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0 ACRONYMS, ABBREVIATIONS, SYMBOLS AND TERMS

Acronym /

Abbreviation b G

AAC Advanced Audio Coding

AAC-HE Advanced Audio Coding — High Efficiency
ACELP Algebraic Code-Excited Linear Prediction
ADPCM Adaptive Differential Pulse Code Modulation
AM Amplitude Modulation

AMR-WB Adaptive Multi-Rate Wideband (Codec)
AMR-WB+ Extended Adaptive Multi-Rate Wideband (Codec)
AR Autoregressive

AUC Area Under Curve

CD Compact Disc

CELP Code-Excited Linear Prediction

DFT Discrete Fourier Transform

DPCM Differential Pulse Code Modulation

DSP Digital Signal Processor

EBU European Broadcast Union

FFT Fast Fourier Transform

FM Frequency Modulation

FTM Frequency-derived Tonality Measure

1CC Inter-channel Coherence

1ID Inter-channel Intensity Difference

IMDCT Inverse Modified Discrete Cosine Transform
1P Internet Protocol

IPD Inter-channel Phase Difference

ISMR Inverted Signal to Mask Ratio

ISO International Organization for Standardization
ITU International Telecommunication Union
ITU-R International Telecommunication Union — Radiocommunication
LF Low Frequencies

LP Linear Prediction

Lyr High Frequencies of the Left channel

Lir Low Frequencies of the Left channel

Ml Tonality detector combined with MPEG psychoacoustic model 1
MD Mini Disc
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MDCT
MELP
MPEG
MP3
M/S
MUSHRA
MUX
MHF
M
NMR
NMT
ODG
OPD
PAC
PC
PCM
PE
PEAQ
PNS
PS
QMF
QIFFT
ROC
RHF
RLF
SBR
SDG
SFB
SFM
SLM
SMR
SNR
SQAM
SSR
STFT
SLF
TCX

Modified Discrete Cosine Transformation
Mixed Excited Linear Prediction

Motion Picture Experts Group

MPEQG layer 3

Main/Side

Multi-Stimulus with Hidden Reference and Anchor
Multiplexer

High Frequencies of the Mono channel
Low Frequencies of the Mono channel
Noise to Mask Ratio

Noise Masking Tone

Objective Difference Grade

Overall Phase Difference

Perceptual Audio Codec

Personal Computer

Pulse Code Modulation

Perceptual Entropy

Perceptual Evaluation of Audio Quality
Perceptual Noise Substitution

Parametric Stereo

Quadratic Mirror Filter-bank
Quadratically Interpolated Fast Fourier Transform
Receiver Operating Characteristic

High Frequencies of the Right channel
Low Frequencies of the Right channel
Spectral Band Replication

Subjective Difference Grade

Scale-Factor Band

Spectral Flatness Measure

Sinusoidal Likeness Measure

Signal to Mask Ratio

Signal to Noise Ratio

Sound Quality Assessment Material
Scalable Sampling Rate

Short Time Fourier Transform

Low Frequencies of the Side channel (M/S coding)

Transform-Coded Excitation
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TDAC Time-Domain Aliasing Cancellation

TMN Tone Masking Noise

TNS Temporal Noise Shaping

UM Unpredictability Measure

VolIP Voice over [P
Symbol Meaning

L ( i ) coefficients of the linear functions modeling characteristics

a—( Off)’ A \Kogr of uf(c[kmax]) and u, (C[kmax]) ratios

A [k L1 ] amplitude spectrum in the log scale

b partition index

bachAC s bachAC [l]

b

avb

b

indx

b

val

coefficients of the linear functions modeling characteristics
of u_ (C k.. ]) and u, (C kmax]) ratios

maximum partition number
power ratio in partition

number of bits to be allocated (experimental codec)

number of bits to be allocated with and without frame index
(AAQ)

number of bits available for frame encoding (experimental
codec)

frequency band number

median bark value of the partition

mean UM value obtained when analyzing white Gaussian
noise

weighted UM of partition (with and without frame index)
UM of spectral component (with and without frame index)

tonality of spectral peak derived from ftm [k, _ ]

hybrid tonality measure (UM and FTM)
normalized c, [b, [ ]

unpredictability measure of partition convolved with
spreading function

maximum relative detune of tonal component between two
successive frames of analysis

frequency modulation depth
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elb, ]
ecb[b’ Z]
e,[b,1]

enl [m’ ls ]

enl [m’ Zs ]

eHR

epart[m ? ls ]

F

FMk,,. [/ ]7]

FTM,, (7., ["'))

ftm [kmax ]

fa
S
beias

Sl 1]
/,

Sk 1]
Slk1]

ke ], gl il

8ina

Eul]
By, 1]
nalD)
ISMR [m]

l'(/)

energy in partition (band)
partition energy convolved with spreading function

normalized e, [b, / ]

log energy of m-th scale factor band calculated basing on
short FFT spectrum

mean log energy in m-th scale factor band for 8 following
short spectra

mean square error of the scores given to the hidden
reference signal in MUSHRA tests

energy of scale-factor band
sampling rate

FTM assigned to spectral maximum
FTM of three-component tonal track

inverted tonality measure 1 - FTM (Ttrk [r ¢ )]) assigned to

the spectral maxima kmax[i(l)] detected within /-th frame
cut-off frequency

frequency modulation rate

bias of frequency estimator employing QIFFT method

frequency of spectral peak estimated using QIFFT method

fundamental frequency
phase spectrum (inherited from MPEG specification)

linearly predicted phase spectrum

peakiness of spectral maxima (with and without frame
index)

peakiness threshold

parameter used for m, [kmax] calculation
hearing threshold for particular spectral bin
hearing threshold in quite in partition

ISMR in scale-factor band

index of local spectral maximum detected within /-th frame
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0
k
k,, k,
o ]
Foigh [P
Fogn ]
FiouD]
Ko B

klow [m]
o 1]

]

—_

k,
o "]
ky

o K]
k., [ j (1)]

k peak

o "]

ke "]

max

smax

index of selected local spectral maximum detected within /-
th frame

spectral index (either FFT or MDCT)

constants
spectral index corresponding to upper boundary of partition

spectral index corresponding to upper boundary of band

spectral index corresponding to upper boundary of scale-
factor band

spectral index corresponding to lower boundary of partition

spectral index corresponding to lower boundary of band

spectral index corresponding to lower boundary of scale-
factor band

spectral index corresponding to the i-th local maximum in /-
th frame

spectral index corresponding to the nearest spectral
()

minimum laying below "’ -th spectral maximum

spectral index corresponding to the nearest spectral

()

minimum laying above i’ -th spectral maximum

spectral index in spectrum calculated with Z =1 (no zero-
padding)

spectral index corresponding to component neighboring the
spectral peak

bin offset related to the frequency estimation employing
QIFFT method

index of cross-correlation sequence maximum (between

spectrum X[k,l] and W[k])

spectral index corresponding to the j-th local maximum in /-
th frame

spectral index corresponding to the selected spectrum
maximum in the spectrum calculated with Z = 1 (no zero-

padding) derived from the index detected within spectrum
calculated with Z >1

set of components laying on the both sides of the peak

set of spectral local maxima detected within /-th spectrum

total number of spectral local maxima detected within /-th
frame

set of selected spectral local maxima detected within /-th
spectrum
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m

m@— [kmax ]

ML)
m g [kmax ]

mge— [ max] mge+ [kmax]

b

m;

msgr( )

M
N

N,

sig

n

n,[b.1]
NMT ]

npart[m’ l]

nsfb*

n sfbt
nssz

nsfba

NppNs

hop size of STFT analysis
thresholds for tonal track length
signal’s frame number

short frame number being a sub-frame of long frame

index of scale-factor band

energy relation between spectral bin corresponding to the
peak and bin having index lower than peak

energy relation between spectral bin corresponding to the
peak and bin having index higher than peak

parameter related to the peakiness g[kmax]

parameters used for tonality spreading

multiplier involved into Af,, (T tand [p(l ) ]) estimation

modified signum function

filter order

frame length

signal length

index of time-domain signal sample

energy threshold in partition
NMT in partition
Energy threshold in scale-factor band

number of scale-factor bands fulfilling one of the
conditions: {[m]<twq; zsp[m]<2, o[m]<6, or all of them
simultaneously. The asterisk symbol should be then
replaced with ¢, z, ¢ or PNS, respectively.

number of scale-factor bands fulfilling condition #[m]<tug
number of scale-factor bands fulfilling condition zg[m]<2

number of scale-factor bands fulfilling condition c[m]<6

number of scale-factor bands fulfilling all following
conditions: [m]<tyq; zsp[m]<2, c[m]<6

total number of scale-factor bands that are considered to be
substituted with noise in particular sound sample

parameter of harmonic signal generator

total number of candidates to three-components tonal track

index of candidate to three-components tonal track
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PE
PE,\cl/]
PNS[m]

princarg(o)
q.

q,

qzsfb

SMsH [”za T Wz]
SFM [bindx ]

SFM

max

PE calculated for particular frame (experimental codec)
PE calculated for particular frame (AAC)

boolean indicating whether scale-factor band might be
coded using PNS technique

principle argument function

ratio between ng,, and 7, . The asterisk symbol should is
replaced with ¢, zgy, o or PNS, adequately to the n,,
ratio between ng,, and 7,

ratio between ny, and 1,

Z

ratio between ny, . and 7,

ratio between 1 g and 71,

magnitude spectrum (with and without frame index)
linearly predicted magnitude spectrum

spectrum smoothed using moving arithmetic-average filter
term used for C[k , ] calculation

spectrum smoothed using moving geometric-average filter

term used for C[k N ] calculation

index of three-component tonal track detected within /-th
frame

subject number (MUSHRA test)

constant used for pre-echo control in MPEG psychoacoustic
model 2

iteration number (SNR [m, s] determining)
common (global) scale-factor
scale-factor related to MDCT coefficient

scale-factor related to scale-factor band

score given to the w,-th sound sample in the uth
experiment by the 7-th subject in MUSHRA test

SFM of band defined by the boundaries &, [bindx] and
khigh [bindx ]

Maximal value of SFM (usually equals —60 dB)



ACRONYMS, ABBREVIATIONS, SYMBOLS AND TERMS

13

SMR [m,!]

SMR

m

SNR[b,/]
SNR [m, 5]
sprdngf ()
TMN [5]

T pna [p(l)]
T(l)
T [r(l)]

6] 1,[b.1]

WeE2

WpE3

wlk]
x[k]
x{n]

SMR in scale-factor band

logarithmic level differences from the minimum masking
threshold to the masker level within the particular critical
band

SNR in partition

SNR in scale-factor band

spreading function

TMN in partition

tonality threshold (scale-factor band)
tonality of scale-factor band

candidate to three-components tonal tracks
set of three-component tonal tracks
three-component tonal track

tonality of partition (with and without frame index)
experiment index (MUSHRA test)
clk,...—1]/clk,. ] ratio

max

clk,...+1]/clk

max

max] ratio

u_ (C[kmax ]) for c[kmax]—0 and c[kmax]=0.37
u, (k.. ]) for clkma]—0 and clkns]=0.37
length of the uniform quantizer coding words
sinusoidal likeness measure

index of sound sample used in MUSHRA test
analysis window used for STFT calculation
constant used for PE, Ac[l ] calculation
constant used for PE, ,|/] calculation
constant used for b, calculation

discrete Fourier transform of the W[I”l]
MDCT coefficient

signal sample
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x, ]

X, [n, [ ]

x,, 1]
X[k, 1]

X [k +k,1]
X[k + k]
y[n]

Zoi K]

Zg ]

VA

p

olm]

O_/iLL[rz ]
Do

i

k. [/"]

Afyu (T cand [p (Z)])
Af (Tcand [P(Z)D

Af, (Tcand [p (l)]) ,

Af in (T cand [p (/)])

quantized MDCT coefficient

frame of the signal weighted by the w[n]

zero-padded X, [n, l]

short time Fourier spectrum corresponding to the /-th frame
magnitude spectrum smoothed using filter F1

magnitude spectrum smoothed using filter F2

realization of white Gaussian noise

flatness assigned to spectral bin

flatness of scale-factor band

zero-padding factor (expressed as a FFT length to the N
ratio)

tonality derived from SFM

Tonality derived from the method proposed in US patent
number 5,918,203

difference between Af,, (TCand [p(l )D and Af, (T ond [p(l )])
threshold of phase difference

constant used during SNR [m, S] determining

standard deviation of log energy in scale-factor band

variance of the scores given to the evaluated sound sample
recording evaluated in MUSHRA test

initial phase

maximum of cross-correlation sequence (between spectrum
X[k,1] and W]k])

phase spectrum

frequency jump related to the candidate to three-
components tonal track calculated employing QIFFT
estimator

frequency jump related to the candidate to three-
components tonal track calculated employing phase-based
estimator

frequency jumps used for Af, . (T and [p(l)]) and

AV (T and [p ¢ )]) calculation

minimal frequency jump corresponding to 7, [p (’)]
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Af (TCan ; [ » (1)]) maximal frequency jump corresponding to T, [ p(/)]
AD (ksmax [j (M)l kg max [ Jj ([)]) phase difference corresponding to T, , [p(’ )]
Azd)(ksmax [ j (l”)l ko [ i (H)D second order phase difference corresponding to 7, , [p(’ )]

A2¢(ksmax [ Jj (”1)], kg [ Jj (H)D phase offset corresponding to 7, , [p(l )]

0.1 DEFINITION OF TONALITY AND OTHER TERMS

The measure called tonality is used in this dissertation in order to allow quantitative
comparison of the spectral bins or the frequency bands of the signal in terms of their
noise-like or tone-like characteristics. In fact, it reflects the power ratio between tone-
like and noise-like signal components that occupy a particular frequency band. The
tonality falls into the [0,1] range, where O indicates that the spectral component or
signal sub-band is totally noise-like. Reversely, when the tonality equals 1 the spectral
bin corresponds to the pure sinusoid of a constant or modulated frequency or the signal
subband comprises of one or more of them. The algorithms yielding continuous tonality
measures within [0,1] range can be viewed as scoring classifiers instead of discrete
classifiers (detectors) which provide only binary detection results regarding the
characteristics of the spectral bins. Depending on the application, either scoring or
discrete tonality classifier may be preferred. Obviously, every scoring classifier can be
easily turned into discrete classifier when appropriate threshold to the results of tonality

measuring is applied [46].
The remaining terms used in this dissertation are briefly defined below.

Term Definition / explanation

sound recording having band limited to the 3.5 kHz used during

3.3 kHz anchor MUSHRA listening tests

procedure implemented in the MP3 codec employed in order to
Aliasing reduction | reduce the aliasing related to the downsampling of the band-pass
signals produced by the QMF filter-bank

properties of the codec like: provided subjective coding quality versus
Codec performance | bit-rate, algorithm complexity, memory requirements, delay
introduced by the encoding procedure, etc.

subjective quality of the recordings encoded using particular coding

Coding quality system in selected mode of its operation

Coding ql}ality method of bits distribution to various codec encoding modules
optimization resulting in as high as possible subjective coding quality for
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Data reduction

Dynamic range of
predictors

Digital effects

Efficient encoding

False positive rate

Frequency masking

Irrelevance of
audio signal

Lossless audio
coding

Lossy audio coding

Masking
phenomena

Noise-like bands
Partitions

Perceptual audio
coding

Perceptual entropy

Perceptual model
Perceptual
quantization

Pre-echo
distortions

Psychoacoustically
controlled linear
filter

Redundancy of
audio signal

Residual signal

pre-defined date rate

method allowing to encode particular signal or parameter, so that the
disc space required for its storage or bandwidth of canal required for
its transmission is reduced

ability of the predictor to generate low prediction error in the signal
bands containing low energy tonal components when other signal
bands contain noise-like components of significantly higher energy

digital signal processing algorithms that can be applied to any audio
signal in order to obtain desired effect (e.g. pitch shifting, reverb)

codec’s ability to provide high coding quality while keeping the
bit-rate as low as possible

attribute of discrete classifier - number of negative instances
incorrectly classified as a positives divided by all negatives

phenomenon related to the human auditory system which cause that
the quieter sounds are imperceptible when the louder sound is
presented to the listener at the same time (simultaneous masking)

signal components present within audio signal which are undetectable
by the human auditory system

coding methods producing sound samples of the decoded signal
identical to the original ones

coding methods producing sound samples of the decoded signal
different to the original ones

occurs when the perception of one sound is affected by the presence
of another sound (frequency/simultaneous and temporal masking can
be distinguished)

bands of the signal containing no tone-like components

bands of the signal used in the procedure of hearing threshold
estimation by the MPEG psychoacoustic model 2

lossy coding methods introducing coding distortions so that they are
least perceptible by the human auditory system

minimum amount of bits that has to be transmitted in order to achieve
the transparent audio quality

algorithm allowing estimation of temporary hearing threshold

quantization method where the quantization noise is shaped according
to the properties of the human auditory system

distortions introduced by the codec when the signal energy changes
rapidly within particular signal frame (e.g. when encoded frame is
comprised of silent and transient)

all pole filter having frequency characteristic corresponding to the
instantaneous hearing threshold

refers to the predictability or statistical dependencies in the signal,
which can be removed using lossless compression

difference between the original signal and its processed (encoded)
representation

16
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Short-time
frequency response

Signal compression

Signal perceptually
weighted

Signal quality

Sound listening in
critical way

Spreading function

Stimulus

Transparent coding

Transposition of
spectrum

True positive rate

Quantization of
spectral samples

Quality
measurement

Voicing strength

corresponds to the filter characterized by the coefficients which are
changed over time

procedure yielding the representation of the signal requiring fewer
number of bits to be stored or transmitted

signal filtered according to the instantaneous hearing threshold

subjective quality of the recordings encoded using particular system —
usually determined basing on the results of the listening tests

listener ability to detect and classify particular coding artifacts and
determine how they affect overall signal quality

determines the frequency range and the corresponding signal levels
for particular signal component below which the another stimulus is
inaudible

audio signals like pure tones, harmonic sounds, narrow-band and
wide-band noise presented to the listener auditory system which cause
deflection of the basilar membrane

coding of the audio signal in such a way that the encoded and original
signals are hardly distinguished by the listener

procedure of shifting the part of the signal spectrum from its original
band to the other frequency range.

attribute of discrete classifier - number of positive instances correctly
classified as a positives divided by all positives

process of approximating a very large set of discrete spectral values
by a relatively-small set of discrete symbols or integer values. In
MPEG coding methods the MDCT coefficients, calculated basing on
the PCM representation of original signal, are further quantized.

procedure for determining the quality of audio signal employing
digital signal processing algorithm

parameter used in the MELP speech codecs in order to express the
tonality of particular signal band
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1 INTRODUCTION

Starting from the early 80’s, when the Compact Disc (CD) was introduced to the market
by Sony and Philips companies, the digital sound recordings have became available for
the listeners all over the world. The CD was intended to replace the analog carriers for
sound recordings like cassette tapes and gramophone discs. However, the business
model behind the recordings distribution was not going to be changed — the listeners
still had to visit their local music stores and buy selected albums burned permanently on
the CDs. Although after 30 years the CD storage medium is still in common use, the
way the audio recordings are distributed to the listeners has changed dramatically. This
change is strongly related to the evolution and widespread of the digital transmission
networks and Personal Computers (PCs). In fact, the PC has became the usual home
equipment, and the internet connectivity has became a natural way of access to various
digital resources. That is why, the listeners have started to search, download and
transmit the audio recordings using internet instead of buying CDs in their local stores.
Obviously, the legal issues emerged. The broadcasting companies have realized that the
next step they should do is to switch from the analog to digital way of programs
transmission. Among various technical issues related to the digital revolution affecting
the way the audio material has been stored and distributed, the limited capacity of
storage discs and bandwidth of transmission canals have became the one of the primary
importance. The audio recordings have been stored on the CDs using Pulse Code
Modulation (PCM) format. This format has been also used for transmission of speech
signal with band limited to the 3.4 kHz and represented using 8-bit code words.
However, the audio signal occupying frequency range from 20 Hz up to 20 kHz,
encoded according to the PCM method with 16-bit code words, requires more than
700 kbps bandwidth in order to be transmitted. Providing transmission canals with such
a bandwidth to the common users was a challenge in 90’s and even later. The most
straightforward method to overcome this limitation was to develop the novel methods of

audio coding requiring lower transmission bandwidth.

The International Telecommunication Union (ITU) has standardized the coding
algorithms allowing voice transmission with low bit-rate being the evolution of the
PCM format [77][79]. These methods were the first step towards the reducing the bit-

rate requirements for audio signal storage and transmission. The example of the audio
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codec operating similar to the PCM-based codecs standardized by the ITU is the
APTX-100 [20]. One of the parameters allowing efficiency comparison of various
coding techniques is the compression ratio. It is expressed as ratio between the amount
of data required to encode the digital signal using the PCM method to the bit-stream
produced by the coding algorithm. Since the methods encoding the time-domain
samples provide relatively low compression ratio, in the 80’s and 90’s the various
companies were focused on the research related to the high efficient methods encoding
the frequency domain samples. Such codecs are usually called transform codecs,
because the time-domain samples are transformed into the frequency-domain before
encoding. The invented coding techniques were usually lossy, which means that the
decoded sound samples are no longer identical to the samples of the original signal. The
efficiency of lossy methods is not only related to the compression ratio, but also to the
subjective quality of the audio material they provide assuming particular bit-rate. The
simplest method to compare the efficiency of various lossy method is to compare the
lowest bit-rate they require to encode the audio signal, so that the introduced distortions
are imperceptible to the listener. It is also common to label such a coding scenario as
transparent coding, which means that the listener can hardly distinguish the difference

between the original and encoded signal.

The majority of lossy audio codecs explore the limitations of the human auditory system
in order to provide transparent coding quality while keeping the bit-rate as low as
possible [92]. The codecs belonging the lossy codecs family operating according to the
above-mentioned scheme are: AC—1, AC-2 and AC-3. The AC-3 allows for data rate
adjusting between 32 and 640 kbps depending on the number of encoded audio channels
and other factors. These codecs were introduced by the Dolby Digital company starting
from 1987 and successfully used for digital cinema sound applications [5][40]. The
Sony company introduced the ATRAC codec optimized for the Mini Disc (MD)
recorder requiring 140 kbps bit-rate for encoding of single channel. The Perceptual
Audio Codec (PAC) and its multichannel version was introduced by the AT&T
company [20]. Although various codecs were already invented in the beginning of 90’s,
they were usually combined with the devices or signal processing systems marketed by
particular companies. Therefore, the Motion Picture Experts Group (MPEG) established
in 1988 has undertaken the standardization of the compression algorithms for video and

audio. In fact, the companies which have already developed their own audio codecs and
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other skilled bodies like Fraunhofer Institute were involved in the collaborative research
aimed at the standardized, high-quality and efficient audio codec. The result of their
work was the MPEG-1 standard defining codec comprised of three layers. While the
first and second layers are in fact time-domain codecs, the third layer is the transform,
perceptual audio codec. The third layer of the MPEG-1 is commonly called MP3
codec [67]. Along with the ongoing research in the audio coding field, it became
obvious that the MP3 format is suboptimal and its efficiency may be significantly
improved. Therefore in the MPEG-2 specification, the successor of the MP3 format
known as an Advanced Audio Coding (AAC) was proposed [17][21][70]. Instead of
MPEG-1 and 2, the MPEG-4 standard contains more than only well-defined codecs
description. The MPEG-4 specifies number of coding tools starting from transform
codec, through speech codec, to the codec employing advanced parametric coding

techniques [53][71].

The general idea behind the transform, perceptual codecs like MP3, AAC and others is
to keep the quantization noise below hearing threshold. It is assumed that if this
requirement is met, the transparent coding quality is
obtained [17]-[21][66]-[71][86][130]. Obviously, in order to properly shape the
quantization noise during coding procedure it is required to model the masking
phenomena occurring in the human auditory system. This is what the psychoacoustic
model is intended to be used for [67][97]. The psychoacoustic model being a part of
considered codecs usually simulates only some basic processes related to the
simultaneous masking. Although the various scenarios of masking are described in the
literature, the psychoacoustic model usually distinguishes between tone-like and noise-
like signal components to simulate Tone-Masking-Noise (TMN) and Noise-Masking-
Tone (NMT) scenarios [70][87][109]. This is an important issue, because the tone-like
and noise-like stimuli have completely different masking properties [54][58][119][142].
The spectrum of audio signals usually contains also modulated tonal components which
can be produced by a singer or an instrumentalist using the vibrato effect or other
technique in order to achieve desired musical expression. Although frequency and
amplitude modulated stimuli evoke different sensation to the listener comparing to the
stationary ones, it can be assumed that up to some modulation ratios they have similar
simultaneous masking properties [154][174]. When these kind of components dominate

in some critical bands of the processed signal, improper classifying them as noise-like
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ones may affect the hearing threshold estimate, resulting in the deterioration of coding
quality [94][97]. The important issue is that the AAC encoder employs almost identical
psychoacoustic model to the one already used in the MP3 encoder. Both of them
incorporate the same method for distinguishing tone-like and noise-like components
which fails when the tone-like signal components are modulated in frequency or/and

amplitude.

It must be pointed out, that there are a lot of psychoacoustic models already
implemented and successfully combined with the experimental audio
codecs [9][10][16][31][84][120][121][131][132][161]. Some of them do not require
distinguishing between noise-like and tone-like components. However, these models are
not in common use due to their relatively high complexity and ongoing research related
to the novel modeling scheme [9][16][131][132]. Therefore, in this dissertation the
model defined in MPEG standard is considered, since it is commonly used in various

audio processing applications [17][19][20][53][64][66][67][68][70][71].

It is well known that the MPEG standards define only the general concept of the codecs
and provide basic implementation of described codecs [38][39]. The most important
part of considered standards is the specification of bit-stream format ensuring
compatibility between various implementations of the same codec type. The efficiency
of the MP3 and AAC codecs, implemented according to the specifications given in the
standards is poor due to the numerous reasons. It may be deduced that one of them is
related to the limited efficiency of method used for distinguishing tone-like and noise-
like components [39][94][97]. This was probably the reason why developers involved
into MPEG standard preparation patented alternative method for tonal components

detection [62].

The author of this dissertation decided to develop a novel method for tonality estimation
which might operate efficiently in the case of constant frequency and modulated tonal
components. The proposed method is intended to be the substitute for method used in

the MPEG psychoacoustic model combined with AAC encoder.

The novel coding algorithms including AAC are usually hybrid. They combine
techniques known from parametric approach to signal coding with classic transform
coding methods known from codecs like MP3 [8][13][22][52][61][111][137][144]. The

reason for that is related to the increase demand for codecs allowing to efficiently
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encode speech, general audio and mixed content [2][122][144][168]. In these codecs the
role of tonality estimation method may not be limited only to be the part of the
psychoacoustic model. The MPEG-4 standards introduced the Perceptual Noise
Substitution (PNS) technique allowing to increase the audio coding efficiency
further [61][148]. In this method the signal subbands containing only noise-like
components are detected by the encoder and further synthesized with locally generated
noise by the decoder instead of being quantized and encoded in the usual way. It is to be
shown in this dissertation that proposed tonality estimation algorithm may be used also

as a basis for PNS module implementation.

1.1 THESIS STATEMENTS

This dissertation defends the following theses:

1. It is possible to estimate tonality of unmodulated or frequency-modulated
sinusoidal components of audio signals through the comparison of their
instantaneous frequency variations determined employing both: an estimator
processing spectral amplitude samples and estimator processing spectral phase
samples.

2. The distortions introduced during perceptual audio coding may be effectively

limited employing tonality estimation algorithm proposed in this dissertation.

1.2 RESEARCH AIMS

The research presented in this dissertation is focused on a novel method for tonality
estimation of spectral components. The primary aims of the research described in this

dissertation are as follows:

1) to develop a novel algorithm providing adequate tonality estimates for constant
and modulated sinusoidal components;

2) to combine the proposed algorithm with the MPEG psychoacoustic model 2, in
order to verify whether replacing the standard tonality estimator with the
proposed one leads to more reliable estimate of hearing threshold;

3) to verify whether proposed tonality estimation algorithm may be used as a basis
for detector of the signal bands containing only noise-like component that can be
encoded according to the PNS technique;

4) to reveal the importance of tonality estimation to the audio coding efficiency.
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2 SELECTED METHODS FOR AUDIO CODING

The audio coding algorithms may be classified into different categories depending on
the assumed criterion. When considering their ability to provide representation of the
decoded signal identical to the signal before encoding, the lossless and lossy methods
may be distinguished [50][56][87][90][112][113][140]. Assuming that the transmission
medium does introduce any distortions, in the lossless methods there is no difference
between the original and decoded versions of the signal. However, the ratio between the
number of bits required to store the original signal and the number of bits needed to
store the encoded representation (compression ratio) is limited in such methods and
usually is around 2:1[50][55][90][139]. Consequently, the lossless methods are
generally used for audio signal repositories, as they can be easily played back or
processed. Contrarily, the compression ratio provided by lossy methods is significantly
higher than in lossless methods. However, the lossy methods modify the time-domain or
frequency-domain samples of the signal, so that they are no longer identical to the
samples of original signal. Among various lossy methods, the most widespread are
algorithms employing modeling of the phenomenon related to the human auditory
system. The idea behind such algorithms is to encode the audio signal, so that the
introduced distortions are not perceived by the listener even if the time-domain
waveform is not preserved [21][123]. This group of coding algorithms is especially
useful for transmission or broadcasting applications. Lossy audio formats like MP3 or
AAC are also the basic formats for portable players, mobile phones or other devices

equipped with processor allowing their decoding and playback.

Regarding codecs ability to encode either general audio signals or only human voice,
coding algorithms may be divided into the speech codecs and general audio
codecs [52][71][89][122]. In the majority of telecommunication applications only the
human voice is transmitted. Although the compression ratio is important in such
applications, the key issue is also the delay introduced by the encoder and decoder. In
order to provide conditions allowing natural conversation, the delay introduced by the
coding algorithms and the transmission medium should be reasonable
low [30][56][115][169]. Therefore, there is a separated group of coding algorithms

allowing very efficient speech encoding, introducing low delay. However, these
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methods are not well suited for encoding polyphonic audio material. In this case the

subjective coding quality is usually poor.

Another criterion allowing classification of coding methods into various groups is the
width of the signal band they are able to preserve. Historically, speech codecs are
mostly narrow-band codecs. In order to assure a high intelligibility of speech, it is
enough to encode only limited band. That is why these codecs encode the speech signal
occupying frequencies below 4 kHz [30][89][105]. However, the nowadays speech
coding algorithms are able to encode the speech signal up to 7 kHz or even higher, as it
allows more natural conversation [3][93][95][126][161]. The general audio codecs
usually encode the entire signal band starting from 20 Hz or even lower up to
20 kHz [21][40]. However, the encoded signal band may be limited if the required
compression ratio is tend to be high (for example higher than 20:1). In fact, newly
developed codecs can usually alter the width of encoded signal band basing on the user
requirements, bit-rate constrains or content of the

signal [44][52][93][126][137][144][146][153].

Although there is a great variety of coding algorithms, they have some common features
related to the architecture they are based on. While some basic algorithms operate on
the time-domain samples (waveform codecs) of the entire-band signal, other split the
signal into  the sub-bands and then encode sub-band  samples,
separately [20][66][75][76][79][80]. Contrarily to the methods processing the time-
domain samples, frequency-domain codecs transform block of the time-domain samples
into the frequency-domain in order to encode them appropriately. These codecs are
usually called transform codecs [130]. Instead of quantizing the time-domain or
frequency-domain samples (e.g. MDCT coefficients which are real numbers), the codec
may employ the particular signal model and it encodes only the parameters of this
model. This is usually the case for speech codecs, where the signal is assumed to be a
mixture of noise and harmonic signal, filtered by the frequency response of the human
voice tract [30][89]. The speech and audio signal may be also viewed as a sum of
modulated sinusoids of appropriately adjusted instantaneous frequencies, phases and
amplitudes. Codecs employing such a sinusoidal model encode parameters of sinusoids
instead of signal samples. This approach has been explored by many researches and
varieties of such codec architectures were proposed [7][99][117][149][150][151]. The

parametric approach is also employed for multichannel coding. The significant
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reduction of bit-rate required to encode multichannel recording may be obtained by
extracting the correlated and uncorrelated parts of the multichannel signals. Since the
correlated components of the multichannel recording are common to some extent for
few channels, they can be encoded jointly, along with some additional

parameters [11][12][24].

Nevertheless various classification methods outlined above, novel coding algorithms are
usually hybrid. They can operate in different modes allowing optimization of the bit-
rate to signal quality ratio. The codecs installed in the mobile terminals are not longer
required only to encode speech efficiently but also general audio and mixed content.
Therefore, the transform codec architecture and parametric approach are commonly
combined together within the single codec structure [96][137][144]. Furthermore, the
general audio codecs incorporate techniques allowing to lower the bit-rate requirements
while introducing almost unperceived distortions to the signal. The techniques like
Spectral Band Replication (SBR) or Perceptual Noise Substitution (PNS) use limitations
of the human auditory system and they usually significantly change the signal
structure [37][61][71][107][146][167].

The in-depth description of all possible codec structures is beyond the scope of this
dissertation. Instead of this, the architectures of selected codecs is described in the
following subsections. The principles of operation of these selected methods may be
helpful in revealing the usefulness of the novel method for tonality estimation what is

the main subject of this dissertation.

2.1 WAVEFORM CODECS

Waveform codecs attempt to encode the input signal, so that the decoded waveform is
as similar as possible (e.g. assuming root mean squared error criterion) to the original
waveform. In the following subsections some selected types of waveform codecs are

briefly described.

2.1.1 Pulse Code Modulation (PCM)

The Pulse Code Modulation (PCM) refers to the process of quantizing the signal
samples, so that the amplitude and time are represented in a discrete form [30][56].
While the sampling interval between two corresponding samples is inverse to the

sampling rate, the number of uniform quantization levels is determined by the number
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of available bits. This discrete-time signal is usually used as an input signal to the
advanced coding algorithms. However, using uniform quantizer for speech signal is
suboptimal. Therefore, speech signal is usually converter into discrete-time signal
according to the p-law or A-law characteristic before uniform quantizing [75]. Since the
signal characteristic is modified, the quantization is non-uniform, indeed. Such an

operation results in higher performance of codec.

2.1.2 Differential PCM

The contiguous samples of many audio signals are correlated to each other. Thus,
Differential PCM (DPCM) encoder integrates the predictor. Instead of quantizing the
raw samples, the prediction error is quantized in this method. The predicted samples are
subtracted from the samples of original signal resulting in the prediction error signal.
The prediction error signal has significantly lower variance and dynamic range
comparing to the original signal. Consequently, the coding quality provided by the pure
PCM method may be obtained using DPCM with reduced bit-rate [30][56].

2.1.3 Adaptive Differential PCM

In the DPCM encoder both the predictor and quantizer are fixed (time-invariant). It was
observed however, that the coding efficiency may be increased when these modules
adapt to the time-varying behavior of the input signal [30][56]. Instead of direct
quantization of the error signal as it is in DPCM, in the ADPCM encoder, the error
signal is normalized before quantizing and the gain information is transmitted along
with quantized error samples and the predictor’s parameters [79][80]. The adaptation
may be performed backward or forward. When the coding delay is of primary
importance, usually the backward adaptation is used. However, encoders employing

backward adaptation are far more sensitive to the transmission errors.

2.1.4 Perceptual Predictive Codec

The role of the ADPCM encoder is to reduce the redundancy of the signal being
processed. This is obtained by adapting the predictor and quantizer parameters. The
interesting concept of improving this coding scheme is to combine with it the
psychoacoustic pre- and post-filtering modules. The block diagram of such codec is

presented in Fig. 2.1.
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input decoded
signal LOSSLESS LOSSLESS INVERSE signal
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? 4
PSYCHOACOUSTIC
MODEL H
Irrelevance reduction Redundancy
reduction

Fig. 2.1 Block diagram of perceptually improved ADPCM codec [147]

It is based on the separating irrelevance (pre/post-filtering) and redundancy (predictive
approach similar to the ADPCM) reduction into independent functional units. The input
signal is pre-filtered using linear filter of characteristics adapting to the instantaneous
hearing threshold in order to reduce irrelevance within the signal. In the next stage the
preprocessed signal is encoded according to the lossless method. These operations are
inversely applied in the decoder, resulting in the decoded signal. It was proved that
presented coding system provides high coding quality at the lower rate than for the
standard ADPCM codec bit-rate [147]. Additionally, it inherits the advantages of the
ADPCM codec related to the relatively low delay introduced by algorithms of such a

type [30].

2.1.5 Subband Codecs

Contrary to the algorithms encoding the time-domain samples of the signal directly, in
subband codecs the input signal is first split into the number of subband signals. Next,
every subband signal is encoded separately employing for instance one of the methods
described in the previous subsections or using some more advanced techniques. The
motivation for splitting the signal into the subbands is that the noise introduced into the
particular subband does not leak into the other subbands. Therefore, the subband signals
may be quantized with the lowest possible number of levels allowing preserving the
coding quality resulting in relatively high compression ratio (e.g. 8:1). This concept was
the basis for MPEG 1 Layer 1 and 2 codecs [18][20][34][66]. Furthermore, splitting the
wideband signal into the subband signals of equal bands gives the opportunity to encode
the wideband signal using multiple narrowband codecs. The narrowband codecs may
operate parallel to each other and encode subband signals [76]. This approach to signal

coding was also the basis for transform coders described in the following subsections.
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2.2 TRANSFORM CODECS

In the transform codecs the input sample recordings are processed on the block-by-
block basis. The time-to-frequency transformation is applied to every block. In order to
avoid quantization of complex spectrum, the MDCT transform is usually used, because
the MDCT coefficients are real numbers. The spectral samples are quantized and

encoded [21][173].

2.21 MPEG 1 Layer 3
The block diagram of the MPEG 1 Layer 3 encoder (called usually MP3) is presented in
Fig. 2.2.

input 3 3 )
signal FILTERBANK | » |\~ > ALIASING QUANTIZINIG FRAME bit-stream
(32 SUBBANDS) | : : [REDUCTION| : | AND CODING PACKING >
¥ 1
y A
Block Bit
switching allocation
PSYCHOACOUSTIC
MODEL

Fig. 2.2 Block diagram of the MP3 encoder [66]

The block of the input signal is fed into the Quadratic Mirror Filter (QMF) bank
comprising of 32 equal band filters. Next, the Modified Discrete Cosine Transformation
(MDCT) is applied to the these subband signals resulting in 18 spectral samples. Since
the subband signals are critically sampled and the filter characteristics overlap, the
aliasing effect occurs. Since the frequency characteristics of the filters are known the
aliasing may be reduced applying aliasing reduction butterfly procedure to the MDCT
coefficients of neighboring subbands [18][66]. The filter-bank of the MP3 encoder is
hybrid indeed, as it comprises of the set of QMF filters and MDCT. If the transient is
detected then 18 spectral samples are divided into 3 groups and each group is encoded
separately. This technique allows for the reduction of the pre-echo
distortions [6][35][130][145]. Otherwise, 18 samples are encoded jointly. The MDCT
coefficients are than nonlinearly quantized and encoded, so that the introduced
distortions are either below the hearing threshold or are minimized depending on the
bit-rate constrains. The quantization and encoding process is iterative and involves two
nested loops [66][123]. Further, the quantized MDCT coefficients are encoded using
Huffman code and the bit-stream is formatted. Among all of the layers of MPEG-1, the
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MP3 provides the highest compression ratio. However, it was found that MP3 encoder
may deteriorate the quality of signals due to the limited efficiency of transients
encoding [17]. Furthermore, it is not well suited to the multi-channel coding, and
requires quite high bit-rate for transparent coding. Regarding these and other
limitations, the more advanced method for audio coding has been developed by the

researchers unified within MPEG.

2.2.2 MPEG-2

Although MPEG-2 Advanced Audio Coding (AAC) supports up to the 48 channels,
here the default monophonic configuration is described. Since the architecture of this
coding system is the basis for experiments carried by the author, this codec is described
in great detail. The block diagram of the MPEG-2 AAC encoder is presented in Fig. 2.3.
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Fig. 2.3 Block diagram of the MPEG-2 AAC encoder [17]



SELECTED METHODS FOR AUDIO CODING 30

The AAC system offers three profiles: main profile, low-complexity profile and
scalable sampling rate (SSR) profile. Here only the main profile is described, as this is
the basic codec configuration providing best coding quality at any given data rate. The
gain control being the pre-processing stage is applied to the signal only in the SSR
profile [17].

The input signal is transformed to the frequency domain using MDCT. At sampling rate
of 48000 samples/s the frequency resolution of 23 Hz (2048 samples — long block) and
the time resolution of 2.6 ms (256 — short block) may be obtained [102]. In order to
control the temporal shape of the quantization noise within each block of transform, the
Temporal Noise Shaping (TNS) technique is used. The TNS module filters the spectral
samples so that the target spectral coefficients are replaced by prediction residual [60].
The final bit-rate may be reduced for multichannel recordings by encoding only the
energy envelopes of the paired channels. This is obtained by employing intensity stereo
coding. Obviously, this technique is not used when monophonic signals are processed.
Since the stationary signals containing tonal components usually require high data rate
in order to provide transparent coding, the spectral samples are predicted in AAC basing
on the number of neighboring blocks. The encoder determines for every band whether
coding of prediction error provides higher data compression ratio than coding of the
MDCT coefficients directly. Basing on this, encoder selects the normal or predicted
mode of operation. For stereo signals, the left and right channels are transformed into a
mid channel (M) and a side channel (S). While the mid channel is the sum of the left
and right channels, the side channel is the difference of the left and right
channels [20][21][22][70].

The AAC encoder similarly to the MP3 performs the quantization of the spectral
coefficients grouped into the scale-factor bands. The MDCT coefficients within these
bands are quantized according to the global and local scale-factors according to the

following formula:
x, (k] = | |7 [ o017 et 0. 4054 2.1)

where x[k], &=1, ..., 2048 (long block) stands for MDCT coefficients and sc is the

common (global) scale-factor, sg[k] are the scale-factors assigned to individual MDCT



SELECTED METHODS FOR AUDIO CODING 31

coefficient within particular scale-factor band [152][164]. The scale-factors are
adjusted, so that the distortions introduced by nonlinear quantizing are minimized and
the resulting bit-rate is lower or equal to the rate required by the user (rate/distortion
control process in the Fig. 2.3). This is obtained by two nested iteration loops. The task
of inner iteration loop shown in Fig. 2.4 is changing the scale-factors until the MDCT

coefficients may be encoded with assumed data rate.

NONLINEAR
QUANTIZING (EQ. 2.1)

.

NOISELESS CODING
(COUNT #USED BITS)

#USED BITS LESS
THAN #AVAILABLE
BITS ?

INCREASE
QUANTIZER STEPSIZE

Fig. 2.4 Simplified inner iteration loop of the AAC [17]

The task of outer iteration loop (see Fig. 2.5) is amplifying the MDCT coefficients
composing particular scale-factor band, so that the demands of the psychoacoustic
model are fulfilled as far as possible [17][66][70]. The process terminates when all
scale-factors are amplified or there are no scale-factor band with distortions exceeding
the allowed distortions. There are also other conditions which cause termination of the
outer loop. Since iterative process presented in Figs. 2.4 and 2.5 is time consuming, the
simple methods allowing to determine the scale-factors have been already proposed.
However, these methods do not provide highest possible coding quality assuming

particular data rate [4].

All scale-factors are quantized in 1.5 dB step. While the global scale-factor is encoded
using 8 bits, all remaining scale-factors are encoded differentially. The spectral
coefficients are grouped and interleaved and encoded using Huffman technique. Finally,
the bit-stream is formatted according to the specification given in AAC

standard [70][71].
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The AAC system was developed as a successor of the MP3 algorithm. Generally, it
allows reduction of the required bit-rate for audio encoding twice, comparing to the
MP3 method. This is obtained by employing longer block length, spectral coefficients
prediction and other techniques. Furthermore, incorporating the TNS method results in
reduction of the pre-echo distortions introduced by the encoder for the blocks
containing transients [60]. The MPEG-4 specification defines the parametric coding
techniques like Perceptual Noise Substitution (PNS) , Spectral Band Replication (SBR)
or Parametric Stereo (PS) which may be combined with the AAC system in order to
even further improve its performance [22][24][28][37][53][61][100][107][148][167].
The AAC algorithm is supported by music players produced by the various companies.
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Fig. 2.5 Simplified outer iteration loop of the AAC [17][70]
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2.2.3 Other algorithms

The MPEG specifications contain only general description of the codecs and the details
related to the bit-stream. Since the implementation details are not included, there are
plenty of algorithms which are consistent with MPEG bit-stream but different in details.
In fact, the way the particular modules of the codec are implemented are of the
prominent importance for its performance. Various codecs consistent with MP3 bit-
stream have been recently compared employing subjective tests [135]. The MP3 and
AAC principles of operation were also the basis for other coding algorithms like open
source Ogg Vorbis [125]. Furthermore, the transform approach to audio coding was
employed in the codecs designed for communication purposes which were intended to

efficiently encode both the general audio signals, and speech [122].

2.3 PARAMETRIC CODECS

The waveform and transform codecs encode either the time-domain or frequency-
domain sample series of audio signal. Contrarily, the parametric codecs try to
decompose the incoming signal, in such way that it can be synthesized basing on the set
of the predefined parameters [7][29][30][41][56][99][117]. The encoder rule is to
estimate these parameters, so that the synthesized signal would sound as similar as
possible to the original one. In two following subsections the descriptions of the speech

codecs and the codecs employing sinusoidal model are presented.

2.3.1 Speech codecs
The low bit-rate parametric speech codecs usually employ the speech production model

presented in Fig. 2.6.

Excitation Vocal tract
parameters parameters

EXCITATION | sevmmee/ /UL M/VM‘W

LINEAR SYSTEM >
GENERATOR excitation waveform speech signal

Y

Fig. 2.6 Speech production model [108]

It is assumed in the model, that the excitation generator represents the various modes of
sound generation in the vocal tract. The frequency response of the linear system is

shaped according to frequency response of the human vocal tract [30][108].
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The simplest excitation generator can produce only noise in case of the unvoiced speech
segments and periodic impulses related to the pitch and loudness of the voiced speech.
However, codecs employing such a simple generator deteriorate the signal quality
significantly, because they do not encode the transients of the speech
appropriately [30][56][89]. Although the general concept behind the up-to-date speech
codecs is almost identical to the concept of codec mentioned above, they differ mainly
in the excitation model and method of its parameter encoding. Among various codec

architectures, the most commonly used is the CELP (Code Excited Linear Prediction).

In CELP codecs the excitation is determined by the encoder on the analysis-by-
synthesis basis (closed loop analysis) using set of predefined excitations stored in the
codebook. In fact, the representation of the code-words stored in the encoder codebook
and the way the excitation is synthesized vary in CELP-based codecs significantly. The
locally synthesized frame is subtracted from the original one resulting in the residual
signal. Moreover, the residual signal is psychoacoustically weighted by the curve
corresponding to the hearing threshold. The encoder selects the code-word allowing to
synthesize the particular speech frame, so that the introduced distortions are
minimized [30][56][78][82][143]. Usually, the residual signal is weighted by the curve
derived from the spectrum envelope. However, it was proved recently that the coding
quality may be improved by replacing this simple mechanism with the more advanced
one. Coding quality may be improved when the weighting curve is derived from the

hearing threshold generated by the psychoacoustic model [161].

As it was mentioned previously the excitation signal is filtered according to the
frequency characteristic of the vocal tract. Usually, the all-pole filter reflecting the
characteristic of the vocal tract is used for estimating the speech spectrum envelope.
Since the limited number of formants of speech signal can be distinguished in the
frequency range up to the 4 kHz, it is enough to represent the spectrum envelope using
10 linear predication (LP) coefficients [78][81][82]. For wideband speech codecs
preserving the signal band up to the 7 kHz, 14 or more LP coefficients are

required [158].

The CELP-based codecs are sometimes classified as hybrid codecs because of the
method they generate and encode the excitation. However, in this dissertation they are

treated as a parametric coders. The term ‘hybrid codec’ is used here to the codecs
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incorporating modules operating according to the different coding schemes — for

example codecs combining transform and parametric approaches to the signal coding.

2.3.2 Sinusoidal model based codecs

The general idea behind sinusoidal model based codecs is that the audio signal may be
represented as a sum of the modulated sinusoids of time varying amplitudes,
frequencies and phases. These instantaneous waveforms may be quantized and
transmitted to the decoder instead of the time-domain or frequency-domain samples.
Historically, the pure sinusoidal model was applied to the speech signal [117]. It
evolved later, resulting in the more advanced codec architectures, allowing efficient
encoding of the general audio signals. Furthermore, signal decomposed into the group
of sinusoids can be easily manipulated before synthesis which makes these
representation very attractive for the applications of the digital effects like pitch
shifting, time scale modification and others [116][134][149][150][151][162][173]. The
interesting codec architecture employing sinusoidal modeling is presented in the Fig.

2.7.

SINUSOIDAL » AMP, FREQ, PHASE
ANALYSIS & CNCODER >
SYNTHESIS
1st residual
transient
g;?ﬁ:jg ej TRANSIENT
i DETECTION Coded audio
stream
BITSTREAM
i FORMATTER >
TRANSIENT TRANSIENT
»  ANALYSIS & > ENCODER
SYNTHESIS
T
2nd residual » NOISE ANALYSIS » NOISE ENCODER
(noise)

Fig. 2.7 Codec employing sinusoids+noise+transient model [163]

The input signal is first analyzed in order to detect the sinusoids and to estimate their
parameters. Next, the sinusoids are synthesized and subtracted from the input signal

resulting in first residual containing transients and noise. The transients are then
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extracted from the first residual signal and encoded. The second residual signal contains
only noise [163]. Since the signal is represented as a sum of sinusoids, transients and
noise, this model is called sines+noise+transients [99][162]. It may be improved further
by employing harmonic analysis technique or psychoacoustic model in order to omit
totally masked sinusoids during encoding [111]. Although the concept of such codec is
straightforward, the complex analysis must be employed in order to classify the signal
components and estimate their parameters. Therefore, such a system usually requires

off-line processing [1][15][25][29][41][88][103][104][116][134][141][149][150][151].

2.4 HYBRID CODECS

Since the parametric approach to signal coding allows significant data rate reduction
comparing to the transform codecs, the novel algorithms are usually hybrid. A few
hybrid codecs may operate either in parametric or transform mode depending on the
content of audio program (speech or polyphonic music) [137][144]. Others employ
dedicated parametric modules allowing reduction of data rate when it is required [22].
The commonly used technique is parametric encoding of the multichannel recordings,
because pairs of the channels (e.g. left and right) are usually highly correlated each to

the other. In this subsection the brief description of selected hybrid codecs is presented.

241 MPEG-4

Instead of the single codec the MPEG-4 specification contains audio coding framework
comprised of various coding algorithms. Generally, the structure of AAC codec defined
within MPEG-2 is used. The AAC architecture is extended by the parametric coding
methods like Perceptual Noise Substitution (PNS), Spectral Band Replication (SBR)
and others resulting in AAC-HE v2 codec (AAC — High Efficiency). When using PNS
technique the signal subbands containing noise-like components are filled with locally
generated noise by the decoder. Consequently, the data rate is reduced, because the
MDCT coefficients of noise-like subbands are no longer quantized and
encoded [61][148]. In the SBR the upper part of the signal spectrum is reconstructed

from the lower part of the spectrum instead of direct encoding (see Fig. 2.8).
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Fig. 2.8 Reconstruction of the upper part of spectrum using SBR technique (left —
bandshifting of lower part of the spectrum, right — envelope adjustment) [44]

Firstly, the lower part of the spectrum is transposed to the higher frequency range. Next,
its envelope is adjusted so that it is similar to the envelope of the original spectrum.
Since only the parameters related to the spectrum envelope and also a few more are
needed for reconstruction of upper part of spectrum, the substantial data rate reduction
is obtained [42][44][49][175]. The MPEG-4 specification defines also codec module
employing sinusoidal model and other parametric coding methods [68][70][71].

2.4.2 Extended Adaptive Multi-Rate Wideband codec

The AMR-WB+ codec is an extended version of the Adaptive Multi-Rate Wideband
(AMR-WB) codec [144]. The AMR-WB+ extends the AMR-WB by supplementing it
by bandwidth extension, stereo encoding and switching between different coding
methods [77]. Contrarily to the AMR-WB codec being indeed a pure speech codec, the
AMR-WB-+ is intended to encode speech and general audio content with high quality.
In Fig. 2.9 the architecture of the AMR-WB+ encoder is presented.

The major part of the encoder is the module responsible for encoding of the lower
frequencies (LF) of the signal, while the higher frequencies (HF) are encoded using
parametric method. The lower frequencies of the signal are encoded on the analysis-by-
synthesis basis using algebraic CELP (ACELP) or transform-coded excitation (TCX)
technique. Every frame of the signal is encoded both using ACELP and transform-
coded excitation techniques and then distortions introduced by these two methods are
compared each to the other. Finally, the method providing lower distortions is selected
and the parameters related to it are encoded [144][159]. This codec was the first
important step toward the unified coding algorithm allowing efficient encoding of the

speech, music and mixed content.
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Fig. 2.9 Structure of the AMR-WB+ encoder [159]

The disadvantage of the AMR-WB+ is the high complexity of the encoder.
Additionally, due to the high delay introduced by the encoder it is best suited to the

broadcast applications rather than to the real-time communication.

2.4.3 Scalable wideband speech and audio coder - G729.1
The G729.1 coder is the scalable wideband (50-7000 Hz) speech and audio coder
interoperable with narrow-band speech codec G729 [82]. This codec is based on three-

stage structure with 12 embedded layers and generates bit-stream at 8 to 32 kbps rate
(see Fig. 2.10).

28 7= 1= £317s 37

| G.729a+

Fig. 2.10 Modes of G729.1 operation for various data rates in kbps

Layer 1 and 2 are in full compliance with G729 bit-stream at 8 and 12 kbps rate,
respectively. At 14 kbps rate the signal frequencies up to 7 kHz are encoded. Layers
from 4 to 12 provide predictive transform coding referred to the TDAC (Time domain
aliasing cancellation). For bit-rates from 14 to 32 kbps the weighted ACELP error
signal in the 50-4000 Hz range is encoded in order to improve the quality of
signal [137]. The G729.1 is the hybrid codec designed for packetized wideband voice

(VoIP) and videoconference applications.
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2.4.4 Low bit-rate unified speech and audio coding - MPEG RMO

The family of the MPEG codecs was recently enriched by the unified speech and audio
codec named RMO. This codec combines techniques similar to the ones employed in the
AAC-HE v2 codec like PNS and SBR with analysis-by-synthesis approach to signal
coding. The input signal is classified as a speech-like or music-like and encoded by the
one of the two core codecs: frequency domain and linear prediction domain codecs. The
listening tests revealed that the MPEG RMO operates at least as good as AMR-WB+
and AAC-HE v2 or even better [122].

2.4.5 Parametric multichannel coding
The transform and hybrid codecs commonly encode the stereo or paired channels using
parametric approach [11][12][23][24]. In the AAC-HE v2 encoder set of three

parameters for each of up to 34 subbands are determined [71]:

e the inter-channel intensity difference (IID)
¢ the inter-channel and overall phase difference (IPD and OPD)

e the inter-channel coherence (ICC)

Basing on the decoded mono signal and the above-mentioned parameters, the stereo
image is retrieved by the decoder. The AAC-HE v2 encoder requires only up to 9 kbps

in order to preserve the stereo image of the audio signal.
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3 FUNCTION OF TONALITY ESTIMATION IN AUDIO CODING APPLICATIONS

Because this dissertation is devoted to the novel method for tonality estimation of
spectral components, the selected applications where such a measure plays an important

role are described in this Section.
3.1 HEARING THRESHOLD ESTIMATION

3.1.1 Simultaneous masking

The simultaneous masking phenomenon usually called frequency masking is of great
importance for lossy coding algorithms. When low level signal e.g. pure tone (maskee)
and stronger signal e.g. band limited noise (masker) are close to each other in
frequency, the weaker signal may be inaudible due to the simultaneous masking
phenomenon. Although the research related to hearing auditory system has been
conducted for many years, there are still some aspects of frequency masking which are
not explained in great detail [43][85][88][118]. Nevertheless, the basic effects occurring
in the basilar membrane when single stimulus is presented are well known [65]. It is
well known that the auditory system can be described as a bandpass filter bank. The
filter bandwidths are in order of 100 Hz for low frequencies, and up to 5000 Hz for high
frequencies. Up to 15.5 kHz frequency 24 critical bands are defined [124]. It is assumed
in perceptual audio coding that the distortions introduced in particular frequency band
are perceived only in this band. The stimuli is the signal (either masker or maskee)
which bends the basilar membrane in the human inner ear. The masking characteristic
depends on the stimulus frequency, amplitude and whether it is noise-like or tone-
like [58]. The stimulus generates the excitation along basilar membrane that is modeled
by the spreading function and a corresponding masking threshold (Fig. 3.1). While the
slope of the spreading function is steep for the frequencies lower than the frequency of
the stimulus, it is shallow for the frequencies above the stimulus
frequency [54][91][174]. Signal-to-Mmask Ratio (SMR) and minimal Signal-to-Mask
Ratio (SMR;,) denote the logarithmic level differences from the maximum and
minimum masking threshold to the masker level within particular critical band,

respectively.
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Fig. 3.1 Schematic representation of frequency masking [124][130]

While the SMR for the noise-like components is usually assumed to be around 6 dB
regardless the critical band number, the SMR for tone-like components is significantly
higher and strongly depends on the frequency of the stimulus [58][101][119][174]. In
the perceptual codecs quantization noise is calculated as the sum of squared differences
between original amplitudes of spectral components belonging to the particular
frequency band (corresponding to critical band) and the quantized ones. When the
masking tone is quantized using uniform v-bit quantizer, quantization noise might be
introduced at level denoted in the Fig. 3.1 as v. Then, the Signal-to-Noise Ratio (SNR)
is the distance between signal level and introduced quantization noise level. Similarly,
Noise-to-Mask Ratio (NMR) is the difference between SNR and SMR,,. The
quantization noise is not perceived by the listener when the NMR is higher than 0 dB.

In order to provide transparent coding quality the information related to the required
SNR for every critical band must be determined. This task is performed by the
psychoacoustic model [9][10][18][19][20][21][31][57]1[86][87][120][121][123].
Although various psychoacoustic models have been developed up to now, the MP3 and
AAC codec being the basis for experiments described in this dissertation employ MPEG
psychoacoustic model 2. Therefore, the detailed description of this psychoacoustic

model is presented in the next subsection. The symbols notation were inherited from the
MPEQG standard.
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3.1.2 MPEG psychoacoustic model 2
The steps of the procedure yielding estimation of hearing threshold according to the

MPEG psychoacoustic model 2 are as follows [18][67][70]:

1. Get the new frame of samples;

2. Multiply the frame by the Hann window and calculate the complex spectrum
using FFT (Fast Fourier Transform). Calculate the » and f, representing the
magnitude and phase of the spectral components, respectively.

3. Calculate predicted values of magnitude and phase, basing on two preceding

spectra as given by:
lk,1]=2r[k, 1 1] = r[k,1 - 2] (3.1)

Flk)=2 k1 -1]- 7[00 -2] 62

where £ is spectral bin number, and / represents frame number.

4. Calculate unpredictability measure ¢

e+ g k1]
eli1]= e T+l ] ©-3)
where
ool 1= ke, 1cos(£, [, 1]) - [k, Hcos( 7, [k, 7]) (3.4)
1o [k 1]= rlk. sin (£, [, 1) = 7k sin (7, [k.1]). (3.5)

5. Calculate the energy and unpredictability in threshold calculation partitions

(predefined signal bands)

Khigh [b]

elb,]= > r’lk.1] (3.6)

k=Ko [b]

Knign [b]

cpi]= > :]2 [k,1]c[k,1] (3.7)

k=k, [

ow
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where b=1, 2, ..., b (b, =71 assuming F=48 kHz) is partition number,

kiow[b]and knign[b] are the partition boundaries.

6. Convolve the partitioned energy and unpredictability with spreading functions

bnmx

e, [b.1]="_ e[bb, I }prdngf (b, [bb] b, [b]) (3.8)

bb=1

b max

c,[6,1]=> c[bb, I prdngf (b,,[b] 0., [0]) (3.9)

bb=1

where sprdngf() is spreading function, b, is the median bark value of the

partition and by 1s the maximum partition number for particular sampling rate.

The e.4[b,/] and ¢,[b,]] must be then renormalized:

e,[p,1]=+— culp.] 3.10
Zsprdngf (byu[ob] 8., [P) 19
bb=0

[6.1]

ct
c,[b.1]= o [o.1] (3.11)
7. Convert cp[b,[] to the #,[b,I] and limit its range, so that 0<ty[b,/] 1
t,[b,1]=—0,299 — 0,43 1n(c, [5,1]) (3.12)
8. Calculate the required SNR in each partition
SNR [b,/]=1,[b,/]TMN [b]+ [1 -2, [b, [NMT [5 ] (3.13)

where TMN[b] and NMT][b] are tone masking noise and noise masking tone
values, respectively. The NMT[b] is constant regardless the partition index and
is equal to 5.5 dB in the MP3 encoder and 6 dB in the AAC encoder. While the
TMN[b] depends strongly on the partition index in the MP3 encoder, it is
constant and equal to 18 dB in the AAC.

9. Calculate the power ratio
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10.

11.

12.

13.

14.

—SNR [b,1]

b [b,l]=10 10 (3.14)
Calculate the actual energy threshold
n,b,1]=e,[b,1]p,[b,1] (3.15)

While in the MP3 encoder the energy threshold is spread across the individual
FFT bins, in the AAC this step is omitted.
Apply pre-echo control and compare estimated threshold to the threshold in

quite

n, [b, ! ] <~ max(hqthd [b ]v min(nb [b N ], n, [b - 1]’” PElev )) (3.16)

where hqna[b] is threshold in quite, rpgiey 1S equal to 2 for long blocks, and equal
to 1 for short blocks, max() and min() are the functions yielding maximal and
minimal value, respectively.

Calculate perceptual entropy (Eq. 3.17)

b

PE \ic [l] = Z (klow [b]_ khigh [b])logm (%ﬂ (3.17)

b=1

where b, is the maximum partition number.

Basing on the perceptual entropy decide whether single long block or group of
short blocks should be encoded. The MPEG specification does not include the
details related to the implementation of the long to short block switch. In the
open-source implementations of the psychoacoustic model, the short blocks are
encoded when the perceptual entropy exceeds specified threshold (eg.
1800) [45].

Calculate the SMR(m) in each scale-factor band

1
SMR[m,l]lelogm% (3.18)

part

where epar[m,[] and npa[m,[] are given by
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e mu1]= > 17 [k,1] (3.19)

n_|\ml|=
par 151

i (g U [ 12 g [ ] 120 g P[] W ]~ i ] 1) G20

Respectively, where %, [m] and &, [m] are the low and high boundaries of m-th

scale-factor band and /4[] is the threshold derived from

_ nb[b’l] :
e | s bl bl a2

low

15. Calculate the bit allocation out of perceptual entropy

bit yennc [l] = Wpg PE ¢ [l]+ Wy A/ PE aac [/ (3.22)

where wpp;=0.3 and wpg=6 for long blocks, wpg;=0.6 and wpg,=24 for short

blocks.

Considering (3.13) it can be noticed, that the reliability of the hearing threshold estimate
provided by psychoacoustic models and further coding efficiency directly relates to the
performance of the employed tonality estimation method, as the difference in masking
between totally noisy and totally tonal components is assumed to be 12 dB in case of

the AAC encoder.

3.2 SINUSOIDAL MODELING

In order to distinguish the stochastic and deterministic part of the signal it is required to
apply criterion allowing to detect tonal components within signal spectra. Since the
stochastic part of the signal is usually modeled using filtered white Gaussian noise,
wrong classification of the tonal components as noise-like ones would lead to
deterioration of signal quality after synthesis. Additionally, in application based on the
sinusoidal model it is required to match the tonal components detected within single
spectra into the tonal tracks. A few methods have been proposed in order to accomplish
this task [32][116][117][150]. The algorithm proposed in this dissertation may be

viewed as an element extending the sinusoidal modeling framework.
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3.3 PERCEPTUAL NOISE SUBSTITUTION

One of the techniques allowing increasing the coding quality while preserving the bit-
rate requirements is the Perceptual Noise Substitution (PNS). Regardless the waveforms
of the noise-like signals are different, they sound alike providing they have the same
statistics. Thus, there is no need to encode them in the same manner as the tone-like
signals. Instead of quantizing the spectral coefficients of the noise-like components, the
pure noise-like signal bands may be filled by the decoder with weighted, locally
generated, narrow-band of white Gaussian noise. The bits amount saved by the PNS in
the encoder may be used for more accurate encoding of the tonal bands, increasing the

perceived coding quality [61][148].

Obviously, improper classification of the tone-like bands as a noise-like ones leads to
annoying coding artifacts (unpleasant signal distortions). Thus, the key issue in the PNS
technique is the reliable detection of the noise-like bands which may be substituted with
the noise in the decoder. Detection of such signal bands is performed usually by the
dedicated method operating in parallel to the tonality estimation algorithm used for
hearing threshold estimation. One way to obtain this is to split the signal into the bands,
and then feed each signal band into the individual predictor. The noise-like bands would
have high prediction error indicating that the PNS may be applied to them [61][148]. In
the other approaches the mean and variance energy ratios are analyzed or other time

domain signal parameters are examined [47][127].

3.4 SPECTRAL BAND REPLICATION

Although the concept of SBR is straightforward, simple bandshifting of the part of the
spectrum occupying lower frequencies to the high frequency region and its envelope
adjusting is not enough to provide sufficient signal quality. The content of the upper
part of the spectrum may significantly differ from the content of lower part. Actually,
the subbands in the higher part of the spectrum may contain strong tonal components
which are not present in the low frequency region. In this case, the SBR encoder must
detect this tonal component and add its parameters to general SBR bit-stream [71].
However, in the subbands occupying higher frequency region tonal components usually
have relatively low power comparing to the noise power. In fact, the noise-like
components usually dominate in these subbands Therefore the SBR decoder must

accurately combine transposed components coming from the lower part of the spectrum
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with locally generated noise. The tonality estimation method, proposed in this
dissertation is not intended to be directly combined with the SBR tool. However, after
some modifications it may be used as an element of the SBR or other module allowing

regeneration of the high frequency content of the audio signal.
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4 SELECTED METHODS FOR TONALITY ESTIMATION

Various approaches to the classification of the spectra components in terms of their
tonality have been already proposed. Some of them are restricted only to speech or other
simply structured signals [83][155][166][170]. The multi-pitch analysis may be used in
order to decompose audio signal into a set of the harmonic sequences [29]. In this
dissertation the author focuses mainly on the comprehensive methods which can be
used during the analysis of any audio signal in real-time using digital signal processors.
These techniques usually employ the short time Fourier transform (STFT) analysis,
where as a result of time discretization and quantization, one deals with time-domain
frames and spectral (DFT) bins, respectively. In the intra-frame methods, the decisions
regarding tonality are taken basing on an analysis results related to a single frame
sequence. Contrarily, in the inter-frame method, time evolution of frequency-domain or

time-domain samples is inspected.

4.1 AMPLITUDE SPECTRUM ANALYSIS

Generally, the stationary sinusoidal components are viewed as local maxima in signal
spectrum. The above statement is valid when the frequency resolution of analysis is
higher than the frequency distance between two neighboring sinusoids. The
straightforward methods for tonality estimation of spectral components are based on the
amplitude spectrum analysis. Three selected methods employing such an analysis are

presented in following subsections.

4.1.1 Sinusoidal Likeness Measure

Let the W[k] be the Fourier transform of the analysis window w[n] (n stands for the
time-domain sample index). It is possible to inspect the signal spectrum in order to find
the spectrum parts corresponding to the shape of the band limited W[k]. In order to do
this the cross-correlation sequence signal spectrum X[4,/] and window spectrum W[k] is
calculated (/ stands for index of signal frame). The maxima of cross-correlation
sequence indicates the presence of tone-like spectral components. The tonality measure
basing on the above-mentioned cross-correlation sequence is commonly named

Sinusoidal Likeness Measure (SLM) and is defined as follows [141]:
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where I'[kpeca] 1s the maximum of the cross-correlation sequence at frequency
corresponding to bin index kpeax and |W[kpeak]| and | X[kpeax]| are derived from norms of
WIk] and X[k,[]. Since the SLM expresses the similarity between the group of bins
related to the spectrum of sinusoid of constant frequency and the analyzed signal
spectrum, this measure fails in case of tonal components of fast varying frequency or

amplitude.

4.1.2 Spectral Flatness Measure

Since most of instruments including human voice produce harmonic sounds, their
amplitude spectra have plenty of separated peaks. Instead of analyzing every single
peak, the tonality of signal bands may be determined employing the method called
Spectral Flatness Measure (SFM). In this method the ratio between geometric and

arithmetic means is calculated for every predefined spectrum band as given by

SFM[bindx ] =20log,

4.2)

1+k,[b

indx

I fle

where bing stands for frequency band number and £, [b mdx] are the spectral

indx

indices representing frequency band boundaries. The tonality factor of a particular band

is expressed by

a= min(SFM—[bmd"],l] (4.3)
SFM .

where SFM.x 1s usually adjusted to —60 dB. The SFM parameters were originally
calculated for entire bandwidth of the signal. Such a global SFM was used in order to
determine the hearing threshold according to psychoacoustic model proposed by

Johnston [86][87]. Instead of calculating one tonality measure for entire spectrum,
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MPEG-7 audio description standard suggests calculating similar parameters in 74 octave

bands [59][69].
4.1.3 Method defined within US patent number 5,918,203

The researchers involved into MPEG audio specifications preparation proposed the

following additional method for tonality estimation (see Fig. 4.1).

—» |DFT| ap=Xe1(X[ k+ke,| ) Xeo(X[ ktko, | ] —>

Filter 2

Fig. 4.1 Tonality estimation method defined in patent US 5,918,203 [62]

This method may be viewed as a generalized version of the algorithm yielding SFMs. In
the proposed method the amplitude spectrum is smoothed by two filters of different
properties resulting in Xpi[k+ky,/] and Xp[k+ko,![], respectively (F1 stands for Filter 1
and F2 for Filter 2). The k; and k; are constants depending on the filters parameters. The
tonality ap is expressed through the ratio between the results produced by two above-
mentioned filters [62]. Note, that a modification of this method is used by the author as
an element of the detector incorporated into PNS module, which is further described in

Section 8.

4.1.4 Method combined with MPEG psychoacoustic model 1

The MPEG psychoacoustic model 1 employs simple, heuristic, binary detector of tone-
like components. In fact, this method does not provide the measure of tonality for
spectral components. All local maxima of spectrum are classified as tonal, providing

they meet the following criterion

All, 1]~ Ak + kg 1] =7 (4.4)

where A[k,[] is the amplitude spectrum |X[4,/]| in the log scale (base equal to 10) and
kngn defines a set of the spectral indices corresponding to the components laying on the
both sides of the peak. While the kg range is narrow for peaks of lower frequencies it
tends to be broader for the spectral components occupying higher frequency
regions [67]. This method was originally defined for the spectrum generated by the FFT

applied to the frame consisting of 1024 time-domain signal samples.
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4.2 PHASE-AMPLITUDE SPECTRA ANALYSIS

On the contrary to the noise-like spectral components, the phase of the tone-like
components changes deterministically. Therefore, either only the phase spectrum may
be analyzed or the joint analysis of phase and amplitude spectra may be carried out in
order to determine the tonality of spectral components. A few examples of such a

methods are briefly described below.

4.2.1 Unpredictability measure

The instantaneous phase of the constant frequency sinusoids increases linearly in
time [128][173]. Therefore, the phase changes corresponding to the particular spectral
component may be analyzed in order to determine its tonality. The tonality measure
basing on this approach is called unpredictability measure (UM). In this method both:
the amplitude and phase values of every spectral component, are linearly predicted
basing on two preceding spectra. Next, the predicted values are compared with the
values coming from the processed signal frame. The differences between predicted and
true phase and amplitude values are directly mapped into the tonality
measure [67][70][93]. Since the formulae allowing calculating UM have been already
given by (3.3), (3.4) and (3.5) they are omitted here.

4.2.2 Tonality detection using TDAC filter-bank

Instead of analyzing the time evolution of phase like it is in the UM method, it is
possible to distinguish the tone-like and noise-like components by analyzing only a
single signal spectrum [48][173]. In this method the phase difference between two

neighboring spectral MDCT components is examined

—&< ctg[phase{x[k]} - phase{x[k - l]}] <¢& 4.5)

where £=0.05 for long signal frames consisting of 2048 samples, and &=0.1 for frames
consisting of 512 samples (assuming 48 kHz sampling rate). Although MDCT
coefficients are real numbers, they are usually calculated using FFT algorithm.
Therefore, it is possible retrieve the phase values employing dedicated procedure. The
condition given in (4.5) tends to be met in a random way for signals containing mainly
low energy noise. In order to increase the efficiency of tonal components detection,
some additional criteria related to the amplitudes of spectral components are

applied [48]. Although this method would be an interesting substitute for the UM
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method, it has been proved that it operates correctly only for unmodulated sinusoids.
Consequently, it does not overcome the main drawback of the method used in the
MPEG psychoacoustic models. It should be noticed that this method provides only
binary results related to the components tonality (every component is either tone-like or
noise-like). Therefore, it should be viewed as a substitute for the tonal component
detector used in the MPEG psychoacoustic model 1 which provides less reliably hearing
threshold estimates than model 2. The advantage of this method is its ability to detect

short tonal components, e.g. lasting less than 20 ms.

4.3 TIME-DOMAIN ANALYSIS

Contrarily to the methods described in subsections 4.1 and 4.2, there are methods
allowing examination of the entire signal tonality or tonality of its subbands basing on
the analysis of the time-domain samples. Although these methods do not assign tonality
estimates to the spectral components, they are briefly described here in order to make

the list of considered methods complete.

4.3.1 Auto-correlation

In the speech codecs the auto-correlation or other function allowing to determine signals
auto-similarity is usually used for pitch period estimation [56]. Additionally, speech
codecs usually perform binary classification of signal frames into voiced and unvoiced
ones. Although such a classification involves analysis of a group of parameters, the
maximum of cross-correlation function calculated for contiguous frames of signal is
usually one of them [158]. The Mixed Excited Linear Prediction (MELP) codec
employs the module responsible for determining the parameter called voicing strength
which may be viewed as a simplified tonality estimate. In the MELP codec the speech is
synthesized usually in five subbands [30]. Every subband is assumed to be the mixture
of the harmonic signal and noise. The voicing strength determines the proportion of
harmonic signal level to noise level. The considered parameter is estimated basing on
the normalized auto-correlation value. Additionally, in order to determine the voicing
strength of the upper subbands also the flatness of signal envelope is analyzed. There is
also a patented implementation of the noise detector incorporated into the PNS module

employing similar approach to the signal tonality estimation [127].
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4.3.2 Prediction

The tonality may be estimated by comparison of the actual time-domain samples with
predicted ones. Due to the limited dynamic range of the predictors, signal is usually first
split into subbands and down-sampled using a polyphase quadrature filter bank as it is

presented in Fig. 4.2.

~» PREDICTOR1 |»

input INVERSE
Sig‘;a/ SUBBAND —» PREDICTOR2 [ SUBBAND tonality
% FILTER FLier ™ FFT > umMm  —»
BANK : BANK

~» PREDICTORN |»

Fig. 4.2 Tonality estimation by prediction in subbands [148]

After this operation, each subband signal is fed into the individual predictor. Next, the
inverse filter bank is used in order to combine the signals from the predictors into the
entire frequency band signal. The tonality of individual spectral bins may be determined
by applying FFT and employing the UM method. This algorithm was proposed as one
of the methods allowing detection of the noise-like components and was successfully

combined with the PNS module [148].
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S NOVEL METHOD FOR TONALITY ESTIMATION OF SPECTRAL
COMPONENTS

5.1 ALGORITHM OUTLINE

The major properties of the proposed algorithm for tonality estimation of spectral

components are as follows:

e it exploits both: inter-frame and intra-frame approach simultaneously and
incorporates a module responsible for matching single tonal components into the
tonal tracks (partials);

e it assigns non-zero tonality measures only to the spectral local maxima, while all
other spectral bins tend to have a noise-like characteristic (the tonality spreading
over bins neighbouring to the spectrum maxima is described in subsection 7.1.2

and 7.1.3);

o it allows efficient detection of modulated tonal components.

The proposed algorithm detects the local maxima of magnitude spectra corresponding to
three contiguous frames of a signal and then matches them to the candidates for tonal
tracks (partials). Further the frequency jumps related to the local spectra maxima
belonging to these candidates are estimated employing the magnitude-based and phase-
based methods. The verification of the candidates tonality is based on the distance
between frequency jumps derived from the magnitude-based and phase-based
estimators. This distance is also used to estimate so called frequency-derived tonality

measure (FTM) for spectral bins belonging to track candidates being verified.

The first frequency jumps estimator employs well known technique of polynomial
fitting (quadratically interpolated FFT — QIFFT) to the spectrum maximum and its two
neighboring bins [1][36][88][98]. The second proposed estimator is non-standard and

was specially developed in order to meet the following requirements:

e it yields inadequate instantaneous frequency values when the spectrum bins
involved into the estimation procedure do not correspond to the tonal
components (the frequency distance between values obtained using quadratic
interpolation and phase-based method should be abnormally high — i.e. higher

than half of the frequency resolution of spectral analysis);
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e it allows accurate instantaneous frequency estimation of frequency modulated

tonal components

A similar approach was previously proposed as an element of sinusoidal modeling
framework, however the method proposed here is different [103][133][134]. The block
diagram illustrating processing steps of the proposed algorithm is presented in Fig. 5.1.
The detailed description of the algorithm along with the definitions of all symbols used

are given in the following subsections.

subsection 5.2

input signa/—»[ Data segmentation }

v

Phase spectrum }4 FFT

v

Magnitude
spectrum

v
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v

Quadratic
interpolation

subsection 5.4

7., [p")] " g
cand LP | Candidates creation ‘ (S
| (3 signal frames) 3
W
v v
Phase-based Magnitude-based
frequency jumps frequency jumps
estimation estimation
Af(l) (T::and I:p([)]) AfM (Tcand [p (1)])
A

[ Selection of valid candidates and tonality calculation ]

v

[ Examination of tracks length and tonality assignment }

subsection 5.5

v FTM [k, /]

Fig. 5.1 Block diagram of the proposed algorithm for tonality estimation of spectral
bins [97]



NOVEL METHOD FOR TONALITY ESTIMATION 56

5.2 MAGNITUDE SPECTRUM ANALYSIS

Firstly, the input signal is divided into short segments, further called frames, in
conformity to the STFT analysis concept. Every frame is weighted using the von Hann

window [173]:

X, [n,l] = x[n+IL]w[n] (5.1

where: n=0, 1, ..., N-1, / denotes frame number, L is hop size of analysis, x[n] is
analyzed signal, and w[n] is von Hann window of length N. Secondly, every frame of
the signal is optionally zero-padded to its double length before applying the FFT

procedure [1]:

(1] = x, [n.1] N-12n20
PeelBHT 0z N—12n s N1 -2)

where 7 is a zero-padding factor (expressed as a FFT length to the frame length ratio)

that equals 1 (no zero-padding) or 2 in presented implementation.

The motivation for zero-padding of the signal frame before FFT calculation is the
reduction of estimator bias resulting in an improved accuracy of frequency estimation.
Basing on experimental results presented in literature, the maximum frequency bias of

the QIFFT assuming the von Hann window is up-bounded in the following way [1]

3
Fl 1
St N 53
belas < N [4ZJ7J ( )

where F; is sampling rate as before. For zero-padding factor equal to 2 and frame length
equivalent to approximately 32 ms (for instance: F=32 kSa/s, N=1024) the bias of
considered frequency estimator calculated according to (5.3) is less than 0.07 Hz. Using
the zero-padding factor higher than 2 seems to be impractical as it would result in a
significant increase of the computational complexity, assuring only slight increase of
the frequency estimation accuracy. Thus, in the investigated method for tonality
measuring every frame of the input signal is optionally zero-padded to its doubled

length.

Next, the short time Fourier spectrum is calculated [128]:
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X[k,l]: wa,z[n,l]-e o (5.4)

where k=0, 1, 2, ..., Z,N-1 1s a spectral bin number. Further on the local maxima of /-th

magnitude spectra are detected to form a set:

KO =k |x[k]>|xk-1,0] A X[k ]> | x [k +1,0]) (5.5)

max

The spectral index corresponding to the i-th local maximum in /-th frame is denoted as

ko li0]ek® =0, 1, ..., KU —1 (5.6)

max ?

where K stands for total number of spectral local maxima detected within /-th frame.

In order to eliminate spectral maxima of low energy that tend to have noise-like
characteristic, the parameter expressing their peakiness is calculated according to the

formula

ol [T = Al [0 A[kmm(i(”),l]z A ()] 57)

where &, ["] and ,, ["] are the indices of the closest spectra minima on the both

sides of the peak and A[kmax (j([))]z 20105;(])([kmax (j(’)),l]) [150].

All peaks having g[kmax [i(’)]] below the threshold gig are assumed to be noisy and are
excluded from further processing. In order to select the appropriate gwg value the
normalized histogram of g[kmax [i(’)]] values for the realization of the white Gaussian

noise sampled at F=44100 Hz was analyzed using the frame length equivalent to the
46.4 ms (2048 samples). Considering normalized histogram presented in Fig. 5.2, the
gia equal to 9 dB was selected as it allows rejecting about 30% of the noisy maxima.
Unfortunately, the tonal components of low power will be also rejected with the
assumed threshold. As the tonality of such components is low, treating them as noise-
like ones has rather insignificant influence on the operation of the psychoacoustic

model.
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Fig. 5.2 Normalized histogram of the spectral peak heights for the 46 ms frames of

sampled white Gaussian noise

The indices of the spectral maxima satisfying the criterion defined below are further

considered as candidates for tonal components [109]:

Ks(irzax = {kmax l(l)] g[kmax [l(l)]]> gthd } (58)

where g,,=9 dB and “s” is added to the subscript of set k) in order to indicate that it

ax

stands for the selected maxima in /-th frame instead of all the maxima defined in
Eq. (5.5). Consequently, the spectral indices corresponding to the j-th local maximum in

[-th frame are denoted as

koo /O ]e k@ j0=0,1, ., KD —1 (5.9)

smax ? S max

Although the criterion defined in (5.8) is quite weak, it provides a substantial reduction
of computational complexity of the algorithm stages described further. This is justified
because the processing load strongly depends on the number of tonal components
candidates. Moreover, the rejection of noisy peaks minimizes the probability of

misclassifying noise-like components as tone-like ones.

In the next stage of processing, the quadratic interpolation is applied to all selected
spectral maxima. Firstly, the fractional part — so called bin offset of spectral indices is

determined [15][138].
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The instantaneous frequency of the spectrum peak detected in /-th frame of the signal is

ko= (5.10)

then given by

A L
Sulkona /]2 %N“ F, (5.11)

where N is the length of signal frame, and Fj is the sampling rate.

5.3 CREATION OF CANDIDATES FOR THREE-COMPONENT TONAL TRACKS

It is assumed that the maxima in three successive spectra may belong to the same tonal

track if the following criteria are fulfilled

(1+) fulloa 1> Fullma 1] > (1= @)A1 (5.12)

(1+ )l /> fualkone 0] > (=) o[ ] (5.13)

where d € (0,1) stands for the maximum relative detune of the tonal component

between two successive frames of analysis. Although the d value can be expressed in
relation to the maximal assumed pitch variation speed against absolute time, it was
found experimentally that @=0.1 is suitable for the analysis of audio signals if the frame
length corresponds to approximately 30 ms of the signal and the hop size is selected

between 4 and % of the frame length.

If the following maxima frame triad [k [j(”l)l ko [j(’)], K, [j(l“)]] fulfills the

S max

criterion defined in (5.12) and (5.13), the candidate for the three-component tonal track,

denoted further as a T [p(’)] is created, where p(l) =0, 1, ..., PY 1 is a candidate

cand
index and P is the total number of candidates created in /-th frame of analysis.
Additionally, if more than one component in the previous /-1 or following /+1 spectra
meet the maximum detune criterion, the three-component tonal track candidate is

created using the components of minimum frequency distance (Fig. 5.3).
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Fig. 5.3 Creation of tonal track candidates

5.4 FREQUENCY JUMP ESTIMATION

Let T [p(’)] be a candidate for a three-component tonal track comprised of the

cand
o 0] ko 0] ko /4] set of spectral maxima indices. The frequency
jump measured halfway between centers of frames /~1 and / to the halfway between

centers of frames / and /+1 corresponding to the T, [p(’)] is estimated twice using the

and

magnitude-based and phased-based methods resulting in the Af,, (TCand [p(”]) and

Afy (Tcand [p(l)D estimates, respectively (Fig. 5.4). The procedures for frequency jumps

estimation are described in the two following subsections.

> A
2 T [ p(z)]
% cand
H
Ay (Z:and[p(l)])) {
83 (el }

: : >
-1 / J+1 frames

Fig. 5.4 Frequency jumps corresponding to the tonal track candidate
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5.4.1 Magnitude-based method
Basing on the magnitude-based frequency estimator defined in (5.11) and assuming

linear interpolation of frequencies in halfway of frame centers (Fig. 5.3) the frequency

jump related to the 7, [p(’ )] is given by:

-(1+1) || (1)
O 0 A 0 S O AP

S [Ks max :j(l)]]_sz [ksmax [j(l_l)]] ~ fu [ksmax [j(l—l)]] - (5.14)
Sl Al ]
2

5.4.2 Phase-based method

The method for frequency jumps estimation presented below is based on the well-
known technique of instantaneous frequency estimation employing phase
vocoder [25][27][51][106][136]. Various phase-based frequency estimators were
evaluated and compared in [104]. Also the attempt was made to combine phase vocoder
with a generalized sinusoidal model, which includes phase and amplitude
modulations [14]. Usually, the hop size of STFT analysis equal to one sample is used in
these methods in order to allow the estimation of instantaneous frequency in the full
Nyquist band [104]. In this case, the above mentioned estimators yield adequate
instantaneous frequency values (consistent with the magnitude-based estimates) even if
the maximum of the analyzed spectrum corresponds to a noise-like component. This
property makes these estimators useless in the application presented in this article,
because it is assumed here that frequency jumps derived from the phase and magnitude
spectra analysis are inconsistent to each other when the spectral bins belonging to the
particular tonal track candidate are indeed noise-like. The algorithm for tonality
estimation presented in this dissertation intends to operate when the hop size of the
analysis ranges from approximately %4 to % of the frame length. Regarding the defined
hop size range, the maximal instantaneous frequency that can be estimated employing
long term phase vocoder concept is limited due to the phase indetermination
problem [15][41]. In order to overcome this difficulty, a special dedicated procedure is
applied to the phase angles used here to calculate the frequency jumps instead of

instantaneous frequencies. Furthermore, the classical phase-based estimators presume
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that the quasi-sinusoidal component does not alter its frequency within two contiguous
steps of analysis and thus the phase values used for frequency estimation come from
spectra bins of identical indices. Contrary to these methods, the frequency jumps
estimator presented below is able to operate correctly even if the bin indices
corresponding to tonal track candidate are different to each other. Additionally, it yields
frequency jumps inconsistent with the estimates provided by the magnitude-based
estimator defined in (5.14) when the candidate for tonal track comprises of at least one

noise-like spectra bin.

All three phase values corresponding to the spectra maxima belonging to the 7, [p(’ )]
are involved into the procedure for frequency jump estimation (Fig. 5.5). First, the 2™
order phase difference corresponding to 7, , [p(’)] is calculated according to the

following formula:

AZCD(ks max [j(l+l)]7ks max [j(l_l)]) =
DDk [ 1]~ Ak [} [ =

o N | S C o | S e ] 1)
Dk, [T 2000k, [T+ 0l [
: )
where @[k, (/)= arctan( E:g Ei: 8 (,)i% .
oA
2
o,
i L)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
APk [} 1) - : N
C -1 [ I+1 : frames
fffffffffffffffff -0 ‘:
1) ) L
AD (ksmax [j lk,sfzix,[{ ,,,],) 77777777777777777777777777777777777777777777 <‘>
R

Fig. 5.5 Phase jumps corresponding to the tonal track candidate
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If the quasi-sinusoidal component changes its frequency and is represented by spectral
bins of various indices in the contiguous spectra, the following phase offset must be

involved into the frequency jump estimation procedure:

Kl [ V1)) =

M -_(+)_ (1) (-1) | () [) =
ZpN (ksmax _]1 : ] ksmax [] l ]+ksmax [Jl 1 ] ksmax [] l ])_ (5.16)

5%359@mwj“ﬂ—zhmiﬂﬂ+hmiﬁ“W

If the k. [ j(H)] . [ i )] and k. [ j (’”)] indices remain in the linear relation the

phase offset defined above is nullified. The frequency jump related to the 7., [p(’) ] is

given by:

Afy (Tcand [P (1)]) =

2FSL (princarg (Azq)(ksmax [j(m)lksmax [j(l—l)]))+ A2¢(ksmax [j(l+l)lksmax [j(H)D) (5.17)
7

where princargp) = (qo + 7Z')n’10d(— 272')+ 7 is the principal argument function

mapping the input phase ¢ into the (-, 7) range [41][173].

However, when tonal components of fast varying frequency are analyzed, the frequency
jump derived from phase processing (5.16) may not be adequate due to the phase
ambiguity problem [15][41]. In order to overcome this difficulty, the minimal and
maximal frequency jumps are calculated basing on the numbers of spectra bins

constituting a particular candidate for tonal track [98]:

Af, (Tcand [p (l)]) =

ZF;\] (ksmax [j(lﬂ)]; ksmax [j(l_l)] —msgn (ksmax [j(m)]_ ksmax [j(l_l)])j (5.18)
p

Af, (Tcand [p (l)]) =

ZF;\] (ksmax [j(lﬂ)]; ksmax [j(l_l)] + msgn (ksmax [j(Hl)]_ ksmax [j(l_l)])J (5.19)
p
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8y (T [ = min (a7, (7 [0 D A, (s [0 ) (5.20)

A e (Tona [P0 = max (Af; (T [PV D AL (T [2©]) (5.21)

where msgn( ) is modified signum function which returns a value equal to 1 for non-
negative arguments (higher or equal to 0 value) and a value equal to —1 for negative

arguments. Next it is checked whether for any multiplier

m. = L 2, .., 6; Af@(ﬂand[l?(”])<Afmin(nand[p (1)]) (5.22)

T 2 6 A (T 2> A (T 2")

the following criterion is fulfilled:

Ao Tana [P0 ) > Ay (Tona [P0+ 1, % > Mo (Ta[P") (5.23)

If multiplier m; exists the frequency jump derived from the phase spectrum processing is

updated as given by

o Tona[P") € 8, (Tns [P ) 4, % (5.24)

Otherwise m;=0 is assumed. The range for m; was determined experimentally and is
constant here regardless of the instantaneous frequencies of spectral peaks constituting
the candidate for tonal track. However, a slight improvement (lower false positive rate
of tonal components detection) may be obtained by making the m; multiplier range

narrower for lower frequencies and wider for higher frequencies.
5.5 MEASURING SPECTRAL COMPONENT TONALITY

5.5.1 Measuring tonal track candidate tonality

It can be assumed that a particular number of created candidates for three-component
tonal tracks represent the sets of noise-like components. In order to eliminate these
candidates and then select only truly tonal tracks the difference between frequency

jumps estimated using (5.14) and (5.17) or (5.24) is determined for every candidate:
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5 (Tns [PV = Aty (Tns [0 O] - 1, (T [P ) (5.25)

Among all candidates only these fulfilling criterion defined below are selected;

70 =37, "] (7l < zfz (5.26)

p

The valid r-th three-component tonal track created within /-th step of analysis is then

denoted as

T[]t 0 =0,1,.., TV (527)

trk trk

and the frequency-derived tonality measure (FTM) is assigned to it according to the

formula:

FTM,, (T, [")=1- %\5(& ) (5.28)

S

5.5.2 Assigning tonality to spectral bins

In order to increase the reliability of decision regarding spectra bins tonality (the
incorrect classification of noise-like components as tonal ones), it seems reasonable to
analyze whether the components of the valid tonal tracks are the elements of a longer

tonal track appearing in four or more contiguous spectra. Thus, the tonality measure

FTM . (Ttrk [r([)D is assigned to the £ [j(l)] spectral bin resulting in

FTM [ksmax [ ;! )l ) ] LT, [r(l )] is at least L-th three component tonal track belonging to

the same long tonal track. The L; parameter should be reasonably selected as its affects

the detection delay (L;=1 is used in all experiments).

The three-component tonal track 7, [r(’)] composed of the maxima triad

[ksmax [j(l‘l)], K, o [j(l)l K, o [j(’”)]] which is not continued with any T, [r(’”)] is

trk
assumed to be dying. Furthermore, if the T, [r(’)] is the last valid three-component
track being a part of the longer track consisting of at least L, three component tonal

tracks, the tonality measure FTM lrk(T [r(’)]) is assigned to k_ [j(”l)]. The

trk
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L,= {%+ O.SJ +1 1is the experimentally determined parameter and obviously L,>L;.

The symbol |_ J stands for rounding to the nearest integer towards minus infinity. The

procedure described above is depicted in Fig. 5.6.
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Fig. 5.6 Assignment of tonality measures to spectral bins (solid rectangle — valid

tracks, dashed rectangle — invalid or not existing track)

It can be seen from Fig. 5.6 that the tonality measure FTM (Tlrk [r(’)]) is assigned to the

peak detected within the (/+1)-th spectrum, even if it is not a part of a valid three-

component tonal track or if this track does not exist in the (/+1)-th step of the analysis.

Regarding the application requirements the described algorithm may return tonality
measures corresponding to the interpolated spectrum obtained after applying the FFT
procedure to the zero-padded frames of signal, or the tonality measures may be assigned
to the bins corresponding to the spectrum obtained without zero-padding. Considering
the latter case, the tonality measures yielded by the described procedure are assigned to

the bins in the /-th step of analysis of numbers derived from

N
.(/ -(/
Koo 1= | Al 75405 (5.29)
1
In all of the experiments described in the next section the tonality measures are
allocated in accordance with the above formula as it makes easier to compare the

efficiency of the engineered algorithm with other tonality estimation methods.
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All spectral components not detected as spectral maxima or not assigned any tonality

measure by the described procedure are treated as a totally noise-like ones, and the

tonality measure equal to 0 is associated with them (FTM[k,l ]: 0 or FTM[kN,l ] =0
where ky=0,1,2, ..., N=1). The inverted tonality measure 1—FTM,, (ﬂrk [r(l)])

assigned to the spectral maxima kmax[i(’)] detected within /-th (current) frame is denoted

further as ftm[Amax].



EVALUATION OF ALGORITHM PERFORMANCE 68

6 EVALUATION OF ALGORITHM PERFORMANCE

The developed tonality estimator was compared with the selected existing methods
which are mainly used in psychoacoustic models for the estimation of the basilar
membrane stimuli characteristics. However, two of these algorithms express the tonality
in a different way than the FTM method which makes a direct comparison impossible.
Thus the additional assumptions were made for them in order to allow comparison with
the FTM method. The algorithms used for comparison together with a short description

and assumptions made are as follows:

e SFMs — were calculated for critical bands with frequency boundaries defined by
Zwicker [174]. Because the SFMs express the tonality of the entire frequency
band, and they get 0 for tonal subbands and 1 for noisy ones, it is assumed that
1-SFM are assigned only to those spectra maxima that have the power
exceeding the arithmetic mean of the power spectrum subband. All remaining
components are assumed to have zero tonality.

e UM - similarly to SFMs, here the 1-UM values instead of UM are used. The 1-
UM values are assigned only to spectral bins corresponding to local spectra
maxima. All remaining components are assumed to have the tonality of zero.

e Tonal components detector employed in MPEG psychoacoustic model 1 (further
denoted as a M1). This is a simple discrete classifier assigning tonality equal to
1 to spectra maxima which tend to be tonal and 0 to all remaining bins [67]. In

this case no additional conditioning was necessary.

The defining equations for the above-mentioned tonality estimators were given in

Section 4.

6.1 EFFICIENCY OF TONAL COMPONENT DETECTION

The proposed algorithm may be viewed as a probabilistic (scoring) classifier, and thus
its performance was evaluated using the technique of ROC (Receiver Operating
Characteristic) graphs [46]. In order to calculate the ROC curves, a set of signals was

generated according to the following formula:
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x[n] = Ai Sin( 27y hn + ety sin(zﬂfmn] + @, (h)] +

h=1 F; fFM F;
s (22(20£, +1000h)  d,\, (20 £, +1000A) @D
AD sin 7204, " o Sy sin{ Z#FMHJ + ¢y (h)
h=1 F; fFM F;

where 4 is a sinusoid amplitude, f, =110 x 27'1> denotes the fundamental frequency

related to pitch, n=0, 1, ... Nsg—1, N;;;=64000, F=32 kHz, ¢y is a randomly generated
initial phase which is different for every sinusoid, and the parameters are
p=0,1,2, ..., 24, frm denotes modulation rate and dry stands for frequency modulation
depth expressed in the percentage of the carrier frequency. Assuming a particular
combination of p, fpm, drv parameters, the x[n] consists of 20 harmonics and 5 sinusoids
occupying a higher frequency band spaced at intervals of 1 kHz. Since the analyzed
signals were a mixture of x[n] and white Gaussian noise, the power of white noise and
the amplitude of the sinusoidal components were adjusted in order to achieve a desired

SNR;

> ¥[n]

SNR[dB]=10log,, e (6.2)

D y[n]

where y[n] stands for white noise. For a particular SNR and p, frm, dev parameters the
total number of 25 signals were generated (for p=1, 2, ..., 24 the £, ranges from 110 Hz
to 440 Hz with one semitone step), and then further analyzed using the frame length
equal to 32 ms (1024 samples), and the hop size adjusted to a quarter of the frame
length (256 samples). Because the frequencies of sinusoidal components were known a
priori the vector containing values equal to one for all indices related to sinusoids
frequencies and zeros for all remaining spectra maxima was created. Further this vector
was used to calculate the true positive rate (positives correctly classified divided by total
positives) and false positive rate (negatives incorrectly classified divided by total
negatives) of all examined classifiers. Assuming a particular combination of f;, fem, dim
and SNR, at least 3000 tonality estimation results were gathered for every examined
algorithm. Consequently, for a group of 25 signals generated with particular SNR, fgum,
drym, and p=1, 2, ..., 24 the vectors containing at least 3000x25 tonality estimates were

used in order to generate ROC graphs employing the procedure described in [46]. The
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ROC graphs for all investigated algorithms along with FTM are presented in Fig. 6.1
for SNR=10 dB and Fig. 6.2 for SNR= 0 dB. For each SNR, two sets of signals were
analyzed — the first one without frequency modulation applied (fpm=0, dpm=0) and the
second one with applied frequency modulation simulating a typical, instrumental

vibrato effect (fpv=6 Hz, drpy=0.03 corresponding to £0.5 semitone) [114][154].
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Fig. 6.1 ROC graphs for examined algorithms with SNR=10 dB; left — constant

frequency sinusoids, right — frequency modulated sinusoids
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Fig. 6.2 ROC graphs for examined algorithms with SNR=0 dB; left — constant

frequency sinusoids, right — frequency modulated sinusoids

It can be observed from Fig. 6.1 that FTM, UM and SFM operate similarly to each other

and almost perfectly when detecting constant frequency tonal components and when the
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SNR is equal to 10 dB. Considering the characteristics obtained for the UM method
presented in Fig. 6.1 and 6.2, it is apparent that this method of tonal components
detection is most sensitive to frequency modulation among others as its performance is
significantly decreased in this case. When comparing the area contained under the
curves (AUCs — Tab. 6.1) and the ROC graphs of the FTM and SFM methods it is
noticeable that their performance is similar. However, FTM seems to operate slightly
better than SFM (modified for the purpose of this comparison) when SNR is equal to
zero because it gets closer to (1, 1) point in the ROC graphs. The AUC for ROC graphs
of FTM algorithm are either equal or higher than AUCs obtained for the UM and M1

which directly proves its overall robustness.

Tab. 6.1 Areas under ROCs for examined methods

SNR [dB] | FM AUC(FTM) | AUC(UM) | AUC(SEM) | AUC(M1)
no 0.96 0.95 0.96 0.71
10
yes 0.94 0.8 0.95 0.71
no 0.91 0.85 0.86 0.67
0
yes 0.86 0.72 0.85 0.67

Although a higher rate of true to false positives can be achieved with FTM than with the
M1 method, the threshold turning the scoring FTM classifier into discrete one should be
reasonably selected when considering its use in the MPEG psychoacoustic model 1. The
MI1 method is the most conservative among all examined, because it provides true
positive rate around 0.4 while the false positive rate does not exceed 0.05 even if the
SNR is equal to 0 dB and the frequency modulation is applied to the sinusoids being
analyzed. Thus, it seems that the detection threshold for FTM should be selected so that
the low false positive rate of tonal components detection would be quite low. Assuming
that the false positive rate should not exceed 0.1 level for the MPEG psychoacoustic
model 1 the true positive rate provided by FTM would be significantly higher than the
one provided by the M1 method. The experiments allowing the determination of the
optimum threshold level for the FTM in order to optimize the reliability of the MPEG

psychoacoustic model 1 are out of the dissertation scope.
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6.2 TONALITY ESTIMATION

6.2.1 Stationary sinusoids

In order to find out the relation between tonality measures yielded by the examined
algorithms and the SNR of a tonal component, a set of signals consisting of the constant
frequency sinusoid and noise with SNR varying from —20 dB to 30 dB with 2 dB step
were generated and analyzed. The sampling rate was 16000 Sa/s and the frequency of
the sinusoidal component was adjusted to 440 Hz. The generated signals of particular
SNRs with duration time 4s consisted of 64000 samples (4 s) and the initial phase of the
sinusoidal component was randomly selected. The length of the analysis frame was set
to 32 ms (512 samples), and the hop size was adjusted to a half of the frame length. As
the number of spectral bins corresponding to the tonal component was known a priori, a
vector representing tonality estimated within successive steps of analysis was created
for every generated sample. The mean and minimal values as well as the standard
deviation were calculated for all 26 vectors gathered using FTM, UM and SFM

methods. The statistics obtained are presented in Fig. 6.3.

1

FTM

1-UM

1-SFM

Fig. 6.3 The statistics obtained with the UM (top), FTM (middle) and SFM (bottom)

methods — sample tonal component of constant frequency
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Notwithstanding small differences in the FTM, UM and SFM characteristics, they seem
to perform similarly when the tonal component of constant frequency is considered. The
difference can be noticed for SNR falling below —10 dB. In this range the mean values
of tonality obtained using SFM and UM descend more gradually comparing to FTM
algorithm. However, this property seems to have negligible importance, as the

difference of tonality in this SNR range is rather hardly perceived.

6.2.2 Effect of frequency modulation

Next, two groups of signals consisting of a single sinusoidal component of a nominal
frequency equal to 120 Hz and 400 Hz (£=16000 Sa/s) modulated nonlinearly by the

sinusoidal function of 6 Hz frequency were analyzed using the FTM, UM and SFM
methods. The SNR of the sinusoid was equal to 20 dB. While the modulation rate was
constant, the modulation depth altered from O (no modulation) to the depth
corresponding to +1 semitone with the step equal to 0.05 of semitone. The length of the
analysis frame was set to 32 ms (512 samples), and the hop size was adjusted to a half
of the frame length — identically to those used in experiment described in subsection
6.2.1. For every selected modulation depth the vectors containing tonality measures
related to the tonal component, were gathered using three above-mentioned algorithms.
In Fig. 6.4 a comparison of the mean values of tonality measures obtained using FTM,
UM and SFM methods are presented for the carrier frequency of the modulated
component equal to 120 Hz and 440 Hz, respectively.
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Modulation depth [+ semitone]

Modulation depth [+ semitone]

Fig. 6.4 Influence of frequency modulation depth on the mean tonality measurements

with carrier frequency 120 Hz (left) and 440 Hz (right)
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Considering the results presented in Fig. 6.4 for the 120 Hz carrier, it is apparent that
the FTM and SFM methods are almost totally insensitive to the frequency modulation
of +1 semitone depth (approximately 113 to 127 Hz in this case). Although the tonality
estimates provided by the UM algorithm in case of such a modulation depth are
approximately 10 times smaller than for a constant frequency sinusoid, this degradation
is acceptable. However, when comparing Fig. 6.4 (right) and Fig. 6.3 (middle) it can be
noted that the tonality measure yielded by UM for the sinusoid of 20 dB SNR
modulated within 415 Hz to 466 Hz range (440 Hz £1 semitone) is equal to the tonality
measure obtained for a constant frequency sinusoid of approximately —15 dB SNR.
While the UM method yields inadequate tonality measures for deeply frequency
modulated components occupying mid and high frequency bands, the FTM and SFM
methods seem to be much more insensitive in this case. Consequently, using UM for the
offset calculation accordingly to (3.16), would lead to the hearing threshold estimate
corresponding to a stimuli similar to that obtained for noisy spectra components. Using
the FTM instead of the UM in this case would lead to a more reliable estimate of the

hearing threshold.

6.2.3 Effect of amplitude modulation

In order to evaluate an influence of the amplitude modulation (AM) on the tonality
measures provided by the investigated algorithms, experiments similar to that described
in previous subsection were carried out. In this case, a set consisting of 39 sinusoids of
constant frequency equal to 440 Hz was generated and AM was applied to them. The
AM depths were selected within the range from 0 to 0.95 with 0.025 steps in order to
obtain the set of AM sinusoids modulated with various depths. The frequency of AM
was constant for every sinusoid and equal to 5 Hz. The generated signals consisted of
64000 samples (4s) and the initial phase of sinusoidal components was randomly
selected. During the analysis, the frame length was adjusted to 32 ms (512 samples),
and the hop size was equal to a half of it. The SNR of the generated sinusoids was
selected to be equal to 40 dB in order to ensure that even when the sinusoid is deeply
modulated its instantaneous SNR does not go below the particular level (tonality close
to 1 should be assigned to it). The mean values of tonality yielded by the FTM, UM and
SFM algorithms for various AM depths are presented in Fig. 6.5.
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Fig. 6.5 Influence of an exemplary amplitude modulation of tonal components on the

mean (upper part) and minimum (lower part) tonality estimates (UM, FTM, SFM)

The comparison of characteristics shown in Fig. 6.5 indicates that the amplitude
modulation of tonal component affects the tonality measures obtained using the FTM
and SFM algorithms just slightly. The robustness of the FTM and SFM methods in
terms of insensitivity to AM is directly related to that they do not assume any particular
inter-frame behavior of the magnitude of tonal components. Although the UM method
is the most sensitive to AM among all examined algorithms, the influence of AM tends
to be significant only for the modulation depths higher than approximately 0.8.
Obviously, the cause of the UM limitations in this modulation depth range is a
consequence of the assumption regarding the inter-frame linear changes of spectral bin

magnitudes.

6.2.4 Experiments employing speech and music recordings

Contrarily to the experiments involving synthetic sound samples, in this subsection the
experimental results for speech and music recordings are presented. The recording with
male speech sampled at 32 kHz was analyzed using 32 ms (1024 samples) von Hann
window and the hop size equal to the " of the frame length (256 samples). In case of
the recording containing a fragment of jazz music sampled with 44.1 kHz, the frame

length was adjusted to 46.4 ms (2048 samples) and the hop size was set to the % of the
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frame length (512 samples). In Fig. 6.6, the fragments of spectrograms of the recording
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Fig. 6.6 Spectrograms of the analyzed speech (left part) and polyphonic (right part)
recordings (up to 3000 kHz)

Instead of the term ‘spectrogram’ the ‘tonalogram’ was introduced as a three-
dimensional intensity plot displaying the tonality of spectral components as a function
of both time and frequency. In Figs. 6.7 and 6.8, the tonalograms obtained using the
FTM, UM, SFM and M1 methods applied to speech and polyphonic recordings are
shown. The tonality estimates provided by the UM and SFM algorithms were assigned
only to the spectra maxima according to the statements made in the beginning of

Section 5.

It can be observed from Figs. 6.7 and 6.8 that FTM yields high tonality measures for
partials even if the instantaneous frequency of tonal components related to them varies
significantly in time. This is not the case for the UM method, where the tonality close to
1 is only assigned to constant or slowly varying partials. Consequently, basing on the
results presented in subsection 6.1 it can be expected that modulated partials or their
fragments visible in the UM tonalogram would be discarded after applying a reasonable
detection threshold (e.g. preserving false positives rate at the 0.5 level). Although the
M1 method does not provide continuous tonality measures falling within the [0,1] range

it is also included here for the purpose of the comparison.
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Fig. 6.7 Tonalograms of speech recording (clockwise from the top left: FTM, 1-UM,
M1, 1-SFM)

The speech tonalogram for this discrete tonality detector contains only a few incomplete

partials. It is interesting however, that this heuristic detector seems to operate

significantly better in the case of the polyphonic recording which was analyzed using

the frame length two times higher than the frame length which is intended to be used

when the sampling of the signal is performed at 44100 Sa/s [67]. Considering the

definition of the SFM (geometric to arithmetic mean of the power spectrum) it can be

noticed that the tonality estimates provided by the SFM depends on the number of tonal

components belonging to the particular band and the frequency distance between them.

The 1-SFM value of the frequency band containing a large number of spectral peaks

corresponding to the tonal components of a relatively low pitch would be lower than for

a subband containing one or only a few strong tonal components and noise. This effect

can be observed when comparing the tonalograms obtained using the SFM for speech

(pitch is approximately equal to 100 Hz) and polyphonic recordings (there are strong

tonal components related to the singer voice — see spectrogram in Fig. 6.6).
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Fig. 6.8 Tonalograms of polyphonic recording (clockwise from the top left: FTM,
1-UM, M1, 1-SFM)

Although the graphical representation of tonality estimates yielded by the examined
algorithms should be treated rather as an overview of the methods than a systematic
comparison, it proves that the engineered algorithm operates as it was intended for the

real-life sound sample recordings.

6.3 LIMITATIONS OF THE ALGORITHM

The frequency resolution of the DFT (Discrete Fourier Transform) analysis usually used
in audio processing applications may not be high enough to produce a spectrum where
low frequency tonal components are visible as local maxima. When the recordings
containing very low pitch sounds (e.g. harmonics of bass guitar) are going to be
analysed with the FTM algorithm, it may be necessary to employ the multi-resolution
DFT approach [84]. Another solution is to use the UM method up to e.g. 300 Hz
frequency instead of FTM, because it operates efficiently for low pitch sounds even if

they are deeply modulated.
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Considering implementation issues, it seems that computationally the FTM is slightly
more complex than other investigated methods. However, with nowadays DSP (Digital
Signal Processors) and other processors efficiency it should not be the problem.
Because the probability that tonal components will occur in high frequency regions (i.e.
over 10 kHz) is quite low, the hybrid approach may be used. In this case the FTM may
be applied to signal frequencies up to some limit, and for higher frequencies the SFM or

other method may be used.
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7 RELIABILITY OF HEARING THRESHOLD ESTIMATION

7.1 PSYCHOACOUSTIC MODEL

As it was stated in the end of Section 5 the inverted tonality measure

1-FTM (Ttrk [r([)]) assigned to the spectral maxima kmax[i(’)] detected within /-th

frame is denoted further as ftm[km.x]. The FTM algorithm is intended to provide a
substitute for the UM method, used in the psychoacoustic model combined with the
AAC or MP3 encoder (MPEG psychoacoustic model 2). However, there are two major

differences between these algorithms, which make direct substitution impractical:

e for sinusoidal component of a particular SNR they provide slightly different
values of tonality;

e UM indicates high tonality at spectral maxima and also neighbouring bins, when
a strong sinusoidal component is present within the analyzed audio signal
fragment [33]. The FTM assigns a high tonality value only at spectral peaks.
Therefore, ftm[kmax] values must be mapped into the UM space and appropriate
spreading must be applied to the ftm[km.x], before further experiments are

carried out.

It is assumed that FTM should operate identically to the UM when audio signal contains
stationary tonal components, because the UM operates perfectly in this case. The
symbol notation used is identical to the symbol notation used within the ISO MPEG

standard in all cases where it is reasonable [70].

7.1.1 FTM to UM mapping at spectral peaks

It is required to discover the relation behind the SNR of the analyzed sinusoidal
components and the tonality estimates, produced by the UM and FTM algorithms at
spectral peaks. Knowing such a characteristic, allows mapping the FTM into the UM at
spectral peaks. In order to obtain the desired mapping characteristic, the set of constant
frequency sinusoids of SNR varying from 50 to —30 dB with 1 dB step were generated
and further analyzed. The sampling frequency was equal to 44100 Hz, the frame length
was adjusted to 46.4 ms (2048 samples) and the hop size was equal to 23.2 ms (1024
samples). Every analyzed signal consisted of 88200 samples (2 s). The UM and FTM

values corresponding to tonal component, of a priori known frequency, were stored in
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vectors for the signal of a particular SNR. Next, the mean values of these vectors were
calculated in order to obtain the FTM to UM mapping function. The experiment was
repeated for sinusoids of various frequencies, in order to reveal the influence of the
tonal components frequency on the mapping characteristics. In Fig. 7.1 the mapping
characteristics obtained for the sinusoids of instantaneous frequencies equal to 861.3 Hz
and 870.8 Hz together with the estimated mapping function are presented (bin offset
denoted as a ko is derived from the quadratic interpolation procedure applied to the

spectrum maximum and its neighboring bins as defined in (5.10) [1][15].
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Fig. 7.1 FTM to UM mapping function

Since in the UM implementation given in the MPEG standard the c[k__ | symbol stands
for UM values, here ¢'[k,, | symbol is used for values derived from FTM (frame index

is omitted for clearance). The FTM to UM mapping function at spectral maxima is

approximated as follows

| fim[k

max

]<0.52
]>0.52

max

0.74, ftml[k,

max

¢'lknc 1=

{— 1.5ftm?[k_ ]+ 2.2ftm[k
(7.1)

7.1.2 FTM spreading — method 1
The UM indicates high tonality not only at the spectral maxima corresponding to the
particular tonal components, but also at bins neighboring these maxima. Obviously, this

tonality spreading is directly related to the spectral characteristic of the window
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function used during STFT calculation. The UM indicates high tonality when the
amplitude and phase of the spectral bins change linearly. When the strong stationary
tonal component is present in the analyzed audio signal, the above-mentioned criterion

is also met by the bins on the both sides of the spectral peak [93][94].

The psychoacoustic model combined with the AAC encoder generates hearing threshold
in bands (partitions) corresponding to the approximately one third of the critical bands.

Consequently, the c[k] values produced by the UM algorithm are used in order to

estimate the weighted unpredictability measure of threshold calculation partitions,

according to the following formula (based on (3.7));

Frign [P]

clpl=" > r*[kelx] (7.2)

k:klow [b]

where b is partition number, kiow[b] and kyign[D] are the partition boundaries and 7] is

the magnitude spectrum in linear scale. Considering (7.2), it can be noted that c[k]

values are multiplied by the energy spectrum which is obviously smeared due to the

spectral leakage. Therefore, the ¢'[k,, | estimates yielded by the FTM algorithm, must

be spread over neighboring bins, before c‘[k] may be put into the (7.2) instead of c[k].

However, the spreading is applied only to the maxima meeting the following criterion

g[kmax]> 2gthd (73)

where gng=9 dB as it was stated in subsection 5.2.

In order to model the tonality spreading, the ratios

A 1]

1 (kne)) = k] (7.4)
I l]
u, (c[kmax]) - C[ kmax] (7 S )

are first examined as a function of c[kmax]. The sample characteristics obtained for

stationary sinusoids of various SNRs, 865 Hz frequency and sampled at 44100 Hz are
presented in Fig. 7.2.
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ulclk D> u (clk 1)

Fig. 7.2 Sample characteristics of ratios u_(c[kmax]) and u+(c[kmax])

The characteristics of u_(c[kmax]) and u+(c[kmax]) ratios presented in Fig. 7.2 differ from

each other, because the sinusoid of frequency equal to 865 Hz has k,=0.18. But when
kot=0, both characteristics are identical. It was decided to model these characteristics
using linear functions, passing the original curves for two selected arguments:
c[kmax]—0 and c[kmax]=0.37 (the latter value was selected as a half of the mean c[k]
values when white Gaussisan noise is analyzed). Then, the FTM values for bins on the

both sides of the spectral maximum are given by:
C'[kmax _1]: a. (koff )C'[kmax]_'_b— (koff) (76)

C' [kmax + 1] = a+ (koff )C' [kmax ]+ b+ (koff) (77)

where a_(koff), b (k) and a+(k0ff), b+(k0ff) are the coefficients of the linear
functions, which model characteristics of uﬁ(c[kmax]) and u+(c[kmax]) ratios. In order to

calculate these coefficients, it is necessary to know the characteristics values at points
c[kmax]—0 and c[kmax]=0.37 for various values of kog. These values denoted further as

u_o(koff),u_0.37(koff) and u+o(k0ff ), u+0.37(koff) were found experimentally, using

sinusoids of various frequencies having ky in the range between —0.48 and 0.48 (see

Figs. 7.3 and 7.4).
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Fig. 7.3 Characteristics of ratios u_(c[kmax]) for clkmax]—0 and c[kmnax]=0.37 as a

function of bin offset
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Fig. 7.4 Characteristics of ratios u+(c[kmax]) for clkmax]—0 and c[kmax]=0.37 as a
function of bin offset
As expected the characteristics presented in Figs. 7.3 and 7.4 are symmetrical each to

the other. All curves obtained for c[kmax]—0 and c[kmax]=0.37 are modeled using

quadratic functions as given by:
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u_y(k, )= 2.4k2 +3.8k, +2.3 (7.8)
U_gs (ko )= —1.1k2 + 1.1k, +1.8 (7.9)
w, (k) =2.4k2 — 3.8k +2.3 (7.10)

U, g5 (ko )= —1.1k2 1.1k, +1.8 (7.11)

Next, the coefficients of linear functions given in (7.6) and (7.7) may be calculated

o )= bl .12
b (k) =1y (k ;) (7.13)
a (k)= “+o.37(koz .)3_7u+0(koff) (7.14)
b, (k) =1t (kegr) (7.15)

Having all necessary coefficients, it is possible to estimate the tonality values

¢k, —1] and ¢'[k,, +1] surrounding spectral maximum using (7.6) and (7.7).

max max

Furthermore, if the bin offset |ko>0.35 then c[kmax] 1s spread also over the bin having

the Amax—2 Or knaxt2 index, then

'k, +2)=[c"(k,. +1Df, k4 >0.35 (7.16)

max

c'(kmax _2): [c'(kmax _1)]2’ koff <-0.35 (717)

When the tonal components have frequencies close each to the other, the spread c[k]

values may overlap. In this case the mean values are assigned to the spectral bins. For

all remaining spectral bins, which were not detected as a tonal the ¢'[k]=0.74 was
assigned, because this is the mean c[k] value obtained when white Gaussian noise is

analyzed using the UM algorithm (see also Fig. 8.1 for ftm[kn.x]>0.74).
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Although the FTM spreading method described above allows exact modeling of the UM
spreading, it is quite complex and requires high computational power [94]. Because
increasing the computational complexity should be omitted in the coding applications, a

simpler method for FTM spreading is proposed in the next subsection.

7.1.3 FTM spreading — method 2

In this subsection the simple, heuristic procedure for FTM spreading is proposed. The
c'[k] is spread over spectral bins laying on the both sides of the peak. The general rule
is that the higher the peakiness of the spectral local maxima, the more tonal should be
the spectral bins neighboring the peak. Thus, first the parameter related to the peakiness

of tonal spectral peak is calculated according to:

1o g[kmax]_gthdJ (7.18)
mg[ max] (gml[k]_gthd

where ging=9dB as it was indicated in subsection 6.3, and g, [4] is defined by:

18+ 2 o] M
Nfo - -

= 7.19

gulk]= ﬂ 3 B 719
30, k> %

where f,;=800 Hz was determined experimentally and |_ J stands for rounding to the

nearest integer towards minus infinity. The parameters expressing the energy relation
between spectral bin corresponding to the peak and bins laying on the both sides of the

peak are given by:

m [k = (r (K 1]J0'5 (7.20)

Gl
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[l ] = (—”[}f‘[f;c TU | (721)

where r[k] denotes the magnitude spectrum in linear scale (as in the MPEG standard).
Further, the parameters defined in (7.18), (7.20) and (7.21) are multiplied and bounded
to the 1 value as in (7.21) and (7.23):

m [k ] — mg [kmax]me— [kmax]’ mg [kmax]me— [kmax] <l (722)
et 1 otherwise

m [k ] _ mg [kmax ]me+ [kmax ]’ mg [kmax ]me+ [kmax ] <1 (723)
gerkma 1, otherwise

Finally, the spread c¢'[k,, —1] and ¢'[k,,. +1] are calculated according to:

C’ [kmax - 1] = c' [kmax] + (CI'IS - C' [kmax ])(1 - mge— [kmax ]) (7'24)
C' [kmax + 1] = c' [kmax ] + (CHS - C' kmax )(1 - mg€+ [kmax ]) (7'25)

where ¢,s—=0.74 and is the mean c[k] value obtained when white Gaussian noise is
analyzed using UM algorithm. When the tonal components have frequencies close each
to the other, the spread c[k] values may overlap. In this case the lower values are
assigned to the spectral bins. For all remaining spectral bins, which were not detected as

a tonal, the c'[k]chS is assigned.

7.1.4 Hybrid tonality estimator

The FTM algorithm requires that the tonal components are detectable as local spectra
maxima. However, for low pitched sounds (e.g. a bass guitar), the frequency resolution
of spectral analysis may be insufficient to meet this requirement — as it was stated in

subsection 7.3. Therefore, the minimal value among the c[k] and ¢'[k] is chosen, for the

frequencies up to the f;,=300 Hz during hearing threshold estimation:
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k)= min (c[k] ¢'[k]), ks{%J (7.26)
c'[k] otherwise

The sample magnitude spectrum of the frame coming from polyphonic recording
containing mainly stationary tonal components together with hearing thresholds
estimated by the psychoacoustic model using c[k] and c”[k] is presented in Fig. 7.5
(spectral bins up to the quarter of the Fy are presented). The spreading procedure

described in subsection 7.1.3 (method 2) was employed in order to calculate c'[k] and

¢"[k] basing on the ftm[k] values.

30 !

magnitude spectrum
— hearing threshold (UM) 7
-~ hearing threshold (FTM)

207

10}

20log(r[k])

_200 50 100 150 200 250 300 350 400 450 500
k

Fig. 7.5 Hearing thresholds estimated using UM and FTM methods for spectrum

containing mainly stationary tonal components

It can be observed from Fig. 7.5 that the differences between hearing thresholds
estimated using the FTM and UM methods are rather insignificant. This proves, that for
recordings containing stationary tonal components the FTM operates similarly to the
UM. Contrarily, in Fig. 7.6 the hearing thresholds obtained for recording containing
male vocal vibrato is presented. Considering results shown in Fig. 7.6, it can be noted
that the hearing threshold estimated using the FTM is approximately 10 dB lower than
estimated using the UM, in partitions containing strong modulated tonal components. It
is directly related to the limitations of the UM method, when modulated tonal

components are present in analyzed audio material.
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Fig. 7.6 Hearing thresholds estimated using UM and FTM methods for spectrum

containing mainly modulated tonal components

The difference between presented hearing thresholds is similar to the difference
between the TMN and NMT equal to the 12 dB in the AAC psychoacoustic
model [17][70]. It can be then concluded that the FTM operates as it was intended,

indicating high tonality values even if tonal components are deeply modulated.
7.2 PERCEPTUAL EVALUATION

7.2.1 Codec system

The reliability of hearing threshold estimates produced by the psychoacoustic model
employing the UM and FTM methods, was evaluated employing the codec system
based on the AAC structure presented in Fig. 7.7. The hearing threshold is generated
using the MPEG psychoacoustic model 2 employing the UM or FTM algorithm,
depending on the selection of the algorithm. The filter bank based on the MDCT and the
sinusoidal window function (the switching between Kaiser-Bessel and sinusoidal
window functions is not implemented), is used for calculating 1024 and 128 spectral
coefficients for long and short blocks, respectively. However, for short MDCT blocks,
the hearing threshold is always generated employing the UM method, because in this

case the spectral resolution of the analysis is insufficient for a proper FTM operation.



RELIABILITY OF HEARING THRESHOLD ESTIMATION 90

Input time signal

v v
‘ TIME/FREQUENCY ‘ ‘ FILTER BANK (MDCT)

__Encoder

MAPPING (STFT)

v v
FTM
(mapping & ‘ UM ‘
spreading)
Decoder
‘ SCALE
"l FACTORS
PSYCHOACOUSTIC DISTORTION
CONTROL v .
MODEL
PROCESS
> QUANTIZER | INVERSE
N | QUANTIZER
. Iteration Loops

FILTER BANK
(IMDCT)

v

Output time signal

\

Fig. 7.7 The block diagram of codec system used for evaluation of reliability of

hearing threshold estimation

The MDCT coefficients, grouped into the scale-factor bands are quantized according to
the well known formula already given in (2.1) (it is repeated here for

convenience) [17][70]:
x, [k]= | |07 [ [2* 57 b el 40,4054 (7.27)

where x[k] are the MDCT coefficients, s. is the common scale-factor and s¢[k] are the
scale-factors assigned to individual MDCT coefficient within particular scale-factor

band:

Sk [k]: {Sfc [m], Ko [m]< k <kpg, [m] (7.28)

where &, [m] and K, [m] are the low and high boundaries of m-th scale-factor band.

The outer and inner iteration loops in the AAC encoder, determine the s.g and s¢[m]
based on the estimated hearing threshold and number of bits available for encoding of
particular block. It is well known that the perceptual coding is based on the assumption

that the transparent coding quality may be obtained when quantization noise is below
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hearing threshold [21][86]. Thus, the AAC procedure controlling the coding distortions
was modified here so that the introduced quantization noise is always close to the
estimated hearing threshold. In other words, it is assumed that the encoder always have
the enough number of available bits, allowing keeping the quantization noise just on the

hearing threshold level estimated using the UM or FTM method (Fig. 7.8).

A

INITILIZE SCALE-FACTOR s;[m]

!

QUANTIZE MDCT
COEFFICIENTS

,

CALCULATE DISTORTIONS

ARE DISTORTIONS AS CLOSE AS
POSSIBLE TO THE HEARING
THRESHOLD ?

UPDATE SCALE-FACTOR s [m]

STORE s¢[m]

NO IS m LOWER THAN TOTAL NUMBER

OF SCALE-FACTOR BANDS?

A
([ sTOP ) INCREASE m (m—m-+1)

Fig. 7.8 The block diagram of distortion control

The MDCT coefficients belonging to scale-factor bands quantized according to (7.27)
are inversely quantized basing on the s.i and sg[m] in the decoder. The output time
signal is produced after applying the inverse (IMDCT) transform to the decoded MDCT
coefficients [63].

7.2.2 Testing procedure
The codec system presented in Fig. 7.7 was used during experiments. In order to reveal

the influence of the tonality estimation method used in perceptual modeling on the
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reliability of the generated hearing threshold, two groups of mono sound samples were
prepared. While the first group of sound recordings was taken from the twelve
recordings containing mainly stationary tonal components, the second group comprises
fourteen recordings containing vibratos or other modulated components produced by the
instrumentalists or vocalists. The sound recordings were selected from the commercial
recordings of various styles as well as from EBU-SQAM (European Broadcast Union-
Sound Quality Assessment Material) Compact Disc containing a set of audio
programme signals which are recommended by the EBU for subjective test
purposes [156]. The Fs of all samples was 44100 Sa/s. Every sound recording was
encoded so that the quantization noise was within +1 dB range related to the hearing
threshold estimated using the UM and FTM methods. Consequently, two quantized

representations of every single sound recording were obtained.

The quality of coded sound samples were compared using the PEAQ (Perceptual
Evaluation of Audio Quality) method combined within Opera system developed by the
Opticom company [129]. The PEAQ algorithm may operate in basic or advanced mode.
Since the precision of quality measurement was the key issue, the advanced mode of
PEAQ algorithm was selected [73][157][160]. The sound sample encoded using
psychoacoustic model with UM and FTM tonality estimators were compared to the
reference signal resulting in two scores expressed in the Objective Difference Grade
(ODG). The ODG is closely related to the Subjective Difference Grade (SDG), which is
used in the listening tests performed according to ITU-R BS.1116

recommendation [72].

7.2.3 Analysis of results
The results of quality evaluation for groups of recordings containing stationary (denoted
as “1S” through “12S”) and modulated (denoted as “IM” through “14M”) tonal

components, are presented in Figs. 7.9 and 7.10, respectively.
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Fig. 7.9 The ODG scores obtained for sound recordings containing mainly

stationary tonal components
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Fig. 7.10 The ODG scores obtained for sound recordings containing modulated

tonal components

The mean difference between ODG scores obtained for sound recordings encoded,
using psychoacoustic model with the FTM and UM methods is relatively low and
equals 0.47 in case of the recordings containing mainly stationary tonal components.
Furthermore, the mean ODG scores obtained using the UM and the FTM are around
-1.5 for most sound recordings, which means that coding quality is “excellent” in both
cases. However, when considering results presented in Fig. 7.10, it can be observed that
the difference between mean ODG scores equals approximately —1.4. While the mean
ODG score obtained for sound samples containing modulated tonal components and
encoded using the UM tonality estimator is around -2.5, the mean ODG for

psychoacoustic model employing the FTM method is higher than —1.5. Consequently,
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the quality provided by the encoder using the UM and FTM algorithms can be described
as “good” and “excellent”, respectively. The presented results prove that using the FTM
algorithm instead of the UM, increases the reliability of hearing threshold

estimation [94].

It must be pointed out, that distortions introduced to the audio signals by the examined
codec, providing that the quantization noise is just on the hearing level, are hardly

perceived. This is due to two main reasons:

1. The MPEG psychoacoustic model 2 seems to estimate the hearing level slightly
lower than it is [16];

2. When the quantization noise is just above the hearing threshold in a few
subbands, the signal quality in these subbands is slightly affected. Introduced
distortions results in negligible dynamic limitation rather than annoying coding

artifacts.

Considering these observations, the further experiments, which tends to prove the
advantages of the FTM method (see Section 9), are going to be carried out with more

restricted constrains related to the number of bits available for signal encoding.
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8 PERCEPTUAL NOISE SUBSTITUTION

The main reason for not recommending the UM method for noise-like bands detection
is its limited efficiency in detecting sinusoids of varying frequency [148]. However, it
was proved true that noise-like bands detection based on the tonality index derived from
the psychoacoustic model employing the UM method, may be quite efficient for some
types of music [171]. Because the FTM method is specially designed to deal with
modulated components, it may be used as a basis for an efficient detector of noise-like
bands. The experiments revealing the FTM usefulness for PNS technique are described

in this Section.

8.1 DETECTION OF NOISE-LIKE SCALE-FACTOR BANDS

The AAC as well the MP3 algorithms, encode the MDCT spectral coefficients grouped
within the scale-factor bands [17][20][66][68][70][71]. Thus, before PNS may be
applied, it is necessary to detect scale-factor bands containing only pure noise-like
components. These noise-like bands are detected here basing on three following

parameters:

o tonality index derived from the ¢'"[k] — the scale-factor bands containing tonal

components should be quantized and encoded according to the usual MP3/AAC
procedure;

e flatness of the magnitude spectrum — although the FTM method is significantly
more efficient in detecting tonal components than UM method, it may fail under
some circumstances (e.g. when deeply modulated tonal components of low SNR
are present within the analyzed audio signal). Additionally, when the noise in
scale-factor band is coloured, the PNS should be omitted. This parameter is then
used here in order to improve the reliability of noise detection and to prevent
PNS being applied to the bands containing not white noise;

e cnergy variations — if noise energy varies significantly within the analyzed
frame, filling particular scale-factor band with noise of constant energy would
lead to audible distortions. Therefore, the energy variations are analysed in order

to select only the bands containing stationary noise.
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The methods for calculation of above-mentioned parameters, are presented in three
following subsections. The further considerations concern the AAC algorithm operating
with Fi=44100 Sa/s or 48000 Sa sampling rate. The scale-factor band boundaries are the
same for both sampling rates. The PNS is applied here only to the long (N=2048)
blocks.

8.1.1 Tonality index
In the procedure of hearing threshold estimation employed in the AAC encoder, the

c,"[b] values calculated using (7.2) are spread across the partitions, according to the

functions approximating masking patterns. Further, the tonality of every partition is
calculated and clipped so that it is kept within [0,1] range, as it is determined by the

term — similar to (3.12)

t,[p]=—-0.299 —0.431og(c,"[]) (8.1)

where ¢,"[p] is the c"[b] spread across partitions according to the masking patterns

being normalized. Next, the tonality of scale-factor bands is determined basing on:

t[m]z max {tb [blow [m ]], sl [bhigh [m ]]} (8.2)

where m=1, 2, ..., 49 (assuming F=44100 or 48000 Sa/s) is the number of scale-factor
band, bjow[m] and bpign[m] are the numbers of the lower and higher partitions occupying

frequency range common with particular scale-factor band.

8.1.2 Flatness of scale-factor bands

The method used here for flatness estimation of scale-factor bands, is similar to the
SFM (Spectral Flatness Measure) method, which was already introduced in
subsection 4.1.2 [86][94]. Instead of calculating a group of SFMs parameters
corresponding directly to the scale-factor bands, two representations of smoothed
spectrum are estimated first. While the first representation is calculated using a moving
arithmetic-average filter, the second one is obtained using a moving geometric-average

filter. The filters are defined by:

an (83)
/
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1 k+M/2-1

)= exo{ oS 01D | 4

j=k-M /2

where M is the filter order (the same for each filter), and r.[k], and r,[k] are the
magnitude spectra smoothed using the moving arithmetic-average and geometric-
average filters, respectively. The order of the filters was adjusted in relation to the
widths of the scale-factor bands in the frequency range above 3.1 kHz (starting from
22™ scale-factor band). The order of the filters for scale-factor bands occupying
frequencies from 3.1 to 5 kHz (22nd to 26™ scale-factor band) was adjusted to M=8 and
M=24 was used for the frequencies above 5 kHz (27th to 49" scale-factor bands). The

flatness of spectral bins is given by:

z,.. [k]=201og| 1] (8.5)

rolk]
The smoothed spectra calculated for a fragment of sample spectrum (from 6 to 12 kHz)

using filters defined by (8.3) and (8.4) along with the flatness calculated according to

(8.5), are presented in Fig. 8.1.
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Fig. 8.1 Sample recording spectrum with its smoothed representations using (8.3) and

(8.4) — upper plot; spectral flatness calculated according to the (8.5) — lower plot.
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The spectrum presented in Fig. 8.1 is related to a sound sample recording containing
violin vibrato. It can be noted that zy,[k] is high for the regions of the spectrum
containing evidently tonal components. Furthermore, also relatively high zyin[k] is
assigned to the spectrum parts having non-flat energy distribution over frequency region
9-9.5 kHz. Basing on the zpin(k) the flatness of every scale factor-band is determined

according to the formula:

1 khigh [m]

2z [£] (8.6)
khigh [m]— Lo [m]+ 1 k=1§['ﬁ

Zsm [m]z

where k, [m] and k,,[m] are the spectral bin indices corresponding to the scale-factor

band boundaries.

8.1.3 Energy variations

The PNS technique is applied here only to the long codec blocks (N=2048). Therefore,
the scale-factor bands of the blocks with high energy variation, are excluded from the
PNS analysis by the codec transient detector. The noise stationary within long blocks is
checked, basing on the short AAC codec blocks (N=256) corresponding to 5.8 ms
assuming F=44100 Hz. Although the human auditory system analyses the signal with
approximately 2 ms resolution, for most cases the analysis with 5.8 ms step is
sufficient [148]. Since short spectra are calculated by the codec for hearing threshold
estimation of the short blocks, using them for energy variation analysis would not
increase the computation load. The scale-factor band boundaries defined for long
spectra, are mapped to the short spectra and then their energies are calculated.
Subsequently, the standard deviation of the log-energies in every scale-factor band

denoted as G[m] is determined by:

ool [t el ] @

1,=1

where en,[m,ls] is the log- energy of m-th scale factor band in /=0, 1, ..., 7 short block,

and e_nl[m,ls] is the mean log-energy in m-th scale factor band for 8 following short

spectra.
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8.1.4 Parameter thresholds
The recordings of various styles were analyzed, in order to determine the appropriate
thresholds for ¢[m], zsw[m] and o[m] allowing efficient detection of noise-like

scale-factor bands. Finally, the criteria were formulated as:

1, t[m]é Fod N Zg [m]< 2A G[m]< 6

PNS[m]= (8.8)

0, otherwise

where #ng = 0.01 for high bit-rate mode of codec operation, and #nq = 0.05 for low bit-
rate mode, and m = 22, 23, ..., 49. The experiments revealed, that in very low bit-rate
mode of codec operation it is even better to substitute the scale-factor bands of weak

tonality with noise.

8.2 EVALUATION OF IMPLEMENTED PNS MODULE

The codec system used for evaluation of implemented PNS module is based on the

AAC structure and is similar to the one presented in Fig. 7.7 (Fig. 8.2).

Input time signal

) Encoder
v y
TIME/FREQUENCY
‘ MAPPING (STFT) ‘ ‘ FILTER BANK (MDCT) ‘
‘ /Decoder
v '
ETM PNS o PNS
(ENCODER) (DECODER)
A
PSYCHOACOUSTIC
MODEL \
NOISE
SUBSTITUTION
FILTER BANK
(IMDCT)

v

Output time signal

Fig. 8.2 The block diagram of codec system used for evaluation of implemented PNS

module
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The description of the AAC system was presented in subsection 2.2.2. The codec
system employed for assessment of reliability of hearing threshold estimation, was
described in details in subsection 7.2.1. Therefore, here only the codec system details

important for experiments related to the PNS module are characterized.

The general idea behind the experiments carried out, was to replace the noise-like scale-
factor bands by noise, while keeping all tone-like scale-factor bands non-quantized. The
scale-factor bands detected by the PNS module and classified as noise-like ones, are
filled by the decoder, with white Gaussian noise of energy equal to the energy of scale-
factor bands of original signal. In fact, the noise is generated in the time domain and
further transformed into the frequency domain. Then it is weighed adequately, and put
into the noise-like scale-factor band. While the tone-like bands are just the copy of the
bands from the original signal, the noise-like bands contain MDCT coefficients,
corresponding to the locally generated noise. Finally, the output time signal is produced

after applying the inverse (IMDCT) transform to the all MDCT coefficients.

8.2.1 Efficiency of noise-like bands detection
The particular scale-factor band is classified as noisy, if three conditions given in (8.8)
are met simultaneously. In order to evaluate the influence of every single condition on

the final decision regarding the PNS, the statistics can be calculated as in:

q. = Hior 100 9% (8.9)
Masto
where n,4, represents the total number of scale-factor bands that were considered to be
substituted by noise in the particular sound recording sample and ng+ is the number of
scale-factor bands fulfilling one of the conditions: #[m]<tmq, zsm[m]<2, o[m]<6 or all of
them simultaneously. The asterisk should be then replaced with 7, zg, ¢ or PNS,

respectively.

8.2.2 Subjective evaluation

In order to evaluate the perceptual efficiency of the proposed PNS implementation, the
quality of sound samples encoded using the PNS were compared to the quality of
sample recordings encoded by the ordinary perceptual coding algorithm. Therefore,
every excerpt: MI-MS5 and S1-S3 was encoded twice, and further two obtained signal

representations were compared to each other, in order to reveal whether the PNS
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module affects the signal quality or not. The listening tests were performed according to
the ITU-R BS.1116 recommendation [26][72]. Three stimuli were presented to the
experts in every listening test: the reference, stimulus A and stimulus B. The reference
signals were original , not coded sound sample recordings. Either stimulus A or B was
identical to the reference. The other remaining stimulus in every triple was encoded
using the codec system presented in Fig. 8.2 with the PNS module enabled. The
listeners had to appoint whether stimulus A or B is identical to the reference, and score
the remaining one (see Appendix 1). The scoring range is from 0 (no quality difference)
to 5 (totally degraded quality). The sound samples were presented to the users through
high quality headphones, using high quality sound card inside a quiet room. Every
stimulus could be repeated as requested by the experts as many times as it was required

to make a final decision.

Since the performed subjective tests should be treated as pilot-tests, allowing to validate
preliminary the implemented PNS module, the simple method for subject post-screening
was used [172]. If the expert incorrectly scores the stimuli A or B being indeed the copy
of the reference signal, this result was excluded from the analysis. When this situations
occurred more than twice for a particular listener, he/she was treated as an unreliable
expert and all his/her test results were neglected. Finally, ten experts among twelve,
involved in the testing procedure met the above-mentioned criteria. The mean scores
expressed in Subjective Difference Grade (SDG) for all evaluated sound sample
recordings, along with 95% confidence intervals, are presented in Fig. 8.3. In Fig. 8.4

the gpns ratios are shown.
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Fig. 8.3 The SDG scores obtained for the PNS module employing the FTM

algorithm



PERCEPTUAL NOISE SUBSTITUTION 102

40
35
30
3'325
= 20
£ 15
S 10
st

0

289 88EE3EE§

T T E

Fig. 8.4 Ratio of number of scale-factor bands substituted by noise to total number of

bands considered for applying the PNS.

It can be noted, that the SDG does not fall below the value of —0.25 for any sound
sample recording, encoded using the PNS technique. Consequently, substituting scale-
factor bands by locally generated noise does not introduce perceptible coding artifacts
to the coded recordings. This proves, that PNS module employing the FTM based
detector of noise-like bands operates efficiently. The gpns varies depending on the
content of the analyzed recording from approximately 9 to 37 % and is equal to 25%, in
average. The amount of saved bits may be then used, to increase the coding accuracy of

more demanding scale-factor bands occupying lower frequency regions [148].
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9 DETERMINING SIGNIFICANCE OF TONALITY INDEX ESTIMATION TO

AUDIO CODING QUALITY

9.1 EXPERIMENTAL CODEC STRUCTURE

All the experiments described in this Section were carried out using the coding system

being a combination of systems presented in Fig. 7.7 and Fig. 8.3. The system presented

in Fig. 9.1 may operate in one of the five modes described in Tab. 9.1.

Table 9.1 Operation modes of experimental coding system

Mode PNS

Tonality

estimation

Description

1 Inactive

UM

All scale-factor bands are quantized basing on the hearing
threshold generated by psychoacoustic model employing
the UM tonality estimator.

2 Inactive

FIM

All scale-factor bands are quantized basing on the hearing
threshold generated by psychoacoustic model employing
the FTM tonality estimator.

3 Inactive

None

All scale-factor bands are quantized basing on the hearing
threshold generated by psychoacoustic model without any
tonality estimator (all spectral components are treated as

noise-like ones).

4 Active

UM

Noise-like scale factor bands are encoded employing the
PNS module. Tone-like scale-factor bands are encoded
basing on the hearing threshold generated by
psychoacoustic model employing the UM tonality
estimator. Bits saved by the PNS module are reused during

tone-like bands encoding.

5 Active

FIM

Noise-like scale factor bands are encoded employing the
PNS module. Tone-like scale-factor bands are encoded
basing on the hearing threshold generated by
psychoacoustic model employing the FTM tonality
estimator. Bits saved by the PNS module are reused during

tone-like bands encoding.
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Fig. 9.1 The block diagram of experimental codec system

The AAC bit-stream is not formed within the system presented in the Fig. 9.1, because
the researched methods were focused only on the lossy part of the coder. The codec bit-
rate was scaled here using modified formula of perceptual entropy provided by the
MPEG psychoacoustic model. Although the MPEG standard defines the number of bits
required for encoding of a particular block basing on the perceptual entropy, it is not
adequate to codec bit-rate. Therefore, the bit amount calculated according to the formula
given in the MPEG standard is multiplied by the constant term found experimentally

as [70]:

bye = WegsDaeanc ©.1)

alc

where wpgs=1.8. The formula for perceptual entropy alternative to (3.17) is given by:
> ( [ ]_ [ ]) —1
PE = k.. |m|-k _ |m|)logl0 9.2
; high tow 8 (ISMR [m]j ©-2)

where k,, [m] and k,,[m] are the spectral bin indices corresponding to the scale-factor

band boundaries, and ISMR[m] stands for inverted SMR[m] given by (3.18).

The b, was treated as a number of bits required to encode a particular signal block. It

was found that 80 kbps is enough to quantize the MDCT coefficients related to mono
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audio channel, while keeping the introduced distortions below hearing threshold or just
at its level. In the experiments, the audio samples were encoded with 64 kbps and 48
kbps rates. The encoding process described in details in two following subsections,

comprises of two major stages:

1. Bit allocation a — find the SNR[m] for all scale-factor bands, so that the byc< bayy
(bavb stands for number of bits available for encoding of the particular block and
is equal to the bit-rate divided by the number of blocks per second).

2. MDCT quantization — quantize the MDCT coefficients so that the introduced

distortions are as close as possible to the SNR[m] calculated in the previous step.

9.1.1 Bitallocation procedure

There are various coding quality optimization methods, when the bit-rate is too low for
keeping the introduced distortions below hearing threshold. These methods vary
depending on the codec implementations, and are not described within the MPEG
standards. A few approaches to this issue have been evaluated in the initial state of the
research, and finally a reasonable combination of them was selected. It is a common
practice to limit the encoded signal bandwidth according to the bit-rate constrains [45].
If this is the case, more bits may be distributed over scale-factor bands occupying lower
frequency regions. Therefore, while in the 64 kbps mode of codec operation the entire
signal spectrum is encoded, in the low bit-rate mode the encoded signal band is limited
to the 16 kHz. However, even if the bandwidth is limited, the available bit amount may
be insufficient for keeping the quantization noise below hearing threshold.
Consequently, the codec must efficiently assign bits to the scale-factor bands, basing on
the SNRs provided by the psychoacoustic model. Decreasing the SNR in the scale-
factor bands, which is relatively low (e.g. 6 dB), leads to some very annoying artifacts.
On the other hand, the most bit-requiring scale-factor bands are the bands containing
tonal components — the psychoacoustic model may indicate that the SNR should be up
to 18 dB for assuring their transparent coding. Decreasing the SNR in these bands
affects the coding quality, but does not lead to the annoying artifacts providing that the
SNR is higher than approximately 6 dB. Therefore, if the bit-rate available for encoding
of the particular block is lower than the bit-rate required for transparent coding, the
distortions are introduced to the scale-factor bands proportionally to the SNR, indicated

by the psychoacoustic model. The scale factors st and sw(m) are adjusted here, so that
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the distortion introduced by the quantizer are as close as possible to the distortions

determined by the iterative process defined by:

SNR [m,s+1]<— (1—77)SNR [m,s] (9.3)

and illustrated in Fig. 9.2. In (9.3) m=1, 2, ..., 49 is the index of scale-factor band as it
was defined previously, s is the iteration number, and nN=0.015%. The SNR[m,1] is

equal to the Signal-to-Mask-Ratio provided by the psychoacoustic model.

INITILIZE SNR[m, 1]
(basing on hearing threshold)

v

> CALCULATE PE

.

CALCULATE NUMBER OF
REQUIRED BITS (baic)

UPDATE m (m—m-1)

A

SNR[m,s + 1] (—(1 —U)SNI{W[,S] IS baics bavb ?

QUANTIZE MDCT
COEFFICIENTS

Fig. 9.2 Bit allocation procedure

Since the lower frequency region is of primary importance for audio quality, the
distortions are introduced starting from highest scale-factor band towards the lower
bands. Considering (9.3) it can be noted that the higher the SNR required for particular
band, the more distortions are introduced to this band in the single iteration step. The

iterative process terminates when the bit-rate requirements are fulfilled.

9.1.2 MDCT coefficients quantization

The procedure for quantization of MDCT coefficients is almost identical to the one
described in subsection 7.2.1. The only difference is related to the level of distortions
introduced by the quantizer. In the experiments described in Section 7 the level of
introduced distortions was as close as possible to the estimated hearing threshold

regardless of the available number of bits. Here, the MDCT coefficients are quantized
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so that the introduced distortions are as close as possible to the SNR[m] generated by
the bit allocation procedure, described in subsection 9.1.1. The diagram illustrating the

iterative process of MDCT coefficient quantization is presented in Fig. 9.3.
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STORE si[m]

NO IS m LOWER THAN TOTAL NUMBER

OF SCALE-FACTOR BANDS?

y
([ sTOP | INCREASE m (m«m+1)

Fig. 9.3 Block diagram of MDCT coefficients quantization process

The description of the MDCT coefficients quantization was already described in

subsection 9.1.1. Therefore it would be redundant to repeat it here.

9.1.3 Codec operation with active PNS module

When the PNS module is active, the scale-factor bands detected as the noise-like ones
are not quantized according to the (7.27). Instead of this, the energy of these bands is
mapped into the procedure which fills the frequency bands with locally generated white
Gaussian noise. It is assumed here that encoding of the noise energy and PNS[m] mask

consumes 12 bits for single scale-factor band. The PNS is applied to the particular
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scale-factor band, provided that the number of saved bits is higher than 12. Obviously,
the number of saved bits may vary from block to block significantly. Therefore, the
additional number of bits available for encoding of tonal scale-factor bands within
particular block represent the average value of bits saved by the PNS module among 12
blocks (>250 ms). The procedure allowing calculation of the bits saved by the PNS
module which can be further used for tonal scale-factor bands encoding, is presented in

Fig. 9.4.

Quantize all scale-factor bands using available number of
bits

4

Find all noisy scale-factor bands

4

Calculate sum of bits used for encoding noisy scale-factor
bands (assuming it is higher than 12 bits)

4

Update total number of bits saved among 12 blocks

4

Find addtional number of bits availble for encoding tonal
scale-factor bands (sum of saved bits divided by 12)

Find SNR[m] for all scale-factor bands so that the
balc = bavb

Quantize tonal scale-factor bands using updated SNR[m)]

Fig. 9.4 Procedure for calculation the number of bits available for tonal scale-factor

bands encoding when PNS module is enabled

Surprisingly, when the codec operates in very low bit-rate mode, filling the noisy bands
during decoding with non-quantized noise may lead to some unpleasant audible effects
related to the lack of coherence of signal brightness. In some circumstances, the scale-

factor band substituted by non-quantized noise may be perceived as more bright than
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the other band quantized according to (7.27). Therefore, in the experiments carried out,
the noisy scale-factor bands were filled with quantized noise (SNR was 5.5 and 5 dB for
64 and 48 kbps, respectively).

9.1.4 Decoder

The MDCT coefficients belonging to either tonal or all scale-factor bands, quantized
according to the (7.27) are inversely quantized in the decoder basing on the s. and
sge[m]. If the PNS module is enabled, the noisy bands are filled with scaled, locally
generated noise as it was described in Section 8. Finally, the output time signal is

produced after applying the inverse transform to the decoded MDCT coefficients.
9.2 LISTENING TESTS

9.2.1 Excerpts selection

The sound excerpts were selected among recordings used for evaluation of reliability of
hearing threshold estimation. The notation concept is the same as previously (“M”
stands for excerpts containing modulated tonal components and “S” for recordings
containing mostly stationary tonal components). However, the indices of excerpts do
not correspond directly with the indices of excerpts used in experiments described in

subsection 7.2.

The significance of tonality index estimation to the audio coding efficiency was
evaluated using a group of 8 sound excerpts selected as a critical material. While 5
recordings (denoted as M1-M5) contain modulated tonal components (guitar vibrato,
singer vibrato, etc.), 3 of them (denoted as S1-S3) contain mainly stationary tonal
components. Every sound recording was processed by the codec operating at 64 kbps

and 48 kbps rate and in the following 4 modes (described in subsection 9.1):

e Mode 1: the tonality index c,[b] was calculated basing on the c[k]values (the UM
method).

e Mode 2: the tonality index c¢,[b] was calculated basing on the ¢'[k] values (the
FTM method).

e Mode 3: the tonality index cp[b] was set to 1 for all partitions used by the

psychoacoustic model. In this mode all scale-factor bands were treated as noise-

like.
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e Mode 5: the tonality index c¢,[b] was calculated basing on the ¢'[k] values (the
FTM method) and the PNS module was active.

Mode number 4 was omitted in order to reduce the time required for sample recordings
evaluation and effort of the experts. Additionally, the statistics related to the PNS
module were calculated for all selected sound sample recordings according to the (8.9).

The results obtained for 8 excerpts assuming #,3=0.01 are presented in Fig. 9.6.
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Fig. 9.5 Efficiency of PNS module for #;4=0.01

It can be noted from Fig. 9.5, that in average, 27% of all scale-factor bands were
substituted with noise by the PNS module. Obviously, the number of substituted bands
depends strictly on the content of the recordings. While within S3 sample recording less
than 9% were substituted, within M5 up to 40% of considered bands were encoded by
the PNS module. The tonality of scale-factor bands derived from the FTM is of primary
importance for detecting noisy bands, because ¢, is just slightly higher than gpns for all
cases. Although the criterion based on energy variance is usually met (>92% in
average), it plays an important role when the recordings contain very expressive

articulation effects as it occurred in the S2 sound sample.

9.2.2 Test method

The listening tests were performed according to the ITU-R BS.1534 recommendation
defining MUSHRA (MUIti Stimulus with Hidden Reference and Anchor)
procedure [74][153]. Beside the eight representations of the sound sample recordings

produced by the codec operating at two bit-rate modes and four configurations, two
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additional excerpts were presented to the experts during listening tests: a hidden
reference and 3.5 kHz anchor (sound recording degrade in predefined way e.g. band-
limited version of the original sound recording). Furthermore, the reference signals were
available to the subjects on request during the test. The MUSHRAM software designed
for MUSHRA tests was used for excerpts playback and grading [165]. According to the
ITU-R BS.1534 recommendation the procedure was comprised of the following two

major phase:

1. Training phase — the subjects were able to become familiar with all the sound
excerpts under test and their quality level ranges. The graphic user interface
implemented in MATLAB used during training phase is presented in Fig. 9.6. The
subjects were also instructed how to use the test equipment and the grading
scale.

2. Blind grading phase — the sound sample recordings are scored between 0 (bad
quality) and 100 (excellent quality) by the experts using sliders presented on the
computer screen. At least one excerpt must be given a grade of 100 because the
unprocessed reference signal is included as one of the excerpts to be graded. The
graphic user interface implemented in MATLAB used during the evaluation phase

is presented in Fig. 9.7.

<} \MUSHRAM - Training phase

Training
Reference Test
Experiment 1 [Play reference | [ Play | [ Play | [Play | [Play | [Play | [Play | [Play | [Play | [ Play |
Experiment 2 | Play reference | [ Play | [ Play | [ Play | [ Play | [ Play | [ Play | [ Play | [ Play | [ Play |
Experiment3  [Play reference| [ Play | [ Play || [ Play | [ Play | [ Play | [ Play | [Play | [ Play | [ Play ]
Expetiment 4 [Play refererce| [ Play | [ Play || [ Play | [ Play | [ Play | [ Play | [ Pray | [ Play | [ Play |
Experiments | Play reference | [ Play | | Play | [ Play | [ Play | [ Play | [ Play | [ Play | [ Play | [ Pray |
Experiment B [Play reference| [ Play | [ Play || [ Play | [ Play | [ Play | [ Play | [Play | [ Play | [ Play |
Experiment 7 | Play reference | [ Play | [ Play | [ Play | [ Play | [ Play | [ Play | [ Pray | [ Play | [ Play |
Experiment8 [ Play reference| [ Play | [ Play || [ Play | [ Play | [ Play | [ Play | [Play | [ Play | [ Play |

Fig. 9.6 Graphic user interface used during training phase
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Fig. 9.7 Graphic user interface used during blind grading phase

Subjects were asked to score the excerpts roughly first and further to compare the
excerpts having similar quality in order to assign to them precise scores. The external
sound card with more than 100 dB SNR of digital-to-analog conversion and the AKG
K240 Studio MKII headphones were used for excerpts playback.

9.2.3 Subject pre-screening
The group of 18 subjects of about 30 years old was considered as a listening panel. One

subject was rejected, as not meeting the following requirements:

e have at least 5 years experience in sound listening in critical way [74][153],

e have normal hearing.
Consequently, the listening panel was composed of 17 experienced listeners.

9.2.4 Subject post-screening

In the paired comparison test, the experts reliability may be simply verified by
comparing the scores given by them in two following listening test series [110].
However, in the MUSHRA test all of the sound sample recordings are scored by the
subject only once. Therefore, the other method for subject post-screening must be
employed. Although the BS.1534 recommendation does not define precisely the
methods allowing to discard unreliable subjects, it suggests to verify their reliability

basing on a comparison of scores given by the particular subject to the mean grading of
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all subjects [74][153]. Thus, the variance of the scores given to the evaluated sound

sample recordings was calculated for all subjects as given by:

2
1 17
O-ALL[ ] zz SMsH [u[, Tis ]_EZSMSH [ut,rt,w] 9-4)
w,=lu,=1 r=l1
where w=1, 2, ..., 10 is the index of sound sample recording being evaluated (w~=1 for
hidden reference signal), u~1, 2, ..., 8 is the experiment index, r~=1, 2, ..., 17 is the

subject index and sysu[u, 7, Wi 1s the score given to the w,-th sound sample recording

in the u,-th experiment by the r,-th subject.

Furthermore, it is assumed here that the reliable subjects should be able to identify the
reference signal hidden between sample recordings processed by the systems being
evaluated. Thus, the mean square error of the scores given to the hidden reference signal

was calculated for all subjects as:

€HR [rt] z (SMSH [ut,l”t,l] 100 )2 ©.5)

u,—l

The 04, [I;] and eHR[ ] for all subjects are presented in Fig. 9.8.
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Fig. 9.8 Statistics of the subject scores

It can be noticed from Fig. 9.8 that the mean square error of the scores given to the

hidden reference signal by experts E10 and E11 is relatively high comparing to the rest
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of the subjects. Regarding the variance, these subjects seem to be also too critical or less
critical than other. Therefore, grades provided by these two experts were rejected and

the final quality assessment was made based on the scores provided by the 15 subjects.

9.2.5 Analysis of results

The mean scores for all evaluated excerpts together with 95% confidence intervals are

presented in Figs. 9.9 and 9.10.
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Fig. 9.9 Results of MUSHRA listening tests (S1 — S3 and M1 excerpts)
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Fig. 9.10 Results of MUSHRA listening tests (M2 — M5 excerpts)

In Figs. 9.11 and 9.12 the following MUSHRA score differences for all sound samples

encoded with 48 and 64 kbps rates are shown:

e difference between grades given to excerpts encoded employing psychoacoustic

model with the UM and no tonality estimator (all components treated as noise),

e difference between grades given to excerpts encoded employing psychoacoustic

model with the FTM and no tonality estimator (all components treated as

noise),

e difference between excerpts encoded employing psychoacoustic model with the

FTM and UM tonality estimators,

e difference between grades given to excerpts encoded employing psychoacoustic

model and the PNS module employing the FTM tonality estimator and experts

encoded with the PNS module inactive.
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Fig. 9.11 Mushra score differences (48 kbps rate)

Considering results presented in Figs. 9.9 to 9.12 it can be noted that excerpts
containing modulated tonal components, encoded using psychoacoustic model with the
FTM algorithm are generally scored 10 to 20 points higher than the same sound sample
recordings encoded employing tonality index derived from the UM. This tendency is
viewable regardless of whether the bit-rate is on low or mid level. The difference
between mean MUSHRA scores given for the sample recordings encoded with 48 kbps
rate and either the FTM or UM tonality estimator is approximately equal to 15. When
codec operates with 64 kbps rate the quality gain is slightly lower (about 12 MUSHRA
scores). Surprisingly, also two excerpts containing mainly stationary tonal components
encoded employing the UM were scored lower than when using the FTM. That was not
a case for S2 excerpt, where the quality is similar to each other regardless of the method
used for tonality estimation. It can be noted, that psychoacoustic model with the UM
operates totally inefficiently for M1, and M5 sound sample recordings regardless of
used coding bit-rate. In these cases, the scores obtained using the UM and model
without any tonality estimation algorithm (all components treated as noise-like), are
similar to each other. This is due to the limited ability of the UM to reliably estimate
tonality of modulated components. Reversely, the quality of M1 and M5 excerpts
encoded employing the FTM is significantly higher than the quality obtained with

psychoacoustic model devoided of tonality estimator.
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Fig. 9.12 MUSHRA score differences (64 kbps rate)

It can be noted from Figs. 9.9 and 9.10 that the encoder operating at 48 kbps rate with
the FTM and PNS module enabled, provides similar or even higher MUSHRA scores
comparing to the grades obtained with encoder operating at higher bit-rate. The coding
quality of S2 and M5 sound sample recordings, at 64 kbps rate with the PNS module
enabled, was found transparent by many experts, as they indicated this excerpt as a
reference signal. Unfortunately, the quality of the M2 excerpt encoded with 64 kbps rate
was found slightly lower after activating the PNS module. The suspected reason is
related to the limited efficiency of detection of the noisy scale-factor bands, occupying
high frequency region when the signal contains a lots of modulated tonal components.
Since these components are spread over many spectra bins, they can be classified
improperly. While encoding scale-factor bands containing weak tonal components with
64 kbps rate using the PNS technique can deteriorate the coding quality, it does not
affect the coding quality in 48 kbps mode.

The mean quality gain obtained after activating the PNS module at 48 kbps rate is
around 22 MUSHRA scores. However, it is ten scores lower for codec operating at 64
kbps rate (Figs. 9.11 and 9.12). Consequently, the PNS technique was found to be more

efficient rather in low than mid bit-rate mode of codec operation.
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10 CONCLUSIONS

In this dissertation the novel method for tonality estimation of spectra components for
audio coding applications has been proposed and evaluated. The method is well suited
to assign uncorrupted tonality estimates to spectral components corresponding to
sinusoids of constant and varying frequency and/or amplitude. The FTM algorithm may
be also a useful tool for extending sinusoidal modeling framework, as it incorporates a
module responsible for matching the spectra components coming from contiguous
frame spectra into the tonal tracks. The properties of the engineered algorithm have
been investigated and compared to other methods used in the audio coding applications.
Furthermore, the proposed method has been successfully combined with the
psychoacoustic model and the PNS module in order to reveal its usefulness for

perceptual codecs like MP3 and AAC.

Although the FTM algorithm provides continuous tonality measures falling within [0,1]
range, it can operate also as a discrete classifier allowing detection of tone-like spectral
components. In order to evaluate its performance as a binary classifier, the ROC curves
have been generated for the FTM and other selected tonality detectors. Experimental
results have indicated that the FTM outperforms other tonality detectors when the
analyzed signal contains sinusoids of varying frequency. In case of audio signal
containing stationary sinusoidal components, the performance of the FTM method is
similar to the other ones. The characteristics depicting an influence of the amplitude and
frequency modulation depth on the tonality measures yielded by the FTM and selected
tonality estimation methods have been presented. Considering the results of
above-mentioned experiments it can be concluded that the first thesis of the dissertation:
“It is possible to estimate tonality of unmodulated or frequency-modulated sinusoidal
components of audio signals through the comparison of their instantaneous frequency
variations determined employing both: an estimator processing spectral amplitude

samples and estimator processing spectral phase samples™ has been proven true.

The FTM algorithm has been developed in order to become the substitute of tonality
estimator (UM) used in the MPEG psychoacoustic model 2. However, due to the limited
resolution of spectral analysis the FTM algorithm may fail when audio material contains
harmonic signals of very low pitch. Therefore, it was decided to use hybrid tonality

estimator in all experiments related to the audio coding. Up to experimentally chosen
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cut-off frequency (300 Hz) the tonality of spectral components is determined as a
maximum of tonality provided by the UM and FTM algorithms. In the upper band, the
tonality is estimated using only the FTM method. Furthermore, the direct substitution of
the UM with FTM is impractical due to the difference in the way they assign tonality to
spectral bins. While the FTM assigns high tonality only to the bins being spectra
maxima, the high tonality values indicated by the UM are usually spread also over bins
laying on the both sides of the peak. Therefore, two methods for the FTM spreading has
been proposed. The first method is based on the spreading model built basing on the
measured characteristics of the UM spreading. Because this method is computationally
inefficient, the second method has been developed. This method is simpler than the first

one and has been found to yield similar results to the first method.

In order to verify an influence of the FTM method on reliability of hearing threshold
estimation, the modified AAC coding scheme was used. The audio signals were
quantized so that the introduced quantization noise was just on the hearing threshold. In
such coding scenario the introduced quantization noise should be just perceived. Two
groups of sound sample recordings were used during this experiment. While the first
group was composed of the recording containing mainly stationary sinusoidal
components, the second one comprised of recordings containing modulated tonal
components. All sound sample recordings were encoded twice. At the first attempt, the
psychoacoustic model with the UM tonality estimator was used. Next, all samples were
encoded using the psychoacoustic model with the FTM algorithm. The quality
degradation of all sample recordings was determined basing on the scores provided by
the PEAQ algorithm. It was shown that quality degradation is lower when the
psychoacoustic model with the FTM algorithm is used. The quality gain obtained with

the FTM is significant for recordings containing modulated tonal components.

The FTM was also used as a basis of detector for choosing signal subbands containing
pure noise-like components. These bands were omitted during usual AAC quantization
and filled with locally generated, weighted noise in the decoder. Although the detector
is based on the FTM algorithm it examines also the flatness of subband spectrum and
variation of its energy. It was shown that tonality estimates yielded by the FTM are of
primary importance for detecting totally noise-like subbands. The efficiency of
above-mentioned detector was examined using codec architecture based on the AAC.

While all tonal subbands were quantized so that the introduced distortions were just on
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the hearing threshold, remaining subbands were substituted with noise by the decoder.
The group of selected recordings were also encoded with the PNS module switched off.
These two encoded representations of recordings were used during listening tests,
performed according to the ITU-T BS. 1116 recommendation. Test results revealed that
the implemented PNS module operates efficiently. The quality degradation was

negligible whenever the recording contained or not modulated tonal components.

In order to fully explore the benefits of the FTM method for coding applications, the
listening tests were performed in accordance with the ITU-T BS.1534 recommendation
(MUSHRA). The group of selected recordings was encoded with bit-rate constrained to
48 kbps and 64 kbps by the codec operating in various coding modes. Every sound
sample recording was quantized by the AAC encoder combined with the psychoacoustic
model employing either the FTM or UM tonality estimator. Furthermore, in one of the
codec modes, all spectral components were assumed to be noisy. The selected
recordings were also encoded by the AAC-based encoder operating with the PNS
module enabled. The bits saved by the PNS module were injected to the subbands
containing tone-like components in order to optimize the coding quality. The experts
were asked to score 10 excerpts including hidden reference and 3.5 kHz anchor signals.
The results of listening tests proved that substituting UM with FTM leads to the quality
increase up to 20 scores in MUSHRA scale for recordings containing modulated tonal
components. The implemented PNS module based on the FTM algorithm allows lifting
up the coding quality towards higher quality categories (e.g. from fair to good).
Considering the results of the listening tests and other experiments carried out it can be
noticed that the second thesis of dissertation: “The distortions introduced during
perceptual audio coding may be effectively limited employing tonality estimation
algorithm proposed in this dissertation” has been proven true. Furthermore, it should be

concluded that all four research aims described in subsection 1.2 have been achieved.
The personal contributions of the author to the field of audio coding applications are:

1. the novel algorithm for tonality estimation of spectral components and the
method of its integration with the MPEG psychoacoustic model,
2. the novel detector of noise-like signal bands which can be combined with the

PNS module,
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3. the results of analysis revealing the significance of tonality index estimation to

audio coding quality.
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13 APPENDICES

13.1 APPENDIX 1 — FORM USED DURING BS.1116 LISTENING TEST

There are eleven triples of sound sample recordings. In every triple, one sound
recording is a reference and is denoted as “REF”. Two more recordings are denoted as
“A” and “B”. Either excerpt “A” or “B” in every triple is the hidden reference signal.
The excerpts are scored using continuous scale (for instance the 4.7 score may be
given):

Grade | Impairment

5.0 | Imperceptible

4.0 | Perceptible, but not annoying

3.0 | Slightly annoying

2.0 | Annoying

1.0 | Very annoying

An expert 1s asked to follow the instructions for every triple of sound recordings:

1. Among “A” and “B” excerpts select one which is the reference signal and assign
5.0 score to it;

2. Assign appropriate score to the remaining excerpt (“A” or “B” - not being the
reference signal)

Test A B

number
1

O [0 [ Q||| |W|N

—_
(=]

11

Caution! Scoring scale is continuous — you may assign 4.8 score to sample recording.
The excerpts may be played back as many times as required to make a decision
regarding quality.
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13.2 APPENDIX 2 — CD WITH SOUND SAMPLE RECORDINGS USED DURING

PERCEPTUAL EVALUATION

13.2.1 PEAQ tests (subsection 7.2)

EXCERPT REFERENCE UM FTM
(FILE NAME) (FILE NAME) (FILE NAME)
M IM_REF.wav IM_UM.wav IM_FTM.wav
M 2M_REF.wav 2M_UM.wav 2M_FTM.wav
3iM 3M_REF.wav 3M_UM.wav 3M_FTM.wav
4M 4M_REF.wav 4M_UM.wav 4M_FTM.wav
M 5M_REF.wav 5M_UM.wav 5M_FTM.wav
6M 6M_REF.wav 6M_UM.wav 6M_FTM.wav
™ 7M_REF.wav ™ UM.wav ™ FTM.wav
M 8M_REF.wav 8M_UM.wav 8M_FTM.wav
oM 9M_REF.wav 9M_UM.wav 9M_FTM.wav
10M 10M_REF.wav 10M_UM.wav 10M_FTM.wav
11M 11M_REF.wav 11M_UM.wav 11M_FTM.wav
12M 12M_REF.wav 12M_UM.wav 12M_FTM.wav
13M 13M_REF.wav 13M_UM.wav 13M_FTM.wav
14M 14M_REF.wav 14M_UM.wav 14M_FTM.wav
1S 1S_REF.wav 1S_UM.wav 1S FTM.wav
2S 2S REF.wav 2S UM.wav 2S FTM.wav
3S 3S REF.wav 3S UM.wav 3S FTM.wav
48 4S REF.wav 4S UM.wav 4S FTM.wav
5S 5S REF.wav 5S UM.wav 5S FTM.wav
6S 6S_REF.wav 6S_UM.wav 6S FTM.wav
7S 7S_REF.wav 7S_UM.wav 7S_FTM.wav
8S 8S_REF.wav 8S UM.wav 8S FTM.wav
9S 9S REF.wav 9S UM.wav 9S FTM.wav
10S 10S_REF.wav 10S_UM.wav 10S_ FTM.wav
11S 11S_REF.wav 11S UM.wav 11S FTM.wav
128 12S REF.wav 12S UM.wav 12S FTM.wav
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13.2.2 BS.1116 subjective tests (subsection 8.2.2)

In every test either excerpt A or B was the hidden reference signal. The hidden

reference signal is highlighted using grey background in the table below.

TEST NUM. REFERENCE A B
(FILE NAME) (FILE NAME) (FILE NAME)
1 12M_REF.wav 12M_A.wav 12M_B.wav
2 13M_REF.wav 13M_A.wav 13M_B.wav
3 2M_REF.wav 2M_A.wav 2M_B.wav
4 9S REF.wav 9S A.wav 9S B.wav
5 7M_REF.wav ™ A.wav ™ B.wav
6 7S _REF.wav 7S_A.wav 7S_B.wav
7 3S REF.wav 3S_A.wav 3S B.wav
8 9M_REF.wav IM_A.wav 9M_B.wav
9 8S_REF.wav 8S_A.wav 8S B.wav
10 1S _REF.wav IS A.wav 1S B.wav
11 4S REF.wav 4S A.wav 4S B.wav
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13.2.3 BS. 1534 subjective tests (subsection 9.2)

M1

EXCERPT

FILE NAME

Reference

M1 REF.wav

3.5 kHz anchor

M1 _3.5kHz ANCHOR.wav

allNoise 48

MI1_ALL NOISE 48.wav

UM 48 M1 UM 48.wav

FTM_48 M1 FTM_48.wav

FTM_48+PNS M1 _FTM_48+PNS.wav

allNoise 64 M1 _ALL NOISE 64.wav

UM 64 M1 UM 64.wav

FTM 64 M1 _FTM_64.wav

FTM_64+PNS M1 _FTM_64+PNS.wav
M2

EXCERPT FILE NAME

Reference M2 REF.wav

3.5 kHz anchor

M2_3.5kHz ANCHOR.wav

allNoise 48

M2_ALL NOISE 48.wav

UM 48 M2 UM _48.wav

FTM_48 M2 FTM_48.wav

FTM_48+PNS M2 FTM_48+PNS.wav

allNoise 64 M2 ALL NOISE 64.wav

UM 64 M2 UM_64.wav

FTM_64 M2 FTM_64.wav

FTM_64+PNS M2 FTM_64+PNS.wav
M3

EXCERPT FILE NAME

Reference M3 REF.wav

3.5 kHz anchor

M3_3.5kHz ANCHOR.wav

allNoise 48

M3 ALL NOISE 48.wav

UM 48 M3 UM _48.wav

FTM 48 M3 FTM_48.wav
FTM_48+PNS M3 FTM_48+PNS.wav
allNoise 64 M3 ALL NOISE 64.wav
UM 64 M3 UM_64.wav

FTM 64 M3 FTM_64.wav

FTM_64+PNS

M3 FTM_64+PNS.wav
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M4

EXCERPT

FILE NAME

Reference

M4 REF.wav

3.5 kHz anchor

M4 3.5kHz ANCHOR.wav

allNoise 48

M4 ALL NOISE 48.wav

UM 48 M4 UM _48.wav

FTM 48 M4 FTM 48.wav

FTM_48+PNS M4 FTM_48+PNS.wav

allNoise 64 M4 ALL NOISE 64.wav

UM 64 M4 UM_64.wav

FTM_ 64 M4 FTM_64.wav

FTM_64+PNS M4 FTM_64+PNS.wav
M5

EXCERPT FILE NAME

Reference M5 REF.wav

3.5 kHz anchor M5 3.5kHz ANCHOR.wav

allNoise 48 M5 ALL NOISE 48.wav

UM 48 M5 UM 48.wav

FTM_48 M5 FTM_48.wav

FTM_48+PNS M5 FTM_48+PNS.wav

allNoise 64 M5 ALL NOISE 64.wav

UM_64 M5 UM 64.wav

FTM 64 M5 FTM_64.wav

FTM_64+PNS M5 FTM_64+PNS.wav
S1

EXCERPT FILE NAME

Reference S1 REF.wav

3.5 kHz anchor

S1 _3.5kHz ANCHOR.wav

allNoise 48

S1_ALL NOISE 48.wav

UM 48 S1 UM 48.wav

FTM 48 S1 FTM 48.wav
FTM_48+PNS S1 FTM_48+PNS.wav
allNoise 64 S1_ALL NOISE 64.wav
UM 64 S1_UM_64.wav

FTM_ 64 S1 FTM_64.wav

FTM_64+PNS

S1_FTM_64+PNS.wav
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S2
EXCERPT FILE NAME
Reference S2 REF.wav

3.5 kHz anchor

S2 3.5kHz ANCHOR.wav

allNoise 48

S2 ALL NOISE 48.wav

UM 48 S2 UM _48.wav
FTM 48 S2 FTM_48.wav
FTM_48+PNS S2 FTM_48+PNS.wav
allNoise 64 S2 ALL NOISE 64.wav
UM 64 S2 UM_64.wav
FTM_64 S2 FTM_64.wav
FTM_64+PNS S2 FTM_64+PNS.wav
S3
EXCERPT FILE NAME
Reference S3 REF.wav
3.5 kHz anchor S3 3.5kHz ANCHOR.wav
allNoise 48 S3 ALL NOISE 48.wav
UM 48 S3 UM 48.wav
FTM_48 S3 FTM_48.wav
FTM_48+PNS S3_FTM_48+PNS.wav
allNoise 64 S3 ALL NOISE 64.wav
UM_64 S3 UM_64.wav
FTM_ 64 S3 FTM_64.wav

FTM_64+PNS

S3 FTM_64+PNS.wav
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1 WPROWADZENIE

Przedstawiona rozprawa doktorska dotyczy efektywnos$ci algorytmow perceptualnego
kodowania sygnatow fonicznych takich jak MP3 (MPEG 1 Layer 3) oraz AAC
(Advanced Audio Coding). Kodeki tego typu dokonuja kwantyzacji widma sygnatu
(wspotczynnikow MDCT) w taki sposob by wprowadzany szum kwantyzacji
pozostawal, o ile to mozliwe, ponizej chwilowego progu styszenia. Z tego wzgledu
jednym z kluczowych elementow kazdego kodeka perceptualnego jest model
psychoakustyczny symulujacy zjawiska zachodzace w systemie stuchowym cztowieka,
a w szczego6lnosci zjawisko maskowania jednoczesnego. Aby wiarygodnie okresli¢
chwilowy prog styszenia, konieczna jest klasyfikacja rodzaju pobudzenia btony
podstawnej na pobudzenie o charakterze szumowym lub tonalnym. W modelach
psychoakustycznych zwykle stosowane sa proste metody pozwalajace na efektywne
rozroznienie sygnaldow szumowych oraz tondéw prostych. Niemniej nagrania muzyczne
zawieraja zwykle oprocz sktadowych tonalnych o niezmiennej czgstotliwosci chwilowe;
réwniez skladniki tonalne o modulowanej czgstotliwosci chwilowej. Modulacja
wprowadzana jest przez instrumentalistow lub wokalistow w wyniku stosowania
technik artykulacyjnych takich jak vibrato. Popularne metody rozrozniania charakteru
pobudzenia zawodza w przypadku gdy w sygnale wystgpuja modulowane sktadowe
tonalne. Niewtasciwa klasyfikacja rodzaju pobudzenia btony podstawnej powoduje, iz
estymata progu styszenia nie odpowiada rzeczywistemu progowi sltyszenia. W
rezultacie moze to prowadzi¢ do degradacji jakosci kodowania, gdyz widmo szumu
kwantyzacji wprowadzane przez koder nie jest ksztalttowane zgodnie z rzeczywistym

progiem slyszenia.

Glownym celem badan przedstawionych w ramach niniejszej rozprawy bylto
opracowanie nowego algorytmu pozwalajacego na rozroznienie skladowych
szumowych oraz tonalnych o modulowanej i niemodulowanej czgstotliwosci chwilowe;.
Metoda ta jest oryginalnym wktadem autora rozprawy. Opisany algorytm dokonuje
przetwarzania widma amplitudowego oraz fazowego sygnatu fonicznego. W kolejnych
krokach analizy wyodrgbniane sa maksima lokalne widma amplitudowego. Nastgpnie
tworzone sa trdjelementowe ciagi indeksow widma. Indeksy te odpowiadaja maksimom
lokalnym wykrytym w trzech kolejnych widmach sygnatu. Komponenty widma o
indeksach nalezacych do danego ciagu stanowia kandydatow na komponenty tonalne.

Utworzone ciagi sa traktowane jako kandydaci do trdjelementowych $ciezek tonalnych.
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Weryfikacja kandydatéw nastgpuje na podstawie poréwnania zmian ich czgstotliwosci
chwilowej okreslanych jednocze$nie z wykorzystaniem estymatora bazujacego na
przetwarzaniu probek widma amplitudowego oraz estymatora bazujacego na
przetwarzaniu widma fazowego sygnatu. Zaproponowana metoda okreslania rodzaju
pobudzenia btony podstawnej zostata zintegrowana z modelem psychoakustcznym
zdefiniowanym w ramach standardu MPEG. Standard definiujacy system kodowania
AAC zawiera opis techniki kodowania w ktorej podpasma sygnalu zawierajace
wylacznie komponenty szumowe kodowane sa w inny sposdb niz pasma zawierajace
komponenty tonalne. Technika ta okre$lana jest jako Perceptual Noise Substitution
(PNS). Autor rozprawy opracowal nowy detektor podpasm sygnatu zawierajacych
wylacznie komponenty szumowe. Metoda ta wykorzystuje wspomniany wczesniej
algorytm klasyfikacji komponentow widma na szumowe i tonalne. Jej przewaga w
stosunku do innych implementacji polega na mniejszej ztozono$ci obliczeniowej, ktora
wynika ze stosowania tej samej metody klasyfikacji komponentéw widma zaréwno w

modelu psychoakustcznym jak 1 w module PNS.

Celem dodatkowym rozprawy byto okreslenie w jakim stopniu efektywno$¢ metody
klasyfikacji rodzaju pobudzenia btony podstawnej wplywa na wynikowa jako$¢
kodowania perceptualnego. Realizacja tego celu wymagata implementacji mechanizmu
alokacji bitow stosowanych w kodekach perceptualnych oraz przeprowadzenia serii

testow odstuchowych zgodnych z procedura ITU-T BS.1534.

Miara okres§lana w niniejszej rozprawie doktorskiej jako fonalnosé jest wykorzystywana
do rozroznienia charakteru szumowego lub tonalnego badZz to pojedynczych probek
widma, badz zdefiniowanych podpasm sygnatu. Miara ta odzwierciedla stosunek
energii komponentéw tonalnych oraz szumowych nalezacych do danego podpasma
sygnatu. Tonalno$¢ przyjmuje wartosci z zakresu [0,1], gdzie wartos¢ 0 wskazuje, iz
dany komponent widma lub podpasmo sygnalu jest catkowicie szumowe. Gdy
komponent widma odpowiada sktadnikowi sinusoidalnemu o stalej lub modulowane;j
czestotliwoscei albo podpasmo sygnatu zawiera jeden lub wigcej takich komponentow,
miara tonalno$ci przyjmuje warto§¢ roéwna 1. Algorytm zwracajacy ciagla miarg
tonalnosci z zakresu [0,1] nazywany jest estymatorem tonalnosci w przeciwienstwie do
detektora komponentow tonalnych, ktéry dostarcza jedynie binarnej informacji
dotyczacej tonalnosci. W zalezno$ci od wymagan aplikacji konieczne moze by¢

zastosowanie estymatora tonalnosci lub detektora komponentow tonalnych. Kazdy
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estymator tonalno$ci moze by¢ wykorzystany jako detektor komponentéw tonalnych po

przyjeciu odpowiedniego progu.

Rozprawa doktorska zawiera opis badan majacych na celu udowodni¢ dwie ponizsze

tezy:

1. Estymacja miary tonalno$ci komponentow sinusoidalnych sygnalow
fonicznych o stalej lub modulowanej czestotliwosci chwilowej jest mozliwa
do przeprowadzenia poprzez poréwnanie zmian ich czestotliwosci
chwilowych okreslanych z wykorzystaniem estymatora bazujacego na
analizie widma amplitudowego oraz estymatora bazujacego na analizie
widma fazowego.

2. Zaproponowana w rozprawie metoda estymacji miary tonalnoSci
skladowych widma pozwala na efektywne ograniczanie znieksztalcen
wprowadzanych w procesie perceptualnego kodowania sygnalow

fonicznych.

Streszczenie rozprawy doktorskiej zawiera opis badan zwiazanych z opracowaniem
nowego estymatora tonalnos$ci komponentow widma oraz jego wykorzystania w
aplikacjach kodowania perceptualnego sygnaléw fonicznych. Opis wybranych metod
kodowania, funkcji jakie pelnia algorytmy estymacji tonalno$ci w aplikacjach
przetwarzania sygnalow fonicznych oraz poréwnanie wybranych metod estymacji

tonalnosci zawieraja rozdziaty od 1 do 4 rozprawy doktorskie;.

2 NOWA METODA ESTYMACJI TONALNOSCI KOMPONENTOW WIDMA

Gtowne zatozenia dla nowego algorytmu estymacji tonalnosci komponentéw widma

byly nastgpujace:

e Algorytm powinien dokonywaé przetwarzania probek pojedynczego widma (tak
zwane przetwarzanie wewnatrz-ramkowe) oraz ciagoéw probek nalezacych do
nast¢pujacych po sobie w czasie widm (przetwarzanie migdzy-ramkowe) w celu
tworzenia $ciezek komponentéw tonalnych bedacych odzwierciedleniem ich
zmian czg¢stotliwosci.

e Algorytm powinien przypisywac wartosci tonalnosci z zakresu [0,1] maksimom

lokalnym widma. Pozostalym komponentom widma powinna by¢ przypisana
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warto$¢ tonalnosci rowna 0 (rozmywanie tonalnosci przypisanej maksimom

widma na prazki widma sasiadujace z nimi stanowi odrgbny modut
przetwarzania)

e Algorytm powinien pozwala¢ na efektywna detekcj¢ komponentéw tonalnych
zwigzanych ze skladowymi sinusoidalnymi o modulowanej czgstotliwos$ci

chwilowej

Schemat blokowy opracowanej metody estymacji tonalno$ci komponentow widma

przedstawiono na rys. 2.1.

sygnat wejsciowy —{ Podziat na ramki

FFT

v

)
u ]
e
|

E Widmo fazowe }

Wybér mak3|mow
Iokalnych

Interpolacja
paraboliczna

Tcand [p (I)]

A A

czestotliwosci —

L (3 ramki sygnatu)

A
(Tworzenie kandydatéw}

A

Estymacja zmian
czestotliwosci —

Estymacja zmianJ

widmo amplitudowe}

AfM( Tepna [p(l)])

widmo fazowe

Aﬁl’( cand I:p(/)])
A A A
[ Weryfikacja kandydatow i okreslenie tonalnosci ]

v

[Sprawdzanie dtugosci Sciezek i przypisanie tonalnoécij

v FTM [k,.1]

Rys. 2.1 Schemat blokowy opracowanego algorytmy estymacji tonalnosci

komponentow widma

2.1 PRZETWARZANIE WIDMA AMPLITUDOWEGO

Sygnal wejsciowy jest dzielony na ramki wazone oknem Hanna, przy czym dlugosé¢

ramki oraz zaktadka stanowia parametr metody. Opcjonalnie kazda ramka uzupetniana
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jest zerami do jej podwojnej dlugosci, co ma wplyw na redukcje obciazenia
estymatoréw czgstotliwosci chwilowej opisanych po6zniej. W nastepnej kolejnosci
obliczana jest transformata DFT z wykorzystaniem algorytmu FFT oraz widmo
amplitudowe sygnalu. W kazdym widmie amplitudowym dokonywana jest detekcja

jego maksimow lokalnych a nastgpnie okreslany jest parametr peakiness zdefiniowany

jako:
ol 0= Al [91]- A[kmm_(i(”),l]; Ak ()] @0
gdzie: k,, [i"] oraz «,, [i] sa indeksami probek widma odpowiadajacymi minimum

lokalnym potozonym po obu stronach lokalnego maksima widma oznaczonego jako
k0] S A[kmax(j(’))]z2010g(lX[kmax(j(’)),l]), X[k,1] — widmo zespolone, i—indeks

probek widma, / — indeks widma.

Jedynie maksima lokalne widma dla ktérych g[k [i(’)]] >9dB sa dalej rozpatrywane

jako potencjalne komponenty tonalne. Pozostatym maksimom widma przypisywana jest
warto$¢ tonalnos$ci réwna 0. W kolejnym kroku pozostale maksima lokalne wraz z
sasiadujacym z nimi probkami widma poddawane sa procedurze interpolacji

paraboliczne;j:

1 | T |
2 A[ksmax [j(l)]_ 1]_ 2A[ksmax [](1)]]+ A[ksmax [j(l)]+ 1]

Koy [j(l)]: (2.2)

gdzie: k. [ j(l)] oznacza indeks widma odpowiadajacy wybranemu maksimum

lokalnemu, j — indeks wybranego maksima lokalnego. Na tej podstawie dokonywana
jest estymacja czgstotliwosci chwilowej dla wybranego maksimum lokalnego widma

zgodnie z zalezno$cia:

T Ko s ]
Sl /]2 AT el) g (2.3)

gdzie: N — dlugos¢ ramki sygnatlu, Z, — wspolczynnik wypetnienia zerami (stosunek

dhugosci FFT do dtugosci ramki), F — czgstotliwo$¢ probkowania.
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2.2 TWORZENIE KANDYDATOW DO TROJELEMENTOWYCH SCIEZEK TONALNYCH

Kandydat do trojelementowej $ciezki tonalnej tworzony jest z wykorzystaniem trzech
kolejnych widm amplitudowych sygnatu. Przyjmuje sig, iz kandydatem jest ciag trzech
indeksow widma odpowiadajacych maksimom lokalnym w trzech kolejnych ramkach

sygnatu, dla ktorych zmiana czgstotliwosci jest minimalna (patrz rys. 2.2).

poprzednie  obecne przyszte

»
»

& —maksima lokalne widma (kandydat p+1)
O — maksima lokalne widma (kandydat p)

O - maksima lokalne widma (kandydat p’-1)
% —nieprzyporzadkowane maksimum lokalne

czestotoliwosé

l;l / ljrl ramky
Rys. 2.2 Tworzenie kandydatow do trdjelementowych §ciezek tonalnych
Kandydaci do tréjelementowych $ciezek tonalnych sa oznaczani jako 7, , [p(/)] gdzie
p(l) = O,l,...,P(l) —1 jest indeksem kandydata, a P” jest ich catkowita liczba.
2.3  ESTYMACIJA ZMIAN CZESTOTLIWOSCI

Dla kazdego kandydata na $ciezkg tonalna zmiana czgstotliwosci (patrz rys. 2.3)

okre§lana jest z wykorzystaniem dwoch metod: wykorzystujacej probki widma

C

amplitudowego — Af,, (Tcand [p(’ )]) , oraz probki widma fazowego — Af,, (T nd [p(’ )]) :

>

tliwosé

Afy (Tcand [p ©
Afy (T cand [P 0

b

~"—= czesto

S ——

Rys. 2.3 Zmiana czgstotliwos$ci zwiazana z kandydatem na $ciezke tonalna
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2.4  ESTYMATOR WYKORZYSTUJACY PROBKI WIDMA AMPLITUDOWEGO

Estymacja zmian czgstotliwo$ci kandydatow na trojelementowe Sciezki tonalne
przeprowadzana jest z wykorzystaniem czgstotliwosci chwilowych obliczonych na

podstawie rownania (2.3) zgodnie z zaleznoS$cia:

af (T, [p"]) = L [ [J‘(”')]]; Sl 5] 2.4)

2.5 ESTYMATOR WYKORZYSTUJACY PROBKI WIDMA FAZOWEGO

Estymator wykorzystujacy probki widma fazowego zostal opracowany specjalnie na
potrzeby proponowanego algorytmu estymacji tonalnosci). Na poczatku okreslany jest

dyferencjat fazy drugiego rzedu zwiazany z danym kandydatem na $ciezke tonalna:

N0k, [ ko [0 = 0k O] 20k O] @k 0] 29

| | Im(X o [V}
s b o i 4} |

Jezeli kandydat na S$ciezke tonalna pochodzi od sktadnika sinusoidalnego o

modulowanej czgstotliwos$ci, indeksy widma w kolejnych widmach sa rézne. Konieczne

jest obliczenia dodatkowego czynnika fazowego:

S il VTl B

D[] 2t [ ) @

Zmiana czgstotliwosci okreslana jest nastgpujaco:

Afy (Tcand [p([)]) =

im0 [ [ D 0l [ B [10]) 7
Vs
gdzie: L — skok analizy STFT (ang. Short Time Fourier Transform),

princarg @) = ((0 + ﬂ)mod(— 27[) + 7 jest funkcja rzutujaca faze do zakresu .

Jesli skladnik sinusoidalny sygnatu zmienia swoja czgstotliwosci bardzo szybko w

czasie, odpowiadajacy zmianie czestotliwosci skok fazy moze przekroczy¢ zakres +m co



STRESZCZENIE 151

uniemozliwi prawidlowa estymacje zmiany czestotliwosci. W tym celu dla kazdego
kandydata okre$lana jest minimalna i maksymalna mozliwa zmiana czgstotliwosci na
podstawie indeksow prazkow widma stanowiacych ciag odpowiadajacy danemu
kandydatowi. Nastgpnie w sposob iteracyjny dodawany lub odejmowany jest skok
czestotliwosci odpowiadajacy wielokrotnosci Fy/L. Jesli w wyniku iteracji zmiana
czestotliwosci okre§lona z wykorzystaniem wartosci fazy znajdzie si¢ w przedziale
okreslonym na podstawie indekséw widma tworzacych danego kandydata, warto$¢

zmiany czg¢stotliwos$ci modyfikowana jest nastgpujaco:

Mo (Tcand [p(l)])(_ Ao (Tcand [p(l)])"' m; % (2.8)

gdzie m=%1, £2, ...,6. W przeciwnym wypadku m;=0.

2.6  WERYFIKACJA KANDYDATOW I OKRESLANIE TONALNOSCI

Dla kazdego kandydata okres§lana jest roznica pomig¢dzy estymata zmiany czestotliwosci
okreslona z wykorzystaniem estymatora przetwarzajacego probki  widma

amplitudowego oraz fazowego:

S(Ts [P) = Ay (T [P ) - A7 (T [2) (2.9)

Kandydaci dla ktorych ‘§(Tcand [pmu < ]\28 uznawani sg $ciezki tonalne, pozostale za$
p

jako ciagi zawierajace komponenty widmowe szumowe. Dla trojelementowych §ciezek

tonalnych okreslana jest wartos¢ FTM (ang. Frequency-derived Tonality Measure):

FTM trk (Ttrk [r(l)]) =1- NTZSID‘5(]1rk I:r(l):“ (2 10)

gdzie A0 jest indeksem $ciezki tonalnej. Warto§¢ FTMyy jest przypisywana indeksowi
widma odpowiadajacemu drugiemu elementowi danej $ciezki tonalnej i oznaczana dalej
jako ftm[kmax]. Dodatkowo badana jest dlugo$¢ Sciezki tonalnej. Jesli Sciezka jest
odpowiednio diuga, warto§¢ FTMgk przyporzadkowywana jest rowniez ostatniemu

elementowi $ciezki ktora si¢ konczy.
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3 BADANIE EFEKTYWNOSCI OPRACOWANEGO ALGORYTMU

Efektywnos$¢ opracowanego algorytmu poréwnano z efektywnoscia wybranych metod
estymacji miary tonalno$ci lub metod detekcji komponentéw tonalnych widma
wykorzystywanych w modelach psychoakustycznych. Do poréwnania wykorzystano
nastepujace metody: SFM (ang. Spectral Flatness Measure), UM (ang. Unpredictibility
Measure), M1 — detektor wykorzystywany w pierwszym modelu psychoakustycznym
MPEG.

3.1 EFEKTYWNOSC DETEKCJI KOMPONENTOW TONALNYCH

W celu poréwnania efektywnos$ci detekcji komponentéw tonalnych przez wybrane
metody wygenerowano szereg sygnatow harmonicznych o réznych czgstotliwosciach
podstawowych 1 okre§lonych stosunkach sygnatu do szumu. Sygnal harmoniczny
sktadat si¢ z komponentow niemodulowanych lub modulowanych czgstotliwo$ciowo.
Na tej podstawie wygenerowano krzywe ROC (ang. Reciever Operating

Characteristics) dla sygnaldow o stosunku sygnatu do szumu odpowiednio 10 i 0 dB
(rys. 3.1 oraz 3.2).

= = :

SFM . LN

08 (| FTM 1 ost FIM "%
UM 7 SFM UM

0.6¢ 0.6f

0.4 M1 0.4 M1

True positives rate (TP
Pl
True positives rate (TP)
/

o2 sNR=10aB] | 02§/ .~ SNR=10 dB

0 02 04 06 08 1 0 02 04 06 08 1
False postives rate (FP) False postives rate (FP)

Rys. 3.1 Krzywe ROC dla badanych algorytmow (SNR=10 dB, po lewej — sinusoidy

o statej czgstotliwosci, po prawej — sinusoidy modulowane czgstotliwo§ciowo)

Daje si¢ zaobserwowad, iz w przypadku sygnaléw zawierajacych sinusoidy o
niezmiennej w czasie czestotliwosci efektywnos$¢ detekeji dla wszystkich metod, z
wyjatkiem metody oznaczonej jako M1, jest podobna. W przypadku gdy analizie
podlegaja modulowane sinusoidy, opracowana metoda jest bardziej efektywna w

detekcji komponentéw tonalnych od metod pozostatych. W szczego6lnosci efektywnosé
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metody stosowanej szeroko w kodekach MP3 oraz AAC znaczaco spada dla sygnalow

zawierajacych modulowane sinusoidy.

1 ‘ ‘
FTM M
b \UM ~
0.8} 0.8/ SFM Y-UM
& AN &
E SFM E
2 06 £ o6
2] [}
§ g
Z 04l LN 3 04l X
g 04 M1 - g 04 M1.”
o R o .
=) 2
(= (=
0.2} SNR=0 dB 0.2} SNR=0 dB
0+ ‘ ‘ ‘ ‘ 0+ ‘ ‘ ‘ ‘
0 02 04 06 08 0 02 04 06 08 1

False postives rate (FP)

False postives rate (FP)

Rys. 3.2 Krzywe ROC dla badanych algorytmow (SNR=0 dB, po lewej — sinusoidy o

statej czestotliwosci, po prawej — sinusoidy modulowane czgstotliwosciowo)

3.2  WPLYW MODULACIJI NA ESTYMATE TONALNOSCI

Zbadano wptyw glgbokosci modulacji czestotliwosci oraz amplitudy na rdézne miary
tonalnosci, w tym na miar¢ zaproponowana w niniejszej rozprawie doktorskiej.
Sygnalem testowym byt sygnat sinusoidalny o czgstotliwosci 120 Hz oraz 440 Hz,
stosunek sygnalu do szumu wynosit 20 dB. Sygnat ten byl modulowany z
czestotliwoscia 6 Hz, przy czym maksymalna gleboko$¢ modulacji wynosita £1 potton.
Wplyw glebokosci modulacji czgstotliwo$ci na miary tonalnosci przedstawiono na
rys. 3.3. Z analizy wynikow przedstawionych na rys. 3.3 wynika, iz opracowana metoda
jest w duzym stopniu niewrazliwa na efekt modulacji czg¢stotliwosci. Warto zauwazy¢,
1z miara UM zwraca warto$¢ ponizej 0,6 dla gigbokosci modulacji £1 poétton. Algorytm

FTM jest réwniez odporny na wplyw modulacji amplitudy co zilustrowano na rys. 3.4
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Rys. 3.3 Wpltyw glgbokosci modulacji czgstotliwosci na $rednig miarg tonalnosci —

czegstotliwos$¢ nosnej wynosi odpowiednio 120 Hz (po lewej) i 440 Hz (po prawej)
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Rys. 3.4 Wplyw modulacji amplitudy sktadnika sinusoidalnego na $rednie (gorny
rys.) oraz minimalne (dolny rys.) wartosci tonalnosci okre§lane z wykorzystaniem

metod UM, SFM oraz FTM.

3.3 OGRANICZENIA OPRACOWANEJ METODY

Analiza polifonicznych nagran muzycznych ujawnia stabo$¢ opracowanego algorytmu

zwiazanego z estymacja tonalnosci w przypadku gdy w nagraniu wystepuja sygnaty
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harmoniczne o niskiej czestotliwosci podstawowej (np. kontrabas). Dla dtugosci ramek
analizy stosowanych w kodekach z grupy MPEG, uzyskiwana rozdzielczo$¢
czgstotliwosciowa analizy widmowej moze by¢ zbyt niska by komponenty tonalne
zwiazane z harmonicznymi sygnatu o niskiej czestotliwosci podstawowej mogly by¢
rozpoznane jako maksima lokalne widma. Z drugiej strony badania wskazuja, iz metoda
UM stosowana standardowo w modelu psychoakustycznym MPEG funkcjonuje
prawidtowo dla dolnego zakresu czgstotliwosci (rys. 3.3). Z tego wzgledu efektywna
estymacja tonalno$ci moze by¢ przeprowadzona z wykorzystaniem metody hybrydowe;j
bazujacej na algorytmie UM w dolnym zakresie pasma styszalnego (np. do 300 Hz)

oraz metody FTM dla pozostalych czgstotliwosci.

4  WIARYGODNOSC ESTYMACJI PROGU SLYSZENIA

W dalszych badaniach wykorzystano model psychoakustyczny MPEG stosowany w
kodekach MP3 oraz AAC. Stosowany standardowo estymator tonalnosci UM
przypisuje nie tylko wysoka warto§¢ tonalno$ci maksimom lokalnym widma
zwiazanym ze skladnikami sinusoidalnymi sygnatu ale takze probka widma
sasiadujacym z maksimum lokalnym widma. Z tego wzgledu konieczne byto
dopasowanie opracowanego algorytmu FTM tak by modgl by¢ zastosowany jako
zamiennik dla algorytmu standardowego. Zatozono, ze dla komponentow
sinusoidalnych niemodulowanych model psychoakustyczny powinien generowaé
identyczny prog styszenia bez wzgledu na to, czy wykorzystano standardowy estymator

tonalnosci czy tez algorytmy FTM.

4.1 RzUTOWANIE FTM NA UM DLA MAKSIMOW LOKALNYCH WIDMA

Zalezno$¢ miary tonalnosci w funkcji stosunku sygnatu do szumu skladnikow
sinusoidalnych jest rozna dla metod FTM oraz UM. Z tego wzgledu wyznaczono
charakterystyke¢ pozwalajaca na modyfikacje¢ warto$ci generowanych przez algorytm
FTM w taki sposob by odpowiadaty wartosciom UM. W tym celu generowano sygnaty
sinusoidalne o réznych czgstotliwosciach oraz zmiennym stosunku sygnatu do szumu.
Wynikowa charakterystyke rzutowania FTM na UM dla maksiméw lokalnych widma

przedstawiono na rys. 4.1.
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Rys. 4.1 Funkcja rzutowania wartosci FTM na UM (oznaczenia na wykresie

odpowiadaja oznaczeniom stosowanym w standardzie MPEG)

Wyniki wskazuja, iz charakterystyka ta w niewielkim stopniu zalezy od czgstotliwosci
komponentu sinusoidalnego. Charakterystyke ta zaproksymowano korzystajac z funkcji

kwadratowe;:

|+ 2.2ftm|k

max

| fm[k

max

]<0.52
|>052°

max

' k —
2 0.74, ftm[k

—1.5ftm?|k
4.1)

max

gdzie: ¢'[k,,, ] jest wartoscia tonalnosci odpowiadajaca standardowej mierze tonalnosci

c[k,,. ] stosowanej w drugim modelu psychoakustycznym MPEG.

4.2 PRZYPISYWANIE MIARY TONALNOSCI KOMPONENTOM NIE BEDACYM MAKSIMAMI

LOKALNYMI WIDMA

W pracy doktorskiej zaproponowano dwie metody pozwalajace na przypisanie miary
tonalnos$ci probka widma sasiadujacym z maksimami lokalnymi, dla ktérych okreslono
juz odpowiednia warto§¢ miary tonalnosci. Proces ten nazywana jest dalej
rozmywaniem miary FTM. Z opisanych metod bazuje na doktadnym modelowaniu
zjawiska rozmywania tonalnosci jakie ma miejsce w przypadku metody UM. Chociaz
metoda ta jest doktadna, to wymaga duzej ilo$ci obliczen. Z tego wzgledu opracowano
prostsza metodg heurystyczna pozwalajaca na rownie dobre modelowanie rozmywania

wystepujacego w przypadku algorytmu UM. Metoda ta wykorzystuje parametr
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peakiness zdefiniowany w rownaniu (2.1). W pierwsze] kolejnosci obliczany jest

parametr zwigzany z rozpatrywanym maksimum widma:

2
[k = (—g ["max]—gthd] (42)
Emi [k]_ 8ind

gdzie: ging=9 dB tak jak poprzednio, natomiast g, [k] dane jest zaleznos$cia:

S S A
Nfo - -
—= 4.3
30, k> Ny

gdzie: £,;=800 Hz jest wartoscia okre$lona eksperymentalnie, |_ J oznacza zaokraglenie
do warto$ci catkowitej mniejszej od wartosci poddanej tej operacji. W nastepnym kroku
okreslane sa zalezno$ci energii pomigdzy probka widma reprezentujaca maksimum

lokalne a probkami sasiadujacymi z nia po obu jej stronach.

m [k ]= (r [/’f[r}lC —]1]J0'5 (4.4)
r max

me+ [kmax] = [r[kfljx +]l]j015 (45)
r max

gdzie: r[k] oznacza probk¢ widma amplitudowego w skali liniowej (zgodnie z
konwencja stosowana w standardzie MPEG). W kolejnym kroku parametry
zdefiniowane w réwnaniach (4.2), (4.4) oraz (4.5) sa mnozone przez siebie 1

ograniczane do wartosci 1:

m,, [k

max

3

M b [ I e | <1
]:{ A o

max max ] -
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3

e+ [kmax] < 1 (4.7)

m [k max ]m e+ [kmax ]’ m [kmax ]
mge+[kmax]: { ¢ ‘ [k ]Z 1

1’ mg [kmax ]

3

Wartosci tonalnosci ¢'[k,, —1] oraz ¢'[k, . +1] wyznaczane na podstawie ponizszych
zaleznosci:

C' [kmax - 1] = C' [kmax]+ (Cns - C' [kmax ])(1 - mge— [kmax ]) (48)

C‘ [kmax + 1] = c' [kmax ]+ (CIIS - c' kmaX ])(1 - mge+ [kmax ]) (4.9)

gdzie: ¢,s=0,74 jest srednia wartoScia c[k] w przypadku gdy biaty szum Gaussowski jest

analizowany z wykorzystaniem metody UM.

4.3 HYBRYDOWY ESTYMATOR TONALNOSCI

Ze wzgledu na ograniczenia metody FTM dla niskich czgstotliwo$ci pasma
akustycznego, o ktorych wspomniano w rozdziale 3.3 w dalszych eksperymentach

stosowany byt hybrydowy estymator tonalnosci zdefiniowany jako:

F,
J (4.10)

cli] . {m
F

S

Sl min(c[k ] ¢'[k]) k{%J

gdzie: f,,=300 Hz zostalo okre$lone eksperymentalnie.

4.4 BADANIE WIARYGODNOSCI ESTYMACJI PROGU SEYSZENIA

W celu zbadania wiarygodnoS$ci estymacji progu slyszenia z wykorzystaniem modelu
psychoakustycznego pracujacego ze standardowym i proponowanym estymatorem
tonalno$ci wykorzystano algorytm kodowania bazujacy na architekturze kodeka AAC

przedstawiony na rys. 4.2.

Sygnat wejSciowy poddawany jest segmentacji na bloki z wykorzystaniem metody
STFT, a nastgpnie okreslana jest miara tonalno$ci komponentéw widmowych z
wykorzystaniem algorytmu FTM albo UM. Na tej podstawie estymowany jest prog

styszenia. Kodowaniu podlegaja wspotczynniki MDCT obliczane rownolegle do widma
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DFT dla ramek sygnatu o dtugosci 2048 lub 256 probek. Probki widma kwantowane

nierdwnomiernie zgodnie z ponizsza zaleznos$cia:

x, [k]= | [0 [ [2* 57 b= lD 4 0.4054 (4.11)

gdzie: x[k] oznacza wspotczynniki widma MDCT, st (ang. common scale-factor) jest
wspolnym parametrem dla wszystkich podpasm w ktorych dokonywana jest
kwantyzacja, sw[k] (ang. scale-factor) jest parametrem przypisanym do danego
podpasma czgstotliwosci. Warto$ci sqr. oraz sg[k] okreslane sa w sposob iteracyjny tak
by wprowadzany szum kwantyzacji odpowiadat progowi styszenia w takim stopniu jak

to tylko mozliwe.

Sygnat wejsciowy

__Koder
v 3
KROTKOOKRESOWA .
‘ TRANSFORMATA FFT ‘ ‘ BANK FILTROW (MDCT)
\
v v
FTM
(rzutowanie i ‘ UM ‘
rozmywanie)
a0 i . b Dekoder
,,,,,,,,,, WSPOLCZY.
SKALI
% MODEL KONTROLA I
PSYCHOAKUSTYCZNY ZNIEKSZTALCEN
KWANTYZACJA
P KWANTYZER > ODWROTNA
. Petle iteracyjne

BANK FILTROW
(IMDCT)

v
Sygnat wyjsciowy

Rys. 4.2 Schemat blokowy kodeka wykorzystanego w badaniach wiarygodnos$ci
estymacji progu styszenia
Ze wzgledu na przedmiot badan zwiazany z cze$cia kodeka odpowiadajaca za
kodowanie stratne, wykorzystywany algorytm pozbawiony byt modutu kodowania
bezstratnego. Wspotczynniki MDCT po przeprowadzeniu kwantyzacji zgodnie z
réwnaniem (4.11) podlegaty zdekodowaniu a nastgpnie obliczana byla transformata

odwrotna IMDCT, na podstawie ktorej wytwarzany byt sygnat w dziedzinie czasu.

Do testow wykorzystano dwie grupy nagran muzycznych. Do pierwszej grupy nalezaty

nagrania zawierajace gldéwnie niemodulowane komponenty tonalne (oznaczone jako
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»1S” do ,,12S”), natomiast do drugiej nagrania zawierajace gtownie modulowane
komponenty tonalne (oznaczone jako ,,IM” do ,,14M”). Kazde nagranie muzyczne
poddano kodowaniu w systemie przedstawionym na rys. 4.2 dwukrotnie. Za pierwszym
razem wykorzystano metod¢ UM do okreslenia tonalno$ci komponentow widmowych,

a za drugim razem algorytm FTM.

W celu okreslenia stopnia degradacji jakosci kodowania ODG (ang. Objective
Difference Grade) dla obu scenariuszy kodowania wykorzystano zaawansowany
algorytm obiektywnej oceny jakosci PEAQ (ang. Perceptual Evaluation of Audio
Quality) opracowany przez firm¢ Opticom. Na rys. 4.3 oraz 4.4 przedstawiono wyniki
przeprowadzonych badan odpowiednio dla nagran zawierajacych sktadniki sinusoidalne

niemodulowane oraz modulowane.

c
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Rys. 4.3 Oceny ODG uzyskane dla nagran dzwigkowych zawierajacych

glownie sktadowe sinusoidalne niemodulowane.
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Rys. 4.4 Oceny ODG uzyskane dla nagran dzwiekowych zawierajacych

gtéwnie sktadowe sinusoidalne modulowane.
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Z analizy wynikow zaprezentowanych na rys. 4.3 wynika, iz dla nagran zawierajacych
skladowe sinusoidalne niemodulowane, §rednia ocen ODG uzyskanych przy stosowaniu
algorytmu FTM jest o 0,47 punktu wigksza niz w przypadku stosowania metody UM.
Niemniej w obu wypadkach stopien degradacji ODG jest w okolicach —1,5 co wskazuje,
iz wprowadzane znieksztalcenia sa niestyszalne dla stuchacza. Srednia réznica w
ocenach ODG wynosi natomiast okoto 1,4 punktu na korzy$¢ metody FTM dla nagran
muzycznych  zawierajacych  gltéwnie  skladowe  sinusoidalne = modulowane
czestotliwosciowo. Biorac powyzsze pod uwage nalezy stwierdzié, iz w przypadku gdy
nagrania zawieraja glownie sktadowe tonalne modulowane, model psychoakustyczny
okresla prog styszenia w sposob bardziej wiarygodny gdy wykorzystany jest estymator
tonalnosci FTM. Ponadto stopiefn degradacji jako$ci nagran zawierajacych komponenty
tonalne modulowane przekracza warto§¢ -2,5 co oznacza, iz wprowadzane

znieksztalcenia zaczynaja by¢ styszalne.
Na podstawie przeprowadzonych badan poczynione dwie nastepujace obserwacje:

e Prog styszenia estymowany przez model psychoakustyczny zdefiniowany w
standardzie MPEG jest nieco nizszy niz rzeczywisty prog styszenia;

e Kiedy szum kwantyzacji przekracza prog slyszenia w kilku podpasmach,
wprowadzane znieksztalcenia sa styszalne jedynie jako niedokuczliwe

ograniczenia dynamiki sygnatu.

Biorac pod uwage powyzsze spostrzezenia dalsze eksperymenty majace na celu
wykazanie przewagi metody FTM nad innymi prowadzone byly przy zalozeniu, iz
kodek nie dysponuje odpowiednim zasobem bitéw do zakodowania sygnatu w taki

sposob by wprowadzany szum kwantyzacji pozostawal ponizej progu styszenia.

5 Mobur. PNS

Stosowanie techniki PNS wymaga okreslenia, ktore z podpasm sygnatu moga zostaé
zsyntetyzowane w dekoderze z wykorzystaniem lokalnego generatora Gaussowskiego
szumu bialego. Mozliwo§¢ wykorzystania algorytmu UM jako podstawy detektora
pasma szumowych jest ograniczona. Powodem jest niska wiarygodnos$¢ estymacji
tonalno$ci zapewniana przez ten algorytm w przypadku nagran zawierajacych

modulowane komponenty tonalne.
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5.1 DETEKCJA PODPASM SZUMOWYCH

Zarowno kodek MP3 jak i AAC przeprowadzaja kodowanie wspotczynnikoéw MDCT
zgrupowanych w tak zwane scale—factor bands. 7 tego powodu detektor podpasm
szumowych operuje na zdefiniowanych w standardach podpasmach sygnatu

wykorzystujac trzy parametry:

1. Indeks tonalnosci okreslany na podstawie c"[k]. Podpasma zawierajace

komponenty tonalne nie moga by¢ kodowane zgodnie z technika PNS.

t[m ] = max {tb [blow [m ]]> sty [bhigh [m ]]} .1

gdzie m=1, 2, ..., 49 (zakladajac F=44100 lub 48000 Sa/s) jest numerem
podpasma, #,[b] jest indeksem tonalno$ci wykorzystywanym przez model
psychoakustyczny MPEG, biow[m] oraz bpig[m] odpowiadaja indeksom
podpasm  wykorzystywanych przez model psychoakustyczny MPEG
zawierajacym si¢ w danym podpasmie scale—factor.

2. Miara ptasko$ci podpasm scale—factor. Podpasma zawierajace szum kolorowy
nie powinny by¢ kodowane zgodnie z technika PNS. Wykorzystana miara ta jest
w pewnym stopniu podobna do miary SFM 1 okre§lana jest najpierw dla

poszczeg6lnych prazkéw widma nastgpujaco:

2. [£]=20 10g[%] (5.2)

gdzie r,[k] oraz r,[k] odpowiadaja widmu amplitudowemu poddanemu filtracji
filtrem u$redniajacym z wykorzystaniem odpowiednio $redniej arytmetycznej i
geometrycznej. W nastgpnym kroku obliczana jest miara ptaskos$ci podpasm
scale—factor jako $rednia arytmetyczna zpin[k].

3. Dewiacja standardowa energii w podpasmach. Podpasma sygnatlu widma
okreslonego dla 2048 probek sygnalu wejSciowego zawierajace szum
niestacjonarny nie powinno by¢ kodowane zgodnie z technika PNS. Odchylenie
standardowe energii w podpasmach okre§lane jest z wykorzystaniem 8§
kolejnych widma obliczanych dla ramek sygnatu zawierajacych 256 probek

sygnatu na podstawie zalezno$ci:
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ool et el ] o

1,=1

gdzie en,[m, IS] oznacza energi¢ m-tego podpasma obliczonego dla widma /=0, 1,

..., 7 uzyskanego dla krotkiej ramki sygnatu (256 probek), e_nl[ ,ls] jest Srednia

energia w danym podpasmie obliczona dla 8 kolejnych widma.
Podpasmo scale-factor moze zosta¢ zakodowane zgodnie z technika PNS jesli

spelnione jest nastgpujacy warunki:

tlm]<tyy Azy[m]l<2aco[m]<6. (5.4)

gdzie tpg = 0,01 dla trybow pracy kodeka z wysoka przeptywnos$cia bitowa, oraz
tma = 0,05 dla trybow pracy z niska przeptywnoscia bitowa.

5.2 BADANIE MODULU PNS

W celu przeprowadzenia badania modutu PNS wybrane nagrania muzyczne
przetwarzano w taki sposob, by podpasma speiniajace kryterium podane w (5.4)
zastgpowane byly syntetycznym szumem o energii odpowiadajacej energii podpasma
oryginalnego. Dla kazdego nagrania okreslano wpltyw kazdego z parametrow
wykorzystanych w detektorze pasm szumowych na ostateczna decyzj¢ dotyczaca tego

czy mozliwe jest zastosowanie techniki PNS. W tym celu obliczano parametr

q. = B 100 % (5.5)
Masto
gdzie nusn jest catkowita iloscia podpasm w sygnale, ktore byty brane pod uwage, nsp+
okresla ilo$¢ podpasm spehniajacych jeden z warunkéw czastkowych: #[m]<tiq,
zsp|m]<2, o[m]<6 lub wszystkie jednoczesnie. Gwiazdka w réwnaniu (5.5) jest
odpowiednio zastgpowana symbolami ¢, zs,, o lub PNS. Na rys. 5.1 przedstawiono gpns
dla poddanych analizie nagran muzycznych podzielonych na grupy zawierajace gldéwnie
komponenty tonalne modulowane (np. 2M, 7M, itd.) oraz komponenty tonalne

niemodulowane (np. 1S, 385, itd.).

Stosunek gpns dla podpasm sygnatu lezacych powyzej czestotliwosci 3,1 kHz silnie
zalezy od zawarto$ci nagrania poddanego analizie 1 waha si¢ od okoto 9 do 37% dla

wybranych nagran. Dla wszystkich badanych nagraf srednia warto$¢ gpns wynosi 25%.
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Zasob bitdow oszczgdzony dzigki wykorzystaniu techniki PNS moze zostaé
wykorzystany do kodowania pasm tonalnych.

W celu okreslenia wptywu stosowanie techniki PNS na subiektywna jako$¢ kodowania
nagran muzycznych, przeprowadzono pilotazowe testy odstuchowe zgodnie z procedura
ITU-R BS.1116. Kazdy z ekspertow miat do dyspozycji 3 nagrania muzyczne w
kazdym z zadan. Pierwsze nagranie byto wskazanym (jawnym) sygnatem oryginalnym
(referencyjnym). Wérod dwoch kolejnych nagran, jedno byto sygnalem referencyjnym

(niejawnym), a drugie nagraniem w ktorym pasma szumowe zostaly zakodowane

30
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)
Rys. 5.1 Stosunek wyrazony poprzez iloraz ilosci podpasm dla ktérych zastosowano

zgodnie z technika PNS.

dens [%]
)
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technik¢ PNS do wszystkich rozpatrywanych podpasm sygnatu dla wybranych

nagran muzycznych

Zadaniem eksperta bylo w pierwszej kolejnosci wskazanie ktére z dwoch nagran jest
nagraniem oryginalnym, a nastgpnie okreslenie stopnia degradacji jakosci SDG
(Subjective Difference Grade) drugiego z nagran w skali od 0 (brak degradacji jako$ci)
do 5 (bardzo duza utrata jako$ci) w poréwnaniu do oryginatu. Na rys. 5.2
przedstawiono $rednie oceny SDG dla badanych nagran wraz z przedziatami ufnosci na

poziomie 95%.
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Rys. 5.2 Oceny SDG uzyskane przy stosowaniu modulu PNS wykorzystujacego

algorytm FTM

Z analizy rys. 5.2 wynika, iz Srednia warto§¢ SDG dla zadnego z nagran nie spada

ponizej —0,25 punktu, co oznacza, iz utrata jakosci jest wlasciwie niestyszalna.

Potwierdza to,

funkcjonuje prawidtowo.

6 WPLYW METODY ESTYMACJI TONALNOSCI NA JAKOSC KODOWANIA

iz detektor pasm szumowych wykorzystujacy algorytm FTM

Wszystkie eksperymenty przeprowadzono w systemie przedstawionym na rys. 6.1

mogacym pracowaé w kazdym z pigciu opisanych w tab. 1.
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Rys. 6.1 Schemat blokowy eksperymentalnego kodeka
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Tabela 6.1 Tryby pracy eksperymentalnego kodeka sygnatow fonicznych

Estymacja
Tryb | Modul PNS Opis
tonalnoSci
1 Nieaktywny UM Wszystkie pasma sygnalu kodowane sa na podstawie

progu slyszenia okreslonego przez model

psychoakustyczny wykorzystujacy metode UM.

2 Nieaktywny FTM

Wszystkie pasma sygnatu kodowane sa na podstawie
progu styszenia okreslonego przez model

psychoakustyczny wykorzystujacy metode FTM.

3 Nieaktywny -

Wszystkie pasma sygnatu kodowane sa na podstawie
progu  slyszenia  okre§lonego  przez =~ model
psychoakustyczny nie wykorzystujacy zadnej metody
estymacji tonalnosci. (wszystkie komponenty widmowe

traktowane sa jako szumowe)

4 Aktywny UM

Pasma szumowe kodowane sa z wykorzystaniem
techniki PNS. Pasma szumowe kodowane sa na
podstawie progu styszenia okreslonego przez model
psychoakustyczny wykorzystujacy metode UM. Zasdb
bitow  oszczedzony  dzigki  stosowaniu = PNS

wykorzystany jest do kodowania pasm tonalnych.

5 Aktywny FTM

Pasma szumowe kodowane sa z wykorzystaniem
techniki PNS. Pasma szumowe kodowane sa na
podstawie progu styszenia okreslonego przez model
psychoakustyczny wykorzystujacy metode FTM. Zasob
bitbw  oszczedzony  dzigki  stosowaniu = PNS

wykorzystany jest do kodowania pasm tonalnych.

Wybrano grupg nagran dzwigkowych zawierajacych gtéwnie komponenty tonalne

niemodulowane oznaczone jako S1 — S3 oraz nagrania zawierajace komponenty tonalne

modulowane M1 — M5. Kazde z nagran zakodowano i zdekodowano z wykorzystaniem

systemu przedstawionego na rys. 6.1 pracujacego w trybach 1, 2, 3 oraz 5 dla dwoch

docelowych przeptywnosci bitowych: 48 oraz 64 kbps. Wykorzystywany system

kodowania nie zawiera modulu kodowania bezstratnego (kodowanie Hamminga) i nie

jest formowany wyj$ciowy strumien bitow. Jest to uzasadnione tym, iz praca

poswigcona jest metoda stratnego kodowania sygnatéw fonicznych, a zaproponowana

architektura pozwala na badanie wlasnie tej czgsci algorytmu kodowania. Z tego
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wzgledu przeptywnosci bitowe byly szacowane na podstawie entropii perceptualnej
okreslanej zgodnie z zaleznoscia podang w standardzie MPEG. Opracowano rowniez
metode dystrybucji bitéw w przypadku gdy zasob bitow jest niewystarczajacy do
utrzymania szumu kwantyzacji ponizej progu styszenia. Dla trybow pracy kodeka, w
ktérych modut PNS jest aktywny okreslono parametry ¢;, ¢.sm, ¢o Oraz gpns. Wyniki
tych badan przedstawiono na rys. 6.2.

100
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Rys. 6.2 Efektywno$¢ modutu PNS dla #,4=0,01

Z analizy rys. 6.2 wynika, iz tonalno$¢ podpasm sygnatu ma kluczowe znaczenie w
procesie detekcji podpasm kodowanych zgodnie z technika PNS. Chociaz warunek dla
parametru o jest spetniony dla §rednio ponad 90% przypadkéw, ma on istotne znaczenie
w przypadku gdy nagranie zawiera wiele dzwigki artykutowane przez instrumentalistow

1 wokalistow z duza ekspresja. Ma to miejsce w przypadku nagrania S2.

6.1 TESTY ODSLUCHOWE

Testy odstuchowe przeprowadzono zgodnie z zaleceniem ITU-R BS.1534 definiujacym
procedur¢ MUSHRA (MUIti Stimulus with Hidden Reference and Anchor). Testy
przeprowadzono z wykorzystaniem interfejsu graficznego funkcjonujacego w
srodowisku MATLAB, karty dzwigckowe] posiadajacej dynamik¢ konwersji
cyfrowo-analogowej ponad 100 dB oraz wysokiej jakosci stuchawek studyjnych AKG
K240 MKII. W testach wziglo udziat 17 ekspertow. Kazdy ekspert przechodzit fazg
szkolenia, w ktorej miat mozliwo$¢ zapoznania si¢ z interfejsem graficznym, mogt

postucha¢ wszystkie wykorzystywane w dalszej czg$ci testu nagrania, a takze
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otrzymywat wskazoéwki co do sposobu dokonywania oceny. Przed przejsciem z fazy
nauki do fazy testu nastgpowata przerwa. W kazdym zadaniu testowym ekspert oceniat
8 nagran muzycznych przetworzonych przez kodek pracujacy w czterech wybranych
trybach oraz dla dwdéch przeptywnosci bitowych. Oprécz wspomnianych nagran ocenie
podlegalo réwniez nagranie ograniczone pasmowo do 3,5 kHz — tak zwany Anchor oraz
ukryte nagranie referencyjne. Umieszczanie nagran na liscie do odsluchania odbywata
si¢ w sposob losowy. Jawnie wskazany sygnal referencyjny mogl by¢ odtwarzany
dowolna ilo$¢ razy podobnie jak wszystkie pozostale nagrania. Na rys. 6.3

przedstawiono interfejs systemu pozwalajacego na odstuchiwanie 1 oceng nagran

dzwigkowych.
<) MUSHRAM - Evaluation phase
Experiment 1/8
Sound & Sound B Sound C Sound D0 Sound B Sound F 0 Sound G0 SoundH o Sound | Sound J
mrm 00 35 1B 1 1 1 1 |
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Fig. 6.3 Interfejs aplikacji do oceny jako$ci nagran zgodnie z metoda MUSHRA

Poniewaz w$rod ocenianych nagran muzycznych znajdowat si¢ rowniez ukryty sygnat
referencyjny mozliwa byla weryfikacja wiarygodnosci ekspertéw na podstawie
zdolnosci do prawidlowego wskazywania sygnatlu referencyjnego. Ponadto
przeprowadzono analizg statystyczna dostarczajaca informacji o tym, w jaki sposob
oceny przydzielane przez danego eksperta rdznily si¢ od $rednich ocen pozostalych
ekspertow. Dwoje ekspertow mialo wyraznie obnizona zdolno$¢ wskazywania ukrytych
sygnalow referencyjnych, a takze ich oceny znaczaco roznity si¢ od ocen pozostatych
ekspertow. Z tego wzgledu oceny przez nich przydzielone nie byly brane pod uwage
przy dalszej analizie. Srednie oceny jakosci w skali MUSHRA wraz z przedzialami

95% ufnosci dla kazdego z nagran przedstawiono na rys. 6.4, 6.5 oraz 6.6.
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Rys. 6.4 Wyniki testow odstuchowych MUSHRA (nagrania S1 — S3 oraz M1)
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Rys. 6.5 Wyniki testow odstuchowych MUSHRA (nagrania M2 oraz M3)
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Rys. 6.6 Wyniki testow odstuchowych MUSHRA (nagrania M4 oraz M5)

Przedst

awione wyniki testow odsluchowych pozwalaja poczyni¢ nastgpujace

spostrzezenia:

Jako§¢  kodowania z  wykorzystaniem modelu  psychoakustycznego
zintegrowanego z zaproponowanym w rozprawie estymatorem tonalnosci FTM
jest o 10 do 20 ($rednio o 15) punktow w skali MUSHRA wyzsza niz w
przypadku stosowania metody UM dla nagran zawierajacych modulowane
komponenty tonalne. Podobna tendencja jest widoczna w przypadku dwdch
sposrod trzech nagran zawierajacych niemodulowane komponenty tonalne.
Model psychoakustycznym wykorzystujacy metode UM funkcjonowat zupetnie
nieefektywnie dla nagran M1 oraz M5, gdzie uzyskana ocena jest podobna do
oceny otrzymanej w przypadku gdy nie zastosowano zadnej metody estymacji
tonalnosci. W przypadku stosowania metody FTM jako$¢ wspomnianych probek
jest znaczaco wyzsza.

Oceny uzyskane dla nagran zakodowanych z przeptywnoscia 48 kbps i
aktywnym modulem PNS sa réwnie wysoki lub nawet wyzsze niz w przypadku
kodowania tych samych probek z przeptywnoscia 64 kbps i nieaktywnym
modutem PNS.

Srednia ocena jakosci kodowania w przypadku stosowania modutu PNS dla
przeptywnosci 48 kbps jest o 22 punkty MUSHRA wyzsza niz wtedy gdy modut
PNS jest nieaktywny. W przypadku przeptywno$ci rownej 64 kbps, zysk ze
stosowania metody PNS jest réwny $rednio 12 punktow w skali MUSHRA.
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Wynika stad, ze metoda ta jest bardziej efektywny w przypadku gdy kodek

pracuje w trybie niskich przeptywnosci bitowych.

7 PODSUMOWANIE

Przedstawione wyniki badah wskazuja, iz autorowi udalo si¢ osiagna¢ wszystkie
zatozone cele gtdowne oraz dodatkowe rozprawy doktorskiej. Do autorskiego wktadu w

dziedzing kodowania sygnatow fonicznych mozna zaliczy¢:

e algorytm estymacji tonalno$ci komponentéw widmowych pozwalajacy na
wiarygodna estymacj¢ tonalno$ci  zaréwno komponentéw  tonalnych
niemodulowanych jak i modulowanych. Ponadto zaproponowano dwie metody
jego sprzezenia z modelem psychoakustycznym stosowanym w kodekach MP3
oraz AAC,

e detektor podpasm sygnatu zawierajacych wylacznie sktadowe szumowe, ktére
moga by¢ kodowane zgodnie z technika PNS. Detektor ten wykorzystuje
zaproponowany w rozprawie estymator tonalnosci, ktéry stanowi integralna
cze$¢ modelu psychoakustycznego. Z tego wzgledu jego ztozonosé
obliczeniowa jest nizsza niz w przypadku gdy stosowana jest dedykowana
metoda detekcji podpasm szumowych,

e wyniki badan pozwalajace okresli¢ wplyw wykorzystanego estymatora
tonalnosci na wynikowa jako$¢ kodowania sygnatéw fonicznych z
wykorzystaniem metod perceptualnych. Wyniki te wskazuja na to, iz wybor
metody estymacji tonalno$ci ma znaczacy wplyw na jako$¢ zapewniana przez
dany system kodowania. Ponadto wykazano, ze stosowanie zaproponowanego w
rozprawie estymatora tonalno$ci komponentéw widmowych w miejsce
estymatora zdefiniowanego w standardzie MPEG pozwala na ograniczenie

znieksztatcen wprowadzanych w procesie kodowania perceptualnego.

Biorac pod uwage osiagnig¢te cele mozna stwierdzi¢, iz obie tezy rozprawy zostaly

udowodnione.



