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Abstract

In this thesis we theoretically investigate selected problems concerning correlation struc-

tures in Quantum Information Theory and Quantum to Classical transition. In particular, re-

garding the former we would like to answer the question: what kind of quantum correlations is

responsible for quantum advantage in Remote State Preparation protocol? This is an important

question that has recently received a considerable amount of attention. Here we prove that, in

the most general setting, separable states cannot exceed the efficiency of entangled states in the

protocol. We show also that the previous statement is not true in cases, in which there are some

additional restrictions imposed on the protocol.

The second aim concerns verification of the hypothesis that Spectrum Broadcast Structures

are formed in previously unstudied physical models and, in case of it’s confirmation, char-

acterization of this process. More precisely we focus on cases, in which the environment is

composed of harmonic oscillators, especially on Quantum Brownian Motion model. We study

the model in the recoilless limit and show that there is a regime of parameters, in which Spec-

trum Broadcast Structures are formed. We analyze the process by providing it’s timescales

and comment on novel dynamical features of the Spectrum Broadcast Structures formed in the

model.
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Chapter 1

Introduction

1.1 Introduction and Motivations

Investigation of a composite system gives a variety of opportunities, for example one can study

the mutual relations between its parts. The possible number of such relations – correlations –

increases with number of subsystems constituting a system. Taking into account the size of

the universe it is reasonable to expect that correlations are ubiquitous in nature and indeed

this is the case. However, as with other phenomena, the fact of being widespread does not

automatically imply that correlations are relevant from physical point of view. Therefore, to

fully understand their importance in physics, it is necessary to study situations, in which they

may play a role. As a matter of fact, many investigations along this lines have been preformed

proving that the presence of correlations in the surrounding us world is not a mere coincidence.

This realization is reflected already at the level of names of subfields such as "strongly corre-

lated systems" or tools such as "correlation function" but it has also much deeper consequences.

However, as the universe is such a complex system, it is no surprise that our comprehension of

the role of correlations is far from being complete.

The ongoing studies of correlations in physics are important not only form conceptual but

also from practical point of view. One of the best examples of the latter statement is Quantum

Information Theory, in which one investigates how the non-classical correlations predicted by

Quantum Theory influence the way in which information can be processed. It turned out that

many tasks impossible to achieve using classical systems can be preformed with the help of

quantum correlations and simultaneously that in the quantum setting there are fundamental

restrictions, which do not affect directly the classical domain. Although much research has

been carried out in this field, there are still interesting open problems to work on. Besides, one

should also appreciate that some techniques developed in the context of information processing

with quantum systems start to enter other fields like Condensed Matter Theory.

The findings of Quantum Information Theory show also that there is no clear distinction

between practical and conceptual importance: although developed for practical purposes they
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stress yet from another perspective the fundamental difference between the classical and quan-

tum domain. This discrepancy has been realized since early days of Quantum Theory, was

(and still is) a source of prejudice against it and lead to famous quotes, debates [1] and research

works [2, 3, 4]. Although some time has passed since then, the relation between Quantum and

Classical physics is still not fully understood. On the one hand, to the best of our knowledge,

the quantum physics provides the most accurate description of nature that has been verified in

series of experiments, with no contradiction found. On the other, the reason why this theory

challenges our understanding of physics in such a significant way is quite apparent: the phe-

nomena predicted by Quantum Theory cannot be directly seen outside the quantum domain,

especially we do not encounter them in our everyday experience. As the experiments testing

validity of the theory slowly enter the regimes of everyday (macroscopic) scales, there are no

obvious reasons to exclude the possibility that Quantum Theory is the universal theory that

can be applied to the whole universe. However, in such a case one needs to clarify the mech-

anism (or mechanisms) standing behind emergence of the familiar classical behavior out of

the quantum universe. This problem, known also as Quantum to Classical transition has been

studied for decades [5, 6, 7, 8, 9, 10, 11, 12, 13] and continues to be the subject of discussions

not only among physicists but also philosophers of science [14]. It is commonly agreed that

a full description of the problem should explain at least three main issues: 1) the lack of non-

classical states of single and many body macroscopic systems – the features such as quantum

coherences or quantum correlations are absent at the macroscopic level; 2) the redundancy of

information about the states of classical systems – in most cases it can be found in many places

whereas from "no-cloning" theorem we know that the quantum information cannot be copied

[15]; 3) the measurement problem [16] – disappearance of randomness and disturbance asso-

ciated with quantum measurements in the classical setting. None of the existing approaches

aiming at explaining the Quantum to Classical transition has been able to satisfactory address

all the points mentioned above. However, most of them underline the role of correlations in this

process. It is apparent especially in theories of Quantum Darwinism [11] and Spectrum Broad-

cast Structures [13], which originate from information-theoretic considerations in the spirit of

Quantum Information Theory.

In this thesis we theoretically investigate selected problems concerning correlation struc-

tures in Quantum Information Theory and Quantum to Classical transition. In particular, re-

garding the former we would like to answer the question: what kind of quantum correlations

is responsible for quantum advantage in Remote State Preparation protocol? This is an impor-

tant question that has recently received a considerable amount of attention [17]. The second

aim concerns verification of the hypothesis that recently found Spectrum Broadcast Structures

[13] are formed in previously unstudied physical models and, in case of it’s confirmation, char-

acterization of this process. More precisely we focus on cases, in which the environment is
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composed of harmonic oscillators, especially on Quantum Brownian Motion model.

1.2 Structure of the thesis and summary of the results

In Chapter 2 we recall the basin notions from Quantum Theory and Quantum Information

Theory that are relevant from our perspective. In this Chapter we discuss the correlation struc-

tures in Quantum Theory and provide a short introduction to the role of correlations in quan-

tum information protocols focusing on Remote State Preparation protocol and the problem of

Quantum to Classical transition by summarizing Decoherence theory, Quantum Darwinism

and approach based on Spectrum Broadcast Structures.

In Chapter 3 we investigate in detail the relation between different kinds of quantum corre-

lations and the efficiency of Remote State Preparation protocol. This issue has been considered

recently in a work [17] and received a lot of attention since it has been argued there that it is

not the strongest form of quantum correlations - quantum entanglement but a weaker form of

separable quantum correlations that is responsible for enabling this task. We start by introduc-

ing the most general settings for the considered protocol and compare them to those used in

the mentioned work. Subsequently, we stress the importance of choosing the proper way of

measuring an accuracy of the protocol by showing that the wrong choice made in [17] leads to

inconsistent results. Adopting the right tool we revisit the problem and prove that, contrary

to claims made in [17], in the most general setting the weaker form of quantum correlations

cannot provide better efficiency in the protocol than the stronger one. Furthermore, we discuss

two variants of the protocol, in which the allowed operations in the protocol are restricted in

a natural way, and show that in these cases the general conclusion from the previous sentence

does not hold.

In Chapter 4 we turn our attention to some aspects of the Quantum to Classical transi-

tion problem. We investigate a case in which a distinguished system interacts with an envi-

ronment consisting of quantum harmonic oscillators. In this Chapter we do not specify the

central system, we just assume that it is a sources of time dependent external force acting on

the environment. In this setting we derive expressions for two functions indicating Spectrum

Broadcast Structure formation - the decoherence factor governing the suppressions of possible

coherences and generalized overlap that provides information about the information content

of the environment. The obtained expressions are valid in the case when the environment is in

a thermal state but subsequently we generalize them for arbitrary single-mode Gaussian states

of the environment. We discuss also the dependence of indicator functions on temperature of

environment showing that the information content of the environment decreases with temper-

ature, whereas, apart from such behavior, the modulus of decoherence factor can be constant

with temperature.
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In Chapter 5 we investigate the formation of Spectrum Broadcast Structures in Quantum

Brownian Motion model, consisting of a central harmonic oscillator interacting with harmonic

oscillators forming an environment. We discuss two different approaches of modeling the envi-

ronment: the most common one, in which the properties of the environment are encapsulated

in a continuous spectral-density function and the one, in which one does not use this func-

tion and keeps the description in terms of individual parameters characterizing environmental

subsystems. To gain some intuition about the model we begin our considerations with the sim-

plified cases, when firstly the self-Hamiltonians of the system and the environment are omitted

(this case in known in the decoherence literature as the measurement-limit) and secondly the

Hamiltonian of the environment is restored (we call this partial measurement limit). In both

cases we derive expressions for functions indicating Spectrum Broadcast Structure formation

and timescales of these process, assuming that the environment is composed of finite number of

subsystems with frequencies chosen at random. Subsequently we include into considerations

the self-Hamiltonian of the central system and in the recoilless limit we derive an approxi-

mate solution of the dynamics suitable for the purposes of our study. This allows us to use

the results of Chapter 4 and obtain the expressions for indicator functions - the decoherence

factor and generalized overlap. Then we begin their analysis, firstly with the help of a con-

tinuous spectral-density function, afterwards investigating the description in terms of discrete

environmental spectra. As in the latter setting the analytical expressions for indicator func-

tions lead to almost periodic functions of time, we initially perform analysis by plotting them.

We study how possible choices of the frequencies of environment with respect to the central

system frequency influence the formation of Spectrum Broadcast Structure in the considered

model. Subsequently, we develop a fully analytical method, based on the Law of Large Num-

bers, that allows us to analyze the functions. In particular, we determine the timescales of the

process and provide an answer to an important question: how many environmental subsys-

tems are needed for the decoherence factor and the generalized overlap to be below a given

threshold.

In Chapter 6 we summarize our results and list some open problems.
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Chapter 2

Preliminaries

2.1 Brief introduction to the formalism of Quantum Theory

The framework of each physical theory consists of mathematical structures and relations be-

tween them and physical world they aim to describe. The presentation of the detailed mathe-

matical formulation of Quantum Theory can be found in textbooks (see e.g. [18, 19]). Here we

present the main notions and tools that are used in the thesis. Additionally we discuss some,

relevant for our purpose, concepts of Quantum Information Theory. The detailed presentation

of the latter can be found for example in [20, 21].

2.1.1 States

The description of a quantum state depends on the amount of knowledge that one posses about

it. If a state of a given system is known exactly then it is described by a vector |Ψ〉 belonging

to a Hilbert space H and the state is said to be pure. The dimension of the Hilbert space H

depends on the considered problem. In Quantum Information Theory one usually is able to

restrict considerations to finite-dimensional spaces. However, in problems regarding physical

systems such as quantum harmonic oscillators infinite dimensional Hilbert spaces are unavoid-

able. In this case the Hilbert space must be separable, this means that it must admit a countable

orthonormal basis. If for some reasons the knowledge of the system is not perfect, then the

state is said to be mixed. In such a case one can write a density operator (matrix)

ρ =
∑
i

pi|Ψi〉〈Ψi|, (2.1)

where pi are probabilities of finding the system in one of pure state |Ψi〉. In order to describe a

proper physical system, the density operator cannot be just an arbitrary matrix. It must be: i)

Hermitian ρ = ρ† ii) non-negative ∀|φ〉∈H〈φ|ρ|φ〉 > 0, iii) of unit trace Tr(ρ) = 1.
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2.1.2 Composite Quantum Systems

In the case when a given physical system consists of many subsystems we say that it is com-

posite. Let us consider a situation in which there are two isolated (uncorrelated) subsystems A

and B that are described by density matrices ρA, ρB . Then the joint state of subsystems is given

by a density matrix ρAB that is constructed via the tensor (Kronecker) product

ρAB = ρA ⊗ ρB. (2.2)

One may be interested in the reverse problem. Suppose that a joint systems is described by

ρAB and one has access only to the subsystem A. Then the state corresponding to subsystem A

is obtained by taking the partial trace with respect to the subsystem B ρA = TrBρAB . The above

discussion can be easily generalized to situations involving any (finite) number of subsystems.

So far we excluded from our considerations the notion of correlations. Due to the fact that

quantum systems may be correlated in many different ways we postpone the discussion of

correlations till Subsection 2.2.

2.1.3 Measurements

The physical quantities such as energy, momentum or position, correspond to operators acting

on a Hilbert space of considered physical systems. These operators are self-adjoint. Apart

from being Hermitian it means also that operator Ô and its adjoint Ô† must have domains that

coincide. For details see [22].

In finite dimensional systems Hermicity implies self-adjointness. The self-adjoint operators

can be always decomposed as Ô =
∑

i oiΠi, where oi are real eigenvalues and Πi are orthogonal

projectors ΠiΠj = δijΠj . Projectors Πi form the complete set
∑

i Πi = I , where I is the identity

operator. This decomposition is noteworthy since the eigenvalues oi are the possible outcomes

in an experiment measuring observable Ô. Let us suppose that an observable Ô is measured

on a state ρ. Then the probability of obtaining outcome oi equals pi = Tr (ρΠi) and the theory

predicts that the state after the measurement is ρi = ΠiρΠi
Tr(ρΠi)

.

In general it is possible to perform measurements in which the projectors Πi are replaced

by non-orthogonal operators Vi such that
∑

i V
†
i Vi = I . Such measurements are referred to as

POVMs [20].

2.1.4 General operations on quantum states

Although the measurements described in the previous Subsection are very natural from the

physical point of view, they are not the most general operation that can be performed on quan-

tum states. One may ask, in abstract terms, what is the structure of operations, which transform
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quantum states into other quantum states. The obvious requirement for such an operation is to

preserve the positivity of quantum states, this is Λ(ρ) ≥ 0. However, one should also take into

account that a given state ρA can be a subsystem of a larger state ρAB so a general operation

applied to ρA should also transform the whole state ρAB to a valid quantum state. Therefore

one requires that a map Λ is a completely positive one. Restricting the discussion to finite

dimensional case, a complete positivity means that when we extend action of Λ to a higher di-

mensional system by mens of an identity map Id, the resulting state must be positive regardless

of the dimension d:

∀d Id ⊗ ΛρAB ≥ 0. (2.3)

The state ρ̃ being a result of action of an operation Λ on a state ρ is

ρ̃ =
Λ(ρ)

Tr[Λ(ρ)]
. (2.4)

The completely positive operations can be represented in the so-called operator-sum or Kraus-

Choi representation. Let us denote the set of linear bounded operators from space H into H

B(H). Then we have the following theorem [23, 24].

Theorem 1. A map Λ : B(Hd
A)→ B(Hd′

A ) is completely positive if and only if it admits a representation

Λ(ρ) =

M∑
i=0

ViρV
†
i , (2.5)

where d, d′ are dimensions of Hilbert spaces HA, HB respectively, {Vi}Mi=0 is set of d′ × d matrices, and
M ≤ dd′.

One can further classify completely positive maps according to the value of Tr[Λ(ρ)].

If Tr[Λ(ρ)] = 1 the operation is called a deterministic quantum operation or quantum channel.

Moreover in this case
∑M

i=0 V
†
i Vi = I . To this subclass belong POVM and projective measure-

ments described in previous Subsection.

On the other hand, if Tr[Λ(ρ)] < 1 the operation Λ is called stochastic. Then
∑M

i=0 V
†
i Vi ≤ I .

Such operations are sometimes encountered in some quantum information protocols.

2.1.5 Dynamics of quantum systems

The evolution of an isolated physical system is governed by the Schrödinger equation

ih̄
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉, (2.6)
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where Ĥ is Hamiltonian operator of a given physical system. Formally, the evolution of the

system from initial time ti = 0 till tf = t is thus given by an unitary operator

Û(t) = exp

(
− i
h̄
Ĥt

)
. (2.7)

The case, in which the Hamiltonian is time dependent Ĥ(t) is more involved. Symbolically one

can write that the evolution operator as

Û(t) = T exp

(
− i
h̄

∫ t

0
dt′Ĥ(t′)

)
, (2.8)

where T is time ordering operator. The above expression should be understood in terms of a

series

Û(t) =

∞∑
n=0

−in

h̄nn!

∫ t

0
dt1 . . .

∫ t

0
dtnT [Ĥ(t1) . . . Ĥ(tn)]. (2.9)

The global unitary evolution of a composite quantum system does not imply the unitary

evolution of its subsystems. In general, let us assume that the composite quantum state ρS:E

describes a system of interest and its environment and that they undergo an unitary evolution

ÛS:E(t)

ρS:E(t) = ÛS:E(t)ρS:EÛ
†
S:E(t). (2.10)

If we are interested in the description of the state alone, we need to trace out the environment

ρS(t) = TrE

(
ÛS:E(t)ρS:EÛ

†
S:E(t)

)
. (2.11)

Since any reduced dynamics of the system must change its state into another valid state of a

physical system and the dynamics preserve trace Tr(ρS(t)) = Tr(ρS), we can treat the reduced

evolution as an example of a quantum channel introduced in previous Subsection. Then it

follows that the reduced evolution admits decomposition into Choi-Kraus operators Vi

ρS(t) = TrE

(
ÛS:E(t)ρS:EÛ

†
S:E(t)

)
= Λt(ρS) =

∑
i

ViρSV
†
i . (2.12)

In fact one can not only interpret the reduced evolution of the system as a quantum channel but

the reverse interpretation is also true. This is the statement of the Stinespring dilation theorem

[25].

Theorem 2. Any completely positive trace preserving map may always be written as a unitary evolution
on an enlarged space with the environmental subsystems eventually traced out.
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The study of reduced dynamics can be also performed form another perspective. One can

take time derivative of (2.12) and try to solve the resulting differential equation, which is of a

form

d

dt
ρS(t) = L̂tρS . (2.13)

It turns out that after certain approximations on the state of the environment and the character

of system-environment interaction are imposed, the master equation can be solved. Thus one

gains insights into the evolution of the system even though the analytical description of a total

evolution operator can be too complex to use or even impossible to obtain. An important class

of master equations consists of first order differential equations local in time. Their general

form is

d

dt
ρS(t) = L̂tρS = − i

h̄

[
Ĥ ′S , ρS(t)

]
+ L̂(ρS(t)). (2.14)

The first part of the right hand side of the above equation, given by the commutator− i
h̄

[
Ĥ ′S , ρS(t)

]
,

describes the unitary evolution of the system under the Hamiltonian Ĥ ′S . Note that this Hamil-

tonian in general is not identical to the unperturbed Hamiltonian of the system ĤS . The inter-

action with the environment may lead to effects such as a renormalization of the energy levels

of the system. Thus the environment may affect the unitary evolution of the system. Moreover,

the second term L̂(ρS(t)) describes possible non-unitary effects induced by the environment.

The non-unitary character of the reduced evolution is of great importance to the problem of

Quantum to Classical transition and will be discussed in Section 2.4.

2.2 Correlation Structures in Quantum Theory

The detailed structure of correlations in Quantum Theory is rather complex. Despite this fact,

correlations encountered in quantum theory can be divided into two groups: to the first one

belong correlations that are common to quantum and classical theory, whereas to the second all

non-classical correlations. Entanglement is the most prominent example from the second group

[26], however it is not the only non-classical type of correlations. In recent years a considerable

effort was put into investigation of so called correlations beyond entanglement [27]. Since there

is no general agreement on which correlations are essentially classical we adopt here approach

form [28].

As different types of correlations are at heart of problems tackled in this thesis, we introduce

basic concepts regarding them. The presentation is restricted to bipartite case. We start with

entanglement.
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2.2.1 Quantum Entanglement

One of the most striking features exhibited by composed quantum systems is entanglement,

which initially was a subject of research concerning foundational issues of Quantum Theory.

However, with the development of Quantum Information Theory it has been realized that en-

tanglement can be viewed as a resource for quantum-information protocols. Moreover, phe-

nomenon of entanglement is also important in addressing the problem of Quantum to Classical

transition. Therefore it is necessary to introduce this concept in the thesis.

The definition of quantum entanglement is not straightforward. One firstly define set of

separable states [26].

Definition 2.1. A pure state of composite system, consisting of subsystems A and B, is called to be
separable if and only if it can be written as

|Ψ〉AB = |φ〉A ⊗ |ψ〉B. (2.15)

In the case of mixed states one needs to consider the convex hull of pure product states [26].

Definition 2.2. A mixed state of composite system, consisting of subsystems A and B, is called to be
separable if and only if it can be written as

ρAB =
∑
i

piρ
i
A ⊗ ρiB. (2.16)

A state is entangled, if it is not separable. We conclude this subsection with stressing the

fact that there is no universal feasible method of detection, if a given state is entangled or not

[26].

2.2.2 Quantum Correlations beyond entanglement

One may ask if entangled states are the only non-classical correlated states predicted by the

Quantum Theory? The negative answer to this question is closely related to the fact that in

Quantum Theory measurement, in general, disturbs a state of a system. Due to this feature,

even some separable states cannot be regarded as classical. By imposing additional require-

ment, namely invariance of a state with respect to a complete local measurement, defined by a

complete set of projectors {ΠA
i }, performed on one subsystem (say A)

ρAB =
∑
i

ΠA
i ⊗ IBρABΠA

i ⊗ IB, (2.17)

we arrive at the definition of so called classical-quantum states [28].
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Definition 2.3. A bipartite state is classical-quantum (CQ) if it can be written as

ρAB =
∑
i

pi|i〉〈i|A ⊗ σBi , (2.18)

where {|i〉} is an orthonormal set, pi a probability distribution and σBi are quantum states.

Note that one can also define this set with respect to the subsystem B, which in our notation

leads to QC states.

For some authors [27] the classical-quantum states are essentially classical, due to the fact

that one can gain maximal accessible information about one subsystem without perturbing the

whole state. However, in general, such a statement may not be true for the second subsystem.

As a result some CQ states do not have their classical analogues. Therefore, it is necessary to

define the set of classical-classical states, which are embedding of a classical joint probability

distributions into the quantum formalism [28].

Definition 2.4. A bipartite state is classical-classical if it can be written as

ρAB =
∑
i

pij |i〉〈i|A ⊗ |j〉〈j|B, (2.19)

where {|i〉A}, {|j〉B} are orthonormal sets and pij is a joint probability distribution.

There are many interesting problems connected to the introduced classes od states. For

example, one may be interested in quantifying how much non-classical correlations a given

state contains. The topic is very broad for all type of quantum correlations [26, 27]. One possible

way of defining a measure is based on a notion of a distance between an investigated state and

a class of states that does not contain correlations interesting from the point of view of the

problem. As a distance function one can choose for example the relative entropy, which for

density matrices ρ, σ is defined as

S(ρ||σ) = Tr [ρ(log ρ− log σ)] . (2.20)

The resulting measures are of general structure

EClass = inf
σ∈Class

S(ρ||σ), (2.21)

where the infimum is taken with respect to some class of states Class = {CC,CQ,QC, SEP}.
This measure has been investigated in entanglement theory (where it is usually referred to

as Relative Entropy of Entanglement [26]) and for other types of correlations [29, 30]. In a

strict sense, the relative entropy cannot be treated as a proper distance measure since it is not

symmetric. This motivated some authors to choose Hilbert-Schmidt metric for constructing
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correlations measures. As an example let us consider the geometric measure of discord that

will be important in further parts of the thesis.

Definition 2.5. The geometric discord is defined as

D(ρ) ≡ min
χ∈CQ

‖ρ− χ‖2 = min
χ∈C

Tr
[
(ρ− χ)2

]
, (2.22)

where CQ stands for classical-quantum states.

Performing minimum with respect to separable states results in Hilbert-Schmidt measure

of entanglement 1.

2.3 Role of correlations in quantum information protocols

As has been mentioned in the introduction, the development of Quantum Information Theory

has changed the view on entanglement. It has been realized that entanglement is the resource

that enables to perform some tasks, which are impossible form classical point of view. To make

this statement more precise we briefly introduce the general structure of quantum resource

theories [32]. They consists of three ingredients:

1. the resource states,

2. the free states or non-resource states,

3. the restricted set of allowed or free operations.

In the resource theories it is assumed that, if one does not have access to some resource state,

then one can use only free operations and free states. From the this point of view, the resource

state allows to overcome the limitations imposed by the structure of free states and operations.

In the entanglement theory entangled states serve as a resource, separable states are assumed

to be free and the allowed set of operations consists of the so called Local Operations and

Classical Communication (LOCC). To give an intuitive explanation of LOCC operations let us

introduce the so called distant lab paradigm. Here one assumes that a composite quantum

system is distributed among various parties. The parties are spatially separated, what leads to

a natural restriction: they are only able to perform local operations (LO) on the subsystems of

the composite state being in their possession, such as measurements or more general quantum

operations. However, to enable collaboration between parties it is also assumed that they can

communicate any classical data, such as measurements’ results or can share randomness, by

means of classical communication channel (CC). Apart from the structure of the entanglement

theory, the assumption of classical communication is motivated also from a technological point
1Note that this measure does not fulfill all usually required properties [31].
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of view: currently communicating quantum systems is much more difficult than the classical

data. From now we restrict our discussion to the case of bipartite LOCC operations. The two

separated parties are usually denoted as Alice and Bob. Then we can introduce the following

subclasses of LOCC operations:

1. Zero-way LOCC operations. Here one assumes that parties do not communicate with each

other, what leads to the following structure of operations

Λ0(ρAB) = ΛA ⊗ ΛB(ρAB), (2.23)

where ΛA,ΛB are deterministic quantum operations.

2. One-way LOCC operations. Here we assume that one party can send classical message to

the other. If we fix the direction of communication (say fromA toB) the structure of operations

is

Λ→(ρAB) =
∑
i

(V A
i ⊗ I)[I ⊗ ΛBi ](ρAB)(V A

i ⊗ I)†, (2.24)

where Bob is assumed to perform deterministic quantum operations ΛBi due to the fact that

he is not able to communicate to Alice. On the other hand, Alice can perform some stochastic

quantum operation that satisfy
∑

i(V
A
i )†V A

i ≤ I . After obtaining the result she send it to Bob

who performs a quantum channel ΛBi . In fact, one can impose an additional constraint on

the Λ→ operations, namely on the amount of classical communication that parties are allowed

to send. For example, one can require that Alice can send 2 classical bits to Bob. We denote

the resulting class as LOCC→,2. Using this operations and entanglement as a resource it is

possible to perform the famous teleportation protocol [33]. Remote State Preparation is an

example of a LOCC protocol with restriction of one bit of classical communication (LOCC→,1

in our notation). We provide its description as it is the main topic of interest in Chapter 3. In

the original version of the protocol [34] the task is to prepare a quantum state, which is known

to Alice, at Bob’s site. One assumes that initially they share a maximally entangled state as a

resource. Under such assumptions, the task can be performed in a single run of experiment

with just one bit of classical communication, provided that the state to be prepared is drawn

from a special ensemble. In an asymptotic setting such a rate – one classical communication bit

per one quantum two-dimensional system (qubit) – is achieved for arbitrary states to be sent

[35]. Let us now sketch the main steps of the non-asymptotic protocol.
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In general, one use can any maximally entangled state of two qubits

|Ψ±〉AB =
1√
2

(|00〉AB ± |11〉AB) |Φ±〉 =
1√
2

(|01〉AB ± |10〉AB) (2.25)

as the shared state. However, the choice |Φ−〉 = 1√
2

(|01〉 − |10〉) results in the simplest ver-

sion of the protocol. Alice aims at preparing state |ϕ〉. She performs a measurement M̂A =

|ϕ⊥〉〈ϕ⊥|A − |ϕ〉〈ϕ|A on her part of the shared state, where |ϕ⊥〉A is a state orthogonal to |ϕ〉A.

There are two possible measurement outcomes. If she obtains 1 the post-measurement state

is |ϕ⊥ϕ〉AB , to -1 corresponds the state |ϕϕ⊥〉AB . She then sends her measurement outcome

to Bob, who learns that either he is in the possession of the desired state |ϕ〉 (if in the mes-

sage he obtains 1) or that he needs to perform some transformation since his state is |ϕ⊥〉. In

general, the required transformation |ϕ〉 → |ϕ⊥〉 may be non-unitary and thus impossible to

perform, however it is not the case for special classes of states such as |ϕ〉 = 1√
2

(
|0〉+ eiθ|1〉

)
,

with arbitrary phase θ. Then Bob needs to apply to his part of state one of the Pauli matrices

σ1 =

(
0 1

1 0

)
σ2 =

(
0 i

−i 0

)
σ3 =

(
1 0

0 −1

)
, (2.26)

namely σ3.

One may interpret Remote State Preparation protocol as a task, in which a single real num-

ber θ is sent from Alice to Bob. Classical procedure would require sending infinite number of

classical bits that specify θ. The Remote State Preparation protocol shows that it is possible to

achieve the same task using only one bit of communication with the help of quantum entan-

glement.

3. Two-way LOCC. Here the both parties can communicate. The mathematical structure of

allowed operations is more involved

Λ↔(ρAB) =
∑
i,j,k,...

. . . (I ⊗ V B
i,j,k)(I ⊗ V A

i,j)(I ⊗ V B
i )(ρAB)× (2.27)

(I ⊗ V B
i )†(I ⊗ V A

i,j)
†(I ⊗ V B

i,j,k)
† . . . ,

where Bob starts by performing an operation described by operators V B
i sends his result to

Alice, who performs an operation described by operators V A
i,j and the process repeats. In this

case all set of operators
{
V B
i

}
,
{
V A
i,j

}
. . . must obey

∑
i(V

B
i )†(V B

i ) ≤ I ,
∑

j(V
A
i,j)
†(V A

i,j) ≤ I, . . .

to be a valid stochastic quantum operations. As in the case of one-way LOCC, here one can also

introduce subclasses, in which the amount of classical communication is restricted. In general

the protocols can be asymmetric, this is one can allow parties to send different number of bits.
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If such a convention is adopted then natural inclusion relations hold. For example, one-way

LOCC is a subclass of two-way LOCC, in which one party is allowed to communicate 0 bits.

The entanglement theory studies which restrictions imposed by LOCC paradigm can be

overcome, if one has access to entangled states. It turned out that entanglement is a powerful

resource enabling many, impossible from classical point of view, tasks such as already men-

tioned Remote State Preparation protocol, Teleportation [33], Dense Coding [36] or computing

[37]. Initially, the advantage of these quantum protocols over their classical counterparts was

linked to the quantum entanglement. However, the notion of quantum correlations is broader

than entanglement since there are separable states that still are correlated in a non-classically

way. Therefore, two interesting problems may be posed here. The first one concerns the ques-

tion, if the separable states can be also useful for such tasks. In fact, it was shown that efficiency

of the protocols involving separable non-classical states may also exceed the efficiency of any

classical solution of Deutsch-Jozsa problem [38, 39] or Knill-Laflamme scheme [40]. These re-

sults provided further insights into the relations between quantum and classical correlations as

they show that notion of entanglement does not suffice to understand quantumness. They are

also important from operational point of view, as entanglement sates are usually very fragile

to noise. As a result, in experiments entangled states are usually degraded and one achieves

worse performance than that derived in theoretical schemes. From such a perspective, one can

automatically assume that, even though separable quantum correlations still provide an advan-

tage, they can never be regarded as a better resource than the entanglement states. Therefore

the result of recent work [17], in which it is claimed that indeed the converse statement is true

– some separable states can lead to better performance in Remote State Preparation protocol,

is so surprising. As Remote State Preparation is an important building block of quantum com-

munication protocols the problem is of grate importance and will be readdressed in Chapter

3.

We end this subsection with a remark that also other, interesting from physical point of

view, problems can be recast in form of resources theories. As an example one can consider

resource theories of: coherence [41, 42, 43], thermodynamics [44, 45, 46] and asymmetry [47].

2.4 Role of correlations in Quantum to Classical transition

One can argue that Quantum Theory is one of the most successful scientific descriptions of na-

ture. Its predictions have been verified experimentally to an unprecedented accuracy, however

some problems still remain open. One of them concerns the relation of Quantum Theory to the

familiar laws of Classical Physics. As an example, let us consider the superposition principle.

In the classical domain its validity is restricted to wave phenomena. Contrary to this fact, in
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Quantum Theory superposition principle is a universal rule, which applies to all physical sys-

tems. As a result, there are quantum states being superpositions of two (or more) classically

distinct properties. The most well example of such a state is found in the famous Schrödinger’s

gedenken-experiment, in which a cat is in a superposition of being alive or dead. Absence of

such states on the macroscopic scales indicates that there should be a way in which classical

world of everyday experience emerge naturally from the quantum formalism.

However, the fully satisfactory explanation of Quantum to Classical transition has not been

formulated yet. One of the most promising approaches to address this problem is based on

the realization that, in this case, the notion of idealized isolated system may be an obstacle in

understanding how quantum systems become essentially classical [6, 7, 8, 12]. A considerable

progress has been made when it was recognized that the interaction of system with environ-

ment may correlate the system to the environment in a non-classical way. Then, at the level

of the reduced state of system, possible quantum features may disappear. Responsible for this

effect are quantum correlations that cause delocalization of an initial state of the system. This

is the essence of Decoherence theory that is discussed in more detail in the next Subsection.

Nevertheless, the Decoherence theory alone does not suffice to explain another important

aspect of our everyday experience. Not only we do not encounter superpositions of states, but

also the information about physical systems is robust and can be found independently by many

observers, who learn about systems indirectly using some fragments of the environment. This

observation lead to research program known as Quantum Darwinism [10, 11, 48]. Its details

are discussed in Subsection 2.4.2.

Development of Quantum Darwinism was a major breakthrough in studies on Quantum

to Classical transition. However, this approach was not formulated in terms of the most fun-

damental description provided by Quantum Theory, namely in terms of quantum states. The

further step in understanding of the emergence of classical reality was achieved in [13], where

a universal structure of quantum states providing clasicallity, which precise meaning will be

clarified later, was derived. This structure is known as Spectrum Broadcast Structure and is

described in Subsection 2.4.3.

2.4.1 Decoherence

As has been mentioned in Subsection 2.1.5 the global unitary evolution of the whole state

does not imply that the reduced evolution of subsystems is also some unitary transformation.

This statement is of a great importance in situations that one usually encounters while dealing

with physical systems. Namely, in most cases a system of interest interacts with its environ-

ment. However, from various reasons, the state of the environment is not taken into account in

the considerations and one focuses on the state of the system alone. The Decoherence theory

stresses that this fact leads to a disappearance of coherences in the system’s state. To illustrate
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this statement, let us consider a situation, in which a system S interacts with the environment

E that consists of N subsystems. The general form of the Hamiltonian is

ĤS:E = ĤS + ĤE + ĤINT . (2.28)

For the purpose of this Subsection in what follows we are going to neglect the self Hamiltonians

of system ĤS and environment ĤE . This simplification is known as a quantum measurement

limit and allows to gain better understanding in the processes underlying decoherence. We

specify the interaction Hamiltonian to be

ĤINT = X̂ ⊗
N∑
k=1

Ŷk, (2.29)

where X̂ , Ŷk are some observables of the system and the k-th environment respectively, as-

sumed for simplicity to have discrete spectra. The dynamics of the system and environment is

thus governed by the unitary operator

Û(t) =
∑
j

|xj〉〈xj | ⊗ Û1(xj , t)⊗ · · · ⊗ ÛN (xj , t), Ûk(xj , t) ≡ e−ixjtŶk/h̄, (2.30)

where we spectrally decomposed observable X̂ in terms of its eigenvalues xj and eigenvectors

|xj〉. Operator Û(t) is of a controlled unitary type, where the system controls the environments

through eigenvalues xj of X̂ . We are mainly interested in the correlations between the system

and environment that are created in the course of evolution. Therefore, we assume that initial

system-environment state factorizes

ρ(0)S:E = ρ0S ⊗
N⊗
k=1

ρ0k. (2.31)

The joint state of the system and the environment at time t is thus given by

ρ(t)S:E =
∑
j

〈xj |ρ0S |xj〉|xj〉〈xj | ⊗
N⊗
k=1

Ûk(xj , t)ρ0kÛ
†
k(xj , t) + (2.32)

∑
j,j′,j 6=j′

〈xj |ρ0S |xj′〉|xj〉〈xj′ | ⊗
N⊗
k=1

Ûk(xj , t)ρ0kÛ
†
k(xj′ , t).



18 Chapter 2. Preliminaries

In decoherence theory the main object of study is the reduced state of the system. It is obtained

by taking the partial trace with respect to the environment

ρS(t) = TrE(ρS:E(t)) =
∑
j

〈xj |ρ0S |xj〉|xj〉〈xj |+ (2.33)

∑
j,j′,j 6=j′

Γj,j′(t)〈xj |ρ0S |xj′〉|xj〉〈xj′ |,

where Γj,j′ is the so-called decoherence factor

Γj,j′(t) =

N∏
k=1

Tr
(
Ûk(xj , t)ρ0kÛ

†
k(xj′ , t)

)
. (2.34)

If for given all different pairs j, j′ one has that |Γj,j′(t)| = 0 for some time t, the off-diagonal

part of the reduced density matrix vanish

ρS(t) =
∑
j

〈xj |ρ0S |xj〉|xj〉〈xj |. (2.35)

As a result, in the description of the state of the system the coherences between eigenstates of

observable X̂ are suppressed - the decoherence process occurred. The superposition terms are

still present at the global level of joint system-environment state (2.32), however at the local

level of the system’s state (2.35) they become unobservable. The classical mixture of X̂ eigen-

states (2.35) is not affected by the system-environment interaction. In a sense, such mixtures are

selected by the interaction. This concept, known also as environment-induced superselection

or einselection, was developed in [6, 7], where the eigenstates of X̂ were called pointer states.

Decoherence theory has attracted considerable amount of attention both from theoretical and

experimental perspective and has been successfully investigated in many physical models [12].

The decoherence process is not the only non-unitary effect that can be induced by the environ-

ment on the system. In general the interaction may lead to effects such as dissipation [49, 50,

51].

Let us mention that in the literature one also considers other mechanisms leading to the lost

of coherence in the reduced state of the system [8].

The false decoherence [8] happens when states forming coherent superposition disappear.

For example the interaction with the environment may lead to a relaxation process, in which

some states of the system decay into others. As an example let us consider a situation in which

|0〉|φ〉E → |0〉|φ′〉E (2.36)

|1〉|φ〉E → |0〉|φ′′〉E .
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Then, clearly, the coherence between states |0〉, |1〉 is lost.

The fake decoherence [8] is a process, in which the system’s density matrix becomes diago-

nal due to the fact that it is averaged over some ensemble of states. Then the lost of coherence is

connected to lack of knowledge about the state rather than a physical process. If the experiment

revealing coherence is performed on the members of the ensemble separately, the interference

effects can still be observed.

The coherence between |0〉 and |1〉 can also be transformed to some other states |i〉 of the

system, effectively causing disappearance of coherence from the relevant subspace. Then sim-

ply the role of the environment is played by some states of the system.

2.4.2 Quantum Darwinism

Decoherence theory only stress the fact that the initial coherent state of the system becomes de-

localized on many degrees of freedom due to the interaction with the environment. It assumes

that the environment, even some fragments of it, is not observed. However, due to the inter-

action, the some information about the system is constantly imprinted on the environment.

Therefore, it is plausible to expect that some pieces of information can be recovered from it.

Moreover, it is important to realize that this is indeed the case in most physical situations. The

best example here is eyesight that enables to acquire information about objects by registration

of scattered photons rather than by direct interaction with the objects in question. An additional

remark should be made here, namely in classical physics many observers can independently

gain information about a state of a system, without disturbing it and they agree on what they

learned. In a sense, the state of a system preexists objectively. This is the intuition behind the

Quantum Darwinism program, which is a major breakthrough in explanation of Quantum to

Classical transition. Quantum Darwinism was developed in series of papers [10, 48, 52, 53, 54]

and studied in many models known from decoherence theory [55, 56, 57, 58, 59, 60, 61, 62, 62].

We begin presentation of the program by introducing the definition of objectivity [11].

Definition 2.6. A state of the system S exists objectively if many observers can find out the state of S
independently, and without perturbing it.

Quantum Darwinism assumes that the process of finding out a state of a system is achieved

using fragments of an environment, which are available to observers. Therefore, in contrary

to Decoherence theory, here the emphasis is put on properties of a partially reduced state,

describing the system and fragments of the environment accessible to observers. In particular,

of interest are correlations between the system and the fragments.

In the classical setting if a system is perfectly correlated with one fragment of an environ-

ment, then the fragment can be used to recover properties of the system. Moreover, access

to additional perfectly correlated fragments of the environment does not result in information
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gain since all is already known from the single fragment. This statement can be formulated in

a quantitative way, using classical information theory. The system and fragment of its envi-

ronment are modeled as (for simplicity discrete) joint random variable S,Ek. The correlations

between them are measured by mutual information

I(S : Ek) = H(S) +H(Ek)−H(S,Ek), (2.37)

where H(S) and H(Ek) are marginal Shanon entropies and H(S,Ek) is the joint Shannon en-

tropy. For a random variable X Shanon entropy is defined as

H(X) = −
∑
i

p(xi) log p(xi). (2.38)

If the random variable S is perfectly correlated with Ek then H(S) = H(Ek) = H(S,Ek) and

as a result

I(S : Ek) = H(S). (2.39)

Inclusion of another perfectly correlated system Ek
′

in the description does not change the

mutual information. We have H(S) = H(EkEk
′
) = H(S,EkEk

′
) and I(S : EkEk

′
) = H(S).

Quantum Darwinism adopts this approach to the quantum setting. The joint and marginal

random variables are replaced by density matrices. The joint state of the system and environ-

ment is described by a partially reduced state

ρS:fE = Tr(1−f)E(ρS:E), (2.40)

where f denotes the observed fraction of the environment (f ∈ [0, 1]). The correlations are

measured by quantum mutual information

I(ρS:fE) = H(ρS) +H(ρfE)−H(ρS:fE), (2.41)

H(ρS), H(ρfE), are von Neumann entropies of reduced states and H(ρS:fE) is join von Neu-

mann entropy. For a density matrix ρ von Neumann entropy is defined as

H(ρ) = −Tr(ρ log ρ) = −
∑
i

λi log λi, (2.42)

where {λi} are eigenvalues of ρ.

Quantum Darwinism studies behavior of quantum mutual information as a function of the

environment fraction f . Since in many cases it may be unclear, which environmental subsys-

tems should form fraction f it is assumed that one performs analysis for a given partition into
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FIGURE 2.1: The partial information plot: quantum mutual information I(ρS:fE)
as a function of fragment f . The region in which I(ρS:fE) ≈ H(ρS) is called the
classical plateau. In the also the fraction fδ providing I(ρS:fE) = (1 − δ)H(ρS)
information of the system was depicted. For more details see for example [63].

observed and unobserved environment and the results are then averaged over many partitions.

The main claim of Quantum Darwinism is that if a state is objective in the sense of Definition

2.6, then for broad range of f

I(ρS:fE) ≈ H(ρS). (2.43)

More precisely, the expected behavior of I(ρS:fE) as a function of f for an objective state

ρS:fE is as follows. Initially I(ρS:fE) quickly rises, this indicates that acquisition of parts of the

environment leads to gain of information about the system. When I(ρS:fE) approaches H(ρS),

the information provided by subsequent fragments of environment becomes redundant and

therefore I(ρS:fE) remains constant. Finally I(ρS:fE) rises to value of 2H(ρS) for f close to 1,

which is a purely quantum phenomena caused by the property of pure entanglement states,

for which H(ρS:fE) = 0 but H(ρS) = H(ρfE) > 0.

In the Quantum Darwinism literature usually the analysis of I(ρS:fE) is performed on a plot

- the so-called partial information plot, thus the range, in which I(ρS:fE) remains constant, is

called classical plateau. As an example let us consider Figure 2.1. The appearance of the plateau

is the crucial feature pointing towards objectification of a system’s state. One can also estimate

the number of independent fragments of the environment that supply classical information

about system. In order to do so, an information deficit δ is specified and it is checked for which

value of fδ I(ρS:fδE) = (1 − δ)H(ρS). The number of records providing almost all (up to δ)

classical information about the state is then Rδ = f−1
δ .

Let us again stress that Quantum Darwinism represents an important breakthrough in in-

vestigations of Quantum to Classical transition. The shift of paradigm from environment as a

sink of information to environment as information carrier postulated by the authors of Quan-

tum Darwinism allowed to gain new and significant insights into the relation between Quan-

tum and Classical theory. However, the question if the scalar condition based on I(ρS:fE) is

sufficient to decide, if a state of a system becomes objective remains open. Sufficiency of the
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condition was proved in [13]. However also there circumstantial evidence was given that there

may exist a state ρS:E , whose partial reduction ρS:fE is entangled (hence non-classical and non-

objective) still fulfilling the scalar condition of Quantum Darwinism.

2.4.3 Spectrum Broadcast Structures

The inconclusiveness of Quantum Darwinism’s arguments denotes that emergence of the ob-

jective world from Quantum Theory deserves a more rigorous treatment. Indeed, in [13] the

problem of Quantum to Classical transition was addressed at the most fundamental level of

quantum states and canonical structure of an objective quantum system-environment state was

derived. Before presenting it one needs to formalize Definition 2.6 according to [13]. The setting

is the same as in Quantum Darwinism. Namely, the quantum system S interacts with many

environments E1, . . . , EN . Some fragments of environment must pass unobserved to account

for information loss causing decoherence. The remaining system-environment state is ρS:fE .

The process of "finding out the state of the system" by an observer is understood in terms of

von Neumann measurement performed by the observer on an accessible to him fragment of the

environment. The independence condition is guaranteed by requiring that there are no correla-

tions between observers (their measurements). As a result, their von Neumann measurements

are given by tensor product of local measurements

ΠMS
j ⊗ΠM1

j1
⊗ . . .ΠMfN

jfn
. (2.44)

Moreover, Definition 2.6 is made more precise by adding an agreement condition, which states

that many observers find independently the same state of S.

The notion of non-disturbance is adopted from Bohr’s works [3, 1], in which he argued that

local measurements on the subsystems are non-disturbing if they leave the whole joint state

invariant (after forgetting the results of particular measurements). As a result, the state should

have the following property∑
j,j1,...jfN

ΠMS
j ⊗ΠM1

j1
⊗ . . .ΠMfN

jfn
ρS:fEΠMS

j ⊗ΠM1
j1
⊗ . . .ΠMfN

jfn
= ρS:fE . (2.45)

This is the key step, the only states fulfilling the above requirement are classical-quantum states

[64] of the form

ρS:fE =
∑
i

pi|i〉〈i| ⊗RfE
i , (2.46)

where RfE
i are environmental states with mutually orthogonal supports RfE

i RfE
i′ 6=i = 0. Work-

ing under these assumptions and using the so-called strong independence condition (firstly
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formulated in [64]), which states that the only correlation between the environments should be

the common information about the system (in a state conditioned by the information about the

system there should be no correlations between the environments), the authors of [13] prove

that objective system-environment states admit a canonical form

ρS:fE =
∑
i

pi|i〉〈i| ⊗ ρE1
i ⊗ . . . ρ

EfN
i , (2.47)

where {|i〉} is orthonormal pointer basis and ρEki are states of individual environmental de-

grees of freedom with mutually orthogonal supports ρEki ρEki′ = 0 ∀i 6=i′ , k = 1, . . . , fN . The

latter property enables observers to distinguish between states of central system using their

fragments of the environment: they just need to perform a projective measurement on sub-

spaces of supported by spectra of ρEki (for all i). As these spectra are disjoint (due to the the

condition ρEki ρEki′ = 0 ∀i 6=i′), the measurement’s result i will reveal the state of the system. The

structure of the state (2.47) is called spectrum broadcast form. It is a special form of so-called

classical-classical state, which was defined in [28].

Due to its structure (equation (2.47)) and the disjoint supports of environmental states ρEki
it formally follows that if the Spectrum Broadcast Structure was formed, then for every non-

zero fraction f ′ of environment forming the structure the condition proposed by Quantum

Darwinism is fulfilled

I
(
ρS:f ′E

)
= H (ρS) . (2.48)

It remains unclear if there are are states, which do not admit Spectrum Broadcast Structure but

fulfill the scalar condition of Quantum Darwinism. If this was the case, it would mean that the

condition is insufficient to show objectivity in the sense of Definition 2.6.

For some readers the form (2.47) may seem to be too restrictive as a candidate for a structure

providing the observers with objective information about the system. For example, one may

wonder why such a structure could not encompass some kind of separable quantum correla-

tions? In Chapter 3 we show that in some variants of Remote State Preparation protocol some

separable quantum correlations lead to better efficiency of the protocol than that obtain with

entangled states and hence should not be regarded as classical.

Any theory aiming at describing Quantum to Classical transition remains just a concept

unless one is able to show that its predictions are realized in some physical scenario. This is

also the case for the Spectrum Broadcast Structures, which would be just a theoretical idea

if they were not formed over the course of an evolution in some models relevant from the

physical point of view. In fact, their formation has been shown in one of the well know and

appealing models of decoherence [5] – an illuminated sphere model, in which the decoherence

is caused by photons that scatter at a delocalized sphere [65] . However, this result does not
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suffice to conclude that the formation of Spectrum Broadcast Structures is the key mechanism

responsible for an appearance of objective classical reality form Quantum Theory.

In general it is unknown if Spectrum Broadcast Structures are formed typically during evo-

lution. The only known exception is the case, in which one assumes the specific form of the

problem Hamiltonian [66]. Note however, that it is also possible to consider another approach

to Quantum to Classical transition, in which one treats the dynamics as a quantum channel. In

such a setting it has been shown that, under some conditions, then the effective dynamics from

the system to some fragment of the environment is of a "prepare and measure" form, which

in simple terms can be understood as follows: firstly some specific observable of the system is

measured and subsequently the corresponding state of the environment is prepared [67]. Al-

though very general, this approach does not allow to study continuous systems, as the results

were proven only in the finite-dimensional setting. Moreover, one does not gain insight into

timescales of the process and the information content of the environment remains unclear. This

discussion shows that the investigation of particular physical models is still needed.

There are many situations in which some physical system interacts with some of environ-

ment. However, some of them are more interesting and important than the others. To the

former group belong the so-called canonical models of decoherence [12]. In order to determine

the set of canonical models one has to specify the central system and the environment. The

common choice is between the continuous variables and discrete systems. Usually the latter

are restricted to the two-dimensional systems (referred to also as spin 1
2 particles). As a result

one arrives at the conclusion that there are four canonical models, since there are two possible

choices for the central system as well as the environment. This fact, taking also into account

that there are approximations allowing to map some systems onto canonical models, is of a

great importance. Although the canonical models cannot encompass all the richness of the

physical world, they should be considered as ideal candidates to test a theory. If the results are

negative, one should not expect them to hold in more complex settings.

The above discussion shows that a method to check, if in a given model a Spectrum Broad-

cast Structure was formed, is needed. Let us now present the direct procedure of verifying

Spectrum Broadcast Structure formation. We introduce two indicator functions, whose analy-

sis allow us to conclude if a given model leads to the Spectrum Broadcast Structure or not.

As in the case of decoherence theory, we illustrate the procedure in a case when only the

interaction Hamiltonian of the form ĤINT = X̂ ⊗
∑N

k=1 Ŷk is relevant for the problem (in case

when both [ĤS , ĤINT ] 6= 0 and [ĤE , ĤINT ] 6= 0 there is no general procedure of checking if the

Spectrum Broadcast Structure is formed). Thus, our starting point is equation (2.32), describing

time evolution of joint system-environment state. Subsequently, an unobserved fragment of
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environment is traced out, leading to the partially reduced system-environmental state

ρS:fE(t) = Tr(1−f)E(ρS:E(t)) =
∑
j

〈xj |ρ0S |xj〉|xj〉〈xj | ⊗
fN⊗
k=1

ρEkj + (2.49)

∑
j,j′,j 6=j′

Γj,j′(t)〈xj |ρ0S |xj′〉|xj〉〈xj′ | ⊗
fN⊗
k=1

Ûk(xj , t)ρ0kÛ
†
k(xj′ , t), (2.50)

where Γj,j′(t) the decoherence factor

Γj,j′(t) =
∏

(1−f)E

Tr
(
Ûk(xj , t)ρ0kÛ

†
k(xj′ , t)

)
, (2.51)

and ρEkj are

ρEkj = Ûk(xj , t)ρ0kÛ
†
k(xj , t). (2.52)

In order to verify formation of Spectrum Broadcast Structure one proceeds in two steps. First

of all, the coherent part (2.50) of the partially reduced system-environment state should vanish.

This will imply that there is no entanglement between the system and the environment and

that the coherence (with respect to the eigenbasis of system’s observable X̂) is suppressed (at

the level of partially reduced state). In a nontrivial case, the only possibility for off-diagonal

part (2.50) to vanish is when with time the modulus of decoherence factor
∣∣Γj,j′(t)∣∣ = 0 for all

pairs j 6= j′. The decoherence process is necessary condition for Spectrum Broadcast Structure

formation. However, it is not a sufficient one so the second step in analysis is needed.

To conclude that the Spectrum Broadcast Structure was formed, one checks the information

content of remaining environmental states ρEkj . In accordance with the paradigm introduced by

the Quantum Darwinism, presented earlier in this Subsection, observers find out the state of the

system indirectly by measuring accessible to them environmental subsystems. They can only

do so if the information about the central system has been imprinted on these subsystems and

moreover can be extracted from them. As a result, states of subsystems evolving accordingly

to different eigenstates of observable X̂ of the system should also be distinguishable. One

can put this requirement in mathematical terms: density operators corresponding to different

eigenstates of X̂ must have non-overlapping supports ρEki ρEki′ = 0. In such a case an observer

can perform projective measurement on different supports of the spectra and by learning the

result he in principle learns also the state of the central system.

Among many different ways of measuring the distinguishability of quantum states, the

most convenient one for our purposes is the generalized overlap. For two density matrices ρ, σ



26 Chapter 2. Preliminaries

it is defined as

B(ρ, σ) = Tr
√√

ρσ
√
ρ. (2.53)

This quantity is known also as fidelity of quantum states and in this case is denoted by F (ρ, σ).

If the states ρ, σ are indistinguishable B(ρ, σ) = 1, on the other hand, if they can be distin-

guished without an error B(ρ, σ) = 0. In general, if B(ρ, σ) = ε then there exits an operator M̂

defined as

M̂ ≡ σ−1/2
√√

σρ
√
σσ−1/2, (2.54)

whose spectral decomposition M̂ =
∑

imiM̂i, more precisely the projectors M̂i provide set of

operators distinguishing ρ, σ up to an error ε [68].

It can be seen from the definition that the generalized overlap is invariant under uni-

tary operators B(ÛρÛ †, ÛσÛ †) = B(ρ, σ). Generalized overlap is also symmetric in its ar-

guments, which is not so obvious and requires a bit of effort to show [68]. The property mak-

ing generalized overlap the most suitable tool, among many different possible measures, for

studying information deposited in environment is its scaling with tensor product. Namely

B(ρA ⊗ ρB, σA ⊗ σB) = B(ρA, σA)B(ρB, σB). This is a very important property, as usually the

interaction between system and an individual of the environment is weak in the sense that

the individual environmental subsystem is not affected by the interaction in a significant way

and the states ρEkj , ρEkj′ remain almost indistinguishable. In such a case, the only possibility to

construct the state with perfect correlations between the central system and the environment,

leading to the formation of Spectrum Broadcast Structure, is to coarse-grain the environmental

degrees of freedom. In other words, one can form groups consisting of environmental sub-

systems, which are called macrofractions ρmacj =
⊗

k∈mac ρ
Ek
j . Such an approach was firstly

applied in [65]. When the initial state of the environment is uncorrelated (2.31) and the evolu-

tion operator consists of tensor product of individual unitary operators with respect to subsys-

tems (2.30), then the generalized overlap of a macrofraction amounts to taking product over

individual subsystems constituting it

Bmac
j,j′ (t) = B

(
ρmacj (t), ρmacj′ (t)

)
=

∏
k∈mac

B

(
ρEkj (t), ρEkj′ (t)

)
. (2.55)

A few additional remarks are in order. Firstly, there is a connection between the generalized

overlap and the scalar product. For pure states B(|ψ〉〈ψ|, |ϕ〉〈ϕ|) = |〈ψ|ϕ〉|. As a result if one

considers a scenario in which the environment is in a pure state then there is no distinction

between the modulus of decoherence factor and generalized overlap as for a single subsystem
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system k since from (2.51) follows∣∣∣Γkj,j′(t)∣∣∣ =
∣∣∣Tr (Ûk(xj , t)ρ0kÛ

†
k(xj′ , t)

)∣∣∣ =
∣∣∣Tr (Ûk(xj , t)|φ0〉〈φ0|kÛ †k(xj′ , t)

)∣∣∣ = (2.56)∣∣∣〈φ0|Û †k(xj′ , t)(Ûk(xj , t)|φ0〉
∣∣∣ =

∣∣〈φj′ |φj〉∣∣ = Bk(|φj〉〈φj |, |φj′〉〈φj′ |).

Therefore in the considered scenario there is a single quantity governing the process of Spec-

trum Broadcast Structure formation: the modulus of overlap of post-interaction environmental

states. The decoherence factor and the generalized overlap have the same origin, the only

difference between them is based on the splitting of the environment into observed and non-

observed part. To calculate decoherence factor one simply performs product over individual

overlaps for non-observed parts of the environment, to check the distiguishability the product

is taken over subsystems forming macrofraction.

If the environment is initially in a mixed state one can in principle purify state of each sub-

system ρ0k by introducing artificial subsystem k′ and state |φ0〉kk′ such that ρ0k = Trk′ (|φ0〉〈φ0|kk′).

In such the case the dynamics is trivially extended to take into account additional subsystems

ÛS:EE′(t) = ÛS:E(t) ⊗
⊗N

k′ Ik. This procedure is perfectly valid to calculate the decoherence

factor as (assuming that the evolution ÛS:E(t) is of the controlled type)∣∣∣Γkj,j′(t)∣∣∣ =
∣∣∣Tr (Ûk(xj , t)ρ0kÛ

†
k(xj′ , t)

)∣∣∣ = (2.57)∣∣∣Trkk′ (Ûk(xj , t)⊗ Ik′ |φ0〉〈φ0|kk′Û †k(xj′ , t)⊗ Ik′
)∣∣∣ =

∣∣∣〈φ0|Û †k(xj′ , t)Ûk(xj , t)⊗ Ik′ |φ0〉kk′
∣∣∣ .

As a result, whenever in a mixed state case we find that the decoherence factor equals zero, it is

possible to introduce a larger Hilbert in which the initial state evolves into two orthogonal ones.

Putting aside the problem of interpretation (should one consider the introduced system as a

real one?), the purification procedure does not allow to put decoherence factor and generalized

overlap on the equal footing - even then they are two separated quantities having different

origin. The distinguishability of the environment depends only on the information content

of the evolving observed environmental subsystems. Even if they are subsystems of global

pure states, which are physically meaningful, the observers do not have access to these global

states so they can not use them to extract information. To illustrate this point let us consider

a simple example, in which a central 2 dimensional system interacts with the 2 dimensional

environment via controlled unitary

ÛS:E(t) = |0〉〈0| ⊗
N⊗
k

Ik + |1〉〈1| ⊗
N⊗
k

σk1 . (2.58)

The environment is initially in a maximally mixed state ρ0k = 1
2Ik and the system in an ar-

bitrary state ρ0S = |Ψ〉〈Ψ|, |Ψ〉 =
√
p|0〉 +

√
1− p|1〉. Its straightforward to verify that the
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decoherence factor
∣∣Γk01

∣∣ =
∣∣Tr(σk1 )

∣∣ = 0 and that both post-interaction states are equal ρ0k so

B(ρ0k, σ
k
1ρ0kσ

k
1 ) = 1. We can also investigate this example by firstly purifying the state of the

environment |φ0〉kk′ = 1√
2

(|00〉kk′ + |11〉kk′). Now the post interaction states are

|φ〉kk′ = |φ0〉kk′ =
1√
2

(|00〉kk′ + |11〉kk′) , (2.59)

|φ′〉kk′ = σk1 ⊗ Ik′ |φ0〉kk′ =
1√
2

(|10〉kk′ + |01〉kk′) .

Obviously they are orthogonal, what is reflected in the fact that the decoherence factor is
∣∣Γk01

∣∣ =

0. However, at the local level of subsystems the reduced states are still maximally mixed so they

are indistinguishable as we found previously.

It is possible to express the generalized overlap for mixed states as an overlap of purifica-

tions. However, the above discussed problems needs to be taken into account so not all purifi-

cations will give rise to the correct definition. It can be shown that expression for generalized

overlap can be written asB(ρA, σA) = max|ψ〉AB |〈ψ|ϕ〉AB|, where states |ψ〉AB, |ϕ〉AB are purifi-

cations of ρA, σA. The additional step in calculating generalized overlap via purifications is the

maximization over all possible purification of state |ψ〉AB . In the example that we considered

the maximization procedure would result in two identical indistinguishable post-interaction

states |φ〉kk′ .
Summing up the discussion: the decoherence factor and generalized overlap are in general

different quantities having different origin. The only case, in which they can be put on the

equal footing happens when the environment is initially in some pure state. Otherwise, even

after purification procedure is performed, both quantities must be calculated in two different

ways.

Moreover, the generalized overlap is related to another important measure of distinguisha-

bility, this is the trace norm

T (ρ, σ) =
1

2
‖ρ− σ‖1 =

1

2
Tr

[√
(ρ− σ) (ρ− σ)†

]
, (2.60)

via inequalities that were proven in [69]

1−B(ρ, σ) ≤ T (ρ, σ) ≤
√

1−B2(ρ, σ). (2.61)

The method of verifying the formation of spectrum broadcast structures can be summarized

in the following points

1. Find the evolution of a particular model describing system and environment.

2. Trace out the unobserved fragment of the environment.



2.4. Role of correlations in Quantum to Classical transition 29

3. Determine if the coherences in the partially reduced state vanish by calculating decoher-

ence factor Γj,j′(t) and checking if with time
∣∣Γj,j′(t)∣∣ = 0.

4. Investigate the information content of remaining fragments of environment by calculat-

ing Bmac
j,j′ (t) and checking if with time for some grouping of environmental subsystems

Bmac
j,j′ (t) = 0.

It is in an interesting open problem if the formation of spectrum broadcast structure can be

verified in an alternative feasible way. In Chapter 4 we will begin to apply the direct procedure

in order to investigate the formation of Spectrum Broadcast Structures in Quantum Brownian

Motion model.
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Chapter 3

Quantum Correlations beyond
entanglement and Remote State
Preparation protocol

3.1 Introduction

In this chapter we study in detail the role of quantum correlations in Remote State Preparation

protocol. As has been mentioned in the previous Chapter, it has usually been assumed that

the most powerful quantum resource is entanglement. From this point of view other types of

quantum correlations can also be useful for various communicational and computational tasks.

However, a strict hierarchy should hold: separable states should not outperform entangled

ones.

Therefor, the claims of the recent paper [17], in which the surprising possibility of the fact

that in some cases the communication power of quantum correlations beyond entanglement

represented by separable states may exceed that of some entangled ones in Remote State Prepa-

ration protocol was announced, attracted a grate interest. The authors of the paper have also

provided the direct connection of the transfer fidelity of the protocol they have chosen to mea-

sure of quantum correlations of the resource state – geometrical discord, which was introduced

in Definition 2.5. Details of the protocol presented in [17] are discussed in Subsection 3.2.1. The

result seems to be a breakthrough not only from fundamental but also from practical perspec-

tive as Remote State Preparation protocol is one of the significant building blocks in quantum

communication. Due to the fact that a potential impact of the results on our understanding

of the power and usefulness of different non-classical resources is so significant, the paper is

worth analyzing. However, after the analysis is made it turns out the results are disputable.

One can rise several doubts about the author’s approach.

First of all, a non-standard quadratic fidelity is chosen as a figure of merit for the protocol.

An introduction of a new tool cannot be regarded as an objection, however the careful analysis
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presented in Section 3.3 shows clearly that the quadratic fidelity is not a correct tool and leads

to wrong statements.

Moreover, whenever one intends to make a statement about some protocol, considered

settings should correspond to the generality of the statement. From the results of [17] it can be

concluded that the result of the paper is generic for Remote State Preparation protocol. Putting

the objection made in the previous paragraph aside, the version of the protocol considered

by the authors of [17] is restricted in the sense that only projective measurements on Alice’s

side – instead of the most general POVM measurements allowed by quantum formalism and

only unitary operations on Bob’s side – instead of general quantum channels are considered.

In fact, the latter issue has been noticed already in [70], where it has been suggested that the

conclusions of [17] may not hold in general.

For the above mentioned reasons, we readdress the problem of quantum correlations in Re-

mote State Preparation. Our basic aim is to find an answer to the question: can communication

power of separable correlations exceed that of entanglement resource? We start by introducing

the most general Remote State Preparation in Section 3.2 as we would like our findings not to

depend on particular settings of the protocol. We impose only one restriction on the amount

of classical communication between parties taking part in the protocol, to prevent the direct

transmission of a state to be prepared. Subsequently, in Subsection 3.2.1 we discuss settings

of the paper [17]. Then we address the problem of fidelity of the protocol and show that the

quadratic one is not the correct figure of merit. This is the content of Section 3.3. Having set-

tled the problem of fidelity, in Section 3.4 we provide a negative answer to the question about

supremacy of separable over entangled states in Remote State preparation protocol. This could

in principle end investigations in this Chapter. However, although the results of paper [17] are

questionable, they point out a possibility that in some restricted cases the striking conclusion

regarding relation of separable and entangled states may hold. To explore this possibility in

Section 3.5 we perform optimization of the correct linear fidelity with the respect to Alice’s

operations. Subsequently, we study two case of restrictions that may be imposed on Bob’s de-

coding operations in a natural way. We show that in these cases it is indeed possible that the

quantum separable correlations can be better than entangled states. Finally, we conclude in

Section 3.6. This Chapter is partially based on results form [71].

3.2 The most general Remote State Preparation protocol with one bit

of forward communication

We begin our discussion by introducing the most general Remote State Preparation protocol

and describing shortly the settings considered in [17].
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FIGURE 3.1: Initial data for Alice and Bob with a) or without b) shared reference
frame on the ŝ plane. The figure is reproduced from [71].

Before the beginning of the protocol Alice and Bob are given some classical data. The usual

setting is that Alice is given description of the state that she aims at preparing, and Bob knows

some characteristic of this state for example that its Bloch vector belongs to a particular plane.

For our purpose, the description of the state is given in terms of a unit Bloch vector ŝ. Moreover,

Alice and Bob know a vector β̂ to which ŝ is perpendicular. This determines the plane to which

ŝ belongs. Although it is not explicitly stated, usually they share also a common reference

frame in that plane. However, this does not need to be the case. The possible structure of initial

data is presented in Figure 3.1. To prevent direct classical transmission of ŝ, one should put the

restriction on the classical channel. The natural choice, compatible with the original scheme

of Remote State Preparation protocol, is to allow for one bit of classical communication from

sender to the receiver.

Furthermore, Alice and Bob share a bipartite qubit state ρAB . It can be parametrized in

terms of i) Bloch vectors of reduced states ρA, ρB , ii) correlation tensor T as

ρ = ρ(~x, ~y;T ) =
1

4
[I ⊗ I + ~x~σ ⊗ I + I ⊗ ~y~σ +

∑
ij

Tij [σi ⊗ σj ]. (3.1)

We note, that one can always choose a local reference frame on Alice’s and Bob’s sides such

that the correlation tensor becomes a diagonal matrix in the Schmidt canonical form T =

diag[t1, t2, t3], where t2i are the eigenvalues of T TT [72].

In the present analysis Alice is allowed to perform any generalized quantum measurement

– POVM, while Bob is authorized to apply any general quantum operation represented by

quantum channel. The most general form of Alice binary POVM must be a function of the

following family of parameters A = {~a, a+, a−} and is defined by the formula M± = a±I ± ~a~σ
with the probability-like parameters a± and vector ~a satisfying the conditions

a+ + a− = 1, 0 ≤ a± ≤ 1, ||~a|| ≤ min[a+, a−] ≤ 1

2
, (3.2)

where in general both a± and ~a are functions of the unit vector ŝ perpendicular to β̂ which has

a fixed orientation during the protocol. Finally the payoff function of the protocol is minimized

over β̂.
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The resulting probabilities of the Alice outcomes on the state (3.1) and the resulting states

ρ± on Bob side are defined by the relations

p± ≡ TrAB[M± ⊗ Iρ] = (a± ± ~a~x), (3.3)

p±ρ± ≡ TrA[M± ⊗ Iρ] =
1

2
[(a± ± ~a~x)I + (±T~a+ a±~y)~σ].

Bob is allowed to perform channels Λ± which depend upon the result ± of the Alice measure-

ment and act on any qubit state ρ(~u) = 1
2(I + ~u~σ) as

Λ±[ρ(~u)] =
1

2
[I + (T±~u+ ~v±)~σ]. (3.4)

The range of parameters T is determined by the structure of the extremal one-qubit channels

T± = O(1)
± T 0

±(O(2)
± )T , ~v± = O(1)

± ~v0
±, (3.5)

where O(1)
± ,O(2)

± are arbitrary rotations combined with representation of completely positive

trace preserving maps. Here we use a family given by

~v0
± = [0, 0, sinu± sinw±], (3.6)

T 0
+ = [cosu+, cosw+, cosu+ cosw+]

T 0
− = [cosu−, cosw−, cosu− cosw−],

with u± ∈ [0, 2π), w± ∈ [0, π) [73]. This is the most general form of any one-qubit channel

belonging to the closure of the set of extreme one-qubit channels and the simple convexity

argument allows one to restrict considerations only them. After the action of Λ± the final Bob

state is

ρ̃B =
∑
r=±

prΛr(ρ
(r)
B ) =

1

2
(I + ~r~σ), (3.7)

with the final Bob Bloch vector

~r =
∑
r=±

[Tr(ar~y + rT~a) + (ar + r~a~x)~vr]. (3.8)

The transmission fidelity is averaged over the unit circle constituted by all vectors on the

plane perpendicular to β̂. The above local operations and classical communication (LOCC)

scheme with (i) known local Bloch coordinates and (ii) 1 bit of forward (form Alice to Bob)

communication allowed is an example of one-way LOCC with one classical bit of informa-

tion introduced in Section 2.3 and accordingly to the notation used there we will refer to it as

LOCC→,1. The general structure of the protocol is schematically depicted in Figure 3.2.
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FIGURE 3.2: General scheme of RSP. For structure of initial data see Figure 3.1.
The measurement M is a quantum POVM and Λi is the decoding channel. The
decoding channels Λi are supposed to belong to a fixed class Γ. In this thesis
we consider the most general class of all quantum channels Γgeneral – in Section
3.4 and restricted classes: channels invariant in the ŝ plane Γinvariant and the
bistochastic channels Γbistochastic that are considered in Subsections 3.5.1, 3.5.2

respectively. The figure is reproduced from [71].

3.2.1 Overview of the recently proposed protocol

In [17] the authors consider the specific subclass of the protocols from Figure 3.2. In their work

only projective (von Neumann) measurement M on Alice’s side were considered. Moreover,

only very specific unitary decodings Λ+ = I , Λ− = −I , which correspond to identity or reflec-

tion on the considered circle on the Bloch sphere, were allowed. Concerning the classical data,

Alice knows the state to be prepared in terms of it’s Bloch vector ŝ and the direction B̂ to which

ŝ is perpendicular and Bob also knows B̂. Moreover, as there is no information about shared

a reference frame, we assume that Bob does not posses knowledge about a reference frame of

Alice. To evaluate the efficiency of the protocol the authors introduced the following pay-off

function

P =

∫
dŝ(ŝ~r)2, (3.9)

to which we refer as to quadratic fidelity. We note that (3.9) is a non-linear function of a fidelity

between the desired state ρŝ to be prepared and the state that is obtained in the protocol ρ̃B

F (ρŝ, ρ̃B) =
√√

ρŝρ̃B
√
ρŝ, (3.10)

which for qubits can be expressed in terms of corresponding Bloch vectors ŝ, ~r as

F (ρŝ, ρ̃B) =
1

2
(1 + ŝ · ~r) . (3.11)

Thus the relation between (3.9) and (3.11) is

P = (2F (ρŝ, ρ̃B)− 1)2 (3.12)
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Coming back to the protocol’s description, for given shared state ρAB the fidelity (3.9) is first

maximized over all von Neumann measurements on Alice’s side. Bob’s encoding operations

are fixed and therefore there is no maximization process associated to them. Finally the fidelity

is minimized with respect to the orientation of the vector β̂ which gives for an initial state ρAB
the optimal quadratic fidelity Popt. The result obtained in [17] is

Popt =
1

2

(
t22 + t23

)
, (3.13)

where t22, t
2
3 are the two lowest eigenvalues of T TT . The expression for Popt coincides with the

value of geometric discord, which for states with maximally mixed marginals ~x = ~y = 0 or

with isotropic correlation tensor T = −λI (where I is the 3x3 identity matrix) is

D(ρ) =
1

2

(
t22 + t23

)
. (3.14)

Subsequently, the authors consider non-zero discord but non-entangled Werner state

ρAB = ρ(0, 0,−λ′I), (3.15)

which is parametrized as in the formula (3.1), with λ′ = 1
3 for which Popt = 1

9 is strictly larger

than its value Popt = 1
25 obtained for the following entangled state

ρAB = ρ(tẑ, tẑ,−λI) (3.16)

with t = 1
5 and λ′ = 2

5 . On that basis the conclusion of the paper [17] is made that quantum

correlations beyond entanglement represented by non-zero discord of the separable state above

make quantum correlations beyond entanglement better then entanglement itself in Remote

State Preparation protocol. However, in the next Section we show that pay-off function (3.9) is

in fact an incorrect tool for studying usefulnesses of different types of quantum correlations in

the considered protocol.

3.3 Fidelity

3.3.1 Quadratic fidelity

The main problem with the quadratic fidelity is that this measure does not distinguish orthog-

onal states. This statement can be easily understood considering the original Remote State Pro-

tocol, in which, after the measurement of Alice, Bob is in possession of either the desired state

or the state orthogonal to it. In the former case F (|ϕ〉, |ϕ〉) = 1, in the latter F (|ϕ〉, |ϕ⊥〉) = 0 as

for pure states fidelity reduces just to the module of the scalar product. However, there is no
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difference in these two cases if one calculates the value of quadratic fidelity P|ϕ〉 = P|ϕ⊥〉

P|ϕ〉 = (2F (|ϕ〉, |ϕ〉)− 1)2 = 1 (3.17)

P|ϕ⊥〉 = (2F (|ϕ〉, |ϕ⊥〉)− 1)2 = 1.

This fact lead to a striking consequence. Namely, it turns out that there exist a trivial protocol

which supersedes the one considered in [17]. Given any of the two-qubit states above Bob

may ignore the Alice message and just take randomly chosen state ρ̃B with its Bloch vector

randomly located on the circle perpendicular to β̂ and get the fidelity 1
2 which is much better

than 1
25 and 1

9 discussed in the previous Section. Being more precise, let us consider a case of the

protocol in which Bob, regardless of the Alice message, produces at random a pure state |ϕR〉
with a Bloch vector belonging to the ŝ plane. Employing fidelity proposed in [17] we obtain

P|ϕR〉 = min
β̂

〈
(r̂ŝ)2

〉
=
〈
(r̂ŝ)2

〉
=

∫
d ŝ(r̂ŝ)2 =

1

2π

∫ 2π

0
d ϕ cos2 ϕ =

1

2
, (3.18)

where we used the invariance of the measure on the unit circle. Because this fidelity is higher

than these considered in [17] (1
9 and 1

25 for separable and entangled state respectively), it may

seem that the random protocol is better choice than more sophisticated strategies. However,

this is only because of misleading choice of the protocol’s fidelity.

3.3.2 Linear fidelity

The analysis of the previous Subsection clearly shows that the only suitable choice for the pay-

off function of the Remote State Preparation protocol is the linear fidelity (3.10). As we would

like to arrive at a general conclusion, one should take into account different possible choices of

initial state, expressed in terms of Bloch vectors ŝ. In such a case it is essential to average over

ŝ, what lead to the final expression for fidelity

F̄ =
1

2
(1 +G), (3.19)

where the fidelity parameter is

G = G(ρ; β̂;A, T ) =

∫
dŝ(~rŝ) = (3.20)∫

dŝ[(T+ − T−)T~a+ (~v+ − ~v−)~x~a+ a+(T+~y + ~v+) + a−(T−~y + ~v−)]ŝ.

Here ρ = ρ(~x, ~y, T ), β̂ defines the plane to which the vector ŝ belongs and the explicit depen-

dence on the encoding A = {~a, a+, a−} and decoding strategy T = {T+, ~v+;T−, ~v−} is written.
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The full range of parameters describing the encoding A is written explicitly in (3.2), whereas

the decoding T in (3.6).

3.4 Optimal Remote State Preparation protocol for separable states

In this Subsection we derive the optimal Remote State Preparation protocol in the case when

the shared state ρAB is separable. We still work under the assumption of LOCC→,1 in which

Alice and Bob naturally share the reference frame on the Bloch sphere. We may choose the

coordinates as
{
β̂, ê, ê′

}
where β̂ × ê = ê′ and {ê, ê′} represent the coordinates system in the ŝ

plane.

For separable states we can restrict our considerations to pure states since in this case fi-

delity is the convex function. For pure states one finds that p± = a±(ŝ) + ~a(ŝ)ξ̂, where ξ̂ is

Alice Bloch vector. The reduced state of Bob is ρ± = 1
2 (I + ~n±σ̂), where ~n± is Bob Bloch vector

transformed by respective channel. Then (3.21) is of a form

G =
1

2

∫
dŝp+(ŝ) (~n+(ŝ)− ~n−(ŝ)) ŝ. (3.21)

The bracket (~n+(ŝ)− ~n−(ŝ)) ŝ attains maximal value for ~n+ = ê, ~n− = −ê (~n+ = −ê, ~n− = ê)

such that êŝ > 0 (êŝ < 0), where ê is an a priori known unit vector of the shared coordinates

frame. Then setting p+(ŝ) = 1 is optimal. In this case Alice POVM reduces to identity and Bob

prepares vector ±ê depending on the sign of êŝ. Note that this protocol is independent of an

input state and its fidelity is

F̄ =
1

2

(
1 +

2

π

∫ π
2

0
dθ cos θ

)
=

1

2

(
1 +

2

π

)
. (3.22)

As a result, separable states cannot lead to better fidelity than entangled ones (F̄ (ρent) ≥
F̄ (ρsep)). In the case, when for an entangled state there is no better strategy, one can always

use the presented protocol that is in fact independent of the shared state.

This result shows that in general quantum correlations beyond entanglement manifested

by non-zero quantum discord cannot be regarded as a better resource than entangled ones for

Remote State Preparation protocol.

However, there is still an interesting open question, namely if there are scenarios with ad-

ditional restrictions, in which separable states can have advantage over entangled states? In

order to find an answer, we need to perform optimization of the general protocol over Alice

POVMs
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3.5 Optimization of the protocol

In this section we optimize the quantity

G =

∫
dŝ[(T+ − T−)T~a+ (~v+ − ~v−)~x~a+ a+(T+~y + ~v+) + a−(T−~y + ~v−)]ŝ (3.23)

with respect to A (for the sake of clarity we omit all the arguments in its notation). We start by

defining the matrixM = (T+−T−)T +(|~v+〉−|~v−〉) 〈~x|, and ~V+ = (T+~y+~v+), ~V− = (T−~y+~v−).

Then the above function is of the form

G =

∫
dŝ[M~a+ a+

~V+ + a−~V−]ŝ, (3.24)

where the vector ~a and the scalars a± depend in general on ŝ and satisfy the conditions (3.2).

Let us put ~a = aâ, where 0 ≤ a = ||~a|| ≤ a±. Clearly the best choice to maximise the value of

G is to put â parallel to the vector MT ŝ or, in other words, â = MT ŝ
||MT ŝ|| . Then the value of the

integral becomes G =
∫
dŝa[||MT ŝ|| + a+

~V+ + a−~V−]ŝ, which may be further optimised with

respect to a by taking its maximal allowed value a = min[a+, a−].

Eventually, this gives the function optimised over ~a for fixed a± and all the other parame-

ters:

G =

∫
dŝ||[MT ŝ||min[a+, a−] + a+

~V+ + a−~V−]ŝ. (3.25)

Using notation M ′ = ||[MT ŝ|| ≥ 0, A± = ~V±ŝ, we may carefully consider the maximum of

f(p) = M ′min[p, 1− p] + pA+ + (1− p)A− (3.26)

over the interval p ∈ [0, 1], where we put p = a+ and 1 − p = a− for conciseness. The above

function has the following maxima:

(a) if M ′ ≥ |A+ −A−|, then maxp∈[0,1]f(p) = M+A++A−
2 achieved at p = 1

2 ;

(b) if M ′ < |A+ − A−|, then either (i) maxp∈[0,1]f(p) = A+ for A+ − A− > 0 (achieved at

p = 1) or (ii) maxp∈[0,1]f(p) = A− for A− −A+ > 0 (achieved at p = 1).

In case (a) the strategy of Alice is naturally the one of Ref. [17]; she performs the von

Neumann measurement with the projections P±â = 1
2(I ± â~σ). An intriguing strategy of Alice

in case (b) is that she just does nothing (since then the POVM is the identity) and puts the

message r to Bob depending on the sign of (A+ − A−) = (~V+ − ~V−)ŝ. Quite remarkably this

strategy gives always nonnegative contribution form the part of the integral (3.25) involving the

vectors ~V±.



40
Chapter 3. Quantum Correlations beyond entanglement and Remote State Preparation

protocol

We have then the three sets Ω0, Ω± in the unit circle on the ŝ plane, which are also presented

in the Figure 3.3, defined as

Ω0 = {ŝ : ŝβ̂ = 0, ||MT ŝ|| ≥ (~V+ − ~V−)ŝ};

Ω+ = {ŝ : ŝβ̂ = 0, ||MT ŝ|| < (~V+ − ~V−)ŝ};

Ω− = {ŝ : ŝβ̂ = 0, ||MT ŝ|| < (~V− − ~V+)ŝ}. (3.27)

The formula optimized over A is of the form

maxAG(ρ(~0,~0, T ); β̂;A, T ) = (3.28)∫
Ω0

dŝ
||MT ŝ||+ ~V+ŝ+ ~V−ŝ

2
+

∫
Ω+

dŝ~V+ŝ+

∫
Ω−

dŝ~V−ŝ.

We can further simplify the above formula by noting that the set Ω0 is symmetrical: Ω0 = −Ω0,

and that after the reflection the sets are equal Ω+ = −Ω−. From the former we get that

∫
Ω0

dŝ
||MT ŝ||+ ~V+ŝ+ ~V−ŝ

2
=

∫
Ω0

dŝ
||MT ŝ||

2
, (3.29)

and from the latter ∫
Ω+

dŝ~V+ŝ+

∫
Ω−

dŝ~V−ŝ =

∫
Ω+

dŝ(~V+ − ~V−)ŝ. (3.30)

Introducing definitions Ω+
0 = −Ω−0 (relations between different sets are presented in Figure 3.3)

as any of two subsets of original Ω0 such that Ω0 = Ω+
0 ∪ Ω−0 we arrive at the final formula

maxAG(ρ; β̂;A, T ) =

∫
Ω+

0

dŝ||MT ŝ||+
∫

Ω+

dŝ(~V+ − ~V−)ŝ. (3.31)

where A∗ denotes optimal Alice measurement (either von Neumann or trivial one).

3.5.1 Optimization in the case of Γinvariant

In this Section we will investigate a case of the protocol, in which Bob’s decoding strategy does

not depend on a Alice’s reference frame in the plane perpendicular to β̂.

There are several possible reasons justifying this assumption. Alice and Bob may not be

able to establish a common reference frame. Another is that Alice, after establishing decoding

strategy with Bob, can change type of input state by choosing different angle ϕ or her coordi-

nates system in the plane orthogonal to β̂ and Bob’s decoding should remain optimal. As a

consequence, Bob’s strategy cannot depend on the parametrization of the input Bloch vector.
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FIGURE 3.3: The sets Ω0, Ω± on the ŝ plane, defined in equation (3.27). Addition-
ally the subsets Ω+

0 ,Ω
−
0 forming the set Ω0 (Ω0 = Ω+

0 ∪ Ω−0 ) are depicted.

Technically, in this case decoding operations should be restricted to the class, which is in-

variant under averaging in the plane orthogonal to β̂ or always look the same after any rotation

in that plane. We will denote this class as Γinvariant. For operations belonging to Γinvariant we

have that

T ({T±} , {v±}) = T̃
({
T̃±

}
, {ṽ±}

)
(3.32)

T̃± =
1

2π

∫ 2π

0
dϕOŝ(ϕ)T±O

T
ŝ (ϕ), ~̃v± =

1

2π

∫ 2π

0
dϕOŝ(ϕ)~v±,

whereOŝ(ϕ) denotes rotation in the ŝ plane. As a result of averaging T̃± = diag[t±, T̃
(1)
± ], where

|t±| ≤ 1,
∥∥∥T̃ (1)
±

∥∥∥ ≤ 1 and T̃ (1)
± are 2x2 matrices acting in the ŝ plane that are invariant under any

rotation T̃ (1)
± = OT̃

(1)
± OT . The use of this class is natural also from game-like perspective: let us

allow Bob to use arbitrary channel T . Since he does not know the coordinates he must average

his decoding strategy over all possible orientations of reference frame on the ŝ plane. This

results a in decoding from Γinvariant. As a consequence we get that ~̃v± have no components

parallel to ŝ :

~rŝ =
∑
r=±

[T̃ (1)
r (ar~y + rT~a)]ŝ. (3.33)

By setting M = (T̃
(1)
+ − T̃ (1)

− )T and ~V± = T̃
(1)
± ~y and inserting it into (3.31), we obtain optimized

formula for maxAG(ρ(~x, ~y, T ); β̂;A, T̃ ). In the case of an isotropic correlations T = −λI there
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are two facts that allow to obtain the final result. We start by presenting and proving Fact 1 and

subsequently we do the same with Fact 2.

Fact 1

We can always decompose ~y as ~y = ‖ŷ‖
[
αû+ (1− α)β̂

]
. Then the formula

maxAG(ρ(~x, ~y,−λI); β̂;A, T̃ ) is monotonic function of parameter α = |~yû|.
Proof of Fact 1

Let us consider α′ > α, where α = |~yû|. Parameters α, α′ correspond to two different orienta-

tions of ~y with respect to ŝ plane, this is ~y = ‖ŷ‖
[
αû+ (1− α)β̂

]
and ~y′ = ‖ŷ‖

[
α′û+ (1− α′)β̂

]
.

For α′ (α) we will denote solutions of inequalities defining the sets as Ω+′

0 , Ω
′
+, (Ω+

0 , Ω+), sim-

ilarly ||MT ŝ|| = f ′ ( ~V ′+ − ~V ′−)ŝ = g′ (||MT ŝ|| = f (~V+ − ~V−)ŝ = g). Let us recall that here

we consider only the restricted class of the invariant (equivalently averaged) decodings T̃ . It

follows from the definition of the sets that Ω+′

0 < Ω+
0 and Ω

′
+ > Ω+ as well as f ′ = f =

λ||(T̃ (1)
+ − T̃ (1)

− )T ŝ||. We can rewrite g′ as g′ = (T̃
(1)
+ − T̃ (1)

− )~y′ŝ = ~y′(T̃
(1)
+ − T̃ (1)

− )T ŝ = ~y′ ~w(ŝ)

and as a consequence the following relation holds g′ = ~y′ ~w(ŝ) =
∥∥∥~y′∥∥∥α′û ~w(ŝ) = ‖~y‖α′û ~w(ŝ) >

‖~y‖αû~w(ŝ) = g . Thus we can write

max
A

G(ρ; β̂′;A, T̃ ) =

∫
Ω+′

0

dŝf ′ +

∫
Ω
′
+

dŝg′ = (3.34)∫
Ω+′

0

dŝf +

∫
Ω
′
+\Ω+

dŝg′ +

∫
Ω+

dŝg′ ≥
∫

Ω+′
0

dŝf +

∫
Ω
′
+\Ω+

dŝf +

∫
Ω+

dŝg =∫
Ω+

0

dŝf +

∫
Ω+

dŝg = max
A

G(ρ; β̂;A, T̃ ).

As a result, for α′ > α it holds that maxAG(ρ; β̂′;A, T̃ ) ≥ maxAG(ρ; β̂;A, T̃ ).

Fact 2

The optimization over Γinvariant class, which naturally corresponds to the situation with an

unknown coordinates system, yields minβ̂maxA,T̃G(ρ(~x, ~y,−λI); β̂;A, T̃ ) = λ and then conse-

quently

F̄invariant(ρ(~x, ~y,−λI)) =
1

2
(1 + λ) . (3.35)

Proof of Fact 2 It follows from Fact 1 that maxAG(ρ(~x, ~y,−λI); β̂;A, T̃ ) is monotonic in α

parameter, where α = |~yû|. Let us consider and prove a simple Lemma.

Lemma Let f(a, x) be a function with a ∈ [a0, a1] and x ∈ Ω ⊂ Rn where Ω is compact. Suppose

that (i) for any a ≤ a′ and for any x one has f(a, x) ≤ f(a′, x); (ii) the x(a) is some (may be not

unique) point realising maximum of f(a, x) over x for fixed a, i.e. f(a, x(a)) = maxxf(a, x).

Then the function f(a, x(a)) is monotonic in a. As a result
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mina∈[a0,a1]maxx∈Ωf(a, x) = maxx∈Ωf(a0, x).

Proof of Lemma

Consider any a ≤ a′. Then we have f(a, x(a)) ≤ f(a′, x(a)) ≤ f(a′, x(a′)), where the first

inequality follows from (i) and the second one from (ii).

Coming back to the proof of the Fact 2 we may put in place of a ∈ [a0, a1] in the Lemma above

the parameter α ∈ [0, 1] and in place of x all the other parameters contained in the sets A, T̃
getting the desired monotonicity in Fact 2.

As a result of the Fact 2 we can set α = 0 which implies β̂∗ = ŷ, Ω+
0 = (0, π), Ω+ = ∅,what

corresponds to von Neumann measurement of Alice

minβ̂maxA,T̃G(ρ(~x, ~y,−λI); β̂;A, T̃ ) = minβ̂maxT̃G(ρ(~x, ~y,−λI); β̂;A∗, T̃ ) = (3.36)

maxT̃G(ρ(~x, ~y,−λI); β̂∗ = ŷ;A∗, T̃ ) = max
T̃

(1)
+ ,T̃

(1)
−

∫
Ω+

0

dŝλ||(T̃ (1)
+ − T̃ (1)

− )T ŝ|| = λ.

To arrive at the above expression we exploited the fact that α = 0, which implies ~y||β̂. Moreover

the triangle inequality ||(T̃ (1)
+ − T̃ (1)

− )T ŝ|| ≤ ||(T̃ (1)
+ ŝ|| + ||T̃ (1)

− ŝ|| ≤ 2 is saturated for T̃ (1)
± = ±I

and dŝ represents the measure on the plane dŝ = dϕ
2π . Alice measurement is determined by

â = MT ŝ
||MT ŝ|| . The choice of T̃ (1)

± = ±I implies that M = 2λI acts on the circle. This eventually

determines the Alice von Neumann measurement â = ŝ. The latter together with T̃
(1)
± = ±I

shows that the protocol optimal under quadratic fidelity in [17] is also optimal in the case of

Γinvariant .

Now, following [17], consider the following class: ρ(tẑ, tẑ,−λI); or in other words the states

with parameters: T = −λI , ~x = ~y = tẑ where the positivity condition determines the following

range of parameter t: |t| ≤ 1−λ
2 . For any fixed non-zero λ there are entangled states in that

class namely the ones satisfying in addition the inequality |t| > 1
2

√
1− 2λ− 3λ2. All of these

entangled states ρ(~x, ~y,−λI) with λ < 1
3 will – due to Fact 2 – have worse fidelity in Remote

State Preparation protocol (under the restriction of unknown coordinate system) than the sep-

arable states ρ(~0,~0,−λ′I) with λ′ ∈ (λ, 1
3) . This comprises as special cases considered in [17]:

the separable case λ′ = 1
3 , t = 0 and an entangled one with λ = 1

5 , t = 2
5 . The overall conclusion

is that whenever Bob does not know the coordinates of Alice in the ŝ plane then entanglement

may be less useful than quantum correlations beyond it, this is the ones contained in separable

states.

3.5.2 Optimal Remote State Preparation in the case of bistochastic channels for Bell
diagonal states

Another possible situation leading to restrictions on Bob’s decoding operations takes place

when temperature of Bob’s environment is infinite. Then he can use only bistochastic channels,
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this is the ones for which ~v± = 0 in (3.4), what leads to allowed decodings of a from

Λ±[ρ(~u)] =
1

2
[I + (T±~u)~σ]. (3.37)

For Bell diagonal states the formula (3.31) can be fully optimized. Here by Bell diagonal

states we mean all the states that are local unitary (this is U1 ⊗ U2 type) rotations of the states

diagonal in the standard Bell basis |Ψ±〉 = 1√
2
(|00〉 ± |11〉) and |Φ±〉 = 1√

2
(|01〉 ± |10〉). It is

known that [72] all such states can be represented by ρ(~0,~0, T ).

Now we present details of the optimization. The first step it to maximize
∥∥MT ŝ

∥∥ over

bistochastic decoding strategies Ť and one obtains Ť+ = I and Ť− = −I – rotation about β̂ di-

rection. From the definition of sets 3.27 we see, that as in the case of LOCC→,1 the optimal von

Neumann measurement is determined by â = ŝ. Again, for fixed β̂, the protocol from [17] turns

out to be optimal. Now we should show that the minimization of the protocol fidelity over β̂ is

provided for circle Ω, which contains all versors ŝ orthogonal to the eigenvector corresponding

to the largest eigenvalue of TT T . This means that Remote State Preparation of pure states with

Bloch vectors ŝ from that circle is the worst from the point of view of transfer fidelity. For Bell

states TT T = diag[t21, t
2
2, t

2
3], t23 ≥ t22 ≥ t21. Let us parametrize all ŝ ∈ Ω (and hence orthogonal

to the eigenvector corresponding to the largest eigenvalue of TT T ) by ϕ angle. Let us denote

maxA,ŤG(ρ(0, 0, T ); β̂;A, Ť ) = 1
2π

∫ 2π
0 dϕg(ŝ(ϕ, θ(ϕ))), where in this case θ(ϕ) is trivial, this is

θ(ϕ) = 0 . In this setting we have

max
A,Ť

G(ρ(0, 0, T ); β̂;A, Ť ) =

∫
dŝ
∥∥∥[(Ť+ − Ť−)T

]T
ŝ
∥∥∥ = 2

∫
dŝ
∥∥T T ŝ∥∥ = (3.38)

2

∫
dŝ
(
〈ŝ|TT T |ŝ〉

) 1
2 =

1

2π

∫ 2π

0
dϕg(ŝ(ϕ, 0)) =

1

π

∫ π

0
dϕ
(
t21 cos2 ϕ+ t22 sin2 ϕ

) 1
2 .

Let us now consider a rotation of ŝ. We can decompose any rotation into rotation about

y axis in a plane perpendicular to β̂ by η angle followed by rotation about β̂ by µ angle.

Then ŝ is transformed into ŝ′, what corresponds to the change of parametrization (ϕ, θ(ϕ)) →
(ϕ′(ϕ), θ′(ϕ)) (this transformation is schematically depicted in Figure 3.4). In the rotated frame

maxA,TG(ρ(0, 0, T ); β̂′;A, Ť ) =
∫
dŝ′g(ŝ′) = 1

2π

∫ 2π
0 dϕg(ŝ′(ϕ′(ϕ), θ′(ϕ))) (for the explicit form

of g(ŝ′(φ′(ϕ), θ′(ϕ))) see (3.40) below). We will need the following

Lemma The function f(x) =
∫ 2π

0 dϕ
√
A−B sin2 ϕ+ x sin 2ϕ is decreasing function of x.

Proof We have

∂

∂x
f(x) =

∫ 2π

0
dϕ

sinϕ cosϕ√
A−B sin2 ϕ+ x sin 2ϕ

= (3.39)

2

∫ π
2

0
dϕ sinϕ cosϕ

(
1√

A−B sin2 ϕ+ x sin 2ϕ
− 1√

A−B sin2 ϕ− x sin 2ϕ

)
< 0.



3.5. Optimization of the protocol 45

FIGURE 3.4: Relation between two coordinates systems. Plane containing cir-
cle Ω is orthogonal to β̂. In this plane the unit versor ŝ is parametrized

be ϕ angle and g(ŝ(ϕ, 0))) =
(
〈ŝ(ϕ, 0)|TTT |ŝ(ϕ, 0)〉

) 1
2 . Plane containing

Ω′ is rotated with respect to that containing Ω. Versor ŝ′ in the plane con-
taining Ω′ can be again parametrized by ϕ and we have g(ŝ′(ϕ′(ϕ))) =(
〈Rβ(µ)Ry(η)ŝ(ϕ, 0)|TTT |Rβ(µ)Ry(η)ŝ(ϕ, 0)〉

) 1
2 . The figure is reproduced from

[71].

To get the desired result, we consider the function g(ŝ′(ϕ′(ϕ), θ′(ϕ))) which can be explicitly

written as

g(ŝ′(ϕ′(φ), θ′(ϕ))) =
(
〈Rβ(µ)Ry(η)ŝ|TT T |Rβ(µ)Ry(η)ŝ〉

) 1
2 = (3.40)(

cos2 ϕ
[
cos2 η(t21 cos2 µ+ t22 sin2 µ) + sin2 ηt23

]
+

1

2
sin 2ϕ sin 2µ cos η(t22 − t21) +

sin2 ϕ(sin2 µt21 + cos2 µt22)

) 1
2

.

Now the following relation holds∫ 2π

0
dϕg(ŝ′(ϕ′(φ), θ′(ϕ))) = (3.41)∫ 2π

0
dϕ

(
cos2 ϕ

[
cos2 η(t21 cos2 µ+ t22 sin2 µ) + sin2 ηt23

]
+

1

2
sin 2ϕ sin 2µ cos η(t22 − t21) +

sin2 ϕ(sin2 µt21 + cos2 µt22)

) 1
2

=∫ 2π

0
dϕ

(
(1− sin2 ϕ)

[
cos2 η(t21 cos2 µ+ t22 sin2 µ) + sin2 ηt23

]
+

1

2
sin 2ϕ sin 2µ cos η(t22 − t21) +

sin2 ϕ(sin2 µt21 + cos2 µt22)

) 1
2

≥∫ 2π

0
dϕ

(
cos2 ϕ

[
cos2 η(t21 cos2 µ+ t22 sin2 µ) + sin2 ηt23

]
+

1

2
sin 2ϕ sin 2µ(t22 − t21) +
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sin2 ϕ(sin2 µt21 + cos2 µt22)

) 1
2

≥∫ 2π

0
dϕ

(
cos2 ϕ(t21 cos2 µ+ t22 sin2 µ) +

1

2
sin 2ϕ sin 2µ(t22 − t21) + sin2 ϕ(sin2 µt21 + cos2 µt22)

) 1
2

=∫ 2π

0
dϕ
(
t21 cos2 ϕ+ t22 sin2 ϕ

) 1
2 =

∫ 2π

0
dϕg(ŝ(ϕ, 0)).

The first inequality follows from Lemma with A = cos2 η(t21 cos2 µ + t22 sin2 µ) + sin2 ηt23, B =

cos2 η(t21 cos2 µ + t22 sin2 µ) + sin2 ηt23 − sin2 µt21 + cos2 µt22 and x = 1
2 sin 2ϕ sin 2µ cos η(t22 − t21).

We increased x by setting cos η = 1. The second inequality follows from the fact that t23 ≥
sin2 µt21 + cos2 µt22, the last equality from the fact that rotation about β̂ direction by the angle µ

does not change the value of the function.

Because
∫ 2π

0 dφg(ŝ(ϕ, 0)) ≤
∫ 2π

0 dφg(ŝ′(ϕ′, θ′(ϕ))), minimum over β̂ provides ŝ orthogonal

to the largest eigenvalue of TT T . Taking this into account we have

min
β

max
A,Ť

G(ρ(0, 0, T ); β̂;A, Ť ) =
1

2π

∫ 2π

0
dφg(ŝ(ϕ, 0)) = (3.42)

1

π

∫ π

0
dϕ
(
t21 cos2 ϕ+ t22 sin2 ϕ

) 1
2 .

Let us recall the definition of the complete elliptic integral of the second kind [74]

E(k) =

∫ π
2

0
dϕ

√
1− k2 sin2 ϕ. (3.43)

Using it we get

min
β

max
A,Ť

G(ρ(0, 0, T ); β̂;A, Ť ) =
2|t2|
π

E

(√
1− t21

t22

)
. (3.44)

F̄bistochastic =
1

2

[
1 +

2|t2|
π

E

(√
1− t21

t22

)]
, (3.45)

where t21, t
2
2 are two lowest eigenvalues of T TT , E(x) is complete elliptic integral of the second

kind [74] and Ť denotes Bob bistochastic decoding. In this case it is also possible to show

that there exist separable states leading to higher fidelity of RSP protocol than entangled ones.

To this end we consider two Bell diagonal states with the following correlation tensors: T1 =[
−1

3 ,−
1
3 ,−

1
3

]
, T2 =

[
−1

3 − 2ε,−1
3 + ε

2 ,−
1
3 + ε

2

]
, where ε > 0. The set of separable Bell diagonal

states is specified by condition |t1| + |t2| + |t3| ≤ 1. Clearly the state corresponding to T1 is
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separable whereas that corresponding to T2 is not. Using (3.45) one immediately obtains that

F̄bistochastic(ρ(~0,~0, T1)) =
2

3
>

2

3
− ε

4
= F̄bistochastic(ρ(~0,~0, T2)). (3.46)

Interestingly (3.45) depends only on the two smallest eigenvalues of TT T . Since the geomet-

ric discord is in this case of the formD(ρ(~0,~0, T )) = 1
4(t21+t22) the optimized fidelity depends on

the same parameters like the one used in [17]. This shows that in the case of bistochastic decod-

ing the presented result based on standard fidelity and the one based on quadratic fidelity are

consistent in the sense that the qualitative behavior of optimized linear and quadratic fidelity

is similar. This statement is illustrated in Figure 3.5

FIGURE 3.5: The comparison of optimized linear F̄bistochastic (3.45) – upper sur-
face and quadratic Popt (3.13) – lower surface fidelity for bistochastic decodings.

3.6 Concluding remarks

In this Chapter we studied the usefulness of quantum entanglement and quantum separable

correlations as the resource in the Remote State Preparation protocol. Our main motivation

were the recent result from literature [17], in which it was claimed that the quantum correla-

tions beyond entanglement are the crucial resource for the protocol in question. Although it

is known that this type of quantum correlations, contained in separable states, may be useful

in quantum information processing, the basic issue is whether they may outperform entangle-

ment in any case.

The analysis performed in this chapter shown that one should be careful in comparison

of the two resources. In fact two-qubit separable states cannot outperform two-qubit entan-

glement in the process of Remote State Preparation of quantum bit under the most general

assumptions on the allowed operations. We assumed that the most natural setting is that pro-

vided by LOCC class, where additionally the classical communication is restricted to one bit

of forward communication (to prevent the direct transition of the state to be prepared). This

lies in the heart of the balance of quantum resources within LOCC scenario: whenever initial

entanglement is too weak, it may be removed and an optimal separable state can be prepared
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(as this can be achieved by LOCC operations). In such a case, the efficiency of the protocol is

equal to the best efficiency provided by all separable correlations based protocols. Thus any

protocol with initial entanglement cannot be worse than the one with separable state.

The apparent contradictions to the above may only take place if one use nonstandard figure

of merit. It has been shown here that it is indeed the case when one uses the quadratic fidelity.

As the latter is not able to make a difference between the orthogonal states, it is an incorrect tool

for quantifying different resources in Remote State Preparation protocol. The standard linear

fidelity works well from that perspective.

However, our analysis shows that all the above does not exclude the advantage of separable

quantum correlations in the cases when there are additional restrictions on the set of allowed

operations. As a result, in such cases the optimal protocol for separable states derived in this

Chapter cannot be performed. Therefore, in principle, it could be no longer true that entangled

states are in the worst case as useful as the separable ones. In this Chapter we have shown

that if in the Remote State Preparation protocol of a qubit state the receiver is restricted to

the decoding class, which reflects his lack of knowledge about the coordinates in the ŝ plane,

then separable correlated states can work better than entanglement. The second scenario when

the latter may happen is the one when the receiver is forced to use bistochastic decodings.

Then, whenever the parties share Bell diagonal quantum state, the linear fidelity of the protocol

depends on the same set of parameters as geometric quantum discord.

The latter result is even more intriguing, when one realizes that the restriction of bistochas-

tic character of the decoding may be interpreted as a presence of "thermodynamically unsuit-

able" anciallas, namely those of infinite temperature. Note that in this case quantum correla-

tions beyond entanglement can work better than entanglement itself and that one option to

discriminate those correlations form classical ones is just the thermodynamical picture of local

engines (see [75, 76]). This suggests that possible thermodynamical perspective of the discussed

protocol (and also practical aspects of other protocols aimed in using quantum correlations be-

yond entanglement) should be examined more in future.

The results of this section show also that one should carefully define notion of classical

correlation structures in Quantum Theory. As has been mentioned in Section 2.2, some authors

consider correlations that can be found in separable quantum states to be classical. Here we

proved that there exists scenarios, in which such correlations can outperform entangled states

in Remote State Preparation protocol. We would not expect classical resource to behave in this

way.
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Chapter 4

Spectrum Broadcast Structures for
environments of harmonic oscillators

4.1 Introduction

The aim of this Chapter is to prepare tools that will be used to investigate formation of Spec-

trum Broadcast Structures in physical models, in particular those in Chapter 5. As has been

discussed in Subsection 2.4.3, one method of checking the formation of Spectral Broadcast

Structures is to study the behavior of two indicator functions – decoherence factor govern-

ing the disappearance of coherences in the partially reduced system-environment state and

generalized overlap measuring the information content of the observed fragments of the en-

vironment. The indicator functions in general depend on the considered physical model – an

interaction between a system and an environment and an initial state of the environment. Here

our objective is to derive expressions for indicator functions that will be as general as possi-

ble. Therefore, instead of invoking a particular system-environment model, we assume that

we deal with a situation in which environment consists of N quantum harmonic oscillators.

The central system at the moment is not specified. This setting encompass two canonical mod-

els of decoherence: Quantum Brownian Motion and spin – boson model [12]. This Chapter is

partially based on results published in [77].

4.2 Derivation of the evolution operator

For the purpose of this Chapter we assume that the relevant Hamiltonian is

ĤS:E =

N∑
k=1

(
p̂2
k

2mk
+
mkω

2
kx̂

2
k

2

)
+
∑
O

f(O, t)|O〉〈O| ⊗
N∑
k=1

(Ckx̂k +Gkp̂k), (4.1)



50 Chapter 4. Spectrum Broadcast Structures for environments of harmonic oscillators

where f(O, t) is some function depending in general on O, t. Here we assume that the sys-

tem operator is finite-dimensional to keep notation simple. However, extension to infinite-

dimensional case is (at least from notational point of view) straightforward. The Hamiltonian

is far from being the most general one: we assume that the coupling is linear in position and

momentum of the environmental oscillators and it is of a product form, given by tensor prod-

uct of system’s and environments’ operators. Moreover, there is no system’s self-Hamiltonian

and the system enters the problem only via the interaction term given by some function of op-

erator Ô =
∑

O O|O〉〈O|. However, this is the most general form of a Hamiltonian, for which

we are able to derive formulas for functions indicating Spectrum Broadcast Structure forma-

tion. In the case when both [ĤS , ĤINT ] 6= 0 and [ĤE , ĤINT ] 6= 0 there is no general method

of checking if the Spectrum Broadcast Structure is formed and each such situation requires a

separate treatment (one of such cases will be presented in Chapter 5). Although the choice

of the Hamiltonian may to some extend seem to be artificial, in fact there are situations, rele-

vant from the physical point of view, in which the dynamics is governed by (4.1). The above

Hamiltonian arises for example in the mentioned canonical models of decoherence where the

environment is described as a set of quantum harmonic oscillators – so called boson-boson and

spin-boson models – in (at least) two cases. The first one corresponds to a situation in which the

system’s self-Hamiltonian commutes with the interaction Hamiltonian. Usually it is achieved

by neglecting the non-commuting part of the self-Hamiltonian like in simplified spin-boson

or simplified Quantum Brownian Motion model. Alternatively one can arrive at Hamiltonian

(4.1) by invoking an approximation that separates the dynamics of the system and environ-

ment (similar to Born-Oppenheimer approximation). We use this approach to study Quantum

Brownian Motion model in Chapter 5.

To solve the dynamics, we pass to interaction picture with respect to the environment (as

we assume that, in some sense, the dynamics of the system is already taken into consideration

by f(O, t) function ) ĤI(t) = eiĤ0Et/h̄Ĥe−iĤ0Et/h̄ to get

ĤI(t)S:E =
∑
O

|O〉〈O| ⊗ f(O, t)
N∑
k=1

(Ckx̂k(t) +Gkp̂k(t)) ≡
∑
O

|O〉〈O| ⊗
N∑
k=1

ĤI
k(f(O, t); t). (4.2)

To calculate the evolution operator Û I(t) = T exp
[
− i
h̄

∫ t
0 dτĤ

I(f(O, τ); τ)
]

we use the standard

decomposition

Û I(t) = lim
n→∞

(
n∏
r=1

exp

[
− i
h̄
ĤI(f(O, tr); tr)∆t

])
, (4.3)



4.2. Derivation of the evolution operator 51

where ∆t ≡ t/n, tr ≡ r∆t. Direct calculation of the exponent series for each infinitesimal time

step ∆t gives:

exp

[
− i
h̄
ĤI(f(O, tr); tr)∆t

]
=
∑
O

|O〉〈O| ⊗
N⊗
k=1

e−
i
h̄
ĤI
k(f(O,tr);tr)∆t. (4.4)

Now we use the expressions for evolution of position and momentum operators under Hamil-

tonian of quantum harmonic oscillator Ĥk = p̂2
k/(2mk) +mkωkx̂

2
k/2

x̂k(t) ≡ eitĤk/h̄x̂ke−itĤk/h̄ =

√
h̄

2mkωk
(âke

−iωkt + â†eiωkt) (4.5)

p̂k(t) ≡ eitĤk/h̄p̂ke−itĤk/h̄ = −i
√
h̄mkωk

2
(âke

−iωkt − â†eiωkt) (4.6)

, with â†, â being the creation and annihilation operators for the k-th environmental oscillator,

we further obtain:

e−
i
h̄
ĤI
k(f(O,t);t)∆t = exp

[
− f(O, t)∆t√

2h̄mkωk

(
ieiωkt (Ck + iGkmkωk) â

† −
(
ieiωkt (Ck + iGkmkωk)

)∗
â
)]

=

D̂

(
α′k(t)f(O, t)∆t

)
, (4.7)

where D̂(α) = exp(αâ†k − α
∗âk) is displacement operator and

α′k(t) = − i (Ck + iGkmkωk)√
2h̄mkωk

eiωkt. (4.8)

Inserting (4.7) into (4.3) gives:

n∏
r=1

exp

[
− i
h̄
ĤI(f(O, tr); tr)∆t

]
= (4.9)

∑
O

|O〉〈O| ⊗
N⊗
k=1

D̂

(
α′k(tn)f(O, tn)∆t

)
· · · D̂

(
α′k(t1)f(O, t1)∆t

)
.

To calculate the string of the displacement operators we use repetitively the composition law:

D̂(α)D̂(β) = e
1
2

(αβ∗−α∗β)D̂(α+ β), (4.10)

and obtain:

n∏
r=1

D̂

(
α′k(tr)f(O, tr)∆t

)
= D̂

(
n∑
r=1

α′k(tr)f(O, tr)∆t

)
× (4.11)
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× exp

[
i
C2
k +G2

km
2
kω

2
k

2h̄mkωk
Im∆t2

n∑
r′=1

eiωktr′f(O, tr′)
r′∑

r′′=1

e−iωktr′′f(O, tr′′)

]
.

Now we are ready to take the limit n → ∞, resulting in ∆t → 0, n∆t = const = t. For the

displacement operator the limit can be moved inside the argument so that:

lim
n→∞

D̂

(
n∑
r=1

α′k(tr)f(O, tr)∆t

)
= D̂

(∫ t

0
α′k(τ)f(O, τ)dτ

)
≡ D̂(ηk(O, t)). (4.12)

For the phase factor (4.11) we again move the limit inside the argument of the exponent to

obtain:

C2
k +G2

km
2
kω

2
k

2h̄mkωk
lim
n→∞

Im
n∑

r′=1

f(O, tr′)e
iωktr′∆t

r′∑
r′′=1

f(O, tr′′)e
−iωktr′′∆t (4.13)

=
C2
k +G2

km
2
kω

2
k

2h̄mkωk

∫ t

0
dt′
∫ t′

0
dt′′f(O, t′)f(O, t′′) sin

[
ωk(t

′ − t′′)
]
≡ ξt(O, t).

Thus, restoring the free evolution of the environment, we arrive at the final form of the evolu-

tion operator

ÛS:E(t) =
∑
O

|O〉〈O| ⊗
N⊗
k=1

êiξk(O,t)e−iĤkt/h̄D̂k(ηk(O, t)) ≡
∑
O

|O〉〈O| ⊗
N⊗
k=1

Ûk(O, t). (4.14)

This is the main result of this Subsection. We see that the above dynamics is of the so-called

control type – the evolution of the environment depends on the central system.

4.3 Analytical derivation of functions indicating Spectrum Broadcast

Structure formation

In this section we derive expressions for functions indicating Spectrum Broadcast Structure

formation – the decoherence factor and generalized overlap and calculate them explicitly for

initial thermal states of the environment in the case of the evolution operator given by equation

(4.14). In the following considerations we refer to those functions as indicator functions. We

begin by specifying the type of system-environment initial state.

Usually in the treatment of open quantum systems one assumes that initial system-environment

state factorizes

ρS:E(0) = ρ0S ⊗
N⊗
k=1

ρ0k. (4.15)
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This means that there are no correlation between the system and the environment. Such a

statement should be considered as an idealization. In fact, this case corresponds to a situation

in which the system and the environment is initially uncoupled and then the interaction is

"switched on" instantly. This assumption may lead to some unexpected results concerning

quantities considered in the context of open quantum systems (for example diffusion coefficient

in low temperature Quantum Brownian motion with Ohmic environment [78]). However, the

approximation does not affect in a significant way results concerning decoherence. Moreover,

as we are interested in system-environment correlations created dynamically during evolution,

the above approximation is convenient also from technical point of view. For these reasons we

adopt it in our considerations. As a result of the evolution at time t the system-environment

state is

ρ(t)S:E =
∑
O

〈O|ρ0S |O〉|O〉〈O| ⊗
N⊗
k=1

Ûk(O, t)ρ0kÛ
†
k(O, t) + (4.16)

∑
O,O′,O 6=O′

〈O|ρ0S |O′〉|O〉〈O′| ⊗
N⊗
k=1

ei(ξk(O,t)−ξk(O′,t))Ûk(O, t)ρ0kÛ
†
k(O′, t).

Subsequently some fragment of the environment needs to pass unobserved. As has been ex-

plained previously, this requirement is crucial for the decoherence process to happen. Due

to the interaction an initial coherence of the state of the central system becomes a property

of the global system-environment state and it may no longer be observed at the level of par-

tially reduced state. The unobserved fragment of the environment is denoted as (1− f), where

0 ≤ f ≤ 1. After performing the trace the partially reduced state is

ρ(t)S:fE =
∑
O

〈O|ρ0S |O〉|O〉〈O| ⊗
fN⊗
k=1

Ûk(O, t)ρ0kÛ
†
k(O, t) + (4.17)

∑
O,O′,O 6=O′

ΓO,O′(t)〈O|ρ0S |O′〉|O〉〈O′| ⊗
fN⊗
k=1

ei(ξk(O,t)−ξk(O′,t))Ûk(O, t)ρ0kÛ
†
k(O′, t).

where ΓO,O′(t) is the decoherence factor that reads

ΓO,O′(t) =
∏

k∈(1−f)E

Tr
[
ei(ξk(O,t)−ξk(O′,t))D̂k(ηk(O, t))ρ0kD̂

†
k(ηk(O

′, t))
]
, (4.18)

where the free evolution terms dropped out due to the cyclic property of the trace. We note

that, since the evolution of the environment is in this case given by the displacement operators

(4.14), the decoherence factor (4.18) is in fact a characteristic function (refereed sometimes to

as zero-order or Wigner characteristic function) of the unobserved fragment of initial state of
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the environment (or more precisely, due to the presence of the phase factor eiξk(O,t) is a non-

commutative characteristic function on the Heisenberg group [79]).

We proceed accordingly to steps outlined in Section 2.4: to show Spectrum Broadcast Struc-

ture we must firstly investigate the decoherence process – disappearance of off-diagonal terms

in equation (4.17) and then the transfer of classical information to the environment.

4.3.1 Decoherence factor

In fact, to show that the off-diagonal coherent part vanishes it is sufficient to consider modulus

of the decoherence factor

∣∣ΓO,O′(t)∣∣ =

∣∣∣∣∣∣
∏

k∈(1−f)E

Tr
[
ei(ξk(O,t)−ξk(O′,t))D̂k(ηk(O, t))ρ0kD̂

†
k(ηk(O

′, t))
]∣∣∣∣∣∣ . (4.19)

We immediately see that the dynamical phase factor drops out due to the modulus and there-

fore will not contribute to the decoherence process. The decoherence factor consists of a product

of individual decoherence factors for each environmental subsystem that is not observed. We

focus on a single term in the product and for a moment drop the explicit dependence on the

environmental index k, value ofO and t. At this point we do not specify the state of the environ-

ment, we assume only that it can be written in terms of Glauber–Sudarshan P -representation

[80, 81]:

%0 =

∫
d2γ

π
P (γ)|γ〉〈γ| (4.20)

where P is in general a distribution [82] and |γ〉 ≡ D̂(γ)|0〉 are the standard coherent states [83].

We insert this into (4.18) and perform formal calculations

tr

[∫
d2γ

π
P (γ)D̂ (η) |γ〉〈γ|D̂

(
η′
)]

= (4.21)∫
d2γ

π
P (γ)

〈
γ + |γ + (η − η′)

〉
e

1
2

[(ηη′∗−η∗η′)+(η−η′)γ∗−(η−η′)∗γ] =

=

∫
d2γ

π
P (γ) exp

[
− |γ|

2

2
− |γ + (η − η′)|2

2
+ γ∗(γ + (η − η′)) +

1

2
(ηη′∗ − η∗η′) + (η − η′)γ∗ − (η − η′)∗γ

]
,

where we used twice the composition law (4.10). Performing the simple algebra in (4.21), we

finally obtain:

∣∣ΓO,O′(t)∣∣ =
∏

k∈(1−f)E

e−
1
2
|ηk(O,t)−ηk(O′,t)|2 × (4.22)
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×
∣∣∣∣∫ d2γ

π
P (γ) exp

[
−
(

(ηk(O, t)− ηk(O′, t))∗γ − (ηk(O, t)− ηk(O′, t))γ∗
)]∣∣∣∣ .

As a result, we see that the decoherence factor for an individual environmental subsystem con-

sists of a modulus of a Fourier transform of the P function with respect to a complex variable

ηk(O, t)− ηk(O′, t) smoothed with a Gaussian function e−
1
2
|ηk(O,t)−ηk(O′,t)|2 .

To proceed further we need to specify the initial state of the environment. We begin with

a natural assumption, namely that the environment is initially in a thermal state. Although

well justified from physical perspective, this is still a restriction and we overcome it later by

investigating general single mode Gaussian states. The P -representation of a thermal state is

ρ0k =
1

n̄k

∫
d2γk
π

e
− |γk|

2

n̄k |γk〉〈γk|, (4.23)

where n̄ = 1/(eτTωk−1) is the mean photon number and we introduced thermal time parameter

τT =
h̄

kBT
, (4.24)

to keep equations concise. The formula for the decoherence factor takes the form

∣∣ΓO,O′(t)∣∣ = exp

−1

2

∑
k∈(1−f)E

|ηk(O, t)− ηk(O′, t)|2 coth
(τTωk

2

) , (4.25)

where ωk is frequency of kth oscillator. This is the final result of the present Subsection that will

be used in further parts of the thesis to study particular physical models.

4.3.2 The generalized overlap for thermal states

In this Subsection we investigate information content of the environmental states

%k(O, t) ≡ Ûk(O, t)ρ0kÛ
†
k(O, t), (4.26)

which form the diagonal part of (4.17), by we calculating the generalized overlap

Bmac
O,O′(t) ≡ B

(
%mac(O, t), %mac(O

′, t)

)
, (4.27)

where

%mac(O, t) ≡
⊗
k∈mac

%k(O, t) (4.28)
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and

B(%1, %2) ≡ tr
√√

%1%2
√
%1. (4.29)

As has been mentioned generalized overlap measures distinguishability of two states that in

our case are parametrized by functions ηk(O, t), ηk(O′, t). In other words, if the two states are

perfectly distinguishable one should be, in principle, able to extract some information about

O (or even about the function ηk(O, t)). Generalized overlap scales conveniently with a tensor

product in (4.28):

B

(⊗
k

%k(O, t),
⊗
k

%k(O
′, t)

)
=
∏
k

B

(
%k(O, t), %k(O

′, t)

)
. (4.30)

As has been pointed out, this is especially important in the case, when the single environmental

subsystem is merely affected by the interaction with the central system. Then states evolving

accordingly to O and O′ are almost indistinguishable since the interaction is to week to imprint

a significant piece of information about the central system on the single subsystem of the en-

vironment. However, it may happen that a group of subsystems allows to extract information

about the central system since the joint states of the group, called macrofractions, become dis-

tinguishable. To check if this is indeed the case, it is enough to calculate the generalized overlap

for a single environment (if there are no initial correlations between subsystems forming en-

vironment, what is our assumption) and then take the product over all subsystems forming

macrofraction.

We work under the same assumptions as in the previous Section. We consider that the initial

state is uncorrelated – equation (4.15). Coming back to calculations, for the sake of clarity, we

drop the explicit dependence on the environmental index k denote a single-system overlap by

Bmic
O,O′(t). As a result we get

Bmic
O,O′(t) = Tr

√√
%0Û †(O′, t)Û(O, t)%0Û †(O, t)Û(O′, t)

√
%0. (4.31)

To arrive at the above equation we used the fact that

Tr
√
Û ÂÛ † = TrÛ

(√
Â
)
Û † = Tr

√
A, (4.32)

where Û is some unitary and Â some hermitian operator. Then the first equality follows from

the fact that unitary does not change the spectrum, the second from cyclic property of the trace.

Similarly, in equation (4.31) we firstly pulled the extreme left and right unitary operators out

of the both square roots and used the cyclic property of the trace to cancel them out. Note

that the free evolutions e−iĤkt/h̄ and the dynamical phases from (4.1) cancel out as both unitary
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operators under the square root are Hermitian conjugates of each other. The same applies

to the phase factors arising from the composition law of displacement operators (4.10), when

calculating D†(η′)D̂(η)). Thus, modulo phase factors (from now we drop dependence on value

of O and t):

Û †(O′, t)Û(O, t) ' D̂†(η′)D̂k(η) = D̂(−η′)D̂(η) ' D̂
(
η − η′

)
≡ D̂(χ), (4.33)

where we used D̂†(α) = D̂(−α). Next, assuming all the initial states %0k are thermal, we use

the corresponding P -representation for the middle %0 under the square root in (4.31) %0 =

1
n̄

∫ d2γ
π e−

|γ|2
n̄ |γ〉〈γ|. This choice is motivated by the fact that the displacement operator acts in

a simple way on coherent states. Denoting the Hermitian operator under the square root in

(4.31) by Ât we obtain:

Ât =

∫
d2γ

πn̄
e−
|γ|2
n̄
√
%0D̂(χ)|γ〉〈γ|D̂†(χ)

√
%0 =

∫
d2γ

πn̄
e−
|γ|2
n̄
√
%0|γ + χ〉〈γ + χ|√%0. (4.34)

To perform the square roots above we represent the thermal state using Fock basis

%0 =
∑
n

n̄n

(n̄+ 1)n+1
|n〉〈n|. (4.35)

As this density operator is diagonal in orthonormal Fock basis we immediately can perform

the square root. Inserting the representation into (4.34) gives:

Ât =

∫
d2γ

πn̄
e−
|γ|2
n̄

∑
m,n

√
n̄m+n

(n̄+ 1)m+n+2
〈n|γ + ηt〉〈γ + ηt|m〉|n〉〈m|. (4.36)

Now we calculate the scalar products in the above equation. To this end we use the Fock basis

representation of coherent states

|α〉 = e−
|α|2

2

∑
n

αn√
n!
|n〉. (4.37)

Then the scalar products above read:

〈n|γ + χ〉 = e−
1
2
|γ+χ|2 (γ + χ)n√

n!
. (4.38)

There is still the square root to be taken and the present form of expression does not allow to

perform it directly. As the square root can be conveniently calculated for operators that are

diagonal is some orthonormal basis, or strategy is now to use the above relation and rewrite

each sum in (4.36) as a coherent state but with a rescaled argument, and then try to rewrite
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(4.36) as a single operator diagonal in Fock basis. To this end we note that:

e−
1
2
|γ+χ|2

∑
n

(
n̄

n̄+ 1

)n
2 (γ + χ)n√

n!
|n〉 = e−

1
2
|γ+χ|2
n̄+1

∣∣∣∣√ n̄

n̄+ 1
(γ + χ)

〉
, (4.39)

where we have again used (4.37) to rewrite the sum. Substituting this into (4.36) and perform-

ing reordering in the exponentials gives expression diagonal in coherent state basis:

Ât =
1

n̄+ 1

∫
d2γ

πn̄
e−
|γ|2
n̄
− |γ+χ|2

n̄+1

∣∣∣∣√ n̄

n̄+ 1
(γ + χ)

〉〈√
n̄

n̄+ 1
(γ + χ)

∣∣∣∣ (4.40)

=
1

n̄+ 1
e−

|χ|2
1+2n̄

∫
d2γ

πn̄
e
− 1+2n̄
n̄(n̄+1) |γ+ n̄

1+2n̄
χ|2
∣∣∣∣√ n̄

n̄+ 1
(γ + χ)

〉〈√
n̄

n̄+ 1
(γ + χ)

∣∣∣∣ .
We now show that (4.41) although not equal to, is equivalent to some operator diagonal in

the Fock basis. We use the same argument as at the beginning of the subsection: since we

are interested in Tr
√
Ât rather than Ât itself, there is a freedom of rotating Ât by an unitary

operator, in particular by a displacement, as: Tr
√
D̂ÂtD̂† = Tr

[
D̂
√
ÂtD̂

†
]

= Tr
√
Ât. We

now find such a displacement as to turn (4.41) into the Fock diagonal form. Comparing the

exponential under the integral in (4.41) with the form (4.23), we see that the argument of the

subsequent coherent states should be proportional to γ + n̄
1+2n̄χ. Simple algebra gives the

desired displacement:∣∣∣∣√ n̄

n̄+ 1
(γ + χ)

〉
' D̂

(√
n̄

n̄+ 1

n̄+ 1

1 + 2n̄
χ

) ∣∣∣∣√ n̄

n̄+ 1

(
γ +

n̄

1 + 2n̄
χ

)〉
, (4.41)

where we have omitted the irrelevant phase factor arising from the action of the displacement

as in the final expression it cancels out (the conjugated phase stems from the fact that we need to

act with two conjugated displacement operators on both sides of equation (4.40)). Inserting the

above relation into (4.41), dropping the displacements due to unitary freedom, and changing

the integration variable:

γ →
√

n̄

n̄+ 1

(
γ +

n̄

1 + 2n̄
χ

)
(4.42)

gives:

Bmic
O,O′(t) = e−

1
2
|χ|2

1+2n̄
1√

1 + 2n̄
T r

√
%th

(
n̄2

1 + 2n̄

)
, (4.43)
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where %th(n̄) denotes a thermal state with the mean photon number n̄. To perform the square

root and the trace we again use the Fock expansion for %th
(

n̄2

1+2n̄

)
:

Bmic
O,O′(t) = e−

|χ|2
2+4n̄

1√
1 + 2n̄

(
1 +

n̄2

1 + 2n̄

)− 1
2 ∑

n

(
n̄2/(1 + 2n̄)

1 + n̄2/(1 + 2n̄)

)n
2

(4.44)

= exp

[
− 1

2 + 4n̄
|η − η′|2

]
= exp

[
−1

2
|η − η′|2 tanh

(τTω
2

)]
,

where we have used the definition of χ (4.33) and n̄ = 1/(eτTω − 1). Coming back to the

generalized overlap for macro-fraction states (4.27) with a help of (4.30), we finally obtain the

desired result:

Bmac
O,O′(t) = exp

[
−1

2

∑
k∈mac

|ηk(O, t)− ηk(O′, t)|2 tanh
(τTωk

2

)]
. (4.45)

This is the main result of this Subsection. Note, that only difference between the above ex-

pression for generalized overlap and that for decoherence factor (4.25), apart from the fact that

both quantities are calculated with respect to different environmental degrees of freedom, is

the temperature dependence. We will elaborate on this fact in Section 4.4.

4.3.3 Generalization to the case of arbitrary single mode Gaussian states of the
environment

The above results can be generalized to the case, in which the initial state of the environment

is given by a product of arbitrary single mode Gaussian states. To this end, we use the fact that

an arbitrary single-mode Gaussian state can be parametrized as follows [84]:

% = eiψâ
†aD̂(β)Ŝ(ξ)%T Ŝ

†(ξ)D̂†(β)e−iψâ
†a, (4.46)

where Ŝ(ξ) ≡ e
1
2 (ξ∗â2−ξâ†2) is the squeezing operator, ξ ≡ reiθ, and %T is some thermal state.

We begin with an analysis of changes that need to be introduced to the decoherence factor

by simply plugging the above formula to the equation (4.19)

∣∣ΓO,O′(t)∣∣ = (4.47)∏
k∈(1−f)E

∣∣∣Tr [D̂k(ηk(O, t)− ηk(O′, t))eiψâ
†aD̂(β)Ŝ(ξ)%T Ŝ

†(ξ)D̂†(β)e−iψâ
†a
]∣∣∣ ,

where we dropped unimportant from our perspective phase factor steaming from the evolu-

tion. Now we focus on the modulus - we drop the dependence on k, again use the variable
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χ = ηk(O, t)− ηk(O′, t) and subsequently exploit the cyclic property of trace∣∣∣Tr [D̂k(χ)eiψâ
†aD̂(β)Ŝ(ξ)%T Ŝ

†(ξ)D̂†(β)e−iψâ
†a
]∣∣∣ = (4.48)∣∣∣Tr [Ŝ†(ξ)D̂†(β)e−iψâ

†aD̂k(χ)eiψâ
†aD̂(β)Ŝ(ξ)%T

]∣∣∣ =∣∣∣Tr [Ŝ†(ξ)D̂†(β)D̂k(e
−iψχ)D̂(β)Ŝ(ξ)%T

]∣∣∣ =
∣∣∣Tr [Ŝ†(ξ)D̂k(e

−iψχ)Ŝ(ξ)%T

]∣∣∣ =∣∣∣Tr [D̂k

(
coth r

(
e−iψχ− ei(ψ+θ)χ∗ tanh r

))
ρT

]∣∣∣ .
The equality in the third line is a consequence of the fact that we are interested in the modulus

only, so the phase steaming from composition of displacement operators can be neglected. As

a result of the calculation we see that consideration of a single mode Gaussian state lead to

the modification of the displacement operator parameter, so for the decoherence factor one just

needs to modify its modulus. The same conclusion should hold for the generalized overlap

and now we show that this is indeed the case.

We start as previously, exploiting the fact that we can pool out of the square root unitary

operators and then cancel them with the help of the trace. The relevant expression is

Bmic
O,O′(t) = Tr

√√
%T R̂%T R̂†

√
%T , (4.49)

where for the sake of the clarity we introduced an unitary operator

R̂ = S†(ξ)D̂†(β)e−iψâ
†aD̂(χ)eiψâ

†aD̂†(β)Ŝ†(ξ). (4.50)

The calculations needed to obtain the final result are basically the same as in the case of deco-

herence. There is only one difference, namely there is no modulus to cancel the phases resulting

from composition of displacement operators. However, as we deal with a pair of the conjugated

unitary operators their phase must cancel, what allow us to conclude that all the previous steps

in calculation of generalized overlap hold also for arbitrary single-mode Gaussian state if one

modifies the parameter of the displacement according to

χ→
(
e−iψχ− ei(ψ+θ)χ∗ tanh r

)
coth r. (4.51)

Finlay we can conclude that it is possible to consider a more general initial states of the en-

vironment, namely single-mode Gaussian states, and use the formulas derived in two previous

Subsections. If one expresses the initial states in terms of parametrization given by equation

(4.46), the only necessary modification in leads to the same expressions (4.25,4.45) but with the

modulus |ηk(O, t)− ηk(O′, t)|2 = |χ|2 substituted by:

|χ|2 →
∣∣∣(e−iψχ− ei(ψ+θ)χ∗ tanh r

)
coth r

∣∣∣2 (4.52)
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4.4 Detailed discussion of the dependence of the indicator functions

on the temperature

From now on we will refer to decoherence factor and generalized overlap as indicator function.

The expressions for indicator functions differ only in the temperature dependence. From equa-

tions (4.25,4.45) one can easily see that limT→∞ |ΓO,O′(t)| = 0, this is hot environments decohere

the central system better, but as the temperature grows limT→∞B
mac
O,O′(t) = 1 so they are unable

to discriminate the parameter O, without a significant increase of the observed macro-fraction

size. In other words, the level of thermal noise increases as the environments are hotter (the

initial states %0k are getting closer to the maximally mixed state). As a result, the imprint and

extraction of the information on and from such an environment (creating states with orthogo-

nal supports for different values of O) is a very demanding task and in some cases can be even

impossible. At this moment we are not able to identify which physical mechanism is responsi-

ble for the fact that high temperature environments decohere better than the cold ones. In our

opinion this is an interesting open problem. Below we present remarks that can provide some

insight into it.

We note that the expression coth
(
τTωk

2

)
appearing in the decoherence factor is related to the

mean initial energy of the environmental oscillators at temperature T , coth
(
τTωk

2

)
= 〈E(ωk, T )〉/E0(ωk),

whereE0(ω) ≡ h̄ω/2 is the zero-point energy of the quantum harmonic oscillator, while tanh( τTωk2 ),

appearing in the generalized overlap, is nothing else but the purity tr(%2
0k) of the initial ther-

mal state %0k, which in turn is related to the linear entropy Slin(%0k) = 1 − tr(%2
0k). Thus, the

effectiveness of the decoherence depends on the initial energy of the environment, while infor-

mation accumulation on its purity.

One may wonder if the described dependence of decoherence on temperature holds for

all non-trivial controlled unitary operators. To illustrate that this not the case we provide an

example. For simplicity let us consider a case, in which the system and the environment are

two-dimensional. The initial state of the environment is a thermal state

ρ0k =

(
1 + e

− E
kBT

)−1(
|0〉〈0|+ e

− E
kBT |1〉〈1|

)
= (1− qT )|0〉〈0|+ qT |1〉〈1|. (4.53)

Now we would like to compare formation of Spectrum Broadcast Structures under two time

independent control-unitary operators

ÛS:E = |0〉〈0|S ⊗
⊗
k

Ik + |1〉〈1|S ⊗
⊗
k

Ŷk Û ′S:E = |0〉〈0|S ⊗
⊗
k

Ik + |1〉〈1|S ⊗
⊗
k

V̂k, (4.54)
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where the action of Ŷ , V̂ is given by

Ŷ |0〉 → |0̃〉 =
√

1− ε|0〉+
√
ε|1〉 (4.55)

Ŷ |1〉 → |1̃〉 =
√

1− ε|1〉 −
√
ε|0〉

and

V̂ |0〉 → |0̄〉 =
√

1− ε|0〉+
√
ε|1〉 (4.56)

V̂ |1〉 → |1̄〉 = −
√

1− ε|1〉+
√
ε|0〉

respectively. It will prove useful to purify the environment, by introducing an artificial subsys-

tem k′ and state |φ〉kk′ such that for each k ρk = Trk′ |φ〉〈φ|kk′ . In particular we find that the

purification of the initial state is

|φ〉kk′ =
√

1− qT |00〉kk′ +
√
qT |11〉kk′ . (4.57)

We initialize the state of the system in a superposed state

|Ψ〉 =
√
p|0〉+

√
1− p|1〉. (4.58)

The evolution is then

ÛS:E ⊗
⊗
k′

Ik′ |Ψ〉S ⊗
⊗
kk′

|φ〉kk′ =
√
p|0〉S ⊗

⊗
kk′

(√
1− qT |00〉kk′ +

√
qT |11〉kk′

)
+ (4.59)

√
1− p|1〉S ⊗

⊗
kk′

(√
1− q|0̃0〉kk′ +

√
qT |1̃1〉kk′

)
Û ′S:E ⊗

⊗
k′

Ik′ |Ψ〉S ⊗
⊗
kk′

|φ〉kk′ =
√
p|0〉S ⊗

⊗
kk′

(√
1− qT |00〉kk′ +

√
qT |11〉kk′

)
+ (4.60)

√
1− p|1〉S ⊗

⊗
kk′

(√
1− qT |0̄0〉kk′ +

√
qT |1̄1〉kk′

)
.

The action of controlled unitary operation on pure system-environment states results in the

so-called branch structure: each branch consists of environmental states evolving according

to a given system’s state. In our example there are two branches:the first one consists of the

states that are not affected by the evolution (if the system’s state is |0〉), whereas the second

one of these transformed according to
⊗

k Ŷk (or
⊗

k V̂k). Although we introduced purifying

subsystems, we do not need to trace them out before performing the calculation of decoherence

factor and we can simply calculate scalar product between states of different branches. This is
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because for control-type unitary operators we have

Γkij = Trk(Û
k
i ρ0kÛ

k †
j ) = Trkk′(Û

k
i ⊗ Ik′ |ϕ〉〈ϕ|kk′Û

k †
j ⊗ Ik′) = 〈ϕ|Uk †j Ûki ⊗ Ik′ |ϕ〉kk′ , (4.61)

Calculating decoherence factors (for single environmental subsystem) in the cases considered

here we obtain

Γk,Ŷ =
√

1− ε (4.62)

Γk,V̂ =
√

1− ε(1− 2qT ). (4.63)

From the above equations one can see that in the first case the decohering power of a single

environment is constant and depend only on the interaction. However, in the second case

the temperature (via parameter qT ) also influences the decoherence. In fact, as temperature

grows qT
T→∞−−−−→ 1

2 so Γk,V̂
T→∞−−−−→ 0. This means that in high temperatures not observing a

single environment results in a significant decoherence process, just as it was in the previously

discussed case of continuous variables.

As decoherence process is caused by the fact that the system correlates to the environment

in a non-classical way, one could intuitively expect that the "correlating power" of unitary

Û ′S:E depends on the temperature of initial state of the environment. To support this claim

we could investigate the entanglement between a single subsystem of environment and the

system. However, as our physical subsystems k are initially in a mixed states, computing en-

tanglement measures is not an easy task. For this reason it is more convenient to deal with the

purified states and we compute entanglement between a chosen purified subsystem nn′ and

the rest of the system-environment state, so we introduce a partition Snn′ : nn′, where nn′

denotes all environmental subsystems but for nn′. For pure bipartite states ρA:B = |Ψ〉〈Ψ|A:B a

good entanglement quantifier is entanglement entropy defined as a von Neumann entropy of

the reduced state

S(ρA:B) = −Tr (ρA log ρA) = −Tr (ρB log ρB) , (4.64)

where ρA, ρB are respective reduced states. Non-zero value of entanglement entropy indicates

that there is entanglement in a given cut. From equations (4.59, 4.60) we can easy obtain the

reduced states of a single environmental subsystem ρŶkk′ and ρV̂kk′ respectively and calculate

the entanglement entropy. The results are presented in Figure 4.1. It can be clearly seen that

indeed in the second case, when the evolution is given by Û ′S:E , the value of entanglement

entropy grows as a function of qT (so also as a function of temperature) indicating growth of

entanglement in partition Snn′ : nn′.

In the case of controlled unitary operators it is even possible to predict the behavior of
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decoherence factor as a function of temperature without the need of performing detailed calcu-

lations. We assume that the controlled unitary is of a form
∑

i |i〉〈i| ⊗
⊗N

k Ŷ
k
i . We note that as

the temperature grows the d dimensional initial thermal state of the environment approaches

maximally mixed state

ρ0k
T→∞−−−−→ 1

d

∑
l

|l〉〈l|, (4.65)

so

Γkij
T→∞−−−−→ 1

d
Tr

(
Ŷ k
i

∑
l

|l〉〈l|Ŷ k †
j

)
=

1

d
Tr
(
Ŷ k
i Ŷ

k,†
j

)
. (4.66)

As a result, for the controlled unitary the condition guarantying the increased strength of de-

coherence process with growing temperature is

Tr
(
Ŷ k
i Ŷ

k,†
j

)
= 0. (4.67)

We started this Chapter discussing a control unitary (4.14)

ÛS:E =
∑
O

|O〉〈O| ⊗
N⊗
k=1

êiξk(O,t)e−iĤ
kt/h̄D̂k(ηk(O, t)),

where the environment is collection of continuous variable systems – harmonic oscillators. As

in this case the decoherence process also becomes stronger with growing temperature, it is

tempting to directly apply condition (4.67) to see if the intuition from finite-dimensional sys-

tems can be adapted to infinite-dimensional ones. However, one should be more careful since

the maximally mixed state is not well defined in the continuous setting. Yet, succumbing to

the temptation, we note that for displacement operators it is known that Tr(D̂k(ηk)D̂
†
k(ηk′)) =

δ(ηk − ηk′), where = δ(x) is Dirac’s delta distribution. As a result, it seems plausible that after

performing detailed analysis a rigorous statement similar to (4.67) could be made. We leave

this as an open problem.

Now we turn our attention to the information content of the environment. It turns out

that although evolutions ÛS:E , Û ′S:E lead to decoherence processes that behave differently with

temperature, there is no difference concerning the distinguishability of environmental sub-

systems. However, now one should be careful as the purifying subsystems may be highly

misleading: observers have access only to the physical subsystems k, they deal with states

ρ0k, ρ
Ŷ
k = Ŷkρ0kŶ

†
k and ρŶk = V̂kρ0kV̂

†
k so the distinguishability should be calculated accordingly

to the definition (equation (4.29)) and it can be not expressed as scalar product of purifications
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FIGURE 4.1: The entanglement entropy of ρŶkk′ (the lower trace) and ρV̂kk′
(the upper trace) as the function of the initial mixedness of the environment
parametrized by qT (for details see text). Only in the second case the amount

of quantum entanglement changes with qT . In this example ε = 0.1.

that we introduced. In Figure 4.2 we present results of the correct procedure: generalized over-

lap B(ρ0k, ρ
Ŷ
k ) as a function of parameter qT . The results for B(ρ0k, ρ

V̂
k ) are the same what can

be easily seen noting that V̂ = σ3Ŷ and ρ0k = σ3ρ0kσ3 so we can use the unitary invariance of

generalized overlap

B
(
ρ0k, V̂kρ0kV̂

†
k

)
= B

(
σ3ρ0kσ3, σ3Ŷkρ0kŶ

†
k σ3

)
= B

(
ρ0k, Ŷkρ0kŶ

†
k

)
. (4.68)

The behavior shown in Figure 4.2 is not of a big surprise. When qT = 0 the initial state of the

environment is pure and the value of generalized overlap coincides with the value of decoher-

ence factor
√

1− ε. For qT = 1
2 the state of the environment is maximally mixed, this implies in

turn that

ρŶk = Ŷkρ0kŶ
†
k = ŶkIkŶ

†
k = Ik = ρ0k. (4.69)

The level of noise is too high to encode information, the two states remain indistinguishable

and nothing can be learned from them about the state of the central system. This fact shows

that the local records of classical information about the system are not necessary for decoher-

ence process to happen. The individual environmental subsystem can carry vanishingly small

amount of information about the system, yet causing a significant destruction of coherences at

the level of partially-reduced state. From this example it can be seen that the nature of decoher-

ence process is really a quantum one: the information about the coherences is delocalized and

encoded at the level of the total state and can have no effect on states of individual subsystems.
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FIGURE 4.2: Distinguishability of environmental states ρ0k, ρŶk measured by gen-
eralized overlap as the function of the initial mixedness of the environment

parametrized by qT (for details see text). In this example ε = 0.1.

4.5 Concluding remarks

Summarizing, in this chapter we considered the case when the environment consists of har-

monic oscillators and the central system acts on it via displacement operator. We showed that

this in true for broad class of Hamiltonians, when the environment couples to a central system

via linear combination of position and momentum observables.

In this setting we derived expressions for functions indicating the Spectral Broadcast Struc-

ture formation – decoherence factor and generalized overlap. Initially the derivations were

performed for thermal states of the environment and subsequently we generalized them to the

case of arbitrary single mode Gaussian states.

We discussed also the dependence of the indicator functions on the temperature. For the

considered case, the temperature growth enhances the decoherence process. The opposite is

true for the generalized overlap – the hotter the environment gets the more noise there is mak-

ing the imprint of information of the central system on the environment (and it’s potential

readout) hard to achieve.

We provided an explicit example showing that the decoherence behavior presented above

is not general. The enhancement depends on the form of the interaction. We showed that in

some cases the strength of the correlations between the system and the environment growths

with temperature. For the case of the controlled unitary operators acting in finite dimensional

Hilbert spaces we provided necessary condition for the discussed behavior and we conjectured

that a similar one should hold for continuous variable scenarios. We showed also that the

classical information deposited in the environment must decline with growing temperature.
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Chapter 5

Spectrum Broadcast Structures in
Quantum Brownian Motion model

5.1 Introduction

In this Chapter we focus on one of the mentioned canonical models of decoherence, namely

on the Quantum Brownian Motion model. This is a one-dimensional model consisting of a

particle interacting with an environment of harmonic oscillators in a linear way (although the

non-linear extensions has also been considered [85]). Apart form decoherence theory, Quan-

tum Brownian Motion has been also used as a toy model to explain the emergence of friction

from the unitary dynamics of quantum theory (see for example [86]). Thus it is one of the

most studied and important models not only for Quantum to Classical transition but also for

quantum dissipative systems and numerous works has been devoted to study its properties.

Therefore, this model is a natural candidate for the investigation of Spectrum Broadcast Struc-

ture formation, what had not been performed before we started working on the thesis. The

results presented in this Chapter are partially based on [77, 87, 88].

5.2 The model

We specify the central system S to be a harmonic oscillator of a mass M and a frequency Ω, lin-

early coupled to the environmentE—a bath ofN oscillators, each of a massmk and a frequency

ωk, k = 1, . . . , N . The total Hamiltonian is [8, 49]:

ĤS:E =
P̂ 2

2M
+
MΩ2X̂2

2
+

N∑
k=1

(
p̂2
k

2mk
+
mkω

2
kx̂

2
k

2

)
+ X̂

N∑
k=1

Ckx̂k, (5.1)

where X̂, P̂ are the system’s variables, x̂k, p̂k describe the k-th environmental oscillator, and

Ck are the coupling constants. We denote the system’s self-Hamiltonian by ĤS , while the k-th

environmental by Ĥk.
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As has been explained in previous Chapters we are interested in properties of a partially-

reduced state describing the central system and some environmental degrees of freedom. Apart

from the usual decoherence process caused by the non-observed fraction of the environment,

we would like to focus on the transfer of classical information about the system to the environ-

ment. From perspective of our aims, effects that usually capture attention in studies of open

systems, such as dissipation of the central system caused by the interaction with the environ-

ment, are of secondary importance. For this reason we will assume that the central system is

very massive, so it is effectively macroscopic and will neglect all the back-reaction of the envi-

ronment – this approximation in the literature concerning decoherence is known as recoilless

limit [8, 49]. We note that this is exactly the opposite regime to that usually studied in open

system’s literature concerning Quantum Brownian Motion [8]. One of the most widely applied

approximations in the latter is the so called Born approximation stating that the influence of

the central system on the environment is small so that at all times t the description of the total

system factorizes with respect to the central system-environment cut

ρS:E(t) ≈ ρS(t)⊗ ρE . (5.2)

In such a setting the transfer of information from the system to the environment is obviously

not possible as one explicitly assumes that there are no correlations between the former and the

latter. As a result, in our investigation we cannot use most techniques developed in studies of

open quantum systems (more precisely try to adopt them as in open systems the main object of

study is reduced state of the system alone, not the partially reduced system-environment state

that we are interested in).

The Hamiltonian (5.1) is more complicated that the ones studied previously in the thesis, as

it contains non-trivial self-Hamiltonian of the central system. Before addressing the full prob-

lem, to get better insights into the model, in the following Subsections we study two simplified

cases using approximations known as Full and Partial Quantum Measurement limits. In the

former one neglects the self-Hamiltonians of the system and the environment and in the latter

the self-Hamiltonian of the environment is restored. Finally in Section 5.5 we deal with the full

model in the mentioned recoilless limit.

In almost all considerations we will assume that initially the environment is in the thermal

state of temperature T . The only exception is found in Section 5.5.7, where we investigate in-

fluence of squeezing of the initial state of the environment on the Spectrum Broadcast Structure

formation. As in Chapter 4, to keep formulas concise, the temperature dependence of indicator

functions (decoherence factor and generalized overlap) is expressed in terms of thermal time

τT = h̄/(kBT ).
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5.2.1 Continuous versus discrete description of the environment

To proceed further with the analysis, we would like to make some comments on the environ-

ment.

While dealing with the model (or more generally with models of open quantum systems),

the standard procedure [8, 12, 49, 56, 89, 90] is to pass to a continuum limit of frequencies

ωk and encode the properties of the environment in a specific continuous approximation to

the spectral density function J(ω) =
∑

k C
2
k/(2mkωk)δ(ω − ωk). This approach usually allows

one to arrive at closed expressions for quantities of interest, as the sums are transformed into

integrals that are easier to handle.

Although the discussed choice is considered to be the standard one, it is obviously not the

only one. One can always decide to work with the discrete spectrum environmental subsys-

tems. Let us comment on advantages and disadvantages of this approach.

From technical side, discrete set of random frequencies implies that the functions indicating

Spectrum Broadcast Structure formation are almost periodic functions of time. Although the

theory of such functions has been developed for some time [91], the questions that we would

like to answer are harder to deal with than in the continuous spectral density approach. In

the case of simplified Quantum Brownian Motion models presented in Sections 5.3 and 5.4 we

overcome the difficulties using the known results from the theory of almost periodic functions.

The situation is more complicated while dealing with the full model in Section 5.5 as there

we were not able to find techniques that can be straightforwardly applied to investigate the

indicator functions. Of course, nothing prevents us from plotting the indicator functions for

a chosen set of frequencies and analyze their properties with respect to parameters such as

temperature, the initial state of the environment or number of oscillators forming observed or

unobserved fractions of the environment. Indeed, we do so in Subsection 5.5.3 and show that

it allows to gain insights into and draw conclusions about the process of Spectrum Broadcast

Structure formation in Quantum Brownian Motion model. However, some readers (as well as

the author of the thesis) may not consider this way to be the most satisfactory one. Adapting

the remark made by Philip W. Anderson in his Nobel speech to our (much more humbler)

problem, the analysis relying on numerical plots leave us with the impression that "it has yet to

receive adequate mathematical treatment" as "the one has to resort to the indignity of numerical

simulations to settle even the simplest questions about" the process (quotations from Nobel

Lecture [92]). To address the problem in a more mathematically rigorous way in Subsection

5.5.8 we perform an analytical analysis based on Law of Large Numbers.

The fact that the functions indicating the Spectrum Broadcast Structure formation are al-

most periodic functions of time has one more important consequence. In principle it implies

that the Spectrum Broadcast Structure, if formed, will be destroyed at some time since there is a

recurrence time in which the indicator functions – decoherence factor and generalized overlap
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– will come back to their initial values. This could be seen as the "reversal" of the objectifica-

tion process as the non-classical correlations between system and the observed fragment of the

environment will be restored. However, the recurrence time is inversely proportional to the

minimal difference of the two frequencies of the environmental degrees of freedom [89]. As

a result it could be, in principle, arbitrarily large (some author claim that in some cases it is

longer that the estimated age of the Universe) and it does not influence our investigation.

On the other hand, the discrete set of the environmental frequencies is not only the source

of technical problems as it has an interpretative advantage that, in opinion of the author, over-

whelms all the mentioned drawbacks of the approach. In the case of Spectrum Broadcast for-

mation it is very interesting to find numbers of environmental subsystems needed to achieve

the process in question, this is the number of subsystems that need to pass unobserved to deco-

here the central system and the number of subsystems needed to extract the information about

it. This is a clear motivation of our approach to keep the spectrum discreet, although, as has

been mentioned, this is not the standard treatment.

In most cases we will work in a setting, in which frequencies ωk are chosen randomly

from some given ensemble. For definiteness’ sake we study here the simplest case, where

the frequencies ωk are independently, identically distributed (i.i.d.) with a uniform distribu-

tion over a finite interval [ωL, ωU ]. This choice of the environment may be considered as a

direct, "mechanstic", as opposed to the usual field treatment of the environment. The bath is a

collection of identical mechanical oscillators with masses mk and random frequencies ωk.

Unless stated otherwise, for the sake of simplicity we assume a symmetric situation, in

which the observed and unobserved groups of the environment contain the same number of

degrees of freedom. We call these groups macro-fractions. As a result, the size of the traced

macro-fraction (1 − f)E will be the same as the size of the observed one mac. One can argue

that such a choice does not fulfill the conditions of Definition 2.6 since it does not allow to

encompass "many observers". However, we do not make any assumptions on the total number

of remaining environmental subsystems that are accessible to the observers.

5.3 Full Quantum Measurement limit and exact timescales

We first consider a highly simplified model, with dominating interaction term, and completely

neglect self-Hamiltonians of both the system and the environment:

ĤS:E = X̂ ⊗
N∑
k=1

Ckx̂k. (5.3)

In the decoherence literature, this is called Quantum Measurement Limit due to the fact that

the Hamiltonian represents an ideal von Neumann measurement of the system observable X̂
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by the environments [93]. Such a simplified model allows us to obtain the character and the

timescales of the Spectrum Broadcast Structure formation. As the Hamiltonian (5.3) is time

independent it is easy to solve the dynamics. The corresponding evolution is of the controlled

unitary type with X as the control parameter:

Û(t) =

∫
dX|X〉〈X| ⊗

N⊗
k=1

D̂k

(
− iCkt√

2
X

)
, (5.4)

where D̂(α) = eαa
†−α∗a is the displacement operator and we have set the oscillators masses and

the frequencies to unity. Since the evolution operator is just of the form (4.14), the expressions

for decoherence factor and generalized overlap can be obtained (after suitable modification)

from results of the previous Chapter. We assume that the environment is in the thermal state

so

∣∣ΓX,X′(t)∣∣ = exp

−|X −X ′|2
2

t2 coth
(τT

2

) ∑
k∈(1−f)E

C2
k

 , (5.5)

Bmac
X,X′(t) = exp

[
−|X −X

′|2

2
t2 tanh

(τT
2

) ∑
k∈mac

C2
k

]
, (5.6)

where τT = h̄/(kBT ) is thermal time. One immediately sees that in the Quantum Measurement

limit there is always a formation of the spectrum broadcast structure, and hence objectivisation

of the system’s position X , described by the Gaussian decay in time of
∣∣ΓX,X′(t)∣∣, Bmac

X,X′(t).

Quite surprisingly, one does not even have to assume random coupling constants Ck as for

example in the spin systems [7]. If, however, one assumes random that coupling constants

Ck’s are independent and identically distributed random variables with a finite average C2 <

∞, the Law of Large Numbers [94] can give new insight into the problem. It states (in its

strong form) that the averages
∑

k∈(1−f)N C
2
k ,
∑

k∈macC
2
k converge almost surely, this is with

probability one, to their expectation values (rescaled by the number of terms entering the sums:

(1− f)N and Nmac). By (1− f)N with f ∈ (0, 1) and Nmac we denoted sizes of the unobserved

macrofraction and (one of the) observed one respectively. As a result we have

∣∣ΓX,X′(t)∣∣ ≈
N→∞

exp

[
−(1− f)N

|X −X ′|2

2
C2t2 coth

(τT
2

)]
= e
−(1−f)N

(
t
τD

)2

, (5.7)

Bmac
X,X′(t) ≈

N→∞
exp

[
−Nmac

|X −X ′|2

2
C2t2 tanh

(τT
2

)]
= e
−Nmac

(
t
τB

)2

, (5.8)

The characteristic timescales of the processes are given by, respectively:

1

τD
=
∣∣X −X ′∣∣√coth(τT /2)

2
C2, (5.9)
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1

τB
=
∣∣X −X ′∣∣√tanh(τT /2)

2
C2, (5.10)

with the second being in general larger than the first for a given temperature T . This is the

effect of noise—it obviously slows down the accumulation of information in environmental

macrofractions.

5.4 Partial Quantum Measurement Limit

Inclusion of the self-Hamiltonians of the environment lead to the Hamiltonian:

ĤS:E =

N∑
k=1

(
p̂2
k

2mk
+
mkω

2
kx̂

2
k

2

)
+ X̂ ⊗

N∑
k=1

Ckx̂k, (5.11)

which still allows for an exact solution.

Using the results of Chapter 4, we find that the evolution operator is given by

Û(t) =

∫
dX|X〉〈X| ⊗

N⊗
k=1

eiξk(t)X2
e−iĤ

kt/h̄D̂k (αk(t)X) , (5.12)

αk(t) = − Ck√
2h̄h̄mkω

3
k

(
eiωkt − 1

)
, ξk(t) =

C2
k

2h̄mkω
3
k

(ωkt− sin(ωkt)) . (5.13)

As in the case of full quantum measurement limit, assuming that the environment is initially

in the thermal state, the expressions for decoherence factor and generalized overlap are read-

ily obtained from (4.25) and (4.45) respectively. For random ωk’s, the decoherence factor and

generalized overlap become almost periodic functions of time:

∣∣ΓX,X′∣∣ = exp

 |X −X ′|2
2

∑
k∈(1−f)E

coth
(τTωk

2

) C2
k (cosωkt− 1)

h̄mkω
3
k

 , (5.14)

Bmac
X,X′(t) = exp

[
|X −X ′|2

2

∑
k∈mac

tanh
(τTωk

2

) C2
k (cosωkt− 1)

h̄mkω
3
k

]
, (5.15)

where τT = h̄/(kBT ). The functions are too complicated for an immediate analytical stud-

ies. As we will show for the full model, the useful tool is again the Law of Large Numbers.

However, it turns out that using the theorem from the theory of almost periodic functions

[95] one can evaluated the time averages
〈
|ΓX,X′ |

〉
= limτ→∞

1
τ

∫ τ
0 dt|ΓX,X′(t)|,

〈
Bmac
X,X′

〉
=

limτ→∞
1
τ

∫ τ
0 dtB

mac
X,X′(t), noting that the amplitudes of the cosine functions in (5.14,5.15) are all

non-negative. This approach allows to obtain the results in an easier way in comparison to the

Law of Large Numbers. We believe that this is an interesting (and to the best of our knowledge
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novel) application of the theory of almost periodic functions in context of decoherence and

information transfer studies thus we present the derivation and the results in next Subsection.

5.4.1 Time averages of almost periodic functions with positive coefficients

We evaluate the time average:

lim
τ→∞

1

τ

∫ τ

0
dt exp

 |X −X ′|2
2

∑
k∈(1−f)E

C2
k cosωkt

mkω
3
k

coth
(τTωk

2

) . (5.16)

The crucial step is to use one of the results from [95], which states a form of ergodicity for such

functions. Namely, due to the positive amplitudes of the trigonometric functions, the time

average can be substituted with the ensemble average (average over the angles in this case).

This gives:

lim
τ→∞

1

τ

∫ τ

0
dt

∏
k∈(1−f)E

exp

[
|X −X ′|2

2

C2
k cosωkt

mkω
3
k

coth
(τTωk

2

)]
(5.17)

=
∏

k∈(1−f)E

1

2π

∫ 2π

0
dθk exp

[
|X −X ′|2

2

C2
k

mkω
3
k

coth
(τTωk

2

)
cos θk

]

=
∏

k∈(1−f)E

I0

[
|X −X ′|2

2

C2
k

mkω
3
k

coth
(τTωk

2

)]
,

where the last step we used the definition of the Bessel integral, giving the modified Bessel

function of the first kind: I0(z) = (1/π)
∫ π

0 dθez cos θ.

As a result the time averages of (5.14,5.15) are

〈∣∣ΓX,X′∣∣〉 = exp

−|X −X ′|2
2

∑
k∈(1−f)E

C2
k coth(τTωk/2)

mkω
3
k

× (5.18)

∏
k∈(1−f)E

I0

[
|X −X ′|2C2

k coth(τTωk/2)

2mkω
3
k

]
,

〈
Bmac
X,X′

〉
= exp

[
−|X −X

′|2

2

∑
k∈mac

C2
k th(βωk/2)

mkω
3
k

]
× (5.19)

∏
k∈mac

I0

[
|X −X ′|2C2

k tanh(τTωk/2)

2mkω
3
k

]
,

The rationale behind studying time averages is that since the functions themselves are non-

negative, vanishing of the time averages is a good measure of the functions being practically

zero. We are again interested in the scaling of the averages with the macrofraction sizes, for
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simplicity assuming them here to be equal: (1 − f)E = Nmac. We also assume Ck’s to be only

mass-dependent (and not random), Ck =
√

Mmkγ̃0

π , with M the mass of the central system and

γ̃0 some constant. The scaling of the indicator functions with respect to the macrofraction size

can be evaluated in the large separation limit:

√
Mγ̃0|X −X ′|

ω
3/2
k

� 1 for every k, (5.20)

which allows one to use the asymptotic expansion I0(x) ≈ ex/
√

2πx. Assuming further low

temperature limit, τT →∞ (from (5.15) Bmac
X,X′ rises with T ), one obtains:

〈∣∣ΓX,X′∣∣〉 ≈ Nmac∏
k=1

ω
3/2
k√

Mγ̃0|X −X ′|
, (5.21)

and the same for
〈
Bmac
X,X′

〉
, as tanh(τTωk/2) ≈ 1 ≈ coth(τTωk/2) in (5.19,5.20). We perform

further averaging over the random frequencies ωk, assuming they are i.i.d. with a uniform

distribution over a spectrum interval ∆, centered at some ω̄ � ∆. This gives:

〈∣∣ΓX,X′∣∣〉 =

∫ ω̄+ ∆
2

ω̄−∆
2

∏
j

dωj
∆

〈∣∣ΓX,X′∣∣〉 ≈ e−Nmac
(

log

√
Mγ̃0|X−X

′|
ω̄3/2

)
(5.22)

and the same for the generalized overlap, due to the assumed low temperature limit:

〈
Bmac
X,X′

〉
=

∫ ω̄+ ∆
2

ω̄−∆
2

∏
j

dωj
∆

〈∣∣Bmac
X,X′

∣∣〉 ≈ e−Nmac(log

√
Mγ̃0|X−X

′|
ω̄3/2

)
. (5.23)

This is the desired scaling. One sees that whenever (5.20) holds, for low temperatures, both

averages exponentially decay in the thermodynamic limit N →∞, indicating formation of the

spectrum broadcast state.

5.5 The full model

After presenting simplified cases we are ready to restore the system’s self Hamiltonian and

discuss the full model in the recoilless limit.

5.5.1 The dynamics

As has been already mentioned, the full model can be in principle solved explicitly either di-

rectly [89] or using Wigner functions [96]. However, let us stress that because, unlike as in

the standard treatments, we are interested here not merely in the reduced state of the central
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oscillator alone but in the joint state of the central system and a part of bath oscillators, the

mentioned exact methods do not produce manageable solutions or, at least at this moment, we

were not able to use them for our purpose. Our main focus is on the decoherence process and

the transfer of classical information about the system to the environment. Questions concern-

ing for example dissipation are not of a crucial importance here so for the purpose of the study

we will try to eliminate the dissipation caused by the non-observed fractions of the environ-

ment. This suggest a greatly simplifying assumption of a massive central system known as the

recoilless limit [8, 49], which we will adopt. One can then use a non-adiabatic version of the

Born-Oppenheimer approximation (see for example [97]), in which the motion of the central

oscillator is separated from the motion of the environment.

We assume that, in the recoilless limit, the central system evolves unperturbed accord-

ing to it’s Hamiltonian ĤS = P̂ 2/2M + MΩ2X̂2/2 (with the renormalized frequency Ω2 ≡
Ω2

0 −
∑

k C
2
k/(2mkω

2
k)). To see how this dynamics influences evolution of the environment we

represent the central system free propagator

Kt(X;X0) ≡ 〈X|e−iĤSt/h̄|X0〉, (5.24)

with the help of the classical path X(t;X0), starting at t = 0 at X0 and reaching X at time t. In

our case (the oscillator) this semi-classical approximation is exact [98]. Now we parametrize the

evolution of the environment along each classical trajectory. The motion of the central system,

represented by path X(t;X0), acts on the environment as a external driving force via inter-

action Hamiltonian ĤINT (X(t;X0)) = X(t;X0)
∑N

k=1Ckx̂k (note that in the standard Born-

Oppenheimer approximation such parametrization is performed with respect to a static quan-

tity – position of a nucleus). As a result, for a fixed trajectory X(t;X0) the evolution of the

environment is governed by

ih̄
∂

∂t
|ψE(t)〉 = ĤE (X(t;X0)) |ψE(t)〉, (5.25)

where ĤE (X(t;X0)) ≡
∑N

k=1

[
p̂2
k/(2mk) +mkω

2
kx̂

2
k/2
]

+X(t;X0)
∑N

k=1Ckx̂k. This means that

we deal with forced Harmonic oscillator, a situation similar to this encountered in Chapter

4. The full system-environment state is constructed using the Born-Oppenheimer type of an

ansatz, which takes into account all the possible trajectories of the central system:

ΨNBO
S:E (X,x) =

∫
dX0φS0(X0)〈X|e−iĤSt/h̄|X0〉〈x|ÛE(X(t;X0))|ψE0〉, (5.26)

with |φS0〉, |ψE0〉 being the initial states of the system and the environment respectively and

ÛE(X(t;X0)) is a solution of (5.25). Note that this is a similar reasoning to the path integral
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techniques concerning open quantum systems, namely the Feynman-Vernon influence func-

tional [99, 8].

From the type of the coupling in (5.1) and the analysis of the previous Section it could be

anticipated that the candidates for the pointer states will be related to the position eigenstates.

Hence, initial states of the system with large coherences in the position are of the greatest inter-

est for the purpose of this study since we expect them to be affected by the coupling to a great

extend. Therefore a good candidate is a momentum squeezed state due to its large coherences

in the position. In the limit of large squeezing we may than assume that the initial velocity of

each trajectory is zero so that X(t;X0) = X0 cos(Ωt). We will perform also the analysis for ini-

tial position squeezed state, which initially does not posses coherences in position eigenbasis

but they are created due to the dynamics of the central system (position squeezed state evolves

into momentum squeezed one). In this case X0 = 0 and X(t;X0) = X0 sin(Ωt). As a result

the classical trajectories to be considered are X(t;X0) = X0 cos(Ωt), X(t;X0) = X0 sin(Ωt) for

momentum and position squeezed states respectively. A similar choice was made in context of

Quantum Darwinism studies [56, 90].

The driven evolution of the environment is solved in an analogous steps to those presented

in Section 4.2. Once again the Hamiltonian governing the evolution of a single environmental

degree of freedom (equation (5.25)) is that of the forced quantum harmonic oscillator, where

the driving force is provided by the central system. Adopting the notation of Section 4.2 we

have

α′k(t) ≡ −
iCk√

2h̄mkωk
eiωkt f(X0, t) ≡ X(t;X0). (5.27)

Finally, for the considered cases of squeezed states we consider following trajectoriesX(t;X0) =

X0 cos(Ωt) for momentum squeezed states andX(t;X0) = X0 sin(Ωt) for the position squeezed

states. As a result the driven evolution is of a form

ÛE(X0 cos Ωt) =
N⊗
k=1

eiξk(X0,t)e−iĤkt/h̄D̂ (ηk(X0, t)) ≡
N⊗
k=1

Ûk(X0, t), (5.28)

ηk(X0, t) =

∫ t

0
dτα′k(τ)X0 cos(Ωτ) = − Ck

2
√

2h̄mkωk

[
ei(ωk+Ω)t − 1

ωk + Ω
+
ei(ωk−Ω)t − 1

ωk − Ω

]
≡ αk(t)X0, (5.29)

ξk(X0, t) ≡
C2
k

4mk(ω
2
k − Ω2)

[
t+

sin(2Ωt)

2Ω
− sin(ωk + Ω)t

ωk + Ω
− sin(ωk − Ω)t

ωk − Ω

]
X2

0 . (5.30)

for momentum squeezed states and

ÛE(X0 sin Ωt) =

N⊗
k=1

eiξk(X0,t)e−iĤkt/h̄D̂ (ηk(X0, t)) ≡
N⊗
k=1

Ûk(X0, t), (5.31)
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ηk(X0, t) =

∫ t

0
dτα′k(τ)X0 sin(Ωτ) = − Ck

2i
√

2mkωk

[
ei(ωk+Ω)t − 1

ωk + Ω
− ei(ωk−Ω)t − 1

ωk − Ω

]
≡ αk(t)X0. (5.32)

ξk(X0, t) ≡
C2
k

4mk(ω
2
k − Ω2)

[
t− sin(2Ωt)

2Ω
+

Ω sin(ωk + Ω)t

ωk(ωk + Ω)
− Ω sin(ωk − Ω)t

ωk(ωk − Ω)

]
X2

0 (5.33)

for position squeezed states. By Ĥk ≡ p̂2
k/(2mk)+mkω

2
kx̂

2
k/2 we denoted the self Hamiltonian of

the single environmental degree of freedom and D̂(α) ≡ eαâ†−α∗â is the displacement operator.

We stress that the expressions are valid in the large squeezing limit. As we have seen in the

previous Chapter, the phase factors ξk(X, t) are unimportant for our considerations.

Since for the initial squeezed states the trajectories of the central oscillator are functions of

the initial position only, we can formally write the evolution operator as

ÛS:E(t) =

∫
dX0e

−iĤSt/h̄|X0〉〈X0| ⊗ ÛE(X0 cos Ωt) (5.34)

ÛS:E(t) =

∫
dX0e

−iĤSt/h̄|X0〉〈X0| ⊗ ÛE(X0 sin Ωt). (5.35)

The evolution operators (5.34, 5.35) are formally a controlled-unitary type (2.30,4.14), in which

the environment evolves accordingly to the trajectory of the central oscillator (more precisely

to functional of it).

In what follows we aim to show that in Quantum Brownian Motion in the recoilless limit

there is a regime of parameters, in which the Spectrum Broadcast Structure is formed. There-

fore our central object of interest is the partially reduced state describing the system and an

observed fragment of environment. Since we deal with continuous rather than discrete spec-

trum one should be careful with the integral in (5.34, 5.35). We rewrite the integral using a

finite division of the real line of X0 into intervals {∆i} with |X0〉〈X0| replaced by orthogonal

projectors Π̂∆ on the intervals ∆ (continuous distribution ofX0 is recovered in the limit of these

divisions [18, 19]). The partially traced state then reads:

%S:fE(t) =
∑
∆

e−iĤSt/h̄Π̂∆|φ0〉〈φ0|Π̂∆e
iĤSt/h̄

fN⊗
k=1

%k(X∆, t) (5.36)

+
∑

∆ 6=∆′

ΓX∆,X∆′ (t)e
−iĤSt/h̄Π̂∆|φ0〉〈φ0|Π̂∆′e

iĤSt/h̄ ⊗
fN⊗
k=1

Ûk(X∆, t)%0kÛ
†
k(X∆′ , t),

where X∆ is some position within an interval ∆,

%k(X∆; t) ≡ Ûk(X∆, t)%0kÛ
†
k(X∆, t) (5.37)
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are the system-dependent states of the environment and

ΓX∆,X
′
∆

(t) ≡
∏

k∈(1−f)E

Tr
[
Ûk(X∆, t)%0kÛ

†
k(X ′∆, t)

]
≡

∏
k∈(1−f)E

Γ
(k)
X∆,X

′
∆

(t), (5.38)

is the decoherence factor. To study the information content of the system dependent states of

the environment we again use the generalized overlap

Bk
X∆,X

′
∆

=

√√
%k(X∆, t)%k(X

′
∆, t)

√
%k(X∆, t). (5.39)

Furthermore we assume that the environment in initially in the thermal state. As a result we

can use the formulas derived in Chapter 4 to obtain the expressions for the decoherence factor

and the generalized overlap (in what follows, to keep the notation simple, we will omit the

subscript 0 and write X instead of X0). The former is

∣∣ΓX,X′∣∣ =
∏

k∈(1−f)E

exp

[
|X −X ′|2

2
|αk(t)|2 coth

(τTωk
2

)]
, (5.40)

whereas the latter

Bmac
X,X′ =

∏
k∈mac

exp

[
|X −X ′|2

2
|αk(t)|2 tanh

(τTωk
2

)]
, (5.41)

where

|αk(t)|2 =
C2
kωk

2h̄mk(ω
2
k − Ω2)2

[
(cosωkt− cos Ωt)2 +

(
sinωkt−

Ω

ωk
sin Ωt

)2 ]
(5.42)

for an initial momentum squeezed state of S (equation (5.29)), while for a position squeezed

(equation (5.32)):

|αk(t)|2 =
C2
kΩ2

2h̄mkωk(ω
2
k − Ω2)2

[
(cosωkt− cos Ωt)2 +

(
sinωkt−

ωk
Ω

sin Ωt
)2
]
. (5.43)

5.5.2 Continuous environmental spectrum – Caldeira Legget model

In the literature the properties of the environment are usually encoded in the spectral density

function. It is defined as

J(ω) ≡
∑
k

δ(ω − ωk)
C2
k

2mkωk
. (5.44)
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As a result, relevant functions, in our case decoherence factor and generalized overlap, can be

expressed in terms of the spectral density instead of parameters of individual environmental

subsystems. To see how the spectral density enters the indicator functions under consideration,

let us provide expressions for decoherence factor and generalized overlap in a different form

than that derived in equations (5.40,5.41). It will prove more convenient to keep the argument

of the displacement operator as an integral so our expression for decoherence factor is

− log
∣∣ΓX,X′(t)∣∣ = (5.45)

1

2

∑
k∈(1−f)E

∣∣∣∣∫ t

0
α′k(τ)f(X, τ) dτ −

∫ t

0
α′k(τ)f(X ′, τ) dτ

∣∣∣∣2 coth
(τTωk

2

)
.

We focus on the single term in the sum

∣∣∣∣∫ t

0
α′k(τ)f(X, τ) dτ −

∫ t

0
α′k(τ)f(X ′, τ) dτ

∣∣∣∣2 =

∫ t

0

∫ t

0
dτdτ ′α′k(τ)α′k(τ

′)∗ × (5.46)[
f(X, τ)f(X, τ ′)∗ − f(X, τ)f(X ′, τ ′)∗ + f(X, τ)∗f(X ′, τ ′)− f(X ′, τ)f(X ′, τ ′)∗

]
≡
∫ t

0

∫ t

0
dτdτ ′α′k(τ)α′k(τ

′)∗∆(X,X ′, τ, τ ′)

Taking into account that

α′k(τ)α′k(τ
′)∗ =

C2
k

2h̄mkωk
eiωk(τ−τ ′) (5.47)

we have

− log
∣∣ΓX,X′(t)∣∣ = (5.48)

1

2

∑
k∈(1−f)E

∫ t

0

∫ t

0
dτdτ ′

C2
k

2h̄mkωk
eiωk(τ−τ ′)∆(X,X ′, τ, τ ′) coth

(τTωk
2

)
=

1

2

∫
dω

∫ t

0

∫ t

0
dτdτ ′J(ω)eiω(τ−τ ′)∆(X,X ′, τ, τ ′) coth

(τTω
2

)
,

where in the last line we used the definition of spectral density. Now we will assume that the

unobserved fraction of the environment is large and consists of all possible frequencies of the

environment so that we can integrate over whole spectrum. This choice can be questioned,

however it has one undeniable advantage: it will allow us to perform the integral analytically.

Before doing that we need to specify the form of the spectral density. One of the possible and

frequent choices is an Ohmic (that is linear in ω for small frequencies) spectral density with the
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Lorentz-Drude cutoff

J(ω) =
Mγ

π
ω

Λ2

Λ2 − ω2
. (5.49)

To compute the integral we need also the Matsubara representation of hyperbolic cotangent

[100]:

coth
(τTω

2

)
=

2

τTω

∞∑
n=−∞

1

1 + (vn/ω)2
, (5.50)

where vn are the bosonic frequencies vn = 2πn/τT . Now the integral over frequencies can be

calculated using the Cauchy’s residue theorem. The result is

1

2

∫ ∞
0

dωJ(ω) coth
(τTω

2

)
eiω(τ−τ ′) =

MγΛ2

2τT

∞∑
n=−∞

Λe−Λ|τ−τ ′| − |vn|e−|vn(τ−τ ′)|

Λ2 − v2
n

. (5.51)

We are interested in evaluating this expression in a high temperature limit, in which the thermal

energy of the bath in much larger than the cutoff energy and the energy of the central oscillator,

such that τ−1
T = kBT

h̄ � Λ � Ω. This limit is widely used in the literature to study both

decoherence and dissipation processes and is usually referred to as Caldeira-Leggett (since it

was firstly used by Caldeira and Leggett to derive master equation [86]) or Fokker-Planck limit.

Then one can approximate the above sum by the zeroth term only (in larger temperatures non-

zero terms behave roughly as ∼ 1/vn ∼ 1/T so they can be approximated by 0):

MγΛ2

2τT

∞∑
n=−∞

Λe−Λ|τ−τ ′| − |vn|e−|vn(τ−τ ′)|

Λ2 − v2
n

≈ MγΛ2

τT

e−Λ|τ−τ ′|

2/Λ
. (5.52)

For large values of Λ the above expression approaches Dirac’s delta distribution. This means

that the process is Markovian – it does not depend on the past history of the system (there are

no memory effects). In this case the equation (5.48) takes the form

1

2

∫ ∞
0

dω

∫ t

0

∫ t

0
dτdτ ′J(ω)eiω(τ−τ ′)∆(X,X ′, τ, τ ′) coth

(τTω
2

)
≈ MγΛ2

τT

∫ t

0
dτ∆(X,X ′, τ, τ) =

MγΛ2

τT

∫ t

0
dτ
∣∣f(X, τ)− f(X ′, τ)

∣∣2 =
MγΛ2

τT

∫ t

0
dτ
∣∣f(X, τ)− f(X ′, τ)

∣∣2 . (5.53)

Now we can evaluate the above expression for two types of trajectories that we are considering.

For momentum squeezed states (f(X, τ) = X cos(Ωt)) we get

− log
∣∣ΓX,X′(t)∣∣ =

MγΛ2kBT

2h̄
|X −X ′|2

(
t+

sin (2Ωt)

2Ω

)
, (5.54)
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whereas for position squeezed ones (f(X, τ) = X sin(Ωt))

− log
∣∣ΓX,X′(t)∣∣ =

MγΛ2kBT

2h̄
|X −X ′|2

(
t− sin (2Ωt)

2Ω

)
. (5.55)

In above equations the explicit dependence on temperature was restored. We see that in both

cases the argument of the decoherence factor is non-decreasing function of time multiplied by

the temperature. This is in agreement with results of Chapter 4, where we found that in such

situations temperature enhances decoherence process. In the considered limit value of deco-

herence factor between every possible position eigenstates X,X ′ will drop below any chosen

threshold provided that we wait sufficiently long. For position squeezed states the process is

longer. To understand why this is the case let us present the expression for the modulus of the

freely evolving squeezed wavefunction, which is [101]

|Ψ(X, t)|2 =

(
MΩ

πh̄r

) 1
2 (

1 +
(
r−2 − 1

)
cos2(Ωt)

)− 1
2 exp

[
−MΩ/(h̄r)(X −Xc cos(Ωt))2

1 + (r−2 − 1) cos2(Ωt)

]
, (5.56)

and the uncertainty in position that is given by

∆X(t) =

(
rh̄

2MΩ

) 1
2 [

1 + (r−2 − 1) cos2(Ωt)
] 1

2 . (5.57)

Squeezing in position occurs when r > 1. From the above expressions we see that, in the

regime of large position squeezing, states have almost no initial coherences in position basis

but the free evolution transforms them into momentum squeezed states so the coherences are

built due to the dynamics and the decoherence process starts later (in case of free evolution

the uncertainty in position oscillates between minimal
(

h̄
2rMΩ

) 1
2 and maximal

(
2rh̄
MΩ

) 1
2 value

indicating that the coherences in position also oscillate with time).

We would like to perform a similar analysis to check the information content of the environ-

ment. We work under the same assumptions as for decoherence process – the remaining part

of the environment is sufficiently large to be described by the whole spectral density function,

we study this process in the Caldeira-Leggett limit. From the computational point of view we

need to deal now with hyperbolic tangent, with Matsubara representation given by [100]:

tanh
(τTω

2

)
=

4

τTω

∞∑
n=0

1

1 + (wn/ω)2
, (5.58)
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with fermionic frequencies wn = (2n + 1)π/τT . Again, using almost the same arguments that

led to equation (5.53), we can approximate the sum by zeroth term only

1

2

∫ ∞
0

dωJ(ω) coth
(τTω

2

)
eiω(τ−τ ′) =

MγΛ2

τT

∞∑
n=0

Λe−Λ|τ−τ ′| − wne−|wn(τ−τ ′)|

Λ2 − w2
n

≈

2MγΛ2τT
π2

e
−
∣∣∣ (τ−τ ′)
τT /π

∣∣∣
τT /π

. (5.59)

Now we repeat the reasoning that led to (5.53). This time we take into account that in the large

temperature limit τT /π → 0 and the above expression tends to Dirac’s delta distribution so

again there are no memory effects and we are left with one time integral

1

2

∫ ∞
0

dω

∫ t

0

∫ t

0
dτdτ ′J(ω)eiω(τ−τ ′)∆(X,X ′, τ, τ ′) coth

(τTω
2

)
≈ (5.60)

2MγΛ2τT
π

∫ t

0
dτ
∣∣f(X, τ)− f(X ′, τ)

∣∣2 .
The only important difference between the above equation and equation (5.53) is the temper-

ature dependence, with growing temperature the environment will slower acquire the infor-

mation about the state of the central system, in the case of momentum squeezing (f(X, τ) =

X cos(Ωt)) we get

− logBX,X′(t) =
2MγΛ2h̄

πkBT
|X −X ′|2

(
t+

sin (2Ωt)

2Ω

)
, (5.61)

whereas for position squeezed ones (f(X, τ) = X sin(Ωt))

− logBX,X′(t) =
2MγΛ2h̄

πkBT
|X −X ′|2

(
t− sin (2Ωt)

2Ω

)
. (5.62)

In above equations the explicit dependence on temperature was restored. Note that in the

considered limit, when kBT
h̄ � Λ in a long period of time we have BX,X′(t) ≈ 1 for both

initial states. This is in agreement with results obtained in Chapter 4 – high level of thermal

noise makes it hard to create environmental states with non-overlapping supports for different

values of the initial position X , which means that it could be impossible for the observers to

extract information about the central system from the environment.

5.5.3 Discrete environmental spectrum – numerical analysis

In this subsection we investigate the functions indicating the Spectrum Broadcast Structure

formation in the case when the spectrum of environmental frequencies is discrete.



5.5. The full model 83

In general, there are three possibilities of choosing the interval [ωL, ωU ], from which fre-

quencies ωk are chosen, with respect to the frequency of the central system Ω (note that we did

not discuss this issue in case of simplified Quantum Brownian Motion models as there the self-

Hamiltonian of the central system was neglected and as a consequence the system’s frequency

dropped out of the considerations):

ωL, ωU � Ω off-resonant, "slow"

ωL < Ω < ωU resonant

Ω� ωL, ωU off-resonant, "fast".

The meaning of the term off-resonant for our investigations becomes clear after inspecting

equations (5.40,5.41) – the single subsystem of environment may not able to decohere or pro-

vide classical information about the system. As a result the choice of the regime, from which

the environmental frequencies are sampled (resonant/off-resonant "slow"/off-resonant "fast"),

influences strongly the results. We analyze all these regimes in the following discussion, but

before doing so we choose other parameters of the model.

The parameters of the model

From now on, unless we state otherwise, to present the plots we set parameters of the central

system as: M = 10−5kg, Ω = 3 × 108s−1. We assume that coupling constants Ck depend

only on the masses: Ck ≡ 2
√

(Mmkγ̃0)/π, and γ̃0 = 0.33 × 1018 s−4 is a constant. We choose

the frequencies of the environmental degrees of freedom ωk to be independently, identically

and uniformly distributed in the intervals reflecting the three regimes discussed above (off-

resonant "slow" and "fast", resonant). The masses of the environmental subsystems are chosen

to be mk = 10−15 kg. We set the |X − X ′| = 10−9 m, this means that we investigate the

decoherence process between eigenstates of position, which are 10−9 m away from each other.

The same applies for the information content of the environment, we would like to know if an

observer having access to some fragment of the environment will distinguish two states of the

central system that are far apart at this distance.

5.5.4 Numerical analysis of discrete environmental spectrum – resonant case

In this subsection we assume frequencies ωk to be independently, identically and uniformly

distributed in the interval 3× 107s−1 . . . 6× 109s−1. Intuitively, we can expect that in this case

the decoherence as well as the transfer of information to the environment happens as from the

formulas for the indicator functions (5.40, 5.41) and expressions for |αk(t)|2 parameters (5.42,

5.43) we see that the subsystems with frequencies close to the system’s frequency Ω will have a

dominant influence on decoherence factor and generalized overlap. A closer inspection shows
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that

lim
ω→Ω

|α(t)|2 =
Mγ̃0

4πh̄Ω3

(
1 + 2Ω2t2 − cos (2Ωt)± 2Ωt sin (2Ωt)

)
, (5.63)

where in the last term sign + corresponds to momentum squeezed states and − to position

squeezed ones. This result confirms our previous expectations: a single subsystems suffices to

decohere the central system. Also, an observer needs access to just one subsystem to extract

the information about the state of the central system. However, the sign difference between

momentum and position squeezed states indicates that the timescales of discussed processes

are different for discussed initial states, as the formation of Spectrum Broadcast Structure in

the case of an initial position squeezed state takes longer time. Indeed, this is consistent with

all the results that we have so far presented and the knowledge of squeezed states evolution.

From the formulas for indicator functions we know that the decoherence process affects su-

perpositions of position egienstates and that information about position is transfered to the

environment. The initial state with large momentum squeezing poses large coherences in the

mentioned basis so both processes begin to happen instantly. On the other hand, the initial

position squeezed state has almost no coherences in the position eigenbasis. However, due to

the evolution under self-Hamiltonian of the quantum harmonic oscillator it is transformed to

the momentum squeezed state so the coherences in positions are built up due to the dynamics.

Therefore one should expect that the discussed processes will happen also in this case but on a

longer time scale.

This discussion is reflected in Figure 5.1, where we see that for momentum and position

squeezed states both indicator functions (decoherence factor and generalized overlap) decay

rapidly confirming formation of Spectrum Broadcast Structure formation. However, in the

case of position squeezing the decay is slower. On the other hand, the differences in timescales

between the decoherence and information transfer processes for a given initial squeezing of the

initial state of the central system are caused by different temperature behavior of the indicator

functions (5.40, 5.41), what is also visible in Figure 5.1.

5.5.5 Numerical analysis of discrete environmental spectrum – off-resonant "slow"
case

Here we assume frequencies ωk to be independently, identically and uniformly distributed in

the interval 3 . . . 6 × 107s. What we should expect in this case? For Ω � ωk the proportional

constant in formulas (5.42, 5.43) is of the order

|αk(t)|2 ∝
Mγ̃0

πωkΩ2
. (5.64)



5.5. The full model 85

FIGURE 5.1: Time dependencies of |ΓX,X′(t)| a),b) and BmacX,X′(t) c),d) for the sys-
tem initially in a momentum squeezed state a), c) and position squeezed state b),
d). The observed and unobserved macrofractions consists of 10 oscillators and
the temperature is T = 10−2K. The long time behavior is not shown in the plots

as there are no revivals in relevant timescales.

If we compare this to the expression obtained in the resonance (5.63) in which |αk(t)|2 ∝ Mγ̃0

4πΩ3

we actually see that for off-resonant "slow" environment the proportional constant is of order

of magnitude larger than in the resonant case. If there is enough randomness in the phases the

decoherence process can happen even faster than in the resonant case. However, the difference

between decoherence factor and generalized overlap should be also more visible in this case,

as differences in values of hyperbolic tangent and cotangent are bigger in the small frequency

regime. With regard to temperatures, the decoherence process will be enhanced in comparison

to the resonant case but the opposite is true in case of information transfer to the environment.

As a result, while we expect decoherence process to happen on a shorter timescale, the differ-

ence in the broadcasting information about the central system may not be so clear as there are

two factors influencing it in opposite ways.

In the Figure 5.2 we can see that our conjectures discussed above were quite accurate, as the

plots behave in the expected way.
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FIGURE 5.2: Time dependencies of |ΓX,X′(t)| (a),(b) and BmacX,X′(t) (c),(d) for the
system initially in a momentum squeezed state (a), (c) and position squeezed
state (b), (d). The observed and unobserved macrofractions consists of 10 oscilla-
tors and the temperature is T = 10−2K. The long time behavior is not shown in

the plots as there are no revivals in relevant timescales.

5.5.6 Numerical analysis of discrete environmental spectrum – off-resonant "fast"
case

The last case to be discussed is the "fast" off-resonant environment. We can perform a similar

analysis to this presented in the previous Subsection, this time for Ω � ωk to see that propor-

tional constant in formulas (5.42, 5.43) is of the order

|αk(t)|2 ∝
Mγ̃0

πω3
k

. (5.65)

This constant is the smallest one from all that we have discussed so far, it is plausible to think

that in this case the behavior of decoherence factor and generalized overlap will be different

than those presented previously and one will need more random phases to cause decoher-

ence and broadcast processes. For position squeezed states the situation may be even more

involved, as the oscillatory term sin2(Ωt) in expression (5.43) can have a dominant role. Note

that one could have expected a similar behavior for off-resonant "slow" environment and the

momentum squeezed state as there also term sin2(Ωt) is orders of magnitude larger than other

oscillatory functions. However, there the other oscillatory functions were multiplied by a large

constant. As a consequence, for times when the term sin2(Ωt) was close to zero, due to the

value of the other terms the expression (5.43) was still much larger than zero at each instant of

time. Here, there is no such mechanism to "compensates" oscillations of the leading term.

We begin our analysis with momentum squeezed states. The above discussion is confirmed
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FIGURE 5.3: Time dependencies of |ΓX,X′(t)| a),b) and BmacX,X′(t) c),d) for the sys-
tem initially in a momentum squeezed state for different macro-fraction sizes:
10 oscillators – a) ,c); 30 oscillators – b), d) and T = 10−2K. The inserts show

short-time behavior. The figure is reproduced from [77].

in Figure 5.3. From Figure 5.3 b),d) we see that for 30 oscillators both functions decay rapidly,

while for 10 oscillators they do not—the macro-fraction is too small for the given T . Note that

in previously discussed cases this number of oscillators was enough to observe the formation

of Spectrum Broadcast Structure. However, even for 30 oscillators of the environment we see

that there are small fluctuations visible at the plots.

To study them, we further analyze the time averages
〈
|ΓX,X′ |

〉
= (1/τ)

∫ τ
0 dt|ΓX,X′(t)|,〈

Bmac
X,X′

〉
= (1/τ)

∫ τ
0 dtB

mac
X,X′(t) as functions of the temperature T with τ taken large (∼ 1s).

We present them in Figure 5.4. Since both functions are non-negative, vanishing of their time

averages is a good indicator of the functions having small typical fluctuations above zero. From

Figure 5.4 a) one sees that, in the chosen parameter range,there is no formation of the broadcast

state for a macro-fraction of 10 oscillators: While
〈
|ΓX,X′ |

〉
≈ 0 (the lower trace) for T ≈ 10−1K,〈

Bmac
X,X′

〉
≈ 0.6 (the upper trace). From Figure 5.4 we can deduce that in the recoilless limit for

macrofraction size of 30 oscillators up to the temperature T = 10−2 K the Spectrum Broadcast

Structure in Quantum Brownian is formed. This is the main result of this subsection.

The situation with initial position squeezing is, as expected, quite different. Under exactly

the same conditions as above there is no decoherenece neither orthogonalization for macrofrac-

tions of both 10 and 30 oscillators as Fig. 5.5 shows. The plots suggest that both functions are

periodic in time, evolving almost at the central system frequency. This confirms our conjecture

that in the expression (5.43) the term proportional to sin2(Ωt) plays a dominant role and there

is no mechanism that can balance its influence on the indicator functions.
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FIGURE 5.4: Time-averaged |ΓX,X′ | (lower traces) and BmacX,X′ (upper traces) for
the system initially in a momentum squeezed state as functions of the tempera-
ture (on the logarithmic scale) for different macrofraction sizes: 10 oscillators – a);
30 oscillators – b). Plot b) shows formation of the broadcast state for T < 10−2K.

The figure is reproduced form [77].

5.5.7 Numerical analysis of discrete environmental spectrum – squeezed thermal
states

Due to the fact that the expressions for the indicator functions are valid also in the case of

arbitrary single mode Gaussian states of the environment we are able to analyze the influence

of the initial state of the environment on the formation of Spectrum Broadcast Structure. In

fact, the most interesting parameter is the squeezing of the initial state. Intuitively, the larger

the squeezing is the more efficient the formation should be in the sense that one needs smaller

number of oscillators to decohere the central system and to extract information from it. We

assume that the initial state is

%0k = Ŝ(r)%kT Ŝ(r)†, (5.66)

where Ŝ(r) = e
r
2 (â2−â†2) is the squeezing operator and %kT are the thermal oscillator states.

A simple calculation combined with the results of Subsection 4.3.3 shows that it is enough to

substitute in (5.40,5.41) |αk(t)|2 for:

|α̃k(t)|2 = cosh(2r)
[
|αk(t)|2 − tanh(2r)Reα2

k(t)
]
, (5.67)

Reak(t)2 =
C2
k

4mkωk

{
1

(ωk + Ω)2
{cos [2(ωk + Ω)t]− 2 cos [(ωk + Ω)t]} (5.68)

+
1

(ωk − Ω)2
{cos [2(ωk − Ω)t]− 2 cos [(ωk − Ω)t]}

+
1

ω2
k − Ω2

{cos 2(ωkt)− cos [(ωk − Ω) t]− cos [(ωk + Ω) t]}+
3ω2

k + Ω2

(ω2
k − Ω2)2

}
.

From (5.67) one sees that for large squeezing, |α̃k(t)|2 grows exponentially as e2r, enabling a for-

mation of the broadcast structure as the most problematic term in (5.41) decay as tanh(τTωk/2) ≈
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FIGURE 5.5: Time dependencies of |ΓX,X′(t)| a),b) and BmacX,X′(t) (c),(d) for the
system initially in a position squeezed state for different macro-fraction sizes and
T = 10−2K. The inserts show short-time behavior. The figure is reproduced from

[77].

τTωk/2 for high temperatures. This reflects the fact that large squeezing decreases the noise,

increasing the information capacity of the environment. To confirm this claim we investigate

the case of off-resonant "fast" environment with the momentum squeezed state of the central

system from the previous Subsection as we expect that the influence of initial squeezing of the

environment will be the most visible here. The plots in Figure 5.6 confirm our analysis. From

Figure 5.6 a) it can be seen that for a moderate macrofractions of 10 oscillators only with a help

of a large squeezing log r > 0 the negative effect of the temperature can be overcome, and both

functions are damped indicating formation of the spectrum broadcast structure.

For 30 oscillators, Figure 5.6 b), the effect of random phases in (5.40,5.41) is much stronger,

the functions are much more damped for the chosen parameters range, and hence the plateau

of a broadcast structure formation is much larger. Quite surprisingly, there is a bump around

log r = 0 where the formation is suppressed, most probably due to a constructive interference

in (5.67,5.69).

5.5.8 Discrete environmental spectrum – analytical estimates of the SBS formation

The numerical analysis of the previous Subsection clearly shows that Quantum Brownian Mo-

tion, in the recoilless limit, there is a regime of parameters in which the Spectrum Broadcast

Structure is formed. However, this analysis is not as elegant and insightful as an analytical
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FIGURE 5.6: Time averaged decoherence 〈|ΓX,X′ |〉 (green; lower surfaces) and
distinguishability 〈BmacX,X′〉 (magenta; upper surfaces) factors as functions of the
temperature T and squeezing r (both on the logarithmic scale) of the environ-
ment. The set of random frequencies ωk was generated once per plot. The traced
over and observed macrofractions, (1 − f)E and mac, are assumed to be of the
same size: 10 oscillators – a); 30 oscillators – b). Both plots simultaneously ap-
proaching zero indicates formation of the spectrum broadcast structure for a

given (r, T ). Averaging time was set to 1s. The figure is reproduced from [87].

one and it does not allow to make a general statements about the Spectrum Broadcast Struc-

tures formation in the considered model. In particular, of great interest are the characteristic

timescale of the deceherence process and the time that is needed to imprint the information

about the central system on the remaining environment. From the plots they can be obtained

only by a posteriori analysis. Moreover, it is impossible to predict accurately the long time be-

havior of the indicator functions before the numerical analysis is performed. In this Subsection

we show that there exists an analytical method, which allows to overcome this drawbacks.

We restrict our analysis to momentum squeezed states of the central oscillator since from

the previous analysis it follows that in this case the Spectrum Broadcast structure is formed

in principle in all possible regimes of frequencies (at least for the considered choice of model

parameters). In general our formulas are valid for resonant as well as off-resonant environ-

ments. However, as we have seen previously the case of off-resonant "fast" environment is the

most involved and interesting one since the almost periodic nature of indicator functions is

more visible there than in two other cases. Therefore, whenever we find it insightful to approx-

imate the derived formulas we do it for the off-resonant "fast" environment (this means that in

approximations we assume ωU , ωL � Ω).

To perform the analysis we rewrite the decoherence factor for a single system of the envi-

ronment as

− log |Γ(k)
X,X′(t)| =

(X −X ′)2

2
|αk(t)|2 coth

(τTωk
2

)
= (5.69)
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|X −X ′|2C2
kωk coth

(
τTωk

2

)
4h̄mk(ω

2
k − Ω2)2

[
(cosωkt− cos Ωt)2 −

(
sinωkt−

Ω

ωk
sin Ωt

)2 ]
≡ |X −X

′|2

2
fΓ
T (t;ωk)

where τT ≡ h̄/(kBT ) is the thermal time and we have introduced a function fΓ
T (t;ωk) ≡

|αk(t)|2coth
(
τTωk

2

)
for a later convenience. The generalized overlap for the single environment

is:

− logB
(k)
X,X′(t) =

(X −X ′)2

2
|αk(t)|2 tanh

(τTωk
2

)
≡ |X −X

′|2

2
fBT (t;ωk). (5.70)

The indicator functions for macrofractions then take the form

∣∣ΓX,X′(t)∣∣ = exp

−|X −X ′|2
2

∑
k∈(1−f)E

fΓ
T (t;ωk)

 , (5.71)

BX,X′(t) = exp

[
−|X −X

′|2

2

∑
k∈mac

fBT (t;ωk)

]
. (5.72)

As has been already mentioned, we are working with random environments with independent

identically distributed (i.i.d.) frequencies ωk with some distribution P (ω). As a consequence,

the functions fBT (t;ωk) and fΓ
T (t;ωk), appearing in the Spectrum Broadcast Structure indicator

functions (5.71,5.72), also become i.i.d. random variables for a fixed time t and temperature

T . Analytical study of their sums over a macrofraction
∑Nmac

k=1 fΓ,B
T (t;ωk) (we again assume

for simplicity that both the unobserved macrofraction (1− f)E as well as each of the observed

ones have the same size Nmac) is possible in the limit of a large macrofraction size Nmac → ∞
using the Law of Large Numbers [94]. This will be our main tool. It states (in its strong form)

that the macrofraction averages 1/Nmac
∑Nmac

k=1 fΓ,B
T (t;ωk) converge almost surely, this is with

probability one, to their expectation values:

1

Nmac

Nmac∑
k=1

fT (t;ωk)
a.s.→
∫
dωP (ω)fT (t;ω) ≡ 〈〈fT (t;ω)〉〉 (5.73)

(we will neglect the superscripts Γ, B unless it leads to a confusion). This allows us to approxi-

mate the sums
∑Nmac

k=1 fT (t;ωk) with Nmac 〈〈fT (t;ω)〉〉.
We note that the invocation of Law of Large Numbers is somehow a similar approach to

this, in which one introduces the continuous limit for the macrofractions of the environment

with P (ω) determining the spectral density. In other words, we divide the environment into

fractions of such a size that the approximation obtained with the help of Law of Large Numbers

may be applied. To bound the error of the approximation one can use Large Deviations Theory
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stating that the probability of the sum
∑Nmac

k=1 fT (t;ωk) being grater than mean 〈〈fT (t;ω)〉〉 by

some value Z decays exponentially with growing Nmac, at a rate depending on Z (this result

can be also used to bound the probability of the sum being smaller than the mean). Following

our approach we will use here simple, uniform probability distribution over an interval [ωL, ωU ]

due to an ease of analysis:

〈〈fT (t;ω)〉〉 =
1

∆ω

∫ ωU

ωL

dωfT (t;ω), (5.74)

where ∆ω = ωU − ωL. Let us remind that the coupling constants are Ck = 2
√

(Mmkγ̄0)/π,

with γ̄0 a constant. In what follows we analyze the short- and long-time behavior of this ex-

pression in the limits of high and low temperature. The latter approximation allows us to

perform the relevant integrals analytically. This will enable us to estimate the macrofraction

size Nmac needed in order for the functions (5.71,5.72) to attain asymptotically values close

to zero within a given error as well as give the timescales of their initial decays, observed

numerically in the previous Subsection. Before presenting the results, for the compactness

sake, we introduce a notation for particular combinations of Sine- and Cosine-integral func-

tions Si(z) =
∫ z

0 dz
sin z
z , Ci(z) =

∫ z
0 dz

cos z
z , which will appear in formulas:

FSi(±,±,±,±) = [±1,±1,±1,±1] ·

[Si ((ωL − Ω)t) , Si ((ωU − Ω)t) , Si ((ωL + Ω)t) , Si ((ωU + Ω)t)]T (5.75)

FCi(±,±,±,±) = [±1,±1,±1,±1] ·

[Ci ((ωL − Ω)t) ,Ci ((ωU − Ω)t) ,Ci ((ωL + Ω)t) ,Ci ((ωU + Ω)t)]T , (5.76)

where [±1, . . . ± 1] is a vector, · denotes vector product and T stands for transposition. The

argument of FSi(±,±,±,±), FCi(±,±,±,±) specifies pattern of signs, for example:

FSi(+,−,+,−) = Si ((ωL − Ω)t)− Si ((ωU − Ω)t) + Si ((ωL + Ω)t)− Si ((ωU + Ω)t) . (5.77)

As we will be interested in the short- and long-time behavior of the indicator functions, below

we derive approximations for FSi(±,±,±,±), FCi(±,±,±,±) relevant for the problem. In the

short time regime, this is for t � ω−1
U (off-resonant "fast environment"), we can approximate

relevant functions as follows:

FSi(+,−,+,−) = 2(ωL − ωU )t+
t3

9
(ω3
U − ω3

L + 3Ω2ωU − 3Ω2ωL) +O(t5) (5.78)

FSi(+,−,−,+) =
t3

3
Ω(ω2

L − ω2
U ) +O(t5)

FCi(+,−,+,−) = log
ω2
L − ω2

ω2
U − ω2

+
1

2
(ω2
U − ω2

L)t2 + o(t4)
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FCi(+,−,−,+) = log
(ωL − Ω)(ωU + Ω)

(ωL + Ω)(ωU − Ω)
+ Ω(ωL − ωU )t2 +O(t4).

On the other hand, the asymptotic is given by:

tFSi(+,−,+,−) = 2

(
ωU

cos(ωU t)

ω2
U − Ω2

cos(Ωt) + Ω
sin(ωU t)

ω2
U − Ω2

sin(Ωt)− (5.79)

ωL
cos(ωLt)

ω2
L − Ω2

cos(Ωt)− Ω
sin(ωLt)

ω2
L − Ω2

sin(Ωt)

)
+O(t−1)

tFSi(+,−,−,+) = 2

(
ωU

sin(ωU t)

ω2
U − Ω2

sin(Ωt) + Ω
cos(ωU t)

ω2
U − Ω2

cos(Ωt)−

ωL
sin(ωLt)

ω2
L − Ω2

sin(Ωt)− Ω
cos(ωLt)

ω2
L − Ω2

cos(Ωt)

)
+O(t−1)

tFCi(+,−,+,−) = 2

(
ωL

sin(ωLt)

ω2
L − Ω2

cos(Ωt)− Ω
sin(ωLt)

ω2
L − Ω2

sin(Ωt)−

ωU
sin(ωU t)

ω2
U − Ω2

cos(Ωt) + Ω
cos(ωU t)

ω2
U − Ω2

sin(Ωt)

)
+O(t−1)

tFCi(+,−,−,+) = 2

(
Ω

sin(ωLt)

ω2
L − Ω2

cos(Ωt)− ωL
cos(ωLt)

ω2
L − Ω2

sin(Ωt) +

ωU
cos(ωU t)

ω2
U − Ω2

sin(Ωt)− Ω
sin(ωU t)

ω2
U − Ω2

cos(Ωt)

)
+O(t−1).

Low temperature

Let us first assume that the temperature is so low, that the associated thermal energy is much

lower than the lowest oscillator energy: kBT � h̄ωL. Then in the leading order the temperature

dependence can be neglected coth(h̄ωk/2kBT ) ≈ tanh(h̄ωk/2kBT ) ≈ 1 and the behavior of

decoherence and orthogonalization becomes identical:

fΓ
T (t;ωk) ≈ fBT (t;ωk) ≈ |αk(t)|2 ≡ f0(t;ωk) (5.80)

with αk(t) given by (5.29). We need to compute the integral

〈〈f0(t;ω)〉〉 =
2Mγ̄0

h̄π∆ω

∫ ωU

ωL

ωk
(ω2
k − Ω2)2

((
1− cos2 Ωt

)
+

Ω2

ω2

(
1 + cos2 Ωt

)
(5.81)

−2 cos(Ωt)(cosωt)− 2Ω

ωk
sin(Ωt) sin(ωt)

)
=

2Mγ̄0

h̄π∆ω
(I1 + I2 − 2I3 − 2I4) ,
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which splits in four terms. Results of each integration are given by:

I1 =

∫ ωU

ωL

ω

(ω2 − Ω2)
(1 + cos2(Ωt)) =

1

2

(
1

ω2
L − Ω2

− 1

ω2
U − Ω2

)
(1 + cos2(Ωt)) (5.82)

I2 =

∫ ωU

ωL

Ω2

ω(ω2 − Ω2)
(1− cos2(Ωt)) = (5.83)[

1

4Ω2

(
4 log

ωU
ωL
− 2 log

ω2
U − Ω2

ω2
L − Ω2

)
+

1

2(ω2
L − Ω2)

− 1

2(ω2
U − Ω2)

]
(1− cos2(Ωt))

I3 =

∫ ωU

ωL

dω
ω

(ω2 − Ω2)2
cos(ωt) cos(Ωt) =

1

4Ω
cos(Ωt)

[
2Ω cos(ωLt)

ω2
L − Ω2

− 2Ω cos(ωU t)

ω2
U − Ω2

+ (5.84)

t cos(Ωt)FSi(+,−,−,+) + t sin(Ωt)FCi(+,−,+,−)

]

I4 =

∫ ωU

ωL

dω
Ω

(ω2 − Ω2)2
sin(ωt)(sin Ωt) =

1

4Ω
sin(Ωt)

{
2ωL sin(ωLt)

ω2
L − Ω2

− 2ωU sin(ωU t)

ω2
U − Ω2

+ (5.85)

t [cos(Ωt)FCi(−,+,−,+) + sin(Ωt)FSi(+,−,−,+)]− Ω−1 [FSi(−,+,+,−)− FCi(−,+,−,+)]

}
.

First, we are interested in the short-time behavior, valid for times much shorter than the

shortest timescale of the full Hamiltonian, which in this case is t � ω−1
U (here we work in the

off-resonant "fast" regime). By expanding the expression for 〈〈f0(t;ω)〉〉 in power series with

respect to time, we find after a tedious calculation that

I1 = (5.86)[
1

4Ω2

(
4 log

ωU
ωL
− 2 log

ω2
U − Ω2

ω2
L − Ω2

)
+

1

2(ω2
L − Ω2)

− 1

2(ω2
U − Ω2)

]
Ω2t2 +O(t4)

I2 =

(
1

ω2
L − Ω2

− 1

ω2
U − Ω2

)(
2− Ω2t2

)
+O(t4) (5.87)

I3 = (5.88)
1

4Ω

[
2Ω

ω2
L − Ω2

(
1−

ω2
Lt

2

2
− Ω2t2

2

)
− 2Ω

ω2
U − Ω2

(
1−

ω2
U t

2

2
− Ω2t2

2

)
+ Ωt2 log

ω2
L − Ω2

ω2
U − Ω2

]
+O(t4)

I4 =
1

4Ω

(
2ωLωLt

ω2
L − Ω2

ΩωLt
2 2ωUωU t

ω2
U − Ω2

ΩωU t
2

)
+O(t4). (5.89)

As a result, the expression for the mean valid in the short-time regime is

〈〈f0(t;ω)〉〉 =
2Mγ̄0

h̄π∆ω
log

(
ωU
ωL

)
t2 +O(t4), (5.90)
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which immediately implies that the initial behavior of both the decoherence and the orthogo-

nalization factors is a Gaussian decay (equations (5.69, 5.70)):

|ΓX,X′(t)| ≈ BX,X′(t) ≈ exp

[
−Nmac

(
t

τ0

)2
]
, (5.91)

with a common timescale:

τ0√
Nmac

, τ0 =
h̄π∆ω

∆XMγ̄0
log−1

(
1 +

∆ω

ωL

)
. (5.92)

We note that it depends on the macrofraction size and the separation through the product

∆X
√
Nmac. Thus, in order to keep the same time-scale for small separations the macrofraction

size should increase quadratically with decreasing separation.

The initial Gaussian decay (5.91) by no means guarantees that the functions will stay close

to zero with negligible fluctuations—revivals are possible, as can be seen on the plots from the

previous Section. Thus a long-time analysis is needed, governed in the case of off-resonant

"fast" environment by the condition t � 1/(ωL − Ω) ≈ 1/ωL as Ω � ωL. The detailed calcula-

tion, basing on the equation (5.79), is tedious. The result reads:

〈〈f0(t;ω)〉〉 =
2Mγ̄0

h̄π∆ω

(
A0 cos2(Ωt) +B0

)
, (5.93)

where:

A0 ≡ −
1

2Ω2

(
2 log

ωU
ωL
− log

ω2
U − Ω2

ω2
L − Ω2

)
, (5.94)

B0 ≡
1

ω2
L − Ω2

− 1

ω2
U − Ω2

−A0. (5.95)

Interestingly, for large times the mean has an oscillatory part with the system frequency Ω, but

for "fast" environments this part is vanishingly small as A0 ≈ 0. The above formulas allow

us to solve a very important problem in the context of Spectrum Broadcast Structures, namely

how big should be macrofractions in order to get decoherence and orthogonalization with a

prescribed error ε (common in the low T limit for both functions):

|ΓX,X′(t)|, BX,X′(t) < ε. (5.96)

This in turn will determine the trace norm distance of the actual state %S:fE(t) to the spectrum

broadcast form. By minimizing equation (5.93) we find the maximal value of the decoherence
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factor and generalized overlap (5.71,5.72). This immediately leads to a conclusion that if:

∆X2Nmac >
h̄π∆ω

Mγ̄0B0
log

1

ε
≈

h̄πω2
Uω

2
L

Mγ̄0 (ωU + ωL)
log

1

ε
, (5.97)

then the functions will be bounded by (5.96) for all times t � 1/(ωL − Ω). This result can be

treated as an analytical proof of Spectrum Broadcast Structure formation in the studied regime.

Similarly to the short-time decay (5.91), the asymptotic behavior of |ΓX,X′(t)|, BX,X′(t) is gov-

erned by the product ∆X2Nmac, so that the increase of the macrofraction size is quadratic with

decreasing the spatial resolution of the Spectrum Broadcast Structure. This finite spatial res-

olution of the Spectrum Broadcast Structure for a given error level and a macrofraction size

is a manifestation of the "macroscopic objectivity" idea, introduced in the former parts of this

Chapter for simplified models of Quantum Brownian Motion. Namely, for a given tolerance

ε and a macrofraction size, the objective state of the system appear only on the length scales

greater than ones given by (5.97).

High temperature

Here we consider the opposite situation of a hot environment: kBT � h̄ωU . Intuitively, a

formation of the Spectrum Broadcast Structure should be quite compromized now, as high

temperature, while increasing the decoherence power of the environment through the increase

of its energy appearing in (5.69), decreases its information capacity, by decreasing the purity,

on which depends the orthogonalization factor (5.70). Indeed, this is what we show below. In

the leading order tanh
(
τTω

2

)
=
[
coth

(
τTω

2

)]−1 ≈ τTω
2 and (5.69) and (5.70) read:

fΓ
T (t;ωk) ≈

2

τTωk
|αk(t)|2, (5.98)

fBT (t;ωk) ≈
τTωk

2
|αk(t)|2. (5.99)

The relevant means (5.74) can be calculated analytically again. We start with decoherence factor

〈〈
fΓ
T (t;ωk)

〉〉
= (5.100)

4Mγ̄0

h̄πτTωLωU

∫ ωU

ωL

1

(ω2
k − Ω2)2

((
1− cos2(Ωt)

)
+

Ω2

ω2
k

(
1 + cos2(Ωt)

)
−2 cos(Ωt) cos(ωkt)−

2Ω

ωk
sin(Ωt) sin(ωkt)

)
=

2Mγ̄0

h̄πτTωLωU

(
IΓ

1 + IΓ
2 − 2IΓ

3 − 2IΓ
4

)
.

Computing integrals we obtain:

IΓ
1 =

∫ ωU

ωL

dω
Ω2

ω2(ω2 − Ω2)2

(
1− cos2(Ωt)

)
= (5.101)
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(
1− cos2(Ωt)

)
Ω2

(
ωU − ωL
ωUωL

− ωU
2(ω2

U − Ω2)
+

ωL
2(ω2

L − Ω2)
+

3

4Ω
log

(ωU + Ω)(ωL − Ω)

(ωU − Ω)(ωL + Ω)

)

IΓ
2 =

∫ ωU

ωL

dω
1

(ω2 − Ω2)2

(
1 + cos2(Ωt)

)
= (5.102)

1

4Ω2

(
1 + cos2(Ωt)

)( 2ωL
ω2
L − Ω2

− 2ωU
ω2
U − Ω2

+
1

Ω
log

(ωU + Ω)(ωL − Ω)

(ωU − Ω)(ωL + Ω)

)

IΓ
3 =

∫ ωU

ωL

dω
1

(ω2 − Ω2)2
cos(ωt) cos(Ωt) = (5.103)

1

4Ω2
cos Ωt

[
2ωL cos(ωLt)

ω2
L − Ω2

− 2ωU cos(ωU t)

ω2
U − Ω2

+ t cos(Ωt)FSi(+,−,+,−) +

t sin(Ωt)FCi(+,−,−,+) +
1

Ω
(cos (Ωt)FCi(+,−,−,+) + sin (Ωt)FSi(−,+,−,+)

]

IΓ
4 =

∫ ωU

ωL

dω
Ω

ω(ω2 − Ω2)2
sin(ωt) sin(Ωt) = (5.104)

1

2Ω3
sin(Ωt)

[
2 (Si (ωU t)− Si (ωLt))− cos(Ωt)FSi(−,+,−,+)− sin(Ωt)FCi(−,+,+,−)

+
Ω

2

(
2Ω sin(ωLt)

ω2
L − Ω2

− 2Ω sin(ωU t)

ω2
U − Ω2

+ t cos(Ωt)FCi(−,+,+,−) + t sin(Ωt)FSi(+,−,+,−)

)]
.

In the case of generalized overlap the mean is given by

〈〈
fBT (t;ωk)

〉〉
= (5.105)

Mγ̄0τT
h̄π∆ω

∫ ωU

ωL

ω2

(ω2
k − Ω2)2

((
1 + cos2(Ωt)+

)
+

Ω2

ω2
k

(
1− cos2(Ωt)

)
−2 cos(Ωt) cos(ωkt)−

2Ω

ωk
sin(Ωt) sin(ωkt)

)
=

2Mγ̄0τT
h̄π∆ω

(
IB1 + IB2 − 2IB3 − 2IB4

)
The results of integration are:

IB1 =

∫ ωU

ωL

dω
ω2

(ω2 − Ω2)2

(
1 + cos2(Ωt)

)
= (5.106)

ωL
2(ω2

L − Ω2)
− ωU

2(ω2
U − Ω2)

+
1

4Ω
log

(ωU − Ω)(ωL + Ω)

(ωL − Ω)(ωU + Ω)

IB2 =

∫ ωU

ωL

dω
Ω2

(ω2 − Ω2)2

(
1− cos2(Ωt)

)
= (5.107)

ωL
2(ω2

L − Ω2)
− ωU

2(ω2
U − Ω2)

+
1

4Ω
log

(ωU + Ω)(ωL − Ω)

(ωL + Ω)(ωU − Ω)

IB3 =

∫ ωU

ωL

dω
ω2

(ω2 − Ω2)2
cos(ωt) cos(Ωt) = (5.108)
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1

4Ω

(
2ωL cos(ωLt)

ω2
L − Ω2

− 2ωU cos(ωU t)

ω2
U − Ω2

+

t(cos(Ωt)FSi(+,−,+,−) + sin(Ωt)FCi(+,−,−,+)) +

1

Ω
cos(Ωt) (cos(Ωt)FCi(−,+,+,−) + sin(Ωt)FSi(+,−,+,−))

)
IB4 =

∫ ωU

ωL

dω
ωΩ

(ω2 − Ω2)2
sin(ωt) sin(Ωt) = (5.109)

1

4
sin(Ωt)

[
2Ω sin(ωLt)

ω2
L − Ω2

− 2Ω sin(ωU t)

ω2
U − Ω2

+ t(cos(Ωt)FCi(−,+,+,−) + sin(Ωt)FSi(+,−,+,−))

]
.

To find short-time behavior of the mean, we expand th expressions for decoherence and gener-

alized overlap up to the second order in time. This is a good approximation for t � ω−1
U . As a

result we obtain in the case of decoherence

IΓ
1 = (5.110)(
ωU − ωL
ωUωL

− ωU
2(ω2

U − Ω2)
+

ωL
2(ω2

L − Ω2)
+

3

4Ω
log

(ωU + Ω)(ωL − Ω)

(ωU − Ω)(ωL + Ω)

)
t2 +O(t4)

IΓ
2 = (5.111)
1

4Ω2

(
2ωL

ω2
L − Ω2

− 2ωU
ω2
U − Ω2

+
1

Ω
log

(ωU + Ω)(ωL − Ω)

(ωU − Ω)(ωL + Ω)

)
(2− Ω2t2) +O(t4)

IΓ
3 =

Ω2

4

(
2ωL

ω2
L − Ω2

− 2ωU
ω2
U − Ω2

+
1

Ω
log

(ωU + Ω)(ωL − Ω)

(ωU − Ω)(ωL + Ω)

)
(5.112)

+
1

2(ω2
L − Ω2)(ω2

U − Ω2)

(
ωLΩ2 + ωUωL − ωLω2

U − ωUΩ2
)
t2 +O(t4)

IΓ
4 =

(
1

2ω2
L − Ω2

− 1

2ω2
U − Ω2

+
1

4Ω
log

(ωU + Ω)(ωL − Ω)

(ωU − Ω)(ωL + Ω)

)
t2 +O(t4), (5.113)

and for generalized overlap

IB1 =

(
ωL

ω2
L − Ω2

− ωU
ω2
U − Ω2

− 1

2Ω
log

(ωL − Ω)(ωU + Ω)

(ωL + Ω)(ωU − Ω)

)
2− Ω2t2

2
+O(t4) (5.114)

IB2 =
Ω2

2

(
ωL

ω2
L − Ω2

− ωU
ω2
U − Ω2

+
1

2Ω
log

(ωL − Ω)(ωU + Ω)

(ωL + Ω)(ωU − Ω)

)
t2 +O(t4) (5.115)

IB3 =
1

2

(
ωL

ω2
L − Ω2

− ωU
ω2
U − Ω2

− 1

2Ω
log

(ωL − Ω)(ωU + Ω)

(ωL + Ω)(ωU − Ω)

)
+ (5.116)

1

4

(
ωU

ω2
U − Ω2

(ω2
U + Ω2)− ωL

ω2
L − Ω2

(ω2
L + Ω2)+

3(ωL − ωU ) + 2Ω log
(ωL − Ω)(ωU + Ω)

(ωL + Ω)(ωU − Ω)

)
t2 +O(t4)

IB4 =
Ω2

2

(
ωL

ω2
L − Ω2

− ωU
ω2
U − Ω2

− 1

2Ω
log

(ωL − Ω)(ωU + Ω)

(ωL + Ω)(ωU − Ω)

)
t2 +O(t4). (5.117)
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Finally for short time-scales t� ω−1
U we obtain the following behavior:

〈〈
fΓ
T (t;ω)

〉〉
=

4Mγ̄0

h̄πωLωUτT
t2 +O(t4), (5.118)〈〈

fBT (t;ω)
〉〉

=
Mγ̄0τT
h̄π

τT t
2 +O(t4), (5.119)

resulting again in the initial Gaussian decay:

|ΓX,X′(t)| ≈ exp

[
−Nmac

(
t

τdec

)2
]

(5.120)

BX,X′(t) ≈ exp

[
−Nmac

(
t

τort

)2
]
. (5.121)

However, this time the timescales are different. For the decoherence one obtains

τdec√
Nmac

, τdec = τT
h̄πωLωU

2∆XMγ̄0
, (5.122)

whereas for generalized overlap the characteristic time is:

τort√
Nmac

, τort = τ−1
T

2h̄π

∆XMγ̄0
. (5.123)

As one would expect, the key difference is in the temperature dependence through the the

thermal time τT = h̄/(kBT ). While τdec decreases as T−1 indicating faster decoherence with

higher temperature, τort ∼ T so that it may even happen that the orthogonalization timescale

τdec/
√
Nmac is larger than the validity of the short-time approximation t � ω−1

U . Keeping

τdec/
√
Nmac < ω−1

U so that the short-time approximation, and hence the Gaussian decay is

valid, puts a constraint on the temperature, the macrofraction size and the separation to be

discriminated:

T

∆X
√
Nmac

<
Mγ̄0

2πkBωU
. (5.124)

To get some insight into possible revivals of the decoherence and orthogonalization factors,

we perform long-time analysis. For t � 1/(ωL − Ω) ≈ 1/ωL the asymptotic expression for〈〈
fΓ
T (t;ω)

〉〉
reads:

〈〈
fΓ
T (t;ω)

〉〉
=

4Mγ̄0

h̄π∆ωτT

(
AΓ cos2(Ωt) +BΓ

)
+O(t−1) (5.125)



100 Chapter 5. Spectrum Broadcast Structures in Quantum Brownian Motion model

with:

AΓ ≡ −
1

4Ω2

[
∆ω

ωUωL
+

1

2Ω
log

(ωU + Ω)(ωL − Ω)

(ωU − Ω)(ωL + Ω)

]
, (5.126)

BΓ ≡
1

4Ω2

(
ωL

ω2
L − Ω2

− ωU
ω2
U − Ω2

)
−AΓ, (5.127)

while for generalized overlap it is:

〈〈
fBT (t;ω)

〉〉
=

Mγ̄0τT
h̄π∆ω

(
AB cos2(Ωt) +BB

)
+O(t−1), (5.128)

where:

AB ≡
1

2Ω
log

(ωU − Ω)(ωL + Ω)

(ωL − Ω)(ωU + Ω)
(5.129)

BB ≡
ωL

ω2
L − Ω2

− ωU
ω2
U − Ω2

. (5.130)

We observe that unlike in the low T regime, the decoherence asymptotic keeps oscillating with

the system frequency Ω even for fast environments as AΓ ≈ ∆ω/(4Ω2ωUωL), while AB ≈ 0. We

are now ready to solve the problem of the Spectrum Broadcast Structure formation in the high

temperature regime. We perform minimization of the above expressions. This allows us to

establish the size of macrofractions needed, in a given temperature T , to achieve decoherence

and distinguishability, and hence the Spectrum Broadcast Structures, on a length-scale ∆X

within given errors:

|ΓX,X′(t)| < εdec, BX,X′(t) < εort. (5.131)

Equations (5.125) and (5.128) give us the answer:

T∆X2
0N

Γ
mac >

h̄2π∆ω

2MkB γ̄0BΓ
log

1

εdec
≈ h̄2πΩ2ωUωL

MkB γ̄0
log

1

εdec
, (5.132)

∆X2
0N

B
mac

T
>

2πkB∆ω

Mγ̄0BB
log

1

εort
≈ 2πkBωUωL

Mγ̄0
log

1

εort
, (5.133)

where NΓ
mac is the size of the traced-over part of the environment (1− f)E and NB

mac is the size

of (each of) the observed macrofraction. As predicted, keeping all other parameters fixed, the

observed macrofraction size in high temperature must be much larger than the unobserved one

in order to come close to Spectrum Broadcast Structure. Indeed, from the above results those

sizes scale like the thermal-to-central-system energies:

NB
mac

NΓ
mac

> 2

(
kBT

h̄Ω

)2 log εort
log εdec

(5.134)
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and the later factor is huge for the considered "fast" environments, since kBT � h̄ωU � h̄Ω.

5.5.9 Dynamical aspects of Spectrum Broadcast Structure

Let us assume that a Spectrum Broadcast Structure is formed, this is both |ΓX0,X′0
(t)| and

Bmac
X0,X′0

(t) are negligible small for X0 6= X ′0. Then we see that equation (5.36), taking the usual

continuum limit of the sum, is approximately (it can never become strictly) diagonal in the

position basis:

%S:fE(t) ≈
∫
dX0 |〈X0|φ0〉|2 × (5.135)

×|X(t)〉〈X(t)| ⊗ %mac1(X0; t)⊗ · · · ⊗ %macM(X0; t),

where |X(t)〉 ≡ e−iĤSt|X0〉, we have grouped fE intoMmacro-fractions and %maci(X0; t) have

orthogonal supports (for large enough t, see for example Figure 5.3 d) or the results of Subsec-

tion 5.5.8). What appears in (5.135) is a novel structure, compared to the previous studies [13,

65], Dynamical Spectrum Broadcast Structure. Because the system now has its own dynamics,

the pointers |X(t)〉 are now states of motion–they evolve on a time-scale tS ∼ 2π/Ω, rather than

being static as in other models in which the formation of Spectrum Broadcast Structure has been

proven [65], and a time-dependent Spectrum Broadcast Structure is formed with a reference to

these evolving pointers. For the regime of parameters considered in this Chapter, the respective

time-scales are: tS ∼ 2× 10−8s – the motion of the central system and tSBS ∼ 2× 10−10s – the

timescale of Spectrum Broadcast Structure formation in the case of the off-resonant "fast" envi-

ronment (to find the timescale we used the results presented in Figure 5.3 b),d)). As a result,

the Spectrum Broadcast Structure is formed two orders of magnitude faster than the intrinsic

system evolution. Thanks to it, all the observers will measure the same initial position (this is

the oscillation amplitude) X0, leaving the (by now decohered) system undisturbed in its state

of motion. But the traces of this motion are present in the environment not only through X0 –

each state %mac(X0; t) depends on the whole trajectory X(t;X0). More precisely, at time t the

argument of displacement operator acting on an individual subsystem of the environment is

a product of the central system’s trajectory and factor steaming from the free evolution of the

subsystem, integrated from the initial time t0 = 0 up to final time t (equations (5.29 5.32)). In

principle, it should be possible to reconstruct the trajectory by measuring the environment. We

have not developed a complete scheme to achieve this. Let us just make some remarks regard-

ing the topic. One can approach this problem from different sides. Firstly, from Chapter 2 we

can try to determine the measurement that discriminates optimally the environmental states

evolving accordingly X0 and X ′0. However, we were not able to diagonalize the corresponding

operator. On the other hand, we would like to point out that, under assumptions that we have

made, central system acts on the environment as a classical driving force. In fact, monitoring
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of such a force has been studied in literature, for example in context of gravity-wave detectors

[102]. We believe that a closer inspection of these results may solve the problem of recover-

ing the trajectory of the central system. However, due to time constraints, we were forced to

postpone this research direction and we hope to address it in near future.

The intuitive picture is that while the system rotates on its intrinsic timescale, the environ-

ment follows this movement and past the transient period a spectrum broadcast structure is

being continuously formed, leading to a perception of objective position at each moment of

time. Due to the neglected back reaction on the system – recoilless limit, the structure (5.135) is

only a first approximation to this situation, as for example the central system does not dissipate

its energy to the environment. The next logical step would be to include the back reaction.

5.6 Concluding remarks

In this Chapter we conducted the study concerning the emergence of Spectrum Broadcast

Structures in the widely studied Quantum Brownian Motion model.

We started our discussion by arguing why the investigation of Spectrum Broadcast Struc-

ture cannot be performed using the techniques that has been developed so far in the literature

devoted to the model. We also described in detail why we do not follow the common way of

modeling the environment in terms of continuous spectral density function, but instead in most

cases keep the description of the environment to be discrete. We discussed the advantages and

disadvantages of this approach.

We started the actual investigation of the model with the highly simplified case, in which

the self-Hamiltonians of the system and the environment were not included into the consid-

eration (the Full Measurement Limit). We have shown that there is always a formation of the

Spectrum Broadcast Structure for thermal environment, irrespectively of how high the temper-

ature is, if one waits long enough and/or takes large enough macrofractions. We derived the

Gaussian character of this formation and the timescales of the process. Although the consid-

ered situation is a great simplification it allowed to gain some insights into the full model.

Subsequently, we made a step towards the full model by including self-Hamiltonian of the

environment. Here, we investigated the time averages of the indicator functions (decoherence

factor and generalized overlap) using a form of ergodicity for almost periodic functions. In the

limit of low temperatures and for large separations of the system’s initial positions X0, X
′
0 we

showed that these averages decay exponentially. Although the results were still obtained for

simplified model there are interesting at least for two reasons. Firstly, to the author’s knowl-

edge, the technique concerning averages of almost periodic functions has not been applied

previously to study decoherence. We believe that it can prove to be useful also in other models,

in which the almost periodic function appear, such as spin models of decoherence. Moreover,
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the large separation assumption opens here an interesting possibility of a space coarse-grained

Spectrum Broadcast Structure, where such a structure appears for large distances only but for

small not. This would lead to a sort of a macroscopic objectivity, emerging only at large scales.

Finally, we addressed the full model in the recoilless limit. We assumed that the back-

reaction of the environment on the system can be neglected, what allowed us to use Born-

Oppenheimer type of approximation and to arrive at a manageable form of the evolved system-

environment state. Subsequently, we restricted our considerations to the particular initial states

of the central system - momentum and position squeezed states. There were two reasons to do

so. Firstly, the choice was motivated by the fact that the system couples to the environment

via position operator and thus, from this fact and the results obtained for simplified models,

it could be expected that the decoherence process happens in the basis related to the position

eigenstates. Moreover, for the considered states the evolution operator takes a particular sim-

ple form that allowed us to use the expression developed in Chapter 4. We provided a case

study of continuous spectral density in the Calderia- Leggett approximation, known also as

Fokker-Planck limit. Subsequently, we studied the functions indicating the Spectrum Broadcast

structure formation for different regimes of discrete environmental spectrum (resonant, "slow"

and "fast" off-resonant) and discussed the differences between the obtained results. Firstly,

the analysis was performed by plotting the function of interest (in some cases also their aver-

ages). The influence of squeezing of the initial state of the environment on the formation of

Spectrum Broadcast Structure was also investigated. We developed an analytical treatment of

almost periodic functions appearing in the Quantum Brownian Motion model basing on the

Law of Large Numbers. It allowed us to answer relevant questions concerning the time-scales

of Spectrum Broadcast Structure formation as well as the numbers of environmental subsys-

tems needed to achieve this process in a mathematically rigorous way. Finally, we commented

on novel, dynamical character of the Spectrum Broadcast Structure formed in the considered

model.
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Chapter 6

Conclusions and open problems

In this thesis our aim was to study selected problems concerning role of correlations in Quan-

tum Information Theory and Quantum to Classical transition. We investigated Remote State

Preparation protocol and Spectrum Broadcast Structures formation in models with environ-

ments consisting of harmonic oscillators.

More precisely, in Chapter 3 we showed that quantum separable correlations cannot pro-

vide better efficiency of Remote State Preparation Protocol than that obtained with entangled

states. We proved this statement for the most general version of the protocol, working under

the natural assumptions for the problem. In this way we resolved the important issue that

attracted the interest of some members of Quantum Information Theory community. Subse-

quently, we provided also two examples of restricted protocols, in which the above statement

does not hold. Both of them concern restrictions imposed on decoding operations. As a result,

we gained a more complete understanding of power of different kinds of quantum correlations

in Remote State Preparation protocol.

In the second part of the thesis, Chapters 4 and 5 we studied the formation of Spectrum

Broadcast Structure in the context of physical models with environments consisting of har-

monic oscillators. Firstly, in Chapter 4 we derived formulas for functions indicating Spectrum

Broadcast Structures formation – decoherence factor and generalized overlap, assuming that

the environment is driven by a central system and that the initial state of the environment is

thermal. We generalized these results to arbitrary tensor products of single mode Gaussian

states of the environment. Subsequently, the dependence of the indicator functions on temper-

ature was discussed. In Chapter 5 we investigated the model of Quantum Brownian Motion,

initially studying simplified versions of the model. Working the in recoilless limit we derived

the approximated solution for the dynamics in the full model and discussed the formation of

Spectrum Broadcast Structures in the case of different descriptions of the environment: con-

tinuous and discrete one. In the former case we provided expression for indicator functions

(decoherence factor and generalized overlap) in the so called Caldeira-Leggett limit. In the lat-

ter we argued that the indicator function become almost periodic functions of time and analyze

their time-behavior with respect to the different choices of frequencies of the environment and
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its initial state. Finally we developed the analytical technique of analysis basing on the Law of

Large Numbers. This allowed us to find regimes of parameters, for which in Quantum Brow-

nian Motion, in recoilless limit, Spectrum Broadcast Structures are approximately formed. We

discussed the novel, dynamical character of Spectrum Broadcast Structure, which is formed in

the model. This are main results of the second part of the thesis.

Let us now list some open problems. Regarding Chapter 2:

• It would be interesting to investigate if the lack of common reference frame results in

advantage also in protocols other than Remote State Preparation.

• As we mentioned, the thermodynamical perspective of the protocol could be examined

in future.

For the second part of the thesis:

• To prove in a rigorous way condition indicating the enhancement of decoherence process

with temperature for continuous variable systems.

• To understand in quantitative way why some controlled evolutions lead the enhancement

of decoherence process with temperature. The results obtained in Chapter 4 concerning

this problem are preliminary.

• To try to quantify, what is the cost of writing information about the central system in the

environment. Does it scale with number of records present in the environment?

• To try to answer the question: is there a fundamental bound on the amount of infor-

mation that can be written in the environment? If the answer is affirmative, what are

consequences for Spectrum Broadcast Structure formation? The results of the analysis

should be compared with [103].

• To explore connections between dynamical Spectrum Broadcast Structures and consis-

tent histories framework. Investigation along these lines has been initiated in [104].

Once more, an especially interesting issue concerns the information-capacity of the en-

vironment: what happens when there are not enough environmental subsystems to store

records about full consistent history of the system? Does such fact introduce irreversibil-

ity to the problem?

• To generalize results of Chapter 5 by restoring dissipation into considerations.

• To analyze if the Quantum Speed Limits [105] can be used to bound timescales of Spec-

trum Broadcast Structures formation.
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• We know that in some cases there is a connection between consistent histories and quan-

tum trajectories [106, 107]. It would be interesting between quantum trajectories and

Spectrum Broadcast Structures.
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