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Abbreviations: 
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CO- cardiac output 
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COX- cyclooxygenase 
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I. THEORETICAL PART 

1. Introduction 

 

So far, all known living systems as plants, microorganisms, animals and human 

beings, are characterized by dynamic homeostasis state which means that they are changing 

over time. Thus the key task of each organism is to keep internal balance in response to 

exogenous stimuli. During whole life various biological systems are exposed to different 

factors that can disturb their own homeostasis. For instance, the pathological processes related 

to disease initiation can cause changes on all biological organization levels. However, the 

prediction of the living systems’ behavior may be difficult in view of a single biochemical 

component. Therefore to describe  diversity of the networked interactions in a specific 

biological organism, the multidisciplinary platforms based on both measurement technologies 

and mathematical models are mandatory. In biomedical research, to understand 

pathomechanisms of complex disorders, usually, single factor as gene, protein or enzyme has 

been concerned. Recently, the extensive development in the field of systems biology, has 

provided a new multifactorial insight into pathological processes responsible for disease 

initiation, progress or recurrence. 

 Thanks to significant improvements in sensitive analytical techniques and advanced 

bioinformatics tools, there are constant possibilities to expand the knowledge on human 

metabolites composition. Similarly to well defined genome or proteome, metabolome 

determines complement of all small molecule metabolites in biological system under 

particular state. Since, the genome or proteome modifications predict what may occur, 

metabolite alterations reflect what had already happened on cellular level of the living system. 

In this sense, metabolome is a chemical representation of the molecular phenotype of an 

particular organism. Thus new approaches, such as: metabonomics or metabolomics have 

recently emerged in existing –omics revolution. However, comprehensive understanding of 

pathological hallmarks of complex diseases may be achieved by integrative insight into all 

molecular levels. Integration of the existing systems biology branches may completely define 
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biological phenotype of disorders, especially those with unexplained pathomechanisms. Only 

such approaches guarantee the holistic, against to reductionistic, view into the life systems [1]. 

 

2. Metabolomics in the context of systems biology 

 

 

To understand the complex and dynamic living systems the holistic and 

integrative approach, namely systems biology (systeomics), is required. Systeomics looks 

into the  structure and dynamics of various biological organization levels of the living 

systems such as: cells, tissues or organisms [2]. Therefore, the systems biology aims to 

predict the behavior of the whole system on the basis of the set of biological components 

and interactions between them. Among these systems biology tools, so-called -omics 

sciences, genomics, transcriptomics, proteomics or metabolomics, play a crucial role in 

understanding molecular processes at the different biological organization levels. The 

development of  genomics  provided the sequencing of any organisms genome and 

initiated the progress of other systeomics branches as transcriptomics and proteomics 

which are focused on measurement of mRNA transcription level (transcriptome) or 

proteins abundance (proteome), respectively. Subsequently, the changes at proteome level 

stimulated further determination of low-molecular-weight molecules, namely metabolites. 

Therefore, the general flow of biological information through –omic cascade (Figure 1) in 

living systems goes from genes via transcripts, and proteins to metabolites. However, it 

should be underlined that there are numerous feedback interactions from metabolites to 

proteins, transcripts or genes, as well as others. For that reason, the development of new –

omic approaches in the field of systems biology have recently been reported. For instance, 

the fluxomics studies turnover of the molecules in the metabolic flux which determines all 

the biological processes such as: cellular signaling, transport or regulation [3].  

Additionally, metabolites level reflect the dynamic changes in the genome, transcriptome 

and proteome so that it is thought to be the chemical representation of phenotype of an 

organism. Therefore, metabolome, defined as the total complement of all metabolites in a 

cell, tissue or organism at a given point of time, became the main point of interest in the 
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systems biology research. The intensive studies on the metabolome of the various living 

systems have resulted in metabolomics dominance in the postgenomic area.  

 

 

Figure 1. The general flow of biological information in the network –omic cascade.  

Although, the beginning of metabolomics is dated back to the 1970s, at least as 

far as in ancient Greece, the urine colour, smell and taste, that are metabolic in origin, were 

used to diagnose the diabetes, for instance [4]. Nevertheless, the studies initiated in the 

1970s by Horning et al. [5,6] and also by Robinson and Pauling [7] brought new insight 

into metabolomics research, which was focused not only on single metabolite analysis but 

also on total state-specific metabolic profile in biological matrices. During the last 

decades, modern definitions of metabonomics and metabolomics have been introduced. 

Metabonomics was defined by  Nicholson [8], as  the quantitative measurement of the 

dynamic multiparametric metabolic response of living systems to pathophysiological 

stimuli or genetic modification. Subsequently, Fiehn [9] set metabolomics as a 
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comprehensive and quantitative analysis of all metabolites in a system. It can be noticed, 

that the difference between these terms is subtle and rather philosophical than technical. So 

that, in practice, these definitions are often used interchangeably and employ the same 

analytical and modeling procedures [4].  

Nowadays, metabolomics is becoming the dominant and integral technique in 

systems biology. As a terminal representation downstream from the genome, transcriptome 

and proteome, metabolome is considered to be the link of genotype-to-phenotype gap. 

Additionally, the continuous development in an analytical instrumentation and 

bioinformatics improves the metabolome measurement and identification. Therefore, the 

metabolomics is often implicated in clinical, pharmaceutical, toxicological and 

environmental research.  

Summarizing, to understand complex and dynamic response of living systems to 

various stimuli, such as: pathological process, drug treatment, genetic modification or 

environmental factors, the integration of networked –omics technologies is required.  

2.1 Research strategies in metabolomics 

 

The metabolome size is related to species or organisms genus. In case of 

microorganisms it usually consists of a few hundreds of metabolites (for instance 500 

metabolites in Escherichia coli) [10]. The metabolome of plants contains around a few 

thousands of small molecular-weight metabolites. However, metabolome composition of each 

organism as well as metabolome size have not been fully specified yet. There are few 

commercially available databases containing information about metabolites presented in 

human biological matrices. For example, Human Metabolome Database (www.hmdb.ca) 

comprises around 40000 human metabolites, however it has been constantly updated and 

expanded. Additionally, it should be taken into account that any metabolome size may be 

overestimated due to the presence of various exogenous metabolites derived from diet, drugs 

as well as compounds produced by endogenous gut microflora [11]. Therefore, the human 

metabolome is still of great interest and has been extensively studied. 
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In existing area of systems biology revolution, metabolomics which aims at 

identification and quantification of metabolites present in a biological system, has achieved  a 

dominant position. 

There are few research strategies that have emerged in the metabolomics experiments 

such as: metabolic profiling, metabolic fingerprinting and metabolic footprinting [12]: 

a) Metabolic profiling, as a targeted approach, relies on the identification and 

quantification of a selected group of metabolites characterized by similar 

physicochemical properties (i.e. carbohydrates, amino acids, organic acids, 

nucleosides) or belonging to the same biochemical pathway (i.e., glycolysis, 

gluconeogenesis, β-oxidation or citric acid cycle). In this approach the hypothesis on 

metabolite profile which is altered due to specific gene mutation, disease progression, 

drug treatment or diet intervention, is given beforehand. Therefore, analytical 

techniques applied in sample preparation and determination should provide selectivity 

for selected metabolites. Metabolic profiling may be termed as the extension of 

metabolite targeted analysis which refers to precise detection of one or small subset of 

chosen low-molecular-weight compounds in order to define the effects of the specific 

stimuli on the metabolism.  

b) Metabolic fingerprinting, as an approach that is not driven by any preliminary 

assumption, focuses on the whole metabolome determination. There is no previous 

knowledge on compounds that should be investigated. The fingerprint can be defined 

as a unique pattern describing the metabolite perturbations under a particular condition. 

Therefore the main goal of the metabolic fingerprinting is to identify and qualify as 

many metabolites as possible in biological matrices. Due to the complexity of the 

biological systems and physicochemical diversity of all compounds present in the 

metabolome, there is no single analytical platform for metabolic fingerprinting 

analysis. However, in case of sample treatment procedure, non-selective methods 

should be used to provide efficient extraction of metabolites, especially from complex 

matrices. Metabolic fingerprinting is often used in a comparative analysis of two 

groups (i.e. healthy vs. disease, untreated vs. treated) which makes it a promising tool 

in disease diagnosis and prognosis as well as in pharmaceutical research.  
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c) Metabolic footprinting is a methodology often applied in microbiological or 

biotechnological studies. This approach, as compared to the previous ones, is not 

focused on the intracellular metabolites, but rather on compounds secreted or failed to 

be taken by cells from specific media. Therefore the metabolic footprint is defined as 

exometabolome. Due to close relationship between intracellular and extracellular 

metabolism, metabolic footprinting can provide the integrative interpretation of 

metabolic network of specific living system.  

 

The graphical representation of common research strategies in metabolomics was 

displayed in Figure 2. To sum up, the choice of a proper approach for successful 

metabolomics study is strictly related to the nature of the biological questions designed to 

answer. As a general role, it can be considered that metabolic profiling is dedicated rather 

for targeted metabolomic experiment, while metabolic fingerprinting is preferred in 

untargeted studies. However, the terms: profiling and fingerprinting are often used 

interchangeably in the literature. Therefore, as the real terms, targeted and untargeted 

metabolomics, should be considered. Due to the fact that plasma metabolic fingerprinting 

has been applied in this thesis the further sections of this chapter are limited to this 

particular metabolomics strategy. 
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Figure 2. Common research strategies in metabolomics [12]. 

 

2.2. Typical workflow in untargeted metabolic fingerprinting 

 

Untargeted metabolic fingerprinting is rather hypothesis generating than hypothesis- 

driven investigation. Thus the careful arrangement of the whole experiment is mandatory in 

order to maximize the number of metabolites detected, as well as to provide reliable final 

results. Crucial steps comprise study design followed by sample collection; metabolite 

extraction; sample analysis; data acquisition, processing and analysis; finally the identification 

of metabolites which leads to biochemical interpretation [13]. Recent development in 

analytical instrumentation mainly sensitivity, acquisition speed, resolution and accuracy, as 

well as complexity of the biological systems investigated during untargeted metabolic 

fingerprinting lead to generation of  multidimensional data matrices obtained after automated 

processing step. Therefore, the use of advanced bioinformatic and computational tools is 

required to extract biologically relevant information from complex data sets. To select 

metabolite changes that may be correlated to the specific biological question, multivariate 
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statistical methods must be applied to provide holistic view of the system under study [13]. 

Finally, selected metabolites identification and biochemical pathways analysis provide the 

understanding of biological processes that determine metabolic signature of specific 

phenotype. The typical workflow in the untargeted metabolomics was shown in Figure 3.  

 

Figure 3. Scheme of the typical workflow in untargeted metabolic fingerprinting approach. 

 

2.2.1. Study design and metabolite extraction 

 

The biological, pre-analytical and analytical variation can affect each metabolomic 

experiment. In comparison to animal studies in which experimental conditions or sample 

handling are usually easy to standardize, clinical experiments based on human population are 

more exposed to variation introduced by biological or process factors. Thus, the careful 

planning of the study constitutes a critical step in metabolic fingerprinting experiment to 

ensure robust and reliable biological conclusions. First of all, when two study groups (case vs. 
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case or case vs. control) are to be investigated, it is crucial to match them by age, gender or 

body mass index (BMI), to avoid significant differences that are not related to the biological 

aim of the study. These factors have been reported to have a huge influence on global 

metabolic fingerprints [14]. Additionally, in large-scale metabolomics studies concerning 

human population, samples are often collected at multiple research institutions either from one 

or different countries. Therefore, the standard operating procedure (SOP) is mandatory during 

the sample collection and processing steps. Especially, collection tubes, time of sampling, time 

on ice before freezing, temperature and time of storage, the number of thaw-freeze cycles and 

condition of sample transport, should be standardized due to possible introduction of 

undesirable bias [15]. These factors mainly affect blood plasma or serum which are composed 

of enzymes that can be active after sample collection, and subsequently are able to change the 

metabolic composition of the biological matrix [16]. Another factor is collection time, as the 

diurnal variation has a huge impact also on urine metabolic fingerprints [17]. To sum up, the 

careful study design and standardized sample collection are critical points during human-based 

untargeted metabolomics studies and provide robust and biologically significant results, 

mainly of clinical investigations.   

The next step in metabolic fingerprinting experiment is metabolite extraction from 

obtained matrices before sample analysis. Since, the untargeted metabolomics approach aims 

to determine as many metabolites as possible in biological samples, the sample preparation 

should provide their efficient extraction and minimize metabolites losses. Therefore, in 

metabolic fingerprinting study the choice of proper sample treatment procedure will strictly 

depend on the type of biological matrix and analytical platform that is going to be used in the 

sample analysis. The blood (both plasma or serum), urine, saliva, cerebrospinal fluid (CSF) or 

various tissue extracts are examples of biological samples, which are the most commonly used 

in untargeted metabolomics to define the metabolic signature in particular state, such as: 

disease progression, pharmacotherapy, genetic modification of environmental stress. However, 

due to almost noninvasive sampling and reflection of global metabolic response to different 

stimuli, the blood and urine samples dominate in metabolic fingerprinting approach.  

Due to small amount of high molecular mass compounds (i.e., lipoproteins) in urine, 

the sample treatment is much simpler as compared to blood or tissues. Firstly, the 
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centrifugation is performed to remove solid particles and subsequently the dilution with water 

(from 1:1 to 1:3 v/v, depending on urine origin) is adopted. As an alternative technique to 

remove urinary proteins and solid particles, the use of molecular weight cut-off filters was 

proposed [18], however the higher sample contamination risk should be considered during this 

approach. In case of urine fingerprinting by liquid chromatography coupled with mass 

spectrometry with the use of electrospray ionization mode (LC-ESI-MS) the direct injection 

technique was reported [19]. Although this approach provides rapid metabolic fingerprinting 

and minimizes the metabolites’ losses, it can result in ion suppression, ion source 

contamination or column back-pressure [19].  

Blood plasma or serum, due to high proteins concentration and enzymatic activity, 

require more complex sample preparation for LC-MS based metabolic fingerprinting, as 

compared to urine samples. Thus, the first step involves sample deproteinization with the use 

of organic solvents (1:3 v/v ratio and low temperature are recommended). Then, the 

centrifugation is performed followed by supernatant filtration before sample analysis. Such 

approach, mainly provides the hydrophobic compounds extraction. Therefore, the new 

methodology, called in-vial dual extraction (IVDE) was introduced in the area of plasma 

metabolic fingerprinting research [20]. IVDE approach is a one-step extraction method, that 

allows to obtain two separated layers: lipophilic and hydrophilic ones, in one vial which 

provides the wide metabolite coverage from a single plasma aliquot.  

Using nuclear magnetic resonance (NMR) spectroscopy to urine or blood metabolic 

fingerprinting, the sample preparation step is often omitted or reduced to sample dilution as 

well as phosphate buffer, deuterated water, saline or deionized water addition [21]. Moreover, 

NMR possesses benefits by means of its non-destructiveness and therefore samples may be 

subjected for the analysis together with the use of other analytical platform. While gas 

chromatography coupled with mass spectrometry (GC-MS) is chosen to global metabolic 

fingerprinting of both urine or blood samples, metabolite extraction requires complicated and 

time-consuming procedures. Due to the fact, that many interesting groups of compounds 

present in metabolome, as sugars, amino acids, nucleosides are characterized by high polarity 

and lack of volatility, the chemical derivatization is essential before GC-MS analysis. Due to 

the wide diversity of metabolites, two-stage derivatization is the most commonly employed 
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procedure [22]. After sample deproteinization, the extract is dried up and then dissolved in 

pyridine and subsequently reacts with methoxyamine hydrochloride and N-methyl-

N(trimethylsilyl)-trifluoracetamide (MSTFA). The first methoxymation step provides the 

carbonyl groups conversion to oximes. During the second stage, the trimethylsilyl (TMS) 

esters are formed to replace exchangeable protons in the molecules. In case of urine sample, 

an additional step, providing urea depletion via treatment with urease, is required to avoid urea 

interference with other important metabolites [23]. Unfortunately, the chemical derivatization, 

even though is mandatory before GC-MS analysis, has a huge potential to introduce pre-

analytical variation as well as metabolites losses during the sample preparation step.  

 

2.2.2 Analytical platforms in sample analysis 

 

Due to physicochemical diversity of the metabolome as well as complexity of the 

living systems, there is no single analytical platform to cover all metabolites in biological 

matrices and for that reason the numerous analytical techniques are applied in metabolic 

fingerprinting approach [24]. However, NMR and mass spectrometry (MS) coupled with 

various separation techniques have become emerging and comprehensive platforms in 

untargeted metabolomics. The main advantages and drawbacks of MS in comparison with 

NMR technique in the context of untargeted metabolomics were summarized in Table 1.  
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Table 1. The main advantages and drawbacks of MS and NMR application in metabolomics 

studies [25]. 

 MS NMR 

Quantitation  Low  High 

Reproducibility Low  High  

Sensitivity High Low 

Detection range Wider  

Coupled with chromatographic 

separation (i.e., LC,GC or CE) 

Narrower 

Biased toward higher abundant 

metabolites 

Overlapping signals are not easily 

resolved 

Sample volume requirement  200-400 µl Few µl 

Sample recovery Destructive Non-destructive 

Tissue analysis Yes, after extraction Yes 

Application of magic angle 

spinning (MAS) NMR 

Metabolite identification facility Complicated 

Uncompleted databases provide 

only putative identification 

Confirmation by tandem MS 

required 

Easier 

Databases availability 

1D and 2D spectrum analysis  

 

 

NMR determines the magnetic resonance of nuclei in molecules and it is dedicated 

practically to all compounds containing hydrogen atoms. MS aims to measure ionized 

molecules based on their mass-to-charge (m/z) ratio. NMR technology has been considered to 

be a pioneering platform in metabolomics and was successfully applied in toxicological and 

pharmaceutical studies [26,27] as well as MAS NMR approach was dedicated to the 

determination of solid-state matrices such as tissues or intact cells [28]. While NMR is an 

unbiased, robust, reproducible, non-destructive and non-selective technique with almost no 

sample treatment requirement it suffers from low sensitivity and lack of separation 

component. Therefore, MS hyphenated with an initial separation method has been the most 

frequently used platform in untargeted metabolic fingerprinting. Among these approaches, 

LC-MS, GC-MS or capillary electrophoresis coupled with mass spectrometry (CE-MS) have 

emerged in the area of metabolome analysis.  
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The widespread availability and continuous development of instrumentation have 

resulted in extensive LC-MS applications in metabolic fingerprinting. LC-MS is a suitable 

technique in non-volatile, thermally unstable, high- or low-molecular-weight compounds that 

are characterized by wide range of polarity. Thus, it is a preferable platform for biofluids 

(either urine or blood) determination and does not require derivatization step, which makes the 

sample pretreatment more simple in comparison to GC-MS technique. The selectivity of LC 

system strictly depends on the chemical characterization of the chromatographic column. 

Generally, in metabolic fingerprinting with the use of LC-MS, metabolites’ separation might 

be provided with the use of reversed-phase (RP) columns and electrospray ionization (ESI) 

both in positive and negative mode to obtain metabolome coverage in biological matrices. 

Since, the gradient RP separations are intended for medium or low polar compounds, they do 

not provide proper retention of water-soluble metabolites belonging to the class of amino acids 

or sugars. To overcome this limitation, the newly designed columns such as: hydrophilic 

interaction liquid chromatography (HILIC) [29] or weak-ion exchange column (i.e., Waters 

Atlantis metabonomics column) have been developed. Additionally, the LC column 

dimensions (i.e., 4.6 mm x 150 mm) or particle sizes (i.e., 5 µm) will affect the sensitivity and 

separation power. To avoid this problem and improve chromatographic resolution, ultra high-

performance liquid chromatography (UHPLC) with the use of 2.1 mm i.d. column packed with 

2 µm particles, was successfully applied in metabolomics study of urine samples from 

different rodents (rat and mouse) [30]. There is one initial development of LC-NMR-MS 

which combines high-throughput of NMR with the high sensitivity and resolution of LC-MS 

[31].  

GC employing high-resolution capillary column and combined with MS detection, is 

a powerful platform for the global metabolic fingerprinting analysis. However, it is strictly 

dedicated for volatile and thermally stable compounds, therefore the complicated sample 

derivatization step is necessary, which can result in undesirable metabolites’ losses. When 

GC-MS is applied in untargeted metabolomic experiment, the electron impact (EI) or chemical 

ionization (CI) are commonly used, which provide putative identification of metabolites and 

the high availability of numerous structural and mass spectral libraries. Recent development of 

multidimensional GC, defined as GCxGC, improved the resolution, robustness and sensitivity 

as compared to GC in one dimension mode. In this technology, the first longer column 
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(typically 30 m) separates analytes based on their volatility, whereas the second and shorter 

column (typically 1.5 m) separates the investigated compounds based on their polarity. Thus, 

after elution from the first column, analytes are trapped, cryogenically focused and 

subsequently separated [21]. Multidimensional GC-MS approach was used in global metabolic 

profiling to analyze the spleen extracts from obese and lean mice [32].  

CE-MS technique, in comparison to LC-MS or GC-MS methodologies, has been 

relatively rarely used approach in untargeted metabolomics. In relation to metabolic 

fingerprinting, it is a technique suitable for polar and charged compounds as those present in 

urine samples or culture media, which requires minimal sample preparation before proper 

analysis. However, extensive research is being conducted concerning CE-MS application in 

global metabolite profiling of serum samples [33]. CE-MS has been a technique of choice for 

water-soluble and charged molecules, which provides highly complementary alternative to 

other separation methods as LC or GC. The main strengths of this analytical platform, 

including high resolution power, small amounts of sample or reagents requirements which 

ensures inexpensive analyses, confirm the potential interest of its application in untargeted 

metabolomics research. The main drawback of CE-MS platform is an unstable electroosmotic 

flow resulting in notable migration time shift during single run analysis [34]. For comparative 

purposes, the main strengths and limitations of LC-MS, GC-MS and CE-MS were collected in 

Table 2.  

Other analytical methodologies, used in metabolomics studies include direct mass 

spectrometry infusion (DIMS) or Fourier-transform infrared (FT-IR) spectroscopy. DIMS 

technique is a high-throughput tool since typically one minute analysis time is applied, which 

allows to determine hundreds of samples during one day. This approach was successfully used 

in metabolomics studies of plant or microbial experiments [35]. However, DIMS technique is 

not fully suitable for complex biological samples such as urine or blood, due to matrix effects, 

which has a negative influence on ionization efficiency and subsequently on the analysis 

result. FT-IR spectroscopy enables rapid, nondestructive, reagentless and high-throughput 

determination of various types of samples, although with many limitations such as sensitivity, 

resolution and identification capability [36].  
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As a final conclusion, it should be underlined that multiplatform-based metabolome 

analysis is needed to reveal all biochemical perturbations which define the metabolic picture 

of biological phenotype. Thus, the continuous improvements both in resolution of separation 

methods and sensitivity of the MS detection, can be observed.  

Table 2. The summary of advantages and limitations of the most commonly used analytical 

platforms in untargeted metabolomics [35].  

Analytical technique Advantages Limitations 

LC-MS - high sensitivity and resolution 

- wide detection range due to chemical diversity of 

the available columns 

- coupled with time of flight analyzer provides high 

accuracy of mass  determination 

- no derivatization required  

- shorter analysis time, lower reagents consumption 

and higher separation power in case of UHPLC 

 

- due to possible ion suppression the 

analytes separation is required for 

reliable determination and identification 

- matrix effect 

- lack of databases containing universal 

spectral libraries for automated 

compound identification 

- analysis depending on the mass 

analyzer  

- some restrictions on LC eluents 

GC-MS - high sensitivity and resolution 

- high reproducibility 

- easier compound identification due to numerous 

spectral libraries availability 

- coupled with time of flight analyzer provides high 

accuracy of compounds  determination 

 

- the application limited to volatile and 

low-molecular-weight compounds 

- the extensive sample derivatization 

requirement 

- possible compounds losses in sample 

pretreatment step 

- cost of analysis depending on the mass 

analyzer 

CE-MS - higher resolution power comparing to LC-MS or 

GC-MS 

- low sample amount  

- low reagents consumption 

- low analysis cost 

- lower sensitivity as compared to LC-

MS or GC-MS 

- lower reproducibility than in GC-MS 

or LC-MS 

- lack of databases containing universal 

spectral libraries for automated 

compound identification 
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2.2.3 Raw data extraction and preprocessing 

 

Due to the high sensitivity of the analytical platforms currently used to measure 

metabolome and the diversity of the living systems under investigation, thousands of potential 

metabolites can be detected in a single biological sample. The accurate number of low-

molecular- weight molecules closely depends on the selectivity and resolution of the 

separation technique as well as sensitivity of MS detectors. Moreover, the application of high 

throughput methodologies results in the increased quantity of data but mainly influences  its 

properties. The consequences of these facts include [37]: 

a) notably high number of measured features relative to small number of observation 

used in the metabolomics study, 

b) large noise contribution, 

c)  analytical bias variation, 

d) many possible missing values, 

e) analytical response drift. 

  

The common feature of MS-based metabolomic raw data is its three-dimensional 

structure in which each detected point is characterized by m/z ratio, retention time (RT) and 

abundance. Additionally, ions with different m/z can have the same RT value, so the coelution 

is a common issue in MS-based technologies. To overcome this difficulties, some softwares 

for untargeted metabolomic data preprocessing, for instance MetAlign 

(www.metalign.wur.nl), MZmine (mzmine.sourceforge.net) and XCMS 

(metlin.scripps.edu/download) [38] have been designed recently to provide automated 

extraction of relevant information from thousands data points detected in a single biological 

sample. These free available tools, in case of LC-ESI-MS raw data, provide the background 

cutting off and single component extraction based on its accurate mass, RT, charge state, 

isotopic distribution, possible adducts during ionization process (H
+
, H

-
, Na

+
, K

+
, HCOO

-
 or 

neutral water loss). Some MS instrumentation manufacturers, such as Agilent Technologies 

deliver tools, mainly MassHunter Qualitative Analysis Software including algorithm called 

Molecular Feature Extraction (MFE), which is useful in untargeted metabolomic data 

preprocessing. However, the Automated Mass Spectral Deconvolution and Identification 
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System (AMDIS), is a dominant software for raw data extraction obtained in GC-MS-based 

metabolic fingerprinting experiment [39]. 

After data deconvolution, the alignment, normalization and scaling steps are 

recommended in untargeted metabolomics to provide proper data treatment before statistical 

analysis. Due to analytical variation during the samples analysis, the RT shift often occurs in 

MS-based analytical platforms, therefore the alignment is needed to ensure that the same 

molecular feature (ideally, metabolite) is marked as the same entity across all analyzed 

samples. Some multialignment tools such as Time Correlation Optimized Warping (COW), 

Parametric Time Warping or Dynamic Time Warping (DTW) have been developed [40,41]. 

While MS-based untargeted metabolomics study is being performed, an undesirable 

systematic bias derived from variation in sample concentration (i.e. urine, blood, saliva) often 

occurs. Additionally, measurement errors related matrix effects, especially ion suppression, 

can be another source of variability in signal intensities. To minimize problems derived from 

either biological or analytical variation the normalization is highly recommended. Depending 

on the matrix type under metabolic fingerprinting study there are various normalization 

strategies including internal standards (IS) addition, MS total signal (MSTS), MS total useful 

signal (MSTUS), MS group useful signal (MSGUS), median fold change normalization 

(MFC) and  urine volume (UVol) or creatinine concentration dedicated for urine samples 

[42,43]. Data scaling aims to adjust weight of each potential metabolite with the scaling factor 

derived either from data dispersion (i.e. standard deviation) or size measurement (i.e. mean). 

The unit variance scaling (UV-scaling), also termed as autoscaling, and Pareto scaling belong 

to the most common scaling types applied in metabolomics studies [44]. The comparison of 

various scaling techniques was summarized in Table 3.  
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Table 3. The comparison of various scaling techniques [44].  

Method Scaling 

factor 

Goal Advantages Disadvantages 

Autoscaling standard 

deviation 

compare 

metabolites 

based on 

correlations 

all metabolites 

become equally 

important 

inflation of the 

measurement errors 

Range 

scaling 

biological 

range 

compare 

metabolites 

relative to the 

biological 

response range 

all metabolites 

become equally 

important. 

 

inflation of the 

measurement errors 

and sensitive to 

outliers 

Pareto 

scaling 

square root 

of 

standard 

deviation 

reduce the 

relative 

importance of 

large values 

 

stays closer to the 

original 

measurement 

than autoscaling 

sensitive to large 

fold 

changes 

Vast scaling coefficient 

of variation 

focus on the 

metabolites that 

show small  

fluctuations 

aims for robustness, 

can use prior group 

knowledge 

not suited for large 

induced variation 

without group 

structure 

Level 

scaling 

mean focus on relative 

response 

suited for 

identification 

of e.g. biomarkers 

inflation of the 

measurement errors 

 

2.2.4  Multivariate data analysis 

 

In untargeted metabolic fingerprinting experiment numerous both known or unknown 

metabolites are detected and need to be considered simultaneously, to provide holistic view of 

the biological system under study. Therefore, the univariate statistical methods are insufficient 

for this purpose and the multivariate chemometric approaches should be applied to reveal the 

correlation structure between selected metabolites. The leading multivariate techniques used in 

untargeted metabolomics are principal component analysis (PCA) and partial lest squares 

regression (PLS) including derivative approaches such as partial lest squares discriminant 

analysis (PLS-DA) or orthogonal PLS (OPLS).  

PCA belongs to unsupervised methods (no class knowledge considered), which aims 

to explain variance existing in the data set by smaller number of newly constructed principal 

components (PCs) [45]. In metabolomics, the PCs represent the metabolites contribution into 
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variance of the obtained data set. Therefore, each PC is a linear combination of original 

variables and explains as much variance in the original data as possible without loss of 

significant information. In general, PCA method transforms original data into low dimensional 

model plane. PCA model can be displayed as either score plot or loading plot. The position of 

each sample in the score plot determines its similarity or dissimilarity in comparison to the rest 

of the objects. In turn, a loading plot, represents the relation among all used metabolites and 

determines their influence on the specific PC. PCA provides dimensionality reduction, data 

visualization, clustering and sample classification. Therefore is often used as a first 

exploratory technique in data analysis, especially in a hypothesis-free untargeted 

metabolomics.  

PLS regression method, as a supervised technique, aims to reveal inherent patterns as 

distinct metabolite profiles that are strictly related to the predefined biological response. For 

instance, PLS-DA relates the data matrix (i.e. multivariate metabolite data) to the response 

vector (sample class label, like case-control) based on latent variables (LV) construction [46].  

PLS-DA is usually used for discrimination purposes or even to predict class membership of 

undefined samples based on a training set of known class distributions. OPLS technique, as an 

extension of PLS, has also been developed [47]. A main drawback of supervised methods is 

the susceptibility to overfitting, which can be defined as excessive learning on a training 

dataset, which may confirm the noise included during the statistical model construction [48]. 

So far, some validation techniques like cross validation [49] or bootstrapping [50] have been 

proposed to overcome model overfitting of multivariate statistical model. It has to be noticed, 

that there are many other multivariate statistical techniques, both unsupervised and supervised,  

such as cluster analysis (CA), hierarchical cluster analysis (HCA), support vector machine 

(SVM) or k-nearest neighbors algorithm (k-NN), that can be successfully applied in 

metabolomics research [51].  
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2.2.5 Metabolite identification and biochemical interpretation 

 

In untargeted metabolic fingerprinting, the metabolite identification is the most time-

consuming step, especially in case of LC-MS based study. Significant compounds selected in 

multivariate analysis, are described only by monoisotopic mass value. To define the identity of  

potential metabolites of interest, their accurate masses are firstly searched in free available 

databases such as: METLIN (www.metlin.scripps.edu), KEGG (www.genome.jp/kegg), 

LIPIDMAPS (www.lipidmaps.org/), HMDB (www.hmdb.ca) and all simultaneously accessed 

by recently developed search engine, CEU MassMediator 

(http://ceumass.eps.uspceu.es/mediator). However, the match found in databases ensures only 

the putative identification and needs to be confirmed by tandem MS/MS analysis. The most 

reliable metabolite identification is provided by standard determination by tandem MS/MS 

platform. Then comparison of fragmentation pattern of both standard and metabolite candidate 

can confirm compound identity. Unfortunately, there are no available standards for many 

metabolites included in human metabolome. Moreover, although metabolite databases are still 

extensively developed and expanded, numerous metabolite features originated from biological 

samples do not have any matches. In comparison to LC-MS, metabolite identification detected 

in GC-MS based metabolic fingerprinting experiment is much easier. The application of high 

reproducible EI ionization mode results in universal mass spectral libraries availability, for 

instance NIST/EPA/NIH (www.nist.gov/srd/nist1.htm).  

The final step in untargeted metabolomics approach focuses on biochemical 

interpretation. The identified metabolites are located in biochemical pathways which are 

characteristic for certain organism under the investigation. Moreover, the crucial task is to find 

connections between biochemical pathways involved in biological response induced by 

various stimuli such as disease process, treatment intervention or gene modification. There are  

few free available databases useful for biochemical pathways analysis, for instance KEGG or 

ExPASy (www.expasy.org).  
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3. Mass spectrometry based metabolomics 

 

MS is an emerging analytical platform in metabolomics research. Among numerous 

advantages, the high sensitivity should be underlined. Additionally, its combination with 

various separation techniques (mainly chromatographic or electromigration) minimizes the 

complexity of mass spectra due to the fact, that potential metabolites are separated firstly in 

time dimension which also delivers complementary information about physico-chemical 

features of compounds.  

Therefore, the MS technology is the most promising tool for untargeted metabolic 

fingerprinting approach. Although, numerous technical improvements have continuously been 

designed to enhance the MS sensitivity. There are few principal parts in mass spectrometer 

construction, including sample inlet, ion source, mass analyzer, detector and computer (Figure 

4).  

 

Figure 4. Typical mass spectrometer construction.  
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3.1 Ionization modes 

 

Prior to MS analysis, samples must be ionized. There are numerous and various 

ionization techniques applied in MS-based experiments. 

 

a) Electron ionization  

 

Electron ionization (also termed as electron impact- EI) is mainly dedicated for relatively 

volatile, thermally stable and low-molecular-weight molecules. Thus, EI is a suitable 

ionization mode for GC-MS platform. In this case, a sample usually an effluent from GC 

part, is introduced into high vacuum source. Then, analytes present in gas-phase are 

exposed to high-energy electrons stream (usually 70 eV). As a result, single and positively 

charged ions occur. However, the energy excess remaining after ionization process results 

in fragmentation phenomenon. Thus, EI belongs to the “hard” ionization techniques. The 

high reproducibility of both ionization and fragmentation processes allows to create 

commercially available mass spectral libraries, containing hundred thousand spectra, 

which can be useful for both known and unknown metabolites identification.  

 

b) Chemical ionization (CI) 

 

Similarly to EI, chemical ionization (CI) is mostly applied in combination with GC-MS 

technique. In contrast to EI, CI is classified to “soft” ionization modes and was developed 

to reduce fragmentation process during ionization. In CI mode, sample is entered to a 

chamber with reagent gas, mainly methane, isobutene or ammonia (at pressure 0.3-1.0 

torr). Firstly, the reagent gas is ionized by electrons beam to produce reagent ions. Then 

the analytes present in sample react with ionized gas reagent and both positive and 

negative analytes’ ions can be produced. For negative ionization mode, usually the mixture 

of CH4 and NO2 is used.  
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c) Electrospray ionization (ESI) 

 

Electrospray ionization (ESI) is the most commonly applied mode in metabolomics 

research, especially in untargeted metabolic fingerprinting. Electrospray is performed 

under atmospheric pressure and so that the ionization is possible without previous sample 

evaporation. Thus, possible ionization of a sample in liquid state simplifies the MS 

combination with chromatographic or electromigration techniques. Electrospray process 

relies on formation and subsequent evaporation of ionized liquid droplets [52]. First, 

samples are introduced into the ion source directly by the syringe, but most often with 

mobile phase from LC part. The liquid sample is transferred via the metal nebulization 

capillary (held at high voltage 1-3 kV) and sprayed at atmospheric pressure by nebulizing 

gas (often nitrogen) in ionization chamber to form charged droplets. These droplets are 

constantly evaporated by drying gas and are subjected to decrease in size, which causes the 

increasing charge concentration in droplets. This process is continued till the charge 

repulsion overcomes surface tension, termed as “Rayleigh” limit and as a consequence the 

coulombic explosion occurs. This phenomenon is repeated several times until the produced 

ions are desorbed into the gas phase. Finally, the ions are transported into the heated 

capillary, which is an inlet of mass spectrometer. The ESI mechanism is shown in Figure 5 

[53].  
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Figure 5. The electrospray ionization mechanism [53].  

 

The ions’ transfer is provided by difference in potential between capillary, which 

introduces liquid sample with zero potential, and heated inlet capillary, which possesses 

negative (in positive ionization mode) or positive potential (in negative ionization mode). 

Moreover, the inlet capillary is the component, which separates two parts under different 

pressure conditions. The atmospheric pressure exists in the ion source, however inside the 

mass spectrometer the high vacuum is applied. Therefore, both pressure and voltage 

differences lead to the ions transfer into the inlet capillary, followed by their acceleration 

and entrance to mass analyzer.  

ESI is a soft ionization technique and is dedicated to non-volatile, polar and large 

molecular size compounds. The multicharging phenomenon that can appear during the 

ionization process allows to detect large molecules, because finally their m/z ratios are 

measured by mass analyzer. In practical point of view, when  LC-ESI-MS is performed, 

the critical point is choice of proper eluents for chromatographic purposes. They should be 

characterized by low boiling-point as well as low surface tension. The addition of weak 

acid (for positive mode) or weak base (for negative mode) into the mobile phase is 
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recommended. Additionally, it is necessary to avoid solid and non-volatile substances (i.e. 

phosphate buffers) in eluents used during LC separation, due to possible ion suppression 

which in consequence can lead to insufficient ionization. To provide reliable ESI 

performance, all ion source parameters (nebulizing and drying gas flow and temperature) 

should be optimized. They will be strictly dependent on LC eluent flow rate and 

composition. Therefore, in LC-ESI-MS, the mobile phase flow rate (in relation to the 

column dimensions) is up to 1.0 ml/min. However, recently, the modification of classical 

ESI mode, termed as nanoelectrospray (nano-ESI), was designed [54]. In this approach, 

the sample is introduced into the ion source with much lower flow rate (below 1µl/min) 

though capillary dimension is 20 µm. These improvements provide more efficient 

ionization process and reduce ion suppression problem.  

 

d) Atmospheric pressure chemical ionization (APCI) 

 

Although atmospheric pressure chemical ionization (APCI), from a technical point of view 

is very similar to ESI, the principle is different. Unlike ESI, no voltage is applied to the 

capillary, instead the heater for either analytes or eluent evaporation is employed. The 

liquid sample is introduced into the source at atmospheric pressure through heated 

nebulizer. Then corona discharge ionizes the solvent molecules similarly to CI manner and 

numerous reagent ions are produced. Ion-molecule interaction provides the ionization of 

compounds present in analyzed sample. Unlike ESI, in APCI process, ions are generated 

from neutral molecules which make this technique suitable for small (up to 1000 Da) 

analytes with low to medium polarity range. In comparison to ESI, APCI can deal with 

higher LC eluent flow rates, normally up to 2 ml/min.  

 

e) Matrix-assisted laser desorption ionization (MALDI) 

 

Matrix-assisted laser desorption ionization (MALDI) is capable to ionize  large molecules 

from samples in solid state. In general, the sample is cocrystallized with a matrix on a 

stainless-steel plate. Next, the dried sample is illuminated with a pulse of laser light which 

is absorbed by the chromophore moieties from the analytes included in the matrix. Then, 



36 

  

the photon energy is transferred to the analyte, which provides its ionization and 

desorption from the matrix. Only single charged ions are generated. MALDI represents 

soft ionization technique and typically little fragmentation can appear. The parameters that 

should be considered during MALDI performance include proper matrix type, 

analyte:matrix ratio (as a starting point 1:10
4
 is often used) and power of the laser fluence.  

 

3.2 Mass analyzers 

Molecule ions, generated in various ionization modes, are transferred into the mass 

analyzer in which they are separated based on m/z ratio. There are numerous mass analyzers 

which employ magnetic or electric field as well as time of flight, to achieve reliable resolution 

of ions and  their further detection. The main parameters of the mass analyzer include upper 

mass limit, transmission and resolution. The upper limit is defined as the highest m/z value 

that can be measured. The transmission determines the number of ions recorded by the 

detector in comparison to the number of ions generated in source. Finally, the resolution is the 

ability to separate signals from two ions with a similar m/z ratio. So far, among various types 

of mass analyzers, quadrupole (Q) analyzer, time of flight (TOF) analyzer, ion trap (IT) 

analyzer, ion mobility spectrometer (IMS) or Fourier transform ion cyclotron resonance (FT-

ICR) have been used. However, in metabolomics research the Q and TOF are emerging and 

the most powerful mass analyzers. 

The Q analyzer works in an oscillating field produced between four parallel rods of 

circular or hyperbolic cross section. The opposite rods make pairs that are characterized by the 

same potential value but with opposite polarity. Therefore, one rod pair is a specific filter for 

ions with high m/z ratio, whereas other for ions with low m/z ratio. The ion beam passes 

through the central axis of the rods in oscillating field. The ion mass and charge are the only 

factors that determine the ion trajectories. Only ions with narrow m/z ratio will be capable to 

cross , whereas others will undergo the unstable oscillation and will be rejected. The Q 

analyzer can operate in two modes, both, in scan mode when the narrow m/z ratio range will 

be measured and in SIM (single ion monitoring) mode which provide monitoring of only 

selected m/z ratio value. The advantages of the Q analyzer application are as follows: fast scan 
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of the ion beam, ability to monitor selected ion and possibility to use in tandem MS approach. 

However, the main drawback of this mass analyzer is its low resolving power.  

In turn, TOF analyzer is characterized by much higher resolution relative to Q 

analyzer. In TOF analyzer, ions of the similar kinetic energy Ek but different  m/z ratios need 

different time periods to pass a fixed distance. Therefore, lighter ions reach the detector faster 

than  the heavier ones. There are different work modes in which TOF analyzer operates. In the 

first one, linear mode, the analyzer and detector are located in the same line. Due to the fact 

that ions of the same m/z value (isobaric ions) need to reach the detector simultaneously, the 

TOF analyzer in linear mode possesses high sensitivity but low resolution. The second work 

mode with the use of reflectron was developed to overcome this limitation. This is an electric 

field that initially slows the ions, and then accelerates or reflects them back out toward the 

detector. This results in a decrease of the difference between time of flight values for the same 

m/z ratios, therefore these ions reach the detector at the same time. As a consequence of 

reflectron application, increased resolution is observed (more than 10
4
). 

Recently, the Q and TOF analyzers have been combined in one instrumentation (Q-

TOF) [55] which is useful in the context of metabolomics studies. In untargeted metabolic 

fingerprinting the Q-TOF application provides both qualitative detection of all compounds 

present in biological sample by TOF and the fragmentation pattern analysis of selected m/z 

ratios by Q analyzer. This helps in either known or unknown metabolites identification. In 

targeted metabolomics, mainly Q analyzer is employed for quantitative metabolite analysis. 

3.3 Tandem mass spectrometry 

 

Tandem mass spectrometry (MS/MS or MS
n
), as a fragmentation technique, is 

important for metabolite analysis and facilitates the comparison of experimental fragmentation 

patterns with available standards or mass spectral databases to confirm structural identity of 

potential metabolites. Information on fragmentation can be derived from numerous and 

various  combinations of mass analyzers, which provides the isolation and fragmentation of 

target ions and enables subsequent detection of the resulting fragments. The most commonly 
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applied tandem mass spectrometers include Q-TOF and triple quadrupole (QqQ). Q-TOF 

instruments possess high resolution, mass accuracy and scan rate as well as ensure both MS 

profiling and tandem  MS/MS analysis during a single experiment. In this case, the first 

quadrupole isolates target ions, which are then fragmented in a collision cell and finally 

measured by a TOF mass analyzer.  

The QQQ workflow contains three basic steps. First, the precursor ion is filtered in 

the first mass analyzer, then the precursor ion is fragmented in collision cell to generate 

fragment ions, which are filtered and measured in the third mass analyzer. The most 

commonly used fragmentation mode is so called tandem-in-space, which employs two 

analyzes separated by collision cell. First mass analyzer (Q1) acts as the mass filter and 

isolates the precursor ion with specific m/z value. Then precursor ion reaches to the collision 

cell (q2) where the collision with inert gas (helium, nitrogen or argon) occurs and fragment 

ions are generated. Finally, the fragment ions get to the second mass analyzer (Q3) where 

separation according to m/z value and fragmentation of spectra are recorded. The schematic 

construction of QqQ analyzer was shown in Figure 6 [56]. The QqQ analyzer provides  high 

sensitivity often at the femtomol level. Additionally, in combination with TOF analyzer the 

high resolution and mass accuracy can be achieved. Q-TOF analyzer coupled with 

chromatographic or electrophoretic techniques are extensively used in untargeted 

metabolomics research.  

 

 

Figure 6. The schematic construction of QqQ mass analyzer [56]. 
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4. Pulmonary arterial hypertension 

 

4.1 Clinical definitions and epidemiology 

 

Pulmonary arterial hypertension (PAH), as a subgroup of pulmonary hypertension 

(PH), has been defined as an average pulmonary arterial pressure (mPAP) above 25 mmHg at 

rest state by right heart catheterization (RHC) assessment [57]. Previous definition included 

also the exercise criterion (mPAP >30 mmHg as assessed by RHC). However, due to the fact 

that healthy individuals can develop much higher levels and no published data has supported 

this observation, the exercise criterion is no longer used in the clinical practice. PH is a 

haemodynamic, and pathophysiological condition, therefore various parameters such as 

pulmonary wedge pressure (PWP), pulmonary vascular resistance (PVR), and cardiac output 

(CO) are used in haemodynamic definitions (Table 4). There are numerous risk factors that 

can lead to PH development, so it is currently classified into few main clinical groups, which 

will be described in details in the next section. However, based on the haemodynamic criteria 

there are two main types of PH, termed as pre-capillary and post-capillary. Irrespective of 

clinical variant or various origin, there is a common fact that PH is a progressive disorder, 

which leads to right ventricle failure and thereby to life-threatening state. 
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Table 4. Haemodynamic definition of PH [57].  

Definition Haemodynamic characteristic Clinical group 

Pulmonary hypertension (PH) mPAP ≥ 25 mmHg All 

Pre-capillary PH mPAP ≥ 25 mmHg 

PWP ≤ 15 mmHg 

CO normal or reduced 

PAH 

PH due to lung diseases 

Chronic thromboembolic PH 

PH with unclear or 

multifactorial mechanisms 

Post-capillary PH mPAP ≥ 25 mmHg 

PWP ≥ 15 mmHg 

CO normal or reduced 

PH due to the left heart 

disease 

 

From an epidemiological point of view, it is still widely believed that PH is a rare 

disease [58]. However, numerous risk factors that are involved in PH development have been 

identified. Additionally, PH often appears as a condition associated with other physiological or 

pathophysiological alterations within human organism, such as pregnancy, lung diseases, HIV 

infection, heart and blood vessel diseases, lupus or scleroderma. For this reason, the true 

evidence of PH is largely underestimated and not fully known. In the last decade, only few 

epidemiological studies have been carried out to estimate accurately the PH burden. For 

instance, only in 2002, PH was a cause of 15 668 deaths and 260 000 hospitalizations in the 

United States [59]. Even though it is known, that PH can affect men and women of all ages, in 

this study, among all hospitalized individuals, 61% were women and 66% were in the age of 

65 or older [59]. Another study was conducted on Scottish population in order to provide 

robust epidemiological data concerning PAH and the prevalence of 52 cases per million 

population were obtained [60]. The next epidemiological study, including 647 patients, with 



41 

  

strict PAH diagnosis, was performed in France [61]. As a result of this comparison, the 

prevalence ranging from 5-25 cases per million population was obtained [61]. Moreover, in 

developing world as Africa, South America or Asia, the frequently occurring diseases such as 

sickle cell disorders or schistosomiasis have been related to known risk factor of PH 

development [62]. To continue, hypoxia phenomenon is also a major worldwide factor, which 

predispose to PH progression [63]. In general, including all clinical variants of the disease, PH 

has been estimated to affect up to 100 million people worldwide [64]. Summarizing, PH is still 

underestimated either in developed or developing countries. The extensive well-designed 

epidemiological studies are required to estimate accurately the global burden of PH, especially 

in population exposed to various and complex risk factors.  

 

4.2 Clinical classification 

 

The clinical classification of PH aims to group together different variants of the 

disease, which are similar in terms of pathomechanisms, clinical manifestations and 

therapeutic approaches.  

The classification of (PH) has gone through a number of changes since the first 

classification was proposed in 1973 and included only two categories such as primary and 

secondary PH based on the presence or absence of identifiable causes or risk factors [65]. As a 

result of many clinical improvements and modifications, the current classification of PH, was 

agreed upon at the 4th World Symposium on Pulmonary Hypertension in 2008, and expanded 

to five main clinical groups of the disease. Obviously, there are many subtypes among each 

category and they were summarized in Figure 7 [66]. Since, the pulmonary arterial 

hypertension (PAH) is a subject of this doctoral thesis, the main focus is devoted to it and this 

clinical group will be described in details. PAH represents the first category of PH which 

consists of five subtypes such as: idiopathic PAH, heritable PAH, drug- and toxin-induced 

PAH, associated with identified disease (APAH) and persistent pulmonary hypertension of 

newborns.  
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Figure 7. Clinical classification of pulmonary hypertension [66].  

 

a) Idiopathic PAH 

In contrast to PAH associated with other pathological conditions, the idiopathic PAH appear 

suddenly when neither the family history nor marked risk factor are observed. It is also termed 

as unexpected or sporadic pulmonary hypertension. The possible causes, pathomechanisms are 

unknown and therefore it is difficult to set effective therapy approach. However, in some 

patients with idiopathic PAH, mutations in bone morphogenetic protein receptor type 2 

(BMPR2) gene were observed.  

 

b) Heritable PAH  

 

In previous clinical classifications it was defined as familial PAH. This PAH subtype is 

characterized by the presence of germline mutations in BMPR2 gene, which is one of the 
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transforming growth factor β signaling family. Rarely the mutation occurs in activin receptor-

like kinase type 1 or endoglin.  

 

c) Drug- and toxin-induced PAH 

 

Drugs, toxins, disorders or phenotype (age, gender) are well known risk factors, which means 

that they play a predisposing role in the disease development. The risk factors based on their 

strength of association with specific disease are classified as definite, very likely, possible, or 

unlikely. In case of PAH, the Surveillance of Pulmonary Hypertension in America study 

(SOPHIA) was conducted to investigate the effect of appetite suppressants intake, 

nonselective monoamine reuptake inhibitors, selective serotonin reuptake inhibitors, 

antidepressants, and anxiolytics on this type of PAH development. The results of SOPHIA 

study were summarized in Table 5. 

 

Table 5. Updated risk factors for PAH development [66]. 

Risk factor category Risk factor 

Definite Aminorex,  

Fenfluramine,  

Dexfenfluramine,  

Toxic rapessed oil 

Likely Amphetamines, 

L-tryptophan, 

 Methamphetamines 

Possible Cocaine, 

Phenylpropanolamine, 

St. John’s Wort, 
Chemotherapeutic agents 

Unlikely Oral contraceptives, 

Estrogen, 

Cigarette smoking 
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The above-mentioned three subcategories of PAH are related to the development of isolated 

pulmonary arterial diseases. Next PAH subtype occurs as a result of the association with other 

diseases and so is defined as associated with PAH (APAH). APAH includes PAH associated 

with connective tissue diseases, HIV infection, portal hypertension, congenital heart diseases,  

schistosomiasis or chronic hemolytic anemia.  

 

a) PAH associated with connective tissue diseases 

 

This is an important clinical subgroup. Patients with systemic sclerosis, lung fibrosis, systemic 

lupus, erythematosus, mixed connective tissue disease, Sjögren syndrome, polymyositis or 

rheumatoid arthritis can be more susceptible to PAH development. In these patients the right 

heart catheterization should be considered to detect or exclude possible PAH. The highest 

PAH prevalence, around 20% was confirmed in case of systemic sclerosis [67].  

 

b) PAH associated with HIV 

 

Human immunodefiency virus (HIV) associated with PAH has a stable prevalence of 0.5% 

and has been described by clinical, hemodynamic, and histologic characteristics similar to 

PAH. Thus the mechanism for PAH development during HIV infection is still unclear due to 

the fact that neither the virus nor viral DNA has been presented  in pulmonary endothelial 

cells. Therefore, an indirect mechanism of the virus influence by employing secondary 

messengers as cytokines, growth factors, endothelin, or viral proteins can be involved in PAH 

progression.  

 

c) Portopulmonary hypertension 

 

The development of PAH in association with elevated pressure in the portal circulation is 

known as portopulmonary hypertension (POPH) [68]. The hemodynamic studies have 

revealed that from 2% to 6% of patients with portal hypertension develop PH [69]. However, 

the right heart catheterization is required to confirm POPH diagnosis, due to the fact that 

numerous factors can increase mPAP in the presence of advanced liver disease. Some recent 
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case-control studies confirmed that female gender and autoimmune hepatitis are important risk 

factors of POPH development.  

 

d) PAH associated with congenital heart diseases 

 

Many patients with congenital heart diseases (CHD) if not treated, can develop PAH. The 

main reasons of increased blood flow and pressure can cause pulmonary arteriopathy. The 

most advanced variant of PAH associated with CHDis defined as Eisenmenger syndrome. The 

pathophysiological and histopathologic hallmarks of PAH associated with CHD include 

endothelial dysfunction in pulmonary vasculature.  

 

e) PAH associated with schistosomiasis 

 

The multifactorial pathomechanisms of PAH in patients with schistosomiasis are probable. 

They contain POPH as a frequent consequence of this disease and vascular inflammation as an 

effect of impacted schistosoma eggs. PAH associated with schistosomiasis represents a 

frequent subtype of PAH, mainly in countries where the infection is endemic. The prevalence 

of PAH associated with schistosomiasis has been estimated at 4.6% [70].  

 

f) PAH associated with chronic hemolytic anemia 

 

The evidence that PAH occurs as a consequence of hemolytic anemias including sickle cell 

disease (SCD), thalassemia, hereditary spherocytosis, stomatocytosis and microangiopathic 

hemolytic anemia has recently increased [66]. PAH has been observed most frequently in 

patients with SCD characterized by plexiform lesions. However, the pathomechanism of PAH 

in SDC is still uncertain. The possible hypothesis is that chronic hemolysis leads to higher 

nitric oxide consumption and subsequent resistance to nitric oxide bioactivity [71]. Finally, the 

smooth muscle guanosine which acts as vasodilator and has antiproliferative properties, is 

inactivated.  The fifth PAH subcategory is represented by persistent pulmonary hypertension 

of newborns (PPHN). It develops when the normal cardiopulmonary transition fails to occur 

[72]. PPHN may be generally caused by the abnormally constricted pulmonary vasculature 
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due to lung parenchymal diseases. It can also develop when lungs possess normal parenchyma 

and remodeled pulmonary vasculature, and therefore is defined as an idiopathic PPHN.  

 

4.3 Pathomechanisms of pulmonary arterial hypertension 

 

Recently updated PAH subtypes are classified based on underlying causes. However, 

the excessive pulmonary vasoconstriction and abnormal vascular remodeling of all vascular 

layers (intima, media, adventitia) are common pathological processes in each PAH 

subcategory. Intimal changes include endothelial injury and cell proliferation, fibroblasts 

infusion, intimal fibrosis or rarely obstruction by unique plexiform lesions [73]. Additionally, 

the vascular smooth muscle cell (SMC) proliferation is another dominant hallmark in PAH 

patomechanism. Altogether structural changes characterize apoptosis-resistant and 

proliferative cellular phenotype. Recently, the role of chronic inflammatory events or 

progenitor cells has been under extensive research.  

The imbalance in vasoactive mediators is the prominent perturbation in PAH 

pathomechanism. The reduced production of vasodilatory mediators including prostaglandin 

I2, nitric oxide (NO; product of NO synthases), and cyclic guanosine monophosphate (the 

second messenger downstream of NO) is well described in PAH patients [74,75]. Increased 

levels of asymmetric dimethylarginine, which acts as an endogenous inhibitor of NO synthase, 

might also be a relevant indicator of PAH development [76]. Additionally, the generation of 

potent vasoconstrictors such as thromboxane, endothelin 1 or 5-hydroxytryptamine (5-HT) 

was observed to be increased both in PAH patient and mouse model of hypoxia-induced 

pulmonary hypertension [77,78]. To continue, also an abnormal activity of both K
+
 and Ca

2+
 

channels have been linked with pulmonary vascular tone dysregulation, disturbance of cellular 

homeostasis and induced fibroproliferation, mainly in SMC cells. 

In view of cell proliferation and vascular remodeling, some vasoconstrictors enhance 

the proliferative events. For instance, endothelin 1 and 5-HT were reported to stimulate SMC 

proliferation [79, 80]. The constant Ca
2+ 

 flux from both extracellular and intracellular space 

might also enhance the SMC proliferation. The remodeling activity concerns either large or 

smaller distal arteries of pulmonary circulation. The collagen excess may mainly contribute to 
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remodeling phenotype, which was confirmed based on the mice or rats hypoxic pulmonary 

hypertension models [81]. However, there are other numerous factors involved in PAH 

vascular remodeling and they are summarized below: 

a) Growth factors 

 

Trough activation of tyrosine kinase receptors, various growth factors act as chemoattractants 

for fibroblasts, SMC cells or endothelial cells. As a result, the intracellular cascade signaling 

involved in migration, cell proliferation and resistance to apoptosis, are activated. The most 

relevant growth factors, that are strongly implicated in PAH pathomechanism, include 

vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR-2), basic fibroblast 

growth factor (bFGF), platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF) 

and transforming growth factor-β (TGF-β). Altogether, growth factors, are involved in 

numerous cellular functions such as proliferation, migration or differentiation and their role in 

PAH pathological hallmarks has been reported in various animal models [82].  

 

b) Proteases and elastases 

 

Proteases and elastases are the members of matrix metalloproteinases (MMPs) and they 

modulate the extracellular matrix (ECM) proteins. Up-regulation of MMPs and endogenous 

vascular elastase activity have been observed in remodeled lung vasculature in experimental 

and clinical PAH models [83].  

 

c) Bone morphogenetic protein receptor type 2 (BMPR2) 

 

The mutations in BMPR2 gene have been observed mainly in heritable and idiopathic PAH 

subtypes. However, the mechanisms by which BMPR2 mutations deregulate intracellular 

signaling are not completely understood and their action may differ between various cell 

types. The potential mechanisms proposed as a result of in vitro experiments contain up-

regulation of proproliferative pathways involving p38 mitogen-activated protein kinase [84] or 

reduced activation of the transcription factor Smad 1 [85]. Therefore the hypotheses that 
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BMPR2 mutations may be involved in excessive endothelial cell proliferation, growth of 

SMCs or pulmonary vasculopathy in PAH, requires further extensive investigations.  

d) Notch signaling  

 

Notch signaling is essential for cell-fate determination during embryonic stage [82]. It plays a 

role in multiple processes of vascular development such as vasculogenesis, angiogenesis, and 

differentiation of vascular SMCs. Notch 3 and its target, HES5 gene, were observed to be 

expressed in lung biopsies from non-familial PAH patients, and in the lungs of two PAH 

rodent models [86]. These results underline, that up-regulation of the Notch 3 signaling is 

associated with PAH development either in humans or in  rodent models of PAH. 

 

e) Peroxisome proliferator-activated receptor γ (PPAR γ) 

 

The physiological processes regulated by peroxisome proliferator-activated receptors (PPARs) 

range from lipogenesis to inflammation. PPARγ is expressed in many tissues, such as vascular 

endothelial cells, vascular SMCs, and macrophages [87] and is implicated in cell growth, 

inflammation and angiogenesis [88], so it has a potential role in PAH pathology. Many reports 

suggested, that reduced PPARγ in cells of the pulmonary vascular wall leads to PAH 

development, so that the activation of PPARγ might inhibit PAH progression [82]. Altogether, 

the PAH patomechanisms involving the vasoactive mediators imbalance, cell proliferation and 

vascular remodeling were summarized in Figure 8 [82].  
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Figure 8. The major mechanisms in PAH pathogenesis [82]. 

 

The endothelial repair and angiogenesis might be another pathological hallmark of 

PAH pathology and development. Bone marrow derived endothelial progenitor cells (EPCs) 

circulate in adult peripheral blood and are recruited in the endothelial integrity maintenance 

and repair of endothelial injury [89]. The EPCs also play a relevant role in vasculogenesis and 

angiogenesis in vascular system. During the last two decades, it has been reported that 

plexiform lesions might occur as a result of EPCs growth deregulation and moreover the 

VEGF and VEGFR-2 expression were demonstrated in plexiform lesions of PAH patients, 

which might confirm the contribution of the lesions to angiogenesis alteration [90]. The recent 

study confirmed that elevated level of circulating proangiogenic progenitor cells was  

observed in idiopathic PAH patients in comparison to control group [91]. Although the 

accurate mechanism of angiogenesis deregulation in PAH pathogenesis still remains unclear.  
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The inflammation has also been suggested as a crucial pathological process in PAH 

development. Monocytes, macrophages, T lymphocytes and dendritic cells are observed in 

both plexiform lesions and other vascular lesions of PAH-affected human lungs [92]. The 

inflammation plays a relevant role in PAH associated especially with infectious diseases (HIV, 

schistosomiasis). In this pathological process numerous cytokines and chemokines are 

employed. Among cytokines group, increased circulating levels of monocyte chemoattractant 

protein 1, tumor necrosis factor, IL-1β, and IL-6 were reported in patients with idiopathic 

PAH [93]. Chemokines are involved in various activities of leukocyte cells, including 

activation and adherence. Therefore, the chemokine-dependent mechanisms providing 

inflammatory cell recruitment in the lungs of PAH patients have been analyzed and have 

revealed the crucial role of FKN (also known as C-X3-C motif chemokine 1), RANTES 

(Regulated upon Activation, Normally T cell Expressed and Secreted) and chemokine ligand 2 

(CCL-2), particularly [94,95].  

What is more, the thrombosis is another common hallmark of PAH and investigations 

with the use of calibrated automated thrombography confirmed, that idiopathic PAH patients 

have a hypercoagulable phenotype [96]. As a result of this research, the increased level of 

fibrinopeptide A (marker of fibrin synthesis), elevated activity of von Willebrand factor, 

thromboxane A2 increased (proaggregatory factor), and decreased level of NO and 

prostacyclin (aggregation inhibiting factor) were observed in PAH patients as compared to 

healthy individuals.  

Recently, the role of some metabolic pathways in mitochondria have been suggested 

to be involved in PAH mechanism and pathogenesis [97]. The metabolic perturbations 

concern mainly, the imbalance between glycolysis and oxidative phosphorylation which are 

the main pathways providing the energy production at the cellular level (Figure 9). The shift of 

glucose metabolism from oxidative phosphorylation to glycolysis, especially in hypoxic 

condition, is termed as Warburg effect [98]. The abnormal cellular metabolism and 

mitochondrial dysfunction can provide new targets in therapeutic process of PAH, however 

the impact of metabolic alterations on disease pathogenesis requires further investigation, 

especially based on clinical trials.  
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Figure 9. The metabolic pathways in mitochondrion involved in energy production [82].  

 

4.4 Current diagnosis and treatment in pulmonary arterial hypertension 

 

The current diagnosis of PAH is still a big challenge due to the lack of specific 

clinical manifestation, mainly at the early stages of the disease, which leads to relatively high 

mortality. Additionally, the PAH can be caused by multifactorial etiologies, the range of 

which has still been updated and expanded. To continue, there are numerous complex 

pathomechanisms suggested to be potentially involved in PAH pathogenesis, however they are 

mainly based on animal models. Therefore, to sum up, the above-mentioned factors, as well as 

the diagnosis of PAH is still poor and inaccurate. Although, there are several blood tests that 

might be performed routinely in PAH patients. However, none of these tests specifically 

diagnose PAH development. The routine blood tests performed in PAH patients are listed as 

follows. 
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a) BNP- B-type Natriuretic Peptide 

The increased level of BNP is useful to diagnose heart failure. If the levels are elevated in the 

blood, the heart is under strain and fails, which is relevant for PAH patients. If the level is 

elevated, some additional tests, such as an echocardiogram are recommended. 

b) BMP-Basic Metabolic Panel 

The BMP panel includes some basic electrolytes and compounds representing basic kidney 

function, such as glucose, calcium, sodium, potassium, chloride, BUN (blood urea nitrogen), 

and creatinine. This test is used in PAH patients under the diuretic treatment, which can lead 

to losses of important electrolytes or to renal damage if not monitored properly.  

c) CMP-Complete Metabolic Panel 

The CMP contains all parameters measured by BMP and additionally albumin, total protein, 

ALP (alkaline phosphatase), ALT (alanine amino transferase), AST (aspartate amino 

transferase), and bilirubin. This test is useful in PAH patients for the same reason as BMP, 

however provides additional liver function monitoring. It is recommended to control liver 

function in PAH case, because the increased pressure in the pulmonary arteries leads to 

dysfunction of the right side of the heart and consequently to liver damage.  

d) D-dimer 

Plasma D-dimer, as a specific degradation product of crosslinked fibrin, can be altered in a 

numerous conditions including cancer, necrosis, infection or inflammation. Thus, for the 

confirmation of PAH diagnosis is very poor. However, very often the absence of D-dimer can 

clearly exclude the presence of PAH which provides high negative predictive value of this 

biochemical parameters. 

The ventilation-perfusion scintigraphy, computed tomography or pulmonary 

angiography are the imaging techniques frequently applied in PAH diagnostic process. 

Pulmonary angiography represents an invasive and resource-demanding procedure, however is 

characterized by high diagnostic accuracy [99]. Computed tomography and 

ventilation/perfusion scanning are low invasive techniques that are used in PAH diagnosis but 
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are also time-consuming with limited sensitivity when employing contrast agent 

administration and radiation [98]. To sum up, there is still lack of specific, sensitive, cost-

effective, accurate and safe diagnostic tool for early PAH detection. 

Although, no effective treatment for PAH patients is available, improvements in 

understanding the pathomechanisms of this disorder have provided the development of target 

therapies towards specific pathways. Drugs and agents that regulate abnormalities in the 

prostacyclin, endothelin, and nitric oxide signaling have been tested in randomized, controlled 

studies and revealed benefits in functional status, pulmonary hemodynamics, and disease 

progression [100]. The target pathways for currently recommended therapies were shown in 

Figure 10.  

 

Figure 10. Current and emerging therapies and their targets in PAH treatment [100].  

The modern-day licensed therapies include the stable prostacyclin analogs termed as 

prostanoids, endothelin receptor antagonists (ERA) and phosphodiesterase type 5 (PDE-5) 

inhibitors. The common agents and drugs that can be used in each targeted treatment were 

presented in Table 6.  
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Table 6. The drugs and agents used in the currently licensed therapies [100]. 

Targeted therapy Drugs and agents used 

Prostanoids Epoprostenol  

 Iloprost (inhalation)  

 Iloprost (intra venous) 

Treprostinil (inhalation)  

Treprostinil (sub cutaneous) 

Treprostinil (intra venous) 

 

Endothelin receptor antagonists Bosentan 

Ambrisentan 

Sitaxentan 

Macitentan 

 

 

Phosphodiesterase type 5 inhibitors Sildenafil 

Tadalafil 

 

Due to the fact that after application of above-mentioned specific treatments, the 

PAH progression is often observed, employment of multidrug therapy to target different 

deregulated pathways simultaneously, seems to be a promising approach. Accordingly, 

combined therapies using two or more agents from different drug classes are now 

recommended [101]. Recently, other potential therapeutic concepts including prostacyclin 

receptor agonists, vasoactive intestinal polypeptide (VIP), soluble guanylate cyclase (sGC) 

activators and stimulators, tyrosine kinase inhibitors or bone-marrow derived endothelial 

progenitor cells (EPCs) have been proposed, and subjected to continuous and intensive 

research [100]. Thus, incessant development and progress in basic and clinical research within 

PAH population can result in better understanding of its pathogenesis, and identification of 

novel therapeutic targets which may consequently lead to effective drug discovery and design.  
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II. THE OBJECTIVE OF THE DOCTORAL THESIS 

 

The objective of the doctoral thesis was to study plasma untargeted metabolic 

fingerprints during an acute and chronic phase of pulmonary arterial hypertension (PAH) in an 

animal and human model. To reveal as many metabolite changes as possible in the whole 

metabolome, two complementary analytical platforms such as liquid chromatography coupled 

with quadrupole time of flight MS detector (LC-QTOF-MS) and gas chromatography coupled 

with single quadrupole MS detector (GC-Q-MS) were chosen and applied in this study. To 

study plasma metabolite changes in an acute phase, the pig model, in which the severe and 

stable PAH was induced by polydextrane microspheres injection, was proposed. Then, the 

human model based on the comparison between healthy and PAH patients was used to analyze 

plasma metabolite fingerprints in chronic stage of the disease.  

Based on available literature, PAH diagnosis and pathogenesis is still incomplete and 

not clearly understood, especially, due to the lack of specific clinical symptoms at the initial 

stage of the PAH progression. There is a constant need to search early markers, that might 

indicate the disease initiation and to improve knowledge on mechanisms involved in PAH 

development. Metabolic alterations at molecular level may be associated with PAH 

pathogenesis and occur before marked clinical manifestation. Therefore, untargeted plasma 

metabolic fingerprinting was applied in this doctoral thesis to reveal global metabolites 

changes related to disease development. To select potential metabolic markers of PAH, the 

main research steps involved in untargeted metabolomics workflow included: 

 

1) Experimental design, sample collection and metabolite extraction; 

2) Plasma metabolic fingerprinting with LC-QTOF-MS and GC-Q-MS; 

3) Data extraction and processing; 

4) Univariate and multivariate discriminant statistical analysis;  

5) Metabolite identification;  

6) Biochemical pathway analysis and biological interpretation. 
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III. EXPERIMENTAL PART 

 

5. Materials and methods 

 

5.1. Instrumentation 

 

 High-performance liquid chromatography (HPLC) system equipped with degasser, two 

binary pumps, and thermostatted autosampler (1200 series, Agilent Technologies, 

Waldbronn, Germany) coupled with quadrupole and time of flight mass spectrometry 

detector (QTOF 6520, Agilent Technologies, Waldbronn, Germany).   

 Ultra high-performance liquid chromatography (UHPLC) system equipped with 

degasser, two binary pumps, and thermostatted autosampler (1290 Infinity series, 

Agilent Technologies, Waldbronn, Germany) coupled with quadrupole and time of 

flight mass spectrometry detector (QTOF 6520, Agilent Technologies, Waldbronn, 

Germany). 

 Gas chromatography (GC) instrument (7890A, Agilent Technologies, Waldbronn, 

Germany) interfaced to inert single quadrupole (Q) mass spectrometer with triple-Axic 

detector (5975C, Agilent Technologies, Waldbronn, Germany). 

 

HPLC-QTOF-MS and UHPLC-QTOF-MS instruments were connected with personal 

computer (PC) with Mass Hunter Workstation B.05.00, Mass Hunter Qualitative Analysis 

B.05.00 (Agilent Technologies, Waldbronn, Germany), DA Reprocessor B.05.00 (Agilent 

Technologies, Waldbronn, Germany) and Molecular Structure Correlator (MSC) B.05.00  

software (Agilent Technologies, Waldbronn, Germany) for data acquisition, data 

extraction and compound identification.  

GC-Q-MS instrument was connected with PC equipped with Agilent MSD Chemstation 

E.02.00.493 Software (Agilent Technologies, Waldbronn, Germany) for data acquisition. 
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 PC with Windows 7 operating system Microsoft Office software equipped with Mass 

Profiler Professional B.12.01 (Agilent Technologies, Waldbronn, Germany) for data 

processing and treatment. 

 PC with Windows 7 operating system Microsoft Office software equipped with 

MATLAB 2007b (Mathworks, Natick, MA, USA) and SIMCA P+ 13.03. (Umetrics, 

Umea, Sweden) software for univariate and multivariate statistical data analysis and 

plotting.  

 PC with Windows 7 operating system Microsoft Office software equipped with 

AMDIS 2.17 and MS Search 2.0 software (http://chemdata.nist.gov/mass-spc/amdis/) 

for data deconvolution and compound identification.  

 Microcentrifuge Eppendorf 5415R (Eppendorf AG, Hamburg, Germany). 

 Milli-Q Plus 185 Water Purification System (Millipore, Bedford, USA). 

 Speedvac Concentrator (Thermo Fisher Scientific, Waltham, MA, USA). 

 Refrigerated Vapor Trap (RUT4104, Thermo Scientific, Waltham,  

Massachusetts, USA). 

 Oil pump (E-LAB2, Edwards, Crawley, England, United Kingdom). 

 Automatic pipettes  Eppendorf Research (Eppendorf, Hamburg, Germany).  

 Ultrasonic baths  3000513, Selecta P. 

 Vortex mixer (TopMix FB15024 Fisher Scientific, Thermo Scientific, Waltham,  

             Massachusetts, USA). 

 Stove (Digitheat 80L Selecta, Barcelona, Spain). 

 Analytical weight-machine: Explorer, OHAUS. 

 Freezer (-80
o
C): FORMA 88000 series (Thermo Scientific, Waltham, MA, USA). 

 Fridge (-20°C): Space plus, Electrolux. 
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5.2 Disposable materials and reagents 

 

5.2.1 Disposable materials 

 

 HPLC amber vials 1.5 ml (Agilent Technologies, Waldbronn, Germany).   

 Glass inserts with polymer feet 250 µl (Agilent Technologies, Waldbronn, 

Germany). 

 Clear vials fused with 200 µl glass inserts (Chromacol, Welwyn Garden City, 

UK). 

 Open top short screw caps for clear vials fused with 200 µl glass inserts  

(Chromacol, Welwyn Garden City, UK). 

 Screw caps for amber vials 1.5 ml (Agilent Technologies, Waldbronn, Germany).  

 Crimp, aluminum silver caps with, 4mm hole (Chromacol, Welwyn Garden City, 

UK). 

 4 mm nylon syringe filters 0.22 µm (Thermo Scientific, Waltham, Massachusetts, 

USA). 

 Pipette tips (Eppendorf, Hamburg, Germany). 

 Eppendorf polypropylene tubes 1.5 ml (Eppendorf, Hamburg, Germany). 

 LC reversed phase column Zorbax Extend RRH+ C18, 2.1x5.0 mm, 1.8 µm 

(Agilent Technologies, Waldbronn, Germany).   

 LC reversed-phase column Discovery HS C18 15 cm × 2.1 mm, 3 μm (Supelco, 

Bellefonte, Pennsylvania, USA). 

 Guard column (Discovery HS C18 2 cm×2.1 mm, 3 μm ( Supelco, Bellefonte, 

Pennsylvania, USA). 

 GC-Column DB5-MS, 30 m length, 0.25 mm i.d., 0.25 µm film 95% dimethyl/ 5% 

diphenylpolysiloxane, (Agilent Technologies, Waldbronn, Germany).   

 GC- pre-column (10 m J&W) (Agilent Technologies, Waldbronn, Germany).  

 Septa for GC injection port (Agilent Technologies, Waldbronn, Germany).   

 Liners for GC injection port Restek 20782 (Bellefonte, PA USA). 

 Electrospray nebulizer needle (Agilent Technologies, Waldbronn, Germany).   
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 Micro-Grit Paper MESH 4000 for shield of ion transfer capillary cleaning (Agilent 

Technologies, Waldbronn, Germany).   

 Purification filters for Milli-Q Plus 185 Water Purification System (Millipore, 

Bedford, USA). 

5.2.2 Reagents 

 

 LC-MS grade acetonitrile, Fluka Analytical, Chemie Gmbh (Steinheim, Germany) 

 LC-MS grade water, Fluka Analytical, Chemie Gmbh (Steinheim, Germany) 

 LC-MS grade isopropanol, Fluka Analytical, Chemie Gmbh (Steinheim, Germany) 

 HPLC grade heptane 98%, Fluka Analytical, Chemie Gmbh (Steinheim, Germany)

 LC-MS Ultra formic acid 98%, Fluka Analytical, Chemie Gmbh (Steinheim, 

Germany) 

 Silylation grade pyridine 99%, Sigma-Aldrich (St. Louis. MO, USA) 

 O-methoxyamine hydrochloride, Sigma-Aldrich (St. Louis. MO, USA) 

 N,O-Bis(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane (BSTFA+1% 

TMCS, vol/vol) Pierce Chemical Co. (Rockford, IL, USA) 

 n-fatty acid methyl ester mixture (n-FAMEs C8-C22) - retention  index marker,  

Supelco (Bellefonte, PA, USA) 

 Methyl stearate C18:0 in heptane (1000 ppm) Sigma-Aldrich (St. Louis. MO, USA) 

 Creatine, arginine, -tocopherol, Sigma Aldrich (St. Louis. MO, USA) 

 Protonated purine (Agilent Technologies, Waldbronn, Germany)   

 Protonated hexakis (1H, 1H, 3H-tetrafluoropropoxy) phosphazine (or HP-921) 

(Agilent Technologies, Waldbronn, Germany)   

 Trifluoroacetic acid (TFANH4) ammonium anion (Agilent Technologies, Waldbronn, 

Germany)   

 Hexakis (1H, 1H, 3H-tetrafluoropropoxy) phosphazine (or HP-0921) (Agilent 

Technologies, Waldbronn, Germany)   

 Reverse-osmosed purified water from Milli-Q Plus 185 (Millipore, Bedford, USA) 

 



60 

  

5.2.3 Solutions 

 

 Methanol: ethanol mixture 50:50 (v/v) for plasma deproteinization before LC-MS 

metabolic fingerprinting analysis. The solution was prepared by mixing the equal 

volume of methanol and ethanol (i.e., 50 ml), then ultrasonicated for 15 min and kept 

at temperature of -20
o
C in the fridge prior to analysis.  

 0.1 % formic acid solution in water. The solution was used as a mobile phase in LC-

MS metabolic fingerprinting analysis. 1 mL of 99% formic acid was measured by 

automatic pipette and added to 100 mL volumetric flask filled in half by purified 

water, and then filled with purified water to the volume of 1000 mL.  

 0.1 % formic acid solution in acetonitrile. The solution was used as a mobile phase in 

LC-MS metabolic fingerprinting analysis. 1 mL of 99% formic acid was measured by 

automatic pipette and added to 100 mL volumetric flask, filled in half with acetonitrile, 

and then  to the volume of 1000 mL. 

  20% isopropanol solution in water. The solution was used for electrospray nebulizer 

needle and capillary shield cleaning. 20 mL of isopropanol was mixed with 80 mL of 

purified water, then ultrasonicated for 15 min and kept at room temperature for one 

week.  

 ESI-LOW tunning mix. The solution was used for Q-TOF-MS calibration (Agilent 

Technologies, Waldbronn, Germany)   

 Reference mass solution for LC-QTOF-MS. The solution was continuously introduced 

by calibrant delivery system during analysis to ensure mass accuracy measurement. In 

1000ml bottle, the 950 mL of LC-MS grade acetonitrile and 50 mL of LC-MS grade 

water were mixed and then 2.0 mL of purine, 0.9 ml of HP-0921 and 1.0 ml of 

TFANH4 were added. The solution was mixed by shaking and kept in the fridge at a 

temperature of 4
o
C before LC-QTOF-MS analysis. 

 O-methoxyamine hydrochloride solution in pyridine (15 mg/mL). The solution was 

used for derivatization before GC-Q-MS metabolic fingerprinting analysis. 225 mg of 

O-methoxyamine hydrochloride were dissolved in 15 mL of 99% pyridine and then 

ultrasonicated for 30 min and kept in the fridge at temperature of 4
o
C before GC-Q-MS 

analysis. 
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 Bistrimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane (BSTFA+1% 

TMCS) (Supelco, Bellefonte, Pennsylvania, USA). The solution was used for the 

second derivatization step before GC-Q-MS metabolic fingerprinting analysis. 

 Methyl stearate (10 ppm in heptane). The solution was used as internal standard (IS) in 

plasma pretreatment step before GC-Q-MS metabolic fingerprinting analysis. 100 µl of 

stock solution (methyl stearate 1000 ppm in heptane) was pipetted into glass 10 ml 

tube and 9900 µl of heptane was added. Then, the solution was ultrasonicated for 15 

min and kept in the fridge at temperature of 4
o
C prior to GC-Q-MS analysis. 

 Quality control (QC) samples. The solutions were used to control LC-QTOF-MS and 

GC-Q-MS system stability and method reproducibility. QC samples were prepared as a 

pool of equal volume of each plasma samples used in the experiment. Then the pool 

was vortex mixed and divided into the equal volume as plasma sample used for 

metabolic fingerprinting analysis (50 µl). The QC samples were prepared with the 

same sample pretreatment procedure as the real plasma samples. 
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5.3 Biological samples 

 

5.3.1. Animal model 

 

The animal experimental model consisted of 2−3 month old castrated-male Large-

White pigs. The investigation was approved by the Institutional Animal Research Committee 

no ES280790000176 and performed in accordance with the Guide for the Care and Use of 

Laboratory Animals. At the beginning of the experiment, anesthesia was evoked by 

intramuscular injection of ketamine (20 mg/kg), xylazine (2 mg/kg), and midazolam (0.5 

mg/kg), with buprenorphine (0.3 mg/kg) for analgesia. Next animals were intubated. 

Hemodynamic parameters were measured under mechanical ventilation (Fi O2 35%) and 

anesthesia was continued with intravenous midazolam (0.2 mg/kg/h). Simultaneously, the 

electrocardiographic and oxymetric parameters were monitored. To continuously control the 

systemic arterial pressure and pulmonary arterial pressure using Swan-Ganz catheter, the right 

femoral artery and vein were percutaneously cannulated. Hemodynamic parameters covered 

mean pulmonary arterial pressure (mPAP), cardiac output (CO) assessed by thermodilution, 

mean systemic blood pressure (mSBP), oxygen saturation (O2 sat), heart rate (HR) and 

pulmonary vascular resistance (PVR). The PVR value was calculated as the difference 

between mPAP pulmonary capillary wedge pressure (PCWP) and divided by the CO in Wood 

units (WU). The acute  pulmonary hypertension (PH) was induced in 8 pigs by through the 

femoral vein injection of polydextrane microspheres with a bead diameter of 100− 300 μm 

(Sephadex G50 Coarse dry, Pharmacia Biotech GmbH). Animals were exposed to several 

doses of a suspension of 2.5 mg of microspheres per mL as far as the mPAP increased above 

40 mmHg which was kept for at least 20 min, what confirmed the acute severe and stable PH 

due to pulmonary embolism (PE).  

The animal blood was collected in two time points: immediately before the 

microspheres injection (baseline) and in the stable phase of acute PH (1h after the first 

microspheres injection). The hemodynamic characteristics of baseline and acute PH stage 

were presented in Table 7 and Table 8. Blood samples were taken from the femoral vein and 

collected into tubes with lithium heparin. To obtain plasma samples the vein blood was 
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centrifuged (30 min, 2000 x g, 4 °C) and 500 μL of supernatants were frozen at -80°C until 

metabolic fingerprinting analysis. 

Table 7. Hemodynamic parameters of animals at baseline state. 

Animal ID 

Baseline 

HR 

(bpm) 

O2
 
sat 

 (%) 

mSBP  

(mmHg) 

   mPAP    

(mmHg)  

CO 

(L/min) 

PVR 

(WU) 

Pig 1 77 100 100      22   5.15   2.52 

Pig 2 70 100 101      25   4.95   3.27 

Pig 3 106 100 91      19   6.55   1.52 

Pig 4 101 100 90      24   4.92   2.43 

Pig 5 66 100 67      17   2.43   1.23 

Pig 6 80 100 125      25   4.29   3.03 

Pig 7 55 100 85      15   2.76   1.09 

Pig 8 75 100 94      15   3.63   1.65 

 

Table 8. Hemodynamic parameters of animals at acute pulmonary hypertension (PH) state. 

Animal ID 

Acute PH 

HR 

(bpm) 

O2
 
sat 

 (%) 

mSBP  

(mmHg) 

   mPAP    

(mmHg)  

CO 

(L/min) 

PVR 

(WU) 

Pig 1 91  98   94      40   3.59   8.9 

Pig 2 98  94   78      40   3.70   8.6 

Pig 3 108  87   95      45   4.70   7.7 

Pig 4 99  83   73      42   3.42   9.4 

Pig 5 96  85   64      45   2.29   17.5 

Pig 6 90  87   98      40   3.03   10.6 

Pig 7 79  91   78      41   2.42   14.4 

Pig 8 80  94   76      43   2.46   14.6 

HR-heart rate, O
2 

sat- oxygen saturation, mSBP- mean systemic blood pressure, mPAP-mean 

pulmonary arterial pressure, CO-cardiac output, PVC- pulmonary vascular resistance 

 

The PH occurrence in all animals was confirmed by both hemodynamic parameter 

measurements and observation of histopathological changes in lung parenchyma including 

capillary vessel obstruction, inflammatory infiltration, and intraalveolar edema and 

hemorrhage [102] which were similar to those observed in patients with PH due to PE (Fig. 

11).  
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Figure 11. The histopathological changes in lung parenchyma of a pig that underwent 

euthanasia 3h after acute PH induction by PE procedure. (A) Vessel obstruction by several 

microspheres  marked as asterisk. (B) Macrophages infiltration around the microsphere 

obstructing the vessel marked as asterisk. (C) The hemorrhage pointed with arrowheads. (D) 

The hemorrhage marked as arrowhead and intraalveolar edema pointed with arrows. (E) The 

example of intraalveolar edema marked as arrow. (F) The severe perivascular and 

peribronchial inflammatory infiltration [102].  
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5.3.2. Human model 

 

The human model of pulmonary arterial hypertension (PAH) comprised of 40 

patients divided into two patient groups. The 20 healthy individuals and 20 patients with 

confirmed PAH derived from CLINIC University Hospital in Barcelona were included in this 

study. The investigation was carried out in accordance with approval of The Ethical 

Committee of Clinical Investigations in Barcelona (CEIC, the approval number CIF-G-

08431173) and the informed consent was signed by each participant of the study. The studied 

groups were matched according to age, BMI and gender (15 women and 5 men both in control 

and PAH group). The U Mann-Whitney test was used to study the age and BMI difference 

between control and PAH patients. The results of statistical analysis confirmed that analyzed 

groups are uniform regarding to these criteria. The detailed data concerns the mean and 

standard deviation (SD) of the age and BMI values within the studied groups and statistical 

analysis of the difference between them were collected in Table 9. Additionally the clinical 

characteristics of each individual of studied groups including age, gender, BMI, PAH etiology 

and associated diseases were presented in Table 10. The careful design of this study 

concerning all: age, BMI, gender matching and associated diseases occurrence was provided 

to avoid significant differences that are not related to the biological aim of the study and 

consequently ensure reliable metabolomics results. The blood samples for metabolic 

fingerprinting analysis were obtained from cubital vein and drawn into lithium heparin-

containing tubes. Then, after the centrifugation step (30 min, 2000 x g, 4°C), the obtained 

plasma samples (200 µl) were frozen at -80°C and stored until metabolomics  experiment. 

Table 9. Statistical analysis of age and BMI difference in the studied groups.  

Studied group         Age 

(Mean ±SD) 

      BMI 

(Mean ± SD) 

   

Control group 

 

 

PAH group  

 

 

50.30 (±14.84) 
 

 

50.75 (±15.22) 

25.17 (±3.65) 
 

 

25.36 (±3.73) 
 

 

U Mann-Whitney test       p=0.957 (>0.05)        p= 0.871 (>0.05) 
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Table 10. Clinical characteristics of individual participant included into the metabolomics 

study. 

Patient 

    ID 

Age Gender BMI PAH 

etiology 

Hepatitis HIV 

infection 

DM Nephritis   IHC  AVC 

PAH 1 22   F 19.7     1     0   0 0     0  0  0 

PAH 2 38   F 21.9     1   0   0 0     0  0  0 

PAH 3 66   F 25.4     2   0   0 0     1  0  0 

PAH 4 67   F 31.4     2   0   0 0     0  0  0 

PAH 5 60   M 27.1     2   0   0 0     0  1  0 

PAH 6 30   F 25.0     1   0   0  0     0  0  0 

PAH 7 59   F 27.0     2   0   0  0     0  0  0 

PAH 8 

PAH 9 

PAH 10 

PAH 11 

PAH 12 

PAH 13 

PAH 14 

PAH 15 

PAH 16 

PAH 17 

PAH 18 

PAH 19 

PAH 20 

CONTROL 1 

CONTROL 2 

CONTROL 3 

CONTROL 4 

CONTROL 5 

CONTROL 6 

CONTROL 7 

CONTROL 8 

CONTROL 9 

CONTROL 10 

CONTROL 11 

CONTROL 12 

CONTROL 13 

CONTROL 14 

CONTROL 15 

CONTROL 16 

CONTROL 17 

CONTROL 18 

CONTROL 19 

CONTROL 20 

57 

24 

62 

70 

47 

45 

58 

57 

44 

31 

51 

73 

54 

23 

36 

63 

67 

60 

31 

57 

57 

23 

58 

69 

49 

45 

60 

59 

44 

31 

51 

72 

51 

  M 

  F  

  F 

  F 

  F 

  F 

  F 

  M 

  M 

  F 

  F 

  M 

  F 

  F 

  F 

  F 

  F 

  M 

  F 

  F 

  M 

  F 

  M 

  F 

  F 

  F 

  F 

  M 

  F 

  F 

  F 

  M 

  F 

29.0 

27.0 

31.6 

25.5 

22.6 

23.8 

20.7 

30.1 

22.2 

19.6 

25.0 

29.7 

22.9 

21.4 

20.0 

26.0 

31.2 

27.3 

22.7 

28.2 

28.6 

25.0 

31.8 

24.5 

23.7 

23.9 

22.4 

28.4 

20.8 

19.6 

24.1 

30.0 

23.7 

    1 

    3 

    2 

    2 

    5 

    2 

    4 

    6  

    1 

    1 

    1 

    1 

    1 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

  0 

  0 

  0 

  0 

  1 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  1 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

  0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    1 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

    0 

 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 1 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0  

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0  

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0  

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 0  

 0 

 0 

 0 

 

In case of gender: M means man, F means woman. 

In case of PAH etiology: 0-control, 1-idiopathic, 2-PAH due to systemic sclerosis, 3-PAH due to other 

connective tissue diseases, 4-PAH due to congenital heart diseases, 5-PAH due to HIV infection, 6- 

portopulmonary hypertension (POPH), 7-PAH due to schistosomiasis. 

In other cases: 1 means presence and 0 means absence of the disease, DM-diabetes mellitus, IHC- 

ischemic heart disease, AVC- atrioventricular canal defect.  
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5.4 Biological sample preparation  

5.4.1. Plasma sample pretreatment for LC-QTOF-MS metabolic fingerprinting 

 

Both pig and human plasma samples were prepared with the same sample 

pretreatment procedure prior to LC-QTOF-MS metabolic fingerprinting. Plasma samples were 

thawed in ice for 120 min. Then plasma samples were vortexed for 30 s and 50 µl were 

pipetted into eppendorf 1.5 ml tubes. The 150 µl cold (-20°C) mixture of methanol and ethanol 

(1:1, v/v) was added into the tubes. Subsequently, samples were mixed for 1 min and then kept 

for 5 min at 4 °C and vortexed for a few seconds. Then samples were centrifuged at 15400 x g 

for 20 min at 4°C, and the obtained supernatant was filtered through a 0.22 μm syringe nylon 

filter. The simplified workflow of plasma preparation procedure was presented in Figure 12. 

Simultaneously with plasma samples, the quality control (QC) samples were prepared. The 

QCs were a pool of equal volume (20 µl) of each plasma sample used in particular experiment. 

The QCs were prepared with the same sample pretreatment procedure as pig or human plasma 

samples.  
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Figure 12. The simplified workflow of plasma sample pretreatment before LC-QTOF-MS 

metabolic fingerprinting. 
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5.4.2. Plasma sample pretreatment for GC-Q-MS metabolic fingerprinting 

 

Plasma samples included in both animal and human model were treated with the 

same procedure before GC-Q-MS metabolic fingerprinting experiment. At the beginning, 

plasma samples were thawed in ice for 120 min and then mixed by vortex mixer for 30 s. 50 

µl of each plasma sample were pipetted into 1.5 ml eppendorf tubes and 150 µl of cold 

acetonitrile (-20°C)  were added. Then, samples were mixed by vortex mixer for 2 min and 

kept at the temperature of 4
o
C for 5 min. Afterwards, samples were centrifuged with the 

microcentrifuge at 15400 x g for 10 min at 4
o
C. Next, 100 µl of each supernatant were 

transferred to GC glass vial equipped with 200 µl insert and evaporated to dryness (about 150 

min) by speedvac concentrator at 30
o
C.  Afterwards, the 2-step derivatization procedure was 

conducted. The first step, termed as methoxymation provides the carbonyl functional groups 

conversion to oximes what eliminates an undesirable slow and reversible silylation with 

carbonyl groups whose products can be thermally labile. Subsequently, the second step named 

silylation is performed to replace exchangeable protons with trimethylsilyl (TMS) groups as 

well as to form the TMS esters of metabolites to make them suitable for GC-Q-MS analysis. 

During the methoxymation step, 10 µl of o-methoxyamine hydrochloride in pyridine (15 

mg/ml) were added to each dried sample and thoroughly mixed for 1 min with the vortex 

mixer. Then, the samples were ultrasonicated three times for 10 s and vortexed again for 2 

min. Afterwards, all samples were covered by aluminum foil and incubated at the room 

temperature in the dark place for 16 h. Next, the silylation step was employed: 10 µl of 

bistrimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane (BSTFA+1% TMCS) were 

rapidly added into each sample and vigorously mixed for 5 min. Afterwards, all samples were 

incubated in the stove for 1 h at 70
o
C. Then, the samples were cooled down for 1 h in the dark 

place and 100 µl of  methyl stearate internal standard (IS) (10 ppm) was added to each sample 

and vigorously mixed with vortex mixer for 2 min. The IS addition was performed to control 

the instrument performance during the samples sequence analysis. Similar to LC-QTOF-MS 

methodology, the QC samples were simultaneously prepared as a pool of all plasma samples 

and underwent the same sample pretreatment procedure. The simplified scheme of plasma 

sample preparation to GC-Q-MS metabolic fingerprinting analysis was shown in Figure 13. 
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Figure 13. The simplified scheme of plasma sample pretreatment prior to GC-Q-MS metabolic 

fingerprinting. 
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5.5 Analytical platforms used in plasma metabolic fingerprinting 

 

5.5.1. Plasma metabolic fingerprinting with LC-ESI-QTOF-MS 

 

All analytical methods used in this doctoral thesis were developed and optimized in 

the Centre of Metabolomics and Bioanalysis (CEMBIO) of San Pablo University in Madrid. 

Plasma metabolic fingerprinting in an animal-based experiment was performed with UHPLC-

ESI-QTOF-MS (UHPLC 1290 series, QTOF 6550, Agilent Technologies) system and the 

optimized parameters of chromatographic separation and ESI ion source and Q-TOF 

spectrometer were collected in Table 11. Human plasma samples were fingerprinted by use of 

HPLC-ESI-QTOF-MS apparatus (HPLC 1200 series, QTOF 6520, Agilent Technologies) and 

the optimized method parameters were shown in Table 12. Both experiments based on an 

animal and human model were performed in scan mode to detect as many as possible 

metabolites present in plasma samples. Additionally, due to the fact that, there are chemically 

diverse compounds in metabolome, which can create positive or negative ions, the plasma 

metabolic fingerprinting with LC-ESI-QTOF-MS was performed in both (positive ESI+ and 

negative ESI-) ionization modes in separate runs. Before each experiment, the nebulizer 

needle and shield of the capillary in the LC-ESI-QTOF-MS system were cleaned with 20% 

isopropanol solution in water. The LC-ESI-QTOF-MS instrument was calibrated with the use 

of tuning mixture including reference masses (ESI-LOW tunning mix) before plasma sample 

analyses. At the beginning of each sequence run 8 QC sample injections were performed to 

provide the column and system equilibration. To avoid analytical bias the plasma samples 

were analyzed in randomized order during the metabolic fingerprinting analyses. To monitor 

system stability, method reproducibility the regular (after every 5 plasma samples) injection of 

QC samples was performed. To provide mass measurement accuracy, the reference masses at 

m/z 121.0509 and m/z 922.0098 in positive ion mode; and m/z 112.9856 and m/z 1033.9881 

in negative ion mode were continuously introduced by means of automated calibrant solution 

delivery system, during the plasma sample analyses.  
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Table 11. The parameters of optimized method for UHPLC-ESI-QTOF-MS based plasma 

metabolic fingerprinting.  

Method parameter ESI + ESI (-) 

Chromatographic conditions 

Mobile phase  A: 0.1% formic acid in water 

B: 0.1% formic acid in 

acetonitrile 

A: 0.1% formic acid in water 

B: 0.1% formic acid in 

acetonitrile 

Chromatographic column  Zorbax Extend RRH+ C18, 

2.1 x 5.0 mm, 1.8 µm 

Zorbax Extend RRH+ C18, 

2.1 x 5.0 mm, 1.8 µm 

Mobile phase flow rate 0.6 mL/min 0.6 mL/min 

Mobile phase gradient  Time            A  %         B% 

 0.0 min       95              5 

 1.0 min       95              5 

 7.0 min       20              80 

11.5 min      0.0             100 

12.0 min      95               5 

15.0 min      95               5 

Time            A  %          B% 

 0.0 min       95              5 

 1.0 min       95              5 

 7.0 min       20              80 

11.5 min      0.0             100 

12.0 min      95               5 

15.0 min      95               5 

Time of analysis 15 min 15 min 

Column temperature 60
o
C 60

o
C 

Injection volume 0.5 µl 0.5 µl 
Ion source parameters 

Gas temperature  250
o
C 250

o
C 

Drying gas flow 12 L/min 12 L/min 

Nebulizer pressure  52 psig 52 psig 

Mass spectrometer parameters 

Capillary voltage  3000 V 3000 V 

Skimmer  65 V 65 V 

Fragmentor 175 V 250 V 

Octopole radio frequency 

voltage (OCT RF Vpp) 

750 V 750 V 

Mass range (m/z) 50-1000 50-1100 

Scan rate 1 spectrum/1 second 1 spectrum/1 second 
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Table 12. The parameters of optimized method for HPLC-ESI-QTOF-MS based plasma 

metabolic fingerprinting. 

Method parameter ESI + ESI (-) 

Chromatographic conditions 

Mobile phase  A: 0.1% formic acid in water 

B: 0.1% formic acid in 

acetonitrile 

A: 0.1% formic acid in water 

B: 0.1% formic acid in 

acetonitrile 

Chromatographic column  Discovery HS C18 150 × 2.1 
mm, 3 μm with guard column 

Discovery HS C18 20 ×2.1 
mm, 3 μm 

Discovery HS C18 150 × 2.1 
mm, 3 μm with guard column 
Discovery HS C18 20 ×2.1 
mm, 3 μm 

Mobile phase flow rate 0.6 mL/min 0.6 mL/min 

Mobile phase gradient  Time            A  %         B% 

 0.0 min        75              25 

35.0 min         5              95 

36.0 min       75              25 

45.0 min       75              25 

 

Time            A  %         B% 

 0.0 min        75              25 

35.0 min         5              95 

36.0 min       75              25 

45.0 min       75              25 

Time of analysis 45 min 45 min 

Column temperature 60
o
C 60

o
C 

Injection volume 10 µl 10 µl 
Ion source parameters 

Gas temperature  330
o
C 330

o
C 

Drying gas flow 10.5 L/min 10.5 L/min 

Nebulizer pressure  52 psig 52 psig 

Mass spectrometer parameters 

Capillary voltage  3000 V 4000 V 

Skimmer  65 V 65 V 

Fragmentor 175 V 175 V 

Octopole radio frequency 

voltage (OCT RF Vpp) 

750 V 750 V 

Mass range (m/z) 50-1000 50-1100 

Scan rate 1 spectrum/1 second 1 spectrum/1 second 
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5.5.2. Plasma metabolic fingerprinting with GC-Q-MS 

 

The GC-Q-MS based plasma metabolic fingerprinting method applied in the doctoral 

thesis was developed and optimized in the Centre of Metabolomics and Bioanalysis 

(CEMBIO) of San Pablo University in Madrid. The optimized method was used for plasma 

metabolic fingerprinting both in an animal and human based experiment. To obtained global 

metabolites profile, 2 µl of previously derivatized plasma samples were injected in split mode 

onto a GC-Column DB5-MS (30 m length, 0.25 mm i.d., 0.25 µm film 95% dimethyl/ 5% 

diphenylpolysiloxane) with an integrated pre-column (10 m J&W) from Agilent Technologies. 

The optimized carrier gas (He) flow rate and injector temperature were 1 mL/min and 250 ºC, 

respectively. Split ratio was set from 1:5 to 1:10 with 3 to 10 mL/min He flow into deactivated 

glass-wool split liner. Temperature gradient was programmed as follows: the initial oven 

temperature was set at 60 ºC (held for 1 min), then increased to 325 ºC at 10 ºC/min, finally a 

cool-down period was used for 10 min before the next plasma sample injection. Total analysis 

time was 37.5 min. Detector transfer line, filament source and quadrupole temperatures were 

optimized at 290 ºC, 230 ºC and 150 ºC, respectively. Voltage for electron impact (EI) 

ionization source was 70 eV. Mass spectrometer operated in scan mode over a mass range of 

50-600 m/z at 2 spectra/s. Before each metabolomics experiment the calibration and tune of 

GC-Q-MS system was performed. Additionally, the injection needle was cleaned with LC-MS 

grade isopropanol and heptane. The septum and liner in the injection port were changed after 

100 and 250 injections, respectively. Before plasma samples analyses, the n-fatty acid methyl 

ester mixture (n-FAMEs C8-C22) analysis was performed for further retention indices 

calculation. Both, in an animal and human based experiment, the derivatized plasma samples 

were fingerprinted in the randomized order and the regular injection of QC samples (after 

every 6 plasma samples) was performed to control sample pretreatment reproducibility and 

system’s stability.  
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5.6 The data extraction and processing methods 

5.6.1. Data acquired with LC-ESI-QTOF-MS plasma metabolic fingerprinting 

 

The raw data obtained in both animal and human based study was reprocessed with 

DA reprocessor software (B.05.00, Agilent Technologies) to extract all compounds detected in 

plasma metabolic fingerprints. The data extraction method was created with the use of the 

molecular feature extraction (MFE) algorithm available in MassHunter Qualitative Analysis 

B.05.00 software (Agilent Technologies). The MFE tool groups ions based on their charge-

state, isotopic distribution, the adducts or dimers presence and creates a list of all possible 

compounds occurred in the full TOF mass scan range. The MFE algorithm allows to clean up 

the obtained raw data from background noise and artifacts. The background noise threshold 

was 200 counts and possible adducts included: +H, +Na, +K for positive ionization mode, and: 

−H, +HCOO for negative ionization mode. Neutral loss of water was considered in both 

ionization modes. After data extraction, for each plasma sample, the list of all detected 

components described by monoisotopic mass, retention time and intensity was obtained. Next, 

due to mass accuracy and retention time shift (because of analytical variation or matrix effect) 

during the analyses of all plasma samples in particular experiment, the peak alignment is 

required to ensure that the same component (ideally metabolite) is pointed as the same entity 

in all samples. Thus, the data extracted for all plasma samples were multialigned by means of 

MassProfiler Professional Software (B.12.01, Agilent Technologies). The alignment 

parameters for data acquired with UHPLC-ESI-QTOF-MS platform in an animal based 

experiment were 0.5% and 20 ppm for retention time and mass correction, respectively. For 

data obtained in human based study with using HPLC-ESI-QTOF-MS system, the alignment 

parameters were set to 1.0% and 20 ppm for retention time and mass correction, respectively. 

Then, prior to statistical analysis, a compound filtration was employed to remove random 

signals from the data matrix and select only metabolic variables that may represent biological 

meaning. Therefore the aligned data matrices were filtered to remain only these potential 

compounds that were present in all or most (at least 90%) of the samples in one of the 

compared groups (in the control or pulmonary arterial hypertension group).  
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5.6.2. Data acquired with GC-Q-MS plasma metabolic fingerprinting 

 

During either animal or human plasma metabolic fingerprinting study with GC-Q-MS 

platform, the data was acquired with Agilent MSD ChemStation Software (E.02.00.493, 

Agilent Technologies). The raw data deconvolution and compound identification were 

automatically performed with Automated Mass Spectral Deconvolution and Identification 

System (AMDIS) software. The first data reprocessing aims to retention index (RI) 

calculations based on RI calibration file containing information about retention time (RT) and 

RI of the fatty acid methyl esters present in standard mixture which was analyzed at the 

beginning of the plasma samples sequence. The proper selection of compounds used for RI 

calculation should be considered to cover total time of plasma metabolic fingerprinting 

analysis. The composition of RI calibration file used in both animal and human based 

experiment was shown in Table 13. RI for each detected compound was calculated based on 

the RT and RI of the closest eluting fatty acid methyl ester. RI of particular compound 

represents the constant which in relative to its RT is less sensitive to analytical variation. 

Therefore, all the deconvoluted compounds were identified based on retention time, retention 

index and mass spectrum. According to mass spectrum and RI similarity to those presented in 

the Fiehn RTL library, the list of identified compounds for each plasma sample was obtained. 

Additionally, mass spectra of possible compounds, which were not available in the Fiehn RTL 

library, were searched through NIST mass spectral library. Based on data including RT, target 

and qualifier m/z values, the in-house target library was created and used in second data 

processing. Then, the multialignment was performed with the use of Mass Profiler 

Professional software (B.12.01., Agilent Technologies). Subsequently, the obtained data 

matrix was filtered according to compound frequency and compounds presented in at least 

75% of all samples in the one of compared groups were remained. During the data 

normalization step, the intensities of these compounds were divided by intensity of the IS in 

particular plasma sample. The normalization step was performed before further statistical 

analysis.  
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Table 13. The characteristics of compounds included in the RI calibration file used for GC-Q-

MS data processing. 

 

Compound RI value RT value (min) 

[C8] Methyl caprylate  800 7.745 

[C10] Methyl caprate 1000 10.579 

[C12] Methyl laurate 1200 13.193 

[C14] Methyl myristate  1400 15.552 

[C16] Methyl palmitate 1600 17.967 

[C18] Methyl stearate 1800 19.649 

[C20] Methyl eicosonoate 2000 21.444 

[C22] Methyl docosonate  2200 23.102 

 

5.7 Univariate and multivariate statistical data analysis 

 

To find the statistically significant differences between control and pulmonary 

hypertension groups either in animal or human model, first, an univariate statistical analysis 

was applied. In case of the variables selected after processing and filtration steps in the animal 

study, normality of distribution was checked with Shapiro-Wilk test. The group variances 

homogeneity was assessed with Levene’s test. For normally distributed data paired standard t 

test (homogeneity of group variances) or paired Welch’s t test (heterogeneity of group 

variances) were applied. For variables without normal distribution, the nonparametric U 

Mann-Whitney test was used. In case of data obtained in human based experiment, instead of 

paired t tests, the unpaired standard or Welch’s t tests were applied. The univariate statistical 

calculations were performed with Matlab 2007b (Mathworks, Natick, MA, USA) and Mass 

Profiler Professional B.12.01. (Agilent Technologies) software. Subsequently, the multivariate 

statistical analysis was performed. As a first approach, the Principal Component Analysis 

(PCA) was applied. PCA, as an unsupervised exploratory method was employed to check the 

quality of the analysis. For this purpose all the aligned variables detected both in LC-ESI-
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QTOF-MS or GC-Q-MS were treated with quality assurance requirements [103], filtered 

according to their presence in QC samples. The compounds with frequency <50% in all QC 

samples were removed. Then, the variation of these variables responses in QC samples was 

also considered and expressed as coefficient of variation (CV). Thus, the compounds with 

CV<30% for LC-ESI-QTOF-MS data or CV<40% for GC-Q-MS data were used for PCA 

model plotting. The QC samples grouping in PCA plot confirms the system stability during 

sample analyses and ensures that group separation is related to biological, not analytical 

variation. All multivariate models were built with SIMCA P+ 13.03. software (Umetrics, 

Umea, Sweden). PCA as a classification method was applied to detect group classification and 

to reveal potential outliers by using Hotteling’s T2 range plot.  

Afterwards, the supervised partial least squares discriminant analysis (PLS-DA) was 

applied to select potential metabolites that contributed the most into group discrimination 

which were assessed with jackknife (JK) confidence intervals. In the case of LC-ESI-QTOF-

MS data only the statistically significant variables selected in an univariate analysis were used 

to build PLS-DA model. Then the JK method was applied to reduce the false positive results. 

Therefore, only variables that passed though both univariate and multivariate statistical 

analysis were considered for further compound identification. Since, in the case of GC-Q-MS 

data, the metabolites were firstly identified by Fiehn RTL, in-house target or NIST libraries, 

all compounds after data deconvolution, processing, normalization and filtration were applied 

to PLS-DA plotting. Therefore, the metabolites that were statistically significant in unvariate 

test or JK criteria were included in biochemical interpretation. The intensities of selected 

variables were log-transformed and Pareto scaled before building independent multivariate 

PCA or PLS-DA models. The obtained multivariate models were described by R
2
 and Q

2
 

parameters, which correspond to explained and predicted variance, respectively. Additionally, 

the obtained PLS-DA models were validated by leave-one-out cross validation (LOOCV) 

approach with the use of Matlab 2007b software. The datasets obtained in each metabolic 

fingerprinting experiment were divided into training (70% of all samples) and test sets (30% 

of all samples) using the Kennard and Stone algorithm and the percentages of samples which 

were correctly classified by each PLS-DA model were calculated. In addition, the sensitivity 

and specificity of the obtained discriminant models were also assessed. The training set was 
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used for validation procedure whereas the predictive value of the previously built 

classification models were determined using the test set. 

5.8 Metabolite identification and biochemical interpretation 

 

The identification of metabolites selected in both univariate and multivariate 

statistical analysis is strictly related to the analytical platform applied for plasma metabolic 

fingerprinting experiment. In the case of GC-Q-MS data, due to standardization (70 eV) and 

reproducibility of EI mode there are some universal mass spectral libraries containing 

fragmentation patterns of numerous chemical compounds. In both an animal and human 

models of pulmonary hypertension, the metabolites which differentiated the compared groups 

were identified based on comparison of their RT, RI and mass spectra with those available 

both in Fiehn RTL library, in-house target plasma library and NIST library. For each 

metabolite detected in plasma metabolic fingerprints with the use of GC-Q-MS platform, the 

target and three qualifier ions were chosen to provide the reliable identification. In the case of 

data obtained with LC-ESI-QTOF-MS technique, the accurate masses of variables represented 

the significant differences between compared groups were firstly searched trough publicly 

available databases including: 

 HMDB (www.hmdb.ca), 

 METLIN (www.metlin.scripps.edu), 

 KEGG (www.genome.jp/kegg),  

 LIPIDMAPS (www.lipidmaps.org).    

Moreover, the in-house developed search browser: CEU MassMediator 

(ceumass.eps.uspceu.es/mediator) was used for simultaneous searching through all 

commercially available databases listed above. However, the databases searching provided 

only the putative metabolites identification.  

Therefore, the identity of metabolites found in databases was confirmed with 

fragments obtained in LC-MS/MS analysis with use of the same QTOF in single ion 

monitoring (SIM) mode. The fragmentation experiments were conducted with the same 

chromatographic conditions as the first plasma metabolic fingerprinting analysis in scan mode. 
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The selected ions were targeted to collision-induced dissociation (CID) and the fragmentation 

was performed based on previously assessed accurate masses and retention times. The 

collision energy used for fragmentation of particular compound was calculated by following 

formula: 

 

 

Collision energy= [(slope) x (m/z)] / 100 + offset 

where slope=3.6, offset=4.8 

 

The comparison of fragmentation patterns obtained in plasma samples with those 

presented in databases provided the metabolites identification. In this case, the METLIN 

database is especially useful for identity confirmation due to the fact that mass spectra 

presented in this database were obtained in fragmentation experiments performed with the 

QTOF manufactured by the Agilent company. In the case of standards availability, the 

metabolites identification was confirmed by comparison of RT, isotopic distribution, and 

fragments of commercially available reagents with those detected in plasma samples either in 

an animal or human model of pulmonary hypertension. 

Afterwards, the biochemical interpretation was performed for altogether identified 

metabolites with both LC-ESI-QTOF and GC-Q-MS platforms. Therefore, the main aim was 

to find connections between biochemical pathways and statistically significant metabolites are 

involved. The KEGG and ExPASy databases were used for biochemical pathways analysis 

and interpretation. The connections between various and distant biochemical pathways 

provided the global insight into metabolites changes that can be involved in pathological 

processes of pulmonary hypertension.  
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 IV. RESULTS AND DISCUSSION 

6. Plasma metabolic fingerprinting with LC-ESI-QTOF-MS and GC-Q-MS in an animal  

model of acute pulmonary hypertension 

 

Sixteen pig plasma samples were divided into two compared groups: a baseline group 

before PE induction (n=8) and acute (1h after PE induction) PE group (n=8) with the 

confirmed pulmonary hypertension (PH). The pig plasma samples were analyzed by metabolic 

fingerprinting approach with the use of UHPLC-ESI-QTOF-MS platform in positive (ESI+) 

and negative (ESI-) ionization modes. As a complementary technique, GC-Q-MS was applied. 

The examples of chromatograms representing the pig plasma metabolic fingerprints obtained 

in both analytical platforms were displayed in Figures 14, 15 and 16 [102].  

To check the quality of the analysis and method reproducibility all pig plasma 

samples and QC samples were plotted in PCA models. For datasets obtained in UHPLC-

ESI(+)-QTOF-MS, UHPLC-ESI(-)-QTOF-MS and GC-Q-MS, the separate multivariate 

models were built. The datasets used in PCA plotting were filtered in accordance to quality 

assurance requirements described in section 5.7. and consisted of 1252, 1099 and 69 variables 

for UHPLC-ESI(+) -QTOF-MS, UHPLC-ESI(-) -QTOF-MS and GC-Q-MS data, respectively. 

The close clustering of the QC samples in all multivariate models confirmed the system 

stability and method reproducibility during each metabolic fingerprinting experiment (Figure 

17). In addition, no significant outliers according to Hottelling’s T2 range plot were observed. 

The outlier detection is crucial before the further discriminant multivariate analysis, because 

they can lead to model destabilization and affect the final statistical results. The cluster of QC 

group confirmed that groups separation is caused by sample biological content not analytical 

variation.  
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Figure 14. Representative UHPLC-ESI(+)-QTOF-MS chromatogram of pig plasma metabolic 

fingerprint form one pig plasma extract. A: Total Ion Chromatogram (TIC); B: overlay of all 

the individual features obtained after Molecular Feature Extraction (MFE) represented as 

extracted compound chromatogram (ECC) [102].  
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Figure 15. Representative UHPLC-ESI(-)-QTOF-MS chromatogram of pig plasma metabolic 

fingerprint form one pig plasma extract. A: Total Ion Chromatogram (TIC);  

B: overlay of all the individual features obtained after Molecular Feature Extraction (MFE) 

represented as extracted compound chromatogram (ECC) [102]. 
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Figure 16. Representative  GC-Q-MS  Total Ion Chromatogram (TIC) of pig plasma metabolic 

fingerprint form one pig plasma extract [102].  

 

 

 



85 
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Figure 17. Principal Component Analysis to verify quality of chromatographic analysis in all 

plasma metabolic fingerprinting experiments. 

A) Scores plot for a PCA model built with the data set obtained in UHPLC-ESI(+)-QTOF-MS. 

Quality parameters for the model: explained variance R
2
 = 0.569, predicted variance Q

2 
= 

0.451.  

(B) Scores plot for a PCA model built with the data set obtained in UHPLC-ESI(-)-QTOF-

MS. R
2
 = 0.556, Q

2
 = 0.308.  

(C) Scores plot for a PCA model built with the data set obtained in GC-Q-MS. R
2
 = 0.649, Q

2
 

= 0.368.  

QC samples have been marked as black spots. Animal groups before and after acute PE 

induction  have been marked as blue spots or red spots, respectively. 

 

 

 

 

 

C 
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6.1 Univariate and multivariate statistical analysis 

 

After data reprocessing and multialignment the obtained datasets consisted of 30191 

or 13696 features for UHPLC-ESI(+)-QTOF-MS and UHPLC-ESI(-)-QTOF-MS, 

respectively. In the case of GC-Q-MS data, 144 compounds were aligned in all pig plasma 

samples. Then, to clean up the obtained datasets from random signals, the filtration step was 

applied. For either UHPLC-ESI(+)-QTOF-MS or UHPLC-ESI(-)-QTOF-MS datasets, the 

100% filtration limit was used what meant that only features presented in all samples in at 

least one of the group (i.e. in all samples before or in all samples after acute PE) were included 

in univariate statistical analysis. In the case of GC-Q-MS data matrix, the 75% frequency 

criterion was applied due to complexity of derivatization process which can produce various 

derivatives of the same compound. After filtration step the datasets were reduced to 1482 and 

842 features for UHPLC-ESI(+)-QTOF-MS and UHPLC-ESI(-)-QTOF-MS, respectively as 

well as 94 compounds for GC-Q-MS. Subsequently, the univariate statistical analysis 

employed both paired t test and paired U Mann-Whitney test. As a result 68 and 78 variables 

as well as 8 compounds, in the case of UHPLC-ESI(+)-QTOF-MS, UHPLC-ESI(-)-QTOF-MS 

and GC-Q-MS data, respectively, were selected as significantly changed between compared 

groups. Then, only significant variables were used to build multivariate supervised PLS-DA 

models for UHPLC-QTOF-MS data from both polarity modes. Subsequently, the JK 

confidence interval criteria were applied as a multivariate statistical test to select variables 

which are mainly involved in group separation. Therefore, only variables that passed through 

both univariate and multivariate statistical criteria were included in the metabolite 

identification. In the case of GC-Q-MS, all variables after data filtration step were used to 

build the PLS-DA models and then the metabolites that were statistically significant according 

to univariate tests or JK criteria were considered in biochemical interpretation. The PLS-DA 

models for three independent datasets were built with SIMCA P+ 13.03 software and were 

presented in Figure 18.  
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Figure 18. PLS-DA plots for plasma metabolic fingerprints obtained before and after acute PE 

induction. 

 (A) PLS-DA model (R
2
 = 0.959, Q

2
 = 0.713) for significantly changed variables detected in 

pig plasma with UHPLC-ESI(+)-QTOF-MS. 

 (B) PLS-DA model (R
2
 = 0.999, Q

2
 = 0.984) for significantly changed variables detected in 

pig plasma with UHPLC-ESI(-)-QTOF-MS. 

 (C) PLS-DA model (R
2 
= 0.924, Q

2
 = 0.402) for compounds detected in pig plasma with GC-

Q-MS, after data filtration.  

The animal groups before and after acute PE have been marked as blue or red spots, 

respectively. 

 

 

 

 

C 
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6.2 Discriminant models validation 

 

To avoid overfitting and to check the predictive value of the obtained PLS-DA models, the 

leave-one-out cross-validation (LOOCV) method was applied with the use of Matlab 2007b 

software. The procedure of LOOCV approach was in detail described in section 5.7. The 

correct classification rate (CCR) for training and test sets was calculated for each PLS-DA 

model. The sensitivity and specificity of particular independent discriminant model were also 

calculated based on confusion matrices. The predictive value (Q) of each PLS-DA model was 

assessed based on test sets prediction by the model built on training sets. The results of 

prediction and LOOCV procedure for three independent PLS-DA models were collected in 

Table 14.  

 

Table. 14. The results of prediction and LOOCV procedure for independent discriminant 

models obtained for data from pig plasma metabolic fingerprinting experiments.  

LV=latent variables used in PLS-DA construction 

 

Based on LOOCV results the confusion matrix of each PLS-DA model was built. Then, the 

sensitivity and specificity were calculated with the use of following formulas: 

 

Sensitivity= TP / (TP + FN) 

 

Specificity= TN / (TN+ FP) 

PLS-DA models LV CCR_training 

set 

CCR_test 

set 

Q 

UHPLC-ESI(+)-QTOF-MS 

data 

2 82% 100% 100% 

UHPLC-ESI(-)-QTOF-MS 

data 

2 100% 100% 100% 

GC-Q-MS data 2 64% 80% 75% 
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Positive Predictive Value (PPV)= TP/(TP+FP) 

 

Negative Predictive Value (NPV)= TN/(TN+FN) 

 

In the formulas presented above the shortcuts as TP, TN, FN, FP mean: 

 TP (true positive) – the objects belonging to pulmonary hypertension (PH) group and 

were correctly classified to this group; 

 TN (true negative) – the objects belonging to baseline (B) group and were correctly 

classified to this group; 

 FN (false negative) – the objects belonging to pulmonary hypertension (PH) group and 

were incorrectly classified to B group; 

 FP (false positive) – the objects belonging to baseline (B) group and were incorrectly 

classified to PH group. 

The confusion matrices, sensitivities and specificities of each discriminant model were 

presented in Tables 15, 16 and 17.  

 

Table 15. The confusion matrix, sensitivity and specificity of PLS-DA model based on 

UHPLC-ESI(+)-QTOF-MS data set.  
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Table 16. The confusion matrix, sensitivity and specificity of PLS-DA model based on 

UHPLC-ESI(-)-QTOF-MS data set. 
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Table 17. The confusion matrix, sensitivity and specificity of PLS-DA model based on 

 GC-Q-MS data set. 
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6.3 Metabolite identification 

 

The information about the metabolites, significantly changed in pig plasma during the 

acute phase of PH, which were identified either in UHPLC-(ESI+)-QTOF-MS or UHPLC-

(ESI-)-QTOF-MS were collected in Table 18. For each particular metabolite, the RT, the 

measured monoisotopic mass, mass found in database, mass error, detection mode, formula, p-

value, percentage of change in PH group, coefficient of variation (CV) for QC samples and 

identification based on fragments analysis, were included. The mass error was calculated with 

the following formula: 

 

Mass error (ppm)= [(MDB-MEXP) / MEXP] x 1000000 

 

Where: MDB means mass found in database, MEXP means experimental mass. 

 

In turn, the percentage of change in PH group in comparison to baseline (B) group was 

calculated with the following formula: 

 

% change =[(Average PH-Average B)/ Average B] x 100 

 

Where the average PH and average B correspond to average of metabolite intensity in PH and 

B group, respectively.  

 

In the case of metabolites identified in GC-Q-MS and significantly changed in pig plasma in 

acute phase of PH, the information concerning RT, RI, target ion, qualifier ions, p-value,  

percentage of change in PH group and CV for QC samples were presented in Table 19. 
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Table 19. Metabolites significantly changed in pig plasma during acute phase of PH, identified 

during GC-Q-MS metabolic fingerprinting experiment. 

*CV not available, JK-jackknife confidence interval 

 

 

 

 

 

Name 

T 

(target 

ion) 

Q 

(qualifier 

ion) 

RT 

 (min) 

 

RI 
p- 

value 

change 

PH vs 

B [%] 

CV for 

QCs [%] 

pyruvic acid 174 89, 73, 59 6.584 721 0.025 71 19 

lactic acid 117 191, 147, 73 6.749 733 0.042 123 10 

glycerol 205 147, 117, 73 9.857 945 0.006 175 14 

palmitic acid 313 129, 117, 73 18.813 1720 0.037 49 36 

oleic acid 339 129, 117, 75 20.403 1892 0.021 82 35 

3-

hydroxybutyric 

acid 

233 147, 117, 78 8.208 

774 

0.044 53 26 

acetoacetate 89 202, 186, 59 7.806 787 JK  81 17 

citric acid 273 347, 147, 73 16.519 1494 JK  116 16 

α-ketoglutaric 

acid 
198 156, 147, 75 13.742 

1250 
JK  85 34 

fumaric acid 245 147, 75, 73 10.857 1025 JK  114 14 

malic acid 233 245, 133, 147 12.681 1164 JK  179 28 

2-

hydroxybutyric 

acid 

131 205, 147, 73 7.721 

773 

JK  105 17 

pyroglutamic 

acid 
156 230, 147, 73 13.099 

1196 
JK  53 * 

phenylalanine 120 146, 91, 75 13.466 1226 JK  76 * 

tryptophan 202 291, 117, 73 20.535 1888 JK  128 * 

2-

ketoisocaproic 

acid 

200 147, 99, 73 8.951 

851 

0.009 79 36 

hypoxanthine 265 280, 206, 73 16.359 1480 JK  96 * 

galacturonic 

acid 
333 292, 160, 103 17.786 

1638 
0.002 229 14 

β-alanine 248 248, 147, 73 11.931 1107 JK  72 * 
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6.4 Biochemical interpretation and discussion 

 

The metabolites found as significantly different among compared groups can be connected by 

various and numerous metabolic pathways, as graphically represented in Figure 19. The 

metabolite changes herein revealed, can be involved in the pathophysiological processes of 

acute PH due to PE. This can be explained by disturbed gas exchange which leads to oxygen 

deficiency and hypoxia state called hypoxic pulmonary vasoconstriction [104]. 

Figure 19. Metabolic changes in pig plasma during acute PH. Colored metabolites were detected using 

a GC-Q-MS or UHPLC-QTOF-MS platform. Those metabolites whose levels were increased in acute 

PH are highlighted in green and those that decreased in yellow boxes [102]. 
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As can be seen in Tables 18 and 19 or in Figure 4, numerous of the significantly 

changed metabolites in pig plasma during acute PH are employed in the glycolysis and the 

tricarboxylic acid (TCA) cycle, involved in the energy production and the creation of primary 

blocks of other metabolic pathways. The TCA cycle transforms acetyl-CoA into few 

intermediates and produces CO2, the reduced form of nicotinamide adenine dinucleotide 

(NADH 
+ 

H
+)

 and flavin-adenine dinucleotide (FADH 
+
 H

+
). These reduced coenzyme groups 

and cell oxygen are subsequently utilized by mitochondria in oxidative phosphorylation, 

which provides the main source for ATP production. In hypoxic state, the oxidative 

phosphorylation rate is limited due to the lack of oxygen, what results in the TCA cycle 

intermediates accumulation. This can be termed as an adaptive response to hypoxic stress, 

maximizing cellular energy production while protecting from adverse reactive oxygen species 

(ROS) accumulation. The observed increase in citrate, malate, fumarate and α-ketoglutarate in 

pig plasma during acute PH, could be related to a reduced TCA cycle turnover [102]. There 

are some recent reports suggesting that either the mitochondrial metabolism under hypoxia, 

the metabolism in the right ventricle or pulmonary vasculature can be characterized by 

impaired TCA cycle flux with succinate dehydrogenase dysfunction and activation of pyruvate 

dehydrogenase kinase, what consequently results in decreased energy production from both 

oxidative phosphorylation and TCA cycle [105, 106].  

 In addition the limited turnover of the TCA cycle might lead to acetyl-CoA 

accumulation. In the case of the reduced TCA cycle capability, acetyl-CoA is rather prompt to 

be used in ketogenesis pathway. In accordance to this, the increased levels of β-

hydroxybutyrate (β-HB) and acetoacetate (ketone bodies) in acute PH group were observed. 

The overproduction of β-HB is typical for conditions, in which the redox state of hepatic 

mitochondria is altered in order to increase NADH level. The obtained herein results showed 

that ketone bodies could be involved in acute PH development, probably due to hypoxia-

mediated alterations, what can help to explain and understand the PH pathogenesis. 

Furthermore, it has been reported that β-HB may protect the brain during hypoxic conditions 

by reducing glucose uptake and consumption rather than by acting as an alternative energy 

substrate [107].  
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A similar insight could be concluded from the differences found with pyruvate and 

lactate, which were also observed to be significantly different between compared groups. The 

increased levels of these metabolites in pig plasma during acute PH due to PE could also 

indicate the shift in glucose metabolism which is beneficial for ATP production and prevents 

from mitochondrial ROS generation. Oxygen level is a central regulator of the balance 

between glycolysis and oxidative phosphorylation in the energy metabolism[102]. Previous 

reports [108-110] confirmed that during hypoxic conditions ATP production was shifted 

toward glycolysis (Warburg effect) and leaded to cytosolic pyruvate accumulation that could 

be converted to lactate by lactate dehydrogenase [111,112].  

Still, the oxygen deficiency during hypoxic stress in acute PH might result in 

incomplete oxidation, free radicals overproduction and the glutathione overconsumption, 

which are the major intracellular antioxidants [102]. As a result of this consumption the 

increased levels of α-hydroxybutyrate (α-HB) and pyroglutamate were found in animals with 

acute PH. α-HB is a byproduct of glutathione formation, and the relationship between the high 

level of this metabolite and the excess of glutathione demand, mitochondrial energy 

metabolism, or increased oxidative stress has been previously reported [113]. Pyroglutamate is 

another metabolite involved in glutathione metabolism and its increase in hypoxic cells has 

been recently reported [114]. 

Additionally, the observed herein energy imbalance is clearly associated with the 

lipid metabolism abnormalities. The increased levels of glycerol and free fatty acids (FFA), 

such as docosatetraenoic and docosapentaenoic acids as well as palmitic and oleic acids in pig 

plasma during acute phase of PH confirmed the increased rate of lipolysis. Related to this, the 

recent report suggested that hypoxia is related to lipolysis induction in adipose tissue [115]. 

Moreover, these metabolic changes can be associated with the phospholipase A2 (PLA2) 

activity which hydrolyzes phospholipids to free fatty acids, eicosanoids and 

lysophospholipids. In the animal group with acute PH, four lysophospholipids, four 

phospholipids and one phosphatidic acid were observed to be lower, what indicates the 

regulation of PLA2 activity, which isoforms were reported to be modified by hypoxia [116].  

FFA can deliver the energetic and biosynthetic substrates for signaling molecules 

such as oxylipins, which are the cyclooxygenase- (COX), lipoxygenase (LOX), and 
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cytochrome P450- (CYP) derived oxidized metabolites of polyunsaturated fatty acids (PUFA). 

PUFA play a crucial role in cell proliferation, apoptosis, tissue repair, blood clotting and 

inflammation [102]. The best described oxylipins included prostaglandins and leukotrienes, 

the potent eicosanoid lipid mediators which derived mainly from arachidonic acid released by 

PLA2 [117]. The few oxylipins were significantly different between herein compared animal 

groups. However, the obtained results did not demonstrate the same trend for oxylipin 

compounds, while an increase of leukotriene C4 and a decrease in dihydroxyoctadecadienoic 

acid, hydroxyoctadecenoic acid and oxo-heptadecatrienoic acid were observed in pig plasma 

during acute PH. The initial idea that cysteinyl leukotrienes are involved in PH 

pathomechanism was performed by activity assessment of 5-lipoxygenase non-selective 

inhibitors or receptor’s agonists [118], however this suggestion was not confirmed by further 

investigations [119,120].  

In addition to oxylipins, changes in the levels of sphingolipids were also found 

between animal groups: lower sphingomyelin and ceramide-1-phosphate (Cer-1-P) as well as 

higher sphingosine in pig group with acute PH were observed [102]. Sphingolipids are a major 

class of lipids employed in eukaryotes membranes composition. However, the intensive 

investigations concerning their function and metabolism revealed that, for instance, 

sphingosine, sphingosine-1-phosphate, ceramide and Cer-1-P are bioactive signaling 

molecules, playing crucial role in cell growth, apoptosis, signal transduction and recognition 

[121]. In accordance to previously reported [122] results that showed the activation of neutral 

sphingomyelinase (nSMase) in isolated rat pulmonary artery smooth muscle cells (PASMC) 

during hypoxic pulmonary vasoconstriction, the observed herein decreased level of 

sphingomyelin can be related to nSMase activity. Cer-1-P is produced by direct 

phosphorylation of ceramide by ceramide kinase (CERK), and its role in cell growth and 

survival was previously suggested [123]. Moreover, it is worth to note that Cer-1-P by 

induction of cytosolic phospholipase A2 (cPLA2) plays important role in inflammatory 

response [121].  

The decreased level of desmosine was also observed in pig plasma during acute phase 

of PH. Desmosine is an amino acid involved in elastin cross-linking and it is made by 

condensation of four molecules of lysine into pyridinum ring [102]. The previous reports 
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revealed that the desmosine and isodesmosine determination in biological matrices (urine, 

plasma, sputum) can indicate the elastin degradation in chronic pulmonary diseases [124,125]. 

However, the desmosine alteration has not been previously reported to be related to hypoxic 

condition, PE or PH. Although, it should be underlined that changes in desmosine level were 

herein observed in an acute, not chronic phase of PH that occurred only one hour after 

polydextrane microspheres injection. 

PH is a multifactorial and complex vascular disease whose pathogenesis is not 

completely explained yet. Although, there are few suggested pathological processes associated 

with PH, such as vasoconstriction, increased vascular cells proliferation and resistance to 

apoptosis [82]. These hallmarks can be regulated by the stabilization of the hypoxia-inducible 

factor (HIF). HIF as main transcriptional regulator of the hypoxic response, has a predominant 

role in the PH induction [126]. HIF-1α regulates activity of numerous enzymes, mainly 

employed in glycolysis pathway what lead to pyruvate dehydrogenase inhibition and lactate 

dehydrogenase induction [127,128]. These enzymatic perturbations result in glycolytic shift as 

was revealed in the present study (increase in pyruvate and lactate levels in animal group with 

acute PH). Additionally, the TCA itself is also involved in the HIF stabilization, as the prolyl 

hydroxylases which lead to its degradation in normoxia are regulated by TCA cycle 

intermediates [126]. Moreover, the recent studies suggested the abnormal cellular metabolism, 

notably of glycolytic shift, the potential role of HIF-1α in these reactions, and alterations in 

mitochondrial function, as either key pathological hallmarks of PH progression or new 

therapeutic targets in PH treatment [82, 109]. 

In addition, HIF-1α inhibits voltage-gated potassium (Kv) channels, what 

consequently leads to membrane depolarization and Ca
2+

 flux into the cells what in pulmonary 

circulation results in hypoxic vasoconstriction and subsequently to PH initiation [82, 129]. 

Moreover, HIF-1α is controlled at the transcriptional and translational level by mammalian 

target of rapamycin (mTOR) signaling [130]. mTOR was suggested to be involved in cell 

growth and regulate both anabolic or catabolic pathways in lipid metabolism [131]. The 

oxylipins and lipid mediators observed to be significantly different between compared groups 

in the present animal model are associated with cell proliferation, cell survival, apoptosis and 

cell-cycle arrest [132]. The inflammation, resistance to apoptosis and increased cell 
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proliferation as suggested pathological reactions in PH development [133] can be regulated by 

both HIF and mTOR signaling. In addition, the recent report suggested the potential 

requirement of mTOR pathway in cell proliferation during hypoxia-induced PH [134]. 

To conclude, similarly to tumor cells, the imbalance between glycolysis and oxidative 

phosphorylation could play a crucial role in cell response in acute phase of PH and could be 

helpful to expand the knowledge about PH pathogenesis and may offer new insight into 

therapeutic targets to prevent or reverse disease progression.  

To sum up, our results were obtained based on an animal model in which pigs were 

selected as experimental animals what was justified by the fact, that cardiovascular 

physiology, size, anatomy, and blood perfusion distributions are very similar in humans and 

pigs. However, the animal model proposed in present study possesses some limitations. The 

PH was generated by injection of polydextrane-microspheres while in human the most 

common cause is thrombi. Thus, either diffuse or segmental occlusion of pulmonary arteries 

could occur. In addition, the composition of the microspheres could have had influence on 

obtained results. However, the most of the acute metabolite changes during PH such as 

hypoxic vasoconstriction are common to various PH etiologies. Therefore our results can be 

useful in disease diagnosis from different causes. Simultaneously, it should be underlined that 

potential metabolic markers, selected in our study, should be validated in human population to 

check diagnostic power and reliability.  

 

 

 

 

 



103 

   

7. Plasma metabolic fingerprinting with LC-ESI-QTOF-MS and GC-Q-MS in a human 

model of pulmonary arterial hypertension 

 

Forty human plasma samples were divided into two experimental groups: a control 

group consisting of 20 healthy individuals and disease group including 20 patients with the 

confirmed pulmonary arterial hypertension (PAH). The clinical characteristics of both studied 

group was described in section 5.3.2. The plasma samples were analyzed by metabolic 

fingerprinting approach with the use of HPLC-ESI-QTOF-MS technique in both positive 

(ESI+) and negative (ESI-) ionization modes. As a complementary platform the GC-Q-MS 

was applied. The examples of chromatograms obtained for plasma metabolic fingerprints with 

both analytical platforms were displayed in Figures 20, 21 and 22.  

To check the robustness of analytical procedure of each plasma metabolic 

fingerprinting experiments, all human plasma and QC samples were plotted in PCA graphs. 

The data matrices obtained in HPLC-ESI(+)-QTOF-MS, HPLC-ESI(-)-QTOF-MS and GC-Q-

MS were used to build separate multivariate models. The datasets before PCA plotting were 

filtered based on quality assurance requirements described in section 5.7. and consisted of 

1950, 1114 and 49 variables for HPLC-ESI(+)-QTOF-MS, HPLC-ESI(-)-QTOF-MS and GC-

Q-MS data, respectively. The appropriate clustering of the QC samples into group in each 

multivariate model confirmed the system stability and method reproducibility during 

metabolic fingerprinting experiments (Figure 23). The grouping of QC samples confirmed that 

compared experimental groups separation is due to biological and not to analytical variability. 

In addition, PCA plotting allowed to reveal one outlier according to Hottelling’s T2 range 

observed for GC-Q-MS data. The outlier detection is crucial before the further discriminant 

multivariate analysis, because they can lead to model destabilization and affect the final 

statistical results. Therefore the detected outlier (sample C_3) was not included in further 

statistical analysis.  
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Figure 20. Representative HPLC-ESI(+)-QTOF-MS chromatogram of plasma metabolic 

fingerprint from exemplary human plasma extract. A: Total Ion Chromatogram (TIC).  

B: overlay of all the individual features obtained after Molecular Feature Extraction (MFE) 

represented as extracted compound chromatogram (ECC).  

A 

B 
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Figure 21. Representative HPLC-ESI(-) - QTOF-MS chromatogram of plasma metabolic 

fingerprint from exemplary human plasma extract. A: Total Ion Chromatogram (TIC).  

B: overlay of all the individual features obtained after Molecular Feature Extraction (MFE) 

represented as extracted compound chromatogram (ECC). 

 

A 

B 
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Figure 22. Representative  GC-Q-MS  Total Ion Chromatogram (TIC) of plasma metabolic 

fingerprint from exemplary human plasma extract.  
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Figure 23. Checking the quality of analysis in all plasma metabolic fingerprinting experiments. 

(A) Scores plot for a PCA model built with the data set obtained in HPLC-ESI(+)-QTOF-MS. 

Quality parameters for the model: explained variance R
2
 = 0.471, predicted variance Q

2
 = 

0.225. (B) Scores plot for a PCA model built with the data set obtained in HPLC-ESI(-)-

QTOF-MS. R
2
 = 0.455, Q

2
 = 0.139. (C) Scores plot for a PCA model built with the data set 

obtained in GC-Q-MS. R
2
 = 0.567, Q

2
 = 0.193. (D) The Hottelling’s T2 range for GC-Q-MS 

D 

C 
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data set. QC samples, control and PAH group have been marked as black, blue and red spots, 

respectively. 

7.1 Univariate and multivariate statistical analysis 

 

After data reprocessing and multialignment the obtained datasets consisted of 27362 

and 11498 features for HPLC-ESI(+)-QTOF-MS and HPLC-ESI(-)-QTOF-MS, respectively. 

In the case of GC-Q-MS based plasma metabolic fingerprinting, 114 compounds were aligned 

in all human plasma samples. Then, to clean up the obtained data sets from random signals the 

filtration step was performed. For both HPLC-ESI(+)-QTOF-MS and HPLC-ESI(-)-QTOF-

MS data sets, the 90% filtration limit was used what meant that only features presented in 90% 

of all samples in at least one of the groups (i.e., in all control samples or all PAH samples) 

were considered in univariate statistical analysis. In the case of GC-Q-MS data matrix, the 

75% frequency criterion was applied due to the complexity of derivatization process which 

can produce few various derivatives of the same compound. After filtration step the datasets 

were reduced to 838 and 637 features for HPLC-ESI(+)-QTOF-MS and HPLC-ESI(-)-QTOF-

MS, respectively as well as 68 compounds for GC-Q-MS. Subsequently, the univariate 

statistical analysis employed both paired t tests and paired U Mann-Whitney test. 149 and 63 

variables as well as 11 compounds, in the case of HPLC-ESI(+)-QTOF-MS, HPLC-ESI(-)-

QTOF-MS and GC-Q-MS data, respectively, were selected as statistically significantly 

changed between compared groups. Then, only those significant variables were used to build 

multivariate supervised PLS-DA models for HPLC-QTOF-MS data from both polarity modes. 

Subsequently, the JK confidence interval criteria were applied as a multivariate statistical test 

to select variables which mainly contributed in samples discrimination. Therefore, only 

variables that passed through both univariate and multivariate statistical criteria were included 

in the metabolite identification. In the case of GC-Q-MS, all variables after data filtration step 

were used to build the PLS-DA model and then the metabolites that were statistically 

significant according to univariate tests or JK criteria were considered in biochemical 

interpretation. The PLS-DA models for three separate datasets were built with SIMCA P+ 

13.03 software and were presented in Figure 24.  
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Figure 24. PLS-DA plots for human plasma metabolic fingerprints obtained for control and 

PAH groups.  

(A) PLS-DA model (R
2
 = 0.845, Q

2
 = 0.671) for significantly changed variables detected in 

human plasma with HPLC-ESI(+)-QTOF-MS 

 (B) PLS-DA model (R
2
 = 0.896, Q

2
 = 0.614) for significantly changed variables detected in 

human plasma with HPLC-ESI(-)-QTOF-MS 

 (C) PLS-DA model (R
2
 = 0.825, Q

2
 = 0.554) for compounds detected in human plasma with 

GC-Q-MS, after data filtration.  

The control and PAH plasma samples have been marked as blue or red spots, respectively. 

 

 

 

C 
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7.2 Discriminant models validation 

 

To avoid overfitting and check the predictive value of the obtained PLS-DA models, 

the leave-one-out cross-validation (LOOCV) method was applied with the use of Matlab 

2007b software. The procedure of LOOCV approach was described in section 5.7. The correct 

classification rate (CCR) for training and test sets was calculated for each PLS-DA model. The 

sensitivity and specificity of particular independent discriminant model were also calculated 

based on confusion matrices. The predictive value (Q) of each PLS-DA model was assessed 

based on test sets prediction by the model built on training sets. The results of prediction and 

LOOCV procedure for three separate PLS-DA models were presented in Table 20.  

Table. 20. The results of prediction and LOOCV procedure for separate discriminant models 

obtained for data from human plasma metabolic fingerprinting experiments. 

 

LV=latent variables used in PLS-DA construction 

 

Based on LOOCV results the confusion matrix for each PLS-DA model was built. Then, the 

sensitivity and specificity were calculated with the use of the same formulas as was described 

in section 6.2. The confusion matrices, sensitivities and specificities of each discriminant 

model were presented in Tables 21 - 23. 

PLS-DA models LV CCR_training set CCR_test 

set 

Q 

HPLC-ESI(+)-QTOF-

MS data 

3 61% 75% 83% 

HPLC-ESI(-)-QTOF-

MS data 

3 64% 83% 83% 

GC-Q-MS data 3 81% 67% 75% 
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Table 21. The confusion matrix, sensitivity and specificity of PLS-DA model based on HPLC-

ESI(+)-QTOF-MS data set. 

 Predicted Sensitivity Specificity PPV NPV 

C PAH  

 

0.8 

       

 

0.6 

 

 

0.67 

 

 

0.75 

A
ct

u
a
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C 12 8 

PAH 4 16 

 

Table 22. The confusion matrix, sensitivity and specificity of PLS-DA model based on HPLC-

ESI(-)-QTOF-MS data set. 

 

 

 

 

 

 

 

 

 

 

 

 Predicted Sensitivity Specificity PPV NPV 

C PAH  

 

0.75 

       

 

0.7 

 

 

0.71 

 

 

0.74 

A
ct

u
a
l 

C 14 6 

PAH 5 15 
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Table 23. The confusion matrix, sensitivity and specificity of PLS-DA model based on  

GC- Q-MS data set. 

 Predicted Sensitivity Specificity PPV NPV 

C PAH  

 

0.7 

       

 

0.75 

 

 

0.74 

 

 

0.71 

A
c
tu

a
l 

C 15 5 

PAH 6 14 

 

7.3. Metabolite identification 

 

The information about metabolites, significantly changed in human plasma during 

PAH in comparison to control group, which were identified both in HPLC-(ESI+)-QTOF-MS 

and HPLC-(ESI-)-QTOF-MS were collected in Table 24. For each particular metabolite, the 

RT, the measured monoisotopic mass, ionization mode, formula, p-value, percentage of 

change in PAH group, coefficient of variation (CV) for QC samples and identification based 

on fragments’ analysis, were included. The percentage of change in PAH group comparing to 

control group were calculated with the same formulas described in section 6.3. In the case of 

metabolites identified in GC-Q-MS and significantly changed in human plasma of PAH group, 

the information concerning RT, RI, target ion, qualifier ions, p-value, percentage of change in 

PAH group and CV for QC samples were presented in Table 25.  
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Table 24. Metabolites significantly changed in human plasma during acute phase of PH, 

identified during HPLC-QTOF-MS metabolic fingerprinting experiment. 

Name Formula RT 

Ionization 

mode 

Monoisotopic 

mass p-value 

% 

change 

CV 

QCs Identification 

glutamine C5H10N2O3 1.1 negative 146.0693 0.0143 59 6 

145.0615, 127.0500,  

109.0396, 58.0316,  

41.9997 

nonanoic acid C9H18O2 12.7 positive 158.1304 0.0072 28 9 

159.1375, 141.9564,  

124.9622, 97.9679, 

 89.0596, 43.0545 

uric acid C5H4N4O3 0.7 negative 168.0262 0.0491 20 3 

167.0195, 124.0147, 

 96.0198, 69.0089, 

 41.9990 

hydroxybenzenesulfonic 

acid C6H6O4S 1.2 negative 173.9984 0.0066 291 7 

172.9901, 93.0343, 

 79.9569 

tryptophan C11H12N2O2 1.1 positive 204.0897 0.0376 -14 8 

205.0984, 188.0706, 

 146.0599, 118.0651 

palmitamide C16H33NO 26.5 positive 255.2579 0.0257 -18 7 

256.2644, 102.0911, 

 116.1065, 88.0756,  

57.0701 

oleamide C18H35NO 27.3 positive 281.2741 0.0215 -14 7 

281.2735, 265.2529, 

 247.2420, 

135.1166, 

 97.1010, 83.0856, 

 69.0701, 57.0702 

stearamide C18H37NO 31.1 positive 283.2889 0.0266 -21 12 

284.2962, 116.1072, 

 102.0911, 88.0756, 

 57.0699 

ketosphingosine C18H35NO2 20.3 positive 297.2664 0.0009 -34 17 

298.2733, 281.2488,  

95.0847, 81.0699, 

 67.0549, 57.0708 

dimethylnonanoyl 

carnitine C18H35NO4 8.7 positive 329.2564 0.0423 -21 10 

329.2568, 271.1880, 

 85.0284, 60.0796 

MG(16:0) C19H38O4 27.8 positive 330.2777 0.0312 36 10 

331.2850, 313.2728,  

95.0852, 71.0856, 

 57.0700 

hydroxy-oxo-cholanoic 

acid C24H38O4 34.1 positive 390.2779 0.0274 40 27 

391.2852, 167.0361, 

 149.0225, 71.0851, 

 57.0703 

palmitoylcarnitine C23H45NO4 18.1 positive 399.3347 0.0066 31 5 

400.3418, 341.2682, 

 85.0285, 60.0809 

vaccenyl carnitine C25H47NO4 18.7 positive 425.3506 0.0168 36 4 

426.3581, 309.2773, 

 85.0284, 60.0808 

stearoylcarnitine C25H49NO4 21.2 positive 427.3653 0.0016 31 4 

428.3725, 311.2927, 

 85.0281, 60.0799 

LPE(18:0) C23H48NO7P 22.5 positive 481.318 0.0397 21 7 481.3179, 341.3044 

LPC  C24H50NO8P 9.6 positive 511.3277 0.0008 70 29 

512.3277, 184.0726, 

 104.1070, 86.0963 

glycochenodeoxycholate 

sulfate C26H43NO8S 8.5 negative 529.2697 0.0329 84 9 

528.2620, 448.3069, 

 74.0236 

LPC (22:6) C30H50NO7P 17.8 positive 567.3331 0.0123 -20 12 

568.3380, 184.0725, 

 104.1069, 86.0966 

deoxycholic acid-3 

glucuronide C30H48O10 8.1 negative 568.3228 0.0124 63 9 

567.3152, 505.3094,  

391.2780, 113.0218, 

85.0277, 

 75.0089, 44.9971 

PC(26:1) C34H66NO8P 24.1 positive 647.4436 0.0299 -29 26 

648.4489, 184.0727, 

104.1054, 86.0951 
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Table 25. Metabolites significantly changing in human plasma of PAH group, identified in 

GC-Q-MS metabolic fingerprinting experiment. 

 

Name 

T 

(target 

ion) 

Q 

(qualifier 

ion) 

RT 

(min) 

 

RI 
p- 

value 

change 

PAH vs 

C [%] 

CV for 

QCs [%] 

pyruvic acid 174 89, 73, 59 6.584 721 0.025 71 19 

lactic acid 117 191, 147, 73 6.749 733 0.042 123 10 

glycerol 205 147, 117, 73 9.857 945 0.006 175 14 

aminomalonic acid 218 73,147,320 12.5 889 0.037 84 28 

cholesterol 129 329,73,368 27.6 2826 0.032 -9 27 

creatinine 115 73,100,329 13.5 1232 0.004 77 29 

threitol 73 147,217,103 12.9 1176 0.0005 115 24 

isoleucine/norleucine 86 75,69, 188 8.4 853 0.001 -21 24 

gluconic acid lactone  73 217,147,103 16.8 1560 0.023 54 25 

glycolic acid 147 73,66, 205 6.9 748 0.031 18 28 

urea 147 189, 73,66 9.4 923 0.038 39 17 

citric acid 273 347, 147, 73 16.519 1494 JK 123 27 

alanine 248 248,147,73 12.1 1107 JK 63 23 

pyroglutamic acid 156 230,147,73 13.1 1196 JK 35 17 

tetratriacontane 57 71,85,   99 29.3 3075 JK -37 29 

2-amino-1-

phenylethanol  
174 73, 147,86 15.3 1406 JK 66 12 

ketobutyric acid 188 188,89, 59 6.9 773 JK -40 29 
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7.4 External validation of potential markers of pulmonary hypertension 

 

The external validation of potential markers (see Table 24 and 25) of PH condition 

was performed in independent test group, consisting of 20 PH patients and 12 healthy controls. 

The test groups were also matched according to age, sex and BMI. Plasma metabolic 

fingerprinting experiment was performed using the same analytical instruments and methods 

as described in sections 5.4. and 5.5. The further workflow regarding, data extraction, data 

treatment and statistical analysis were conducted in the same way, previously. The results of 

univariate statistical analysis in the test group were listed in Table 26. Additionally, the 

LOOCV approach was performed in Matlab 2013b and the test group was predicted by the 

PLS-DA models built based on data obtained in the first experiment. The predictive values 

were 63% and 82% for LC-MS and GC-MS datasets, respectively.  
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Table 26. The results of univariate statistical analysis in external test group in the study of 

human PH. 

Metabolite p-value in test group 

glutamine 0.039 

nonanoic acid 0.998 

uric acid 0.626 

hydroxybenzenesulfonic acid 0.045 

tryptophan 0.024 

palmitamide 0.047 

oleamide 0.042 

stearamide 0.021 

ketosphingosine 0.024 

MG(16:0) 0.743 

hydroxy-oxo-cholanoic acid 0.309 

palmitoylcarnitine 0.023 

vaccenyl carnitine 0.179 

stearoylcarnitine 0.027 

LPE(18:0) 0.044 

LPC  0.283 

glycochenodeoxycholate sulfate 0.029 

LPC (22:6) 0.041 

deoxycholic acid-3 glucuronide 0.034 

PC(26:1) 0.179 

cholesterol 0.0039 

creatinine 0.016 

threitol 0.0017 

gluconic acid lactone  0.565 

glycerol 0.014 

glycolic acid 0.075 

lactic acid 0.0011 

pyruvic acid 0.062 

urea 0.0069 

aminomalonic acid 0.012 

isoleucine/norleucine 0.931 
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7.5 Biochemical interpretation and discussion 

 

The identified metabolites representing significant differences in plasma of PAH 

patients in comparison to control group are associated with various metabolic pathways, 

including glycolysis, TCA cycle, pentose phosphate pathway, amino acid metabolism, purine 

metabolism and fatty acid metabolism. The global network of metabolite changes detected in 

human plasma in PAH development has been graphically presented in Figure 25.  

In the context of central carbon metabolism (CCM), which centers on glycolysis and 

TCA cycle and deliver molecules to be catabolised in order to produce energy or for the 

biosynthesis of other compounds, few metabolites were significantly increased in PAH group. 

The elevated level of pyruvate and lactate has been observed in this study what can indicate 

the shift in energy production towards glycolysis. The similar metabolite changes underlining 

the energy imbalance (Warburg effect) was characteristic for hypoxic and an acute phase of 

PH in the animal model investigated in this thesis. However, recent report [135] suggested the 

reduced glycolysis in human PAH lung tissue compared to normal one. The explanation of 

these contrary results can be associated with the different PAH stage. In our study the patients 

with developing PAH were included while in the study based on lung tissue the severe and an 

advanced state of PAH was considered [135]. Interestingly, it is worth to note that metabolites 

derived from glycolysis could be involved in PAH progression and deliver new prognostic 

markers of the disease however further investigations based on larger population with different 

PAH stages are required to confirm the reliability of proposed metabolic markers. Other 

metabolites related to carbohydrate metabolism including threitol and gluconic acid lactone 

were observed to be increased in plasma of PAH group. Threitol is an end product of xylose 

metabolism whereas gluconic acid lactone derives from glucose oxidation and participates in 

pentose phosphate pathway which is a process involved in glucose turnover.  

In the view of CCM, TCA cycle is employed in oxidation of carbohydrates, lipids and 

selected amino acids and its metabolic intermediates are continuously transported to the 

cytoplasm to increase energy production and fatty acids synthesis. In the present human based 

study of PAH, the significantly increased level of citric acid was observed in plasma of PAH 

group what can be a result of increased activity of citrate synthase. The same tendency was 
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reported in human lung tissue what can suggest an up-regulation of TCA cycle during the 

PAH development [135].  

The disrupted energy production observed in this human based PAH model is also 

connected to alterations of fatty acid metabolism. The primary fatty acids amides (PFAMs) 

including palmitamide, stearamide and oleamide were found significantly decreased in plasma 

of PAH group. The PFAMs can be produced by two proposed routes involving ammonolysis 

of fatty acyl-CoA thioesters or the oxidative cleavage of N -fatty acylglycines [136]. The 

intensive studies on PFAMs revealed that they are important signaling molecules which 

control numerous of biological processes such as sleep, locomotion, angiogenesis, release of 

Ca
2+

, blood vessels relaxation. Oleamide, as the best-studied of the PFAMs, has been recently 

reported to enhance the vasorelaxant effects in hypertension [137]. In addition, palmitamide, 

stearamide and oleamide were secreted by human atherothrombotic aneurysms [138] what 

suggests the potential role of PFAMs in pathogenesis of vascular diseases. In case of PAH, 

they can indicate the promising direction of further investigations.  

The other group of metabolites representing the significant difference between PAH 

and control groups were long-chain acylcarnitines, which are the substrates for PFAMs 

synthesis. Carnitine and its derivatives are employed in the transport of activated long-chain 

fatty acids from cytoplasm into mitochondrial compartment where the enzymes involved in β-

oxidation are located. The scheme of β-oxidation and connections with other metabolic 

pathways were presented in Figure 26. Carnitines play crucial role in maintenance of normal 

mitochondrial function and it is well known that alterations in carnitine metabolism result in 

mitochondrial dysfunction at the cellular level. In the present study, the significant decrease in 

palmitoylcarnitine, vaccenylcarnitine (or oleoylcarnitine) and steaorylcarnitine in plasma of 

PAH patients in comparison to the control group, was observed. The peroxisome proliferator-

activated receptors (PPARs) are major regulators of energy balance and control the expression 

of genes involved in β-oxidation process [139]. The PPARs have been reported to be involved 

in various pathological processes as diabetes, cancer, inflammation or atherosclerosis [140]. 

Recently, the decreased level of palmitoylcarnitine, vaccenylcarnitine (or oleoylcarnitine) and 

steaorylcarnitine in plasma of aneurysm patients has been observed indicating the altered fatty 
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acid β -oxidation or deficiency of carnitine [141]. In addition, the experimental models also 

suggest that loss of PPARs signaling may result in the progression of pulmonary hypertension 

[142]. However, contrariwise to our results, the increase in palmitoylcarnitine, 

vaccenylcarnitine (or oleoylcarnitine) and steaorylcarnitine in human PAH lung tissue was 

reported [135]. Similarly to glycolysis derived metabolites, the alterations of carnitine 

metabolism may be specific for pathological stage of PAH and may be different in an acute or 

severe phase what indicate its potential role in the disease progression. Ketosphingosine, as a 

sphingolipid involved in sphingosine metabolism, was significantly decreased in plasma of 

PAH patients in comparison to healthy participants. Sphingolipids have been previously 

reported to be agonists of PPAR receptors which are, as described above, involved in fatty 

acids β-oxidation process [143]. Sphingolipids have also been suggested to play crucial role in 

cell proliferation, apoptosis and cell signaling what makes them important bioactive 

compounds [121]. In addition, the significant changes in few lysophospholipids as products of 

phospholipids metabolism were observed in plasma of PAH group what can indicate the PLA2 

regulation. In the group of metabolites involved in lipid metabolism, glycerol and nonanoic 

acid were significantly increased in plasma of PAH patients when compared to controls what 

indicates the intensified rate of lipolysis which delivers new sources for energy production.  

The statistically significant changes in cholesterol metabolism were also observed 

between compared groups in the present study. The decrease in cholesterol and increase in  

hydroxy-oxo-cholanoic acid, a bile acid product of cholesterol metabolism, were detected in 

plasma of PAH patients compared to controls. The similar tendency of change in the case of 

hydroxy-oxo-cholanoic acid was previously suggested to be secreted by abluminal part of 

human atherothrombotic aneurysms [138].  

The other metabolite representing the significant change between PAH and control 

group, was uric acid. The increased level of this metabolite was observed in plasma of PAH 

patients. Uric acid is a heterocyclic final oxidation product of purine metabolism and it is a 

result of xanthine oxidase activity, which oxidizes oxypurines, for instance, xanthine into uric 

acid. The contributory role of uric acid in systemic hypertension has been previously reported 

[144]. Uric acid, although is known as an antioxidant in the extracellular part, induces 

oxidative stress within cells and leads to the renin-angiotensin system (RAS) activation. In 
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addition, uric acid inhibits an endothelial nitric oxide (NO) generation. These effects lead to 

systemic and renal vasoconstriction and hypertension development. Our results underline the 

potential role of uric acid in pathological processes involved in PAH development.  

The next group of metabolites, with significant changes in plasma of compared 

groups, were amino acids. Among them, the elevated level of pyroglutamic acid (5-oxo-

proline) was observed in plasma of PAH group. Pyroglutamic acid is employed in glutathione 

(GSH) turnover. The GSH is the best known cellular antioxidant so that alterations of GSH 

homeostasis observed in present study could be related to oxidative stress during PAH 

condition. In addition, GSH plays an crucial role in numerous cellular processes such as cell 

differentiation, proliferation or apoptosis, therefore disruptions in GSH turnover are likely to 

be involved in the pathogenesis or progression of cardiovascular and inflammatory diseases 

[145]. In addition, regarding amino acid metabolism, tryptophan and isoleucine (or norleucine) 

were decreased whereas glutamine, glycolic acid, alanine and creatinine were augmented in 

plasma of PAH patients in comparison to the control group. Especially, the changes in 

tryptophan level can be important in the case of PAH pathogenesis. Tryptophan is an essential 

amino acid in the human diet. In addition, it is transformed to serotonin by tryptophan 

hydrolase. Serotonin has been suggested to enhance pulmonary arterial smooth muscle cell 

proliferation, vasoconstriction and local microthrombosis [146]. In addition, it has been 

previously reported that expression of the gene regulating isoform 1 of tryptophan hydrolase 

was increased in lungs and pulmonary endothelial cells in an idiopathic PAH [147]. The other 

investigation aimed to study the genetic deletion of tryptophan hydroxylase 1 on hypoxia-

induced pulmonary arterial hypertension in mice and confirmed its crucial role in disease 

development [148]. In our study, the decrease in tryptophan can be related to its metabolic 

conversion into serotonin which can be employed in cell proliferation and vascular remodeling 

in PAH.  

Interestingly, as a result of present study, the significantly increased level of 

aminomalonic acid was observed in plasma of PAH group. The possible sources of the 

presence of aminomalonic acid include errors in protein synthesis or oxidative damage to 

amino acid residues in proteins [149]. However, the biochemical role of this metabolite is still 
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a question for further research, it is employed in the pyruvate conversion into alanine. 

Recently, increased plasma level of aminomalonic acid was observed in patients with 

aneurysm [150], however it was reduced in plasma of patients with acute coronary syndrome 

[151]. These reports together with our results may indicate the crucial role of aminomalonic 

acid in cardiovascular diseases. 

To sum up, results presented in the thesis, confirmed that plasma metabolic 

fingerprinting may be powerful tool for understanding and explanation of pathological process 

involved in PAH progression. Although, it should be underlined that selected potential 

metabolic markers of PAH pathomechanism should be validated in larger human population to 

confirm their reliability and diagnostic or prognostic power. However, it also should be noted 

that PAH is relatively rare disorder so that the sample availability is limited. On the other 

hand, the frequency of PAH occurrence in human population can be underestimated due to the 

lack of characteristic clinical symptoms as consequently specific diagnostic biomarker. 

Therefore, metabolomics approach can provide new holistic insight into pathological 

processes involved in PAH development and thereby improve diagnosis, prognosis and 

treatment of the disease.  
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Figure 25. The global network of metabolite changes detected in human plasma in pulmonary 

arterial hypertension detected by HPLC-ESI-QTOF-MS or GC-Q-MS techniques. Those 

metabolites whose levels were increased in plasma of  PAH patients are highlighted in red and 

those that decreased in grey boxes.  
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Figure 26. The role of carnitines in fatty acids β-oxidation and connections with other 

biochemical pathways.  
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V. CONCLUSIONS 

 The presented doctoral thesis has proved that plasma metabolic fingerprinting with the 

use of modern and complementary platforms (LC-ESI-QTOF and GC-Q-MS) followed 

by multivariate data analysis is helpful to improve diagnosis and to study the global 

metabolic response to pathological processes involved in both acute and chronic stages 

of PH. 

 The experiment based on the animal model of PH has revealed metabolite changes, 

which could be characteristic of an acute stage of PH. The increased plasma levels of 

lactate, pyruvate, pyroglutamate, α-hydroxybutyrate, acetoacetate, β- hydroxybutyrate, 

sphingosine, glycerol, citrate, malate, fumarate, tryptophan, phenylalanine, palmitic 

and oleic acid, as well as the decreased plasma levels of arginine, creatine, 

sphingomyelin, ceramide-1-phosphate, phospholipids and lysophospholipids, were 

observed as significantly changed between the compared groups.  

 Those changes were associated with hypoxia, lipid-related energy imbalance, and cell 

signaling. Therefore, abnormal cellular metabolism such as glycolytic shift or 

alterations in mitochondrial function and signal transduction pathways, observed in the 

study, could be crucial pathological hallmarks of acute PE resulting in PH 

development. 

 The study of PAH in human population has indicated metabolite alterations related to 

glycolysis, TCA cycle, pentose phosphate pathway, as well as amino acid, purine and 

fatty acid metabolic pathways, which could be specific for chronic phase of PAH 

progression. The increased plasma levels of uric acid, lactate, pyruvate, aminomalonic 

acid, glycerol, creatinine, palmitoylcarnitine, stearoylcarnitine and glutamine, as well 

as decreased plasma levels of ketosphingosine, cholesterol, oleamide, palmitamide, 

stearamide, were found to represent statistically significant differences between PAH 

patients and healthy controls.  
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 Those changes indicated, that abnormal regulation of various metabolic pathways, as 

glycolytic shift, alternations of long chain carnitines and fatty acid metabolism, as well 

as signal transduction, revealed in the study, could be specific features of chronic stage 

of PAH. 

 Metabolomics can turn out as a helpful tool in expanding current knowledge about 

pathogenesis of PH, what may consequently lead to discovery of new and more 

specific, diagnostic or prognostic markers of the disease. 

 Potential metabolic markers, which were proposed in the presented doctoral thesis, 

should be validated on larger human populations, using the targeted and quantitative 

metabolomics approach, to confirm their probable diagnostic and prognostic power, 

which is obligatory in the studies focused on biomarkers discovery.  

 

VI. SUMMARY 

In the present doctoral thesis the untargeted plasma metabolic fingerprinting was used 

to study global metabolite alterations in pulmonary hypertension. To achieve this goal, the 

animal model was carefully designed and the human group was selected. Pigs were selected as 

an experimental animal model to provide the similarity to human, concerning the 

cardiovascular physiology, size, anatomy and blood perfusion distributions. Pulmonary 

hypertension in pigs was generated with the polydextrane microspheres injection. The animal 

model was designed in order to study an acute stage and therefore plasma metabolic 

fingerprinting was performed in two compared animal groups: before and 1 h after the 

initiation of the pulmonary embolism procedure resulting in pulmonary hypertension 

development. The human model of pulmonary hypertension was studied based on plasma 

metabolic fingerprints characteristic for the chronic pathological processes involved in the 

disease progression. During human model design, two groups were included and composed of 

PAH patients as well as healthy controls. The age, gender, BMI and associated diseases 

occurrence were considered to minimize the biological variation which is not related to the 

study aim but can affect the metabolomics results. Due to the complexity and chemical 

diversity of the metabolome, in order to detect as many as possible metabolites, two 
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complementary analytical platforms such as LC-ESI-QTOF-MS in both ionization modes 

(ESI+ and ESI-) and GC-Q-MS were applied to provide metabolites coverage in plasma 

metabolic fingerprints characterizing both an acute and a chronic stage of PAH.  

First, the plasma sample pretreatment was performed to remove protein molecules 

and extract low-molecular-weight metabolites from complex biological matrices. In the case 

of metabolic fingerprinting with GC-Q-MS platform, an additional derivatization step was 

employed to increase volatility of compounds present in plasma samples. Then plasma 

extracts were fingerprinted with the use of optimized analytical methods with both LC-ESI-

QTOF-MS and GC-Q-MS techniques. To control system stability and method reproducibility, 

QC samples were prepared as a pool of all plasma samples used in particular experiment. 

Subsequently, regular analysis of QC samples was conducted during the sequence run. Then, 

the acquired raw data obtained in LC-ESI-QTOF-MS and GC-Q-MS platforms, were 

reprocessed to extract compounds detected in all peaks of plasma metabolic fingerprints. 

Further data treatment was performed before statistical analysis. The alignment step was 

aimed to minimize the analytical variation concerning the retention time and mass shift 

occurring across analysis of all samples during the sequence runs. The sample multialignment 

step provided that each component of metabolic fingerprint was pointed as the same 

metabolite across all samples. Then, the filtration step, based on the frequency of particular 

metabolite in all samples analyzed, was conducted to remove random signals and remain only 

those with biological meaning.  

Subsequently, the univariate statistical analysis was performed to selected metabolites 

representing significant difference between compared group. The t test or U Mann-Whitney 

test depending on the data distribution were applied to this purpose. Afterwards, the 

bioinformatic data analysis was required to study the relationships between multivariate 

plasma metabolic fingerprints and pathological stages of pulmonary arterial hypertension. As a 

first exploratory chemometric tool, principal component analysis was applied to reveal general 

trends in the obtained data, potential outliers and check quality of the analysis. Principal 

component analysis, as an unsupervised multivariate method, classifies samples based on their 

similarity included in data matrix without knowledge about class membership. In the present 

thesis, principal component analysis was mainly used to check systems performance and an 
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analytical method stability what was provided by QC samples grouping in the obtained score 

plots. The tightly clustering of QC samples ensured that biological variation between 

compared groups was real and not random or resulting from analytical variability. 

Subsequently, the partial least squares- discriminant analysis was applied to select metabolites 

contributed the most in group classification. As a supervised multivariate method, the partial 

least squares- discriminant analysis, apart from information included in data matrix utilizes the 

discrete data about samples membership, to find metabolites involved in group discrimination 

resulting from different biological state. The obtained multivariate discriminant models were 

validated with the use of leave-one-out cross-validation approach, to avoid the overfitting 

phenomenon and check the predictive value. The sensitivity and specificity of each 

independent discriminant models were assessed. All multivariate model were characterized by 

good sensitivity (at least 70%), specificity (at least 60%) and predictive value (at least 75%).  

The identity of metabolites detected with LC-ESI-QTOF-MS platform and 

subsequently selected in either an univariate or a multivariate statistical analysis detected with 

LC-ESI-QTOF-MS platform was firstly confirmed by searching in publicly available 

databases such as METLIN, KEGG, LIPIDMAPS, HMDB and all simultaneously accessed by 

recently developed search engine, CEU MassMediator. The metabolites, found in databases 

mentioned above, were also confirmed by LC-MS/MS analysis. The metabolites detected with 

GC-Q-MS platform and representing the significant differences between compared groups 

were identified based on retention index, retention time and mass spectrum available in the 

NIST, Fiehn RTL and plasma in-house developed libraries. In the case of an animal model of 

pulmonary hypertension studied in the present thesis, 27 metabolites in LC-ESI-QTOF-MS 

and 19 in GC-Q-MS platforms were identified. In the human model of pulmonary 

hypertension, 21 metabolites in LC-ESI-QTOF-MS and 17 in GC-Q-MS were identified. 

Finally, the analysis of biochemical pathways, in which the identified metabolites are 

involved, and connections between these routes were assessed to understand the global 

metabolic response to pathological processes associated with different phases of pulmonary 

hypertension. In the animal model, the metabolites found differentially distributed among 

compared groups were mainly involved in an energy imbalance such as glycolysis-derived 

metabolites, ketone bodies or TCA cycle intermediates, as well as lipid mediators which could 
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be employed in the signal transduction among cells such as sphingolipids and 

lysophospholipids. These metabolite changes confirmed the presence of the hypoxia-state in 

an acute phase of pulmonary hypertension. The obtained results revealed the important role of 

metabolic alterations in pathological processes involved in acute pulmonary hypertension. In 

the human model of the disease, the disruptions in glycolysis, TCA cycle, amino acids 

metabolism and mainly in fatty acids metabolism including β-oxidation or fatty acid amides 

synthesis have emerged among other biochemical pathways. These results suggested the 

potential role of glucose and lipids metabolic pathways in the molecular pathomechanisms 

associated with the progression of pulmonary hypertension. In addition, some new potential 

markers of the disease, such as oleamide, stearamide, palmitamide or aminomalonic acid have 

been revealed in the present study, however they have previously been reported to be related 

to various cardiovascular diseases but not to pulmonary hypertension. 

To sum up, in the present doctoral thesis the plasma metabolic fingerprinting with the 

use of modern and complementary LC-ESI-QTOF and GC-Q-MS platforms followed by 

multivariate data analysis, was used to study global metabolic response to pathological 

processes involved in an acute and chronic stages of pulmonary hypertension. Since, the 

pathomechanisms of pulmonary hypertension are not completely understood yet, there is still a 

lack of specific biomarkers, which provide the effective diagnosis and prognosis of the 

disease. Therefore, the application of the metabolomics approach to study pathological 

processes at molecular level of both acute and chronic pulmonary hypertension was 

undertaken in the present doctoral thesis. The obtained results, have revealed that selected 

metabolites have a potency to be candidates for explanation the cellular mechanisms involved 

in disease pathogenesis. Metabolomics, among other –omic branches of systems biology 

approach, is closely related to molecular phenotype characteristic for particular biological state 

and therefore can provide the new insight into pathomechanisms involved in an acute and 

chronic stage of pulmonary hypertension. The results obtained in the present thesis open a new 

discipline for further research in order to improve current diagnosis, prognosis and therapeutic 

treatment of pulmonary hypertension. Metabolomics can turn out the helpful tool in expanding 

current knowledge about pathogenesis either of an acute or a chronic phase of pulmonary 

hypertension what can consequently lead to discovery and development of new diagnostic or 

prognostic biomarkers and more effective target therapies.  
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obtained for data from human plasma metabolic fingerprinting experiments.  
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ESI(+)-QTOF-MS data set. 
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Figure content 

Figure 1. The general flow of biological information in the network  –omic cascade.  

Figure 2. Common research strategies in metabolomics [12]. 

Figure 3. Scheme of the typical workflow in untargeted metabolic fingerprinting approach. 

Figure 4. Typical mass spectrometer construction. 

Figure 5. The electrospray ionization mechanism [53].  

Figure 6. The schematic construction of QqQ mass analyzer [56]. 

Figure 7. Clinical classification of pulmonary hypertension [66]. 

Figure 8. The major mechanisms in PAH pathogenesis [82]. 

Figure 9. The metabolic pathways in mitochondrion involved in energy production [82].  

Figure 10. Current and emerging therapies and their targets in PAH treatment [100].  

Figure 11. The histopathological changes in lung parenchyma of pig that underwent 

euthanasia 3 h after of acute PH induction by PE procedure. (A) Vessel obstruction by several 

microspheres marked as asterisk. (B) Macrophages infiltration around the microsphere 

obstructing the vessel marked as asterisk. (C) The  hemorrhage  pointed with arrowheads. (D) 

The hemorrhage marked as arrowhead and intraalveolar edema pointed with arrows. (E) The 

example of intraalveolar edema marked as arrow. (F) The severe perivascular and 

peribronchial inflammatory infiltration [102]. 

Figure 12. The simplified workflow of plasma sample pretreatment before LC-QTOF-MS 

metabolic fingerprinting. 

Figure 13. The simplified scheme of plasma sample pretreatment prior to GC-Q-MS metabolic 

fingerprinting. 

Figure 14. Representative UHPLC-ESI(+)-QTOF-MS chromatogram of pig plasma metabolic 

fingerprint form one pig plasma extract. A: Total Ion Chromatogram (TIC); B: overlay of all 

the individual features obtained after Molecular Feature Extraction (MFE) represented as 

extracted compound chromatogram (ECC) [102].  

Figure 15. Representative UHPLC-ESI(-)-QTOF-MS chromatogram of pig plasma metabolic 

fingerprint form one pig plasma extract. A: Total Ion Chromatogram (TIC);  B: overlay of all 

the individual features obtained after Molecular Feature Extraction (MFE) represented as 

extracted compound chromatogram (ECC) [102]. 
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Figure 16. Representative  GC-Q-MS  Total Ion Chromatogram (TIC) of pig plasma metabolic 

fingerprint form one pig plasma extract [102].  

Figure 17. Principal Component Analysis to verify quality of chromatographic analysis in all 

plasma metabolic fingerprinting experiments.(A) Scores plot for a PCA model built with the 

data set obtained in UHPLC-ESI(+)-QTOF-MS. Quality parameters for the model: explained 

variance R
2
 = 0.569, predicted variance Q

2
 = 0.451. (B) Scores plot for a PCA model built 

with the data set obtained in UHPLC-ESI(-)-QTOF-MS. R
2
 = 0.556, Q

2
 = 0.308. (C) Scores 

plot for a PCA model built with the data set obtained in GC-Q-MS. R
2
 = 0.649, Q

2
 = 0.368. 

QC samples have been marked as black spots. Animal groups before and after acute PE 

induction  have been marked as blue spots or red spots, respectively. 

Figure 18. PLS-DA plots for plasma metabolic fingerprints obtained before and after acute  PE 

induction. (A) PLS-DA model (R
2
 = 0.959, Q

2
 = 0.713) for significantly changed variables 

detected in pig plasma with UHPLC-ESI(+)-QTOF-MS.  (B) PLS-DA model (R
2
 = 0.999, Q

2
 

= 0.984) for significantly changed variables detected in pig plasma with UHPLC-ESI(-)-

QTOF-MS. (C) PLS-DA model (R
2
 = 0.924, Q

2
 = 0.402) for compounds detected in pig 

plasma with GC-Q-MS, after data filtration.  The animal groups before and after acute PE 

have been marked as blue or red spots, respectively. 

Figure 19. Metabolic changes in pig plasma during acute PH. Colored metabolites were 

detected using a GC-Q-MS or UHPLC-QTOF-MS platform. Those metabolites whose levels 

were increased in acute PH are highlighted in green and those that decreased in yellow boxes 

[102]. 

Figure 20. Representative HPLC-ESI(+)-QTOF-MS  chromatogram of plasma metabolic 

fingerprint from exemplary human plasma extract. A: Total Ion Chromatogram (TIC), B: 

overlay of all the individual features obtained after Molecular Feature Extraction (MFE) 

represented as extracted compound chromatogram (ECC).  

Figure 21. Representative HPLC-ESI(-)-QTOF-MS chromatogram of plasma metabolic 

fingerprint from exemplary human plasma extract. A: Total Ion Chromatogram (TIC), B: 

overlay of all the individual features obtained after Molecular Feature Extraction (MFE) 

represented as extracted compound chromatogram (ECC). 

Figure 22. Representative GC-Q-MS Total Ion Chromatogram (TIC) of plasma metabolic 

fingerprint from exemplary human plasma extract.  
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Figure 23. Checking the quality of analysis in all plasma metabolic fingerprinting experiments. 

(A) Scores plot for a PCA model built with the data set obtained in HPLC-ESI(+)-QTOF-MS. 

Quality parameters for the model: explained variance R
2
 = 0.471, predicted variance Q

2
 = 

0.225. (B) Scores plot for a PCA model built with the data set obtained in HPLC-ESI(-)-

QTOF-MS. R
2
 = 0.455, Q

2
 = 0.139. (C) Scores plot for a PCA model built with the data set 

obtained in GC-Q-MS. R
2
 = 0.567, Q

2
 = 0.193. (D) The Hottelling’s T2 range for GC-Q-MS 

data set. QC samples, control and PAH group have been marked as black, blue and red spots, 

respectively. 

Figure 24. PLS-DA plots for human plasma metabolic fingerprints obtained for control and 

PAH groups. (A) PLS-DA model (R
2
 = 0.845, Q

2
 = 0.671) for significantly changed variables 

detected in human plasma with HPLC-ESI(+)-QTOF-MS, (B) PLS-DA model (R
2
 = 0.896, Q

2
 

= 0.614) for significantly changed variables detected in human plasma with HPLC-ESI(-)-

QTOF-MS, (C) PLS-DA model (R
2
 = 0.825, Q

2
 = 0.554) for compounds detected in human 

plasma with GC-Q-MS, after data filtration. The control and PAH have been marked as blue 

or red spots, respectively. 

Figure 25. The global network of metabolite changes detected in human plasma in pulmonary 

arterial hypertension detected by HPLC-ESI-QTOF-MS or GC-Q-MS techniques. Those 

metabolites whose levels were increased in plasma of  PAH patients  are highlighted in red 

and those that decreased in grey boxes.  

Figure 26. The role of carnitines in fatty acids β-oxidation and connections with other 

biochemical pathways. 
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VIII. ABSTRACT 

Pulmonary hypertension is a complex disorder, characterized by a multifactorial 

pathophysiology. The common hallmark of the pulmonary hypertension is its severity and 

progressiveness. When it is misdiagnosed, may lead to right ventricle failure and premature 

death. Pathogenesis of the pulmonary hypertension is still not fully explained and understood 

yet,  and derived mainly from experimental animal models.  

The objective of the presented doctoral thesis was untargeted metabolomic analysis 

of plasma samples in pulmonary hypertension. Both animal (Sus scrofa) and human models 

were considered to study metabolic changes occurring in this disorder. In the doctoral thesis, 

the comparative analysis of control and pulmonary hypertensive groups was performed.  

In the presented doctoral thesis, untargeted metabolic fingerprinting approach with 

the use of complementary analytical techniques, such as: liquid chromatography coupled with 

quadrupole and time of flight mass spectrometry (LC-QTOF-MS) and gas chromatography 

coupled with quadrupole mass spectrometry (GC-Q-MS), was applied. The obtained raw 

datasets were pretreated (deconvolution, alignment, filtration, normalization) and subjected to 

univariate statistical analysis with the use of both t-test and U Mann-Whitney test. The 

multivariate techniques, such as: principal component analysis (PCA) and partial least 

squares-discriminant analysis (PLS-DA), were used in order to select metabolites, which 

contributed to groups’ classification and discrimination. The selected, statistically significant 

metabolites, were identified based on searching through publicly available databases 

(METLIN, HMDB, KEGG, LIPIDMAPS, CEU Mass Mediator, NIST), as well as 

fragmentation pattern analyses.  

Metabolites, which represented statistically significant differences between compared 

groups, were related to various biochemical pathways, mainly glycolysis, tricarboxylic acid 

cycle as well as fatty acid, lipid and amino acid metabolism.  
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IX. STRESZCZENIE 

Nadciśnienie płucne jest hemodynamicznym schorzeniem patofizjologicznym o 

bardzo złożonej etiopatogenezie. Nieprawidłowo zdiagnozowane lub nierozpoznane 

nadciśnienie płucne może prowadzić do dysfunkcji prawej komory serca, a w konsekwencji 

do przedwczesnej śmierci. Procesy patofizjologiczne leżące u podstaw tej jednostki 

chorobowej nie są do końca wyjaśnione, a wiedza na temat potencjalnych patomechanizmów 

nadciśnienia płucnego opiera się głównie na eksperymentalnych modelach zwierzęcych. Do 

tej pory nie zostały zaproponowane specyficzne markery diagnostyczne nadciśnienia 

płucnego.  

Celem głównym niniejszej pracy doktorskiej była niecelowana analiza 

metabolomiczna próbek osocza w nadciśnieniu płucnym. Badania zostały przeprowadzone w 

oparciu o model zwierzęcy oraz na wybranej grupie z populacji ludzkiej. Cel główny pracy 

doktorskiej został osiągnięty poprzez realizację poszczególnych celów cząstkowych, 

obejmujących następujące etapy: 

 Niecelowaną analizę metabolomiczną (metaboliczny „odcisk palca”) próbek osocza 

z zastosowaniem zaawansowanych i komplementarnych technik analitycznych, takich 

jak HPLC-ESI-QTOF-MS, GC-EI-Q-MS, co umożliwiło oznaczenie szerokiego 

spektrum metabolitów o zróżnicowanych właściwościach fizykochemicznych; 

 Przygotowanie otrzymanych danych metabolomicznych o złożonej strukturze 

wielowymiarowej do analizy statystycznej, obejmujące wyrównanie pików (ang. peak 

alignment), filtrację oraz normalizację; 

 Jednowymiarową oraz wielowymiarową bioinformatyczną analizę danych w celu 

wyselekcjonowania związków o potencjalnym znaczeniu klasyfikacyjnym oraz 

dyskryminacyjnym; 

 Identyfikację istotnych statystycznie  różnic w poziomach metabolitów;  

 Analizę szlaków biochemicznych, w których biorą udział metabolity o potencjalnym 

znaczeniu klasyfikacyjnym; 

 Kompleksową interpretację biochemiczną uzyskanych wyników przeprowadzonych 

badań. 
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W modelu zwierzęcym nadciśnienia płucnego, jako organizm modelowy została 

wybrana świnia domowa (Sus scrofa), ze względu na podobieństwo anatomiczne, 

fizjologiczne oraz genetyczne do populacji ludzkiej. U zwierząt ostre nadciśnienie płucne 

zostało wywołane przez iniekcję do żyły udowej mikrosfer polidekstranowych. Próbki osocza 

zostały pobrane przed zainicjowaniem nadciśnienia płucnego oraz godzinę po stwierdzeniu 

ciężkiego (> 40mmHg) nadciśnienia płucnego. Przygotowanie próbek osocza obejmowało 

etapy odbiałczania, odwirowania oraz filtracji supernatantu w przypadku techniki LC-MS, a w 

przypadku techniki GC-MS dodatkowo przeprowadzono dwustopniowy procesupochodniania. 

Analiza metabolicznych „odcisków palca” została przeprowadzona za pomocą dwóch 

komplementarnych technik analitycznych: UHPLC-ESI-QTOF-MS (w dwóch trybach 

polaryzacji: dodatniej oraz ujemnej) oraz GC-Q-MS. Po wstępnym przygotowaniu danych 

analitycznych (wyrównanie pików, filtracja, normalizacja), została przeprowadzona jedno- 

oraz wielowymiarowa analiza statystyczna. W analizie jednowymiarowej zastosowano test t-

Studenta oraz U Manna-Whitneya. Natomiast w wielowymiarowej analizie chemometrycznej 

wykorzystano analizę składowych głównych (PCA) oraz analizę dyskryminacyjną 

częściowych najmniejszych kwadratów (PLS-DA). Kolejnym etapem przeprowadzonego 

badania była identyfikacja istotnych statystycznie metabolitów na podstawie dostępnych baz 

danych (METLIN, KEGG, HMDB, LIPIDMAPS, CEU Mass Mediator, NIST) oraz analizy 

fragmentacyjnej, zapewniającej wiarygodne potwierdzenie tożsamości chemicznej 

wyselekcjonowanych metabolitów. W grupie zwierząt z ostrym nadciśnieniem tętniczym 

zaobserwowano istotnie podwyższony poziom kwasu mlekowego, pirogronianu, kwasu 

piroglutaminowego, kwasu α-hydroksymasłowego, acetooctanu, kwasu β-

hydroksymasłowego, sfingozyny, glicerolu, kwasu cytrynowego, kwasu jabłkowego, kwasu 

fumarowego, tryptofanu, fenyloalaniny, kwasu palmitynowego oraz oleinowego, jak również 

istotnie obniżony poziom argininy, kreatyny, sfingomieliny, fosforanu-1-ceramidu, 

fosfolipidów oraz lizofosfolipidów, w porównaniu z grupą zwierząt przed inicjacją 

nadciśnienia płucnego. Interpretacja szlaków biochemicznych, w których obserwowane są 

zidentyfikowane metabolity, pozwoliła na kompleksową interpretację biologiczną uzyskanych 

wyników. Potencjalne znaczenie w patogenezie ostrego nadciśnienia płucnego mogą mieć 

metabolity pochodzące ze szlaków glikolizy, cyklu Krebsa, metabolizmu kwasów 
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tłuszczowych oraz lipidów, których zmieniony poziom może prowadzić do hipoksji, zaburzeń 

równowagi energetycznej na poziomie komórkowym oraz dysfunkcji mitochondriów. 

 

W modelu nadciśnienia płucnego opartym na populacji ludzkiej, przeprowadzono 

analizę porównawczą dwóch grup badanych: grupy kontrolnej oraz grupy ze zdiagnozowanym  

nadciśnieniem płucnym. Porównywane grupy obejmowały 20 pacjentów ze zdiagnozowanym 

nadciśnieniem płucnym oraz 20 osób zdrowych. Grupy badane zostały dobrane pod względem 

wieku (50.3 ±14.8 w grupie kontrolnej, 50.7 ±15.2 w grupie z nadciśnieniem płucnym), BMI 

(25.1 ±3.6 w grupie kontrolnej, 25.3 ±3.7 w grupie z nadciśnieniem płucnym), jak i rozkładu 

płci (15 kobiet i 5 mężczyzn w każdej z porównywanych grup). Materiałem biologicznym do 

oznaczeń metabolomicznych było osocze krwi żylnej. Przygotowanie próbek biologicznych 

obejmowało etapy: odbiałczania, odwirowania oraz filtracji supernatantu w przypadku 

techniki LC-MS, a w przypadku techniki GC-MS, dodatkowo przeprowadzono dwustopniowy 

etap upochadniania. Metaboliczne „odciski palca” przygotowanych próbek osocza zostały 

oznaczone za pomocą komplementarnych technik analitycznych HPLC-ESI-QTOF-MS 

(w trybie polaryzacji dodatniej i ujemnej) oraz GC-EI-Q-MS. Przygotowanie uzyskanych 

danych analitycznych obejmowało ich dekonwolucję, wyrównanie pików, filtrację oraz 

normalizację. Następnie została przeprowadzona jednowymiarowa analiza statystyczna z 

wykorzystaniem testu t-Studenta lub testu U Manna-Whitneya, w zależności od rozkładu 

danych. W wielowymiarowej analizie chemometrycznej zastosowano analizę składowych 

głównych (PCA) oraz analizę dyskryminacyjną częściowych najmniejszych kwadratów (PLS-

DA), wyselekcjonować te metabolity, które wykazują największą korelację ze stanem 

patofizjologicznym, jakim jest nadciśnienie płucne. Kolejnym etapem badań 

przeprowadzonych w  niniejszej pracy doktorskiej była identyfikacja istotnych statystycznie 

metabolitów na podstawie dostępnych baz danych (METLIN, HMDB, KEGG, LIPIDMAPS, 

CEU Mass Mediator, NIST) oraz analizy fragmentacyjnej. W grupie pacjentów z 

nadciśnieniem płucnym zaobserwowano podwyższony poziom kwasu moczowego, kwasu 

mlekowego, pirogronianiu, kreatyniny, glicerolu, glutaminy, palmitoilokarnityny, 

stearoilokarnityny oraz kwasu aminomalonowego, jak również obniżony poziom cholesterolu, 

ketosfingozyny oraz amidów kwasu palmitynowego, oleinowego oraz stearynowego, 

w porównaniu z grupą osób zdrowych. Przeprowadzona analiza szlaków biochemicznych 
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wykazała, że zaburzenia w procesie glikolizy, metabolizmie kwasów tłuszczowych oraz 

lipidów mogą mieć potencjalnie znaczenie w patogenezie przewlekłego nadciśnienia 

płucnego.  

Wyniki badań przeprowadzonych w niniejszej pracy doktorskiej potwierdzają 

potencjalną rolę niecelowanej analizy metabolomicznej, wykorzystującej komplementarne 

techniki analityczne (LC-QTOF-MS i GC-Q-MS) oraz zaawansowane bioinformatyczne 

metody analizy danych, w poszukiwaniu nowych, czułych i specyficznych markerów 

nadciśnienia płucnego. Planowane jest w ramach dalszej pracy przeprowadzenie walidacji na 

większej populacji z wykorzystaniem celowanej oraz ilościowej analizy metabolomicznej, aby 

potwierdzić wartość diagnostyczną oraz prognostyczną, wyselekcjonowanych w niniejszej 

pracy doktorskiej, potencjalnych markerów nadciśnienia płucnego.  

 


