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Streszczenie

Główną motywacją pracy jest przyjrzenie się relatywistycznemu modelowi pól fotonowych w zaproponowa-
nych przez Marka Czachora redukowalnych reprezentacjach algebr Lie oscylatora harmonicznego i zasto-
sowanie takiego modelu do relatywistycznych korelacji EPR fotonów. Zaprezentowano czterowymiarową
przestrzeń polaryzacji fotonów taką, która w porównaniu z formalizmem Gupty-Bleulera daje inną inter-
pretację operatorów kreacji i anihilacji dla „czasowego” stopnia swobody. Taka interpretacja, wywodząca
się z konstrukcji kowariantnego Hamiltonianu, daje dodatnio zdefiniowane normy dla wszystkich czterech
polaryzacyjnych stopni swobody. Pokazano stany, które produkują standardowe pola elektromagnetyczne
(tzn. fotony z dwiema polaryzacjami) z czterowymiarowych kowariantnych pól (tzn. pól z dwiema dodat-
kowymi polaryzacjami: „podłużnej” i „czasowej”). Ponadto został zaproponowany model czterech stanów
Bella, taki w którym korelacje pozostają maksymalne dla dwóch baz: liniowej i kołowej we wszystkich
układach odniesienia. Na końcu zostały wyliczone relatywistyczne korelacje EPR dla dwóch przypadków:
gdy na oba detektory działa transformacja Lorentza w taki sposób, że pozostają w tym samym układzie
odniesienia oraz w przypadku gdy tylko jeden z detektorów pozostaje pod działeniem tejże transformacji.
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Summary

The main motivation for this work was to take a closer look at a relativistic model for photon fields in
reducible representations of harmonic oscillator Lie algebras proposed by Marek Czachor with an applica-
tion to relativistic EPR-type correlations. A four-dimensional photon polarization space, such that gives a
different interpretation of the ladder operators for the time-like degree comparing with the Gupta-Bleuler
formulation is presented. This interpretation, coming from a construction of a covariant Hamiltonian, gi-
ves positive defined norms for all the four polarization degrees of freedom. Further states that reproduce
standard electromagnetic fields (i.e. photons with two polarization degrees of freedom) from the four-
dimensional covariant formalism (i.e. with two additional longitudinal and time-like polarization degrees
of freedom) are shown explicitly and discussed. A model for the four Bell states, such that maintains
maximally correlated in two polarization bases: linear and circular in all reference frames is developed.
Finally relativistic correlation functions are derived for two cases: when the detectors are transformed
under Lorentz transformation in such a way that they still remain in the same reference frame and when
just one of the detectors is transformed.
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Introduction

Relativistic EPR-type experiments have been discussed at least from 1997 mainly in theoretical backgro-
und [53]-[100]. This is a good example of a problem where quantum mechanics and theory of relativity are
treated under one roof and an occasion to take a closer look at a relativistic model for photon fields in
reducible representation of harmonic oscillator Lie algebras (HOLA) proposed by Czachor [6]-[19]. Some
of the difficulties for Lorentz transformation law of Bell states, such as the dependence of Wigner rotations
on momentum, covariance of the potential operator and a model of an invariant two-photon field, are in-
vestigated here in the background of reducible representations. On the other hand, employing a model for
relativistic EPR-type experiments may show the role that the oscillator number N and vacuum probability
density Z(k), known from reducible representations, play in this model.

Therefore, this thesis is organized as follows. In chapter 1 spinor geometry is introduced starting from
the Minkowski vector space coming from the stereographic projection. Next in this chapter basic spinor
algebra and abstract Penrose index notation are introduced.

In chapter 2 the reducible representations of harmonic oscillator Lie algebras are introduced. We start
with basic motivation for such a quantization, introducing spectral decomposition of a frequency opera-
tor. Next, the Hamiltonian, ladder and number operators are introduced for the reducible one-oscillator
(N = 1) representation. It is shown that the reducible representations taken within the whole frequency
spectrum have the “standard-theory” harmonic oscillator Lie algebra. Further in this chapter an extension
to arbitrary N -oscillator is shown, discussing the ladder and number operators for such a representation. Of
special importance for the reducible representation quantization is the definition of vacuum, because regu-
larization is a consequence of employing a special form of vacuum with a probability density function Z(k).

In chapter 3 a construction coming from a covariant Hamiltonian for a four-dimensional oscillator is
shown. When constructing such a four-dimensional oscillator, one should consider what is the consequence
of creating particles on the energy of the whole system, i.e. does it raise the energy level or lower it? This
is discussed first for space-like polarization degrees of freedom and then two different interpretations of a
time-like polarization degree are considered. It turns out that, when assuming for time-like photons the
energy spectrum bounded from the top, we can preserve the positive norms as needed for the probability
interpretation of quantum mechanics.

In chapter 4 we will combine the two previous formalisms, i.e. the reducible representation and the four-
dimensional polarization space, into one. First, a construction of the four-dimensional oscillator for the
reducible representation is presented. Then vacuum and the potential operator for this model are intro-
duced. From this a question comes up: how does such a theory, with four polarization degrees of freedom,
correspond with Maxwell electromagnetism theory. It turns out that there exists a vector space of states
that reproduces standard Maxwell electrodynamics. Next, the potential operator and the electromagnetic
field operator for this representation are introduced. Finally, we discuss coherent states and show that the
ΨEM states have a coherent-like structure.

In chapter 5 Lorentz transformations coming form SL(2,C) transformations defined on the spin-frame
level are introduced. It turns out that on this level Lorentz transformation is accompanied by another
symmetry which also keeps the spin-frame condition. On the tetrad level this symmetry manifests itself
as a gauge transformation. Further in this chapter reducible representations of Lorentz and gauge trans-
formations are introduced, with generators that start from four-dimensional canonical variables. Next,
transformation properties of the potential operator, electromagnetic field operator and vacuum are pre-
sented, following a discussion of the gauge transformation. This chapter closes with an introduction to
four-translations.

In chapter 6 a two-photon field operator for the reducible N -oscillator representations is discussed. Further
in this chapter a model for all four Bell states is proposed.

In chapter 7 transformation properties of two-photon fields are discussed. A model for scalar fields is
proposed assuming that the four Bell states are maximally correlated or anti-correlated in two polariza-
tion bases, and that the polarization angle is momentum dependent.
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In chapter 8 observables for EPR-type experiments are calculated. First a yes-no observable describing
the measurement in detectors is introduced. Then a correlation function for the EPR-type experiment is
calculated for a two-photon state. Next, the EPR correlation function is treated separately for Bell states
maximally anti-correlated or correlated in circular polarizations.

Finally, chapter 9 deals with EPR experiments under Lorentz transformations. Two cases are conside-
red: when two detectors are transformed under a Lorentz transformation in such a way that they still
remain in the same reference frame, and when only one of the detectors is transformed under the Lorentz
transformation.

This work closes with a series of mathematical appendices.
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1 Spinor space-time geometry and algebra

This chapter is preliminary. In this work Minkowski and null tetrads play a role of photon polarization
vectors. The Penrose abstract index notation is not that popular, therefore we start by introducing the
Minkowski vector space and the stereographic projection in section 1.1. Next, some basic spinor algebra
and abstract Penrose index notations are explained in sections 1.2 and 1.3 respectively.

1.1 Minkowski vector space and the stereographic projection

A Minkowski vector space is a four-dimensional vector space V over a field of real numbers R. It is equipped
with a symmetric bilinear form with signature (+,−,−,−). Let us consider a basis of linear independent
vectors t, x, y, z ∈ V so that any U ∈ V can be uniquely expressed in the form

U = U0t+ U1x+ U2y + U3z, (1)

where the coordinates of U are denoted by U0, U1, U2, U3. There is a special case

U = Tt+Xx+ Y y + Zz, (2)

of null vectors, or vectors on the light cone having coordinates such that

T 2 −X2 − Y 2 − Z2 = 0. (3)

An introduction to spinors is usually made with a method called stereographic projection. To present this
method let us start with a unit vector with three components (x, y, z):

x2 + y2 + z2 = 1. (4)

This describes a unit sphere in R3 with polar coordinates x = sin θ cosφ,
y = sin θ sinφ,
z = cos θ.

(5)

Points on this sphere can be also described by a stereographic projection on the plane z = 0. A useful form
can be obtained if this plane is parameterized by complex coordinates ζ linked to a point on the sphere
by:

ζ =
x+ iy

1− z
= eiφ ctg

θ

2
. (6)

For example, the north pole of the sphere with coordinates (x = 0, y = 0, z = 1) corresponds to ζ = ∞,
and the south pole (0, 0,−1) to ζ = 0. Another parametrization of a sphere is also possible

ζ =
ξ

η
, (7)

where 
ξ =

√
rei(α+φ)/2 cos

θ

2
,

η =
√
rei(α−φ)/2 sin

θ

2
.

(8)

Now the north and south poles of the sphere correspond to (ξ, 0) and (0, η) respectively. In this parame-
trization there is an extra degree of freedom since (ξ, η) and say (λξ, λη), λ ∈ C, describe the same point
ζ. The four components (1, x, y, z) of a null future-pointing world-vector are linked to those coordinates
by

(1, x, y, z) =
(

1,
ξη̄ + ηξ̄

ξξ̄ + ηη̄
, − i ξη̄ − ηξ̄

ξξ̄ + ηη̄
,
ξξ̄ − ηη̄
ξξ̄ + ηη̄

)
. (9)

Multiplying both sides by (ξξ̄ + ηη̄)
√

2 we get a link between complex numbers (ξ, η) and coordinates of
a future-pointing null vector i.e.

(T,X, Y, Z) =
1√
2

(
ξξ̄ + ηη̄, ξη̄ + ηξ̄, − i(ξη̄ − ηξ̄), ξξ̄ − ηη̄

)
. (10)
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As one can see the change of phase in (8) leaves the components of the four-vector unchanged. So the
aim now is to associate with (ξ, η) a richer geometrical structure that reduces the redundancy to a single
sign ambiguity. This structure will be a “null flag”, i.e. the previous null vector associated with a half null
plane attached to the vector K, which will represent the phase and will be called a “flag plane”.

1.2 Spinor algebra

Now let us associate the two complex numbers (ξ, η) with a spin-vector ψ such that

ξ = ψ0, (11)

η = ψ1. (12)

Two spin-vectors, ωA and πA, satisfying

ωAπ
A = 1, πAω

A = − 1. (13)

are called a spin-frame. From the anti-symmetry of the inner product we have

ωAω
A = 0, πAπ

A = 0. (14)

Now any spin-vector can be written in terms of a spin-frame as

ψA = ψ0ωA + ψ1πA, (15)

and the components of a spin-vector are

ψ0 = − πAψA, ψ1 = ωAψ
A. (16)

In this notation A,B are abstract indices which means they are just labels that do not take any numerical
value, and the boldface ones A,B will take numerical values 0, 1. The abstract spinor index is a capital
Roman letter, either primed A′, B′, ..., or unprimed A,B, .... In the literature, sometimes instead of a prime
a dot is used, for an example Ȧ. The spin space is a two dimensional symplectic complex vector space.
An element of this space is written with an unprimed superscript, for example ψA. The symplectic form
is denoted by εAB and is a skew-symmetric complex bilinear form, i.e. εAB = − εBA. The action of the
bilinear form on vectors εABψAφB is a complex number. The element of the dual spin space is written
with an unprimed subscript ψA. The dual symplectic form is εAB such that εABεCB = εA

C . It is often
convenient to use a collective symbol εAA for a spin basis such that

ε0
A = ωA, ε1

A = πA. (17)

Furthermore, the components of εAB with respect to the spin-frame basis are

εAB = εABεA
AεB

B =
(

0 1
−1 0

)
. (18)

A dual basis denoted by εAA must then satisfy

εA
AεA

B = εA
B =

(
1 0
0 1

)
. (19)

It thus implies that
εA

0 = − πA, εA
1 = ωA. (20)

Therefore, the spin-frame and the dual spin-frame can be written in a matrix notation as

εA
A =

(
−πA
ωA

)
, (21)

εA
A =

(
ωA

πA

)
. (22)

Any spin-frame satisfies the following formulas:

εAB = ωAπB − πAωB , εAB = ωAπB − πAωB , ε B
A = ωAπ

B − πAωB , (23)
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εAB = − εBA, εAB = − εBA, ε B
A = − εBA = δBA , (24)

εABε
CB = ε C

A = δCA , εABεAC = ε B
C = δBC , (25)

εABε
D

C + εBCε
D

A + εCAε
D

B = 0, (26)

εABεCD + εBCεAD + εCAεBD = 0. (27)

1.3 Penrose abstract indices notation for tetrads

Three types of indices will be introduced here: the boldface indices a, b take numerical values 0, 1, 2, 3
and are related to a concrete choice of basis. The italics a, b are abstract indices and specify types of tensor
objects. The abstract index formalism allows to work at a basis independent level, with all the operations
on indices we know from the matrix calculus.

The Minkowski space has signature (+,−,−,−) and the metric tensor is denoted by gab, gab. gab and
gab are matrices diag(+,−,−,−). A Minkowski tetrad g a

a , indexed by indices that are partly boldfaced
and partly italic, consists of four four-vectors g 0

a , g 1
a , g 2

a , g 3
a . Two types of tetrads will be employed.

The momentum independent tetrad g a
a satisfies k0 = |k| = kag 0

a , k1 = kag 1
a , k2 = kag 2

a , k3 = kag 3
a ,

and defines decomposition into energy and momentum in the Lorentz invariant measure

dΓ(k) =
d3k

(2π)32|k|
. (28)

The four momentum ka = ka(k) can be written in a spinor notation as ka(k) = πA(k)πA
′
(k), where

πA(k) is a spinor field defined by ka(k) up to a phase factor. For any πA(k) there exists another spinor
field ωA(k) satisfying the spin-frame condition ωA(k)πA(k) = 1.

We also consider a general field of tetrads defined on the light cone and denoted by g a
a (k). Here g 1

a (k)
and g 2

a (k) can play a role of transverse polarization vectors and g 3
a (k) is parallel to the 3-momentum.

Indices a and a can be raised and lowered by means of the Minkowski metric tensor gab, gab, gab and gab.

The null tetrad will be indexed by indices that are partly boldfaced-primed and partly italic ga b′ . It is im-
portant to distinguish between a and AA′, and we will employ the convention where a′ = 00′, 01′, 10′, 11′

and ga′b′ = εABεA′B′ , ga
′b′

= εABεA
′B′

. We raise and lower indices AA′ by means of εABεA′B′ and
indices a′ by means of the matrix

ga′b′ =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 . (29)

The null tetrad associated with spin-frames can be written as

ga b′ =


ga 00′

ga 01′

ga 10′

ga 11′

 =


εA0ε

A′

0′

εA0ε
A′

1′

εA1ε
A′

0′

εA1ε
A′

1′

 =


ωAωA

′

ωAπA
′

πAωA
′

πAπA
′

 =


ωa

ma

m̄a

ka

 (30)

and dually

g b′

a =


g 00′
a

g 01′
a

g 10′
a

g 11′
a

 =


ε 0
A ε 0′

A′

ε 0
A ε 1′

A′

ε 1
A ε 0′

A′

ε 1
A ε 1′

A′

 =


πAπA′

−πAωA′
−ωAπA′
ωAωA′

 =


ka
−m̄a

−ma

ωa

 . (31)

Here ga01′(k) and ga10′(k) can play the role of circular photon polarization vectors.
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There is a relation between a Minkowski tetrad, indexed by indices that are partly boldfaced and partly
italic, and a null tetrad

ga a(k) = gab′g
ab′(k) = g b′

a ga b′(k) = g BB′

a gaBB′(k), (32)

ga a =


ga 0
ga 1
ga 2
ga 3

 =
1√
2


1 0 0 1
0 1 1 0
0 i −i 0
1 0 0 −1




ωAωA
′

ωAπA
′

πAωA
′

πAπA
′

 =
1√
2


ωa + ka

ma + m̄a

ima − im̄a

ωa − ka



=


ta

xa

ya

za

 (33)

and dually we can write

g a
a (k) = gab

′
gab′(k) = gab′g

b′

a (k) = gaBB′g
BB′

a (k), (34)

g a
a =


g 0
a

g 1
a

g 2
a

g 3
a

 =
1√
2


1 0 0 1
0 1 1 0
0 −i i 0
1 0 0 −1




πAπA′

−πAωA′
−ωAπA′
ωAωA′

 =
1√
2


ka + ωa
−m̄a −ma

im̄a − ima

ka − ωa



=


ta
−xa
−ya
−za

 . (35)

Here the gs with the partly boldfaced and partly boldfaced-primed indices are the Infeld-van der Waerden
symbols which can be written in the following matrix forms

gab′ =
1√
2


1 0 0 1
0 1 1 0
0 −i i 0
1 0 0 −1

 , (36)

g b′

a =
1√
2


1 0 0 1
0 1 1 0
0 i −i 0
1 0 0 −1

 . (37)

These Infeld-van der Waerden symbols, in their matrix forms, in Penrose abstract index formalism, are
used to translate formulas into matrix forms. As an example it is easy to show that

ga′b′ = ga′
agab′ =

1√
2


1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1

 1√
2


1 0 0 1
0 −1 −1 0
0 i −i 0
−1 0 0 1

 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 .

(38)

To perform matrix manipulation for (38) we need to transpose (36) and lower the index b′ in (37) by
means of the matrix (29). Also for the metric tensor we can show that

gab = ga
a′ga′b =

1√
2


1 0 0 1
0 1 1 0
0 i −i 0
1 0 0 −1

 1√
2


1 0 0 −1
0 −1 i 0
0 −1 −i 0
1 0 0 1

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

(39)
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The relation between the Minkowski tetrad and the metric tensor gab is

gab = ga
a(k)gbb(k)gab = − xa(k)xb(k)− ya(k)yb(k)− za(k)zb(k) + ta(k)tb(k). (40)

Analogously, the relation between the null tetrad and the metric tensor gab is

gab = ga
a′(k)gbb

′
(k)ga′b′ = ka(k)ωb(k) + ωa(k)kb(k)−ma(k)m̄b(k)− m̄a(k)mb(k). (41)
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2 Reducible representations

For further analysis let us assume the convention c = ~ = 1. When building a relativistic model for photons
one has to consider photon’s momentum and polarization. In this mathematical model these two quantities
will be described in a tensor product structure, i.e.

photon momentum space ⊗ photon polarization space (42)

It also should be stressed that in relativistic context spin and momentum are not independent degrees of
freedom. This will be discussed further in chapter 5. Some preliminary aspects of the reducible represen-
tation will be discussed in the present chapter. Such a model has strong arguments in it’s favor, mostly
because it naturally handles some of the infrared and ultraviolet divergences. In 2.1 the basic idea of
the model is introduced. Further, in 2.2 and 2.3, ladder and number operators are introduced for N = 1
oscillator space of the theory. How the extension to N -oscillator space looks like and what is the definition
of the number operator in N space are discussed in 2.4 and 2.5. Finally how to represent vacuum is shown
in 2.6.

2.1 Motivation

In 1925 Heisenberg, Born and Jordan observed that energies of classical free fields look in Fourier space
like those of oscillator ensembles. It should be stressed that at that time Heisenberg, Born and Jordan did
not know the notation of a Fock space and may not fully understood the role of eigenvalues of operators.
Having to consider oscillators with different frequencies they considered one oscillator for each frequency
mode. The ensemble had to be infinite since the number of modes was infinite.

It is a well known problem that standard canonical procedures for field quantization result in various
infinities. It was shown in [6] by Czachor that the assumption of having one oscillator for each frequency
mode may not be natural. This thought continued in a series of papers on reducible representation of
CCR [7] - [18], also a draft of lecture notes may be found [19]. The main idea for reducible representations
is that each of the oscillators is a wave packet, a superposition of infinitely many different momentum states.

To describe this concept in more detail, let us first introduce a spectral decomposition of a frequency
operator

Ω =
∫
dΓ(k) ω(k) |k〉〈k|, (43)

so that (43) fulfills the eigenvalue problem

Ω |k〉 =
∫
dΓ(k′) ω(k′) |k′〉〈k′|k〉 = ω(k) |k〉. (44)

Here dΓ(k) in the Lorentz invariant measure (28). Furthermore, kets of momentum are normalized to

〈k|k′〉 = (2π)32|k|δ(3)(k,k′) = δΓ(k,k′) (45)

and the resolution of unity is∫
R3

d3k

(2π)32|k|
|k〉〈k| =

∫
R3
dΓ(k) |k〉〈k| = I. (46)

The energy for photons, assuming the convention ~ = 1, is E(k) = ω(k) = |k|. So the simplest Hamiltonian
for one kind of polarization can be written in the form

H = Ω⊗
(
a†a+

1
2

)
=
∫
dΓ(k) ω(k) |k〉〈k| ⊗

(
a†a+

1
2

)
, (47)

so that

H|k, n〉 = ω(k)
(
n+

1
2

)
|k, n〉. (48)
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Here |n〉 is the eigenvector of a “standard-theory” number operator a†a, where [a, a†] = 1. Now, let us
introduce an operator that lives in both momentum and polarization spaces

a(k, 1) = |k〉〈k| ⊗ a. (49)

Using the resolution of unity, we can also define an operator within the whole spectrum of frequencies

a(1) =
∫
dΓ(k) a(k, 1) =

∫
dΓ(k) |k〉〈k| ⊗ a = I ⊗ a, (50)

such that the basic commutator is [a(1), a†(1)] = I ⊗ 1. Here 1 in bracket of a(1) denotes that it is an
N = 1 oscillator representation.

2.2 Creation and annihilation operators

Let us start from the N = 1 oscillator space with two polarization degrees of freedom. Then the Hilbert
space H(1) of one oscillator is spanned by

|k, n1, n2〉 = |k〉 ⊗ |n1〉 ⊗ |n2〉. (51)

Here kets |nα〉 are eigenvectors of a†αaα. At this point let us consider a two dimensional polarization oscil-
lator and do not determine what kind of polarizations these dimensions determine, only that aα, aα′ satisfy
canonical commutation relations (CCR) typical for irreducible representation, i.e. [aα, a

†
α′ ] = δα,α′ , α, α

′ =
1, 2. Although in the next chapter relativistically covariant four-dimensional polarizations are introduced,
in the present chapter we will use only two dimensions just to fully concentrate on the subject of reducible
representation. Now the reducible representation of the ladder operators is

aα(k, 1) = |k〉〈k| ⊗ aα, (52)

aα(k, 1)† = |k〉〈k| ⊗ a†α. (53)

The parameter 1 in the argument of a(k, 1) in (52) and (53) indicates that this is an N = 1 oscillator
representation. Sub-index α stands for one of the two possible polarization dimensions of an oscillator,
where

a1 = a1 ⊗ 1, a2 = 1⊗ a2. (54)

Then the commutation relations for the reducible representation of creation and annihilation operators
are

[aα(k, 1), aα′(k′, 1)†] = δα,α′δΓ(k,k′)|k〉〈k| ⊗ 12, (55)

where 12 denotes that it is a tensor product of two 1s. This representation is reducible since the right-hand
side of the commutator is an operator valued distribution with

I(k, 1) = |k〉〈k| ⊗ 1⊗ 1 = |k〉〈k| ⊗ 12 (56)

belonging to the center of algebra, i.e. it commutes with the ladder operators

[aα(k, 1), I(k′, 1)] = [aα(k, 1)†, I(k′, 1)] = 0. (57)

Furthermore, the operator I(k, 1) forms the resolution of unity for H(1) Hilbert space:∫
dΓ(k) I(k, 1) = I(1). (58)

2.3 CRR and HOLA algebra in N = 1 space representation

The number operator for the reducible representation in H(1) Hilbert space will be defined as

nα(k, 1) = |k〉〈k| ⊗ a†αaα. (59)
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Let us note that this definition is not equivalent to

n′α(k, 1) = aα(k, 1)†aα(k, 1) = δΓ(k,k)nα(k, 1). (60)

The definition of Dirac delta δΓ(k,k) may not be ambiguous [19]. We can also define a number operator
within the whole spectrum of frequencies as follows

nα(1) = aα(1)†aα(1) = I ⊗ a†αaα =
∫
dΓ(k)|k〉〈k| ⊗ a†αaα =

∫
dΓ(k)n(k, 1). (61)

So the eigenvalue definition of the number operator, i.e. “how many photons are there with α polarization
within the whole frequency spectrum” would be

nα(1)|k, n1, n2〉 =
∫
dΓ(k′)nα(k′, 1)|k, n1, n2〉 = nα|k, n1, n2〉. (62)

Now the following Lie algebra for the reducible representation holds

[aα(k, 1), aα′(k′, 1)†] = δα,α′δΓ(k,k′)I(k, 1), (63)

[aα(k, 1), nα′(k′, 1)] = δα,α′δΓ(k,k′)aα(k, 1), (64)

[aα(k, 1)†, nα′(k′, 1)] = −δα,α′δΓ(k,k′)aα(k, 1)†. (65)

Furthermore, for the representation within the whole frequency spectrum we have

[aα(1), aα′(1)†] = δα,α′I(1), (66)

[aα(1), nα′(1)] = δα,α′aα(1), (67)

[aα(1)†, nα′(1)] = −δα,α′aα(1)†. (68)

As one can see, the Lie algebra for the whole frequency spectrum has the “standard-theory” structure.

2.4 Creation and annihilation operators in N-oscillator space representations

Now let us discuss an extension of the theory to N -oscillators. The parameter N characterizes the reducible
representation. This parameter is not related to the number of photons. The Hilbert space for N -oscillators
reads

H(N) = H(1)⊗ . . .⊗H(1)︸ ︷︷ ︸
N

= H⊗N , (69)

and is spanned by kets of the form

|k1, n
1
1, n

1
2〉 ⊗ |k2, n

2
1, n

2
2〉 ⊗ . . .⊗ |kN , nN1 , nN2 〉 =

N⊗
m=1

|km, nm1 , nm2 〉. (70)

Let us also define an operator

A(n) = I ⊗ ...⊗ I︸ ︷︷ ︸
n−1

⊗A⊗ I ⊗ ...⊗ I︸ ︷︷ ︸
N−n

. (71)

The upper index (n) shows the “position” of the A operator inH(N) space. Operator (71) has the following
properties:

[A(n), B(m)] = [A,B](n)δn,m, (72)[
N∑
n

A(n),

N∑
m

B(m)

]
=

N∑
n

[A,B](n), (73)

(A+B)(n) = A(n) +B(n), (74)

(AB)(n) = A(n)B(n), (75)

(A(n))m = (Am)(n), (76)

exp

(
N∑
n=1

A(n)

)
=

(
expA

)⊗N
. (77)
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A natural extension of creation and annihilation operators in reducible representation to the N -oscillator
space is

aα(k, N) =
1√
N

N∑
n=1

aα(k, 1)(n) =
1√
N

(
aα(k, 1)⊗ ...⊗ I(1) + ...+ I(1)⊗ ...⊗ aα(k, 1)

)
, (78)

aα(k, N)† =
1√
N

N∑
n=1

aα(k, 1)†(n) =
1√
N

(
aα(k, 1)† ⊗ ...⊗ I(1) + ...+ I(1)⊗ ...⊗ aα(k, 1)†

)
. (79)

The factor 1√
N

is the normalization factor for N -oscillator representation. The CCR algebras still hold
(see (I.1) in the appendix):

[aα(k, N), aα′(k′, N)†] = δα,α′δΓ(k,k′)I(k, N), (80)

where at the right-hand side we have an operator

I(k, N) =
1
N

N∑
n=1

I(k, 1)(n) =
1
N

(
I(k, 1)⊗ ...⊗ I(1) + ...+ I(1)⊗ ...⊗ I(k, 1)

)
, (81)

which for all N is also in the center of the algebra since

[aα(k, N), I(k′, N)] = [aα(k, N)†, I(k′, N)] = 0. (82)

I(k, N) satisfy the resolution of unity for the Hilbert space H(N):∫
dΓ(k) I(k, N) = I(N) = I(1)⊗ ...⊗ I(1)︸ ︷︷ ︸

N

. (83)

Let us also define the ladder operators within the whole spectrum of frequencies, i.e.

aα(N) =
1√
N

N∑
n=1

∫
dΓ(k) aα(k, 1)(n) =

1√
N

(
aα(1)⊗ ...⊗ I(1) + ...+ I(1)⊗ ...⊗ aα(1)

)
, (84)

aα(N)† =
1√
N

N∑
n=1

∫
dΓ(k) aα(k, 1)†(n) =

1√
N

(
aα(1)† ⊗ ...⊗ I(1) + ...+ I(1)⊗ ...⊗ aα(1)†

)
.(85)

Then CCR algebra for the whole frequency spectrum operators is satisfied,

[aα(N), aα′(N)†] = δα,α′I(N). (86)

Again the representation within the whole frequency spectrum keeps the “standard-theory” structure.

2.5 Number operator in N-oscillator representations

The structure of the ladder operators for N -oscillators (78) and (79), together with the reducible represen-
tation, creates possibilities for several definitions of the number operator. Following the lecture notes [19]
three possibilities will be discussed here. First let us consider a product of two reducible-representation
ladder operators for N -oscillators, i.e.

nIα(k, N) = aα(k, N)†aα(k, N) =
1
N

N∑
m,n=1

aα(k, 1)†(m)aα(k, 1)(n)

=
1
N

(
aα(k, 1)† ⊗ ...⊗ I(1) + ...+ I(1)⊗ ...⊗ aα(k, 1)†

)
×

(
aα(k, 1)⊗ ...⊗ I(1) + ...+ I(1)⊗ ...⊗ aα(k, 1)

)
=

1
N

(
n′α(k, 1)⊗ ...⊗ I(1) + ...+ I(1)⊗ ...⊗ n′α(k, 1)

)
+ n′int,α(k, N). (87)
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For the second choice let us use the number operator (60) for N = 1 representation and write:

nIIα (k, N) =
N∑
m=1

(
aα(k, 1)†aα(k, 1)

)(m)
=

N∑
m=1

n′α(k, 1)(m)

= n′α(k, 1)⊗ ...⊗ I(1) + ...+ I(1)⊗ ...⊗ n′α(k, 1). (88)

Finally using the definition (59) of the number operator for N = 1 representation we can write:

nIIIα (k, N) =
N∑
m=1

(
|k〉〈k| ⊗ a†αaα

)(m)
=

N∑
m=1

nα(k, 1)(m)

= nα(k, 1)⊗ ...⊗ I(1) + ...+ I(1)⊗ ...⊗ nα(k, 1). (89)

The first choice generates additional N(N − 1) interaction terms. Second and third would be equivalent if
δΓ(k,k) = 1. Now let us take a closer look at the Lie algebras with respect to the choice of n-s:

[aα(k, N), nIα′(k
′, N)] = δα,α′δΓ(k,k′)aα(k, N)I(k, N), (90)

[aα(k, N), nIIα′ (k
′, N)] = δα,α′δΓ(k,k′)δΓ(k,k)aα(k, N), (91)

[aα(k, N), nIIIα′ (k′, N)] = δα,α′δΓ(k,k′)aα(k, N). (92)

So the issue of the choice of representation of the number operator boils down to the two questions: what
is the definition of δΓ(k,k), and how does I(k, N) in (90) contribute to the theory?

At this stage of constructing the formalism it is worth checking the Lie algebras for operators within
the whole frequency spectrum

[aα(N), nIα′(N)] = δα,α′

∫
dΓ(k)aα(k, N)I(k, N), (93)

[aα(N), nIIα′ (N)] = δα,α′

∫
dΓ(k)δΓ(k,k)aα(k, N), (94)

[aα(N), nIIIα′ (N)] = δα,α′aα(N). (95)

We can see that only the choice (95) maintains the standard structure of HOLA.

Another digression on this subject should be made. Looking at the number operator for N = 1 oscil-
lators within the whole frequency spectrum (61) one may want to extend this definition to all N and
consider

nIVα (N) = aα(N)†aα(N) =
∫
dΓ(k)

∫
dΓ(k′)aα(k, N)†aα(k′, N)

=
∫
dΓ(k)

∫
dΓ(k′)

1
N

N∑
m,n=1

aα(k, 1)†(m)aα(k′, 1)(n). (96)

This operator has the same commutation relations as in (95), however the problem is that there is no
unique definition for the reducible representation, i.e.

aα(k, N)†aα(N) 6= aα(N)†aα(k, N), (97)

that is the commutation relations for both cases would be

[aα(k, N), aα′(k′, N)†aα′(N)] = δα,α′δΓ(k,k′)I(k, N)aα(N), (98)

[aα(k, N), aα′(N)†aα′(k′, N)] = δα,α′I(k, N)aα(k′, N). (99)

Due to this inconsistency, (96) will not be considered any more.

Although at this point nIII (89) looks like the best choice for the number operator in reducible re-
presentation, we will also check the eigenvalue problem, i.e.

nIIIα (N)
N⊗
m=1

|km, nm1 , nm2 〉 =
N∑

m′=1

nIIIα (1)(m′)
N⊗
m=1

|km, nm1 , nm2 〉 = nα

N⊗
m=1

|km, nm1 , nm2 〉, (100)
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where nα =
∑N
m=1 n

m
α is the total number of α polarized excitations in the N -oscillator system. From now

on, when referring to the number operator for N -oscillator reducible representations, we will have in mind
the formula (89) and the superscript III in nIII(k, N) will be dropped.

2.6 Vacuum

A vacuum for N = 1 reducible representation is any vector of the form

|O(1)〉 =
∫
dΓ(k)O(k)|k, 0, 0〉. (101)

This definition implies that vacuum is any vector annihilated by all annihilation operators, i.e.

aα(1)|O(1)〉 = 0. (102)

From the normalization condition
〈O(1)|O(1)〉 = 1 (103)

we get ∫
dΓ(k)|O(k)|2 =

∫
dΓ(k)Z(k) = 1. (104)

Here the scalar field Z(k) = |O(k)|2 represents vacuum probability density. Furthermore, square integra-
bility of (104) implies that Z(k) must decay at infinity. Moreover, Z(k) is required to go to zero at k = 0
in order to avoid infrared divergences [12]. It should be stressed that this point is of special importance
for such a quantization. It turns out that regularization can be a consequence of employing such special
form of scalar field in the definition of vacuum.

An extension to N -oscillator space is assumed to be a tensor product of N = 1 vacuum states, i.e.

|O(N)〉 = |O(1)〉⊗N = |O(1)〉 ⊗ ...⊗ |O(1)〉︸ ︷︷ ︸
N

. (105)

In analogy to (102), an N -oscillator vacuum can be defined as any vector annihilated by N -oscillator
representation of annihilation operators

aα(N)|O(N)〉 = 0. (106)

Of course, the normalization condition for N representation still holds, i.e.

〈O(N)|O(N)〉 = 〈O(1)|O(1)〉N = 1. (107)

2.7 Conclusions and results

Most of the results from this section were presented in [6]–[13], and in lecture notes [19]. N -oscillator
representations form several possibilities of defining a number operator. It has been shown that reducible
representations of HOLA integrated over the whole frequency spectrum maintain the “standard theory”
form of harmonic-oscillator Lie algebra if an appropriate definition (89) of the number operator is accepted.
The eigenvalue problem for the whole frequency spectrum provides further arguments in favor of the
definition (89).

13



3 Four-dimensional photon polarization space

Four-dimensional quantization, often called a Gupta-Bleuler type, is well known from the literature [30] -
[36]. Except for the two “standard theory” transverse polarizations, two additional ones are introduced.
These additional degrees of freedom are called time-like and longitudinal photons respectively. There seems
to be no experiment verifying existence of such particles, therefore they are often called unphysical ore
even “ghosts”. Typically it is assumed that time-like photon states have negative norm. Unfortunately
states with such nonpositive norms form a serious difficulty for the probability interpretation of quantum
mechanics.

In this chapter we will introduce a four-dimensional covariant formalism for the photon polarization space
with a different interpretation of the time-like polarization. The same four-dimensional quantization, as
presented here, was already formulated by Czachor and Naudts [12] and further Czachor and Wrzask
[13], where in the definition of the potential operator, in the place of the annihilation operator of Gupta-
Bleuler-type potential for the time-like degree of freedom, stands a creation operator. In this chapter an
interpretation of the time-like polarization of such quantization will be profoundly investigated. This ana-
lysis is a new result. Further the in next chapter it turns out that the contribution to gauge-invariant
quantities of such time-like fields cancels against the longitudinal ones and only the two transverse pola-
rization fields remain.

This chapter is organized as follows. In section 3.1 a construction coming from a covariant Hamilto-
nian for a four-dimensional oscillator is shown. When constructing such a four-dimensional oscillator one
should consider what is the consequence of creating particles on the energy of the whole system, i.e. does
it raise the energy level or lower it? This is discussed further in sections: 3.2 for the space-like polarization
degrees of freedom and in 3.3 and 3.4 two different interpretations of the time-like polarization degree are
considered. It turns out that, assuming for the time-like photons the energy spectrum bounded from the
top and particles with negative energy, we can preserve the positive norms as needed for the probability
interpretation of quantum mechanics.

3.1 Construction of four-dimensional polarization space

To construct a four-dimensional photon polarization space let us first introduce an abstract covariant
Hamiltonian of the form

H = −pap
a

2
− qaq

a

2
, a = 0, 1, 2, 3. (108)

Here pa and qa are some canonical variables such that

pa = i∂a = i
∂

∂qa
= igab

∂

∂qb
, (109)

with commutation relations

[qa, pb] = −igab. (110)

Let us remind ourselves that the metric here is chosen as diag(+,−,−,−). These canonical variables should
not be mistaken with the position and momentum of the photon field. This construction is made strictly
for the four degrees of photon polarization. Now let us define non-hermitian operators

aa =
qa + ipa√

2
=

qa − ∂a√
2

=
1√
2

(
q0 −

∂

∂q0
, q1 +

∂

∂q1
, q2 +

∂

∂q2
, q3 +

∂

∂q3

)
, (111)

a†a =
qa − ipa√

2
=

qa + ∂a√
2

=
1√
2

(
q0 +

∂

∂q0
, q1 −

∂

∂q1
, q2 −

∂

∂q2
, q3 −

∂

∂q3

)
, (112)
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which satisfy the following commutation relations

[aa, a
†
b] = −gab, (113)

[aa, ab] = [a†a, a
†
b] = 0, (114)

[aa,
(
a†b

)n
] =

n−1∑
k=0

(
a†b

)k
[aa, a

†
b]
(
a†b

)n−k−1
= − gabn

(
a†b

)n−1
, (115)

[(aa)n, a†b] =
n−1∑
k=0

(aa)k[aa, a
†
b](aa)n−k−1 = − gabn(aa)n−1. (116)

Following J. Ch. Pain’s paper [38], we can also write these in a very useful form

[
(aa)n,

(
a†b

)m]
= −

min(n,m)∑
k=1

(gab)kn!m!
k!(n− k)!(m− k)!

(a†b)m−k(aa)n−k, (117)

[
(aa)n,

(
a†b

)m]
=

min(n,m)∑
k=1

(−gab)kn!m!
k!(n− k)!(m− k)!

(aa)n−k(a†b)m−k. (118)

Furthermore, (111) and (112) can be easily inverted to give the canonical variables

pa =
aa − a†a
i
√

2
, (119)

qa =
aa + a†a√

2
. (120)

As a consequence of such a covariant formalism, there are four polarization degrees of freedom. They can
be written in a four-dimensional tensor product space

a1 = a1 ⊗ 1⊗ 1⊗ 1, a2 = 1⊗ a2 ⊗ 1⊗ 1, a3 = 1⊗ 1⊗ a3 ⊗ 1, a0 = 1⊗ 1⊗ 1⊗ a0, (121)

where the four-dimensional space will be spanned by kets of the form

|n1, n2, n3, n0〉 = |n1〉 ⊗ |n2〉 ⊗ |n3〉 ⊗ |n0〉. (122)

Now let us take a closer look at

a†aa
a =

1
2

(qa − ipa) (qa + ipa)

=
1
2

(qaqa + iqap
a − ipaqa + pap

a)

=
1
2
qaq

a + i
1
2

[qa, pa] +
1
2
pap

a

=
1
2
qaq

a + 2 +
1
2
pap

a. (123)

This implies that the Hamiltonian (108) can be written in terms of operators a†a, a
a in the form

H = − a†aaa + 2, a = 0, 1, 2, 3. (124)

Furthermore, the following commutation relations hold

[H, aa] = [−a†ba
b, aa] = − aa, (125)

[H, a†a] = [−a†ba
b, a†a] = a†a. (126)

Let us assume that the eigenvalue of the covariant Hamiltonian operator (108) acting on four-dimensional
space is denoted by E.

H|n1, n2, n3, n0〉 = E|n1, n2, n3, n0〉. (127)
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At this point this is really a quantity corresponding with the number of particles, but in the upcoming
section 4, an extension of this model to reducible representation is made and E(1) will correspond to the
total (free-field) energy operator. Now it can be shown that indeed aa lowers and a†a raises E by 1, i.e.

Haa|n1, n2, n3, n0〉 = [H, aa]|n1, n2, n3, n0〉+ aaH|n1, n2, n3, n0〉
= −aa|n1, n2, n3, n0〉+ aaE|n1, n2, n3, n0〉
= (E − 1)aa|n1, n2, n3, n0〉, (128)

Ha†a|n1, n2, n3, n0〉 = [H, a†a]|n1, n2, n3, n0〉+ a†aH|n1, n2, n3, n0〉
= a†a|n1, n2, n3, n0〉+ a†aE|n1, n2, n3, n0〉
= (E + 1)a†a|n1, n2, n3, n0〉. (129)

3.2 Construction for space-like photons

From the previous section we learn that (128) and (129) will define lowering and raising energy operators
respectively and the raising operators will be denoted with a dagger. These operators are also known in
the literature as annihilation and creation operators, but at this point this terminology will not be used
for a reason. It will turn out that the definition of the 0 polarization degree of freedom may be ambiguous.

It is quite evident that for the polarization degrees of freedom a = 1, 2, 3, the raising energy opera-
tors create new states. Let us then define vacuum states for these three photon polarization dimensions as
normalized states that are annihilated by lowering-energy operators:

aj |0〉 = 0, j = 1, 2, 3. (130)

Now let us normalize these space-like states to 1. The state of nj excitations must be proportional to n
raising energy operators acting on ground state, so we can write

|nj〉 ∼ a†nj |0〉. (131)

Then the scalar product can be denoted as

〈ni|nj〉 ∼ 〈0|(ai)n(a†j)n|0〉 = 〈0|(ai)n−1
(

[ai, (a
†
j)n] + (a†j)nai

)
|0〉 = 〈0|(aj)n−1[aj , (a

†
i)
n]|0〉

= δjin〈0|(aj)n−1(a†i)
n−1|0〉 = δjin(n− 1)〈0|(aj)n−2(a†i)

n−2|0〉...
(132)

Going further with the recurrence we get

〈ni|nj〉 ∼ δijn!〈0|0〉. (133)

Now we can give a normalized definition of bras and kets:

|nj〉 =
1√
n!

(a†j)n|0〉, j = 1, 2, 3,

〈nj | =
1√
n!
〈0| (aj)n , j = 1, 2, 3. (134)

This means that for this representation the action of raising and lowering operators is defined as follows:

a†j |nj〉 =
√
n+ 1|nj + 1〉, (135)

aj |nj〉 =
√
n|nj − 1〉, (136)

〈nj |aj =
√
n+ 1〈nj + 1|, (137)

〈nj |a†j =
√
n〈nj − 1|. (138)
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We also define the number operators for these three polarization degrees of freedom

a†jaj |nj〉 = nj |nj〉, j = 1, 2, 3. (139)

For further analysis, we will also need the following commutation relations

[aj , a
†
jaj ] = aj , j = 1, 2, 3,

[a†j , a
†
jaj ] = −a†j , j = 1, 2, 3. (140)

Using the definition of the lowering operator (111), with the definition of the vacuum state (130), for the
q representation of vacuum, we can write a differential equation

1√
2

(
qj +

∂

∂qj

)
Ω0(qj) = 0, j = 1, 2, 3, (141)

with a simple solution

Ω0(qj) = A exp

(
−
q2
j

2

)
, j = 1, 2, 3. (142)

Here A is the normalization constant

A =
(

1
π

) 1
4

. (143)

The whole construction for these three polarization degrees of freedom is evident. Now, formally without
any confusion we can say that operators that raise the total energy create particles, so can be called
creation operators. Also those that lower the total energy should annihilate the vacuum. Furthermore, the
states have positive norms and the vacuum state in the canonical q representation is proper, i.e. satisfies
the requirement of going to zero at infinity, making it possible to normalize the function.

3.3 Construction for time-like photons, where lowering energy operators an-
nihilate vacuum

The problem arises with the a = 0 degree. To see this, first let us take a look at the time-like part of the
Hamiltonian

H0|n1, n2, n3, n0〉 =
(
−p0p

0

2
− q0q

0

2

)
|n1, n2, n3, n0〉 =

(
−a†0a0 +

1
2

)
|n1, n2, n3, n0〉

=
(
−a0a

†
0 −

1
2

)
|n1, n2, n3, n0〉. (144)

When we consider the energy the question for the 0 polarization degree of freedom is: do the lowering
energy operators annihilate particles and raising energy operators create ones or maybe do the lowering
energy operators create particles and raising energy operators annihilate them?

First let us assume that the lowering operator annihilates the vacuum, i.e.

a0|0〉 = 0. (145)

Then the state of n0 excitations is proportional to n raising operators acting on ground state, so that

|n0〉 ∼ a†n0 |0〉 (146)

and the scalar product reads

〈n0|n0〉 ∼ 〈0|(a0)na†n0 |0〉 = 〈0|(a0)n−1
(

[a0, a
†n
0 ] + a†n0 a0

)
|0〉 = 〈0|(a0)n−1[a0, a

†n
0 ]|0〉

= n〈0|(−)(a0)n−1a†n−1
0 |0〉 = (−)2n(n− 1)〈0|(a0)n−2a†n−2

0 |0〉... (147)
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Going further with the recurrence we get

〈n0|n0〉 ∼ (−)nn!〈0|0〉. (148)

It looks like the states corresponding to odd values of n0 give a negative norm. Normalization to 1 becomes
a problem now and there is no elegant way to do it, maybe:

|n0〉 =
1√
n!

(ia†0)n|0〉,

〈n0| =
1√
n!
〈0| (ia0)n . (149)

In this case saving the positivity of the scalar product has an effect on the hermitian conjugation operation.
This means that for this kind of representation the action of creation and annihilation operators would be
defined as:

a†0|n0〉 = −i
√
n+ 1|n0 + 1〉, (150)

a0|n0〉 = −i
√
n|n0 − 1〉, (151)

〈n0|a0 = −i
√
n+ 1〈n0 + 1|, (152)

〈n0|a†0 = −i
√
n〈n0 − 1|. (153)

Or we could follow Gupta [30] and leave the metric indefinite, i.e.

|n0〉 =
1√
n!

(a†0)n|0〉,

〈n0| =
1√
n!
〈0| (a0)n , (154)

defining the action of creation and annihilation operators as:

a†0|n0〉 =
√
n+ 1|n0 + 1〉, (155)

a0|n0〉 = −
√
n|n0 − 1〉, (156)

〈n0|a0 =
√
n+ 1〈n0 + 1|, (157)

〈n0|a†0 = −
√
n〈n0 − 1|. (158)

But even then another problem arises, i.e. using the q representation of vacuum, we get a differential
equation

1√
2

(
q0 −

∂

∂q0

)
Ω0(q0) = 0, (159)

with a solution that is divergent at infinity

Ω0(q0) = A exp
(
q2
0

2

)
. (160)

All these conclusions may suggest that another point of view on the 0 polarization degree is needed.

3.4 Construction for time-like photons, where raising energy operators anni-
hilate vacuum

Now let us assume that the raising operator annihilates the vacuum, which means that the energy spectrum
is bounded from the top and to raise the total energy level we need to annihilate a particle, i.e.

a†0|0〉 = 0. (161)

Such a construction has lots of advantages which will be shown in this section. Now the state of n0

excitations is proportional to n lowering energy operators acting on the ground state, so that

|n0〉 ∼ an0 |0〉. (162)
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This means that creation of new particles is lowering the total energy. The scalar product now can be
written as

〈n0|n0〉 ∼ 〈0|a†n0 (a0)n|0〉 = 〈0|(a†0)n−1
(

[a†0, a
n
0 ] + an0 a†0

)
|0〉 = 〈0|(a†0)n−1[a†0, a

n
0 ]|0〉

= n〈0|(a†0)n−1an−1
0 |0〉 = n(n− 1)〈0|(a†0)n−2an−2

0 |0〉... (163)

Going further with the recurrence we get

〈n0|n0〉 ∼ n!〈0|0〉. (164)

We find that giving a normalized definition of bras and kets is not a problem now:

|n0〉 =
1√
n!

an0 |0〉,

〈n0| =
1√
n!
〈0|a†n0 . (165)

Furthermore, this means that for this representation the raising and lowering energy operators are defined
as:

a0|n0〉 =
√
n+ 1|n0 + 1〉, (166)

a†0|n0〉 =
√
n|n0 − 1〉, (167)

〈n0|a†0 =
√
n+ 1〈n0 + 1|, (168)

〈n0|a0 =
√
n〈n0 − 1|. (169)

It turns out that in this case we do not have to choose between positivity of the scalar product and
the hermitian conjugate operation. The number operator for the time-like polarization should be defined
carefully:

a0a†0|n0〉 = n0|n0〉. (170)

Of course, we can use an operator in the “standard way” but then its eigenvalue would be n0 + 1

a†0a0|n0〉 = (n0 + 1)|n0〉. (171)

A construction of vacuum state is not problematic either. Using the q representation we get a differential
equation

1√
2

(
q0 +

∂

∂q0

)
Ω0(q0) = 0, (172)

with the solution

Ω0(q0) = A exp
(
−q2

0

2

)
. (173)

Summarizing all the above, from now on we will use a†0 for an operator that annihilates vacuum and a0

for an operator that creates time-like polarization states.

3.5 More properties of the four-dimensional oscillator algebra

We can split the Hamiltonian in two: for degrees 1 and 2, and for 0 and 3, such that

H|n1, n2, n3, n0〉 =
(
H12 +H03) |n1, n2, n3, n0〉, (174)

H12|n1, n2, n3, n0〉 = −p1p
1 + q1q

1 + p2p
2 + q2q

2

2
|n1, n2, n3, n0〉

=
(
a†1a1 + a†2a2 + 1

)
|n1, n2, n3, n0〉 = (n1 + n2 + 1) |n1, n2, n3, n0〉, (175)
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H03|n1, n2, n3, n0〉 = −p0p
0 + q0q

0 + p3p
3 + q3q

3

2
|n1, n2, n3, n0〉

=
(
−a†0a0 + a†3a3 + 1

)
|n1, n2, n3, n0〉

=
(
−a0a

†
0 + a†3a3

)
|n1, n2, n3, n0〉 = (−n0 + n3) |n1, n2, n3, n0〉. (176)

From this we see that, for such a definition of a0, the energy of the ground state comes only from the
transverse polarization degrees of freedom.

The completeness relation for such four-dimensional oscillator holds

∞∑
n1,n2,n3,n0=0

|n1, n2, n3, n0〉〈n1, n2, n3, n0|

=
∞∑

n1=0

|n1〉〈n1| ⊗
∞∑

n2=0

|n2〉〈n2| ⊗
∞∑

n3=0

|n3〉〈n3| ⊗
∞∑

n0=0

|n0〉〈n0| = 14. (177)

3.6 Conclusions and results

This chapter contains new results. A construction of the four-dimensional polarization space coming from
a definition of the covariant Hamiltonian (108) is presented here. Further analysis of the formalism is per-
formed, especially regarding the interpretation of the ladder operators for the time-like degree of freedom
a0. Strong arguments are given in favor of an interpretation in which the operator annihilating vacuum is
a raising energy operator. Such an interpretation gives a non divergent vacuum representation and positive
scalar products. These results are in agreement with the four-dimensional quantization of the potential
operator in Czachor and Naudts [12], and Czachor and Wrzask [13]. One thing should be mentioned regar-
ding the choice of notation a0 for the creation operator of the time-like polarization degree of freedom, i.e.
without a dagger. This differs from the notation used in the mentioned papers, but follows quite naturally
from the definition of the covariant Hamiltonian (108). Furthermore, such a choice of notation allows us
to write formulas in a more compact and covariant looking forms.
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4 Four-dimensional oscillator reducible representation algebra

In previous two chapters the reducible representations as well as the four-dimensional oscillator algebra
were introduced. This chapter in a way combines the two previous ones in a single formalism. First, a
construction of the four-dimensional oscillator for the reducible representation is given in 4.1 and 4.2.
Next, the potential operator for the theory is introduced in 4.3. Then a question comes up: how does such
a theory correspond to Maxwell electromagnetism theory. It turns out that states that reproduce standard
Maxwell electrodynamics exist. This will be discussed in section 4.4, and an explicit form of ΨEM states
is a new result. In 4.5 more properties of the potential operator are shown. This includes the covariant
commutator taken in arbitrary space-time points coming from the covariant structure of the ladder ope-
rators. Some strong arguments are given here in favor of the reducible representation of the theory. The
electromagnetic field tensor is introduced in 4.6 and coherent states in 4.7. At the end of this chapter, in
4.8, a coherent state structure of ΨEM vectors is discussed.

4.1 Hamiltonian

The main goal of this section is to combine the reducible representation with the covariant construction
of the four polarization degrees of freedom into one model. The four-dimensional N = 1 (or 1–oscillator)
representation of CCR acts in the Hilbert space H(1) spanned by kets of the form

|k, n1, n2, n3, n0〉 = |k〉 ⊗ (a†1)n1(a†2)n2(a†3)n3(a0)n0√
n0!n1!n2!n3!

|0, 0, 0, 0〉 (178)

or

|k, n−, n+, n3, n0〉 = |k〉 ⊗
(a†−)n1(a†+)n2(a†3)n3(a0)n0√

n0!n−!n+!n3!
|0, 0, 0, 0〉. (179)

This 1-oscillator representation has four dimensions of polarization. a1, a2, a3, a0 satisfy the commutation
relations typical of irreducible representations of CCR (113). In (178) a†1, a

†
2 stand for creation operators

for linear polarized photons in x and y directions, and in (179) a†+, a
†
− stand for circular polarization

photons. a0 and a†3 are both creation operators for time-like and longitudinal photons, respectively. For
the reducible representation we define the ladder operators

aa(k, 1) = |k〉〈k| ⊗ aa. (180)

Then the following CCR algebra holds:

[aa(k, 1), ab(k′, 1)†] = − gabδΓ(k,k′)|k〉〈k| ⊗ 14 = − gabδΓ(k,k′)I(k, 1). (181)

This representation is reducible, since the right-hand side of the commutator (181) is an operator valued
distribution I(k, 1) = |k〉〈k| ⊗ 14 belonging to the center of the algebra, i.e.

[aa(k, 1), I(k′, 1)] = [aa(k, 1)†, I(k′, 1)] = 0. (182)

In order to construct this four-dimensional oscillator space let us introduce a covariant Hamiltonian in the
reducible representation

H(1) =
∫
dΓ(k) |k| |k〉〈k| ⊗

(
−pap

a

2
− qaq

a

2

)
, a = 0, 1, 2, 3. (183)

Hamiltonian (183) can be also written in terms of operators a†a and aa in the form

H(1) =
∫
dΓ(k) |k| |k〉〈k| ⊗

(
−a†aaa + 2

)
. (184)

Now the following commutation relations hold for the reducible representation of ladder operators

[H(1), aa(k, 1)] = −|k| aa(k, 1), (185)

[H(1), aa(k, 1)†] = |k| aa(k, 1)†. (186)
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Moreover, within the whole frequency spectrum of the ladder operators we get

[H(1), aa(1)] = −
∫
dΓ(k) |k| aa(k, 1) = − Ω⊗ aa, (187)

[H(1), aa(1)†] =
∫
dΓ(k) |k| aa(k, 1)† = Ω⊗ a†a, (188)

where spectral decomposition of the frequency operator (43) has been employed. Let us denote by E(1)
an eigenvalue of the covariant Hamiltonian operator (183),

H(1)|k, n1, n2, n3, n0〉 = E(1)|k, n1, n2, n3, n0〉 = |k| (n1 + n2 + n3 − n0 + 1)|k, n1, n2, n3, n0〉.
(189)

Now it can be shown that indeed aa(1) lowers and a†a(1) raises the total energy by |k|, i.e.

H(1)aa(1)|k, n1, n2, n3, n0〉 = [H(1), aa(1)]|k, n1, n2, n3, n0〉+ aa(1)H(1)|k, n1, n2, n3, n0〉

= −
∫
dΓ(k′) |k′| aa(k′, 1)|k, n1, n2, n3, n0〉+ aa(1)E(1)|k, n1, n2, n3, n0〉

= (E(1)− |k|)aa(1)|k, n1, n2, n3, n0〉, (190)

H(1)aa(1)†|k, n1, n2, n3, n0〉 = [H(1), aa(1)†]|k, n1, n2, n3, n0〉+ aa(1)†H(1)|k, n1, n2, n3, n0〉

=
∫
dΓ(k′) |k′| aa(k′, 1)†|k, n1, n2, n3, n0〉+ aa(1)†E(1)|k, n1, n2, n3, n0〉

= (E(1) + |k|)aa(1)†|k, n1, n2, n3, n0〉. (191)

Going further, the Hilbert space for any N -oscillator in this representation reads,

H(N) = H(1)⊗ . . .⊗H(1)︸ ︷︷ ︸
N

= H(1)⊗N , (192)

so that the H(N) Hilbert space is spanned by kets of the form

|k1, . . . ,kN , n
1
1, . . . , n

N
0 〉 = |k1, n

1
1, n

1
2, n

1
3, n

1
0〉 ⊗ · · · ⊗ |kN , nN1 , nN2 , nN3 , nN0 〉. (193)

Recalling the definition of the number operator (89), we may construct the Hamiltonian for the N -oscillator
representation as follows

H(N) =
∫
dΓ(k) |k|

N∑
n=1

(
|k〉〈k| ⊗

(
−a†aaa + 2

))(n)

=
N∑
n=1

(∫
dΓ(k) |k| |k〉〈k| ⊗

(
−a†aaa + 2

))(n)

=
N∑
n=1

H(1)(n). (194)

In the next section it will be shown that this definition of the Hamiltonian makes the vacuum energy finite
also for an arbitrary N -oscillator representation.

4.2 Vacuum in four-dimensional polarization reducible representations

The subspace of vacuum states is spanned by vectors of the form

|k1, 0, 0, 0, 0〉 ⊗ · · · ⊗ |kN , 0, 0, 0, 0〉. (195)

Vacuum in this representation is any state annihilated by all annihilation operators. Let us recall that a0

is in this model a creation operator. Therefore, in N = 1 oscillator representation we may write

|O(1)〉 =
∫
dΓ(k)O(k)|k, 0, 0, 0, 0〉. (196)
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In such a definition there can be a place for a single oscillator field O(k), where:∫
dΓ(k)|O(k)|2 =

∫
dΓ(k)Z(k) = 1. (197)

|O(k)|2 = Z(k) function may be understood as the probability that a given oscillator has momentum k.
An extension to N -oscillator representation can be made by

|O(N)〉 = |O(1)〉 ⊗ ...⊗ |O(1)〉︸ ︷︷ ︸
N

= |O(1)〉⊗N . (198)

From (197) we get the normalization condition

〈O(N)|O(N)〉 = 〈O(1)|O(1)〉N = 1. (199)

Recalling (176), where it is shown that the energy of vacuum comes only from the two transverse polari-
zation degrees of freedom, we calculate

H(1)|O(1)〉 =
∫
dΓ(k) |k| |k〉〈k| ⊗

(
−a†aaa + 2

) ∫
dΓ(k′)O(k′)|k′, 0, 0, 0, 0〉

=
∫
dΓ(k)

∫
dΓ(k′) |k| δΓ(k,k′)O(k′)|k, 0, 0, 0, 0〉

=
∫
dΓ(k) |k| O(k)|k, 0, 0, 0, 0〉. (200)

Let us also take into account the definition (194) of the Hamiltonian in N -oscillator representation, and
write

H(N)|O(N)〉 =
N∑
n=1

H(1)(n)|O(N)〉 =
N∑
m=1

|O(1)〉⊗(m−1) ⊗H(1)|O(1)〉 ⊗ |O(1)〉⊗(N−m). (201)

It must be stressed that in this case the expectation value of the energy of vacuum does not depend on
N , i.e.

〈O(N)|H(N)|O(N)〉 = 〈O(1)|O(1)〉N−1〈O(1)|H(1)|O(1)〉 =
∫
dΓ(k) |k| Z(k). (202)

This means that the energy of vacuum is not zero and depends only on the vacuum probability density
Z(k). Furthermore, for the vacuum energy to be finite we must demand∫

dΓ(k) |k| Z(k) <∞. (203)

It is possible to find such a function, for example Gaussians fulfill condition (203). Therefore, finiteness of
average vacuum energy is guaranteed by a proper choice of the vacuum probability density function and,
frankly, does not require the N parameter at all. Furthermore, this analysis shows that N may be a finite
number.

4.3 The potential operator

Four-dimensional quantization, as presented here, was formulated by Czachor and Naudts in [12] and
further investigated by Czachor and Wrzask in [13], where in the place of the annihilation operator of the
Gupta-Bleuler potential, for the time-like degree of freedom, stands a creation operator and vice-versa.
Let us start by presenting this potential operator in the reducible representation for N = 1:

Aa(x, 1) = i

∫
dΓ(k)g a

a (k)aa(k, 1)e−ik·x + H.c.

= i

∫
dΓ(k)

(
g 1
a (k)a1(k, 1) + g 2

a (k)a2(k, 1) + g 3
a (k)a3(k, 1) + g 0

a (k)a0(k, 1)
)
e−ik·x + H.c.

= i

∫
dΓ(k) (−xa(k)a1(k, 1)− ya(k)a2(k, 1)− za(k)a3(k, 1) + ta(k)a0(k, 1)) e−ik·x + H.c.(204)
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Here not just two operators corresponding to the polarization degrees of freedom, but four types are
introduced. Let us stress that a0 accompanying ta(k) is indeed a lowering total energy operator that is a
creation operator like in [12]. It is denoted differently here, i.e. without a dagger, as a result of the analysis
made in the previous chapter, and for notational convenience, i.e. the possibility of writing collective
formulas. In (204) xa(k), ya(k), za(k), ta(k) is a field of Minkowski tetrads such that

ka(k)xa(k) = ka(k)ya(k) = 0, ka(k)za(k) = ka(k)ta(k) =
1√
2
. (205)

Now let us take a closer look at the part

g a
a (k)aa(k, 1) = g a′

a (k)g a
a′ aa(k, 1) = g a′

a (k)
1√
2


1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1




a0(k, 1)
a1(k, 1)
a2(k, 1)
a3(k, 1)



= g a′

a (k)
1√
2


a0(k, 1) + a3(k, 1)
a1(k, 1)− ia2(k, 1)
a1(k, 1) + ia2(k, 1)
a0(k, 1)− a3(k, 1)

 = g a′

a (k)aa′(k, 1)

= −m̄a(k)a01′(k, 1)−ma(k)a10′(k, 1) + ka(k)a00′(k, 1) + ωa(k)a11′(k, 1). (206)

As we can see this can be rewritten also in terms of the null tetrad. Commutation relations for the new
operators are

[aa′(k, 1), ab′(k, 1)†] = [g a
a′ aa(k, 1), ḡb b′ab(k, 1)†] = − g a

a′ ḡ
b
b′gab = − g a

a′ ḡab′

= − 1√
2


1 0 0 1
0 1 −i 0
0 1 i 0
1 0 0 −1

 1√
2


1 0 0 1
0 −1 −1 0
0 −i i 0
−1 0 0 1

 =


0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0

 .

(207)

So, the electromagnetic four-potential operator can be also defined in another way, i.e.

Aa(x, 1)

= i

∫
dΓ(k) (−ma(k)a−(k, 1)− m̄a(k)a+(k, 1)− za(k)a3(k, 1) + ta(k)a0(k, 1)) e−ik·x + H.c.

= i

∫
dΓ(k) (−ma(k)a−(k, 1)− m̄a(k)a+(k, 1) + ka(k)a00′(k, 1) + ωa(k)a11′(k, 1)) e−ik·x + H.c.

(208)

The null tetrad fulfills the transversality property

ka(k)ma(k) = ka(k)m̄a(k) = ka(k)ka(k) = 0, (209)

but
ka(k)ωa(k) = 1. (210)

In this sense, from (205) and (209), both definitions of the four-vector potential operator involve four
polarization degrees of freedom (two transverse, one longitudinal, and one time-like). The first definition
(204) involves photons of linear polarization in x and y directions, the second one (208) deals with photons
of circular polarization, where

a10′(k, 1) = a−(k, 1) =
1√
2

(a1(k, 1) + i a2(k, 1)) , (211)

a01′(k, 1) = a+(k, 1) =
1√
2

(a1(k, 1)− i a2(k, 1)) , (212)

a00′(k, 1) =
1√
2

(a0(k, 1) + a3(k, 1)) , (213)

a11′(k, 1) =
1√
2

(a0(k, 1)− a3(k, 1)) , (214)
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and

m̄a(k) =
xa(k) + iya(k)√

2
, ma(k) =

xa(k)− iya(k)√
2

, (215)

play the role of circular polarization vectors.

4.4 Vectors corresponding to Maxwell’s theory

This section contains new results and the main goal here is to introduce state vectors corresponding to
classical Maxwell’s theory. We will start by presenting the four-divergence of the potential operator in
N = 1 representation

∂aAa(x, 1) = ∂a
(
i

∫
dΓ(k)g a

a (k)aa(k, 1)e−ik·x + H.c.
)

=
∫
dΓ(k)ka(k)g a

a (k)aa(k, 1)e−ik·x + H.c.

=
∫
dΓ(k) (−za(k)ka(k)a3(k, 1) + ta(k)ka(k)a0(k, 1)) e−ik·x + H.c.

=
1√
2

∫
dΓ(k) (a0(k, 1)− a3(k, 1)) e−ik·x + H.c. (216)

As one can see this does not correspond to the Lorenz condition on the four-vector potential operator.
The operator a0(k, 1)− a3(k, 1) in Dürr’s and Rudolph’s paper [34] is called a “bad ghost”. This is a very
adequate name because it spoils the correspondence with classical electrodynamics. It will appear later
in section (5.11) in (419) spoiling the Lorenz gauge invariance of electromagnetic field operator. (216) is
Lorentz invariant due to the invariance of the operator a0(k, 1) − a3(k, 1). This is shown later in section
(5.12). This is a good news, because once we could eliminate in averages the bad ghosts, we can be sure
that they will never “spook” us in any other reference frame.

Returning to our problem, it would be good for the theory to eliminate “bad ghosts” and this can be
done by a weaker Lorenz condition, i.e. in averages

〈ΨEM (1)|∂aAa(x, 1)|ΨEM (1)〉 = 0. (217)

We will try to impose this condition on the Hilbert space instead of on the operators. Here ΨEM (1) are
vectors that satisfy (217). From (217) it follows that

〈ΨEM (1)|
∫
dΓ(k) (a0(k, 1)− a3(k, 1)) |ΨEM (1)〉 = 0. (218)

Let us first assume that vectors ΨEM (1) can be split into two parts and written as a tensor product of
transverse degrees of freedom vectors denoted by Ψ12(1), and 0 and 3 degrees of freedom vectors denoted
by Ψ03(1).

|ΨEM (1)〉 =
∞∑

n0,n1,n2,n3

∫
dΓ(k) ΨEM (k, n1, n2, n3, n0)|k, n1, n2, n3, n0〉

=
∞∑

n1,n2

∫
dΓ(k) Ψ12(k, n1, n2)|k, n1, n2〉

∞∑
n0,n3

Ψ03(n3, n0)|n3, n0〉

= |Ψ12(1)〉 ⊗ |Ψ03(1)〉. (219)
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Let us note that such a choice is not the most generalized one because Ψ03(n3, n0) could also depend on
k. Now (218) takes the form

〈ΨEM (1)|
(∫

dΓ(k)|k〉〈k| ⊗ (a0 − a3)4

)
×

∞∑
n1,n2

∫
dΓ(k′) Ψ12(k′, n1, n2)|k′, n1, n2〉

∞∑
n0,n3

Ψ03(n3, n0)|n3, n0〉

= 〈ΨEM (1)| (I ⊗ (a0 − a3)4)
∞∑

n1,n2

∫
dΓ(k) Ψ12(k, n1, n2)|k, n1, n2〉

∞∑
n0,n3

Ψ03(n3, n0)|n3, n0〉

= 〈Ψ12(1)| ⊗ 〈Ψ03(1)| (I ⊗ 12 ⊗ (a0 − a3)2) |Ψ12(1)〉 ⊗ |Ψ03(1)〉
= 〈Ψ12(1)|I ⊗ 12|Ψ12(1)〉 × 〈Ψ03(1)| (a0 − a3)2 |Ψ03(1)〉. (220)

The lower indices in ladder operators indicate four and two dimensional tensor product spaces. So the
week Lorenz condition can be written just in terms of Ψ03(1) vectors

〈Ψ03(1)| (a0 − a3)2 |Ψ03(1)〉 = 0. (221)

Now, from (221), a condition on the Ψ03(n3, n0) function follows
∞∑

n0=0,n3=0

(√
n0 + 1Ψ̄03(n0 + 1, n3)Ψ03(n0, n3)−

√
n3 + 1Ψ̄03(n0, n3)Ψ03(n0, n3 + 1)

)
= 0. (222)

This is derived step by step in appendix (D.1). It is possible to find such a normalized function, for example

Ψ03(n0, n3) =
e−1
√
n0!n3!

. (223)

Here we can see a coherent-like structure of (223). This will be investigated further in section 4.8. Therefore,
the ΨEM (1) vectors have the form

|ΨEM (1)〉 =
∞∑

n0,n1,n2,n3

e−1
√
n0!n3!

∫
dΓ(k) Ψ12(k, n1, n2)|k, n1, n2, n3, n0〉. (224)

It should be stressed that this condition is not the usual Gupta-Bleuler condition such that

(a0(k, 1)− a3(k, 1)) |Ψ(1)〉 = 0, (225)

due to two aspects: a different definition of a0 ladder operator, and because it holds not on the vector
states but on the inner products.

Furthermore, it can be shown that for ΨEM (1) vectors the number of time-like photons is equal to the
number of longitudinal ones, i.e.

〈ΨEM (1)| (n0(k, 1)− n3(k, 1)) |ΨEM (1)〉 = 0. (226)

Using the definition of the number operator for N = 1 reducible representations (59), and having in mind
the definition for the time-like ladder operators (171), we can write

〈ΨEM (1)|
(
|k〉〈k| ⊗

(
a0a
†
0 − a

†
3a3

)
4

)
×

∞∑
n1,n2=0

∫
dΓ(k′) Ψ12(k′, n1, n2)|k′, n1, n2〉

∞∑
n0,n3=0

Ψ03(n3, n0)|n3, n0〉

= 〈ΨEM (1)|
(
I ⊗

(
a0a
†
0 − a

†
3a3

)
4

) ∞∑
n1,n2=0

Ψ12(k, n1, n2)|k, n1, n2〉
∞∑

n0,n3=0

Ψ03(n3, n0)|n3, n0〉

= 〈Ψ12(1)| ⊗ 〈Ψ03(1)|
(
I ⊗ 12 ⊗

(
a0a
†
0 − a

†
3a3

)
2

) ∞∑
n1,n2=0

Ψ12(k, n1, n2)|k, n1, n2〉 ⊗ |Ψ03(1)〉

= 〈Ψ12(1)|I ⊗ 12

∞∑
n1,n2=0

Ψ12(k, n1, n2)|k, n1, n2〉 × 〈Ψ03(1)|
(
a0a
†
0 − a

†
3a3

)
2
|Ψ03(1)〉

=
∞∑

n1,n2=0

|Ψ12(k, n1, n2)|2 × 〈Ψ03(1)|
(
a0a
†
0 − a

†
3a3

)
2
|Ψ03(1)〉. (227)
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Assuming that the sum
∑∞
n1,n2

|Ψ12(k, n1, n2)|2 is convergent we can take into account just 0 and 3
polarization degrees of freedom, i.e.

〈Ψ03(1)|(a0a
†
0 − a

†
3a3)2|Ψ03(1)〉

=
∞∑

n0,n3,n′0,n
′
3=0

〈n′3, n′0|
e−1√
n′0!n′3!

(a0a
†
0 − a

†
3a3)

e−1
√
n0!n3!

|n3, n0〉

= e−2
∞∑

n0,n3=0

n0 − n3

n0!n3!
= 0. (228)

For ΨEM (1) vectors the contribution of time-like photons cancels against the longitudinal ones. Moreover,
it can be shown that

〈Ψ03(1)| (a0 − a3)n2 |Ψ03(1)〉 = 0. (229)

This is derived explicitly in appendix (D.3).

The extension to an arbitrary N -oscillator representation can be made by

|ΨEM (N)〉 = |ΨEM (1)〉 ⊗ ...⊗ |ΨEM (1)〉︸ ︷︷ ︸
N

= |ΨEM (1)〉⊗N = |Ψ12(1)〉⊗N ⊗ |Ψ03(1)〉⊗N , (230)

so the week Lorenz condition holds also for the N -oscillator representation

〈ΨEM (N)|
∫
dΓ(k) (a0(k, N)− a3(k, N)) |ΨEM (N)〉 = 0. (231)

This can be shown by extending formula (218) to N -oscillator representation, having in mind the definition
of the ladder operators (78), so that

〈ΨEM (N)|

(
1√
N

N∑
n=1

a0(k, 1)(n) − 1√
N

N∑
m=1

a3(k, 1)(m)

)
|ΨEM (N)〉

=
1√
N
〈ΨEM (N)|

N∑
n=1

(a0(k, 1)− a3(k, 1))(n) |ΨEM (N)〉

=
√
N〈ΨEM (1)| (a0(k, 1)− a3(k, 1)) |ΨEM (1)〉 × 〈ΨEM (1)|ΨEM (1)〉(N−1) = 0. (232)

Then the number of longitudinal photons equals the number of time-like ones also in the N -oscillator
representation

〈ΨEM (N)| (n0(k, N)− n3(k, N)) |ΨEM (N)〉 = 0, (233)

since, from the definition of the number operator in N -oscillator representation (89) and the result for
N = 1 oscillator representation (226), it follows that

〈ΨEM (N)|

(
N∑
n=1

n0(k, 1)(n) −
N∑
m=1

n3(k, 1)(m)

)
|ΨEM (N)〉

= 〈ΨEM (N)|
N∑
n

(n0(k, 1)− n3(k, 1))(n) |ΨEM (N)〉

= N〈ΨEM (1)| (n0(k, 1)− n3(k, 1)) |ΨEM (1)〉 ⊗ 〈ΨEM (1)|ΨEM (1)〉(N−1) = 0. (234)
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4.5 More properties of the potential operator

The covariant structure of ladder operators has its consequence in a covariant commutator of the potential
operator taken in arbitrary space-time points:

[Aa(x, 1), Ab(y, 1)] =
[
i

∫
dΓ(k)g a

a (k)aa(k, 1)e−ik·x + H.c. , i
∫
dΓ(k′)g b

b (k′)ab(k′, 1)e−ik
′·y + H.c.

]
= −

∫
dΓ(k)

∫
dΓ(k′)

[
g a
a (k)aa(k, 1)e−ik·x −H.c., g b

b (k′)ab(k′, 1)e−ik
′·y −H.c.

]
= −

∫
dΓ(k)g a

a (k)g b
b (k)gab

(
e−ik·xeik·y −H.c. ) I(k, 1)

= −
∫
dΓ(k)gab(e−ik·(x−y) − eik·(x−y))I(k, 1)

= igabD(x− y, 1). (235)

Here gab is the metric tensor (40), and

D(x, 1) = i

∫
dΓ(k)(e−ik·x − eik·x)I(k, 1) (236)

is not the usual Jordan Pauli function because at the right-hand side of (236) we have I(k, 1), the central
element of CCR algebra. D(x, 1) is Lorentz invariant thanks to Lorentz invariant measure. Furthermore,
it has the following properties

D(x, 1) = −D(−x, 1),

D(x, 1) = D(+)(x, 1) +D(−)(x, 1),

D(±)(x, 1) = ±i
∫
dΓ(k)e∓ik·xI(k, 1). (237)

An extension of the potential operator to N -oscillator representation is equivalent to the N extension of
the creation and annihilation operators in (204).

Aa(x,N) = i

∫
dΓ(k)g a

a (k)aa(k, N)e−ik·x + H.c.

= i

∫
dΓ(k) (−xa(k)a1(k, N)− ya(k)a2(k, N)− za(k)a3(k, N) + ta(k)a0(k, N)) e−ik·x + H.c.

(238)

For N -oscillator representation the commutator

[Aa(x,N), Ab(y,N)] = igabD(x− y,N) (239)

involves again an operator analogue of the Jordan-Pauli function, but this time with the resolution of
unity for H(N) space, i.e.

D(x,N) = i

∫
dΓ(k)

(
e−ik·x − eik·x

)
I(k, N). (240)

To understand why the formalism here constructed is less singular than the one based on irreducible
representations, it is instructive to take a closer look at (240). In the first place, formula (240) is typical
of all the representations of CCR, reducible or irreducible, and differs only in the central element I(k, N).
The standard Pauli-Jordan function corresponds to representations where I(k, N) equals the identity.
Furthermore, it can be split into two parts

D(x,N) = D(+)(x,N) +D(−)(x,N), (241)

D(±)(x,N) = ±i
∫
dΓ(k)I(k, N)e∓ik·x =

1
N

N∑
n=1

D(±)(x, 1)(n). (242)
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The operator whose N -oscillator extensions occur in (242) reads explicitly

D(±)(x, 1) = ±i
∫
dΓ(k)|k〉〈k|e∓ik·x ⊗ 14 = ±ie∓ik̂·x ⊗ 14, (243)

k̂a =
∫
dΓ(k)ka|k〉〈k|. (244)

As we can see, the operatorsD(±)(x, 1) are unitary representations of four-translations, and their generators
are given by k̂a. In particular,

D(±)(0, 1) = ±iI(1), D(±)(0, N) = ±iI(N). (245)

As a consequence quantization in terms of this reducible representation replaces distributions
∫
dΓ(k)eik·x

with “well behaved” unitary operators
∫
dΓ(k)|k〉〈k|eik·x.

For another example, showing advantage of reducible representations, let us consider a single-oscillator
four-vector potential operator acting on vacuum state (196)

Aa(x, 1)|O(1)〉 = i

(∫
dΓ(k′)gaa(k′)aa(k′, 1)e−ik

′·x −H.c.
)
|O(1)〉 (246)

=
(
i

∫
dΓ(k)ga0(k)a0(k)e−ik·x − i

∫
dΓ(k)gai(k)ai(k)†eik·x

)
|O(1)〉 (247)

= |Aa(x, 1)〉. (248)

A closer look at the scalar product

〈Aa(y, 1)|Ab(x, 1)〉 =
∫
dΓ(k)

(
ga

0(k)gb0(k)e−ik·(x−y) + ga
i(k)gbi(k)eik·(x−y)

)
Z(k) (249)

shows that in this type of quantization there is no ultraviolet catastrophe for x = y, since
∫
dΓ(k)Z(k) = 1.

4.6 Electromagnetic field operator

The electromagnetic field operator for N = 1 oscillator representation is by definition a four-dimensional
electromagnetic curl of Aa(x, 1)

Fab(x, 1) = ∂aAb(x, 1)− ∂bAa(x, 1). (250)

This can be written explicitly as

Fab(x, 1) = ∂a

(
i

∫
dΓ(k)g b

b (k)ab(k, 1)e−ik·x + H.c.
)
− ∂b

(
i

∫
dΓ(k)g a

a (k)aa(k, 1)e−ik·x + H.c.
)

= i

(
∂a

∫
dΓ(k)g b

b (k)ab(k, 1)e−ik·x − ∂b
∫
dΓ(k)g a

a (k)aa(k, 1)e−ik·x
)

+ H.c.

=
∫
dΓ(k)

(
ka(k)g b

b (k)ab(k, 1)− kb(k)g a
a (k)aa(k, 1)

)
e−ik·x + H.c.

=
∫
dΓ(k) (ka(k)g a

b (k)− kb(k)g a
a (k)) aa(k, 1)e−ik·x + H.c.

=
∫
dΓ(k) (ka(k)tb(k)− kb(k)ta(k)) a0(k, 1)e−ik·x + H.c.

+
∫
dΓ(k) (−ka(k)xb(k) + kb(k)xa(k)) a1(k, 1)e−ik·x + H.c.

+
∫
dΓ(k) (−ka(k)yb(k) + kb(k)ya(k)) a2(k, 1)e−ik·x + H.c.

+
∫
dΓ(k) (−ka(k)zb(k) + kb(k)za(k)) a3(k, 1)e−ik·x + H.c. (251)
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Having in mind formulas derived in appendices (A.19)–(A.22) one can also write the electromagnetic field
operator in terms of spin-frames

Fab(x, 1) =
1√
2

∫
dΓ(k)(εABπA′(k)πB′(k) + εA′B′πA(k)πB(k))a1(k, 1)e−ik·x + H.c.

+
i√
2

∫
dΓ(k)(εABπA′(k)πB′(k)− εA′B′πA(k)πB(k))a2(k, 1)e−ik·x + H.c.

+
1√
2

∫
dΓ(k)(ωa(k)kb(k)− ka(k)ωb(k))a3(k, 1)e−ik·x + H.c.

− 1√
2

∫
dΓ(k)(ωa(k)kb(k)− ka(k)ωb(k))a0(k, 1)e−ik·x + H.c.

=
∫
dΓ(k)πA(k)πB(k)εA′B′

(
a−(k, 1)e−ik·x + a+(k, 1)†eik·x

)
+ H.c.

+
1√
2

∫
dΓ(k)∗Mab(k) (a3(k, 1)− a0(k, 1)) e−ik·x + H.c. (252)

Here
∗Mab(k) = ωa(k)kb(k)− ωb(k)ka(k) (253)

is a tensor dual to massless angular momentum tensor:

Mab(k) = iπ(A(k)ωB)(k)εA′B′ − iπ(A′(k)ωB′)(k)εAB . (254)

As we can see the field tensor (252) splits in two parts: the first part involves transverse photons, while
the second one consists of a “bad ghost” operator corresponding to particles unmeasured in experiments.
It can be shown that for ΨEM (1) vectors the electromagnetic field operator corresponds to standard
electromagnetic theory

〈ΨEM (1)|Fab(x, 1)|ΨEM (1)〉

= 〈ΨEM (1)|
(∫

dΓ(k)πA(k)πB(k)εA′B′
(
a−(k, 1)e−ik·x + a+(k, 1)†eik·x

)
+ H.c.

)
|ΨEM (1)〉.(255)

Let us also check the Maxwell equations for the electromagnetic field operator

∂cFab(x, 1) + ∂aFbc(x, 1) + ∂bFca(x, 1)

= −i
∫
dΓ(k) (kc(k)ka(k)g a

b (k)− kc(k)kb(k)g a
a (k)) aa(k, 1)e−ik·x + H.c.

− i

∫
dΓ(k) (ka(k)kb(k)g a

c (k)− ka(k)kc(k)g a
b (k)) aa(k, 1)e−ik·x + H.c.

− i

∫
dΓ(k) (kb(k)kc(k)g a

a (k)− kb(k)ka(k)g a
c (k)) aa(k, 1)e−ik·x + H.c.

= 0, (256)

∂aF
ab(x, 1) = −ika

∫
dΓ(k)

(
ka(k)tb(k)− kb(k)ta(k)

)
a0(k, 1)e−ik·x + H.c.

− ika

∫
dΓ(k)

(
−ka(k)xb(k) + kb(k)xa(k)

)
a1(k, 1)e−ik·x + H.c.

− ika

∫
dΓ(k)

(
−ka(k)yb(k) + kb(k)ya(k)

)
a2(k, 1)e−ik·x + H.c.

− ika

∫
dΓ(k)

(
−ka(k)zb(k) + kb(k)za(k)

)
a3(k, 1)e−ik·x + H.c.

=
i√
2

∫
dΓ(k)kb(k) (a0(k, 1)− a3(k, 1)) e−ik·x + H.c. (257)

The second equation (257) does not correspond to standard Maxwell electromagnetism theory, but it can
be shown that in ΨEM (1) averages

〈ΨEM (1)|∂aF ab(x, 1)|ΨEM (1)〉 = 0. (258)

As in the potential operator, extension of the electromagnetic field to N -oscillator representation is equ-
ivalent to the extension to arbitrary N of creation and annihilation operators in (251).
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4.7 Coherent states

Coherent states were introduced in 1963 by Glauber, furthermore, he received in 2005 the Nobel prize
for his work in this direction. In general, coherent states have the property of minimizing an uncertainty
principle, which means that they are closest to classical states. The mathematical structure of coherent
states for two-photon polarization degrees of freedom is well known form the literature. Here the construc-
tion will be extended to the reducible representation and to the two additional, time-like and longitudinal,
polarization degrees of freedom. It turns out that such an abstract structure has its interpretation also in
terms of the ΨEM state. This will be investigated further in the next section.

Now let us start from the N = 1 oscillator representation. In this case the displacement operator for
four-dimensional oscillator algebra will be defined as

D(α, 1) = exp
(∫

dΓ(k)
(
αa(k)aa(k, 1)−H.c.

))
. (259)

Here αa(k) is a function corresponding to the “amount of displacement” and can depend on k. Acting
with the operator (259) on a vacuum state we get a coherent state

D(α, 1)|O(1)〉 = |α(1)〉. (260)

Furthermore, coherent states for N = 1 oscillator representation can be explicitly expressed as

|α(1)〉 =
∫
dΓ(k)O(k) exp

(
−1

2

(
|α1(k)|2 + |α2(k)|2 + |α3(k)|2 + |α0(k)|2

))
∞∑

n1,n2,n3,n0=0

(α1(k))n1(α2(k))n2(α3(k))n3(α0(k))n0√
n1!n2!n3!n0!

|k, n1, n2, n3, n0〉. (261)

This is derived step by step in appendix (G.3). Acting on vacuum with N -oscillator representation of the
covariant displacement operator defined as

D(α,N) = exp
(∫

dΓ(k)
(
αa(k)aa(k, N)−H.c.

))
= exp

(∫
dΓ(k)

(
α1(k)a1(k, N) + α2(k)a2(k, N) + α3(k)a3(k, N) + α0(k)a0(k, N)−H.c.

))
(262)

we obtain a coherent state for the N -oscillator representation

|α(N)〉 = D(α,N)|O(N)〉. (263)

It is also shown in appendix (G.9) that

D(α,N) = exp
(∫

dΓ(k)αa(k)aa(k, N)
)

exp
(
−
∫
dΓ(k)αa(k)aa(k, N)†

)
× exp

(
1
2

∫
dΓ(k)αa(k)αa(k)I(k, N)

)
. (264)

The covariant displacement operator in N -oscillator representation can be also written in terms of the
N = 1 representation as follows

D(α,N) = exp
(∫

dΓ(k)
(
αa(k)

1√
N
aa(k, 1)−H.c.

))⊗N
= D

(
α√
N
, 1
)⊗N

. (265)

This formula is derived step by step in appendix (G.4). Also the product of two displacement operators is
another displacement operator, apart from an operator valued phase factor, which does not contribute to
expectation values, i.e.

D(α,N)D(β,N) = D(α+ β,N) exp
(

1
2

∫
dΓ(k)

(
αa(k)βa(k)− βa(k)αa(k)

)
I(k, N)

)
. (266)
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From this it can be shown that the displacement operator is unitary

D(α,N)† = D(−α,N) = D(α,N)−1. (267)

Then, the inner product of two coherent states is normalized, i.e.

〈α(N)|α(N)〉 = 〈O(N)|D(α,N)†D(α,N)|O(N)〉 = 〈O(N)|O(N)〉 = 1. (268)

The displacement operator in these representations shifts the creation and annihilation operators, but
leaves the central elements unchanged. This is shown step by step in appendix (G.12)-(G.13):

D(α,N)†aa(k, N)D(α,N) = aa(k, N) + αa(k)I(k, N), (269)

D(α,N)†aa(k, N)†D(α,N) = aa(k, N)† + αa(k)I(k, N), (270)

D(α,N)†I(k, N)D(α,N) = I(k, N). (271)

A generalized eigenvalue problem for coherent states in this representation can be formed. Here in reducible
representation coherent states are not just eigenstates of annihilation operators. To see this let us take a
closer look at the lowering energy operators acting on coherent states

aa(k, N)|α(N)〉 = aa(k, N)D(α,N)|O(N)〉
= D(α,N)D(α,N)†aa(k, N)D(α,N)|O(N)〉
= D(α,N) (aa(k, N) + αa(k)I(k, N)) |O(N)〉. (272)

Only operators from the j = 1, 2, 3 polarization degree of freedom are annihilation operators, so

aj(k, N)|α(N)〉 = αj(k)I(k, N)|α(N)〉, j = 1, 2, 3. (273)

As one can see αj(k) is not an eigenvalue of the annihilation operator alone due to the I(k, N) operator.
We can follow the same procedure for raising energy operators

aa(k, N)†|α(N)〉 = aa(k, N)†D(α,N)|O(N)〉
= D(α,N)D(α,N)†aa(k, N)†D(α,N)|O(N)〉

= D(α,N)
(
aa(k, N)† + αa(k)I(k, N)

)
|O(N)〉. (274)

Having in mind that a0(k, N)† annihilates vacuum we can write

a0(k, N)†|α(N)〉 = α0(k)I(k, N)|α(N)〉. (275)

Also one can form a generalized eigenvalue problem for the annihilation operators within the whole frequ-
ency spectrum. This is a result of the assumption that αa(k) can in general be k dependent, so that

aj(N)|α(N)〉 =
∫
dΓ(k) αj(k)I(k, N)|α(N)〉, j = 1, 2, 3, (276)

a0(N)†|α(N)〉 =
∫
dΓ(k) α0(k)I(k, N)|α(N)〉. (277)

When displacement operators act on fields, the field operators get shifted by the central elements, i.e.

D(α,N)†Aa(x,N)D(α,N) = Aa(x,N) + i

∫
dΓ(k)I(k, N)gaa(k)αa(k)e−ik·x + H.c.

= Aa(x,N) + Âa(α, x). (278)

It should be stressed that the shift Âa(α, x) is not a classical field but an element of the center of the CCR
algebra.
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4.8 Displacement-like operator for the ΨEM states

As seen before in section 4.4, ΨEM states have coherent-like structure. Therefore, it would be good to
investigate this structure in more detail. For this purpose let us define a displacement-like operator for time-
like and longitudinal degrees of photon polarization. We will start from the N = 1 oscillator representation
denoting

D03(1) = exp
(∫

dΓ(k)
(
α0(k)a0(k, 1) + α3(k)a3(k, 1)−H.c.

))
. (279)

Acting with operator (279) on a vacuum state we get a vector state of the form

D03(α, 1)|O(1)〉

=
∞∑

n0,n3=0

∫
dΓ(k)O(k) exp

(
−1

2

(
|α3(k)|2 + |α0(k)|2

)) (α3(k))n3(α0(k))n0√
n3!n0!

|k, n1, n2, n3, n0〉

= |α03(1)〉. (280)

This state has a more general form than the previous ΨEM from section 4.4, because of the amplitudes
α3(k), α0(k). It can be extended to N -oscillator representation by

D03(α,N) = exp
(∫

dΓ(k)
(
α0(k)a0(k, N) + α3(k)a3(k, N)−H.c.

))
, (281)

D03(α,N)|O(N)〉 = |α03(N)〉. (282)

Now, let us check the weaker Lorenz condition for such states

〈α03(N)|a0(k, N)− a3(k, N)|α03(N)〉
= 〈O(N)|D03(α,N)† (a0(k, N)− a3(k, N))D03(α,N)|O(N)〉
= 〈O(N)|a0(k, N) + α0(k)I(k, N)− a3(k, N)− α3(k)I(k, N)|O(N)〉
= 〈O(N)| (α0(k)− α3(k)) I(k, N)|O(N)〉. (283)

So, if we want the ghost operator to vanish, we have to fulfill the condition

α0(k) = α3(k) = α(k), (284)

so that

DEM (α,N) = exp
(∫

dΓ(k)
(
α(k) (a0(k, N) + a3(k, N))−H.c.

))
, (285)

|ΨEM (N)〉 = DEM (α,N)|O(N)〉. (286)

Of course, like the displacement operator, DEM (α,N) is unitary:

DEM (α,N)† = DEM (−α,N) = DEM (α,N)−1, (287)

so the inner product of two ΨEM (N) states is normalized, i.e.

〈ΨEM (N)|ΨEM (N)〉 = 〈O(N)|DEM (α,N)†DEM (α,N)|O(N)〉 = 〈O(N)|O(N)〉 = 1. (288)

Moreover, following the result for coherent states form the previous section (265), we may write explicitly
that

|ΨEM (N)〉 =

 ∞∑
n3,n0=0

∫
dΓ(k)O(k) exp

(
− 1
N
|α(k)|2

) (α(k)√
N

)n3 (α(k)√
N

)n0
√
n3!n0!

|k, n1, n2, n3, n0〉


⊗N

.

(289)
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4.9 Conclusions and results

In this chapter reducible representations of the four-dimensional polarization oscillators were presented.
Using the covariant Hamiltonian (194) for N -oscillator representation, we find out that such a formalism
is free from vacuum energy divergences. The convergence of vacuum energy is guaranteed by the proper
choice of the vacuum probability density function Z(k). Furthermore, the analysis shows that the para-
meter N may even be a finite number for such representations. The same four-dimensional polarization
quantization as in this chapter was already formulated by Czachor and Naudts in [12] and further by Cza-
chor and Wrzask in [13], where in the place of the annihilation operator of Gupta-Bleuler-type potential
for the time-like degree of freedom, stands a creation operator and vice-versa. The new analysis from this
chapter follows from the definition of a covariant Hamiltonian (108) and is in agreement with such a choice
of quantization.

Further sections 4.4 and 4.8 contain new results, deriving ΨEM vectors reproducing standard electroma-
gnetic fields (i.e. photons with two polarization degrees of freedom) from the four-dimensional covariant
formalism (i.e. with two additional, longitudinal and time-like polarizations). It is interesting that such
vectors have a coherent-like structure.
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5 Lorentz transformation

In this chapter a homogeneous Lorentz transformation for the four-dimensional oscillator in reducible re-
presentation is introduced. When taking into account the four photon polarization degrees of freedom,
the Lorentz transformation is accompanied by another transformation and this manifests itself also on the
spin-frame level. We will start from the irreducible representation. First in section 5.1 two transformations
that leave the four-momentum invariant on the spin-frame level are introduced: the Wigner rotations and
a transformation that will manifest itself as the gauge transformation. In section 5.2 an SL(2,C) transfor-
mation matrix is introduced. In 5.3 an explicit transformation of tetrads is shown. In 5.4 a corresponding
transformation of the ladder operators is derived. Further in section 5.5 the generators for the irreducible
representation are introduced. Finally in section 5.6 one introduces Lorentz transformations in our redu-
cible representation. In section 5.7 the composition law for Lorentz transformation is proved. Further in
section 5.8 transformation properties of the vector potential are shown. In 5.9 those of the electromagnetic
field operator, and in 5.10 those of vacuum are discussed. In section 5.11 it is shown that there exists
a transformation on the spin-frame level that corresponds to a gauge transformation of the four-vector
potential. In section 5.12 it is shown that the “ghost” operator and the covariant number operator are
invariant in any gauge and in any reference frame. Finally in section 5.13 four translations in the four-
dimensional oscillator representation will be introduced.

5.1 Transformation properties of spin-frames

On the spin-frame level there exist two symmetries that leave the spin-frame condition (13) invariant.
First, the spinor field transformation associated with the homogeneous Lorentz transformation

πA(k) 7→ ΛπA(k) = Λ B
A πB(Λ−1k). (290)

Here Λ−1k is a space-like part of a four-vector Λ−1 b
a kb(k) and Λ B

A is an unprimed SL(2,C) matrix
corresponding to Λ b

a ∈ SO(1,3). The null vector ka(k) that plays the role of a flag-pole for the spinor field
πA(k), i.e. ka(k) = πA(k)πA′(k), must be invariant, so ΛπA(k)ΛπA′(k) = πA(k)πA′(k) must be satisfied
and hence

ΛπA(k) = e−iΘ(Λ,k)πA(k). (291)

The angle Θ(Λ,k) is called the Wigner phase. Note that in the literature it is the doubled value 2Θ(Λ,k)
which is called the Wigner phase. In analogy

ωA(k) 7→ ΛωA(k) = Λ B
A ωB(Λ−1k), (292)

and the spin-frame condition has to hold. We assume a special case, i.e.

ΛωA(k) = eiΘ(Λ,k)ωA(k). (293)

It is possible to find such a spin-frame, and this was discussed in [13] paper by Czachor and Wrzask, where
the oscillators are characterized by an additional center-of mass R coordinate. However such new coordi-
nate does not bring anything essential to the discussion and therefore will not be used here. Furthermore,
it is important to stress that the Wigner phase depends only on the direction of the momentum and does
not depend on the frequency, so that all the parallel wave vectors correspond to the same rotational angle.
This was shown, for example, by Caban and Rembieliński in [70].

Let us define another symmetry

ωA(k) 7→ ω̃A(k) = ωA(k) + φ(k)πA(k), (294)

πA(k) 7→ π̃A(k) = πA(k), (295)

which also keeps the spin-frame condition (13). Here φ(k) = |φ(k)|eiξ(k) is at this point any complex
number. It is interesting that the ambiguity of φ(k) at the spinor level manifests itself in electrodynamics.
This problem will be discussed further in section 5.11. It turns out that the freedom of choosing φ(k) on
the spin-frame level, is equivalent to a gauge freedom for the four-vector potential.
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The spin-frame condition
Λω̃A(k)ΛπA(k) = 1 (296)

holds for the most general transformation written as

Λω̃A(k) = eiΘ(Λ,k) (ωA(k) + φ(k)πA(k)) = eiΘ(Λ,k)ω̃A(k). (297)

Also

Λω̃A(k) = Λ B
A ωB(Λ−1k) + Λ B

A φ(Λ−1k)πB(Λ−1k) = eiΘ(Λ,k)
(
ωA(k) + φ(Λ−1k)e−2iΘ(Λ,k)πA(k)

)
.

(298)
So, the transformation rule for φ(k) under Lorentz transformation is

Λφ(k) = φ(Λ−1k) = e2iΘ(Λ,k)φ(k). (299)

Moreover, it will be shown later in section 5.7 that such a transformation rule satisfies the composition
law, i.e.

ΛΛ′φ(k) = φ((ΛΛ′)−1k) = e2iΘ(ΛΛ′,k)φ(k). (300)

It should be stressed that there is a difference in interpretation of φ(k) compared with papers [12] and
[13]. Here the Lorentz transformation is not parameterized by φ(k) and this implies a difference in (297)
notation, when compared with ΛωA(k) = eiΘ(Λ,k) (ωA(k) + φ(k)πA(k)) from [12] and [13] papers. This
way the succession of these two transformations is emphasised, because it is important to stress that Lo-
rentz transformations and the transformation parameterized by φ(k) do not commute.

5.2 SL(2,C) transformation matrix

Now, for any homogeneous Lorentz transformation Λab, parameterized by the Wigner phase Θ(Λ,k), and
any gauge transformation parameterized by some complex number φ(k), let us define the following matrix
associated with the Minkowski tetrad (33)

La
b(Θ, φ) = ga a(k)Λ b

a g̃ b
b (Λ−1k) = ga a(k)Λg̃ b

a (k). (301)

This matrix has the property of linking two Minkowski tetrads in a way that

g a
c (k)L b

a (Θ, φ) = g a
c (k)ga a(k)Λ b

a g̃ b
b (Λ−1k) = g a

c Λ b
a g̃ b

b (Λ−1k) = Λ b
c g̃ b

b (Λ−1k). (302)

The metric tensor must be invariant under this combined Lorentz and gauge transformation, therefore

ga
a(k)gbb(k)gab = ga

c(k)L a
c (Θ, φ)gbd(k)L b

d (Θ, φ)gab = ga
c(k)gbd(k)L a

c (Θ, φ)Lda(Θ, φ). (303)

Furthermore, this implies that

L b
a (Θ, φ)Lcb(Θ, φ) = Lab(Θ, φ)Lc

b(Θ, φ) = gac, (304)

L b
a (Θ, φ)Lc

b(Θ, φ) = Lab(Θ, φ)Lcb(Θ, φ) = g c
a , (305)

L−1
a
b(Θ, φ) = Lb

a(Θ, φ). (306)

From (301) one can get

La
b(Θ, φ) = ga a(k)Λ b

a g̃ b
b (Λ−1k) = g a′

a ga a′(k)gb b′Λ
b

a g̃ b′

b (Λ−1k) = g a′

a gb b′L
b′

a′ (Θ, φ). (307)

Recall that gaa′
and gb′b are the Infeld-van der Waerden symbols introduced earlier in (36)–(37), the

matrix L b′

a′ links two null tetrads (30), and

L b′

a′ (Θ, φ) = ga a′(k)Λ b
a g̃ b′

b (Λ−1k) = ε A
A (k)ε A′

A′ (k)Λ B
A Λ B′

A′ ε̃ B
B (Λ−1k)ε̃ B′

B′ (Λ−1k)

= L B
A (Θ, φ)L B′

A′ (Θ, φ), (308)

where

L B
A (Θ, φ) = ε A

A (k)Λ B
A ε̃ B

B (Λ−1k) = ε A
A (k)Λε̃ B

A (k) (309)
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is a SL(2,C) matrix which can explicitly be written in terms of spin-frames (21) and (22), i.e.

L B
A (Θ, φ) =

(
L 0

0 (Θ, φ) L 1
0 (Θ, φ)

L 0
1 (Θ, φ) L 1

1 (Θ, φ)

)
=

(
ωA(k)ΛπA(k) ωA(k)Λω̃A(k)

0 πA(k)Λω̃A(k)

)
. (310)

From the spin-frame condition (296) one can show that det
(
L B
A (Θ, φ)

)
= 1. Furthermore, the correspon-

dence between the La
b(Θ, φ) matrix and the two SL(2,C) matrices L B

A (Θ, φ), L B′

A′ (Θ, φ) reads

La
b(Θ, φ) = ga

a′
L B
A (Θ, φ)L B′

A′ (Θ, φ) gb′
b. (311)

5.3 Explicit transformation of tetrads

Now the transformation rule for the null tetrad can be written in the form
Λω̃a(k)
Λm̃a(k)
Λ ˜̄ma(k)
Λka(k)

 =


Λω̃A(k)Λω̃A

′
(k)

Λω̃A(k)ΛπA
′
(k)

ΛπA(k)Λω̃A
′
(k)

ΛπA(k)ΛπA
′
(k)

 =


ωa(k) + φ ma(k) + φ̄ m̄a(k) + |φ|2 ka(k)

e2iΘ ma(k) + φeiΘ ka(k)
e−2iΘ m̄a(k) + φ̄e−iΘ ka(k)

ka(k)

 .(312)

Also the transformation rule for the Minkowski tetrad explicitly reads
Λt̃a(k)
Λx̃a(k)
Λỹa(k)
Λz̃a(k)

 =


(1 + |φ|2/2) ta(k) + |φ| cos ξ xa(k)− |φ| sin ξ ya(k)− |φ|2/2 za(k)

|φ| cos(2Θ + ξ) ta(k) + cos 2Θ xa(k) + sin 2Θ ya(k)− |φ| cos(2Θ + ξ) za(k)
−|φ| sin(2Θ + ξ) ta(k)− sin 2Θ xa(k) + cos 2Θ ya(k) + |φ| sin(2Θ + ξ) za(k)

|φ|2/2 ta(k) + |φ| cos ξ xa(k)− |φ| sin ξ ya(k) + (1− |φ|2/2) za(k)

 .

(313)

The matrix (301) can be now written explicitly in terms of the Minkowski tetrad and the transformation
parametrization from the spin-frame level, i.e. parameterized by Θ(Λ,k), φ(k).

La
b(Θ, φ) = ga a(k)Λ b

a g̃ b
b (Λ−1k) = ga a(k)Λg̃ b

a (k) (314)

=


ga 0(k)Λg̃ 0

a (k) ga 0(k)Λg̃ 1
a (k) ga 0(k)Λg̃ 2

a (k) ga 0(k)Λg̃ 3
a (k)

ga 1(k)Λg̃ 0
a (k) ga 1(k)Λg̃ 1

a (k) ga 1(k)Λg̃ 2
a (k) ga 1(k)Λg̃ 3

a (k)
ga 2(k)Λg̃ 0

a (k) ga 2(k)Λg̃ 1
a (k) ga 2(k)Λg̃ 2

a (k) ga 2(k)Λg̃ 3
a (k)

ga 3(k)Λg̃ 0
a (k) ga 3(k)Λg̃ 1

a (k) ga 3(k)Λg̃ 2
a (k) ga 3(k)Λg̃ 3

a (k)

 (315)

=


ta(k)Λt̃a(k) −ta(k)Λx̃a(k) −ta(k)Λỹa(k) −ta(k)Λz̃a(k)
xa(k)Λt̃a(k) −xa(k)Λx̃a(k) −xa(k)Λỹa(k) −xa(k)Λz̃a(k)
ya(k)Λt̃a(k) −ya(k)Λx̃a(k) −ya(k)Λỹa(k) −ya(k)Λz̃a(k)
za(k)Λt̃a(k) −za(k)Λx̃a(k) −za(k)Λỹa(k) −za(k)Λz̃a(k)

 (316)

=


1 + |φ|2

2 −|φ| cos(ξ + 2Θ) |φ| sin(ξ + 2Θ) − |φ|
2

2
−|φ| cos ξ cos 2Θ − sin 2Θ |φ| cos ξ
|φ| sin ξ sin 2Θ cos 2Θ −|φ| sin ξ
|φ|2

2 −|φ| cos(ξ + 2Θ) |φ| sin(ξ + 2Θ) 1− |φ|
2

2

 . (317)

Here, of course, Θ = Θ(Λ,k), |φ| = |φ(k)| and ξ = ξ(k). More of the matrix index manipulation, i.e.
lowering and raising indices by means of the metric tensor is shown in appendix E. Just for completeness,
let us note that La

b(Θ, φ) corresponds to the SL(2,C) matrix of the form

LA
B(Θ, φ) = ε A

A (k)Λ B
A ε̃ B

B (Λ−1k) = ε A
A (k)Λε̃ B

A (k)

=
(
ωA(k)ΛπA(k) ωA(k)Λω̃A(k)

0 πA(k)Λω̃A(k)

)
=

(
e−iΘ(Λ,k) −φ(k)eiΘ(Λ,k)

0 eiΘ(Λ,k)

)
, (318)
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and it can be split into two SL(2,C) matrices corresponding to gauge and homogeneous Lorentz transfor-
mations, i.e.

LA
B(Θ, φ) =

(
1 −φ(k)
0 1

)(
e−iΘ(Λ,k) 0

0 eiΘ(Λ,k)

)
. (319)

Let us define those two SL(2,C) matrices corresponding to the gauge transformation and Wigner rotations
respectively:

LA
B(0, φ(k)) = GA

B(φ(k)) = ε A
A (k)ε̃ B

A (k) =
(

1 −φ(k)
0 1

)
, (320)

LA
B(Θ(Λ,k), 0) = RA

B(Λ,k) = ε A
A (k)Λε B

A (k) =
(
e−iΘ(Λ,k) 0

0 eiΘ(Λ,k)

)
. (321)

5.4 Bogoliubov type transformation

At this point only the irreducible representation of CCR will be considered. Let us first define new ladder
operators as follows

ba = L b
a (Θ, φ)ab : (322)

b0 = L 0
0 (Θ, φ)a0 + L 1

0 (Θ, φ)a1 + L 2
0 (Θ, φ)a2 + L 3

0 (Θ, φ)a3, (323)

b1 = L 0
1 (Θ, φ)a0 + L 1

1 (Θ, φ)a1 + L 2
1 (Θ, φ)a2 + L 3

1 (Θ, φ)a3, (324)

b2 = L 0
2 (Θ, φ)a0 + L 1

2 (Θ, φ)a1 + L 2
2 (Θ, φ)a2 + L 3

2 (Θ, φ)a3, (325)

b3 = L 0
3 (Θ, φ)a0 + L 1

3 (Θ, φ)a1 + L 2
3 (Θ, φ)a2 + L 3

3 (Θ, φ)a3. (326)

These new operators are expressed as a combination of the old ones. Since transformation (301) has the
property of leaving the metric invariant, i.e.

gab = L c
a (Θ, φ)L d

b (Θ, φ)gcd, (327)

the new operators satisfy the same CCR

[ba, b
†
b] = [L c

a (Θ, φ)ac , L d
b (Θ, φ)a†d] (328)

= −L c
a (Θ, φ)L d

b (Θ, φ)gcd = − gab. (329)

Therefore, there must exist a unitary Bogoliubov-type transformation U(Θ, φ) satisfying

ba = U(Θ, φ)†aaU(Θ, φ) = L b
a (Θ, φ)ab. (330)

In the next section an explicit representation of U(Θ, φ) will be given.

5.5 Rotations and gauge transformation in four-dimensional polarization re-
presentation

In 1939 Wigner studied subgroups of the Lorentz group, whose transformations leave the four-momentum
of a given free particle invariant [20]. The maximal subgroup of the Lorentz group, which leaves the four
momentum invariant is called the little group. This implies that the little group governs the internal space-
time symmetries of relativistic particles. Wigner showed in his paper that invariant space-time symmetries
are dictated by O(3) like little groups in case of massive particles and by E(2) like little groups in case of
massless ones. The application for photons has been discussed in many papers, among all [22]–[27]. It is
also known that the Lorentz group is a very natural language for polarized light. There is no rest frame for
massless particles, we will however choose the momentum in the z direction. In order to explicitly construct
transformation U(Θ, φ) in (330), let us first introduce the representation of the Lie algebra generators of
rotations Ji around an i-th axis. This first will be done in canonical variables (109) introduced earlier in
chapter 4, i.e.

Ji = εijkqjpk. (331)

38



As mentioned before these variables should not be mistaken with the position or momentum of the field.
These are space and time-like variables that are used for a covariant structure of the four polarization
degrees of freedom. Using formulas (119)–(120) we can explicitly write the generators of rotations in terms
of the ladder operators

Ji = − iεijka†jak : (332)

J1 = i(a†3a2 − a†2a3), J2 = i(a†1a3 − a†3a1), J3 = i(a†2a1 − a†1a2). (333)

Also let us introduce boosts Ki along an i-th axis, first in terms of canonical variables (109)

Ki = piq0 − p0qi. (334)

Again using formulas (119) - (120) we explicitly write the generators of boosts in terms of the ladder
operators

Ki = i(a†ia0 − a†0ai) : (335)

K1 = i(a†1a0 − a†0a1), K2 = i(a†2a0 − a†0a2), K3 = i(a†3a0 − a†0a3). (336)

Such a form of generators was introduced earlier in [12]. These generators satisfy the following commutation
relations:

[Ji, Jj ] = iεijkJk, (337)

[Ki,Kj ] = − iεijkJk, (338)

[Ji,Kj ] = iεijkKk. (339)

Now the Bogoliubov-type transformation U(Θ, φ) for ladder operators (330) can be written as

U(Θ, φ) = exp(iα · J + iβ ·K), (340)

with

α1(Θ, φ) = − Θ(Λ,k)
sin Θ(Λ,k)

|φ(k)| sin(ξ(k) + Θ(Λ,k)), (341)

α2(Θ, φ) = − Θ(Λ,k)
sin Θ(Λ,k)

|φ(k)| cos(ξ(k) + Θ(Λ,k)), (342)

α3(Θ) = −2Θ(Λ,k), (343)

β1(Θ, φ) =
Θ(Λ,k)

sin Θ(Λ,k)
|φ(k)| cos(ξ(k) + Θ(Λ,k)), (344)

β2(Θ, φ) = − Θ(Λ,k)
sin Θ(Λ,k)

|φ(k)| sin(ξ(k) + Θ(Λ,k)), (345)

β3 = 0. (346)

As mentioned before, Wigner in his paper [20] showed that the little group for massless particles moving
along z axis is generated by the rotation generators around z axis J3 and two other generators. As one can
see here the parameter α3 depends only on the Wigner phase. The two other generators are combinations
of Ji and Ki and form a representation of an Euclidean group E(2), i.e.

L1 = J1 +K2, L2 = J2 −K1, (347)

L3 = J3, (348)

which satisfy the following commutation relations

[L1, L3] = − iL2, [L2, L3] = iL1, [L1, L2] = 0. (349)

The physical variable associated with J3 is the helicity degree of freedom of massless particles, but it was
not clear what is the physical interpretation of generators L1 and L2. In 1971 Janner and Janssen [21]
showed that those generators generate translations and are responsible for gauge transformations of the
four potential. This will be discussed further in section 5.11.
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Moreover, it should be stressed that only L3 annihilates the vacuum states, since it is normally orde-
red, contrary to generators L1 and L2.

Now the transformation can be written as

U(Θ, φ) = exp(iα1L1 + iα2L2 + iα3L3), (350)

with parameters

α1(Θ, φ) = − Θ(Λ,k)
sin Θ(Λ,k)

|φ(k)| sin(ξ(k) + Θ(Λ,k)), (351)

α2(Θ, φ) = − Θ(Λ,k)
sin Θ(Λ,k)

|φ(k)| cos(ξ(k) + Θ(Λ,k)), (352)

α3(Θ) = −2Θ(Λ,k). (353)

Also the new creation and annihilation operators associated with the Minkowski tetrad and the L b
a (Θ, φ)

matrix can be written explicitly in terms of φ(k) and the Wigner phase Θ(Λ,k)

U(Θ, φ)†a0U(Θ, φ) = −|φ| cos(ξ + 2Θ)a1 + |φ| sin(ξ + 2Θ)a2 −
|φ|2

2
a3 +

(
1 +
|φ|2

2

)
a0, (354)

U(Θ, φ)†a1U(Θ, φ) = cos 2Θa1 − sin 2Θa2 + |φ| cos ξa3 − |φ| cos ξa0, (355)

U(Θ, φ)†a2U(Θ, φ) = sin 2Θa1 + cos 2Θa2 − |φ| sin ξa3 + |φ| sin ξa0, (356)

U(Θ, φ)†a3U(Θ, φ) = −|φ| cos(ξ + 2Θ)a1 + |φ| sin(ξ + 2Θ)a2 +
(

1− |φ|
2

2

)
a3 +

|φ|2

2
a0, (357)

L b
a (Θ, φ) =

 1 + |φ(k)|2
2 −|φ(k)| cos(ξ(k) + 2Θ(Λ,k)) |φ(k)| sin(ξ(k) + 2Θ(Λ,k)) − |φ(k)|2

2
−|φ(k)| cos ξ(k) cos 2Θ(Λ,k) − sin 2Θ(Λ,k) |φ(k)| cos ξ(k)
|φ(k)| sin ξ(k) sin 2Θ(Λ,k) cos 2Θ(Λ,k) −|φ(k)| sin ξ(k)
|φ(k)|2

2 −|φ(k)| cos(ξ(k) + 2Θ(Λ,k)) |φ(k)| sin(ξ(k) + 2Θ(Λ,k)) 1− |φ(k)|2
2

 ,

(358)

U(Θ, φ) = exp
(
−iΘ|φ| sin(ξ + Θ)

sin Θ
L1 − i

Θ|φ| cos(ξ + Θ)
sin Θ

L2 − i2ΘL3

)
. (359)

For the inverse transformation we can write

U(Θ, φ)a0U(Θ, φ)† = |φ| cos ξa1 − |φ| sin ξa2 −
|φ|2

2
a3 +

(
1 +
|φ|2

2

)
a0, (360)

U(Θ, φ)a1U(Θ, φ)† = cos 2Θa1 + sin 2Θa2 − |φ| cos(ξ + 2Θ)a3 + |φ| cos(ξ + 2Θ)a0, (361)

U(Θ, φ)a2U(Θ, φ)† = − sin 2Θa1 + cos 2Θa2 + |φ| sin(ξ + 2Θ)a3 − |φ| sin(ξ + 2Θ)a0, (362)

U(Θ, φ)a3U(Θ, φ)† = |φ| cos ξa1 − |φ| sin ξa2 +
(

1− |φ|
2

2

)
a3 +

|φ|2

2
a0, (363)

and from (306) we can calculate the matrix associated with the inverse transformation:

L−1
a
b(Θ, φ) =

 1 + |φ(k)|2
2 |φ(k)| cos ξ(k) −|φ(k)| sin ξ(k) − |φ(k)|2

2
|φ(k)| cos(ξ(k) + 2Θ(Λ,k)) cos 2Θ(Λ,k) sin 2Θ(Λ,k) −|φ(k)| cos(ξ(k) + 2Θ(Λ,k))
−|φ(k)| sin(ξ(k) + 2Θ(Λ,k)) − sin 2Θ(Λ,k) cos 2Θ(Λ,k) |φ(k)| sin(ξ(k) + 2Θ(Λ,k))

|φ(k)|2
2 |φ(k)| cos ξ(k) −|φ(k)| sin ξ(k) 1− |φ(k)|2

2

 .

(364)

To see how the L b
a (Θ, φ) transformation acts on operators associated with the null tetrad, we can calculate

U(Θ, φ)†aa′U(Θ, φ) = U(Θ, φ)†ga′aaaU(Θ, φ) = ga′
aL b

a (Θ, φ)gbb
′
ab′ = L b′

a′ (Θ, φ)ab′ , (365)
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where the transformation matrix

L b′

a′ (Θ, φ) = ga′
aL b

a (Θ, φ)gbb
′

(366)

takes the explicit form

La′
b′

(Θ, φ) =


1 −|φ(k)|e−i(ξ(k)+2Θ(Λ,k)) −|φ(k)|ei(ξ(k)+2Θ(Λ,k)) |φ(k)|2
0 e−2iΘ(Λ,k) 0 −|φ(k)|eiξ(k)

0 0 e2iΘ(Λ,k) −|φ(k)|e−iξ(k)

0 0 0 1

 . (367)

We can also write formula (359) in the following useful form

U(Θ, φ) = exp(iα1L1 + iα2L2 + iα3L3)

= exp (−i|φ| sin(ξ + 2Θ)L1 − i|φ| cos(ξ + 2Θ)L2) exp (−2iΘL3) (368)

= exp (−2iΘL3) exp (−i|φ| sin ξL1 − i|φ| cos ξL2). (369)

The last formula (369) indicates that the general transformation matrix L b
a (Θ, φ) can be written as a

product of the rotation matrix R b
a (Λ,k) and a gauge transformation matrix G b

a (k), i.e.

L b
a (Θ, φ) = G c

a (k)R b
c (Λ,k)

=


1 + |φ(k)|2

2 −|φ(k)| cos ξ(k) |φ(k)| sin ξ(k) − |φ(k)|2
2

−|φ(k)| cos ξ(k) 1 0 |φ(k)| cos ξ(k)
|φ(k)| sin ξ(k) 0 1 −|φ(k)| sin ξ(k)

|φ(k)|2
2 −|φ(k)| cos ξ(k) |φ(k)| sin ξ(k) 1− |φ(k)|2

2



×


1 0 0 0
0 cos 2Θ(Λ,k) − sin 2Θ(Λ,k) 0
0 sin 2Θ(Λ,k) cos 2Θ(Λ,k) 0
0 0 0 1

 . (370)

Of course, those two matrices do not commute, but it can be shown, from (368) and (299), that

L b
a (Θ, φ) = G c

a (k)R b
c (Λ,k) = R c

a (Λ,k)G b
c (Λ−1k). (371)

For further purposes we will define transformations associated with the Lorentz transformation and gauge
transformation respectively

U(Λ,k) = exp (−2iΘ(Λ,k)L3), (372)

UG(k) = exp (−i|φ(k)| sin ξ(k)L1 − i|φ(k)| cos ξ(k)L2), (373)

such that

U(Λ,k)†aaU(Λ,k) = R b
a (Λ,k)ab,

UG(k)†aaUG(k) = G b
a (k)ab. (374)

5.6 Lorentz transformation for the reducible representation

To construct a Lorentz transformation for the reducible N = 1 oscillator representation the Bogoliubov-
type transformation must be written as

U(Λ, 0, 1) =
∫
dΓ(k)|k〉〈Λ−1k| ⊗ U(Λ,k). (375)

Then for the hermitian conjugate we can write

U(Λ, 0, 1)† =
∫
dΓ(k)|Λ−1k〉〈k| ⊗ U(Λ,k)†. (376)
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Let us denote

W (Λ) =
∫
dΓ(k)|k〉〈Λ−1k|. (377)

This operator is not dependent on spin and acts only on momentum k, i.e.

W (Λ)|k〉 = |Λk〉. (378)

Operator (377) leaves the inner product invariant and therefore is an unitary operator. The hermitian
conjugate of (377) is

W (Λ)† =
∫
dΓ(k)|Λ−1k〉〈k|, (379)

W (Λ)† = W (Λ−1), (380)

W (Λ)†|k〉 = |Λ−1k〉. (381)

Furthermore, operators (377) and (379) have the following properties:

W (Λ)W (Λ)† = W (Λ)W (Λ−1) = I, (382)

W (Λ)† |k〉〈k| W (Λ) = |Λ−1k〉〈Λ−1k|, (383)

W (Λ) |k〉〈k| W (Λ)† = |Λk〉〈Λk|. (384)

For the N -oscillator extension we can write

U(Λ, 0, N) = U(Λ, 0, 1)⊗N . (385)

Then, for circular polarizations under Lorentz transformation we get the following transformation rules
for creation and annihilation operators in N -oscillator reducible representations

U(Λ, 0, N)†as(k, N)U(Λ, 0, N) = e−2isΘ(Λ,k)as(Λ−1k, N), (386)

U(Λ, 0, N)†as(k, N)†U(Λ, 0, N) = e2isΘ(Λ,k)as(Λ−1k, N)†, (387)

U(Λ, 0, N)as(k, N)U(Λ, 0, N)† = e2isΘ(Λ,Λk)as(Λk, N), (388)

U(Λ, 0, N)as(k, N)†U(Λ, 0, N)† = e−2isΘ(Λ,Λk)as(Λk, N)†. (389)

5.7 Composition law

From (377) and (379) it is easy to show that W (Λ) and W (Λ)† satisfy the following composition law:

W (Λ)W (Λ′)|k〉 = |ΛΛ′k〉 = W (ΛΛ′)|k〉,
W (Λ)†W (Λ′)†|k〉 = |Λ−1Λ′−1k〉 = |(Λ′Λ)−1k〉 = W (Λ′Λ)†|k〉. (390)

This means that they are unitary representations of the Lorentz group. We shall now take a closer look at
the composition law for the reducible representations of U(Λ, 0, 1) (375):

U(Λ, 0, 1)U(Λ′, 0, 1) =
(∫

dΓ(k)|k〉〈Λ−1k| ⊗ U(Λ,k)
)(∫

dΓ(k′)|k′〉〈Λ′−1k′| ⊗ U(Λ′,k′)
)

=
∫
dΓ(k)

∫
dΓ(k′)|k〉〈Λ′−1k′|δΓ(Λ−1k,k′)⊗ U(Λ,k)U(Λ′,k′)

=
∫
dΓ(k)|k〉〈(ΛΛ′)−1k| ⊗ U(Λ,k)U(Λ′,Λ−1k). (391)

The left-hand side of the above should be equal to
∫
dΓ(k)|k〉〈(ΛΛ′)−1k| ⊗ U(ΛΛ′,k) and this implies

the following condition

U(ΛΛ′,k) = U(Λ,k)U(Λ′,Λ−1k). (392)
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For the hermitian conjugates we can write:

U(Λ′, 0, 1)†U(Λ, 0, 1)† =
(∫

dΓ(k′)|Λ′−1k′〉〈k′| ⊗ U(Λ′,k′)†
)(∫

dΓ(k)|Λ−1k〉〈k| ⊗ U(Λ,k)†
)

=
∫
dΓ(k)

∫
dΓ(k′)|Λ′−1k′〉〈k|δΓ(k′,Λ−1k)⊗ U(Λ′,k′)†U(Λ,k)†

=
∫
dΓ(k)|(ΛΛ′)−1k〉〈k| ⊗ U(Λ′,Λ−1k)†U(Λ,k)†. (393)

This implies

U(ΛΛ′,k)† = U(Λ′,Λ−1k)†U(Λ,k)†. (394)

The reducible representation is unitary thus

U(Λ, 0, 1)U(Λ, 0, 1)† =
(∫

dΓ(k)|k〉〈Λ−1k| ⊗ U(Λ,k)
)(∫

dΓ(k′)|Λ−1k′〉〈k′| ⊗ U(Λ,k′)†
)

=
∫
dΓ(k)

∫
dΓ(k′)|k〉〈k′|δΓ(k,k′)⊗ U(Λ,k)U(Λ,k′)†

=
∫
dΓ(k)|k〉〈k| ⊗ U(Λ,k)U(Λ,k)†

= I ⊗ 14. (395)

On the other hand from (391) putting Λ′ = Λ−1 we get

U(Λ, 0, 1)U(Λ−1, 0, 1) =
(∫

dΓ(k)|k〉〈Λ−1k| ⊗ U(Λ,k)
)(∫

dΓ(k′)|k′〉〈Λk′| ⊗ U(Λ−1,k′)
)

=
∫
dΓ(k)

∫
dΓ(k′)|k〉〈Λk′|δΓ(Λ−1k,k′)⊗ U(Λ,k)U(Λ−1,k′)

=
∫
dΓ(k)|k〉〈k| ⊗ U(Λ,k)U(Λ−1,Λ−1k)

= I ⊗ 14, (396)

and this implies

U(Λ,k)† = U(Λ−1,Λ−1k). (397)

Condition (392) imposes a composition law for the R b
a (Λ,k) matrix such that

R b
a (ΛΛ′,k) = R c

a (Λ,k)R b
c (Λ′,Λ−1k). (398)

The composition law will be shown here on the spinor level of SL(2,C) matrix. Let us first remind ourselves
of formula (309)

R B
A (Λ,k) = εA

A(k)ΛεAB(k).

It is easy to show, using formula derived in the appendix (B.14), that

RA
C(Λ,k)RC

B(Λ′,Λ−1k) = εA
B(k)ΛεBC(k)εCA(Λ−1k)Λ′εAB(Λ−1k)

= εA
B(k)ΛεBC(k)ΛεCA(k)ΛΛ′εAB(k)

= εA
B(k)εBAΛΛ′εAB(k)

= εA
A(k)ΛΛ′εAB(k) = RA

B(ΛΛ′,k). (399)

From this, and the explicit value of the matrix RA
C(Λ,k) (321), it can be shown that

eiΘ(Λ,k)eiΘ(Λ′,Λ−1k) = eiΘ(ΛΛ′,k). (400)

This is derived explicitly in appendix (B.20). Furthermore, let us also prove the composition law of Lorentz
transformations on the gauge parameter φ(k), i.e.

ΛΛ′φ(k) = φ((ΛΛ′)−1k) = e2iΘ(ΛΛ′,k)φ(k). (401)
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Proof: Let
ΛΛ′φ(k) = Λ′φ(Λ−1k) = φ(Λ′−1(Λ−1k)) = φ((ΛΛ′)−1k). (402)

Using such a notation and transformation rule (299) for φ(k), we can show that

φ((ΛΛ′)−1k) = Λ′φ(Λ−1k) = e2iΘ(Λ′,Λ−1k)φ(Λ−1k) (403)

= e2iΘ(Λ′,Λ−1k)e2iΘ(Λ,k)φ(k) = e2iΘ(ΛΛ′,k)φ(k). (404)

5.8 Transformation properties of the potential operator

Now let us show that the potential operator transforms under Lorentz transformation as a four-vector,
first for N = 1 oscillator representation.

U(Λ, 0, 1)†Aa(x, 1)U(Λ, 0, 1)

=
(∫

dΓ(l)|Λ−1l〉〈l| ⊗ U(Λ, l)†
)(

i

∫
dΓ(k)gaa(k)ab(k, 1)e−ik·x + H.c.

)(∫
dΓ(l′)|l′〉〈Λ−1l′| ⊗ U(Λ, l′)

)
= i

∫
dΓ(k)|Λ−1k〉〈Λ−1k| ⊗ gaa(k)U(Λ,k)†aaU(Λ,k)e−ik·x + H.c.

= i

∫
dΓ(k)|Λ−1k〉〈Λ−1k| ⊗ gaa(k)Ra

b(Λ,k)abe−ik·x + H.c.

= i

∫
dΓ(k)Λgab(k)ab(Λ−1k, 1)e−ik·x + H.c.

= i

∫
dΓ(k)Λabgbb(k)ab(k, 1)e−ik·Λ

−1x + H.c.

= ΛabAb(Λ−1x, 1). (405)

The main element of the construction could be formulated at a level independent of properties of concrete
representations of CCR. We can also extend this calculation to any natural number N , where the four-
potential in N -oscillator representation is denoted by Aa(x,N), i.e.

U(Λ, 0, N)†Aa(x,N)U(Λ, 0, N) = ΛabAb(Λ−1x,N). (406)

5.9 Transformation properties of electromagnetic field operator

Recall the electromagnetic field operator (251)

Fab(x, 1) =
∫
dΓ(k) (ka(k)gba(k)− kb(k)gaa(k)) aa(k, 1)e−ik·x + H.c.
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It can be shown that under Lorentz transformation the electromagnetic field operator transforms like a
tensor:

U(Λ, 0, 1)†Fab(x, 1)U(Λ, 0, 1)

=
(∫

dΓ(l)|Λ−1l〉〈l| ⊗ U(Λ, l)†
)

×
(∫

dΓ(k) (ka(k)g a
b (k)− kb(k)g a

a (k)) aa(k, 1)e−ik·x + H.c.
)

×
(∫

dΓ(l′)|l′〉〈Λ−1l′| ⊗ U(Λ, l′)
)

=
∫
dΓ(k)|Λ−1k〉〈Λ−1k| ⊗ (ka(k)g a

b (k)− kb(k)g a
a (k))U(Λ, l′)†aaU(Λ, l′)e−ik·x + H.c.

=
∫
dΓ(k)|Λ−1k〉〈Λ−1k| ⊗ (ka(k)g a

b (k)− kb(k)g a
a (k))Ra

b(Λ,k)abe−ik·x + H.c.

=
∫
dΓ(k)|Λ−1k〉〈Λ−1k| ⊗ (ka(k)g a

b (k)− kb(k)g a
a (k)) gac(k)Λgcb(k)abe−ik·x + H.c.

=
∫
dΓ(k)|Λ−1k〉〈Λ−1k| ⊗

(
ka(k)Λg b

b (k)− kb(k)Λg b
a (k)

)
abe
−ik·x + H.c.

=
∫
dΓ(k)

(
Λackc(Λ−1k)Λbdg b

d (Λ−1k)− Λbdkd(Λ−1k)Λacg b
c (Λ−1k)

)
ab(Λ−1k, 1)e−ik·x + H.c.

=
∫
dΓ(k)

(
Λackc(k)Λbdg b

d (k)− Λbdkd(k)Λacg b
c (k)

)
ab(k, 1)e−iΛk·x + H.c.

= ΛacΛbd
∫
dΓ(k) (kc(k)g a

d (k)− kd(k)g a
c (k)) aa(k, 1)e−ik·Λ

−1x + H.c.

= ΛacΛbdFcd(Λ−1x, 1). (407)

The same can be shown for arbitrary N -oscillator representation.

5.10 Transformation properties of vacuum

Let us remind ourselves that the definition of vacuum in this representation is not unique, i.e.

|O(1)〉 =
∫
dΓ(k)O(k)|k, 0, 0, 0, 0〉.

Then the Lorentz transformation acts on vacuum as follows

U(Λ, 0, 1)|O(1)〉 = U(Λ, 0, 1)
∫
dΓ(k)O(k)|k, 0, 0, 0, 0〉 =

∫
dΓ(k)O(Λ−1k)|k, 0, 0, 0, 0〉. (408)

A transformed vacuum state is again a vacuum state, but the probability of finding k is modified by the
Doppler effect. The extension to N > 1 is obvious. As a by product we observe that the vacuum field
transforms as a scalar field

O(k) 7→ O(Λ−1k). (409)

This also implies the following transformation rule of the vacuum probability density

Z(k) 7→ Z(Λ−1k). (410)

Of course, the norm of such a transformed vacuum is invariant due to the Lorentz invariant measure (28),
and therefore

〈O, 1|U(Λ, 0, 1)†U(Λ, 0, 1)|O(1)〉 =
∫
dΓ(k)|O(Λ−1k)|2 =

∫
dΓ(Λk)|O(k)|2 = 1. (411)
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5.11 Gauge transformation

Quantum field theory is assumed to be gauge invariant. The change of gauge is a change in electromagne-
tic potential that does not produce any change in physical observables. In this section it will be shown
that for the reducible covariant representation there exists a transformation on the spin-frame level that
corresponds to a gauge transformation on the potential level in ΨEM (1) vector space. ΨEM (1) space was
introduced and discussed earlier in section 4.4.

Now let us start from the potential operator (208) and see how it transforms after a spin-frame transfor-
mation:

ωA(k) 7→ ω̃A(k) = ωA(k) + φ(k)πA(k).

To see how the gauge transformation acts on ladder operators associated with the null tetrad, we can
calculate

UG(k)†aa′UG(k) = UG(k)†ga′aaaUG(k) = ga′
aG b

a (k)gbb
′
ab′ = G b′

a′ (k)ab′ , (412)

so that

UG(k)†a00′UG(k) = a00′ − φ̄(k)a01′ − φ(k)a10′ + |φ(k)|2a11′ ,

UG(k)†a01′UG(k) = UG(k)†a+UG(k) = a+ − φ(k)a11′ ,

UG(k)†a10′UG(k) = UG(k)†a−UG(k) = a− − φ̄(k)a11′ ,

UG(k)†a11′UG(k) = a11′ .

From formulas (C.2)-(C.9) derived in appendix, we get the transformation rules for the tetrads and this
implies the following transformation of the vector potential

Ãa(x, 1) = i

∫
dΓ(k)

(
−m̃a(k)a−(k, 1)− ˜̄ma(k)a+(k, 1)− z̃a(k)a3(k, 1) + t̃a(k)a0(k, 1)

)
e−ik·x + H.c.

= Aa(x, 1) + i

∫
dΓ(k)

(
−φ(k)ka(k)a−(k, 1)− φ̄(k)ka(k)a+(k, 1)

)
e−ik·x + H.c.

− i√
2

∫
dΓ(k)

(
φ(k)m̄a(k) + φ̄(k)ma(k) + |φ(k)|2ka(k)

)
(a3(k, 1)− a0(k, 1)) e−ik·x + H.c.

(413)

Now the new potential operator can be written as

Ãa(x, 1) = Aa(x, 1) + ∂aϕ(x, 1) +Ba(x, 1), (414)

where

ϕ(x, 1) =
∫
dΓ(k)

(
φ(k)a−(k, 1) + φ̄(k)a+(k, 1)

)
e−ik·x + H.c., (415)

Ba(x, 1) = − i√
2

∫
dΓ(k)

(
φ(k)m̄a(k) + φ̄(k)ma(k) + |φ(k)|2ka(k)

)
(a3(k, 1)− a0(k, 1)) e−ik·x + H.c.

(416)

So on first sight this transformation is not exactly a gauge transformation because of the Ba(x, 1) term,
which contains of the “bad ghost” operator. It can be shown though that in ΨEM (1) vector space the
Ba(x, 1) contribution vanishes, i.e.

〈ΨEM (1)|Ãa(x, 1)|ΨEM (1)〉 = 〈ΨEM (1)| (Aa(x, 1) + ∂aϕ(x, 1) +Ba(x, 1)) |ΨEM (1)〉
= 〈ΨEM (1)| (Aa(x, 1) + ∂aϕ(x, 1)) |ΨEM (1)〉. (417)

We can also check the Lorenz condition for the potential operator (413) under spin-frame transformation
(412)

∂aÃa(x, 1)

= ∂aAa(x, 1) +
∫
dΓ(k)ka(k)

(
−φ(k)ka(k)a−(k, 1)− φ̄(k)ka(k)a+(k, 1)

)
e−ik·x + H.c.

− i√
2

∫
dΓ(k)ka(k)

(
φ(k)m̄a(k) + φ̄(k)ma(k) + |φ(k)|2ka(k)

)
(a3(k, 1)− a0(k, 1)) e−ik·x + H.c.

= ∂aAa(x, 1). (418)
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As one can see, if the four-vector potential (208) holds the Lorenz condition, so does (413). Earlier, in
section 4.4, it was shown that there exists a space denoted by ΨEM (1) in which a weaker Lorenz condi-
tion (217) holds. Therefore, transformation (412) on the spin-frame level corresponds to the Lorenz gauge
transformation on the potential level in ΨEM (1) vector space.

This result should be compared with those of Janner and Janssen form 1971 [21] followed by Han, Kim
and Son paper [23]. Although they did not work with a covariant potential operator with four polarization
degrees of freedom, they worked out a similar conclusion for the potential operator (A0, A1, A2, A3), where
A0 = A3. The conclusion was that L1 and L2 generators carry gauge transformations of the potential.
Here the conclusion is the same for equal numbers of longitudinal and time-like photons, i.e. with n0 = n3.

For the electromagnetic field operator after spin-frame transformation (412) we get:

F̃ab(x, 1) =
∫
dΓ(k)πA(k)πB(k)εA′B′

(
a−(k, 1)e−ik·x + a+(k, 1)†eik·x

)
+ H.c.

+
1√
2

∫
dΓ(k)∗M̃ab(k) (a3(k, 1)− a0(k, 1)) e−ik·x + H.c. (419)

Here

∗M̃ab(k) = ω̃a(k)kb(k)− ω̃b(k)ka(k)

= ∗Mab(k) + φ̄(k) (ma(k)kb(k)−mb(k)ka(k)) + φ(k) (m̄a(k)kb(k)− m̄b(k)ka(k)) .(420)

This would mean that the electromagnetic field in not invariant under this gauge symmetry. Again it can
be shown that in ΨEM (1) average the ∗M̃ab(k) contribution vanishes leaving the electromagnetic field
unchanged.

〈ΨEM (1)|F̃ab(x, 1)|ΨEM (1)〉 = 〈ΨEM (1)|Fab(x, 1)|ΨEM (1)〉. (421)

5.12 Invariants in a combined homogeneous Lorentz and gauge transforma-
tion

As one can see in (354-357) transformation (359) mixes annihilation operators a1, a2 with excitations
a3, a0. Reminding:

U(Θ, φ)†a0U(Θ, φ) = −|φ| cos(ξ + 2Θ)a1 + |φ| sin(ξ + 2Θ)a2 −
|φ|2

2
a3 +

(
1 +
|φ|2

2

)
a0,

U(Θ, φ)†a1U(Θ, φ) = cos 2Θa1 − sin 2Θa2 + |φ| cos ξa3 − |φ| cos ξa0,

U(Θ, φ)†a2U(Θ, φ) = sin 2Θa1 + cos 2Θa2 − |φ| sin ξa3 + |φ| sin ξa0,

U(Θ, φ)†a3U(Θ, φ) = −|φ| cos(ξ + 2Θ)a1 + |φ| sin(ξ + 2Θ)a2 +
(

1− |φ|
2

2

)
a3 +

|φ|2

2
a0.

If we considered |φ| = 0 we would get a pure homogeneous Lorentz transformation on operators a1 and
a2 corresponding to transverse polarization degrees of freedom. Let us also take a closer look at the “bad
ghost” operator a11′ = (a3 − a0)/

√
2 and how it transforms under transformation (359). For this purpose

we will consider ladder operators corresponding to the null tetrad in the potential operator (211). Then
the transformation is

U(Θ, φ)†a00′U(Θ, φ) = a00′ − |φ(k)|e−i(ξ(k)+2Θ(Λ,k))a01′ − |φ(k)|ei(ξ(k)+2Θ(Λ,k))a10′ + |φ(k)|2a11′ ,

(422)

U(Θ, φ)†a01′U(Θ, φ) = e−2iΘ(Λ,k)a01′ − |φ(k)|eiξ(k)a11′ , (423)

U(Θ, φ)†a10′U(Θ, φ) = e2iΘ(Λ,k)a10′ − |φ(k)|e−iξ(k)a11′ , (424)

U(Θ, φ)†a11′U(Θ, φ) = a11′ . (425)

As one can see transformation (359) does not change the “bad ghost” operator a3 − a0, i.e.

U(Θ, φ)†(a3 − a0)U(Θ, φ) = a3 − a0. (426)
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It is easy to show that the covariant total number of photons does not change due to the combined Lorentz
and gauge transformation, i.e.

U(Θ, φ)† (n1 + n2 + n3 − n0)U(Θ, φ) = U(Θ, φ)†
(
a†1a1 + a†2a2 + a†3a3 − a0a

†
0

)
U(Θ, φ)

= U(Θ, φ)†
(
a†1a1 + a†2a2 + a†3a3 − a†0a0 + 1

)
U(Θ, φ) = U(Θ, φ)†

(
−aa†aa + 1

)
U(Θ, φ)

= −L(Λ,k)abL(Λ,k)acab†ac + 1 = − gbcab†ac + 1 = − ab†ab + 1. (427)

5.13 Four-translations in four-dimensional oscillator representation

Let us begin with the N = 1 oscillator representation and denote U(1, y, 1) = eiP (1)·y. The generator of
four-translations, the four-momentum reads

Pa(1) =
∫
dΓ(k)ka|k〉〈k| ⊗

(
a†1a1 + a†2a2 + a†3a3 − a†0a0 + 2

)
=

∫
dΓ(k)ka

(
n1(k, 1) + n2(k, 1) + n3(k, 1)− n0(k, 1) + 1

)
=

∫
dΓ(k)ka

(
n+(k, 1) + n−(k, 1) + n3(k, 1)− n0(k, 1) + 1

)
, (428)

where P0(1) is of course the Hamiltonian (183) introduced earlier in chapter 4. One can immediately verify
that

eiP (1)·ya1(k, 1)e−iP (1)·y = a1(k, 1)e−iy·k, (429)

eiP (1)·ya2(k, 1)e−iP (1)·y = a2(k, 1)e−iy·k, (430)

eiP (1)·ya3(k, 1)e−iP (1)·y = a3(k, 1)e−iy·k, (431)

eiP (1)·ya0(k, 1)e−iP (1)·y = a0(k, 1)e−iy·k, (432)

implying the following transformation on the vector potential

U(1, y, 1)†Aa(x, 1)U(1, y, 1) = Aa(x− y, 1). (433)

Furthermore, the four-momentum for arbitrary N -oscillator reads

Pa(N) =
N∑
n=1

Pa(1)(n)

=
∫
dΓ(k)ka

(
n1(k, N) + n2(k, N) + n3(k, N)− n0(k, N) + 1

)
=

∫
dΓ(k)ka

(
n+(k, N) + n−(k, N) + n3(k, N)− n0(k, N) + 1

)
. (434)

Vectors (193) are simultaneously the eigenvectors of Pa(N), i.e.

Pa(N)|k1, . . . ,kN , n
1
0, . . . , n

N
3 〉

=
(
ka1
(
n1

1 + n1
2 + n1

3 − n1
0 + 1

)
+ · · ·+ kaN

(
nN1 + nN2 + nN3 − nN0 + 1

))
× |k1, . . . ,kN , n

1
0, . . . , n

N
3 〉. (435)

Then the following transformation rule for the ladder operators in the N -oscillator reducible representation
holds

eiP (N)·ya1(k, N)e−iP (N)·y = a1(k, N)e−iy·k, (436)

eiP (N)·ya2(k, N)e−iP (N)·y = a2(k, N)e−iy·k, (437)

eiP (N)·ya3(k, N)e−iP (N)·y = a3(k, N)e−iy·k, (438)

eiP (N)·ya0(k, N)e−iP (N)·y = a0(k, N)e−iy·k, (439)

implying

U(1, y,N)†Aa(x,N)U(1, y,N) = Aa(x− y,N). (440)

48



The Poincaré group, i.e. the semi-direct product of homogeneous Lorentz transformation and space-time
translation groups is

U(Λ, y, 1) = U(1, y, 1)U(Λ, 0, 1), (441)

and the composition law of two successive Poincaré transformations holds

U(Λ2, y2, 1)U(Λ1, y1, 1) = U(Λ2Λ1,Λ2y1 + y2, 1). (442)

5.14 Conclusions and results

Most of the results presented in this chapter were already published in [12] and [13]. The notation, starting
from section 5.1, is set differently here, in a way that the homogeneous Lorentz and gauge transforma-
tions are treated as separate non-commuting transformations. Further, generators of these transformations
coming from the canonical variables, introduced earlier in chapter 4, are shown. In next sections the com-
position law for homogeneous Lorentz transformation and the additivity of Lorentz transformation on
the gauge parameter are proved. These are new results. In 5.8, 5.9 and 5.10 the homogeneous Lorentz
transformation acting on the four-vector potential, electromagnetic field operator and vacuum are shown
respectively. As a by product of such a transformation acting on a non-unique vacuum we observe that the
vacuum field transforms as a scalar field. In 5.11 it has been pointed out that for the reducible covariant
representation there exists a transformation on the spin-frame level that corresponds to a gauge transfor-
mation on the potential level for ΨEM vectors introduced earlier. In section 5.12 invariants of introduced
transformations are shown. Let us stress that the “ghost operator” coming from the two extra degrees of
photon polarization is an invariant. Finally in 5.13 the four-translations for the four-dimensional oscillator
representation are introduced.

49



6 Two-photon field

The purpose for this chapter is to develop a model for the four Bell states in the reducible representation of
N -oscillator algebras. First in section 6.1 a notation for a two-photon field operator will be shown. Further
in section 6.2 a model for the four Bell state photon field operators is developed. The main assumption
made here, following Zeilinger’s paper [44], is that Bell states are states maximally correlated in both
bases: linear and circular.

6.1 Two-photon field operator

Let us first note that the correlation of two-photon states in N -oscillator reducible representation does
not come straightforward form the tensor product. To see this, let us first rewrite the ladder operators in
N -oscillator representation, i.e.

as(k, N)†as′(k′, N)† =
1√
N

N∑
n

as(k, 1)†(n) 1√
N

N∑
m

as′(k′, 1)†(m)

=
1
N

N∑
n=m

as(k, 1)†(n)as′(k′, 1)†(m) +
1
N

N∑
n 6=m

as(k, 1)†(n)as′(k′, 1)†(m)

=
1
N

(
as(k, 1)†as′(k′, 1)† ⊗ ...⊗ I(1) + ...+ I(1)⊗ ...⊗ as(k, 1)†as′(k′, 1)†

)︸ ︷︷ ︸
N

+
1
N

(
as(k, 1)† ⊗ as′(k′, 1)† ⊗ ...⊗ I(1) + ...+ I(1)⊗ ...⊗ as(k, 1)† ⊗ as′(k′, 1)†

)︸ ︷︷ ︸
N2−N

.

(443)

As one can see, in (443) we have N terms where the creation operators live on the same oscillator and
N2−N terms where they live on separate oscillators. Concerning tensor algebra representations, it is worth
mentioning that the choice the algebra representation may become important also in other contexts. For
example, it was shown by Pawłowski and Czachor [15] that “entanglement with vacuum” turns out to be
a notion that depends on representation.

Now let us consider a whole frequency spectrum two-photon field operator in circular basis for the N -
oscillator reducible representation

Ψ(N) =
∑
s,s′=±

∫
dΓ(k)dΓ(k′) ψss′(k,k′)as(k, N)†as′(k′, N)†. (444)

If this operator can be factored into two operators such that

Ψ(N) =
∑
s=±

∫
dΓ(k) gs(k)as(k, N)† ×

∑
s′=±

∫
dΓ(k′) hs′(k′)as′(k′, N)†, (445)

we will call it a separable field operator. To study in more detail the symmetry properties of such two-
photon operators we write:

Ψ(N) =
∑
s,s′=±

∫
dΓ(k)dΓ(k′)

ψss′(k,k′) + ψs′s(k′,k)
2

as(k, N)†as′(k′, N)†. (446)

Let us also note that, from the integral’s (446) symmetry properties, it follows

ψss′(k,k′) = ψs′s(k′,k). (447)
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From the relation between circular and linear polarizations derived in the appendix (F.40), we can get to
the linear polarization basis:

Ψ(N) =
∑
s,s′

∫
dΓ(k)dΓ(k′) ei(sθ(k)+s′θ(k′))ψss′(k,k

′)
2

(
aθ(k, N)†aθ(k′, N)† − ss′aθ′(k, N)†aθ′(k′, N)†

)
+

∑
s,s′

∫
dΓ(k)dΓ(k′) ei(sθ(k)+s′θ(k′))ψss′(k,k

′)
2

(
is′aθ(k, N)†aθ′(k′, N)† + isaθ′(k, N)†aθ(k′, N)†

)
(448)

=
∑
s,s′

∫
dΓ(k)dΓ(k′) ei(sθ(k)+s′θ(k′))ψss′(k,k

′)
2

(
aθ(k, N)†aθ(k′, N)† − ss′aθ′(k, N)†aθ′(k′, N)†

)
+ i

∑
s,s′

∫
dΓ(k)dΓ(k′) s′ei(sθ(k)+s′θ(k′))ψss′(k,k′)aθ(k, N)†aθ′(k′, N)†. (449)

Then the scalar product of such two-photon state reads

〈O(N)|Ψ(N)†Ψ(N)|O(N)〉

=
2
N

∑
s,s′=±

∫
dΓ(k)|ψss′(k,k)|2Z(k) +

2(N − 1)
N

∑
s,s′=±

∫
dΓ(k)dΓ(k′)|ψss′(k,k′)|2Z(k)Z(k′). (450)

This formula is derived step by step in appendix (J.2). Also in the N →∞ limit we get

lim
N→∞

〈O(N)|Ψ(N)†Ψ(N)|O(N)〉 = 2
∑
s,s′=±

∫
dΓ(k)dΓ(k′)|ψss′(k,k′)|2Z(k)Z(k′). (451)

As one can see, the first term of the scalar product (450), i.e.∑
s,s′=±

∫
dΓ(k)|ψss′(k,k)|2Z(k) (452)

does not occur in N →∞ limit.

6.2 Bell state field operators

It was in 1964 when John Bell proved his theorem allowing the experimental test of whether Einstein’s
spooky actions at-a-distance exist. In quantum mechanics particles are called entangled, if their state can
not be factored into single particle states. Experimentally one of such states can be generated by a para-
metric down conversion in a nonlinear crystal and the other three Bell states can be obtained by suitable
unitary operators with linear polarization elements.

Now let us study some cases of maximal photon correlations in a quantum field theory background for
the reducible N -oscillator representation. First we will consider photons in circular basis that are anti-
correlated: one is left-handed the other right-handed. Anti-correlated in circular basis field operators will
be here denoted by Ψ1(N), so that

Ψ1(N) =
∑
s6=s′

∫
dΓ(k)dΓ(k′) ψss′(k,k′)as(k, N)†as′(k′, N)†

=
∫
dΓ(k)dΓ(k′)

(
ψ+−(k,k′)a+(k, N)†a−(k′, N)† + ψ−+(k,k′)a−(k, N)†a+(k′, N)†

)
(453)

=
∑
s6=s′

∫
dΓ(k)dΓ(k′) ei(sθ(k)+s′θ(k′))ψss′(k,k

′)
2

(
aθ(k, N)†aθ(k′, N)† + aθ′(k, N)†aθ′(k′, N)†

)
+ i

∑
s6=s′

∫
dΓ(k)dΓ(k′) s′ei(sθ(k)+s′θ(k′))ψss′(k,k′)aθ(k, N)†aθ′(k′, N)†. (454)

This field operator can not be factored like (445). We can say about Ψ1(N): both photons have different
polarizations in circular basis. For the maximal anti-correlation the condition on the field must hold
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|ψ+−(k,k′)|2 = |ψ−+(k,k′)|2. To fully describe four Bell states we need a second basis. This is why we
write the Ψ1(N) field operator in two bases: circular (453) and linear (454). Let us stress that for the linear
basis the polarization angle θ(k) is assumed to be dependent on momentum. There are two situations when
such states are still maximally correlated in the second, here linear basis. The first case is when photons
in linear basis are maximally anti-correlated. Let us denote by θ11(k) the polarization function for such
states. Then, from (454), the following condition on the field and polarization angle must hold:∑
s=±

eis(θ11(k)−θ11(k′))ψs−s(k,k′) = 0 ⇒ ei(θ11(k)−θ11(k′))ψ+−(k,k′) = −ei(θ11(k
′)−θ11(k))ψ−+(k,k′),

(455)

and such a field operator, denoted here by Ψ11(N), may be written in forms

Ψ11(N) =
∫
dΓ(k)dΓ(k′)

(
ψ+−(k,k′)a+(k, N)†a−(k′, N)† + ψ−+(k,k′)a−(k, N)†a+(k′, N)†

)
= −i

∑
s=±

∫
dΓ(k)dΓ(k′) sei(sθ11(k)−sθ11(k′))ψs−s(k,k′)aθ(k, N)†aθ′(k′, N)†

= −2i
∫
dΓ(k)dΓ(k′) ei(θ11(k)−θ11(k′))ψ+−(k,k′)aθ(k, N)†aθ′(k′, N)†

= 2i
∫
dΓ(k)dΓ(k′) e−i(θ11(k)−θ11(k′))ψ−+(k,k′)aθ(k, N)†aθ′(k′, N)†. (456)

From (455) we see that if we want to have a two-photon state maximally correlated in both bases, an
implicit relation must take place that relates the fields ψ+−(k,k′) with the polarization angles. Now we
can say about Ψ11(N): both photons have different polarizations in circular and linear basis. In such a
case operator (456) will represent one of the four Bell states. Then the inner product reads

〈O(N)|Ψ11(N)†Ψ11(N)|O(N)〉

=
4
N

∫
dΓ(k)|ψ+−(k,k)|2Z(k) +

4(N − 1)
N

∫
dΓ(k)dΓ(k′)|ψ+−(k,k′)|2Z(k)Z(k′), (457)

and in the N →∞ limit we have

lim
N→∞

〈O(N)|Ψ11(N)†Ψ11(N)|O(N)〉 = 4
∫
dΓ(k)dΓ(k′)|ψ+−(k,k′)|2Z(k)Z(k′). (458)

The second case is when photons are maximally correlated in linear basis. Then from (454) a condition on
the fields and the polarization angles must hold:∑

s=±
sei(sθ12(k)−sθ12(k′))ψs−s(k,k′) = 0

⇒ ei(θ12(k)−θ12(k′))ψ+−(k,k′) = e−i(θ12(k)−θ12(k′))ψ−+(k,k′). (459)

Here we denote θ12(k) as the polarization function for such a field operator and Ψ12(N) as the field
operator corresponding to the Bell state that is anti-correlated in circular basis and correlated in linear
one, i.e.

Ψ12(N) =
∫
dΓ(k)dΓ(k′)

(
ψ+−(k,k′)a+(k, N)†a−(k′, N)† + ψ−+(k,k′)a−(k, N)†a+(k′, N)†

)
=

∑
s=±

∫
dΓ(k)dΓ(k′) ei(sθ12(k)−sθ12(k′))ψs−s(k,k

′)
2

(
aθ(k, N)†aθ(k′, N)† + aθ′(k, N)†aθ′(k′, N)†

)
=

∫
dΓ(k)dΓ(k′) ei(θ12(k)−θ12(k′))ψ+−(k,k′)

(
aθ(k, N)†aθ(k′, N)† + aθ′(k, N)†aθ′(k′, N)†

)
=

∫
dΓ(k)dΓ(k′) e−i(θ12(k)−θ12(k′))ψ−+(k,k′)

(
aθ(k, N)†aθ(k′, N)† + aθ′(k, N)†aθ′(k′, N)†

)
.

(460)

Also from conditions (455) and (459) we get the following relation for the polarization angles

θ11(k)− θ11(k′) = θ12(k)− θ12(k′) +
π

2
+ nπ, n ∈ Z. (461)
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This formula seems to be more intuitive than conditions (455) and (459). It simply shows that the difference
of the polarization angles for anti-correlated in linear polarizations states is equal to the difference of the
polarization angles for correlated states plus a π/2 factor. Now we can say about Ψ12(N): both photons
have different polarizations in circular basis and the same polarizations in linear basis. The inner product
for (460) state reads

〈O(N)|Ψ12(N)†Ψ12(N)|O(N)〉

=
4
N

∫
dΓ(k)|ψ+−(k,k)|2Z(k) +

4(N − 1)
N

∫
dΓ(k)dΓ(k′)|ψ+−(k,k′)|2Z(k)Z(k′), (462)

and in the N →∞ limit we have

lim
N→∞

〈O(N)|Ψ12(N)†Ψ12(N)|O(N)〉 = 4
∫
dΓ(k)dΓ(k′)|ψ+−(k,k′)|2Z(k)Z(k′). (463)

Now let us consider photons in circular basis that are maximally correlated, i.e. |ψ++(k,k′)|2 =
|ψ−−(k,k′)|2; they are both either left- or right-handed. We will denote such field operators as Ψ2(N) and
write them in both bases

Ψ2(N) =
∑
s=s′

∫
dΓ(k)dΓ(k′) ψss′(k,k′)as(k, N)†as′(k′, N)†

=
∫
dΓ(k)dΓ(k′)

(
ψ++(k,k′)a+(k, N)†a+(k′, N)† + ψ−−(k,k′)a−(k, N)†a−(k′, N)†

)
(464)

=
∑
s=s′

∫
dΓ(k)dΓ(k′) ei(sθ(k)+s′θ(k′))ψss′(k,k

′)
2

(
aθ(k, N)†aθ(k′, N)† − aθ′(k, N)†aθ′(k′, N)†

)
+ i

∑
s=s′

∫
dΓ(k)dΓ(k′) s′ei(sθ(k)+s′θ(k′))ψss′(k,k′)aθ(k, N)†aθ′(k′, N)†. (465)

Again there are two situations when such a field operator is still maximally correlated in another, here linear
basis. When such photons in linear basis are maximally anti-correlated, a condition on fields ψ−−(k,k′)
and ψ++(k,k′) and the polarization angle denoted here by θ21(k) must hold∑

s=±
ei(sθ21(k)+sθ21(k′))ψss(k,k′) = 0

⇒ ei(θ21(k)+θ21(k′))ψ++(k,k′) = −e−i(θ21(k)+θ21(k′))ψ−−(k,k′). (466)

Then the field operator Ψ21(N) can be written in the following forms

Ψ21(N) =
∫
dΓ(k)dΓ(k′)

(
ψ++(k,k′)a+(k, N)†a+(k′, N)† + ψ−−(k,k′)a−(k, N)†a−(k′, N)†

)
= i

∑
s=±

∫
dΓ(k)dΓ(k′) sei(sθ21(k)+sθ21(k′))ψss(k,k′)aθ(k, N)†aθ′(k′, N)†

= 2i
∫
dΓ(k)dΓ(k′) ei(θ21(k)+θ21(k′))ψ++(k,k′)aθ(k, N)†aθ′(k′, N)†

= −2i
∫
dΓ(k)dΓ(k′) e−i(θ21(k)+θ21(k′))ψ−−(k,k′)aθ(k, N)†aθ′(k′, N)†. (467)

We can say about Ψ21(N): both photons have the same polarizations in circular and different polarizations
in linear basis. Then the inner product reads

〈O(N)|Ψ21(N)†Ψ21(N)|O(N)〉

=
4
N

∫
dΓ(k)|ψ++(k,k)|2Z(k) +

4(N − 1)
N

∫
dΓ(k)dΓ(k′)|ψ++(k,k′)|2Z(k)Z(k′), (468)

and for the N →∞ limit we have

lim
N→∞

〈O(N)|Ψ21(N)†Ψ21(N)|O(N)〉 = 4
∫
dΓ(k)dΓ(k′)|ψ++(k,k′)|2Z(k)Z(k′). (469)
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Finally when photons in linear basis are maximally correlated, a condition on the fields and polarization
angles, denoted here by θ22(k), must hold∑

s=±
sei(sθ22(k)+sθ22(k′))ψss(k,k′) = 0

⇒ ei(θ22(k)+θ22(k′))ψ++(k,k′) = e−i(θ22(k)+θ22(k′))ψ−−(k,k′), (470)

and the field operator denoted here by Ψ22(N) is

Ψ22(N) =
∫
dΓ(k)dΓ(k′)

(
ψ++(k,k′)a+(k, N)†a+(k′, N)† + ψ−−(k,k′)a−(k, N)†a−(k′, N)†

)
=

∑
s=±

∫
dΓ(k)dΓ(k′) ei(sθ22(k)+sθ22(k′))ψss(k,k

′)
2

(
aθ(k, N)†aθ(k′, N)† − aθ′(k, N)†aθ′(k′, N)†

)
=

∫
dΓ(k)dΓ(k′) ei(θ22(k)+θ22(k′))ψ++(k,k′)

(
aθ(k, N)†aθ(k′, N)† − aθ′(k, N)†aθ′(k′, N)†

)
=

∫
dΓ(k)dΓ(k′) e−i(θ22(k)+θ22(k′))ψ−−(k,k′)

(
aθ(k, N)†aθ(k′, N)† − aθ′(k, N)†aθ′(k′, N)†

)
.

(471)

Also from conditions (466) and (470) we get the following relation for the polarization angles

θ21(k) + θ21(k′) = θ22(k) + θ22(k′) +
π

2
+ nπ, n ∈ Z. (472)

We can say about Ψ22(N): both photons have the same polarizations in circular and linear basis. Then
the inner product reads

〈O(N)|Ψ22(N)†Ψ22(N)|O(N)〉

=
4
N

∫
dΓ(k)|ψ++(k,k)|2Z(k) +

4(N − 1)
N

∫
dΓ(k)dΓ(k′)|ψ++(k,k′)|2Z(k)Z(k′), (473)

and for the N →∞ limit we have

lim
N→∞

〈O(N)|Ψ22(N)†Ψ22(N)|O(N)〉 = 4
∫
dΓ(k)dΓ(k′)|ψ++(k,k′)|2Z(k)Z(k′). (474)

We will refer to operators (456), (460), (467), (471) as the four Bell state corresponding field operators.

6.3 Results and conclusions

This chapter contains new results. As shown in the previous section it is possible to model Bell states in
quantum field theory background of N -oscillator reducible representation. The main assumption is that
Bell states are maximally correlated or maximally anti-correlated in two polarization bases: circular and
linear. However it should be stressed here that in this model the linear polarization angles are dependent
on momentum, and from the condition for maximal correlation in both bases we get conditions on the
fields and on the polarization angle functions (455), (459), (466) and (470). In the next chapter it will turn
out that employing such momentum dependent polarization angle is important for maintaining Lorentz
covariance in both bases.

Another point should be mentioned. For the reducible representation the N parameter does not necessary
have to go to infinity, since each oscillator is a superposition of already infinitely many different momen-
tum states. It was shown by Wilczewski and Czachor [17], [18], on the example of Rabi oscillations in
lossy cavities, that for the reducible representations of N -oscillator, the N parameter should be indeed a
very large but finite number. Also the convergence of vacuum energy, shown earlier in section 4.2 for such
representation, does not necessary require the N parameter to be infinity. Here it has been shown that
when taking limit N →∞ we lose the (452) term of the inner product that for large finite N could take a
small value. Later in chapter 8 it will be shown that this has its consequence in the value of the correlation
function for maximally anti-correlated in circular basis photons.
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7 Transformation properties of two-photon fields

The main difficulty for Lorentz transformation law of Bell states is the dependence of Wigner rotations
Θ(Λ,k) on momentum. This was discussed by Peres, Scudo and Terno in paper [57]. They concluded
that the spin density matrix for a single spin 1/2 particle is not invariant. When observed form a moving
frame, Wigner rotations entangle the spin with the particles momentum distribution. In this sense, in
the relativistic context spin and momentum are not independent degrees of freedom. It is not possible to
change the inertial reference frame without changing the quantization axis of spin. In consequence Lorentz
boosts introduce a transfer of entanglement between the degrees on freedom. This could be useful for
entanglement manipulation. Lorentz boost acts as a global transformation on spin and momentum and
not as a local transformation strictly on spin or strictly on momentum. The entanglement between spin
and momentum alone may not be invariant, the entanglement of the entire field (spin and momentum) is
invariant.

Also Ahn, Lee and Hwang [67] studied Lorentz transformation of massive two-particle entangled quantum
states. They concluded that to an observer in a moving frame, Bell states appear as rotations or linear
combinations of Bell states in that frame.

Furthermore, Czachor [90] investigated relativistic analogues of EPR states for photons and asked if it is
possible to find scalar fields that involve maximal entanglement in two bases and in all reference frames.
In this chapter we find answers to this question. The chapter is organized as follows. First in section 7.1 we
will discuss the effect that the choice of a non-unique vacuum has on Lorentz transformations. Further in
section 7.2 transformation properties of a two-photon state will be considered. In section 7.3 and 7.4 the
transformation properties of the Bell states are discussed. Here two assumptions are made. Bell states are
maximally correlated or anti-correlated in two polarization bases and transform in circular polarization
basis under Lorentz transformation as scalars. These two assumptions imply the transformation rule on the
polarization angle function and such transformation rule leads to Lorentz invariants also in the linear basis.

7.1 Scalar field

First let us consider an invariant two-photon field operator Ψ(N), i.e.

U(Λ, 0, N)Ψ(N)U(Λ, 0, N)† = Ψ(N). (475)

In reducible representation, where vacuum is non-unique, performing a Lorentz transformation on sta-
tes corresponding to invariant field operators does not result in the same state, since the vacuum also
transforms, here as a scalar field (408), so that

U(Λ, 0, N)|Ψ(N)〉 = U(Λ, 0, N)Ψ(N)U(Λ, 0, N)†U(Λ, 0, N)|O(N)〉 = Ψ(N)|OΛ(N)〉. (476)

Of course, we make the assumption that the scalar product is conserved under Lorentz transformation, so
that

〈OΛ(N)|Ψ(N)†Ψ(N)|OΛ(N)〉

= 2
∑
s,s′=±

∫
dΓ(k)dΓ(k′)|ψss′(k,k′)|2〈OΛ(N)|I(k, N)I(k′, N)|OΛ(N)〉

=
2
N

∑
s,s′=±

∫
dΓ(k)|ψss′(k,k)|2Z(Λ−1k)

+
2(N − 1)

N

∑
s,s′=±

∫
dΓ(k)dΓ(k′)|ψss′(k,k′)|2Z(Λ−1k)Z(Λ−1k′)

=
2
N

∑
s,s′=±

∫
dΓ(k)|ψss′(Λk,Λk)|2Z(k)

+
2(N − 1)

N

∑
s,s′=±

∫
dΓ(k)dΓ(k′)|ψss′(Λk,Λk′)|2Z(k)Z(k′), (477)

and this implies the following condition on the field

|ψss′(Λk,Λk′)|2 = |ψss′(k,k′)|2. (478)

55



7.2 Transformation properties of a two-photon field operator

First let us state that under Lorentz transformation we have the following transformation rule for creation
operators in circular basis:

U(Λ, 0, N)†as(k, N)†as′(k′, N)†U(Λ, 0, N) = e2isΘ(Λ,k)e2is′Θ(Λ,k′)as(Λ−1k, N)†as′(Λ−1k′, N)†, (479)

U(Λ, 0, N)as(k, N)†as′(k′, N)†U(Λ, 0, N)† = e−2isΘ(Λ,Λk)e−2is′Θ(Λ,Λk′)as(Λk, N)†as′(Λk′, N)†. (480)

Now we will consider a two-photon field operator in circular basis. Let us assume that the field operator
Ψ(N) (444) satisfies the scalar field condition, so that under Lorentz transformation we have

U(Λ, 0, N)Ψ(N)U(Λ, 0, N)†

= U(Λ, 0, N)
∑
s,s′

∫
dΓ(k)dΓ(k′) ψss′(k,k′)as(k, N)†as′(k′, N)†U(Λ, 0, N)†

=
∑
s,s′

∫
dΓ(k)dΓ(k′) ψss′(k,k′)e−2isΘ(Λ,Λk)e−2is′Θ(Λ,Λk′)as(Λk, N)†as′(Λk′, N)†

=
∑
s,s′

∫
dΓ(k)dΓ(k′) ψss′(Λ−1k,Λ−1k′)e−2isΘ(Λ,k)e−2is′Θ(Λ,k′)as(k, N)†as′(k′, N)†

= Ψ(N). (481)

This implies the following transformation rule for the fields:

ψss′(k,k′)e2isΘ(Λ,k)e2is′Θ(Λ,k′) = ψss′(Λ−1k,Λ−1k′), (482)

which is consistent with (478).

7.3 Transformation properties of states maximally anti-correlated in circular
basis

Now let us assume that the field operator Ψ11(N) corresponding to one of the Bell states (456) transforms
as a scalar field under Lorentz transformation, so that

U(Λ, 0, N)Ψ11(N)U(Λ, 0, N)†

= U(Λ, 0, N)
∑
s=±

∫
dΓ(k)dΓ(k′) ψs−s(k,k′)as(k, N)†a−s(k′, N)†U(Λ, 0, N)†

=
∫
dΓ(k)dΓ(k′) ψ+−(k,k′)e−2iΘ(Λ,Λk)e2iΘ(Λ,Λk′)a+(Λk, N)†a−(Λk′, N)†

+
∫
dΓ(k)dΓ(k′) ψ−+(k,k′)e2iΘ(Λ,Λk)e−2iΘ(Λ,Λk′)a−(Λk, N)†a+(Λk′, N)†

=
∫
dΓ(k)dΓ(k′) ψ+−(Λk,Λk′)a+(Λk, N)†a−(Λk′, N)†

+
∫
dΓ(k)dΓ(k′) ψ−+(Λk,Λk′)a−(Λk, N)†a+(Λk′, N)† = Ψ11(N). (483)

This implies the following transformation rules for the fields:

ψ+−(Λ−1k,Λ−1k′) = ψ+−(k,k′)e2iΘ(Λ,k)e−2iΘ(Λ,k′), (484)

ψ−+(Λ−1k,Λ−1k′) = ψ−+(k,k′)e−2iΘ(Λ,k)e2iΘ(Λ,k′). (485)

On the other hand from the condition for maximally anti-correlated states in linear basis (455) we get

ψ−+(Λ−1k,Λ−1k′) = −e2i(θ11(Λ−1k)−θ11(Λ−1k′))ψ+−(Λ−1k,Λ−1k′)

= −e2i(θ11(Λ−1k)−θ11(Λ−1k′))ψ+−(k,k′)e2iΘ(Λ,k)e−2iΘ(Λ,k′)

= e2i(θ11(Λ−1k)−θ11(Λ−1k′))ψ−+(k,k′)e−2i(θ11(k)−θ11(k′))e2iΘ(Λ,k)e−2iΘ(Λ,k′).

(486)
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Comparison of (485) and (486) implies the transformation rule for the polarization angle under Lorentz
transformation:

e−2i(θ11(Λ−1k)−θ11(Λ−1k′)) = e−2i(θ11(k)−θ11(k′))e4iΘ(Λ,k)e−4iΘ(Λ,k′), (487)

θ11(Λ−1k) = θ11(k)− 2Θ(Λ,k), (488)

θ11(Λk) = θ11(k) + 2Θ(Λ,Λk). (489)

We can interpret this as if the polarization angle due to Lorentz transformation is shifted by the Wigner
phase. With this condition it can be shown that indeed the field operator Ψ11(N) transforms as a scalar
in both bases: linear and circular. Let us remind ourselves that the Wigner phase depends only on the
direction of momentum, not on the frequency, so that all parallel wave vectors correspond to the same
rotational angle. This was shown by Caban and Rembieliński in [70]. Now taking into account conditions
(455) and transformation rules for the spin-frames shown in appendix (B.10)-(B.13) we can write an
example of the fields and polarization angle in terms of the null tetrad:

ψ+−(k,k′) = ma(k)m̄a(k′), (490)

ψ−+(k,k′) = m̄a(k)ma(k′), (491)

e2i(θ11(k)−θ11(k′)) = −m̄a(k)ma(k′)
mb(k)m̄b(k′)

. (492)

We can also write the field operator Ψ11(N) with respect to the null tetrad, i.e.

Ψ11(N) =
∫
dΓ(k)dΓ(k′)

(
ma(k)m̄a(k′)a+(k, N)†a−(k′, N)† + m̄a(k)ma(k′)a−(k, N)†a+(k′, N)†

)
= 2i

∫
dΓ(k)dΓ(k′) e−i(θ11(k)−θ11(k′))m̄a(k)ma(k′)aθ(k, N)†aθ′(k′, N)†. (493)

Under Lorentz transformation we have the following transformation rules for creation operators in linear
basis

U(Λ, 0, N)aθ(k, N)†aθ′(k′, N)†U(Λ, 0, N)† = aθ(Λk, N)†aθ′(Λk′, N)†, (494)

U(Λ, 0, N)aθ(k, N)†aθ(k′, N)†U(Λ, 0, N)† = aθ(Λk, N)†aθ(Λk′, N)†, (495)

U(Λ, 0, N)aθ′(k, N)†aθ′(k′, N)†U(Λ, 0, N)† = aθ′(Λk, N)†aθ′(Λk′, N)†. (496)

This is derived step by step in appendix (H.10) - (H.12) and it should be stressed that, for this calculus, the
transformation rule for the polarization angle was taken into account. Now let us see how the field operator
Ψ11(N) in linear basis transforms under Lorentz transformation. Using the transformation formula (494)
we find that

U(Λ, 0, N)Ψ11(N)U(Λ, 0, N)†

= 2i
∫
dΓ(k)dΓ(k′) e−i(θ11(k)−θ11(k′))m̄a(k)ma(k′)aθ(Λk, N)†aθ′(Λk′, N)†

= 2i
∫
dΓ(k)dΓ(k′) e−i(θ11(Λ

−1k)−θ11(Λ−1k′))m̄a(Λ−1k)ma(Λ−1k′)aθ(k, N)†aθ′(k′, N)†

= 2i
∫
dΓ(k)dΓ(k′) e−i(θ11(k)−θ11(k′))m̄a(k)ma(k′)aθ(k, N)†aθ′(k′, N)†. (497)

As one can see such a state is still maximally correlated after Lorentz transformation. This was discussed
earlier by M. Czachor in [90] and by H. Terashima and M. Ueda in [60]. The correlation in both bases
depends on the relation between the polarization angle θ(k) and the fields. Conclusion is that to maintain
maximal entanglement in both bases under Lorentz transformations in EPR-type experiments, one has to
employ momentum dependent polarization functions θ(k) that compensate the Wigner phase 2Θ(Λ,k).
Now let us consider the field operator Ψ12(N) (460). In circular basis we want this field operator to
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transform under Lorentz transformation as a scalar:

U(Λ, 0, N)Ψ12(N)U(Λ, 0, N)†

= U(Λ, 0, N)
∑
s=±

∫
dΓ(k)dΓ(k′) ψs−s(k,k′)as(k, N)†a−s(k′, N)†U(Λ, 0, N)†

=
∫
dΓ(k)dΓ(k′) ψ+−(k,k′)e−2iΘ(Λ,Λk)e2iΘ(Λ,Λk′)a+(Λk, N)†a−(Λk′, N)†

+
∫
dΓ(k)dΓ(k′) ψ−+(k,k′)e2iΘ(Λ,Λk)e−2iΘ(Λ,Λk′)a−(Λk, N)†a+(Λk′, N)†

=
∫
dΓ(k)dΓ(k′) ψ+−(Λk,Λk′)a+(Λk, N)†a−(Λk′, N)†

+
∫
dΓ(k)dΓ(k′) ψ−+(Λk,Λk′)a−(Λk, N)†a+(Λk′, N)†

= Ψ12(N). (498)

This implies the following transformation rules for the fields:

ψ+−(k,k′)e2iΘ(Λ,k)e−2iΘ(Λ,k′) = ψ+−(Λ−1k,Λ−1k′), (499)

ψ−+(k,k′)e−2iΘ(Λ,k)e2iΘ(Λ,k′) = ψ−+(Λ−1k,Λ−1k′). (500)

Furthermore, from the condition on the polarization angle and the field (459) we get

ψ−+(Λ−1k,Λ−1k′) = e2i(θ12(Λ−1k)−θ12(Λ−1k′))ψ+−(Λ−1k,Λ−1k′)

= e2i(θ12(Λ−1k)−θ12(Λ−1k′))ψ+−(k,k′)e2iΘ(Λ,k)e−2iΘ(Λ,k′)

= e2i(θ12(Λ−1k)−θ12(Λ−1k′))ψ−+(k,k′)e−2i(θ12(k)−θ12(k′))e2iΘ(Λ,k)e−2iΘ(Λ,k′),

(501)

and this implies the transformation rule for the polarization angle θ12(k):

e−2i(θ12(Λ−1k)−θ12(Λ−1k′)) = e−2i(θ12(k)−θ12(k′))e4iΘ(Λ,k)e−4iΘ(Λ,k′), (502)

θ12(Λ−1k) = θ12(k)− 2Θ(Λ,k). (503)

Taking into account conditions (459) and the transformation rules on the spin-frames (B.10) - (B.13), we
can write an example of the fields and polarization angle in terms of the null tetrad:

ψ+−(k,k′) = ma(k)m̄a(k′), (504)

ψ−+(k,k′) = m̄a(k)ma(k′), (505)

e2i(θ12(k)−θ12(k′)) =
m̄a(k)ma(k′)
mb(k)m̄b(k′)

. (506)

Now we can write the field operator Ψ12(N) (460) with respect to the null tetrad

Ψ12(N) =
∫
dΓ(k)dΓ(k′) ei(θ12(k)−θ12(k′))ma(k)m̄a(k′)

(
aθ(k, N)†aθ(k′, N)† + aθ′(k, N)†aθ′(k′, N)†

)
.

(507)

Under Lorentz transformation this field operator in linear basis transforms, due to the transformation rule
on the polarization angle (503), as a scalar, i.e.
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U(Λ, 0, N)Ψ12(N)U(Λ, 0, N)†

=
∫
dΓ(k)dΓ(k′) ei(θ12(k)−θ12(k′))ma(k)m̄a(k′)

(
aθ(Λk, N)†aθ(Λk′, N)† + aθ′(Λk, N)†aθ′(Λk′, N)†

)
=

∫
dΓ(k)dΓ(k′) ei(θ12(Λ

−1k)−θ12(Λ−1k′))ma(Λ−1k)m̄a(Λ−1k′)

×
(
aθ(k, N)†aθ(k′, N)† + aθ′(k, N)†aθ′(k′, N)†

)
=

∫
dΓ(k)dΓ(k′) ei(θ12(Λ

−1k)−θ12(Λ−1k′))e2iΘ(Λ,k)e−2iΘ(Λ,k′)ma(k)m̄a(k′)

×
(
aθ(k, N)†aθ(k′, N)† + aθ′(k, N)†aθ′(k′, N)†

)
=

∫
dΓ(k)dΓ(k′) ei(θ12(k)−θ12(k′))ma(k)m̄a(k′)

(
aθ(k, N)†aθ(k′, N)† + aθ′(k, N)†aθ′(k′, N)†

)
= Ψ12(N). (508)

7.4 Transformation properties of states maximally correlated in circular basis

For the field operator Ψ21(N) (467) we first assume the following transformation rule in circular basis

U(Λ, 0, N)Ψ21(N)U(Λ, 0, N)†

= U(Λ, 0, N)
∑
s=∓

∫
dΓ(k)dΓ(k′) ψss(k,k′)as(k, N)†as(k′, N)†U(Λ, 0, N)†

=
∫
dΓ(k)dΓ(k′) ψ++(k,k′)e2iΘ(Λ,Λk)e2iΘ(Λ,Λk′)a+(Λk, N)†a+(Λk′, N)†

+
∫
dΓ(k)dΓ(k′) ψ−−(k,k′)e−2iΘ(Λ,Λk)e−2iΘ(Λ,Λk′)a−(Λk, N)†a−(Λk′, N)†

=
∫
dΓ(k)dΓ(k′) ψ++(Λk,Λk′)a+(Λk, N)†a+(Λk′, N)†

+
∫
dΓ(k)dΓ(k′) ψ−−(Λk,Λk′)a−(Λk, N)†a−(Λk′, N)† = Ψ21(N). (509)

This implies that the fields have to transform as:

ψ++(k,k′)e2iΘ(Λ,k)e2iΘ(Λ,k′) = ψ++(Λ−1k,Λ−1k′), (510)

ψ−−(k,k′)e−2iΘ(Λ,k)e−2iΘ(Λ,k′) = ψ−−(Λ−1k,Λ−1k′). (511)

From (466) we get

ψ−−(Λ−1k,Λ−1k′) = −e2i(θ21(Λ−1k)+θ21(Λ−1k′))ψ++(Λ−1k,Λ−1k′)

= −e2i(θ21(Λ−1k)−θ21(Λ−1k′))ψ++(k,k′)e2iΘ(Λ,k)e2iΘ(Λ,k′)

= e2i(θ21(Λ−1k)+θ21(Λ−1k′))ψ−−(k,k′)e−2i(θ21(k)+θ21(k′))e2iΘ(Λ,k)e2iΘ(Λ,k′).

(512)

This implies the following transformation rule for the polarization angle θ21(k):

e2i(θ21(Λ−1k)+θ21(Λ−1k′)) = e2i(θ21(k)+θ21(k′))e−4iΘ(Λ,k)e−4iΘ(Λ,k′), (513)

θ21(Λ−1k) = θ21(k)− 2Θ(Λ,k). (514)

Taking into account conditions (466) and transformation rules for the spin-frames (B.10) - (B.13), we can
write an example of fields and linear polarization functions in terms of the null tetrad:

ψ++(k,k′) = ma(k)ma(k′), (515)

ψ−−(k,k′) = m̄a(k)m̄a(k′), (516)

e2i(θ21(k)+θ21(k′)) = −m̄a(k)m̄a(k′)
mb(k)mb(k′)

. (517)
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Now we can write the field operator Ψ21(N) (467) with respect to the null tetrad in circular and linear
bases

Ψ21(N) =
∫
dΓ(k)dΓ(k′)

(
ma(k)ma(k′)a+(k, N)†a+(k′, N)† + m̄a(k)m̄a(k′)a−(k, N)†a−(k′, N)†

)
= −2i

∫
dΓ(k)dΓ(k′) e−i(θ21(k)+θ21(k′))m̄a(k)m̄a(k′)aθ(k, N)†aθ′(k′, N)†. (518)

Let us also see how the field operator Ψ21(N) (467) in linear basis transforms under Lorentz transformation.
Using the transformation law (494) we find

U(Λ, 0, N)Ψ21(N)U(Λ, 0, N)†

= −i
∫
dΓ(k)dΓ(k′) e−i(θ21(k)+θ21(k′))m̄a(k)m̄a(k′)aθ(Λk, N)†aθ′(Λk′, N)†

= −i
∫
dΓ(k)dΓ(k′) e−i(θ21(Λ

−1k)+θ21(Λ−1k′))m̄a(Λ−1k)m̄a(Λ−1k′)aθ(k, N)†aθ′(k′, N)†

= −i
∫
dΓ(k)dΓ(k′) e−i(θ21(Λ

−1k)+θ21(Λ−1k′))e−2iΘ(Λ,k)e−2iΘ(Λ,k′)m̄a(k)m̄a(k′)aθ(k, N)†aθ′(k′, N)†

= −i
∫
dΓ(k)dΓ(k′) e−i(θ21(k)+θ21(k′))m̄a(k)m̄a(k′)aθ(k, N)†aθ′(k′, N)†

= Ψ21(N). (519)

Finally we will consider the field operator corresponding to the field operator Ψ22(N) (471). First we would
want this operator in circular basis to transform as a scalar field:

U(Λ, 0, N)Ψ22(N)U(Λ, 0, N)†

= U(Λ, 0, N)
∑
s=±

∫
dΓ(k)dΓ(k′) ψss(k,k′)as(k, N)†as(k′, N)†U(Λ, 0, N)†

=
∫
dΓ(k)dΓ(k′) ψ++(k,k′)e2iΘ(Λ,Λk)e2iΘ(Λ,Λk′)a+(Λk, N)†a+(Λk′, N)†

+
∫
dΓ(k)dΓ(k′) ψ−−(k,k′)e−2iΘ(Λ,Λk)e−2iΘ(Λ,Λk′)a−(Λk, N)†a−(Λk′, N)†

=
∫
dΓ(k)dΓ(k′) ψ++(Λk,Λk′)a+(Λk, N)†a+(Λk′, N)†

+
∫
dΓ(k)dΓ(k′) ψ−−(Λk,Λk′)a−(Λk, N)†a−(Λk′, N)† = Ψ22(N). (520)

This implies the following transformation rule on the field

ψ++(k,k′)e2iΘ(Λ,k)e2iΘ(Λ,k′) = ψ++(Λ−1k,Λ−1k′),

ψ−−(k,k′)e−2iΘ(Λ,k)e−2iΘ(Λ,k′) = ψ−−(Λ−1k,Λ−1k′). (521)

From (470) we get

ψ−−(Λ−1k,Λ−1k′) = e2i(θ22(Λ−1k)+θ22(Λ−1k′))ψ++(Λ−1k,Λ−1k′)

= e2i(θ22(Λ−1k)−θ22(Λ−1k′))ψ++(k,k′)e2iΘ(Λ,k)e2iΘ(Λ,k′)

= e2i(θ22(Λ−1k)+θ22(Λ−1k′))ψ−−(k,k′)e−2i(θ22(k)+θ22(k′))e2iΘ(Λ,k)e2iΘ(Λ,k′).

(522)

This implies the following transformation rule for the polarization angle θ22(k):

e2i(θ22(Λ−1k)+θ22(Λ−1k′)) = e2i(θ22(k)+θ22(k′))e−4iΘ(Λ,k)e−4iΘ(Λ,k′), (523)

θ22(Λ−1k) = θ22(k)− 2Θ(Λ,k). (524)
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Taking into account condition (470) and transformation rules on the spin-frames (B.10) - (B.13) we can
write an example of fields:

ψ++(k,k′) = ma(k)ma(k′), (525)

ψ−−(k,k′) = m̄a(k)m̄a(k′), (526)

e2i(θ22(k)+θ22(k′)) =
m̄a(k)m̄a(k′)
mb(k)mb(k′)

. (527)

Now we can write the field operator Ψ22(N) (471) with respect to the null tetrad

Ψ22(N) =
∫
dΓ(k)dΓ(k′)

(
ma(k)ma(k′)a+(k, N)†a+(k′, N)† + m̄a(k)m̄a(k′)a−(k, N)†a−(k′, N)†

)
=

∫
dΓ(k)dΓ(k′) ei(θ22(k)+θ22(k′))ma(k)ma(k′)

(
aθ(k, N)†aθ(k′, N)† − aθ′(k, N)†aθ′(k′, N)†

)
=

∫
dΓ(k)dΓ(k′) e−i(θ22(k)+θ22(k′))m̄a(k)m̄a(k′)

(
aθ(k, N)†aθ(k′, N)† − aθ′(k, N)†aθ′(k′, N)†

)
.

(528)

Under Lorentz transformation such operator also maintains maximal correlations in linear polarization
basis:

U(Λ, 0, N)Ψ22(N)U(Λ, 0, N)†

=
∫
dΓ(k)dΓ(k′) ei(θ22(k)+θ22(k′))ma(k)ma(k′)

(
aθ(Λk, N)†aθ(Λk′, N)† − aθ′(Λk, N)†aθ′(Λk′, N)†

)
=

∫
dΓ(k)dΓ(k′) ei(θ22(Λ

−1k)+θ22(Λ−1k′))ma(Λ−1k)ma(Λ−1k′)

×
(
aθ(k, N)†aθ(k′, N)† − aθ′(k, N)†aθ′(k′, N)†

)
=

∫
dΓ(k)dΓ(k′) ei(θ22(k)+θ22(k′))ma(k)ma(k′)

(
aθ(k, N)†aθ(k′, N)† − aθ′(k, N)†aθ′(k′, N)†

)
= Ψ22(N). (529)

Without the transformation rule on the polarization angle such states no longer would have maintained
the maximal correlation.

7.5 Results and conclusions

This chapter contains new results. It is shown that theoretically it is possible to maintain Lorentz covariance
of the field operators corresponding to the four photon Bell states introduced in previous chapter in
both polarization bases. The conclusion is: to obtain maximal correlation for EPR-type experiments in
both bases one has to employ momentum dependent polarization functions that transform under Lorentz
transformation in such a way that they compensate the Wigner phase 2Θ(Λ,k).
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8 Observables in EPR experiment

Since quantum mechanics was born the concepts of its foundations were several times widely discussed
and are still till now. One of the triggers for such discussions was the well known Gedankenexperiment
proposed in 1935 by Albert Einstein, Boris Podolsky and Nathan Rosen, known as the EPR experiment.
In their paper [39], Einstein, Podolsky and Rosen define elements of physical reality as physical quantities,
the values of which can be predicted with certainty without in any way disturbing the system. They assume
that every element of physical reality needs to have a counterpart in a complete physical theory. In their
thought experiment they consider two systems which interact at some time t after which there should be
no further interaction. Depending on a measurement of position or momentum on system one, due to the
reduction of the wave packet both momentum and position of system two could become an element of
reality by their definition. Quantum Mechanics permitted the existence of two-particle states such that
one could predict strong correlations both in velocity and position even in case when the particles where
widely separated and no longer could interact. But since the operators for momentum and position do not
commute, they do not both have a simultaneous counterpart in quantum mechanics. Thus, they concluded
quantum mechanics to be incompatible with the local and realistic description. In 1935 the EPR paper,
apart from Schrödinger and Bohr, was rather ignored in most debates.

After almost 30 years a short article by John Bell [43] changed this situation and took the EPR arguments
very seriously. In his paper Bell introduced so called hidden variables that are given to the two particles
at their initial preparation in an entangled state, and carried along by each particle after separation.

It was first shown experimentally by Freedman and Clauser in 1972 [47] that Bell’s inequality is violated
in the way that quantum theory predicts. In the experiment proposed earlier by Clauser, Horne, Shimo-
ny, and Holt (CHSH) [46] they measured linear polarization correlation of photons emitted in an atomic
cascade of calcium. It was shown by a generalization of Bell’s inequality that the existence of local hidden
variables imposes restrictions on this correlation in conflict with the predictions of quantum mechanics,
providing strong evidence against local hidden-variable theories.

In 1982 with more advanced equipment Aspect, Grangier and Roger [49] repeated Freedman and Clauser’s
experiment with far more accurate precision. Two entangled photons were produced in the decay of an
excited calcium atom, and each photon was directed by a switch to one of two polarization analyzers,
chosen pseudo-randomly. The photons were detected about 12 m apart, corresponding to a light travel
time of about 40 ns. This time was considerably longer than either the cycle time of the switch, or the
difference in the times of arrival of the two-photons. Therefore the “decision” about which observable to
measure was made after the photons were already in flight, and the events that selected the axes for the
measurement of photons A and B were space-like separated. The results were consistent with the quan-
tum predictions, and violated the CHSH inequality by five standard deviations. Since Aspect, many other
experiments have confirmed this finding.

Furthermore, Ahn et al. [67], [68] also calculated the same situation with all the Bell states and concluded
that the Wigner rotation could cause “a counter example for the nonlocality of the EPR paradox”.

The main purpose of this chapter is to introduce detection in EPR-type experiment in the background of
N -oscillator reducible representations field theory. First in section 8.1 a yes-no observable, for describing
measurement on detectors, is introduced. Further in section 8.2 a correlation function for a two-photon
state is calculated. In sections 8.3 and 8.4 a correlation function for Bell states is calculated for maximally
correlated and anti-correlated in circular basis respectively.

8.1 Yes-no observable

Let us first define a yes-no observable for the linear polarizations:

Yα(l, N) = nα(l, N)− nα′(l, N). (530)

Here nα(l, N) is the number operator for α oriented polarizations in reducible representations of N -
oscillator. In (530) we use the definition (89) for the number operator. This observable may describe
measurement in detectors oriented in α direction in EPR-type experiments, and α′ is denoted here as
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α′ = α+ π
2 . For later purpose this is rewritten also in circular basis:

nα(l, N) =
N∑
n=1

(
|l〉〈l| ⊗ a†αaα

)(n)

=
1
2

N∑
n=1

(
|l〉〈l| ⊗ a†+a+ + e2iα|l〉〈l| ⊗ a†−a+ + e−2iα|l〉〈l| ⊗ a†+a− + |l〉〈l| ⊗ a†−a−

)(n)

,
(531)

nα′(l, N) =
N∑
n=1

(
|l〉〈l| ⊗ a†α′aα′

)(n)

=
1
2

N∑
n=1

(
|l〉〈l| ⊗ a†+a+ − e2iα|l〉〈l| ⊗ a†−a+ − e−2iα|l〉〈l| ⊗ a†+a− + |l〉〈l| ⊗ a†−a−

)(n)

.
(532)

Now we can write the yes-no observable also with respect to circular polarizations

Yα(l, N) = nα(l, N)− nα′(l, N) =
N∑
n=1

(
e2iα|l〉〈l| ⊗ a†−a+ + e−2iα|l〉〈l| ⊗ a†+a−

)(n)

=
N∑
n=1

∑
s=±

(
e2isα|l〉〈l| ⊗ a†−sas

)(n)

.
(533)

Let us note that observable so defined measures the polarization angle with respect to the circular polari-
zation basis (left-handed or right-handed). This can be seen if in (533) we change the sing of the α angle,
i.e.

Y−α(l, N) =
N∑
n=1

∑
s=±

(
e2isα|l〉〈l| ⊗ a†sa−s

)(n)

.
(534)

This remark is important for further interpretation of the correlation functions, where in next sections,
for anti-correlated in circular basis states, we get a cos(β − α) term and for correlated in circular basis
states a cos(β + α) term. Now for a more realistic case the localization of the photon detector leads to a
momentum solid angle spread l ∈ Ω, and this is why we will consider the following observable

Yα(N) =
∫
Ω

dΓ(l) Yα(l, N). (535)

It should be stressed here that the α angle in detectors is fixed for all momentum values of the photon field.
This is important for the relativistic background, because it is assumed here that the polarization angle for
linearly polarized fields depends on the momentum and is shifted due to the Wigner phase under Lorentz
transformation. Let us remind ourselves that this dependence on momentum is necessary for maintaining
maximal correlations in both bases together with Lorentz covariance for all four Bell states. On the other
hand we know that the Wigner phase depends only on the direction of the momentum, so for parallel wave
vectors this would not effect the detection.

Observable (535) does not always give eigenvalue +1 for one photon fields polarized under α angle and
−1 for fields polarized under angle α′. Taking under consideration this eigenvalue problem we see that

Yα(N)|Ψα(N, 1)〉 =
∫
Ω

dΓ(l) Yα(l, N)
∫
dΓ(k) Ψ(k, nα)a†α(k, N)|O(N)〉

=
1√
2

∫
Ω

dΓ(l)
∫
dΓ(k) Ψ(k, nα)

N∑
n=1

[(∑
s=±

e2isα|l〉〈l| ⊗ a†−sas

)
,

(∑
s′=±

|k〉〈k| ⊗ a†s′e
−is′α(k)

)](n)

|O(N)〉

=
1√
2

∫
Ω

dΓ(l)
∫
dΓ(k) δΓ(k, l)Ψ(k, nα)

N∑
n=1

 ∑
s,s′=±

|l〉〈l| ⊗ a†−sδss′e−is
′α(k)e2isα

(n)

|O(N)〉

=
1√
2

∫
Ω

dΓ(l) Ψ(l, nα)
N∑
n=1

(∑
s=±
|l〉〈l| ⊗ a†seisα(l)e−2isα

)(n)

|O(N)〉. (536)
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So first we have to assume that support of the wave function Ψ(l, nα) is embedded in Ω and further within
this angle the dependence on momentum of the polarization can be neglected, so α(l) = α. Then the
eigenvalue will be +1, i.e.

Yα(N)|Ψα(N, 1)〉 = +1|Ψα(N, 1)〉. (537)

For fields polarized under a perpendicular angle, in analogy to the previous calculus, we get

Yα(N)|Ψα′(N, 1)〉 =
∫
Ω

dΓ(l) Yα(l, N)
∫
dΓ(k) Ψ(k, nα′)a

†
α′(k, N)|O(N)〉

=
1√
2

∫
Ω

dΓ(l)
∫
dΓ(k) Ψ(k, nα′)

×
N∑
n=1

[(∑
s=±

e2isα|l〉〈l| ⊗ a†−sas

)
,

(∑
s′=±

|k〉〈k| ⊗ a†s′e
−is′α′(k)

)](n)

|O(N)〉

=
1√
2

∫
Ω

dΓ(l)
∫
dΓ(k) δΓ(k, l)Ψ(k, nα′)

N∑
n=1

 ∑
s,s′=±

|l〉〈l| ⊗ a†−sδss′e−is
′α′(k)e2isα

(n)

|O(N)〉

= − 1√
2

∫
Ω

dΓ(l) Ψ(l, nα′)
N∑
n=1

(∑
s=±
|l〉〈l| ⊗ a†seisα

′(l)e−2isα′
)(n)

|O(N)〉. (538)

Again, assuming the wave function is all concentrated within Ω and within this angle spread the dependence
on momentum of the polarization angle can be neglected, we get

Yα(N)|Ψα′(N, 1)〉 = −1|Ψα′(N, 1)〉. (539)

8.2 Correlation function for two-photon states

Now let us consider two observers in the same inertial frame. Alice measures α oriented photons and
Bob β oriented ones. Their observables are Yα(N) and Yβ(N) respectively. In a more realistic case the
localization of the photon detectors leads to a momentum solid angle spread l ∈ Ω, l′ ∈ Ω′ respectively.
Then the normalized correlation function for an arbitrary two state photon will be then given by:

〈O(N)|Ψ(N)†Yβ(N)Yα(N)Ψ(N)|O(N)〉
〈O(N)|Ψ(N)†Ψ(N)|O(N)〉

. (540)

First we will consider a two-photon field operator Ψ(N) (444). The commutation relations for the yes-no
observable and the two-photon state are derived explicitly in appendix (I.6) and (I.7):

[Yα(l, N),Ψ(N)] = 2
∑
s,s′=±

e2isα
∫
dΓ(k) ψss′(l,k)a−s(l, N)†as′(k, N)†, (541)

[Yα(l, N),Ψ(N)†] = −2
∑
s,s′=±

e−2isα
∫
dΓ(k) ψ̄ss′(l,k)a−s(l, N)as′(k, N). (542)

Using these formulas we get an unnormalized ERP average of the form

〈O(N)|Ψ(N)†Yβ(N)Yα(N)Ψ(N)|O(N)〉

= 4
∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s′−s(l′, l)〈O(N)|I(l, N)I(l′, N)|O(N)〉

+ 4
∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′)
∫
dΓ(k) e−2i(sβ−sα)ψ̄ss′(l,k)ψss′(l′,k)δΓ(l, l′)〈O(N)|I(k, N)I(l, N)|O(N)〉.

(543)
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This formula is derived in detail in appendix (J.3). In the case of disjoint detectors, i.e. Ω ∩ Ω′ = ∅, just
one part of (543) has contribution to the EPR average, so that

〈O(N)|Ψ(N)†Yβ(N)Yα(N)Ψ(N)|O(N)〉

= 4
∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s′−s(l′, l)〈O(N)|I(l, N)I(l′, N)|O(N)〉

=
4(N − 1)

N

∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s′−s(l′, l)Z(l)Z(l′). (544)

Now let us use the symmetry condition (447) and take a closer look at part:∑
ss′=±

e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s−s′(l, l′) =
∑
ss′=±

e2i(sβ+s′α)ψ̄−s−s′(l, l′)ψss′(l, l′)

= 2 cos 2(β + α)<
(
ψ̄++(l, l′)ψ−−(l, l′)

)
+ 2 sin 2(β + α)=

(
ψ̄++(l, l′)ψ−−(l, l′)

)
+ 2 cos 2(β − α)<

(
ψ̄+−(l, l′)ψ−+(l, l′)

)
+ 2 sin 2(β − α)=

(
ψ̄+−(l, l′)ψ−+(l, l′)

)
. (545)

This part is purely real and after some basic manipulations shown in appendix (K.1) we come to the form
(545). This calculus was done mostly to bring up the cos 2(β ± α) part, known from literature. So the
unnormalized EPR average for a two-photon state can be written in the form

〈O(N)|Ψ(N)†Yβ(N)Yα(N)Ψ(N)|O(N)〉

=
8(N − 1)

N
cos 2(β + α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) <
(
ψ̄++(l, l′)ψ−−(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N
sin 2(β + α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) =
(
ψ̄++(l, l′)ψ−−(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N
cos 2(β − α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) <
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N
sin 2(β − α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) =
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
Z(l)Z(l′). (546)

8.3 Correlation function for maximally anti-correlated in circular polarization
basis states

Now let us consider the correlation function for Bell states, starting from maximally anti-correlated in
circular polarization basis field operator Ψ1(N) (453). In a realistic case when the localization of the photon
detector leads to a momentum solid angle spread l ∈ Ω, l′ ∈ Ω′ and for disjoint detectors Ω ∩Ω′ = ∅: the
correlation function reads:

〈O(N)|Ψ1(N)†Yβ(N)Yα(N)Ψ1(N)|O(N)〉

=
8(N − 1)

N
cos 2(β − α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) <
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N
sin 2(β − α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) =
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
Z(l)Z(l′). (547)
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For the field operator Ψ11(N) we will use the condition on the field and polarization angle (455), and then
the EPR average can be written in the form

〈O(N)|Ψ11(N)†Yβ(N)Yα(N)Ψ11(N)|O(N)〉

=
−8(N − 1)

N
cos 2(β − α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(θ11(l)− θ11(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

− 8(N − 1)
N

sin 2(β − α)
∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) sin 2(θ11(l)− θ11(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

=
−8(N − 1)

N

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β − α− θ11(l) + θ11(l′))|ψ−+(l, l′)|2Z(l)Z(l′). (548)

Furthermore, the normalized EPR average reads

〈O(N)|Ψ11(N)†Yβ(N)Yα(N)Ψ11(N)|O(N)〉
〈O(N)|Ψ11(N)†Ψ11(N)|O(N)〉

=
−2(N − 1)

∫
Ω dΓ(l)

∫
Ω′ dΓ(l′) cos 2(β − α− θ11(l) + θ11(l′))|ψ−+(l, l′)|2Z(l)Z(l′)∫

dΓ(k)|ψ+−(k,k)|2Z(k) + (N − 1)
∫
dΓ(k)dΓ(k′)|ψ+−(k,k′)|2Z(k)Z(k′)

. (549)

Now let us use the explicit values of ψ+−(k,k′) (490), taken from the Lorentz covariance condition of such
two-photon field

〈O(N)|Ψ11(N)†Yβ(N)Yα(N)Ψ11(N)|O(N)〉
〈O(N)|Ψ11(N)†Ψ11(N)|O(N)〉

=
−2(N − 1)

∫
Ω dΓ(l)

∫
Ω′ dΓ(l′) cos 2(β − α− θ11(l) + θ11(l′))|ma(l)m̄a(l′)|2Z(l)Z(l′)

1 + (N − 1)
∫
dΓ(k)dΓ(k′)|ma(k)m̄a(k′)|2Z(k)Z(k′)

. (550)

We can see that the term
∫
dΓ(k)|ψ+−(k,k)|2Z(k) = 1 and this makes the EPR average dependent on

the N parameter. In the N →∞ limit it takes the form

lim
N→∞

〈O(N)|Ψ11(N)†Yβ(N)Yα(N)Ψ11(N)|O(N)〉
〈O(N)|Ψ11(N)†Ψ11(N)|O(N)〉

=
−2
∫

Ω dΓ(l)
∫

Ω′ dΓ(l′) cos 2(β − α− θ11(l) + θ11(l′))|ma(l)m̄a(l′)|2Z(l)Z(l′)∫
dΓ(k)dΓ(k′)|ma(k)m̄a(k′)|2Z(k)Z(k′)

. (551)

For the field operator Ψ12(N) (460), we will use the (459) condition on the field and the polarization
angle, so that

〈O(N)|Ψ12(N)†Yβ(N)Yα(N)Ψ12(N)|O(N)〉

=
8(N − 1)

N
cos 2(β − α)

∫
Ω
dΓ(l)

∫
Ω′
dΓ(l′) cos 2(θ12(l)− θ12(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

+
8(N − 1)

N
sin 2(β − α)

∫
Ω
dΓ(l)

∫
Ω′
dΓ(l′) sin 2(θ12(l)− θ12(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

=
8(N − 1)

N

∫
Ω
dΓ(l)

∫
Ω′
dΓ(l′) cos 2(β − α− θ12(l) + θ12(l′))|ψ−+(l, l′)|2Z(l)Z(l′). (552)

Then the normalized EPR average for Ψ12(N) states reads

〈O(N)|Ψ12(N)†Yβ(N)Yα(N)Ψ12(N)|O(N)〉
〈O(N)|Ψ12(N)†Ψ12(N)|O(N)〉

=
2(N − 1)

∫
Ω dΓ(l)

∫
Ω′ dΓ(l′) cos 2(β − α− θ12(l) + θ12(l′))|ψ−+(l, l′)|2Z(l)Z(l′)∫

dΓ(k)|ψ+−(k,k)|2Z(k) + (N − 1)
∫
dΓ(k)dΓ(k′)|ψ+−(k,k′)|2Z(k)Z(k′)

, (553)

and similarly for the explicit values of ψ+−(k,k′) (504) we get

〈O(N)|Ψ12(N)†Yβ(N)Yα(N)Ψ12(N)|O(N)〉
〈O(N)|Ψ12(N)†Ψ12(N)|O(N)〉

=
2(N − 1)

∫
Ω dΓ(l)

∫
Ω′ dΓ(l′) cos 2(β − α− θ12(l) + θ12(l′))|ma(l)m̄a(l′)|2Z(l)Z(l′)

1 + (N − 1)
∫
dΓ(k)dΓ(k′)|ma(k)m̄a(k′)|2Z(k)Z(k′)

. (554)
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Also the EPR average for Ψ12(N) becomes dependent on the N parameter and in the N →∞ limit
becomes

lim
N→∞

〈O(N)|Ψ12(N)†Yβ(N)Yα(N)Ψ12(N)|O(N)〉
〈O(N)|Ψ12(N)†Ψ12(N)|O(N)〉

=
2
∫

Ω dΓ(l)
∫

Ω′ dΓ(l′) cos 2(β − α− θ12(l) + θ12(l′))|ma(l)m̄a(l′)|2Z(l)Z(l′)∫
dΓ(k)dΓ(k′)|ma(k)m̄a(k′)|2Z(k)Z(k′)

. (555)

Furthermore, using relation on the polarization angles θ11(k) and θ12(k) (461) we see that

〈O(N)|Ψ11(N)†Yβ(N)Yα(N)Ψ11(N)|O(N)〉
〈O(N)|Ψ11(N)†Ψ11(N)|O(N)〉

=
〈O(N)|Ψ12(N)†Yβ(N)Yα(N)Ψ12(N)|O(N)〉

〈O(N)|Ψ12(N)†Ψ12(N)|O(N)〉
.(556)

8.4 Correlation function for maximally correlated in circular polarization ba-
sis states

Now we will follow the same calculations as from the previous section, only this time for the field operators
corresponding to states maximally correlated in circular basis. For such operators let us consider Ψ2(N)
(464). Again we are assuming a realistic case when the localization of the photon detector leads to a
momentum solid angle spread l ∈ Ω, l′ ∈ Ω′ and disjoint detectors Ω∩Ω′ = ∅, so the correlation function
reads:

〈O(N)|Ψ2(N)†Yβ(N)Yα(N)Ψ2(N)|O(N)〉

=
8(N − 1)

N
cos 2(β + α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) <
(
ψ̄++(l, l′)ψ−−(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N
sin 2(β + α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) =
(
ψ̄++(l, l′)ψ−−(l, l′)

)
Z(l)Z(l′). (557)

For the field operator Ψ21(N) (467), we will use the (466) condition on the field and polarization angle

〈O(N)|Ψ21(N)†Yβ(N)Yα(N)Ψ21(N)|O(N)〉

=
−8(N − 1)

N
cos 2(β + α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(θ(l) + θ(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

+
−8(N − 1)

N
sin 2(β + α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) sin 2(θ21(l) + θ21(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

=
−8(N − 1)

N

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β + α− θ21(l)− θ21(l′))|ψ−−(l, l′)|2Z(l)Z(l′). (558)

Then the normalized EPR average for Ψ21(N) reads

〈O(N)|Ψ21(N)†Yβ(N)Yα(N)Ψ21(N)|O(N)〉
〈O(N)|Ψ21(N)†Ψ21(N)|O(N)〉

=
−2(N − 1)

∫
Ω dΓ(l)

∫
Ω′ dΓ(l′) cos 2(β + α− θ21(l)− θ21(l′))|ψ−−(l, l′)|2Z(l)Z(l′)∫

dΓ(k)|ψ−−(k,k)|2Z(k) + (N − 1)
∫
dΓ(k)dΓ(k′)|ψ−−(k,k′)|2Z(k)Z(k′)

. (559)

Using the explicit value of ψ−−(k,k′) and knowing that ψ−−(k,k) = 0, we come to the EPR average that
does not depend on the N parameter, i.e.

〈O(N)|Ψ21(N)†Yβ(N)Yα(N)Ψ21(N)|O(N)〉
〈O(N)|Ψ21(N)†Ψ21(N)|O(N)〉

=
−2
∫

Ω dΓ(l)
∫

Ω′ dΓ(l′) cos 2(β + α− θ21(l)− θ21(l′))|ma(l)ma(l′)|2Z(l)Z(l′)∫
dΓ(k)dΓ(k′)|ma(k)ma(k′)|2Z(k)Z(k′)

. (560)
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For the field operator Ψ22(N) (471), we will use the condition on the field and the polarization angle (470),
so that the unnormalized EPR average can be written in the form

〈O(N)|Ψ22(N)†Yβ(N)Yα(N)Ψ22(N)|O(N)〉

=
8(N − 1)

N
cos 2(β + α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(θ22(l) + θ22(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

+
8(N − 1)

N
sin 2(β + α)

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) sin 2(θ22(l) + θ22(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

=
8(N − 1)

N

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β + α− θ22(l)− θ22(l′))|ψ−−(l, l′)|2Z(l)Z(l′). (561)

Then the normalized EPR average for Ψ22(N) Bell state reads

〈O(N)|Ψ22(N)†Yβ(N)Yα(N)Ψ22(N)|O(N)〉
〈O(N)|Ψ22(N)†Ψ22(N)|O(N)〉

=
2(N − 1)

∫
Ω dΓ(l)

∫
Ω′ dΓ(l′) cos 2(β + α− θ22(l)− θ22(l′))|ψ−−(l, l′)|2Z(l)Z(l′)∫

dΓ(k)|ψ−−(k,k)|2Z(k) + (N − 1)
∫
dΓ(k)dΓ(k′)|ψ−−(k,k′)|2Z(k)Z(k′)

. (562)

It should be stressed that also for the Ψ22(N) field operator the EPR average does not depend on the N
parameter

〈O(N)|Ψ22(N)†Yβ(N)Yα(N)Ψ22(N)|O(N)〉
〈O(N)|Ψ22(N)†Ψ22(N)|O(N)〉

=
2
∫

Ω dΓ(l)
∫

Ω′ dΓ(l′) cos 2(β + α− θ22(l)− θ22(l′))|ma(l)ma(l′)|2Z(l)Z(l′)∫
dΓ(k)dΓ(k′)|ma(k)ma(k′)|2Z(k)Z(k′)

. (563)

Finally, using the relation between the polarization angles θ21(k) and θ22(k) (472), we see that

〈O(N)|Ψ21(N)†Yβ(N)Yα(N)Ψ21(N)|O(N)〉
〈O(N)|Ψ21(N)†Ψ21(N)|O(N)〉

=
〈O(N)|Ψ22(N)†Yβ(N)Yα(N)Ψ22(N)|O(N)〉

〈O(N)|Ψ22(N)†Ψ22(N)|O(N)〉
.(564)

8.5 Results and conclusions

This chapter contains new results. The EPR correlation functions which describes measurements on de-
tectors, for all four Bell states where calculated and from this two main conclusion can be made. First
involves the N parameter. In reducible representations the N parameter does not necessary have to go
to infinity, since each oscillator is a superposition of already infinitely many different momentum states.
If we made an assumption that the N parameter is a finite large number, it would have had an influence
on the outcome of the EPR average for states maximally anti-correlated in circular basis. Like shown in
section 8.3 the EPR average for maximally anti-correlated in circular polarization basis states depends on
the N parameter. The extra term in the denominator of the EPR averages for maximally anti-correlated
in circular basis Bell states corresponding to the Ψ1(N) field operator may have influence on the outco-
me compared with the maximally correlated in circular basis Bell states corresponding to field operator
Ψ2(N). Putting it another way, if any experiments confirmed a smaller outcome of the EPR average for
maximally anti-correlated in circular basis states comparing with maximally correlated in circular basis
states, it could have spoken in favor for the N parameter being a finite number.

The second conclusion involves the polarization angle which for this representation is dependent on mo-
mentum. For example let us take the EPR average for the correlated in circular polarization basis field
operator Ψ2(N)

2
∫

Ω
dΓ(l)

∫
Ω′
dΓ(l′) cos 2(β + α− θ22(l)− θ22(l′))|ψ−−(l, l′)|2Z(l)Z(l′)∫

dΓ(k)dΓ(k′)|ψ−−(k,k′)|2Z(k)Z(k′)
. (565)
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Number 2 in the numerator may look suspicious at first, but it can be shown that this comes from the
symmetry of the |ψ−−(k,k′)|2Z(k)Z(k′) term. Denoting f(k,k′) = |ψ−−(k,k′)|2Z(k)Z(k′), we see that
f(k,k′) = f(k′,k), and

2
∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β + α− θ22(l)− θ22(l′))f(l, l′)

=
∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β + α− θ22(l)− θ22(l′))f(l, l′)

+
∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β + α− θ22(l′)− θ22(l))f(l′, l)

=
∫

(Ω×Ω′)∪(Ω′×Ω)
dΓ(l) dΓ(l′) cos 2(β + α− θ22(l)− θ22(l′))f(l, l′). (566)

We find that (Ω×Ω′)∪ (Ω′×Ω) ⊂ R3×R3, f(k,k′) is always nonnegative and the cosine term is bounded,
i.e. | cos 2(β + α− θ22(l)− θ22(l′))| ¬ 1, which implies that∫

(Ω×Ω′)∪(Ω′×Ω) dΓ(l) dΓ(l′) cos 2(β + α− θ22(l)− θ22(l′))f(l, l′)∫
R3×R3 dΓ(k)dΓ(k′)f(k,k′)

¬ 1. (567)

As we can see the EPR average in such reducible representations with the polarization angle dependent
on momentum may serve a shift of phase comparing with “standard theory models”, other than that is
hard to distinguish from “standard models” for Z(k) being flat in the detectors’ momentum solid angle
spread.
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9 EPR-type experiment under Lorentz transformation

In a situation where the two particles are co-moving, Bell’s inequality has been discussed by Czachor [53]
in 1997. In this paper mainly two aspects of EPR experiment in relativistic frame work were discussed:
a possibility of using the experiment as an implicit test of a relativistic concept of centre-of-mas and the
influence of relativistic effect on the degree of violation of Bells inequality. The conclusion was that the
relativistic effects are relevant to the experiment where the degree of violation on Bells inequalities depends
on the velocity of entangled particles.

Also in 1997 Suarez and Scardini [54], [55] pointed out that since the simultaneity of two events depends on
the reference frame, the correlations between entangled photons may be affected by the motion of detectors.

The main difficulty for Lorentz transformation law of Bell states is the dependence of Wigner rotations
Θ(Λ,k) on momentum. This was discussed by Peres, Scudo and Terno in paper [57] from 2002. They
concluded that the spin density matrix for a single spin 1/2 particle is not invariant. When observed form
a moving frame, Wigner rotations entangle the spin with the particles momentum distribution. In relati-
vistic context spin and momentum are not independent degrees of freedom. It is not possible to change
the inertial reference frame without changing the quantization axis of spin. In consequence Lorentz boosts
introduce a transfer of entanglement between degrees on freedom. This could be useful for entanglement
manipulation. Lorentz boosts act as a global transformation on spin and momentum not as a local trans-
formation strictly on spin or strictly on momentum. In other words, the entanglement between spin and
momentum alone may not be invariant, the entanglement of the entire field (spin and momentum) in
invariant. The conclusion was that spin state for a particle is meaningless if it is not specified completely
including momentum dependence.

Genrich and Adami [65] have shown that entanglement between the spins of a pair of spin-1/2 partic-
les is carried over to the entanglement between the momenta of the particles by the Wigner rotation,
even though the entanglement of the entire system is Lorentz invariant. It depends on the reference frame
depending on the field of the pair. They also gave an example of a pair fully spin entangled in the rest
frame but with a reduction of spin entanglement in other frames. Similarly they showed that there are
pairs with spin entanglement increment when boosted.

In 2003 Bergou, Gingrich and Adami [66] calculated the entanglement between a pair of polarization
entangled photons as a function of the reference frame. They showed that the transformation law for
helicity-momentum eigenstates, produces a helicity-momentum phase. This phase decreases or increases
entanglement of the pair depending on the boost direction, the rapidity and the spread of the beam.

Furthermore, Alsing and Milburn [63], [64] have argued that entanglement of a two-particle state is pre-
served under Lorentz transformations.

Also Ahn Lee and Hwang [67] studied Lorentz transformation of massive two-particle entangled quan-
tum states. They concluded that to an observer in a moving frame the Bell states appear as rotations or
linear combinations of Bell states in that frame.

Terashima and Ueda in papers [60], [61] considered a similar situation but discussed the EPR correla-
tion rather than the entanglement using the spin-singlet state in terms of the state vector with factorable
pure momentum eigenstates. They analyzed a situation in which measurements are performed by moving
observers for mass and massless particles. They concluded that the entanglement is independent of the
basis for the measurement, but the correlation depends on it. They pointed out that under certain con-
ditions the perfect anti-correlation of an EPR pair of spins in the same direction is deteriorated in the
moving observers frame due to the Wigner rotation, and have shown that the degree of the violation of
Bell’s inequality at first sight decreases with increasing the velocity of the observers if the directions of
the measurement are fixed. However, this does not imply a breakdown of non-local correlation since the
perfect anti-correlation is maintained in appropriately chosen different directions.

You, Wang, Yang, Niu, Ma and Xu in 2004 [74] discussed a relativistic version of Greenberger-Horn-
Zeilinger (GHZ) experiment of massive particles. GHZ correlations provided for Bohm’s version of EPR
and are no longer statistical in principle. In their gedankenexperiment of relativistic GHZ they concluded
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that spin variables averages that are maximally correlated in the laboratory frame no longer appear so in
the same direction seen from the moving frame however it is always possible to to find a different direction
that shows perfect correlation of the GHZ state.

Friis, Bertlmann, Huber and Heinmayer [94] in 2010 considered spin and momentum degrees of freedom
for spin-1/2 particles in a four-qubit system. They concluded that entanglement can not be generally
considered to be Lorentz invariant and depends on the choice of reference frame and the partitions of
considered four-qubits. They end their discussion with a question whether same conclusions can be made
considering second quantization formalism.

Experimentally relativistic EPR-type multisimultaneity problem was tested by Stefanov, Zbinden, Gi-
sin and Suarez [100] in 2002. From this experiment they concluded that no disappearance of correlations
was observed.

In this chapter relativistic correlations of Bell states in the background of reducible representations of
N -oscillator algebras will be considered. For relativistic considerations the field should be a Lorentz co-
variant one, and invariance of the four Bell states of the proposed model was shown in previous section
7. Let us consider two observers moving relative to each other with detectors that detect an EPR pair.
As far as simultaneity of events is considered the moment of the collapse of the field will depend on the
reference frame and observers may have a disagreement on whose detectors clicked first. Therefore for
considerations made in this chapter the simultaneity problem is not an issue in EPR experiment, where in
the experiment we ask a question about the correlations. In other words, although observers may not agree
on whose detector clicked first, they will agree on the outcome of the experiment, i.e. the correlations. In
this sense there in no preferred frame of reference.

This chapter is organized as follows. In section 9.1 the transformation rule for the detectors modeled
by a yes-no observable is shown and a relativistic correlation function is derived for a two-photon state
in the case where two detectors are transformed under Lorentz transformation in such a way that they
still maintain in the same reference frame. These results will be used for evaluating EPR averages for
the four Bell states in next sections. Further in 9.2 and 9.3 the same calculation are done for maximally
anti-correlated and correlated states in circular basis respectively. In section 9.4 a relativistic correlation
function is derived for a two-photon state in the case where just one of the detectors is transformed under
Lorentz transformation. Finally in section 9.5 and in section 9.6 the same calculation are done for maxi-
mally anti-correlated and correlated states in circular basis respectively.

9.1 Relativistic correlation of a two-photon states - case 1

Within the framework of relativistic quantum field theory, let us consider the Einstein-Podolsky-Rosen
(EPR) gedankenexperiment in which measurements on detectors are performed by moving observers. In
this section we perform a Lorenz transformation on both detectors Alice’s and Bob’s, so that Alice and Bob
are in the same reference frame, not moving with respect to each other. We will start with a two-photon
state.
First let us notice that in detectors modeled by a yes-no observable (533) after a Lorentz transformation
the α orientation angle is observed to be shifted by the Wigner phase 2Θ(Λ, r).

U(Λ, 0, N)†Yα(l, N)U(Λ, 0, N) =
N∑
n=1

∑
s=±

(
e2isαe−4isΘ(Λ,l)|Λ−1l〉〈Λ−1l| ⊗ a†−sas

)(n)

= Yα−2Θ(Λ,Λl)(Λ
−1l, N). (568)

This formula is derived explicitly in appendix (H.13). Also the commutation relations of the yes-no obse-
rvable with a two-photon field operator (444) are derived in appendix (I.8) and (I.9):

[U(Λ, 0, N)†Yα(l, N)U(Λ, 0, N),Ψ(N)] = [Yα−2Θ(Λ,Λl)(Λ
−1l, N),Ψ(N)]

= 2
∑
s,s′=±

e2isαe−4isΘ(Λ,l)
∫
dΓ(k) ψss′(Λ−1l,k)a−s(Λ−1l, N)†as′(k, N)†, (569)
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[U(Λ, 0, N)†Yα(l, N)U(Λ, 0, N),Ψ(N)†] = [Yα−2Θ(Λ,Λl)(Λ
−1l, N),Ψ(N)†]

= −2
∑
s,s′=±

e−2isαe4isΘ(Λ,l)
∫
dΓ(k) ψ̄ss′(Λ−1l,k)a−s(Λ−1l, N)as′(k, N). (570)

Furthermore, under Lorentz transformation performed on both detectors we have an unnormalized EPR
average of the form

〈O(N)|Ψ(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ(N)|O(N)〉

= 4
∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) e−2i(sβ+s′α)e4i(sΘ(Λ,l)+s′Θ(Λ,l′))ψ̄ss′(Λ−1l,Λ−1l′)ψ−s′−s(Λ−1l′,Λ−1l)

× 〈O(N)|I(Λ−1l, N)I(Λ−1l′, N)|O(N)〉

+ 4
∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′)
∫
dΓ(k) e−2i(sβ−sα)e4i(sΘ(Λ,l)−sΘ(Λ,l′))

× ψ̄ss′(Λ−1l,k)ψss′(Λ−1l′,k)δΓ(Λ−1l,Λ−1l′)〈O(N)|I(k, N)I(Λ−1l, N)|O(N)〉. (571)

This formula is also derived step by step in appendix (J.4). In the case of disjoint detectors just one part
has contribution. Also from the transformation rule on the fields (482) we get:

〈O(N)|Ψ(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ(N)|O(N)〉

= 4
∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s−s′(l, l′)× 〈O(N)|I(Λ−1l, N)I(Λ−1l′, N)|O(N)〉

= 4
∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s−s(l, l′)

×
(

1
N

(
Ō(Λ−1l)O(Λ−1l′)δΓ(Λ−1l,Λ−1l′) + (N − 1)Z(Λ−1l)Z(Λ−1l′)

))
=

4(N − 1)
N

∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s−s′(l, l′)Z(Λ−1l)Z(Λ−1l′)

=
4(N − 1)

N

∑
ss′=±

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) e−2i(sβ+s′α)ψ̄ss′(Λl,Λl′)ψ−s−s′(Λl,Λl′)Z(l)Z(l′)

=
4(N − 1)

N

∑
ss′=±

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) e−2i(sβ+s′α)e4i(sΘ(Λ,Λl)+s′Θ(Λ,Λl′))ψ̄ss′(l, l′)ψ−s−s′(l, l′)Z(l)Z(l′).

(572)

Now, just for bringing out the cos 2(β ± α) term known from literature, let us take a closer look at part:∑
ss′=±

e−2i(sβ+s′α)e4i(sΘ(Λ,Λl)+s′Θ(Λ,Λl′))ψ̄ss′(l, l′)ψ−s−s′(l, l′)

= 2 cos 2(β + α− 2Θ(Λ,Λl)− 2Θ(Λ,Λl′))<
(
ψ̄++(l, l′)ψ−−(l, l′)

)
+ 2 sin 2(β + α− 2Θ(Λ,Λl)− 2Θ(Λ,Λl′))=

(
ψ̄++(l, l′)ψ−−(l, l′)

)
+ 2 cos 2(β − α− 2Θ(Λ,Λl) + 2Θ(Λ,Λl′))<

(
ψ̄+−(l, l′)ψ−+(l, l′)

)
+ 2 sin 2(β − α− 2Θ(Λ,Λl) + 2Θ(Λ,Λl′))=

(
ψ̄+−(l, l′)ψ−+(l, l′)

)
. (573)
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So the unnormalized EPR average, in the case when both detectors undergo the same Lorentz transfor-
mation, for a two-photon state can be written in the form

〈O(N)|Ψ(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ(N)|O(N)〉

=
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− 2Θ(Λ,Λl)− 2Θ(Λ,Λl′))<
(
ψ̄++(l, l′)ψ−−(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β + α− 2Θ(Λ,Λl)− 2Θ(Λ,Λl′))=
(
ψ̄++(l, l′)ψ−−(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α− 2Θ(Λ,Λl) + 2Θ(Λ,Λl′))<
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β − α− 2Θ(Λ,Λl) + 2Θ(Λ,Λl′))=
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
Z(l)Z(l′).

(574)

9.2 Relativistic correlation function for maximally anti-correlated in circular
polarization basis states - case 1

Now let us consider such relativistic correlation function for the Bell states. We will start from the maxi-
mally anti-correlated states in circular polarization basis corresponding to the field operator Ψ1(N) (453).
In a realistic case, when the localization of the photon detector leads to a momentum solid angle spread
l ∈ Ω, l′ ∈ Ω′ and the detectors are disjoint Ω ∩ Ω′ = ∅, the correlation function reads:

〈O(N)|Ψ1(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ1(N)|O(N)〉

=
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α− 2Θ(Λ,Λl) + 2Θ(Λ,Λl′))<
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β − α− 2Θ(Λ,Λl) + 2Θ(Λ,Λl′))=
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
Z(l)Z(l′).

(575)

For the field operator Ψ11(N) (456), using the condition on the field and the polarization angle (455), we
get

〈O(N)|Ψ11(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ11(N)|O(N)〉

=
−8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α− 2Θ(Λ,Λl) + 2Θ(Λ,Λl′))

× cos 2(θ11(l)− θ11(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

+
−8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β − α− 2Θ(Λ,Λl) + 2Θ(Λ,Λl′))

× sin 2(θ11(l)− θ11(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

=
−8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α− 2Θ(Λ,Λl) + 2Θ(Λ,Λl′)− θ11(l) + θ11(l′))

× |ψ−+(l, l′)|2Z(l)Z(l′)

=
−8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α− θ11(Λl) + θ11(Λl′))|ψ−+(l, l′)|2Z(l)Z(l′) (576)

=
−8(N − 1)

N

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β − α− θ11(l) + θ11(l′))|ψ−+(l, l′)|2Z(Λ−1l)Z(Λ−1l′).

(577)

One may look at this formula from two points of view: as a transformation on the detectors angle spread
and the polarization angle θ11(k) (576) or a transformation on the vacuum probability density (577). Then
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the normalized relativistic EPR average for Ψ11(N) reads

〈O(N)|Ψ11(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ11(N)|O(N)〉
〈O(N)|Ψ(N)†Ψ(N)|O(N)〉

=
−2(N − 1)

∫
Ω dΓ(l)

∫
Ω′ dΓ(l′) cos 2(β − α− θ11(l) + θ11(l′))|ψ−+(l, l′)|2Z(Λ−1l)Z(Λ−1l′)

1 + (N − 1)
∫
dΓ(k)dΓ(k′)|ψ−+(k,k′)|2Z(k)Z(k′)

.

(578)

Comparing this to (550) we find that the vacuum probability density may have an influence on the corre-
lation of the detectors’ outcome.

For the Bell state corresponding to the Ψ12(N) field operator (460), using the condition on the field
and the polarization angle (459), we get

〈O(N)|Ψ12(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ12(N)|O(N)〉

=
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α− 2Θ(Λ,Λl) + 2Θ(Λ,Λl′))

× cos 2(θ12(l)− θ12(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

+
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β − α− 2Θ(Λ,Λl) + 2Θ(Λ,Λl′))

× sin 2(θ12(l)− θ12(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

=
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α− 2Θ(Λ,Λl) + 2Θ(Λ,Λl′)− θ12(l) + θ12(l′))

× |ψ−+(l, l′)|2Z(l)Z(l′)

=
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α− θ12(Λl) + θ12(Λl′))|ψ−+(l, l′)|2Z(l)Z(l′) (579)

=
8(N − 1)

N

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β − α− θ12(l) + θ12(l′))|ψ−+(l, l′)|2Z(Λ−1l)Z(Λ−1l′).

(580)

Then the normalized relativistic EPR average for Ψ12(N) reads

〈O(N)|Ψ12(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ12(N)|O(N)〉
〈O(N)|Ψ12(N)†Ψ12(N)|O(N)〉

=
2(N − 1)

∫
Ω dΓ(l)

∫
Ω′ dΓ(l′) cos 2(β − α− θ12(l) + θ12(l′))|ψ−+(l, l′)|2Z(Λ−1l)Z(Λ−1l′)
1 + (N − 1)

∫
dΓ(k)dΓ(k′)|ψ−+(k,k′)|2Z(k)Z(k′)

.

(581)

9.3 Relativistic correlation function for maximally correlated in circular po-
larization basis states - case 1

For maximally correlated in circular polarization basis field operators let us consider the Ψ2(N) field
operator (464). In a realistic case, when the localization of the photon detector leads to a momentum solid
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angle spread l ∈ Ω, l′ ∈ Ω′ and for disjoint detectors Ω ∩ Ω′ = ∅, the correlation function reads:

〈O(N)|Ψ2(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ2(N)|O(N)〉

=
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− 2Θ(Λ,Λl)− 2Θ(Λ,Λl′))<
(
ψ̄++(l, l′)ψ−−(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β + α− 2Θ(Λ,Λl)− 2Θ(Λ,Λl′))=
(
ψ̄++(l, l′)ψ−−(l, l′)

)
Z(l)Z(l′).

(582)

For the Bell state corresponding to the Ψ12(N) field operator (467) using the condition on the field and
the polarization angle (466) we get the following unnormalized relativistic EPR average

〈O(N)|Ψ21(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ21(N)|O(N)〉

=
−8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− 2Θ(Λ,Λl)− 2Θ(Λ,Λl′))

× cos 2(θ21(l) + θ21(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

+
−8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β + α− 2Θ(Λ,Λl)− 2Θ(Λ,Λl′))

× sin 2(θ21(l) + θ21(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

=
−8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− 2Θ(Λ,Λl)− 2Θ(Λ,Λl′)− θ21(l)− θ21(l′))

× |ψ−−(l, l′)|2Z(l)Z(l′)

=
−8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− θ21(Λl)− θ21(Λl′))|ψ−−(l, l′)|2Z(l)Z(l′) (583)

=
−8(N − 1)

N

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β + α− θ21(l)− θ21(l′))|ψ−−(l, l′)|2Z(Λ−1l)Z(Λ−1l′).

(584)

Then the normalized relativistic EPR average reads

〈O(N)|Ψ21(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ21(N)|O(N)〉
〈O(N)|Ψ21(N)†Ψ21(N)|O(N)〉

=
−2
∫

Ω dΓ(l)
∫

Ω′ dΓ(l′) cos 2(β − α− θ21(l) + θ21(l′))|ψ−−(l, l′)|2Z(Λ−1l)Z(Λ−1l′)∫
dΓ(k)dΓ(k′)|ψ−−(k,k′)|2Z(k)Z(k′)

.

(585)

Finally for the Bell state corresponding to the Ψ22(N) field operator (471), using the condition on the
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field and the polarization function (470), we get

〈O(N)|Ψ22(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ22(N)|O(N)〉

=
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− 2Θ(Λ,Λl)− 2Θ(Λ,Λl′))

× cos 2(θ22(l) + θ22(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

+
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β + α− 2Θ(Λ,Λl)− 2Θ(Λ,Λl′))

× sin 2(θ22(l) + θ22(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

=
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− 2Θ(Λ,Λl)− 2Θ(Λ,Λl′)− θ22(l)− θ22(l′))

× |ψ−−(l, l′)|2Z(l)Z(l′)

=
8(N − 1)

N

∫
ΛΩ

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− θ22(Λl)− θ22(Λl′))|ψ−−(l, l′)|2Z(l)Z(l′)

=
8(N − 1)

N

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β + α− θ22(l)− θ22(l′))|ψ−−(l, l′)|2Z(Λ−1l)Z(Λ−1l′),

(586)

and for the normalized relativistic EPR average we get

〈O(N)|Ψ22(N)†U(Λ, 0, N)†Yβ(N)Yα(N)U(Λ, 0, N)Ψ22(N)|O(N)〉
〈O(N)|Ψ22(N)†Ψ22(N)|O(N)〉

=
2
∫

Ω dΓ(l)
∫

Ω′ dΓ(l′) cos 2(β − α− θ22(l) + θ22(l′))|ψ−−(l, l′)|2Z(Λ−1l)Z(Λ−1l′)∫
dΓ(k)dΓ(k′)|ψ−−(k,k′)|2Z(k)Z(k′)

.

(587)

9.4 Relativistic correlation of a two-photon state - case 2

Now within the framework of relativistic quantum field theory, let us consider the Einstein-Podolsky-Rosen
(EPR) gedankenexperiment in which measurements on detectors are performed by moving observers, only
this time we perform a Lorentz transformation only on Alice’s detector, so that both detectors are moving
with respect to each other.
Let us first consider the field operator corresponding to a two-photon state (444). Under Lorentz trans-
formation on just one detector we have

〈O(N)|Ψ(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ(N)|O(N)〉

= 4
∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) e−2i(sβ+s′α)e4is′Θ(Λ,l′)ψ̄ss′(l,Λ−1l′)ψ−s−s′(l,Λ−1l′)

× 〈O(N)|I(l, N)I(Λ−1l′, N)|O(N)〉

+ 4
∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′)
∫
dΓ(k) e−2i(sβ−sα)e4isΘ(Λ,l′)ψ̄ss′(l,k)ψss′(Λ−1l′,k)δΓ(l,Λ−1l′)

× 〈O(N)|I(k, N)I(l, N)|O(N)〉. (588)
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This formula is derived step by step in appendix (J.5), and in the case of disjoint detectors just one part
has contribution. Also from the transformation rule on the fields (482) we get:

〈O(N)|Ψ(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ(N)|O(N)〉

= 4
∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s−s′(l, l′)× 〈O(N)|I(l, N)I(Λ−1l′, N)|O(N)〉

= 4
∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s−s(l, l′)

×
(

1
N

(
Ō(l)O(Λ−1l′)δΓ(l,Λ−1l′) + (N − 1)Z(l)Z(Λ−1l′)

))
=

4(N − 1)
N

∑
ss′=±

∫
Ω

dΓ(l)
∫
Ω′

dΓ(l′) e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s−s′(l, l′)Z(l)Z(Λ−1l′)

=
4(N − 1)

N

∑
ss′=±

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) e−2i(sβ+s′α)ψ̄ss′(l,Λl′)ψ−s−s′(l,Λl′)Z(l)Z(l′)

=
4(N − 1)

N

∑
ss′=±

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) e−2i(sβ+s′α)e4i(s′Θ(Λ,Λl′))ψ̄ss′(l, l′)ψ−s−s′(l, l′)Z(l)Z(l′).

(589)

Now let us take a closer look at part:∑
ss′=±

e−2i(sβ+s′α)e4i(s′Θ(Λ,Λl′))ψ̄ss′(l, l′)ψ−s−s′(l, l′)

= 2 cos 2(β + α− 2Θ(Λ,Λl′))<
(
ψ̄++(l, l′)ψ−−(l, l′)

)
+ 2 sin 2(β + α− 2Θ(Λ,Λl′))=

(
ψ̄++(l, l′)ψ−−(l, l′)

)
+ 2 cos 2(β − α+ 2Θ(Λ,Λl′))<

(
ψ̄+−(l, l′)ψ−+(l, l′)

)
+ 2 sin 2(β − α+ 2Θ(Λ,Λl′))=

(
ψ̄+−(l, l′)ψ−+(l, l′)

)
.

(590)

Then the unnormalized relativistic EPR average for a two-photon state, in a situation when a Lorentz
transformation is performed only on Alice’s detector, can be written in the form

〈O(N)|Ψ(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ(N)|O(N)〉

=
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− 2Θ(Λ,Λl′))<
(
ψ̄++(l, l′)ψ−−(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β + α− 2Θ(Λ,Λl′))=
(
ψ̄++(l, l′)ψ−−(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α+ 2Θ(Λ,Λl′))<
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β − α+ 2Θ(Λ,Λl′))=
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
Z(l)Z(l′).

(591)

9.5 Relativistic correlation function for maximally anti-correlated in circular
polarization basis states - case 2

Now, taking results form the previous section, we will consider relativistic correlation functions for the four
Bell states. Let us start from maximally anti-correlated states in circular polarization basis corresponding
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to the field operator Ψ1(N). In a realistic case when the localization of the photon detector leads to a
momentum solid angle spread l ∈ Ω, l′ ∈ Ω′ and disjoint detectors Ω ∩ Ω′ = ∅, the correlation function
reads:

〈O(N)|Ψ1(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ1(N)|O(N)〉

=
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α+ 2Θ(Λ,Λl′))<
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β − α+ 2Θ(Λ,Λl′))=
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
Z(l)Z(l′).

(592)

For the Bell state corresponding to the Ψ11(N) field operator (456), using condition (455), we get an
unnormalized relativistic EPR average of the form

〈O(N)|Ψ11(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ11(N)|O(N)〉

=
−8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α+ 2Θ(Λ,Λl′)) cos 2(θ11(l)− θ11(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

+
−8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β − α+ 2Θ(Λ,Λl′)) sin 2(θ11(l)− θ11(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

=
−8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α+ 2Θ(Λ,Λl′)− θ11(l) + θ11(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

=
−8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α− θ11(l) + θ11(Λl′))|ψ−+(l, l′)|2Z(l)Z(l′) (593)

=
−8(N − 1)

N

∫
Λ−1Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β − α− θ11(Λ−1l) + θ11(l′))|ψ−+(l, l′)|2Z(Λ−1l)Z(Λ−1l′).

(594)

Then the normalized relativistic EPR average for Ψ11(N) reads

〈O(N)|Ψ11(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ11(N)|O(N)〉
〈O(N)|Ψ(N)†Ψ(N)|O(N)〉

=
−2(N − 1)

∫
Ω dΓ(l)

∫
Ω′ dΓ(l′) cos 2(β − α− θ11(l) + θ11(l′))|ψ−+(l, l′)|2Z(l)Z(Λ−1l′)

1 + (N − 1)
∫
dΓ(k)dΓ(k′)|ψ−+(k,k′)|2Z(k)Z(k′)

.

(595)

Next for the Bell state corresponding to the Ψ12(N) field operator (460), and using condition (459), we
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get

〈O(N)|Ψ12(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ12(N)|O(N)〉

=
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α+ 2Θ(Λ,Λl′)) cos 2(θ12(l)− θ12(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

+
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β − α+ 2Θ(Λ,Λl′)) sin 2(θ12(l)− θ12(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

=
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α+ 2Θ(Λ,Λl′)− θ12(l) + θ12(l′))|ψ−+(l, l′)|2Z(l)Z(l′)

=
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β − α− θ12(l) + θ12(Λl′))|ψ−+(l, l′)|2Z(l)Z(l′) (596)

=
8(N − 1)

N

∫
Λ−1Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β − α− θ12(Λ−1l) + θ12(l′))|ψ−+(l, l′)|2Z(Λ−1l)Z(Λ−1l′),

(597)

and the normalized relativistic EPR average for Ψ12(N) reads

〈O(N)|Ψ12(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ12(N)|O(N)〉
〈O(N)|Ψ12(N)†Ψ12(N)|O(N)〉

=
2(N − 1)

∫
Ω dΓ(l)

∫
Ω′ dΓ(l′) cos 2(β − α− θ12(l) + θ12(l′))|ψ−+(l, l′)|2Z(l)Z(Λ−1l′)

1 + (N − 1)
∫
dΓ(k)dΓ(k′)|ψ−+(k,k′)|2Z(k)Z(k′)

.

(598)

9.6 Relativistic correlation function for maximally correlated in circular po-
larization basis states - case 2

For maximally correlated in circular polarization basis field operators let us consider Ψ2(N). In a realistic
case when the localization of the photon detector leads to a momentum solid angle spread l ∈ Ω, l′ ∈ Ω′

and disjoint detectors Ω ∩ Ω′ = ∅: the correlation function reads:

〈O(N)|Ψ2(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ2(N)|O(N)〉

=
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− 2Θ(Λ,Λl′))<
(
ψ̄++(l, l′)ψ−−(l, l′)

)
Z(l)Z(l′)

+
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β + α− 2Θ(Λ,Λl′))=
(
ψ̄++(l, l′)ψ−−(l, l′)

)
Z(l)Z(l′).(599)

Now for the Bell state corresponding to the Ψ21(N) field operator (467), using the condition (466), we get
the following unnormalized EPR average
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〈O(N)|Ψ21(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ21(N)|O(N)〉

=
−8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− 2Θ(Λ,Λl′)) cos 2(θ21(l) + θ21(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

+
−8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β + α− 2Θ(Λ,Λl′)) sin 2(θ21(l) + θ21(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

=
−8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− 2Θ(Λ,Λl′)− θ21(l)− θ21(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

=
−8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− θ21(l)− θ21(Λl′))|ψ−−(l, l′)|2Z(l)Z(l′) (600)

=
−8(N − 1)

N

∫
Λ−1Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β + α− θ21(Λ−1l)− θ21(l′))|ψ−−(l, l′)|2Z(Λ−1l)Z(Λ−1l′).

(601)

Then the relativistic normalized EPR average reads

〈O(N)|Ψ21(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ21(N)|O(N)〉
〈O(N)|Ψ21(N)†Ψ21(N)|O(N)〉

=
−2
∫

Ω dΓ(l)
∫

Ω′ dΓ(l′) cos 2(β − α− θ21(l) + θ21(l′))|ψ−−(l, l′)|2Z(l)Z(Λ−1l′)∫
dΓ(k)dΓ(k′)|ψ−−(k,k′)|2Z(k)Z(k′)

. (602)

Finally for the Bell state corresponding to the Ψ22(N) field operator (471), using the condition (470), we
get

〈O(N)|Ψ22(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ22(N)|O(N)〉

=
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− 2Θ(Λ,Λl′)) cos 2(θ22(l) + θ22(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

+
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) sin 2(β + α− 2Θ(Λ,Λl′)) sin 2(θ22(l) + θ22(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

=
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− 2Θ(Λ,Λl′)− θ22(l)− θ22(l′))|ψ−−(l, l′)|2Z(l)Z(l′)

=
8(N − 1)

N

∫
Ω

dΓ(l)
∫

ΛΩ′

dΓ(l′) cos 2(β + α− θ22(l)− θ22(Λl′))|ψ−−(l, l′)|2Z(l)Z(l′) (603)

=
8(N − 1)

N

∫
Λ−1Ω

dΓ(l)
∫
Ω′

dΓ(l′) cos 2(β + α− θ22(Λ−1l)− θ22(l′))|ψ−−(l, l′)|2Z(Λ−1l)Z(Λ−1l′),

(604)

and for the normalized relativistic EPR average we get

〈O(N)|Ψ22(N)†Yβ(N)U(Λ, 0, N)†Yα(N)U(Λ, 0, N)Ψ22(N)|O(N)〉
〈O(N)|Ψ22(N)†Ψ22(N)|O(N)〉

=
2
∫

Ω dΓ(l)
∫

Ω′ dΓ(l′) cos 2(β − α− θ22(l) + θ22(l′))|ψ−−(l, l′)|2Z(l)Z(Λ−1l′)∫
dΓ(k)dΓ(k′)|ψ−−(k,k′)|2Z(k)Z(k′)

.

(605)
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9.7 Results and conclusions

This chapter contains new results. Relativistic EPR averages where calculated for all four Bell states.
Two cases where considered here: where two detectors are transformed under Lorentz transformation in
such a way that the still maintain in the same reference frame and where just one of the detectors is
transformed under Lorentz transformation. The main conclusion from this chapter is that there may be a
relativistic effect on the degree of violation in EPR-type experiment. One may look at the formulas derived
for the relativistic EPR-type correlations as the transformation on the polarization angle and detectors
angle spread or a transformation on the vacuum probability function. Assuming a non-unique vacuum,
the vacuum probability function Z(k) may have an impact on the detectors outcome.
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10 Final results and conclusions

The main motivation for this work was to take a closer look at a relativistic model for boson fields in
reducible representations of harmonic oscillator Lie algebras (HOLA) proposed by Czachor [6]-[19] with
an application to relativistic EPR correlations. This work resulted in conclusions relating to the model
of a four-dimensional polarization space, covariance of the potential operator or a model of a covariant
two-photon field. On the other hand, employing reducible representations for relativistic EPR-type expe-
riments may show the role that the oscillator number N and vacuum probability density Z(k), known
from such representations, play in this model.

Most of the results from chapter 2 were presented in [6] - [13] and lecture notes [19]. One new remark has
been made here, i.e. it has been shown that reducible representations taken within the whole frequency
spectrum hold the “standard theory” harmonic oscillator Lie algebras.

From chapter 3 come new results. Here a construction for the four-dimensional polarization space co-
ming from a definition of the covariant Hamiltonian (108) is presented. Further analysis is done for such
formalism, especially regarding the interpretation of the ladder operators for the time-like degree of fre-
edom a0. Strong arguments are given in favor of an interpretation in which the operator annihilating
vacuum is a raising energy operator. Such an interpretation gives a non divergent vacuum representation
and positive scalar products. These results are in agreement the the four-dimensional quantization of the
potential operator in Czachor and Naudts [12], and Czachor and Wrzask [13] papers.

Further in chapter 4 N -oscillator reducible representations for the four-dimensional polarization are pre-
sented. Using the covariant Hamiltonian (194) for N -oscillator representation, we find out that such a
formalism is free from vacuum energy divergences. The convergence of vacuum energy is guaranteed by a
proper choice of the vacuum probability density function Z(k) and the N parameter may even be a finite
number. Further sections 4.4 and 4.8 of this chapter contain new results, showing the existence of ΨEM

vectors, which reproduce standard electromagnetic fields (i.e. photons with two polarization degrees of fre-
edom) from the four-dimensional covariant formalism (i.e. with two additional longitudinal and time-like).
It is interesting that such vectors have a coherent-like structure.

Most of the results form chapter 5, where already presented in Czachor and Naudts [12], and Czachor
and Wrzask [13]. The notation, is set differently here, in a way that the homogeneous Lorentz and gau-
ge transformations are treated as separate non-commuting transformations. Further generators of these
transformations coming from the canonical variables are shown. In next sections the composition law for
homogeneous Lorentz transformation and the additivity of Lorentz transformation on the gauge parameter
are proved. These are new results. On next sections of this chapter the homogeneous Lorentz transfor-
mation acting on: the four-vector potential, the electromagnetic field operator and vacuum are shown. As
a by product of the Lorentz transformation on a non-unique vacuum we observe that the vacuum field
transforms as a scalar field and this may have its consequence in relativistic EPR-type experiments. In
5.11 it has been pointed out that for the reducible covariant representation there exist a transformation
on the spin-frame level that corresponds to a gauge transformation on the potential level for ΨEM vectors
introduced earlier. In section 5.12 invariants of the Lorentz transformation are shown. Let us stress that
the “ghost operator” coming from the two extra degrees of photon polarization is an invariant.

All further chapters contain new results. In chapter 6 it has been shown that it is possible to model
Bell states in quantum field theory background of N -oscillator reducible representations. The main as-
sumption is that Bell states are maximally correlated or maximally anti-correlated in two polarization
bases: circular and linear. However it should be stressed here that in this model the linear polarization
angles are dependent on momentum, and from the condition for maximal correlation in both bases we get
conditions on the fields and polarization angle functions (455), (459), (466) and (470). Employing such
momentum dependent polarization angles is important for maintaining Lorentz covariance in both bases.

In chapter 7 it has been shown that theoretically it is possible to maintain Lorentz invariance of the
field operators corresponding to the four Bell states introduced earlier in both polarization bases. The
conclusion is: to obtain maximal correlation for EPR-type experiments in both bases one has to employ
momentum dependent polarization functions that transform under Lorentz transformation in such a way
that they compensate the Wigner phase 2Θ(Λ,k).
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In chapter 8 the EPR correlation functions, for all four Bell states where calculated in reducible re-
presentations. First conclusion involves the N parameter. In reducible representations the N parameter
does not necessary have to go to infinity, since each oscillator is a superposition of already infinitely many
different momentum states. If we made an assumption that the N parameter is a finite large number, it
would have had an influence on the outcome of the EPR average for states maximally anti-correlated in
circular basis. Like shown in section 8.3 the EPR average for maximally anti-correlated in circular polari-
zation basis states depends on the N parameter. The extra term in the denominator of the EPR averages
for Bell states corresponding to the Ψ1(N) field operator may have influence on the outcome compared
with the Bell states corresponding to the field operator Ψ2(N). If any experiments confirmed a smaller
outcome of the EPR average for maximally anti-correlated in circular basis states comparing with maxi-
mally correlated in circular basis states, it could have spoken in favor for the N parameter being a finite
number. On the other hand for the limit N →∞ the correlation function in reducible representation does
not show difference from the irreducible representation except from the momentum dependent polarization
angle shift phase. Other than that, for Z(k) being flat in the detectors momentum solid angle spread, it
is hard to distinguish such representation from ”standard models”.

Finally from chapter 9 the main conclusion is that there may be a relativistic effect on the degree of
violation in EPR-type experiments for photon fields. Two cases where considered here: where the two
detectors are transformed under Lorentz transformation in such a way that they still maintain in the
same reference frame and where just one of the detectors is transformed under Lorentz transformation.
Employing a model for relativistic EPR-type experiments in reducible representation may show the role
that the vacuum probability density function Z(k) plays in such relativistic experiments. It turns out that
assuming such non-unique vacuum, the vacuum probability density function Z(k) may have an impact on
the detectors outcome for such relativistic model.

To see this let us schematically rewrite the results presented in previous sections. For two detectors Yβ , Yα
and for some two-photon field Ψ operator we will write the EPR average

〈O|Ψ†YβYαΨ|O〉. (606)

We may use the unitarity of the Lorentz transformation and assuming an invariant two-photon field
operator, i.e. U†ΛΨUΛ = Ψ, we have

〈O|Ψ†YβYαΨ|O〉 = 〈O|UΛU
†
ΛΨ†UΛU

†
ΛYβUΛU

†
ΛYαUΛU

†
ΛΨUΛU

†
Λ|O〉 = 〈OΛ−1 |Ψ†YΛβYΛαΨ|OΛ−1〉. (607)

This means that performing a transformation on the detectors YΛβYΛα and a compensating transformation
on the vacuum field, denoted here by OΛ−1 , would be equivalent to not performing any transformation at
all. But when we perform a Lorentz transformation like in the first case, i.e. on both detectors in such a
way that they remain in the same reference frame, the EPR average takes the form

〈O|Ψ†U†ΛYβYαUΛΨ|O〉 = 〈O|Ψ†U†ΛYβUΛU
†
ΛYαUΛΨ|O〉 = 〈O|Ψ†YΛβYΛαΨ|O〉. (608)

On the other hand we may perform an unitary transformation to on states, only we have to remember
that in this model we assume a non-unique vacuum and invariant field operators, i.e.

〈O|Ψ†U†ΛYβYαUΛΨ|O〉 = 〈O|U†ΛUΛΨ†U†ΛYβYαUΛΨU†ΛUΛ|O〉 = 〈OΛ|Ψ†YβYαΨ|OΛ〉. (609)

This means that performing a transformation on both detectors is equivalent to performing a transforma-
tion on the vacuum which is denoted by OΛ. Now for the second case experiment we perform a Lorentz
transformation only on Alice’s detector, i.e.

〈O|Ψ†YβU†ΛYαUΛΨ|O〉 = 〈O|Ψ†YβYΛαΨ|O〉 = 〈O|U†ΛUΛΨ†U†ΛUΛYβU
†
ΛYαUΛΨU†ΛUΛ|O〉

= 〈OΛ|Ψ†YΛ−1βYαΨ|OΛ〉. (610)

As we can see, performing a Lorentz transformation on Alice’s detector does not have to result in the
same EPR average as performing an inverse Lorentz transformation on Bob’s detector. If any experiments
confirmed such results, this could have spoken in favor for a non-unique vacuum representation and its
impact on such relativistic experiments.
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Appendices

A Spinors and tetrads

Following the notation convention used by Penrose and Rindler [1], we will skip the bars in complex
conjugation:

ωA
′

:= ω̄A
′
, πA

′
:= π̄A

′
, (A.1)

ωA = ωA
′

= ε A′

0′ , πA = πA
′

= ε A′

1′ , (A.2)

ωA′π
A′ = 1, πA′ω

A′ = −1. (A.3)

Then the null tetrad with respect to the spin-frame can be written in the form

ka(k) = πA(k)πA′(k), (A.4)

ωa(k) = ωA(k)ωA′(k), (A.5)

ma(k) = ωA(k)πA′(k), (A.6)

m̄a(k) = πA(k)ωA′(k). (A.7)

Then the Minkowski tetrad may be written with respect to the null tetrad

xa(k) =
1√
2

(ma(k) + m̄a(k)) , (A.8)

ya(k) =
i√
2

(ma(k)− m̄a(k)) , (A.9)

za(k) =
1√
2

(ωa(k) + ka(k)) , (A.10)

ta(k) =
1√
2

(ωa(k)− ka(k)) , (A.11)

These formulas can be easily inverted to give

ma(k) =
1√
2

(xa(k)− iya(k)) , (A.12)

m̄a(k) =
1√
2

(xa(k) + iya(k)) , (A.13)

ωa(k) =
1√
2

(ta(k) + za(k)) , (A.14)

ka(k) =
1√
2

(ta(k)− za(k)) . (A.15)

Furthermore,

ta(k)ta(k) = 1, xa(k)xa(k) = −1, ya(k)ya(k) = −1, za(k)za(k) = −1. (A.16)

ka(k)ωa(k) = 1, ma(k)m̄a(k) = − 1, (A.17)

ka(k)xa(k) = ka(k)ya(k) = 0, ka(k)za(k) = ka(k)ta(k) =
1√
2
. (A.18)

The following antisymmetric structures of tetrads are derived here for the electromagnetic field operator
(252):

xakb − kaxb =
1√
2

((ωAπA′ + πAωA′)πBπ̄B′ − πAπ̄A′(ωBπB′ + πBωB′)) =
1√
2

(εABπA′πB′ + εA′B′πAπB),

(A.19)

yakb − kayb =
i√
2

((ωAπA′ − πAωA′)πBπB′ − πAπA′(ωBπB′ − πBωB′)) =
i√
2

(εABπA′πB′ − ε̄A′B′πAπB),

(A.20)

zakb−kazb =
1√
2

((ωAωA′ − πAπA′)πBπB′ − πAπA′(ωBωB′ − πBπB′)) =
1√
2

(ωAωA′πBπB′−πAπA′ωBωB′),

(A.21)

takb−katb =
1√
2

((ωAωA′ + πAπA′)πBπB′ − πAπA′(ωBωB′ + πBπB′)) =
1√
2

(ωAωA′πBπB′−πAπA′ωBωB′).

(A.22)
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B Spin-frame Lorentz transformation

The Lorentz transformation rule for any covariant and contravariant spinor holds

ψA(k) 7→ ΛψA(k) = Λ B
A ψB(Λ−1k), (B.1)

ψA(k) 7→ ΛψA(k) = ψB(Λ−1k)Λ−1 A
B = − ΛABψ

B(Λ−1k). (B.2)

Here Λ−1k is a space-like component of a four-vector Λ−1
a
bkb(k).

Some transformation rules of spinor fields

e−iΘ(Λ,k) = ωA(k)ΛπA(k), (B.3)

eiΘ(Λ,k) = ωA′(k)ΛπA
′
(k), (B.4)

πA(k) = eiΘ(Λ,k)Λ B
A πB(Λ−1k), ωA(k) = e−iΘ(Λ,k)Λ B

A ωB(Λ−1k), (B.5)

πA(Λk) = eiΘ(Λ,Λk)Λ B
A πB(k), ωA(Λk) = e−iΘ(Λ,Λk)Λ B

A ωB(k), (B.6)

ma(Λk)e2iΘ(Λ,Λk) = Λ b
a mb(k), m̄a(Λk)e−2iΘ(Λ,Λk) = Λ b

a m̄b(k), (B.7)

za(Λk) = Λ b
a zb(k), ta(Λk) = Λ b

a tb(k), (B.8)

ka(Λk) = Λ b
a kb(k). (B.9)

Here Λk is a space like part of a four-vector Λabkb(k) and Λ B
A is denoted as an unprimed SL(2,C) matrix

corresponding to the Λab ∈ SO(1, 3). Also may be useful

e−iΘ(Λ,k)πA(k) = Λ B
A πB(Λ−1k) = ΛπA(k), (B.10)

e−iΘ(Λ,k)ωA′(k) = Λ B′

A′ ωB′(Λ−1k) = ΛωA′(k), (B.11)

eiΘ(Λ,k)πA′(k) = Λ B′

A′ πB′(Λ−1k) = ΛπA′(k), (B.12)

eiΘ(Λ,k)ωA(k) = Λ B
A ωB(Λ−1k) = ΛωA(k). (B.13)

It can be shown that

φA(Λ−11 k) Λ2ψ
A(Λ−11 k) = Λ1φA(k) Λ1Λ2ψ

A(k). (B.14)

Λ1φA(k) Λ1Λ2ψ
A(k) = Λ1A

BφB(Λ−11 k)ψC((Λ1Λ2)−1k)(Λ1Λ2)−1
C
A (B.15)

= Λ1A
B(Λ2)−1

C
D(Λ1)−1

D
AφB(Λ−11 k)ψC((Λ1Λ2)−1k) (B.16)

= (Λ2)−1
C
DδD

BφB(Λ−11 k)ψC((Λ1Λ2)−1k) (B.17)

= φB(Λ−11 k)ψC(Λ−12 (Λ−11 k))(Λ2)−1
C
B (B.18)

= φA(Λ−11 k) Λ2ψ
A(Λ−11 k). (B.19)

Furthermore, it can be shown

eiΘ(Λ,k)eiΘ(Λ′,Λ−1k) = ε1
B(k)ΛεB1(k)ε1

A(Λ−1k)Λ′εA1(Λ−1k)

= ε1
B(k)ΛεB1(k)Λε1

A(k)ΛΛ′εA1(k)

= ε1
B(k)εBAΛΛ′εA1(k)

= ε1
A(k)ΛΛ′εA1(k) = eiΘ(ΛΛ′,k). (B.20)

This formula is used to show the composition law in section 5.7.
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C Gauge transformation on the spin-frame level

Let us consider a transformation on the spin-frame level such that

ωA(k) 7→ ω̃A(k) = ωA(k) + φ(k)πA(k). (C.1)

Then the tetrads transform as

ka(k) 7→ k̃a(k) = πA(k)πA′(k) = ka(k), (C.2)

ωa(k) 7→ ω̃a(k) = ω̃A(k)ω̃A′(k) = ωa(k) + φ̄(k)ma(k) + φ(k)m̄a(k) + |φ(k)|2ka(k), (C.3)

ma(k) 7→ m̃a(k) = ω̃A(k)πA′(k) = ma(k) + φ(k)ka(k), (C.4)

m̄a(k) 7→ ˜̄ma(k) = πA(k)ω̃A′(k) = m̄a(k) + φ̄(k)ka(k), (C.5)

xa(k) 7→ x̃a(k) = xa(k) +
1√
2

(
φ(k) + φ̄(k)

)
ka(k), (C.6)

ya(k) 7→ ỹa(k) = ya(k) +
i√
2

(
φ(k)− φ̄(k)

)
ka(k), (C.7)

za(k) 7→ z̃a(k) = za(k) +
1√
2

(
φ̄(k)ma(k) + φ(k)m̄a(k) + |φ(k)|2ka(k)

)
, (C.8)

ta(k) 7→ t̃a(k) = ta(k) +
1√
2

(
φ̄(k)ma(k) + φ(k)m̄a(k) + |φ(k)|2ka(k)

)
. (C.9)

These calculations are done for formula (413) in section 5.11.
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D Maxwell-corresponding vector space

All the calculus in this appendix is done for section 4.4

〈Ψ03(1)| (a0 − a3)2 |Ψ03(1)〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3) (a0 − a3)2 Ψ(n0, n3)|n0, n3〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n0 + 1|n0 + 1, n3〉

−
∑

n′0=0,n′3=0

∑
n0=0,n3=1

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n3|n0, n3 − 1〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n0 + 1δn0+1,n′0

δn3,n′3

−
∑

n′0=0,n′3=0

∑
n0=0,n3=0

Ψ̄(n′0, n
′
3)Ψ(n0, n3 + 1)

√
n3 + 1δn0,n′0δn3,n′3

=
∑

n0=0,n3=0

(√
n0 + 1Ψ̄(n0 + 1, n3)Ψ(n0, n3)−

√
n3 + 1Ψ̄(n0, n3)Ψ(n0, n3 + 1)

)
, (D.1)

〈Ψ03(1)|
(
a†0 − a

†
3

)
2
|Ψ03(1)〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3)
(
a†0 − a

†
3

)
2

Ψ(n0, n3)|n0, n3〉

=
∑

n′0=0,n′3=0

∑
n0=1,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n0|n0 − 1, n3〉

−
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n3 + 1|n0, n3 + 1〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

Ψ̄(n′0, n
′
3)Ψ(n0 + 1, n3)

√
n0 + 1δn0,n′0δn3,n′3

−
∑

n′0=0,n′3=0

∑
n0=0,n3=0

Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n3 + 1δn0,n′0δn3+1,n′3

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

(
Ψ̄(n0, n3)Ψ(n0 + 1, n3)

√
n0 + 1− Ψ̄(n0, n3 + 1)Ψ(n0, n3)

√
n3 + 1

)
,

(D.2)
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〈Ψ03(1)| (a0 − a3)n |Ψ03(1)〉

=
n∑
k=0

(−)k
(
n
k

)
〈Ψ03(1)|an−k0 ak3 |Ψ03(1)〉

=
n∑
k=0

(−)k
(
n
k

)
e−2

×
∑

n′0=0,n′3=0

∑
n0=0,n3=k

〈n′0, n′3|
1√
n′0!n′3!

1√
n0!n3!

√
(n0 + n+ k)!

n0!

√
n3!

(n3 − k)!
|n3 − k, n0 + n+ k〉

=
n∑
k=0

(−)k
(
n
k

)
e−2

×
∑

n′0=0,n′3=0

∑
n0=0,n3=k

1√
n′0!n′3!

1√
n0!n3!

√
(n0 + n+ k)!

n0!

√
n3!

(n3 − k)!
δn0+n+k,n′0

δn3−k,n′3

=
n∑
k=0

(−)k
(
n
k

)
e−2

×
∑

n′0=0,n′3=0

∑
n0=0,n3=0

1√
n′0!n′3!

1√
n0!(n3 + k)!

√
(n0 + n+ k)!

n0!

√
(n3 + k)!
n3!

δn0+n+k,n′0
δn3,n′3

=
n∑
k=0

(−)k
(
n
k

)
e−2

∑
n0=0,n3=0

1√
(n0 + n+ k)!n3!

1√
n0!(n3 + k)!

√
(n0 + n+ k)!

n0!

√
(n3 + k)!
n3!

=
n∑
k=0

(−)k
(
n
k

)
e−2

∑
n0=0,n3=0

1
n0!n3!

=
n∑
k=0

(−)k
(
n
k

)
=

n∑
k=0

(−)k
(
n
k

)
1(n−k)1k = (1− 1)n = 0, (D.3)
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〈Ψ03(1)|
(
a†0 − a

†
3

)
2

(a0 − a3)2 |Ψ03(1)〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3)
(
a†0 − a

†
3

)
2

(a0 − a3)2 Ψ(n0, n3)|n0, n3〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n0 + 1

(
a†0 − a

†
3

)
2
|n0 + 1, n3〉

−
∑

n′0=0,n′3=0

∑
n0=0,n3=1

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n3

(
a†0 − a

†
3

)
2
|n0, n3 − 1〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n0 + 1

√
n0 + 1|n0, n3〉

−
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n0 + 1

√
n3 + 1|n0 + 1, n3 + 1〉

−
∑

n′0=0,n′3=0

∑
n0=1,n3=1

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n3
√
n0|n0 − 1, n3 − 1〉

+
∑

n′0=0,n′3=0

∑
n0=0,n3=1

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n3
√
n3|n0, n3〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n0 + 1

√
n0 + 1δn0,n′0δn3,n′3

−
∑

n′0=0,n′3=0

∑
n0=0,n3=0

Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n0 + 1

√
n3 + 1δn0+1,n′0

δn3+1,n′3

−
∑

n′0=0,n′3=0

∑
n0=0,n3=0

Ψ̄(n′0, n
′
3)Ψ(n0 + 1, n3 + 1)

√
n3 + 1

√
n0 + 1δn0,n′0δn3,n′3

+
∑

n′0=0,n′3=0

∑
n0=0,n3=0

Ψ̄(n′0, n
′
3)Ψ(n0, n3 + 1)

√
n3 + 1

√
n3 + 1δn0,n′0δn3+1,n′3

=
∑

n0=0,n3=0

Ψ̄(n0, n3)Ψ(n0, n3)
√
n0 + 1

√
n0 + 1

−
∑

n0=0,n3=0

Ψ̄(n0 + 1, n3 + 1)Ψ(n0, n3)
√
n0 + 1

√
n3 + 1

−
∑

n0=0,n3=0

Ψ̄(n0, n3)Ψ(n0 + 1, n3 + 1)
√
n3 + 1

√
n0 + 1

+
∑

n0=0,n3=0

Ψ̄(n0, n3 + 1)Ψ(n0, n3 + 1)
√
n3 + 1

√
n3 + 1

=
∑

n0=0,n3=0

n0 + 1
n0!n3!

−
√
n0 + 1

√
n3 + 1√

(n0 + 1)!(n3 + 1)!
√
n0!n3!

−
√
n0 + 1

√
n3 + 1√

(n0 + 1)!(n3 + 1)!
√
n0!n3!

+
n3 + 1

n0!(n3 + 1)!

=
∑

n0=0,n3=0

n0 + 1
n0!n3!

− 1
n0!n3!

− 1
n0!n3!

+
1

n0!n3!

=
∑

n0=0,n3=0

1
n0!n3!

=
∑

n0=0,n3=0

1
n0!n3!

= 1,

(D.4)
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〈Ψ03(1)| (a0 − a3)2

(
a†0 − a

†
3

)
2
|Ψ03(1)〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3) (a0 − a3)2

(
a†0 − a

†
3

)
2

Ψ(n0, n3)|n0, n3〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3) (a0 − a3)2 Ψ(n0, n3)

√
n0|n0 − 1, n3〉

−
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3) (a0 − a3)2 Ψ(n0, n3)

√
n3 + 1|n0, n3 + 1〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n0
√
n0|n0, n3〉

−
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n0
√
n3|n0 − 1, n3 − 1〉

−
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n3 + 1

√
n0 + 1|n0 + 1, n3 + 1〉

+
∑

n′0=0,n′3=0

∑
n0=0,n3=0

〈n′0, n′3|Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n3 + 1

√
n3 + 1|n0, n3〉

=
∑

n′0=0,n′3=0

∑
n0=0,n3=0

Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n0
√
n0δn0,n′0δn3,n′3

−
∑

n′0=0,n′3=0

∑
n0=0,n3=0

Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n0
√
n3δn0−1,n′0

δn3−1,n′3

−
∑

n′0=0,n′3=0

∑
n0=0,n3=0

Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n3 + 1

√
n0 + 1δn0+1,n′0

δn3+1,n′3

+
∑

n′0=0,n′3=0

∑
n0=0,n3=0

Ψ̄(n′0, n
′
3)Ψ(n0, n3)

√
n3 + 1

√
n3 + 1δn0,n′0δn3,n′3

=
∑

n0=0,n3=0

Ψ̄(n0, n3)Ψ(n0, n3)
√
n0
√
n0

−
∑

n0=0,n3=0

Ψ̄(n0 − 1, n3 − 1)Ψ(n0, n3)
√
n0
√
n3

−
∑

n0=0,n3=0

Ψ̄(n0 + 1, n3 + 1)Ψ(n0, n3)
√
n3 + 1

√
n0 + 1

+
∑

n0=0,n3=0

Ψ̄(n0, n3)Ψ(n0, n3)
√
n3 + 1

√
n3 + 1

=
∑

n0=0,n3=0

(
n0

n0!n3!
−

√
n3
√
n0√

(n0 − 1)!(n3 − 1)!
√
n0!n3!

−
√
n3 + 1

√
n0 + 1√

(n0 + 1)!(n3 + 1)!
√
n0!n3!

+
n3 + 1
n0!n3!

)

=
∑

n0=0,n3=0

(
n0

n0!n3!
− n3n0

n0!n3!
− 1
n0!n3!

+
n3 + 1
n0!n3!

)
=

∑
n0=0,n3=0

1
n0!n3!

= 1. (D.5)
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E Four-vector algebra

The inner product of two vectors Aa = (A0,A) and Ba = (B0,B) is defined by

A ·B = A0B0 −A ·B = A0B0 −A1B1 −A2B2 −A3B3. (E.1)

This can be also written in terms of covariant and contravariant coordinates

A ·B = A0B
0 +A1B

1 +A2B
2 +A3B

3. (E.2)

Lowering and raising of indexes is done by means of the metric tensor, which can be denoted in a matrix
form

gab = gab =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (E.3)

so that

Aa = gabAb : (E.4)

A0 = A0, Ai = −Ai. (E.5)

By definition the first index is to be increased downwards from 0 to 3 (indicates the row number) and the
second to increase to the right (indicates the kolumn number). It also follows that:

A ·B = AaB
a = AaBa. (E.6)

Having for an example matrix (316)

La
b(Λ,k) =


ta(k)Λt̃a(k) −ta(k)Λx̃a(k) −ta(k)Λỹa(k) −ta(k)Λz̃a(k)
xa(k)Λt̃a(k) −xa(k)Λx̃a(k) −xa(k)Λỹa(k) −xa(k)Λz̃a(k)
ya(k)Λt̃a(k) −ya(k)Λx̃a(k) −ya(k)Λỹa(k) −ya(k)Λz̃a(k)
za(k)Λt̃a(k) −za(k)Λx̃a(k) −za(k)Λỹa(k) −za(k)Λz̃a(k)

 (E.7)

=


1 + |φ|2

2 −|φ| cos(ξ + 2Θ) |φ| sin(ξ + 2Θ) − |φ|
2

2
−|φ| cos ξ cos 2Θ − sin 2Θ |φ| cos ξ
|φ| sin ξ sin 2Θ cos 2Θ −|φ| sin ξ
|φ|2

2 −|φ| cos(ξ + 2Θ) |φ| sin(ξ + 2Θ) 1− |φ|
2

2

 , (E.8)

we lower and raise the indices ab also by means of the metric tensor. This means that to lower the second
index b columns from 1 to 3 have to be multiplied by -1, i.e. Lab = La

cgcb

Lab(Λ,k) =


ta(k)Λt̃a(k) ta(k)Λx̃a(k) ta(k)Λỹa(k) ta(k)Λz̃a(k)
xa(k)Λt̃a(k) xa(k)Λx̃a(k) xa(k)Λỹa(k) xa(k)Λz̃a(k)
ya(k)Λt̃a(k) ya(k)Λx̃a(k) ya(k)Λỹa(k) ya(k)Λz̃a(k)
za(k)Λt̃a(k) za(k)Λx̃a(k) za(k)Λỹa(k) za(k)Λz̃a(k)

 (E.9)

=


1 + |φ|2

2 |φ| cos(ξ + 2Θ) −|φ| sin(ξ + 2Θ) |φ|2
2

−|φ| cos ξ − cos 2Θ sin 2Θ −|φ| cos ξ
|φ| sin ξ − sin 2Θ − cos 2Θ |φ| sin ξ
|φ|2

2 |φ| cos(ξ + 2Θ) −|φ| sin(ξ + 2Θ) −1 + |φ|2
2

 . (E.10)

To higher the first index a rows from 1 to 3 in (316) have to be multiplied by -1, i.e. Lab = gcbLc
b

Lab(Λ,k) =


ta(k)Λt̃a(k) −ta(k)Λx̃a(k) −ta(k)Λỹa(k) −ta(k)Λz̃a(k)
−xa(k)Λt̃a(k) xa(k)Λx̃a(k) xa(k)Λỹa(k) xa(k)Λz̃a(k)
−ya(k)Λt̃a(k) ya(k)Λx̃a(k) ya(k)Λỹa(k) ya(k)Λz̃a(k)
−za(k)Λt̃a(k) za(k)Λx̃a(k) za(k)Λỹa(k) za(k)Λz̃a(k)

 (E.11)

=


1 + |φ|2

2 −|φ| cos(ξ + 2Θ) |φ| sin(ξ + 2Θ) − |φ|
2

2
|φ| cos ξ − cos 2Θ sin 2Θ −|φ| cos ξ
−|φ| sin ξ − sin 2Θ − cos 2Θ |φ| sin ξ
− |φ|

2

2 |φ| cos(ξ + 2Θ) −|φ| sin(ξ + 2Θ) −1 + |φ|2
2

 , (E.12)
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Finally to raise the first index a and higher the second index b columns from 1 to 3 in (316) have to be
multiplied by -1 and rows form 1 to 3 also multiplied by -1, i.e. La

b = gacLc
dgdb

La
b(Λ,k) =


ta(k)Λt̃a(k) ta(k)Λx̃a(k) ta(k)Λỹa(k) ta(k)Λz̃a(k)
−xa(k)Λt̃a(k) −xa(k)Λx̃a(k) −xa(k)Λỹa(k) −xa(k)Λz̃a(k)
−ya(k)Λt̃a(k) −ya(k)Λx̃a(k) −ya(k)Λỹa(k) −ya(k)Λz̃a(k)
−za(k)Λt̃a(k) −za(k)Λx̃a(k) −za(k)Λỹa(k) −za(k)Λz̃a(k)

 (E.13)

=


1 + |φ|2

2 |φ| cos(ξ + 2Θ) −|φ| sin(ξ + 2Θ) |φ|2
2

|φ| cos ξ cos 2Θ − sin 2Θ |φ| cos ξ
−|φ| sin ξ sin 2Θ cos 2Θ −|φ| sin ξ
− |φ|

2

2 −|φ| cos(ξ + 2Θ) |φ| sin(ξ + 2Θ) 1− |φ|
2

2

 . (E.14)
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F Unitary matrix expansions of creation and annihilation operators

Let us first give a definition of an unitary matrix

U †U = UU † = 1. (F.1)

The matrix exponentials are defined as

exp(A) =
∞∑
n=0

An

n!
. (F.2)

Now any unitary matrix U can be written as the exponential of an anti-Hermitian matrix

U = exp(A), A† = −A, (F.3)

then it follows that
exp(A)† exp(A) = exp(−A) exp(A) = 1. (F.4)

Furthermore, the following are true
exp(−A) exp(A) = 1, (F.5)

exp(A)† = exp(A†), (F.6)

B exp(A)B−1 = exp(BAB−1), (F.7)

exp(−A)B exp(A) = B + [B,A] +
1
2!

[[B,A],A] +
1
3!

[[[B,A],A],A] + . . . (F.8)

Also when A and B are two non-commuting operators and

[A, [A,B]] = [B, [B,A]] = 0, (F.9)

we have

exp(A) exp(B) = exp(A+B) exp
(

1
2

[A,B]
)
, (F.10)

exp(A) exp(B) = exp(B) exp(A) exp ([A,B]) . (F.11)

Moreover, for a non-central element [A,B] we have

exp(A) exp(B) = exp
(
B + [A,B] +

1
2!

[A, [A,B]] +
1
3!

[A, [A, [A,B]]] + . . .

)
exp(A). (F.12)

The last formula is knows as the Baker-Campbell-Hausdorff (BCH) expansion.

Now let us consider an unitary transformation on annihilation operators:

ãk = exp(θ̂)†ak exp(θ̂) = exp(−θ̂)ak exp(θ̂) (F.13)

where θ̂ is expressed it terms of creation and annihilation operators:

[ai, a
†
j ] = δij , i, j = 1, 2, 3, (F.14)

θ̂ =
∑
ij

θij , a
†
iaj i, j = 1, 2, 3. (F.15)

From the unitarity of this transformation one gets conditions on the θij parameters:

θ̂† =
∑
ij

θ∗ij a
†
jai =

∑
ij

θ∗ji a
†
iaj = − θ̂ = −

∑
ij

θij a
†
iaj ⇒ θ∗ji = − θij . (F.16)
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From the BCH formula (F.8) we get the following unitary matrix expansions

ãk = exp

∑
ij

θij a
†
iaj

 ak exp

−∑
ij

θij a
†
iaj

 =
∑
l

exp (−θ)kl al, (F.17)

ãk = exp

−∑
ij

θij a
†
iaj

 ak exp

∑
ij

θij a
†
iaj

 =
∑
l

exp (θ)kl al, (F.18)

ã†k = exp

∑
ij

θij a
†
iaj

 a†k exp

−∑
ij

θij a
†
iaj

 =
∑
l

a†l exp (θ)lk , (F.19)

ã†k = exp

−∑
ij

θij a
†
iaj

 a†k exp

∑
ij

θij a
†
iaj

 =
∑
l

a†l exp (−θ)lk . (F.20)

Now let us express θ̂ in terms of four-dimensional creation and annihilation operators such that:

[aa, a
†
b] = − gab, a, b = 0, 1, 2, 3, (F.21)

in the form
θ̂ = θaba†aab. (F.22)

From the unitarity of this transformation one gets conditions on the θab parameters:

θ̂† = θ∗aba†baa = θ∗baa†aab = − θ̂ = − θaba†aab ⇒ θ∗ba = − θab. (F.23)

From the BCH formula we get the unitary matrix expansions for four-dimensional ladder operators

ãc = exp(θbaaa†ab)ac exp(−θbaaa†ab) = exp(−θ)dc ad, (F.24)

ãc = exp(−θbaaa†ab)ac exp(θbaaa†ab) = exp(θ)dc ad, (F.25)

ã†c = exp(θbaaa†ab)a†c exp(−θbaaa†ab) = exp(θ)cda
†
d, (F.26)

ã†c = exp(−θbaaa†ab)a†c exp(θbaaa†ab) = exp(−θ)cda
†
d. (F.27)

F.1 Linear polarizations

Any linear polarization for N -oscillator representation can be defined due to a transformation on a1(k, N)
and a2(k, N) annihilation operators which correspond to linear polarizations in x and y direction:

Lθ(N)†a1(k, N)Lθ(N) = cos θ(k)a1(k, N) + sin θ(k)a2(k, N) = aθ(k, N),

Lθ(N)†a2(k, N)Lθ(N) = − sin θ(k)a1(k, N) + cos θ(k)a2(k, N) = aθ′(k, N), (F.28)

where

Lθ(N) = Lθ(1)⊗N , Lθ(1) =
∫
dΓ(k)|k〉〈k| ⊗ exp

(
θ(k)(a†1a2 − a†2a1)

)
. (F.29)

Here aθ(k, N) and aθ′(k, N) hold the same commutation relation as a1(k, N) and a2(k, N)

[aθ(k, N), aθ(k′, N)†] = I(k, N)δΓ(k,k′) (F.30)

and θ′(k) = θ(k) + π
2 . One may write this transformation in matrix form:(

aθ(k, N)
aθ′(k, N)

)
=

(
cos θ(k) sin θ(k)
cos θ′(k) sin θ′(k)

)(
a1(k, N)
a2(k, N)

)
(F.31)

=
(

cos θ(k) sin θ(k)
− sin θ(k) cos θ(k)

)(
a1(k, N)
a2(k, N)

)
. (F.32)
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One may also find an inverse relation

a1(k, N) = cos θ(k)aθ(k, N)− sin θ(k)aθ′(k, N),

a2(k, N) = sin θ(k)aθ(k, N) + cos θ(k)aθ′(k, N). (F.33)

It should be stressed that, in the case of reducible quantization, θ(k) is a function of k and not just a
parameter. This was discussed further in chapter 7, where it turns out that the dependence on momentum
is significant for relativistic background.

F.2 Circular polarizations

Circular polarizations can be defined by a transformation

Cθ(N)†a1(k, N)Cθ(N) =
1√
2

(a1(k, N) + ia2(k, N)) = a−(k, N),

Cθ(N)†a2(k, N)Cθ(N) =
1√
2

(a1(k, N)− ia2(k, N)) = a+(k, N), (F.34)

where

Cθij (N) = Cθij (1)⊗N , Cθij (1) =
∫
dΓ(k)|k〉〈k| ⊗ exp

 ∑
ij=1,2

θij a
†
iaj

. (F.35)

Here θij are coefficients of this transformation:(
θ11 θ12

θ21 θ22

)
=

( √
3π
9 i− π

4 i −
√

3π
9 +

√
3π
9 i√

3π
9 +

√
3π
9 i −

√
3π
9 i− π

4 i

)
, (F.36)

(
a−(k, N)
a+(k, N)

)
=

1√
2

(
1 +i
1 −i

)(
a1(k, N)
a2(k, N)

)
, (F.37)

where a±(k, N) hold the commutation relation

[a±(k, N), a±(k′, N)†] = I(k, N)δΓ(k,k′). (F.38)

The + index stands for right-handed polarization and − for left-handed ones. The relation between circular
polarizations and any linear polarizations is(

a−(k, N)
a+(k, N)

)
=

1√
2

(
eiθ(k) eiθ

′(k)

e−iθ(k) e−iθ
′(k)

)(
aθ(k, N)
aθ′(k, N)

)
=

1√
2

(
eiθ(k) ieiθ(k)

e−iθ(k) −ie−iθ(k)

)(
aθ(k, N)
aθ′(k, N)

)
. (F.39)

Then the correspondences between the ladder operators in circular basis and in linear basis can be written
as

as(k, N) =
1√
2
e−isθ(k) (aθ(k, N)− isaθ′(k, N)) , (F.40)

aθ(k, N) =
1√
2

∑
s=±

as(k, N)eisθ(k). (F.41)
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G Displacement operator calculations

All calculus form this appendix are used for section 4.7. Let us start from N = 1 representation. In this
case the displacement operator is defined as

D(α, 1) = exp
(∫

dΓ(k)
(
αa(k)aa(k, 1)−H.c.

))
(G.1)

Acting with operator (G.1) on ground state we get an coherent state

D(α, 1)|O(1)〉 = |α(1)〉. (G.2)

Coherent states can be expressed by

|α(1)〉 = D(α, 1)|O(1)〉

=
∫
dΓ(k)|k〉〈k| ⊗ exp

(
αa(k)aa −H.c.

)
|O(1)〉

=
∫
dΓ(k)|k〉〈k| ⊗ exp

(
−α1(k)a†1

)
exp

(
1
2
α1(k)α1(k)

)
exp

(
−α2(k)a†2

)
exp

(
1
2
α2(k)α2(k)

)
× exp

(
−α3(k)a†3

)
exp

(
1
2
α3(k)α3(k)

)
exp

(
α0(k)a0

)
exp

(
−1

2
α0(k)α0(k)

)
|O(1)〉

=
∫
dΓ(k)|k〉〈k| exp

(
−1

2

(
|α1(k)|2 + |α2(k)|2 + |α3(k)|2 + |α0(k)|2

))
⊗ exp

(
α1(k)a†1

)
exp

(
α2(k)a†2

)
exp

(
α3(k)a†3

)
exp

(
α0(k)a0

)∫
dΓ(k′)O(k′)|k′, 0, 0, 0, 0〉

=
∫
dΓ(k)O(k) exp

(
−1

2

(
|α1(k)|2 + |α2(k)|2 + |α3(k)|2 + |α0(k)|2

))
∞∑

n1,n2,n3,n0

(α1(k))n1(α2(k))n2(α3(k))n3(α0(k))n0√
n1!n2!n3!n0!

|k, n1, n2, n3, n0〉. (G.3)

For the N representation we can write

D(α,N) = exp

(∫
dΓ(k)

(
αa(k)

1√
N

N∑
n=1

aa(k, 1)(n)
))

exp

(
−
∫
dΓ(k)

(
αa(k)

1√
N

N∑
n=1

(
aa(k, 1)†

)(n)
))

× exp

(
1
2

∫
dΓ(k)αa(k)αa(k)

1
N

N∑
n=1

I(k, 1)(n)

)

=
N∏
n=1

exp
(∫

dΓ(k)
(
αa(k)

1√
N
aa(k, 1)(n)

)) N∏
n=1

exp
(
−
∫
dΓ(k)

(
αa(k)

1√
N

(
aa(k, 1)†

)(n)
))

×
N∏
n=1

exp
(

1
2

∫
dΓ(k)αa(k)αa(k)

1
N
I(k, 1)(n)

)
(G.4)

= exp
(∫

dΓ(k)
(
αa(k)

1√
N
aa(k, 1)

))⊗N
exp

(
−
∫
dΓ(k)

(
αa(k)

1√
N
aa(k, 1)†

))⊗N
× exp

(
1
2

∫
dΓ(k)αa(k)αa(k)

1
N
I(k, 1)

)⊗N
(G.5)

= exp
(∫

dΓ(k)
(
αa(k)

1√
N
aa(k, 1)−H.c.

))⊗N
= D

(
α√
N
, 1
)⊗N

. (G.6)

we obtain a coherent state

D(α,N)|O(N)〉 = |α(N)〉. (G.7)

where

|α(N)〉 =
(

exp
(∫

dΓ(k)
( 1√

N
αa(k)aa(k, 1)−H.c.

))
|O(1)〉

)⊗N
= |α(1)/

√
N〉⊗N . (G.8)
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Using Baker-Campbell-Hausdorff formula, we can rewrite coherent sates in the following useful forms

D(α,N) = exp
(∫

dΓ(k)
(
αa(k)aa(k, N)−H.c.

))
= exp

(∫
dΓ(k)αa(k)aa(k, N)

)
exp

(
−
∫
dΓ(k)αa(k)aa(k, N)†

)
× exp

(
1
2

[∫
dΓ(k)αa(k)aa(k, N),−

∫
dΓ(k′)αb(k′)ab(k′, N)†

])

= exp
(∫

dΓ(k)αa(k)aa(k, N)
)

exp
(
−
∫
dΓ(k)αa(k)aa(k, N)†

)
exp

(
−1

2

∫
dΓ(k)αa(k)αa(k)I(k, N)

)
(G.9)

= exp
(
−
∫
dΓ(k)αa(k)aa(k, N)†

)
exp

(∫
dΓ(k)αa(k)aa(k, N)

)
exp

(
1
2

∫
dΓ(k)αa(k)αa(k)I(k, N)

)
(G.10)

= exp
∫
dΓ(k)

(
α1(k)a1(k, N)† + α2(k)a2(k, N)† + α3(k)a3(k, N)† + α0(k)a0(k, N)

)
× exp

∫
dΓ(k)

(
− α1(k)a1(k, N)− α2(k)a2(k, N)− α3(k)a3(k, N)− α0(k)a0(k, N)†

)
× exp

(
−1

2

∫
dΓ(k)

(
|α1(k)|2 + |α2(k)|2 + |α3(k)|2 + |α0(k)|2

)
I(k, N)

)
, (G.11)

D(α,N)†aa(k, N)D(α,N)

= exp
(∫

dΓ(k)
(
αb(k)ab(k, N)† −H.c.

))
aa(k, N) exp

(∫
dΓ(k)

(
αb(k)ab(k, N)−H.c.

))
= aa(k, N) +

[
aa(k, N),

∫
dΓ(k′)

(
αb(k′)ab(k′, N)−H.c.

)]
= aa(k, N)−

∫
dΓ(k′)

[
aa(k, N), αb(k′)ab(k′, N)†

]
= aa(k, N) + gab α

b(k)I(k, N) = aa(k, N) + αa(k)I(k, N), (G.12)

D(α,N)†aa(k, N)†D(α,N)

= exp
(∫

dΓ(k)
(
αb(k)ab(k, N)† −H.c.

))
aa(k, N)† exp

(∫
dΓ(k)

(
αb(k)ab(k, N)−H.c.

))
= aa(k, N)† +

[
aa(k, N)†,

∫
dΓ(k′)

(
αb(k′)ab(k′, N)−H.c.

)]
= aa(k, N)† +

∫
dΓ(k′)

[
aa(k, N)†, αb(k′)ab(k′, N)

]
= aa(k, N)† + gab αb(k)I(k, N) = aa(k, N)† + αa(k)I(k, N), (G.13)

aa(k, N)|α,N〉
= D(α,N)D(α,N)†aa(k, N)D(α,N)|O(N)〉
= D(α,N) (aa(k, N) + αa(k)I(k, N)) |O(N)〉
= αa(k)I(k, N)|α,N〉, (G.14)
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[aa(k, N),D(α,N)]

=
[
aa(k, N), exp

(∫
dΓ(k)

(
αb(k)ab(k, N)−H.c.

))]
= exp

(∫
dΓ(k)αa(k)aa(k, N)

)
exp

(
−1

2

∫
dΓ(k)αa(k)αa(k)I(k, N)

)
×

[
aa(k, N), exp

(
−
∫
dΓ(k)αa(k)aa(k, N)†

)]
= exp

(∫
dΓ(k)αa(k)aa(k, N)

)
exp

(
−1

2

∫
dΓ(k)αa(k)αa(k)I(k, N)

)
×

∞∑
n=0

1
n!

[
aa(k, N),

(
−
∫
dΓ(k)αb(k)ab(k, N)†

)n]
= exp

(∫
dΓ(k)αa(k)aa(k, N)

)
exp

(
−1

2

∫
dΓ(k)αa(k)αa(k)I(k, N)

)
× αa(k)

∞∑
n=1

1
(n− 1)!

(
−
∫
dΓ(k)αb(k)ab(k, N)†

)n−1

= αa(k)D(α,N), (G.15)

[aa(k, N)†,D(α,N)] = − [aa(k, N),D(−α,N)]† = − (αa(k, N)D(−α,N))†

= −αa(k)D(α,N), (G.16)

D(α,N)D(β,N)

= exp
(∫

dΓ(k)
(
αa(k)aa(k, N)−H.c.

))
exp

(∫
dΓ(k)

(
βb(k)ab(k, N)−H.c.

))
= exp

(∫
dΓ(k)

(
αa(k)aa(k, N) + βb(k)ab(k, N)−H.c.

))
× exp

1
2

[∫
dΓ(k)

(
αa(k)aa(k, N)−H.c.

)
,

∫
dΓ(k)

(
βb(k)ab(k, N)−H.c.

)]
= exp

(∫
dΓ(k)

(
(αa(k) + βa(k))aa(k, N)−H.c.

))
× exp

1
2

(∫
dΓ(k)

(
αa(k)βa(k)−H.c.

)
I(k, N)

)
= D(α+ β,N)× exp

1
2

(∫
dΓ(k)

(
αa(k)βa(k)−H.c.

)
I(k, N)

)
. (G.17)
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H Bell states transformation

Most of the calculations done in this appendix will be used for chapter 7. First let us remind ourselves
that the correspondence between annihilation and creation operators in linear and circular basis may be
written as

as(k, N) =
1√
2
e−isθ(k) (aθ(k, N)− isaθ′(k, N)) ,

aθ(k, N) =
1√
2

∑
s=±

as(k, N)eisθ(k).

For the N = 1 oscillator representation we have the following correspondence between creation operators
in both polarization basis:

as(k, 1)†as′(k′, 1)† =
1
2
ei(sθ(k)+s′θ(k′)) (aθ(k, 1)†aθ(k′, 1)† − ss′aθ′(k, 1)†aθ′(k′, 1)†

)
+

1
2
ei(sθ(k)+s′θ(k′)) (is′aθ(k, 1)†aθ′(k′, 1)† + isaθ′(k, 1)†aθ(k′, 1)†

)
. (H.1)

To describe such correspondence between the two basis in two-photon fields for N -oscillator representation
we will need the following formulas

as(k, N)†as′(k′, N)†

=
1
N

N∑
nm

as(k, 1)†(n)as′(k′, 1)†(m)

=
1
N

N∑
nm

(
1√
2
eisθ(k) (aθ(k, 1)† + isaθ′(k, 1)†

))(n)( 1√
2
eis
′θ(k′) (aθ(k′, 1)† + is′aθ′(k′, 1)†

))(m)

=
1
N

1
2
ei(sθ(k)+s′θ(k′))

N∑
nm

(
aθ(k, 1)†(n) + isaθ′(k, 1)†(n)

)(
aθ(k′, 1)†(m) + is′aθ′(k′, 1)†(m)

)
=

1
2
ei(sθ(k)+s′θ(k′)) (aθ(k, N)†aθ(k′, N)† − ss′aθ′(k, N)†aθ′(k′, N)†

)
+

1
2
ei(sθ(k)+s′θ(k′)) (is′aθ(k, N)†aθ′(k′, N)† + isaθ′(k, N)†aθ(k′, N)†

)
, (H.2)

This formula can be written explicitly for left and right handed polarization creation operators:

a+(k, N)†a+(k′, N)†

=
1
2
ei(θ(k)+θ(k′)) (aθ(k, N)†aθ(k′, N)† − aθ′(k, N)†aθ′(k′, N)†

)
+

1
2
ei(θ(k)+θ(k′)) (iaθ(k, N)†aθ′(k′, N)† + iaθ′(k, N)†aθ(k′, N)†

)
, (H.3)

a−(k, N)†a−(k′, N)†

=
1
2
e−i(θ(k)+θ(k′)) (aθ(k, N)†aθ(k′, N)† − aθ′(k, N)†aθ′(k′, N)†

)
− 1

2
e−i(θ(k)+θ(k′)) (iaθ(k, N)†aθ′(k′, N)† + iaθ′(k, N)†aθ(k′, N)†

)
, (H.4)

a+(k, N)†a−(k′, N)†

=
1
2
ei(θ(k)−θ(k′)) (aθ(k, N)†aθ(k′, N)† + aθ′(k, N)†aθ′(k′, N)†

)
− 1

2
ei(θ(k)−θ(k′)) (iaθ(k, N)†aθ′(k′, N)† − iaθ′(k, N)†aθ(k′, N)†

)
, (H.5)

a−(k, N)†a+(k′, N)†

=
1
2
e−i(θ(k)−θ(k′)) (aθ(k, N)†aθ(k′, N)† + aθ′(k, N)†aθ′(k′, N)†

)
+

1
2
e−i(θ(k)−θ(k′)) (iaθ(k, N)†aθ′(k′, N)† − iaθ′(k, N)†aθ(k′, N)†

)
. (H.6)
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We will also need an inverse correspondence, i.e.

aθ(k, N)†aθ′(k′, N)† =
1
2

∑
ss′=±

e−is
′π/2as(k, N)†as′(k′, N)†e−isθ(k)e−is

′θ(k′), (H.7)

aθ(k, N)†aθ(k′, N)† =
1
2

∑
ss′=±

as(k, N)†as′(k′, N)†e−isθ(k)e−is
′θ(k′), (H.8)

aθ′(k, N)†aθ′(k′, N)† =
1
2

∑
ss′=±

e−i(s+s
′)π/2as(k, N)†as′(k′, N)†e−isθ(k)e−is

′θ(k′). (H.9)

The following calculations show that all Bell states transform under Lorentz transformation (385) as
scalars independent on the basis they are considered in. In the calculus one has to take into account the
transformation rule for the polarization angle and its shift due to Wigner phase, so that

U(Λ, 0, N)aθ(k, N)†aθ′ (k
′, N)†U(Λ, 0, N)†

=
1
2
U(Λ, 0, N)

∑
ss′=±

e−is
′π/2as(k, N)†as′ (k

′, N)†e−isθ(k)e−is
′θ(k′)U(Λ, 0, N)†

=
1
2

∑
ss′=±

e−is
′π/2e−2isΘ(Λ,Λk)e−2is′Θ(Λ,Λk′)as(Λk, N)†as′ (Λk′, N)†e−isθ(k)e−is

′θ(k′)

=
1
2

∑
ss′=±

e−is
′π/2e−2isΘ(Λ,Λk)e−2is′Θ(Λ,Λk′)as(Λk, N)†as′ (Λk′, N)†e−is(θ(Λk)−2Θ(Λ,Λk))e−is

′(θ(Λk′)−2Θ(Λ,Λk′))

=
1
2

∑
ss′=±

e−is
′π/2as(Λk, N)†as′ (Λk′, N)†e−isθ(Λk)e−is

′θ(Λk′)

= aθ(Λk, N)†aθ′ (Λk′, N)†, (H.10)

U(Λ, 0, N)aθ(k, N)†aθ(k′, N)†U(Λ, 0, N)†

=
1
2
U(Λ, 0, N)

∑
ss′=±

as(k, N)†as′ (k
′, N)†e−isθ(k)e−is

′θ(k′)U(Λ, 0, N)†

=
1
2

∑
ss′=±

e−2isΘ(Λ,Λk)e−2is′Θ(Λ,Λk′)as(Λk, N)†as′ (Λk′, N)†e−isθ(k)e−is
′θ(k′)

=
1
2

∑
ss′=±

e−2isΘ(Λ,Λk)e−2is′Θ(Λ,Λk′)as(Λk, N)†as′ (Λk′, N)†e−is(θ(Λk)−2Θ(Λ,Λk))e−is
′(θ(Λk′)−2Θ(Λ,Λk′))

=
1
2

∑
ss′=±

as(Λk, N)†as′ (Λk′, N)†e−is(θ(Λk))e−is
′(θ(Λk′))

= aθ(Λk, N)†aθ(Λk′, N)†, (H.11)

U(Λ, 0, N)aθ′ (k, N)†aθ′ (k
′, N)†U(Λ, 0, N)†

=
1
2
U(Λ, 0, N)

∑
ss′=±

e−i(s+s
′)π/2as(k, N)†as′ (k

′, N)†e−isθ(k)e−is
′θ(k′)U(Λ, 0, N)†

=
1
2

∑
ss′=±

e−i(s+s
′)π/2e−2isΘ(Λ,Λk)e−2is′Θ(Λ,Λk′)as(Λk, N)†as′ (Λk′, N)†e−isθ(k)e−is

′θ(k′)

=
1
2

∑
ss′=±

e−i(s+s
′)π/2e−2isΘ(Λ,Λk)e−2is′Θ(Λ,Λk′)as(Λk, N)†as′ (Λk′, N)†e−is(θ(Λk)−2Θ(Λ,Λk))e−is

′(θ(Λk′)−2Θ(Λ,Λk′))

=
1
2

∑
ss′=±

e−i(s+s
′)π/2as(Λk, N)†as′ (Λk′, N)†e−is(θ(Λk))e−is

′(θ(Λk′))

= aθ′ (Λk, N)†aθ′ (Λk′, N)†. (H.12)
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The following formula is calculated step by step for (568) in section 9.1

U(Λ, 0, N)†Yα(l, N)U(Λ, 0, N)

= U(Λ, 0, N)†
N∑
n=1

∑
s=±

(
e2isα|l〉〈l| ⊗ a†−sas

)(n)
U(Λ, 0, N)

=
N∑
n=1

∑
s=±

(
U(Λ, 0, 1)†e2isα|l〉〈l| ⊗ a†−sasU(Λ, 0, 1)

)(n)

=
N∑
n=1

∑
s=±

((∫
dΓ(k)

∫
dΓ(k′)|Λ−1k〉〈k|l〉〈l|k′〉〈Λ−1k′|

)
⊗
(
U(Λ,k)†e2isαa†−sasU(Λ,k′)

))(n)

=
N∑
n=1

∑
s=±

(
|Λ−1l〉〈Λ−1l| ⊗

(
U(Λ, l)†e2isαa†−sasU(Λ, l)

))(n)

=
N∑
n=1

∑
s=±

(
e2isαe−4isΘ(Λ,l)|Λ−1l〉〈Λ−1l| ⊗ a†−sas

)(n)
= Yα−2Θ(Λ,Λl)(Λ

−1l, N). (H.13)
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I Explicit calculations of commutation relations

This formula is derived for (80) in section 2.4

[aα(k, N), aα′(k′, N)†] =
1
N

N∑
m,n=1

[aα(k, 1)(m), aα′(k′, 1)†(n)]

=
1
N

N∑
m,n=1

[aα(k, 1), aα′(k′, 1)†](n)δm,n

=
1
N

N∑
m,n=1

(δα,α′δΓ(k,k′)I(k, 1))(n)
δm,n

= δα,α′δΓ(k,k′)
1
N

N∑
n

I(k, 1)(n)

= δα,α′δΓ(k,k′)I(k, N), (I.1)

[
as(k, N)as′(k′, N), ar(l, N)†ar′(l′, N)†

]
= as(k, N)ar′(l′, N)†I(l, N)δr,s′δΓ(l,k′) + as′(k′, N)ar′(l′, N)†I(l, N)δs,rδΓ(k, l)

+ ar(l, N)†as(k, N)I(l′, N)δs′,r′δΓ(k′, l′) + ar(l, N)†as′(k′, N)I(l′, N)δr′,sδΓ(l′,k). (I.2)

The following commutation relations are calculated using (I.2)

[Ψ(N),Ψ(N)†]

=
∑
rr′=±

∑
s,s′=±

[∫
dΓ(k)dΓ(k′) ψss′(k,k′)as(k, N)†as′(k′, N)†,

∫
dΓ(l)dΓ(l′) ψ̄rr′(l, l′)ar(l, N)ar′(l′, N)

]
=

∑
rr′=±

∑
s,s′=±

∫
dΓ(k)dΓ(k′)dΓ(l)dΓ(l′) ψss′(k,k′)ψ̄rr′(l, l′) [as(k, N)†as′(k′, N)†, ar(l, N)ar′(l′, N)]

= −
∑
rr′=±

∑
s,s′=±

∫
dΓ(k)dΓ(k′)dΓ(l)dΓ(l′) ψss′(k,k′)ψ̄rr′(l, l′)

×
(
ar(l, N)as′(k′, N)†I(k, N)δs,r′δΓ(k, l′) + ar′(l′, N)as′(k′, N)†I(k, N)δs,rδΓ(k, l)

+ as(k, N)†ar(l, N)I(k′, N)δs′,r′δΓ(k′, l′) + as(k, N)†ar′(l′, N)I(k′, N)δs′,rδΓ(k′, l)
)
, (I.3)

[Ψ1(N),Ψ1(N)†]

=
∑
r=±

∑
s=±

[∫
dΓ(k)dΓ(k′) ψs−s(k,k′)as(k, N)†a−s(k′, N)†,

∫
dΓ(l)dΓ(l′) ψ̄r−r(l, l′)ar(l, N)a−r(l′, N)

]
= −

∑
r=±

∑
s=±

∫
dΓ(k)dΓ(k′)dΓ(l)dΓ(l′) ψs−s(k,k′)ψ̄r−r(l, l′)

×
(
ar(l, N)a−s(k′, N)†I(k, N)δs,−rδΓ(k, l′) + a−r(l′, N)a−s(k′, N)†I(k, N)δs,rδΓ(k, l)

+ as(k, N)†ar(l, N)I(k′, N)δs,rδΓ(k′, l′) + as(k, N)†a−r(l′, N)I(k′, N)δ−s,rδΓ(k′, l)
)
, (I.4)

[Ψ2(N),Ψ2(N)†]

=
∑
r=±

∑
s=±

∫
dΓ(k)dΓ(k′)dΓ(l)dΓ(l′) ψss(k,k′)ψ̄rr(l, l′)

[
as(k, N)†as(k′, N)†, ar(l, N)ar(l′, N)

]
= −

∑
r=±

∑
s=±

∫
dΓ(k)dΓ(k′)dΓ(l)dΓ(l′) ψss(k,k′)ψ̄rr(l, l′)

×
(
ar(l, N)as(k′, N)†I(k, N)δs,rδΓ(k, l′) + ar(l′, N)as(k′, N)†I(k, N)δs,rδΓ(k, l)

+ as(k, N)†ar(l, N)I(k′, N)δs,rδΓ(k′, l′) + as(k, N)†ar(l′, N)I(k′, N)δs,rδΓ(k′, l)
)
. (I.5)
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The following two formulas are calculated explicitly for (541) and (542) in section 8.2

[Yα(l, N),Ψ(N)]

=
N∑
n=1

∑
r,s,s′=±

[(
e2irα|l〉〈l| ⊗ a†−rar

)(n)
,

∫
dΓ(k)dΓ(k′) ψss′(k,k′)as(k, N)†as′(k′, N)†

]

=
1
N

N∑
n,m,p=1

∑
r,s,s′=±

∫
dΓ(k)dΓ(k′) e2irαψss′(k,k′)

[
(|l〉〈l| ⊗ a†−rar)(n), as(k, 1)†(m)as′(k′, 1)†(p)

]

=
1
N

N∑
n,m,p=1

∑
r,s,s′=±

e2irα
∫
dΓ(k)dΓ(k′) ψss′(k,k′)

×
(

(|l〉〈k| ⊗ a†−r)(n)as′(k′, 1)†(p)δΓ(l,k)δr,sδn,m(|l〉〈k′| ⊗ a†−r)(n)as(k, 1)†(m)δΓ(l,k′)δr,s′δn,p
)

= 2
∑
s,s′=±

e2isα
∫
dΓ(k) ψss′(l,k)a−s(l, N)†as′(k, N)†, (I.6)

[Yα(l, N),Ψ(N)†]

=
N∑
n=1

∑
r=±

∑
s,s′=±

[(
e2irα|l〉〈l| ⊗ a†−rar

)(n)
,

∫
dΓ(k)dΓ(k′) ψ̄ss′(k,k′)as(k, N)as′(k′, N)

]

=
1
N

N∑
n,m,p=1

∑
r=±

∑
s,s′=±

∫
dΓ(k)dΓ(k′) e2irαψ̄ss′(k,k′)

[
(|l〉〈l| ⊗ a†−rar)(n), as(k, 1)(m)as′(k′, 1)(p)

]

= − 1
N

N∑
n,m,p=1

∑
r=±

∑
s,s′=±

e2irα
∫
dΓ(k)dΓ(k′) ψ̄ss′(k,k′)

×
(

(|l〉〈k′| ⊗ ar(l, 1))(n)as(k, 1)(m)δΓ(l,k′)δ−r,s′δn,p(|l〉〈k| ⊗ ar(l, 1))(n)as′(k′, 1)(p)δΓ(k, l)δ−r,sδn,m
)

= −2
∑
s,s′=±

e−2isα
∫
dΓ(k) ψ̄ss′(l,k)a−s(l, N)as′(k, N). (I.7)

The following two formulas are calculated explicitly using (H.13), (I.6) and (I.7) for (569) and (570) in
section 9.1

[U(Λ, 0, N)†Yα(l, N)U(Λ, 0, N),Ψ(N)] = [Yα−2Θ(Λ,Λl)(Λ
−1l, N),Ψ(N)]

= 2
∑
s,s′=±

e2isαe−4isΘ(Λ,l)
∫
dΓ(k) ψss′(Λ−1l,k)a−s(Λ−1l, N)†as′(k, N)†, (I.8)

[U(Λ, 0, N)†Yα(l, N)U(Λ, 0, N),Ψ(N)†] = [Yα−2Θ(Λ,Λl)(Λ
−1l, N),Ψ(N)†]

= −2
∑
s,s′=±

e−2isαe4isΘ(Λ,l)
∫
dΓ(k) ψ̄ss′(Λ−1l,k)a−s(Λ−1l, N)as′(k, N). (I.9)
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J Explicit calculations of scalar products

〈O(N)|I(k, N)I(k′, N)|O(N)〉

=
1
N2

N∑
m,n=1

〈O(1)|⊗NI(k, 1)(m)I(k′, 1)(n)|O(1)〉⊗N

=
1
N2

N∑
m=n=1

〈O(1)|⊗NI(k, 1)(m)I(k′, 1)(n)|O(1)〉⊗N

+
1
N2

N∑
m 6=n=1

〈O(1)|⊗NI(k, 1)(m)I(k′, 1)(n)|O(1)〉⊗N

=
1
N
〈O(1)|I(k, 1)I(k′, 1)|O(1)〉+

N − 1
N
〈O(1)|I(k, 1)|O(1)〉〈O(1)|I(k′, 1)|O(1)〉

=
1
N

(
Ō(k)O(k′)δΓ(k,k′) + (N − 1)Z(k)Z(k′)

)
. (J.1)

The following formula is calculated explicitly, using commutation relation (I.3) and previous formula (J.1)
for (450) in section 6.1

〈O(N)|Ψ(N)†Ψ(N)|O(N)〉
= −〈O(N)|[Ψ(N),Ψ(N)†]|O(N)〉

= 〈O(N)|
∑
rr′=±

∑
s,s′=±

∫
dΓ(k)dΓ(k′)dΓ(l)dΓ(l′) ψss′(k,k′)ψ̄rr′(l, l′)

×
(
ar(l, N)as′(k′, N)†I(k, N)δs,r′δΓ(k, l′) + ar′(l′, N)as′(k′, N)†I(k, N)δs,rδΓ(k, l)

)
|O(N)〉

= 〈O(N)|
∑
rr′=±

∑
s,s′=±

∫
dΓ(k)dΓ(k′)dΓ(l)dΓ(l′) ψss′(k,k′)ψ̄rr′(l, l′)

× (δs′,rδΓ(k′, l)δs,r′δΓ(k, l′)I(k, N)I(k′, N) + δs′,r′δΓ(k′, l′)δs,rδΓ(k, l)I(k, N)I(k′, N)) |O(N)〉

= 〈O(N)|
∑
rr′=±

∑
s,s′=±

∫
dΓ(k)dΓ(k′)dΓ(l)dΓ(l′) δs′,rδΓ(k′, l)δs,r′δΓ(k, l′)I(k, N)I(k′, N)ψss′(k,k′)ψ̄rr′(l, l′)

+
∑
rr′=±

∑
s,s′=±

∫
dΓ(k)dΓ(k′)dΓ(l)dΓ(l′) δs′,r′δΓ(k′, l′)δs,rδΓ(k, l)I(k, N)I(k′, N)ψss′(k,k′)ψ̄rr′(l, l′)|O(N)〉

= 〈O(N)|
∑
s,s′=±

∫
dΓ(k)dΓ(k′)ψss′(k,k′)ψ̄s′s(k′,k)I(k, N)I(k′, N)

+
∑
s,s′=±

∫
dΓ(k)dΓ(k′)ψss′(k,k′)ψ̄ss′(k,k′)I(k, N)I(k′, N)|O(N)〉

= 2〈O(N)|
∑
s,s′=±

∫
dΓ(k)dΓ(k′)I(k, N)I(k′, N)|ψss′(k,k′)|2|O(N)〉

= 2
∑
s,s′=±

∫
dΓ(k)dΓ(k′)|ψss′(k,k′)|2〈O(N)|I(k, N)I(k′, N)|O(N)〉

=
2
N

∑
s,s′=±

∫
dΓ(k)dΓ(k′)|ψss′(k,k′)|2

(
Ō(k)O(k′)δΓ(k,k′) + (N − 1)Z(k)Z(k′)

)
=

2
N

∑
s,s′=±

∫
dΓ(k)|ψss′(k,k)|2Z(k) +

2(N − 1)
N

∑
s,s′=±

∫
dΓ(k)dΓ(k′)|ψss′(k,k′)|2Z(k)Z(k′). (J.2)
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The following formula is derived explicitly using (I.2) and (J.1) for (543) in section 8.1:

〈O(N)|Ψ(N)†Yβ(l, N)Yα(l′, N)Ψ(N)|O(N)〉
= 〈O(N)|[Ψ(N)†, Yβ(l, N)][Yα(l′, N),Ψ(N)]|O(N)〉

= 4 〈O(N)|

 ∑
s,s′=±

e−2isβ
∫
dΓ(k) ψ̄ss′(l,k)a−s(l, N)as′(k, N)


×

 ∑
r,r′=±

e2irα
∫
dΓ(k′) ψrr′(l′,k′)a−r(l′, N)†ar′(k′, N)†

 |O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)ψ̄ss′(l,k)ψrr′(l′,k′)

× 〈O(N)|a−s(l, N)as′(k, N)a−r(l′, N)†ar′(k′, N)†|O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)ψ̄ss′(l,k)ψrr′(l′,k′)

× 〈O(N)|[a−s(l, N)as′(k, N), a−r(l′, N)†ar′(k′, N)†]|O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)ψ̄ss′(l,k)ψrr′(l′,k′)

× 〈O(N)|
(
a−s(l, N)ar′(k′, N)†I(l′, N)δ−r,s′δΓ(l′,k) + as′(k, N)ar′(k′, N)†I(l′, N)δ−s,−rδΓ(l, l′)

)
|O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)ψ̄ss′(l,k)ψrr′(l′,k′)

× 〈O(N)| (I(l, N)I(l′, N)δΓ(l,k′)δΓ(l′,k)δ−s,r′δ−r,s′ + I(k′, N)I(l′, N)δΓ(k,k′)δΓ(l, l′)δr′,s′δ−s,−r) |O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)ψ̄ss′(l,k)ψrr′(l′,k′)δΓ(l,k′)δΓ(l′,k)δ−s,r′δ−r,s′

× 〈O(N)|I(l, N)I(l′, N)|O(N)〉

+ 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)ψ̄ss′(l,k)ψrr′(l′,k′)δΓ(k,k′)δΓ(l, l′)δr′,s′δ−s,−r

× 〈O(N)|I(k′, N)I(l′, N)|O(N)〉
= 4

∑
ss′=±

e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s′−s(l′, l)〈O(N)|I(l, N)I(l′, N)|O(N)〉

+ 4
∑
ss′=±

∫
dΓ(k) e−2i(sβ−sα)ψ̄ss′(l,k)ψss′(l′,k)δΓ(l, l′)〈O(N)|I(k, N)I(l, N)|O(N)〉. (J.3)
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This formula is derived explicitly using (I.8), (I.9) and (J.1) for (571) in section 9.1:

〈O(N)|Ψ(N)†U(Λ, 0, N)†Yβ(l, N)Yα(l′, N)U(Λ, 0, N)Ψ(N)|O(N)〉
= 〈O(N)|[Ψ(N)†, U(Λ, 0, N)†Yβ(l, N)U(Λ, 0, N)][U(Λ, 0, N)†Yα(l′, N)U(Λ, 0, N),Ψ(N)]|O(N)〉

= 4 〈O(N)|

 ∑
s,s′=±

e−2isβe4isΘ(Λ,l)
∫
dΓ(k) ψ̄ss′(Λ−1l,k)a−s(Λ−1l, N)as′(k, N)


×

 ∑
r,r′=±

e2irαe−4irΘ(Λ,l′)
∫
dΓ(k′) ψrr′(Λ−1l′,k′)a−r(Λ−1l′, N)†ar′(k′, N)†

 |O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)e4i(sΘ(Λ,l)−rΘ(Λ,l′))ψ̄ss′(Λ−1l,k)ψrr′(Λ−1l′,k′)

× 〈O(N)|a−s(Λ−1l, N)as′(k, N)a−r(Λ−1l′, N)†ar′(k′, N)†|O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)e4i(sΘ(Λ,l)−rΘ(Λ,l′))ψ̄ss′(Λ−1l,k)ψrr′(Λ−1l′,k′)

× 〈O(N)|[a−s(Λ−1l, N)as′(k, N), a−r(Λ−1l′, N)†ar′(k′, N)†]|O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)e4i(sΘ(Λ,l)−rΘ(Λ,l′))ψ̄ss′(Λ−1l,k)ψrr′(Λ−1l′,k′)

× 〈O(N)|(a−s(Λ−1l, N)ar′(k′, N)†I(Λ−1l′, N)δ−r,s′δΓ(Λ−1l′,k)

+ as′(k, N)ar′(k′, N)†I(Λ−1l′, N)δ−s,−rδΓ(Λ−1l,Λ−1l′))|O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)e4i(sΘ(Λ,l)−rΘ(Λ,l′))ψ̄ss′(Λ−1l,k)ψrr′(Λ−1l′,k′)

× 〈O(N)|(I(Λ−1l, N)I(Λ−1l′, N)δΓ(Λ−1l,k′)δΓ(Λ−1l′,k)δ−s,r′δ−r,s′

+ I(k′, N)I(Λ−1l′, N)δΓ(k,k′)δΓ(Λ−1l,Λ−1l′)δr′,s′δ−s,−r)|O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)e4i(sΘ(Λ,l)−rΘ(Λ,l′))ψ̄ss′(Λ−1l,k)ψrr′(Λ−1l′,k′)

× 〈O(N)|I(Λ−1l, N)I(Λ−1l′, N)|O(N)〉δΓ(Λ−1l,k′)δΓ(Λ−1l′,k)δ−s,r′δ−r,s′

+ 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)e4i(sΘ(Λ,l)−rΘ(Λ,l′))ψ̄ss′(Λ−1l,k)ψrr′(Λ−1l′,k′)

× 〈O(N)|I(k′, N)I(Λ−1l′, N)|O(N)〉δΓ(k,k′)δΓ(Λ−1l,Λ−1l′)δr′,s′δ−s,−r

= 4
∑
ss′=±

e−2i(sβ+s′α)e4i(sΘ(Λ,l)+s′Θ(Λ,l′))ψ̄ss′(Λ−1l,Λ−1l′)ψ−s′−s(Λ−1l′,Λ−1l)

× 〈O(N)|I(Λ−1l, N)I(Λ−1l′, N)|O(N)〉

+ 4
∑
ss′=±

∫
dΓ(k) e−2i(sβ−sα)e4i(sΘ(Λ,l)−sΘ(Λ,l′))ψ̄ss′(Λ−1l,k)ψss′(Λ−1l′,k)δΓ(Λ−1l,Λ−1l′)

× 〈O(N)|I(k, N)I(Λ−1l, N)|O(N)〉. (J.4)
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This formula is derived explicitly using (I.8), (I.9) and (J.1) for (589) in section 9.4:

〈O(N)|Ψ(N)†Yβ(l, N)U(Λ, 0, N)†Yα(l′, N)U(Λ, 0, N)Ψ(N)|O(N)〉
= 〈O(N)|[Ψ(N)†, Yβ(l, N)][U(Λ, 0, N)†Yα(l′, N)U(Λ, 0, N),Ψ(N)]|O(N)〉

= 4 〈O(N)|

 ∑
s,s′=±

e−2isβ
∫
dΓ(k) ψ̄ss′(l,k)a−s(l, N)as′(k, N)


×

 ∑
r,r′=±

e2irαe−4irΘ(Λ,l′)
∫
dΓ(k′) ψrr′(Λ−1l′,k′)a−r(Λ−1l′, N)†ar′(k′, N)†

 |O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)e−4irΘ(Λ,l′)ψ̄ss′(l,k)ψrr′(Λ−1l′,k′)

× 〈O(N)|a−s(l, N)as′(k, N)a−r(Λ−1l′, N)†ar′(k′, N)†|O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)e−4irΘ(Λ,l′)ψ̄ss′(l,k)ψrr′(Λ−1l′,k′)

× 〈O(N)|[a−s(l, N)as′(k, N), a−r(Λ−1l′, N)†ar′(k′, N)†]|O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)e−4irΘ(Λ,l′)ψ̄ss′(l,k)ψrr′(Λ−1l′,k′)

× 〈O(N)|
(
a−s(l, N)ar′(k′, N)†I(Λ−1l′, N)δ−r,s′δΓ(Λ−1l′,k)

+ as′(k, N)ar′(k′, N)†I(Λ−1l′, N)δ−s,−rδΓ(l,Λ−1l′)
)
|O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)e−4irΘ(Λ,l′)ψ̄ss′(l,k)ψrr′(Λ−1l′,k′)

× 〈O(N)|
(
I(l, N)I(Λ−1l′, N)δΓ(l,k′)δΓ(l′,k)δ−s,r′δ−r,s′

+ I(k′, N)I(Λ−1l′, N)δΓ(k,k′)δΓ(l,Λ−1l′)δr′,s′δ−s,−r
)
|O(N)〉

= 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)e−4irΘ(Λ,l′)ψ̄ss′(l,k)ψrr′(Λ−1l′,k′)

× 〈O(N)|I(l, N)I(Λ−1l′, N)|O(N)〉δΓ(l,k′)δΓ(Λ−1l′,k)δ−s,r′δ−r,s′ |O(N)〉

+ 4
∑

ss′rr′=±

∫
dΓ(k)dΓ(k′) e−2i(sβ−rα)e−4irΘ(Λ,l′)ψ̄ss′(l,k)ψrr′(Λ−1l′,k′)

× 〈O(N)|I(k′, N)I(Λ−1l′, N)|O(N)〉δΓ(k,k′)δΓ(l,Λ−1l′)δr′,s′δ−s,−r|O(N)〉

= 4
∑
ss′=±

e−2i(sβ+s′α)e4is′Θ(Λ,l′)ψ̄ss′(l,Λ−1l′)ψ−s′−s(Λ−1l′, l)〈O(N)|I(l, N)I(Λ−1l′, N)|O(N)〉

+ 4
∑
ss′=±

∫
dΓ(k) e−2i(sβ−sα)e4isΘ(Λ,l′)ψ̄ss′(l,k)ψss′(Λ−1l′,k)δΓ(l,Λ−1l′)〈O(N)|I(k, N)I(l, N)|O(N)〉.

(J.5)
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K Calculations for the EPR average

The following calculations are done to show formula (545) in section 8.2:∑
ss′=±

e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s−s′(l, l′)

=
∑
ss′=±

e2i(sβ+s′α)ψ̄−s−s′(l, l′)ψss′(l, l′)

=
∑
ss′=±

e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s−s′(l, l′)

= <

( ∑
ss′=±

e−2i(sβ+s′α)ψ̄ss′(l, l′)ψ−s−s′(l, l′)

)
=

∑
ss′=±

(
<e−2i(sβ+s′α)<

(
ψ̄ss′(l, l′)ψ−s−s′(l, l′)

)
−=e−2i(sβ+s′α)=

(
ψ̄ss′(l, l′)ψ−s−s′(l, l′)

))
=

∑
ss′=±

(
cos (2(sβ + s′α))<

(
ψ̄ss′(l, l′)ψ−s−s′(l, l′)

)
+ sin (2(sβ + s′α))=

(
ψ̄ss′(l, l′)ψ−s−s′(l, l′)

))
=

∑
s=±

(
cos (2s(β + α))<

(
ψ̄ss(l, l′)ψ−s−s(l, l′)

)
+ sin (2s(β + α))=

(
ψ̄ss(l, l′)ψ−s−s(l, l′)

))
+

∑
s=±

(
cos (2s(β − α))<

(
ψ̄s,−s(l, l′)ψ−s,s(l, l′)

)
+ sin (2s(β − α))=

(
ψ̄s,−s(l, l′)ψ−s,s(l, l′)

))
= cos 2(β + α)

(
<
(
ψ̄++(l, l′)ψ−−(l, l′)

)
+ <

(
ψ̄−−(l, l′)ψ++(l, l′)

))
+ sin 2(β + α)

(
=
(
ψ̄++(l, l′)ψ−−(l, l′)

)
−=

(
ψ̄−−(l, l′)ψ++(l, l′)

))
+ cos 2(β − α)

(
<
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
+ <

(
ψ̄−+(l, l′)ψ+−(l, l′)

))
+ sin 2(β − α)

(
=
(
ψ̄+−(l, l′)ψ−+(l, l′)

)
−=

(
ψ̄−+(l, l′)ψ+−(l, l′)

))
= 2 cos 2(β + α)<

(
ψ̄++(l, l′)ψ−−(l, l′)

)
+ 2 sin 2(β + α)=

(
ψ̄++(l, l′)ψ−−(l, l′)

)
+ 2 cos 2(β − α)<

(
ψ̄+−(l, l′)ψ−+(l, l′)

)
+ 2 sin 2(β − α)=

(
ψ̄+−(l, l′)ψ−+(l, l′)

)
. (K.1)
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