procesie automatycznego
rozpoznawania nastroju muzyki wykorzystano algorytmy SOM oraz ANN. Por6éwnanie
wynikéw uzyskanych z obu algorytmoéw oraz testéw subiektywnych pokazato, Ze sg one
spojne. Doktadno$¢ automatycznego rozpoznania nastroju zostata uznana za
satysfakcjonujaca, a nawet przewyzszajaca wyniki uzyskane przez innych badaczy. Wynik
ten jest zadowalajacy, biorgc réwniez pod uwage subiektywny charakter analizowanego

zagadnienia.
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1 INTRODUCTION

The need of music accompanies people from thousands of years [14]. It provides a
means by which people can share emotions, intentions, and meanings despite different
cultures or languages [200]. At the same time music perception is not only strongly
influenced by individual background and preferences, but also has deep roots in social and
cultural trends. Music itself is strongly associated with perception. Isaac Newton was the
first to point out that light is colorless and “The waves themselves are not colored.” [174].
According to that statement, color is the interpretation of physical phenomena by the
human brain, based on complex processes. A very similar mechanism can be observed with
sound and music perception - music has to be perceived inside our brains. Melody, rhythm,
timbre or any other subjective attributes start to exist when the human perception system
and the human brain interact.

In music perception studies many different classifications and systems that describe
music components are defined. Levitin [174] observes that from the listener’s perspective
there are seven major elements of music: loudness, pitch, melody, harmony, rhythm, tempo,
and meter. These components are significant for discussion related to emotions included in
music.

The traditional approach to studying music emotion perception consists in subjective
tests, in which a number of listeners evaluate a given music excerpt, and then these results
are analyzed using statistical processing. Therefore the area of psychoacoustics supports
the researchers with a tool to evaluate all aspects related to music, however this process is
very lengthy and arduous, and does not always return reliable results. Therefore, there is a
need for automatization in this field, especially as music emotion evaluation/annotation
becomes one of the very important topics, also music industry salient, evolving into Music
Emotion Recognition (MER) [50].

Music Information Retrieval (MIR) [271] is a multidisciplinary field of research studies,
which embraces musicology, psychology, music performance, signal processing, audio
signal parametrization (e.g. MPEG-7 was invented for the needs of MIR), artificial
intelligence methods and others topics. The main goal of MIR is to find information about
music by engaging intelligent, automated processing, automatic music description and

evaluation of the proposed solutions [50]. MIR is highly involved in recommendation
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1 INTRODUCTION

systems and many recent studies are dedicated to this topic [142,230,270,330]. Due to an
enormous amount of music that is reachable online, a new approach based on more specific
targeting is observed rather than continuous extension of accessible content only [57,198].
Different systems are based on various strategies from collaborative filtering [96,162,297],
through metadata and lyrics information [113,116,295] to the content-based approach
[237,250,331,339].

Metadata-based content search is the most common, as well as very powerful, method of
organizing music databases [50]. It is used by many music download services and has
reached a degree of success with them. However, there are disadvantages of this approach
as it is extremely difficult to maintain consistent expressive metadata description. It is
estimated that it takes about 20-30 minutes per track of one expert’s time to enter the
metadata [236], which incurs an enormous cost. On the other hand, in the content-based
music description, information including digital audio signal is retrieved. Content-based
methods are not being developed to replace but to enhance metadata-based systems.
Within this approach, music is treated as any other signal but dedicated measures are
defined to describe values that are relevant to the topic. Low-level audio features are
measures of audio signals that contain information about a musical piece and music
performance [50]. These descriptors encompass not only the desired information but also
intercorrelated factors due to the difficulty of precisely measuring just a single aspect of
music. This refers to the whole concept of signal parametrization and finding signal
descriptors that contain information about specific aspects of music.

The beneficiaries of developing methods for music searching are students and
researchers dealing with trends in music, musicologists, people monitoring trends in this
field, as well as music industry-interested parties. There are three main groups of
recipients: those involved in the music industry (producers, labels), end users (customers
listening to music, personalized media), and professionals (musicians, producers, teachers,
researchers, musicologists, lawyers, etc.). Studies related to the MIR include both
contemporary and archival collections.

Mood is one of the features that is useful and intuitive for listeners when describing a
piece of music [50]. However, even if it seems to be the easiest way to qualify music for
people who are non-experts, it is very difficult to find an exact correlation between physical

features and perceived mood, which is necessary to make the annotation process automatic.
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1 INTRODUCTION

Mood and emotion are closely related affective phenomena. In order to distinguish, in
this context, emotional content of music and music-evoked emotions, it is called here mood
of music. In the literature terms "music emotions" and "mood of music" are often used
interchangeably. However, for the purpose of the presented dissertation both of them
describe mood and emotions included in music, as opposed to music cognition
studies, where "emotions to music" are the listener's personal experience of feelings
evoked by music. This distinction might seem to be unnecessary, but it is introduced to
clarify the nature of studies that involve only musical content analysis without measuring
additional external factors. In this work emotions of the listener are not analyzed, but a
study of how listeners would judge the mood of a particular musical fragment is
performed. Discussion aims towards rules, which could predict how the listener would
describe musical content by a specific mood.

The relationship between music and emotions has been a subject of some studies in the
last decades, where researchers tried to identify the influence of certain musical attributes
such as tempo, mode, rhythm and others on the human subject’s perception. This content-
based approach leads to the field where mood and emotions are examined as components
of the musical signal. Professionals describe music with many sophisticated expressions,
while the perception process takes place in the brains of people who are not educated in
music. Therefore we should try to discover a relationship between signal (in this case music
denoted as an audio signal in the digital domain) and the listener’s perception of the mood
of music.

Recently, music mood recognition has become a thorough subject of research studies
and analyses within MIR [55,131,168,188,194,235,330,331,339,349]. This area of research
studies is called Music Emotion Recognition (MER) and aims at recognizing emotions
contained in music signals [114,234,243,254-256]. A considerable part of the research
involved in MER is based on tags, semantics and lyrical content. Another approach is to use
advanced computational intelligence methods (i.e. Support Vector Machines, Support
Vector Regression, Gaussian Mixture Model, Ranked Attributes Tree and many others)
aimed at automatic recognition of mood of music [104,182,237].

Despite decades of research in this area, the results obtained in the works listed above
leave space for further research. Many authors stated in their final conclusions that the

issue has not been completely solved [104,168,188], neither has mood perception been
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fully understood. Therefore, in the research study undertaken by the author, methods from
Self-Organizing Maps Artificial Neural Networks supported by fuzzy logic-based data
processing to model characteristics of human perception are to be applied. Otherwise, it
might be perceived as an inconsequence to analyze subjective attributes (emotions) in an
objective domain (audio signal features) only, using a very strict (crisp) relationship.
Therefore, fuzzifying the boundaries of mood-related data in the process of automatic
recognition by the ANN algorithm increases automatic mood classification accuracy.

Some attributes of artificial intelligence computational methods are more similar to
characteristics of the human learning process, perception and cognition. Each person has a
different "starting point" that can be related to personal attributes such as cultural
background or sensitivity to detail. At the same time, everyone has their own scene of music
that they know or appreciate, that they have associated with a particular moment, that they
remember well and that induces particular emotions. It is possible to imagine a situation in
which two listeners would have totally opposite reaction to the same piece of music.
Therefore it is groundless to expect a very high consistency of the results between listeners
and extreme accuracy of the prediction system. Moreover, not all terms related to emotions
or mood have the same meaning to listeners. These are the reasons why the research study
presented by the author is focused mostly on creation of a mood model that would be easily
understood and user-friendly, as well as on the computational methods that are close to a
human's reasoning and perception. One of the partial objectives of this work was to create
an original model of mood dedicated to subjective evaluation of emotional content of music.
The main assumptions were that the model has to be intuitive for users and compatible
with a dimensional model used for mood prediction process. In the course of the study
several methods based on the human's perception were employed. Multidimensional
Scaling was used to determine the dimensions underlying perception of mood of music.
Self-Organizing Maps were employed to map a set of music according to the emotional
content obtained in an unsupervised manner and Artificial Neural Networks, trained in a

supervised way, were used for classification.
Aims of the study

The main aim of the presented thesis is to introduce a framework of automatic

organization of music based on emotions (see Fig. 1.1). Due to the fact that interpretation of
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music depends on the preference and experience of an individual person, as well as the fact
that averaged results might be to some extent confusing, it was decided to create a
complete mapping, which organizes songs in relation to each other and not according to the
preferences of a single person. That is why one of the goals is to employ intelligence
computational methods based on human perception such as Self-Organizing maps, ANNs or
fuzzy logic-based data processing and compare the results obtained with subjective mood
evaluation. An additional aim is to analyze tracks containing single instruments and
determine whether separation can improve automatic description of mood of music.
Another additional aim is to link the results of the correlation analysis between parametric
description of a music file to the nature of the mood that can be assigned to a particular
piece or excerpt thereof. This is due to the fact that the objective description of the mood of
a song is the missing link in the organization of large, distributed music databases. Another
partial objective is to create an intuitive model that is used to describe mood of music,
extending concepts known in the literature sources. The proposal of this novel model is one
of the contributions of the present thesis. Another additional aim is to show, that the
dimensional-based approach enables better automatic mood recognition. The stages of
analysis executed in the course of this dissertation are presented in Fig. 1.1.

Therefore, as a result of this doctoral dissertation the following three theses are
expected to be proved:

1. It is possible to find parameters describing a musical excerpt, which are highly
correlated with subjective mood labeling results.

2. Self-organizing maps (SOMs) or artificial neural networks (ANNs) trained
employing designed feature vectors can effectively be applied to the automated
indexing of mood of musical excerpts.

3. Annotations of mood of music achieved by subjective assessments and

classifying based on both supervised and unsupervised learning can be coherent.
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1 INTRODUCTION

The organization of the presented dissertation is shown in Fig. 1.2, in which all chapters
are introduced along with their content. The next two chapters (Chapters 2-3) provide the
theoretical background of the work, including perception and evaluation of music,
especially in the context of emotions, as well as issues relevant to Music Information
Retrieval and an overview of previous studies carried out in the Music Emotion Recognition
area. Chapters 4-5 introduce tools used in the course of the present thesis. In Chapter 4 an
overview of audio signal parametrization, supplemented with the proposed analysis of
tracks of separated instruments and new parameters describing rhythmic content of music,
introduced by the author, are shown. Chapter 5 includes theoretical background related to
Multidimensional Scaling, Artificial Neural Networks, Self-Organized Maps and fuzzy logic.
In Chapter 6 preliminary experiments are executed, and analyses of results and verification
of methods are investigated and compared to corresponding data in the literature. Chapter
7 provides information about the key experiment, where a proprietary model of emotions is
introduced, and experimental results and their analysis, outcomes of various methods
including Self-Organizing Maps, and ANNs utilizing fuzzified input are presented. In
addition, a visualization tool, utilized for designing an interface, enabling us to read the
results of the listening tests and automatic mood recognition in an intuitive way, is
described. Chapter 8 presents conclusions, summarizes the main findings, and discusses

perspectives of further research.
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2 OUTLINE OF MUSIC PERCEPTION

Paraphrasing Zimmerman’s statement: “Music is not just sound” [352] by saying that
music is not sound alone, this reinforces the notion that music should be considered as art
and that it has a strong relationship with culture. Moreover, as music expresses the
composer’s intentions to communicate an idea or feelings, it has an emotional impact on
listeners, thus it should be interpreted personally. Those are some of the reasons that any
generalization on music can be very misleading. It is a fact that music is a sequence of
sounds organized in structures (even though these structures might be based on very
irregular or even random order) and accordingly, the composer Edgard Varese’s famous
quote says: “Music is organized sound.” [266].

[t is well known that music is an important medium of communication and provides a
means by which people can share emotions, intentions, and meanings [21]. Schopenhauer
formulates his opinion on music in the following way: “The inexpressible depth of music, so
easy to understand and yet so inexplicable, is due to the fact that it reproduces all the
emotions of our innermost being, but entirely without reality and remote from its pain...
Music expresses only the quintessence of life and of its events, never these themselves.”

As said before, there is no doubt that music expresses emotions intentionally, at least to
some extent. As with any art, the listener can interpret music according to artists’ intentions
or in agreement with individual feelings. Whatever the effect, the influence of music is so
strong that it is hard to disagree with Sacks [266]:

“Perhaps it is not just the nervous system, but music itself that has something very
peculiar about it—its beat, its melodic contours, so different from those of speech, and its
peculiarly direct connection to the emotions.”

Music perception is not only strongly influenced by individual background and
preferences, but also has deep roots in social and cultural trends.

There is not a single theory that explains all of the relationships mentioned above. In
many studies researchers from field of psychology [240,266,290] and musicology [252-
349] are trying to explain the marvel and magnificence of this phenomenon. Even though,
there are obviously a lot of unfilled spots in our knowledge in human perception overall, it
is worth trying to name and describe at least the main principles. In this chapter, some rules

of music perception and especially emotion in music are referred to. Then, the methods of
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2 OUTLINE OF MUSIC PERCEPTION

subjective evaluation of music are described, with particular focus on mood of music but
not the emotions of the listener. A wider discussion on mood of music and emotions evoked

by music is performed in Section 2.4.

2.1 PERCEPTION OF COMPLEX SOUNDS AND SEQUENCES OF AUDITORY
EVENTS

Considering the attributes of sound there is a need to distinguish between physical
characteristics of sound and attributes perceived by the listener. In the physical domain
sound can be simply described by amplitude, frequency, temporal attributes and position in
space. On the perception side there are essential descriptors such as loudness, pitch,
temporal attributes, space [209]. To form a simplified rule, they correspond with physical
features as follows:

* loudness - level/amplitude,

e pitch - frequency,

* temporal attributes - onset time, duration, ADSR envelope,

* space - direction, distance, reflections from the surrounding environment,
width, depth,

* timbre - relation of amplitude/frequency/temporal atributes.

Nevertheless, these relationships are general in their description and they do not
describe perception comprehensively in the case of a single stimulus. This work is not
primarily devoted to psychoacoustics and perception of a single stimulus. More complex
relations, i.e. isophonic curves, variation of pitch with level, etc, are discussed in this
context in the literature of the subject [8,69,209], and they are not going to be recalled here.
More focus is directed at the perception of more complex sounds, grouping mechanism,
perception of structures and finally the reasons why some sounds are perceived as music.

Gestalt principles of perception [291] is one of the theories with a holistic approach to
the auditory perception, applicable to both artistic and non-artistic objects [174]. It states
that natural mechanisms of grouping sounds are motivated by “action” requirements, to
support recognition of objects or situations. The Gestalt grouping mechanism underlies our
ability to analyze a sound environment, thus different sounds mean different sources,
similar sounds - the same source. Gestaltists described many of the factors that govern

perceptual organization (Fig. 2.1). No single rule always works, but it appears that the rules
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2 OUTLINE OF MUSIC PERCEPTION

can generally be used together, in a coordinated and probably quite complex way, in order
to arrive at a correct interpretation of sound. Most of these rules were originated in visual
perception but apply to both: vision and hearing [209]. Gestalt principles of perception are

presented in Fig. 2.1 and described in details in the next paragraphs.
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Figure 2.1 Gestalt principles of perceptual ogranization [209].

Similarity

This rule states that elements are grouped if they are similar. Simple sounds, events
with the same frequency or a smoothly changing frequency are recognized as the same
source. For more complex sounds timbre and spectral differences seem to be the most
important factor. Although similarity does apply not to frequency and timbre only but also
to loudness and subjective location, location is a less important grouping cue than pitch,
which can easily be presented with “The scale illusion” [69]. The phenomenon occurs when
different sounds are presented through headphones to subjects and they choose sounds
from both speakers to construct a scale or another pattern. This method seems to be
commonly used by composers, i.e. Bach “Well-Tempered Klavier, Prelude 8, Book 2”,
Tschaykowsky “Sixth Symphony, last movement”, who create the illusion of patterns using

sound from different sources and registers. The environment noises, reflections and
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reverberation can cause confusion with localization and that is one of the reasons why this
cue is less important.

Good continuation

This principle follows a physical property of sound sources; changes of all
characteristics of sound (frequency, intensity, location, or spectrum) tend to be smooth and
continuous rather than sudden. Thus, a smooth change in any of these aspects indicates that
a signal comes from a single source, whereas a sudden change indicates that sound derives
from another source. It also has a consequence that the larger structures override the
immediate factors.

Common fate

Even if sounds coming from a single sound source differ in the frequency domain, they
usually vary in a highly coherent way. They have a tendency to start and finish together and
they change in intensity and frequency together. These phenomena constitute the basis of
the principle of the common fate: if the same kinds of changes of two or more components
are observed at the same time, then they are grouped and perceived as a part of the same
source.

Disjoint Allocation

This rule states that a single element in sound can only be assigned to one source at a
time. For certain types of stimuli, the perceptual organization may be ambiguous, since
there might be more than one way to interpret the input. When a given element might
belong to one of the number of streams, the observation may alter depending on the stream
within which that component is included. In other words, if an element is close to the
sequence it is absorbed by this sequence and it is perceived as a part of it.

Closure

This rule is based on adaptation of the auditory system to situations when a given
source may be temporarily masked by other sounds. The masked sound tends to be
perceived as continuous. Two sounds very close in time but separated in frequency are very
unlikely to come from the same source.

Attention and figure-ground phenomenon

[t seems that the auditory system is not capable of attending to every aspect of the
auditory input. Certain parts or aspects of sound are selected for conscious analysis.

Complex sound is divided into streams, and the auditory system focuses primarily on one
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stream at a time. A stream that stands out perceptually is attended, while the rest of the
sound is less prominent and discarded. This separation into attended and less important
streams is called by Gestaltists "figure-ground phenomenon". It is worth noticing that a
decision of direct attention towards one stream over a number of them, does not depend
only on information available in the acoustic signal. Other sources of information or
knowledge, such as i.e. interest in a particular conversation, etc., may also be involved. This
process activates quite complex high-level auditory processing.

There are a few more contributions that are not constituted as Gestalt principles of
perceptual organization but are important for the auditory perception and are present in
Gestalt works [174,209]. Tendency to favor symmetry and analogy helps to constitute
streams. This is one of the cues for the brain to interpret particular sequences as melodies.
The main basis of grouping is pitch grouping. It is supported by other high-level auditory
processing mechanisms such as memory and pattern recognition.

With regard to music perception Gestaltists wondered how it is possible that a melody
(a set of specific pitches) could retain its recognizability, even when all of its pitches are
changed, scores are played with a different instrument and in a different tempo [174]. They
were interested in the problem of configurations, that is, how it is that elements come
together to form wholes; how objects that are qualitatively different from the sum of their
parts, and cannot be understood in terms of their parts, remain still recognizable despite
major changes. Even though they did not come up with a satisfying answer, their
statements contribute to our understanding of how objects in the visual and auditory world
are organized.

Albert Bregman analyzed the auditory system from the perspective of information used
to separate objects [42]. He defines ‘source’ as a physical entity that produces sound waves.
‘Stream’ is the perception of a group of elements that occur simultaneously or/and
successively, and that is considered as a coherent whole, and is perceived by being
produced by one source. It is a very unlikely situation that we perceive sound that is
produced by only one source, thus the auditory system is capable of distinguishing between
sources and separating frequency components to appropriate sources. These mechanisms
are strongly related to masking, which is a phenomenon that has enormous influence on
music composing, arrangement, mixing and production process [139,140]. Bregman stated

that the auditory system is based mostly on simultaneous onsets. Simultaneous events are
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being grouped and this factor - more relevant than pitch and time - is the significant factor
in auditory grouping. Timbre, spatial location, and amplitude are also important cues for
object separation. Bregman observed that one instrument playing notes with different
amplitude is creating different streams. At the same time, one instrument playing notes far
from each other can be perceived as different streams. J. S. Bach used these phenomena to
create polyphony even using single instruments. It is easy to observe notes from different
registers perceived as parallel melodies in organ Toccata and Fugue in D minor. In Cello
Suites musicians are trying to emphasize the single voice polyphony created with
characteristic articulation [183] after a Notebook for Ann Magdalena Bach [16]. Even
though amplitude and frequency create two different and quite independent mechanisms,

they both interfere in conscious and unconscious perception.

2.2 MUSIC PERCEPTION

As quoted at the beginning of this Chapter, music is being considered as an organized
sound. At the same time Sloboda [291] brings to attention another, more illusory aspect of
music experience: "The principal end-product of music listening activity is a series of
fleeting, mental images, feelings, memories and anticipations.". He underlines that the
attention to music is the most important factor while listening. During any kind of analysis
it is important to remember that composers write for listeners, not for analysts and
researchers. Listeners "see the bigger picture” and analyze the structures of music
unconsciously. In music, a single sound is not isolated and it stands in significant relation to
the others. Repeated sequences become more and more familiar so are easier to recognize
[174]. Contour memory supports recognition of melody even if it is transposed, or played in
different tempo.

Attention in music listening is partially influenced by the state of the listener at the
moment of listening. Still the question of whether the subject went through musical training
or is a novice is more important. It is especially apparent when polyphony and different
layers of musical compositions occur [309]. Factors such as frequency, temporal and
informational masking, play an enormous role in this process. Listeners also tend to
proceed in a particular mode of listening, i.e. either analytical, where they de-construct the

signal into components, or synthetical, where relations between elements are more
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important. Musical training supports memory, which causes easier recognition of patterns,
intervals, analogies, and variations [174].

The important part of musical training is hard work and has two significant aspects. One
of the important parts of music training is learning directly and automatically from the
perception. Its implication is that the knowledge learnt is the knowledge to perceive better
[338]. The most mysterious and complex part is linking physiological responding and
perception within our brains. Perception process is still not fully understood but some of
the features that determine music reception are discovered. Music as all more complex
auditory signals is organized by the brain into structures. This process depends on the
timbre, pitch, and temporal attributes of the components [40,112].

In music perception studies many different classifications and systems that describe
music components exist. Levitin [174] observes that from the listener’s perspective there
are seven major elements of music: loudness, pitch, melody, harmony, rhythm, tempo, and
meter. It is worth mentioning that these features apply to music but not to single, extracted
sounds. At the same time, [47] indicates slightly different elements of a musical piece -
melody, rhythm, agogics, articulation, and dynamics. According to the second approach, it
may be estimated that melody together with rhythm carry 90% of musical information [47].
Jones [124] listed only four main elements: harmony, melody, rhythm and tempo. On the
other hand Peretz [240] mentioned tonal structure, melody, rhythm and articulation.
Friberg [92] shows the following features as relevant for music mood analysis: timing,
dynamics, articulation, timbre, pitch, interval, melody, harmony, tonality and rhythm. Other
common features, not included in that list, are, for example, mode or a musical form [168].

Elements proposed in the literature and cited above are listed and organized into
groups as shown in Fig. 2.2. This ordination is used in further paragraphs to describe in
detail the main components of music. Even though particular elements are assigned to
specific groups, they all interact with each other. For example agogics is part of dynamics
but also influences timing. Melody is closely related to phrase, but articulation to timbre.
These are only some of the relations and they differ from performance to performance.
Hence the assumption can be made that all elements are complementary and not exclusive.

Even though music notation is widely described in the literature of the subject, the main
concepts are recalled here. It is relevant to the topic because some of the notation elements

are used directly or provide basis for features used in MIR such as tempo (BPM - Beats Per
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Minute), rhythmic patterns, chromagram and many others. The relationships between
formal notation and representations used in MIR such as spectrogram are shown to explain
the connection between these systems. Different music cultures use different music
systems. Because the presented dissertation concerns Western Music, systematics and

notation included in subsequent paragraphs are related to this music tradition.

COMPONENTS OF MUSIC
Time-based Pitch Dynamics
Rhythm Pitch Loudness
Tempo Melody Dynamics
Metrum Harmony Agogics
Interpretation

Articulation Timbre Phrase

Figure 2.2 Components of music compiled from various works [124,47,174,240]

2.2.1 Time-Based Components

The ability of humans to perceive metric rhythm was a subject of investigation of many
researchers. It is said that the way the brain processes rhythmic information depends on
musical education. Some experimental results indicate that musicians process rhythmic
patterns hierarchically whereas music non-professionals accomplish this task in a
sequential manner [59]. In a natural environment musical sequences are mostly regular.
Sturges [300] assumed that a perceptual mechanism is ‘designed’ to use rhythmic features
of sound events. It allows prediction of upcoming events and sequences. Time organization
of musical sequences conforms to particular characteristic orders and depends on pauses,
accents, previous sounds, etc. [209]. Rhythmic music is based on beats, which can physically
be characterized as distinct energy bursts in time. Pulse clarity estimates, on a large time
scale, how clearly the underlying pulsation in music is perceived and can therefore be
regarded as a measure for the underlying periodicity of music [165].

In music rhythm is a part of the melody structure, and tempo is the speed controller of
the melody structure, therefore rhythm and tempo are deeply connected. Scholes [276]

defined rhythm as the order and the proportion of durations. Pistone [241] described
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tempo as the characteristic of motion execution with respect to measures as well as
melodic, harmonic, rhythmic, or dynamic cues.

Structure is perceived as “rhythm” when a periodical sequence of time events can be
discerned as segments, i.e. certain events must be recognized as starting points of periods
[305].

Listeners have a preference for a certain range of tempi, typically centered around 120
BPM (Beats Per Minute) [206]. However it is clear that, when dealing with music, not every
piece is always perceived in tempo of approximately 120 BPM. BPM units are described in
the Section dedicated to notation.

Tempo and rhythm detection

Automatic estimation of the temporal structure of music, such as musical beat, tempo,
rhythm, and meter, is not only essential for the computational modeling of music
understanding but also useful for MIR. Temporal properties estimated from a musical piece
can be used for content-based querying and retrieval, automatic classification, automatic
drum accompaniment [158,337] music recommendation, and playlist generation [76,283].
If the tempo of a musical piece can be estimated, for example, it is easy to find musical
pieces having a similar tempo without using any metadata. The difficulty of beat tracking
depends on how explicitly the beat structure is expressed in the target music: it depends on
temporal properties such as tempo changes and deviations, rhythmic complexity, and the
presence of drum sounds.

Research on tempo and beat tracking was conducted in various fields of interest
[86,272]. The task of computational rhythm retrieval is complex and it consists of a few
stages. The simplified approach to this task may be reduced to retrieving the sequence of
onset times and/or durations of sounds from the musical data - this process is called
quantization. In another approach, the time signature is retrieved on the basis of musical
content; in this class of methods usually the period of time is found, which divides the
stream of sounds into repeating fragments. This task may additionally be combined with
phenomenal accent retrieval in such a way that the phase of phenomenal accentuations in a
piece is found. If the accentuations found line up with locations where humans tap the foot
to the melody, it may be concluded that the bar lines are found - the rhythmic level of the
size equal to the meter is thus acquired. The next complication is to retrieve metric rhythm,

i.e. the hierarchic structure of related rhythmic levels. Existing metric rhythm research
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usually focuses on retrieving low rhythmic levels - usually to the level of a bar - those
methods are sufficient to emulate human perception of the local rhythm. High-level
perception is required for drum players, thus the computational approach needs to retrieve
the hypermetric structure of a piece. If it reaches high rhythmic levels such as phrases,
sentences and periods, automatic drum accompaniment applications can be developed.

Rhythm is also often an element of a piece determining musical style, which may be
valuable in music retrieval. The rhythmic structure together with patterns retrieved carry
information about the genre of a piece, thus both are highly correlated.

Rhythm is described using rhythmic notes. The position of the note indicates the onset
of the music event and the length of time that a note is played is called note duration,
which is determined by the type of note (Fig. 2.3). Additional marks such as rests, dots and

others are used to completely describe the time sequence of sounds.

O whole note

J J half note
J J J J quarter note
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Figure 2.3 Types of note indicate the duration time. Basic note types are presented above: whole note, half
note, quarter note, eight note and sixteen note

Meter

Scholes [276] defined the meter of music as its general structure. It refers to the
patterns of accents heard in regularly recurring measures of stressed and unstressed beats
at the frequency of the music pulse.

Each time signature can be classified into a certain meter. Meter is described by a pair
of numbers. The lower number indicates the units (according to the note duration shown in
Fig. 2.3) and the higher refers to the number of beats in a measure. A measure (bar) is a
segment of time corresponding to a specific number of beats and is indicated by vertical bar
lines (Fig. 2.4). Meters are divided into duple, triple, quadruple and odd meters. They
indicate not only the "capacity” of a bar but also a beat that should be followed by the
performer. Examples of notation of different meters with beat suggestions are presented in
Fig. 2.4. An example of rhythm notation along with a corresponding spectrogram is shown

in Fig. 2.5.
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Tempo

Tempo in music is described in Beats Per Minute (BPM) units. It indicates how many
quarter notes should occur within a minute. It is commonly shown as in Fig. 2.6. In the
tradition of classical music, tempo is determined by Italian tempo markings. A list of tempo
markings with approximate BPM is shown in Tab. 2.1. In this notation some of the tempo
descriptors are dedicated to particular types of music pieces. They also include additional
information about the character of a music piece (i.e. Marcia moderato is dedicated to
marches). The spectrograms of the same rhythm performed in tempo 120 BPM and 240
BPM are presented in Fig. 2.7. A simple conclusion is that a piece performed twice as fast,
lasts two times shorter. But it also has other consequences such as a change in the decay

time of particular notes and interaction with reverb (if applicable).
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Figure 2.4 An example of notation of different duple, triple, quadruple and odd music meters along with the
grouping interpretation. Smaller notes indicate the beat suggested for the performance
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An example of rhythm notation with the corresponding spectrogram
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Figure 2.6 Symbolic annotation of tempo 120 BPM
Table 2.1 Music tempo from slowest to fastest
Tempo Approximate BPM
Larghissimo 24
Grave 25-45
Largo 40-60
Lento 45-60
Larghetto 60-66
Adagio 66-76
Adagietto 72-76
Andante 76-108
Andantino 80-108
Marcia moderato 83-85
Andante moderato 92-112
Moderato 108-120
Allegretto 112-120
Allegro moderato 116-120
Allegro 120-168
Vivace 168-176
Vivacissimo 172-176
Allegrissimo 172-176
Presto 168-200
Prestissimo >200
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Figure 2.7 Spectrograms of the same rhythm performed in tempo 120 BPM and 240 BPM
2.2.2 Pitch Components

Pitch is a psychological concept, related both to the actual frequency of a particular tone
and to its relative position in the musical scale. It functions only as a subjective sensation
and is strongly related to perception. Pitch is related to the frequency or rate of vibration of
a string, column of air, or other physical source. It is also influenced by the duration time,
level and other factors. These dependences are widely examined and described in the
psychoacoustic literature Different research works exist in which authors aimed to
determine the relationship between the pitch of a pure tone and its frequency [8,207]. In
the presented work, the debate related to pitch is focused on the musical context, including
i.e. Bark scale. Stevens et al. [299] proposed mel-scale. Because mel-scale is commonly used
in MIR, it is described in more detail.

Mel-scale is a scale of pitches acquired from listeners' judgments, where pitches have to

be equal in distance from one another. The reference point is perceptual pitch of 1000 Mels
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to a 1000 Hz tone (for level 40 dB above the listener's threshold). The relation between the

Mel and Hertz scales is presented in Fig. 2.8

3200 T T T T T T T T T T T T T T
3000 d : :
2800 e -
2600
2400
2200
2000
1800
1600 SRR e : R SR : , : -
1400 - : - : : : : -
1200 - : o : ] o ] : AR N
1000
800 - ‘ : —
600
400 : . T -
200

|
|

1T T 1
| I |

Mel scale

0 I ] ] I I ] I I I ] I I I 1 I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 950010000
Hertz scale

Figure 2.8 Relation between Hertz and Mel pitch scales [323]

The relation between the Hertz and Mel scales is given by the following formula [229]:

m =2595log,,(1+ )
700 (2.1)

where fis frequency in Hz.

In music, pitch, in most cases, is related to the fundamental frequency of sound. Western
Music is based on the chromatic scale, where the frequency range is divided into semitones,
which are the smallest defined distances between two sounds on the scale. Further
discussion is based on equal temperament tuning [46], which is the most common tuning in
popular music. Different systems such as Pythagorean tuning, meantone temperament, well
temperament and others are described in the literature of the subject [46,284].

Each semitone (halftone) consists of 100 cents, and 12 semitones build an octave. The

frequency of two frequencies a semitone apart is calculated as follows:
fi=1%2 (22)

The steps of a music scale in equal temperament tuning along with its representation on
the piano keyboard (which is the most common representation of the scale in Western
Music) and ranges of a few musical sources are presented in Fig. 2.9. Sounds with a smaller
frequency are called low and close to the top of the scale (bigger frequency) - high. All these

assumptions are valid only in Western Music. In different music cultures not only scales and
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relations between scale steps are defined differently, but even the terms high and low are
culturally relative - the Greeks talked about sounds in the opposite way because the
stringed instruments they built tended to be oriented vertically [46,161].

A musical scale is a subset of the theoretically infinite number of pitches, and every
culture selects these based on historical tradition. The most common scales in Western
Music are major and minor (Fig. 2.10). Sounds in between are considered mistakes unless
they are used intentionally for expression or interpretation. Western music theory
recognizes three minor scales and each has a slightly different flavor. Also other scales are
commonly used in particular music genres or styles. Blues music generally uses a five-note
(pentatonic) scale that is a subset of the minor scale, and Chinese music uses a different
pentatonic scale [174].

Each note of a scale has a special name, called a scale degree. A basic scale with scale
degrees description is shown in Fig. 2.11.

Melody (musical line) is an organized sequence of music pitches. Contour describes the
overall shape of a melody that the listener perceives as a single entity. Dowling [70] and
others have shown that contour is the most salient musical feature for infants. Peretz [240]
discovered that the right hemisphere of the brain contains a contour processor that in effect
draws an outline of a melody and analyzes it for later recognition, and this is dissociable
from rhythm and meter circuits in the brain.

Melodies can consist of one or more musical phrases or motifs that are important cues
for the interpretation [174]. Melody can be performed as a single line (monophony), along
with other melodies (polyphony) or as a part of harmony.

Relation between consecutive notes of the melody is described by intervals, which
consist of an integer number of semitones [46]. The list of intervals within an octave is

presented in Tab. 2.2.
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Music scale used in Western Music. Pitches are presented along with corresponding

piano keys and the frequency range of a few common music sources [174]
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Figure 2.10 Major and minor music scales, "w" indicates a distance of a whole tone (2 halftones) and "h" a
halftone
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Figure 2.11 A music scale with scale degrees description
Table 2.2 The list of intervals used in Western Music along with corresponding distance in semitones
Distance in semitones Interval name
0 unison
1 minor second
2 major second
3 minor third
4 major third
5 perfect fourth
6 tritone
7 perfect fifth
8 minor sixth
9 major sixth
10 minor seventh
11 major seventh
12 octave

An example of a melody given as scores along with the spectrogram is presented in
Fig. 2.12.

Monophony is the simplest of textures, consisting of a single melody without
accompanying lines or harmony. This may be realized as one note at a time, or with the
same note duplicated at the octave. Within the context of the Western musical tradition,
monophony is usually used to describe the music of the late Middle Ages and Renaissance.
Polyphony is a texture consisting of two or more simultaneous lines of independent melody.

Baroque forms such as the fugue, which are great examples of polyphony, are usually
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described as counterpoint because of the special rules regarding the composition of

additional lines [68].
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Figure 2.12 Spectrogram and score notation of an exemplary melody.

Polyphony and counterpoint are at the root of harmony in Western Music. Harmony is
based on relationships between the pitches of different tones. Harmony in music is the use
of simultaneous sounds or subsequent notes that are perceived as a figure. Tonal contexts
set up by pitches lead to expectations for what will come next in a musical piece. Harmony
refers to a parallel melody to the primary one or to a chord progression (the clusters of
notes). The harmony is a system that involves chords and their construction and chord
progressions and the principles of connections between them. Harmony is also strongly
related to scales (major, minor and variations) as well as to music key, which often defines
the scale of a music piece and is based on the scale steps presented before (Fig. 2.11). A
sequence of basic chords (major, minor and seventh chords) with equivalent spectrogram is
presented in Fig. 2.13. There are several parameters describing harmonic content of music
signal, i.e. chroma, key consonant, dissonant, harmonic strangeness, chroma eccentricity

[24]. They are briefly described in Chapter 4, as they are used in music parametrization.

46



Figure 2.13
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A sequence of chords: C major, A minor, E major 7 and D minor 7 with equivalent spectrogram.

2.2.3 Dynamic Components

Loudness is a purely psychological construct that relates to the physical amplitude of
sound, which is represented by Sound Pressure Level (SPL). It is commonly linked with
Root Mean Square (RMS [dB]) although this simplification does not include non-linear
attributes of hearing. Therefore different loudness scales (i.e. phons, sones and others)

were introduced to include the knowledge of auditory perception. The relationship between

the sones and phons scales is presented in Fig. 2.14 [209].

Figure 2.14
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Other scales were defined for new technologies, broadcasting and sound engineering
purposes. To name a few of them: LU (Loudness Units), LUFS (Loudness Units relative to
Full Scale), LKFS (Loudness, K-weighted, relative to Full Scale) [263,306] and many others.

On the other hand, in music notation loudness (sometimes called dynamics) is described
by written or printed musical notation. Dynamics are relative and do not refer to specific
volume levels. The list of most common dynamic indications (from softest to loudest) is

included in Tab. 2.3.

Table 2.3 The list of common dynamic indications from softest to loudest
Dynamic Abbreviation Translation
pianississimo ppp very very soft
piano pianissimo pp very soft
piano p soft
mezzo-piano mp moderately soft
mezzo-forte mf moderately loud
forte f loud
fortissimo ff very loud
fortississimo fif very very loud

Another cue for dynamics of music performance is agogics, which is defined as an
element that determines the dynamics of the music piece. It was introduced by Riemann
[262] and is strongly connected with tempo and interpretation. Accents that are emphasis
placed on particular notes are also an important part of dynamics. An example of accent

marks are shown in Fig. 2.15.

. ' A = —
Figure 2.15 Exemplary accent marks. From left to right: staccato, staccatissimo, marellato, marcato and
tenuto

Music notation contains many other descriptors or suggestions that strongly influence
dynamics, pitch or tempo and also more sophisticated elements of performance. Additional,
commonly used terms such as legato, portato, terms related to bow technique, glissando
and many others are part of regular music education and can easily be found in the

literature [13,37,130].
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2.2.4 Interpretation

The performance practice is based not only on the written cues given by a composer but
also on the music tradition or school and the individual interpretation. Some of the
composer's suggestions are not strictly defined and leave space for interpretation (i.e.
dynamics, performance of accents, tempo). Interpretation is the name of the process where
the performer is deciding how to perform music that has previously been composed. What
is more important, interpretations of different musicians performing the same music can
vary widely. Variation includes quantitative values such as tempo, number of repetitions
[13] and other sonic saddle elements such as timbre (soft, harsh, delicate, etc.), drive of the
rhythm, climax of the phrase, articulation and many others [141,334].

Apart from the technical performance point of view, the most important part of
interpretation is the emotions and mood included in music and the performance. The world
famous cellist, Pablo Casals said: "Don’t give notes. Give the meaning of the notes." [141]. All
of the technical descriptions in this section are just tools to raise the meaning and emotion
from music. Interpretation and emotional content of music is a topic of continuous
discussion between composers, musicians, researchers and finally listeners. But according
to the famous saying: "Writing about music is like dancing about architecture”.
Therefore we have to just agree that some of the secrets of the magic of music will stay in

the domain and sound will never be possible to explain verbally.

2.2.5 Other Cues for Music Perception

Music perception depends on many factors. Some of them are social or cultural while
others are highly individual and rely on personal preferences, music and sound training,
detection thresholds and many other conditions. A few examples of dissimilarities in music
perception are presented in next paragraphs.

In Western Music tradition listeners tend to associate major scales with happy or
triumphant emotions, and minor scales with sad or defeated emotions [174]. This has deep
roots in Medieval sacral music, where particular scales and chords were used to emphasize
particular feeling or emotions. At the same time, in Arabic music various scales containing
microtones are dedicated to particular types of music pieces (i.e. for funerals, weddings,
salvation, etc.). In both cases scales are used to obtain a similar result but the means, here a

set of pitches, are very different.
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Social factors include the popularity of a particular form of music (i.e. motet in
Renaissance or piano concert in classicism) [326], appurtenance to a certain subculture that
is connected to a particular music genre, and to the accessibility of music resources. These
conditions can affect either positive or negative associations with a music piece, regardless
of the music content.

The personal aspect of music perception is even more complex. It is affected by social
and cultural background, individual associations with particular situations or context,
completed music and sound related training, familiarity with a certain kind of music, the
situation of the music listening and many others. Due to the vastness of the problem, only a
few selected factors are to be discussed here.

The important part of musical training is perceptual learning. One category of
perceptual learning, discussed by Eleanor Gibson [95] is differentiation - an ability
improved by exposure to stimuli. Gibson analyzed these aspects from the perspective of the
sound engineer. To distinguish and control numerable parameters such as single
instruments sound, space, tuning, effects and many others, the sound engineer must learn
to differentiate features in music unperceivable to others.

Castro and Lima [51] investigated how age and musical experience influence emotion
recognition in music. They concluded that years of music training are correlated with
recognition accuracy. This is coherent with the fact that learning music can emphasize the
perception of structures underlying musical emotions. Castro and Lima showed that age
and musical expertise slightly affect how listeners recognize emotions in music. Therefore
these findings add to the set factors that indicate individual differences in emotion
processing.

Identifying performance mistakes is strongly related to completed music training. Pluta
[248] showed that intonation discrimination is highly dependent on musical training and
can be improved by dedicated exercises. Trained musicians, composers and especially
conductors can follow lines of the whole symphonic orchestra and detect a mistake of a
single instrument. Primarily the auditory system focuses on a single stream but thanks to
exercises people involved in music and sound can distinguish very small changes in
multiple aspects of sound at once.

Cultural differences also strongly influence the perception of mood of music. In

numerous studies the mood of music from different cultures was examined i.e. English and
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Chinese songs [115,344], Greek music [146], American music [66]. Also different cultural
groups were asked to evaluate the same music [66,115] and the cultural dependence of
perceived mood was studied.

Some recipients of art prefer one field and master the perception craft by a long-term
exploration. Also people exist who are more sensitive to music than other forms of art. A
single piece of music can affect listeners in various ways depending on their character,
earlier experiences and their preference. While some people cry listening to Symphony of
Sorrowful Songs by Gorecki, others find it boring and not inducing any feelings or meaning.
At the same time, Rick Ross (hip-hop artist and producer) has fans who find his music
interesting and entertaining and opponents who perceive it as meaningless and aggressive.

All of the factors discussed above are related to music. On the other hand, various
psychological studies show differences in emotion processing [60,103,143]. This is another
condition that can cause other significant differences in personal perception of the mood of
music. Also listening conditions are sometimes considered as an important part of the
perception of the mood of music. Watson and Mandryk [331] attempted to model musical
mood from audio features supplemented by listening context.

These few examples show to what extent music perception is subjective and dependent
on many factors and preferences. That said, everyone agrees that music carries essence and
meaning, helps relaxing, support simple activities (i.e. work, jogging), and finally expresses
emotions [174]. Emotional content is one of the main reasons why music is present in

cultural life for ages [21,35].

2.3 MUSIC AND EMOTIONS

It is difficult to think of music without including a prominent role of the emotions. Most
of psychological research has been focused on the listener's emotions induced by music. It
is important to distinguish between the emotions of the listener and the mood or emotions
of the music. This distinction is crucial because it determines the approach and
methodology of the research [179]. At the same time Song and collaborators [295]
examined the relationship between perceived and induced emotional responses to music.
Analysis of their results did not reveal significant differences in ratings between perceived

emotion and induced emotion. Moreover, the results indicated that, regardless of the
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discrete type of emotion experienced, listeners’ ratings of perceived and induced emotion
were highly positively correlated.

In the presented dissertation, the author is focused on the content of musical signal, that
is the mood of music. Nevertheless, origins of models of emotions and terminology are in
the music cognition studies; therefore major points of this field are discussed.

In psychology studies Sloboda was one of the first researchers who introduced ‘music
cognition’ as a field of science in the 1980s [290]. He showed later that ‘cognition’ and
‘emotion’ might be connected more strongly than expected [291]. He showed that
emotional responses to music require cognition. One of his questions was whether musical
emotions can be predicted based on the context. Some scholars have noticed that musical
emotions may be ‘too subjective’ to be predictable [97]. The answer to that was the
statement: "emotions to music can never be predicted from musical characteristics alone."
[291]. Many survey studies were performed by Sloboda and his collaborators [290,291]
[126,127] and they come to the conclusion that music emotions can be predicted to some
extent from information about the context, supplemented by external factor descriptors.
Fifteen predictors were featured in a discriminant analysis, five for each of the main factors
(i.e., listener, music, situation). The analysis focused on predicting three common emotion
categories in a representative sample - happy-elated, sad-melancholic, and nostalgic-
longing. Results showed that emotions could be predicted with an accuracy of 70%. This
outcome suggests that music emotions are not too subjective to be modeled. However, the
prediction is not perfect, even though this analysis included many predictors not only in the
music but also related to the listener, and the situation [126,127]. Studies on emotions
evoked by music are limited because of important issues about the definition and
measurement of emotion. "Emotions are relatively brief, intense, and rapidly changing
reactions to potentially important events (subjective challenges or opportunities) in the
external or internal environment - often of a social nature - which involve a number of
subcomponents (cognitive changes, subjective feelings, expressive behavior, and action
tendencies) that are more or less ‘synchronized’ during an emotional episode." [127].

Different theories recognize various factors that influence emotions induced by music,
e.g. [126,278,279,349]. The most comprehensive attempt to delineate various mechanisms
that underlie musical emotions is the BRECVEM model proposed by Juslin and Sloboda

[127]. They propose seven mechanisms (besides cognitive appraisal) through which music
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might induce emotions: Brain stem reflexes, Rhythmic entrainment, Evaluative
conditioning, Contagion, Visual imagery, Episodic memory, and Musical expectancy. These
seven psychological mechanisms include information from various domains, mostly outside

music.

2.4 MOOD OF MUSIC

The relation between music and emotions has been the subject of some studies in the
last century, where researchers tried to identify the influence of certain musical attributes
such as tempo, mode, rhythm and others on the human subjects perception. This content-
based approach leads to the field where mood and emotions are examined as components
of the musical signal. In order to distinguish, in this context, emotional content of music, it is
called mood of music. Yang and Chen [343] distinguish "emotions expressed by music"
from "emotions induced by music". In the literature terms "music emotions" and "mood of
music" are used alternatively. For the purpose of the presented dissertation both of
them describe mood and emotions included in music, as opposed to music cognition
studies, where "emotions to music" are a listener's personal experience of feelings
evoked by music. This distinction might seem to be unnecessary, but it is introduced to
clarify the nature of studies that involve only musical content without measuring additional
external factors. In this Section, particular components and attributes of music are
examined with respect to the mood of music. As stated in Section 2.2, discussion related to
music content is based on Western Music tradition.

[t is not always obvious what the composer meant. Contrarily, in the case of opera, such
notions are clear according to the music history, opera tradition and libretto. In other
situations, there is a lot of space for interpretation.

Huron [117] points out that since the preeminent functions of music are social and
psychological, the most useful characterization would be based on four types of
information: genre, emotion, style, and similarity.

[43] recognized the following music features that influence the mood of music:
harmony, tempo, loudness, timbre, rhythm diversity. Levitin [174] discussed the
relationship between particular elements of music and mood of music. One of the important
means of expression is timbre. After Levitin [174]: "Composers use timbre as a

compositional tool [...] to express particular emotions, and to convey a sense of atmosphere
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or mood. Scriabin, Ravel but also Steve Wonder, Paul Simon - Music as painting, melodies
are equivalent of shape and form, and the timbre is equivalent to use of color and shading”.
Scherer and Oshinsky [279] showed that faster tempos were positively associated with
happiness and negatively associated with sadness. Husain et al. [118] found that a mode
manipulation affected mood, but not arousal, whereas a tempo manipulation affected
arousal, but not mood (for models of mood see Section 2.5). Moreover, for arousal, a
significant interaction between mode and tempo revealed that the impact of tempo was
stronger for the major mode than it was for the minor mode. A similar interaction was also
observed for ratings of musical enjoyment, such that tempo had more effect on enjoyment
ratings in the major mode than it did in the minor mode. Observations of Levitin [174] are
coherent with these conclusions. In his opinion, tempo is a major factor in conveying
emotion. Songs with fast tempos tend to be regarded as happy, and songs with slow tempos
as sad. The impact of rhythmic content is often underestimated. As an example, syncopation
is a very important concept that relates to expectation, and ultimately to the emotional
impact of a song. The syncopation catches us by surprise, and adds excitement. Moreover, it
is widely known that listeners tend to associate major scales with happy or triumphant
emotions, and minor scales with sad or defeated emotions [174]. Also very tiny changes in
loudness and dynamics have a profound effect on the emotional communication of music.
Much research has focused on emotional response to a single element. Webster and
Weir [332] have explored the interactive effects of mode, texture and tempo in a single
experiment. Research on the interactions between musical elements is important because
most music is a complex, often dynamic combination of musical elements. The results of the
experiment point in the direction of complex sets of rules, where combinations of

characteristics entail a particular mood of music (Fig. 2.16).
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Figure 2.16 Number of participants (out of 83) categorizing five musical phrases as “Pleasant-Happy” as a

function of mode and tempo [332]

2.5 MOOD MODELS

Music Emotion Recognition (MER) research has not yet determined any main or right
model of the music mood. Contrarily, a great variety of mood models are constantly being
devised in different psychological studies. Numerous studies on mood recognition reveal
different findings and conclusions [168,288,335,343]. Most of the models brought to mood
description can be assigned to one of the following two approaches: dimensional or cluster

description.

2.5.1 Dimensional Approach

The dimensional approach focuses on mood identification based on positioning it in the
space of several mood-dimensions. Particular dimensions represented by axes are named
correspondingly to simple human perception of mood or emotions.

Thayer created a two-dimensional model Valence/Arousal [308]. Axes divided the plane
into quarters (Fig. 2.17), which correspond to the following moods: contentment (low
arousal, high valence), depression (low arousal, low valence), anxious/frantic (high

arousal, low valence) and exuberance (low arousal, high valence).
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Figure 2.17 Mood representation in Thayer’s model [308].
Russel constructed a system based on a two-dimensional Valence/Arousal model [264]
(Fig. 2.18), in which 28 expressions are placed on the mood plane. A schematic

representation of these models is shown in Fig. 2.18.

Alarmed + + Aroused
Tense + + Astonished
Afraid +  Angry +
+ Excited
Annoyed +
Distressed +
Frustrated +

+ Delighted

+ Happy

Miserable + + Pleased
+ Glad

Sad +
Gloomy + * Depressed Serene
Content
+ At Ease
g
Calm
Droopy +
Tired + | + Sleepy
Figure 2.18 Russell’s model of music mood presented on Valence/Arousal plane [264].

Russel’s conception is contrary to conclusions presented in MIREX (Music Information
Retrieval Evaluation eXchange) music classification competition [114], where authors show
that a song can be simultaneously described with more than one mood tag group.

Russel’s circular structure is one of many possible dimensional representations.
Tellegen-Watson-Clarck model [307] enhances Thayer’s system by adding a second set of

axes rotated 45°. Extra axes represent engagement and pleasantness (Fig. 2.19).
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2.5.2 Categorical Approach

Categorical approach is based on categories, groups or clusters, to which particular

music pieces are assigned. In specific research the number and meaning of categories are
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Tellegen-Watson-Clarck mood model [307].

different. A few of them, commonly used in MER, are discussed below.

With the objective to evaluate several algorithms within the same system, MIREX

[71,114] organized five clusters of mutually exclusive categories.

Clusters of mood adjectives used in the MIREX Audio Mood Classification task are listed

below:

Cluster 1 passionate, rousing, confident, boisterous, rowdy

Cluster 2 rollicking, cheerful, fun, sweet, amiable/good natured

Cluster 3 literate, poignant, wistful, bittersweet, autumnal, brooding

Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry

Cluster 5 aggressive, fiery, tense/anxious, intense, volatile, visceral

One may name two other very common models. The first is Hevner’s model, which
proposes a list of 67 adjectives grouped into eight mood clusters (Fig. 2.20) [108]. Hevner’s
adjective checklist was rearranged into ten groups by Farnsworth [86]. The second model is

Schubert’s [280], in which 46 affective adjectives are arranged into nine clusters according

to their position on the two-dimensional Thayer’s model (Tab. 2.4).
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Figure 2.20 Hevner’s model with 67 adjectives grouped into eight clusters [108]
Table 2.4 The Nine Emotion Clusters Proposed by E. Schubert in 2003 [280]
Cluster No. Emotions in Each Cluster
1 Bright, cheerful, happy, joyous
2 Humorous, light, lyrical, merry, playful
3 Calm, delicate, graceful, quiet, relaxed, serene, soothing,
tender, tranquil
4 Dreamy, sentimental
5 Dark, depressing, gloomy, melancholy, mournful, sad,
solemn
6 Heavy, majestic, sacred, serious, spiritual, vigorous
Tragic, yearning
Agitated, angry, restless, tense
9 Dramatic, exciting, exhilarated, passionate, sensational,
soaring, triumphant

Xu and Wunsch showed that MIREX clusters might not be appropriate due to some
semantic overlap between categories [341]. Moreover, they have shown that both Hevner’s
and MIREX representations have advantages and limitations when evaluated in a semantic
mood space. The authors also found that basic emotions: happy, sad, angry and tender, are
very relevant to social networks. Laurier et al. proposed a folskonomy representation with
four clusters each containing 15 adjectives (Tab. 2.5). The adjectives are very similar to the

categories proposed in the main emotion theories [308]. The theory is strongly related to
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the two-dimensional model of Russell’s concept. Clusters represent the four quadrants of
the classical Valence-Arousal representation:

- Cluster 1: angry (high arousal, low valence)

- Cluster 2: sad, depressing (low valence, low arousal)

- Cluster 3: tender, calm (high valence, low arousal)

- Cluster 4: happy (high arousal, high valence)

Table 2.5 Clusters of mood tags proposed by Laurier et al. [168].
Cluster 1 Cluster 2 Cluster 3 Cluster 4
angry sad tender happy

aggressive | bittersweet soothing joyous
visceral sentimental sleepy bright
rousing tragic tranquil cheerful
intense depressing | good natured | happiness
confident sadness quiet humorous
anger spooky calm gay
exciting gloomy serene amiable
martial sweet relax merry
tense mysterious dreamy rollicking
anxious mournful delicate campy
passionate poignant longing light
quirky lyrical spiritual silly
wry miserable wistful boisterous
fiery yearning relaxed fun

The semantic space created by Laurier et al. is relevant and coherent with the existing
basic emotion systems.

Another method that does not directly belong to approaches mentioned before is a
common and well-established test method in emotion-related research. It involves a
pictorial rating (Fig. 2.21) system called SAM (Self-Assessment Manikin) [120], which was
designed to allow intercultural research or research with children. In some interpretations
SAM method is based on the Thayer's model [179] and pictogram ratings are directly re-

calculated into positions on the AV plane.
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Figure 2.21 Emotion evaluation system SAM based on pictorial ratings [179]

The main advantage of the categorical approach is that it is intuitive and easy to use. It
also seems to be relatively simple to work with the clusters approach, as the task is
“limited” to define the classifications rules. Unfortunately, it is very hard to choose the exact
number of clusters. Too many clusters are difficult to use and might be misleading because
of a semantic overlap between categories. Using only a few categories may not be sufficient
to describe such complicated notions as mood and emotions and may impede classification
decisions.

Zenter and collaborators performed a large-scale research study to compile a list of
music-relevant emotion terms and to study the frequency of both felt and perceived
emotions [349]. On this basis they proposed a 9-factorial model of music-induced emotions.
A distinctive feature of their solution is that 40 items are organized to create 9 first-order
and 3 second-order factors. Geneva Emotional Music Scale (GEMS), as they called it, was
proposed as a measurement tool for musically induced emotions.

Choosing a proper mood representation is the first step towards the correct automation
of mood recognition. All of the earlier mentioned research was realized in English. There is
a question, however, whether the proposed clusters should be straightforwardly translated
into other languages or rather carefully analyzed, assessed, and then rearranged.

Presented mood models are based on different philosophical theories. However they do
not take into consideration that mood perception is subjective and people experience
emotions in many different ways. Sotiropoulos et al. proposed an excellent solution called

MUSIPER, which uses objective audio signal features to model the individual perception.
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Neural network-based learning allows the determining of a subset of audio features for the
specific user. This idea seems to be an answer to reservations related to subjective

perception of music and emotions.

2.6 SUBJECTIVE EVALUATION OF MUSIC

Music is multidimensional as well as an auditory perception. In order to study the
nature of sound, it is possible to measure the physical characteristics of an audio signal in
the acoustic or digital? domains. This characterization of the signal does imply how the
auditory system will interpret and quantify it. Since the direct measurement of the
perception is very complex and expensive [319], listeners are asked to quantify their
experience [27]. The subjective evaluation of music is the situation where listeners are
asked about their experience related to music perception. The choice of method strongly
depends on the attribute of music and sound that is examined. In some fields, where
standardization is required (i.e. lossy audio compression algorithms discussed further),
particular test procedures have been defined. In ITU-R recommendation BS.1534-2 [122]
the MUSHRA test (MUItiple Stimuli with Hidden Reference and Anchor) is introduced to
obey the bias while comparing results of different tests. These recommendation defines the
design of the experiment, selection of listening panels, test method, attributes, program
material, reproduction devices, listening conditions, statistical analysis, presentation of the
results of the statistical analyses and contents of test reports. As mentioned before, these
tests are designed for the purpose of audio quality assessment, which is a very sensitive
area due to the commercial aspect of the algorithms. Nevertheless, this area can be a
valuable source of guidelines, especially for how external conditions such as the listening
environment, duration of the test, order of the samples and others can affect the results.

Music evaluation is not standardized because almost each experiment varies in terms of
the investigated aspect or the model of the examined attribute. Nevertheless, some methods
(i.e. AB, ABX, method of adjustments, method of limits etc.) are commonly used
[8,27,191,248]. However all these tools are dedicated mostly to the studies where detection
of a small threshold is in request, or researchers are trying to determine whether listeners
can hear the difference between audio samples in various aspects. Berenzweig and his
collaborators [28] discussed different methods of music similarity measures. Various

aspects of sound and music require different methods and interface, i.e. evaluation of hall
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acoustics [93,191], pitch accuracy [248], localization of the phantom sound source [245]. In
most cases, the interface is designed especially for the purpose of the experiments carried
out (recently, most of them have been computer-based) and includes questions related to

the examined attribute.

2.6.1 Subjective Evaluation of Mood of Music

In music emotions evaluation there is no standard established. A survey is a
straightforward and very common technique for collecting information about emotional
content in music [134]. Each research varies in terms of procedure, mood of music model,
music set, interface and other details [202,281,288,311]. Most tests are conducted to
evaluate the efficiency of automatic mood description. Other experiments are executed to
determine the vocabulary [288] or choose the mood labels [134] or are carried out for
other purposes. Skowronek et al. [288] proposed a method to obtain a reliable "ground
truth" database for automatic music mood classification. The concept is based on a careful
selection of musical excerpts and a broad search for proper mood labels. Due to a lack of
standardized procedures, this seems to be a reasonable approach. However, it assumes only
one model of emotions and set of labels, which disqualifies it as an universal tool.
Nevertheless, guidelines related to music selection (different moods, different music genres,
pre-judging) are reasonable and well motivated.

Selected listening tests performed within the area of MER are listed in Tab. 2.6 along
with a short description of the testing procedure. This shows a background of the
experiments executed and reported for the purpose of the presented dissertation.

Even though the above given experiments are based on different procedures, some rules
are universal and should be maintained regardless of the test. A list of the main factors that
should be considered while designing the listening tests related to mood of music is shown
in Fig. 2.22. The chosen mood of music model determines the interface and the main
concepts of the testing procedure (i.e. marking on the plane, choosing labels, etc.). A model
should be user-friendly and sufficiently profound to cover all expected mood judgments. A
group of listeners can affect the results, so they should be appropriate for the particular

task, e.g. close to the potential end-users of the music recommendation system.
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Table 2.6 Details of selected listening tests related to mood of music
Author(s) Title Music set | Subjects Used.mood of
music model
Determination of
Schuller et. al. nonprotoprlcal valence .and 2648 pop . 4 5 discrete labels
[281] arousal in popular music: songs listeners
Features and performances
3
Trohidis et. al. Multilabel classification of .
. . 593 songs expert 6 emotion labels
[311] music into emotion .
listeners
. 20
Miller et. al. . - 960,000 free-text
Last.fm in numbers Last.fm milions/
[202] tags
month
A Fuzzy Inference-based 40 music
. . o\ samples 5 Arousal/Valence
Jun et. al. [125] Music Emotion Recognition .
(randomly | listeners space
System
chosen)
Laurier et. al. Music mood representatlons Last fm .3.0 107 selected tags
[168] from social tags milions
1059
excerpts
Skowronek et. | A demonstrator for Automatic fromI;Z 12 12 mood classes
al. [287] Music Mood Estimation . subjects
music
genres

According to a well-known principle [27], a test should not exceed 15 min. Bachorik et

al. concluded that most music listeners require about 8 seconds to judge the mood of a song

[17], which determines the minimum sample duration time. The set of music should be

diverse and should be presented in random order, different for each listener to avoid the

bias of the previous sample. The playback system is not crucial but should be reasonable

(i.e. headphones) to reproduce the whole frequency range of a musical signal. Respecting

these guidelines allows for creating a reasonable test that should give meaningful results.

Procedures of experiments conducted in the course of this dissertation are described in

details in Chapter 6.
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Figure 2.22 List of main factors that should be considered while designing the listening tests related to mood
of music
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3 MUSIC INFORMATION RETRIEVAL (MIR)

Music Information Retrieval is a multidisciplinary field of studies, which is related to
musicology, psychology, music performance, signal processing, artificial intelligence
methods and others. The main goal of MIR is to find information about music by engaging
intelligent automated processing, automatic music description and evaluation of the
proposed solutions [50]. MIR is highly involved in recommendation systems and many
recent studies are dedicated to this topic [142,230,270,333]. Due to an enormous amount of
music that is available online, a new approach based on more specific targeting is observed,
rather than the continuous increase of accessible content only [57,198]. Different systems
are based on various strategies from collaborative filtering [96,162,297], through metadata
information [113,167,295] to a content-based approach [237,250,331].

MIR also provides solutions to many tasks such as melody extraction, instrument
identification, genre classification and many others. The range of topics included in MIR is
described in Section 3.1. In subsequent sections studies related to Music Emotion
Recognition (MER) are described and discussed. Various approaches are presented and a
comparison of strategies and results is performed. Then artificial intelligence methods

employed for MIR and especially MER tasks are invoked.

3.1 ISSUES RELEVANT TO MUSIC INFORMATION RETRIEVAL

MIR is organized according to use cases, which determine the type of a query, the
;meaning of the match, and the form of the output. Questions and outcomes can be given in
different forms, i.e.: textual information (metadata), musical excerpts, recordings, scores, or
music features. The match can be exact or approximate depending on the type of the task.
The specificity of questions defines the query type and the choice of the exact or
approximate output. High specificity systems identify the exact content of individual
recordings, i.e. identifying a particular version of the song, and low specificity systems focus
on broad descriptions of music, such as genre. Specificity is divided into three categories:
high-specificity systems match instances of audio signal content; mid specificity systems

match high-level music features, such as melody, but do not match audio content; and low
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specificity systems match global (statistical) properties of the query. Some of the MIR tasks

and their specificities are listed in Tab. 3.1 [47].

Table 3.1 Examples of MIR tasks and their specificities
Use Case Specificity Description
Music Identification High Identify a compact disk, provide meta-data about
an unknown track
Plagiarism detection High Id?ntify miszflttli“ibution of‘m-usical performances,
misappropriation of music intellectual property
. o . Monit ic broadcast fi ight
Copyright monitoring High onitor music broadcast for copyrig

infringement or royalty collection

Remixes, live vs. studio recordings, cover songs.
Versions High/Medium Used for database normalization, and near-
duplicate results elimination

Melody High/Medium Find works containing a melodic fragment

Retrieve performances of the same opus number

Identical Work/Title Medium .
or song title
Performer Medium Find music by specific artist
Sounds like Medium Find music that sounds like a given recording
. . Mappi f t th
Performance Alignment Medium __"@PpIng one perormarnce oo anotier
independent of tempo or repetition structure
Composer Medium Find works by one composer
Recommendation Medium/Low Find music that matche.s the user's personal
profile
Mood Low Find music using emotional concepts
Style/Genre Low Find music within given music style or genre
Instrument(s) Low Find works with particular instrumentation
. Radio broadcast segmentation, Music archives
Music-Speech Low 5

cataloguing

In MIR, three strategies are most common for solving use cases, that is: metadata, high-
level music content description, low-level audio features.
The first approach is based on metadata, which is information encoded and searched

like text, and is well-matched to low specificity queries. The second strategy involves high-
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level descriptions of music content corresponding to intuitive or expert knowledge about
how a piece of music is constructed. The high-level descriptions approach is suited to mid
specificity queries. The third method is based on low-level signal properties, which are used
for all specificities.

Metadata is the basis of many MIR systems [121,162,297]. Many services exist to
provide reliable metadata for existing collections of music, either for end users or for large
commercial music collections such as Gracenote [98], Decibel [67] or MusicBrainz [218].
These services provide both factual metadata, namely objective truths about a track (artist,
album, year of publication, track title, duration), and cultural metadata, which contains
subjective concepts (i.e. mood, emotion, genre, style). The metadata for compressed and
uncompressed digital music is often encoded in ID3 tag and can be included in formats such
as: MP3, Ogg Vorbis, FLAC, MPC, Speex, WavPack TrueAudio, WAV, AIFF, MP4, and ASF.
Casey [50] stated that metadata is the most common method of organizing. This approach is
used by many music download services and has achieved a degree of success for them.
However, there are disadvantages of this approach as it is extremely difficult to maintain
consistent expressive metadata descriptions. Moreover, it is estimated that it takes about
20-30 minutes per track of one expert’s time to enter the metadata [236], which incurs
enormous costs. Therefore media services are beginning to open up to social exchange
information about content to collect metadata and similarities in taste and preferences.
Nevertheless, issues related to the consistency of the description remain valid. Metadata
cannot solve the entirety of MIR due to consistency issues. Content-based methods are not
being developed to replace but to enhance metadata-based methods.

In high-level music content description musical concepts such as melody, harmony, key,
rhythmic patterns, tempo, meter and others are used to describe the content of the music. It
is a very intuitive approach but extraction from polyphonic recordings, i.e., multiple
instruments playing different lines simultaneously, remains difficult to achieve. It is difficult
to extract melody, rhythm, timbre, harmony and other features from both audio and
symbolic representations such as MIDI files. The goal of the tasks listed above is to encode
music into a schema that conforms to traditional Western music concepts, that can then be
used to make queries and search music. An automatic extraction of high-level music

descriptions has been a subject of extensive research study within the Music Information
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Retrieval Experimental eXchange (MIREX) [114]. Many recent works are focused on
extracting high-level music features from low-level audio content [73,210,228,268].

The third strategy for content-based music description is to use information included in
the digital audio signal. Within this approach, music is treated as any other signal but
dedicated measures are defined to describe values that are relevant for the topic. Low-level
audio features are measurements of audio signals that contain information about a musical
work and music performance [50]. These descriptors contain not only the desired
information due to the difficulty of precisely measuring just a single aspect of music. This
approach engages the whole idea of signal parametrization and finding signal descriptors
that contain information about a specific aspect of music. Issues related to parametrization
and groups of parameters commonly employed in MIR and especially in MER are described

in detail in Chapter 4.

3.2 MUSIC EMOTION RECOGNITION (MER)

Musicologists indicate a few elements of a musical piece - melody, rhythm, agogics,
articulation, and dynamics - that are important in analysis and they form the foundations
of music. Moreover, it may be said that melody together with rhythm carry 90% of musical
informativeness. Rhythm is also an element of a piece determining musical style, which may
be valuable in MIR. The rhythmic structure together with melody patterns retrieved from a
music piece carry information about the genre of a musical piece, thus both are highly
correlated. Moreover, music can be defined in terms of descriptive characteristics such as
aesthetic experience, perception of preference, mood or emotions. Huron [117] assumes
that the four most useful characteristics items are: style, emotion, genre and similarity.
However, some music analysts argue that style and genre are to some extent
interchangeable expressions. It is also said that a long list of genres is a result of artists’
interest in introducing new genres. Moreover, classifications are often arbitrary and
encompass sub-genres that belong to different styles or genres. One of the features, which
can be useful and intuitive for music listeners, is “mood” [50]. Even if it seems to be the
easiest way to describe music for people who are non-experts, it is very difficult to find an
exact correlation between physical features and perceived impression. Recently, music
mood recognition becomes a thorough subject of research studies and analyses

[134,168,194,188,234,324,330,331,339,349,]. This area of research studies is called Music
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Emotion Recognition (MER) and aims at recognizing emotions contained in music signals
[156,254-256,331,339].

MER is based on the basic definitions of perception. Lewis defined his term ‘qualia’:
“There are recognizable qualitative characters of the given, which may be repeated in
different experiences, and are thus a sort of universals; I call these qualia." [50]. The
discovery of the relationship between the measurable content of the physical world and
human perception seems to be a fundamental problem in MER. Various computational
methods and algorithms have been implemented to organize and interpret the content

derived from the audio signal for that purpose.

3.2.1 Models of Mood Used in MER

Music Information Retrieval or Music Emotion Recognition research studies have not
determined any main or right model of music mood. Contrarily, a great variety of mood
models are constantly being explored and devised in psychological and musicological
studies. Most of them are based on the models from psychology or music perception that
are described in detail in Section 2.5. Nevertheless, some representations that came from
another background such as social networking or other studies also function in the research
[22,43,182,242].

Selected models used in MER studies are listed and briefly described in Tab. 3.2. All of
them belong to one of the approaches: dimensional or categorical. Discussion on the various
models of mood is presented in Section 2.5.

In their MER studies, Brinker and collaborators [43] examined the relationship between
Thayer's Valence/Arousal (VA) model and twelve mood labels (Tab. 3.3). They aimed at
obtaining a model with clear moods covering the full range of emotional content. They
observed that there is more consistency over subjects for arousal than for valence. As a
result, they presented placement of particular moods in the VA plane and this is shown in
Fig. 3.1. Finally, Brinker et al. [43] chose six mood categories for their MER research (Fig.
3.2).
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Table 3.2 Selected models of mood used in MER studies [20]
No. Description Approach Ref.
1 Update of Hevner's a(lijective model (9 Categorical [280]
categories)
2| Rollicking Literate, Humorous, Aggressive) | CH€0rical | [3365114312.328)
3 5 emotions (Hayfgéf;)d, Tender, Scary, Categorical [75,265]
4 quadrants of the Valence/Arousal (VA)
4 plane (Exuberance, Anxious, Depression, Categorical [33,330]
Contentment)
11 subdivisions of the Valence/Arousal
5| Rervous, Bored, Sad, leopy, Peacena, | Categoria [104)
Relaxed, Calm)
12 clusters based on tags Categorical [182]
72 tags from CAL500 dataset Categorical [22]
8 8 subdivisions of the Valence/Arousal Categorical [134]
plane
9 4 basic emotions (Happy, Sad, Angry, Categorical [321]
Fearful)
9 affective dimensions from Asmus (Evil,
10 Sensual, Potency, Humor, Pastoral, Dimensional [15]
Longing, Depression, Sedative, Activity)
11 Arousal/Valence plane Dimensional [104]
12 6 dimensions Dimensional [193]
13 3 dimensions (Arousal, Valence, Tension) Dimensional [75]
Table 3.3 Twelve mood labels used in experiment of Brinker and his team [43]
Identifier Music mood label
A Sad
B Calming/soothing
C Arousing/awaking
D Powerful/strong
E Tender/soft
F Cheerful/festive
G Carefree/lighthearted/light/playful
H Angry/furious/aggressive
| Peaceful
J Emotional/passionate/touching/moving
K Loving/romantic
L Restless/jittery/nervous
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Figure 3.1 Locations of music moods in the VA plane, described according to the identifier labels listed in
Tab. 3.3. Neutral mood category is indicated by a solid line [43]
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Figure 3.2

Five mood categories supplemented by one negated category ("emotional”) selected by Brinker
etal [43]

[t is useful to remember that both subjective descriptors and features describing mood

are multidimensional, thus another important issue is the these dimensions are presented.
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Therefore some studies employing MDS (Multidimensional Scaling) analysis to determine
dimensions underlying the music mood perception were performed. In some related work
one can see that the basis for determining similarity between songs is often acquired from
listening tests. Novello et al. [226] proposed a web-based listening experiment that assesses
the perception of inter-song similarity, optimizing stimulus coverage and time of
experiments. The experiment used 78 song excerpts selected from 13 genres and involved
78 participants. To discover the background of the participants' perceptual space they used
Multidimensional Scaling (MDS) analysis and quadratic discriminant analysis to search for
axes that maximize the separation of the excerpt classes [226]. However, collecting
similarity data from listeners is time consuming, and the MDS analysis - even though often
applied to analyze similarity - cannot be used as the main similarity representation [310]. In
the study of Trochidis and his collaborators it was shown that the emotion processing
mechanism is quite similar for musicians and non-musicians, resulting in the same low-
level spectral and temporal features correlated with arousal and high level contextual
features correlated with valence dimension. MDS was also used in the course of the

research presented in this dissertation [243] and is described in Section 6.4.

3.2.2 Metadata-based Approach to MER

A considerable part of the research involved in MER is based on tags, semantics and
lyrical content. Hu and Downie [113] investigated relationships between genre, artist and
mood tags. Their results indicate that the genre-mood and artist-mood relationships are
not stable enough to include them in further consideration. Laurier et al. [168] analyzed
how people tag music by mood. They created a semantic mood space from last.fm tags using
Latent Semantic Analysis. They performed SOM analysis and presented mood space as well
as a tree diagram of the mood tags obtained with a hierarchical clustering approach.

Simplified results of their research are presented in Figs. 3.3 and 3.4.
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Figure 3.3 Dendrogram of the 20 most used music mood tags organized by Laurier et al [168]
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Figure 3.4 Self-Organizing Map of the mood tags in the semantic space [168]

Bischoff and collaborators [33] proposed a hybrid approach that involves both metadata
and content-based analysis. Evaluation performed by them shows that both kinds of
information are complementary and should be merged for enhanced classification accuracy.

Saari et el. [265] investigated the role of audio and tags in music mood prediction. They

compared Semantic Layer Projection and tags in terms of mood description accuracy. Their
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results show that audio is in general more efficient in predicting perceived mood than tags.
They also mapped music tags onto a Valence/Arousal plane and this representation is

shown in Fig. 3.5.
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Figure 3.5 Mood music tags mapped onto Valence/Arousal plane [265]

Hu and Yu [116] explored the relationship between mood and creativity in rock lyrics.
Their research led to findings that lyrics of negative and sad songs demonstrate higher
linguistic creativity than those of positive and happy songs. Hu and collaborators studied
the role of lyric text in music mood classification. They tested almost 6000 songs from 18
moods (according to the users’ tags) and came to the conclusion that lyrics can support
music mood classification in some mood categories but cannot be the main and only clue.
On the other hand, van Zaanen and Kanters [346] built classifiers that classify lyrics of
songs into moods. The aim of their work was the automatic assignment of mood of music
based on lyrics only. The implementation of the tf*idf method improved the results but still
was not satisfactory. All discussed examples show that lyrics can supplement the content-

based approach but cannot be the only classification cue.
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3.2.3 Artificial Intelligence Methods Applied to MER

In MER many research studies involve advanced computational methods, e.g. regression
approach, Support Vector Machines (SVM), Support Vector Regiression (SVR), or fuzzy logic
[181,308,310,322,349], which are used for automatic mood assigning. Numerous
researches show attempts to automatically classify music mood. The most popular
approach involves the schema that consists of particular stages that are shown in Fig. 3.6.
All of the elements are applied to the chosen set of music. First, pre-processing is
implemented, then audio analysis is performed and parameters are extracted. The derived
vector is fed into the chosen artificial intelligence computational method, which returns
classified data. In many cases the classification method results are compared with those
obtained in listening tests or with the experts’ evaluation, and coherence of the notation is

treated as a measure of correctness.

Audio File

} l

Pre-processing

Subjective test/
expert evaluation

Audio analysis

Parametrization

Artificial inteligence computational
method

| |

CLASSIFICATION SUBJECTIVE
RESULTS RESULTS

\:NP,\RI:\'(:\‘/

CORRECTNESS OF THE
AUTOMATIC MOOD
EVALUATION

Figure 3.6 Schema of the research aiming for automatic mood classification

Results achieved in the projects mentioned before do not exhaust the application of
computational methods to MER. The measure of correctness varies for different methods.

Basic measures used in works cited in the subsequent section are: accuracy, F measure and

75



3 MUSIC INFORMATION RETRIEVAL

precision. These measures are commonly used and widely described in the literature of the
subject and their basic definitions are described i.e. by Everitt and Skrondal [84].

First of all, an improvement in automatic efficacy is sought [181,349], especially as the
outcomes of the automatic mood recognition are usually only slightly better than 60-70%.
Moreover, subjective studies, which concentrate on assigning appropriate labels
corresponding to music features, are also needed to find the relationship between these
descriptors and features derived objectively. The interest towards this particular direction
is motivated by music networking services in which users tend to listen to music pieces that
reflect their emotions. Li et al. [175] used a song database hand-labelled with adjectives
belonging to one of the 13 categories and trained SVMs on timbral, rhythmic and pitch
features. The authors report a large variation in the accuracy of estimating different mood
categories, with the overall accuracy (F score) remaining below 50%. Feng et al. [88] used a
Back Propagation Neural Network to recognize to which extent music pieces belong to four
emotion categories (“happiness”, “sadness”, “anger”, and “fear”). They used features related
to tempo (fast-slow) and articulation (staccato-legato), and reported precision of
approximately 66%. In multi-label classification, multiple labels are assigned to training
examples from a set of disjoint categories. MER was first formulated as a multi-label
classification problem by Wieczorkowska et al. [335] applying a classifier specifically
adapted to this task. Sanden and Zhang [269] examined multi-label classification in the
general music-tagging context using in their experiment 21,000 clips from Magnatune (each
associated with one or more of 188 different tags). Using statistical distributions of spectral,
timbral and beat features they tested Multi-Label k-Nearest Neighbors, Calibrated Label
Ranking (CLR), Back Propagation for Multi-Label Learning, Hierarchy of Multi-Label
Classifiers, Instance Based Logistic Regression and Binary Relevance kNN models. The CLR
classifier using a Support Vector Machine outperformed all other approaches (they
obtained an F-measure of 0.497 and precision of 0.642). However, Calibrated Label Ranking
with Decision Trees, Backpropagation for Multi-Label Learning, and Multi-Label k -Nearest
Neighbors also performed competitively. The results of selected studies, where learning
machines and algorithms such as SVM, SVR, Gaussian Mixture Model (GMM), k-Nearest
Neighbours (kNN), Naive Bayes (NB), Multiple Linear regression (MLR), ]48 Decision Trees
(J48), Dynamic Texture Mixture (DTM) and others were employed, are presented in Tab. 3.4

along with respective references, used music set, group of features, algorithm and accuracy.
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The most important features used in listed works i.e. Mel-Frequency Cepstral Coefficient

(MFCC), Statistical Spectrum Descriptors (SDD), temporal and others are described in

Section 4.3, which is dedicated to audio parametrization.

Table 3.4 Selected content-based music emotion recognition (MER) systems. Results evaluation described
either: 1- F-measure or 2- Accuracy. Best reported configurations are indicated in bold
No. Reference Music set Features Machine Learning | Accuracy
p | Lin et[ilgz(]2009) 1535 MARSYAS (436) SVM 56%!
key, average
energy,
2 Han et al. (2009) 165 ten}poral, beat SVR, SVM, GMM 94,52
[104] interval,
harmonic
strenght
) pitch (5), rhythm
Zhao etal. (2010) | 24 (Chinese .
6), MFCCs (10), .9%?2
3 351] & Western) (6) s (10) Bayesian network 74.9%
SSDs (9)
intensity timbre,
Myint and Pwint rhythm strength, o/2
4 [223] 100 correlation peak, SVM 37%
temporal
5 | Leeetal (2011) 1000 timbre SVM 67.5%?
[170]
RMS, dynamics,
spectral
6 | Mannetal (2011) 114 centroid, SVM 80-949%2
[193] :
tonality,
temporal
Vaizman et al. 76
041
7 [321] (piano+voc) 34 MFCCs DTM 60%
52 (dynamic,
, rhythmic, pitch,
8 Saari et al. [265] 1gﬁlglcl)m harmonic, NB, k-NN, SVM 59.49%2
timbre) + MFCCs
(14)
500
MLR, NB, SVM,
9 | Wangetal. [329] (Chinese lyrics, rhyme 48 61.5%?
music) J

The review of mood recognition presents various, often re-occurring, supervised

machine learning techniques. Selected researches are listed along with their references in

Tab. 3.5.
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Table 3.5 Selected supervised machine learning techniques applied to MER
SuperVISe.d machine lea.rmng technique Related references

implemented in MER
Support Vector Machines (SVM) [25,22,175,203,234,273-275,285,314,315]
Gaussian Mixture Models (GMM) [273-274]
Support Vector Regression (SVR) [104,273,345]

Neural Networks [88]
Linear Regression an(.i Multiple Linear [75,273-275]
Regression

It is worth noticing that very common approaches in recent publications are systems
based on SVMs and GMMs for solving the classification problem and SVRs and Linear
Regression techniques for the regression problem [203,234,285].

Some studies employed more complex processing that involved a few levels of the
analysis. For example Pouyanfara and Sameti [250] performed two-level classification for
MER tasks and achieved an accuracy rate of 78% for SVM and 87% for their two-level
approach for 280 pieces dataset. It is important to note that the model of mood used by
them was very simple and consisted of only 4 parts of Thayer's Valence/Arousal plane. Wu
and collaborators [339] modeled music emotion recognition as a multi-label multi-layer
multi-instance multi-view learning problem. In their approach music is formulated as a
hierarchical multi-instance structure, where multiple emotion labels correspond to at least
one of the instances with multiple views of each layer. Their Hierarchical Music Emotion
Recognition model (HMER) captures music emotion dynamics with a hierarchical structure.
On the other hand, Rauber and Frithwirth [254] from Vienna University of Technology
proposed a SOM-enhanced JukeBox (SOMe]B) system [89] to organize their music database
analogically to the text library. The classification is mostly content- and genre-based. A
system that automatically organizes any music collection according to music similarity was
presented by Rauber. The system introduced consisted of the 2-dimensional SOM
representation that could be generated for any music set. A more complex system involved
GHSOM (Growing Hierarchical Self-Organizing Maps) with a 3-layer architecture [256].

Most available studies on emotion recognition in music do not consider the problem of
emotional variation throughout a song. In fact, the aim is usually to find the single emotion
that best describes an entire song. Nevertheless, the mood of music is not always constant
for the whole duration of the piece. That is the genesis of systems that involve mood

tracking or dynamic mood recognition. Markov and Matsui [194] introduced a dynamic
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structure based on State-Space Models that as a result returns the Arousal/Valence
trajectory. Their experiment involved a very small dataset and did not lead to any general
conclusions. Lu and collaborators [188] tracked mood changes over time using hierarchical
and non-hierarchical frameworks based on Gaussian mixture models (GMM). Their system
followed changes between Thayer’s four principal mood quadrants in the valence-arousal
representation. A similar approach was presented by [234] who aimed to track mood in
audio music, specifically its changes over time in terms of Thayer’s quadrants [308]. Using
results from MoodSwings, an interactive game, Kim and collaborators [133] performed a

continuous tracking; an example of their analysis for different parts of a song is presented

in Fig. 3.7.
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Figure 3.7 Mood of music changes in the music clip according to analysis performed by [133]. The ellipses

represent the standard deviation of the evaluation

Yang et al [345] proposed a solution, based on a continuous model using the Thayer’s
plane. The authors map each song to a point in the plane, using regression and audio
features from various frameworks to predict the arousal and valence values. They achieved
accuracy of up to 58.3% for arousal and 28.1% for valence.

Caetano and Wiering [49] criticized the common bag of frames (BOF) approach, which
encodes audio signals as the long-term statistical distribution of short-term spectral
features, commonly used in MER. They believe that BOG has several limitations and the

semantic gap is responsible for the limited performance of many MER systems. As an
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alternative to mood tracking, they introduced the theoretical framework of a computational
model of auditory memory that incorporates temporal information into MER systems.

In a significant number of studies, tempo, rhythm and other time-based music features
were considered as an important cue for MER. A detailed description of these features is
available in Section 2.2. Tsunoo [312] implemented recognition of rhythmic patterns for
specific music genres as well as music mood recognition. A simplified schema of his system

is presented in Fig. 3.8.
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Figure 3.8 A schema of the rhythm recognition system used for MER [312]

Skowronek and his team along with other researchers investigated the role of
percussiveness of sounds in terms of perception, including the influence of mood of music
[221,287,288].

In MER, studies that refer to the ground truth play an important role. The aim of finding
the ground truth is to create clear training sets that are easy to describe. This expression in
MER tasks refers both to the set of music [287,288] as well as to mood classes within the
categorical approach [113].

Recent years brought various tools and approaches that are involved in MER. Some of
the most interesting ones are cited in the upcoming Section. Xu and collaborators [342]
implemented the source separation to improve mood recognition. Results achieved for
separated sources were better than for the regular analysis. Wang and collaborators [330]

presented an interesting histogram density modeling approach with prediction of the
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emotion distribution by a 2-D histogram over the quantized VA space. Chen and his team
[56] proposed a model that adapts to the personal preferences of the listener in terms of
mood of music. Park and collaborators [237] used Ranked Attributes Tree (RAT) which is
able to recommend a music piece based on a combination of all ranked attributes, including
mood. All of the works cited above show that MER is a very real and developing topic [224]

and there is still a space for improvement and further studies.

3.2.4 Visualization Based on Mood of Music

Visualization of the results is especially important for these studies where dimensional
models of mood are involved. In most cases music pieces are mapped onto the model plane
or space. In these representations, pieces of music that are similar are placed close to each
other, while a larger distance refers to smaller similarity. Pampalk introduced the idea of
"Islands of Music" where whole music libraries are organized according to similarity
between songs [232] (see Fig. 3.9). In this system the overall similarity is taken into

consideration.

81



3 MUSIC INFORMATION RETRIEVAL

Figure 3.9 Example of music database organized according to the "Islands of Music" concept [232]
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For the subject of the presented work, visualizations based on mood of music are more
interesting and relevant. Kim et al. mapped 50000 music pieces into a VA plane [133] (Fig.
3.10). In their approach songs are placed according to their mood, thus pieces with similar

mood content are positioned close to each other.

Valence

-100 0 100
Arousal

Figure 3.10 Contour plot of the distribution of 50000 music pieces on Valence/Arousal plane [133]

Yang et al. [345] proposed a different solution, based on a continuous model using
Thayer’s plane. The authors map each song to a point in the plane, using regression and
audio features from various frameworks to predict the arousal and valence values.
However, their approach reaches rather a low accuracy of up to 58.3% for arousal and
28.1% for valence.

A graphical representation of the songs in the mood plane is implemented in the
Musicovery music platform [220] (Fig. 3.11). Musicovery and other music recommendation

systems that include mood annotation are described in Section 3.3.
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Figure 3.11 Musicovery graphical representation of songs on the mood plane [220]

3.2.5 Internet-based Systems of Mood of Music Data Collection

The internet is a common medium for the MER-based data collection. Researchers
implemented several Internet-based games and applications. Moodswings is an interactive
game, where players are placing a given song on the 2D VA plane [133,208]. The position
can change during the song; moreover the participant can choose a game with a partner to
see the difference and similarity in their mood judgment. The game incorporates each
listener’s subjective judgments of the emotional content (mood) of the music. The game is
targeted at collecting dynamic (per-second) labels of the users' mood ratings in real-time
using a two-dimensional space of emotional components [213]. That is a very interesting
way of data collecting, although the interface is not exactly intuitive (the orientation of axes
is different than in commonly used Thayer's model [308]), but includes very helpful
emoticons representing mood (Fig. 3.12). Colors representing particular moods are almost

coherent with the model proposed in this dissertation (see Section 6.2).
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Figure 3.12 Moodswings interactive interface [208]

The ESP Game [3,80] is an idea in computer science for addressing the problem of
creating difficult metadata. The same object is presented to both players and they are
instructed to “think like each other” and type the same string (thus the name “ESP”). It turns
out that the string on which the two players agree is typically a good label for the presented
object. The idea behind the game is to use the computational power of humans to perform a
task that computers cannot do (originally, image recognition) by packaging the task as a
game. The ESP Game was shut down in 2011 as a part of Google Labs closure.

Herd It is a casual music game/music discovery tool developed by a team of students at
the University of California [22]. Herd It connects music fans on Facebook and plays tunes
from different musicals and asks players to share their opinions about what they hear in the
music, including mood of music. MajorMiner is a music labeling game. The goal of the game,
besides just listening to music, is to label songs with original, yet relevant words and
phrases that other players agree with, including a description of music’s emotional content.
The authors use derived descriptions to train systems to recommend music [192]. All these
applications were invented mostly for data collection purposes and are successful tools for

subjective data acquisition.
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3.3 SELECTED MUSIC RECOMMENDER SYSTEMS BASED ON MOOD OF
MUSIC

Recently, due to a rapidly growing amount of online content, recommender systems
have become extremely common and are applied in a variety of applications. The most
popular ones are dedicated to movies, music, news, books, research articles, search queries,
social tags, and products [7,260]. Music systems are often based on the collaborative
filtering [162,236,297], that includes analysis of a large amount of users' behaviors and
does not involve any information about content.

On the other hand, content-based filtering relies on the description or characteristics of
an item. The description can be derived from tags assigned by experts, social tags or the
content by itself. Recommendation can pertain to overall music preferences or similarity or
a particular characteristic such as artist, genre, mood or others. WiMP [336] has options of
searching by genre, artist, album and song. Recommendations and inspirations are created
by the editors of the platform.

Some platforms combine both approaches. Last.fm [162] recommends music based on
tags, similarity and similar preferences of users. Spotify [297] enables searching by artist,
album, song, recommendation based on radio stations created by tag or artist or by other
listener behaviors or preferences.

In the subsequent section, selected systems that can recommend music by mood are
described.

Musicovery, an interactive Web-radio, includes different recommendation options, i.e.
searching by artists or tags or a play your mood option. Songs are represented as colorful
dots in the 2D space (Fig. 3.13).

Stereomood [298] will “Turn your mood into music”, but is based on tags, not always
related to mood “I feel...”: ambient, action, dreamy, dirty, digital, drinking with friends,

zombies, etc. (Fig. 3.14)
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Figure 3.14 Graphical interface of Stereomood - music recommendation system based on tags related to
music [298]

In The Mood Music [119] is a New Age internet radio station that includes only music

with calm and relaxing content. 8 Tracks [1] is based only on tags, very frequently not
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correct ones. One can see many issues with this system; for example the tags "sad" and
"sad/" are considered as separate categories.

Mood of music can be a very useful cue for music recommendation, not only for single
users but especially for restaurants, bars, any type of background music use, music
databases dedicated to film and advertisement, and many other applications. All presented
systems are based on particular music sets. There is still space for development of the
software/plugin that based on the content can organize any music library that is available

online or is personally owned.
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In this Chapter first a brief summary of music parametrization in MIR is provided, then
audio features applied to mood recognition are described and subsequently those features
considered by the author of this thesis considered as having the potential to improve the
results of the experiments are presented. In the final part of this Chapter, a case study is
performed in which separate tracks and whole mixes of the songs are parameterized and
subjected to thorough analysis. The proposed approach is based on the author's experience
as a sound engineer working with musicians on the emotional content of their music.

As was already pointed out, within Music Information Retrieval there are two main
approaches in music description: metadata-based and content-based [50]. While the
metadata approach is based on textual information provided by experts or social exchange
information platforms, the content-based approach involves music as a signal and its
descriptors only. Discussion on the advantages and disadvantages of both approaches as
well as more detailed information on particular solutions can be found in Section 3.1.

Content-based MIR is engaged in intelligent, automated processing of music such as
music classification, sounds recognition, automatic music description and recognition,
music creation and many other tasks [50,71,76,99,129]. The content-based approach
constitutes the foundation of many studies and system implementations within the area of
Music Information Retrieval [47,52,232,235]. Various types and segmentation and
parametrization are used for this purpose. Parameters contain objective information about
audio signals. The task of the researcher is to make the connection between descriptors and
music perception and find the "hidden" sense behind them. This approach can pertain to a
diversity of problems. In Music Emotion Recognition this applies to timbre, articulation,
dynamics, harmony, key/mode, melody and time (rhythm/tempo) [20,50,174], thus
signifies a necessity to create feature vectors containing many parameters related to the
above music characteristics.

Depending on the aim, approach and computational method used, different features and
parameters are involved. In the next few paragraphs, several examples of works are
presented, where different sets of features are used to achieve various goals. Then groups of
parameters commonly used for MER are described, including tools such as MPEG-7, MIR

Toolbox and also those proposed by the author of the present thesis.

89



4 OVERVIEW OF AUDIO SIGNAL PARAMETRIZATION

4.1 MUSIC MOOD RECOGNITION PARAMETRIZATION

Music as a form of art is perceived and interpreted in many different ways. It contains
emotions, different meanings, references to other pieces and many other elements that are
hard to interpret. On the other hand, audio signal can be treated as any other signal and
parameterized according to characteristics of the temporal sequence. The relationship
between music itself and parameters is very difficult to find. Therefore an additional layer
of music features should be considered, which describes the characteristics of music. That
said, music parametrization should consist of three layers (Fig. 4.1). Music is described by
music features (characteristics) and then researchers are trying to identify parameters that
are related to those features. Music features describe music elements and structure in
special music language; some of them are rhythm, tempo, meter, key, harmony, dynamics
articulation and many others. Terms related to music features are described in details in

Section 2.2.

Music

Music features
(description of music
clements)

Parameters
(description of signal)

Figure 4.1 Three layers of music interpretation and description

4.1.1 Music Features and Parameters Related to Mood of Music

In MIR and especially in MER, studies are performed to determine the relationship
between music features and the impact on the listener. Music Emotion Recognition is the
area where these relationships are crucial and underlie the whole concept of mood
recognition. In the subsequent section relationships investigated by different researchers

are cited and compared. On the other hand, it could be observed that composers commonly
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use these rules; a skilled and conscious one uses particular elements of music to achieve
desired impact on the listener.

Several works related to Music Mood Recognition refer to different groups and
combinations of music features and specific parameters. However, it should be
remembered that the basis of these descriptors had roots in research performed earlier
within general Music Information Recognition [50,232].

Eronen [79] analyzed several features with regard to recognition performance in a
musical instrument recognition system. He took into consideration a wide set of features
covering both spectral and temporal properties of sound.

A number of studies considered interpretation between music features and valence and
arousal [91,92,177,327]. Valence and arousal are expressions taken from Thayer's model of
emotion, which is described in details in Section 2.5. A summarized set of music features
important in the prediction of valence and arousal is listed in Tab. 4.1 [43]. Definitions and

description of music features are included in Section 2.2.

Table 4.1 Features in the prediction of valence and arousal [43]
Valence Arousal
Chroma Slow tempo
Percussiveness variability across bands Loudness

Measure related to the ratio of fast and

Chroma eccentricity
slow tempos

Modulation spectrum Fast tempo

Harmonic strangeness Spectral tilt

Hevner summarized her findings related to the music features that create emotional
content of music [108]. They are schematically shown in Tab. 4.2, according to eight
clusters of adjectives included in Hevner's model of emotions (Fig. 2.20) [108].

The next step of the analysis is to determine the relationship between music features
and particular parameters. Brinker [43] tested 79 features and proposed a schematic

alignment, which is presented in Tab. 4.3.
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Table 4.2 Musical characteristics related to emotion groups with weights proposed by Hevner [108]
No. Adjectives Music Characteristic Weight
Firm rhythm 18
.. S Slow tempo 14
.splr‘ltual, lofty, awe-inspiring, Low pitch 10
1 dignified, sacred, solemn, sober, .
serious Ascending melody 4
Major Mode 4
Simple harmony 3
Minor mode 20
pathetic, doleful, sad, mournful, Low pitch 19
2 tragic, melancholy, frustrated Slow tempo 12
depressing, gloomy, heavy, dark Complex harmony 7
Firm rhythm 3
Slow tempo 16
dreamy, yielding, tender, Minor mode 12
3 sentimental, longing, yearning, Flowing rhythm 9
pleading, plaintive High pitch 6
Simple harmony 4
Slow tempo 12
Simple harmony 10
4 lyrical, leisurely, satisfying, High pitch 8
serene, tranquil, quiet, soothing Major mode 3
Ascending melody 3
Flowing rhythm 2
Major mode 21
humorous, playful, whimsical, 3i Hllghhp itch }g
5 fanciful, quaint, sprightly, mp'e 1amony
delicate, light, graceful Flowing rhythm 8
Fast tempo 6
Descending melody 3
Major mode 24
) High pitch 20
6 merry,ﬁ oy(;uls ’ fqyil{lap py Simple harmony 16
checriul, brig Flowing rhythm 10
Fast tempo 6
exhilarated, soaring, triumphant, C Fals L tehmpo ?411
dramatic, passionate, sensational, omp-ex Marmony
7 . e Low pitch 9
agitated, exciting, impetuous, :
restless Descending melody 7
Firm Rhythm 2
Low pitch 13
vigorous, robust, emphatic, Firm rhythm 10
8 martial, ponderous, majestic, Descending melody 8
exalting Complex harmony 8
Fast tempo 6
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Table 4.3 Parameters related to musical features proposed by Brinker [43]
Feature class Descriptor
Spectral MFCC and modulations
. Chroma, key consonants, dissonants,
Tonality . -
harmonic strangeness, chroma eccentricity
Tempos (fast-slow), onsets, inter-onsets
Rhythm pos ( . )
intervals
. Characterization and classification of onset
Percussiveness

per band

This set allowed Brinker to achieve Valence and Arousal prediction with variance of 0.68
for Arousal and 0.50 for Valence [43].

As mentioned before, within the area of Music Emotion Recognition authors use
different sets of parameters and algorithms. Panda for audio features extraction employed
Marsyas and MIR Toolbox [234]. He fed parameters into SVMs classification and regression
system, reducing the number of features using forward feature selection (FFS).

Rauber and his collaborators [256] executed 2-stage features extraction based on
Psycho-Acoustic Models and used them in the SOM model (Fig. 4.2). They based their
parameters on the basic of auditory perception that is loudness sensation and rhythm

patterns per frequency band.
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Figure 4.2 2-stage feature extraction proposed by Rauber [256]
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Baume [25] described 47 different types of audio features and evaluated them for the
purpose of music mood recognition. He tested these sets with different types of regressors
(Fig. 4.3) as well as different subsets for each SVR regressor (Tab.4.4). Baume used different
subset evaluation techniques that can be divided into three categories. He followed Liu's
[184]: categorization of feature selection techniques the filter model, the wrapper model
and the hybrid model [25]. The filter model relies on general characteristics of the data to
evaluate feature subsets, whereas the wrapper model uses the performance of a
predetermined algorithm (such as a support vector machine) as the evaluation criterion.
The wrapper model gives superior performance as it finds features best suited to the
chosen algorithm, but it is more computationally expensive and specific to that algorithm.
The hybrid model attempts to combine the advantages of both. Results of his works are
presented accordingly in Fig. 4.3 and Tab. 4.4.

For the purpose of MIR, including genre classification and MER, Li [175] used MFCC,
STFT, DWCH and lyrics-based feature sets. At the same time Skowronek and her
collaborators [287,288] employed mostly rhythm based, key and chroma features in their
experiments. Schmidt [273,275] tested several subgroups of features (i. e. MFCC, Chroma,
and Statistical Spectrum Descriptors) for emotion recognition and time-varying emotion
regression. Schmidt analyzed individual sets of features and determined accuracy of 4-
category classification for each of them (Tab. 4.5). Schmidt [273,274] tested several
subgroups of features (i. e. MFCC, Chroma, and Statistical Spectrum Descriptors) for
emotion recognition and time-varying emotion regression. Schmidt analyzed individual sets
of features and determined accuracy of 4-categories classification for each of them (Tab.

4.5).
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Figure 4.3 The absolute error of the best performing combinations for each of the five regressors. The first
local minima are marked with triangles [25]
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Table 4.4 Best feature combinations for each regressor [25]
Feature SVR1 | SVR2 | SVR3 | SVR4 | SVR5
MFCC (20 coeffs) v
MFCC (12 coeffs) v
MFCC (7 coeffs) v
Spectral flatness v v v
Spectral spread v
Spectral inharmonicity v v
Spectral smoothness v
Spectral sharpness v v
Spectral irregularity v
Spectral centroid v
Bark coefficients v
Spectral valley (5 bands) v
Spectral valley (7 bands) v
Spectral valley (9 bands) v
Intensity ratio (9 bands) v
Tonal content space v
Tonal content function v
Key strength v v
NNLS harmonic change v
Consonance v
Smooth power slope v v v
Scaled smooth power slope v v v v
Peak-valley ratio v
Rhythm strength v v
Mean correlation peak v
Mean onset frequency v v v
Beat counts v v
RMS energy v
Zero-crossing rate v v v
Non-zero count v
Lowest value v
Highest value v
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Table 4.5 Results of 4-way mood classification for several groups of parameters [275]

Feature Type Accuracy

MFCC 47.74+£5.31%

Chromagram 38.97+5.60%

Spectral Shape 36.99+4.79%

Spectral Contrast 48.67+6.10%

All Features 38.24+4.60%

MFCC & Spectral Contrast 50.18+4.18%

As a result, Schmidt found different features appropriate for particular analysis [273-
275]. Even within his research, length and the content of the feature vector varied.

[235] Panda and collaborators recently proposed a unique feature set consisting of
standard and melodic features extracted directly from audio. Their results show that
melodic features perform better than standard audio. They achieved the result of 64% F-
measure, with only 11 features (9 melodic and 2 standard).

In many studies different layers of the music parametrization are mixed. Parameters are
commonly included in music features set and vice versa. For example Brinker with
collaborators [43] put on the same stage of analysis chroma and modulation spectrum (Tab.
4.2). On the other hand, systematics proposed by Thayer [308] are related only to the music
features and are very hard to describe without the expert involved in the process.
Methodology proposed by the author of the presented dissertation is based on 3-stage
music analysis described before (Fig. 4.1). It involves attempt to create time-based
parameters that describe particular musical content with mathematical tools. Proposed
parameters and motivation behind them is presented in Section 4.6.

Each of the works presented in this Section refers to different sets of features and
parameters, even though all of them aim at music mood recognition. Moreover, even within
one computational method, different settings may require other parameters. Therefore it is
difficult to determine one and only valid set of features which would be suitable for any

approach to mood description and recognition of music.

4.1.2 Preprocessing

Preprocessing is a very important step that occurs before almost any analysis. The
purpose of the process is preparing or adjusting data for the particular method or goal,

extracting desired information and removing redundant content.
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Usually, data values within a dataset may differ widely, which is one of the reasons of
preprocessing. Normalization is often applied to bring various data to the same range
of values. The procedure of and different types of normalization are described in Section
5.1.

Regardless of the type of the extracted feature, segmentation of the analyzed signal is
first applied to set appropriate time resolution for the particular analysis and recognition
tasks. Segmentation of audio piece is used to split it into its structural components such as
vowels, phrases, notes, bars, etc. [159]. It is also commonly used for the purpose of analysis
of varying signals to achieve more detailed information within time domain. During
parametrization process, segmentation is implemented, i.e. to avoid bias caused by
fragments of silence, observe differences between fragments, perform proper averaging
process. Lengths of segments as well as their overlap, etc. are adjusted to match the
requirements of the specific feature. In MER, segmentation is used not only for smoothing

and determining whether some values are constant, but also for mood tracking [188].

4.2 MPEG-7-BASED AUDIO PARAMETERS

MPEG-7 audio parameters [215] are commonly used in MIR including MER
[29,132,232], therefore they are listed and described in the subsequent section.

MPEG-7 standard is a set of standardized tools to describe multimedia content. MPEG-7
standard provides tools for audio, images and video data and are used both by humans as
well as automatic systems. MPEG-7 Audio refers to audio content in any multimedia subject.
Even though MPEG-7 Audio features are widely described and commented in the literature
[132,215,216,267], therefore they will only be reviewed in the following Section shortly.

MPEG-7 Audio contains low-level descriptors that can be implemented in many
applications as well as high-level descriptors, which are more specific to a set of
applications described in standard [215]. Low-level descriptors are grouped and listed in
Tab. 4.6. High-level tools include more complex schemes and procedures, which are: the
audio signature Description Scheme, musical instrument timbre Description Schemes, the
melody Description Tools to aid query-by-humming, general sound recognition and
indexing Description Tools, and spoken content Description Tools. Since high-level
descriptors are dedicated to specific tasks, which do not apply to the topic of presented

dissertation, they are only mentioned briefly.
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The MPEG-7 low-level audio descriptors are constructed to describe general attributes
of audio signal. There are 17 temporal and spectral descriptors that can be extracted from
audio automatically and may be used in a variety of applications. MPEG-7 descriptors are
often used to determine similarity between different audio signals. Thus it is possible to
identify identical, similar or dissimilar audio content. This also provides the basis for

classification of audio content.

Table 4.6 MPEG-7 Audio Low-level descriptors
Group Low-level descriptor Abbreviation
Basic Audio Waveform AW
AudioPower AP
Audio Spectrum Envelope ASE
Basic Spectral Audio Spectrum Centroid ASC
p Audio Spectrum Spread ASS
Audio Spectrum Flatness ASF
Spectral Basis Audio Spectrum Basis ASB
P AudioSpectrumProjection ASP
Sional Parameters Audio Harmonicity Audio AH
& Fundamental Frequency AFF
. Log Attack Time LAT
Timbral Temporal Temporal Centroid TC
Harmonic Spectral Centroid
. HSC
Spectral Centroid sC
Timbral Spectral Harmonic Spectral HSD

Deviation Harmonic
Spectral Spread Harmonic
Spectral Variation

HSS
HSV

4.2.1 Basic Descriptors

Basic Descriptors provide simple description of temporal structure of an audio signal.

They are listed below including essential information.

Audio Waveform

Audio Waveform (AW) is defined to get a compact description of the shape of an audio
signal. Whole signal is divided into non-overlapping frames (hopSize) and the lower
(minRange) and upper (maxRange) limit of audio amplitude in the frame are stored. AW
consist of minRange and maxRange time series, numbered accordingly to the frame index
(hopSize). Comparison of the regular waveform and AW representation are shown in Figs.

4.43 and 4.4b.
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Audio Power
Audio Power (AP) describes the temporally smoothed instantaneous power of the audio.

The AP coefficient of the m-th frame of the signal is calculated according to the following

formula:

AP(m) = LSI S(n+mN) P

n=0

(4.1)

An example of the AP description of a music signal is given in Figure 4.4c.
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Figure 4.4 Comparison of representations of audio signal: a) original signal, b) Audio Waveform,

c) Audio Power
4.2.2 Basic Spectral Descriptors
Basic Spectral Descriptors provide time series of descriptions in the frequency domain.

Frequencies are scaled logarithmically.

Audio Spectrum Envelope
Audio Spectrum Envelope (ASE) is a log-frequency power spectrum, which is obtained by

summing the energy of the original power spectrum within a series of frequency bands. The
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bands are distributed within the range [loEdge, hiEdge], according to the chosen resolution
r, ranging from 1/16 of an octave to 8 octaves. The ASE within a band b is calculated as

follows:

1 hiEdge(b)
ASE(b)=— E P(k)
k=loEdge(b) (42)

where P(k) is the power spectrum (see Eq. 4.1).
Audio Spectrum Centroid
Audio Spectrum Centroid (ASC) stands for the center of gravity of a log-frequency power

spectrum and is calculated as following:

(Npp/2)-low
" f(k)

1 Pk
OgZ(lOOO) (k)

(Npr/2)-low

Y P

=0 (4.3)

ASC = —i=

Each frequency f(k) of the power spectrum is weighted by the corresponding power
coefficient P(k). It is scaled with 1000 Hz as a central frequency. For ASC calculation low
frequencies below 62.5 Hz are treated as a single band to avoid disproportionate weight of
low-frequency components. Detailed information about particular is included in Kim’s work
[132].

Audio Spectrum Spread

AudioSpectrumSpread (ASS) is a measure of the spectral shape. It is defined as the

second central moment of the log-frequency spectrum.

(Npp/2)=low
log, (%)) _ asc1pr)
P 1000
ASS = (N7 /2)-low
Yy Pl
= (4.4)

Audio Spectrum Flatness

Audio Spectrum Flatness (ASF) characterizes an audio spectrum and provides a way to
quantify how noise-like or how tone-like a given sound is [100,189]. It describes the
amount of peaks or resonant structure in a power spectrum, as opposed to flat spectrum of
white noise. A high spectral flatness (value 1.0 for white noise) indicates that the spectrum

has a similar amount of power in all spectral bands. A low spectral flatness (approaching 0.0
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for a pure tone) indicates that the spectral power is concentrated in a relatively small
number of bands (mixture of sine waves) [29]. ASF is calculated by dividing the geometric
mean of the power spectrum by the arithmetic mean of the power spectrum [189]. Spectral

Flatness Measure is calculated as follows:

k-1 X (k) T'E

SFM,(X)= sd?“ﬂ%
—2 X(k)

K ~k=0 (4.5)

where, X(k) is magnitude spectrum of signal x(t). The ASF is calculated within separate

sub-bands b.

4.2.3 Spectral Basis

Audio Spectrum Basis (ASB) and Audio Spectrum Projection (ASP) descriptors were
initially defined to be used in the MPEG-7 sound recognition high-level tool [132]. Their
main concept includes the projection of an audio signal spectrum (high-dimensional
representation) into a low-dimensional representation. This processing is aimed for
classification systems. The extraction of ASB and ASP is based on normalized techniques
which are part of the standard: the singular value decomposition (SVD) and the

Independent Component Analysis (ICA).

4.2.4 Signal Parameters

Signal Parameters group of parameters describes the degree of harmonicity of audio
signals.

Audio Harmonicity

Audio Harmonicity (AH) consists of two measures of the harmonic properties of a
spectrum: Harmonic Ratio HR (the ratio of harmonic power to total power) and Upper Limit
of Harmonicity ULH (the frequency beyond which the spectrum cannot be considered

harmonic).

HR = max{T',(m)} (4.6)

where [7 is defined as a normalized autocorrelation function of the signal within the
frame L.
Upper Limit of Harmonicity is an estimation of the frequency beyond which the spectrum

no longer has any harmonic structure.
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Audio Fundamental Frequency

Audio Fundamental Frequency (AFF) provides estimations of the fundamental frequency
fo in segments where the signal is assumed to be periodic. It can be interpreted as an
approximation of the pitch of any music or speech signals.

Detailed calculation procedures Signal Parameters are included in [132].

4.2.5 Timbral Temporal

Timbral Temporal descriptors are extracted from the signal envelope in the time
domain. They aim at describing perceptual features of instrument sounds based on ADSR

envelope. It is schematically shown in Fig. 4.5.

Signal
Envelope

»
»

Frame
Index /

start stop Tsuslain Tf'el’ ease

Attack Decay Sustain Release

Figure 4.5 Schema of ADSR envelope of a single sound
Typical phases of ADSR are: Attack (the sound reaches its maximum volume), Decay
(time when volume reaches the second volume level known as the sustain level), Sustain

(is the volume level at which the sound sustains after the decay phase) and Release

(volume reduces to zero).

Log Attack Time

Log Attack Time (LAT) is defined as the time it takes to reach the maximum amplitude of

a signal from the minimum threshold time.

LAT = loglo(T;rap - T‘starr) (4 7)

Temporal Centroid
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Temporal Centroid (TC) is defined as the time average over the energy envelope of the

signal and is calculated as follows:

=~

-1

N

(IEnv(l))

i

=5

S
Il
|z

Env(l)
5 (4.8)

where Env(l) is the signal envelope.

4.2.6 Timbral Spectral Descriptors

Timbral Spectral describe the structure of harmonic spectra and are extracted in a linear
frequency space.

Harmonic Spectral Centroid

Harmonic Spectral Centroid (HSC) is defined as the average, over the duration of the
signal, of the amplitude-weighted mean (on a linear scale) of the harmonic peaks of the

spectrum. For a given frame [ it is defined:

N
Ef/uAn./
LHSC, = = ——

Ah.l
“ (4.9)

where fy, is frequency and Ap,is amplitude of h-th harmonic peak.

Thus, HSC value is obtained by averaging the local centroids over the total number of

frames:

L-1
Hsc=1 Y LHSC,
LT (4.10)

Spectral Centroid

Spectral Centroid (SC) is not related to the harmonic structure of the signal. It gives the
power-weighted average of the discrete frequencies of the estimated spectrum over the
sound segment. SC is highly correlated with the perceptual feature of the brightness of

sound [132] and is calculated as following:

Nppl2

Y, FUP, (k)
SC = 4=

Ny /2

PRAG)
k=0 (4.11)
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Harmonic Spectral Deviation
Harmonic Spectral Deviation (HSD) measures the deviation of the harmonic peaks from
the envelopes of the local spectra. To achieve HSD, local measures are averaged over the

total duration of the signal:

L-1
HSD =1 Y LHSD,
=0 (4.12)

The calculation procedure of LHSD is described in details by Kim and collaborators
[132].

Harmonic Spectral Spread

Harmonic Spectral Spread (HSS) is a measure of the average spectrum spread in relation
to the HSC. At the frame level, it is defined as the power-weighted RMS deviation from the
local HSC LHSC (Eq. 4.9).

Harmonic Spectral Variation

Harmonic Spectral Variation (HSV) reflects the spectral variation between adjacent
frames. At the frame level, it is defined as the complement to 1 of the normalized correlation

between the amplitudes of harmonic peaks taken from two adjacent frames.

4.3 OTHER PARAMETERS

In Music Emotion Recognition music features that need to be covered by parameters are
timbre, articulation, dynamics, harmony, key/mode, melody and time (rhythm/tempo)
[20,50,174]. Thus few groups of parameters relevant for MER can be identified. Some of the

most important characteristics are presented and described below.

4.3.1 Timbre-Related Parameters

Mel-Frequency Cepstral Coefficients (MFCC)
Mel-frequency cepstral coefficients (MFCCs) are among the most widely used acoustic
features in speech and audio processing. They were introduced by Mermelstein [199] as a

tool for speech recognition. MFCCs are also commonly used in music information retrieval
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applications such as genre classification, audio similarity measures and many others
[50,221]. They are described as a low-dimensional representation of the spectrum warped
according to the mel-scale, which reflects the nonlinear frequency sensitivity of the human
auditory system [210,274]. Mathematically MFCC is a representation of the short-term
power spectrum of a sound, based on a linear cosine transform of a log power spectrum on

a nonlinear mel-scale of the pitch (Fig. 4.6) [185,207].

Waveform

|

Converting to Frames

!

Dicrete Fourier Transformation

}

Log of amplitude spectrum

!

Mel-scaling and smoothing

}

Discrete Cosine Transform

}

MFCC Features

Figure 4.6 A schema of MFCC calculation procedure

A simple interpretation of MFCC within MIR is timbre of music.

Statistical Spectrum Descriptors (SSD)

In music and audio processing, statistical spectrum descriptors (SSD) are often related to
timbral texture [50]. SSD are derived from a psycho-acoustically transformed Bark-scale
spectrogram and comprise several statistical moments, which are intended to describe
fluctuations on a number of critical frequency bands. The Bark scale spectrogram is then
transformed into the decibel scale. Subsequently, the values are transformed into Sone
values, in order to approximate the loudness sensation of the human auditory system. From
this representation of a segment spectrogram the following statistical moments are

computed in order to describe fluctuations within the critical bands: mean, median,
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variance, skewness, kurtosis, min- and max-value are computed for each critical band,

forming the SSD feature subset (Fig. 4.7) [178].

Waveform

|

Segmentation

!

STFT

|

Bark scaling+Sone scaling

|

Mel-scaling and smoothing

|

SDD Features
(mean, median, variance, skewness,
kurtosis, min- and max-value)

Figure 4.7 SDD calculation process

4.3.2 Time-Based Parameters

Tempo and rhythm are strongly connected with mood of music. This relationship was
widely examined in many studies [64,108,127]. Main results of Hevner [108] studies are
presented in Section 4.1.1 and listed in Tab. 4.2. Correlation between tempo and rhythmic
patterns and mood of music was also studied by the author of presented dissertation [242].
Experiment and results are invoked in Section 6.3.

Time-based parameters are created to describe the music features such as tempo,
rhythm, meter, accents and others. Description of time structures in music and related
terminology is referred in Section 2.2.1.

Various researchers attempt to correlate time-based music features with parameters
derived from audio signal [50,126,272]. Automatic estimation of the temporal structure of
music, such as musical beat, tempo, rhythm, and meter, is not only essential for the
computational modeling of music understanding but also useful for MIR. Rhythmic

similarity has been used extensively in the audio domain for classification tasks [50].
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Temporal properties estimated from a musical piece can also support Music Emotion
Recognition.

There are numerous features such as tempo, Rhythm Patterns and Rhythm Histograms,
beat detection in sub-bands, etc. Various content-based rhythm retrieval models exist and
enable to extract information either from audio signal [90,99,163] or symbolic
representation [6,258].

Rhythm Patterns describe modulation amplitudes for a range of modulation in the
human auditory range, i.e. fluctuations (or rhythm) on a number of frequency bands. The
feature extraction process for the Rhythm Patterns consists of two stages (see Figs. 4.8a and
b). First, power spectrum that reflects human loudness sensation (Sonogram) is calculated.
In the second step, the spectrum is transformed into a time-invariant representation based
on the modulation frequency, which is achieved by applying discrete Fourier transform,
resulting in amplitude modulations of the loudness in individual critical bands. From that
data, reoccurring patterns in the individual critical bands, resembling rhythm, are
extracted, which result in a time-invariant, comparable representation of the rhythmic
patterns in the individual critical bands.

The Rhythm Histogram features are used to determine general rhythmic content [10].
The magnitudes of each modulation frequency bin of all critical bands are summed up, to
form a histogram of "rhythmic energy" per modulation frequency. The histogram consists of
60 bins, which reflect modulation frequency between 0 and 10 Hz. For a given piece of
audio, the Rhythm Histogram feature set is calculated by taking the median of the
histograms of every 6-seconds segment processed (see Fig. 4.9).

An approach based on the recognition of rhythmic patterns is used also in various fields
of MIR, i.e. automatic genre classification, dance music analysis, assisted annotation and
many others [4, 83,158,172].

Going deeper into the structure of sound, zero-crossing (ZCR) or particular level
crossing (i.e. RMS, 2xRMS etc.) are being calculated. These time-base parameters provide
information about overall loudness or changes of loudness of the piece, and indirectly about
dynamics.

Even though automatic recognition of rhythmic structures, tempo etc. is developing,
created methods and descriptors are not completely covering the topic and do not enable

sufficient recognition straight from audio signal.
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Figure 4.9 Rhythm histogram for rock music piece [10]

4.3.3 Chroma and Key Descriptors

Musical chords and key information are an important part of Western music and this
information can be used to understand the structure of music. Detailed description of music
features related to key, harmony, scales and chords is presented in Section 2.2.2.

The chromagram is a well-established method for estimating the Western pitch class
components within a short time-interval [50]. It is essentially a circular version of the
logarithmically warped spectrogram, where the frequencies corresponding to chroma in
different octaves are grouped together and summed to estimate the energy at each of the 12
pitch classes. Using this feature, it is sometimes possible to obtain an indication of the
overall musical key and modality.

The best performing chord- and key-recognition systems use Hidden Markov models
(HMMs) to unify recognition and smoothing into a single probabilistic framework
[30,171,286]. Most of systems consist of a transition matrix - a probabilistic model of the
state sequence - and an output model - a probabilistic distribution that encodes the
probability that one of the states produces the signal that we measure. Recognition systems
consist of 24 or 36 chords (including major, minor and diminished triads for each of pitch
classes), unless other limitations such as key or specific scale are implemented. The acoustic
signal is represented as a set of chromagram frames so the output model represents the
probability that each state (chord) produces any given chromagram signal. An example of
automatic 12-bin pitch chord recognition performed by Lee and Slaney [171] is shown in

Fig. 4.10.
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12-bin Chromagram
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Figure 4.10 12-bin chromagram of an excerpt from Bach’s Prelude in C Major (BWV 846) performed by

Glenn Gould. At the bottom chord labels with boundaries can be observed: “true” corresponds to the ground-truth
annotation, and “recog” corresponds to the system output [171]

4.4 PARAMETRIZATION TOOLS USED IN MIR

Numerous tools can help to organize, understand and search large collections of music
in digital form. Some researchers created apparatus in different environments (i.e. Matlab,
C++, C#) and shared them with MIR community [164,314]. Some of them are commonly

used in MER and are described in the subsequent section.

4.4.1 MIR Toolbox

Lartillot with his team constructed a set of functions written in Matlab, dedicated to the
extraction from audio files of musical features related to timbre, tonality, rhythm or form.
MIRtoolbox contains good visualization capabilities as well as user-friendly implementation
and manual. The tool is free and open-source [205]. MIRtoolbox consists of wide range of
features including timbre, dynamics, tempo and others. The main structure of the
MIRtoolbox parametrization is presented in Fig. 4.11. Detailed information on the MIR

Toolbox can be found in papers by Lartilot and his collaborators [164-155].
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A Matlab Toolbox for Music Information Retrieval
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Figure 4.11 Overview of the musical features that can be extracted with MIRToolbox [166]

MIR Toolbox includes also "miremotion" script, which attempts to predict such
description of emotion based on the analysis of the audio and musical contents of the
recordings [75]. The output of "miremotion" corresponds to this underlying localization of
emotional content within the 5 basic classes (happy, sad, tender, anger, fear) and within the
3 dimensions. Model of emotions, which combines classes and dimensional approach, used
in MIRtoolbox is shown in Fig. 4.12.

Some of MIR Toolbox calculations are based on the Auditory Modeling Toolbox for
Matlab (AMT) [9], which provides a model chain for the auditory hearing system. It includes
models of all stages of the auditory system - from the outer ear up to the cortex. Detailed
information about modules and components of AMT can be found in the source material

developed by several auditory research groups [9].
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tension

Figure 4.12 Model of emotions used in MIRtoolbox [164]

4.4.2 MARSYAS Parametrization

MARSYAS (Music Analysis Retrieval and Synthesis for Audio Signals) is a software
framework for audio analysis, synthesis and retrieval introduced by Tzanetakis and his
collaborators [41,314,315]. They have implemented a number of the features that have
been proposed in the literature in the C++ environment. The list of features employed in

MARSYAS is presented in Tab. 4.7.

Table 4.7 List of features supported by MARSYAS

Feature name

Spectral Centroid

Spectral Moments

Spectral Flux
Pitch

Harmonicity
MFCC

Linear prediction (LPC) reflection coefficients

4.4.3 MIDI as "Quasi Parametrization”

Another commonly used music description is MIDI (Musical Instrument Digital
Interface), which is a technical standard protocol that contains symbolic representation.

Despite the fact that MIDI is not a direct parametrization tool but rather notation of music
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features, it enables specification of many aspects of music signal. MIDI notation contains
information about tempo, instruments particular notes, their length, attack, decay etc. It
allows extracting musical features such as melody, rhythm, key, tempo, etc. Thus MIDI is
used in Music Information Retrieval, especially for high-level descriptors [50,74]
Nevertheless, this approach requires operating on the databases that contain MIDI notation,
which is not often the case. Moreover, this technique does not include information related
to timbre and overall sound, which seem to be very important features for Music Emotion
Recognition. Erolaand and Toiviainen created an open-source computational instrument in
Matlab, dedicated to the analysis of symbolic representations of music called MIDItoolbox

[74].

4.5 SYNAT PARAMETRIZATION

The SYNAT database is a collection of 52532 pieces of music described with a set of
parameters obtained through the analysis of MP3-quality recordings. The database stores
173-parameter vectors, which in majority are the MPEG-7 standard items (109). However,
the vector was additionally supplemented with 20 Mel-Frequency Cepstral Coefficients
(MFCC), 20 MFCC variances and 24 time-related ‘dedicated’ parameters. The SYNAT project
was realized by the Gdansk University of Technology (GUT) [155] and the music was
collected from the Internet by means of a music robot. As this feature vector (FV) was
examined in several MIR studies [110,153,156,159], also those performed at the earlier
stage of this doctoral study [242,243], thus its content may be treated as a very thoroughly
analyzed. The same FV, but extended to higher frequency bands, which resulted in 191
parameters, was used in the ISMIS’2011 conference in music recognition contest [155], in
which more than 100 teams participated, thus in addition it may be treated as a kind of
benchmarking. That's why the whole parameter set has been taken into consideration in the
presented dissertation, especially as the author of this thesis participated in this study. The
data analysis performed by the author of the present thesis leads to the conclusion that only
some of them might be useful for mood recognition (see Section 6.2). In the next Section,
sets of parameters chosen on various stages of the presented research are listed and
described.

As MPEG-7 features and Mel-Frequency Cepstral-Coefficients are presented in Sections

4.2 and 4.3.1, thus they are only listed in Tab. 4.8 with consecutive numbers assigned. They
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are used in the feature vector applied in the experiments performed by the Author. For the
SYNAT database, the analysis band is limited to 8kHz. More details are included in the
summary below:

parameter 1: Temporal Centroid (defined as the time averaged over the energy
envelope),

parameter 2: Spectral Centroid (computed as the power weighted average of the
frequency of the bins in the power spectrum) average value calculated for all frames,

parameter 3: Spectral Centroid variance calculated for all frames,

parameters 4-32: Audio Spectrum Envelope (ASE) - describes the spectrum of the audio
according to a logarithmic frequency scale; average values in 29 frequency bands
(calculated at one-fourth-octave intervals over the range of 62.5 Hz to 8 kHz),

parameter 33: ASE average value calculated for 29 frequency bands,

parameters 34-62: ASE variance values in 29 frequency bands (the same frequency
bands as cited above),

parameter 63: averaged ASE variance parameter,

parameters 64, 65: Audio Spectrum Centroid (defined as the power weighted log-
frequency centroid) - average and variance values,

parameters 66, 67: Audio Spectrum Spread (describes the second moment of the log-
frequency power spectrum) - average and variance values,

parameters 68-87: Spectral Flatness Measure (SFM) average values for 24 frequency
bands, calculated at one-fourth-octave intervals over the range of 250 Hz to 8 kHz; (SFM
describes the flatness properties of the spectrum of an audio signal within a given number
of frequency bands); calculated according to ASF descriptor specified in MPEG-7 standard
(described in Section 4.3.2).

parameter 88: SFM average value (averaged for 24 frequency bands);

parameters 89-108: Spectral Flatness Measure (SFM) variance values for 24 frequency
bands,

parameter 109: averaged SFM variance parameters (averaged for 24 frequency bands),

parameters 110-129: 20 first MFCC (mean values),

parameters 130-149: 20 first MFCC (variance values),

parameters 150-173: dedicated parameters of the time domain obtained through the

analysis of the envelope distribution in relation to the RMS (root mean square) value.
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Parameters 150-173 refer to the time domain. They are based on the analysis of the
distribution of sound sample values in relation to the root mean square values of the signal
(RMS). Three reference levels were defined: ri, r2, r3 - equal to 1, 2, 3 RMS values of the
samples in the analyzed signal frame. Parameters 150, 151 and 152 correspond to the
number of samples exceeding levels: ry, r2 and r3.

count(samples _exceeding 1)

" length(x(k)) (4.13)

where n=1,2,3 and x(k) is the analyzed signal fragment.

In order to solve the issue of RMS varying in the analyzed frame, Kostek and her
collaborators [155] have devised and introduced another approach. In this approach, each
5-second frame is divided into 10 smaller segments. In each of these segments parameters

pn (Eq. 4.13) are calculated. As a result a sequence P, is obtained:

2 .3 0
By ={PysPa>Pree P} (4.14)

wherek=1...10and n =1, 2, 3 as defined in Eq. 4.13.
In this way, six new features (parameters 153-158) were defined on the basis of P,
sequences. Features are denoted as the mean (gn) and variance (v,) values of P,, n =1, 2, 3.

Index n is related to different reference values of r1, rz and r3

10
k
an
=

10 (4.15)

qn =

v, = var(P,) (4.16)

Three additional parameters (159-161) calculated as the ‘peak to rms’ ratio were
specified. They are achieved in three different ways described below:

- parameter k; calculated for the 5-second frame,

- parameter k; calculated as the mean value of the ratio calculated in 10 subframes,

- parameter k3 calculated as the variance value of the ratio calculated in 10 sub-frames.

Parameters 162-173 are based on the observation of the zero crossing rate and
threshold crossing rate (TCR), which are calculated by counting the number of the signal
crossings in relation to the 0, ry, rz and r3 values. These values (similarly as other previously
presented parameters) are defined in three different ways: for the entire 5-second frame

and as the mean and variance of the TCR calculated for 10 sub-frames.
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Table 4.8 The list of parameters within the SYNAT music database
No. Parameter
1 Temporal Centroid
2 Spectral Centroid
3 Spectral Centroid variance
4-32 Audio Spectrum Envelope for particular bands
33 ASE average for all bands
34-62 ASE variance values for particular bands
63 averaged ASE variance
64 average Audio Spectrum Centroid
65 Audio Spectrum Centroid variance
66 average Audio Spectrum Spread
67 Audio Spectrum Spread variance
68-87 Spectral Flatness Measure for particular bands
88 SFM average value
89-108 Spectral Flatness Measure variance for particular bands
109 averaged SFM variance
110-129 Mel-Frequency Cepstral Coefficients (MFCC) for particular bands
130-149 MFECC variance for particular bands
150 number of samples exceeding RMS
151 number of samples exceeding 2xRMS
152 number of samples exceeding 3xRMS
153 mean value of samples exceeding RMS, averaged for 10 frames
154 variance value of samples exceeding RMS, averaged for 10 frames
155 mean value of samples exceeding 2xRMS, averaged for 10 frames
156 variance value of samples exceeding 2xRMS, averaged for 10 frames
157 mean value of samples exceeding 3xRMS, averaged for 10 frames
158 variance value of samples exceeding 3xRMS, averaged for 10 frames
159 peak to RMS ratio
160 mean value of the peak to RMS ratio calculated in 10 subframes
161 variance of the peak to RMS ratio calculated in 10 subframes
162 Zero Crossing Rate
163 RMS Threshold Crossing Rate
164 2xRMS Threshold Crossing Rate
165 3xRMS Threshold Crossing Rate
166 Zero Crossing Rate averaged for 10 frames
167 Zero Crossing Rate variance for 10 frames
168 RMS Threshold Crossing Rate averaged for 10 frames
169 RMS Threshold Crossing Rate variance for 10 frames
170 2xRMS Threshold Crossing Rate averaged for 10 frames
171 2xRMS Threshold Crossing Rate variance for 10 frames
172 3xRMS Threshold Crossing Rate averaged for 10 frames
173 3xRMS Threshold Crossing Rate variance for 10 frames
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4.6 ANALYSIS BY SYNTHESIS

Composers intend to communicate an idea, vision, feelings, etc. through music and to
induce emotions in listeners. They use melodic, harmonic, rhythmic, dynamic, etc. elements
of music structure to achieved a desired effect. Some of these techniques are referred to in
Section 2.2. A relationship between these elements and emotions included in music was
also analyzed by Hevner [108] (her findings are cited in Section 4.1.1). For example minor
mode is strongly related to pathetic and tragic emotions, while slow tempo indicates
dreamy or lyrical mood (Tab. 4.2). Depending on music genre, arrangement, artistic vision,
time period, esthetics, etc., different instruments play different lines and have a different
role. In Western music bass is very often a foundation and is responsible for overall groove
of a piece, i.e. linking the harmony (chords) of a song with a distinctive rhythm (groove). At
the same time, crash cymbal of the drum set is used to emphasize accents or important
moments. Harmonic instruments such as guitar, piano or organs create harmony and
melodic parts are performed by solo instruments, i.e. vocal, saxophone, etc. Sometimes
absence of a specific instrument in a particular fragment can also be a mean of artistic
expression. For example lack of rhythmic instruments can make music less energetic and
smoother. All these assumptions are listed only for demonstrative purposes and are rather
examples than rules strictly followed by composers.

An experience of the author, gained as a sound engineer and music producer, as well as
all dependences described above lead to an approach, which is based on the role and impact
of single instruments. In addition, also some other researchers, i.e. Xu and collaborators
[342] implemented source separation to improve mood recognition. Results achieved for
separate sources were better than for the regular analysis, therefore the approach based on

the separate tracks seems to be well justified.

4.6.1 Separate Tracks vs. Mix

Following the idea of an analysis of single instruments, multi-track recordings and mixes
were collected to enable a complete source separation. This was gathered as a kind of
ground-truth in the experiments. Recordings from four different music genres: jazz, metal,
pop and rock were selected to provide diverse examples. Since some of instruments are
recorded using multi-microphones technique (described in Section 6.3), one track for each

instrument section was sum-mixed. The list of musical excerpts along with tracks is
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presented in Tab. 4.9. Since they are also included in the listening tests, indexes are
assigned according to numbering in the main listening test (Section 6.2) and are listed in
Appendix [ with indexes A1l-A4. Details regarding song titles, artists and albums are

included in Appendix L.

Table 4.9 List of music pieces selected for multi-track analysis. Details regarding song titles, artists and
albums are included in Appendix |

Song No. Music Genre Tracks

drums

bass

Al jazz -
piano

guitar

drums

bass

A2 metal :
guitars

vocal

drums

bass

acoustic guitar

A3 0
pop electric guitar

piano

vocal

drums

bass

A4 rock :
guitars

piano

Most of parameters that describe music features are easy to implement on the separate
tracks. In the final songs all sources overlap and particular aspects of sound are blurred. It
depends on music genre, mixing concept, esthetics, and characteristics of every single song.
For general overview, spectrograms of mixes of 4 selected songs are presented in Figs. 4.13-
4.16. These representations show clearly that songs are different in terms of overall tempo,
duration of single notes, spectral content, sections of the piece. All spectrograms are scaled
from 0 to 30 seconds and from 0 to 3000 Hz. It is easy to conclude that jazz piece is much
slower than metal (115 BPM vs. 240 BPM). But it is also worth noting that the onset time
between notes is much longer for jazz and the difference is bigger than it should result from

a simple tempo change. That is one of the examples where a simple description of music
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feature does not directly translate to perception. Since the instrumentation for the pop song
is less dense, it is possible to follow the solo line of the guitar, while for pop song (A3)
spectra of guitars, piano and vocal overlap and they are not possible to separate. Mixing
techniques called "Selective mixing" is based on the phenomenon that the removal of large
parts of musical tracks in the time-frequency domain may not be perceived in the mix at all
[136,137]. When sounds are mixed, in a small area of the time-frequency plane all
respective segments of sounds can be removed except sound with the highest energy in that
area. Despite that interferring process, quality remains satisfactory and in some cases can

improve the accuracy of details [139,140].

Time (s)

Figure 4.13 A spectrogram of the 30-sec. excerpt of jazz music (A1 according to 4.Tab. 9 and Appendix I).
Axes denote time range of 30 seconds and frequency from 0 to 3000 Hz

3000
2500

2000

Figure 4.14 A spectrogram of the 30-sec. excerpt of metal music (A2 according to Tab. 4.9 and Appendix I).
Axes denote time range of 30 seconds and frequency from 0 to 3000 Hz
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Figure 4.15 A spectrogram of the 30-sec. excerpt of pop music (A3 according to Tab. 4.9 and Appendix I).
Axes denote time range of 30 seconds and frequency from 0 to 3000 Hz
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Figure 4.16 A spectrogram of the 30-sec. excerpt of rock music (A4 according to Tab. 4.9 and Appendix I).
Axes denote time range of 30 seconds and frequency from 0 to 3000 Hz

Some aspects of music are easy to observe on separate tracks but not within the
complete mix. As mentioned before, during mixing process particular instruments are
included in the final song in appropriate proportions (often changing during the song), with
various processing and effects. All these steps make the analysis more complex and difficult.
Sometimes the character of particular components causes problems with data
interpretation. The snare drum played using brushes in the jazz tune (A1) is very hard to be
discerned within the whole mix (especially in higher frequencies where it overlaps with
harmonics of other instruments), even though it is very present while listening to. For
demonstration purposes a spectrogram of snare drum track separately and the whole mix

are shown respectively in Figs. 4.17 and 4.18.
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Figure 4.17 A spectrogram of the 5-sec. fragment of solo drums track that is a part of jazz piece of music (A1
according to Tab. 4.9 and Appendix I). Axes denote time range of 5 seconds and frequency from 0 to 3000 Hz
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Figure 4.18 A spectrogram of the 5-sec. fragment of jazz music (A1 according to Tab. 4.9 and Appendix I).
Axes denote time range of 5 seconds and frequency from 0 to 3000 Hz

For pop song (A3) due to dense instrumentation, spectra of guitars, piano and vocal
overlap and are not possible to be separated. As an example a solo piano track (Fig. 4.19)
and the whole mix (Fig. 4.20) are presented. What is also interesting, the vocal line and

especially aliquots are easy to be recognized in the complete mix (Fig. 4.20).
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Time (s)

Figure 4.19 A spectrogram of the 5-sec. fragment of solo piano track that is a part of jazz pop of music (A3
according to Tab. 4.9 and Appendix 1). Axes denote time range of 5 seconds and frequency from 0 to 3000 Hz

Spectrum

Time (s)

Figure 4.20 A spectrogram of the 5-sec. fragment of pop music (A3 according to Tab.4. 9 and Appendix I).
Axes denote time range of 5 seconds and frequency from 0 to 3000 Hz

Also parameters related to specific music characteristics are more difficult to extract
from the prepared mix than from separate tracks, even though some harmonic information
can still be retrieved. Chromagrams calculated for tracks of a single harmonic instrument
and for the whole mix are compared for pop and metal and presented in Figs. 4.21 and 4.22.
Instruments for the analysis were selected according to the harmonic role they play in the
arrangement (they are the main element that determines the harmonic content). It is
important to notice that all analyzed songs have quite simple and traditional harmonic

structure.
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Figure 4.21 Chromagram calculated for a single harmonic instrument track (guitars) and the whole mix of

metal music
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Figure 4.22 Chromagram calculated for a single harmonic instrument track (piano) and the whole mix of
pop music

While the harmonic content is still possible to extract for the whole mix, rhythmic
characteristics are much more difficult. Specific values related to temporal information are
hard to retrieve from the whole mix. Despite these difficulties, using dedicated tools it is
possible to achieve some information, but unfortunately not for all music arrangements and

characteristics. An example of the rhythmic content representation is presented in Fig. 4.23,
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where rhythm histogram is calculated for separate tracks from drums and the whole mix of
pop music. It is interesting that the description of the harmonic content is possible, while
rhythmic it is too difficult. In this case it might be related to rhythmic parts played by guitar

and piano, which overlap with drums onsets.

drulms (pop)

s number of hits

16— -

ry- —

.. number of hits mix (pop) ]

16— —

time

Figure 4.23 Chromagram calculated for a single rhythmic track (drums) and the whole mix of pop music
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All examples presented above show how tracks of single instruments or sections enable
deeper analysis of music features and are easier to be describe by signal representations
and parameters. An approach based on the analysis of single tracks might be very
reasonable and efficient for mood recognition because it enables more thorough analysis of
particular music elements. Sound separation is an area of studies of many works related to
various tasks within MIR. Ule et al. [316] created a system for drum beat separation based
on Independent Component Analysis. Saragdis and Brown [292] applied Non-Negative
Matrix Factorization (NMF) to create a system for transcription of polyphonic music that
showed remarkable results on piano music. Helen and Virtanen [105] combined NMF with
feature extraction and classification process and achieved promising results in drum beat
separation for popular music. Similar techniques were used by Paulus and Virtanen [239]
and Moreau and Felxer [212] for drum separation.

Separation of music in multi-pitch material is especially difficult and challenging
[101,225]. Separation algorithms usually operate on a spectral analysis basis in order to
determine the fundamental tones of individual voices and their harmonics. However, there
are a number of technical difficulties to overcome, which are the result of the compromise
between time and frequency resolution of the analyzed signal.

Applying drum-beat separation for tempo and key detection shows that the separation
into single signals parts (only drums or only harmonic parts) does not necessarily improve
the results in comparison with the original signal [282]. Due to that fact, it was considered
to use different mixtures of at least two signal representation types (original, drum and/or
harmonic). The paper by Rosner et al. [159] confirms the assumptions that such a mixture
of signals is a promising approach to music classification.

The main principle of the drum separation algorithm is employing a semi-supervised
approach based on non-negative matrix factorization (NMF). The general idea of NMF is to
separate input audio track into several isolated audio tracks, representing specified
components such as rhythmic or melodic part. NMF is an efficient method in the blind
separation of drums and melodic parts of music recordings.

It is worth noting that there are challenges such as musical articulation, e.g. tremolo or
glissando and/or transients with non-harmonic spectra. Thus, separation of music sources
is never perfect [26,136,102,187,294]. Another type of problem involves the overlapping

harmonics of individual sounds. This phenomenon makes it difficult to obtain not only the
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original timbre of the separate sound sources but even to perceive main characteristics of
signals. The solution to these problems is to have all sound sources recorded separately and
then mixed, but this requires additional resources, which in most of cases are not available.
Even though source separation is subject of recent studies [159,292], the tools dedicated to
source separation in music are still under development and are very difficult to use without
knowing instrumentation of the piece.

Source separation can be enhanced by choosing the frequency band where particular
instrument has the fundamental harmonic or majority of the energy. The success of this
approach depends strongly not only on the instrumentation but also on spectral properties
of sound, which is characteristic for a given music genre or esthetics. For example in metal
music bass plays in parallel with guitars, which also have a lot of content in lower
frequencies to achieve intense impact. Therefore single bass line is not easy to extract from

this kind of arrangement.

4.6.2 Proposed Time-Based Parameters

The idea behind the proposed time-based parameters (TBP) was to describe rhythmic
content in separate sub-bands. As a sound engineer, the author had an opportunity to
consider the role of particular elements of rhythmic section: i.e. kick drum, snare drum and
cymbals. Instruments listed above (kick drum, snare drum and cymbals) often exist in
specific ranges, respectively in low frequencies (70-200 Hz), mid-range (200-2500 Hz) and
high frequencies (above 2500 kHz). At the same time these bands are too capacious to
enable an analysis of details. Therefore parameters were calculated in 25 narrow sub-bands
and their center frequencies are listed in Tab. 4.10. TBF are named accordingly to the
number of the band; that is from TBF1 to TBF25.

The calculation of parameters started with spectrograms with desired frequency and
time resolution related to most dense rhythmic arrangements in Western music: i.e. 0.2 sec,
to be able to achieve final resolution of 0.4 sec. Then logarithm of the achieved matrix and
STFT were calculated. As a result, a matrix where rows represent band and columns
represent time steps was achieved. For each band the maximum peak is found and related
time value is returned. The final outcome for one audio track is presented in a form of 25
values of maximum energy and corresponding time value. The schema of the calculation

process is presented in Fig. 4.24.
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Table 4.10 Frequency bands used in analysis
Band No. Center Frequency [Hz]

1 14

2 28

3 42

4 56

5 74

6 96

7 124
8 159
9 204
10 260
11 330
12 419
13 531
14 672
15 850
16 1075
17 1357
18 1713
19 2161
20 2726
21 3438
22 4335
23 5465
24 6890
25 8684

Parameters were tested and designed for prepared tracks consisting of separate hits of
kick drum, snare drum and cymbals with a different spectral content. The analysis shows
that the rhythmic content is visible in different bands for different timbres of a particular
instrument. For example, rhythm characteristics of one kick drum were visible in band No.
5, while for another kick they clearly appeared in band 8. The same situation occurred for
all instruments depending on how instrument sounded, how was recorded and mixed.
Therefore the idea of three wider sub-bands was introduced and Modified Time-Based
Features (MTBF) were created. In each range the maximum value from all bands was
selected and it was returned as a final result along with the corresponding time value. This

concept is presented in schema in Fig. 4.25. Various ranges of these bands were tested by
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the author and the best results were achieved for the setup presented in Tab. 4.11. Modified
Time-Based Features used in further analyses are named MTBF1, MTBF2 and MTBF3

according to the frequency ranges specified in Tab. 4.11.

Waveform

|

Spectrogram
25 bands
0.2 sec step (128 steps)

matrix
25(bands)x128(steps)

matrix
25(bands)x64(time steps)

25(bands)x2(max value & time postition)

Time-Based Features

Figure 4.24 Calculation process of the Time-Based Features (TBF)

As mentioned before, the proposed parameters were designed and tested using separate
tracks, and their performance was satisfying in this configuration. Implementation on the
whole mixes returned much more errors but still parameters can describe rhythmic content
of different ranges. Thus parameters were included in the feature vector used as an input to

artificial intelligence methods (Section 7.5).
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Table 4.11 Frequency ranges used for MTBF analysis
Frequency range Bands
I 5-10
I1 11-19
I11 20-24
Waveform
Spectrogram
25 bands

0.2 sec step (128 steps)

25(bands)x128(steps)

I

. 1
matrix I
1

1

I

25(bands)x64(time steps)

1
1
matrix |
1
1
1

BAND I BAND II BAND III
\ 4 \ 4 \ 4
max value and max value and max value and
time position time position time position

Modified Time-Based Features

Figure 4.25 Calculation process of the proposed Modified Time-Based features (M TBF)

4.6.3 MIR Toolbox- Based Additional Parameters Based on Music Characteristics

The idea of parameters describing particular music characteristics was introduced in
Section 4.1. Also an analysis of music features of single instrument tracks and mixes for
different music genres was performed (Section. 4.6.1). Following the idea of finding
descriptors of music signal that contain information related to rhythm, tempo, meter, key,
harmony, dynamics articulation, parameters proposed in MIR Toolbox (Section 4.4.1) were

analyzed for this purpose. Selection of the parameters was based on the findings of Hevner
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[108], who studied relationship between music characteristics and emotions in music. Her
studies are described in details in Section 4.1.1 and summarized in Tab. 4.2. A list of
features chosen from MIR Toolbox is presented in Tab. 4.12. Detailed information about
Matlab scripts and settings can be found in study by Lartillot [165]. All selected parameters
were calculated for the set of 150 songs used in the key experiment (Chapter 7). Also the
correlation analysis was performed to extract significant descriptors in terms of their
relationship with mood of music. Parameters correlated with subjective mood evaluation
were included in the final vector used as an input to artificial intelligence methods (Section

7.4).

Table 4.12 List of additional parameters based on music features
No. Parameter Description
. Estimates the tempo by detecting periodicities from the onset detection
1 mirtempo

curve.

Estimates the average frequency of events, i.e., the number of note

2 mireventdensity onsets per second

Estimates the rhythmic clarity, indicating the strength of the beats

3 mirpulseclarity [165] estimated by the mirtempo function.

4 mirattacktime Temporal duration of attack time.

5 mirattackslope Description of the attack phase is related to its average slope.

Estimation of the amplitude difference between the beginning and the

6 mirattackleap end of the attack phase.
7 mirrolloff The frequency such thata c.ertam fraction (here 0.85) of the total energy
is contained below that frequency.
8 mirbrightness The amount of energy above cut-off frequency.
. An estimation of the sensory dissonance (roughness), depending on the
9 mirroughness . . . .
frequency ratio of each pair of sinusoids.
. , The irregularity of a spectrum is the degree of variation of the successive
10 mirregularity
peaks of the spectrum.
11 mirkeystrength Strength of music key based on a cross-correlation of the chromagram.
. . The amount of partials that are not multiples of the fundamental
13 mirinharmonicity
frequency.
14 mirchromagram Shows the distribution of energy along the pitches or pitch classes.

Characteristics such as centroid, averaged pitch, etc. are calculated.
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During the course of presented study, several statistical and computational methods
were employed. Moreover, due to interdisciplinary character of the research on emotions in
music, traditional statistical methods are accompanied by psychology-based approaches.
This Chapter is organized as follows: analysis methods are presented along with references
to practical implementation of particular method within the music technology. Common
issues (i.e. normalization and correlation) are briefly introduced, while more sophisticated
methods such as Multidimensional Scaling, Artificial Neural Networks, Principal Component

Analysis or Self-Organizing Maps, are discussed in more detail.

5.1 NORMALIZATION

Usually, data values within a dataset may differ widely. That is why normalization is
often applied. In essence, normalization is performed to have the same range of values. This
process is especially important when data processing by computational methods that
involve various parameters. Normalization aligns the importance of each parameter within
the data set by assigning the same range. Normalization brings all of the variables into
proportion with one another. This process is recommended and sometimes required for
methods such as Artificial Neural Networks, Principal Components Analysis, Fuzzy Logic,
various classification methods and many others [303,320]. Features normalization is also
known as data scaling and is generally performed during the data pre-processing step.

Several types of the normalization exist. They differ in function and structure depending
on the normalization range as well as the center point and are chosen accordingly to the

nature of the data [82].

5.1.1 Normalization I

The most basic and commonly used normalization method is linear unity-based

normalization that transform data values into range [0,1]:

= X = xmax
norml

xmax - xmin ( 5 1]
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where Xnorm! is the value after normalization I, min is the minimum value and max is the
maximum value of a particular feature. It rescales the data from original values into a
desired range. The range can be set arbitrarily to another range, but in most of cases it

covers unity range.

5.1.2 Normalization II

In a two-steps normalization, data after Normalization [ are rescaled, so the average

value becomes 0.5 (linear normalization in two ranges):

X
norml
0.5-Twmi_ y £[0,0.5)
avglmrml

+1-2avg

Xoormit =
0 5 xnorm]

norml
: Ky EOS51]
— AV, ormi

(5.2)
where Xnormir is the value after normalization II, and avgnorm: is the average value of a

particular parameter after normalization I.

5.1.3 Normalization with Centralized Data

For the cases, where data are distributed symmetrically with the central point in O,
normalization into [-1,1] range is recommended. This procedure is given by the following

Equation:

‘xnorm[—l,l] = X
2 (5.3)

5.1.4 Standardization (Z-score Normalization)

The special case of normalization is standardization, where mean and standard
deviation for each feature are used for the normalization process. Z-Score is calculated to
standardize the data, and it reflects how many standard deviations data fall from the mean
(i.e. the variation of across the standard normal distribution. It is computed by substracting
from each single point the mean value and dividing the result by the standard deviaiton of
the feature values.

ﬂ
O (5.4)

'xnurmo -

where 0y is a standard deviation and px is a mean value of particular feature.
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Standardization is suitable for the data where all of the features are normally

distributed.

5.1.5 Normalization of the SYNAT Database

SYNAT database consists of various types of parameters (described in detail in Section
4.5), not all of the parameters are from the same domain. Therefore the whole set of the
parameters was normalized to range [0,1]. Each of the 173 parameters was normalized
separately. Normalization I and II were tested in the carried out research work (Section
6.1.2). Only these two types of normalization were applied because there were the most
appropriate for the nature of the data gathered.

The important point is that parameters were normalized according to maximum and
minimum parameter values, which occurred in the SYNAT database. Therefore, it is possible
that parameters of a song not included in this database may exceed range [0,1]. The SYNAT
database contains more than 50,000 of music pieces from different time and genres, thus
this kind of normalization seems to be reasonable.

Results of the correlation analysis (presented in Chapter 6, Tab. 6.6 and 6.7) showed
that the type of normalization does not have significant influence on the results. Therefore
in the next study stages only Normalization [ was used.

Once the normalization process was completed, only normalized parameters were used
at all stages of the research. New parameters added to the vector either were defined not to
exceed the desired range, or were normalized based on the values achieved for the whole

SYNAT database. This will be presented in Chapter 6.

5.2 CORRELATION ANALYSIS

Correlation coefficient p is used to determine whether two qualitative variables are
dependent [84]. It is defined as a covariance of two variables X and Y divided by the product

of their standard deviations [320]:

_cov(X,Y)
xy - _
OxOy (5.5)

where cov is covariance and o is standard deviation.
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Covariance is an expected value € of the product of the deviations of two random
variables X and Y, from their respective means px and py and is given by the following

formula [84]:
cov(X,Y) =e(x—uy)(y-u,) (5.6)

Correlation is commonly employed to determine dependent factors (i.e. subjective
evaluation results and parameters) and is widely used in the area of music technology

[110,156,191].

5.3 T-STUDENT TEST

Student’s t-distribution is commonly used to assess statistical significance. In the case of
the presented study, t-distribution shows whether correlation-based results are
significantly different. It is defined as a significance test for assessing hypotheses about
population means [84]. t-Student for correlation pxy between parameters X and Y, with n -2

degree of freedom, can be calculated using Equation:

P VN P

t-Student is dedicated to small trials, arbitrarily employed when the number of samples

n is <30 [320] and has been successfully used numerous times as a statistical tool for

analysis of audio parameters [110,156,175,232].

5.4 MULTIDIMENSIONAL SCALING ANALYSIS

Multidimensional Scaling (MDS) was firstly developed in the area of psychology. The key
problem encountered in this field is the recognition of “underlying dimensions” that would
explain similarities or dissimilarities observed by subjects. In the study by Borg et al. [38]
authors stated that MDS application in psychology is often based on direct similarity
judgments by the subjects. Noteworthy is that similarity may concern diverse subjects. MDS
applied to psychological data enables discovering dimensions that would in a meaningful
way explain rules of perception. This method requires data, which contain direct similarity

judgments by respondents. Reconstruction of distances between objects by placing objects
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in the multidimensional configuration is essential for the MDS concept. The Euclidean

distance of points i and j in m-dimensional space X is calculated from:

m

dij = E(x,a —xja)2
a-l (5.8)

MDS maps the proximities p; (similarities obtained from subjects) into corresponding

distances djj in MDS space X:

f(py)=d;(X) (5.9)

Since (depending on the data) the exact representation does not always exist, there is a

need to define a value, which reflects error of the map:

D @)= d, ()
240 (5.10)

While the rules presented above apply to the main concept of Multidimensional Scaling,

Stress—1=0, =

several different types of MDS models are defined. Only within the metric approach,
transformations such as absolute, ratio, interval and others are distinguished. The basic
idea of a few of them is presented in Fig. 5.1 [38]. They represent various properties of the

data related to algebraic operations (addition, subtraction, multiplication, division).

Pij

([ij =b- pij

Pij
N

dij =a+ b- Pij

dij )

Pij
A

d;j = a+b-log(pij)

ratio interval logarithmic
. - .
/ - e
d; ’ d, - d; /
d;s . i - i )
ij - s gl ij ,
Pij Pij Dij
d;; = a+b-exp(pij)
exponential ordinal spline
Figure 5.1 Transformation plot of several transformations. [38]
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In contrast, nonmetric models represent only the ordinal properties of the data. Ordinal

models typically require the following condition:

if p; <p,, then d;=<d, (5.11)

Metric models also lead to distances ordered in the same way as the corresponding
proximities. But they are all special cases of non-metric model, where no particular function
fis required for the monotone relation. Chosen MDS model should correspond to the nature
of analyzed problem and especially to the methodology of the subjective.

Multidimensional Scaling was used in various applications related to sound and music.
Trochidis et al. [310] applied MDS to analyze similarity within the wide area of Western
music. They determined two main dimensions and created graphical representation of 27
musical excerpts on 2D plane. Wagenaars used multidimensional scaling test to determine
optimum values of compression in music [325]. Matecki found three dimensions that
determine perception of similarity between acoustics of different rooms. MDS was also
applied to emotional responses to music [32]. Bigand et. al. [32] stated that 3-dimensional
space is needed to provide a good representation of emotions, with arousal and emotional
valence as the primary dimensions. There are quite a few differences between Bigand's
research and the presented Ph.D. work, therefore results may be different. While the aim of
presented work is to analyze the audio content to determine mood included in audio signal,
Bigand asked listeners specifically " to focus their attention on their private emotional
experience". Additional differences occurred during data collection. Bigand [32] asked
participants to look for excerpts that induced similar emotional experience and to drag the
corresponding icons in order to group these excerpts. The author of the presented thesis
collected direct similarity data and introduced application of MDS to Music Mood
Recognition [243]. Differences in the collection data approach might cause significant

inconsistency. The MDS experiment reported in [243] is described in details in Section 6.4.

5.5 ARTIFICIAL NEURAL NETWORKS (ANN)

Artificial Neural Networks are a family of statistical learning models inspired by
biological neural networks and are used to estimate or approximate functions that can
depend on a large number of inputs and are generally unknown. Neural networks are very

important tool providing a wide range of solutions, especially for tasks such as classification
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and cluster analysis of data [12,145,304,353]. They are commonly used especially within
the area of speech and image recognition or optical character recognition, but became also
popular in musical sounds classification and mapping [44,154,211,214,227].

ANN are very useful tools for tasks with high complexity and low knowledge about the
rules [303, Rauben]. Perception is one of the common problems with unknown principles or
with low knowledge of principles. ANN can only solve issues where the declarative memory
is involved. Based on the previous experiences, they can help predicting the reaction or the
repercussion of the action with unknown rules. They are commonly used in various areas of
industry and research such as: identification of military objects based on their noise, image
recognition, sound separation and many others [61,150,304].

Artificial Neural Networks can be divided into three main subgroups:

- Feedforward Networks

- Recurrent Networks

- Self-Organizing Maps (SOM).

In the presented dissertation thesis, only feedforward and SOM networks were
implemented; therefore Recurrent Networks are adduced roughly to maintain the

methodology and structure of the subject.

5.5.1 Feedforward networks

Feedforward network are structures where the information moves in only one direction,
forward, from the input nodes, where the input data (tasks) are delivered, through the
hidden nodes (if any) and to the output nodes, where the solution in a form of output data is
received. These networks are the most commonly used and the most helpful of the artificial
intelligence tools. The structure and operation of feedforward networks is based on a set of
artificial neurons. A single neuron consists of inputs, processing element and a single output

(Fig. 5.2).
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Figure 5.2 Schema of a single neuron.

The simplest case is the linear neuron where, the output is calculated as following:

n
y= 2 WiX;
il

where xi(i=1,2,...,n) € [-1,1] is vector of inputs, wi(i=1,2,...,,n) are synaptic weights and y

(5.12)

€[-1,1] is value on the output. All weighted signals wix; are summed in the summing
component and directed to the output. In this case transfer function is linear and is included
in weights values.

More sophisticated form of a single neuron is perceptron, where non-linear transition
function ¢, also called activation function, is involved. The output of the perceptron is given

by the following formula:

y= QD(E W,X;) (5.13)
i=1

The most commonly used transfer functions are sigmoid, its variations and occasionally
other functions i.e. unipolar, bipolar, hyperbolic tangent, Gaussian etc. [150,257], with the
assumption that the activation function has to be differentiable. Examples of different

activation functions are presented in Fig. 5.3.
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Figure 5.3 Examples of transfer functions used in neural networks: a) unipolar binary, b) bipolar binary, c)
bipolar threshold linear, d) hyperbolic tangent, e) sigmoid with different values of a, f) Gaussian.

The sigmoidal transfer function is described by the following formula:

1
I+e™™ (5.14)

fx)=

where «a is slope coefficient. Sigmoidal functions with different a are presented in Fig.
5.3e.

Neurons with linear or non-linear activation function are connected into networks.
Although it is possible to create a network with very complex structure, most of
implemented networks have layer arrangement. Example of the 2-layer neural network
(with one hidden layer) is shown in Fig. 5.4. The input layer includes only weight values and
distributes the weighted input values into the first layer of neurons, where the signals are
summed and re-calculated trough the activation function ¢. Then signals are weighted with
another set of weights and distributed into output layer, where they are summed, re-

calculated and directed to outputs.
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Figure 5.4 Schema of feedforward neural network with one hidden layer.

Neural networks can form two different types of models: regression and classification.
As an output of a regression model, solution in a form of an objective numerical value is
expected. Tasks defined as classification problems, seem to be more successfully solved
with ANN [303]. Therefore even problems with expected numerical value should be rather
defined as a set of sub-ranges, with one neuron assigned to each. At this point another
decision has to be done, whether one network with multiple outputs should be defined or
multiple networks with a single output each. Neuron with the highest value is interpreted
as a winning one and range assigned to this unit is treated as a solution of particular
question. There is no unequivocal answer to the structure issue and the choice has to be
made accordingly to the characteristics of analyzed phenomenon [304].

The non-winning output values for the classification problem can obtain values different
than 0, what is one of the most interesting and useful characteristics of neural networks.
This fact can be a good starting point for joint action with fuzzy logic.

In the classification tasks ANN can find the features that allow the solution, even though
the sense and meaning of a particular characteristic is unknown or concealed in the hidden
layer.

The network structure impact on the ability to solve problems is not crucial.
Nevertheless unconsidered and random choices can cause less efficient and more difficult
learning process. [304]. However, the size of the network should carefully be considered.
Too big network will not be able to generalize, while too small might not have enough

"intellectual potential” to solve particular problem.
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In most of cases, networks are trained under supervision. The learning process can
strongly depends on the default weights, because their primary values can (but not
necessary have to) cause failure.

To enable learning model has to be supplemented with two additional elements:
mechanism of changing weights and error detector. Neuron in this form is called ADAptive
LiNear Element (ADALINE). In supervised learning, algorithm is given a set of example pairs

(%, ¥), and the aim is to find a function f:

fx)=y (5.15)

that matches the examples. The cost function is related to the mismatch between
mapping and the data and it contains prior knowledge about the problem domain.

A commonly used cost function is the mean-squared error, which tries to minimize the
average squared error between the network's output f(x) and the target value y for all
elements of training set.

There are several methods of training feedforward networks. The most significant
methods are listed in Tab 5.1 [85,107,145,150,254,303,353]. Further details on each of
them can be found in adequate literature sources. Recognizing the errors in the hidden

layer is the crucial part of the method used in the learning process.

Table 5.1 Selected methods of supervised training feedforward networks with corresponding references

Selected Methods of Supervised Training Feedforward
Networks

Backpropagation [303]

Conjugate gradient method [303]
Heuristic Algorithms [150]
Quickprop Algorithm [85]

Rprop Algorithm [261]
Levenberg-Marquardt Method [303]

Regardless of numerous different methods of learning, one has to choose the
appropriate learning rate a as well as the value of momentum 7. Both of these factors have
large impact on the training process and their properly adjusted value can determine either
successful or unsuccessful result. To avoid enormous amount of input data, pre-processing
and adequate selection of the signals should occur.

One-layer networks can also take a part in unsupervised training. Most of methods

dedicated to this application are based on the competition and using Hebb rule
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[150,304,353]. The network dedicated to unsupervised learning has to contain at least
three times more neurons in output layer than expected answers [304]. The training set has
to include groups of similar objects that can be classified. Unsupervised training occurs only
if behind the training set stays the regularity, on which the network may base. The
competition makes the learning process more effective, the best results are achieved for
medium-size networks [304].

For classification tasks, typically the data set is split into three parts: training set,
validation set and testing set [196,303]. Elements from training part are presented to the
network during training, and the network is adjusted according to its error. Validation set is
used to measure network generalization, and to finish training when generalization stops
improving. Finally testing set has no effect on training but provides an independent
measure of network performance during and after training. The division process is random
and commonly shares are distributed as following: training (70%), validation (15%) and

testing (15%). These values can vary depending on the data set.

Feedforward networks applied to music technology

There are numerous works related to research that involves ANN into musical sound
classification (i.e. [52,79,129,157] and many others). Kostek [149] showed results of the
experiment where groups of instruments (strings, woodwinds and brass) and 10 single
instruments were classified and high effectiveness was achieved. The effectiveness was
97.6% for single instruments classification and 96% for groups of instruments (both for
two-stage neural network algorithm). Different configuration of descriptors and
configurations of neural networks were tested by Kostek and her team [148,302] and
accuracy was always clearly above 90%.

Kaminskyj [129] developed systems based on Artificial Neural Networks (ANN) as well
as K-Nearest Neighbor Classifier and compared them in terms of efficiency. In the
classification task that involved 4 instruments (guitar, piano, marimba and accordion within
one octave), KNN and ANN achieved very good results (max. 98.1% for KNN and max.
97.7% for ANN). The surprising conclusion of his work was that only temporal, but not
frequency, data were utilized. Kaminskyj broadened his work and achieved accuracy of
93% in instrument recognition, 97% in instrument family recognition, and 100% for

sustain/impulsive instruments within a group of 19 instruments and 3 octaves (C3-C6).
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Cemgil and Guirgen [52] used STFT to classification of 40 sounds within one octave (C3-
C4) from 10 instrument groups based on ANN, recurrent networks and SOM. The best
results were achieved for ANN and recurrent network with efficiency rate above 97%.

Eronen [79] performed kNN classification of 30 orchestral instruments (within the full
pitch ranges) from the string, brass and woodwind families, played with different
techniques. The correct instrument family was recognized with 94% accuracy and
individual instruments in 80% of cases. His vector of parameters consisted mostly of
cepstral coefficients and temporal features. He continued his work with larger set of
features and published in the research studies by Eronen [79].

Zwan [354] conducted experiments aimed for automated classification of singing voices.
Neural network was trained to determine voice quality as well as voice type (bass, baritone,
tenor, alto, mezzo-soprano, and soprano). Zwan achieved approximate accuracy of 90%.

Another type of neural network application is analysis of sound spaciousness. Palomaki
[231] trained multilayer perceptron with localization cues computed using a binaural
model.

Artificial Neural Networks can also support recognition of musical structures such as
phrase, rhythm and harmony, as well as prediction of musical elements (melody, rhythm
and harmony) [301]. In the area of psychoacoustics ANN was used to determine the

auditory noise-masking threshold created by input data [214].

5.5.2 Recurrent Networks

Feedback from the outputs at the several stages of the processing is a characteristic
attribute of recurrent networks. Connections create numerous and complex loops, where
signal is floating until it achieves (if possible) the steady state [304]. In consequence, the
output signal depends not only on current outputs but also the whole history of stimulation.
Example of recurrent network is presented in Fig. 5.5.

Various topologies are widely described in literature dedicated to neural networks
[61,77,257,304]. To name few interesting structures: Hopfield network (with peer to peer
connections) [304], Elman's structure [78] (with signals from first hidden layer are delayed
and fed into input), Jordan's network (context units are fed from the output layer) [61] and
many others. Recurrent networks are successful with time sequences processing and are

employed for time-consuming and complex optimization processes [150,257].
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Figure 5.5 Example of feedback network.

Recurrent networks applied to music technology

Recurrent networks were employed to create models of string instruments [176]. They
were also used to support struck strings instrument synthesis. [54] Chang and Su's work
attempts to automatically extract the synthesis parameters by using a neural-network
training algorithm without the knowledge of physical properties of the instruments. Mion
[204] involved Bayesian networks into automatic recognition of expressive content of piano
improvisations. Cemgin and Giirgen [52] successfully used recurrent networks (Time Delay
Neural Network) for classification of instrument sound with accuracy of 97%.

Another type of problems where recurrent network that was involved is automatic

identification of a sound source position [63,109,152].

5.5.3 Self-Organizing Maps (SOM)

The SOM (Self-Organizing Map) is an unsupervised neural network providing a mapping
from a high-dimensional space to few-dimensional (in most of cases two-dimensional KxL)
representation [257,317]. The topological relations between objects are preserved as
detailed as possible. This self-organized process is called Voronoi mosaic and neurons
specialize in detecting and signalization of different groups of input signals. Presented
objects are grouped accordingly to the similarity. The SOM consists of 2-dimensional grid of

neurons, with a weight vector related to each unit (Fig. 5.6). SOM is forced by vector x3, Xz,...,
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and activation yj, yz,...,, Yym for each neuron unit for the presented object is calculated. This

type of networks was introduced by Kohonen [144].

Wi1 VA
—
N Wiz
im
Wa1 Y2
X2 =—>
[
®
[ [
Xn >
Wnm ym
Figure 5.6 Schema of the SOM network.

The Euclidean distance d between weight vector of the unit and input is commonly used
as the activation function. The weight vector of the unit that achieved the highest activation
is selected as a “winner” and is recalculated to resemble as close as possible the presented
input vector. Moreover, the weight vectors of units in the neighborhood of the winner are
modified accordingly, but not as strong as the “winner” [196,254]. The winning neuron a is
selected from the KxL network consisting of i elements, according to the following relation:

d(x,w'“)= min d(x,w"™)
Ism<KxL (5.16)

where d is a measure of distance between n-dimensional vector x and the weights vector
w of the output vector in KxL space, w™ is a weight corresponding to neuron with index m.
This rule is called Winner Takes All (WTA) and refers to hard competition, where only unit
with the highest activation is trained.

SOM is forced by n-dimensional signal x0J, where j is iteration in the learning process
(index of the element in the learning sequence). The winning unit a, where a indicates the
index of the neuron, is updated according to the rule:

w,.(“)(j”) — wl.(“)(” + n(j) [(x,-(j) _ wl.(")(j))]
(5.17)
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i indicates the index of the element (of the n-dimensional input vector), n0J is speed of
learning in j-th step and belongs to [0,1], w(@(0) is weight of neuron a in j-th step of the
learning.

Winner Takes Most (WTM) concept implies solution that the weight vectors of units
which number m belong to the neighborhood N, of the winner a are modified accordingly,
but not as strong as the “winner” [196,254,255, 303].

v wj(m)(jﬂ) _ wl.(’”)”) +nVRxY - wl.(’")(”]
mEN, (5.18)

where N, is a set of units adjacent of the winning unit a, and h is the neighborhood
function of neuron a. Neighborhood function can vary from simple to complex functions.
Therefore N can include i.e. only connected units or the influence on the weights of the
neurons can shaped accordingly to Gaussian function (Fig. 5.7).

Both speed of learning n and neighborhood function h are changing during learning
process and monotonically decrease to avoid compensation at the final stage of the learning
process.

In brief, SOM training may be described according to two main rules:

- Competitive learning: the prototype vector most similar to a data vector is modified so
that it is even more similar to it. This way the map learns the position of the data cloud.

- Cooperative learning: not only the most similar prototype vector, but also its neighbors

A
neighborhood function

>
>

winning neuron number of neuron

on the map are moved towards the data vector.

Figure 5.7 Example of Gaussian neighborhood function h
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The learning process can vary, depending on the architecture of the network, default
weight values and a training set. There are numerous conditions that have to be completed
so the network can function properly. The size of the network should be appropriate for the
nature of the problem. Too small network might not represent well the details of the
problem, while too big one, might not be able to generalize. The learning set should contain
objects from the whole range of the features. Absence of objects in particular are causes
that this region is not covered by neurons, therefore in case of occurrence, network will not
be able to assign the correct unit. Also default weights settings and the topology of the
output layer can affect the course of the training process. Weight values are rather random
and only their range should be adjusted, so the process is faster and stable. The topology of
the output layer and can be arranged on i.e. a rectangular, hexagonal or random lattice (Fig.
5.8). That determines the number of connections of a single neuron. Useful extensions
include using toroid grids where opposite edges are connected.

Interpretation of the SOM results cannot be assumed a priori. Meaning of the particular
areas of the map can be specified after the analysis of individual cases.

While supervised neural networks need the external judgment, SOMs are strongly
related to human perception. SOM are dedicated to complicated tasks, where rules are not
much known or unknown i.e. cluster analysis, creation of models and mapping features.
They are successfully used in the areas such as medicine, economy and image recognition.

This approach seems to be also natural for music cognition. Thus Self-Organizing Maps
are used to organize library systems as well as music libraries i.e [232,233,254], also taking

into account the music genre [255].

a) b)
84 ks . : %‘3
Figure 5.8 Examples of Self-organizing Map topologies: a) rectangular, b) hexagonal, c) random.

Red circles represent neurons and blue lines represent connections between units

There are several works (i.e. [2,52,350] and others) where SOMs are used for musical

instrument sound classification. Zhang [350] achieved effectiveness of 80%, within a
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polyphonic music with a dominant instrument. Using discrete STFT, Cemgin and Giirgen
[52] combined SOM with RBF network, what enabled them to achieve classification
accuracy of 91%, but also gave additional information how sounds are organized according
to timbre.

The aim of Palomaki's work [231] was to simulate human perception of spatial sound.
He applied self-organizing maps to the evaluation of spatial discrimination of real and
virtual sound sources. SOM was trained with localization cues computed using a binaural
model. Tuzman [313] created system for reduction of impulsive noises based on SOM.

Barbedo [19] proposed a Cognitive Model for Objective Assessment of Audio Quality. His
system maps previously extracted parameters into an estimate of the subjective quality.

Very common application of SOMs in Music Information Retrieval is to create a 2-
dimensional representation either of music set, music database or particular samples.
Feiten [87] introduced classification of musical instrument sounds based on STFT, involving
hybrid self-organizing maps (SOM-RBF) as well as another types of neural networks (MLP
and TDNN). Rauber et al. [254] from Vienna University of Technology proposed a SOM-
enhanced JukeBox (SOMe]B) system [89] to organize their music database analogically to
the text library. The classification is mostly content-based and genre-based. The idea
developed and system that automatically organizes any music collection according to music
similarity was presented by their inventors [255]. Introduced system consisted of 2-
dimensional SOM representation that could be generated for any music set. More complex
variation involved GHSOM (Growing Hierarchical Self-Organizing Maps) with 3-layer
architecture [256]. GHSOM was fed with 1200 psychoacoustic loudness and rhythm
descriptors. Simplified concept is presented in Fig. 5.9 and examples of maps are shown in
Figs. 5.10 and 5.11. It is worth noting that the organization does not follow clean

“conceptual” genre styles but rather reflects the overall sound similarity.
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layer O

layer 1

layer 2

layer 3

GHSOM architecture used for music database representation [256]
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Figure 5.11 A GHSOM of 77 pieces of music [256]

Pampalk [233] introduced a method to visualize the clusters of a SOM based on
smoothed data histograms. His research involved into Islands of Music system, where he
used metaphor of geographic maps with islands resembling genres or styles of music. His
solution is dedicated to exploration of unknown music collections [232]. At the same time
Mayer [197] proposed mnemonic shaped SOMs, according to concept that conventional
rectangular maps are not satisfactory for memorizing and associations purposes.

Most of the mapping examples presented in this Section base on the general and genre-
based similarity between music pieces. Therefore a reasonable step was to apply and
perform SOM mapping founded on the features related to mood of music. Results of this

concept are presented in this thesis in Section 6.5.

5.6 PRINCIPAL COMPONENTS ANALYSIS

Principal Component Analysis method is defined as a procedure for analyzing
multivariate data, which transforms the original variables into new ones that are
uncorrelated to reduce the dimensionality of the data [84]. PCA is defined as an orthogonal
linear transformation that transforms the data to a new coordinate system [123]. The new

variables, called the principal components, are defined as linear functions of the original
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variables and are meant to be new, orthogonal dimensions [293]. Components cannot be
directly interpreted, although their loading by specific features can be estimated. If the first
few principal components account for a large percentage of the information included in
data, they can be used to simplify subsequent analyses. [123]. Principal Components
Analysis is included in various software such as XLStat [340], Simka-P [318], Matlab [195]
and is commonly used as a tool for data reduction, also in the area of music technology,
where large sets of data are frequently encountered.

Matecki [191] applied Principal Component Analysis to reduce features describing
acoustics of the sacral objects. Kaminsky [129], using PCA, reduced 80 elements vector to 3
components (covering 88.8% of total variation) for the purpose of KNN and ANN

classification.

5.7 FUZZY LOGIC

Fuzzy logic is a logic system that recognizes more than simple true and false values,
where the truth values of variables may be any real number between 0 and 1. Fuzzy logic is
an approach to computing based on "degrees of truth" rather than the usual "true or false"
(1 or 0). With fuzzy logic, propositions can be represented with degrees of truthfulness and
falsehood.

Fuzzy logic has proved to be particularly useful in expert system and other artificial
intelligence applications. It is also used in some spell checkers to suggest a list of probable
words to replace a misspelled one.

The concept of Fuzzy Logic (FL) was conceived by Lotfi Zadeh [347], a professor at the
University of California at Berkley, who was working on the problem of computer
understanding of natural language.

Fuzzy logic, the extension of fuzzy set theory, utilizes degrees of truth to determine the
nature of a system. In particular, while mathematical variables often are represented by
numerical values, fuzzy logic permits the use of linguistic variables [347,348]. These
variables may be associated with qualifying terms such as short, fast or poor.

Fuzzy logic seems closer to the way our brains work. We aggregate data and form a
number of partial truths, which we aggregate further into higher truths, which in turn,

when certain thresholds are exceeded, cause certain consequence results such as motor
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reaction. A similar kind of processing is used in artificial computer neural networks and
expert systems.

In fuzzy set theory, a set is described by a pair (4, u). Membership of k in the set (4, u) is
defined as p(x) an is called the membership grade of x. x is fully included in the set (4, p) if
n(x)=1, and fully excluded from set (4, ) if u(x)=0. Moreover x is a fuzzy member of the set
(A, ) if p(x) is within range (0,1), where fuzzy set allows a member to belong to a set to
some partial degree [18]. A comparison between classical and fuzzy sets is presented in Fig.
5.12. In this case traditional sets are marked with red dashed line and represent crisp
membership, where each sound pressure level (SPL) belongs to one set (either quiet,
medium or loud). On the other hand, fuzzy sets (bold black line) determine fuzzy
membership, where i.e. SPL of 50dB is QUIET to high extent and MEDIUM to low extent.
This reflects the rules of human's perception, where no crisp threshold is defined, where

SPL changes impression of loudness from quiet to medium, but the transition is blurred.

A

QUIET MEDIUM LOUD

Figure 5.12 A comparison between classic sets (black bold line) and fuzzy sets (red dashed line)

Fuzzy set contains elements, which have varying degrees of membership in the set, and
this is contrasted with the classical or crisp sets because members of a classical set cannot
be members unless their membership is full or complete in that set. A fuzzy set allows a
member to have a partial degree of membership and this partial degree membership can be
mapped into a function or a universe of membership values. Assume that we have a fuzzy

set 4, and if an element x is a member of this fuzzy set 4, this mapping can be denoted as:
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u,(x) €[0,1]

(A=(x,u,(x)IxEX) (5.19)

and can be read: a fuzzy subset A with an element x has a membership function of pa(x).

Fuzzy control rules can be considered as the knowledge of an expert in any related field
of application. The fuzzy rule is represented by a sequence of the form IF-THEN, leading to
algorithms describing what action or output should be taken in terms of the currently
observed information. The law to design or build a set of fuzzy rules is based on a human's
knowledge or experience, which is dependent on particular application. A fuzzy IF-THEN
rule associates a condition described using linguistic variables and fuzzy sets to an output
or a conclusion. The IF part is mainly used to capture knowledge by using the elastic
conditions, and the THEN part can be utilized to give the conclusion or output in linguistic
variable form. This [F-THEN rule is widely used by the fuzzy inference system to compute
the degree to which the input data matches the condition of a rule. Let's imagine that we
would like sound to be accompanied with appropriate light assigned. Here is an example of

the rule based on the fuzzy sets presented in Fig. 5.12.
IF loudness is LOW, THEN light should be DARK.

For other input SPLs, different rules should be developed. An example of fuzzy rules for
sound/lighting system are shown in Tab. 5.2. Rows and columns represent two inputs,

respectively: SPL and tempo of music.

Table 5.2 An example of fuzzy rules for sound/light system
SLOW TEMPO MEDIUM TEMPO FAST TEMPO
QUIET DARK MEDIUM MEDIUM
MEDIUM DARK MEDIUM BRIGHT
LOUD MEDIUM BRIGHT BRIGHT

All these relations can be presented in a form of rule IF-THEN:

IF loudness is QUIET, and tempo of music is SLOW, THEN the output (brightness of
the lighting system) should be DARK

Fuzzy logic was employed in several applications related to MIR [157]. Kostek [147]

implemented fuzzy control in acoustic organ controlling. The flow of air was determined by
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fuzzified inputs from MIDI controller. Rough-Fuzzy Based Classifiers were used for timbre
classification as well as pitch assignment [63].

Fuzzy logic was also applied to studies dedicated to emotions in music. Blewitt executed
exploration of psychologically grounded theories of emotion in music through fuzzy logic
systems [36]. He also constructed two models of emotions based on fuzzy logic along with
their computer implementation. Jun and collaborators [125] created music emotion
recognition system, where music fragments are analyzed and mapped into VA plane by a
fuzzy inference engine. They achieved promising result of average 12% of distance
between subjective and automatic VA assignment. Although it is important to note that
their system was based on the set of 50 songs evaluated by 5 listeners, which can suggest
that formulated rules are rather specific.

It is also interesting that relations between music features and emotions in music
described by Hevner are also based on the concept of rules, which can be considered as
fuzzy [108]. She summarized her findings related to the music features that create
emotional content of music by assigning to each of eight adjectives group as set of music

characteristics with weights (Tab. 4.2).

In this Chapter, various computational methods used in the course of presented study
were described. It is worth noting that most of them refer to human's cognition and
perception (i. e. MDS, ANN, fuzzy logic). Choice of methods is supported by numerous
observations related to performed experiments (Chapter 6) as well as nature of the study,
which is closely related o psychology and perception. Therefore it is hard to imagine using

tools that would not contain "human's" element.
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6 PRELIMINARY EXPERIMENTS AND ANALYSES

The role of the experiments in Music Emotion Recognition (MER) is very important.
Commonly MER is based on the subjective evaluation by an expert [208], group of listeners
or even whole social network [162,]. Listening tests enable determination of the listeners’
perception of mood of music and are crucial for the verification of automatic mood
description. The main approach in the area of Music Emotion Recognition leads to retrieve
information from the music signal (although there exist some systems based mostly on tags
or social networking). At the same time the main interest is focused on the listener's
opinion, since that is the value that is modeled and predicted. The final goal of many MER
researches is a system that would allow automatic mood annotation. Listening tests are the
only true possible way to verify the results. Most studies presented in Chapter 3 refer to
listening tests on different stages of the presented research.

Listening tests conducted in the course of the presented dissertation were divided into
two phases: preliminary and final. Experiments were designed for the following purposes
(Fig. 6.1):

- Creating a dictionary.

- Determining the model of mood.

- Collecting data for further analysis.

- Selecting features essential for mood recognition and finally verification and

discussion of the different classification algorithms.

In the literature related to the subject many different approaches exist
[25,167,188,234,213]. Therefore preliminary tests enabled the determination of the
reference point. The outcomes and conclusions of the critical review of the literature led to
the assumptions and foundations of the analysis and solutions proposed by the author of

this dissertation.
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Figure 6.1 Goals of subjective tests performed in the course of dissertation

The aim of preliminary tests was: to create an appropriate dictionary related to mood of
music, to determine and choose the model of mood, to collect data for further analysis and
to select features essential for mood recognition. Preliminary experiments along with
results and findings are presented in this chapter. Also some conclusions that are relevant
for further work are included. Checking the form and methodology of the final test, which is
described in chapter 7, was also one of the main roles of the preliminary tests.

This Section is organized as follows: the table with an overview of the experiment is
placed at the beginning of each sub-section. Subsequently procedures and details are

described in each sub-section.
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6.1 DICTIONARY CREATION

There are many works that proposed various approaches and solutions to build mood-
related dictionaries, but the vast majority of them are in English. It occurred that a simple
translation of terms from English into Polish and using them in research is insufficient.
Many such words are inadequate to describe music and the emotions that it creates.
Although these words may easily be understandable to the audience, in Polish, they are not
commonly used in the context of music. For example, in the translation of the Thayer’s
model (Valence/Arousal) there is a problem with the term "valence" (in Polish “walencja”).
Social networking sites, and those recommending music as well, are available in various
languages, although they are based on the same core resources. There is a question of
whether the mood associated by a listener with a particular music track can be described in
English or should it rather be expressed in a national language. Tab. 6.1 includes
information with regard to an experiment that aimed to create a dictionary appropriate for

music mood description in Polish.

Table 6.1 Dictionary creation experiment
Title Creating the dictionary
The experiment presented below was conducted to create a dictionary of

Obiectives Polish words and/or terms that could be used to adequately describe music

J mood and to achieve subjective assessment ratings on the energy-arousal

plane.
- 36 listeners; 30 music fragments
Protocol - part A - description of mood of music using Polish adjectives
- part B - evaluation of mood on Energy/Arousal plane

Rtfs?lr;:sr::ld - The set of words used for music mood description
Conclusions - 30 musical excerpts mapped onto Energy/Arousal plane

Detailed description of the experiment

The test consisted of two parts:

- Part A was aimed at verifying the appropriateness of mood descriptors in Polish (using
a set of Polish adjectives)

- Part B was the assessment of mood at the energy-arousal plane.

Before the test, the subjects listened to a sequence of 3 examples, different from any of
the test sets however, prepared in the same way. This was done to familiarize the listeners
with the time pattern of the tracks’ appearance and with the volume of audio examples at

which the test was carried out.
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Each part consisted of 30 examples. Parts A and B were separated by a 5-min. break. The
duration of the whole test (including breaks) was approximately 35 minutes long. The

stages of the test are presented in Fig. 6.2.

INITIAL
PRESENTATION

(3 examples)

4

Describing Music Mood
with Adjectives

- = > |

30 of 15 sec. examples

[>

somuiwr ¢¢

5 min.

Music Mood on
Energy/Arousal Plane

- % > 7|

30 of 30 sec. examples

[z
I

Figure 6.2 Subjective test arrangement related to music mood recognition and mood adjective searching
(creating a mood dictionary in Polish)

In both parts of the test, the same set of 30 songs was used. Tracks were chosen from
five genres: Alternative Rock, Classical, Jazz, Opera & Vocal, and Rock. Songs used in the
experiment came from the SYNAT music database [151,155]. The complete and detailed list
of the music tracks is listed in Table 6.2. For the purpose of the test, 15-sec. and 30-sec. long
excerpts were extracted. The 15-sec. fragments were also part of the corresponding 30-sec.
excerpts.

The order of the tracks was random and different for both parts. However it was
constant for each of the listeners. The subjects were informed about their tasks and given a

printed instruction with questionnaires for their answers.
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Table 6.2 List of the music tracks used in the experiment
No Gendre Artist Album Title
Alternative . ;
1 Rock Sigur Ros Takk... Hoppipolla
2 Classical Maria Callas-Georges Prétre- Maria Callas - La Divina Tosca (1987 D_1g1'ta1
Orchestre Remaster)- Vissi d'arte
. . 50 Greatest Hits Of .
3 Classical George Gershwin Classical Music Rhapsody in Blue
Alternative . .
4 Rock Super Furry Animals Phantom Power Hello Sunshine
5 Classical Luciano Pavarotti Nessun Dorma Turandot - Act 3 - Nessun
Dormal
6 Opera & Vocal Marlene Dietrich Falling In Love Again Lili Marlene
Jazz Herbie Hancock Future Shock Mega Mix
8 Rock Queen Stone Cold Classics Bohemian Rhapsody
9 Jazz George Benson The Best Of George On Broadway
Benson
10 Jazz Diana Krall When I Look In Your Eyes Why Should I Care
11 Rock U2 The Joshua Tree In God's Country
12 Opera & Vocal Lucia Popp-Philharmonia Mozart- Die Zauberflote Die Zauberflote.
Orchestra-Otto Klemperer
Chrome. Smoke & BBQ-
13 Rock ZZ Top The ZZ Top Box Concrete And Steel
14 Alt(;rélcz;(tlve Deftones Saturday Night Wrist Xerces (Album Version)
15 Opera & Vocal Nina Sky Move Ya Body Move Ya Body
16 Jazz The Dave Brubeck Quartet Dave Brull){eigf Greatest Take Five
Alternative .
17 Rock Kings Of Leon Come Around Sundown The End
18 Jazz Bela Fleck & The Flecktones Rocket Science Life In Eleven
. . Michael Flatley's Lord Of
19 Classical Ronan Hardiman The Dance Gypsy
20 Opera & Vocal Maroon 5 Songs About Jane She Will Be Loved
21 Rock Billy Joel The Essential Billy Joel The Downeaster \_Alexa\_
22 Opera & Vocal Jacques Brel Infiniment Ne Me Quitte Pas
23 Alternative Mark Ronson & The Record Collection Bane Bane Ban
Rock Business Intl [Explicit] g g g
24 Rock Within Temptation The Silent Force Destroyed
Viva La Vida - Prospekt's
25 Rock Coldplay March Edition Lovers In Japan
26 Classical Arthur Fiedler Stars And Stripes Stars and Stripes
27 Opera & Vocal Linda Eder Soundtrack Falling Slowly
28 Classical Pearl Jam Big Fish B MuS}c from the Man Of The Hour
Motion Picture
29 Jazz Paco De Lucia J Mclaughlm-P De Lucia-Al Manha De Carnaval
Di Meola
Alternative o1 e 1
30 Rock Imogen Heap Lifeline Lifeline
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Part A - mood description in Polish

The first part was the presentation of 30 fragments each 15 sec. long and separated by a
break of 10 seconds. After every five examples a break of 15 seconds was made. As
mentioned before, the listeners’ task was to describe the mood of the music with any
adjective (or adjectives) they considered most adequate. No predefined dictionary was
offered to them. Both fast reaction and first impression were of key importance. This point
was especially highlighted in the instruction.

Part B - mood on the energy/arousal plane

This part started with the presentation of 30 fragments each 30 sec. long and separated
by a break of 10 seconds. Every six examples (6 graphs per page were presented) were
separated by a 15 sec. period of silence. The listeners were asked to describe the mood of
the music by marking a point on the energy (negative/positive) and arousal (low/high)
plane.

Musical excerpts were presented in the MP3 stereo format, and the subjects were using
closed Beyerdynamic DT 150 headphones. The reproduction system consisted of a PC
computer and an audio interface ALESIS i02.

The panel of listeners consisted of 36 subjects: 27 men and 9 women. The age of the
subjects ranged from 20 to 26. Most of them were students of a sound and vision
engineering course, and had at least elementary experience in sound engineering. Only a
few were educated in music. As indicated in questionnaire forms filled in during the
preparatory phase, listening to so-called background music is
very common among students.

Results

In part A. the subjects were asked to describe the mood of the music by writing down at
least one adjective. As the task was free-form, some editorial work had to be done. All
adjectives were rewritten into masculine form and expressions other than adjectives were
classified as a specific group of terms describing emotions or personal preferences. Some
examples of the expressions assigned to this group are: sadness after breakup, autumn
meditation, boring, mobilizing. etc.

Another separate group are words connected with music genre. A few of them are: chill

out, swingy meditation, pop, opera etc.
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The adjectives assigned by the listeners were examined and the occurrence of terms
proposed by the audience was calculated. The overall quantities of the most popular

expressions are presented in Tab. 6.3.

Table 6.3 The overall quantity of the most frequent adjectives in part A
Adjective Adjective Number
(English) (Polish) of occurrences

calm spokojny 122
sad smutny 112
happy wesoty 73
joyful radosny 65
brisk energiczny 58
relaxing relaksujqgcy 36
melancholic | melancholijny 32
exalted podniosty 31
positive pozytywny 31
lively Zywy 30
serious powazny 27
stimulating | pobudzajqcy 26
energetic energetyczny 25
pleasant przyjemny 25
romantic romantyczny 24
reflective refleksyjny 20

The results indicate four different trends:
- There is one favorite expression; other expressions have a similar meaning (Fig.
6.3);
- There is one favorite expression; other expressions have a different meaning (Fig.
6.4);
- There is no favorite expression; most of the expressions have a similar meaning
(Fig. 6.5);
- There is no favorite expression; most of the expressions have a different meaning
(Fig. 6.6).
Examples of the four tracks, which are representatives of the above four trends, are

presented in Figs. 6.3-6.6.
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Figure 6.3 Expressions given by listeners to describe mood of a music track. The last position in this graph

represents the amount of other expressions, which occurred only once for a given song. Example No. 28. Genre:
Classical. Artist: Pearl Jam. Album: Big Fish - Music from the Motion Picture. Title: Man Of The Hour
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Figure 6.4 Expressions given by listeners to describe mood of a music track. The last position in this graph
represents the amount of expressions, which occurred only once for a given song. Example No. 24. Genre: Rock.
Artist: Within Temptation. Album: The Silent Force. Title: Destroyed
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Figure 6.5 Expressions given by listeners to describe mood of a music track. The last position in this graph
represents the amount of expressions, which occurred only once for a given song. Example No. 27. Genre: Opera &
Vocal. Artist: Linda Eder. Album: Soundtrack. Title: Falling Slowly
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Figure 6.6 Expressions given by listeners to describe mood of a music track. The last position in this graph
represents the amount of expressions, which occurred only once for a given song. Example No. 17. Genre:
Alternative Rock. Artist: Kings Of Leon. Album: Come Around Sundown. Title: The End
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In part B the results from all of the listeners were averaged and for every song the

average value along with the standard deviation for energy and arousal were calculated.

The outcomes are presented in Fig. 6.7.
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Figure 6.7 Results of Part B averaged for all subjects. Labels are marked in accordance with Table 6.4

On this basis, all music samples fall into one of four general categories of the Thayer’s
model: exuberance (high arousal. negative energy), frantic (high arousal. positive energy),
contentment (low arousal. positive energy) and depression (low arousal. negative energy).
The results and classification are shown in Tab. 6.4. Some research has already been
performed examining the relationship between mood and genre [168,160,182]. To follow
the direction of these works, the presented results are divided into genre groups (Fig. 6.8).

Parallel analysis of the part A and B results is presented in Table 6.4.

Adjectives/mood descriptors from part A are grouped into four clusters according to the
part B classification (similar to the Thayer’s [308] model and Laurier’s et al. clusters [167]).
A particular adjective is mentioned in Table 6.5 if it occurred at least once in the particular

mood cluster. Descriptors listed in Table 6.5 are in alphabetical order.
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Table 6.4 Results of the Part B averaged for all of the subjects. Mood is assigned in accordance to the
Thayer’s Energy/Arousal model
No. of Energy Arousal
Music Mood
Sample Average | St.Dev. Average St. Dev.

1 exuberance 12.3 7.7 5.6 10.7
2 depression -4.3 9.6 -4.4 12.0
3 exuberance 10.2 8.1 1.1 12.0
4 contentment 0.3 115 -7.1 11.9
5 exuberance 1.5 11.0 0.0 12.6
6 contentment 9.1 9.5 -5.9 10.5
7 exuberance 8.2 9.9 12.9 9.0

8 exuberance 7.5 10.5 2.2 14.0
9 exuberance 15.4 6.9 12.4 9.3

10 frantic -0.5 11.9 -11.1 12.4
11 exuberance 6.4 9.7 3.6 11.4
12 exuberance 3.6 11.0 9.7 10.7
13 exuberance 9.8 9.8 14.6 9.1

14 frantic -6.5 11.6 9.3 11.9
15 exuberance 8.9 10.4 11.9 7.5

16 contentment| 11.7 10.2 -2.4 11.3
17 frantic -4.5 10.3 4.9 9.7

18 exuberance 10.6 11.1 5.9 12.1
19 contentment 5.1 11.2 -2.5 12.7
20 exuberance 3.5 10.3 1.4 11.4
21 exuberance 3.4 9.2 4.3 11.7
22 depression -10.8 10.6 -9.6 11.4
23 exuberance 6.0 14.2 8.9 13.6
24 frantic -1.6 12.1 7.5 11.4
25 exuberance 4.3 11.7 5.8 10.8
26 exuberance 12.2 11.4 7.8 9.1

27 depression -0.6 11.7 -7.8 11.0
28 depression -8.9 9.4 -9.1 9.8

29 contentment 0.8 13.2 -8.4 10.2
30 depression -1.4 9.8 -0.9 11.0
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Figure 6.8 Music samples presented on Energy/Arousal plane with the assigned genre

In addition, the analysis with the aim of defining the so-called target/leader mood
descriptors for a given music sample was performed. This means that the most frequent
adjectives (in average it was 55 times per adjective) should be treated as target descriptors.
It occurred that for most music samples there were a few target descriptors repeated
within the same cluster. This strongly suggests that multi-label description may be a good
way to perform music mood tagging. On the other hand, it may be sufficient to use two or
three of the most significant descriptors to simplify the evaluation process.

Discussion

Considering the “target/leader” analysis for all of the songs in the experiment, it is
reasonable to allow multi-label mood classification. Another rule should be to limit the
number of expressions to maximum 3. It is important to observe that 6 out of 30 analyzed
examples had three “leaders”.

The classification derived from part B (Thayer’s model mood description) is quite

coherent with the lexical description from part A.
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Table 6.5 Adjectives obtained during part A. grouped by part B classification (Thayer’s model)
contentment | depression | exuberance frantic
brisk
calm
classic
dancing
depressive
dynamic
bori electronic )
orin aggressive
g energetic g8 .
calm calm , anxious
) . epic
delicate depressing calm
. . exalted )
depressing dramatic h delicate
a
happy emotional L pp-y depressive
X irritating .
joyful exalted vl dynamic
u
lovely lovely ]1 Y | energetic
ive
melancholic | melancholic | g, exalted
ou
moody mysterious lovely
. moody .
mysterious neutral melancholic
taloi talei neutral taloi
nostalgic nostalgic nostalgic
8 & noble &
pleasant opera L. pleasant
-, L optimistic Lo
positive piercing art ravishing
reflective reflective p y. recreating
. . pathetic ]
relaxing relaxing reflective
) ) pleasant .
romantic romantic . romantic
ositive
sad sad p . sad
] recreating
serious . strong
relaxing
rhythmic
sad
serious
stimulating
touching
vivacious

6 PRELIMINARY EXPERIMENTS AND ANALYSES

Models, which consist of four types of mood (like Thayer’s model) [308] or a folksonomy
system (like Laurier’s et al. [167]), are not sufficient. Despite the fact that some expressions
belong to all four groups, most of them may be treated as properly assigned to the given
cluster. Most of the adjectives belonging to a particular cluster are coherent with the mood
it represents. It was also noted that Polish expressions are less diverse than English.

Thus, the general conclusion regarding this part of the experiments is that it is
reasonable to use classification with more than four main categories of mood and permit
multi-label classification or at least classification using more labels.

Some listeners reported problems with understanding the 2-dimensional
Energy/Arousal representation. Their comments were related not only to the problematic

deciphering of the nomenclature but they also said that the whole concept of 2D
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representation was not intuitive. This is an important cue for carefully choosing an

appropriate model of emotions for further research.

6.2 PRELIMINARY TESTS - CORRELATION ANALYSIS

All of the musical excerpts tested in the experiment described in Section 6.1 are
elements of the SYNAT database. Each excerpt is described by a set of 173 parameters
obtained through the analysis of mp3-quality recordings. The majority of the parameters
are MPEG-7 standard items (109), along with 20 Mel-Frequency Cepstral Coefficients
(MFCC), 20 MFCC variances and 24 time-related ‘dedicated’ parameters. Detailed
information on the parameters and set of features contained in SYNAT is included in Section
4.5. The whole parameter set has been taken into consideration but the experiment was
conducted to determine which of the parameters are relevant to mood recognition. Tab. 6.6

includes information with regard to correlation analysis in preliminary tests.

Table 6.6 Correlation analysis applied to results of preliminary tests

Title Correlation analysis applied to results of preliminary tests

The data obtained from the subjective preliminary tests (described in Section
6.1) were checked in terms of correlation with a feature vector containing 173

Objectives parameters. The aim was to shorten the vector by choosing only the parameters
correlated with mood labels. Different types of normalization were applied at
this stage.
Protocol Described in Section 6.1

- A list of parameters ordered by the correlation coefficient value with regard to
the music mood description was created

General Results | - Long (91) and short (8) vectors describing mood of music of parameters were
and determined
Conclusions - While correlation between parameters and the Arousal label is moderate, it is

not sufficient to derive any decisive conclusions for Energy

- Arguments for multi-label classification

Normalization

Since not all of the parameters are from the same domain, the whole set of the
parameters was normalized to range [0.1]. Every one of the 173 parameters was
normalized separately. Two different types of normalization were applied, namely:
Normalization I (linear unity-based normalization into range [0.1]) and Normalization II
(two-step normalization where the average value becomes 0.5) (for details of normalization

procedures see Section 5.1).
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The important point is that the parameters were normalized according to the parameter
values, which occurred in SYNAT. Therefore it is possible that the parameters of a song not
included in this database may exceed range [0.1]. On the other hand, the SYNAT database
contains more than 50.000 of music pieces from different time and genres, thus this kind of
normalization seems to be legitimate.

Averaged assessment ratings for energy and arousal achieved from the listening test of
part B were also normalized with both types of calculations.

Correlation

Parameters of 30 songs used in the subjective test were collected. For the Energy
(positive/negative) and Arousal (high/low) descriptors, correlation analysis with 173
parameters extracted from the SYNAT database was performed. In the second step - the
correlation with the normalized values of the assessment ratings and parameters was
calculated. Student’s t-distribution was used to assess the statistical significance of the
correlation. The results of the correlation analysis for raw and normalized data are
presented in Tabs. 6.7 and 6.8. Parameters have been ordered form higher to lower
correlation values and separately for different types of pre-processing. Even though a great
number of parameters should be listed for arousal, only some of them have been
mentioned. It should be noted that for a particular way of pre-processing, a different
number of statistically significant parameters has been achieved. However, the correlation
is much higher for arousal and in terms of statistics is significant.

The reason behind fair and moderate correlation might be related to the students’ not
finding a sufficiently intuitive way of understanding the evaluation model, although arousal
was moderately higher as it is easier to evaluate arousal than sad or happy instances. In the
next steps described in 6.4 the MDS analysis was performed to determine a model of mood
that is appropriate for emotions included in music.

Data Distribution

Songs from the test set were divided into two groups, namely: low and high arousal. This
decomposition was derived based on the interclass inertia between classes of parameter
vectors. Parameters after Normalization I were used in this part of data analysis. For the
first analysis all of the statistically significant (according to t-student test) parameters were
used. The second analysis included only parameters with the correlation coefficient larger

than 0.6, which shortened the vector to 8 parameters only. The results of both calculations
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are presented in Tab. 6.9. The interclass inertia is smaller for a shorter vector, which makes

it more convenient for use in this type of data analysis.

Table 6.7 Correlation between average rating for Arousal (low/high) and parameters. Parameters are
ordered according to the correlation coefficient (from higher to lower values). The last presented values in table
respond to the least significantly correlated parameters according to t-Student statistics

No normalization Normalization I Normalization II
Ne. Parameter | Corr. | Parameter | Corr.| Parameter | Corr.
1 SFM13 0.68 SFM13 0.67 ASE16 0.71
2 SFM18 0.65 SFM18 0.65 ASE19 0.71
3 SFM14 0.65 SFM15 0.63 SFM15 0.71
4 SFM10 0.64 SFM14 0.63 SFM13 0.71
5 SFM_M 0.64 SFM10 0.63 SFM18 0.70
6 SFM6 0.64 ASE19 0.62 SFM19 0.68
7 SFM7 0.64 ASEV16 0.62 ASE18 0.67
8 SFM15 0.64 SFMV3 0.62 SFM16 0.67
9-
90
91 ASEV11 0.34 ASEV3 0.33 ASE29 0.37
2RMS_TCD_
92 10FR_MEA | 0.34 MFCCV8 | 0.36
N
93 MFCCV8 0.33 ASEV21 0.36
THR_1RMS
94 _"l:OT 0.35
PEAK_RMS
95 10FR_VAR | *3°
96 SFMV4 0.34
97 MFCCV17 | 0.34
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Table 6.8 Correlation between average rating for Energy (negative/positive) and parameters. Parameters are
ordered according to correlation coefficient (from higher to lower values). The last presented values in the table
respond to the least significantly correlated parameters according to t-Student statistics

N No normalization Normalization I Normalization II
0.
Parameter Corr. | Parameter | Corr. | Parameter | Corr.
THR_1RM
1 ASE29 0.43 | S_.10FR_VA | 0.45 ASE29 0.42
R
THR_2RM
THR_1RMS_ i THR_3RMS
2 10FR_VAR 0.42 S_lOl;'{R_VA 0.42 _10FR VAR 0.40
THR_2RMS
3 ASEV23 0.40 ASEV23 0.41 _10FR VAR 0.38
THR_2RMS_
4 10FR_VAR 0.39 ASEV8 0.36
THR_3RM
2RMS_TCD_1 -
5 OFR_VAR 0.38 S_lOPP'{R_VA 0.36
6 MFCCV2 0.36 SFMV12 0.36
3RMS_TCD_1
7 OFR_VAR 0.35
8 MFCC17 0.33
Table 6.9 Interclass inertia for longer and shorter vectors of parameters
Interclass inertia
Long vector (91 Short vector (8
parameters) parameters)
0.73 0.31

Discussion

Correlation between parameters and Arousal is moderate and this is a promising result
to continue this study aimed for proving the Thesis no. 1, i.e.: "It is possible to find
parameters describing a musical excerpt, which are highly correlated with subjective
mood labeling results.".

The correlation coefficient for energy is not higher than 0.45 and this result leads to a

conclusion that parameters contained in the SYNAT database are not sufficient to retrieve
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information about positive or negative energy from. That’s why some additional parameters
related to temporal domain were introduced (see Section 4.6.2).

According to the classification analysis, employing shorter vectors. i.e. including only
parameters with higher correlation values is more reasonable than using longer vectors

(created by t-student statistical analysis).

6.3 TEMPO AND RHYTHM

Tempo variation has consistently been associated with differential emotional responses
to music [64,108,127]. The aim of this experiment was to find relation between tempo
features and mood perception. Fixed music arrangement was replaced by various rhythms
and listeners were asked to describe mood of the music for different tempo and rhythm
combinations. Tab. 6.10 contains general information about experiment designed to

determine the influence of tempo and rhythm on mood of music.

Table 6.10 Experiment related to influence of tempo and rhythm on mood of music

Title Tempo and Rhythm

The experiment was conducted to determine relationship between tempo and

Objectives . :
J perceived mood of music.

- 40 subjects

Protocol - One piece of music with 5 different drum rhythms was tested within range 90
and 130 BPM.

- Mood of music is highly correlated with tempo
General Results

and
Conclusions

- Values of correlation coefficients are greater than 0.8

- The change of rhythm for fixed tempo causes less difference in mood
perception.

Detailed description of the experiment

The song, which was used in experiments, consisted of the following audio tracks:
female vocal (melody, no words used), electric guitar, synth bass, synths and drum set. The
author of this dissertation performed whole production and recording process as a
recording engineer and producer. Recording techniques were based on the previous
research and experience of the author [138,245,246]

The drum set was recorded in the live room using a multi-track technique listed in Tab.
6.11. Configuration is presented in Fig. 6.9. Nine microphones were used: two for bass

drum (Sennheiser €901 and Audix D6), snare drum (Shure SM57), hi-hat (Nueman TLM
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103), two overheads (Schoeps MK4), and three toms (2 Audix D2 and Audix D4). Other

tracks were taken from sounds library from Logic 9 Pro software [186].

Table 6.11 Drum set recording session input list. Particular parts of the set are listed along with used
microphones.

Instrument Microphone
Kick Drum Audix D6
Kick Drum Sennheiser e901

Snare Drum Shure Beta57

Hi-Hat Neuman TLM 103

Rack Tom 1 Audix D2
Rack Tom 2 Audix D2
Floor Tom Audix D4
Overheads Schoeps MK4

Figure 6.9 Drum set recording setup

The whole music arrangement remained with no changes, only the rhythmic part (drum
set tracks) varied. The drummer played five different rhythms named from A to E.
Characteristic features of particular rhythms are listed below:

* Rhythm A - tribal rock

*  Rhythm B - shuffle rock ballad

*  Rhythm C - pop-rock beat

* Rhythm D - speed blues

*  Rhythm E - disco-funk.
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Rhythms B, C and E were presented in the tempo range from 90 to 130 BPM (step of 10
BPM). The other rhythms were presented in 90 BPM, what makes 17 music samples in total.
Duration of the particular samples varied from 24 to 34 seconds (depending on the tempo).
The following musical excerpts were randomly chosen and ordered and the sequence was
different for every listener. Samples were presented in 128 kbit/s MP3 format.

The subjects were asked to evaluate to what extent a given expression describes mood
of the presented music. The mood labels used in the survey are presented in Tab. 6.12.

The survey was implemented as a HTML website. The test began with the introduction
page, where subjects were instructed about their task and could playback a fragment of
music to adjust the volume. Then listeners were guided through the 17 subpages in Polish
(Fig. 6.10) with playback and the evaluation form. The whole test duration was

approximately 15 minutes.

Utwor 3/21

Ocen w jakim stopniu kazde z okreslen opisuje zaprezentowany fragment
muzyki w skali od 0 (zupetnie nie okresla) do 4 (bardzo okresla).

> 00:00100:00 »f) Emm—

012 3 4
radosny

smutny °
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podniosty e

agresywny

Nastepny
przyktad

Figure 6.10 Web interface used in the Part I of the experiment (in Polish)
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Table 6.12 Expressions used in the survey to describe mood of music
1 Aggressive Agresywny
2 Brisk Energiczny
3 Exalted Podniosty
4 Joyful Radosny
5 Sad Smutny
6 Calm Spokojny

The panel of listeners consisted of 40 subjects: 19 men and 21 women. The average age

of the subjects was 25 years. They didn’t report any problems with hearing.

Results

Results for all of the listeners were averaged and standard deviation was calculated.
Averaged grade values for particular rhythms and tempos are presented in Figures 6.11-
6.17.

Results show that the influence of tempo is much more significant than different
rhythms and are similar for all rhythms. As an example of the tempo impact are shown for
rhythm C and E respectively in Figs. 6.11 and 6.12.

Graphs in Figs. 6.13 and 6.14 are created to show the collective comparison of all of the
results for tempo 90 BPM. In Fig. 6.13 results are grouped by the labels to show which
rhythm seems to be the most related to the particular expression. In Fig. 6.14 notes are
grouped by rhythm to show how listeners described every rhythm. In Figs. 6.15-6.17 the
dependence between intensity of different labels and the tempo for rhythms B, C and E is
presented.

The correlation coefficient between particular label notes and tempo for rhythms was
calculated. Results are gathered in Tab. 6.13. Moreover, correlation between particular
mood labels was analyzed and these calculations are presented in Tab. 6.14. Signs “+” or “-”
show positive or negative correlation, while “NO” indicates cases, when the absolute value

of the correlation coefficient is smaller than 0.8.
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Figure 6.14 Mood of music description with averaged labels for different rhythms (A-E) for a fixed tempo
(90 BPM)
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Figure 6.15 Averaged results for music with rhythm B at different tempos
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Figure 6.16 Averaged results for music with rhythm C at different tempos
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Figure 6.17 Averaged results for music with rhythm E at different tempos
Table 6.13 Correlation coefficient between tempo and particular mood labels
Correlation coefficient
Mood label
Rhythm B Rhythm C Rhythm F
Aggressive 0.8315 0.9631 0.959
Brisk 0.9846 0.9835 0.994
Exalted -0.9486 -0.921 -0.8971
Joyful 0.9582 0.971 0.9656
Sad -0.9514 -0.9734 -0.9567
Calm -0.9832 -0.9877 -0.9884
Table 6.14 Correlation between mood labels. Descriptions are numbered as in Tab. 6.12. The correlation
was assumed as significant when modulo of the correlation coefficient was greater than 0.8. “NO” is related to
not significant correlation. “+” means positive correlation and “—” negative correlation

No. of mood label 1 2
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Conclusions

Results of the listening tests show that mood of music is highly correlated with tempo.
This conclusion has been confirmed for three different rhythms and correlation coefficient
is significant for every mood label.

The change of rhythm for fixed tempo causes less difference in mood perception (Figs.
6.13 and 6.14). This is coherent with results of Schellenberg et al. [278] who showed that
changes in rhythm (varying vs. held constant) had little effect on listeners’ emotional
responses, which may be surprising to some extent.

[t should be mentioned that for rhythms D and E the achieved results are different from
other rhythms for tempo 90 BPM. It can be caused by specific characters of both sequences
- rhythm D (speed blues) is much more dense, the drummer used more cymbal sound. On
the other hand the rhythm E is a typical disco beat which can be perceived as more
energetic because of its structure.

Values of the correlation coefficients are greater than 0.8, which shows a significant
dependence between tempo and mood of music. This leads to the conclusion that
parameters describing tempo and rhythmic content of music should be taken into
consideration while creating a vector of parameters related to mood of music.

[t should be noticed that the experiment was conducted for fixed arrangement with
various rhythms presented in different tempo. It was intended to exclude the impact of
another factors, i.e. key, harmonic progression, and overall instrumentation. The tempo was
the only variable and all of the conclusions are related to tempo changes. Also no absolute
values can be achieved, only the correlation between tempo and the perceived mood of

music.

6.4 MULTIDIMENSIONAL SCALING ANALYSIS APPLIED TO MUSIC MOOD
RECOGNITION

The motivation of this stage of the research comes from the earlier experiment
(described in Section 6.2), where correlation results between parameters and Energy and
Arousal dimensions was only fair or moderate. Moreover, as reported before, some
listeners pointed out that the Energy/Arousal description was not intuitive. Therefore MDS
approach was implemented to examine the model that describes mood of music in effective

way. MDS allows determining significant number of dimensions to describe perceived
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relations between objects. Multidimensional Scaling experiment was conducted to
determine and confirm model of mood as well as check coherence between model with
orthogonal dimensions and model with redundant descriptors. Tab. 6.15 includes

information with regard to Multidimensional Scaling experiment related to mood of music.

Table 6.15 Multidimensional Scaling experiment
Title Multidimensional Scaling Analysis Applied to Music Mood Recognition
Experiment was conducted to determine number of dimensions that allow
Objectives describing mood of music. Results were confronted with evaluation with 6
descriptors.

- Part1 - 15 samples evaluated using set of 6 descriptors, each scaled from 0 to 4.
Protocol - Part II - collect data for MDS Analysis. 10 musical excerpts
- 36 subjects

- From MDS - sufficient number of dimensions to describe mood of music is 2;

they correspond to labels ,Calm” and ,Joyful”
General Results

and
Conclusions

- Results collected in both parts of the experiment are coherent
- Different metrics can be used in terms of mood representation

- A list of parameters ordered by the correlation coefficient value with regard to
the music mood description was created

Experiment Part I

The initial part of the listening tests consisted of 15 samples from different music
genres. For the purpose of the survey the mood labels were presented in Polish and they
can be found. along with their English counterparts, in Tab. 6.16. Duration of every music
excerpt was constant and remained 30 seconds. The complete and detailed list of the music
tracks is listed in Tab. 6.17. Excerpts also used in the Experiment II are colored in grey. The
subjects were asked to evaluate the extent to which a given label describes mood of the
particular music excerpt. The labels were chosen during previous research study, which
was conducted to create a dictionary associated with mood of music in Polish, reported in
Section 6.1 [242].

The musical excerpts were randomly ordered and the sequence was different for each
listener. Samples were presented in 128 kbit/s MP3 format. For the purpose of the
experiments a survey was implemented as a HTML website in a series of simple HTML
pages (Fig. 6.18, in Polish). The test began with the introduction page, where subjects were
instructed about their task and could playback the music excerpt to adjust the volume. Then

listeners were guided through the 15 subpages with playback and the evaluation form. The
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entire test took approximately 15 minutes (including breaks between music samples and
time needed for the answer). The panel of listeners consisted of 36 subjects: 24 men and 12

women. The average age of the subjects was 23 years. Again no hearing problems were

reported.
Table 6.16 Expressions used in the survey to describe mood of music
Mood label | Mood label
LabelNo. | g olish) | (Polish)
1 Aggressive Agresywny
2 Brisk Energiczny
3 Exalted Podniosty
4 Joyful Radosny
5 Sad Smutny
6 Calm Spokojny
Utwor 3/21

Ocen w jakim stopniu kazde z okreslen opisuje zaprezentowany fragment
muzyki w skali od 0 (zupetnie nie okresla) do 4 (bardzo okresla).
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Figure 6.18 Web interface used in the Part I of the experiment (in Polish)
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Experiment Part I1

The second experiment was conducted to collect the similarity data for the MDS
analysis. To make the duration of the entire test reasonable, only 10 of 15 music pieces
were chosen (tracks used in Experiment Il are marked in Tab. 6.17 in grey). These shorter
excerpts were 15 seconds long and were consistent with music pieces presented in
Experiment I (30-second long excerpts). Even though, this test lasted over 25 minutes
because peer-to-peer similarity judgment required 45 presentations of 2 x 15 sec. pairs. The
set of songs used in Experiment Il was chosen according to the results of Experiment I.
From every label tracks with the highest and the lowest notes were taken as well as
excerpts with very similar notes were included.

The interface built for Experiment I was slightly adapted to meet the requirements of
Experiment II. Each of 45 subpages contained playback and evaluation form, which includes
a slider with minimum and maximum values set between ‘totally different’ and ‘identical’.
The subjects were asked to evaluate similarity between moods of two music pieces, one
presented just after the other. Pairs were presented in random order and the sequence was
different for each listener. The values of the slider were read and then written to the output
CSV file format. The range of the slider was set from 1 (‘totally different’) to 100 (‘identical’)
but the assigned values were not displayed (subjects’ judgments were based on the position
of the slider).

Results

In Experiment I the subjects were asked to evaluate to what extent a given expression
describes mood of the presented music. Averaged results for all of the listeners are
presented in Tab. 6.18.

Similarity data obtained from Experiment Il were averaged. Normalized matrix of
similarity is presented in Tab. 6.19. The MDS representation of data was constructed in
MATLAB using Kruskal's normalized Stress-1 criterion. Two dimensions were sufficient to
create adequate representation. Stress-1 factor reached 0.01. The MDS map is presented in

Fig. 6.19.
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Table 6.17 List of the music tracks used in the experiment. All of the 15 songs were played back in
Experiment L. songs marked in grey were also used in Experiment 11
No Genre Artist Album Title
1 Jazz Kenny G Paradise Malibu Dreams
The Funk Essentials
2 R&B Central Line 1222 Collection And | Walking Into Sunshine
More
3 Pop The Clash Combat Rock Should I StaGyOOr Should I
4 Pop Tom Jones Reloaded.')ta Greatest Kiss
Hits
5 | Alternative Rock Pearl Jam Ten (Legacy Edition) Black (;)G(E?Stered
Fields Of Gold - The
6 Pop Sting Best Of Sting 1984 - Fields Of Gold
1994
7 Rock Aerosmith Big Ones Rag Doll
Th?rﬁlegégidlf;(g:3a Coronation March Op2e
8 Classical Sir Landon Ronald . prete 65 (1993 Digital
Electrical Recordings T
of Sir Edward Elgar2e
9 | Alternative Rock Hey Champ Star Cold Dust Girl
. Love3f (Deluxe
10 Pop Jennifer Lopez Tarsto Charge Me Up
11 Pop Erykah Badu Live Tyrone (E.xtended
Version)
. This Is It3a The Best .
12 Rock Faith No More of Faith No More Epic
13 | Alternative Rock Green Day 21 Guns EP 21 Guns .(Album
Version)
14 Jazz Eliane Elias Light My Fire My Cherie Amour
15 Har&i{tﬁk & Slayer Seasons In The Abyss War Ensemble
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Table 6.18 Averaged results of Experiment 1. Columns correspond to mood labels according to Tab. 6.12 (1-
Aggressive, 2 - Brisk, 3 - Exalted, 4 - Joyful, 5 - Sad, 6 - Calm) and rows represent songs (Tab. 6.17). Minimum
scores for particular labels are marked in light grey, while the maximum in dark grey

No. 1 2 3 4 5 6
1 0.38 | 1.22 | 1.49 | 1.77 | 1.86 | 3.43
2 0.65 | 3.00 | 0.69 | 3.14 | 0.58 | 1.35
3 1.26 | 3.29 | 0.71 | 3.12 | 0.54 | 0.80
4 094 | 282 | 0.88 | 2.74 | 0.60 | 1.08
5 0.49 | 1.28 | 1.52 | 1.15 | 2.54 | 2.97
6 0.25 | 1.02 | 2.11 | 1.31 | 2.51 | 3.65
7 1.82 | 3.23 | 0.89 | 292 | 0.42 | 0.66
8 092 | 1.71 | 3.51 | 0.65 | 2.78 1.83
9 1.37 | 3.00 | 0.63 | 2.32 | 094 | 0.71
10 | 1.62 | 3.45 | 0.52 | 2.45 | 0.52 | 0.46
11 | 0.28 | 0.78 | 0.94 | 1.09 | 2.15 | 3.75
12 | 249 | 3.48 | 094 | 2.52 | 0.71 | 0.49
13 | 0.75 | 1.78 | 1.37 | 1.58 | 2.20 | 2.46
14 | 0.18 | 0.65 | 1.09 | 1.66 | 1.71 | 3.75
15 | 3.74 | 3.69 0.78 | 1.06 | 0.86 | 0.20

As shown in Fig. 6.19 songs with very different notes in Experiment [ are placed in the
opposite parts of the map. For example Track 15 evaluated as very aggressive and brisk is
far from no. 1 perceived as almost not aggressive and brisk (see Tab. 6.18). Also very
similar songs (nos. 1, 6, 11 and 14) are grouped in one area on the MDS map. Moreover,
other distances between objects (songs) were achieved from data from Experiment 1. All
labels were regarded as separate dimensions and so every song was represented by 6-
element vector (6D). Correlation analysis between mood labels was performed and results
are presented in Tab. 6.20. Distances between objects (songs) were calculated using two
metrics (Euclidean and Chebyshev). The then the MDS analysis was applied again. The
average distance between the direct similarity MDS representation (MDS) and
representation (6D) was slightly smaller for the Euclidean distance. The detailed results are
presented in Tab. 6.21. Averaged distance between representations was calculated

according to Eq. (6.1):
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A i(x,' - X ')2
d - i=1

" m (6.1)
where x; and x;" are coordinates of object i and m is the number of objects. As is shown in
Tab. 6.22, Dimension 1 corresponds to expression “Calm” (negative correlation) and

“Brisk” (positive correlation) and Dimension 2 to “Joyful” and to a lesser extent to

“Exalted”.
Table 6.19 Similarity matrix obtained from listening tests for music tracks. Values are normalized to range
[0.1]. Tracks are numbered according to Tab. 6.15
No. 1 2 6 7 8 9 10 11 14 15
1 1 0.25 0.81 0.09 0.15 0.16 0.06 0.75 0.71 0.02
2 0.25 1 0.26 0.52 0.04 0.53 0.46 0.21 0.21 0.05
6 0.81 0.26 1 0.20 0.20 0.18 0.10 0.65 0.83 0.02
7 0.09 0.52 0.20 1 0.06 0.65 0.54 0.08 0.09 0.21
8 0.15 0.04 0.20 0.06 1 0.04 0.03 0.16 0.14 0.09
9 0.16 0.53 0.18 0.65 0.04 1 0.58 0.10 0.13 0.18
10 0.06 0.46 0.10 0.54 0.03 0.58 1 0.06 0.06 0.13
11 0.75 0.21 0.65 0.08 0.16 0.10 0.06 1 0.77 0.03
14 0.71 0.21 0.83 0.09 0.14 0.13 0.06 0.77 1 0.02
15 0.02 0.05 0.02 0.21 0.09 0.18 0.13 0.03 0.02 1
Table 6.20 Correlation between mood labels. Descriptions are numbered as in Tab. 6.5. The correlation was
assumed as significant when modulo of the correlation coefficient was greater than 0.8. “NO” is related to not
significant correlation. “+” means positive correlation and “—” negative correlation
No. of mood label 1 2 3 4 5 6
1 1 + NO
2 1 NO
3 1
4
5
6 1
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Table 6.21 Distance between MDS (6D) representations and MDS (MDS). Average distance day is calculated
according to Equation 6.1
MDS representation dav Stress-1
6De. Euclidean distance 0.89 0.02
6Dc. Chebychev distance 0.92 0.00
Table 6.22 Correlation between MDS dimensions and averaged notes from Experiment I. Columns

correspond to mood labels according to Tab. 6.12. Maximum values of correlation coefficient for every dimension
are marked in dark grey

No. 1 2 3 4 5 6
D1 0.87 0.98 -0.45 0.41 -0.79 -0.98
D2 0.36 -0.08 0.68 -0.78 0.50 -0.04

Conclusions

According to multidimensional scaling procedure, two dimensions are sufficient to
create adequate representation. MDS returns clear results coherent with the evaluation of
Experiment I reported in this Section, where songs were evaluated by listeners using six
mood labels.

Bigand et al. [32] stated that the 3-dimensional space is needed to provide a good
representation of emotions, with arousal and emotional valence as the primary dimensions.
There are quite a few differences between Bigand's et al. research and the presented study,
therefore results may be different. Firstly, music set in Bigand’s and his collaborators study
consisted of only classical music (solo, chamber music, orchestra) with no involvement of
other genres. Secondly, their testing procedure was based on choosing the excerpt most
similar to the presented one rather than evaluating similarity or disparity. Also their study
was focused on emotions of the listener while in presented research, mood of music is
analyzed.

Dimensions achieved with the use of MDS correspond to labels ,Calm” and ,Joyful”. This
can lead to the conclusion that Thayer’s model is accurate to describe mood of music. One of
the axes can be interpreted as Valence (“Joyful” - positive or negative content) and the
second as Arousal (“Calm” - energetic content). While both MDS representations (calculated

from direct similarity judgments and from 6 labels similarity) are coherent, chosen mood
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labels seem to be reasonable and accurate. These findings are important indications for
next step of the research, where proprietary model of emotions is proposed.

Both 6D MDS representations (calculated for Euclidean and Chebychev distances in 6-
dimensional labels space) return results close to MDS (direct similarity MDS map). This can
lead to the conclusion that different metrics can be used in terms of mood representation.
The Euclidean metric could be placed in privileged position while using linear scale during

the test (e.g. data read from linear sliders).
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Figure 6.19 Comparison of MDS representations based on direct similarity judgments (marked with (o) and

apostrophe) and distance calculated from evaluation with 6 labels (x)

6.5 MUSICMOOD VISUALIZATION USING SOMs

As presented in Chapter 5 SOM (Self-Organizing Map) is an unsupervised neural
network providing a mapping from a high-dimensional space to few-dimensional (in most

of cases two-dimensional) representation. Music Mood Recognition is a task that meets
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main assumptions of the method. Various mathematical and statistics methods (i.e.
normalization. correlation analysis. PCA) were used to extract parameters most relevant to
mood of music. These outcomes were fed into SOM algorithm to map object onto few-
dimensional representation. Tab. 6.23 includes information with regard to the SOM-based
procedure applied to Music Mood Recognition.

Vector of parameters

As before, all of the music fragments included in experiment described in Section 6.4 are
elements of the SYNAT database. Parameters detailed description is included in Section 4.5.
The whole parameter set has been taken into consideration but experiment was conducted
to determine which of the parameters are relevant to mood recognition. To determine

parameters, which are the most significant to mood descriptions, correlation analysis was

applied.
Table 6.23 Self-organizing maps experiment

Title Music Mood Visualization Using SOMs
Analysis performed with the results collected from experiment described
Obiectives in Section 6.4. Principal Component Analysis applied to vectors describing

J Dimension 1 (29 parameters) and 2 (12 parameters). Results processed
with Self Organizing Maps.
Protocol Described in Section 6.4.
General Results and The preliminary SOM analysis; methods and tools tested
Conclusions - Ideas of graphical representation (map)

Correlation between MDS dimensions and mood parameters was calculated and
therefore a set of features strongly related to mood was created. To determine parameters,
which are the most significant to mood description, the correlation analysis was applied.
Correlation between MDS dimensions and mood parameters was calculated and therefore a
set of features related to mood was created. Significance of the correlation was determined
according to t-student to7s. Finally the feature vector describing mood of music consisted of
79 parameters, listed in Tab. 6.24 was obtained. For each dimension moderate and strongly
correlated parameters were found, what partially proves the Thesis no. 1, which assumes
the correlation between feature vector parameters describing mood and subjective

evaluation results.
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Table 6.24 Set of parameters used for mood description. Denotations are as follows: ZCD (Zero-Crossing
Rate). RMS (dedicated energy and time-related descriptor). ASE (Audio Spectrum Envelope). SFM (Spectral
Flatness Measure). MFCC- Mel-Frequency Cepstral Coefficients (their mean and variance values)

Dimension 1 Dimension 2

No. No.
Parameter Corr. Parameter Corr.
1 ASE15 0.92 1 ASC 0.82
2 ZCD 0.92 2 MFCCV4 0.76
3 ZCD_10FR_MEAN 0.92 3 SC 0.75
4 ASE29 0.91 4 MFCCV7 0.69
5 ASE28 0.90 5 MFCC5 0.65
6 SFMV1 0.89 6 MFCC10 0.63
7 SFM15 0.89 7 MFCCV6 0.63
8-69 8 ASE1 0.63
70 ASEV23 0.63 9 MFCCV8 0.62

Principal Components Analysis

The set of 79 chosen parameters related to mood of music consisted of parameters that
were strongly correlated. Principal Component Analysis was performed to achieve possible
most orthogonal dimensions [293]. PCA was applied to two sets: one consisting of 79
parameters related to Dimension 1 and second consisting of 9 parameters related to
Dimension 2. All of the PCA calculations were performed using MATLAB (2015). The
following results were received from the Principal Components Analysis:

- For Dimension 1 (“Calm”) 7 components are sufficient to contain 99% of information.

- For Dimension 2 (“Joyful”) 6 components are sufficient to contain 99% of information.

Therefore vector describing Dimension 1 was shortened to 7 components and
Dimension 2 to 6 components.

2D visualizations of PCA for each dimension are presented in Figs. 6.20 and 6.21.
Although direct interpretation of components is not possible loadings analysis indicates
that particular components are associated with specific parameters. For the clarity of the

presentation only some of these are shown in Tab. 6.25.
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Figure 6.20 Graphical representation of PCA applied to 70 descriptors related to Dimension 1. Numbers
refer to the parameters correlated to Dimension 1, listed in Tab. 6.24
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Figure 6.21 Graphical representation of PCA applied to 9 descriptors related to Dimension 2. Numbers refer
to the parameters correlated to Dimension 2, listed in Tab. 6.24
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Table 6.25 Maximum loading of particular components achieved from the PCA method. For clarity only values
above 0.25 are presented

Comp. Dimension 1 Comp. Dimension 2
No. Parameter Load. No. Parameter Load.
MFCCV7 0.40 SFM8 0.25
MFCC5 0.26 SFM9 0.26
! MFCC10 0.47 SFM_M 0.27
MFCCV6 0.34 1 SFM15 0.28
ASC 0.47 SFM12 0.30
MFCCV4 0.25 SFM13 0.34
2 SC 0.44 SFM14 0.38
MFCCV6 0.65 ASE21 -0.27
MFCC5 -0.55 SFM20 -0.25
3 MFCC10 0.78 2 SFMV4 0.26
SC 0.56 SFMV3 0.28
MFCCV7 -0.32 SFMV2 0.29
+ MFCC5 0.61 SFM8 -0.30
MFCC10 0.35 3 SFM12 -0.27
MFCCV4 -0.39 SFM19 0.32
. SC 0.46 SFM13 -0.37
MFCCV7 0.45 SFM14 -0.34
MFCCV8 0.56 SFM12 -0.25
ASC 0.47 * SFMV4 0.31
MFCCV4 0.59 SFM8 0.37
6 MFCCV6 -0.47 SFM7 0.42
ASE1 0.31 ASE22 0.25
MFCC4 0.26
5 SFMV3 0.28
ASE20 0.34
ASE21 0.42
SFM14 -0.36
SFM15 -0.28
6 SFMV4 -0.26
MFCC2 0.37
SFMV15 -0.32
7 ASE14 -0.27
MFCC2 0.46
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Results

Components achieved from PCA were treated as the SOM input (7 components for
Dimension 1 and 6 for Dimension 2). SOM analyses were performed for various
topographies and sizes of the neural network. For 2-dimensional SOM representation the
best results were achieved for grid topology with network dimensions 5x5. In this case, a
vector of parameters consisted of 13 elements was used. These settings enabled to achieve
quite good representation in one of the dimensions but did not succeed in another. An
example of 2D SOM representation is shown in Fig. 6.22. Songs are placed on neurons with
the highest activation.

Due to not satisfying results of 2D representations and promising trends according to
one of the dimensions, two separate 1-dimensional SOM networks were constructed. Two
vectors were created: one related to Dimension 1 (7 PCA components) and one to
Dimension 2 (6 components). This allowed achieving good representation for Dimension 1
("Calm"), shown in Fig. 6.23. Only song labeled with no. "14" (marked in the picture with
the oval) was not assigned correctly. Location on the "Calm" axis is not accurate. The other

elements are placed properly and their positions are coherent with the MDS-based results.

SOM Topology

Figure 6.22 Example of 2D SOM (5x5. grid topology) representation of 15-elements music set. Numbers
represent particular songs. listed accordingly to Tab.6.17. Studies of the particular cases allow observing quite
good results in one of the dimensions
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6 PRELIMINARY EXPERIMENTS AND ANALYSES

Contrarily representation of Dimension 2 ("Joyful") is less accurate but also contains
correct assignments and is presented in Fig. 6.24. Wrongly placed songs are marked in the
picture with the oval.

Even though, the accuracy for Dimension 1 is around 90% and for Dimension 2 around
70%, it is much higher than for 2D representation. Therefore the approach for two separate
SOMs seems to be more appropriate for this task.

Discussion

Due to better results returned by two separate SOMs (one per dimension), this approach
seems to be more appropriate for this task. Dimension 2 (Joyful) was more difficult to
represent which is coherent with previous findings that it is much harder to find
parameters correlated with "Valence" and responsible for "positive" or "negative” mood of
music.

SOM mapping based on the 2-dimensional model of emotions is returning promising
results. Therefore this model seems to be reasonable for employing computational methods
and analysis. Although it should be remembered that meaning of dimensions used in this
analysis was not 100% clear to the subjects, especially Dimension 2, which is correlated
with "Joyful" with correlation coefficient of 0.78 (according to results achieved in Section

6.4).

L6 11 8 [14) 2 9,10 7 15
b o o Lo o e} o 4
i 2 3 z G G 7 : 3 it
number of neuron
Figure 6.23 SOM representation of 10-elements music set for Dimension 1 ("Calm"). Numbers represent
particular songs, listed accordingly to Tab. 6.17. Song labeled with no. "14" is marked according to the inaccurate

location
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Figure 6.24 SOM representation of 10-elements music set for Dimension 2 ("Joyful"). Numbers represent
particular songs, listed accordingly to Tab.6.17. Songs located improperly are marked with ovals

6.6 MOOD OF MUSIC EVALUATION BASED ON COLORS

Colors are intuitive and commonly used representation of mood. The aim of the next
experiment was to determine whether the evaluation based on color intensity could be
directly translated to numerical scale. Tab. 6.26 includes information with regard to

experiment aimed to create a dictionary appropriate for music mood description in Polish.

Table 6.26 Color scale experiment
Title Color scale used for music mood representation
N To determine whether the evaluation based on color intensity could be directly
Objectives .
translated to the numerical scale.
- 15 samples evaluated with numerical and color scales
Protocol

- 36 subjects

General Results
and
Conclusions

- Correlation between results was close to 1
- Color and numerical scale are equivalent and can be used alternatively

Detailed description of the experiment
The listening test consisted of 15 samples from different music genres. Duration of
every music excerpt was constant and lasted for 30 seconds. The complete and detailed list

of music tracks is listed in Tab. 6.17 (used also in the MDS Experiment described in Section
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6.4). The subjects were asked to evaluate the extent to which a given label describes mood
of the particular music excerpt. For the purpose of the survey mood labels were presented
in Polish and they can be found, along with their English counterparts, in Tab. 6.12. The
labels were chosen during previous research study, which was conducted to create a
dictionary associated with mood of music in Polish (described in Section 6.1) [242].

The musical excerpts were randomly ordered and the sequence was different for each
listener. Samples were presented in 128 kbit/s MP3 format. For the purpose of the
experiments a survey was implemented as a HTML website in a series of simple HTML
pages (Fig. 6.25, in Polish). The test began with the introduction page, where subjects were

instructed about their task and could playback the music excerpt to adjust the volume.

Utwor 8/21

Ocen w jakim stopniu kazde z okreslen opisuje zaprezentowany fragment
muzyki w skali od zupetnie nie okresla (biaty) do bardzo okresla
(najbardziej nasycony kolor).

"~ 00:00100:00 »f) Sm——

Nastepny
przyktad

Figure 6.25 Web interface used in the color experiment (in Polish)

Then listeners were guided through subpages with playback and the evaluation form.
This part consisted of two series, 15 samples each. In the first part scale was represented by

matrix of colors with different intensity (Fig. 6.26).
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6 PRELIMINARY EXPERIMENTS AND ANALYSES

Listeners were instructed as follows: "Evaluate, how particular mood label describes
mood of music. Colors represent particular mood labels, intensity of color represents the
extent to which label describes mood of music." In the second part matrix was replaced
with numerical scale from 0 to 4. The listeners were instructed to mark notes on the scale
from "0 (does not describe at all) to 4 (extremely describes)." Both parts consisted of the

same set of music samples. The order was random and different for both parts.

Figure 6.26 Graphical representation of mood scale

The entire test took approximately 20 minutes (including breaks between music
samples and time needed for the answer). The panel of listeners consisted of 36 subjects: 24
men and 12 women. The average age of the subjects was 23 years and no problems with
color perception were reported.

Comparison of the results achieved from numerical and color scale was performed.
Outcomes are included in Tab. 6.27. Analysis shows that results are coherent in 99%,

therefore scales applied are equivalent.
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Table 6.27 Correlation between results achieved for numerical and color scales
Mood label Correlation
All (averaged) 0.99
Aggressive 1
Brisk 0.99
Exalted 0.99
Joyful 0.99
Sad 0.99
Calm 1
Conclusions

Results achieved from both scales (color and numerical) are coherent and reach almost
100% agreement. Therefore scales can be used alternatively and results can be easily
converted between them. It is worth emphasizing that listeners’ comments with regard to
the scale based on colors describe this way of evaluation as a very nice and intuitive. They
also experienced that intensity of color reflecting the intensity of mood is a very clear and
user-friendly idea. Therefore, it is reasonable to assume that the idea of colors representing
emotions and color intensity representing intensity of emotions should be utilized in the
user interface for evaluation and music searching.

This concept of graduate scale is also strongly related to fuzzy logic and the idea of
"degree of membership". It includes various degrees of membership in between 0 (false)

and 1 (truth), which is very coherent with the achieved results.

In this Chapter a series of experiments was presented. This is a research path that leads
to the key experiment. Conclusions from all stages of the presented study were taken into
consideration and are foundation of the key experiment. The final experiment was executed
to collect subjective mood evaluation of a larger set of songs using graphical interface

proposed by the author of this dissertation.
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Main goals of preliminary tests were to determine appropriate vocabulary and check the
methodology for the main experiment. After performing a series of preliminary tests
(described in details in Chapter 6), conclusions from all stages (Fig. 6.1) were taken into
consideration and the key experiment was designed and executed. The final experiment
aimed to collect the subjective evaluation of a larger set of music from different music
genres. Subjective evaluation is often considered as a "ground truth" for emotional content
of music and is used as a reference point for automatic mood recognition [343]. It is very
important what model of emotions is used for subjective evaluation how the data is
collected. Author of the presented dissertation proposes model that is based on the
outcomes of previous experiments and literature of the subject.

Various computational and artificial intelligence methods were used at the previous
stages of this work. Preliminary experiments included analysis of parameters correlated
with mood of music, different pre-processing of data and mapping based on SOMs. All these
algorithms and solutions are tested on a bigger music set for which subjective data was
collected and supplemented by additional methods.

The idea of the main listening test and detailed information about the procedure and
results is included in subsequent sections. In next sub-sections, results of various analyses
including SOM, ANN classification and fuzzy logic are presented and outcomes are
compared with subjective evaluation. At the end of the chapter a tool created for intuitive

presentation of the evaluation and recognition of mood of music is introduced.

7.1 LISTENING TEST

Tab. 7.1 includes information with regard to the main experiment that aimed for
subjective emotional content evaluation of larger set music. As mentioned before, outcomes
from previous experiments were taken into consideration and affected the final form of the

main experiment including model of emotions, music set and procedure.

7.1.1 General Assumptions

The test was executed to collect subjective mood evaluation of larger set of songs using

specially designed graphical interface (Fig. 7.1). The main part of the test consisted of the
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series of musical excerpts presented one after another, where listeners were asked to
evaluate the mood of music by clicking at the graphical mood representation. It was
preceded by a short survey and level check. Experiment was performed in Polish and its
total average duration was approximately 12 minutes. Translation of the mood labels used
in the interface is presented in Tab. 7.2. The stages of the test are presented in Fig. 7.2 and

are described in details in the subsequent section.

Table 7.1 Main experiment

Title Main experiment

. - subjective evaluation of larger data set in terms of mood of music
Objectives : ) . .
- proposed novel graphical model of emotions in music

- 154 samples from 10 genres are evaluated using the proposed graphical
Protocol interface
- 112 subjects

- 154 musical excerpts mapped onto graphical representation (equivalent with

General Results Energy/Arousal plane)

and

. - relation between mood of music and genre examined
Conclusions

- a set of features related to mood of music

7.1.2 Proposed Model of Emotions

One of objectives of this work was to create an intuitive, proprietary model used to
describe the mood music Model of emotions used in graphical interface was created and
designed by author of presented dissertation. During the phase of preliminary tests,
numerous observations were noticed. MDS experiment indicated 2 dimensions underling
the mechanism of perception of mood of music (Section 6.4), Dimension 1 related to "Calm"
and Dimension 2 related to "Joyful". At the same time, SOM mapping based on this
representation returned promising results using these two dimensions (Section 6.5).
Experiment described in Section 6.5 leads to the conclusion that description using 6 mood
labels with scaled intensity is coherent with MDS representation and they can be used
alternatively. Moreover, listeners reacted very positively to the idea of a color representing
particular emotion and intensity of color reflecting the intensity of the mood and found this
method very intuitive (Section 6.6).

All observations from previous stages of the research (Chapter 6) were taken into
consideration and thence, model presented in Fig. 7.1 was proposed. Steps of the model

creation are described in subsequent Section and presented in Fig. 7.3.
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Main assumptions were that model has to be intuitive for users and compatible with
dimensional model consisting of two dimensions. Since listening test described in Section
6.1 showed that 2-dimensional model is not very intuitive for listeners, alternative solution
was proposed. The set of mood labels was selected from the dictionary retrieved from
Experiment A (Section 6.1) to use vocabulary intuitive for listeners in context of mood of
music. Mood labels (originally in Polish) along with their translation can be found in Tab.
7.2.

Mood descriptors were placed on a 2-dimensional plane, with regards to dimensions
retrieved from MDS experiment (Section 6.5) - Joyful and Calm (Fig. 7.4a). This placement is
coherent with Thayer's model [308] and Russel's [264] emotion representation, which are
described in details in Section 2.5.1. It is also consistent with findings of Brinker et al., [43],
who examined relationship between Thayer's Valence/Arousal (VA) model and twelve
mood labels. Their results are cited in Section 3.2.1 and shown in Fig. 3.1 and 3.2. Selected
labels are also consistent with Hevner's list of adjectives [108], which can be found in
Section 2.5.2.

In the next step colors were assigned to particular emotions. The selection was based on
Plutchik’s Color Wheel Of Emotion [249] and the idea of emotions placed close to each other
being represented by similar colors (Fig. 7.3b). Simultaneously, the concept of scaling the
emotion was introduced (Fig. 7.3c). The intensity of color corresponds to the intensity of
particular emotion contained in music (Fig. 7.3d). "White" area placed in the center is
considered as a neutral, where no emotional content is included. Graduation introduced for
each label along with intensity of color was previously tested in experiment described in
Section 6.6, where listeners found this kind of representation very intuitive. This concept is
also strongly related to fuzzy logic and the concept of "degrees of truth". It includes various
states of truth in between 0 (false) and 1 (truth), which is very intuitive, when it comes to
evaluation of such a subtle substance as emotions.

Combination of labels, color representation and graduate scaling resulted in a final
model presented in Fig. 7.1. This representation is intuitive for users but also compatible
with 2-dimensional mood models that were successfully used at previous stages of the

research.
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£NERGICZNY

NEUTRALNY

SMUTNY
ATOSIM

SPOKOJNY
Figure 7.1 Graphical interface dedicated for mood of music evaluation
Table 7.2 List of mood labels used in graphical interface designed for mood of music representation
No. Mood label Mood label
(Polish) (English)
1 Agresywny Aggressive
2 Depresyjny Depressive
3 Ekscytujacy Exciting
4 Energiczny Energetic
5 Neutralny Neutral
6 Relaksujacy Relaxing
7 Smutny Sad
8 Spokojny Calm
9 Wesoty Joyful
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150 songs (30 sec.)
- 10 genres (15 songs of each)
- various moods from each
genre (expert)

<

5 groups (30 songs each)
- genre & mood distribution
A B C D E

<

Algorithm chooses one
of the groups

2|

Short survey
- gender, age
- how frequently they
listen to the music

Introduction ]
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<

Volume Check
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Evaluation of the mood
of set of songs (max. 30)

|
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Figure 7.2 Main test arrangement related to music mood evaluation
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Figure 7.3 Creation of model of emotions used in the key experiment. Different parts show particular
concepts introduced in model: a) mood labels placed on the 2-dimensional model, b) colors representing
emotions, c) graduation of mood, d) graduation of colors equivalent to intensity of emotion

7.1.3 Listening Test

150 tracks were chosen from different 10 music genres, to obtain a diversified set.
Chosen music styles are listed in Tab. 7.3. It is worth noting, that styles which were chosen
are easy to distinguish between each other and cover various music material. 30-sec music
pieces used in the experiment came from the SYNAT music database [151,155].
Additionally, four songs, multi-track recordings, that are analyzed in Section 4.6 are added.
The complete and detailed list of the music tracks is listed in Appendix I and four additional
musical excerpts are indexed as A1-A4. A musical excerpt was listened to and its mood was

evaluatedby the author of this dissertation to collect data with a diversified music material.
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Table 7.3 List of music genres that were involved in the main experiment

Music genre

Blues

Classical

Country
Dance & DJ
Hard Rock & Metal

Jazz

Pop
R&B

Rap & Hip-Hop
Rock

154 music pieces were divided into five sets (app. 30 pieces each), labeled from A to E.
Songs were distributed among the set, so each of them contained all of the genres and all
‘pre-judged’ moods.

The test was performed using a WEB-based interface designed using Heroku platform
[106]. Listeners were entering the website and were directed to a short survey, where
questions about genre, age and how frequently they listen to the music, what is their main
source of music were asked. Then they were guided through the introduction, where the
main concept of the test and the graphical interface were introduced. Subjects were
familiarized with the idea of the mood representation (Fig. 7.1) and especially with the

intensity of colors that represents the intensity of the particular mood (Fig. 7.4).
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Figure 7.4 Graphical representation used in the experiment during introduction, presenting how intensity
of colors represent the intensity of particular mood

After introduction phase, listeners were advised to enter the actual test. Then listeners
were guided through subpages (Fig. 7.5) with playback and the evaluation interface. For
each subject, the particular set of songs was assigned. The algorithm proposed by the
Author was choosing the set (from A to E), so the same number of answers was given. The

order of the tracks was random and different for each listener.

Krok 5 prébka 12z 30

Wybierz nastréj muzyki

ENERGICZNY

NEUTRALNY

SPOKOJNY
Wybrano: Energiczny 2

Figure 7.5 Web interface used in the main experiment
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112 listeners (57 women and 55 man) within age from 16 to 56 (average age 28)
participated in the experiment. Majority of the audience reported that they listen to music

everyday (Fig. 7.6).

3% 3%

Heveryday
43-5 times a week
“ once a week

& less than once a week

Figure 7.6 Results of the survey in which the subjects were asked how often they listen to the music

7.1.4 Results and Discussion

Answers provided by subjects were downloaded from the WEB service [106] as an XLS
file. Data were pre-processed and only valid entries were included in result analysis.
Submission was considered as valid if consisted of 5 to 30 evaluated songs.

Results were analyzed with both dimensional and label approaches. In the dimensional
approach answers were analyzed in polar coordinates. To each field on the graphical
interface, the number value was assigned according to the explanation (Fig 7.4) and angle
was assigned according to the position of the label, this is presented in Fig. 7.7. This allowed
mapping onto 2D Energy/Arousal plane. Achieved results were used as polar and Euclidean
coordinates depending on employed method. Detailed results of the listening test are
presented in Appendix Il in a form of table containing averaged Energy and Arousal values

along with their standard deviations and polar coordinates.
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Figure 7.7

Results are shown in a schematic way in Figs. 7.8 and 7.9. Representation in Fig. 7.10
includes also mood labels that are included in the model used in the tests. Translation of the
mood labels (originally in Polish) can be found in Tab. 7.2. All songs are marked with red "x"
signs. Labels are not included for the clarity of the presentation. The same results assigned

according to music genre are included in Fig. 7.10. For discussion of results quadrants of the

7KEY EXPERIMENT

I

I
Iy

2

Value assigned to each label along with its intensity and position on the model

AV plane are numbered from I to IV as presented in Fig. 7.8.
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quadrant I1 quadrant [

-2

quadrant 11 quadrant [V

non

Figure 7.8 Mapping of 154 songs onto mood plane based on the listening test results. "x" signs represent
150 songs from SYNAT and "o" represent tracks, which were very thoroughly analyzed in Section 4.6

This map is coherent with distribution of 50000 songs on the Valence/Arousal plane
presented by Kim [131] (Fig. 3.10) as well as findings of Brinker et al. [43] who observed
that the left part of VA plane for popular music is actually rather empty. This part of the VA
plane does not naturally occur in Western popular music. Details of referred works are
cited in Section 3.2. It is important to remember that the music set was pre-judged and

selected to cover variety of emotions included in music.
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Figure 7.9 Mapping of 150 songs onto mood representation including mood labels (translations are listed
in Tab. 7.2). "x" signs represent songs
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Figure 7.10 Mapping of 150 songs (divided by the genre) onto mood plane based on the listening test results
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Averaged ratings are mostly within range [0,2]. Only for aggressive mood a stronger
result was obtained. In this case mood of music might be strongly related to the perceived
emotion. Also distribution of music pieces sorted by genre is very interesting. For clarity
results separated according to music style are shown in Figs. 7.11 (Jazz, Hard Rock & Metal,
Pop and Rock) and 7.12 (Blues, Classical, Country, Dance & D], Rap & Hip-Hop, R&B), and
described in subsequent paragraphs. Quadrants are discussed according to the
nomenclature presented in Fig. 7.8 and songs are numbered according to Appendix I. Tab.
7.4 contains averaged results for different music genres along with values of standard
deviation of Valence and Arousal within these genres.

In Fig. 7.11 genres, for which an additional analysis on separate tracks was performed in
Section 4.6, are included. Excerpts, which were analyzed using tracks of separated

instruments are marked with blue circles and numbered A1-A4 accordingly.

Jazz Hard Rock & Metal
@ P
1 - 1 e
0 °
2 1 0 L 1 o 0 1
-® : 1
" . Al - .
Pop
Rock
| N L] :
A3 A4
B 1 ’ 0 1 3 ’ o‘ 1 3
4 S

Figure 7.11 Mapping of songs divided by the genre (Jazz, Hard Rock & Metal, Pop, Rock onto mood plane
based on the listening test results. Additional tracks A1-A4 are indicated by blue circles
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Blues 3 Classical
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Figure 7.12 Mapping of songs divided by music genre (Blues, Classical, Country, Dance & DJ, Rap & Hip-Hop,
R&B) onto mood plane based on the listening test results

For pop and rock music, excerpts are distributed in all quadrants of the AV plane. There
is no jazz songs in Il quadrant, even though some songs could be called "Aggressive" i.e.

Marcus Miller, "What Is Hip?", no. 82 or John Coltrane, "Giant Steps”, no. 77. At the same
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time, Hard rock & Metal genre was evaluated as containing negative energy and occurs only
on the left side of the VA plane, distributed mostly over II quadrant. Additional songs A1 -
A4 fit general trends within their styles.

Blues was placed by listeners mostly on the right half of the VA plane (positive) as well
as classical, where only two pieces were placed in quadrant III. A similar tendency is
observed for country excerpts. Rap & Hip-Hop was considered mostly as music with high
arousal and appeared mostly in quadrants [ and II. Some excerpts are placed in quadrant II],
i.e. Tyler, The Creator, "Her", no. 124, which is rather slow and has very little energy of low
frequencies.

Distribution of Blues and R&B was quite similar (mostly quadrants I and IV), which
might be related to musical similarities and common roots of both genres. Although blues is
often considered as very sad music, it was placed on the "positive" half of VA plane.

What is interesting, Dance & D] excerpts are distributed among all quadrants as well as
Pop and Rock. These music genres are very frequent in popular culture, therefore are not
strongly related to one and only esthetics or topic but are mixtures of different trends. That
is also reflected in values of the standard deviation, which are highest for these genres (Tab.
7.4).

Ratings for all songs in each genre were averaged and results are listed in Tab. 7.4 and
mapped onto the AV plane shown in Fig. 7.13. Centroids for particular music genres are
presented using the same marks representing music styles as in Figs. 7.11 and 7.12.
Average rating for all genres except of Hard Rock & Metal are within radius of 1. Hard Rock
& Metal was evaluated with strong ratings in quadrant II and that is visible also in this
graph as well as a corresponding smaller value of the standard deviation of Valence (Tab.
7.4). Standard deviation for Valence is also small for R&B, because most of songs within this
style were considered as positive. Standard deviations are highest for jazz (Tab. 7.4), i.e.
songs are placed in quadrants I, Il and IV with quite strong ratings (Fig. 7.11).

All observations listed above are important cues for conducting experiments with
decision systems. Although they are related to the specific music set, they might
represent more general trends due to carefully selecting excerpts for the performed

evaluation.
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Table 7.4 Averaged results for various music genres
. Averaged Averaged St. Dev. St. Dev.
Music genre
Valence Arousal Valence Arousal
Blues 0.60 0.33 1.11 1.16
Classical 0.68 -0.25 1.28 1.25
Country 0.44 0.10 1.05 1.02
Dance & D] 0.25 0.26 1.06 1.15
Hard Rock & Metal -0.55 1.03 0.99 1.09
Jazz 0.60 -0.10 1.19 1.33
Pop 0.04 0.22 1.04 1.20
R&B 0.49 -0.32 0.99 1.12
Rap & Hip-Hop -0.17 0.62 1.10 1.12
Rock 0.00 0.43 1.24 1.13
2
A Blues
e 1 O Classical
O Country
S X Dance & DJ
X & ® Hard Rock & Metal
(m]
0 - H Jazz
B 2 -1 0 _o | 2 3 Pop
—R&B
Rap & Hip-Hop
1 ®Rock
-2
Figure 7.13 Centroids for particular music genres

Contrarily, the label analysis was performed, where the number of occurrences of each

label was calculated for every song. As a result, each song is described with a 9-element
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vector, where each position refers to mood label (Tab. 7.1). The value describes the
percentage of occurrences of each label. Examples of songs along with their label
description are shown in Fig. 7.14. Some songs are described by all listeners with mainly
one label (i.e.: Death, "Story to tell”, no. 62 in App. I and III), while for other evaluations is
spread among the labels (i.e.: Guy Davis, "Watch Over Me", no. 11 in App. I and III). Detailed
label results for all songs are presented in Appendix III.

100
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5 & Death, "Story To Tell" (Hard Rock & Metal)

70

¥ Guy Davis, "Watch Over Me" (Blues)
60

50 Velvet, "Fix Me", (Dance & DJ)
40 4 Benny Benassi, "Cinema" (Dance & DJ)
30 it " :

Twista, "Kill Us All" (Rap & Hip-Hop)
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10 I
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Figure 7.14 Example of results of mood labels assigned to particular songs. The vertical axis describes the

percent of occurrences of each label

One of the main observations during analysis of results was that process of combining a
point on the VA plane with music is inconvenient and distracting. Therefore a concept of a
tool that would enable connection between point in the VA plane and music excerpt was

introduced. Its design and implementation are described in the subsequent Section.

7.2 VISUALIZATION OF MOOD IN MUSIC RECOGNITION

Visualization and comparison of subjective results and automatically assigned mood of
music is challenging. Therefore a tool to present the concept of musical excerpts organized
according to the emotional content was created. It was designed to enable intuitive
presentation of the results of listening tests and automatic mood recognition. The idea was
to place objects on the graphical mood of model that was introduced in the description of

the main listening test (Section 7.1).
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The visualization tool is implemented and designed in Max 7 software [62]. This
environment enables interactive processing of audio and image files and signals and is
commonly used by audio and visual artists in various art installations [31,72,94,135]. The

programming interface is designed in a "patcher " (Fig. 7.15).

‘00O analiza v2 (unlocked)

wxy T [~ mXPOLEEHD+ <

£NERGICZNY

script $1 siatka_punkty

NEUTRALNY

ATOSIM

f}illsc.een $1

ihispatcher

s panic_stop

pv pozycja

Figure 7.15 Programming process of visualization tool in Max 7

Musical excerpts are represented by small squares, which are placed on the mood
model. After mouse click on the particular object playback of chosen music piece, which
mood of music corresponds to the point on the model is started and description of the song

is shown (Fig. 7.16).
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ENERGICZNY

NEUTRALNY

SPOKOJNY

. "Watch Over Me (Blues)"

Figure 7.16 Music fragments placed on the mood map. Mouse click on the object triggers playback of a song
which mood of music corresponds to the point on the model. Detailed information about played song, including
artist, title and genre, is placed in the bottom part of the interface

Colors of the squares are related to music genres according to caption included in Fig.
7.17.
Mapping of whole set of 154 musical excerpts used in key experiment is presented in

Fig. 7.18 with respective position on the VA plane and music genre annotation.
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Figure 7.17 Visualization tool designed in MAX 7. Squares indicate songs, while color of squares represent
music genre according to the legend on the right side

ENERGICZNY

Classical
. Country
Dance & DJ
Hard Rock & Metal

Jazz

Pop

. R&B

. Rap & Hip-Hop

Rock
SPOKOJNY

"Take Me Away (Blues)"
Ful | BSeflpl fieveroton ooty

Figure 7.18 154 songs used in the key experiment (listed in App. 1) mapped using MAX 7 visualization tool
according to subjective evaluation of mood of music

The playback interface presented in previous Section was also consulted with a group of
listeners, who did not participate in evaluation of mood stage of the key experiment. The
test was informal and aimed for retrieving their comments how the whole concept is
intuitive in terms of exploring music. Their observations were often leading to conclusion
that it is very hard to determine the intensity of mood on a crisp scale. At the same time,

some of them pointed out that also transition between emotions should be blurred. All
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these remarks lead to the idea of fuzzyfying the boundaries in proposed model of mood. A
model with fuzzified boundaries of emotions and fuzzified intensity of mood is presented in

Fig. 7.19.

eNERGICZNY

NEUTRALNY

SMUTNY
AT0SIM

SPOKOJNY

Figure 7.19 Proposed modified model of mood with fuzzified boundries of emotions

The set of songs used in the key experiment was mapped onto the model with fuzzified
boundaries and this representation is shown in Fig. 7.20. Consultants described this
projection as more intuitive and this is coherent with the intuitive concept that there is no
crisp ranges representing mood and emotions, contrarily the transition area is rather
blurred. This is also closely related to a human's perception of music and leaves space for
interpretation. Due to fuzzification that occurs in two dimensions: intensity of mood and
transition between emotions, model based on fuzzy logics should also be two-dimensional.

These observations lead to the conclusion that approach based on fuzzy logic might be
appropriate for the area of Music Emotion Recognition. Therefore attempt to discussion

related to employing this method in MER is presented in subsequent Section.

218



7KEY EXPERIMENT

ENERGICZNY
6}6‘(\
y N
2
4
Q2
| |
> =
< [ ]
5 =" NEUzREWBlY ® °® 2
a mms mE = 3 |12

SPOKOJNY

Figure 7.20 154 songs used in key experiment (listed in App. I) mapped according to subjective evaluation of
mood of music into a model with fuzzified boundaries

7.3 APPROACH BASED ON FUZZY LOGIC

Conclusions from previous Section as well as publications of Blewitt [36] and Jun and
collaborators [125] imply that an approach based on fuzzy logic in the area of MER is very
intuitive and might lead to interesting results. As described in Section 5.7, relations
between emotions in music and music characteristics described by Hevner [108] are based
on the concept of rules, which can be considered as fuzzy. According to her findings (Tab.
4.2),ie.

IF tempo is LOW, and minor mode content is HIGH, THEN the mood of music
should be DREAMY.

IF major mode content is HIGH, and flowing rhythm content is MEDIUM, THEN the
mood of music should be PLAYFUL.

IF low pitch content is HIGH, and minor mode content is HIGH, THEN the mood of
music should be PATHETIC.

Similar rules can be created for results achieved in the course of the presented

experiments. Some rules can be defined by an expert or based on the analysis of outcomes

219



7KEY EXPERIMENT

and can result in membership function creation. For experts, rules based on futures related
to music characteristics are easier to define due to more clear interpretation of their
meaning. An example of conditional statement is given below:

IF tempo is LOW and SPECTRAL BRIGHTNESS is low then mood of music is
DEPRESSIVE.

Corresponding membership functions related to tempo (BPM) and brightness
(calculated according to description in Section 4.6.3) are presented in Fig. 7.21. The
consequent is also considered as fuzzy, taking into consideration fuzzification between

mood labels and mood intensity.

A

degree of the
membership

function
SLOW MEDIUM FAST

tempo (BPM)

| <
40 120 170 260

degree of the
membership
function LOW MEDIUM HIGH
|
brightness
0.19 031 042 05 }
Figure 7.21 Example of membership functions related to a rule dedicated to mood of music

The antecedents of the proposed conditioning statement are based on tempo and
brightness, therefore songs evaluated by listeners as "Depressive" are listed in Tab. 7.5 with
corresponding values.

Fuzzy logic should be considered in further studies on automatic mood of music

recognition and this approach can be developed into a full fuzzy logic-based system.
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Table 7.5 Objects evaluated by listeners as "Depressive along with tempo and brightness, which values are
premises in the proposed conditioning statement. Tracks are named according to App. |

No. Genre Tempo Brightness Remaining FV Mood of music
(BPM) (normalized) parameters label

3 Blues 110 0.25 Depressive
18 Classical 101 0.17 Depressive
25 Classical 134 0.37 Depressive
40 Country 109 0.41 Depressive
58 Dance & DJ 139 0.36 Depressive
69 Hard Rock & Metal 105 0.37 Depressive
73 Hard Rock & Metal 109 0.25 Depressive
78 Jazz 105 0.13 Depressive
79 Jazz 114 0.08 Depressive
101 Pop 131 0.28 Depressive
102 Pop 121 0.28 Depressive
123 Rap & Hip-Hop 74 0.38 Depressive
124 Rap & Hip-Hop 63 0.43 Depressive
133 Rap & Hip-Hop 98 0.32 Depressive
147 Classic Rock 108 0.40 Depressive

7.4 CORRELATION ANALYSIS

For all 154 musical excerpts FVs consisting of 173 parameters from SYNAT (described
in Section 4.5) were retrieved and additional parameters from MIR Toolbox (Section 4.6.3)
and time-based features (TBF) proposed by the author (Section 4.6.2) were calculated. This
set of parameters contains a lot of information but not necessarily related to mood of music.

At previous stages of this study a selection of parameters based on correlation analysis was
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performed and returned good results, therefore this approach was applied. Correlation
between subjective values of Valence and Arousal and parameters was calculated and
therefore a set of features strongly related to mood was created. Only parameters with
correlation coefficient higher than 0.50 were included in the final feature vector.
Eventually, the feature vector describing mood of music consisted of 16 parameters from
SYNAT, listed in Tab. 7.6 and 17 parameters from MIR Toolbox and MTBF for different
ranges are presented in Tab. 7.7. It is worth noting that correlation is slightly stronger with
parameters based on music characteristic than from SYNAT, which describe general
properties of an audio signal. Description of parameters included in SYNAT can be found in
Section 4.5, time-based features (TBF) and features from MIR Toolbox in Sections 4.4.1 and
4.6.3 and in more detail in the MIR manual [164].

For each dimension moderate and strongly correlated parameters were found, what
proves the Thesis no. 1, which assumes that it is possible to find parameters describing

a musical excerpt, which are highly correlated with subjective mood labeling results.

Table 7.6 Parameters correlated with subjective mood of music evaluation selected from 173
SYNAT FV
No. Valence No. Arousal

Parameter Corr. Parameter Corr.

1 ASE2 -0.72 1 MFCC1 -0.79

2 MFCC7 -0.62 2 MFCC2 -0.78
3 PEAK RMS10FR_MEA 3

N 0.51 SFM13 -0.63

ASE_M -0.50 4 SFM12 -0.61

5 ASE26 -0.50 5 SFM14 -0.56

6 SFM15 -0.56

7 SFM10 -0.53

8 1RMS_TCD 0.52

9 SFM_M -0.51

10 SFM11 -0.51

11 SFM16 -0.50
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Table 7.7 Parameters correlated with subjective mood of music evaluation selected from MIR
Toolbox related to music characteristics and proposed time-based features (TBF)

No. Valence No. Arousal

Parameter Corr. Parameter Corr.

1 Spectral irregularity 0.73 1 Brightness 0.83
2 MTBF2 0.54 2 Entropy of Spectrum 0.79
3 Spectral roughness 0.52 3 Timbre Zerocross 0.64

Tonal Harmonic Change
4 Detection 0.64
Harmonic Change Detection

5 Function 0.62

6 Spectral Centroid Mean 0.57

7 Key Clarity 0.55

8 Tempo 0.55

9 Spectral Flux Period 0.55

10 Spectral irregularity 0.53

11 spectral rolloff 185 0.52

12 Spectral Kurtosis 0.51

13 MTBF1 0.51

14 Spectral roughness 0.50

As in the previous stages, less parameters are correlated with dimension corresponding
to positive or negative mood of music (here Valence) than with Arousal. Also the correlation
reaches higher values for Arousal (up to 0.83) comparing to ones achieved for Valence
(max. 0.73). This result is coherent not only with previous studies of the author [243,244]

but also with outcomes of other research studies presented in the literature [43,232,254].

7.5 ARTIFICIAL INTELLIGENCE METHODS USED FOR MER

Mapping of a music set based on included emotions using Self-Organizing Maps was
performed at the previous stage of the research (Section 6.5). SOMs returned promising
results and therefore are implemented on the larger set of music. Additionally, classification
employing algorithms with supervised manner of learning is performed. Performance of
Artificial Neural Networks in the mood of music classification task is described and results

from both methods, self-organizing and trained networks are then compared.
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Vector of parameters used in classification consists of 33 elements (as listed in Tabs. 7.6
and 7.7) and it is based on the correlation analysis with results of subjective mood
evaluation. Selection of features is described in the previous Section. Principal Component
Analysis was used in pre-processing of data at prior stages of experiments and returned

good results for SOM mapping (Section 6.5). Therefore it was also applied to the chosen

vector of parameters.

PCA was performed separately for both sub-sets of features correlated with single
dimension (Valence or Arousal) as well as on the whole feature vector consisting of 33
parameters. As a result, shorter feature vectors were obtained and outcomes of these
analyses are presented in Tab. 7.8. For Valence, five components cover 99% of information,

for Arousal 17 elements are sufficient. PCA calculated for the whole 33-element feature

vector resulted in 20 components covering 99% of information.

Table 7.8

Number of PCA components covering 99% of information for different vectors of

parameters correlated with mood of music

Vector of parameters

PCA result (number of components
covering 99% percent of information)

parameters correlated with Arousal)

8 parameters correlated with Valence 5

25 parameters correlated with Arousal 17
33 parameters (cumulative vector consisting

of parameters correlated with Valence and 20

For the convenience of description in further analyses, sets of features used in SOM and

ANN classification are organized and named according to the nomenclature given in Tab.

7.9.
Table 7.9 Data sets used in SOM- and ANN-based classification
Data set Description
Data_V 8 parameters correlated with Valence
Data_A 25 parameters correlated with Arousal
33 parameters (cumulative vector consisting of
Data_VA parameters correlated with Valence and
parameters correlated with Arousal)
PC V 5 Principal Components calculated for parameters
- correlated with Valence (Data_V)
PC A 17 Principal Components calculated for
- parameters correlated with Arousal (Data_A)
20 Principal Components calculated for 33
PC_VA
parameters Data_VA
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7.5.1 SOM Analysis

SOM analyses were performed in Matlab using selforgmap module, for various
topographies and sizes of the neural network. Results easier for interpretation were
returned using grid topology; therefore this one was implemented in the analysis. Accuracy
of various SOM representations is listed in Tab. 7.10. Based on previous experience with
mood description based on SOM (Section 6.5), separate SOMs (1D SOM) for Valence and
Arousal were created, but for this task the 2-dimensional SOMs (2D SOM) were much more
accurate and returned better results.

For 2D SOM representation, the best results were achieved for the grid topology with
network dimensions of 5x5 feature vector consisting of 33 elements describing both
dimensions. Better results were achieved for data after employing PCA. Examples of SOM
representations are shown in Figs. 7.22-7.25, where the number of hits for a particular
neuron is marked. It is worth noting that the empty area on the left side of the plane, which
is prominent in representation, achieved from subjective evaluation (Fig. 7.8), is also visible

on the map returned by 5x5 SOM (Tab. 7.10, row 9), which is shown in Fig. 7.23.

Table 7.10 Accuracy of different classification setups. "Input” column contains information about data
provided into input of ANN, "SOM setup" indicates size of SOM and "Accuracy” the performance of SOM

No. Input SOM setup Accuracy
1 Data V 1D, 1x5 29%
2 Data_A 1D, 1x5 34%
3 Data V 1D, 1x7 15%
4 Data_A 1D, 1x7 19%
5 Data_VA 2D, 5x5 58%
6 PC_V 1D, 1x5 28%
7 PC_A 1D, 1x5 38%
8 PC_VA 2D, 3x3 54%
9 PC_VA 2D, 5x5 67%
10 PC_VA 2D, 7x7 49%
11 PC_VA 2D, 9x9 22%
12 PC_VA 2D, 11x11 20%
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Hits

Figure 7.22 Number of hits for each neuron for 2D SOM (3x3, grid topology) representation. 154-elements
music set was mapped using PC_VA data. Accuracy achieved for this setup reached 54%

Hits

Figure 7.23 Number of hits for each neuron for 2D SOM (5x5, grid topology) representation. 154-elements
music set was mapped using PC_VA data Accuracy achieved for this setup reached 67%
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Figure 7.24 Number of hits for each neuron for 2D SOM (7x7, grid topology) representation. 154-elements
music set was mapped using PC_VA data. Accuracy achieved for this setup reached 49%

Figure 7.25 Number of hits for each neuron for 2D SOM (11x11, grid topology) representation. 154-elements
music set was mapped using PC_VA data Accuracy achieved for this setup reached 20%
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7.5.2 ANN-based Classification

The ANN-based classification was performed using nntool within the Matlab
environment (MATLAB). The music set was divided into three subsets: training (70%),
validation (15%) and testing (15%) randomly.

A feed-forward ANN with one hidden layer was trained to classify musical excerpts into
four quadrants of Thayer's VA plane (described in Section 2.5.1). These values can vary
depending on the data set. Various feature vectors listed in Tab. 7.9 were fed to the input of
ANN. Different configurations of ANN were tested and but the best results were obtained
for a network with 15 neurons in the hidden layer. Results strongly depend on the
definition of classes. Results of various classification setups are presented in Tab. 7.11.
Classification using eight classes (mood labels assigned to the parts of a circle - Fig. 7.3.b)
returned low accuracy, therefore the idea of classes related to Valence and Arousal
dimensions was introduced. For the purpose of the ANN-based analysis, dimensional
results were normalized into [-1,1] range.

The highest accuracy was achieved for two separate networks - one dedicated to each
dimension (Valence and Arousal) with input data containing only features correlated with a
particular dimension. Overall, results of 83% accuracy for Valence and 91% for Arousal in
classification into two halves of the VA plane were obtained. With increasing the number of
classes, the output was fuzzified and returned results indicated position on VA plane with
more detail. Outcomes of classification for four ranges in each dimension (Tab. 7.11, rows
13 and 14) also returned good results with app. 70% accuracy. Further increasing the
number of compartments was decreasing the efficiency, down to 48-50% for 10 ranges. It is
worth noting that data reduction based on PCA did not improve results therefore further
ANN analysis using PCA were abandoned.

An interesting result was also obtained for classification described in rows 21 and 22
(Tab. 7.11). ANN was employed to separate all excerpts with low intensity of emotion
(small radius in polar coordinates, objects close to the middle of VA plane). The accuracy of
this classification was app. 84-85% depending on the radius. This operation slightly
increased the accuracy of classification into set of eight mood rows (1 vs. 23). At the same
classification for concentric classes representing similar intensity of emotion (radius)
achieved low (rows 24 and 25), what shows that the dimensional-based approach enables

better automatic mood recognition.
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Table 7.11 Accuracy of different classification setups. "Input” column contains information about data
provided into input of ANN, "Classes" indicates number of classes and their definition and "Accuracy” the
performance of ANN

No. Input Classes Accuracy
1 data V+A 8 (mood labels - Fig.7.3.b) 45%
2 PCA_VA 8 (mood labels - Fig.7.3.b) 33%
3 data V+A 4 (quadrants of VA plane) 56%
4 PCA_VA 4 (quadrants of VA plane) 47%
5 dataV 2 (Valence (-1,0) and [0,1]) 83%
6 data A 2 (Arousal (-1,0) and [0,1]) 91%
7 data V+A 2 (Valence (-1,0) and [0,1]) 74%
8 data V+A 2 (Arousal (-1,0) and [0,1]) 87%
9 PC_V 2 (Valence (-1,0) and [0,1]) 61%
10 PC_A 2 (Arousal (-1,0) and [0,1]) 52%
11 PC_VA 2 (Valence (-1,0) and [0,1]) 47%
12 PC_VA 2 (Arousal (-1,0) and [0,1]) 53%
13 data V 4 (Valence [-1,-0.[%).,5’[—1(]35, 0),[0,0.5) and 70%
14 data A 4 (Arousal [—1,—0.{5())).,;-1(]).)5, 0),[0,0.5) and 71%
15 data V+A 4 (Valence [-1,-0.[%).,5’[—1(]35, 0),[0,0.5) and 65%
16 data V+A 4 (Arousal [—1,—0.{5())),5[-1(]).)5, 0),[0,0.5) and 5804

10 (Valence [-1,-0.8), [-0.8,-0.6) ... [0.6,

0,

17 dataV 0.8) and [0.8,1]) 48%
10 (Arousal [-1,-0.8), [-0.8, -0.6) ... [0.6, 0

18 data A 0.8) and [0.8,1]) 50%
10 (Valence [-1,-0.8), [-0.8,-0.6) ... [0.6, 0

19 data V+A 0.8) and [0.8,1]) 45%
20 data V+A 10 (Arousal [-1,-0.8), [-0.8, -0.6) ... [0.6, 459

0.8) and [0.8,1]) 0

21 data V+A 2 (r[0,0.1) and [0.1, 1] 84%

22 data V+A 2 (r[0,0.2) and [0.1, 1] 85%
8 (mood labels - Fig.7.3.b), * objects, where 0

23 data V+A r [0, 0.1) were excluded >1%

24 data V+A 3 (r [0, 0.33), [0.33, 0.66) and [0.66, 1]) 32%

*
) data VeA 3 (r [0.1, 0.4), [0.4, 0.7) and [0.7, 1]), 350

objects, where r [0, 0.1) were excluded
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7.6 COMPARISON OF RESULTS AND DISCUSSION

Analyses described in previous Sections clearly show, that methods based on artificial
intelligence, thus closely related to a human's perception, are appropriate for the Music
Emotion Recognition tasks. The size of the analyzed data set do not enable a detailed
description of every single music excerpt; therefore examples of few most common trends
are described in subsequent paragraphs. Musical excerpts are numbered according to
Appendix I.

SOM analysis returns the 2-dimensional mapping of musical excerpts on the VA plane.
Set of misclassified objects is different for every activation of the network, although some
excerpts are often wrongly evaluated. This situation occurred often for songs with "neutral’
mood, these with Valence and Arousal values close to 0 (i.e. Living Legends "Never Fallin' ",
no. 133).

Some songs were difficult to describe in one of the dimensions. For example, Brian
McKnight "The Rest of My Life", no. 108, was correctly assigned by ANN and SOM to the
lower part of the VA plane, but both algorithms wrongly evaluated it as very sad.

There were also songs for which automatic description was less difficult, such as Rosin
Coven, "Lion Song", no. 78, characterized by dull timbre, slow tempo and strange harmony
clearly, which indicates depressive mood. Listeners evaluated this piece of music with high
intensity of mood, and that is coherent with clear results returned by both algorithms. In
general, most of songs, which were placed by listeners far away from 0 and axes were easier
for automatic mood description, and overall they returned results that are coherent with
subjective opinions.

[t is also worth mentioning, that songs placed by listeners in II quadrant of the VA plane,
were rarely misjudged by algorithms. At the same time pop and rock songs where often
misclassified, what might lead to the conclusion that emotions contained in these genres are
not as clear as for other music styles.

As a conclusion both, SOMs and ANNs, when employing the proposed feature vector,
returned outcomes that enable automatic recognition of mood of music. It is important to
emphasize that the approach proposed by the Author, namely using separate music tracks
to introduce new features that better characterize mood specifics is very promising as it
improved the accuracy of classification. Both methods returned mood recognition results,

which can be used for music recommendation based on emotions included in music.
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Therefore, it was proven that Self-organizing maps (SOMs) or artificial neural networks
(ANNSs) trained employing designed feature vectors can effectively be applied to the
automated indexing of mood of musical excerpts (thesis no. 2 of this dissertation).

A question arises whether it is possible to straightforward compare results obtained
from unsupervised algorithms (SOM) and classification based on a supervised technique
such as Artificial Neural Networks (ANN). Representation achieved using SOM reached up
to 67% accuracy and ANN classification 91% accuracy for Arousal and 83% for Valence.
Even though these outcomes are described by similar accuracy, their interpretation differs.
SOM returns more specific information about the position of an object on the VA plane,
while ANN returns less specific information but with higher accuracy. At the same time,
data obtained from SOM are more difficult to interpret.

The accuracy achieved for both methods is sufficiently high, especially taking into
consideration the specifics of the task. Moreover, results obtained from ANN and SOM
classification are especially satisfactory, as a very high consistency of the results between
listeners and a very good accuracy of the algorithms is not easy to obtain due to the
subjective character of evaluation. It is as one expects a very good effectiveness from
algorithms in cases when even experienced listeners’ opinions differ. Also, it should be
remembered that automatic mood annotation is still treated in the area of music querying
as less important than search based on music genre, thus the results obtained in this
dissertation, higher than those in other studies, may be one step closer to change this
situation. Overall, the results achieved prove thesis no. 3: " Annotations of mood of
music achieved by subjective assessments and classifying based on both supervised

and unsupervised learning can be coherent."
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This final chapter summarizes the study performed within the Ph.D. dissertation and its
outcomes presented in this thesis. In addition, several extensions for future research that
deserves to be explored are pointed out and briefly discussed.

The scope of this project was a framework of automatic organization of music based on
the emotional content of music. A review of research studies related to music perception,
MIR and especially MER pointed out issues that should be examined, such as the model of
emotions used, features based on music characteristics and classification algorithms
employed for automatic mood recognition.

In the course of this study numerous experiments were carried out. The first part
involved quantitative and qualitative experiments and on this basis a dictionary related to
mood of music in Polish was created. A Multidimensional Scaling experiment was executed
to determine the dimensions underlying the perception of mood of music, hence the 2-
dimensional model of mood with dimensions corresponding to "Joyful" and "Calm" was
verified. In another experiment, the idea of the evaluation of mood of music using colors
and their intensity was tested. A conclusion derived from that was that colors and intensity
are a very intuitive method of music annotation and can directly be translated to the
numerical scale and therefore can be implemented in interfaces dedicated to emotions
included in music. In addition, a correlation between subjective evaluation results and
objective parameters was performed and a vector of parameters related to mood of music
was obtained. These results enabled verification and discussion of two classification
algorithms, chosen from a variety of artificial intelligence algorithms, i.e. SOM and ANN,
which were later employed in the final stage of this work.

Moreover, an overview of audio parametrization was presented with a special focus on
parameters describing characteristics of music. These parameters were critically reviewed
by the author, and a conclusion was that some additional parameters should be searched
and examined. Therefore, an original analysis of single instrument tracks for different music
genres was carried out. Sound material that enabled a deep study of information described
by parameters in the case of a single instrument vs. the whole track was recorded and then

selected by the author of this dissertation. The collected music material was also included in
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the final, key experiment. In addition, own time-based features (TBF), describing rhythmic
content in sub-bands, were introduced by the author and used in the final analysis.

The key experiment was based on conclusions derived from previous stages of the
research carried out by the author. As a result, a model of emotions in music was created by
the author and later implemented. The proposed model is intuitive for listeners and assigns
colors as a representation of different emotions. The idea of color intensity corresponding
to the intensity of emotion included in the music was incorporated into it. Moreover, the
model includes mood labels achieved from the previous stage of experiments aimed at
creating the dictionary related to mood of music. It is also coherent with the 2-dimensional
mood representation, verified in the MDS experiment. Designing an original model of mood
dedicated to the subjective evaluation of the emotional content of music was one of the
partial objectives of this work.

A set of 154 songs from 10 music genres was evaluated by subjects in the listening
experiment in terms of mood of music. This amount of data collected within one concise test
is also an important contribution of this work, since subjective evaluation is treated as the
"ground truth" in MER studies. Subjective data were retrieved using the author’s model of
mood but the model is also compatible with the commonly used 2-dimensional
Valence/Arousal representation of emotions. This was shown in the course of the study. A
diversified music set enabled also the genre-oriented analysis of the emotional content of
music. The correlation analysis of features with Valence and Arousal values, achieved from
the subjective tests, returned a vector of parameters strongly related to mood of music. This
proves thesis no.1: "It is possible to find parameters describing a musical excerpt,
which are highly correlated with subjective mood labeling results."

A visualization tool was created to present the concept of musical excerpts organized
according to emotional content. It enables linking points on the VA plane with music files in
an easy and intuitive way. Taking into consideration the results of the previous analyses as
well as comments from listeners, fuzzification of the mood representation was also
introduced along with an approach based on fuzzy logic.

The automatic positioning of musical excerpts onto a mood plane was performed using
SOMs, which were tested during the preliminary phase of experiments. A map of musical
excerpts organized geometrically according to their emotional content was created with

accuracy of 67%. Various setups of SOMs and data pre-processing were tested at that stage.
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In addition, classification based on a supervised training, i.e. employing the ANN
algorithm was performed. The achieved classification accuracy depends strongly on the
number and definition of classes. The best results for classification were achieved when the
VA plane was divided into halves, and these reached up to 91% accuracy for Arousal and
83% for Valence. These results outperform classification effectiveness shown in the
literature sources. Analyses have shown that classification based on classes defined by
values of Valence and Arousal returned higher accuracy, which demonstrated that the
dimensional-based approach enables better automatic mood recognition.

The results of both algorithms, SOM and ANN, were analyzed and compared, including a
case study of single musical excerpts and music genres. This resulted in the proposal of new
(additional) mood descriptors that were included in the final feature vector tested with
SOM and ANN. Even though some objects were misclassified by both methods, the accuracy
values from both representations is very high, hence this proves thesis no. 2: " Self-
organizing maps (SOMs) or artificial neural networks (ANNs) trained employing
designed feature vectors can effectively be applied to the automated indexing of
mood of musical excerpts."

The results obtained from ANN and SOM classification are especially satisfactory, as a
very high consistency of the results between listeners and a very good accuracy of the
algorithms is not easy to obtain due to the subjective character of evaluation. It
demonstrates a very good effectiveness of the algorithms in cases when even experienced
listeners’ opinions differ. The study presented by the author was focused mostly on the
creation of a mood model that would be easily understood and user-friendly, as well as on
the computational methods that are close to a human's reasoning and perception, which
also vary a lot in terms of interpretation and decisions, and then the finding of a reasonable
relationship linking both approaches together. This was demonstrated by the overall results
obtained in the key experiments, therefore this proves thesis no. 3: "Annotations of mood
of music achieved by subjective assessments and classifying based on both
supervised and unsupervised learning can be coherent.". In addition, the outcomes
achieved were compared with various studies presented in the literature of the topic, and
the results presented in this thesis can be treated as complementary or as outperforming

many of them.
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In this section, major original contributions of the work are listed:

The creation of a dictionary of expressions related to mood of music in Polish;
Executing a Multidimensional Scaling experiment dedicated to mood of music
perceptions results and showing two dimensions underlying mood of music
perception;

Proposing a novel analysis of single instrument tracks vs. mix in terms of
emotions included in music;

Proposing new time-based features describing rhythmic content in frequency
ranges;

Proposing an original model of emotions dedicated to the subjective
evaluation of mood of music;

Performing a subjective evaluation of 154 musical excerpts from 10 music
genres within one concise listening test of the emotional content;

Proposing a visualization tool, which enables the presentation of a music set
mapped by mood of music;

Proposing a graphical representation of a music set (154 excerpts) organized
according to the emotional content of music;

Executing an automatic recognition of mood of music utilizing the ANN
algorithm and the feature vector containing the proposed new descriptors
and obtaining results for mood classification outperforming findings in the
literature sources;

Achieving an automatic mapping of music based on mood using SOM;
Showing perspectives to utilize a fuzzy logic-based approach to MER-based

studies.

The present dissertation has presented a novel model of emotions dedicated to music

evaluation and recommendation. This may establish a foundation for future work aimed at

the creation of a complementary system, which would allow automatic music organization

by emotional content. Advanced programming tools and interfaces can be employed to

achieve a fully functional tool for mood-based music organizing available to listeners.

Future work on the approach based on fuzzy logic is also encouraged. It could also be used

in the direction of correlating personal preferences and individual perception of mood of

music.
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8 CONCLUSIONS AND FURTHER DIRECTIONS

All results and conclusions achieved in the course of presented study can be important
cues for the content recommendation based on mood of music, as emotions are what the

music is truly about.
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APPENDIX 1 List of tracks used in key experiment (Chapter 7)
No. Genre Artist Album Title
1 Blues Joe Bonamassa A New Day Cradle Rock
Yesterday Live
2 Blues 13, Lester Butler 13 Featuring Boogie Disease
Lester Butler
3 Blues The Holmes Brothers Feed My Soul Take Me Away
10 Days Out:
4 Blues Kenny Wayne Blues From The Red Rooster
Shepherd
Backroads
Ray Charles - 93 Leave My Woman
5 Blues Ray Charles Essential Tracks Alone
oo Shoulder To .
6 Blues Cephas & Wiggins Shoulder Seattle Rainy Day Blues
7 Blues Forrest Lee Jr. Telethon Telethon
8 Blues Ronnie Baker Brooks Golddigger Make The§e Blues
Survive
. She Sure Got A Way
9 Blues The Holiday Band Sweet Love With My Heart
10 Blues Lucky Peterson Heart Of Pain He's the Answer
11 Blues Guy Davis Give In Kind Watch Over Me
12 Blues Paul Butterfield's Paul Butterfield's Baby Please Don't Go
Better Days Better Days
13 Blues Robin Rogers Back In The Fire You Don't Know
Clarence Gates's On The Three Weeks And A
14’ BlueS " n 1
Gatemouth" Brown Heat Suitcase
15 Blues Phantom Blues Band Footprints Leave Home Girl
Sarah Chang Charles . Symphonie espagnole
16 Classical Dutoit Royal Concert V1.eu.xtemps Lalo Op. 21: L. Allegro non
Violin Concertos
gebouw Orchestra troppo
Tragic Overture In D
Berlin Symphony The 99 Darkest Minor, Op. 81: Allegro
17 Classical Orchestra and Pieces Of Ma Non Troppo - Molto
Eduardo Marturet Classical Music Pi Moderato - Tempo
Primo Ma Tranquillo
18 Classical Simone Kermes Purcell: Dido & Dido & A'eneas, Act III:
Aeneas Dido's Lament
"Ich hatte viel
Bekdmmernis" BWV
19 Classical Ton Koopman J.5. Bach Cantatas 21: Prima Parte - Aria
Vol. 1 "
(Soprano): "Seufzer,
Troenen, Kummer, Not"
Bizet: S h
Sir Neville Marriner | .- o= ' ymphony . .
) in C L'Arlesienne | Symphony in C: Final :
20 Classical Academy of St Suites Nos Alleoro viva
Martin-in-the-Fields 182 ' egrovivace
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APPENDIX I

List of tracks used in key experiment (Chapter 7)

No. Genre Artist Album Title
Classical Piano The Tale of Tsar Saltan:
21 Classical Balazs Szokolay . Flight of the Bumble-
Music
bee
Tchaikovsky:
. Ballet Suites - Nutcracker Suite,
. Wiener .
22 Classical . . Swan Lake; Op.71a - Russian Dance
Philharmoniker .
Sleeping Beauty; (Trepak)
The Nutcracker
J.S. Bach: Air on Orchestral Suite No. 3
23 Classical Pachelbel Orchestra o - in D Major, BWV 1068:
the G String .
II. Air
Mussorgsky, M.P.:
Pictures At An
Vaclav Neumann, Exhibition Liszt, Ma vlast (My
. o Fatherland): Ma vlast
24 Classical Leipzig Gewandhaus F.: Les Preludes
(My Fatherland): No. 2.
Orchestra Smetana, B.: Vitava (Moldau)
Moldau (Kegel,
Neumann)
Mozart: Sinfonia Sinfonia concertante
. . Concertante for Violin, Viola and
25 Classical Gidon Kremer K.364; Violin Orchestra in E flat,
Concerto No.1 K.364 - 3. Presto
Bruno Walter .
Columbia Symphony Conducts and rrslfrigflll\(;ng,dl\:).ig ISneEr
26 Classical Orchestra;Bruno Talks About ' 510-
langsam und noch
Walter Mahler: zuruckhaltend
Symphony No.9
Choir of Klng S John Rutter: The Requiem: 6. The Lord is
. College, Cambridge . my shepherd
27 Classical ) . Platinum .
Sinfonia of London Collection (Christopher Hooker,
Stephen Cleobury oboe)
The Movie Album Il Postino from "The
28 Classical John Bayless (Classical Postman"Visi d'Arte,
Pictures) from "Tosca"
Mozart: Concerto
Murray for Piano and Rondo in D Major for
29 Classical Perahia;English Orchestra No. 26 Piano and Orchestra,
Chamber Orchestra & Rondos in D & K.382 (Instrumental)
A Major
. The Handel Hornpipe (from the
30 Classical John Rutter Collection Water Music)
Duck Blind (Feat. Rhett
31 Country The Bone Collector The Brotherhood Akins & Dallas
Album .
Davidson)
Let Somebody Else
32 Country John Rich Rich Rocks Drive (Feat. Hank

Williams, Jr.)
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APPENDIX 1 List of tracks used in key experiment (Chapter 7)
No. Genre Artist Album Title
33 Country LeAnn Rimes You Ll%}iléUp My Amazing Grace
34 Country Reba McEntire All TheA\:Vnomen I If ] Were A Boy
35 Country Kellie Pickler Kellie Pickler Don'tYou Kn.ow You're
Beautiful
36 Country Hank Williams III Rebel Within Rebel Within
Ryan Shupe & The . The Devil Went Down
37 Country Rubberband Live to Georgia
38 Country Brad Paisley Hits Alive I'm Still A Guy
39 Country Dolly Parton & 16 Biggest Hits Islands In The Stream
Kenny Rogers
40 Country Dana Lyons Three Legged Sweet New Orleans
Coyote
41 Country Allison Moorer The DeflI:llthE A Soft Place To Fall
Collection
. : Little Bit Of No One Has Eyes Like
42 Country Billy Currington Everything You
American
43 Country Hank Williams, Jr. Legends: Best Of The Last Love Song
The Early Years
. The Cowboy In The
44 Country Marty Robbins The Essentl'al Continental Suit (Single
Marty Robbins :
Version)
Yonder Mountain Mountain Tracks:
45 Country String Band Vol. 3 Too Late Now
. Bounce (feat. N.O.R.E.)
46 Dance & D] Mstrkrft Bounce - Single [Extended Version]
Dead Cities, Red
47 Dance & D] M83 Seas & Lost Gone
Ghosts
Between The Lines
48 Dance & D] Bonobo Days To Come (feat. Bajka)
49 Dance & D] Velvet Fix Me Fix Me (Radio Edit)
50 Dance & D] To Kool Chris Droppin' That Old | The Love I qut - Mark
Skool Vol 1 Imperial
. Cinema (Feat. Gary Go)
51 Dance & D] Benny Benassi Electroman (Radio Edit)
Flesh Tone
52 Dance & D] Kelis (Amazon. MP3 Acapella
Exclusive
Version)
53 Dance & D] Royksopp Melody AM In Space
54 Dance & D] Vanessa Daou Zipless Near the Black Forest
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APPENDIX 1 List of tracks used in key experiment (Chapter 7)
No. Genre Artist Album Title
55 Dance & D] BOHObO'. Andreya Black Sands The Keeper
Triana
56 Dance & D] Morcheeba Dive Deep Enjoy The Ride
Something About Us
57 Dance & D] Daft Punk Daft Club (Love Theme From
Interstella 5555)
58 Dance & D] Moby Destroyed After
Dance, Dance,
59 Dance & D] Chic Dance: The Best Le Freak
Of Chic
Journey Into
60 Dance & D] Change Paradise: The Paradise
Larry Levan Story
61 Hard Rock & Metal Nightwish End Of An Era Slaying The Dreamer
The Sound Of
62 Hard Rock & Metal Death Perseverance - Story To Tell
Reissue
63 Hard Rock & Metal T.T. Quick Metal Of Honor Hell To Pay
64 Hard Rock & Metal Tyr By the Light of Into The Storm
the Northern Star
65 Hard Rock & Metal Skrewdriver Blood & Honour Street Fight (1996)
Symphony Of
66 Hard Rock & Metal Rhapsody Enchanted Lands Emerald sword
67 Hard Rock & Metal Trivium Ascendancy Dying In Your Arms
68 Hard Rock & Metal Motorhead Overkill Metropolis
69 | Hard Rock & Metal Kamelot Poetry For The House On A Hill
Poisoned
70 Hard Rock & Metal Kamelot Ghost opera EdenEcho
71 Hard Rock & Metal Van Canto Tribe of Force Last Night Of The Kings
72 Hard Rock & Metal Tyr By the Light of Turid Torkilsdottir
the Northern Star
73 Hard Rock & Metal Nightwish Wishmaster Two For Tragedy
World's Greatest
Tribute To
74 Hard Rock & Metal Reedom System Of A Sugar
Down
Dreaming In
75 Hard Rock & Metal Trust Company Black And White Almost There
Solo Boogie
76 Jazz Martijn Schok Woogie And Happy Piano Shuffle
Blues Piano
77 Jazz John Coltrane Giant Steps Giant Steps
78 Jazz Rosin Coven Penumbra Lion Song
79 Jazz Tord Gustavsen Trio Being There At Home

262




APPENDIX 1 List of tracks used in key experiment (Chapter 7)
No. Genre Artist Album Title
80 Jazz Chuck Mangione Greatest Hits: Children Of Sanchez
5 Chuck Mangione
81 Jazz George Benson Breezin' Six To Four
82 Jazz Marcus Miller Marcus What Is Hip?
Cookin' at the
83 Jazz Les Demerle Corner Vol 1 Cute
84 Jazz Regina Carter Motor City Don't Mess With Mr. T
Moments
Empyrean Isles
85 Jazz Herbie Hancock (The Rudy Van Oliloqui Valley
Gelder Edition)
86 Jazz Chet Baker My Fur'lny My Funny Valentine
Valentine
87 Jazz Diana Krall When I Look In I've Got You. Under My
Your Eyes Skin
88 Jazz Paul Hardcastle The Collection Moments In Time
. Best of
89 Jazz Preservation Hall Preservation Hall Tiger Rag
Jazz Band
Jazz Band
Compared To What
Les McCann & Eddie . | [Live at Montreux Jazz
20 Jazz Harris Hommage Nesuhi Festival, June 21 or 22,
1969]
91 Pop PInk I'm Not Dead I'm Not Dead
92 Pop Avril Lavigne The Bes.t Damn The Best Damn Thing
Thing
93 Po Stin The Dream Of Fortress Around Your
P J The Blue Turtles Heart
94 Pop Shivaree Breach I Close My Eyes
95 Pop Travie McCoy Lazarus We'll Be Alright
96 Pop N Sync 'N Sync Tearin' Up My Heart
97 Pop Selena Gomez & The A Year Wlthout Summer's Not Hot
Scene Rain
Jessie and The Toy Push It Feat.
98 Pop Boys Yelawolf - Single Push It Feat. Yelawolf
Finley . :
99 Pop Quaye;William Orbit Dice Dice
100 Pop Paula Abdul Spellbound Rush, Rush
101 Pop Smashing Pumpkins | Rarities & B-Sides Landslide
102 Pop Jann Arden Living Under June [ Would Die For You
103 Pop Alex Bugnon Love Season Around 12:15 AM
104 Pop Holly & The Italians The Right To Be Means To A Den

[talian
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APPENDIX 1 List of tracks used in key experiment (Chapter 7)
No. Genre Artist Album Title
105 Pop Colbie Caillat Breakthrough You Got Me
106 R&B Cam'ron SD.E. What Means The World
To You
George Clinton & .
107 R&B Parliament Live A; g/{)(;ntreux Not ]1(1}5{‘((a K;ligs)Deep
Funkadelic p
108 R&B Brian McKnight Ten The Rest Of My Life
Moody's Mood For Love
109 R&B Quincy Jones Q's Jook Joint (I'm In The Mood For
Love)
110 R&B Jackie Wilson The Ultimate Reet Petite
Jackie Wilson
111 R&B Stevie Wonder | AtThe Close OfA Happy Birthday
Century
112 R&B Jody Watley Greatest Hits Some Kind Of Lover
113 R&B Tamia Between Friends Christmas Medley
114 R&B Charlie Wilson Charlie, Last Let's Chill
Name Wilson
115 R&B The Cotillionaires Summer - EP Otis Redding
116 R&B Kandi Kandi Koated Me And U
Janet Jackson's
117 R&B Janet Jackson Rhythm Nation Someday Is Tonight
1814
: Age Ain't Nothing
118 R&B Aaliyah But A Number Back & Forth
The Best Of Patti
LaBelle 20th
119 R&B Patti Labelle Century Masters The Right Kinda Lover
The Millennium
Collection
The Best Of
120 R&B Surface Surface... A Nice Happy
Time 4 Lovin
121 Rap & Hip-Hop Twista Kamikaze Kill Us All
122 Rap & Hip-Hop T.L No Mercy Yeah Ya Know (Takers)
123 Rap & Hip-Hop Jadakiss Kiss Of Death By Your Side
124 Rap & Hip-Hop Tyler, The Creator Goblin Her
LT.W.N.O.L Ft. R-swift,
125 Rap & Hip-Hop Sho Baraka Lions and Liars Tedashii, Honey
Larochelle, Benjah
126 Rap & Hip-Hop 2lanez Logged In - Single Logged In
127 Rap & Hip-Hop Stuey Rock Shinin (feat. Shinin (feat. Future)

Future) - Single
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APPENDIX 1 List of tracks used in key experiment (Chapter 7)
No. Genre Artist Album Title
Cypress Hill Armada Latina Armada Latina (Feat.
128 Rap & Hip-Hop featuring Pitbull and | (Feat. Pitbull And Pitbull And Marc
Marc Anthony Marc Anthony) Anthony)
129 Rap & Hip-Hop Macklemore The U.nplanned American
Mixtape
. Lloyd Banks feat. H.F.M. 2 (Hunger Home Sweet Home
130 Rap & Hip-Hop Pusha T For More 2) (Feat. Pusha T)
The World Is Filled...
131 Rap & Hip-Hop The Notorious B.L.G. Life After Death (Featuring Too Short &
Puff Daddy)
Got Your Back
132 | Rap & Hip-Hop T (Feat. Keri Got Your Back (Feat.
. Keri Hilson)
Hilson)
133 Rap & Hip-Hop Living Legends Classic Never Fallin'
: Stone Cold P '
134 Rap & Hip-Hop Young MC Rhymin’ Principal's Office
The Best Of Salt-
N-Pepa 20th
135 Rap & Hip-Hop Salt-N-Pepa Century Masters | None Of Your Business
The Millennium
Collection
136 Rock Sentenced Frozen (Deluxe Digging The Grave
Reissue) sElNg
Black Holes And
Revelations .
137 Rock Muse (Updated 09 Assassin
version)
138 Rock Austra Feel It Break The Choke
Something
Wicked This Way
139 Rock Iced Earth Comes (Limited Melarl\l/[ch(;ly)[Holy
Edition w Bonus artyr
Tracks)
Deepest Purple
140 Rock Deep Purple (30th Stormbrlnger (2009
Anniversary remix)
Edition)
141 Rock Lmnt Juliet G?frt eatest Juliet (Single Edit)
142 Rock Bloc Party Intimacy Talons
The First Three
. Gears (2000- .
143 Rock Relient K 2003) [+Digital Pressing On
Booklet]
. Platinum
144 Rock Genesis . In Too Deep
Collection
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APPENDIX 1 List of tracks used in key experiment (Chapter 7)
No. Genre Artist Album Title
o Buffalo
145 Rock Buffalo Springfield Springfield Again Everydays
146 Rock My Chemical The Black Parade Cancer
Romance
147 Rock Lacuna Coil Enjoy t_hE?PSﬂence Virtual Environment
148 Rock The Lovemongers Whirlygig Sand
An Airplane
149 Rock Sky Sailing Carried Me To Brielle
Bed
150 Rock The Submarines Honeysuckle You, Me an.d.the
Weeks Bourgeoisie
Multi-track recordings used for "Analysis by synthesis " (Section 4.6)
No Genre Artist Album Title
Gosia Guja with
Al Jazz band None Artystka
A2 Metal AN. Unknown Unknown
A3 Pop Annalie Wilson Ope.n Heart This Time is Different
Circus
A4 Rock TCB Unknown Unknown
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APPENDIX II  Results of key experiment described in Chapter 7, tracks are indexed
according to Appendix I. R and ¢ are corresponding to the position of songs on the VA
plane in polar coordinates

No. | Valence | Arousal St.Dev. | St Dev. R @
Valence | Arousal
1 0.09 2.06 0.90 0.99 2.07 1.53
2 0.43 1.74 0.86 1.39 1.79 1.33
3 -0.65 -1.14 1.20 0.95 1.31 -2.09
4 0.24 0.35 0.70 1.40 0.42 0.97
5 1.33 0.74 1.03 1.14 1.52 0.51
6 1.53 0.00 1.07 0.49 1.53 0.00
7 0.11 2.29 0.88 1.14 2.30 1.52
8 1.18 1.36 1.34 1.32 1.80 0.85
9 1.57 -0.17 1.12 1.04 1.58 -0.11
10 0.90 0.09 1.04 1.63 091 0.10
11 0.15 -1.20 1.36 0.88 1.21 -1.45
12 0.38 -0.97 1.60 1.25 1.04 -1.20
13 0.65 -0.46 1.11 1.25 0.79 -0.61
14 0.25 -1.14 1.34 1.32 1.16 -1.35
15 0.92 1.31 1.13 1.17 1.60 0.96
16 0.41 0.75 1.40 1.41 0.86 1.08
17 1.23 0.77 0.86 1.54 1.45 0.56
18 -1.18 -1.05 1.69 1.08 1.57 -2.42
19 0.38 -1.53 1.56 0.90 1.57 -1.33
20 1.75 0.44 1.21 1.33 1.81 0.25
21 1.17 1.81 1.11 0.52 2.15 1.00
22 1.11 1.88 1.19 1.14 2.18 1.04
23 1.13 -1.21 0.94 1.75 1.66 -0.82
24 0.93 -0.77 1.03 1.57 1.21 -0.69
25 -1.00 -0.73 2.01 0.90 1.24 -2.52
26 -0.02 -0.98 1.54 1.46 0.98 -1.59
27 0.54 -1.73 1.15 1.09 1.81 -1.27
28 0.73 -1.38 1.44 1.35 1.56 -1.08
29 1.43 -0.55 1.34 1.21 1.54 -0.37
30 1.67 0.55 0.80 1.50 1.76 0.32
31 0.36 1.21 1.20 1.16 1.26 1.28
32 0.19 2.15 0.85 0.87 2.16 1.48
33 -0.25 -1.06 1.40 1.21 1.09 -1.80
34 0.57 0.98 0.97 1.22 1.13 1.04
35 0.75 0.15 091 0.88 0.76 0.20
36 0.59 1.36 0.99 1.26 1.48 1.16
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APPENDIX II  Results of key experiment described in Chapter 7, tracks are indexed
according to Appendix I. R and ¢ are corresponding to the position of songs on the VA
plane in polar coordinates

No. | Valence | Arousal St.Dev. | St Dev. R @
Valence | Arousal

37 0.45 1.66 1.01 1.17 1.72 1.31
38 0.35 -0.02 1.27 1.18 0.35 -0.07
39 0.48 -0.75 0.57 0.63 0.89 -1.00
40 -0.71 -0.55 1.13 1.13 0.90 -2.49
41 -0.44 -1.43 1.21 0.99 1.50 -1.87
42 0.94 -1.55 1.10 0.78 1.81 -1.03
43 0.12 -1.39 0.98 091 1.39 -1.48
44 1.99 -0.22 0.85 0.60 2.00 -0.11
45 1.21 0.97 1.27 1.25 1.55 0.68
46 -0.81 1.77 1.07 1.21 1.94 2.00
47 -0.21 -0.61 1.46 1.01 0.64 -1.90
48 0.37 0.50 1.21 1.76 0.62 0.93
49 0.04 2.31 0.71 1.08 2.31 1.55
50 0.34 1.28 0.80 0.92 1.33 1.31
51 0.01 1.26 0.89 1.26 1.26 1.56
52 0.04 1.17 0.75 1.47 1.17 1.53
53 0.59 -1.32 1.37 0.80 1.45 -1.15
54 0.53 -0.60 1.05 1.45 0.80 -0.84
55 0.63 -1.40 1.30 1.13 1.54 -1.15
56 -0.18 -0.95 0.94 0.81 0.96 -1.76
57 0.85 -1.14 1.11 1.24 1.42 -0.93
58 -0.64 -0.64 0.97 0.97 0.90 -2.36
59 1.54 0.73 1.35 1.08 1.70 0.44
60 0.72 1.54 0.94 1.02 1.70 1.13
61 -1.30 1.51 1.11 1.18 1.99 2.28
62 -1.72 1.86 0.66 0.44 2.53 2.32
63 -0.22 0.03 0.84 1.54 0.22 3.01
64 -0.47 1.97 0.93 0.88 2.02 1.81
65 -0.33 2.00 0.75 0.93 2.03 1.74
66 0.01 2.24 1.34 0.95 2.24 1.57
67 -0.30 1.80 0.55 1.03 1.83 1.74
68 0.02 0.98 0.94 1.44 0.98 1.55
69 -0.66 -0.40 0.77 1.44 0.77 -2.60
70 -0.24 1.11 1.45 1.36 1.13 1.79
71 -0.19 -0.57 1.18 1.19 0.60 -1.89
72 -0.43 1.26 0.84 1.11 1.33 1.90
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APPENDIX II  Results of key experiment described in Chapter 7, tracks are indexed
according to Appendix I. R and ¢ are corresponding to the position of songs on the VA
plane in polar coordinates

No. | Valence | Arousal St.Dev. | St Dev. R @
Valence | Arousal

73 -1.00 -1.33 1.19 1.06 1.66 -2.21
74 -1.08 1.90 0.87 0.80 2.19 2.09
75 -0.26 1.14 1.38 1.08 1.17 1.80
76 0.77 1.37 1.36 1.31 1.57 1.06
77 0.72 0.59 1.21 1.52 0.94 0.69
78 -1.45 -1.25 1.35 1.14 1.92 -2.43
79 -0.79 -1.35 1.37 1.37 1.56 -2.10
80 1.04 0.89 0.89 1.65 1.37 0.71
81 1.00 -0.32 1.15 1.08 1.05 -0.31
82 0.47 1.61 1.06 1.42 1.68 1.29
83 1.03 1.26 1.09 1.77 1.62 0.88
84 1.25 -0.72 0.82 1.49 1.44 -0.52
85 0.96 -0.62 1.05 1.57 1.15 -0.57
86 -0.11 -1.26 2.05 1.08 1.26 -1.66
87 0.67 -1.45 1.42 0.90 1.59 -1.14
88 0.71 -1.42 0.93 0.85 1.59 -1.11
89 1.85 0.61 1.10 1.05 1.95 0.32
90 0.92 0.61 1.04 1.79 1.10 0.58
91 -0.56 1.30 0.78 1.43 1.42 1.98
92 -0.16 1.74 0.99 1.12 1.75 1.66
93 0.57 -0.32 0.94 1.58 0.65 -0.52
94 0.29 -0.55 1.36 0.94 0.63 -1.08
95 1.08 0.83 1.32 1.14 1.36 0.66
96 -0.28 0.56 0.95 1.56 0.63 2.03
97 -0.81 1.38 1.09 1.58 1.60 2.10
98 -0.24 1.76 0.94 1.24 1.77 1.70
99 -0.17 -0.94 1.04 0.95 0.95 -1.75
100 0.19 -0.96 091 0.98 0.97 -1.37
101 -0.66 -0.87 1.11 1.15 1.09 -2.22
102 -0.56 -0.74 1.51 0.93 0.93 -2.22
103 0.43 -0.12 0.77 1.24 0.45 -0.27
104 0.71 1.21 0.99 1.06 1.40 1.04
105 0.69 -0.90 0.92 1.13 1.14 -0.92
106 -0.05 1.17 0.78 1.08 1.17 1.61
107 0.38 0.72 1.33 1.28 0.81 1.08
108 -0.10 -091 1.18 1.41 0.92 -1.68
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APPENDIX II  Results of key experiment described in Chapter 7, tracks are indexed
according to Appendix I. R and ¢ are corresponding to the position of songs on the VA
plane in polar coordinates

No. | Valence | Arousal St.Dev. | St Dev. R @
Valence | Arousal

109 091 -1.67 1.21 0.76 1.90 -1.07
110 1.48 1.22 1.39 1.40 1.92 0.69
111 0.50 0.41 1.00 1.10 0.65 0.69
112 0.37 1.44 0.96 1.31 1.49 1.32
113 0.66 -0.76 0.79 1.27 1.01 -0.85
114 0.73 -1.47 0.90 1.14 1.64 -1.11
115 0.40 -1.78 1.15 0.71 1.82 -1.35
116 0.10 -0.39 0.72 1.42 0.40 -1.32
117 0.54 -1.18 0.92 0.66 1.30 -1.14
118 0.36 -1.51 0.75 091 1.56 -1.34
119 0.66 0.46 0.94 1.22 0.80 0.61
120 0.43 -0.51 0.76 1.13 0.67 -0.86
121 -1.12 1.42 0.83 0.58 1.81 2.24
122 -0.59 1.84 1.33 0.75 1.93 1.88
123 -0.52 -0.35 1.08 1.26 0.63 -2.55
124 -0.75 -0.43 1.08 0.98 0.86 -2.61
125 -0.79 0.88 0.86 1.44 1.18 2.30
126 -041 1.57 1.20 0.83 1.62 1.82
127 0.06 0.55 1.40 1.55 0.55 1.46
128 0.46 1.01 1.18 1.14 1.11 1.14
129 1.01 0.29 1.11 0.90 1.05 0.28
130 -0.86 -0.02 1.05 1.33 0.86 -3.12
131 -0.07 0.17 1.07 1.09 0.19 1.93
132 0.64 0.59 1.06 1.24 0.87 0.75
133 -0.16 -0.14 1.25 1.33 0.22 -2.43
134 0.83 0.65 0.96 1.07 1.06 0.67
135 -0.26 1.25 1.04 1.32 1.27 1.77
136 -1.37 1.96 0.85 0.51 2.39 2.18
137 -0.53 1.79 0.94 1.09 1.86 1.86
138 0.10 -0.05 1.54 1.34 0.12 -0.48
139 -0.99 -0.12 1.54 0.84 1.00 -3.02
140 0.28 1.52 0.86 1.06 1.54 1.39
141 0.68 1.21 1.49 1.24 1.39 1.06
142 -0.66 2.03 1.05 0.67 2.13 1.89
143 0.52 1.69 1.37 1.30 1.77 1.27
144 0.57 -091 1.21 1.20 1.07 -1.02
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APPENDIX II  Results of key experiment described in Chapter 7, tracks are indexed
according to Appendix I. R and ¢ are corresponding to the position of songs on the VA
plane in polar coordinates

St. Dev. St. Dev.
No. | Valence | Arousal R @
Valence | Arousal
145 0.46 -0.44 1.41 1.41 0.63 -0.76
146 0.06 0.00 1.32 1.58 0.06 0.00
147 -0.25 -0.40 1.42 1.47 0.47 -2.14
148 -0.15 -0.83 1.35 0.88 0.84 -1.75
149 0.24 -1.49 0.92 1.20 1.51 -1.41
150 1.08 0.47 1.39 1.11 1.18 0.41
St. Dev. St. Dev.
No. | Valence | Arousal R @
Valence | Arousal
Al -0.12 -1.00 0.75 091 1.01 -1.69
A2 -0.30 2.21 0.85 0.51 2.23 1.71
A3 091 0.94 1.08 1.26 1.31 0.80
A4 -0.20 1.10 0.94 1.09 1.12 1.75
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APPENDIX III  Results of key experiment described in Chapter 7, tracks are indexed according
to Appendix I. Rows indicate songs and columns mood labels. The value describes the percent of
occurrences of each label.

No. Aggressive | Depressive | Exciting | Energetic | Neutral | Relaxing | Sad Calm Joyful
[%] [%] [%] [%] [%] [%] [%] [%] [%]
1 20 0 7 67 0 0 0 0 7
2 0 0 5 74 5 5 0 0 11
3 0 18 0 0 0 12 41 29
4 0 0 0 42 8 17 17 8
5 0 0 14 24 5 5 0 0 52
6 0 0 0 9 9 5 5 5 68
7 7 0 0 80 7 0 0 0 7
8 0 0 6 53 0 0 0 0 41
9 0 0 0 13 7 13 7 0 60
10 0 5 21 21 5 37 5 0 5
11 0 10 15 25 35 10 5
12 0 13 7 0 7 27 27 7 13
13 0 5 16 11 0 37 21 5
14 0 12 0 12 6 24 35 6 6
15 0 0 18 47 6 6 0 24
16 13 38 19 0 19 6 0
17 7 0 53 7 7 27 0 0
18 0 25 0 19 13 44 0
19 0 0 0 0 0 40 40 20 0
20 0 0 24 18 0 0 47
21 5 0 65 30 0 0 0
22 0 0 28 50 0 0 22
23 0 0 21 0 0 36 36 0 7
24 0 0 19 5 5 43 19 5 5
25 0 13 0 0 6 25 6 50 0
26 0 0 11 0 0 21 37 32 0
27 0 0 0 13 38 44 6 0
28 0 12 0 0 41 24 12 6
29 6 0 6 29 12 0 47
30 0 0 35 10 0 15 0 35
31 13 0 13 44 13 0 13
32 11 0 11 72 0
33 0 10 10 0 20 25 30
34 0 0 5 58 11 0 0 21
35 0 0 20 20 0 10 50
36 0 0 7 60 7 0 0 20
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APPENDIX III  Results of key experiment described in Chapter 7, tracks are indexed according
to Appendix I. Rows indicate songs and columns mood labels. The value describes the percent of
occurrences of each label.

No. Aggressive | Depressive | Exciting | Energetic | Neutral | Relaxing | Sad Calm Joyful
[%] [%] [%] [%] [%] [%] [%] [%] [%]
37 6 0 13 63 6 0 0 0 13
38 0 4 17 8 4 13 17 25 13
39 0 0 0 0 13 27 40 0 20
40 0 26 5 11 5 5 21 26 0
41 0 25 0 0 0 15 40 20 0
42 0 0 0 0 0 50 39 6 6
43 0 0 0 0 5 26 58 11 0
44 0 0 0 0 0 15 0 0 85
45 0 0 19 38 6 0 31
46 41 6 41 6 0 0 6
47 6 17 6 0 11 28 6 28
48 10 29 29 0 14 14 0 0
49 0 80 0 10
50 0 28 50 17 6 0
51 20 13 7 47 0 0 13
52 0 6 13 50 31 0 0
53 0 11 0 0 5 47 26 5 5
54 0 6 22 0 11 33 17 11 0
55 0 19 6 0 44 25 6 0
56 0 14 0 0 14 43 21 0
57 0 7 7 7 0 43 29 0 7
58 13 44 6 0 19 6 6 6 0
59 0 6 28 0 0 0 0 61
60 0 18 59 0 0 0 0 24
61 74 5 5 11 0 0 0 5 0
62 93 0 0 7 0 0 0 0 0
63 16 11 16 11 16 0 21 11 0
64 30 0 60 0 0 0 5 0
65 24 0 6 65 6 0 0 0 0
66 25 0 13 56 0 0 0 0 6
67 25 0 69 0 0 0 6 0
68 13 7 47 7 13 0 0 7
69 6 24 12 18 18 24 0
70 29 21 21 21 0 0 7 0
71 0 6 13 0 13 13 19 38 0
72 29 6 6 47 6 0 0 6 0
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APPENDIX III  Results of key experiment described in Chapter 7, tracks are indexed according
to Appendix I. Rows indicate songs and columns mood labels. The value describes the percent of
occurrences of each label.

No. Aggressive | Depressive | Exciting | Energetic | Neutral | Relaxing | Sad Calm Joyful
[%] [%] [%] [%] [%] [%] [%] [%] [%]
73 0 25 0 0 0 0 50 25 0
74 65 0 0 29 6 0 0 0
75 37 5 0 26 11 0 0 21
76 8 0 8 46 8 0 0 31
77 6 0 22 28 6 28 6 6
78 5 68 0 11 11 0
79 0 43 7 0 7 21 14 0
80 0 0 47 26 0 16 11 0 0
81 0 0 0 13 31 25 0 25
82 5 0 10 57 0 10 0 19
83 0 0 21 50 0 17 0 13
84 0 0 23 0 8 54 15 0 0
85 0 10 24 5 0 29 19 0 14
86 0 11 0 6 39 11 33
87 0 5 0 0 58 16 21
88 0 6 0 13 50 31 0
89 0 0 17 17 0 6 0 61
920 5 0 25 30 0 20 10 0 10
921 11 11 56 6 17 0
92 32 0 0 53 5 11
93 0 29 6 6 18 29 0
94 0 10 15 30 10 25 10
95 0 6 29 6 0 0 0 53
96 10 10 5 35 10 5 5 15 5
97 27 9 0 41 9 0 0 5
98 17 6 61 11 6 0 0
99 0 5 0 11 53 21 0
100 0 6 6 0 18 47 12 6
101 6 24 6 0 0 41 18 0
102 0 6 0 0 17 17 22 39 0
103 0 6 0 33 22 33 0
104 0 0 5 60 0 35
105 0 0 0 11 32 37 16
106 11 0 11 56 11 0
107 13 13 38 13 13 6
108 0 6 11 6 6 11 44 17 0
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APPENDIX III  Results of key experiment described in Chapter 7, tracks are indexed according
to Appendix I. Rows indicate songs and columns mood labels. The value describes the percent of
occurrences of each label.

No. Aggressive | Depressive | Exciting | Energetic | Neutral | Relaxing | Sad Calm Joyful
[%] [%] [%] [%] [%] [%] [%] [%] [%]
109 0 5 0 0 5 62 24 5 0
110 0 0 5 42 0 0 53
111 0 6 0 31 25 0 25
112 0 0 0 63 6 6 25
113 0 0 6 19 0 44 31 0 0
114 0 0 0 0 60 27 7 0
115 0 6 0 0 0 33 56 6 0
116 6 6 11 11 6 11 33 11 6
117 0 12 6 0 0 47 35 0 0
118 0 0 5 32 58 5 0
119 6 0 22 28 11 17 11 0 6
120 0 5 11 26 21 21 0 16
121 71 0 0 24 0 0 0
122 50 0 11 33 0 0 0
123 17 0 9 26 9 13 17 4
124 0 25 13 19 0 13 31 0
125 47 12 29 12 0 0 0 0
126 41 0 6 41 0 0 0 12
127 18 24 18 24 0 0 0 0 18
128 6 50 11 0 0 0 22
129 7 20 13 0 0 47
130 26 26 0 16 5 5 16
131 29 6 6 6 12 18 12 6
132 6 0 11 28 22 11 0 22
133 22 17 6 6 0 17 11 17 6
134 0 0 6 35 12 0 6 41
135 35 0 6 35 12 0 6 6
136 76 0 0 24 0 0 0 0
137 33 0 7 47 0 0 13 0
138 15 23 15 15 0 31 0
139 12 6 0 12 12 0 53 0
140 10 0 15 60 0 5 5 0 5
141 19 0 31 0 0 0 0 44
142 44 0 50 0 0 0 0 0
143 10 5 19 52 0 0 0 0 14
144 0 0 10 0 5 25 45 10 5
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APPENDIX III  Results of key experiment described in Chapter 7, tracks are indexed according
to Appendix I. Rows indicate songs and columns mood labels. The value describes the percent of
occurrences of each label.

No. Aggressive | Depressive | Exciting | Energetic | Neutral | Relaxing | Sad Calm Joyful
[%] [%] [%] [%] [%] [%] [%] [%] [%]
145 8 0 8 0 15 23 23 8 15
146 0 6 18 18 12 12 12 24 0
147 6 35 12 6 18 6 18
148 0 11 0 11 33 22 17
149 0 0 22 28 39 0
150 0 0 6 28 6 0 6 50
No. Aggresive Depressive | Exciting | Energetic | Neutral | Relaxing | Sad Calm Joyful
Al 0 10 0 0 28 50 12 0
A2 71 0 20 10 0 0 0
A3 6 29 6 6 18 29 0
A4 10 15 60 5 5 5
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