DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary

UNITED STATES GEOLOGICAL SURVEY
GEORGE OTIS SMITH, Director

BULLETIN 722

MINERAL RESOURCES OF ALASKA

REPORT ON PROGRESS OF INVESTIGATIONS IN

1920


BY

A. H. BROOKS AND OTHERS

WASHINGTON
GOVERNMENT PRINTING OFFICE
1922

DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary

UNITED STATES GEOLOGICAL SURVEY
GEORGE OTIS SMITH, Director

Bulletin 722

MINERAL RESOURCES OF ALASKA

REPORT ON PROGRESS OF INVESTIGATIONS IN

1920

BY

THE THE CHANGE OF THE CHANGE O

A. H. BROOKS AND OTHERS.

Bibl. Ket, Naukotiemi Degn. N. 8.

Wpisano do inwentarea

Dria 8.111 1947

WASHINGTON GOVERNMENT PRINTING OFFICE 1922 DEFARTMENT OF THE INTERIOR
ALBERT 8. PAGE Secretary

WHITE SPATES (SOLOGICAL SURVEY CONTRACTOR CO

Bulletin 722

MINERAL RESOURCES OF ALASKA

REPORT ON PROGRESS OF INVESTIGATIONS IN

1920

A IC BROOKS AVD OTHERS.

CONTENTS.

	Page.
Preface, by A. H. Brooks	5
The Alaska mining industry in 1920, by A. H. Brooks	7
Administrative report, by A. H. Brooks	69
Water-power investigations in southeastern Alaska, by G. H. Canfield	75
Ore deposits of the Salmon River district, Portland Canal region, by L. G.	
Westgate	117
Geology of the vicinity of Tuxedni Bay, Cook Inlet, by F. H. Moffit	141
Gold lodes in the upper Kuskokwim region, by G. C. Martin	149
Metalliferous lodes in southern Seward Peninsula, by S. H. Cathcart	163
Index	263
Recent Survey publications on Alaska.	I

ILLUSTRATIONS.

1080	
D T 16 A 41 A 41 A 41 A 4 A 44 A 44 A 44 A	Page.
PLATE I. Map of southeastern Alaska, showing location of gaging stations	76
II. Geologic map of Tuxedni Bay and vicinity	142
III. Map of Alaska, showing transportation routes in the Kuskokwim	770
region.	152
FIGURE 1. Geologic sketch map of Salmon River district.	121
2. Sketch map of Stoner and New Alaska properties.	132
3. Sketch map of Fish Creek Mining Co. properties.	135
4. Index map of upper Kuskokwim basin	151
5. Geologic map of Nixon Fork lode district, upper Kuskokwim basin.	155
6. Geologic sketch map of the vicinity of Bluff.	187
7. Sketch map and geologic section showing gold lodes near Bluff	190
8. Sketches of cliff exposure of Idaho lode, showing relation of min-	, , ,
eralized schist to limestone.	193
9. Geologic map of part of Solomon district	197
10. Plan of underground workings of Big Hurrah mine	201
11. Geologic sketch map of part of Council district	206
12. Diagrammatic cross section from Sweetcake Creek to Melsing Creek.	208
13. Geologic sketch map of Iron Creek region.	209
14. Generalized sketch of exposures on east bank of Kruzgamepa River	
at Wheeler prospect.	210
15. Geologic sketch map of Copper Mountain area	218
16. Map showing location of graphite deposits in the Kigluaik Mountains	221
17. Geologic sketch map of Manila-Lost Creek area.	225
18. Geologic sketch map of Anvil Creek and vicinity, 4 miles north of	0011
Nome	235
19. Map showing location of metalliferous lodes northwest of Nome	257

CONTENTS

	un Semand Femin	

HAJISTRATIONS.

Alap of southosetern Alaska, showing location of gaging stations.	
Geologic map of part of Solomon disaret	
will see the second of the sec	
Constilland state in exposures on read hards of Krussamena Biver	

MINERAL RESOURCES OF ALASKA, 1920.

By Alfred H. Brooks and others.

PREFACE.

By Alfred H. Brooks.

This volume is the seventeenth of a series of annual bulletins ¹ summarizing the results achieved during the year in the investigation of the mineral resources of Alaska and treating of the mining industry of the Territory, especially of the statistics of mineral production, with the collection of which the Geological Survey is charged by law.

The reports included in this volume are primarily intended to give prompt publication of the more important economic results of the work of the year. The time available for their preparation does not permit full office study of the field notes and specimens, and some of the statements made here may require modification when the study has been completed. Those who are interested in any particular district should therefore procure a copy of the complete report on that district as soon as it is available.

Again, as for many years in the past, the Geological Survey is under great obligation to residents of the Territory for valuable data. Those who have thus aided include the many mine operators who have made reports on production as well as developments. There are still some Alaskan mineral producers who fail to respond to requests for information. Many prospectors, Federal officials, engineers, and officers of banks and transportation and commercial companies have contributed valuable data. It is impracticable to mention by name all who have aided in this work, but it should be stated that without the assistance of these public-spirited citizens the preparation of this report would have been impossible. Special acknowledgments should be made to the Director and other officers of the Mint; the

¹ The preceding volumes in this series are U. S. Geol. Survey Bulls. 259, 284, 314, 345, 379, 442, 480, 520, 542, 592, 622, 642, 662, 692, 712, and 714.

Director and other officers of the United States Bureau of Mines; B. D. Stewart, Territorial mining inspector; the officers of the Alaska customs service; the officers of the Alaskan Engineering Commission: the American Railway Express Co.; Stephen Birch, Kennecott Copper Corporation; Sumner S. Smith, resident engineer of the Alaskan Naval Coal Commission; George Parks, General Land Office; Asa C. Baldwin, of Seattle, Wash.; C. W. Dietzel, of Juneau; Philip Bradley, of Treadwell; George C. Hazelet, of Cordova; J. M. Finnegan, of Kodiak; Paul Buckley, of Unalaska; J. M. Elmer, of Chistochina; F. E. Youngs, of Seward; Sidney Anderson and Milo Kelley, of Anchorage; H. W. Nagley and Edward McConnell, of Talkeetna; Luther C. Hess, the First National Bank, T. H. Deal (postmaster), J. A. Fairborn, and Henry Cook, of Fairbanks; B. J. Everman, of Fox; N. P. Nelson, of Chisana; Charles E. M. Cole and F. E. Phillips, of Jack Wade; Charles Zielke, of Nenana; John B. Mathews, of Hot Springs; George W. Ledger, of Rampart; Oscar Morell, of Deadwood; Alexander Mitchell, of Kantishna; Thomas G. Carter and F. P. Sturrock, of Beaver; H. S. Wanamaker, of Nolan; T. A. Parsons, of Ruby; B. B. Smith and G. W. C. Glass, of Ophir; Harry Madison, of Tolstoi; F. E. Wiseman and R. C. Butler, of Iditarod; D. E. Stubbs and L. Huber, of Aniak; John Haroldson and A. Stecker, of Quinhagak; R. W. J. Reed, of Nome; George P. Stanley, of Kiana; and Louis Lloyd, of Shungnak.

Those who have thus eided include the many mine operators who h

sume Alaskan mineral producers who fail to respond to requests

report would have been impossible. Special acknowledges

THE ALASKA MINING INDUSTRY IN 1920.

. By Alfred H. Brooks.

GENERAL FEATURES.

Though the mining industry of Alaska as a whole suffered a serious depression in 1920, yet the value of the total mineral output was greater than in 1919, chiefly because of the great increase in the production of copper, to be credited largely to the four leading copper mines in the Territory. The value of the total mineral product of Alaska was \$19,620,913 in 1919 and \$23,303,757 in 1920. The output of the gold placers has decreased, but that of the gold lode mines has been maintained.

During 41 years of mining Alaska has produced minerals to the value of more than \$460,000,000, over half of which was produced in the last decade. About 75 per cent of this output has come from small but rich deposits termed "bonanzas." Such deposits can be exploited profitably, even under the most adverse conditions of isolation and transportation, because they yield very large returns on the capital and labor employed.

Bonanza mining, always the first to be developed in a new land, is a most powerful agency in attracting population, in forming communities, and in establishing transportation systems. This mining will continue, for the known bonanza deposits in Alaska have been by no means exhausted, and there is good prospect of finding others. A stable and permanent mining industry can not, however, be founded on the exploitation of only the very rich ore bodies. Permanency must be based on the development of the larger deposits of less unit value. This development depends for its profits not so much on the richness of the ore as on economies made possible by the magnitude of the operations. Large mining operations require regular and cheap transportation; they can not be successful at places served only by the haphazard and expensive means of transportation that are generally available on the frontier. The passage from bonanza mining to a stable and permanent industry takes place in all mineralbearing regions and has long been under way in the accessible coastal region of Alaska, but the mineral wealth of the interior remains practically untouched except by the bonanza miner.

It will be well to emphasize again the fact that the product of large mining operations on low-grade deposits has for many years formed

a considerable part of the mineral output of the Territory. This kind of mining began with the exploitation of the Treadwell auriferous lode in 1887. During the last two decades low-grade deposits of copper, placer gold, etc., have been profitably worked in other parts of the seaboard region of Alaska. The minerals recovered from these large operations have a total value of about \$105,000,000, of which nearly \$76,000,000 is to be credited to the mines of the Juneau district. This total includes the value of the mineral output from (1) auriferous lodes that yield ores whose gold and silver content is valued at less than \$2.50 a ton, (2) copper deposits containing an average of not more than 3 per cent of copper, (3) placers having a gold content of less than 75 cents to the cubic yard, and (4) marble and gypsum of southeastern Alaska. All the low-grade deposits thus far developed are at or near tidewater and therefore have not had to bear the high cost of land transportation, which can be borne only by bonanza deposits. Many mineral deposits of low grade are known in Alaska, and the prospect of finding others is good. The exploitation of large mineral deposits of this kind yields only a small profit per ton, but under normal industrial conditions this disadvantage is offset by the large tonnage handled. Under the present high operating costs and the relatively low market value of mineral products the profits on certain operations are entirely swept away, so that during the last two years there has been no incentive to this form of mining in Alaska, and no large mining ventures have been undertaken.

As about 96 per cent of the mineral output of Alaska, measured in value, has been taken from her gold and copper mines, the worldwide depression in the mining of these two metals, which continued through 1920, has been a staggering blow to the prosperity of the Territory. About 60 per cent of the population of Alaska has heretofore been directly or indirectly supported by gold mining, and with the relative decrease in the value of gold the population has decreased, for the miner or prospector has been forced to leave the Territory. This decrease, however, must not be regarded as an indication of the early exhaustion of the gold resources, for Alaska contains enormous potential reserves of gold and other minerals.1 The depression of the mining industry is only temporary; a change for the better will come when general economic conditions become more nearly normal and water and land transportation are cheaper and better. A lowering of freight rates, the completion of the Government railroad, and the building of a large mileage of wagon roads are needed to quicken the now stagnant mining industry. Such changes will, however, take time, so that an immediate general improvement can not be expected.

¹ Brooks, A. H., The future of Alaska mining: U. S. Geol. Survey Bull. 714, pp. 5-57, 1921.

The prospects of successfully exploiting the mineral fuels have been improved somewhat by the coal-land leasing act of 1913, but unfortunately this act became effective during the period when industrial conditions were made unstable by the World War and by the readjustments that followed peace. In 1920 further help was given by the passage of an oil-land leasing act, but this act has not been in force long enough to affect the Alaska mining industry.

The interdict which long existed on the use of the mineral fuels of Alaska greatly retarded all forms of mining in the Territory. It not only enhanced the cost of mining by prohibiting the use of local fuels, but it made the industry lose the benefit of the improvement in industrial conditions that would certainly have followed the development of coal and oil. In spite of these conditions gold and copper mining in Alaska has been very prosperous, principally because there has been no direct interference to prevent their normal development. Had metal mining been subject to restrictions similar to those imposed on the development of mineral fuels the Alaska mining industry would to-day be still in its infancy.

The number of men engaged each year in productive mining gives a rough measure of the prosperity of the industry, but unfortunately complete statistics of the number of men employed in mining are not available. A careful study of all the facts at hand appears to justify the following estimates,2 which include only the men employed at mines that made some mineral output during the year.

Estimates of number of men employed at productive mines of Alaska, 1911-1920.

usion of Alasha, 1850-1910.	Placer	mines.	to sulp	Liedin	Total men en-
Year.	Summer.	Winter (omitted from total).	Lode mines and re- duction plants.	All other mining and quar- rying.	gaged in mining, not including winter placer mines.
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920	4,900 4,500 4,500 4,400 4,400 4,050 3,550 3,000 2,180 1,990	670 900 800 800 700 880 950 610 320 340	2,360 2,560 3,450 3,500 3,850 4,570 3,220 2,000 1,900 1,880	150 150 140 140 160 340 270 400 310 360	7,410 7,210 8,090 8,040 8,410 8,960 7,040 5,400 4,390 4,230

² The reports of the Geological Survey contain estimates of the number of men engaged in placer mining for each year since 1910, and miscellaneous notes on the number of men employed in other branches of the mining industry. The following publications also give much valuable information about the number of men employed, especially in lode mining:

Smith, S. S., Report of the mine inspector for the Territory of Alaska to the Secretary of the Interior for the fiscal year ended June 30, 1912, Washington, 1913. Same for the fiscal year ended June 30, 1914, Washington, 1914.

Maloney, William, Report of the Territorial mine inspector to the governor of Alaska, for the year 1915 [Juneau, Alaska, 1916]. Same for the year 1916 [Juneau, Alaska, 1917]. Same for the year 1917 [Juneau, Alaska, 1918].

Juneau, Alaska, 1916]. Same for the year 1910 Juneau, Alaska, 1918].
Alaska, 1918]. Stewart, B. D., Annual report of the Territorial mine inspector to the governor of Alaska, 1920, Juneau,

In considering the above table it should be remembered that the summer placer mines are operated for an average period of less than 100 days in a year. A comparison of the first two columns shows that only a small percentage of the men engaged in summer placer mining can find similar employment in the winter. As the winter placer mining is all done through shafts and drifts it is closely related to lode mining. Some of the deep placer mines are operated for nearly the entire year and hence are included in the total summer mines also. The lode mines include copper and gold and a few other metal mines. The fourth column shows the number of men engaged in all other forms of mining and quarrying, including the exploitation of coal, petroleum, marble, tin, gypsum, etc.

Mineral output of Alaska, 1919 and 1920.

	191	9	192	0	Decrease or increase in 1920.		
	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.	
Goldfine ounces. Copperpounds. Silverfine ounces. Coalshort tons. Tin, metallicdo Leaddo Platinum minerals, fine ounces. Miscellaneous nonmetallic products, including petroleum, marble, and gypsum.	629, 708 60, 674 56 687 569, 52	\$9, 426, 032 8, 783, 063 705, 273 343, 547 73, 400 72, 822 73, 663	404,683 70,435,363 953,546 61,111 16 875 1,478.97	\$8,365,560 12,960,106 1,039,364 355,668 16,112 140,000 160,117	+23, 214, 592 + 323, 838 + 437 - 40	-\$1,060,472 + 4,177,043 + 334,091 + 12,121 - 57,288 + 67,178 + 86,454 + 123,717	
andonial view at-		19,620,913		23, 303, 757	Allowed to seein	+ 3,682,844	

Value of total mineral production of Alaska, 1880-1920.

	Вуу	By substance	es.		
1880–1890. 1891. 1892. 1893. 1894. 1895. 1896. 1897. 1898. 1899. 1900. 1901. 1902. 1903. 1904. 1904. 1906.	916, 920 1, 098, 400 1, 051, 610 1, 312, 567 2, 388, 042 2, 981, 877 2, 540, 401 2, 587, 815 5, 706, 226 8, 241, 734 7, 010, 838 8, 403, 153 8, 944, 134 9, 569, 715 16, 480, 762	1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1919 1919	20, 145, 632 21, 146, 953 16, 887, 244 20, 691, 241 22, 536, 849 19, 476, 356 19, 065, 666 32, 854, 229 48, 632, 212 40, 710, 205 28, 253, 961 19, 620, 913	Gold Copper Silver. Coal Tin Lead Antimony Marble, gypsum, petroleum, platinum, etc	\$320, 030, 553 127, 486, 202 7, 342, 899 1, 796, 128 934, 264 662, 255 237, 500 2, 984, 992 461, 474, 789

NEW DEVELOPMENTS.

One of the most encouraging features of the year's mining was the systematic development of a large auriferous lode in the Nixon Fork (McKinley) district, in the upper Kuskokwim Valley. This ore body gives promise of being valuable, and if the promise is fulfilled the

beginning of a lode-mining industry in this remote region will be assured. Auriferous mineralization appears to have taken place rather widely in the Kuskokwim basin, a region which has been relatively little prospected. The gold of this region is associated with granitic rocks, which are intruded into limestone and other little-altered sedimentary rocks. In general the strong mineralization appears to be more localized than that in the schist areas of the upper Yukon, and the conditions are therefore favorable to the occurrence of commercial ore bodies.

The discovery of this lode and the continued success of the Candle Creek dredge near McGrath have attracted attention to the Kusko-kwim basin, and more prospecting has consequently been done in this region than in any other part of inland Alaska. Especially noteworthy has been the considerable search and the numerous tests for dredging ground here and in the region immediately adjacent during

the last two years.

Though lode mining in southeastern Alaska is still chiefly confined to the low-grade ores of Juneau, whose development is seriously handicapped by the existing conditions, yet there was in 1920 a marked increase in prospecting for auriferous lodes in this field, notably in the Sitka district. Promising discoveries of auriferous quartz were made on Chichagof Island. Important also were the activities in the Willow Creek district, in the Susitna basin, tributary to the Government railroad, which were directed to the consolidation of some auriferous lode properties and their development on a large scale.

One of the most important events of the year was the beginning of systematic underground exploration of the Matanuska coal field under the auspices of the Navy Department. This exploration has for its purpose the development of high-grade coal for the use of the Navy, but incidentally it should afford a thorough test of the com-

mercial possibilities of the field.

The enactment of the oil-land leasing law in February, 1920, together with the world-wide search for petroleum, have again attracted public attention to the oil in Alaska. There has not yet been sufficient time to drill under the new régime, but more than 700,000 acres of land has been staked on the assumption that it is oil bearing. The evidence in hand indicates that though a part of this land is well worth drilling many of the places staked now, as during all oil booms, will be found worthless. There is, however, a very good prospect of developing producing wells in Alaska.

GOLD AND SILVER. TOTAL PRODUCTION.

The total production of gold and silver since the beginning of mining in 1880 is given in the following table. For the earlier years the figures, especially those for silver, are probably far from correct, but they are based on the best information now available.

Gold and silver produced in Alaska, 1880-1920.

	G	old.	Silver.		
ends at such more Year, maposano suite	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Commercial value.	
1880 1881 1882 1882 1883 1884 1883 1884 1885 1885 1886 1887 1888 1889 1890	967 1, 935 7, 256 14, 561 9, 724 14, 512 21, 575 32, 653 41, 119 43, 538 52, 245 50, 213 62, 017 112, 642 138, 401 121, 760 270, 997 395, 030 335, 369 400, 709 420, 069 443, 115 756, 101 1, 066, 030 936, 043 933, 290 987, 417 780, 131 815, 276 829, 436 755, 947 762, 597 766, 634 767, 966 834, 068 870, 049 445, 948 870, 049 445, 948	\$20,000 40,000 150,000 201,000 201,000 201,000 300,000 446,000 675,000 850,000 900,000 1,080,000 1,082,000 2,328,500 2,861,000 2,328,500 2,861,000 6,932,700 8,66,000 6,932,700 6,923,400 8,683,600 1,038,000 12,038,000 1,038,000	2, 320 8, 000 7, 500 8, 000 8, 000 8, 400 22, 261 167, 200 116, 400 92, 400 1140, 100 92, 000 143, 600 198, 700 149, 784 135, 672 147, 950 149, 784 135, 673 149, 784 135, 673 149, 784 135, 673 147, 785 147, 785 147, 785 157, 850 460, 281 1515, 186 362, 563 394, 805 1, 071, 782 1, 379, 171 1, 239, 150 847, 788 1, 379, 171 1, 389, 150 847, 788 1, 389, 150 848, 150 847,	\$11, 144 2, 18 7, 499 6, 07 7, 922 7, 000 6, 570 14, 25 44, 22 99, 08: 70, 74 54, 57 84, 27 45, 49 28, 599 48, 599 77, 84 114, 93: 80, 16 136, 34 198, 85 218, 98 85, 23 243, 92 216, 83 218, 98 85, 23 243, 92 316, 83 218, 98 85, 23 218, 98 85, 23 218, 98 85, 23 218, 98 87 70, 93 88, 23 88, 23 88, 23 89, 85 71, 90 76, 93 87 88, 23 88, 23 88, 23 89 88, 52 81 81 82 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 83 83 84 83 83 84 83 83 84 83 83 84 83 85 85 86 86 87 87 87 87 87 87 87 87 87 87 87 88 86 88 88 88 88 88 88 88 88 88 88 88	

The subjoined table gives an estimate, based on the best available data, of the gold and silver produced in Alaska from different sources since mining began in 1880. About \$65,900,000 worth of gold, or about one-fifth of the total estimated output, was produced before 1905, and there is but scant information about its source. For the period since that time fairly complete statistics are available, and the figures presented in the following table are probably sufficiently accurate to be valuable. The figures given for the silver recovered

from placer gold and from siliceous ores are probably less accurate than those for the gold. Copper mining did not begin in Alaska until 1901, and the figures for gold and silver derived from this industry therefore represent approximately the actual output.

Gold and silver produced in Alaska from different sources, 1880-1920.

		002.286 002.200	14 060 01E	G	Gold.		ver.
				Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
Siliceor Copper Placers	us ores a	 		4,662,942 84,799 10,733,735	\$96, 391, 594 1, 752, 967 221, 885, 992	1,674,872 6,497,919 1,799,771	\$1, 321, 588 4, 956, 834 1, 064, 470
		mbish		15, 481, 476	320, 030, 553	9, 972, 562	7, 342, 892

a Including small amounts of galena ore-

The above table shows that 30 per cent of all the gold produced in Alaska since 1880 has been obtained from siliceous ores. During the last decade there has been a gradual increase in the percentage of the annual gold output from the auriferous lodes. In 1911 the proportion was 25 per cent; in 1915, 37 per cent; in 1919, 46.6 per cent, and in 1920, 53 per cent.

Gold and silver produced in Alaska, 1920, by sources.

	ET STREET	Go	ld.	Silver.		
	Ore.	Quantity. (fine ounces).	Value.	Quantity. (fine ounces).	Value.	
Siliceous ores. tons. Copper ores do. Placers. cubic yards of gravel.	3,413,021 765,025 3,439,974	216, 414 913 187, 356	\$4,473,687 18,873 3,873,000	246, 292 682, 033 25, 221	\$268, 458 743, 416 27, 490	
		404, 683	8, 365, 560	953, 546	1, 039, 36	

LODE MINING.

Seventeen gold-lode mines and five prospects were operated in 1920 and produced gold worth \$4,473,687. Twenty-three gold-lode mines and two prospects were operated in 1919 and produced gold worth \$4,392,237. This increase came entirely from the gold mines of southeastern Alaska, as the output from all the other districts declined. It is not likely that the output from the low-grade mines of the Juneau district will be maintained, and unless there is an increase elsewhere the gold-lode output of Alaska probably will be less in 1921 than it was in 1920. There is most hope for an increase from the Willow Creek district, where a large consolidation of mines was made in 1920, and operations on a larger scale than heretofore are to be expected.

Gold and silver produced from gold-lode mines in Alaska, 1920, by districts.

aved from this indus-	segue ver de	Ore mined	Gold.		Silv	Average value per	
District.	Mines operated.	(short tons).	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.	ton of ore in gold and silver.
Southeastern Alaska	8 3 a 2 b 4	3, 409, 197 2, 850 504 1, 165	210, 536 3, 067 967 1, 844	\$4,352,165 63,400 20,000 38,122	114, 621 146 164 131, 361	\$124, 936 158 178 143, 186	\$1.31 22.30 40.03 155.63
	17	3, 413, 716	216, 414	4, 473, 687	246, 292	268, 458	1.39

a In addition a small tonnage of ore was produced from 5 prospects.
b Includes 1 small mine in Kantishna district, 1 in McKinley district, and 2 in Kenai Peninsula.

Of the eight mines in southeastern Alaska only four made a large output, that of the other four being only incidental to development work. The reduction in the number of producing mines in the Willow Creek district, from five in 1919 to three in 1920, was due to a combination of three properties which are to be worked as a unit, and there was an actual output from only one of these properties. In 1920, as in 1919, little work was done on the gold lodes in the Fairbanks district, for the owners of the mines in this district are awaiting cheaper operating costs before continuing developments. The great increase in the silver ouput of the lode mines, as indicated by the above table, is to be credited to the small mine in the Kantishna district, whose principal ore is galena carrying a high percentage of silver. For many years the average value per ton of ore of the gold and silver recovered from Alaska siliceous ores was about \$2.80. This high value was due to the preponderance of the metals in the ore produced from the mines of the Treadwell group. When, in 1915 and 1916, the output of the lower-grade ores of the Perseverance and Alaska Juneau mines began to be larger, the value of the average recovery fell below \$2 per ton, and the value was still further reduced when two of the Treadwell mines closed in 1917. The average value per ton of ore of the gold and silver mined in Alaska in 1919 was \$1.38, and the average value in 1920 was \$1.39.

One of the most encouraging features of lode mining in southeastern Alaska is the work being done on Chichagof and Admiralty islands, where promising auriferous lodes are being developed. The advances in lode mining made in the Willow Creek district have already been referred to. The Cliff and possibly the Granite lode mine of Prince William Sound may again be productive in 1921.

PLACER MINING.

During 41 years of mining Alaska has produced gold to the value of \$320,000,000, and \$217,885,000 of this amount is to be credited to her placer mines. For reasons already discussed less placer

mining was done in 1920 than in 1919, and the profits on actual operations were also less. Though the general fall of prices will eventually benefit the Alaska placer mines, yet it is not likely to prevent a further decline of the industry in 1921. Except the installation of some dredges no new large placer-mining projects are definitely under way. Investigations of large bodies of gold-bearing gravel are, however, being made in several districts, and if these result in mining operations a revival of the industry is assured. Meanwhile any lowering of operating costs by cheaper freight rates and cheaper supplies will quicken the mining activities of the smaller operators. It can not be too strongly emphasized that the enormous alluvial gold reserves of Alaska ³ give every assurance of the eventual revival of placer mining. In the following table a comparison is made between the condition of the placer-mining industry in 1920 and its condition in 1919:

39

e

1

Alaska placer mining, 1919 and 1920.

Mand purch	Nı	ımber	of min	es.	Number of miners.				Value prod	Decrease or increase, 1920.	
Region.	Summer.		Winter.		Summer.		Winter.		1919		1920
	1919	1920	1919	1920	1919	1920	1919	1920	1919	1920	
Southeastern and southwestern Alaska. Copper River region. Cook Inlet and Sustina region. Yukon basin Kuskokwim region	14 18 21 274 20 103 16	18 19 27 273 32 112 7	76 2 10	69 8 5	39 115 81 1,246 101 555 40 2,177	18 94 70 1,130 125 540 10 1,987	255 3 60	271 61 9 341	\$30,000 185,000 110,000 2,910,000 350,000 1,360,000 25,000 4,970,000	\$10,000 200,000 55,000 1,995,000 305,000 1,300,000 8,000 3,873,000	-\$20,000 + 15,000 - 55,000 - 915,000 - 45,000 - 60,000 - 17,000

The above table shows that there was a decrease of about 22 per cent in the value of the output of placer gold in 1920 as compared with 1919, and also that the chief loss was in the Yukon camps, where the decrease was 31 per cent. It also indicates that, measured by production, the districts on Seward Peninsula were the most prosperous. A still greater decrease in the output of placer gold from Alaska is to be expected in 1921. The record of 488 placer mines operated in the summer of 1920 and 82 in the previous winter somewhat exaggerates the activity of the industry. These totals, like those given in all previous reports, include every placer-mine operation of the year, no matter how small, and among them are many whose output for the year amounted to only a few hundred dollars. About 150 mines were operated in the summer of 1920 and 20 mines

³ Brooks, A. H., The future of Alaska mining: U. S. Geol. Survey Bull. 714, pp. 7-11, 1921.

in the previous winter that produced less than \$1,200 worth of gold per mine. The total value of the gold produced by these mines was \$95,000, and they employed about 230 men. Sufficiently complete returns have been received from 100 of these mines to permit the analysis of their operations presented in the following table:

Operations of small gold-placer mines in Alaska in 1920. [Includes only mines whose gold output for the year was \$1,200 or less.]

Region.	ets by	op gand	A TOTOGO	Average number of cubic yards of gravel mined per man per day.	Value of gold recovered—			
	Number of mines con- sidered.	Number of men em- ployed.	Average number of days' work per man.		Per cubic yard.	Per man per day.	Per man for the year.	
Southeastern Alaska, Copper River, and Susitna River dis-	alon-ran	ald od	te la ca	darbnas	odia		ohem	
tricts	15	23	45	7.4	\$1.03	\$7.63	\$343	
Yukon and Kuskokwim districts	67	86	76	4.8	1.10	5. 28	401	
Seward Peninsula and Kobuk districts	18	27	50	5.8	1, 37	7. 92	396	
tales of tales of the World	100	136	67	5.3	1.13	4. 94	398	

About 70 per cent of these operations consisted of development work on placer deposits, which are expected to yield satisfactory returns at some future time, when the economic conditions are more favorable or better equipment can be obtained. Some placer gold was recovered during this work. The other 30 per cent of these operations consisted of mining small and rich pockets of gold-bearing gravel exploited by "snipers" or "pocket hunters" solely to obtain an immediate livelihood. Many millions of dollars' worth of gold has been won by this kind of mining. The richest field of the sniper was the beach placers of Nome in 1899 and 1900. The bars of Fortymile River have been vielding returns to the sniper since their discovery in 1886. In recent years, however, no new fields for the sniper have been found, and, as the above table shows, his returns have been very meager. Unless new bonanzas are found mining of this kind must therefore inevitably cease, except in so far as it may be done by men who obtain their principal support from some other work.

As shown above, the average return to the small miner in 1920 was only \$398. A careful estimate, based on retail prices at Fairbanks, shows that the cost of a year's provisions for one man in 1920 was \$420. Supplies are considerably cheaper in the districts nearer the coast but are much higher in the isolated camps than at Fairbanks. A year's provisions for a man, including only necessities, will probably cost from \$300 to \$500, and will average above \$398. The returns in gold from these small mines are therefore not paying the cost of the provisions consumed.

This loss is in part offset by the fact that the miner works on the average only 67 days a year; living in a cabin built by himself he pays no rent, and his fuel, which is wood, he obtains for the labor of cutting it. In most places his provisions are helped out by fish and game, and he may be able to raise his potatoes and other vegetables. Furthermore, many small miners get a much larger return from fur hunting in winter than from mining in summer. In estimating the number of days' work it should be noted that the small miner must spend a certain number of days each year in transporting his supplies from the nearest trading post, in cutting his fuel, in building cabins, in making sluice boxes, and in doing other work, none of which is included in the average 67 days of mining. Taking together the time devoted to mining and to the work just mentioned, the average small miner will probably not be employed more than half the year. If, therefore, he can find remunerative occupation, such as trapping or cutting wood during the rest of the year he may still make a fair income, and if he is developing a mineral deposit that will give good profits in the future he may be bettering himself economically.

The increased cost of supplies is a serious hardship to the small operator. It not only reduces the net returns on mining his own claim, but by reducing the larger operations it prevents his finding employment with the mining companies. It is probably safe to estimate that the cost of clothing, traveling, tools, etc., added to that of provisions, will bring the average annual expense of the Alaska miner up to \$700 or \$800. It will therefore be necessary for him to earn an additional sum of money at least equal to the return from his mine, taken as the average return of 1920. The returns for 1920 (see table above) show that he is mining placers whose value is only \$1.13 a cubic vard, and he is mining an average of 5.3 cubic vards a day, which gives him an average daily wage of \$5.94. If he is to obtain his actual living expenses from mining alone he must confine his efforts to deposits which carry at least \$2 worth of gold to the cubic vard, which will give him a daily wage of \$10 and, with an average of 67 working days, an annual return of \$670.

If the small mines as defined above and the gold dredges are excluded the summer placer mines operated in 1920 numbered 317, employing 1,832 men, and the winter placer mines numbered 62, employing 278 men. In these winter placers the gold-bearing gravel is thawed in winter and is sluiced after the summer thawing. The total value of the gold recovered by placer mining was \$1,478,068. The gold and silver output of placer mines by regions is shown in the following table:

63963°-22-2

Gold and silver produced from placer mines in Alaska, 1920, by regions.

un by minself he pays	Go	ld.	Silv	ver.	Gravel mined (cubic yards).	Recovery	
Region.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.		per cubic yard.	
Southeastern and southwestern Alaska. Copper River region. Cook Inlet and Susitna region. Yukon basin. Kuskokwim region. Seward Peninsula. Kobuk region.	483. 75 9, 674. 99 2, 660. 62 96, 508. 08 14, 754. 36 62, 887. 49 387. 00 187, 356. 29	\$10,000 200,000 55,000 1,995,000 3,05,000 1,300,000 8,000 3,873,000	83. 27 1, 014. 78 397. 02 12, 905. 46 3, 962. 98 6, 813. 06 44. 47 25, 221. 04	\$91 1,105 432 14,068 4,320 7,426 48 27,490	2,750 160,000 78,000 1,272,924 131,900 1,792,100 2,300 3,439,974	\$3. 64 1. 25 . 70 1. 57 2. 31 . 73 3. 47	

The following table shows approximately the total bulk of gravel mined annually since 1907 and the value of the gold recovered per cubic yard. This table is based in part on returns made by operators of placer mines and in part on known facts or assumptions concerning the richness of the gravels in the several districts. Although the table is thus in part an estimate it is probably nearly correct.

Gravel sluiced in Alaskan placer mines and value of gold recovered, 1908-1920.

Year.	Total quantity of gravel (cubic yards).		Year.	Total quantity of gravel (cubic yards).	Value of gold re- covered per cubic yard.
1908 1909 1910 1911 1911 1912 1913 1914	4, 275, 000 4, 418, 000 4, 036, 000 5, 790, 000 7, 050, 000 6, 800, 000 8, 500, 000	\$3.74 3.66 2.97 2.17 1.70 1.57 1.26	1915 1916 1917 1918 1919 1920	8,100,000 7,100,000 7,000,000 4,931,000 4,548,000 3,439,974	\$1. 29 1. 57 1. 40 1. 20 1. 10 1. 13

The table shows that from 1908 to 1914 there was a decline in the average gold content of the gravels mined. This decline reflects the improved methods of placer mining that have been introduced, more especially the increase in the use of dredges, which is brought out in the following table:

Relation of recovery of placer gold per cubic yard to proportion produced by dredges.

mines operated in 1920 numbered 343.	Percent- age of	Recovery per cubic yard.			
the winter placer mines animbered 02, en- so winter placers the gold-bearing gravel sluiced after the summer thaving. The	placer gold pro-	Dredges.	Mines.	All placers.	
1911 1912 1913 1914 1915 1916 1916 1917 1918 1919 1919	12 18 21 22 22 24 26 24 27 29	\$0.60 .65 .54 .53 .51 .69 .68 .57 .77	\$3.36 2.68 3.11 2.07 2.33 2.64 2.21 1.84 1.31 1.53	\$2.17 1.77 1.57 1.26 1.25 1.55 1.4(1.20 1.10	

The 22 dredges operated in 1920 employed crews numbering 145 men. Two of these dredges were in the Fairbanks district, 2 in the Iditarod, 1 in the Mount McKinley (McGrath) district, and 17 in Seward Peninsula. The average gold recovery of the 5 Yukon and Kuskokwim dredges was 94 cents per cubic yard, and that of the Seward Peninsula dredges was 48 cents per cubic yard. The inland dredges were operated for an average of 170 days, and the longest season was that in the Iditarod, which ran for 196 days. The Seward Peninsula dredges were operated for an average of 66 days, and the longest season for any one dredge was 96 days.

Gold produced by dredge mining in Alaska, 1903-1920.

Year.	Number of dredges operated.	Value of gold output.	Gravel handled (cubic yards).	Value of gold recovered per cubic yard.
1903 1904 1905 1906 1907 1908 1909 1910 1910 1911 1912 1913 1914 1915 1916 1916 1916 1917 1918	2 3 3 3 4 4 14 18 27 38 35 42 35 35 42 35 32 32 32 32 32 32 32 32 32 32 32 32 32	\$20,000 25,000 40,000 120,000 250,000 171,000 800,000 1,500,000 2,200,000 2,350,000 2,350,000 2,350,000 1,425,000 1,360,000 1,425,000 1,360,000 1,360,000 1,360,000 1,129,932	2,500,000 3,400,000 4,100,000 4,450,000 4,600,000 3,700,000 1,760,000 1,633,861	Lagadw.

COPPER.

The copper output of Alaska was 70,435,363 pounds, valued at \$12,960,106, in 1920, and 47,220,771 pounds, valued at \$8,783,063, in 1919. This increase is to be credited almost entirely to 3 mines of the Kennecott group, in the Chitina basin, and the Beatson mine, on Prince William Sound. Eight copper mines were operated productively in 1920 as compared with 11 in 1919. Of the productive mines, 2 on Prince William Sound were under development and recovered only small amounts of ore incidentally. The total copper output shown in the following table includes, in addition to that of the copper mines, some copper won from ores mined chiefly for other metal.

Output of Alaska copper mines in 1920, by districts.

trict, and 17 in	Grati) district, and		Cop	Copper.		ld.	Silver.	
District.	Mines oper- ated.	Ore (tons).	Quantity (pounds).	Value.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
Ketchikan ^a Chitina ^b Prince William Sound	2 2 4	16, 088 c 295,473 454, 534	670, 155 55, 997, 660 13, 767, 548	\$123, 308 10, 303, 569 2, 533, 229	912.72	\$18,868	5, 313 557, 553 119, 167	\$5, 791 607, 733 129, 892
	8	766, 095	70, 435, 363	12, 960, 106	912.72	18, 868	682, 033	743, 416

a Includes some copper shipments from other parts of Alaska. b Kennecott Copper Corporation Annual Report for 1920. $\mathfrak c$ Includes a small amount of placer copper.

The average copper content of the ore mined in 1920 was 4.6 per The ores vielded an average of \$0.025 in gold and \$0.97 in silver to the ton. The average yield for 1919 was 4.8 per cent copper, \$0.129 in gold, and \$1.11 in silver. The large reduction in the average gold content of the ores mined in 1920 as compared with those mined in previous years is due to the closing of the Ellamar mine, whose ores carried much gold.

Of the total copper ore mined in Alaska in 1920, 96 per cent, or 732,549 tons, was treated by oil flotation, yielding 80,342 tons of concentrates, which averaged 32 per cent of copper. Most of the copper ore mined in 1920 was shipped to the Tacoma smelter, but a part of that mined in southeastern Alaska was treated at the Anyox smelter, in British Columbia.

Copper produced in Alaska, 1880-1920.

	Ore	Copper produced.		
Year. Year. On on mean mean	mined (tons).	Quantity (pounds).	Value.	
1880	52, 199 105, 729 98, 927 51, 509 34, 669 39, 365 68, 975 93, 452 135, 756 153, 605 369, 600 617, 264 659, 957 722, 047 492, 644 766, 095	\$\begin{cases} 3, 933 & 250, 000 & 360, 000 & 1, 200, 000 & 2, 043, 586 & 4, 805, 236 & 4, 124, 705 & 4, 241, 689 & 27, 267, 878 & 29, 230, 491 & 21, 659, 958 & 21, 450, 628 & 86, 509, 312 & 119, 854, 839 & 88, 793, 400 & 69, 224, 951 & 47, 220, 771 & 70, 435, 363 & 615, 442, 699	\$826 40, 000 41, 400 156, 000 275, 676 749, 617 1, 133, 260 1, 261, 757 605, 267 536, 211 538, 695 3, 408, 485 4, 823, 031 3, 357, 293 2, 852, 934 15, 139, 129 20, 484, 21 24, 240, 598 17, 098, 563 18, 783, 663 12, 960, 106	

a Estimated.

In 1920, as in previous years, the Rush & Brown copper mine was the largest copper producer in southeastern Alaska. Copper was produced also at the Salt Chuck mine, better known for its production of palladium. Relatively little prospecting and no considerable development work was done on the copper deposits of southeastern Alaska. The three large mines, the Bonanza, Jumbo, and Mother Lode, were the only producing mines of the Chitina district in 1920, and no considerable developments were made at other mines. Some alluvial copper was produced incidentally to gold-placer mining in the Nizina district. On Prince William Sound the Beaton mine was the only property operated systematically throughout the year. The most notable advances were made at the Girdwood mine, where systematic underground and surface work was continued during much of the year. Small developments were continued at the Schlosser and McIntosh mines through a part of the year.

The above review shows that the Alaska copper-mining industry is in a rather discouraging situation in spite of the relatively large output of the metal in 1920. Except possibly in Prince William Sound, no large amount of work was done during the year in opening new ore bodies. The falling copper market and certain local conditions have discouraged the launching of any new enterprises. Not only will the copper output of 1921 be far less than that of 1920, but probably several years will pass before any new large copper-mining ventures will be under way.

LEAD.

The lead produced in Alaska in 1920 amounted to 875 tons, valued at \$140,000, as compared with 687 tons, valued at \$72,822, in 1919. In 1920, as in other years, most of the lead output was a by-product derived from the gold ores of the Juneau district. The increase in 1920 over 1919 was derived largely from galena ore mined in the Kantishna district.

The recent development of rich silver-lead ores in the Mayo district of the Yukon Territory, about 100 miles east of Dawson, has started a search for similar deposits on the Alaska side of the boundary, not because of the lead content of the ore but because of the recent high price of silver. Galena ores are rather widely distributed in Alaska, but no large deposits have been found. Though some work was done on a number of Alaska galena deposits in 1920, which will be referred to in the review by districts, to follow (pp. 43–54), only one mine, in the Kantishna district, shipped any ore.

⁴ Cockfield, W. E., The Mayo area, Yukon: Canada Geol. Survey Summary Rept., 1918, pp. 1B–22B, Ottawa, 1919.

Lead produced in Alaska, 1892-1920.

Year.	Quantity (tons).	Value.	Year.	Quantity (tons).	Value.
1892 1893 1894 1895 1896 1897 1898 1897 1899 1900 1901 1902 1903 1904 1905 1906 1907	30 40 35 20 30 30 30 35 40 40 30 30 30 30 30 30	\$2,400 3,040 2,310 1,320 2,160 2,240 3,150 3,440 2,460 2,520 2,520 2,580 2,620 3,180	1908. 1909. 1910. 1911. 1912. 1913. 1914. 1915. 1916. 1917. 1918. 1919. 1920.	40 69 75 51 45 6 28 437 820 852 564 687 875	\$3,360 5,934 6,600 4,590 4,050 522 1,344 41,118 113,160 146,584 80,088 72,822 140,000

TIN.

The tin mines of Alaska produced 26 tons of ore, containing 32,000 pounds of tin, valued at \$16,112, in 1920, as compared with 86 tons of ore, containing 112,000 pounds of tin, valued at \$73,400, in 1919. This decrease of output was due largely to the fact that in 1920 only one tin dredge instead of two; as in 1919, was operated in the York district of Seward Peninsula, which is the only important tin-producing area in Alaska. None of the tin mined in 1920 was marketed before the end of the year. In the York district the American Tin Mining Co. operated its dredge on Buck Creek from July to October. Some open-cut mining was done with pick and shovel on Goodwin During the winter of 1919-20 about 20 men were employed in developing the Lost River tin mine, on Cassiterite Creek. A 250foot incline was sunk on the tin-bearing dikes from a station on the lower tunnel. Work was suspended in May, 1920.

It is reported that the tin placers of Grouse Creek have been worked out and that at the present rate of mining the placers of Buck Creek may be exhausted in about five years. Meanwhile sufficient prospecting has been done on other creeks to give reasonable assurance that the tin production will be maintained. Tin-bearing gravels have been prospected on Potato Creek and on Goodwin Creek and its tributary, Percy Gulch, flowing northward to the Arctic Ocean, as well as on Cape Creek, flowing southward to Bering Sea. Tin has been found on other creeks in the district, but on these creeks the prospecting is said to have developed some good dredging ground, and plans to install dredges on them are under consideration.

Though the only mines exploited solely for tin were the two in the York district, 7 of the Yukon gold-placer mines reported the recovery of some tin. Of these 6 were in the Hot Springs district and 1 in the

Ruby district.

Tin produced in Alaska, 1902–1920.

policy in the	Quantity	7 (tons).	Value.	Year.	Quantity	y (tons).	Value.
Year.	Ore.	Metal.	varue.	l ear.	Ore.	Metal.	varue.
1902 1903 1904 1905 1906 1907 1907 1908 1910 1910 1911 1912	25 41 23 10 57 37. 5 42. 5 19 16. 5 92. 5	15 25 14 6 34 22 25 11 10 61 130	\$8,000 14,000 8,000 4,000 38,640 16,752 15,180 7,638 8,335 52,798 119,600	1913. 1914. 1915. 1916. 1917. 1918. 1919. 1920.	98 157. 5 167 232 171 104. 5 86 26 1,600. 0	50 104 102 139 100 68 56 16	\$44, 103 66, 566 78, 846 121, 000 123, 300 118, 000 73, 400 16, 112

PLATINUM METALS.

The output of platinum, palladium, and other metals of the platinum group in Alaska in 1920 is estimated at 1,476.97 ounces, valued at \$160,117, as compared with 569.25 ounces, valued at \$73,663, in 1919. In 1920, as in previous years, the larger part of the output was from the copper-palladium ore of the Salt Chuck mine, in the Ketchikan district. An output of platinum minerals was reported by 7 gold placer mines in 1920. Four of these were in the Koyuk district and one in the Fairhaven district of Seward Peninsula. Two placer mines in the Chistochina district of the Copper River basin produced platinum in 1920. The largest output of placer platinum was made on Dime Creek, in the Koyuk district, and on Slate Creek, in the Chistochina district. The bedrock source of the alluvial platinum has not yet been definitely determined. The total production of platinum metals in Alaska since they were first saved, in 1916, is given in the following table:

Platinum metals produced in Alaska, 1916-1920.

	Quan		
Year, love 4,000 and 18	Crude ounces.	Fine ounces.	Value.
1916. 1917. 1918. 1919	12. 0 81. 2 301. 0 579. 3 1,493. 4	8.33 53.40 284.00 569.52 1,478.97	\$700 5,500 36,600 73,663 160,117
	2,466.9	2,394.22	276, 58

QUICKSILVER.

Productive mining was continued in a small way at the Parks cinnabar mine, the only one in Alaska that has yet made an output. This mine is on the north bank of Kuskokwim River about 16 miles above Georgetown.

In 1919 a cinnabar-bearing lode was discovered in the headwater region of Iditarod River, a tributary of the Yukon. This deposit is said to be on Montana Creek, formerly called Moose Creek, 35 miles south of the town of Iditarod. Though it is on the Yukon side of the watershed, the place appears to be only about 10 miles in a direct line from the Kuskokwim. A trail about 15 miles long has been built from the Kuskokwim at the mouth of Crooked River to the deposit. Claims are under development by the Fidelity-Kuskokwim Quick-silver Co., which is said to have shipped about 60 tons of supplies, including retorts, during the summer of 1920. The underground development consists of a 50-foot shaft, said to reveal an ore body of considerable size. The deposit has not been examined by any member of the Geological Survey, but it is probably of the same general type as that found in the Iditarod district,⁵ to the north, though it is reported to be much larger.

This newly discovered lode and the cinnabar deposits previously found are distributed over a considerable area, and cinnabar is not uncommon in the gold placers of this general region. This rather wide distribution of quicksilver ore augurs well for future discoveries, especially as but little prospecting has been done for cinnabar. Though most of the cinnabar-bearing lodes found thus far are too small to be of value yet there is good hope of finding commercially valuable bodies such as that on Montana Creek is reported to be.

MISCELLANEOUS METALS.

Antimony ore (stibnite) was mined at several places in Alaska during the World War, when the price of the metal was high. A total of 2,492 tons of stibnite ore, valued at \$237,500, was mined in Alaska during 1916, 1917, and 1918. No antimony was mined in the Territory in 1920. The only developments reported were on the Norvill property, in Chicken Creek valley, in the Fortymile district. No tungsten has been mined in Alaska since 1918. It is reported that a deposit of chromite has been developed on the Whitney & Lass property, at Red Mountain, near the southern end of Kenai Peninsula, and that in the course of the work some ore was produced

The development of the molybdenite deposits near Shakan, on Prince of Wales Island, which has been going on for several years, was suspended in 1920. Oscar Yehring, of Juneau, discovered a molybdenite deposit near Glacier Bay in 1920. The deposit is near Wood Glacier, about 1½ miles from the beach and 200 feet above tidewater.

COAL.

The output of coal in Alaska in 1920 was 61,111 tons, valued at \$355,668; the output in 1919 was 60,674 tons, valued at \$343,547. Of the output in 1920, 35,044 tons was taken from the two Government

⁵ Brooks, A. H., The antimony deposits of Alaska: U. S. Geol. Survey Bull. 649, pp. 47-49, 1916.

mines in the Matanuska field. Besides these two mines there were only three others whose output for the year exceeded 1,000 tons—two in the Nenana field and one in the Kachemak Bay field. Lignitic coal for near-by use was produced at five other mines. The largest output from the small mines was made at the Kugruk mine, in the Fairhaven district, which supplied coal for some placer operations in its vicinity. The Alaska school service mined about 200 tons of coal for its use on Wainwright Inlet, north of Cape Lisburne. Ten mines, large and small, were operated during the year, employing 207 men for an average of 240 days.

Work at the Eska mine, in the Matanuska field, was continued on about the same scale as in previous years, to obtain coal for the Government railroad and for some of the near-by communities. The mine was operated 239 days, employing an average of 43 men underground and 50 men on the surface, which gave a total of 8,835 manshifts underground and 15,609 man-shifts on the surface. There were 195 days lost owing to sickness, and the mine was closed 73 days on account of a strike. A total of 3,633 feet of gangways, etc., were driven in 1920, making 5,337 feet in all.6 The resident engineer, S. S. Smith, reports that the cost of mining coal was about \$6 a ton in 1920, compared with \$5 in 1919 and \$4.66 in 1918, and that the increase in cost was due to an increase of 32 per cent in the wages of miners,7 the reduced output on account of the strike, a longer haul underground, and the greater cost of timber. The underground work consisted chiefly of mining coal beds, and but little advance work was done. The developed coal reserves are reported to be about 70,000 tons. which at the present rate of mining is about two years' supply. washery having a capacity of 1,000 tons is being built and will be completed in 1921. It will be used for the Eska coal and for any other coal mined by the Government along the railroad.

In the summer of 1920 the Navy Department began systematic prospecting in the Matanuska field to find coal for use by the Navy. This work is directed by the Alaskan Naval Coal Commission, of which Commander O. C. Dowling is chairman. Summer S. Smith, resident engineer, has the immediate technical direction of all the field work and has associated with him as geologists Prof. T. E. Savage, of the University of Illinois, and Lieut. W. P. T. Hill, of the Marine Corps. Prospecting and underground exploration have been actively pushed in the Chickaloon and Coal Creek areas, and some examinations have been made in other parts of the field. The results are reported to be encouraging, notably in the Coal Creek area, but details are not yet available for publication. The only other mining done in the Mata-

⁶ Information on mining developments in the Matanuska field is taken from "Report of the mining department, Alaskan Engineering Commission, for 1920," by Sumner S. Smith, resident engineer, to whom the writer is indebted for an advance copy.

⁷ Wages in 1920, per day of 8 hours, for skilled labor underground were \$8.60; for unskilled labor, \$7.90.

nuska field was on the leasehold of the Evans Jones Coal Co., near Eska. Underground work was started in October, 1920, to produce coal to be sledded to the railroad, about 1½ miles distant, during the winter. About five men were employed at the mine.

The Bering River Coal Co. continued the underground exploration and surface improvement of its leasehold in the western part of the Bering River field throughout the year. An average of 20 men were employed underground and 20 on the surface. No coal has been mined except that incidental to the development work, which supplied the wants of the mine. In all about 3,500 feet of crosscuts and gangways have been driven. In 1920 a plank automobile road 4 miles long was constructed, which gives connection with scow navigation at tidewater on Bering Lake. The company reports a total expenditure of nearly \$400,000 up to the end of 1920.8

Some developments were continued by the Alaska Coal & Petroleum Co. on its patented coal claim in the eastern part of the field. The mine is connected with tidewater on Bering River by a small railroad.

The McNally mine, on Kachemak Bay, previously operated under a permit, is now operated under a leasehold, and larger developments are promised. It finds its principal market for its lignite product in the Cook Inlet region.

The Healy River Coal Corporation is operating a small lignite mine under leasehold on the west bank of Nenana River, opposite the mouth of Healy Fork. An adit driven into the bank of Nenana River a few feet above water level reaches the coal about 200 feet in. An entry has been driven on the coal for about 300 feet. The coal is from 5 to 7 feet thick, and the floor and roof are of shale. The mine was worked throughout the year and employed about 12 men.

The Broad Pass Coal & Development Co. is operating under a permit a small lignite mine on Lignite Creek, a tributary of Nenana River from the east. It is worked only in winter, and the coal mined is carried across the Nenana on the ice. The coal bed is about 25 feet thick and lies nearly horizontal. In 1920 the mine was operated 80 days and employed 12 men underground and 9 on the surface, including those who sledded coal to the railroad.

The coal produced in the Nenana field was sold to the railroad and in the near-by settlements. Some coal was shipped to Fairbanks, where it was sold in carload lots at \$7 a ton, but it has not yet there superseded wood as the general fuel.

The above review shows that the development of the high-grade Alaska coal has not yet gone beyond the prospecting stage. Indeed, the coal actually blocked out does not exceed a few hundred thousand

⁸ Kennecott Copper Corporation Ann. Rept. for 1920, p. 15, New York, 1921.

⁹ Information received from B. W. Dyer, of the U. S. Bureau of Mines, and from George Parks, of the General Land Office.

tons, which, of course, is not an adequate base for a productive industry. This is the state of affairs after the coal fields have been open to leasehold for seven years, during which only one coal tract has been systematically explored by private capital. There is certainly a strong contrast between the present actual conditions and those foretold in the prophecies so freely made in the conservation propaganda a decade ago. Exaggerated statements of the value of the Alaska coals and of the profits sure to be realized by their development were then widely published and were generally accepted as true by those who had no technical knowledge of the subject and who failed to inform themselves by reading the official publications then extant. At the height of this propaganda every Alaska coal claimant was regarded by many as a prospective millionaire. After the actual facts were recognized the pendulum of popular opinion swung toward the other extreme, and some persons probably now believe that any interest in Alaska coal lands is a liability rather than an asset. The truth lies between these two extreme views.

The coal fields were opened for leasing about at the outbreak of the World War, and the industrial and financial revolution attendant on the war has no doubt delayed their development. Some men who attempted to develop leased tracts had neither the experience nor the capital to carry on the projects properly and were soon discouraged. The best hope for profitable exploitation of the Alaska high-grade coals is in operation on a large scale, calling for heavy investments. A great deal of preliminary underground exploration must be done to block out sufficient coal to justify the costly installation of large mining plants and, in the Bering River field, the construction of railroads. The conditions are in strong contrast to those affecting the eastern coals, which lie horizontal and are undisturbed. so that only a comparatively few openings are required to afford a reliable estimate of the quantity of coal available.

In view of the general importance of the fuel problem on our Pacific coast it will be well to summarize briefly the essential facts relating to the occurrence of the Bering River and Matanuska coals, even though they may be largely a repetition of what has long been published. 10 The underground work of the last few years has revealed

¹⁰ Martin, G. C., and Katz, F. J., Geology and coal fields of the lower Matanuska Valley, Alaska: U. S. Geol. Survey Bull. 500, 1912.

Martin, G. C., and Mertie, J. B., jr., Mineral resources of the upper Matanuska and Nelchina valleys: U. S. Geol. Survey Bull. 592, pp. 273-300, 1914.

Martin, G. C., Geologic problems at the Matanuska coal mines: U. S. Geol. Survey Bull. 692, pp. 269-282,

Chapin, Theodore, Mining developments in the Matanuska coal field: U. S. Geol. Survey Bull. 712, Pp. 131-167, 1920; Mining developments in the Matanuska coal fields: U. S. Geol. Survey Bull. 714, pp. 197-199, 1921.

Brooks, A. H., The future of Alaska mining: U. S. Geol. Survey Bull. 714, pp. 43-51, 1921.
Martin, G. C., Geology and mineral resources of Controller Bay region, Alaska: U. S. Geol. Survey Bull. 335, 1908. (This publication contains a detailed description of the Bering River coal field.)

details concerning the occurrence of the coal that were not available when the earlier reports were published. Those reports were necessarily based solely on examinations of the outcrops and of the shallow pits of their day. In general, however, the conclusions then reached have been confirmed by the underground developments of recent years. For example, Martin ¹¹ in his report on the Bering River field, published 13 years ago, says:

The possible overturned folds and faults introduce problems the scope of which can perhaps be determined only by exploration of the seams in depth. It seems probable that there are areas within the field which can not be successfully mined. These must be determined by careful surface prospecting, followed by either boring or tunneling at critical points.

It has been known that the fuel value of the Alaska coals leaves little to be desired, though like many others of similar grade they will require washing. The friability of the coal favors cleaning by washing, as has been demonstrated by numerous tests. In general the quality of the coals appears to bear a more or less direct relation to the intensity of their deformation. For example, the coal of the Eska mine is both of a lower fuel value and much less disturbed than that of the Chickaloon mine. It also appears that the anthracite coals of the eastern part of the Bering River field are more intricately folded and faulted than the bituminous coals in the southwestern part of that field.

The most discouraging fact that has been brought out by the underground work is the lack of continuity of the coal beds. Most of those opened up thicken and thin very irregularly, and many pass into beds in which the carbonaceous material forms only a part and in some only a small part of the whole bed. These irregularities of occurrence are probably due largely to disturbances caused by folding and faulting, but they are also in part original features of deposition.

The evidence tends to show that the vegetable matter from which the coals were formed accumulated in small basins along valley bottoms and in river deltas rather than in extensive swampy lowlands. In coal beds formed from deposits that accumulated under the conditions stated there would naturally be recurring transition from clean coal well within the basins to dirty coal or even to clay sediments toward the rims of the basins. The mode of origin of the coal will therefore in part account for the lack of continuity of good coal beds. There is, however, no measure of the size of the basins in which the vegetable matter accumulated, and it probably varied greatly from place to place. These differences in original deposition are probably of less consequence to the miner than the folding and faulting of the beds, but a careful study of the conditions under which the coal was

¹¹ Op. cit. (Bull. 335), p. 93.

deposited will reveal facts which will aid in the identification and correlation of coal beds found in different mine openings. Furthermore, it may be possible that the most persistent coal beds as originally deposited may be found in the unprospected parts of both the Bering River and the Matanuska fields.

Though some of the variations in the thickness and composition of individual coal beds may be due to their mode of accumulation, there is no question that much of their extreme irregularity is certainly due to the profound disturbance of all the coal measures. This disturbance is general throughout both coal fields, but it varies in intensity, apparently increasing from the southwest to the northeast, yet there are no doubt local variations from the general conditions, so that both fields should be carefully prospected to discover the coal beds that are least disturbed. Such prospecting has been begun by the Navy Department for the Matanuska field and should be done in the Bering River field.

As a result of this great disturbance nearly all the coal beds are tilted, many at high angles, and some are folded and overturned. Although the folding is far more complex than that of the Pennsylvania anthracite, it is no greater than that of some of the coal beds mined in Europe.

In addition to the folding there is much faulting, which is far more serious to the miner. Faults are of two general types—cross faults, which cut across the beds, and bedding or parallel faults, which follow the bedding of the strata and of many of the coal beds themselves. These two types merge into each other so that by change of direction a cross fault may become a bedding fault and vice versa.

The best-known example of cross faulting is in the Eska mine, where the displacement in at least one locality amounts to several hundred feet. If the cross faults are clean breaks they do not seriously interfere with the mining of coal, though they do greatly increase the cost of mining because of the large amount of deadwork

required to pick up the coal bed beyond the fault.

Far more serious are the bedding faults, which, so far as present developments show, are characteristic structural features of much of the areas of best coal. Evidence is abundant to show that the bedding faults are usually developed from cross faults, which enter the coal bed, follow it as bedding faults for a certain distance, and leave it as cross faults. Where a fault follows a coal bed the bed thickens and thins very irregularly and may be practically squeezed out. Moreover, many of the bedding faults are not the results of movements along a single plane, but include a complex of fault planes. This type of fault is marked by a zone of crushing, which may include not only the entire coal bed but a part of the wall rock, so that the position of the coal bed is marked by a complex mixture of coal and wall rock. These

bedding faults appear at irregular intervals and differ in extent. As a result of such faulting a bed of good coal that has been followed by a gallery for several hundred feet may suddenly be lost or may pass into a zone made up of intermingled coal, shale, and bone that can not be separated in mining. In the mining thus far done no coal bed has been traced unbroken for more than 500 feet.

In places the difficulties of mining are further enhanced by the presence of intrusive dikes or stocks of igneous rocks. In the Bering River field there are no stocks and so far as determined the dikes are not sufficiently abundant to interfere seriously with mining. In the Matanuska field dikes are far more numerous and large dioritic stocks cut the coal measures. The gaseous character of these coals, the local differences in the firmness of the wall rock, and other physical conditions also influence the cost of mining, but these will not be considered here.

The discouragement found in the facts presented above is offset by the encouragement afforded by certain other facts: (1) The coal is of better grade than any other found on the Pacific seaboard; (2) outcrops of such coal are distributed over an area of about 70 square miles in the two fields; (3) it is quite possible that the parts of the fields in which the structural conditions are most favorable to mining have not been revealed; (4) underground work has thus far been limited to a total of about 21,500 feet of gangways and crosscuts and to tracts aggregating only a few square miles, and even these tracts have not been exhaustively explored.

The above outline indicates the principal difficulties, as well as the advantages and favorable possibilities, in mining Alaska coal. The difficulties are inherent in the mode of occurrence of the coal, and added to them are the difficulties inherent in all operations in remote regions, such as that of obtaining transportation and labor. It should be noted also that though there will undoubtedly be a great demand for the coal no actual market has yet been definitely established. The Government railroad gives ready access to the Matanuska field, but a large investment will be required for railroad construction into the Bering River field. Moreover, to reach a market in the States will require proper ocean carriers, which do not now form a part of the Alaska merchant marine. It is therefore evident that large investments will be necessary and that much time must pass before any expectation of a large coal-mining industry in Alaska can be realized; also that private capital will not undertake the development of the industry unless there is hope for very large returns. The greatest liberality must therefore be shown to coal lessees unless the Government itself is to undertake the underground exploration.

Coal produced in Alaska, 1888 to 1920.

Year.	Quantity (short tons).	Value.	Year.	Quantity (short tons).	Value.
1888-1896	6,000 2,000 1,000 1,200 1,300 2,212 1,447 1,694 3,774 5,541 10,139 3,107 2,800	\$84,000 28,000 14,000 16,800 15,600 19,048 9,782 7,225 13,250 17,974 53,6000 14,810 12,300	1910. 1911. 1912. 1913. 1914. 1915. 1916. 1917. 1918. 1919. 1919.	1,000 900 355 2,300 1,400 13,073 53,955 75,606 60,674 61,111 313,788	\$15,000 9,300 2,840 13,800 52,317 265,317 411,850 343,547 355,668

Coal consumed in Alaska, 1899-1920, in short tons.

Year.	Produced in Alaska, chiefly sub- bituminous and lignite.	Imported from States, chiefly bi- tuminous from Wash- ington.	Total for- eign coal, chiefly bi- tuminous from British Co- lumbia.	Total coal consumed.
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1910 1911 1912 1913 1914 1915 1916 1917 1918 1917	900 355 2,300 1,400 13,073 53,955 75,606 60,674	10,000 15,048 24,000 40,000 64,626 36,689 67,713 69,43 46,246 23,893 33,112 32,098 32,255 27,767 69,066 41,509 44,934 58,116 51,520	a 50, 120 a 56, 623 a 77, 674 a 68, 363 a 60, 605 a 76, 815 a 72, 612 a 47, 504 69, 046 58, 420 61, 845 68, 316 56, 430 46, 153 29, 457 53, 672 56, 589 37, 986 48, 708	61, 320 72, 871 102, 974 110, 575 126, 678 115, 198 144, 099 122, 624 149, 647 113, 404 95, 000 96, 438 127, 796 87, 662 77, 186 600 165, 112 166, 548
1920.	61, 111	37, 043 928, 623	45, 264 1, 321, 954	2, 555, 365

a By fiscal year ending June 30.

to e as

re ne as ne al

e

et al 2) re e

n d s

e e d e t t - t -

-

t

V

t

t

PETROLEUM.

The petroleum produced in Alaska in 1920, as in previous years, was derived from the single patented claim in the Katalla oil field. This property is owned by the Chilkat Oil Co., which refines the entire product in its own refinery. The output in 1920 was pumped from 7 or 8 small wells. Two new wells in which oil was found were drilled on this property in 1920. The high-grade gasoline made from this oil finds a ready sale in the local market, chiefly on Prince William Sound. At present the residue from the refinery is not utilized

No drilling was done in undeveloped fields in 1920, but some geologic examinations were made by private corporations. In 1920–21

a hole was sunk near Anchorage to a depth of about 200 feet, but did not reach bedrock. Later (July, 1921) a small petroleum seepage was found near Anchorage in the gravel and clay which here mark the bedrock. The alluvial cover prevents the determination of the bedrock source of the oil.

The enactment of the oil-land leasing act of February, 1920, together with the world-wide search for petroleum, has again attracted public attention to the oil lands in Alaska, which had been withdrawn from entry since 1910. The enactment of the new law started a rush into all the accessible prospective oil fields, and many claims were staked. Later the enthusiasm of this rush carried many of the locators into areas that had little to recommend them as possible fields for petroleum. Up to the end of the year 335 applications for oil-prospecting permits, covering 762,553 acres, had been received at the Juneau land office. These applications, according to Mr. Stewart, ¹² are distributed geographically as follows:

Applications for oil permits received at Juneau land office, 1920.

Location.	Number.	Area (acres)
Cold Bay Katalla Yakataga Iliamna (Iniskin Bay) Kootznahoo (Admiralty Island, southeastern Alaska). Cape Spencer (Iey Strait, southeastern Alaska). Chinitna, (north of Iliamna Bay, Cook Inlet). Seward (Kenai Peninsula) Wasilla (Matanuska Valley). Anchorage (Knik Arm). Aniakchak (Alaska Peninsula, southwest of Cold Bay).	168 63 36 30 15 3 3 3 2 2 9	431, 044 98, 05: 75, 52! 69, 400 33, 28 7, 68! 7, 68! 5, 32! 5, 12: 19, 20 10, 24:

Of the above list, only the Cold Bay, Katalla, Yakataga, Iliamna, and possibly the Chinitna and Aniakchak areas are classed by the Geological Survey as prospective oil territory on the geologic information now at hand.¹³ Curiously enough, no claims appear to have been filed on any land in the Douglas River region, tributary to the southwest end of Cook Inlet, where an oil seepage has long been known.

The large areas staked in the prospective oil fields above listed no doubt include much land that is worthless, but until the structure has been worked out this can not be helped. It will be well to note also that until actual drilling has been done there is no certainty of the existence of important oil pools in any of these areas. Some drilling will probably be done in 1921, but these prospective fields can probably not be systematically tested for several years.

¹² Stewart, B. D., Annual report of the Territorial mine inspector to the governor of Alaska, 1920, p. 11,

¹⁸ Martin, G. C., Preliminary report on petroleum in Alaska: U. S. Geol. Survey Bull. 719, 1921,

Petroleum products shipped to Alaska from other parts of the United States, 1905–1920, in gallons.a

ut

ge rk he

eo, nten ny ny ny en to

es).

680

120 200

240

he

in-

to

en

ed

ire

ote

of

me lds

. 11,

Heavy oils, including crude oil, gas oil, residuum, etc. Gasoline, including all lighter products of distillation.	uminating oil.	Lubricating oil.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	627, 391 568, 033 510, 145 566, 598 531, 727 620, 972 423, 750 672, 176 661, 656 731, 146 513, 075 732, 369 750, 238 3, 515, 746 887, 942	83, 319 83, 902 100, 145 94, 542 85, 687 104, 512 100, 144 154, 565 150, 918 191, 876 271, 981 373, 046 465, 693 362, 413 977, 703 412, 107	
	1:	2,695,150	

lpha Compiled from Monthly Summary of Foreign Commerce of the United States, 1905 to 1920, Bureau of Foreign and Domestic Commerce.

STRUCTURAL MATERIALS, ETC.

Marble is widely distributed in southeastern Alaska¹⁴ but has been developed on an extensive scale only at the quarries of the Vermont Marble Co. at Tokeen, near the north end of Prince of Wales Island. In 1920, as in the past, only one gypsum mine was operated in Alaska. The mine was flooded during the first four months of the year, but operations were resumed later on the same scale as before.

The equipment for mining and reducing sulphur on Akun Island, at the east end of the Aleutian chain, was completed about the end of the year, but no sulphur has yet been produced there.

A trial shipment of about 20 tons of garnet sand, taken from the beach of Imuruk Basin, 20 miles east of Port Clarence, to be used as an abrasive, was made from Nome in the summer of 1920.

REVIEW BY DISTRICTS.

The following review summarizes briefly the principal developments in all the districts. Many of the districts were not visited by members of the Geological Survey in 1920, and for this reason and because some operators fail to make reports the information at hand is not complete, especially concerning the placers of the lower Kuskokwim basin and of the Koyukuk district. The space devoted to any district is therefore not necessarily a measure of its relative importance. The general arrangement of the presentation is geo graphic, from south to north.

¹⁴ Burchard, E. F., Marble resources of southeastern Alaska: U. S. Geol. Survey Bull. 682, 1920.
63963°—22——3

SOUTHEASTERN ALASKA.

The mineral output of southeastern Alaska in 1920 was derived from eight gold-lode mines, gold placers (a very small production), two copper mines, one of which yields ore carrying a high content of platinum minerals, one gypsum mine, and one large marble-quarry property. The total value of the minerals produced increased from \$4,679,632 in 1919 to \$5,120,163 in 1920. Only four of the gold mines were large producers—three at Juneau and one on Chichagof Island; the others were under development and made a small incidental output of gold. All the copper produced came from the Rush & Brown and Salt Chuck mines, in the Ketchikan district. Placer mining was limited to very small operations in the Porcupine district and on the beach placers of Yakataga and Lituya Bay.

Mineral production of southeastern Alaska, 1920.

	organization i p	Go	old.	Silver.	
	Ore mined (tons).	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
Gold-lode mines Copper mines. Placer mines	3,409,197 15,018	210, 535 913 193	\$4,352,145 18,873 3,990	114, 621 5, 313 33	\$124, 937 5, 791 36
	3, 424, 215	211,641	4, 375, 008	119,967	130, 764
g the first four months of the	Copper.		Lead.		Palladium,
	Quantity (pounds).	Value.	Quantity (pounds).	Value.	gypsum, etc. (value).
Gold-lode mines Copper mines. Placer mines	a 670, 155	\$123,308	1, 518, 454	\$121,477	
	670, 155	123,308	1, 518, 454	121, 477	\$369,606

a Includes some copper shipped from other parts of Alaska.

KETCHIKAN DISTRICT.

Productive development work was continued at the Rush & Brown mine on about the same scale as in previous years. This is the oldest productive copper mine in southeastern Alaska, having been operated almost continuously since 1904. In 1920, as in previous years, the work was directed principally to the development of the smaller of the two ore bodies that have been explored underground. This ore body lies in a shear zone bounded by two well-defined walls of graywacke. It consists of rich chalcopyrite ore shoots in a mineralized gangue of crushed graywacke, which is in part merchantable ore, for in addition to the rich shoots the gangue contains veins and veinlets of sulphides. The ore body contains also some pyrite and pyrrho-

tite. The lower-grade copper-bearing magnetite ores on the property, of which a considerable tonnage has been developed, will not be utilized until a market for their iron content can be found. The Ketchikan district as a whole has large reserves ¹⁵ of this type of ore, which will form an important asset when use can be found for its iron content. The principal work on the Rush & Brown mine in 1920 was the extension of the incline to the 500-foot level, drifting on the 450-foot level, and explorations at higher levels. All the ore produced was sent to the Anyox smelter, in British Columbia. Mining was done at the Salt Chuck mine on a larger scale in 1920 than in the previous year. The ore on this property has a high content of palladium and platinum and carries copper also. This occurrence was fully described in the report of last year. ¹⁶

The Dunton gold mine, near Hollis, on Prince of Wales Island, has been taken over by the Kasaan Gold Mining Co., and the name of the property has been changed to Harris Creek mine. The ore body has been described in a recent publication.¹⁷ In 1920 the work has consisted chiefly of a reconstruction of the mill and mining plant, which was completed in the fall of 1920. Some gold ore was milled in the course of the year. Considerable prospecting was done by the Helm Bay Mining Co. on a group of claims on Helm Bay, on the south shore of Cleveland Peninsula, north of Ketchikan. The group includes the old Gold Standard mine, which has not been worked for many years. The work performed in 1920 includes a series of shallow open cuts and pits, which crosscut a rather ill-defined shear zone traversing greenstone schists. Within this shear zone there are many small quartz veins and stringers which carry gold and some pyrite. The zone has been traced with some interruptions for several thousand feet. The several open cuts show from 10 to 50 feet of mineralized rock, but no well-defined walls were seen. It is reported that results of sampling seven or eight of these cuts yielded an average of about \$6 worth of gold to the ton. A crosscut is being driven, which should reach the shear zone at a depth of 80 feet. The work on this property when it was hastily examined in September, 1920, was only well begun, as the bedrock was exposed only in the open cuts. No adequate conception of the character of the ore body could be obtained. value of the property will depend on the quantity of ore, which, according to the surface indications, may be large. Another important fact that awaits determination is the continuance in depth of the gold content thus far reported. The cuts examined showed some oxidation, which indicates that there may be some surface enrichment. The evidence at other mines in the district supports the

17 Idem, pp. 127-128,

d

f

n

d

f

-

h

r

t

34

1,

6

¹⁵ Brooks, A. H., The future of Alaska mining: U. S. Geol. Survey Bull. 714, pp. 15-19, 1921.

¹⁶ Mertie, J. B., jr., Lode mining in the Juneau and Ketchikan districts: U. S. Geol. Survey Bull. 714, pp. 121–217, 1921.

belief that a crosscut run on the ore body at a depth of 80 feet should give a reliable indication of the depth of surface enrichment.

JUNEAU DISTRICT.

The Perseverance, Alaska-Juneau, and Ready Bullion mines and mills, all near Juneau, were operated throughout the year. In 1920 the value of the average recovery of metal from the ore of these three mines was 85 cents a ton. Developments were continued throughout the year on the Alaska Ebner property, adjacent to the Alaska-Juneau. This mine is developed by an adit 4,000 feet long, and during 1920 about 1,000 feet of drifting and crosscutting was done.

Developments at the Jualin mine, at Berners Bay, were suspended in February, 1920, but the company reports that work will be resumed when financial conditions improve. The 10-stamp mill at this mine was burned during the year, but the extensions projected include a 200-stamp mill. A little work was done at the Peterson mine, north of Juneau. Some work was done at the Daisy Bell mine, near Snettisham, and a little ore was treated in its 5-stamp mill.

The following notes on the most important recent developments at Windham and Sumdum bays are taken from Stewart's report. 18 In 1919 the Alaska Peerless Mining Co. drove about 50 feet of adits and crosscuts on the Basin Queen lode, at Windham Bay. This property, formerly known as the Yellow Jacket group, has been described by Spencer. 19 This work exposed an extensive belt of highly mineralized talcose schist approximately 70 feet in width, constituting a showing which appears to be well worth further exploration. The main tunnel is now 400 feet in length, and from it four crosscuts have been driven aggregating 300 feet. It was planned by the Alaska Peerless Mining Co. to drive a crosscut adit 630 feet vertically below the present drift adit and 5,000 feet in length, to cut the above-described zone at this horizon. This work was started and 50 feet of open-cut work and 30 feet of tunneling work completed. Work on the property was discontinued in the fall of 1919 and only assessment work done during 1920.

According to the mine inspector's report, the Independent Gold Mining Corporation completed in 1920 about 150 feet of underground work on a property at the head of Windham Bay. The ore body exposed is a belt of silicified schists, having an average width of about 10 feet and containing gold, galena, and iron sulphides. This mineralized belt has been traced on the surface for a long distance to the southeast of the adit and it crops out on the opposite shore of the bay, where claims have been located upon it.

The most extensive developments on Admiralty Island were those made on the property of the Admiralty Alaska Gold Mining Co.,

¹⁸ Stewart, B. D., Annual report of Territorial mine inspector to the governor of Alaska, 1920, p. 20, Juneau, 1921.

¹⁹ Spencer, A. C., The Juneau gold belt: U. S. Geol. Survey Bull. 287, p. 41, 1906.

which has been described in a recent report.²⁰ Here operations were carried on from May to the end of the year. The main adit was extended for about 650 feet. Many open cuts were made, and a new working shaft was started. Work was continued in a small way on the Nowell-Otterson group of claims,²¹ which are adjacent to the Admiralty-Alaska property.

Underground work has been continued at the Alaska Endicott property on William Henry Bay, north of Juneau. Preparations are

being made to erect a mill and compressor plant.

SITKA DISTRICT.

The Sitka district was the scene of the first lode-gold mining venture in Alaska, which began as early as 1871. This proved unprofitable, and when gold was discovered at Juneau and on the Yukon the district was almost abandoned. It was not until 1905, when the Chichagoff lode, now developed into one of the largest mines in Alaska, was discovered, that prospectors began to return to the district. In 1920 lode prospecting was more active here than in any other part of the Territory and some promising discoveries were made. It is astonishing that a region which is so readily accessible and in which the physical conditions permit low operating costs should have been almost ignored for nearly half a century.

In 1920, as in the past, the Chichagoff mine was the only productive property in the district except the gypsum mine already referred to (p. 33). The mine and 30-stamp mill were operated throughout the year, and the new underground work included 112 feet of shaft

and 1,310 feet of drifts.

ld

d

20

ee

ut

a-

id

ed

e-

is

n-

e,

ar

ts

18

ts

p-

d

1-

V-

in

n

SS

S-

d

ıt

)-

·k

d

r-

ce

h

is

0

le

se

20,

The following quotation from the Territorial mine inspector's report summarizes the recent prospecting in the Sitka district:²²

Active development was continued on the Hirst-Chichagoff property, at Hirst Cove, on the opposite side of Doolth Mountain from the Chichagoff mine.

During the winter of 1919 and the spring of 1920 a stamp mill which had been installed at Windham Bay was dismantled and moved to the Hirst-Chichagoff property.

A mill building was constructed, but the mill has not yet been installed.

A wharf has been built and a comfortable bunk house and boarding house completed at the property. Difficulty was had with the compressor formerly in use, and a new machine has been installed. Following this improvement work was resumed on the crosscut tunnel at the mill level, and about 300 feet driven, making a total of about 1,100 feet. It is understood this tunnel has reached the vein and exploration of the ore zone at the mill tunnel level has begun. This vein is very similar in type to the Chichagoff vein, and the results of development work upon it are being looked forward to with interest.

The Chichagoff Mining Co. has acquired control of the Apex group of claims, lying across the divide, between the head of Cann Creek on the west shore of Lisianski Inlet and Stag Bay, an arm of Lisianski Strait.

²⁰ Mertie, J. B., jr., Mining in Juneau and Ketchikan districts: U. S. Geol. Survey Bull. 714, pp. 115-116, 1921.

²¹ Idem, pp. 116-118.

²² Op. cit., pp. 22-23.

The discovery of the Apex vein was made in October, 1919, and development work was commenced upon it as soon as the snow had left in the early summer of 1920. The vein on the surface averages about 20 inches in width, and its outcrop has been traced for a considerable distance. Patches of exceedingly high grade gold ore appear on the outcrop at several places.

A camp was built on the beach at the mouth of Cann Creek and a pack trail about 2 miles in length constructed, leading to an upper camp and the lowest showings on the outcrop. The upper camp is at an altitude of 800 or 900 feet and the discovery about 1,300 feet. It is understood that a tunnel 50 feet in length has been driven on the vein, commencing at the discovery, since July, 1920. A lower tunnel, commencing at a point near the upper camp, is understood to be under construction at the present time.

d

1

n

The Apex vein is practically solid quartz in unaltered hornblende diorite. A very fine grained porphyritic acidic dike a few inches in thickness lies along the walls on either side of the vein. This dike closely resembles quartzite in appearance and weathers brown on the surface.

Adjoining the Apex group on the east is the El Nido group of claims, controlled by Mr. J. H. Cann, who was also one of the discoverers of the Apex lode. The El Nido lode was discovered in June, 1920, and some development work, consisting of open cuts and trenching, had, at the time of visit (July, 1920), exposed the outcrop for a length of about 200 feet. Some exceedingly high grade samples were secured from this crop, hand specimens being said to run as high as \$5 per pound. The El Nido lode at the outcrop is from 3 to $3\frac{1}{2}$ feet in width, consisting of alternating pure white quartz and dike material, similar to that referred to above in connection with the Apex lode. No report has been had on developments made on this lode since July, 1920.

COPPER RIVER BASIN.

The continuous operation of the three large copper mines of the Kennecott group and the summer placer mining in the Nizina and Chistochina districts constitute all the productive work done in the Copper River basin in 1920. A little underground work was done on the Midas gold mine ²³ in the early part of the summer, but the mill was not operated. The only other lode operations were assessment work on copper claims.

The following statements on mining and milling at the Kennecott group of mines during 1920 are taken from the annual report of the company: 24

Kennecott ores milled totaled 199,656 tons, assaying 6.82 per cent. From this tonnage there resulted 21,696 tons concentrates assaying 51.06 per cent copper, this giving a recovery of 82.29 per cent, as against 85.9 per cent in 1919 and 84.19 per cent in 1918. The percentage of total copper occurring in carbonate form was 41.8, compared with 37.4 in 1919 and 37.8 in 1918, which accounts for the lower recovery obtained during the last year. The cost per ton of milling was 76 cents, as against 73 cents in 1919 and 80 cents in 1918.

In addition to the Kennecott ores the Kennecott mill also treated 67,567 tons of ore during the year for the account of the Mother Lode Coalition Mines Co.

The leaching plant at Kennecott treated 190,327 tons mill tailings assaying 1,14 per cent carbonate copper, with a recovery of 3,332,500 pounds of copper in the form of

²³ For a brief description of the ore body see Moffit, F. H., Mining in the Chitina Valley; U. S. Geol. Survey Bull. 714, pp. 191-192, 1921.

²⁴ Kennecott Copper Corporation Sixth Ann. Rept., for year ending December 31, 1920, pp. 6-7, New York, 1921.

precipitates assaying 74.75 per cent copper, the percentage of recovery being 74.5 per cent, as against 74 per cent in 1919. Leaching costs were \$1.33, as against \$1.18 in 1919 and \$1.12 in 1918.

The total recovery of copper in all ores treated, milling and leaching combined, was

90.10 per cent, as against 92.96 per cent in 1919 and 89.38 per cent in 1918.

k).

n

ıt

rs

У

t

s

d

n

a

n

e

t

3

Thirteen thousand six hundred and thirty feet of development work was driven for the purpose of developing new ore bodies and opening known deposits on other levels preparatory to stoping. In addition to this 14,936 feet of diamond drilling was done. The most important items were the development of the Birch vein, on the 150-foot level, and the Bonanza-Mother Lode vein, on the 900-foot level in the Bonanza mine; and in the Jumbo mine, the development of the ore in the 518 vein at and below the fifth level.

The work of building the Glacier mine tramway was completed in time to transport 4,722 tons that were mined before the season closed. At the same time an intermediate station at the halfway station of the Jumbo line was built, making it possible to handle a greater tonnage over this line.

A high-tension power line was strung to the Erie mine, making it possible to use compressed air in carrying on the development of this mine.

In 1920, as in previous years, practically all the placer gold produced in the Nizina district was obtained from three hydraulic mines on Dan, Chititu, and Rex creeks. A little mining was also done on the bench placers of Dan Creek.

Nine placer mines were operated in the Chistochina district during the summer of 1920, employing 35 men and producing gold to the value of about \$75,000. The largest output was made by a hydraulic plant on Slate Creek. An average of \$1.53 worth of gold per cubic yard was recovered from the placer-mining operations of the district. Some platinum was won from the Slate Creek placers.

Some placer mining was done in the Nelchina and Valdez Creek districts, and plans are under way for again operating the large hydraulic plant on Valdez Creek, which has been idle for several years.

PRINCE WILLIAM SOUND.

Mining was at a low ebb in the Prince William Sound region 25 during 1920, except for the large copper output of the Beatson mine, on Latouche Island. Other mines, however, incidentally produced some copper. The only gold mine on Prince William Sound that reported any production in 1920 was the Valdez Gold, which produced only a few tons of ore.

The following extracts from the annual report of the Kennecott company summarize the principal operations at the Beatson mine during the year. Much work was done at the Girdwood mine, which is north of and adjacent to the Beatson. The mine is developed by a 1,600-foot adit and is equipped with a 150-ton flotation mill.

Ore milled totaled 451,863 tons, assaying 1.77 per cent copper. From this tonnage 44,268 tons of concentrates were produced, assaying 15 per cent copper, as against

²⁵ The ore deposits of Prince William Sound are described in the Geological Survey reports listed on pages v and vi.

264,265 tons milled, 28,204 tons concentrates produced, assaying 14.78 per cent, in 1919. The average recovery was 82.85 per cent, as against 80.8 per cent in 1919; however, the recovery of copper existing as the sulphide in the ore was 85.2 per cent.

T

a

re

B

h

g

p

di

01

01

M

go

ti

CC

m

C

m

de

di

or

al

m

to \$2

fig

go

tic

ca

in

173-

C

Cre Cre

712,

Two thousand nine hundred and fourteen feet of raising and 5,738 feet of drifting, making a total of 8,652 feet, augmented by 4,846 feet of diamond drilling, was done during the year. This work, with the exception of 1,499 feet of raising and drifting and 991 feet of diamond drilling done on the upper levels, was for the purpose of preparing the ore above the 200 level for stoping.

A small sawmill was added to the surface equipment. A compressor of 500 cubic feet capacity was added to furnish air for the mill. A mechanical shoveler was purchased to be used underground.

The Schlosser mine of the Alaska Mines Corporation was operated from January 1 to November 15. The hand-sorted crude ore is shipped to the Tacoma smelter. In 1920 the principal advance work done was that of driving 1,450 feet of the main adit.

The work done at the Fidalgo (McIntosh) mine on Fidalgo Bay included the driving of a 104-foot raise and a 150-foot drift, in course of which some ore was recovered, but none was shipped.

Copper prospecting on Knight Island is practically at a standstill. The only development was the continuation of the main crosscut on the Rua Cove property by W. A. Dickey.

The Valdez Mining Co. continued to develop its property ²⁷ on the west side of Valdez Glacier from June until December, 1920. The main adit was driven 400 feet during the year and is now 800 feet long. Some ore that was recovered incidentally to the development work was milled. Late in the summer of 1920 the Cliff mine, near Valdez, was unwatered, and about 119 feet of underground work was done. The ore body has been described by Johnson.²⁸

KENAI PENINSULA.

There was no improvement in gold mining on Kenai Peninsula during the year. The value of the total mineral output in 1920 was \$35,000, and that in 1919 was \$37,500. Of the total amount for 1920 \$14,675 is to be credited to the gold output of two small lode mines and six placer mines, the latter employing about 15 men. Most of the placer gold came from Resurrection, Canyon, and Sixmile creeks.

The Lucky Strike mine, on Palmer Creek, was operated from June to October, and its mill for 15 days, one shift a day. The principal underground work done consists of a 150-foot adit. Some ore was milled at the Virginia mine, but no developments were made. There was considerable prospecting of auriferous quartz veins during the year. Plans were made for doing work on a group of quartz claims at the head of Crow Creek, on the north side of Turnagain Arm.

²⁷ For a brief description of the ore body see Johnson, B. L., The gold and copper deposits of the Port Valdez district: U. S. Geol. Survey Bull. 622, p. 162, 1915.

²⁸ Idem, pp. 170-172.

These claims, so far as identified, belong to what was formerly known as the "Barnes property," which has been described in a former report.²⁹

The operation of the lignite mine at Bluff Point, on Kachemak Bay, and the developments on chrome deposits at Red Mountain have already been referred to (pp. 26, 24).

f

1

e

e

1

7

SUSITNA AND MATANUSKA REGION.

Productive mining in the Susitna-Matanuska region included gold-placer mining in the Yentna district and at a few scatterred places in the Susitna basin, gold-lode mining in the Willow Creek district, and coal mining in the Matanuska field and at one or two other places in the Susitna basin. The value of the total mineral output from this region was \$532,562 in 1919 and \$324,810 in 1920. Most of the decrease in 1920 was due to the decline in the output of gold. The consolidation of some of the Willow Creek gold properties and the systematic exploration of the Matanuska coal field constitute the most important advances of the year. The developments in coal mining have already been summarized (pp. 25, 26).

WILLOW CREEK DISTRICT.

Productive mining was done on three properties in the Willow Creek district in 1920. These were the Mabel mine, the Gold Bullion mine, and the Independent, Brooklyn, and Free Gold mines, consolidated into one holding by the Kelly Mines Co. Lode mining in this district has heretofore been done in a small way on properties worked only during the open season, and the several small mills were built at altitudes so high that they could obtain water only during the summer. Since mining began, in 1908, the district has produced 66,053 tons of ore, from which the average value of gold recovered has been \$27.70 per ton and the silver recovery 0.1 ounce per ton. These figures do not, however, represent the whole value of the ores, for the gold is largely free gold, recovered by rather crude milling practice. Thus far little of the concentrates has been utilized. Larger operations have now been planned and an increase in the output of gold can be confidently expected.³⁰

The following table shows the progress and results of lode mining in the Willow Creek district. In addition to the production of lode

²⁹ Johnson, B. L., The central and northern part of Kenai Peninsula: U. S. Geol. Survey Bull. 587, pp. 173–176, 1915.

³⁰ The ore bodies of the Willow Creek district are described in the following publications:

Capps, S. R., The Willow Creek district: U. S. Geol. Survey Bull. 607, 1915; Gold mining in the Willow Creek district [1915]: U. S. Geol. Survey Bull. 642, pp. 195–200, 1916; Gold-lode mining in the Willow Creek district [1917]: U. S. Geol. Survey Bull. 692, pp. 177–186, 1919.

Chapin, Theodore, Lode developments in the the Willow Creek district [1918]: U. S. Geol. Survey Bull. 712, pp. 169-176, 1920; Lode developments in the Willow Creek district [1919]: U. S. Geol. Survey Bull. 714, pp. 201-206, 1921.

gold about \$30,000 worth of placer gold has been taken from the gravels of Willow Creek. A little placer mining was done in this field as early as 1897, but no output has been made from these placers during the last 10 years.

Gold and silver produced at lode mines in the Willow Creek district, 1908-1920.

	AXEU	Ore			Silv	Silver.	
Year.	Mines operated.	mined (short tons).	Quantity (ounces).	Value.	Quantity (ounces).	Value.	
1908	3 3	12 140 144 812 3,000 3,028 10,110 6,117 12,182 7,885 13,043 6,730 2,850	87. 08 1, 015. 87 1, 320. 15 2, 505. 82 4, 673. 02 4, 883. 94 14, 376. 28 11, 961. 55 14, 473. 46 9, 466. 17 13, 043. 05 7, 882. 00 3, 067. 00	\$1, 800 21, 200 21, 290 51, 800 96, 600 100, 960 297, 184 247, 267 299, 193 195, 662 269, 624 162, 944 63, 400	6. 88 80. 25 104. 29 197. 95 369. 07 385. 83 1, 330. 00 811. 00 1, 468. 00 713. 00 724. 00 508. 00 148. 00 6, 846. 27	\$3.64 41.77 56.3 109.9 226.9 233.4 735.0 421.0 967.0 586.0 724.0 509.0 158.0	

i

n

Go Sil-Tir Coa Lea An

in

Wa

dis

To

Wi

ab

giv

YENTNA DISTRICT.

Only about half the placer-mining operators in the Yentna district made complete returns in 1920, but it is estimated that 21 placer mines, employing 55 men, were operated in this district during the year, and that they produced gold having a value of \$45,000. The value of the output of gold in 1919 was \$95,000. The length of the mining season in 1920 was about 150 days, but the mines were operated for an average of only 92 days. The returns from 7 mines, of which 5 were hydraulic, showed that the value of the gold recovery per cubic yard ranged from 40 cents to \$2 and averaged 70 cents.

Several hydraulic plants are being installed in the district, and a hydroelectric plant is being built to furnish power for the Cache Creek dredge, which has not been operated in two years. The completion of the Talkeetna-Cache Creek wagon road, now under construction by the Alaska Road Commission, will do much to revive mining in the Yentna district.

UPPER SUSITNA VALLEY AND BROAD PASS REGION.

No productive mining was done in the upper Susitna Valley nor in the Broad Pass region in 1920 except the digging of a little lignitic coal for local use at Sullivan Road House and possibly a little placer mining at widely scattered localities. Interest in the gold and copper lodes of this region has continued, and in the aggregate considerable development work was done, but the details are lacking at this writing.

SOUTHWESTERN ALASKA.

No productive mining was done in southwestern Alaska in 1920 except small beach-placer operations on Kodiak Island. The development of the sulphur on Akun Island has already been recorded (p. 33), as well as the staking of petroleum claims in the Cold Bay and other regions of the Alaska Peninsula (pp. 131–132).

YUKON BASIN.

The value of the total mineral output of the Alaska Yukon region in 1920 was \$2,329,286; the value in 1919 was \$3,049,061. No encouraging advances were made during the year except some development of gold and silver lodes in the Kantishna district and the systematic mining of coal in the Nenana field. The sources of the product in 1920 and the total mineral production since mining began, in 1886, are presented in the following tables:

Mineral production of the Yukon basin, Alaska, in 1920.

d in the summer of 1920	Placer	Placer mines. Lode n		nines.	Total.	
winter. During the sum-	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
Gold. fine ounces. Silver. do Tin, metal pounds. Coal tons	96, 508 12, 905 11, 057	\$1,995,000 14,068 3,454	2,585 131,276	\$53,447 143,090	99, 093 144, 181 11, 057 21, 252	\$2,048,447 157,158 3,454 107,418
Lead and copper				12, 809		12, 809
Citing their imper from Street		2, 012, 532		209, 346		2, 329, 286

Mineral production of the Yukon basin, Alaska, 1886-1920.

C. The secretary	Place	Placer mines.		mines.	All mines.	
	Quantity.	Value.	Quantity.	Value.	Quantity.	Value.
Gold fine ounces. Silver do Tin, metal pounds.	6, 305, 858 1, 083, 447 327, 467	\$130, 352, 000 656, 390 162, 194	62, 364 150, 030	\$1, 288, 677 152, 012	1, 233, 477 327, 467	\$131,640,677 808,402 162,194
Coal tons. Lead and copper pounds. Antimony, tungsten, and platinum.		3,100	275, 321	14, 481 325, 500	42, 851 . 275, 321	253, 621 14, 481 328, 600
		131, 173, 684		1,780,670		133, 207, 975

In 1920 the Alaska Yukon region produced about \$1,995,000 and in 1919 \$2,910,000 worth of placer gold. The decrease in output was rather evenly distributed among all the districts except the Ruby district, which practically maintained its output of 1919. The Tolovana district showed the greatest percentage of loss as compared with previous years. About 273 placer mines, giving employment to about 1,130 men, were operated during the summer of 1920, and 69, giving employment to 270 men, were operated during the previous

. 64 . 73 . 31 . 91 . 97 . 42 . 00 . 00 . 00 . 00

ie is

rs

. 00

er he he he

of ery

he

monive

in tic cer oper-

his

0

T

to

oto

0

1

n

n

0

h

o c g e

o: n g

d in M n o g

winter. A very large number of these mines were worked for only a part of the season. In 1919 274 mines, employing 1,246 men, were worked in the summer and 76, employing 255 men, in the winter.

Estimated value of gold produced from principal placers of Yukon basin, 1920.

Fairbanks.	\$580,000	Marshall	\$90,000
Iditarod		Circle	
Tolovana		Hot Springs.	
Ruby	170,000	All others	152,000
Innoko and Tolstoi	103,000	was \$2,329,286; the value	OCOT HE
Koyukuk	90,000		1, 995, 000

FAIRBANKS DISTRICT.

The value of the total mineral production of the Fairbanks district in 1920 was \$605,998, represented entirely by gold and silver, for no other metals were mined. The total mineral output of the district to date is \$72,650,767. The output for 1920 was practically all obtained from placer mines (see subjoined table), about 45 of which, employing 345 men, were operated in the summer of 1920 and 9, employing 54 men, in the previous winter. During the summer of 1919 there were in operation 53 mines, employing 350 men, and during the previous winter 24 mines, employing 86 men.

Placer gold and silver produced in the Fairbanks district, 1903-1920.

	G	old.	Silver.	
Year.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1903	1, 935, 00	\$40,000	348	\$18
1904	29, 025. 00	600,000	5, 225	2,82
1905	290, 250. 00	6,000,000	52, 245	28, 21
1906	435, 375, 00	9,000,000	78, 367	42, 31
907	-387, 000. 00	8,000,000	69,660	37, 61
1908	445, 050. 00	9, 200, 000	79, 909	43, 15
909	466, 818. 75	9,650,000	84, 027	45, 37
910	295, 087, 50	6, 100, 000	53, 116	28, 68
911	217, 687. 50	4,500,000	52, 245	27, 69
912	200, 756. 25	4, 150, 000	48, 182	29, 63
913	159, 637. 50	3,300,000	20, 274	12, 2
914	120,937,50	2,500,000	29,024	16,0
915 916	118, 518. 75 87, 075, 00	2,450,000 1,800,000	28, 444	7.2
917	63, 371. 25	1,310,000	11, 058 8, 379	6, 9
918	38, 700. 00	800,000	5, 708	5, 70
919	35, 313. 75	730, 000	5, 197	5, 82
920	28, 057. 50	580, 000	3, 870	4, 21
er gold. The decrease in output	3,420,596.25	70, 710, 000	635, 278	358, 35

The placer mines can be classed as follows: One dredging company, operating 2 dredges; 22 open-cut mines, using steam scrapers; 2 hydraulic mines; 7 open-cut mines, worked by pick and shovel; and 13 deep mines, worked by thawing and drifting. The two dredges on Fairbanks Creek carried on the largest single operation. The largest

of the open-cut mines were on Goldstream Creek and its tributaries. The 13 deep mines produced gold to the value of about \$150,000.

An attempt has been made in the following table to distribute the total placer-gold production of the Fairbanks district by the creeks on which the mines are located, although the information available as to the source of the gold may not be very accurate.

Approximate distribution of gold produced in the Fairbanks district, 1903-1920.

Cleary Creek and tributaries	\$23, 098, 000
Goldstream Creek and tributaries.	
Ester Creek and tributaries	11, 359, 000
Dome Creek and tributaries	8, 149, 000
Fairbanks Creek and tributaries.	7, 857, 000
Vault Creek and tributaries	2, 665, 000
Little Eldorado Creek	2, 269, 000
All other creeks	688, 000
HOT SPRINGS DISTRICT.	70 770 000
	70, 710, 000

70, 710, 000

About 386,000 cubic yards of gravel, having an average gold content of \$1.50 to the cubic yard, was sluiced in the Fairbanks district in 1920. The returns made by seven of the thirteen deep mines were nearly enough complete to permit the following analysis. These mines were operated for an average of 240 days, two of them throughout the year. They employed an average of 6.5 men each. They hoisted in all 32,600 cubic yards of gravel, from which \$134,000 worth of gold was sluiced. The value of the gold content of the gravel per cubic yard ranged from \$2.46 to \$8.27 and averaged \$4.11. The gravel mined per man per day, including surface and underground employees, ranged from 0.73 to 3.25 cubic yards and averaged 2.59 cubic yards.

The large open-cut mines in the Fairbanks district were operated on an average for 130 days. The returns from these mines are not nearly enough complete to permit a determination of the average gold recovery, but if the hydraulic mines are included and not the

dredges, it ranged from 54 cents to \$1.78 a cubic yard.

There was little development of the auriferous lodes in the district during 1920, nor were any discoveries reported. Work was continued in a small way at the Crites & Feldman and Billy Sunday (Smith & McGonnigle) properties, and incidentally some ore was mined and milled. Similar but smaller operations were carried on at half a dozen other quartz properties. These activities are exceptional, for the general practice of the owners of lode property in the district is to await lower operating costs before attempting lode developments.

20 nn,

ly

of

er, he

ly

en,

he

000

000

218

y, 2 d

n

Lode gold and silver produced in the Fairbanks district, 1910-1920.

		Jan hanu	durin 201	TICH CIAAL	21.001
owing table to distribute the	the foll	Gold		Silver.	
experts off Year, it is believe an adeliave noticem tolai odi	Crude ore (short tons).	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1910		841. 19 3, 103. 02 9, 416. 54 16, 904. 98 10, 904. 75 10, 534. 91 1, 904. 81 2, 311. 38 1, 294. 04 2, 026. 57 967. 48	\$17,389 64,145 194,657 349,457 225,421 217,776 39,376 47,781 26,750 41,893 20,000	106 582 1,578 4,124 2,209 1,796 140 2,217 616 378 164	\$57 300 977 2, 499 1, 222 91 95 1, 820 610 422
	35,573	60, 209, 67	1, 244, 645	13,910	9,09

HOT SPRINGS DISTRICT.

As will be seen from the subjoined table, the gold output of the Hot Springs district was only about half as large in 1920 as in 1919. Eleven placer mines, employing 30 men, were operated in the summer of 1920, and 4, employing 15 men, in the previous winter. The value of the average gold recovery from deep mines was about \$5.50 per cubic yard. Six of these mines produced a little stream tin, the total output being 7,057 pounds. The district has produced in all 265½ tons of concentrates, containing about 336,060 pounds of metallic tin, valued at \$157,695.

Placer gold and silver produced in the Hot Springs district, 1902–1920.

	Go	ld.	Silv	er.
ton one some year. It salastick of	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1902-3. 1904 1905 1906 1907 1908 1909 1910 1911 1911 1913 1914 1915 1916 1917 1918 1918 1919 1919 1919 1919	12, 717, 79 7, 038, 56 5, 805, 00 8, 707, 50 8, 465, 63 7, 721, 88 15, 721, 88 15, 721, 88 16, 721, 88 17, 974, 37 19, 350, 00 19, 350, 00 19, 350, 00 21, 768, 75 7, 256, 25 4, 837, 50 2, 418, 75	\$262, 900 145, 500 120, 000 180, 000 175, 000 325, 000 325, 000 785, 000 400, 000 400, 000 800, 000 450, 000 150, 000 150, 000 50, 000	1, 818 1, 007 831 1, 245 1, 210 1, 038 2, 248 2, 248 2, 448 3, 267 3, 267 3, 267 3, 267 3, 267 1, 255 4, 982 6, 534 4, 675 1, 225 1, 225 817 817 867	\$964 584 507 843 798 550 1,169 2,932 2,009 1,973 3,387 2,526 4,299 3,028 1,225 915 618
	298, 880. 11	6, 178, 400	47,534	29, 496

TOLOVANA DISTRICT.

A shortage of water prevails in the Tolovana district in all but very wet seasons and has hampered mining for the last two years. About 13 mines, employing 106 men, were operated during the summer of 1920, and 6 mines, employing 60 men, during the preceding winter. In 1920, as in previous years, the mines making the largest production were those of Livengood Creek.

Placer gold and silver produced in the Tolovana district, 1915-1920.

			Gold.		Silver.	
		Year.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1916 1917 1918			3,870.00 33,862.50 55,631.25 42,328.12 25,396.88 9,675.00	\$80,000 700,000 1,150,000 875,000 525,000 200,000	321 2,813 8,430 4,060 2,141 819	\$163 1,851 6,946 4,060 2,454 893
			170, 763. 75	3,530,000	18,634	16, 367

RAMPART DISTRICT.

Only small placer mines are being operated in the Rampart district. In 1920 there were 10 summer mines, employing 20 men, and 4 winter mines, employing 6 men.

Placer gold and silver produced in the Rampart district, 1896-1920.

			Go	ld.	Silver.		
	Year.	317,098,12	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.	
1904 1905 1906 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1918			29, 799. 00 4, 353. 75 3, 870. 00 6, 046. 87 3, 628. 12 4, 837. 50 2, 080. 12 1, 548. 00 1, 548. 00 1, 548. 01 1, 451. 25 1, 693. 13 1, 935. 37 1, 161. 00 1, 451. 25 967. 50	\$616,000 99,000 80,000 120,000 125,000 75,000 100,000 43,000 32,000 32,000 32,000 35,000 40,000 34,000 24,000 24,000	4, 440 649 576 865 901 540 721 310 231 274 274 274 275 300 343 280 206 90 69	\$2, 66-376 376 358 588 589 288 377 166 122 168 144 155 222 231 200 101	
			75,319.86	1,557,000	11,326	6, 99	

CIRCLE DISTRICT.

The output of gold in the Circle district in 1920 was only about one-third of that in 1919. About 20 mines were operated, employing some 50 men in the summer of 1920, and about 9 mines, employing 15 men, in the previous winter. The small output of gold was due partly to the closing down of the dredge and partly to a dry season, which caused a shortage of water for sluicing.

Placer gold and silver produced in the Circle district, 1894-1920.

T.		Gold.		Silv	er.
	Year.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1895 1896 1897 1898 1899 1900 1901 1902 1903 1905 1906 1907 1908 1910 1911 1912 1913 1915 1915 1916 1917 1918		7, 256, 25 33, 862, 50 19, 350, 00 12, 993, 75 12, 993, 75 9, 675, 00 9, 675, 00 9, 675, 00 9, 675, 00 9, 675, 00 9, 675, 00 14, 512, 50 9, 675, 00 8, 465, 63 10, 884, 37 16, 931, 25 15, 721, 84, 66 10, 884, 37 11, 126, 25	\$10,000 150,000 700,000 500,000 400,000 250,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 200,000 175,000 225,000 325,000 325,000 175,000 225,000 325,000 175,000 250,000	123 1,886 8,794 6,289 5,031 3,144 2,512 2,512 3,144 3,144 3,773 3,144 2,212 2,830 2,830 4,402 2,439 1,314 1,689 1,727 2,252 1,561 1,798 1,260 464	\$77 1, 226 6, 080 3, 773 2, 968 1, 886 1, 886 1, 507 1, 313 1, 698 1, 823 1, 918 2, 565 2, 075 2, 075 2, 1, 166 1, 472 2, 1, 528 2, 333 1, 500 704 934 875 1, 482 1, 285 1, 482 1, 285 1, 798 1, 482 1, 798 1, 481 1, 411 1, 411 1
		317, 098. 12	6,555,000	76,562	47,897

RICHARDSON DISTRICT.

Auriferous gravels are rather widely distributed in the Richardson district, in the Tanana Valley. No very rich placers have been found, and the mining consists of relatively small operations at widely scattered localities. It is estimated that eight mines, employing 18 men, were operated in the summer of 1920, and one mine, employing 3 men, was operated in the previous winter.

Placer gold and silver produced in the Richardson district, 1905-1920.

distribution of the state of the state of the	Go	ld.	Silv	er.
Year.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1905	4,837.50 18,140.62 18,140.62 7,256.25 4,837.50 4,837.50 4,837.50 4,837.50 4,837.50 4,837.50 4,837.50 4,837.50 4,837.50 4,837.50 4,837.50 4,837.50 3,870.00 1,289.37 290.25 483.75	(a) \$100,000 375,000 150,000 100,000 100,000 100,000 100,000 95,000 80,000 25,000 6,000 7,000	(a) 989 3,707 3,707 1,483 989 989 989 989 989 989 989 999 69	(a) \$673 2, 447 1, 965 771 534 524 608 597 547 476 520 202 59 111
agon road from Eagle, part of which	83, 430. 10	1,723,000	17,032	10, 109

a Prospects.

ing ing lue on,

Э.

\$77 , 226 , 080 , 773 , 968 , 886 , 886 , 507 , 331 , 698 , 823 , 938 , 565 , 075 , 166 , 472 , 528 , 538 , 538 , 538 , 538 , 500 , 794 , 875 , 482 , 798 , 487 , 487 , 798 , 487 , 798 , 487 , 798 ,

506 897

en at yie,

EAGLE DISTRICT.

In the Eagle district about 10 mines, employing 25 men, were operated in the summer of 1920. There was no winter mining. Most of the productive mining was done in the Seventymile basin.

Placer gold and silver produced in the Eagle and Seventymile districts, 1908-1920.

		Gol	Gold.		Silver.	
	Year.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.	
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919		1, 209. 37 483. 75 580. 50 967. 50 2, 418. 75 1, 935. 00 822. 37 628. 88 1, 209. 37 966. 50	\$10,000 25,000 10,000 12,000 20,000 50,000 40,000 13,000 25,000 25,000 15,000	76 191 76 92 164 382 382 305 130 96 191 152 99	\$40 99 41 49 100 231 211 155 86 75 191 170	
		14,853.11	307,000	3,336	1,556	

FORTYMILE DISTRICT.

The miners of the Fortymile district suffered losses in 1920 because of a lack of water for sluicing, as the summer was exceptionally dry. For this reason and because of the general economic conditions the output of gold was smaller than it has been for 20 years. About 22 mines, employing 30 men, were operated in the summer of 1920, and

63963°-22-4

12 mines, employing 20 men, during the previous winter. These figures show that much the larger part of this mining was done by men working alone, who obtained their gold from the relatively rich pockets of auriferous gravels. These "snipers," though their operations augment the number of mines, do not add greatly to the production of gold. The value of the recovered gold per man per year in this type of mining does not average more than a few hundred dollars, not enough to pay for a year's provisions. (See pp. 15–17.) These small operations were forced upon many of the miners because the lack of water prevented the larger operations.

T

in

W

hi

th

191

6 : Th

1903

191: 191: 191: 191: 191: 191:

Though productive mining was at a low ebb in the Fortymile district during 1920, there was some systematic prospecting of larger bodies of auriferous gravels on both Dennison and North forks. A hydraulic plant was being installed on the upper end of Jack Wade Creek. The completion of the wagon road from Eagle, part of which is now only a sled road, would do much toward stimulating the mining industry of this isolated district.

Placer gold and silver produced in the Fortymile district, 1886-1920.

There was no winter mining. Most	Gold.		Silver.	
Year.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
886-1903 904 905 906 907 908 909 910 911 911 912 913 914 915 916 917 918 919 919 919 919 919 919 919	193, 500. 00 14, 851. 12 12, 384. 00 9, 868. 50 6, 772. 50 6, 772. 50 10, 884. 37 9, 675. 00 9, 575. 00 10, 303. 87 4, 837. 50 2, 418. 75 2, 418. 75 2, 418. 75 2, 418. 75 1, 983. 37 1, 985. 00 308, 197. 10	\$4,000,000 307,000 256,000 204,000 140,000 140,000 200,000 200,000 200,000 50,000 50,000 50,000 41,000 41,000 6,371,000	30, 553 2, 345 1, 955 1, 558 1, 069 1, 719 1, 528 1, 528 1, 527 764 382 382 382 382 382 624 573 313 348	\$22, 91; 1, 36(1, 19; 1, 05; 706 567; 89; 82; 81(1, 000 461 211; 119; 255; 35(38)

CHISANA DISTRICT.

The Chisana district is in the headwater region of Tanana River and is difficult of access. Though it lies within the Yukon basin the district receives its supplies and obtains its transportation through the Copper River basin. About 8 mines, employing 18 men, were operated in the district during the summer of 1920; there was no winter mining. Though no large deposits of valuable auriferous gravels nor rich placers were found in 1920, the gravel mined ranged from 81 cents to \$12.40 per cubic yard and averaged about \$2.08.

The mines were operated for an average of about 120 days. The information in hand shows that the average earnings of the miners were about \$10 a day, or \$1,200 for the season, so that in spite of the high cost of supplies the few miners in the district were better off than the average small operators of Alaska. (See pp. 15–17.)

Placer gold and silver produced in the Chisana district, 1913-1920.

orode in order were Euroka and Moore	Gold.		Silver.	
Year. Despoint of the	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1913. 1914. 1915. 1916. 1917. 1918. 1919. 1920.	1, 935. 00 12, 093. 75 7, 740. 00 1, 935. 00 1, 935. 00 725. 63 1, 306. 12 967. 50	\$40,000 250,000 160,000 40,000 40,000 15,000 27,000 20,000	465 2, 910 1, 862 465 420 160 314 137	\$280 1,609 944 306 346 160 352
weeks he was to be to be a	28, 638. 00	592,000	6,733	4, 147

BONNIFIELD DISTRICT.

Small-scale placer mining was done on Moose, Eva, and Daniel creeks, in the Bonnifield district, during 1920. It is estimated that 6 mines were operated during the summer, employing about 10 men. The coal mining in the Nenana field, lying within the Bonnifield district, has already been described (p. 126).

Placer gold and silver produced in the Bonnifield district, 1903-1920.

			Go	ld.	Silver.		
	Year.	acust de line	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.	
903-1906 907 908 909 910 911 912 913 914 915 916 917 918 919 920			1, 451, 25 241, 87 241, 87 241, 87 2, 418, 75 967, 50 967, 50 967, 50 483, 75 580, 50 580, 50 483, 75 241, 87	\$30,000 5,000 50,000 10,000 20,000 20,000 20,000 20,000 20,000 10,000 12,000 12,000 12,000 10,000	227 38 38 39 76 152 152 152 227 152 76 98 91 75	\$133 2 2 2 19' 4 8 8 99 99 120 77' 55 8 8 9	
		ar amartichmon inc	12, 529. 11	259,000	1,971	1,23	

KANTISHNA DISTRICT.31

The mining of galena ores carrying much silver at the Quigley mine, in the Kantishna district, has greatly stimulated prospecting for both lodes and placers in the district. Mining was probably more active in the Kantishna than in any other district of the Yukon region. The production from placer mining was, however, about the same as in previous years. About 20 mines, employing about 55 men, were operated in the summer of 1920. The largest output of gold was made on Glenn Creek; the next creeks in order were Eureka, Moose, Little Moose, and Wickersham. The placers of the district are not rich, the value of the average gold recovery from them in 1920 being about \$1 a cubic yard. This district, however, contains some considerable bodies of low-grade gravel, which should give profitable returns if worked on a large scale.

Placer gold and silver produced in the Kantishna district, 1903-1920.

tila dita	11.3 257.8 000,500 00		Ge	Gold.		ver.
Jaimell June	Year.	LD DISTRICT.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1903–1906			241. 87 483. 75 1, 451. 25 1, 451. 25 1, 451. 25 967. 50 967. 50 1, 451. 25 725. 63	\$175,000 15,000 15,000 5,000 10,000 30,000 30,000 20,000 20,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 5,000 5,000 5,000	1, 325 114 114 38 76 227 227 227 152 227 120 227 120 227 120	\$795 75 60 20 41 120 140 137 84 77 149 99 227 128 349
			22, 494. 36	465, 000	3,660	2, 501

Stewart ³² has summarized the lode mining developments in the district during 1920 as follows:

Aithen property (Quigley mine).—The twenty-odd claims comprising this property, owned by Quigley & Dalton, are being worked under option by Mr. Thos. P. Aithen. The group practically covers the ridge forming the divide between Friday and Eureka creeks (known as Quigley Mountain) and extends from the low bench bordering Moose Creek to the summit of Quigley Mountain.

Work under this option has continued throughout the past two seasons, and a considerable amount of high-grade ore has been shipped to the Selby smelter, at San Francisco.

Mining and shipping costs under present conditions make shipment of ore running less than 200 ounces in silver to the ton prohibitive. The ore consists principally of silver-bearing galena and gray copper (tetrahedrite).

³¹ Capps, S. R., The Kantishna region, Alaska: U. S. Geol. Survey Bull. 687, 1919.

²⁸ Stewart, B. D., Annual report of the Territorial mine inspector to the governor of Alaska, 1920, pp. 12-14, 1921.

The mine equipment at the Aitken camp consists of a blacksmith shop, ore-assorting table and grizzly, and a combined bunkhouse and boarding house with bunks for fifteen men. Eleven men were employed at the time of visit.

Shipments have been made from two distinct ore shoots. These are practically parallel, running northeasterly and southwesterly and separated by a distance of a few hundred feet.

During the season of 1919 work was confined to the upper or southerly one of these two ore bodies. The workings consist of a shaft 100 feet in depth, from which drifts were run at the 30 and 60 foot levels below the collar. As mined, this shoot has been shown to be over 200 feet in length. A crosscut tunnel was run, at the elevation of the bottom of the shaft, having a length of approximately 300 feet, and from this a drift was run to connect with the bottom of the shaft. No work was being done on this shoot, and the workings were obstructed by ice at the time of visit, in October, 1920.

The ore body now being exploited is opened by a shaft 40 feet deep, connection with the bottom of which is made by a crosscut tunnel, known as the main tunnel, 130 feet long, and a drift on the ore shoot approximately 75 feet in length. A second crosscut 90 feet long has been driven at a distance of about 40 feet from the main tunnel and parallel to it, from which a drift has been run westerly, almost connecting with the main tunnel.

At the time of visit stoping was in progress in the vicinity of the shaft above the main level. A shaft located on the strike of the above-described ore body and about 150 feet east of the main tunnel had been started on the outcrop and was down about 20 feet, with work still proceeding in it. Very good ore was being secured from this shaft.

Galena lode.—The Galena lode prospect is described in United States Geological Survey Bulletin No. 687, pp. 105–106.

This property is now controlled by Mr. James Haney, who has established a camp on the ground and has outlined a systematic program of development, which is being put through this winter.

A sled road has been built to the workings and a season's supplies laid in at the camp. At the time of visit (October, 1920) approximately 50 tons of high-grade ore had been taken out and sacked for shipment, and it was estimated that at least an additional 100 tons would be sacked during the winter. Surface prospecting had been carried on at numerous places with encouraging results.

During the present winter it is planned to drive a 75-foot crosscut on the ground and then sink a winze on the ore zone in order to prospect the deposit at greater depth. If conditions prove favorable, a lower tunnel is proposed. With a length of 507 feet this tunnel would give a depth of 228 feet below the present tunnel.

As at the Aitken property, the ore on the Galena prospect is steel galena and gray

copper, both carrying high silver content.

le.

th

ve

n.

as

re

as

e,

g

1-

le

5

00747

Red Top lode.—The Red Top lode, owned by Joseph Quigley, lies at the foot of Quigley Mountain, on the bench a short distance south of Friday Creek near its confluence with Moose Creek, and adjoins the Aitken group on the west. Numerous well-constructed and well-planned open cuts expose the outcrop of the ore shoot over a strike length of about 300 feet. The average width of the ore body appears to be about 9 feet.

The work done reveals a very encouraging showing of galena and gray copper ore which is deserving of thorough exploration.

Apex lode.—O. M. Grant has located the Apex lode, adjoining the Galena lode on the west, and lying on the bench between the Galena lode and Moose Creek. An open cut was driven during the 1920 season.

Dalton claims.—Northwest of the Apex lode and lying southwesterly from the Red Top lode are the Star, Jumbo, and Caribou lodes, located by Joseph Dalton, who has done some open-cut work upon them.

RUBY DISTRICT.

p

n

V

0

The Ruby district has the distinction among the larger Yukon camps of having slightly increased its gold output in 1920 over that of 1919. (See subjoined table.) In this district 30 mines, employing 95 men, were operated in the summer, and 8 mines, employing 34 men, in the previous winter. The largest output of gold was obtained from 6 mines on Long Creek. Greenstone, Poorman, and Birch creeks were next in output of gold. Much the larger part of the mining was done on deep placers, and this work was confined chiefly to deposits rich in gold. Returns that were complete enough to allow the computation of the recoveries of gold were received from 14 mines, in which the value of the gold recovered per cubic yard ranged from \$2.14 to \$11.80 and averaged \$4.85. The value of the average recovery of gold for the entire district, including all forms of mining, is estimated at \$3.90 per cubic yard.

Placer gold and silver produced in the Ruby district, 1907-1920.

	Gold.		Silver.	
Year.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1907–8. 1909. 1910.	48.38	\$1,000	7	\$
1911 1912 1913 1914 1915 1916 1917 1918 1919	8, 465, 63 37, 974, 37 48, 375, 00 33, 862, 50 41, 118, 75 42, 811, 88 19, 350, 00	175, 000 785, 000 1, 000, 000 700, 000 850, 000 885, 000 400, 000 165, 000 170, 000	1, 157 5, 188 6, 609 4, 626 5, 618 6, 073 3, 000 1, 255 1, 113	71: 3, 13: 3, 65: 2, 34: 3, 69: 5, 04: 3, 00: 1, 40: 1, 21:
results. A drive a 75-foot crossess on the groups	248, 212. 14	5, 131, 000	34, 646	24, 21

In the summer of 1920 a galena deposit was discovered 13 miles south of Ruby, on the north side of Beaver Creek, near the mouth of Dome Creek and a mile and a half east of the wagon road from Ruby to Long. The rocks in the vicinity are quartzites and quartzitic schists, which are part of the "Paleozoic or older undifferentiated metamorphic rocks" described by Mertie and Harrington.³³ The locality was visited early in August by G. C. Martin, who reports that several deep trenches and pits and short tunnels had been dug into the hillside. Part of the exposures in these openings may be in place, but it is doubtful whether any rock that is wholly undisturbed had been revealed in them. Most of the galena occurs in narrow

³³ Mertie, J. B., jr., and Harrington, G. L., Mineral resources of the Ruby-Kuskokwim region: U. S. Geol. Survey Bull. 642, pp. 230-231, pl. 11, 1916.

kon

hat

ing

34

ned

rch

the

fly

to

om

he

ns

\$4

veins and stringers in the schist. The veins seem to cut the bedding planes at a low angle. A vein about 2 feet wide was indicated by the material exposed in one cut, but there was some doubt as to its actual width. In the frozen talus on the lower slope of the hillside blocks of ore, some as much as 2 feet square, lie scattered for at least half a mile up and down the creek. These blocks may have been derived from one lode, but there are indications of the existence of several veins. The ore seen in the talus and in the prospect openings is much oxidized and iron-stained and was apparently derived from a heavy gossan.

INNOKO DISTRICT.

During the summer of 1920 there was an unusually large supply of water for sluicing in the Innoko district, but unfortunately the camp was short of supplies, for the rivers had frozen up early in the fall of 1919 and provisions had to be brought in from the Kuskokwim at a cost of 10 cents a pound for transportation. There was also some shortage of labor.

In all 21 mines, employing 50 men, were operated during the summer of 1920, and 7 mines, employing 36 men, during the previous winter. Of the total gold output (see subjoined table) about \$7,000 was won from the placers of the Tolstoi region, chiefly from those of the Madison Creek basin. The largest placer-mining operations in the district were those on Ophir Creek; next in order of production were those on Spruce, Victor, and Ganes creeks. The largest gold output has come from open-cut summer mining. Returns received from six of the large open-cut workings in this district showed that the value of the gold recovery ranged from 74 cents to \$1.90 and averaged \$1.28 to the cubic yard. These returns are well above the minimum required for profitable dredging. The information at hand indicates that the district includes large areas of dredging ground. Separate plans are now under way to install four dredges. The two dredges for Yankee Creek were frozen in on Kuskokwim River in the fall of 1920. A project for moving the Greenstone dredge in the Iditarod district to Ganes Creek in 1920 failed on account of the early freeze-up. These three dredges may be installed before the end of 1921.

Placer gold and silver produced in the Innoko and Tolstoi districts, 1907-1920.

	Go	Gold.		Silver.	
Year. 990k powol odd Had teest in set baseline eif , samp had as had been a set set sold open i	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.	
1907 1908. 1909. 1910. 1911. 1911. 1912. 1913. 1914. 1915. 1916. 1916. 1917. 1918. 1919. 1919.	628. 87 3, 483. 00 16, 447. 50 15, 721. 87 12, 093. 75 12, 093. 75 13, 545. 00 9, 675. 00 9, 191. 25 10, 642. 63 5, 805. 00 6, 772. 50 4, 982. 62	\$13,000 72,000 340,000 325,000 250,000 250,000 200,000 190,000 120,000 120,000 140,000 140,000	67 370 1, 746 1, 669 1, 284 1, 284 1, 438 1, 027 976 1, 130 608 717 529	\$44 196 908 901 681 681 889 568 495 744 917 608 803 577	
	129, 548. 24	2,678,000	13,958	8,992	

IDITAROD DISTRICT.

Twelve open-cut mines and two dredges were operated in the Iditarod district in the summer of 1920 and employed a total of 176 men. The dredges were operated on Otter Creek, and most of the other mining was done on Flat Creek, but some was done on Chicken, Happy, and Willow creeks. Both the dredges were operated from early in May until about the middle of November and worked on ground about 13 feet deep. Other mines were operated for an average of about 120 days. The average value of the gold recovery for all workings, including the dredges, was 90 cents a cubic yard. Returns from 7 open-cut mines were complete enough to permit computation of the gold recovery, which ranged from 56 cents to \$2.40 a cubic yard and averaged \$1.45. These returns came from ground ranging from 3 to 15 feet deep. These 7 open-cut mines were worked in part by the hydraulic method, in part by steam scrapers, and in part by pick and shovel.

Placer gold and silver produced in the Iditarod district, 1910–1920.

	Gold.		Silver.	
Year.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1910	99, 652. 50	\$500, 000 2, 500, 000 3, 500, 000 1, 880, 000 2, 060, 000 2, 050, 000 1, 950, 000 1, 240, 000 725, 000 505, 000	4, 254 21, 270 29, 778 9, 551 10, 578 10, 526 10, 013 11, 050 9, 000 5, 300 3, 628	\$2, 297 11, 273 18, 313 5, 769 5, 849 5, 337 6, 589 9, 105 9, 000 5, 937 3, 954

It is reported that a cinnabar-bearing lode on Montana Creek, tributary to upper Iditarod River, is being developed. (See p. 24.) A galena prospect in the Kaiyuk Range, about 20 miles south of the Yukon below Louden, which was discovered several years ago, was being developed in the summer of 1920. This locality has not been visited by any member of the Geological Survey, but uncertain evidence indicates that areas in the vicinity contain schist and diabase.³⁴ It was reported in the summer of 1920 that a vein containing 18 inches of solid galena had been discovered, and later that 175 tons of ore was mined from the prospect in the winter of 1920–21.

MARSHALL DISTRICT.

The Marshall district, which lies in the Wade Hampton recording precinct, has been described by Harrington.³⁵ About 8 mines, employing 30 men, were operated in the district during the summer of 1920. Most of the gold obtained was taken from the Willow Creek placers, which are from 2 to 3 feet deep and from which the gold recovery is \$4 to \$6 a cubic yard.

Some new placer ground is said to have been developed on Stuyak Creek, which enters Yukon River from the west about 8 miles above the Russian Mission, and some on Kato Creek, which is in the immediate vicinity.

Placer gold and silver produced in the Marshall district, 1914–1920.

urther prospecting. It is said-stin	Gold.		Silver.	
Year.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1914 1915 1916 1917 1918 1919 1920	725. 62 1, 209. 37 13, 061. 25 20, 559. 37 7, 256. 25 4, 837. 50 4, 353. 75	\$15,000 25,000 270;000 425,000 150,000 100,000 90,000	94 156 1,686 3,300 940 624 552	\$5: 79 1, 109 2, 719 940 690 600
othors). othors).	52, 003. 11	1, 075, 000	7, 352	6, 20

INDIAN RIVER AND GOLD HILL DISTRICTS.

Some mining has been done in the Indian River and Gold Hill districts of the middle Yukon, but it has practically ceased. During 1920 only three mines were operated in these two districts, employing eight men in all, and the value of their total output of gold was only \$2,000.

³⁴ Maddren, A. G., The Innoko gold-placer district, Alaska: U. S. Geol. Survey Bull. 410, pp. 43-44, pl. 2, 1910.

⁸⁵ Harrington, G. L., The Anvik-Andreafski region, Alaska: U. S. Geol. Survey Bull. 683, 1918.

Placer gold and silver produced in the Indian River and Gold Hill districts, 1911-1920.

er, is being developed. (See p. 24.)	Gold.		Silver.	
year. Shoroyoodib sa	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1911 1912 1913 1914 1915 1916 1917 1918 1919 1919	483. 75 1, 185. 19 1, 548. 00 1, 209. 37 725. 63 483. 75 241. 88 193. 50 338. 62 96. 74	\$10,000 24,500 32,000 25,000 15,000 10,000 5,000 4,000 7,000 2,000	69 170 221 173 104 69 27 29 52	\$37 105 133 96 53 45 22 29 58
LL DISTRICT.	6, 506. 43	134, 500	916	580

CHANDALAR DISTRICT.

The Chandalar district,³⁶ lying north of the Yukon, is one of the isolated camps in which a little placer gold has been mined for a number of years (see subjoined table) and in which a little gold-lode mining has been attempted. Up to 1919 no rich placers had been found in the district, and the mining amounted to little more than getting out a "grub stake" by a few men. In 1919 some promising deposits were discovered on Squaw and Big creeks, and these were systematically developed in 1920, yielding good returns. The principal part of the output of gold has come from these two creeks. These deposits, which include some deep ground, seem to be valuable enough to justify further prospecting. It is said that nearly 50 men are prospecting the district. The gravels mined in 1920 yielded about \$5.50 to the cubic yard.

Placer gold and silver produced in the Chandalar district, 1906–1920.

		Year.	000 000 25 270 000		Gold.		Silver.	
			4,500,11 4,355,73 6,356,73 68,000,11	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.	
1915 1916 1917 1918			1.111.111.111.1111.1111.1111.1111.1111.1111	241. 87 435. 37 725. 63	\$60,000 5,500 5,000 5,000 9,000 15,000 13,000 10,000 18,000	416 38 35 35 62 104 96 79 125	\$241 23 19 18 41 86 96 88 136	
				5, 895. 93	122, 500	990	748	

³⁶ Maddren, A. G., The Koyukuk-Chandalar region: U.S. Geol. Survey Bull. 532, 1913.

KOYUKUK DISTRICT.

About 20 mines, employing 55 men, were operated in the Koyukuk district in the summer and 5 mines, employing 15 men, during the winter of 1920. The average gold recovery for all mining was about \$2.50 a cubic vard. The annual gold output of the district has heretofore been chiefly maintained by the exploitation of very rich deep placers, whose gold content was from \$4 to \$12 a yard and averaged much more than \$5. These bonanza deposits have been of no great extent, but their richness has made their exploitation very profitable. Most of them, however, are very irregularly distributed, and their discovery involves much expensive dead work. The present relatively low average gold recovery is due to the fact that mining now includes a much greater percentage of open-cut work than it did in the past. The mines are now operating on placers which, though of greater bulk than the deep bonanzas, have a much smaller gold content per cubic yard. A number of small hydraulic plants are being successfully operated in the district. Most of the gold output of the district in 1920 came from Myrtle, Nolan, Jay, and Smith creeks.

Placer gold and silver produced in the Koyukuk district, 1900-1920.

1

e

	Go	old.	Silver.	
Year.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.
1900–1909. 1910. 1911. 1912. 1913. 1914. 1915. 1916. 1917. 1918. 1919. 1919.	106, 454, 02 7, 740, 00 6, 772, 50 9, 675, 00 19, 350, 00 12, 577, 50 13, 303, 12 14, 996, 25 12, 093, 75 7, 256, 25 5, 321, 25 4, 353, 75	\$2,200,600 160,000 140,000 200,000 400,000 260,000 275,000 310,000 250,000 110,000 90,000	15, 242 1, 108 970 1, 385 2, 770 1, 800 1, 902 2, 147 1, 700 860 760 146	\$8,993 598 514 852 1,673 995 964 1,413 1,401 860 851
	219, 893. 39	4,545,600	30,790	19, 273

KUSKOKWIM REGION.

The value of the placer gold output of the Kuskokwim region in 1919 was about \$350,000 and in 1920 was about \$305,000. These figures are only approximate, for many of the mine operators failed to report their output. About 32 placer mines, employing about 125 men, were operated in the summer of 1920, and there was no winter mining. More prospecting, both lode and placer, was done in the Kuskokwim region than in any other part of Alaska. This activity was largely stimulated by the large-scale prospecting of the Treadwell lode property in the Nixon Fork basin, first opened up in 1919.

G. C. Martin has prepared the following statement concerning mining in the McKinley district, of which McGrath is the post office and supply point:

So far as known, only two large and three small placer mines were operated in the McGrath district in 1920. The large operations are the dredge on Candle Creek and a hydraulic mine on Moore Creek, a tributary of Tacotna River. One of the small mines is on Hidden Creek and two are on Ruby Creek, all in the basin of Nixon Fork. The Kuskokwim Dredging Co. operated its dredge on Candle Creek from May 24 to October 13, except during an interruption in September on account of a broken shaft. It employed an average of 22 men and handled 74,597 cubic yards of gravel. The Moore Creek hydraulic plant is mining gravel about 14 feet nidepth. The mine on Hidden Creek is exploiting a deposit 75 to 125 feet vide and about 4 feet deep. One

of the mines on Ruby Creek is deep, and the other is a small open cut.

Much prospecting for gold lode veins was done in the Nixon Fork region during the summer of 1920. During the previous winter several hundred tons of ore was taken from the Crystal shaft, which was shipped during the summer. Early in the spring the property from which this shipment was made and the other neighboring claims passed into the control of the Alaska Treadwell Gold Mining Co. Actual mining thereupon ceased, but active prospecting to determine the quantity of ore available was continued throughout the year. Several shafts, 50 to 100 feet deep, and numerous trenches and open cuts were dug, buildings were erected, and a large quantity of mining supplies was shipped up Kuskokwim River. B. D. Stewart, Territorial mine inspector, ³⁷ reports that in September, 1920, three shafts, aggregating 200 feet in depth, drifts totaling 215 feet, and crosscuts totaling 110 feet were run and that 25 men were employed. Wages were \$6 a day and board. Underground exploration was continued actively during the winter of 1920–21, with the hope of determining whether the quantity of ore available is sufficient to justify the installation of facilities for shipping or treating the ore.

It is believed that about 7 mines, employing about 12 men, were operated in the Georgetown district of the middle Kuskokwim during the summer of 1920. Reports of production have been received from Donlon and New York creeks, in this district, and of drilling in pros-

pective dredging ground on Holitna River.

About 16 mines, employing 60 men, were operated in the Aniak district during the summer of 1920. The largest gold output was made on Canyon Creek, but gold was mined also on Bear, Crooked, Mary, George, and Marvel creeks and on George River. It is reported that hydraulic plants are being installed on Spruce Creek and Tiny Gulch, both tributary to Bear Creek. Some developments have been continued on a copper and gold bearing lode in the Rüssian Mountains 12 miles north of Kolmakof, on the Kuskokwim.³⁸ It is reported that a 50-foot shaft has been sunk on the lode.

The Parks quicksilver mine, on the lower Kuskokwim, was operated in a small way during 1920. E. W. Parks reports the discovery of a stibnite-realgar lode in the vicinity of Barometer Mountain. This mountain lies almost due south of the Parks mine and 5 miles

87 Op. cit., p. 18.

³⁸ Maddren, A. G., Gold placers of the lower Kuskokwim: U. S. Geol. Survey Bull. 622, pp. 304-305, 1915.

from the Kuskokwim. Specimens said to have come from this deposit contain stibnite and realgar. The specimens received indicate that the country rocks in which the deposits occur are Mesozoic sandstones and shales, probably of Upper Cretaceous age, and that the geologic relations are probably similar to those of the Parks cinnabar deposit, which have been described by Smith, 30 but no cinnabar was found in the ore. Smith's geologic map 40 shows that the upper part of Barometer Mountain is made up of granite, which is intruded into Mesozoic sediments. This deposit is said to have been opened up by a 100-foot adit.

Mining in the Goodnews Bay district during 1920 was confined to Watermuse, Bear, and Cow Cow creeks. One placer mine was operated on each of these creeks, and a total of 12 men were employed.

SEWARD PENINSULA. 41

GENERAL CONDITIONS.

The value of the total mineral output of Seward Peninsula in 1920 was \$1,331,017, of which \$1,300,000 is the value of the placer gold and the rest that of silver, platinum, tin, and coal. In 1919 the total value of the mineral output was \$1,423,449, and that of placer gold was \$1,360,000. A little platinum was recovered from the gold placers of the Koyuk and Fairhaven districts. (See p. 23.) Tin ore was mined in the York district on a reduced scale as compared with previous years, only one dredge and one small open-cut mine being operated on tin placers. (See p. 22.) A small output of coal was made from a lignite mine in the Fairhaven district. In the aggregate, there was considerable prospecting of lode deposits during the year. An experimental shipment of garnet sand to be used as abrasive was made from Nome in the summer of 1920. (See p. 33.)

The present insufficient steamship service to Nome is a great handicap to all forms of mining. This and the increased cost of transportation and supplies have prevented the development of new mining enterprises. No new mineral deposits were discovered in Seward Peninsula during the year.

PLACER MINING.

About 112 mines, employing 540 men, were operated on Seward Peninsula in the summer of 1920, and 8 mines, employing 60 men, during the previous winter. In 1919 there were about 103 summer mines, employing 555 men, and 10 winter mines, employing about 60 men. This increase in the number of mines does not indicate a

40 Op. cit., pl. 5.

ng

nd

ek

all

rk.

to ft.

he

on

ne

he

en

he

 $\frac{\text{ed}}{\text{on}}$

n-

us

of ne

in

as

er

or

e

ıg

m

S-

k

IS

1,

3-

d e

n

t

d

S

5.

⁸⁹ Smith, P. S., The Lake Clark-central Kuskokwim region, Alaska: U. S. Geol. Survey Bull. 655, pp. 139-148, 1917.

⁴¹ A part of the information here presented is taken from a longer report by S. H. Cathcart, which, because of a shortage of printing funds. ³⁴ has seemed best not to publish in complete form.

growth of the mining industry, because nearly all were very small operations, and many were worked solely because the unusual abundance of water for sluicing gave opportunity for exploiting placers which under more normal conditions could not be worked. The small scale of the operations is indicated by the fact that returns from 19 of the mines showed a total value of gold output of only \$10,870, and a total personnel of only 30 men. Moreover, many of these mines were worked for only a part of the mining season. It is estimated that 1,790,000 cubic yards of gold-bearing gravel were mined and sluiced on Seward Peninsula in 1920. The value of the average gold content of this gravel was about 73 cents to the cubic yard. In 1919 about 2,165,000 cubic yards of gravel was mined and the average gold content was 63 cents to the cubic yard. The decrease in 1920 is due to a decrease in the number of dredges operated.

The sources of the placer-gold output of Seward Peninsula, both by districts and by methods of mining, is shown in the following tables. The figures presented are in part based on estimates, but their possible error is believed to be not over 8 per cent.

Placer gold produced in Seward Peninsula in 1920, by districts.

District.	Value of gold output.	Summer.		Winter.	
		Mines.	Miners.	Mines.	Miners.
Nome	\$540,000 50,000	30	216 32	5	20
Koyuk Council Kougarok	360,000	14 17 14	55 70 52	3	33
Port Clarence, etc.	135,000	23 6	90 25	2	8
	1,300,000	112	540	10	61

Placer gold produced in Seward Peninsula in 1920, by methods of mining.

Method.	Number of mines.	Number of miners.	Value of gold.
Dredging. Hydraulic (includes all operations where any water is used to move gravel to sluice boxes). Underground. Open-cut (other than hydraulic).	17 28 14 53	145 200 65 130	\$475,000 500,000 155,000 170,000
	112	540	1,300,000

In the Inmachuk region, as in other parts of the peninsula, gravels occur underneath basaltic volcanic flows.⁴² During the last two years some of these buried gravels have been prospected with reported favorable results. In 1920 a considerable body of gravel on Candle Creek, in the Fairhaven district, was thawed by the cold-water method, with a view of dredging it in 1921. Some systematic investigations of

⁴² Moffit, F. H., The Fairhaven gold-placer district, Alaska: U. S. Geol. Survey Bull. 247, pp. 31-35, 1905.

placer gravel were made in different districts of the peninsula during the summer of 1920, but on the whole not many projects looking to

future large-scale operations were under way.

Dredging.—In 1920 17 gold dredges operating on the peninsula produced \$475,000 worth of gold; in 1919 24 dredges produced \$450,000 worth. In 1920 the dredges mined about 930,000 cubic Yards of gravel containing about 51 cents worth of gold to the cubic yard; in 1919 the dredges mined only 865,000 cubic yards of gravel containing gold worth 52 cents to the yard. This greater efficiency of the dredges in 1920 lies in the fact that many of the small and comparatively inefficient dredges that contributed to the total vardage mined in 1919 were not operated in 1920 because of greater costs. Though the season of 1920 was not particularly favorable for dredging because the seasonal frost stayed in the ground rather far into the summer, the average length of operation was nearly 70 days in 1920, as compared with 50 days in 1919. The low average of 1919 was due entirely to the inefficiency of the small dredges, some of which were operated for less than 30 days. The longest operating season reported for any one dredge in 1920 was 96 days, and the longest in 1919 was 110 days.

Gold dredges operated on Seward Peninsula in 1920.

Nome district:

1-

le

e

d

Dexter Dredging Co., Dexter Creek. Center Creek Dredging Co., Center Creek. Dry Creek Dredging Co., Dry Creek. Arctic Creek Dredging Co., Arctic Creek. Alaska Mines Corporation, Flat Creek. Julian Dredge, Osburn Creek.

Solomon district:

Esquimo Dredging Co., Solomon River. Shovel Creek Gold Dredging Co., Shovel Creek. Burness-Iverson-Johnson Dredge, Big Hurrah Creek.

Council district:

Northern Light Mining Co., Ophir Creek. Wild Goose Mining & Trading Co., Ophir Creek. Crooked Creek Dredging Co., Crooked Creek. Flume Dredge Co., Melsing Creek. Flume Dredge Co., Basin Creek.

Kougarok district:

Bering Dredging Co., Taylor Creek. Kelliher Dredging Co., Kougarok River.

Port Clarence district:

Budd Creek Dredging Co., Budd Creek.

Deep mining.—Of the 14 mines working deep placers covered by a heavy overburden and carrying little or no gold that were operated in 1920 there were five each in the Nome and Koyuk districts, three in the Fairhaven, and one in the Kougarok. The deep mines of the Koyuk district produced about \$86,000 and those of the Nome district about

F

d

d

t.

0

a

\$40,000 worth of gold. Of the total number of deep mines, seven were operated for a part of both the winter and the summer, one during the winter only and six during the summer only. The returns from 12 of these mines are sufficiently complete to permit the following analysis. These mines were operated from 30 to 307 days and an average of 146 days. They averaged nearly six employees per mine and hoisted and sluiced about 39,950 cubic yards of gravel, the value of whose gold content ranged from \$2.86 to \$12.62 a cubic yard. The richer of the deposits were those exploited by small miners, who were evidently working on rich pockets of placers. The average gold tenor for all the mines was \$3.87 a cubic yard. An average of 3.8 cubic yards of gravel was mined per man per day, this average including all men employed both on the surface and underground.

Hydraulic and other open-cut mines.—Many of the operations classed as hydraulic were those in which only a part of the work of moving the granite to the sluice box is done by water under head. Water is not abundant enough nor are the grades steep enough in most of Seward Peninsula to permit ordinary hydraulic mining. Six hydraulic elevators were operated in 1920. The abundant rainfall during 1920, except in the Fairhaven district, favored hydraulic mining. The value of the gold recovery from the open-cut mines ranged from 45 cents to \$2.40 to the cubic yard. Seventeen large open-cut mines, most of which did much hydraulic work, showed an average gold recovery of 70 cents to the cubic yard.

Gold and silver produced on Seward Peninsula, 1897-1920.

And a state of the					
	Gol	d.eo .eoba	Silver.		
Year.	Quantity (fine ounces).	Value.	Quantity (fine ounces).	Value.	
1897 1898 1899 1900 1900 1901 1902 1903 1904 1904 1905 1906 1907 1908 1909 1910 1911 1912 1912 1913 1914 1915 1916 1917 1918 1917 1918	725. 63 3, 628. 12 135, 450. 00 229, 781. 25 199, 822. 61 220, 677. 07 215, 994. 38 201, 462. 52 232, 200. 00 352, 812. 50 338, 625. 00 247, 680. 00 247, 680. 00 247, 680. 00 247, 690. 50 149, 962. 50 145, 125. 00 120, 937. 50 140, 287. 50 140, 287. 50 140, 287. 50 142, 760. 25 125, 775. 00 53, 599. 50 65, 790. 00 62, 887. 49	\$15,000 75,000 2,800,000 4,750,000 4,130,700 4,661,800 4,164,600 4,164,600 4,100,000 7,500,000 7,500,000 5,120,000 4,260,000 3,500,000 2,500,000 2,700,000 2,900,000 2,950,000 1,108,000 1,360,000 1,360,000 1,360,000	87 16, 234 27, 574 24, 579 26, 481 24, 171 24, 175 27, 864 43, 537 25, 497 20, 577 20, 871 20, 317 17, 996 17, 415 12, 094 15, 673 17, 510 6, 022 6, 940 6, 813	\$52 256 9,752 17,907 14,747 14,035 13,052 14,021 16,997 29,605 16,828 10,905 10,853 10,971 9,718 10,710 7,305 8,667 8,878 9,391 11;346 6,022 7,773 7,426	
ok. The deep mines of the Kovul-	3, 892, 932. 32	80,660,100	430, 923	266, 407	

LODE MINING AND PROSPECTING.

Little work was done on the lodes of Seward Peninsula in 1920. Explorations that were in progress at several localities have been discontinued for the present. The necessity of resuming annual assessment work occasioned some prospecting, but it was very desultory. About 50 men were engaged in lode prospecting for a

part of the year.

en

ne

ns

ng

n

ne

1e

d.

10

re

of

çe

S

f

1.

n

e

The only production from lode mining in 1920 was that made by the gold-quartz property of Megan, Somerville & Megan, at Bluff. A dump mined during the winter was milled in the spring. Mr. Tom Ward worked three men for part of the summer on his copper property near Kougarok Mountain. He planned to sink on and crosscut the ledge in the winter of 1920–21. During the winter of 1920 a force of about 20 men was employed in exploring the tin lode on Cassiterite Creek. A 250-foot inclined shaft was sunk on the dike from a station on the lower tunnel. Work was discontinued in May.

Twenty men were employed during the winter and eight during the summer in prospecting the lead-silver property on Kugruk River. The developments on the property now consist of a 140-foot shaft and of 250 feet of drift on the 40-foot and 150 feet of drift on the 140-foot levels. The showing is considered favorable by the owners.

Work was discontinued in September.

COMMERCIAL CONDITIONS.

There was some shortage of labor on Seward Peninsula during the summer of 1920, but it was not serious. Most of the dredging companies brought their crews with them, so that the dredges could not be operated until after navigation opened, about the end of June. The summer wage for common labor was \$6 and board for an 8-hour day, but many of the larger companies insisted on a longer day. The winter wage in the Koyuk district was \$5 and board for an 8-hour day. The average dredge wage for engineers and winchmen was \$9 and board, the men working in 12-hour shifts. Many of the men were brought in and taken out during the summer, and probably most of them were paid for the entire season, including time spent in travel.

Board at Nome cost \$2.50 to \$3.50 a day, and it probably cost the mining companies at least \$2 a day to feed their men. The cost of provisions at Nome in the summer of 1919 is indicated by the following retail prices per pound: Bacon, 75 cents; butter, 85 cents; sugar, 30 cents; flour, 10 cents; beans, 20 cents; potatoes, 15 cents; rice, 20 cents; eggs, 85 cents a dozen.

The price of coal per ton at Nome in 1920 was \$39 in summer and \$45 in winter. Fuel oil sold at \$6 a barrel, gasoline at 60 cents a

63963°-22--5

gallon, and distillate at 49 cents a gallon. At Dime Creek, in the Koyuk district, where there is timber, the price of wood was \$16 a cord.

In 1920 the first of the summer fleet arrived at Nome on June 13, but shore ice prevented landing of freight until June 23. Storms began July 4, and tied up all coastwise shipping for three weeks and seriously interfered with the unloading of the vessels. The last of the freighters did not leave Nome until August 4, so that their return trips were delayed until September, a delay that seriously hampered mining. Three dredges did not receive their supplies and provisions until September and lost practically the whole season.

The freight rates vary, of course, with the classification, but the ordinary freight rate from Seattle to Nome and Anchorage was about \$19 a ton l. c. l.⁴³ To this rate must be added the lighterage charge paid on all freight for transportation from shipside to beach. In 1920 the lighterage at Nome for ordinary freight was \$10 a ton.⁴⁴ It is to be hoped that the completion of the jetty at the mouth of Snake River, which is now being built by the Government and which will give a safe harbor for barges and small craft, will lead to a reduction of the lighterage charges.

Even after the freight is landed on the beach at Nome or other settlement the miner may still have to meet the heavier cost of overland transportation. For the mines that are reached by the good local roads leading out from Nome the cost of transportation is only about \$3 a ton. On the other hand, the price charged for hauling freight from Nome to Boulder Creek (10 miles) was \$50, to Goldbottom Creek (16 miles) \$66, and to Manila Creek (20 miles) \$94 a ton. In the Koyuk district freight rates from steamer landing on Norton Sound to Dime Creek, a distance of 20 miles, are \$50 a ton in summer and \$30 a ton in winter. The above rates show that the placer miner, unless he is on the good system tributary to Nome, must pay from \$2.50 to \$5 a ton per mile for the land transportation of his freight, which has already cost him \$30 to \$50 landed on the beach. This is one of the best arguments for more road construction in the Alaska placer camps.

All this goes to show that cost of transportation is the heaviest drain on mining. The total cost of delivering freight to the camps on Seward Peninsula 45 is estimated as follows: Ocean freight.

⁴³ Examples of freight rates are coal (c.l.), \$13.65; explosives, \$35.50; automobiles, \$64.50 to \$109 per ton. The freight rate to Golovin in 1920 was \$21; Teller, \$23.50; Lost River, \$26.25; York and Kotzbue settlement. \$29.

⁴⁴ Examples of lighterage on different classes of freight at Nome are as follows: Coal, \$8; machinery, \$10; explosives, \$14 a ton. Lighterage at Bonanza, \$15; at Teller, \$7.50; and at Kotzebue, \$8. The following coastwise freight rates were in effect in 1920: Nome to Dime Landing, \$20; Nome to Solomon, \$12; Teller to York, \$10; Teller to Kotzebue, \$40.

⁴⁵ According to report of R. W. J. Reed, customs collector of the port of Nome, dated October 21, 1920, the following freight was landed in 1920: General merchandise, 7,599 tons; coal (domestic), 2,511 tons; (foreign), 315 tons; lumber, 734,574 feet b. m.; live stock, 16 head.

he

a

13,

ms

nd

he

rn

ed

ns

he

ut

20

to

ke

ill

on

er

r

bc

ly

ng

a on in he e, on he

st ps t, on. dele-10; ng ler 20, ns; Seattle to Nome, \$200,000; lighterage at Nome, \$106,000; local distribution, \$170,000. These figures include freight landed by coastwise, river, and land transportation and are based on the costs considered on preceding pages and on estimates of percentages of total freight delivered to each district. The figures are only approximate, but they are underestimates rather than overestimates. They amount to \$476,000, equal to about 29 per cent of the value of the total gold output of the peninsula in 1920. This cost of transportation has to be met by the mining industry, for except for the production of a little salt fish and reindeer meat, Seward Peninsula has no other industries.

KOBUK REGION.

As a result of the high cost of transportation and supplies mining has almost ceased in the Kobuk region. Three small mines, however, were operated on Dahl Creek, and four on Kleary Creek, and in all 10 men were employed for a short time in winter and summer. The value of the total gold output of these mines was about \$8,000. Plans have been made to install a hydraulic plant on Dahl Creek.

The coastal port for this district is Kotzebue, to which the freight rates from Seattle, including lighterage, are about \$40. From Kotzebue the freight is taken by boat up the Kobuk to Shungnak, the local supply point of the Dahl Creek region. The cost of this river transportation is \$40 a ton. Therefore, the miner in the Dahl Creek region pays freight amounting to at least \$80 a ton on all his supplies.

THE ALASKAN MINING INDUSTRY IN 1920.

SA

Scattle to Nome. \$200,000; lighterage at Nome. \$105,000 local distribution, \$170,000. These figures include freight landed by coastwise, river, and iand transportation and are based on the costs considered on preceding pages and on estimates of percentages of tetal freight delivered to each district. The figures are only approximate, but they are underestimates rather, than overestimates. They amount to \$475,000, equal to about 29 per cent of the value of the total gold output of the peninsula in 1920. This gost of transportation has to be met by the mining industry, for except for the production of a little salt fieb and reindeer meal, Seward Peninsula has no other industries.

KOBUE RECION

As a result of the high cost of transportation and supplies mining has almost ceased in the Kobuk region. Three small mines, however, were operated on Dahl Creek, and four on Kleary Creek, and in all 10 men were employed for a short time in winter and summer. The value of the total gold output of these mines was about \$8,000. Plans have been made to install a hydrautic plant on Dahl Creek.

The coastal port for this district is Kotzeline, to which the freight rates from Seattle, including lighterage, are about \$40. From Kotzebne the freight is taken by beat up the Kobuk to Shungnak the local supply point of the Dahl Creek region. The cost of this river transportation is \$40 a ton. Therefore, the miner in the Dahl Creek region pays freight amounting to at least \$50 a ton on all his supplies.

ton. In the Royals district freight fales from attender landing on Narran Sanny to Direct Creek, a district of 20 other, as 250 a not in the placer miner, whiles he is in the good system unlessed to Narran may from \$2.50 to \$5 a not per units for the land contrast to Narran may from \$2.50 to \$5 a not per units for the land contrast of the same of the contrast of the same of t

purple. The is one of the best argulature for more read our crucies

signs on mining. The total cost of delivering free fit to the exceptions on mining. The total cost of delivering free fit to the excepter Seward Peninsula S. in calcurated so follows: Octob Solicits

A figure that a first inches the second seco

ADMINISTRATIVE REPORT.

By Alfred H. Brooks.

During 1920 eight parties were engaged in surveys and investigations in Alaska. These parties included 7 geologists, 2 topographers, 1 hydraulic engineer, and 14 packers, cooks, and other auxiliaries. Five parties were engaged in geologic work, one in topographic survey, one in investigations of water powers in southeastern Alaska in cooperation with the Forest Service, and one was a combined geologic and topographic party.

The funds available for field and office work for the season of 1920 included an appropriation of \$75,000 and an unexpended balance of \$10,400 from the appropriation for the previous year. The subjoined tables show the allotments of these funds geographically by types of work and by salaries and field expenses. A balance of \$13,800 will be used for the field work of 1921. In these tables the money devoted purely to office work has not been allocated to the several projects, as in previous administrative reports. These overhead charges, including administration, amount to about 23 per cent of the total and may be properly allocated to the projects at this ratio.

Approximate general distribution of appropriations for investigations in Alaska, field season of 1920.

Another agreet and we are now two but blog and to enot main own i since obeing	1919–20	1920-21
General geologicinvestigation Southeastern Alaska Prince William Sound		\$2,700 9,240
Southwestern Alaska	\$3,500	1,400 8,910 1,000
Susina region Yukon basin Kuskokwin basin	3,750 1,600	5, 610 4, 420 5, 380
Seward Peninsula. Administrative Collection of mineral statistics.		3, 200 4, 250 1, 900
Miscellaneous expenses, including clerical work, office supplies, etc. Balance to be allotted to field work, 1921.		13, 190 13, 800
and. The time I was August 24 to September, 15 was	10,400	75,000

Approximate allotments to different kinds of surveys and investigations, field season of 1920.

	1919–20	. 1920–21
Reconnaissance geologic surveys. Special geologic investigations. Topographic reconnaissance surveys Investigation of water resources Administrative.	1,150 5,750	\$13, 820 13, 825 9, 870 4, 345 4, 250
Collection of mineral statistics. Miscellaneous expenses, including clerical work, office supplies, map compilation, etc To be allotted to field work, 1921.	100	4, 250 1, 900 13, 190 13, 800
	10,400	75,000

Allotments for salaries and field expenses, field season, 1920.

these parties included 7 geologists, 2 topographers, neer, and 14 packers, cooks, and other auxiliaries.		1920–21
Scientific salaries. Field expenses. Clerical salaries and miscellaneous expenses. To be allotted to field work.	\$10,300 100	\$29,395 16,115 15,690 13,800
party.	10,400	75,000

Al

pa

Jo

m H A St Ti to

fie in in w.

The following table shows the progress of investigations in Alaska and the annual grants of funds since systematic surveys were begun, in 1898.¹ It should be noted that a varying amount is spent each year on special investigations that yield results which can not be expressed in terms of area. In 1917, when the war broke out, nearly all the Alaska funds were allotted to the investigation of minerals such as platinum, sulphur, antimony, etc., which were then of special importance, and few areal surveys were made. Since then the reduction of the annual appropriation and the increased cost of all field work has not permitted extensive geologic and topographic surveys. Little progress has therefore been made in extending the topographic and geologic surveys which are essential to obtain an adequate knowledge of the mineral resources of the Territory.

 $^{^1{\}rm The~Geological~Survey}$ made some investigations of the gold and coal deposits of the Pacific seaboard region in 1895 and of the Yukon region in 1896.

Progress of surveys in Alaska, 1898–1920.

Salidala dadt b	patiend	Whapp	man 1	HT To	arria	a Para	Men	mres	a h	00.03	strat	
	nshing ting the	Areas	covere ogic surv	d by eys.	Areas	s covered sur	l by to veys.a	pograj	ohic	Investiga- tions of water resources.		
Year. Year.	Appropriation.	Exploratory (scale 1:625,000 or 1:1,000,-	Reconnaissance (scale 1:250,000).	Detailed (scale 1:62,500).	Exploratory (scale 1:625,000 or 1:1,000,-000).	Reconnaissance (scale 1:250,000; 200-f o o t contours).	Detailed (scale 1:62, 500; 25, 50, or 100 foot contours).	Lines of levels.	Bench marks set.	Gaging stations maintained part of year.	Stream-volume measurements.	
1898 1899 1900 1901 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1911 1912 1913 1914 1915 1916 1917 1918 1918 1919 1917 1918 1919 1920 1921	\$46, 189 25, 000 60, 000 60, 000 60, 000 60, 000 80, 000 80, 000 80, 000 90, 000 100, 000 100, 000 100, 000 100, 000 77, 000 75, 000	8q. m. 9,500 6,000 3,300 6,200 6,950 6,950 4,050 4,050 2,600 2,600 6,100 8,000 3,500 1,000	8q. m. 6,700 5,800 10,050 8,000 3,500 4,100 1,400 1,400 2,850 5,500 2,950 7,700 10,750 3,500 2,950 7,400 1,480 10,865		12, 840 8, 690 630 10, 200 8, 330 800 	8q. m. 2,070 11,150 5,450 11,970 6,480 4,880 13,500 6,120 3,980 5,170 13,815 14,460 -2,535 10,400 9,700 1,050 1,200 2,300 770	96 480 787 40 501 427 444 36 246 298 287 10 12 67 3,731	86 202 95 76 3 3 462	19 28 16 9	14 488 53 81 69 20 19	286 457 556 703 429 309 381	
Percentage of total area of Alaska	dhai.	12.48	18, 58	0. 94	8. 81	25. 97	0.64	nur.	nh	Jali.	n.es	

^a The Coast and Geodetic and International Boundary surveys have also made topographic surveys in Alaska. The areas covered by these surveys are of course not included in these totals.

9

The writer was engaged in office work until July 4, when he accompanied Hon. John Barton Payne, Secretary of the Interior, and Hon. Josephus Daniels, Secretary of the Navy, to Alaska. In the course of this journey a part of the Matanuska coal field and the Government railroad were examined. Through the courtesy of Admiral Hugh Rodman the writer was later enabled to visit Cold Bay, on the Alaska Peninsula. This part of the journey was made on the United States destroyer McCullough, commanded by Capt. H. W. Sears. Through the courtesy of Captain Sears the writer was transported to Juneau and later went to Cordova by passenger steamer. A visit was then made to the Bering River coal field and the Katalla oil field. The time from August 24 to September 13 was spent in examining the copper and gold lodes of Prince William Sound and in studying the local geology. A part of this work was done in company with O. C. Ralston, metallurgist of the United States Bureau of Mines.

Later, again in company with Mr. Ralston, the writer devoted 10 days to an examination of some of the copper deposits of the Ketchikan district. Returning, the writer reached Washington October 4. Of the nine months devoted to office work during the year 1920, 51 days were devoted to progress report, 8 days to preparation of annual press bulletin, 11 days to field plans, 7 days to reading manuscript, 22 days to military geology, 9 days to geologic studies, and 43 days to preparation of a report on conditions in Alaska, for the Secretary of the Interior.²

R. H. Sargent was on furlough for about three-fourths of the year. While on duty he was occupied chiefly in the administration of the Alaska topographic surveys and map compilation.

S. R. Capps was on furlough until February 21, 1921. While on duty he was engaged chiefly in continuing his report on the geology and mineral resources of the region tributary to the railroad.

G. L. Harrington was on furlough all but about one week in the year and while on duty devoted his time chiefly to the report on the Ruby-Iditarod district.

J. B. Mertie, jr., was on furlough until March 31, 1921, and gave the rest of the fiscal year to continuation of the report on the Ruby-Iditarod district.

C. P. McKinley devoted about two months to the compilation of a topographic map of the Katmai region from photographs furnished by the National Geographic Society.

Miss Lucy M. Graves, chief clerk, has continued to carry much of the burden of the administration of the Alaska division and has acted as chief during the absence of the geologist in charge and of the senior geologist, G. C. Martin. The details of collecting the statistics of the mineral production of Alaska have been in the hands of T. R. Burch.

G. H. Canfield continued water-power investigations in south-eastern Alaska up to April 1, when the work was suspended on account of lack of funds. A record of five years of stream flow has now been obtained for about 19 of the best of the water-power sites in south-eastern Alaska. In view of the demands for other investigations in Alaska the continuation of the stream gaging does not appear to be justified under the present reduced appropriation. This work could not have been done without the cordial cooperation of the Forest Service, which has rendered much valuable assistance in providing local transportation, office space, and gage readers. The great importance of this water-power investigation, both to the pulp-wood and mining industry, is generally recognized, and it is hoped that funds will be available for its continuation at an early date.

²Report of Alaska Advisory Committee, Alfred H. Brooks, chairman: Appendix H of Report of the governor of Alaska to the Secretary of the Interior, pp. 103-114, Washington, 1921.

Lewis G. Westgate completed the geologic reconnaissance survey of the Portland Canal region of the Ketchikan district between July 19 and September 24. A summary report of his results is given

in another part of this volume.

10

an

4.

51

ial

ot,

ys

ry

ar.

he

on

Sy

he

ne

1e

y-

ed

of

 $^{\rm ed}$

ie

CS

2.

1-

it

n

1-

n

e

d

t

g

d

F. H. Moffit, with Herbert Insley as geologic assistant and C. P. McKinley as topographer, made a geologic and topographic reconnaisance survey covering 380 square miles in the Tuxedni Bay region of Cook Inlet between June 10 and September 10. It was originally planned to extend this survey southward to include the Iliamna Bay oil field, but this extension proved impossible on account of the almost unprecedented rainfall of the summer, which both retarded the field work and swelled the rivers and swamps so much as to make a part of the region impassable for a pack train. Mr. Moffit's report is contained in another part of this report.

J. R. Eakin made topographic reconnaissance surveys of an area of 390 square miles on the southern slope of the Alaska Range, in the headwater region of the Susitna basin. The field work, which was carried on from June 27 to August 28, was greatly retarded by rainy weather, which made it impossible to carry the survey across the

range as had been planned.

Philip S. Smith devoted the time from July 17 to September 22 to a continuation and revision of the geologic recommaissance mapping of the Salcha-Goodpaster region. His survey, which included the investigation of mineral resources, covered a total area of 1,200 square miles, of which about 500 had been previously unmapped.

G. C. Martin continued the study of the geology and mineral resources of the Ruby, Iditarod, and Innoko districts. He also made a special investigation of the auriferous lodes of the Nixon Fork basin of the Mount McKinley district, in the upper Kuskokwim basin. The results of this work are presented in another part of this volume.

The field work was carried on from July 1 to August 29.

S. H. Cathcart devoted from July 3 to September 19 to a geologic study of some of the mineral deposits of Seward Peninsula. This study is a part of a project for an intensive investigation of the mineral bearing lodes of the peninsula, which unfortunately, because of lack of funds, could not be continued in 1921. A statement of Mr.

Cathcart's results is given in another part of this volume.

During 1920 the Survey issued two bulletins relating to Alaska—Bulletin 682, The marble resources of southeastern Alaska, by E. F. Burchard, and Bulletin 712, Mineral resources of Alaska, 1918, by G. C. Martin and others. A report on the mining industry of Alaska for 1920, with estimates of mineral output, was issued on January 1, 1921. On December 31, 1920, there were in press Bulletin 719, "Preliminary report on petroleum in Alaska," by G. C. Martin

(issued February, 1921); Bulletin 714, Mineral resources of Alaska, by Alfred H. Brooks and others (separate chapters issued between February and April, 1921). Two reports, including topographic maps ("The geology of the York tin deposits, Alaska," by Edward Steidtmann and S. H. Cathcart, and "The Kotsina-Kuskulana district, Alaska," by F. H. Moffit and J. B. Mertie, jr.), were transmitted in 1920 but have not yet been sent forward for printing, owing to shortage of funds for publication. As this shortage makes it impossible to foresee when reports and maps can be published, it does not seem desirable to list some 10 manuscripts and 7 topographic maps that are in various stages of preparation.

WATER-POWER INVESTIGATIONS IN SOUTHEASTERN ALASKA.

a, en ic

d

St-

g

1-

es ic

By George H. Canfield. Law Lake outlet at Port Snettisham, 1913-1

15. Porceptine Creek near Nielrel, 1918

INTRODUCTION.

Systematic investigation of the water resources of Alaska was begun by the United States Geological Survey in 1906 and has been carried on in different parts of the Territory to the present time. This investigation was undertaken in response to the need for definite information in regard to water available for many uses, among which the most important are hydraulicking, dredging, and supplying power for mines, canneries, and sawmills.

The investigation of the water resources of southeastern Alaska was begun by the Geological Survey in cooperation with the Forest Service in 1915 and was designed to determine both the location and the possibilities of water-power sites. The results of previous years' work have already been published. A table showing water-power possibilities in southeastern Alaska is given on page 184, Bulletin 714-B.

The Geological Survey maintained a number of gaging stations in southeastern Alaska throughout the year, and other stations were installed in cooperation with individuals and corporations. The records obtained at these stations are contained in this paper. Acknowledgment is made to those who have assisted in this work, particularly to Mr. W. G. Weigle and Mr. Charles H. Flory, supervisors of the Forest Service at Ketchikan, and to Mr. Philip H. Dater, district engineer at Portland, Oreg.

The following list shows the stations which have been maintained in southeastern Alaska and the date of establishment. A dash after the date indicates that the station was in operation after December 31, 1920. The location of the stations is shown on Plate I (p. 76).

- 1. Myrtle Creek at Niblack, Prince of Wales Island, 1917-
- 2. Karta River at Karta Bay, Prince of Wales Island, 1915-
- 3. Ketchikan Creek at Ketchikan 1909-1912; 1915-1919.
- 4. Beaver Falls Creek at George Inlet, Revillagigedo Island, 1917—
- 5. Mahoney Creek at George Inlet, Revillagigedo Island, 1920—
- 6. Fish Creek near Sea Level, Revillagigedo Island, 1915—
- 7. Swan Lake outlet at Carroll Inlet, Revillagigedo Island, 1916—

- 8. Orchard Lake outlet at Shrimp Bay, Revillagigedo Island, 1915—
- 9. Shelockum Lake outlet at Bailey Bay, 1915-
- 10. Mill Creek on mainland near Wrangell, 1915-1917.
- 11. Cascade Creek at Thomas Bay, near Petersburg, 1917-
- 12. Green Lake outlet at Silver Bay, near Sitka, 1915—
- 13. Baranof Lake outlet at Baranof, Baranof Island, 1915—
- 14. Falls Creek at Nickel, near Chichagof, 1918-1920.
- 15. Porcupine Creek near Nickel, 1918-1920.
- 16. Sweetheart Falls Creek near Snettisham, 1915-
- 17. Crater Lake outlet at Speel River, Port Snettisham, 1913-
- 18. Long Lake outlet at Port Snettisham, 1913-1915.
- 19. Long River below Second Lake, at Port Snettisham, 1915-
- 20. Speel River at Port Snettisham, 1916-1918.
- 21. Grindstone Creek at Taku Inlet, 1916-
- 22. Carlson Creek at Sunny Cove, Taku Inlet, 1916—
- 23. Sheep Creek near Thane, 1916—
- 24. Gold Creek at Juneau, 1916—
- 25. Sherman Creek at Kensington mine, 1914-1916.

STATION RECORDS.

MYRTLE CREEK AT NIBLACK, PRINCE OF WALES ISLAND.

LOCATION.—Halfway between beach and Myrtle Lake outlet, which is one-third mile from tidewater, 1 mile from Niblack, in north arm of Moira Sound, Prince of Wales Island, and 35 miles by water from Ketchikan.

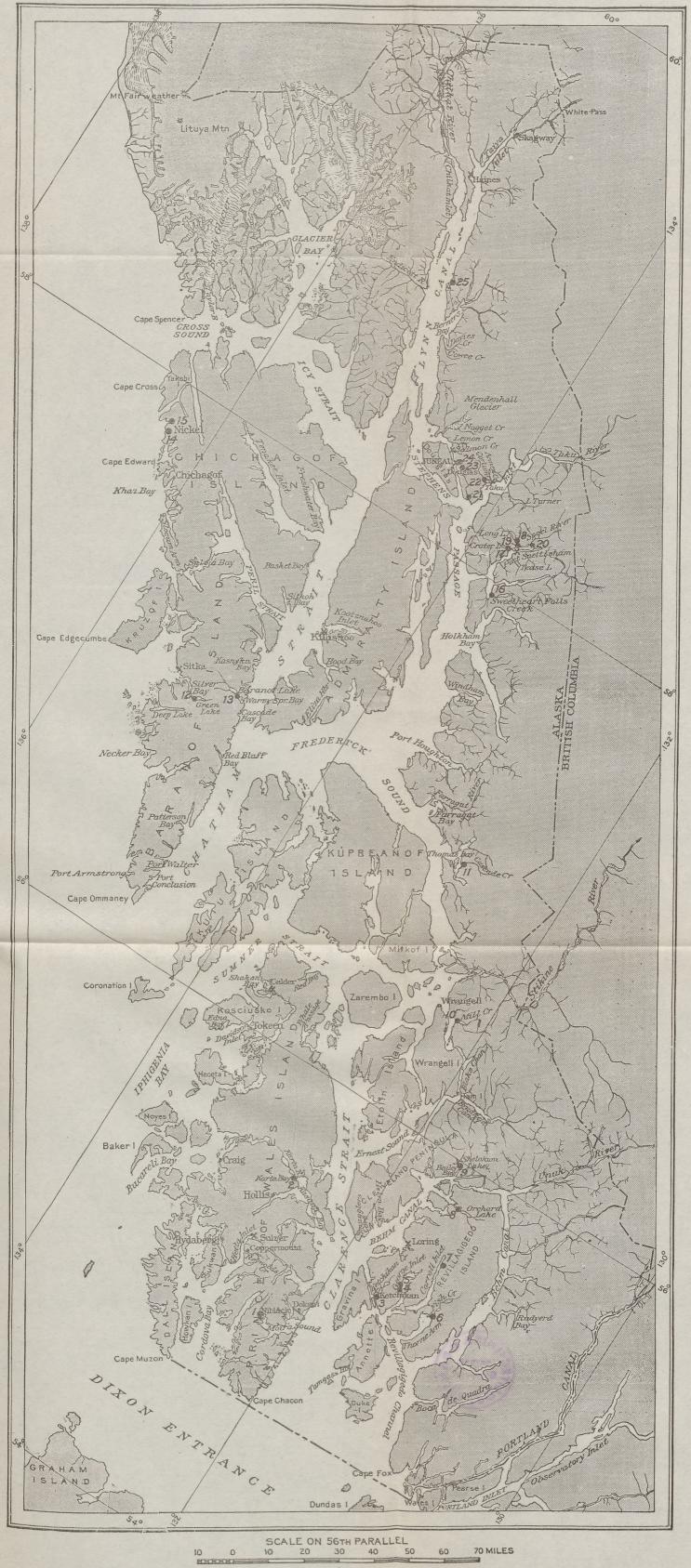
Drainage area.—Not measured.

RECORDS AVAILABLE.—July 30, 1917, to December 31, 1920.

GAGE.—Stevens continuous water-stage recorder on right bank; reached by a trail which leaves beach near the mouth of the creek.

DISCHARGE MEASUREMENTS.—At medium and high stages made from a cable across creek at outlet of lake; at low stages made by wading.

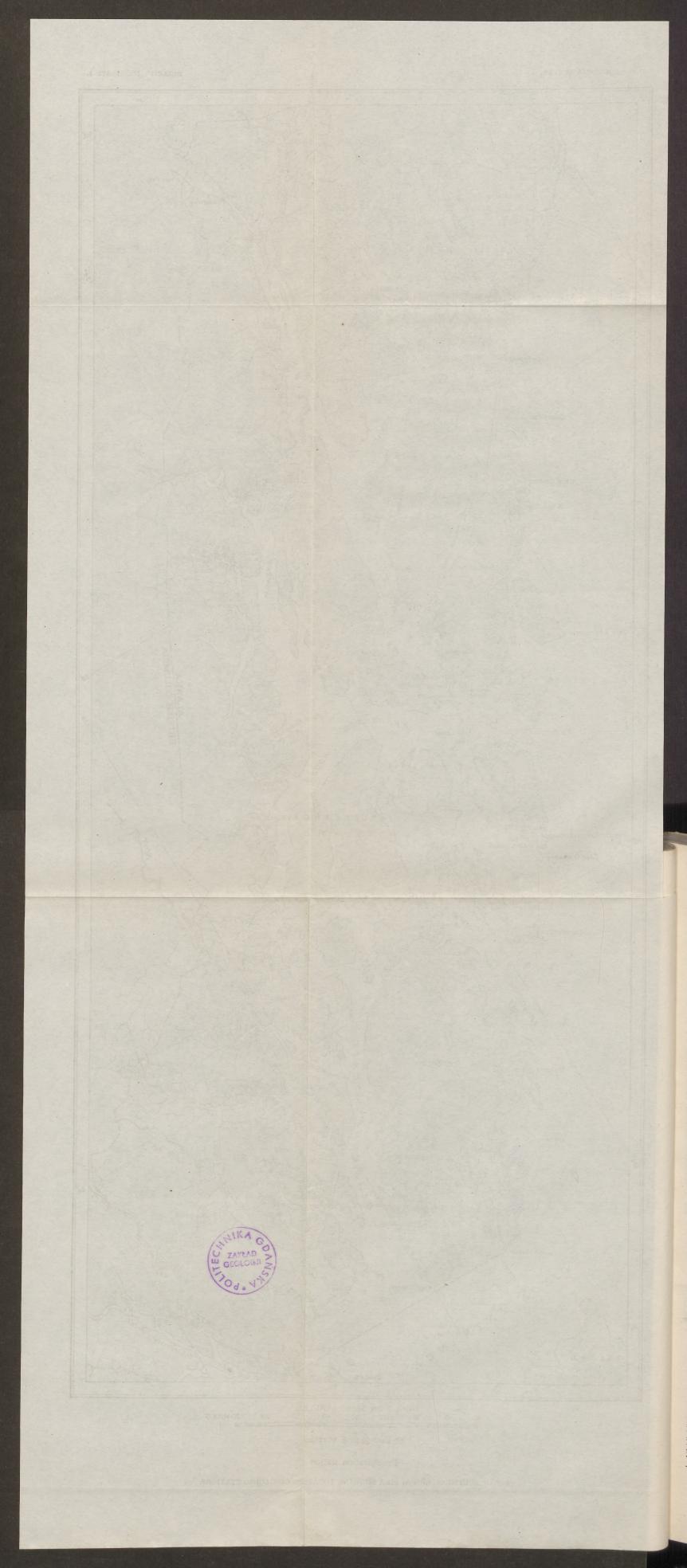
CHANNEL AND CONTROL.—The gage is in a pool 10 feet upstream from a contracted portion of the channel, at a rocky riffle that forms a well-defined and permanent control. At the cable section the bed is smooth, the water deep, and the current uniform and sluggish.


EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 2.85 feet, at 1 a. m. August 6 (discharge, 169 second-feet); minimum stage, 0.95 foot, at 4 p. m. July 29 (discharge, 24 second-feet).

1917-1920: Maximum stage recorded, 4.4 feet at 5 p. m. November 18, 1917 (discharge from extension of rating curve, 387 second-feet); minimum stage, 0.95 foot, at 4 p. m. July 29, 1920 (discharge, 24 second-feet).

ICE.—Stage-discharge relation not affected by ice.

Accuracy.—Stage-discharge relation permanent. Rating curve well defined between 25 and 220 second-feet. Operation of water-stage recorder satisfactory, except for periods indicated in footnote to daily discharge table. Daily discharge ascertained by applying to rating table mean gage heights determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging results obtained by applying to rating table gage heights for regular intervals of day. Records excellent, except for periods of break in record, for which they are fair.


Myrtle Lake, the outlet of which is 800 feet from Niblack Anchorage, is 95 feet above high tide and covers 122 acres. Niblack Lake, the outlet of which is 5,700 feet from Niblack Anchorage, is 450 feet above high tide and covers 383 acres. Mary Lake,

Stream-gaging station

x

Precipitation station

unsurveyed, is about 600 feet above sea level and is a mile long and one-fourth to one-half mile wide. The large lake area in this small drainage basin is the cause of the well-maintained flow during the winter and periods of little rainfall.

A tunnel about 200 feet long through the low ridge separating the outlet of Myrtle Lake from the Niblack Anchorage was practically completed in 1920 by the G. M. Wakefield Mineral Lands Co. At the lake end, the upper 2 feet only of the tunnel section was broken through, because the bottom of the tunnel is at about the same elevation as Myrtle Lake.

No discharge measurements were made at this station during the year.

Daily discharge, in second-feet, of Myrtle Creek at Niblack, for 1920.

Day.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5			34 32 32 32 32 32	44 42 41 40 47	46 46 40 46 46	43 40 38 36 35	31 43 46 102 157	67 64 56 53 50	83 95 93 90 88	157 175 157 140 121	76 76 88 100 118
6 7 8 9	i beni		32 31 31 30 30	53 54 54 52 48	46 44 44 46 46	34 33 31 31 30	157 100 73 58 54	46 52 82 67 56	79 72 67 86 100	111 103 96 89 84	140 134 114 99 92
11	59	50 50 47	54 71 57 48 41	46 46 45 42 50	44 42 40 40 42	29 29 28 27 27	102 109 91 77 68	65 70 62 56 71	86 80 105 95 86	77 73 68 63 60	86 84 88 89 80
6	48 60 80 60 52	34 34 34	37 37 47 44 40	54 55 54 50 47	40 40 42 40 40	27 26 26 25 25	64 59 56 52 50	71 64 57 54 68	79 73 68 67 94	60 62 61 63 65	78 89 92 81 78
1. 2. 3. 4. 5.	48 46	33 33 32 32 31	37 36 35 35 42	44 44 44 43 50	40 42 43 44 44	25 25 25 25 25 25	48 47 46 44 41	80 98 83 70 63	89 92 106 114 104	73 71 73 84 111	70 67 63 58
6		31 32 37 40 40 36	60 60 55 50 46	61 56 51 48 48 48	47 46 47 48 45	25 25 24 24 24 24 25	52 61 55 50 46 56	61 64 106 92 77	92 96 87 78 83 114	101 96 98 89 81	63 134 124 99 91 103

Note.—Water-stage recorder not operating; discharge estimated from maximum and minimum stages indicated by recorder and comparison with climatic data for Ketchikan and hydrographs for Fish Creek and Karta River: Jan. 1–31, 100 second-feet; Feb. 1–12, 85 second-feet; Feb. 17–19, daily discharge; Feb. 23–29, 40 second-feet; Mar. 1–10, 35 second-feet; Mar. 14–18, 40 second-feet; Apr. 19 and 20, as shown in table.

Monthly discharge of Myrtle Creek at Niblack, for 1920.

	Discharge in seco		ond-feet.	Run-off	its were made a	Dischar	ge in seco	ond-feet.	Run-off
Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.	Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.
January February March April May June July	60 61 48 43	30 40 40 24	100 63. 6 36. 8 41. 6 48. 4 43. 7 28. 8	6,150 3,660 2,260 2,480 2,980 2,600 1,770	August September October November December The year	157 106 114 175 140	31 46 67 60 56	67. 6 67. 5 88. 4 92. 1 90. 2	4,160 4,020 5,430 5,480 5,550 46,500

KARTA RIVER AT KARTA BAY, PRINCE OF WALES ISLAND.

LOCATION.—In latitude 55° 34′ N., longitude 132° 37′ W., at head of Karta Bay, an arm of Kasaan Bay, on east coast of Prince of Wales Island, 42 miles by water across Clarence Strait from Ketchikan.

Drainage area.—49.5 square miles (U. S. Forest Service reconnaissance map of Prince of Wales Island, 1914).

RECORDS AVAILABLE.—July 1, 1915, to December 31, 1920.

GAGE.—Stevens continuous water-stage recorder on left bank, half a mile above tidewater, at head of Karta Bay and 1½ miles below outlet of Little Salmon Lake. Two per cent of total drainage of Karta River enters between outlet of lake and gage.

DISCHARGE MEASUREMENTS.—At medium and high stages made from cable across river 50 feet upstream from gage; at low stages by wading at cable section.

CHANNEL AND CONTROL.—From Little Salmon Lake, 1½ miles from tidewater, the river descends 105 feet in a series of rapids in a wide, shallow channel, the banks of which are low but do not overflow. The bed is of coarse gravel and boulders; rock crops out only at outlet of lake. Gage and cable are at a pool of still water formed by a riffle of coarse gravel that makes a well-defined and permanent control.

EXTREMES OF DISCHARGE.—1915–1920: Maximum stage, 5.5 feet November 1, 1917 (discharge, 5,070 second-feet); minimum flow, 21 second-feet, February 11, 1916.

Accuracy.—Stage-discharge relation permanent. Rating curve well defined between 80 and 1,500 second-feet; extended below 80 second-feet to the point of zero flow and above 1,500 second-feet by estimation. Daily discharge ascertained by applying to rating table mean daily gage height determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging results obtained by applying gage heights for regular intervals to rating table. Records excellent, except for periods of breaks in record and for discharge above 1,500 second-feet, for which they are fair.

The combined area of Little Salmon Lake at an elevation of 105 feet and Salmon Lake at an elevation of 110 feet is 1,600 acres. The slopes along the right shore of lakes and at head of Salmon Lake are gentle, and the area included by the 250-foot contour above outlet of lake is 5,500 acres. The drainage area below an elevation of 2,000 feet is heavily covered with timber and dense undergrowth of ferns, brush, and alders. The upper parts of the mountains are covered with thin soil and brush. Only a few peaks at an elevation of 3,500 feet are bare. This large lake and flat area and thick vegetal cover afford considerable natural storage, which, after heavy precipitation, maintains a good run-off. The snow usually melts by the end of June, and the run-off becomes very low during a dry, hot summer.

The Forest Service in the summer of 1916 constructed a pack trail from tidewater to outlet of Little Salmon Lake and ran a line of levels to outlet of Little Salmon Lake, the elevation of which was found to be 105 feet above high tide.

No discharge measurements were made at this station during the year.

Daily discharge, in second-feet, of Karta River at Karta Bay, for 1920.

er

of

e. d

ress; er .7 3. n wy e-d t,

t,

n es ir et s. w k

ff .

r

Day.	Jan.	Feb.	Mar.	Apr.	May.	Aug.	Oct.	Nov.	Dec.
	454	2.1	106	180				1,000	448
	1,110		97	160				1,940	350
	2,430		88	142				1,820	364
	1,570		83	132				1,250	468
5	980		78	128				860	705
3	714		78	128				625	835
7	860	- Comment	81	125	- Delivery	o i treo.		501	748
3	2.060		88	118				396	588
	1,390		100	109				326	460
)	916		106	103				269	362
Cortegraph tool 8 tolog elde	609		140	150				233	200
	536		142 180	152 238			565	192	302 264
· · · · · · · · · · · · · · · · · · ·	494		180	254	751710		705	172	274
***************************************	681	238	172	238			880	152	280
)	681	224	160	215			748	132	254
	001	THE RESERVE	100	TOTES	un e e	tanvis	300000	102	201
3	543	228	142	192			588	121	192
7	454	565	142				467	118	248
	356	765	132				382	118	382
	296	684	118			238	308	135	396
)	243	515	109				350	160	350
	201	402	100		Tout	nt-con	422	238	308
2. A STATE OF THE	201	320	88				460	302	262
		264	83		1111011		572	356	229
		220	83	dieden.		DRIT TO	588	501	199
		188	81				665	748	172
	and "	danor		elatio	Dy Tal	-disc	All Line	VOLS	
		160	78		550		550	722	192
		145	78				501	588	950
		128	118				480	705	1,420
***************************************		115	164				415	665	970
			206				338	550	665
***************************************			201	******			764		665

Note.—Water-stage recorder not operating; discharge for following periods estimated from maximum and minimum stages indicated by recorder and by comparison with hydrographs of other stations: Jan. 22-31, 110 second-feet; and Feb. 1-13, 420 second-feet.

Monthly discharge of Karta River at Karta Bay, for 1920.

Month.	Dischar	gein seco	ond-feet.	Run-off	those for perior	Dischar	ond-feet.	Run-off	
Month.	Maxi- mum.	Mini- mum.	ina	in acrefeet.	Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.
January February March April 1–16	2,430 206 254	78 103	603 366 118 163	37, 100 21, 100 7, 260 5, 170	October 12–31 November December	880 1,940 1,420	308 118 172	537 530 461	21, 3 00 31,500 28,300

BEAVER FALLS CREEK AT GEORGE INLET, REVILLAGIGEDO ISLAND.

- LOCATION.—About 200 feet above diversion dam and flume for shingle mill and salmon cannery; 800 feet from beach on west shore of George Inlet; 10 miles by water from Ketchikan.
- Drainage area.—5.9 square miles (United States Forest Service survey made in 1917).
- RECORDS AVAILABLE.—August 3 to October 10, 1917; September 5 to December 31, 1920.
- GAGE.—Stevens continuous water-stage recorder on left bank, a quarter of a mile from tidewater; reached by a corduroy trail which leaves beach back of cannery buildings. The gage was washed out by high water in November, 1917. A new recorder was installed on September 5, 1920, at a point 8 feet downstream from site of first recorder at datum of August 3, 1917.
- DISCHARGE MEASUREMENTS.—At medium and high stages, made from log gaging bridge across stream a quarter of a mile upstream from gage; at low stages made by wading under bridge.
- CHANNEL AND CONTROL.—The gage is in a partly sheltered pool in a narrow, deep, rocky canyon, 15 feet upstream from a small rocky fall, which forms a well-defined and permanent control.
- DIVERSION.—A small quantity of water is diverted about 200 yards below station into a flume for use of shingle mill and cannery.
- Accuracy.—Stage-discharge relation permanent, but gage well was disturbed by logs and settled probably during high water on August 20, 1917. Rating curve used August 3–19, 1917, and September 5 to December 31, 1920, determined by four discharge measurements and point of zero flow, is well defined below 500 second-feet; curve used August 20 to October 10, 1917, based on two discharge measurements which indicate the amount of change in gage datum caused by settlement of gage well. Operation of water-stage recorder satisfactory except for periods indicated in footnote to daily-discharge table. Daily discharge ascertained by applying to rating table mean daily gage height determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging results obtained by applying to rating table mean gage heights for intervals of the day. Records good, except those for periods when gage did not operate satisfactorily, which are fair.

Lower Silvis Lake, whose elevation is 790 feet above high tide, is $1\frac{1}{2}$ miles from the beach, and its area is 62 acres. The elevation of upper Silvis Lake, whose outlet is only 1,100 feet from the upper end of the lower lake, is 1,100 feet above high tide and its area is 234 acres. Drainage area above outlet of lower lake is 4.9 square miles; above outlet of upper lake, 3.6 square miles.

Discharge measurements of Beaver Falls Creek at George Inlet during 1920.

[Made by G. H. Canfield.]

	Date.	Gage height.	Dis- charge.
Sept. 6. Sept. 8.		Feet. 0.76 3.54	Sec. ft. 28 366

Daily discharge, in second-feet, of Beaver Falls Creek at George Inlet for the periods Aug. 1 to Oct. 10, 1917, and Sept. 6 to Dec. 31, 1920.

Day.	A	ug.	Sept.	Oct.	Day.	A	ug.	Sept.	Oct.	Day		Aug.	Sept.	Oct.
1917. 1. 2. 3. 4. 5. 6. 7. 8. 9.		75 80 88 69 58 49 46 42 38 42	34 28 26 21 18 16 15 14 12	142 283 223 352 183 97 69 52 76 152	11		64 59 51 59 182 298 304 437 525 386	14 48 97 193 234 164 97 152 90 97	nasan iii 2011 iii 1011 iii 1111 iid cuur	21. 22. 23. 24. 25. 26. 27. 28. 29. 30.		247 371 224 175 140 100 265 276 158 78 47	175 132 86 168 244 144 323 305 212 107	
Day.	Sept.	Oct.	Nov.	Dec.	Day.	Sept.	Oct.	Nov.	Dec.	31	Sept		Nov.	Dec.
1920. 1 2 3 4 5		232 188 162 105 75	500 300 200	85 40 40 70 72	1920. 11 12 13 14 15	194 176 100 105 170	152 185 246 146 72	11 10 9	19 20 25 25 25 19	1920. 21	325 200 134 78 56		300	111 9 8 7 7
6 7 8 9 10	30 140 336 170 92	51 33 119 432 291		61 56 38 24 20	16 17 18 19 20	105 64 45 38 178	46 32 26 33	7 6	14 15 18 15 15 13	26 27 28 29 30 31	56 63 292 164 107			7 266 278 152 94 100

Note.—Discharge for following periods estimated, because of unsatisfactory operation of water-stage recorder, by comparison with records of flow for other stations: Aug. 1, 2, and 24-26, 1917, as shown in table; Oct. 20-31, 1920, 180 second-feet; Nov. 1-7, 13-19, and Dec. 1-4, 1920, as shown in table; Nov. 20-30, 1920, 80 second-feet.

Monthly discharge of Beaver Falls at George Inlet for the periods Aug. 1 to Oct. 10, 1917, and Sept. 6 to Dec. 31, 1920.

	Dischar	ge in seco	nd-feet.	Run-off	Dag. Sept.	Dischar	Run-off		
Month.	Month. Maximum. Minimum. Mean. in acrefect.	in acre-	Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.		
1917. August. September. October 1–10.	525 323 352	38 11 52	162 109 163	9, 960 6, 490 3, 230	1920. September 6-30. October November December The period.	336 500 278	30 26 7	137 154 83. 5 52. 5	6,790 9,470 4,970 3,230 24,500

MAHONEY CREEK AT GEORGE INLET, REVILLAGIGEDO ISLAND.

Location.—One-fourth mile below outlet of Surprise Lake and one-fourth mile above tidewater on west shore of George Inlet, Revillagigedo Island, 3 miles north of Beaver Falls Creek, and 13 miles by water from Ketchikan.

Drainage area.—Not measured.

RECORDS AVAILABLE.—September 10 to December 31, 1920.

GAGE.—Stevens continuous water-stage recorder on right bank of stream one-fourth mile above beach.

DISCHARGE MEASUREMENTS.—At high stages, made from cable across creek 100 yards above gage; at medium and low stages, by wading at cable section or at channel on beach exposed at low tide.

63963°—22——6

Channel and control.—The gage is at edge of pool between two riffles the lower of which forms a well-defined and permanent control.

ICE.—Stage-discharge relation not affected by ice.

Accuracy.—Stage-discharge relation permanent. Rating curve well defined below but poorly defined above 150 second-feet. Daily discharge ascertained by applying to rating table mean daily gage height determined by inspecting gage-height graph or, for days of considerable fluctuation, by averaging results obtained by applying to rating table mean gage heights for intervals of the day. Records good, except for periods of break in record and discharge above 150 second-feet, for which they are poor.

The Forest Service topographic map of Beaver Falls drainage basin shows the approximate location, outline, and elevation of two important lakes in the Mahoney Creek basin. They are Lower Mahoney Lake, the outlet of which is half a mile from the beach at an elevation of 75 feet above high tide, and Upper Mahoney Lake, the outlet of which is three-fourths mile above head of Lower Mahoney Lake. This lake is about 2,000 feet above high tide and has area of about 180 acres. The discharge at outlet of Upper Mahoney Lake is roughly estimated as 65 per cent of the flow at the gaging station.

Discharge measurements of Mahoney Creek at George Inlet during 1920.

[Made by G. H. Canfield.]

Date.	Gage height.	Dis- charge.
Sept. 10. Dec. 3. 4.	Feet. 1. 42 . 95 1. 18	Secft. 84 35 56

Daily discharge, in second-feet, of Mahoney Creek at George Inlet, for the period Sept. 10 to Dec. 31, 1920.

Day.	Sept.	Oct.	Nov.	Dec.	Day.	Sept.	Oct.	Nov.	Dec.	Day.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5 6 7 8		182 173 127 92 68 50 37 30	250 400 250 150 75 40 28 24	70 30 33 55 58 54 56 47	11 12 13 14 15 16 17 18	152 157 94 80 152 104 62 43	127 94 192 130 82 53 37 28	18 17 16 15 14 13 12 12	21 22 22 24 22 24 22 19 20	21 22 23 24 25 26 27 28	212 159 105 68 50 42 48 181	122 104 146		14 16 15 15 14 21 184 202
9	82	224 260	21 19	35 25	19	33 76	26 33	15	18 17	30 31	143 94			115 82 88

Note.—Discharge for following periods estimated, because of unsatisfactory operation of water-stage recorder, from maximum and minimum stages indicated by recorder and by comparison with records of flow for other stations: Oct. 25-31, 140 second-feet; Nov. 1-6 and 10-19, as shown in table; Nov. 20-30, 70 second-feet; Dec. 1-2, as shown in table.

Monthly discharge of Mahoney Creek at George Inlet for the period Sept. 10 to Dec. 31, 1920.

Month.	Dischar	ge in seco	ond-feet.	Run-off	asstred. Stember 10 to 1	Dischar	Run-off		
	Maxi- mum.	Mini- mum.	Mean.	in acre- feet.	Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.
September 10-30. October November	212	33 26 12	102 114 72.0	4,250 7,010 4,280	December The period.	202	14	46. 3	2,850

FISH CREEK NEAR SEA LEVEL, REVILLAGIGEDO ISLAND.

LOCATION.—In latitude 55° 24′ W., near outlet of Lower Lake on Fish Creek, 600 feet from tidewater at head of Thorne Arm, 2 miles northwest of mine at Sea Level, and 25 miles by water from Ketchikan.

Drainage area.—Not measured.

ver

ow

by

ge-

ed

ds

et,

he

ey

m

he

ke

ge

at

0

46554

RECORDS AVAILABLE.—May 19, 1915, to December 31, 1920.

Gage.—Stevens water-stage recorder on right shore of Lower Lake, 200 feet above outlet.

DISCHARGE MEASUREMENTS.—At medium and high stages made from cable across creek, 1 mile upstream from gage and 500 feet above head of Lower Lake; at low stages made by wading at cable. Only one small creek enters Lower Lake, at point opposite gage, between the cable site and control.

Channel and control.—The lake is about 500 feet wide opposite the gage. Outlet consists of two channels, each about 60 feet wide, separated by an island 40 feet wide. From the lake to tidewater, 200 feet, the creek falls about 20 feet. Bedrock exposed at the outlet of the lake forms a well-defined and permanent control.

Extremes of discharge.—Maximum stage recorded during year, 4.9 feet about August 6 (discharge computed from extension of rating curve, 4.110 second-feet); minimum stage, 0.63 foot, March 5 (discharge, 40 second-feet).

1915–1920: Maximum stage recorded, 5.33 feet November 1, 1917 (discharge, 4,600 second-feet); minimum stage, 0.50 foot, February 11, 1916 (discharge, 22 second-feet).

Ice.—Lower Lake freezes over, but as gage is set back in the bank ice does not form in well, and the relatively warm water from the lake and the swift current keep the control open.

Accuracy.—Stage-discharge relation permanent. Rating curve well defined below and extended above 1,500 second-feet. Operation of water-stage recorder satisfactory except for periods shown in footnote to daily-discharge table. Daily discharge ascertained by applying to rating table mean daily gage heights determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging results obtained by applying to rating table mean gage heights for regular intervals of day. Records good, except for periods of break in record for which they are fair.

A map of the lakes on the drainage basin of this stream was made by the United States Geological Survey in April, 1921. Lower Lake is at an elevation of 15 feet above high tide and has an area of 55 acres; Big Lake is at an elevation of 277 feet and has an area (including lagoon at approximately same elevation) of 358 acres; Third Lake is at an elevation of 324 feet and has an area of 180 acres; Mirror Lake is at an elevation of 377 feet and has an area of about 250 acres; Basin Lake (draining into Big Lake from the east) is at an elevation of 456 feet and has an area of 240 acres.

The following discharge measurement was made by G. H. Canfield: December 5, 1920: Gage height, 1.32 feet; discharge, 290 second-feet.

Daily discharge, in second-feet, of Fish Creek near Sea Level for 1920.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Dec.
12	285 368	64 60	74 67	130 114	429 368		605 562	120		250 225
3	750 750 506	78 225 455	64 60 57	102 94 89	346 346 335		500 436 390			200 200 291
6	378 324	756 665	62 74	87 85	680 937		379 379		Agillar Market	302 302
8. 9. 10	581 694 532	455 357 275	85 85 89	80 76 74	796 650 488		368 374 379		390 362	265 220 193
11	414	225	109	130	379	403	374	iteonu	320	176
12 13 14	318 296 553	200 175 150	127 130 120	225 216 170	335 324 308	390 379 374	357 340 324		280 260 240	165 169 172
15	686	120	109	176	291	390	302	569	254	157
16 17	525 395	150 225	96 94	154 140	346 436	403 390	291 275	422 324		140 140 146
18. 19. 20.	312 259 217	297 296 260	94 92 130	184 229 234		422 436 403	264 234 220	264 206 165		140 140 133
21	184	216	165	220 198	Marc.	374	184	154 146	minin	124 109
22	153 136 123	176 150 130	140 120 114	184 176		379 422 462	173 157 146	140	a non	96 94
25	104	112	107	180		436	130		charace	87
26 27	97 90	96 89	96 94	335 660		442 455	120 120			99 335
28	83 76	85 80	109 124	725 628		483 598	109			665 628 488
30	65 65		140 140	520		658	102 106			520

Note.—Discharge for following periods estimated, because of unsatisfactory operation of water-stage recorder, from records of flow for other stations: Jan. 26–28, discharge interpolated; Feb. 11–17, daily discharge as given in table (maximum and minimum stages indicated by recorder); May 18–31, 375 second-feet; and June 1–10, 600 second-feet (maximum and minimum stages for the period indicated by the recorder); Aug. 2–14, 1,100 second-feet; Aug. 23–31, 150 second-feet; Sept. 1–8, 240 second-feet; Sept. 11–14, daily discharge Sept. 16–30, 310 second-feet; Oct. 1–31, 460 second-feet; Nov. 1–30, 400 second-feet; Dec. 1–4, daily discharge

Monthly discharge of Fish Creek near Sea Level for 1920.

	Dischar	ge in seco	nd-feet.	Run-off	ne dramage na	Dischar	ge in seco	nd-feet.	Run-off
Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.	Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.
January February March April May June	750 756 165 725 937	65 60 57 74	333 228 102 220 421 490 284	20, 500 13, 100 6, 270 13, 100 25, 900 29, 200 17, 590	August		87	581 289 460 400 233	35, 700 17, 200 28, 300 23, 800 14, 300

SWAN LAKE OUTLET AT CARROLL INLET, REVILLAGIGEDO ISLAND.

LOCATION.—Halfway between Swan Lake and tidewater, on east shore of Carroll Inlet 1 mile from its head, 30 miles by water from Ketchikan.

Drainage area.—Not measured.

ec.

ge ge id

Œ

RECORDS AVAILABLE.—August 24, 1916, to December 31, 1920.

Gage.—Stevens water-stage recorder on left bank, half a mile from tidewater; reached by a trail which leaves beach back of old cabin one-fourth mile south of mouth of creek. Gage was washed out by extreme high water in November, 1917. New gage installed 10 feet farther back in bank at old datum, but with a new control, on May 5, 1918.

Discharge measurements.—At medium and high stages, made from a cable across stream 100 feet downstream from gage; at low stages, made by wading.

Channel and control.—The gage well is in a deep pool 25 feet upstream from a contracted portion of the channel, where a fall of 1 foot over bedrock forms a permanent control. The effect of the violent fluctuation of the water surface outside of the gage well is decreased in the inner float well, because the intake holes at the bottom are very small. At the cable section the bed is rough, the water shallow, and the current very swift. Point of zero flow is at gage height —1.0 foot.

Extremes of discharge.—Maximum stage during year, from water-stage recorder, 5.50 feet at noon, August 6 (discharge, computed from extension of rating curve, 2,800 second-feet); minimum stage, 0.23 foot April 10 (discharge, 62 second-feet). 1915–1920: Maximum stage occurred probably on November 1, 1917 (discharge, estimated by comparison with Fish Creek, 5,500 second-feet); minimum discharge, 36 second-feet, March 19–20, 1919.

Ice.—Stage-discharge relation not affected by ice.

Accuracy.—Stage-discharge relation permanent. Rating curve, determined by six discharge measurements and point of zero flow, is fairly well defined below 2,000 second-feet. Water-stage recorder operated satisfactorily except for periods indicated in footnote to daily-discharge table. Daily discharge ascertained by applying to rating table mean daily gage heights determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging discharges obtained by applying to rating table mean gage heights for regular intervals of day. Records good, except for periods of break in record, for which they are fair.

No maps of the entire drainage basin of this stream are available. The United States Forest Service in the fall of 1920 made a survey consisting of stadia traverse between the beach and Swan Lake, by which the elevation was determined as 220 feet above high tide; triangulation of lake, by which area of lake was determined as 1,325 acres; topography of lake shore below an elevation of 350 feet and of stream between lake and proposed dam site, two-thirds mile below outlet of lake, where elevation of bed of stream is 170 feet; cross section at dam site; and topography along proposed conduit about 300 feet long on south side of creek. Blue-print copies of the map of this survey may be obtained from the offices of the United States Forest Service at Portland, Oreg., or Ketchikan, Alaska.

No discharge measurements were made at this station during the year.

Daily discharge, in second-feet, of Swan Lake outlet at Carroll Inlet for 1920.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1		69 66 78 196 425	89 85 80 76 73	94 85 79 74 72	433 397 380 352 368	585 693 820 902 875	701 639 513 469 469	188 288 277 962 2,170	331 325 280 251 216	820 1,050 1,020 770 608		303 271 254 277 277
6	337 565 537 404	644 608 445 343 277	72 89 94 92 99	72 69 68 63 64	593 765 657 501 400	795 698 650 575 525	425 390 371 361 401	2,600 1,890 1,140 688 450	186 218 585 567 425	485	10010	271 265 260 248 229
11 12 13 14 14	331 282 303 497 505	246 224 193 170 152	158 152 135 116 105	122 165 151 137 126	343 328 315 297 315	500 485 470 460 485	457 441 425 401 394	1,200 1,800 1,300 990 648	384 364 331 303 340			208 190 176 170 161
16 17 18 19	380 300 254 213 176	161 240 262 254 226	94 90 87 84 99	118 109 213 213 193	390 418 485 473 384	500 525 626 603 485	374 352 307 280 235	461 343 274 210 172	358 340 300 271 282			150 141 139 132 128
21 22 23 24 25	156 139 122 111 101	193 172 154 137 122	105 94 89 89 89 85	181 170 165 170 226	328 303 291 297 322	449 422 453 437 418	213 193 170 150 135	156 145 145 143 139	565 585 485 390 328		183 181 218 243 309	124 116 111 103 96
26. 27. 28. 29. 30.	94 85 79 76 73 72	111 103 98 94	80 82 145 122 120 103	448 790 745 630 513	343 364 346 358 445 537	505 545 648 765 795	126 122 112 111 128 161	145 174 172 165 154 246	282 254 374 489 461		343 337 331 328 322	130 141 621 541 422 368

Note.—Discharge for following periods estimated, because of unsatisfactory operation of water-stage recorder, from maximum and minimum stages indicated by recorder and by comparison with hydrographs and records of flow for other stations: Jan. 1-6, 450 second-feet; Apr. 13, June 8-16, and Aug. 10-13, as given in table; Oct. 7-31, 550 second-feet; Nov. 1-20, 500 second-feet.

Monthly discharge of Swan Lake outlet at Carroll Inlet for 1920.

ar intervals of	Dischar	ge in seco	ond-feet.	Run-off	to rating table copt for periods	Dischar	ond-foet.	Run-off	
Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.	Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.
JanuaryFebruaryMarei	644 158	72 66 72	287 223 99. 5	17,600 12,800 6,120	August September October	2,600 585	139 186	640 362 597	39,400 21,500 36,700
April May June	790 765 902	63 291 422	211 404 590	12,600 24,800 35,100	November December	621	96	426 22 <i>i</i>	25, 300 14, 000
July	701	111	323	19,900	The year	2,600	63	366	266,000

ORCHARD LAKE OUTLET AT SHRIMP BAY, REVILLAGIGEDO ISLAND.

LOCATION.—In latitude 55° 50′ N., longitude 131° 27′ W., at outlet of Orchard Lake one-third mile from tidewater at head of Shrimp Bay, an arm of Behm canal, 46 miles by water from Ketchikan.

Drainage area.—Not measured.

RECORDS AVAILABLE.—May 28, 1915, to December 31, 1920.

GAGE.—Stevens continuous water-stage recorder on right bank 300 feet below Orchard Lake and 100 feet above site of timber-crib dam, which was built in 1914 for proposed pulp mill and washed out by high water August 10, 1915. Datum of gage lowered 2 feet September 15, 1915. Gage heights May 29 to August 10

referred to first datum; August 11, 1915, to August 17, 1916, to second datum. Datum of gage lowered 1 foot August 17, 1916. Gage heights August 18 to December 31, 1916, referred to this datum. Gage washed out probably during high water on November 1, 1917. New gage installed on April 28, 1918, at old site at the datum of August 17, 1916.

DISCHARGE MEASUREMENTS.—At medium and high stages made from cable 5 feet upstream from gage; at low stages by wading one-fourth mile below gage.

CHANNEL AND CONTROL.—From Orchard Lake, at elevation 134 feet above high tide, the stream descends in a series of rapids for 1,000 feet through a narrow gorge, then divides into two channels and enters the bay in two cascades of 100-foot vertical fall. Opposite the gage the water is deep and the current sluggish. At the site of the old dam bedrock is exposed, but for 30 feet upstream the channel is filled in with loose rock and brush placed during construction of dam. This material forms a riffle, which acts as a control for water surface at gage at low and medium stages and is scoured down when ice goes out of lake; the rock outcrop at site of old dam acts as a control at high stages and is permanent.

Extremes of discharge.—Maximum stage recorded during year, 8.0 feet at 2 p. m. August 6 (discharge 4,780 second-feet); minimum stage, 0.31 foot March 9 (dis-

charge, 67 second-feet).

ec.

1915–1920: Maximum stage probably occurred on November 1, 1917 (discharge estimated by multiplying maximum discharge at Fish Creek on that date by 1.55, which is the ratio between the maximum discharges of Orchard Lake outlet and Fish Creek on October 15 and 16, 1915, 7,100 second-feet); minimum discharge, estimated, 20 second-feet, February 11, 1916.

ICE.—Stage-discharge relation not affected by ice.

Accuracy.—Stage-discharge relation changes occasionally during high water. Rating curve, determined by seven discharge measurements made since new gage was installed, point of zero flow, and form of upper portion of old rating curve, is well defined below 4,000 second-feet. Operation of water-stage recorder satisfactory except for periods indicated in footnote to daily-discharge table. Daily discharge ascertained by applying to rating table mean daily gage heights determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging discharges obtained by applying to rating table mean gage heights for regular intervals of day. Records good, except for period of break in record, for which they are fair.

The highest mountains on this drainage basin are only 3,500 feet above sea level and are covered to an elevation of 2,500 feet by a heavy stand of timber and a thick undergrowth of brush, ferns, alders, and devil's club. The topography is not so rugged as that of the area surrounding Shelockum Lake, and the proportion of vegetation, soil cover, and lake area is greater, so that more water is stored in the Orchard Lake drainage basin and the flow is better sustained.

A survey of Orchard Lake was made by an engineering company in September, 1920. From this survey the area of the lake was determined as 965 acres and the elevation of lake above high tide as 128 feet. A dam at the outlet of the lake would flood part of the valley, at the head of the lake, which extends upstream a few miles at a small gradient.

Discharge measurements of Orchard Lake outlet at Shrimp Bay during 1920. [Made by G. H. Canfield.]

Date.	Gage height.	Dis- charge.
Feb. 16 Dec. 8	Feet. 0.72 1.48	Secft. 135 285

Daily discharge, in second-feet of Orchard Lake outlet at Shrimp Bay, for 1920.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Dec.
	259	1.10.11		.001.0	680	1,080	1,030	314	400	350
}	422 700	0000000	81 79	erolog.	640 624	1,250	880 740	447 560	410 368	275 300
	514		74		560	1,460	708	1,210	338	300
5	362		75		572	1,400	724	3, 290	280	290
0.31 You March 9 (di	270	manna	75	901-01	870	1,220	762	4,560	242	285
7	394		72		1,060	1,030	808	2,900	242	280
	808		68		905	905	808 785	1,370 785	680 762	275 225
)	616 430		01		572	855 808	785	522	560	190
*******************************	100				0.12	000	.00	022	000	100
	320				492	740	762	1,240	450	162
2	252 335				485 485	740 740	700 660	2,410 2,100	390 308	140 134
3	640				467	785	620	1,160	275	130
5	533				510	855	592	700	332	120
	00#	1001	Adab	etoent.	200	HOF	770	471	000	109
3	387 288	119			680 700	785 808	572 511	474 350	362 338	105
}	218	275			740	930	450	272	280	119
)	186	286			740	720	487	225	280	134
)	176	254			612	612	326	196	384	138
e recordensinistaciony ex	1018-19	199	goile	9qQ	507	596	297	176	600	136
2		166			481	680	270	209	540	125
		141			500	680	232	314	407	110
		119 109		267 329	588 640	640 640	212 190	297 247	286 230	102 92
ove vii comminioum out		109		323	010	010	130	211	200	02
3		100		955	640	785	190	267	190	105
		93		1,280	660	855 930	190 184	350 329	170	810
)		89 87		1,160	640 680	1,110	186	262	340 650	1,000
)		01		785	920	1,160	192	218	500	457
/				100	1,000	-, 200	280	280	300	433

Note.—Discharge estimated for following periods, because water-stage recorder was run down or not operating satisfactorily: Jan. 21–31, 105 second-feet; Feb. 1–15, 350 second-feet; Mar. 10–31, 100 second-feet; Apr. 1–23, 160 second-feet. Discharge for following periods estimated from maximum and minimum stages indicated by recorder and comparison with hydrographs for streams in near-by drainage basins and climatic data for Ketchikan; May 27–28, June 18–22, and Sept. 26–30, daily discharge as shown in table; Oct. 1–31, 630 second-feet; Nov. 1–30, 520 second-feet; Dec. 1–8 by comparison with record of flow for the outlet of Shelockum Lake.

Monthly discharge of Orchard Lake outlet at Shrimp Bay, for 1920.

he lake would in a few miles	Dischar	ge in seco	nd-feet.	Run-off	tide as 128 fee the head of the	Dischar	nd-feet.	Run-off	
	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.	Month.	Maxi- mum.	Mini- mum.	Mean.	in acre- feet.
January February March April May	1, 280 1, 060	87	299 257 92.8 315 656	18, 400 14, 800 5, 710 18, 700 40, 300	August	4,560 762	176 170	904 386 630 520 261	55, 600 23, 000 38, 700 30, 900 16, 000
JuneJuly	1,460 1,030	596 184	908 520	54, 000 32, 000	The year	4, 560		480	348,000

SHELOCKUM LAKE OUTLET AT BAILEY BAY.

Location.—In latitude 56° 00′ N., longitude 131° 36′ W., on mainland near outlet of Shelockum Lake, three-fourths mile by Forest Service trail from tidewater at north end of Bailey Bay and 52 miles by water north of Ketchikan.

Drainage area.—18 square miles (measured on sheets Nos. 5 and 8 of the Alaska

Boundary Tribunal, edition of 1895).

ge.

ft. 135

285

c.

290

RECORDS AVAILABLE.—June 1, 1915, to December 31, 1920.

Gage.—Stevens continuous water-stage recorder on right shore of lake, 250 feet above outlet.

DISCHARGE MEASUREMENTS.—Made from cable across outlet of lake, 200 feet below

gage and 50 feet upstream from crest of falls.

Channel and control.—Opposite the gage the lake is 600 feet wide; at the outlet bedrock is exposed and the water makes a nearly perpendicular fall of 150 feet. This fall forms an excellent and permanent control for the gage. At extremely high stages the lake has another outlet about 200 feet to left of main outlet. Point of zero flow is at gage height 0.6 foot.

Extremes of discharge.—Maximum stage recorded during year, 6.65 feet, at 9 a.m. August 6 (discharge, 2,580 second-feet); minimum discharge (estimated from

hydrograph for Fish Creek to have occurred March 9), 15 second-feet.

1915–1920: Maximum stage, 6.84 feet at 8 a. m. November 1, 1917 (discharge, 2,780 second-feet); minimum discharge, estimated from climatic records, 2.5 second-feet.

ICE.—Stage-discharge relation not affected by ice.

Accuracy.—Stage-discharge relation permanent. Rating curve well defined. Operation of water-stage recorder satisfactory except for periods of break in record, as shown in footnote to daily-discharge table. Daily discharge ascertained by applying to rating table mean daily gage heights determined by inspection of gage-height graph, or, for days of considerable fluctuation, by averaging discharges obtained by applying to rating table mean gage heights for regular intervals of day. Records excellent, except for periods of break in record, for which they are fair.

An outline survey of Shelockum Lake was made in 1914 by the United States Forest Service, and blue-print copies of the survey can be obtained from their district office at Ketchikan. This survey ascertained the lake to be 344 feet above high tide and 350 acres in area. The drainage basin above the lake is rough, precipitous, and covered with little soil or vegetation. There are no glaciers or ice fields at the source of the tributary streams. Therefore, because of little natural storage, the run-off after a heavy rainfall is rapid and not well sustained, and during a dry summer or winter the flow becomes very low. The large amount of snow that accumulates on the drainage basin during the winter maintains a good flow in May and June.

RECORDS AVAILABLE -October 27, 1917, to December 31, 1920.

No discharge measurements were made at this station during the year.

Daily discharge, in second-feet, of Shelockum Lake outlet at Bailey Bay for 1920.

Day.	Jan.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	106 134 206 170 127		230 224 226 216 204	472 525 600 600 580	422 336 292 297 350	273 321 282 748 1,640	363 304 233 214 166	263 314 336 243 172	761 1,320 660 350 241	94 76 82 82 82
6. 7. 8. 9. 10.	111 164 316 252 190	SECTION AND ADDRESS OF THE PARTY AND ADDRESS O	230 230 210 174 154	508 438 405 377 377	392 407 407 407 392	2,300 950 392 237 166	128 150 525 392 241	125 92 72 280 525	164 123 97 78 67	76 76 75 69 59
11 12 13 14 15.	150 123 134 289 297	minta Minera Maria	147 196 204 194 220	358 377 350 363 392	363 350 318 309 292	736 1,250 660 336 214	182 160 128 112 117	324 210 210 239 210	58 50 43 38 34	55 50 53 55 55
16	208 158 121 92 76		331 306 336 306 241	392 363 472 363 311	275 252 220 190 164	145 112 84 71 60	104 94 91 115 141	156 120 94 78 170	31 30 29 31 59	47 43 43 44 44
21. 22. 23. 24. 25.	58 53 48 43 40	85 123	200 192 210 241 273	287 324 336 297 292	149 136 120 110 98	71 123 145 123 98	252 235 174 127 94	275 263 270 275 268	88 100 98 109 123	43 41 37 35 31
26	38 35 33 31 30 28	342 422 378 311 263	270 268 245 280 378 455	336 363 490 580 542	98 96 92 94 115 230	154 299 241 170 123 210	80 72 143 265 212	230 378 363 252 186 275	152 132 127 136 117	33 194 392 268 184 145

Note.—Record traced by recording pencil Jan. 22, 23, 25–27, 30, and 31, too faint to be seen; discharge estimated. No record Feb. 1 to Apr. 23, except maximum stage; discharge estimated from records of flow for streams in near-by drainage basins: Feb. 1–28, 65 second-feet; Mar. 1–31, 30 second-feet; Apr. 1–23, 40 second-feet.

Monthly discharge of Shelockum Lake outlet at Bailey Bay for 1920.

arriet office at	Dischar	ge in seco	nd-feet.	Run-off	es of the survey	Dischar	ond-feet.	Run-off	
Month.	Maxi- mum.	Mini- mum.	Mean.		Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.
January February	316	28	125 65	7,690 3,740	August September	2,300 525	60 72	411 187	25,300 11,100
MarchAprilMay	422 455.	147	30 94.8 245	1,840 5,640 15,100	October November December	525 1,320 392	72 29 31	234 182 85. 7	14,400 10,800 5,270
June July	600 422	287 92	416 251	24, 800 15, 400	The year	2,300		194	141,000

CASCADE CREEK AT THOMAS BAY, NEAR PETERSBURG.

Location.—One-fourth mile above tidewater on east shore of south arm of Thomas Bay, 22 miles by water from Petersburg. One small tributary enters the river from the left half a mile above gage and 2 miles below outlet of lake.

Drainage area.—21.4 square miles (measured on the United States Geological Survey geologic reconnaissance map of the Wrangell mining district, edition of 1907).

RECORDS AVAILABLE.—October 27, 1917, to December 31, 1920.

Gage.—Stevens water-stage recorder on left bank, one-fourth mile from tidewater; reached by trail which leaves beach back of old cabin at mouth of creek.

DISCHARGE MEASUREMENTS.—At medium and high stages, made from log footbridge across stream one-fourth mile upstream from gage; at low stages, made by wading

Channel and control.—Gage is in a protected eddy above a natural rock weir, which forms a well-defined and permanent control. The bed of river under the footbridge is rough and the current swift and irregular, but this section is the only place on the whole river where even at low and medium stages there are no boils and eddies.

EXTREMES OF STAGE.—Maximum stage recorded during period of records, 8.4 feet at 6 a. m. August 6, 1920 (discharge computed from extension of rating curve, 2,540 second-feet); minimum stage, 0.80 foot about April 6, 1918 (discharge, 17 second-feet).

ICE.—Stage-discharge relation not affected by ice.

Dec.

ge

ff

Accuracy.—Stage-discharge relation permanent. Rating curve well defined below 1,200 second-feet. Operation of water-stage recorder satisfactory except for periods indicated in footnote to daily-discharge table. Daily discharge ascertained by applying to rating table mean daily gage heights determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging discharge for equal intervals of day. Records good, except for periods when recorder did not operate satisfactorily, for which they are fair.

The first site on this stream for a storage reservoir is at a small lake 3 miles from tidewater, at an elevation of 1,200 feet above sea level. The drainage area above the gaging station is 21 square miles and above the outlet of the lake 17 square miles. Flow during summer is augmented by melting ice from glaciers on upper part of drainage area.

The only maps available, showing the drainage basin of this stream, are sheet 10 (scale, 1:160,000) of the Alaska Boundary Tribunal, edition of 1895; topographic map of the Wrangell mining district (scale, 1:250,000) of the United States Geological Survey, edition of 1907 (topography compiled from sheets of the Alaska Boundary Tribunal). A rough map, made for J. T. Martin who has mining claims near the mouth of the stream, shows a very small lake, 1.7 miles upstream from beach at an elevation of 1,250 feet; a small flat, 2.1 miles upstream from beach, at an elevation of 1,600 feet; and a lake (not surveyed but estimated to be 2 miles long by three-fourths mile wide) 2.5 miles upstream from beach, at an elevation of 1,950 feet.

The first lake and the flat are too small for storage reservoirs. A storage reservoir having a capacity sufficient to equalize the flow could probably be created by a tunnel or dam at the outlet of the large lake. The drainage area between the outlet of this lake and the gaging station is 4.5 square miles.

No discharge measurements were made at this station during the year.

Daily discharge, in second-feet, of Cascade Creek at Thomas Bay for 1920.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	70 99 131 107 93	e eyo		24 25 24 24 24 24	48 52 55 48 48	365 440 518 570 600	640 552 470 485 535	518 500 470 775 1,720	380 395 500 570 535	160 153 144 129 119	455 622 425 292 210	40 39 38 37 37
6 7 8 9	86 130 192 134 117			24 24 24 24 24 23	52 51 48 48 49	600 550 530 500 470	570 622 675 675 675	2,460 1,370 870 570 425	440 305 210 160 150	144 124 119 200 160	192 153 129 114 104	36 35 33 32 31
11 12. 13. 14. 15	103 88 93 109 90	. Ourius		25 39 31 27 26	57 76 65 65 86	450 420 395 404 455	675 675 622 605 622	1, 160 1, 810 1, 370 932 622	150 119 111 109 111	134 119 129 124 111	92 79 70 65 62	30 29 28 27 26
16. 17. 18. 19.	77 67			26 25 27 26 26	113 112 119 108 100	440 425 425 355 305	675 658 605 570 535	440 342 280 260 280	250 455 368 368 500	94 81 70 72 122	56 53 52 50 55	26 26 29 29 29 27
21			25	28 29 29 32 80	95 99 105 112 114	280 318 292 250 250	500 470 425 368 355	395 410 342 250 220	470 380 342 355 440	119 114 206 153 127	70 54 52 53 54	26 26 25 26 24
26 27 28 29 30 31		iseti.e	25 25 25 25 25 25 25 25	86 68 56 50 48	121 136 153 192 250 305	318 395 518 675 710	395 440 440 470 470 552	440 535 410 292 230 270	588 470 318 230 183	167 355 260 192 318 368	48 45 48 47 42	30 114 53 46 44 31

Note.—Discharge estimated for following periods, because of unsatisfactory operation of water-stage recorder, by comparison with hydrograph and record of flow for Sweetheart Falls Creek: Jan. 1, 70 second-feet; Jan. 18-31, 45 second-feet; Feb. 1-29, 60 second-feet; Mar. 1-24, 35 second-feet; and June 5-12, as shown in table.

Monthly discharge of Cascade Creek at Thomas Bay for 1920.

	Dischar	ge in seco	nd-feet.	Run-off	mall flat, 2.1 m	Dischar	ond-feet.	Run-off	
Month.	Maxi- mum. Mean. feet.	in acre-	Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.		
January February March April May June July	192 86 305 710 675	23 48 250 355	77. 9 60 32. 7 34. 1 99. 4 441 549	4,790 3,450 2,010 2,030 6,110 26,200 33,800	August	2,460 588 368 622 114 2,460	220 109 70 42 24	676 332 158 128 34. 8	41, 600 19, 800 9, 720 7, 620 2, 140

GREEN LAKE OUTLET AT SILVER BAY, NEAR SITKA.

Location.—In latitude 56° 59′ N., longitude 135° 5′ W., at outlet of Green Lake, head of Silver Bay, 10½ miles by water south of Sitka.

Drainage area.—Not measured.

ec.

26

26

6564

Records available.—August 22, 1915, to December 31, 1920.

GAGE.—Stevens water-stage recorder on right bank, at outlet of lake, reached by trail which leaves the beach one-fourth mile north of mouth of stream, ascends a 600-foot ridge, and then drops down to the outlet of the lake. Gage datum lowered 1 foot December 27, 1916.

DISCHARGE MEASUREMENTS.—Made from cable across outlet 30 feet below gage.

CHANNEL AND CONTROL.—From Green Lake, 240 feet above sea level and 1,800 feet from tidewater, the stream descends in a series of falls and rapids through a narrow canyon whose exposed rock walls rise vertically more than 100 feet.

Extremes of discharge.—Maximum stage recorded during year, 10.0 feet, at 11 a. m. August 5 (discharge, computed from extension of rating curve, 1,900 second-feet); minimum stage recorded, -0.05 foot, estimated from hydrographs for other stations to have occurred April 10 (discharge, 10 second-feet).

1915–1920: Maximum stage recorded, 13.0 feet, September 26, 1918 (discharge, estimated from extension of rating curve, 3,300 second-feet); minimum stage recorded, -0.05 foot, estimated from hydrographs for other stations to have occurred April 10, 1920 (discharge, 10 second-feet).

ICE.—Ice forms on lake and at gage, but because of current and flow of relatively warm weather from the lake the control remains open.

Accuracy.—Stage-discharge relation permanent. Rating curve well defined between 10 and 1,300 second-feet. Operation of water-stage recorder satisfactory except for periods indicated by breaks in record, as shown in the footnote to the daily-discharge table. Daily discharge ascertained by applying to the rating table mean daily gage height, determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging results obtained by applying to rating table gage heights for regular intervals of day. Records good, except those for periods when gage was not operating satisfactorily, which are fair.

No maps have been made of the drainage basin. The elevation of Green Lake above high tide, measured by aneroid barometer, is 240 feet; the area of the lake is 175 acres, according to the best available estimates. At the upper end of lake is a low flat, reported to be 2 or 3 miles long, which would be flooded by a dam at outlet of lake.

The following discharge measurement was made by G. H. Canfield: June 18, 1920: Gage height, 4.36 feet; discharge, 466 second-feet.

BARANOF LAKE OUTLET AT BARANOF BARANOF ISLAND.

head of Warm Spring Bay, east coast of Baranof Iskand, 18 miles east of S acrossisland, but 96 miles from Sitka by water through Peril Strait

Records avanable.—June 28, 1915, to December 31, 1920. Gade.—Stevens water-stage recorder on right bank 700 feet below Baranof Lake an

Daily discharge, in second-feet, of Green Lake outlet at Silver Bay, for 1920.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Oct.	Nov.	Dec.
						- bon	THE STATE OF THE S	1076-	AUT A	3047	tra (I
1	ng	urrg	38	16		406	547	452-		820	100
2			30	14		499	452	442		1, 480	90
3	01.10.A	10.000	26	12		695	397	397		751	90
4	writte	0111110	20 20	16	- 111111	889 706	397 424	470		380 320	90
ð	a folk	44 34	20			700	424	1,640		520	01
6	212	110 10	20			518	461	1,220		774	73
7	1,590		26			442	547	672		461	70
8	1,350		26		reseries.	490	588	442		278	65
9	464		26			528	568	320		200	60 55
0	254		30			461	537	328		161	50
tarene a demondi ab	206	as ells	40	TOR RE	u shoe	397	518	706	ewate	134	50
2	147		42			406	557	599		116	50
3	118	3.0000	40	13 18 4		388	518	673		106	50
4	118		36			424	490	518	10	93	50
5	107		30			518	499	354	*******	86	40
6	90		30		303	461	461	270		76	40
7	72	EL 13000	33	1000	247	433	424	240		75	40
8	60	broom	28	210/100	206	461	406	210		71	40
9	54		26		166	397	406	200		72	35
0	53		20		134	328	415	215		82	35
t); minimum sta	48	E seco	18	CULVE	118	294	406	260	240	90	30
2	46	72	16	a boxel	114	461	371	294	200	80	30
3	10	60	16		122	499	320		337	80	30
4		54	16	011000	126	371	270		270	90	25
5		49	16		161	328	270		188	- 80	25
0		48	16	nor I	303	433	320	inna?	303	70	50
6		48	23		262	499	354		424	65	150
8	W 9 7 7 1	42	40	Logon	262	537	415	Oath-c	286	175	275
9		40	38		328	547	499		194	200	212
0	300000	101.00	30		380	568	490		885	140	134
History of the second	of add	. CULLIST	20	2 3700	371		480		620	2000.00	118

Note.—Discharge for following periods when water-stage recorder was run down or not operating satisfactorily estimated by comparison with hydrographs of streams in near-by drainage basins and climatic data for Juneau: Jan. 1-5, 280 second-feet; Jan. 23-31, 38 second-feet; Apr. 5-30, 45 second-feet; May 1-15, 115 second-feet. Discharge for following periods estimated by comparison with record of flow for Sweetheart Falls Creek near Snettisham: Aug. 18-21, daily discharge; Aug. 23-31, 290 second-feet; Sept. 1-30 330 second-feet; Oct. 1-20, 240 second-feet; Nov. 21-30, Dec. 1-5, and 7-28, daily discharge.

Monthly discharge of Green Lake outlet at Silver Bay for 1920.

dam at outlet	Dischar	geinseco	nd-feet.	Run-off	bost available a miles long,	Dischar	nd-feet.	Run-off	
Month.	Maxi- mum. Mini- mum. Mea	Mean.	in acre- feet.	Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.	
January February March April May June July	1,590 42 380 889 588	16 	217 82. 9 27. 0 40. 9 172 479 445	13, 300 4, 770 1, 660 2, 430 10, 600 28, 500 27, 400	August September October November December The year	1,640 885 1,480 275 1,640	188 65 25	437 330 282 254 73.6	26, 900 19, 600 17, 300 15, 100 4, 530 172, 000

BARANOF LAKE OUTLET AT BARANOF, BARANOF ISLAND.

LOCATION.—In latitude 57° 5′ N., longitude 134° 54′ W., at townsite of Baranof, at head of Warm Spring Bay, east coast of Baranof Island, 18 miles east of Sitka across island, but 96 miles from Sitka by water through Peril Strait.

DRAINAGE AREA.—Not measured.

RECORDS AVAILABLE.—June 28, 1915, to December 31, 1920.

Gage.—Stevens water-stage recorder on right bank 700 feet below Baranof Lake and 800 feet above tidewater at head of Warm Spring Bay.

DISCHARGE MEASUREMENTS.—At medium and high stages, from cable across stream 100 feet below lake and 600 feet above gage; at low stages, by wading 100 feet below cable.

Channel and control.—From Baranof Lake, at elevation 130 feet above sea level and 1,500 feet from tidewater, the stream descends in a series of rapids and small falls and enters the bay in a cascade of about 100-foot concentrated fall. The bed is of glacial drift, boulders, and rock outcrop. The gage is in an eddy 50 feet downstream from the foot of a small fall and 100 feet upstream from a riffle which forms a well-defined control.

Extremes of discharge.—Maximum stage recorded during year, 4.3 feet at noon, November 2 (discharge, 2,000 second-feet); minimum discharge, estimated, 32

second-feet, April 14.

ec.

100

73 70 65

60

50 50 50

50

50 .50 .75 .12 .34 .18

is-

30

1915–1920: Maximum stage recorded during period, 5.3 feet August 10, 1915 (discharge, computed from extension of rating curve, 3,350 second-feet); minimum discharge, estimated by discharge measurement and climatic data, 28 second-feet, February 13, 1915.

ICE.—Because of the swift current and flow of relatively warm water from the lake, the stream remains open except during extremely cold periods.

DIVERSIONS.—The flume to Olsen's sawmill diverts from the stream 200 feet below gage only sufficient water to operate a 25-horsepower Pelton water wheel.

Accuracy.—Stage-discharge relation permanent; slightly affected by ice March 29 to April 19. Rating curve well defined below 2,000 second-feet. Operation of water-stage recorder satisfactory except for periods indicated in footnote to daily-discharge table. Daily discharge ascertained by applying to rating table mean daily gage heights determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging discharge for equal intervals of day. Records good, except for periods when recorder did not operate satisfactorily and for periods when water was frozen in well, for which they are fair.

The drainage area is rough and precipitous, and the vegetable and soil cover is thin, even on the foothills of the mountains. The run-off is rapid, and the ground storage is small. During a hot, dry period, however, the flow is greatly augmented by melt-

ing ice from several small glaciers and ice-capped mountains.

The drainage basin of this stream has not been surveyed, but Baranof Lake and the region between lake and tidewater at head of Warm Spring Bay was surveyed and map drawn in 1914 by the United States Forest Service. Blue-print copies can be obtained from the district office of the Forest Service at Juneau, Alaska. The elevation of Baranof Lake above high tide as determined by the survey was 134 feet and the area of the lake 700 acres.

It would be necessary to raise the elevation of the lake 100 feet in order to create a reservoir having a capacity of 90,000 acre-feet, the storage required to equalize the flow

No discharge measurements were made at this station during the year.

Daily discharge, in second-feet, Baranof Lake outlet at Baranof, for 1920.

D

Cı

E

A

I

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.
1	enines omorri	.0.00.0 1001.00 20	52 51 48 47 43	33 33 33 32 34	205 189 210 235 220	695 755 855 1,010 1,010	788 695 615 640 725	680 660 590 668 1,330	590 522 615 640 500	668 545 436 362 303	1,330 1,940
6		165 149 129 118	45 45 47 49 49	35 37 39 40 43	203 195 185 181 183	890 788 820 820 725	788 970 1,010 970 930	1,380 890 695 545 480	432 890 930 640 500	255 208 189 348 400	2.3
11 12 13 14 15	309 255 218 195 169	145 137 118 106 95	49 51 56 57 54	43 43 43 42 42	203 220 238 248 291	695 668 615 640 725	930 1,050 1,010 930 855	668 725 640 590 492	500 420 460 336 270	324 273 267 250 225	
16. 17. 18. 19.	145 125 110 95	102 125 129 118 102	53 52 52 51 49	42 47 84 90 84	327 339 336 309 285	695 668 668 615 545	820 755 695 668 668	420 370 352 408 460	225 191 185 230 205	195 171 155 141 199	
21 22 23 24 25		89 80 70 64 61	46 44 40 39 39	82 80 83 100 114	261 242 242 250 315	522 640 615 545 545	640 568 500 460 500	452 420 362 321 291	177 173 169 167 155	264 300 366 359 270	
26		59 55 53 53	36 36 36 34 34 34	141 167 187 195 208	568 568 568 615 695 695	615 695 820 820 855	600 650 725 850 800 750	362 678 615 444 392 640	147 137 324 1,100 392	345 488 400 330 772 930	

Note.—Discharge for following periods estimated, because of ice effect or unsatisfactory operation of water-stage recorder, by comparison with hydrographs for streams in near-by drainage basins and climatic data for Juneau: Jan. 1–10, 455 second-feet; Jan. 20–31, 70 second-feet; Feb. 1–6, 90 second-feet; and Mar. 29 to Apr. 9, daily discharge. Daily discharge, July 25 to Aug. 2, estimated by comparison with record of flow for outlet of Green Lake; discharge for following periods estimated from records for Sweetheart Falls Creek: Sept. 12–20, daily discharge; Nov. 3–30, 290 second-feet; Dec. 1–31, 55 second-feet.

Monthly discharge of Baranof Lake outlet at Baranof for 1920.

boyovius any	Dischar	geinseco	ond-feet.	Run-off	us stream has a	Dischar	geinseco	ond-feet.	Run-off in acre- feet.
Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefect.	Month.	Maxi- mum.	Mini- mum.	Mean.	
January February March April May June July	165 57 208 695 1,010 1,050	53 34 32 181 522 460	226 98.7 45.7 75.9 317 719 760	13, 900 5, 680 2, 810 4, 520 19, 500 42, 800 46, 700	August September October November December The year	1,380 1,100 930 1,940	291 137 141 	581 407 346 380 55	35, 700 24, 200 21, 300 22, 600 3, 380 243, 000

FALLS CREEK AT NICKEL, NEAR CHICHAGOF.

LOCATION.—One-eighth mile above beach, on stream that enters tidewater half a mile northeast of camp of Alaska Nickel Mines Co., 20 miles by water northwest of Chichagof, on west coast of Chichagof Island.

Drainage area.—Not measured.

RECORDS AVAILABLE.—May 6, 1918, to June 13, 1920.

GAGE.—Stevens water-stage recorder on left bank one-eighth mile above beach.

DISCHARGE MEASUREMENTS.—At medium and high stages, made from cable across stream 500 feet above gage; at low stages, made by wading in channel exposed at beach at low tide.

Channel and control.—The gage is 20 feet upstream from rectangular weir, the crest of which is 2 feet above bed of stream, 2 inches wide, and 40 feet long. At the cable section the bed is smooth, the water is deep, and the current is regular and sluggish.

EXTREMES OF DISCHARGE.—1918-1920: Maximum stage recorded during period, 3.45 feet at 3 p. m. September 26, 1918 (discharge, 665 second-feet); minimum stage recorded, 0.18 foot March 12, 1919 (discharge, 3.2 second-feet).

ICE.—Stage-discharge relation affected by ice forming on crest of weir for short periods during extremely cold weather.

Accuracy.—Stage-discharge relation changed February 17, 1920, when the river was disturbed by ice, the average elevation of crest of weir being raised about 0.11 foot. Rating curves used before and after the change fairly well defined between 30 and 100 second-feet; extended beyond those limits by use of formula the coefficient for which was based on results of current-meter measurements. Operation of water-stage recorder satisfactory except for periods shown in footnote to daily-discharge table. Daily discharge ascertained by applying to rating table mean daily gage height obtained by inspection of gage-height graph or for days of considerable variation in stage by averaging discharge for intervals of the day. Records fair.

COOPERATION.—Station maintained in cooperation with the Alaska Nickel Mines Co.

The following discharge measurement was made by G. H. Canfield: June 14, 1920: Gage-height, 0.66 foot; discharge, 45 second-feet.

Daily discharge, in second-feet, of Falls Creek at Nickel for the period May 6, 1918, to June 13, 1920.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1918. 1. 2. 3. 4. 5.						115 95 83 76 76	106 83 71 63 56	49 44 40 37 35	215 120 62 44 39	52 50 70 72 61	128 88 66 85 465	235 179 115 85 74
6 7 8 9 10					120 92 85 84 85	81 90 102 104 94	49 46 43 41 38	42 58 50 54 42	34 31 28 · 79 60	52 58 50 56 41	358 191 115 81 62	101 62 51 47 41
11 12 13 14 15					95 101 101 100 92	96 94 85 79 76	57 60 50 44 40	39 37 52 100 68	50 44 41 37 50	39 96 85 120 86	66 86 68 62 50	37 34 30 31 29
16. 17. 18. 19. 20.					86 78 79 71 62	68 62 58 54 54 58	37 35 32 30 30	68 92 72 68 72	62 174 235 156 100	68 86 101 75 72	49 43 35 31 47	58 68 60 52 43
21. 22. 23. 24. 25.			Total and		68 62 62 62 62 66	56 51 50 57 63	28 26 25 25 24	109 137 162 217 181	72 56 94 68 166	65 52 49 56 52	68 79 82	143 137 156 117 130
26. 27. 28. 29. 30.					70 71 203 258 197 164	66 68 68 115 162	23 35 54 39 44 57	128 104 150 156 360 408	414 271 150 96 66	115 86 156 134 152 137		115 82 62 54 46 41

v.

330 940

....

of ic

f

Daily discharge, in second-feet, of Falls Creek at Nickel for the period May 6, 1918, to June 13, 1920—Continued.

										ahit	arol ta	derec	
ods D	Day.	Jan.	Feb.	Mar	. Apr	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4	919.	118			99	31	40 46 49 47 46	23 22 26 30 30	15 14 14 14 14 20	60 41 32 26 20	37 241 420 345 345	42 29 24 21 17	17 15 15 16 23
7		209	25	11 15 13 23 16	2 48 3 4 3 4	8	44 41 37 37 36	42 39 36 39 57	16 14 34 56 44	17 17 15 96 96	465 278 141 82 81	14 13 18 13 11	44 27 25 50 52
12 13 14		68 56 50	22 23 27	13	30 30 30	0	36 36 39 41 41	60 57 72 72 72 57		62 197 458 267 128	58 48 43 35 28	11 13 43 30 47	39 28 22 14 34
16 17 18 19 20		37			24 31 4' 50	8 7 63 6 83	37 35 34 35 39	46 41 42 38 40	60 50 62 120 112	89 134 156 96 82	34 31 52 50 135	51 89 183 145 175	122
23 24			. 24 . 23 . 17 . 14 . 14	A.210	55 	$\begin{bmatrix} 6 & 74 \\ 60 & 62 \end{bmatrix}$	39 39 39 37 35	42	68 50 39 34 24	206 118 101 278 195	114 72 52 43 36	102 71 50 38 30	
26 27 28 29 30 31	1	. Inferi	10 10 10		21. 20.		31 29 29 27 25	18 16 15 15	20 37 56 92 101 86	109 68 68 56 46	38 41 35 36 104 50	26 24 23 24 19	46 39 145
Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	Day.	Jan.	Feb.	Mar.	Apr.	May.	June.
1920. 1 2 3 4 5	227 221 143 89 117		25 24 19 20 20	21 21 20 20 20 23	58 57 57 66 60	75 78 89 101 96	1920. 16 17 18 19 20	35 35 34	205 211 150 92 65	38 30 28 28 28 25		225 166 146 101 75	
6 7 8 9 10	258 570 342 175 120	0 146 112 146	20 20 20 19 22	23 22 21 21 23	46 44 41 37 35	90 81 75 79 75	21 22 23 24 25		58 54 51 44 43	23 20 19 18 18		65 60 56 55 55	
11 12 13 14 15	78 56 56 50 40	175 137 128 109 109	38 42 32 32 27	42 28	39 48 50 51 89	60 55 44	26 27 28 29 30 31		38 34 30 28	18 20 25 25 23 22	89 107 83 72 65	56 65 68 72 72 72 75	

Note.—Discharge for following periods when gage did not operate satisfactorily estimated by comparison with records of Porcupine Creek near Nickel: Nov. 24-30, 1918, 87 second-feet; Jan. 18-31, 1919, 30 second-feet; Feb. 1-8, 27 second-feet; Mar. 13-19, 10 second-feet; Mar. 20-31, 28 second-feet; Apr. 1-3, 50 second-feet; Apr. 28-30, 125 second-feet; May 1-3, 65 second-feet; May 5-17, 55 second-feet; July 22-27, 30 second-feet; Aug. 11-15, 46 second-feet; Dec. 17-28, 77 second-feet; Apr. 13-25, 1920, 34 second-feet. Discharge for following periods estimated because stage-discharge relation was affected by ice: Feb. 10 and Feb. 27 to Mar. 4, 1919, Jan. 14, 15; Mar. 5-8, and Mar. 27 to Apr. 8, 1920, as shown in table; Jan. 19-31, 1920, 26 second-feet and Feb. 1-7, 85 second-feet.

Monthly discharge of Falls Creek at Nickel for the period May 6, 1918, to June 13, 1920.

	-			an an	Bush or an area	1			1
	Dischar	geinseco	ond-feet.	Run-off	NEW TOTAL MEN	Dischar	geinseco	ond-feet.	Run-off
Month.	Maxi- mum.	Mini- mum.	Mean.	in acre-	Month.	Maxi- mum.	Mini- mum.	Mean.	in acre-
1918.	070		101	£ 910	1919.	72	15	37.3	2, 290
May 6-31	258 162	62 50	101 80. 1	5, 210 4, 770	JulyAugust	120	14	47.8	2, 940
June. July	102	23	44. 9	2, 760	September	458	15	1111	6, 600
August	408	35	104	6, 400	October	465	28	115	7, 070
September	414	28	104	6, 190	November	183	11	46. 5	2, 770
-prompor	000	28	001		December		14	54.7	2, 770 3, 360
October	156	39	78.8	4,850					
November	465	31	103	6, 130	The year	465	6	57.3	41, 500
December	235	30	81.1	4, 990					
161 - 161	101				1920.		Total and		* 000
The period.				41, 300	January	570		96.3	5, 920
1010					February		28	95. 2	5, 480
1919.	229		66, 3	4.000	March	42 107	18	24. 5 38. 1	1, 510 2, 270
January	229	10	24. 2	4, 080 1, 340	April	225	35	70.6	4, 340
February March		6	17. 5	1, 080	June 1-13	101	44	76. 8	1, 980
April	211	24	67. 0	3, 990	buno 1 10	101	- 11	.0.0	1,000
May.	127	21	60. 7	3, 730	The period.			7	21, 500
June	49	25	37. 5	2, 230	Ziio poriodi				101
121 10 1 25	100	1 811	87	201				111111111111111111111111111111111111111	20

PORCUPINE CREEK NEAR NICKEL.

LOCATION.—Half a mile above beach, on stream that enters tidewater at head of Porcupine Harbor, 4 miles northwest of camp of Alaska Nickel Mines Co., which is 20 miles by water northwest of Chichagof, on west coast of Chichagof Island.

Drainage area.—Not measured.

Dec.

122

....

46

145

ne.

...

et; et;

RECORDS AVAILABLE.—May 20, 1918, to August 22, 1920.

Gage.—Stevens water-stage recorder on left bank of stream half a mile above beach. DISCHARGE MEASUREMENTS.—At medium and high stages, made from cable across

stream 150 feet above gage; at low stages, made by wading near control.

CHANNEL AND CONTROL.—The gage is located at edge of deep pool formed by contraction of channel where stream passes over exposed bedrock and descends in a series of small falls. The head of these falls forms a well-defined and permanent control. At the cable section the bed is rough, the water is deep, and the current is sluggish and irregular, because 15 feet above cable the stream widens into a small lake.

Extremes of discharge.—1918-1290: Maximum stage during period from waterstage recorder, 4.25 feet at 11 p. m. January 7, 1920 (discharge, from extension of rating curve, 1,180 second-feet); minimum stage, 0.37 foot March 19 and 28, 1919 (discharge, 24 second-feet).

ICE.—Stage-discharge relation not seriously affected by ice.

Accuracy.—Stage-discharge relation practically permanent. Rating curve fairly well defined between 30 and 200 second-feet; extended beyond these limits. Operation of water-stage recorder satisfactory except for periods indicated in footnote to daily discharge table. Daily discharge ascertained by applying to rating table mean daily gage heights obtained by inspection of gage-height graph, or, for days of considerable fluctuation, by averaging discharge for intervals of the day. Records fair.

The following discharge measurement was made by G. H. Canfield: June 13, 1920: Gage height, 1.24 feet; discharge, 84 second-feet.

Daily discharge, in second-feet, of Porcupine Creek near Nickel for the period May 21, 1918, to Aug. 21, 1920.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1918. 1. 2. 3. 4. 5.	. intuin	Number				191 171 157 147 139	139 132 126 120 113	75 65 60 60 65	305 228 183 155 136	157 140 143 143 133	181 162 140 130 365	
6						139 139 145 147 143	106 104 100 96 94	67 75 78 76 74	122 109 99 93 106	123 118 117 110 103	658 465 320 240 185	
11						143 140 133 131 129	98 100 95 90 88	71 76 94 90 90	101 100 94 88 82	98 114 122 130 127	161 152 137 129 120	
16. 17. 18. 19.		.101				123 118 114 109 108	86 83 81 78 76	103 103 99 103 113	92 126 175 175 175 154	120 120 133 129 123	113 104 94 88 90	
21					93 92 90 88 88	105 100 98 98 100	73 65 60 60 60	133 148 187 197 185	136 123 129 120 157	117 106 100 100 96	96 110 110 116 117	121 125
26		11101-1		10011	88 89 126 197 224 208	100 100 103 120 147	58 65 75 60 65 80	166 177 195 311 545 445	420 505 338 252 195	109 112 129 140 161 175	136 145 143 179 185	136 125 116 105 99 90
1919. 1	88 108 109 104 110	52 50 48 46 44	32 31 31 29 28	43 45 47 46 50	112 104 98 92 89	92 92 94 90 88	75 73 73 75 75	65 64 62 61 62	126 120 109 100 93	145 228 499 626 635	104 103 104 98 98	erG MU
6	152 195 206 197 175	43 42 41 41 42	29 29 30 33 31	53 53 53 53 53 52	89 90 92 95 94	86 84 82 80 80	77 81 81 82 85	62 52 56 67 69	84 80 76 94 113	650 500 400 355 285	92 86 74 81 79	
11. 12. 13. 14. 15.	159 140 126 120 109	41 40 39 39 39	30 30 29 28 26	52 53 53 53 53 52	92 90 89 92 99	79 79 78 78 78 79	96 98 105 112 110	69 67 76 86 84	103 120 445 537 362	222 181 155 142 132	73 70 77 74 79	
16	99 92 84 78 74	38 36 44 48 43	26 26 26 25 27	51 53 54 -58 60	104 101 100 106 126	78 78 78 78 78 79	108 104 101 98 95	95 92 90 117 126	272 252 305 252 206	121 113 110 109 136	79 93 122 140 161	118 112 108
21. 22. 23. 24. 25.	74 72 67 64 64	42 40 40 38 36	32 30 29 28 27	62 62 64 64 87	126 123 118 114 118	81 81 83 83 83	95 94 89 87 82	121 113 104 96 88	305 252 240 368 425	159 162 137 121 117	157 148 191	108 114 117 137 150
26. 27. 28. 29. 30. 31.	58 60 58 58 56 54	35 34 33	26 26 25 27 30 39	109 133 132 125 118	116 110 105 103 95 90	81 80 79 79 77	79 76 73 70 68 66	84 86 94 108 126 133	305 235 208 191 157	103 99 96 93 118 106		177 171 155 142 127 142

WATER-POWER INVESTIGATIONS IN SOUTHEASTERN ALASKA. 101

Daily discharge, in second-feet, of Porcupine Creek near Nickel for the period May 21, 1918, to Aug. 21, 1920—Continued.

18,

3.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.
Palin 12 , extel aggint or, foliag bus u	etate	Batross	11397	der fret	VLT TO	109.89	DOLAT	TÚ ,
1920.	217		70	35	57	81	92	59
2	245		68	35	55	86	90	58
4	265		66	36	53	93	93	62
5	222 210		64 62	38 42	53 56	94 93	92 88	68 120
	E HOTE	Zioi .	02	42	30	30	00	120
6	266	80	62	41	59	90	87	126
	912	74	58	40	58	94	83	123
9	930 590	85 81	60 58	40 39	58 60	98	81 81	129 129
10	408	112	52	38	64	96	78	121
igh stages, made from cable across	luis.	mil	m 1/	9000	B M MAIN	THE MOUNT	MAN.	HOSTE
12	296 235	125 122	55 54	37 39	67 64	93 89	74 70	157 162
13	206	123	50	42	64	92	73	162
14	175	123	50	44	66	94	69	154
15	157	129	52	43	64	88	67	143
16	awad	147	52	45	61	92	63	137
17		175	49	43	63	90	64	125
IS BEEFE OWN TO JOOR AN 1000 AN RUE		185	52	43	64	87	61	113
19 20		157	50	47	68	88	58	127
20		140	48	48	71	86	56	133
21	EDEN 150	122	48	49	72	87	55	143
22 N		113	48	49	71	83	54	
		104	43	51	72 73	86	54	
25		98 89	44 44	52 50	80	83 79	54 54	
***************************************				ZULE				
26		85	41	49	80	74	51	
00		79 75	42 41	50 51	79 81	77	47 54	
29		71	39	55	79	80	55	
30.			38	56	80	83	50	
31			36	I VERI	80	Joot-h	53	61

Note.—Discharge for following periods estimated because of unsatisfactory operation of water-stage recorder, by comparison with records of flow for near-by streams: July 22 to Aug. 4, 1918, as shown in table; Dec. 1-23, 135 second-feet; May 10-12, July 26-30, and Oct. 6-8, 1919, as shown in table; Nov. 24-30, 53 second-feet; Dec. 1-17, 71 second-feet; Jan. 16-31, 1920, 80 second-feet; discharge for following periods estimated because stage-discharge relation was affected by ice: Feb. 25 and Mar. 12, 1919, Mar. 1-6, and Mar. 28 to Apr. 4, 1920, as shown in table; Feb. 1-5, 1920, 50 second-feet.

Monthly discharge of Porcupine Creek near Nickel for the period May 21, 1918, to Aug. 21, 1920.

	Dischar	ge in seco	ond-feet.	Run-off	rd and for disc	Dischar	ge in seco	ond-feet.	Run-off
Month.	Maxi- mum.	Mini- mum.	Mean.	in acre- feet.	Month.	Maxi- mum.	Mini- mum.	Mean.	in acre-
1918. May 21–31. June. July. August. September. October November. December	224 191 139 545 505 175 658	88 98 58 60 82 96 88	126 128 87. 9 140 170 124 179 130	2, 750 7, 620 5, 400 8, 610 10, 100 7, 620 10, 700 7, 990	1919. August September October November December The year	133 537 650 650	52 76 93 25	86. 3 218 228 91. 8 99. 5	5, 310 13, 000 14, 000 5, 460 6, 120 74, 800
The period. 1919. January. February. March April May June. July.	206 52 39 133 126 94 112	54 33 25 43 89 77 66	104 41, 2 28, 9 66, 3 102 82, 0 86, 5	60, 800 6, 400 2, 290 1, 780 3, 950 6, 270 4, 880 5, 320	January February March April May June July August 1–21 The period.	930 185 70 56 81 100 93 162	36 35 53 74 47 58	213 102 51. 5 44. 2 66. 8 87. 8 67. 8 121	13, 100 5, 870 3, 170 2, 630 4, 110 5, 220 4, 170 5, 040 43, 300

GEOLOGII S

SWEETHEART FALLS CREEK NEAR SNETTISHAM.

LOCATION.—In latitude 57° 56½′ N., longitude 133° 41′ W., on east shore 1 mile from head of south arm of Port Snettisham, 3 miles south of mouth of Whiting River, 7 miles by water from Snettisham, and 42 miles by water from Juneau. No large tributaries enter river between gaging station and outlet of large lake, 2½ miles upstream.

Drainage area.—27 square miles (measured on United States Geological Survey topographic map of the Juneau gold belt, edition of 1905).

1. 2. 3. 4. 5.

6. 7. 8. 9. 10.

RECORDS AVAILABLE.—July 31, 1915, to March 31, 1917; May 21, 1918, to December 31, 1920.

GAGE.—Stevens water-stage recorder on right bank, 300 feet upstream from tidewater on east shore of Port Snettisham.

DISCHARGE MEASUREMENTS.—At medium and high stages, made from cable across river one-fourth mile upstream from gage; at low stages, made by wading in channel at mouth of creek exposed at low tide.

Channel and control.—From the outlet of the lake at an elevation of 520 feet above sea level and 2½ miles from tidewater the water descends in a series of rapids and falls through a narrow, deep canyon. Gage is in a pool at foot of two falls, each 25 feet high, which are known as Sweetheart Falls; outlet of pool is a natural rock weir, which forms a well-defined and permanent control for gage.

EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 4.7 feet, at 10 a.m. August 6 (discharge computed from an extension of rating curve, 1,620 second-feet); minimum stage, 0.15 foot, April 10 (discharge, 28 second-feet).

1915–1920: Maximum stage recorded, 7.15 feet at midnight, September 26, 1918 (discharge computed from an extension of the rating curve, 2,880 second-feet); minimum discharge, estimated by current-meter measurement and climatic data, 15 second-feet, February 11, 1916.

Ice.—Stage-discharge affected by ice, April 5-7 and December 14-19.

Accuracy.—Stage-discharge relation permanent. Rating curve well defined between 40 and 1,300 second-feet; extended beyond these limits by estimation. Operation of water-stage recorder satisfactory except for periods indicated in footnote to daily-discharge table. Daily discharge ascertained by applying to rating table mean daily gage heights determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging results obtained by applying to rating table gage heights for regular intervals of day. Records excellent, except for period of break in record and for discharge above 1,300 second-feet, for which they are fair.

The only maps available, showing the lake and the drainage basin of this stream, are sheets 11 and 12 (scale 1:160,000) of the Alaska Boundary Tribunal, edition of 1895; topographic map of the Juneau gold belt (scale 1:250,000), United States Geological Survey, edition of 1905 (topography compiled from sheets of the Alaska Boundary Tribunal). From these maps, the following determinations have been made: Area of drainage basin above gaging station, 27 square miles, and above outlet of lake, 26 square miles; area of lake, 1,500 acres; distance from lake outlet to tidewater, 1½ miles. The elevation of lake above high tide, measured by aneroid barometer, is 520 feet. An unpublished map of part of Port Snettisham (scale 1:31,680), made in 1920 by the United States Geological Survey in cooperation with the United States Forest Service, shows the topography, by a 100-foot contour interval, from the shore to a point about half a mile from outlet of lake.

The following discharge measurement was made by G. H. Canfield: October 7, 1920: Gage height, 101 feet; discharge, 178 second-feet.

Daily discharge, in second-feet, of Sweetheart Falls Creek near Snettisham for 1920.

ge es

er er ss in ve dhk

0.0

8

n e

e

r

f

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1 2 3 4 5	159 249 428 351 264	58 58 58 74 113	47 44 43 41 40	37	133 137 144 146 144	565 645 705 785 845	865 805 685 605 625	470 442 432 470 846	805 685 645 765 665	765 505 418 321 255	785 1,150 1,040 705 505	79 72 67 67 64
6. 7. 8. 9.	240 628 1,040 725 470	121 119 102 96 92	47 53 44 39 40	35 34 32 29 28	135 131 121 115 113	845 765 725 685 665	645 665 705 745 765	1,530 1,350 1,240 845 565	505 765 1,190 945 645	205 166 183 505 470	685 545 407 312 243	58 57 53 49 46
11. 12. 13. 14. 15.	348 258 202 183 152	125 108 90 78 79	42 53 52 48 44	37 52 50 44 41	125 183 199 191 210	605 565 545 545 585	725 705 665 625 625	922 1,330 1,330 1,080 745	435 330 261 210 183	365 300 276 249 219	196 155 129 113 106	42 40 39 38 38
16. 17. 18. 19.	131	88 146 109 178 150	40 41 38 36 33	39 38 38 38 37	318 318 340 309 273	605 565 565 505 452	625 585 545 525 505	505 400 330 324 340	164 148 137 152 150	183 155 131 117 148	95 85 80 74 79	38 38 38 38 37
21 22 23 24 25	rideri Serider Noted	123 98 85 73 67	32	37 37 36 37 47	249 249 261 279 282	424 585 605 505 460	470 452 418 372 348	418 435 365 306 255	137 129 123 111 113	228 231 382 414 321	80 78 76 74 72	36 33 30 29 29
26. 27. 28. 29. 30.		60 57 54 50	10013 10010 10010 10010	85 119 131 135 133	282 297 334 386 452 505	505 565 625 745 865	358 386 386 382 382 418	300 585 505 393 315 452	98 90 159 682 1,120	288 625 625 452 545 777	72 64 73 88 88	30 82 127 90 70 90

Note.—Discharge for following periods estimated, because of ice or unsatisfactory operation of water-stage recorder, by comparison with climatic data for Juneau and hydrographs for streams in near-by drainage basins: Jan. 17-31, 80 second-feet; Mar. 22-31, 32 second-feet; Apr. 1-4, 30 second-feet; Feb. 1, 2, Apr. 5-7, Dec. 14-19, and Dec. 29-31, daily discharge.

Monthly discharge of Sweetheart Falls Creek near Snettisham, for 1920.

Gluni garrer o	Dischar	geinseco	ond-feet.	Run-off in acre- feet.	Month.	Dischar	ge in sec	ond-feet.	Run-off in acre- feet.
Month.	Maxi- mum.	Mini- mum.	Mean.			Maxi- mum.	Mini- mum.	Mean.	
January February March April May June July	1,040 178 53 135 505 865 865	50 28 113 424 348	227 93. 4 39. 3 50. 9 237 622 568	14,000 5,370 2,420 3,030 14,600 37,000 34,900	August. September October November. December The year	1,530 1,190 777 1,150 127	255 90 117 64 29	640 418 349 275 53. 0	39, 400 24, 900 21, 500 16, 400 3, 260 217,000

CRATER LAKE OUTLET AT SPEEL RIVER, PORT SNETTISHAM.

Location.—At outlet of Crater Lake, 1 mile upstream from edge of tide flats at head of north arm of Port Snettisham, 2 miles by trail from cabins of Speel River project, which are 42 miles by water from Juneau.

Drainage Area.—11.9 square miles above water-stage recorder at lake outlet, and 13 square miles above staff gage at beach (measured on topographic maps of the Alaska Boundary Tribunal, edition of 1895).

Records available.—January 23, 1913, to December 31, 1920.

GAGE.—Stevens water-stage recorder on left shore of lake 100 feet upstream from outlet. A locally made water-stage recorder having a natural vertical scale and a time scale of 7 inches to 24 hours was used until replaced by Stevens gage June 29, 1916. The gage datum remained the same during the period. During the winter, because of inaccessible location and deep snow, the operation of the gage at the lake was discontinued, and the stage read at staff gage in channel exposed at low tide at beach. The first gage at beach was set at an unknown datum and washed out in winter of 1915–16. Another staff gage was set at about the same location November 24, 1916. Other staff gages were set at about the same location January 11 and November 13, 1918.

DISCHARGE MEASUREMENTS.—Made from cable across outlet of lake, 100 feet downstream from gage and 10 feet upstream from crest of first falls. The rope sling from which discharge measurements were first made was replaced in fall of 1915 by a standard United States Geological Survey gaging car, making more reliable measurements possible.

CHANNEL AND CONTROL.—The gage is on left shore of lake, 100 feet upstream from outlet, where the stream becomes constricted into a narrow channel, the bed of which is composed of large boulders and rock outcrops that form a well-defined and permanent control.

EXTREMES OF DISCHARGE.—Maximum stage recorded during the year, 6.75 feet at 2 a. m. August 6 (discharge computed from an extension of rating curve, 2,100 second-feet); minimum discharge, estimated, 10 second-feet about March 31.

1913–1920: Maximum stage occurred probably on September 26, 1918 (discharge estimated at 2,300 second-feet by multiplying maximum discharge at Long River on September 27, 1918, by 0.44, which is the ratio between the maximum discharges of Crater Lake outlet and Long River on August 19 and 20, 1917); minimum discharge, 5.0 second-feet, February 4, 1916, and February 13, 1919.

Acouracy.—Stage-discharge relation permanent. Rating curve well-defined below and extended above 1,000 second-feet. Operation of water-stage recorder satisfactory except for periods indicated by breaks in record as shown in footnote to daily-discharge table. Daily discharge ascertained by applying to rating table daily gage height determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging results obtained by applying to rating table mean gage heights for regular intervals of the day.

Crater Lake is 1,010 feet above sea level and covers 1.1 square miles. The sides of the mountains surrounding the lake are steep and barren, and the tops are covered by glaciers.

Discharge measurements of Crater Lake outlet at Port Snettisham during 1920.

[Made by G. H. Canfield.]

Date.	Gage height.	Dis- charge.	Date.	Gage height.	Dis- charge.
Feb. 4	Feet.	Secft. a 12 b 11.5	May 14	Feet. 0. 26 . 48	Secft. b 52 b 52

a Estimated discharge at beach.
 b Estimated inflow between the outlet of Crater Lake and the beach subtracted from the discharge measured at the beach.

WATER-POWER INVESTIGATIONS IN SOUTHEASTERN ALASKA. 105

Daily discharge, in second-feet, of Crater Lake outlet at Speel River, Port Snettisham, for the period Oct. 1919, to Nov. 11, 1920.

from

and a

June g the e gage posed a and same ation

ownsling 1915 iable

from ed of ined

et at 2,100 31. arge iver disini-

elow

e to able conable

s of

ge.

ft. 52 52

as-

The intelligibat to beed me	1	- target	Plint	Harl	- value!	1 Suo.	io del	ino n	TOTAL STATE
Day, qu'odi le anie	Oct.	Nov.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.
1		50 43 33 34		95 103 108 114 118	532 416 327 304 338	517 416 362 443 1,440	251 327 532 594 375	350 212 171 125 93	251 402 350 221 153
6. 7. 8. 9.	282 194		1170111	121 122 125 126 127	388 429 472 502 502	1,720 1,230 610 402 304	350 675 798 798 280	74 62 151 304 217	241 186 126 98 78
11. 12. 13. 14. 15.	139 116 98 82 70	totedo organi olivita	001 er	130 131 132 134 135	502 472 443 443 443	1,080 1,090 762 502 338	186 138 115 101 95	150 120 108 94 78	62
16	63 62 67 100 246	56 194 241 221		136 138 140 142 143	472 443 402 402 388	259 221 219 302 375	98 90 98 142 122	64 52 43 40 55	
21 22 23 24 25	338 203 132 98 78	251 161 108 78 60	64 66 68	146 146 161 180 198	388 375 327 293 293	532 429 304 221 178	100 89 81 74 67	78 79 122 126 98	
26 27 28 29 30 31	66 63 62 55 55 55	49	68 70 75 78 84 90	241 304 362 472 594	327 362 362 375 388 472	287 762 472 282 208 223	61 54 79 472 626	108 327 251 158 203 231	201 201

Note.—Discharge for following periods estimated, because of ice or unsatisfactory operation of water-stage recorder, by comparison with hydrograph and record of flow for Sweetheart Falls Creek: Oct. 1–8, 1919, 470 second-feet; Nov. 5–16, 22 second-feet; Nov. 27–30, 40 second-feet; Dec. 1–31, 45 second-feet; Jan. 1–31, 1920, 100 second-feet; Feb. 1–29, 35 second-feet; Mar. 1–31, 16 second-feet; Apr. 30, 20 second-feet; and May 1–22, 45 second-feet; June 24 and Aug. 6–10, daily discharge. Figures for October, November, and December, 1919, supersede those published in previous report.

Monthly discharge of Crater Lake outlet at Speel River, Port Snettisham, for the period Oct. 1, 1919, to Nov. 11, 1920.

equare miles.	Dischar	ge in seco	nd-feet.	Run-off in acre- feet.	Moreon spain above the	Dischar	Run-off		
Month.	Maxi- mum.	Mini- mum.	Mean.		Month.	Maxi-	Mini- mum.	Mean.	in acrefeet.
October November December	251	52	209 67 45	12,900 3,990 2,770 19,700	April. May. June. July. August.	594 532 1,720	95 293 178	20 53. 4 177 406 532	1,190 3,280 10,500 25,000 32,700
January February March			100 35 16	6,150 2,010 984	September October. November 1-11 The period	798 350 402	54 40 62	262 140 197	15,600 8,610 4,300 110,000

Note.—Figures for October, November, and December, 1919, supersede those published in previous report.

LONG RIVER BELOW SECOND LAKE, AT PORT SNETTISHAM.

Location.—Half a mile downstream from outlet of Second Lake, 1 mile downstream from outlet of Long Lake, half a mile upstream from head of Indian Lake; 2½ miles by trail and boat across Second Lake from cabins of the Speel River project at head of the North Arm of Port Snettisham, 45 miles by water from Juneau.

Drainage area.—33.2 square miles (measured on sheet No. 12 of the Alaska Boundary Tribunal maps, edition of 1895).

RECORDS AVAILABLE.—November 11, 1915, to December 31, 1920.

GAGE.—Stevens continuous water-stage recorder on right bank half a mile below outlet of Second Lake.

DISCHARGE MEASUREMENTS.—At medium and high stages made from cable across river at gage; at low stages made by wading one-fourth mile downstream.

CHANNEL AND CONTROL.—At the gage the channel is deep and the current sluggish; banks are low and are overflowed at extremely high stages; bed smooth except for one large boulder. A rapid, 500 feet downstream, forms a well-defined and permanent control.

EXTREMES OF DISCHARGE.—Maximum stage during year, 9.2 feet at about 5 a.m. August 6 (discharge, estimated from extension of rating curve, 4,300 secondfeet); minimum discharge, estimated, 30 second-feet, April 9-10. 1916-1920: Maximum stage, 10.2 feet September 27, 1918 (discharge, estimated from extension of rating curve, 5,300 second-feet); minimum discharge, 23 second-feet, February 13, 1916.

222

ICE.—Stage-discharge relation affected by ice during January, February, March, April, and December.

Accuracy.—Stage-discharge relation permanent; affected by ice or poor connection between well and river January 1 to February 8, March 23 to May 15, and November 29 to December 31. Rating curve fairly well defined between 50 and 400 second-feet and well defined between 400 and 2,000 second-feet. Operation of water-stage recorder satisfactory except for periods indicated in footnote to daily discharge table. Daily discharge ascertained by applying to the rating table daily gage heights determined by inspecting the gage-height graph. Records good, except for stages below 400 second-feet and for periods of break in record, for which they are fair.

Long Lake is at an elevation of 803 feet above sea level, is 2,000 acres in area, and is about 2 miles, by line of possible water conduit, from tidewater at cabins of the Speel

The area of the drainage basin above the outlet of Long Lake is 31.9 square miles. The area draining to Long River between the outlet of Long Lake and this station comprises only 1.3 square miles, including First Lake and Second Lake. Because this area is at a low altitude and has no glaciers the run-off per square mile from it is greater early in the spring but much less in summer than that from the area above Long Lake, which is partly covered by glaciers.

Discharge measurements of Long River below Second Lake, at Port Snettisham, during 1920.

[Made by G. H. Canfield.]

Date.	Gage height.	Dis- charge.	Date.	Gage height.	Dis- charge.
Apr. 6	Feet. a 0.84	Secfeet. 38 140	Nov. 11	Feet. 1.71	Secfeet. 181

a River partly frozen over at control.

WATER-POWER INVESTIGATIONS IN SOUTHEASTERN ALASKA. 107

Daily discharge, in second-feet, of Long River below Second Lake, at Port Snettisham, for 1920.

Thedelies told tong gedent to	en Pos	pertico	iniet.	TEXTEL	10 930	na na	on ner	-3401	TADOM
Day.	Feb.	Mar.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.
1	50 50 55 60 100	51 50 49 48 48		465 512 582 620 680	900 800 750 700 760	998 930 840 908 2,360	740 840 1,160 1,310 998	1,040 740 582 426 330	620 1,190 952 600 468
6	160 130 110 93 108	48 46 45 44 42		680 640 600 600 600	820 908 1,020 1,060 1,110	3,760 2,340 1,510 1,090 885	885 1,490 1,690 1,240 840	239 194 337 565 468	582 487 357 264 202
11 12 13 14 15	180 120 89 81 82	45 50 54 50 50		582 565 530 530 548	1,110 1,110 1,060 1,060 1,060	1,900 2,480 1,780 1,310 975	600 468 387 339 301	375 339 341 293 239	173 157 138 123 113
16. 17. 18. 19. 20.	95 204 204 134 98	48 47 46 49 45	390 325 354 312 295	565 548 600 565 523	1,090 1,040 998 975 952	780 660 620 740 840	331 295 351 402 314	181 149 130 117 220	105 101 98 86 94
21 22 23 24 25	77 68 63 62 58	45 45	298 339 341 325 301	471 600 548 465 426	930 908 820 740 700	1,130 1,020 800 640 530	262 234 211 190 177	357 312 435 282 220	95 94 92 91 89
26	56 54 53 52		298 325 334 354 390 420	465 530 800 750 800	760 820 820 862 885 930	756 1,380 1,110 800 620 660	166 152 306 1,090 1,460	259 620 548 414 540 523	88 87 89 110 110

Note.—Discharge estimated for following periods, because stage-discharge relation was affected by ice or obstructed connection between well and river, or because of unsatisfactory operation of water-stage recorder, by comparison with climatic data at Juneau and by hydrographs and records of flow for streams in near-by drainage basins: Jan. 1-31, 180 second-feet; Feb. 1-8, daily discharge; Mar. 23-31, 41 second-feet; Apr. 1-30, 52 second-feet; May 1-15, 125 second-feet; June 28 to July 3, Oct. 5, Nov. 29 and 30, daily discharge; Dec. 1-31, 60 second-feet.

Monthly discharge of Long River below Second Lake, at Port Snettisham, for 1920.

Want	Dischar	ge insec	ond-feet.	Run-off in acre- feet.	D-vel obeich	Dischar	Run-off		
Month.	Maxi- mum.	Mini- mum.	Mean.		Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.
January February March April May	204 51 420	50	180 94.7 45.6 52 235	11,100 5,450 2,800 3,090 14,400	August September October November December	3,760 1,690 1,040 1,190	530 152 117 86	1,200 641 381 262 60	73,800 38,100 23,400 15,600 3,690
June. July	800 1,110	426 700	580 918	34, 500 56, 400	The year	3,760		389	282,000

GRINDSTONE CREEK AT TAKU INLET.

LOCATION.—On north shore of Taku Inlet, between Point Bishop and Point Salisbury, one-fourth mile west of mouth of Rhine Creek and 11 miles by water from Juneau.

Drainage area. —3.6 square miles (measured on general map of vicinity of Juneau prepared by Alaska Gastineau Mining Co., edition of 1916).

RECORDS AVAILABLE.—May 6, 1916, to December 31, 1920.

GAGE.—Stevens continuous water-stage recorder on left bank, 200 feet from tidewater, installed September 16, 1916. A Lietz seven-day graph water-stage recorder was used May 6 to June 17, 1916.

DISCHARGE MEASUREMENTS .-- At all stages made by wading either in the channel on the beach, which is exposed at low tide, or 100 feet below gage at high tide.

CHANNEL AND CONTROL.—For a distance of one-fourth mile from tidewater the stream descends in a series of rapids and falls through a narrow, rocky channel. The gage is at upper end of a turbulent pool between two falls, the lower of which forms a well-defined control. When gage was installed, logs were jammed in channel near upper end of pool.

EXTREMES OF DISCHARGE.—Maximum stage during year from water-stage recorder, 3.4 feet at 4 a. m., August 6 (discharge, from extension of rating curve, 317 secondfeet); minimum discharge estimated by comparison with hydrographs for streams in near-by drainage basins, 3.5 second-feet, April 6, December 24 and 25.

1916-1920: Maximum stage, 6 feet at 7 p. m. September 26, 1918 (discharge, estimated from an extension of the rating curve, 700 second-feet); minimum stage, -0.24 foot April 5-7, 1918 (discharge, 2.6 second-feet).

11112 22222 2233

ICE.—Stage-discharge relation sometimes affected by ice.

Accuracy.—Stage-discharge relation permanent. Rating curve fairly well defined below 150 second-feet; extended above 150 second-feet by estimation. Operation of water-stage recorder satisfactory except for periods shown in the footnote to daily-discharge table. Discharge ascertained by applying to rating table mean daily gage heights determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging results obtained by applying to rating table mean gage heights for regular intervals of day. Records fair, except those for periods of break in record and discharge above 150 second-feet, which are poor.

Discharge measurements of Grindstone Creek at Taku Inlet during 1920.

[Made by G. H. Canfield.]

Date.	Gage height.	Dis- charge.	Date.	Gage height.	Dis- charge.
Apr. 5	Feet0.04 1.17 1.23	Secft. 3.9 55 64	Oct. 4	Feet. 0.74 .81	Secft. 28 30

WATER-POWER INVESTIGATIONS IN SOUTHEASTERN ALASKA. 109

Daily discharge, in second-feet, of Grindstone Creek at Taku Inlet for 1920.

ry, au.

er, ler

on

he ch in

er,
d-

ge, m

ed a-

te an ys ng se r.

28 30

_		,					1			,	,	
Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	17 24 22 17 16	6 5 5 8 12	7. 5 7. 0 6. 3 7. 8 7. 9	4. 4 4. 2 4. 1 4. 0 3. 9	21 24 24 20 19	67 84 97 91 102	120 92 77 72 72	48 34 38 43 174	24 24 32 24 24	35 30 25 22 21	63 66 57 47 42	13 -12 12 12 12 12
6. 7. 8. 9. 10.	21 83 49 26 21	15 14 11 11 11 12	8. 0 8. 0 8. 0 6. 9 6. 8	3. 5 3. 6 3. 7 3. 7 3. 7	18 18 16 16 17	92 80 77 77 77 75	72 72 72 70 67	168 80 55 45 41	40 73 81 52 43	19 18 21 29 26	48 40 33 31 27	11 11 10 8.4
11 12 13 14 15	 H	15 11 10 12 13	7. 2 7. 2 6. 4 6. 3 5. 9	7.5 12 8.1 6.2 5.8	21 25 35 35 45	72 72 68 70 77	60 59 50 49 48	102 65 55 46 41	36 31 26 24 22	24 22 24 29 24	24 22 20 19 19	
16. 17. 18. 19. 20.		20 32 24 16 14	5. 9 5. 8 5. 8 5. 6 5. 4	5. 7 5. 4 6. 0 7. 2 7. 5	60 50 40 32 26	77 74 77 66 57	45 45 42 38 34	37 32 39 60 48	24 21 24 24 24 21	22 19 18 17 21	17 17 16 16 16	6
21 22 23 24 25	1.07 1.07 1.00	12 11 10 9.0 9.0	5. 4 5. 1 5. 1 4. 8 4. 8	7. 8 7. 8 8. 4 9. 2 16	26 34 36 36 37	55 74 72 61 55	32 30 26 24 26	67 44 38 32 29	20 19 19 19 19	21 23 24 22 20	16 15 14 14 14	0.,
26	10111111	8. 7 8. 4 8. 2 8. 2	5. 2 5. 0 5. 0 4. 6 4. 5 4. 5	45 62 34 25 20	41 49 55 62 68 72	82 92 88 133 186	26 30 30 28 26 60	38 39 31 26 24 25	17 16 40 60 45	28 49 35 30 61 49	14 13 15 15 15 13	

Note.—Discharge estimated for following periods, because stage-discharge relation was affected by ice or water-stage recorder was not operating: Jan. 12-31 (10 second-feet), Feb. 1-5, Mar. 4-8, and Mar. 30 to Apr. 10, by comparison with hydrographs of streams in near-by drainage basins and climatic data for Juneau; May 12-18, from maximum and minimum stages indicated by recorder and comparison with record of flow for Sheep Creek; Aug. 16-20, from gage-height graph drawn by comparison with that for Sheep Creek; Sept. 27 to Oct. 3 (daily discharge) and Dec. 10-31 (6.3 second-feet), from maximum and minimum stages indicated by recorder and comparison with records of flow for Sheep Creek and Sweetheart Falls.

Monthly discharge of Grindstone Creek at Taku Inlet for 1920.

lavare sale a lo	Dischar	geinseco	ond-feet.	D 6	s about 2 miles	Dischar	Run-off		
Month.	Maxi- mum.	Mini- mum.	Mean.	Run-off in acre- feet.	Month.	Maxi- mum.	Mini- mum.	Mean.	in acre-
January February March April May June. July	83 32 8. 0 62 72 186 120	5. 0 4. 5 3. 5 16 55 24	16. 6 12. 1 6. 12 11. 5 34. 8 81. 7 51. 4	1,020 696 376 684 2,140 4,860 3,160	August September October November December The year	174 81 61 66 13	24 16 17 13 3.5	53. 0 31. 4 26. 7 26. 1 7. 74	3,260 1,870 1,640 1,550 476 21,700

CARLSON CREEK AT SUNNY COVÊ, TAKU INLET.

LOCATION.—At Sunny Cove, on west shore of Taku Inlet, 20 miles by water from Juneau.

Drainage area. -22.26 square miles (determined by engineering department of Alaska Gastineau Mining Co. from surveys made by that company).

RECORDS AVAILABLE.—July 18, 1916, to December 31, 1920.

GAGE.—Stevens water-stage recorder on left bank, 2 miles from tidewater.

DISCHARGE MEASUREMENTS.—At high stages, made from cable across river half a mile downstream from gage; at medium and low stages, made by wading 500 feet upstream from gage.

CHANNEL AND CONTROL.—Above the gage the stream meanders in one main channel and several small channels through a flat, sandy basin about a mile long; just below the gage the channel contracts and the stream passes over rocky falls that form a well-defined and permanent control. The point of zero flow is at gage height -1.5 feet.

EXTREMES OF DISCHARGE.—Maximum stage during year, 7.15 feet at 8 p. m. August 5 (discharge computed from extension of rating curve, 4,950 second-feet); minimum flow, estimated, 12 second-feet, April 3.

1916-1920: Maximum stage, 8.1 feet at 2 p. m. September 26, 1918 (discharge, computed from extension of rating curve, 6,200 second-feet); minimum flow, estimated from climatic data and hydrographs for streams in near-by drainage basins, 10 second-feet, April 1-7, 1918.

ICE.—Stage-discharge relation affected by ice January 1 to about May 1.

Accuracy.—Stage-discharge relation permanent. Rating curve well defined between 70 and 2,000 second-feet, extended below 70 second-feet to point of zero flow and above 2,000 second-feet by estimation. Operation of water-stage recorder satisfactory except for periods of break in record as indicated in footnote to dailydischarge table. Daily discharge ascertained by applying to rating table mean daily gage heights determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging results obtained by applying to rating table mean gage heights for regular intervals of the day. Records good, except for stages below 70 second-feet and above 2,000 second-feet, and for periods of break in record, for which they are fair.

A possible site for a dam is about 2 miles from tidewater at the outlet of a flat gravel basin. The elevation of the stream bed at this point is 350 feet above high tide. A dam 120 feet high would form a reservoir having a storage capacity of 30,000 acre-feet, which is less than half the capacity required to equalize the annual run-off.

Discharge measurements of Carlson Creek at Sunny Cove during 1920.

[Made by G. H. Canfield.]

Date.	Gage height.	Dis- charge.	Date.	Gage height.	Dis- charge.
Feb. 6	Feet.	Secft. a 49 a 15	May 29 Nov. 10	Feet. 1.46 .08	Secft. a 425 130

a Creek frozen over. Measurement made 2 miles below gage, and measured discharge reduced 5 per cent in order to give flow at gage.

WATER-POWER INVESTIGATIONS IN SOUTHEASTERN ALASKA. 111

Daily discharge, in second-feet, of Carlson Creek at Sunny Cove for 1920.

rom

lf a feet

nel just hat age

ni-

ge,

age

en ow ler lyan of ng pt

A t,

30

Di meri	1	and .	Di Din	D 1101	- Invite	prode	1	Jan 1	o bue	10000	1	. VEGIT	- Lood
Day.	June.	July.	Aug.	Sept.	Oct.	Nov.	Day.	June.	July.	Aug.	Sept.	Oct.	Nov.
3 4 5 6	ne ne	882 675 590 658 762 800 882 928 928 928 905	640 470 455 561 3,950 2,090 745 545 396 354	318 500 975 658 425 545 1,690 1,180 485 302	308 250 258 172 124 108 102 337 812 308	390 1,000 545 265 196 396 300 230 175 124	16 17 18 19 20 21 22 23 24 25		780 675 658 640 605 575 485 455 470	320 328 367 590 515 742 390 285 234 210	164 124 164 234 164 144 124 117 117 118	117 98 122 108 176 214 212 396 265 172	osor osor oso
11		860 800 762 762 745	2,440 905 710 545 396	243 196 167 172 188	227 227 247 191 144	108 102	26 27 28 29 30 31	762 820 840 1,080 1,080	545 560 545 545 530 675	586 1,360 560 338 270 421	118 119 714 1,440 515	410 710 396 223 455 340	

Note.—Discharge estimated for following periods from current-meter measurements and by comparison with records of flow for Sweetheart Falls Creek, because stage-discharge relation was affected by ice or water-stage recorder was not operating: Jan. 1–31, 110 second-feet; Feb. 1–28, 42 second-feet; Mar. 1–31, 18 second-feet; Apr. 1–30, 25 second-feet; May 1–31, 240 second-feet; June 1–17, 730 second-feet; Nov. 6–9, as shown in table; Nov. 13–30, 55 second-feet; and Dec. 1–31, 33 second-feet.

Monthly discharge of Carlson Creek at Sunny Cove for 1920.

on to soel sus	Discharge in second-feet.			Run-off	A 3-mot cution	Dischar	Run-off		
Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet. Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefect.	
January February March April May June July	1,080	455	110 42 18 25 240 724 687	6,760 2,420 1,110 1,490 14,800 43,100 42,200	August September October November December The year	3,950 1,690 812 1,000 3,950	210 117 98	733 414 265 161 33 289	45,100 24,600 16,300 9,580 2,030 209,000

SHEEP CREEK NEAR THANE.

LOCATION.—At lower end of flat basin, above diversion dam for flume leading to Treadwell power house at beach and 1 mile by tramway and ore railway from Thane.

Drainage area. -4.57 square miles above gaging bridge (measured on United States Geological Survey map of Juneau and vicinity, edition of 1917).

RECORDS AVAILABLE.—July 26, 1916, to December 31, 1920.

GAGE.—Stevens water-stage recorder on right bank, at pool formed by an artificial control just below small island three-tenths mile upstream from diversion dam. Recorder inspected by an employee of the Alaska Gastineau Mining Co.

DISCHARGE MEASUREMENTS.—At extremely high stages, made from gaging bridge two-tenths mile downstream from gage; at low stages, made by wading near bridge section. No streams enter between gage and measuring section, but seepage inflow ranges from a small amount to 10 per cent of total flow, the percentage of inflow usually being large after periods of heavy precipitation.

CHANNEL AND CONTROL.—The station is near the lower end of a flat basin through which the stream meanders in a channel having low banks and a bed of sand and gravel. An artificial control was built 2 feet below the intake for the gage well, to confine the flow in one channel during high water and to insure a permanent stage-discharge relation. The spillway of the control at low stages consists of a timber, 16 feet long, set in the bed of the stream. During medium and high stages another timber, 8 feet long, bolted at the top near the right end, forms part of the control. A 3-foot cut-off wall is driven at the upstream face of the spillway. There are wing walls at each end, and an 8-foot apron extends downstream from the control.

ICE.—Control covered with ice and snow for short period. Flow passes through gravel bed under and around weir and enters creek again above gaging section onefourth mile downstream.

EXTREMES OF DISCHARGE.—Maximum stage during year, 2.41 feet at 12.30 a.m. August 6 (discharge, 458 second-feet); minimum stage, -0.35 foot, on April 13 and 14 (discharge, 5.6 second-feet).

1916-1920: Maximum stage during period, 3.5 feet, at 2 p. m. September 26, 1918 (discharge, estimated from exténsion of rating curve, 820 second-feet); minimum flow, 1.0 second-foot, April 6-8, 1917.

ACCURACY.—Stage-discharge relation below 1.2 feet changed January 6 because of shifting of gravel bed above the artificial control. Rating curves used January 1-6 and January 7 to December 31 fairly well defined below 700 second-feet.

Operation of water-stage recorder satisfactory except for periods indicated in footnote to daily-discharge table. Daily discharge ascertained by applying to rating table mean daily gage heights determined by inspecting gage-height graph, or, for days of considerable fluctuation, by averaging discharges obtained by applying to rating table mean gage heights for regular intervals of the day. Records fair.

Discharge measurements of Sheep Creek near Thane during 1920.

[Made by G. H. Canfield.]

Date.	Gage height.	Dis- charge.	Date.	Gage height.	Dis- charge.
Jan. 31	Feet. 0. 44 . 07 32 1. 15	Secft. 13 7.6 a 5.7 103	Aug. 9 Sept. 27. Oct. 25. Nov. 23.	Feet. 0.96 .64 .80 .55	Secft. 66 23 39 18

a Discharge at gaging section at bridge, two-tenths mile downstream from weir; no flow at weir section.

WATER-POWER INVESTIGATIONS IN SOUTHEASTERN ALASKA. 113

Daily discharge, in second-feet, of Sheep Creek near Thane for 1920.

at low sterms	ridge:	dyan	daid h	floor c	from	toaru	is of s	alyan	dein:	e bol	блодаг	IA.
Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
12345	30 50 40 30 22	13 13 13 13 13		6. 8 6. 7 6. 6 6. 5 6. 4	22 25 25 25 25 24	108 121 144 146 151	151 121 108 108 108	84 61 58 72 238	47 53 77 61 53	50 45 45 35 32	113 134 101 82 74	16 16 15 14 14
6 7 8 9 10	30 175 108 72 53	13 14 15 15 15		6. 2 6. 1 6. 0 5. 9 5. 8	22 22 20 22 22 25	138 126 121 113 108	108 108 113 108 100	226 115 86 68 70	77 151 136 96 77	28 26 53 96 56	121 82 68 60 50	13 13 13 12 12
11. 12. 13. 14. 15.	44 34 29 25 25	16 15 15 25 14	11 10 9.8 9.6	5. 8 5. 7 5. 7 5. 6 5. 7	35 39 41 39 53	108 108 103 105 115	96 92 88 84 84 88	216 115 91 77 61	63 54 47 43 43	51 50 50 48 41	41 36 30 28 28	12 12 12 12 12 11
16. 17. 18. 19.	23 22 20 19 18	15 16 19 19 19	9.3 9.1 9.1 8.9 8.8	5. 8 5. 9 6. 1 6. 2 6. 2	74 63 68 56 47	113 108 126 101 88	82 79 77 70 70	53 48 53 82 72	39 39 45 45 45 39	39 33 30 29 41	25 24 22 22 22 22	11 10 10 11 11
21. 22. 23. 24. 25.	18 17 17 16 16	19 18 18 17 17	8.7 8.5 8.4 8.2 8.0	6. 4 6. 6 6. 8 7. 2 7. 7	45 48 48 54 56	84 98 86 77 79	70 61 58 53 53	101 60 50 44 43	34 30 28 26 24	39 43 53 43 39	21 19 18 18 18 17	10 10 10 9 9
26	15 15 14 14 14 14 13	16 16 15 14	8. 0 7. 7 7. 5 7. 3 7. 2 6. 9	8. 6 11 14 19 22	56 63 77 86 96 101	115 118 126 166 192	56 61 61 61 58 98	72 74 63 53 48 51	24 23 56 77 60	84 101 72 60 121 84	17 17 17 17 17 16	8 9 9 9 10 10

Note.—Water-stage recorder not operating for following periods; discharge estimated by comparison with hydrographs and records of flow for streams in near-by drainage basins: Jan. 1-7, Jan. 18-30, and Feb. 22-29, as shown in table; Mar. 1-11, 112 second-feet; May 8-11, July 9-13, Sept. 18-26, and Dec. 17-31, as shown in table.

Monthly discharge of Sheep Creek near Thane for 1920.

Month.	Dischar	ge in seco	ond-feet.	Run-off	en dended ben ge recorder sati	Dischar	Run-off		
	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.	Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.
January February March April May June. July	175 19 22 101 192 151	13 13 6.9 5.6 20 77 53	33.5 15.5 9.81 7.70 47.6 116 85.5	2,060 892 603 458 2,930 6,900 5,260	August September October November December The year .	238 151 121 134 16	43 23 26 16 8	84.0 55.6 52.2 44.7 11.4 47.1	5,160 3,310 3,210 2,660 701 34,100

GOLD CREEK AT JUNEAU.

Location.—At highway bridge at lower end of Last Chance basin, 200 feet upstream from diversion dam of Alaska Electric Light & Power Co. and one-fourth mile from Juneau

Drainage area.—9.47 square miles (determined by engineering department of Alaska Gastineau Mining Co. from surveys made by that company.

Records available.—July 20, 1916, to December 31, 1920.

Gage.—Stevens continuous water-stage recorder on left bank at upstream side of highway bridge.

63963°-22-8

g to from

icial am. idge near but perugh and age eronand rms the vnvel ne-

m.

of ary et. ote ng or, ng ir.

n.

DISCHARGE MEASUREMENTS.—At medium and high stages made from gaging bridge suspended, at right angles to current, from floor of highway bridge; at low stages made by wading near gage.

CHANNEL AND CONTROL.—Station is at lower end of a flat gravel basin three-fourths mile long. For 20 feet upstream from gage the stream is confined between the abutments of an old bridge and for 15 feet downstream it is confined between the abutments of present bridge. For a distance of 130 feet farther downstream the stream is confined in a narrow channel which is not subject to overflow. Because of the steep gradient of channel opposite and for 150 feet below gage, a short stretch of the channel immediately below the gage acts as the control. The operation of the headgates of flume at diversion dam, 200 feet downstream, does not affect the stage-discharge relation at gage, but the swift current during high stages shifts the gravel in bed of stream, thereby causing changes in the stage-discharge relation.

EXTREMES OF DISCHARGE.—Maximum stage during year, 5.0 feet August 5 (discharge estimated from extension of rating curve, 1,600 second-feet); minimum discharge, 1.5 second-feet April 10.

1916-1920: Maximum stage, 6.8 feet September 26, 1918 (discharge estimated from extension of rating curve, 2,600 second-feet); minimum discharge, 0.9 secondfoot March 26, 1918.

ICE.—Stage-discharge relation affected by ice January 13 and March 30.

DIVERSION.—Water diverted at several points upstream for the development of power is returned to creek above gage, except about 20 second-feet for seven months (when there is a surplus over amount used by Alaska Electric Light & Power Co., which has prior right) and 1 second-foot the remainder of year, used by the Alaska-Juneau Gold Mining Co. A dam 200 feet downstream diverts water into the flume of the Alaska Electric Light & Power Co.

REGULATION.—No storage or diversions above station regulate the flow more than a few hours in low water.

Accuracy.—Stage-discharge relation changed during periods of high water; 11 discharge measurements made during year, by use of which rating curves have been constructed applicable as follows: January 1-7, poorly defined; January 8 to Aug. 5, August 6 to September 27, September 28 to November 1, and November 2 to December 31, fairly well defined below and poorly defined above 200 second-feet. Operation of water-stage recorder satisfactory except for periods indicated in footnote to daily discharge table. Daily discharge ascertained by applying to rating table mean daily gage heights determined by inspecting gage-height graph, or, for days of considerable fluctuations, by averaging discharges obtained by applying to rating table mean gage heights for equal intervals of the day. Records fair.

Discharge measurements of Gold Creek at Juneau during 1920.

[Made by G. H. Canfield.]

Date.	Gage height.	Dis- charge.	Date.	Gage height.	Dis- charge.
Jan. 19	Feet. 0.79 .68 .47 .40 .91 1.33	Secft. 19. 9.8 2.3 1.5 30 83	June 25. Aug. 16. Sept. 27 Oct. 29. Dec. 20.	Feet. 1.77 1.95 1.44 1.96 .96	Secft. 166 101 28 77 7.8

a Control and measuring section frozen over.

Daily discharge, in second-feet, of Gold Creek at Juneau for 1920.

idge

ths to., ka-

a

isen ig.

et.
otng
or,
yir.

8

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1.	45	9	7.0	1.8	36	171	343	301	143	92	205	19
2.	74	9	6.1	1.7	37	198	270	173	220	78	480	17
3.	69	9	5.8	1.7	35	245	234	162	362	83	305	19
4.	41	9	5.6	1.7	33	263	254	225	295	53	196	19
5.	33	10	5.4	1.6	29	279	285	1,000	178	46	190	17
6. 7. 8. 9.	43 434 162 82 62	14 21 17 15 17	5. 2 5. 0 4. 8 4. 8 4. 8	1.6 1.6 1.5 1.5	28 26 25 26 33	263 220 217 220 225	307 334 350 334 317	620 280 206 220 168	220 552 510 265 168	39 36 83 262 114	381 222 160 126 102	17 16 15 14 12
11		19	5. 2	5.0	52	212	291	880	137	83	79	11
12		18	5. 7	20	55	212	276	432	116	75	65	10
13		12	4. 8	15	50	198	263	180	105	75	58	10
14		11	4. 8	10	61	219	254	127	94	67	58	8.5
15		11	3. 0	8.0	90	248	270	108	91	56	56	7.0
16.	19	19	3.4	7. 0	75	270	260	108	96	44	46	7.5
17.		30	3.9	6. 0	91	245	240	96	75	36	44	8.0
18.		32	3.0	5. 7	69	317	237	131	75	30	43	10
19.		19	3.0	5. 7	58	248	225	274	98	29	42	10
20.		19	3.0	6. 2	56	203	219	192	75	42	39	10
21		15	2.7	6. 2	62	180	225	295	68	63	37	9.5
22		14	2.7	5. 7	65	225	212	143	61	48	33	8.0
23		12	2.7	6. 2	72	196	183	98	44	88	30	6.0
24		11	2.4	8. 6	76	164	169	78	41	78	29	5.6
25		10	2.4	19	76	178	178	72	38	61	28	6.0
26. 27. 28. 29. 30.		9. 2 8. 6 8. 6 8. 6	2.5 2.5 2.5 2.5 2.1 1.9	31 33 33 30 33	80 91 105 121 136 149	301 317 327 413 480	206 214 219 219 206 334	192 378 214 147 127 173	35 30 185 325 137	198 262 122 83 219 137	25 23 33 29 25	6.0 7.5 8.5 8.5 8.5 8.5

Note.—Discharge estimated from discharge measurements, climatic data at Juneau, and by comparison with hydrographs for streams in near-by drainage basins for following periods, because of unsatisfactory operation of water-stage recorder: Jan. 13–18, 28 second-feet; Jan. 20–29, 14 second-feet; Jan. 30, Feb. 1-6, Mar. 3–7, Mar. 30–31, Apr. 1–9, and Apr. 1–11–17, as shown in table. Discharge, May 26, interpolated; Aug. 1–12 and Oct. 23–25, determined from gage-height graph drawn by comparison with that for Carlson Creek.

Monthly discharge of Gold Creek at Juneau for 1920.

	Dischar	ge in sec	ond-feet.	Run-off	town of Sta	Dischar	Run-off		
Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefeet.	Month.	Maxi- mum.	Mini- mum.	Mean.	in acrefect.
January February March April May June July	434 32 7 33 149 480 350	8. 6 1. 9 1. 5 25 164 169	47. 6 14. 4 3. 91 10. 4 64. 5 248. 256.	2,930 828 240 619 3,970 14,800 15,700	August September October November December The year	1,000 552 262 480. 19	72 30 29 23 5.6	252 161 89. 7 106. 11. 0	15,500 9,580 5,520 6,310 676 76,700

Daily discharge, in second feet, of Gold Creek at Juneau for 1920.

Yek						
			515 515 515 517			
			270 317 317 203 203			
		192 214 214 347 127 127				

Norg.—Discharge estimated from discharge measurements, climatic data at Tuncou, and by comparison with bydrographs for streams in mean-by draining basin top following perfolds, because or invasitate or operation of water since freezeler. Jan. 15-15, 28 second-feet, Jan. 90-20 it second-feet. Jan. 30-20 it second-feet. Jan. 30 Teb. 1-6 Mart Sec. 1, Apr. 1-4, and Apr. 14-17, 38 shown in rable. Discharge, May 36 interported Aug. 1-12 and Oct. 23-25, descripted from respectability graph drawn by comparison with that for Carlson Creek.

Hondely discharge of Gold Creek at James for 1990

ORE DEPOSITS OF THE SALMON RIVER DISTRICT, PORTLAND CANAL REGION.

be shown, considerable work has been done during the last two

By Lewis G. Westgate.

INTRODUCTION.

Portland Canal, a steep-walled fiord, penetrates the Coast Range for some 90 miles from Dixon Entrance, at the southern boundary of Alaska, cutting obliquely across the trend of the mountains. This great trench through the mountains is extended northward by the alluvium-floored valley of Bear River, which reaches far back into the upland beyond the Coast Range (fig. 1). At 2 miles from its head Portland Canal is joined on the west by Salmon River, the mineral deposits of whose basin are here described. The valleys of Salmon and Bear rivers are separated by the Reverdy Mountains, a southward-trending spur of the main range. At the seaward end of this spur is the settlement of Hyder, which has a population of a few hundred people and is the ocean port, supply point, and post office of the Salmon River district. Its location is on the international boundary, and the steep slope immediately to the north has crowded the settlement onto the tidal flats, where it is in part built on piles. The newer part of the town, however, is in a better location to the northwest, on the gravel-floored Salmon River valley. Two miles to the northeast is the town of Stewart, on the British Columbia side of the boundary. Though older than Hyder, it has about the same population. The Salmon River region forms the southeastern part of the Ketchikan district.

Metal-bearing lodes, chiefly of gold and silver, were found in the Canadian portion of this region about 1898, and similar discoveries had been made on the Alaska side of the boundary by 1901. These deposits received relatively little attention until 1909, when a small boom was started in the Canadian district. This boom subsided in a few years, but meanwhile the town of Stewart and some 12 miles of railroad were built. Interest was revived in 1917 by the discovery of some rich silver ores on the Canadian side of the line, and in 1918 a commercial ore body was found at the Premier mine, which, though in the Salmon River basin, is also in Canada. As a result, many claims were staked on both sides of the boundary, and the town of Hyder sprang up. The upper part of the Salmon River basin lies in Canada, but its only practical mode of access is through

Alaska. (See fig. 1.) This lack of adjustment of the international boundary to the topography gives Hyder a much greater importance than it would have if it served only the Alaska portion of the district. Though no mines have been developed on the Alaska side, many claims have been staked, and on some of these, as will be shown, considerable work has been done during the last two years.

In view of the fact that the geologic features on the two sides of the boundary were known to be essentially the same, there appeared to be good hope that commercial ore bodies might be found in the Salmon River district. For this reason the writer undertook a geologic examination of the region, a task which occupied him from July 19 to August 17, 1920. Though the salient features of the geology are simple, the heavy vegetal cover below timber line greatly enhances the difficulties of field examination and increases the work of the prospector.

TOPOGRAPHY.

The region is one of mountainous topography and high relief. The floor of Salmon River and of its principal tributary, Texas Creek, rises from sea level to about 500 feet where they issue from their glacier sources. From these low valley altitudes the mountains rise steeply and in places by unscalable cliffs to heights between 5,000 and 6,000 feet. The highest points within the area examined are a little over 6,500 feet above the sea. The only level land in the district consists of the gravel-floored bottoms along Salmon River and Texas Creek The lower slopes, up to 3,000 feet or more, are covered with forest; at higher levels the mountains, where no covered by snow fields and glaciers, are largely bare rock. Even the narrower ridges along Portland Canal and the lower parts of Salmon River carry snow fields and small summit and cliff glaciers, and farther inland the larger valleys reach above snow line and serve as collecting basins for extensive ice fields, the sources of large valley glaciers. The snow line stands at about 4,500 feet, and the glaciers descend within 500 feet of sea level.

CLIMATE.

Portland Canal lies within the Pacific coast climatic province, an area of abundant rainfall and comparatively moderate temperature due to prevailing westerly winds from the Pacific Ocean. The annual precipitation at Fort Tongass, near the entrance to Portland Canal, is about 130 inches; at the head of the canal it is less, possibly not far from 100 inches. The least rainfall occurs late in spring and early in summer, and abundant rains set in by September.

¹Brooks, A. H., The geography and geology of Alaska: U. S. Geol. Survey Prof. Paper 45, pp. 162-165, 1906.

From November to March the precipitation is in the form of snow. The summers are not hot, and the temperature seldom drops much below zero in winter.

COMMERCIAL CONDITIONS.

Hyder, being on tidewater, is readily accessible throughout the year to large ocean vessels, but in 1920 Hyder had no wharf, and all freight was landed by scows. Provisions can be purchased in both towns, and more elaborate equipment can be brought from Ketchikan, with which there is communication about twice a week by means of gasoline boat. The distance from Hyder to Ketchikan is 155 miles by the water route. Stewart has steamer communication with Prince Rupert, British Columbia, 135 miles distant.

Travel inland is difficult, except along the few established roads and trails. The best road in the region is the one connecting Hyder

and Stewart (2 miles), which is suitable for automobiles.

Salmon River and Texas Creek are swift and practically impassable streams, which effectually divide the country through which they run. Texas Creek and Salmon River south of Ninemile flow in a network of channels through a broad valley bottom floored with coarse gravels. A road has been constructed up the east side of the Salmon to Elevenmile and thence to the Premier mine, in Canadian territory. Except at a few points where it is forced to the valley side by eastward swings of the river, the road follows the bottoms and is therefore subject to overflow and washout, as was well shown in the high-water stages of August, 1920. Above Elevenmile the road is on the valley slope. From the road three pack trails branch off, one in Canada to the Big Missouri and neighboring properties, one at Elevenmile to the New Alaska property, and one up Fish Creek to the Watkins and Tonkin properties.

The only crossing of Salmon River is a footbridge at Ninemile. From this point a foot trail leads to Texas Glacier and thence by a low saddle 3 miles above the mouth of the creek to Salmon Glacier. Most of the prospecting in the region is done by men who pack their outfits on their backs through country where there is not even a

foot trail.

C

f

1

9

1

9

7

3

9

3

3

The valley bottoms and mountain slopes up to 3,500 feet are heavily forested, chiefly with hemlock and spruce. In the valley bottoms and on the lower slopes there is good timber in sufficient abundance for

mining and other local needs.

As yet there has been no demand for water power, and the possibilities of developing it have not been closely scrutinized. Fish Creek and its tributary, Skookum Creek, the largest of the small streams, descend rapidly and are worth consideration as sources of power. There are no accurate records of their flow, which is greatly diminished in winter. The other streams in Alaska east of Salmon River are small and probably without value for power.

PUBLICATIONS.

The following references may prove useful to those wishing further information on the geologic features and ore deposits of the region.

Reports relating to Alaskan part of Portland Canal region.

Preliminary report on the Ketchikan mining district, Alaska, with an introductory sketch of the geology of southeastern Alaska, by Alfred H. Brooks: U. S. Geol. Survey Prof. Paper 1, 1902.

The Ketchikan and Wrangell mining districts, Alaska, by F. E. and C. W. Wright: U. S. Geol. Survey Bull. 347, pp. 1–210, 1908.

Notes on the Salmon-Unuk River region, by J. B. Mertie, jr.: U. S. Geol. Survey Bull. 714, pp. 129–142, 1921.

Mining developments in southeastern Alaska, by Theodore Chapin: U. S. Geol. Survey Bull. 642, pp. 94–98, 1916.

Reports relating to Canadian part of Portland Canal region.

Portions of Portland Canal and Skeena mining divisions, Skeena district, B. C., by R. G. McConnell: Canada Geol. Survey Mem. 32, 1913.

Northwestern district (No. 1), by Geo. A. Clothier: British Columbia Minister of Mines Ann. Rept. for 1917, pp. 68–73, 1918.

Northwestern district (No. 1), by Geo. A. Clothier: British Columbia Minister of Mines Ann. Rept. for 1918, pp. 76–83, 1919.

Northwestern district (No. 1), by Geo. A. Clothier: British Columbia Minister of Mines Ann. Rept. for 1919, pp. 61–80, 1920.

Salmon River district, Portland Canal mining division, B. C., by J. J. O'Neill: Canada Geol. Survey Summary Rept., 1919, pt. B, pp. 7b–12b, 1920.

The Premier gold mine, Portland Canal, B. C., by Charles Bunting: Min. and Sci. Press, vol. 119, pp. 670-672, 1919.

The geology of the Portland Canal district, by Victor H. Wilhelm: Min. and Sci. Press, vol. 122, pp. 95–96, 1921.

The Salmon River district, B. C., by S. J. Scofield and George Hauson: Canada Geol. Survey Summary Rept. for 1920, pt. A, pp. 6a–12a, 1921.

GEOLOGY.

GENERAL FEATURES.

The Salmon River district lies on the eastern margin of the great Coast Range batholith,² which parallels the shore line of British Columbia and southeastern Alaska from the United States and Canada boundary nearly to the meridian of Mount St. Elias, a distance of some 1,100 miles. It ranges in width from 20 to 110 miles and is the largest batholith on the American continent. It is generally believed that this great mass was intruded in Jurassic time and probably chiefly in Middle and Upper Jurassic time.^{2a}

A reference to the map (fig. 1) will show that the inland margin of the batholith is irregular and invades the volcanic and sedimen-

² The term "batholith" is applied to bodies of igneous rock which occupy considerable areas and which widen downward. Unlike sheets and laccoliths, they are not known to be bottomed by other rocks. R. A. Daly (Igneous rocks and their origin, p. 90, New York, 1914) proposed that this term be used for large bodies, over 40 square miles in area, and that the term "stock" be reserved for the smaller bodies.

^{2a} Since the above was written Scofield and Hanson have reported the occurrence of Mesozoic fossils, probably Jurassic, in the Nass formation: Canada Geol. Survey Summary Rept. for 1920, pt. A, p. 8a, 1921.

tary formations that lie to the east. On the Canadian side of the boundary, as shown by McConnell's map,3 there are some outliers of

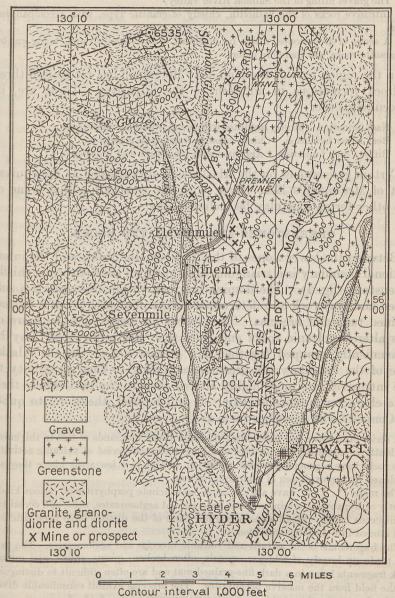


FIGURE 1.—Geologic sketch map of Salmon River district. Mines and prospects: 1, Stoner; 2, New Alaska, 3, Watson & Bain; 4, Fish Creek Mining Co.; 5, D. & A. Lindeborg; 6, Charles, Nelson & Pitcher.

granite within the area occupied chiefly by volcanic rocks and sediments.

r-

³Canada Geol. Survey Mem. 32, 1913.

Only the following formations, in descending order, occur in the Salmon River district:

1. The gravel filling of the Salmon River valley.

2. Intrusive rocks of the batholith, chiefly of granitic type, with accompanying dikes.

3. A series of greenstones, which lie northeast of the batholith and, being cut by the granite rocks, are therefore older.

In the region east of the boundary McConnell has recognized three bedrock formations in addition to the intrusives. These are, in descending order:

- 1. Nass formation. Mostly argillites with some tuffaceous sandstones.
- 2. Bear River formation. Chiefly massive fragmental greenstone.
- 3. Bitter Creek formation. Argillites with some tuffs and limestones.

Certain greenstones on the Alaska side are regarded as the equivalent of McConnell's Bear River, with the reservation that some of the other formations may be included also.

GREENSTONES AND ASSOCIATED ROCKS.

Between the lower slopes of the Reverdy Mountains and the international boundary is a triangular area in which the bedrock is chiefly greenstone (fig. 1). The dominating rock within this area is a soft green and gray rock of indeterminate origin, but with it occur better-defined tuffs and breccias. These rocks are believed to be more or less altered volcanic rocks and from their prevailing color may be conveniently grouped together as "greenstones." On the Alaska side of the boundary the greenstones, owing to their proximity to the intrusives, are more highly altered than to the east, where their true character is more evident. It will be well, therefore, to quote McConnell. who describes them as

A series of massive and fragmental volcanics many thousands of feet in thickness, evidently representing the product of a long-continued period of volcanic activity. The rocks have a general greenish coloration, except in a few areas where they are reddened by the oxidation of their iron content.

The rocks * * * have a wide range and include porphyrites of various kinds, mostly of hypabyssal origin, volcanic breccias and agglomerates, tuffs, and occasional argillaceous bands. Small areas in various parts of the district have been silicified and altered into a cherty condition.

The fragmentals occur as tuffs and volcanic breccias and agglomerates. The tuffs are made up largely of feldspar crystals, often broken, quartz grains, and minute rock fragments lying in a dark fine-grained mat and are often difficult to distinguish in the field from the massive porphyrites. The breccias exhibit considerable diversity in character and probably originated in different ways. * * *

Occasional dark argillaceous bands occur with both the massive and fragmental members of the Bear River volcanic group, apparently indicating that sedimentation occurred at intervals during the whole period of its accumulation.

⁴ Op. cit., pp. 14-16.

The rocks of the Bear River formation usually occur in a massive condition but in places * * * have yielded to crushing, and a strong schistosity approximately paralleling the eastern edge of the Coast Range batholith and dipping towards it has developed.

The fragmental varieties * * * are seldom distinctly bedded or banded and are often remarkably uniform in composition through sections many hundreds of feet

McConnell was able to make no close age determination of the Bear River formation other than that it was pre-Cretaceous, on the evidence that the granitic intrusives were later. In lithology the greenstones of the Salmon River district resemble certain Jurassic rocks of the islands to the west,⁵ and this resemblance suggests that they are of early or middle Mesozoic age.

The different types noted by McConnell, with the exception of the porphyrites, were recognized on the Alaska side of the boundary, though with their original character more or less veiled toward the contact and obscured still more, by mineralization, at the mining prospects. Excellent tuffs and breccias, clearly recognizable as such both in hand specimens and under the microscope, are found along the international line between Elevenmile and the head of Fish Creek, and large boulders of the conspicuously marked breccia are abundant in the lower parts of the valleys heading against the divide. Throughout most of the area, however, the greenstone is a gray or green fine-grained soft calcareous rock, indistinctly banded and specked with minute grains of pyrite. Thin sections show aggregates of quartz, calcite, sericite, chlorite, and feldspar and usually pyrite and leucoxene or granular titanite. The micas are not abundant enough to give foliation.

The rock is rather uniform over considerable areas and ordinarily does not show any structure in the outcrop. Neither in the outcrop nor in the thin section is the original character of the rock to be seen. Areal variability in some thin sections suggests a tuff. There is nothing to suggest sedimentary origin. The uniformity of the rock and its mineral character indicate that it is probably either an altered tuff or a lava.

Near the mines and prospects the mineralization has been much more intense; indeed, the existence of the ores is a direct result of this mineralization. This is shown in the increase of silica to so great an extent that the rock is in places nearly a quartzite and in the abundance of pyrite, sphalerite, and galena and, in another type of occurrence, of pyrite, pyrrhotite, and chalcopyrite, the rock locally becoming an ore.

At a few points along the road above Texas Creek occur black argillites, which are clearly of sedimentary origin and which may be

⁶ Chapin, Theodore, The structure and stratigraphy of Gravina and Revillagigedo islands, Alaska: U. S. Geol. Survey Prof. Paper 120, p. 86, 1918.

interbedded in the tuffs. None of the conspicuously porphyritic porphyrites mentioned by McConnell were seen, though finely porphyritic varieties are probably represented by some of the greenstones. As it is difficult to destroy the structure of a porphyry completely, the general absence of any recognizable porphyritic structure in the greenstones is taken to mean that most of them are tuffs.

On Mount Dolly, at the south end of the greenstone area, the rocks are well bedded and are apparently sedimentary rocks, which strike between northwest and west and dip 70° N. They are in part darkgray or green fine-grained rocks with abundant pyrite, which produces the conspicuous red color that the rocks show on weathering. Toward the top of Mount Dolly and nearer the granite contact the rocks become coarser-grained banded gneisses, characterized in the different layers by varying amounts of fine-grained hornblende, biotite, and epidote. The gneiss is cut both parallel with and across the bedding planes by narrow veinlike bands of quartz, with epidote and some garnet. The relation of these rocks to the tuffs farther north was not ascertained. If they are members of McConnell's Bear River formation, it here comprises many hundred feet of sedimentary rocks, now well metamorphosed.

GRANITE OF THE COAST RANGE.

Much the larger part of the Salmon River district is occupied by the intrusive rocks. These intrusives, here collectively termed granite, range in lithology from diorite and granodiorite to granite.6 The contact between the granite and the greenstone to the northeast (fig. 1) crosses the Reverdy Mountains and the international boundary a little south of Mount Dolly, at an elevation of 4,500 feet. Thence it can be followed with ease to a point west of Mount Dolly, where it takes a course nearly due north. From this point to the place where it again crosses into Canadian territory the contact can not be located with accuracy, in part because of a heavy cover of forest vegetation and rock slides and in part because of the occurrence in the greenstones of numerous dikes of granite porphyry, many of them wide. Where vegetation covers the more easily weathered and hence lower greenstones, it is often difficult to determine whether the rock is a

⁶ The term "granite," commonly applied to the rock of this batholith, is sufficiently accurate for ordinary usage, though in a strict petrographic sense the rock is usually not a granite. In this paper the term "granite" is used for a coarse-grained plutonic rock consisting of quartz and orthoclase feldspar; "diorite" for a rock of similar physical character which may or may not contain quartz but contains plagioclase feldspar; "granodiorite" for the intermediate type which contains orthoclase and plagicclase feldspar in approximately equal amounts. In each rock the additional biotite, hornblende, and common accessory minerals are assumed. Granodiorite is then, as the word itself at once suggests, intermediate between granite and diorite. "Monzonite" has been used for the intermediate type but is not so directly expressive. This usage does not conform to that proposed by Waldemar Lindgren (Granodiorite and other intermediate rocks: Am. Jour. Sci., 4th ser., vol. 9, pp. 269-282, 1900) and J. P. Iddings (Igneous rocks, vol. 2, pp. 43, 152, New York, 1913), but it is easier to apply and, for present purposes, less confusing. In the following pages "granite" is sometimes used in the general sense in referring to the rock of the batholith as a whole. It is clear from the context when the term is so used and when it is used in the narrower petrographic sense with reference to the particular composition of a part of the body.

dike or a part of the main granite mass. The difficulty is the greater because identical porphyritic intrusive rocks occur within the area of the granite itself. The whole situation is still further complicated by local shearing, which has changed both granite and dikes to gneissoid and even schistose facies. Even along Salmon River below Elevenmile, where numerous cuts have been made in road construction, it was impossible to locate the exact contact.

Although the rocks of the batholith have a broad conformity of composition and occurrence that justifies their being mapped and described as a unit, yet there are certain local variations that merit

attention.

From Mount Dolly south to Hyder the intrusive is a uniform lightcolored medium-grained massive rock, specked with small black grains of biotite and hornblende. The rock varies in composition; some of it is granite, but on the whole it is best described as granodiorite. Some darker streaks and patches (schlieren) occur, as well as dikes of white aplitic granite. The contact with the greenstone across Mount Dolly is perfectly sharp, and very few dikes from the granite cut into the earlier rocks. Pegmatite dikes are practically lacking; and in this respect the east margin of the batholith stands in marked contrast with the west margin.

The intrusive north of Fish Creek, especially toward the greenstone contact, is a much more varied rock than that about Hyder. The commonest type, itself rather variable structurally, is a greenishgray medium-dark rock of medium to fine grain. It usually shows abundant black blades of altered hornblende as much as 1 centimeter in length, which in some places lie variously oriented in a common

plane. It may be called a quartz-hornblende diorite.

There are some variations from this type. Locally orthoclase occurs in porphyritic crystals 1 or even 2 centimeters in length, and the

rock becomes a granodiorite porphyry.

Farther north, in the valley of Texas Glacier and west of Salmon Glacier, a lighter rock prevails, resembling that about Hyder. Along the glacier tributary to Salmon Glacier south of station 6535 (fig. 1) it is a light medium-grained granodiorite. In the valley of Texas Glacier a similar rock is found, both in dikes cutting the darker granite and as abundant boulders brought down from the granite area farther west. This rock is normally porphyritic and is a granodiorite porphyry. These porphyritic varieties of the granite form a transition to the more distinct porphyries, which occur as dikes in the greenstone but which are found also within the granite area.

The west side of Salmon River south of Texas Creek was not visited on account of the practical impassability of the Salmon. From the east side of the river it appears to be an area of light granite quite like that about Hyder.

redsory ed a vilue file PORPHYRY DIKES. an ed to drag a to edib

Many porphyry dikes occur in the greenstone area, east of the granite contact to and beyond the international boundary. These rocks range in color from light to medium gray, and some are dark gray. They usually show small prisms of hornblende and flakes of biotite against a white ground of feldspar. Feldspar phenocrysts are hardly noticeable in the lighter varieties but become more conspicuous in the darker rocks.

These porphyritic dike rocks, genetically associated with the Coast Range batholith, are intermediate in structure between the deep-seated granitic intrusive rocks and extrusive lavas. For example, one having the mineral composition of a diorite or andesite might be equally well named an andesite porphyry or a diorite porphyry. As they occur in the field with dioritic and granitic rocks, the several varieties of rocks noted can properly be classed as granite porphyry, granodiorite porphyry, and diorite porphyry.

Over a dozen large dikes with a maximum width of 1,200 feet are exposed along the Salmon River road between Texas Creek and the boundary. To judge from their contacts with the greenstone, these dikes strike from 50° to 70° NW. and dip 50°-60° SW. They are more resistant to weathering than the greenstones, so that in the timber and even for some distance above timber line the softer greenstones are largely concealed and the porphyries seem more abundant than they really are. As they closely resemble the granites, it is impossible to draw the granite-greenstone boundary accurately.

Dikes of the same character as those found in greenstone also occur within the main granite area. Boulders from them are among the most abundant rocks brought down by the Texas Glacier, and they cut the less porphyritic granites along the lower 2 miles of its course. They were also found in the granite exposed along the road south of Ninemile, where the more basic varieties are diorite porphyries showing conspicuous but small plagioclase phenocrysts, in striking contrast to a gray-black ground.

The dike porphyries described above agree in character and in range of mineral composition with the nonporphyritic granitic intrusive rocks of the batholith, which themselves locally have porphyritic facies. In the greenstone area the borders of the dikes show but slight structural evidences of chilling. In many places where identical rocks occur within the main granite area they are in dike form, and it is sometimes possible to see a distinct contact between them and the adjacent granite. On the other hand, there are many places where the porphyries grade into the adjoining non-porphyritic rock and it is impossible to fix a definite contact. These relations may best be explained on the assumption that the porphyries are an essential part of the granite intrusion following closely

the formation of the main batholith. They represent slightly differentiated magmas intruded into both the greenstones and the earlier-formed granite. In the greenstones the invaded rocks were under considerable cover and perhaps were warmed by the adjoining granite, so that there was but little border chilling of the dikes. They came into the granite at a time when it was still hot, perhaps not completely solidified; hence the lack of sharp contacts in many places. The border granite is thus not simple but a rather complex intrusive body, ranging from a granodiorite or even from a rock closely approaching a granite to a diorite and structurally from a massive granitoid rock to a porphyry. The presence of these porphyries and the tendency of even the earlier massive granites to grade into porphyritic facies suggests that the cover was not very thick. This complexity is not, however, characteristic of the granite about Hyder.

ORE DEPOSITS.

CLASSIFICATION.

Both O'Neill ⁷ and Chapin ⁸ have classified the ore bodies of the Salmon River region as of two general types—disseminated deposits of low metallic content and quartz veins containing shoots of very

high-grade ore.

he

se

rk

of

ts

n-

1e

10

or

te

te

ic

as

re

se

·e

le

r

0

3,

T.

0

g

d

f

e

e

C

S

0

3

The disseminated deposits lie in shear zones, in places without well-defined walls, and are described by O'Neill as "large deposits of ore which is a complex mixture of zinc blende, galena, chalcopyrite, and pyrite." He cites the Big Missouri property as containing examples of deposits of this type. Of the concentrated ore bodies occurring as fairly well defined fissures, that of the Premier mine, on the Canadian side of the boundary, is the best example. In view of the local interest in the Premier mine, it will be worth while to quote O'Neill's description of two specimens of ore from this property: 9

Pyrite, sphalerite, probably galena, and pyrargyrite are disseminated in a gangue of mixed quartz and calcite. The pyrargyrite is abundant.

Pyrite, sphalerite, pyrargyrite, a little pyrargyrite with the pyrite, zinc blende, and probably galena in a gangue of quartz. I saw no calcite in this specimen.

Qualitative tests on both samples showed the presence of lead, indicating galena. The soft black mineral gave much copper and antimony, with silver, indicating freibergite.

Of the occurrence of these deposits O'Neill says:

The general regional shearing is not uniformly distributed but is concentrated in zones. Where the northwest or northeast ore-bearing veins cross such zones or where they cross one another there is an enrichment of the deposit in the form of native

⁷ O'Neill, J. J., Salmon River district, Portland Canal mining division, B. C.: Canada Geol. Survey Summary Rept. for 1919, pp. 10b-bb, 1920.

⁸ Chapin, Theodore, Mining developments in southeastern Alaska: U. S. Geol. Survey Bull. 480, p. 98, 1916.

⁹ Op. cit., p. 10b.

silver. In some places a series of the later fissures cross a main zone at relatively close intervals, and the enrichment is spread along the zone between them. * * * Where the main zone of fissuring is wide, as on the Premier, and the cross fissures are strong, considerable amounts of very rich ore have been developed across most of the width of the main zone along the cross fissures and has spread along between the cross fissures.

Scofield and Hanson in their recent report a have classified the ore bodies of the Canadian Salmon River district as follows:

1. Base-metal type: These are replacement and disseminated deposits in certain beds of tuffs and conglomerates, with some veins carrying base metals. "These deposits are roughly tabular, as they correspond in strike and dip with the beds with which they are associated." They carry pyrite, chalcopyrite, sphalerite, and galena, with a gangue of quartz.

2. Silver-gold type: "The ores of this type occur in veins and veinlike replacements in quartz porphyry and at the contact of the porphyry and tuffs. The large ore-chutes [shoots?] are lenticular in shape. The minerals present are pyrite, chalcopyrite, sphalerite, galena, tetrahedrite, freibergite, pyrargyrite, and sulphantimonides and sulpharsenides, native silver, and gold. The gangue is rather abundant and is almost entirely quartz." The Premier ore body is cited as an example of this type.

3. Gold type: "A single ore body in No. 2 tunnel of the Premier mine is of this type. This is a siliceous heavy-sulphide deposit. Quartz and pyrite are the predominant minerals. Small quantities of chalcopyrite, sphalerite, and galena are present. Assays show high value in gold, but practically no silver."

The above descriptions refer to the ore deposits on the Canadian side of the boundary. The following types have been found on the Alaska side:

1. Disseminated replacement deposits of galena, sphalerite, and pyrite, mainly in the greenstones. Example, the deposits now being opened on the New Alaska property.

2. Disseminated and lenticular replacement deposits of pyrrhotite, with minor amounts of chalcopyrite and pyrite and a very little sphalerite, in the greenstone. Example, the pyrrhotite deposits on the New Alaska property just above Elevenmile and that on the east side of the Fish Creek Mining Co.'s property, on Fish Creek.

3. Quartz fissure veins carrying pyrite, galena, sphalerite, and locally tetrahedrite and a little chalcopyrite. In places barite is associated with quartz as a gangue mineral. Nearly all the quartz veins occur in the granitic rocks. Examples, the veins on Fish Creek and near Sevenmile on Salmon River.

⁹a Op. cit., pp. 9a-12a.

Up to the present time most of the underground work has been done on the quartz fissure veins, some of which include shoots carrying much gold and silver. These quartz veins strike N. 30°-60° W. Relatively few extensive openings have been made on the disseminated deposits, which appear to trend N. 70°-80° E.

RELATION OF ORE DEPOSITS TO THE GRANITE BATHOLITH.

The Salmon River ore deposits are close to the edge of the great area of granitic rock which follows the west coast, and this position they share with all the metalliferous lodes of southeastern Alaska. Such border deposits are not limited to either side of the batholith, nor are they of any one metal. The copper deposits in the Alexander Archipelago and the gold and sllver lodes from Ketchikan north are close to either the west side of the main body of granitic rock or to the smaller intrusions that lie outside that body and still farther west. The ore deposits of Salmon River are in a corresponding position near the east edge of the batholith. The contact farther north is in Canadian territory, but metal deposits of different kinds have been reported near it.

This relation is essential, not accidental. The deposits border the batholith because the metals which they carry were derived

from the igneous rock while it was still hot.

DISTRIBUTION.

The disseminated deposits are practically limited to the greenstones. The only exception noted was the deposit of disseminated sulphides of the first type on the Charles claim, on the east side of Texas Creek, which are in sheared porphyry and granodiorite of the batholith. The quartz veins are practically confined to the granite area, though in one place (locality 8, fig. 3, Fish Creek Mining Co.) a quartz vein carrying sulphides occurs in the greenstone. The reason for this practical limitation of the quartz veins to the granite and of the disseminated deposits to the greenstones is believed to lie in the nature of the inclosing rock. The softer greenstones, at the prospects mainly altered tuffs, are thought incapable of retaining open fissures, so that in them the deposit was formed by replacement along shear zones. The granite seems to have been firmer and able to retain open fissures, hence it holds the typical veins. At the depth of the deposits at the time of their formation the granite was in the zone of fracture, and the greenstone in the zone of flowage.

ORIGIN.

These deposits occur in the greenstone near the granite batholith and even in the outer part of the batholith itself because they were formed by solutions escaping from the still hot granite magma

63963°-22-9

through the solidified border of the granite and into the surrounding greenstones. The common association of mineral deposits with the east edge of the batholith has long since been pointed out by Brooks. 10 McConnell, 11 without question, explains the Canadian occurrence just across the international boundary in the same way. If this is their origin, their time of formation is fixed as soon after the intrusion of the granite, probably in the Cretaceous period.

of

sil

S11

W

W

pi

ti

fo

R

01

01

st

th

si

b

b

p

p

8

p

M

18

The deposits are believed to have been formed at considerable depths beneath the surface of that time and to be what Lindgren 12 has styled deposits formed at intermediate depths, by which he means at depths between 4,000 and 12,000 feet below the surface and at temperatures of 175° to 300° F. The present exposures are all less than 2,900 feet above sea level. The higher summits of the area rise to more than 6,000 feet. The Cascade peneplain has not been recognized in this district; if, however, as is likely, the rough accordance of summit levels is due to the former presence of a plain near that level, the highest of the present depo its would have been nearly half a mile below that surface. But these summits west of the Salmon are in granite, well beneath the top of the batholith; moreover, above the batholith there must have been a cover of the invaded rocks. The field relations suggest, though they do not demonstrate, that the deposits may well have been formed at a depth of more than a mile below the surface of that time. Further, the sulphides present (galena, chalcopyrite, sphalerite, and pyrrhotite) are those found in deposits formed at considerable depths. If these deposits were formed at the depth inferred it is easy to see why the softer greenstones should have been, as suggested above, below the zone of open fracture, even if the harder granites were not.

The deposits are primary sulphides laid down by solutions rising from a granitic magma. In the quartz veins and the disseminated deposits of the first type the sulphides are essentially contemporaneous. In the pyrrhotite deposits the pyrite and arsenopyrite are followed by the pyrrhotite, galena, and sphalerite, but even here the mineralization belongs to one general period. There is no evidence whatever of any enrichment by descending solutions, so that no marked change in depth is to be expected. 13 Further, there is almost no surface weathering. Here and there traces of malachite and limonite occur and the rock is slightly porous owing to the removal by solution of the more soluble constituents, but this is at the im-

mediate surface.

12 Lindgren, Waldemar, Mineral deposits, 2d ed., p. 546, 1919.

¹⁰ Brooks, A. H., Geologic features of Alaskan metalliferous lodes: U. S. Geol. Survey Bull. 480, pp.

¹³ It should be noted, however, that Scofield and Hanson (op. cit., p. 11a) believe that the native silver found in some of the ores of the Premier mine is of secondary origin. No such occurrences have been found on the Alaska side of the boundary.

OUTLOOK FOR PRODUCTION.

No productive mine has yet been developed in the American part of the Salmon River basin, and only one (Premier) on high-grade silver ores in the Canadian part. The low-grade disseminated sulphide ores on the Canadian side have not yet been successfully worked. On the American side the only considerable underground workings are on Fish Creek. It is therefore impossible to make any predictions of the future of the district. The following considerations, however, will help to indicate where deposits are likely to be found and what changes in depth are likely to have taken place.

All the American prospects and properties lie east of Salmon River and Texas Creek, and the best are either in the greenstones or in the granite near its contact. The most promising of those opened up are the New Alaska disseminated deposits in the greenstones above Elevenmile and the quartz veins on Fish Creek. From the Fish Creek Mining Co.'s property small amounts of high-grade silver ore have already been shipped. Workable deposits may yet be found in the granite west of Salmon River and Texas Creek, but the evident igneous origin of the ores and the development of prospecting and mining in the region to date suggest that paying properties are most likely to be found in the greenstones or in the granite near its contact, and that they will become increasingly improbable toward the west, in the granite.

If, as has been pointed out, the deposits are primary sulphides and show no changes due to weathering or downward enrichment, 14 whatever change in depth they show must be the result of irregularities of original deposition. The deposits can be followed downward in the belief that they will average as well in depth as at the

surface, at least for considerable distances.

MINING PROPERTIES. STONER.

H. B. Stoner has twelve claims (see figs. 1 and 2), which lie three abreast adjacent to the international line on Boundary Creek and extend from the wagon road at Salmon River to timber line. Shallow cuts have been made at several places. The owner reports small returns from a silicified and pyrrhotized porphyry at the point marked "A" in figure 2. About 200 feet to the northeast there is an opening in slightly pyrrhotized greenstone. A second opening (B, fig. 2) has been made at an elevation of 960 feet, in fractured greenstone, a greenish-gray, very fine grained calcareous rock, without banding, carrying minute grains of pyrite. Sulphides occur in the greenstone in irregular streaks, some mainly sphalerite, others galena and pyrite. The former are reported to carry a little zinc

ng he

.10

st

ir

of

le

12

1e

ce

e

le

t

h

n

n

f

e

t

1

e

¹⁴ See footnote 13, p. 130.

and silver and a trace of gold; the latter to assay a little gold, 20.5 ounces of silver to the ton, and 28 per cent of lead, the total value reaching \$48.90 a ton.

NEW ALASKA MINING CO.

The New Alaska property (see figs. 1 and 2) includes a group of eight claims which lie west of the Stoner claims and extend from the flat of Salmon River at Elevenmile (elevation 350 feet) southeastward up the slope to an elevation of 1,800 feet. The first claims were

O 1000 2000 3000 FEET

located in 1912–13, and intensive work on the property began in 1919.

The main work has been done at an elevation of about 1,350 feet, on a ridge bearing N. 70° E. (fig. 2, C). A number of shallow cuts have been made, and a tunnel has been driven 114 feet across the strike of the rocks.

The country rock is a typical greenstone, probably an altered tuff or lava, and has much the same character at the different openings. It is a greenish-gray, rather soft,

commonly calcareous, very fine grained rock, showing many small grains and crystals of pyrite. Hand specimens are cut by fine veins and patches of more coarsely crystalline calcite. An indistinct banded or bedded structure at some of the openings, which is perhaps a secondary structure, shows a strike between N. 45° E. and N. 80° E. and a steep dip to the northwest. The general trend of the mineralized belt is about N. 70° E., parallel to the course of the ridge. At many places the rock is shattered and broken.

Two kinds of mineral deposits occur on this property; one carries sphalerite, galena, and pyrite, and the other chiefly pyrrhotite. Only those of the first type are being developed. They lie in a system

of fracturing, in which certain zones are richer in sphalerite, galena, pyrite, with a very little chalcopyrite, than the others. These richer zones carry gold and silver. The greenstone lying within the zone of fracture is lighter colored than the normal country rock and carries a large amount of introduced silica and calcite. The difference between ore and country rock is a difference in the degree and kind of mineralization. There are no well-defined walls to the deposits, and the richer portions grade into the country rock. The introduction of the sulphides and silica seems to have been contemporaneous.

The best exposure is at the tunnel, which has been carried 114 feet in a direction N. 23° W., at right angles to the trend of the structure. For the first 50 feet from the portal the rock is a light greenish-gray fine-grained rock, here more siliceous, there more calcareous, and everywhere somewhat pyritized. Then follows 27 feet of a similar rock containing bands and patches of sulphides (sphalerite, galena, and pyrite). This is followed in turn by 15 feet of less mineralized rock and 10 feet of mineralized rock. The remainder of the tunnel is in barren rock, like that at the entrance. The rock structure at the entrance strikes N. 80° E. and has a nearly vertical dip, and the indistinct banding farther in agrees with this attitude.

The Hoosier prospect (D, fig. 2), north of the present workings and 350 feet lower, is on a different greenstone belt but repeats the conditions, both of country rock and ore, already described. A 10-foot opening has been made on a silicified greenstone. No well-defined structure was noted in the country rock, nor any distinction between vein and wall. Some of the silicified rock carries the usual

sulphides.

).5 ue

of

10

d

re

k

e-

k

n

e

-

S

S

f

2

The disseminated pyrrhotite ores of the second type are encountered in going north-northeastward from the present workings toward Elevenmile. In the upper part of this traverse there are several small exposures in which the greenstone carries a little pyrrhotite, Pyrite, and galena, and at one of these exposures a 10-foot tunnel has been driven from which several hundred dollars' worth of ore is reported to have been mined. Near the bottom of the hill, not more than 200 feet above the river, two openings expose small bodies of Pyrrhotite in the fine-grained greenstone. A thin section of the leaner ore shows irregular areas of pyrrhotite, a little sphalerite, and a very little chalcopyrite in a ground consisting mainly of quartz and sericite, with lesser amounts of chlorite and zoisite. A polished section of the massive pyrrhotite showed pyrrhotite and a very little chalco-Pyrite. The pyrrhotite is veined throughout by a fine network of later pyrite. Some pyrite occurs in the hand specimens. The pyrrhotite bodies have not been seriously worked. The indefinite banding of the country rock trends between northeast and east.

FISH CREEK MINING CO.

The Fish Creek Mining Co. controls 17 claims (see figs. 1 and 3), which lie mainly on the ridge between Fish Creek and Skookum Creek but extend to either side of these creeks, particularly west of Skookum Creek. Patents have been applied for on three of the claims—the Starboard, Olympia, and Nevada. The property was acquired by the present company in 1909, and more work has been done on it than on any other in the district. It is reported that 16 tons of high-grade ore was shipped in 1916–17.

The contact between granite and greenstone crosses the property in a direction a little west of north. Most of the openings are in rock that is more or less clearly recognized as belonging to the granite. One representative specimen obtained west of Skookum Creek is a granodiorite, showing quartz, plagioclase in excess of orthoclase, biotite much in excess of hornblende, though both had gone over completely to secondary minerals (chlorite, calcite, epidote, and quartz), and accessory apatite and magnetite. Nearer the veins the original character of the country rock is in many places masked by shearing and mineralizaton. The typical greenstone occurs on the east side of the property. All the quartz veins examined, except that at locality 8 (fig. 3), seem to be in granitic country rock. At locality 8 the rock is a slaty rock, which is more properly placed in the Bear River formation.

Ore bodies of two types occur in this group of claims—(1) quartz veins which carry galena, sphalerite, tetrahedrite, chalcopyrite, and pyrite, and (2) lenticular bodies of pyrrhotite, with small amounts of chalcopyrite and pyrite. So far as yet determined the quartz veins alone are of value.

Most of the underground work so far done on the property is on the Starboard and Olympia claims, where there are a series of quartz veins striking about N. 40° W. and dipping 45°–70° NE. Two tunnels have been driven on a well-defined vein on the Starboard claim. At the portal of the upper tunnel the vein measures 27 inches in width, strikes N. 40° W., and dips 70° NE. At an opening made on the hill slope a little above the tunnel the vein dips 80° SW., the only exception noted to the general northeasterly dip. The upper tunnel has been driven about 50 feet, but the vein has not been definitely recognized throughout this distance, and it is possible that the tunnel does not follow the vein throughout its length. The vein can be traced from the upper tunnel to Skookum Creek, a distance of about 400 feet. Near the creek it has been opened by a 40-foot tunnel, in which it strikes N. 35° W. and dips 65° NE.

The quartz vein contains galena, pyrite, and tetrahedrite, with some sphalerite and chalcopyrite, and shows a little copper stain (malachite). A polished section shows tetrahedrite, galena, and a

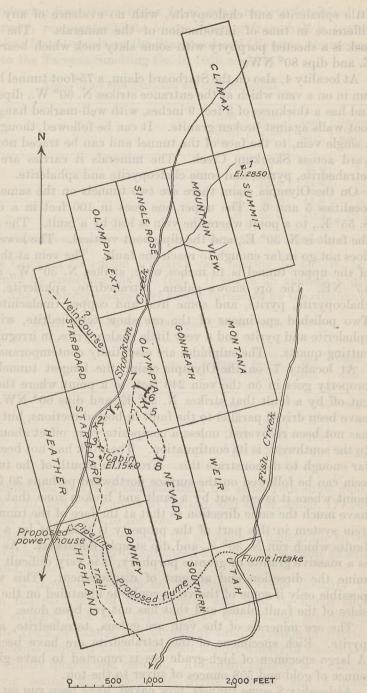


FIGURE 3.—Sketch map of Fish Creek Mining Co.'s properties, Salmon River district. See text for explanation of numbers.

3), eek um the by

it gh-

in te. s a se, ver

nd he by he pt

At in

tz nd of ns

n tz ls

1, 11

ssd

0

1

little sphalerite and chalcopyrite, with no evidence of any notable difference in time of introduction of the minerals. The country rock is a sheeted porphyry with some slaty rock which bears N. 65° E. and dips 80° NW.

At locality 4, also on the Starboard claim, a 75-foot tunnel has been run in on a vein which at the entrance strikes N. 60° W., dips 65° E., and has a thickness of 3 feet 9 inches, with well-marked hanging and foot walls against broken granite. It can be followed, though not as a single vein, to the face of the tunnel and can be traced northwestward across Skookum Creek. The minerals it carries are galena, tetrahedrite, pyrite, and some chalcopyrite and sphalerite.

On the Olympia claim there are two tunnels on the same vein at localities 5 and 6. The upper one goes in 100 feet in a direction S. 55° E., to a point where the vein is lost by a fault. The strike of the fault is N. 30° E., and the dip about vertical. The lower tunnel does not go in far enough to reach the fault. The vein at the mouth of the upper tunnel is 19 inches wide, strikes N. 30° W., and dips 45° NE. The ore shows galena, tetrahedrite, sphalerite, a little chalcopyrite, pyrite, and some iron and copper (malachite) stain. Two polished specimens of the ore show tetrahedrite, with some sphalerite and pyrite and a very little chalcopyrite, in irregular areas cutting quartz. The sulphides are essentially contemporaneous.

At locality 7, on the Olympia claim, the longest tunnel on the property goes in on the vein 240 feet, to a point where the vein is cut off by a fault that strikes N. 30° E. and dips 60° NW. Drifts have been driven parallel to the fault in both directions, but the vein has not been recovered, unless a composite vein, offset about 50 feet to the southwest, is its continuation. The work had not been carried far enough to demonstrate this. From the mouth of the tunnel the vein can be followed on the surface northward perhaps 30 feet, to a point where it is cut out by a fault and broken zone that seems to have much the same direction as that at the face of the tunnel. vein system in this part of the property is thus cut by a series of faults which run N. 30° E. and dip steeply northwest. As the rock is a massive granite or granite porphyry, it is very difficult to determine the direction and amount of displacement. This would be possible only if some of the veins could be identified on the opposite sides of the fault plane, and that has not yet been done.

The ore minerals of the vein are galena, tetrahedrite, and some pyrite. Rich specimens of the tetrahedrite ore have been found. A large specimen of high-grade ore is reported to have given 0.84 ounce of gold and 598 ounces of silver to the ton.

At locality 8 some tunnels, now caved, have been run on a quartz vein which strikes N. 70° W. and dips 55° NE. Pieces of good ore were found in the dump.

The following figures are taken from assay reports furnished by the company, representing lots of ore ranging from half a ton to 5 tons taken from tunnels on the Starboard and Olympia claims and shipped to the Tacoma Smelting Co. in 1916 and 1917.

Assays of ore from Starboard and Olympia claims.

ouer, with small amounts of pyrice, arselve bittle gangue, mainly quartz. The order to be pyrits, arsanopyrite, quartz, pylirlio	Gold (ounces to the ton).	Silver (ounces to the ton).	Lead (per cent).	Copper (per cent).
const two essentially rememberanced	0.40	376	32. 40	3.30
	. 21	161. 14 316. 32	18. 30 38. 90	1.96 3.08
	.15	110. 36 103. 36	32. 50 a 1. 51	Trace. a 21.4
•	.90	706.67 205.40	a 7.68 a 13.9	a 32. 20 a 17. 40

^a The copper and lead are apparently reversed in the smelter report of Nos. 5 and 6 and probably No. 7.

On the Olympia Extension a quartz vein bearing N. 50° W. has been opened by trenching for 600 feet. It shows an average width of 3 feet. The following assays were kindly furnished by the company:

Assays of ore from vein on Olympia Extension claim.

on and A B. Bain. A sixth claim owned and Mr. Eow has an interest in the opera-	Gold (ounces to the ton).	Silver (ounces to the ton).	Lead (per cent).	Copper (per cent).
1.218 goowlook vigitant sii zmiral zmir. 22.	Trace.	3 12 118. 5 94. 8	6.5	Trace.
3	.46 1.42		13	2
6.	.92	72. 5 23. 6	14.5	2
7.	.32	4.4	2. 5	Trace.

Four additional assays of samples from the same vein show gold, 0.52, 2.10, 1.20, and 0.42 ounces to the ton, and silver, 38.20, 177.90, 166.80, and 114.48 ounces to the ton.

The assays quoted above indicate the presence of high-grade silver ores, the value of which may be enhanced to some considerable extent

by gold and copper.

ole

ry 5°

en

E.,
ad
as
ata,

at on of

el

OS

le

ı.

S

essn

ea

0

e

f

7

9

3

A body of pyrrhotite occurs on the Summit claim (locality 1, fig. 3), on the east side of the property and near its north end. Here the country rock is a greenish-gray fine-grained greenstone marked by veins of calcite and abundant small crystals of pyrite. The microscope shows it to be composed almost wholly of secondary minerals, chiefly quartz and sericite. Abundant chlorite and calcite occur along seams, with leucoxene, pyrite crystals, and a little fine-grained orthoclase. A few large rounded quartz grains resemble the phenocrysts in rhyolite and suggest that the original rock may

have been a quartz porphyry. An indistinct bedding bears N. 70° E. and is nearly vertical. In this greenstone are masses of almost pure pyrrhotite. The largest measures about 5 by 12 feet at the surface and stands 6 feet above the water level in a shaft that was sunk in all 10 feet without reaching the bottom of the pyrrhotite. With the pyrrhotite there is a little chalcopyrite and quartz. A polished section of the ore shows mainly pyrrhotite, with small amounts of pyrite, arsenopyrite, chalcopyrite, and a little gangue, mainly quartz. The order of mineral formation seems to be pyrite, arsenopyrite, quartz, pyrrhotite, and chalcopyrite, the last two essentially contemporaneous. A polished section of the immediately adjoining country rock, which contains abundant sulphides, shows mainly quartz and some arsenopyrite, irregularly cut by pyrrhotite, finely veined by later pyrite, and chalcopyrite. The arsenopyrite appears to have been fractured before the introduction of the quartz and other sulphides. An assay of samples from this body was reported by the owner to give gold, 0.36 ounce to the ton; silver, 4 ounces to the ton; copper, 2 per cent.

WATSON & BAIN.

The Watson & Bain property includes five claims (No. 3, fig. 1) in lower Fish Creek valley, owned by John Hoveland and leased in July, 1920, by Hugh Watson and J. B. Bain. A sixth claim, owned by Pete Low, is included, and Mr. Low has an interest in the operation of the property. In August, 1920, work was on the point of being resumed by the lessees. The claims lie mainly between Fish and Skookum creeks, though they extend west of Skookum Creek and east of Fish Creek, as well as along Fish Creek below Skookum Creek. Three openings have been made.

On Fish Creek No. 1 claim two tunnels have been driven on a quartz vein that strikes N. 60° W. and dips 60°-70° NE. The country rock is a broken, sheared, and in places schistose rock of fine grain and undetermined origin. It may be either an inclusion of the greenstone in the granite or a zone of shearing in the granite or granite porphyry itself. The two tunnels are about 75 feet apart vertically; the upper one is 50 feet in length, and the lower one 90 feet. The vein is irregular and of variable width; at the face of the upper tunnel it is 3 feet wide. It carries galena and some pyrite in a gangue of quartz, and some specimens show free gold. Selected samples have shown a high content of gold and silver.

On Fish Creek No. 2 claim a vein bearing N. 50° W. and leading down to Skookum Creek has been opened at intervals for 500 feet. The country rock is a greenish granodiorite. It is massive at a distance from the vein, but near the vein it is broken and mashed and shows small grains of introduced pyrite. A thin section of the lessaltered rock shows plagioclase, quartz, and accessory titanite,

E.

re

ce

all

r-

of

0-

er

0-

IS.

ch

0-

e,

c-

S.

to

r,

in

in

ed

a-

of sh

id

k.

a

1e

of

of

or

rt

90

1e

a

d

g

3-

d

3-

Э,

apatite, and magnetite, with secondary biotite, epidote, sericite, calcite, and chlorite. Fracturing of the rock and granulation of the mineral grains are conspicuous. At the upper opening there is one 1-foot quartz vein and several parallel veins 3 inches or less in width. Locally barite is an abundant vein mineral. The vein strikes N. 30° W. and dips 35° NE. The quartz holds scattered grains and stringers of pyrite. At 150 feet to the northwest the vein is 4 feet thick and contains pyrite, tetrahedrite, and a little copper stain (malachite). A polished section of the ore shows a gangue of quartz and barite cut irregularly by sulphides (tetrahedrite, with less amounts of pyrite, chalcopyrite, and a little sphalerite), which are essentially contemporanceous. Other openings trace the vein to Skookum Creek.

On the east side of Skookum Creek, just at its mouth, a quartz vein bears up the hill in a direction N. 23° E. and cuts an altered and somewhat pyritized greenish granitic rock. Just at the creek the vein is over 3 feet thick, strikes N. 30° E., and dips 45° SE. Farther northeast the dip is steeper; at the last point where it is opened by a shaft the strike is N. 45° E. and the dip 50° SE. The vein is here cut off by a fault, which strikes N. 15° E. and dips 85° NW. The vein at this point is 3 feet thick but splits below into two separated by a horse of country rock 1 foot wide. The ore is mainly on the footwall side. The vein carries galena. Assays of the lodes of this property are not available.

LINDEBORG.

D. & A. Lindeborg have claims east of the Salmon River road a little above Sevenmile (No. 5, fig. 1). These claims lie within the granite area, in a sheared granite porphyry. Two tunnels have been driven at different levels on a quartz vein that strikes N. 60° W. and dips 60° NE. The lower tunnel, 75 feet long, discloses a main quartz vein and some small parallel stringers of quartz in the adjacent country rock, particularly on the footwall side. The quartz carries pyrite and some galena and chalcopyrite; a little copper stain shows. A good deal of galena with some pyrite and a little chalcopyrite is found in the adjacent rock, especially on the hanging-wall side.

At the mouth of the upper tunnel a 3-foot vein of quartz is exposed. The hanging-wall half of the vein carries pyrite in fairly regular bands, some of them 3 to 4 inches thick. These general relations repeat those at the lower tunnel.

CHARLES, NELSON & PITCHER.

John Charles, Max Nelson, and Jim Pitcher hold claims on the east side of Texas Creek 2 miles above Salmon River (No. 6, fig. 1). The country rock is a greenish sheared facies of the granite porphyry

of the granite area. It is cut by small quartz veins, but the sulphides (sphalerite, galena, pyrite, and chalcopyrite) do not occur in the veins but are disseminated in the silicified porphyry. Assays from an opening to the north and a little up the hill are reported to show small quantities of gold, silver, and copper. The country rock here is a granodiorite. The thin section shows plagioclase (oligoclase) in distinct crystals, quartz, orthoclase graphically intergrown with quartz, and biotite, wholly altered to secondary products, with secondary calcite, sericite, leucoxene, and quartz. Much calcite and some pyrite have been introduced.

MISCELLANEOUS PROSPECTS.

About a quarter of a mile south of the Ninemile roadhouse a 40-foot opening has been made along a broken zone in the granite. This opening exposes a quartz vein 6 to 8 inches thick, accompanied by small quartz veins in the crushed country rock. The lead bears N. 25° W. and dips 55° NE. Several prospectors were in the field in August, 1920, but no discoveries except those noted above are known to have been made.

The hanging-wall half of the vein carries pirite in fairly secular

GEOLOGY OF THE VICINITY OF TUXEDNI BAY, COOK INLET.

n

n

0

n h

d

By Fred H. Moffit.

INTRODUCTION.

Location and area.—The district considered in these notes includes Chisik Island and an area of about 225 square miles of mainland, approximately square in outline, extending from the south shore of Tuxedni Harbor and Tuxedni Bay southward toward Chinitna Bay, as far as Red Glacier, but it does not include the head of Tuxedni Bay, which was not visited by the field party in 1920. Interest in this area lies chiefly in the relation of its rocks to the oil-bearing sediments of Oil and Iniskin bays, to the south, and the possibility of oil production within it.

Tuxedni Bay was visited by Martin and Stanton in 1904, and a detailed description of the rocks is contained in the account of the Iliamna region ² published in 1912. A further report dealing especially with the oil possibilities of the district has recently been prepared by Martin.³ The work of 1920 had as its objects the making of a topographic map of the coast of Cook Inlet from Tuxedni Bay to Iliamna Bay and a study of the geology with reference to the possibilities of producing oil. These objects, however, owing to various difficulties, were accomplished only in part.

Outline of geography.—The area outlined above extends from the shore of Cook Inlet westward to Mount Iliamna and the high mountains on the north-northeast. It is a rugged country that consists principally of the flanking mountains of the main range and includes little flat land except the valley of Johnson River. The maximum relief is 10,017 feet (Iliamna Peak), but the average elevation, exclusive of Mount Iliamna and the ridge north of it, is under 4,000 feet. The flanking mountains trend parallel to the west shore of Cook Inlet and conform with the trend of the major geologic structure. These mountains consist chiefly of sandstones and soft shales dipping from 10° to 25° or possibly 30° ESE. Their gentle eastern slopes are dip slopes, and their abrupt western slopes are scarp faces. Erosion has dissected them deeply, and they are profoundly glaciated.

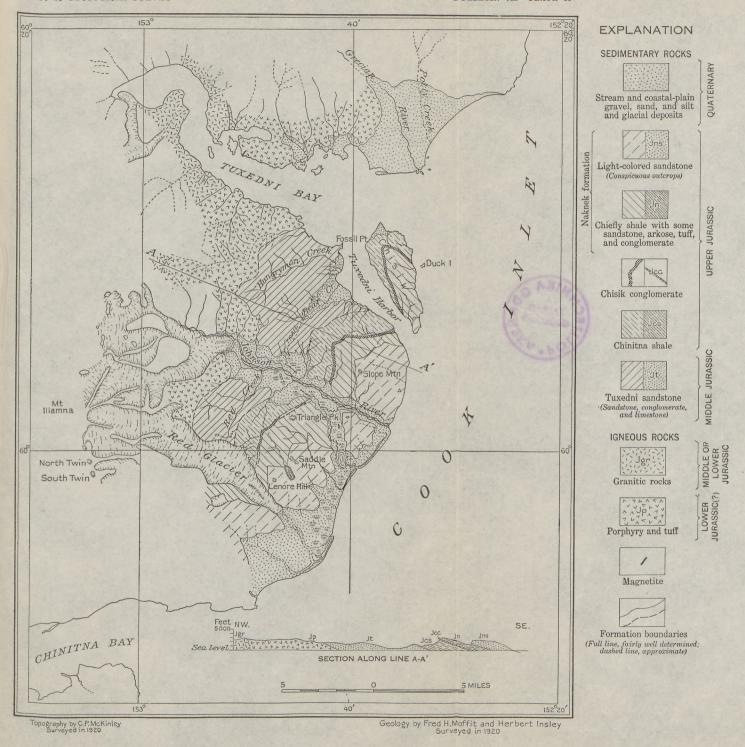
 $^{^1\}mathrm{Commonly}$ known as Snug Harbor, but called Tuxedni Harbor by decision of United States Geographic Board.

Martin, G. C., and Katz, F. J., A geologic reconnaissance of the Iliamna region, Alaska: U. S. Geol. Survey Bull. 485, pp. 59-64, 1912.
 Martin, G. C., Preliminary report on petroleum in Alaska: U. S. Geol. Survey Bull. 719, pp. 42-55, 1921.

The chief stream within the area is Johnson River, which heads in a large glacier on the side of Mount Iliamna and flows eastward into Cook Inlet. The level valley bottom on each side of the river is crossed by small sluggish streams and dotted with numerous beaver ponds. Most of the valley bottom is impassable for pack horses because of marshy ground, so that considerable time and labor may be required in crossing the valley. In times of high water during the warm summer days Johnson River is difficult to ford with horses because of swift water and quicksands.

Up to an elevation of about 2,000 feet the area is covered by a dense growth of alders, which make travel with horses absolutely impossible until a trail has been cut. Through the alders, both on the hill slopes and in the valley bottoms, are scattered cottonwoods in groves and as individual trees. Spruce, except a few scattered trees on Chisik Island and at Fossil Point, does not grow on the shores of Tuxedni Harbor, but it occupies much of the narrow coastal plain extending southward from the mouth of Johnson River to Chinitna Bay, and in the vicinity of Chinitna Bay it furnishes pilings for fish traps and for the wharf at the cannery in Tuxedni Harbor.

DESCRIPTIVE GEOLOGY.


GENERAL SECTION.

The distribution of the geologic formations in the vicinity of Tuxedni Harbor and Tuxedni Bay is represented on the map (Pl. II) and in the following table, which is based largely on the work of Martin:

	reet.
Quaternary: Sands, gravel, morainal, and other unconsolidated	
deposits.	
Upper Jurassic:	
Naknek formation; shale, sandstone, arkose, andesitic tuff,	
and conglomerate	5,000
Chisik conglomerate; coarse conglomerate, of variable thick-	
ness, consisting predominantly of well-rounded granite	
pebbles in an andesitic tuffaceous matrix	290
Chinitna shale; fairly homogeneous marine sedimentary forma-	
tion consisting of soft shale with subordinate amounts of	
sandstone and limestone 1, 300-	2, 400
Middle Jurassic: Tuxedni sandstone; marine sedimentary formation	
consisting predominantly of sandstone but including a large	
proportion of shale with subordinate conglomerate and lime-	
stone	1, 100
Middle or Lower Jurassic: Granite, granodiorite, and quartz diorite.	
Lower Jurassic (?): Lava flows cut by later intrusives.	
sted them deeply, and ducy are proloundly gladaled	dissec

The thicknesses shown are those given by Martin, but it is probable, as he points out, that the Tuxedni sandstone is much thicker than is indicated in the table.

The excellent exposures of geologic formations on the coast of Chisik Island and Tuxedni Bay were studied in detail by Martin and Stanton, and the carefully measured sections made by them are given

in the account by Martin.⁴ Additional collections of fossils were obtained from these formations in 1920, yet little can be added to the descriptions of the rocks themselves, although they were carefully studied in order that the geologists might familiarize themselves with the sections.

The axis of the main range of mountains, which extends north and south from Mount Iliamna, is made up of granite or of granitic rocks. This granite in the vicinity of Tuxedni Bay is bordered on the east by a belt of volcanic rocks averaging about 5 miles in width and making up many of the high mountains of the district. The volcanic rocks and the granite which intrudes them are not oil bearing and will not here be described in greater detail, although they may contain deposits of metallic minerals. The volcanic rocks in turn are succeeded on the east by a great thickness, approximately 9,000 feet, of sedimentary beds, which form the principal subject of this report. They are the rocks assigned to the Middle and Upper Jurassic epochs in the table and consist chiefly of shales and sandstones but include many beds of conglomerate. It is believed that the contact of these sedimentary beds with the volcanic rocks on the west is a fault contact. The beds have a fairly uniform easterly dip averaging about 20° but diminishing from the west toward the east. They are described briefly below.

MIDDLE JURASSIC ROCKS.

TUXEDNI SANDSTONE.

The type locality of the Tuxedni sandstone is on the south shore of Tuxedni Bay, where it is exposed in practically continuous outcrops for about $2\frac{1}{2}$ miles. This section, however, does not include an unknown thickness of beds overlying the beds exposed on the shore of the bay. The rocks of this formation extend southwestward from Tuxedni Bay in a narrow belt that reaches into the Alaska Peninsula, but they are not known to be present on the north side of the bay, although they probably continue in that direction and may sometime be found there.

The formation is made up of marine sediments comprising alternating beds of sandstone and sandy shale which range in thickness from 1 foot to 100 feet. Although the top of the formation was not determined in 1920 it is known that more than 1,000 feet of sediments, chiefly shale, lie above the beds exposed on the shore of the bay, as is shown in the ridge between Tuxedni Harbor and Johnson River. It appears, therefore, that the minimum thickness of 1,128 feet given by Martin must be increased, possibly to 3,000 feet. A notable feature of the sandstone members that crop out on the shore of Tuxedni Bay is that in considerable part they were formed of material result-

⁴Martin, G. C., op. cit.

ing from the rapid weathering of igneous rocks, which were probably granite or related granitic rocks, for the sandstones contain an abundance of angular feldspar and ferromagnesian minerals.

f

a

11

I

1

f

S

n

n

t]

b

it

a

ir

Co

p

sein

th

so

Vi

61

ec

W

ar

qu

to

je

ar

The Tuxedni sandstone is the lowest known formation of the Middle Jurassic series in southwestern Alaska. It contains an abundant invertebrate fauna and has yielded good collections of plants.

The Tuxedni sandstone, like the beds overlying it, dips away from the high mountain axis toward Cook Inlet. The strike is about N. 30° E., parallel to the coast line of the inlet. The dip is slightly undulating and ranges from 15° to 25° E. The sedimentary beds of the Tuxedni Bay district flatten out toward the inlet. In a few places small open folds were seen, but otherwise the nearly uniform easterly slope of the beds appears to be uninterrupted.

UPPER JURASSIC ROCKS.

CHINITNA SHALE.

The Chinitna shale is a marine sedimentary formation occupying the base of the Upper Jurassic section on Cook Inlet. Its type locality is Chinitna Bay, where it is well exposed on both the north and south shores, but it extends in a narrow belt a mile or more wide along the east side of the Tuxedni sandstone, appearing on the south shore of Tuxedni Harbor and on the west side of Chisik Island. It consists chiefly of dark argillaceous shale but contains subordinate beds of sandstone and limestone. Its thickness, as measured by Martin, is nearly 2,400 feet. So far as is now known the Chinitna shale rests conformably on the underlying Tuxedni sandstone and differs from it, as pointed out by Martin, in that its shales are argillaceous rather than arenaceous. In general it has the same strike as the Tuxedni sandstone, about N. 30° E., but it has a lower average dip and in the vicinity of Tuxedni Harbor was not found to be folded except for the eastward tilting of the beds.

CHISIK CONGLOMERATE.

The Chisik conglomerate forms a conspicuous cliff on the north and west side of Chisik Island and is well developed also on the south side of Tuxedni Harbor. It includes several hundred feet of coarse conglomerate in which are included beds of finer conglomerate and of sandstone. Boulders and cobbles of granite and other granitic rocks are abundant in the conglomerate outcrops of Chisik Island. The matrix containing the pebbles and cobbles, according to Martin, is an andesitic tuff. The Chisik conglomerate is variable in composition and in thickness. Seemingly it is much less well developed south of Tuxedni Harbor, although it appears in the mountain south of Johnson River.

Fossils have not been found in the conglomerate, but it lies between formations of Upper Jurassic age, and it is therefore assigned to the Upper Jurassic.

NAKNEK FORMATION.

The Naknek formation is of heterogeneous composition and includes more than 5,000 feet of interbedded shale, sandstone, arkose, andesitic tuff, and conglomerate. It forms a belt averaging 4 or 5 miles in width along the coast of Cook Inlet from Chisik Island to Iniskin Bay and continues beyond that into the Alaska Peninsula. The shale, tuff, and arkose are best developed in the lower part of the formation. The upper part consists largely of massive light-colored sandstones which form the mountain slopes toward the coast but are more conspicuous because of the prominent westward-facing cliffs made by their scarps. These cliffs, owing to their light color and steep faces, are very noticeable topographic features when seen from the landward side but are less prominent when seen from the inlet.

The most complete section of the Naknek formation that has yet been measured is exposed on the north shore of Chinitna Bay, where

it was studied by Martin and Stanton in 1904.

Fossils are not numerous throughout the Naknek formation but are locally abundant and fill thick beds. From their evidence the

Upper Jurassic age of the formation is determined.

The strike of the Naknek formation is parallel to the shore of the inlet in the vicinity of Tuxedni Harbor and in the small area under consideration shows little deviation. The dip ranges from 10° to possibly 20° E. and in general is lower than that of the underlying sedimentary beds. No reversed dips or minor folds were observed in this formation.

QUATERNARY DEPOSITS.

The Quaternary deposits of Tuxedni Bay and the area adjacent on the south include glaciofluvial and beach deposits made up of resorted glacial débris, stream gravels, and the gravels and sand

deposited by the sea.

ly

n-

lle

nt

m

N.

ly

of

W

m

e

h

re

1e

d.

e

Y

a

d

1-

e

d

h

h

f

C

Typical glacial deposits are not well developed except in the vicinity of the existing glaciers. The stream and beach gravels, however, contain an abundance of foreign material which was undoubtedly brought in by the ice and was contributed directly to them or was derived from the destruction of previous glacial deposits. The area is profoundly glaciated and must have supplied an immense quantity of débris to the moving ice. Part of this débris was carried to the sea, but another part was left on the land and was thus subjected to re-sorting and redistribution by streams.

The valleys of Bear Creek and Johnson River furnish the best examples of these re-sorted deposits, but the gravels of glacial origin

63963°-22-10

are so thoroughly intermingled with gravels of stream origin that no distinction between them is possible.

Johnson River in part of its course has cut through the surface deposits and reveals a bed of fairly coarse gravel tightly cemented with iron oxide, forming a hard conglomerate. This bed is conspicuous because of its bright color and contains a large proportion of fragments of vesicular lava, from which the cementing material and consequently the color was derived. The source of the lava was not visited, but it is believed to have come either from some comparatively recent flow from Mount Iliamna or else from the volcanic rocks underlying the Tuxedni sandstone. So far as is known the stream gravels are not gold bearing, but they are difficult to prospect and little attention has been given to them.

1

b

The beach deposits form a narrow border along the shore for the most part, but on the north side of Tuxedni Bay and north of Chinitna Bay they widen to a narrow coastal plain which in one place has a breadth of over 2 miles.

STRUCTURE.

The structure of the sedimentary beds in the vicinity of Tuxedni Bay has been indicated in the descriptions already given and is shown on the section on the map (Pl. II). These beds from the Tuxedni sandstone to the Naknek formation have a moderate easterly dip toward the shore of Cook Inlet and strike parallel to the shore, or about N. 30° E. A slight flattening of beds near the coast line is noticed, for the average dip there is between 10° and 15°, as compared with 20° or more at the upper end of Tuxedni Bay. The rarity of local variations in dip is notable. Folds and even short undulations in the beds are uncommon, although it should be said that the dense covering of alders on all the lower hill slopes obscures the structure in many places and possibly conceals folds that are present.

Faults of small displacement were observed at different places, but no great faults were seen within the area of the sediments. It is probable, however, that the contact of the Tuxedni sandstone with the underlying volcanic rocks is a fault contact. Martin, from his study of the relations between the volcanic rocks, the Tuxedni sandstone, and the Chinitna shale in Chinitna Bay, reached the conclusion that the sedimentary beds are most probably separated from the volcanic rocks by a fault of considerable vertical and longitudinal extent, although he suggests other possible explanations of the relations existing there.

Although the Jurassic beds in the vicinity of Iniskin Bay and Oil Bay are known to carry a certain quantity of petroleum, as is shown

⁵ Martin, G. C., op. cit. p. 97.

by oil seeps and drilling, the structure of these beds in the vicinity of Tuxedni Bay is not considered to be especially favorable for the accumulation of oil, for, so far as observation has shown, the structural features commonly considered as favorable or necessary for the retention of oil within an oil reservoir are not well developed here. On the other hand, the sedimentary beds themselves are seemingly as favorable for the development of the oil as the corresponding beds farther south. The petroleum of Iniskin and Oil bays is believed to be derived from the lower part of the Tuxedni sandstone and is stored in the porous beds of that formation. If the lower beds of the Tuxedni sandstone in the vicinity of upper Tuxedni Bay have ever been oil bearing, it seems likely that much of the oil has escaped to the surface and been lost during the long time that these upturned beds have been exposed to erosion, yet they may possibly still contain oil stored either in lenticular sand beds surrounded by impervious shale or in sand beds sealed by being faulted against impervious shale.

If the deeply buried part of the formation in the area nearer the inlet is oil bearing, it is unfavorable from the standpoint of the driller because of the great thickness of overlying beds that must be penetrated in order to reach the oil. The depth of the drill hole would be not only the thickness of the beds but an added depth due to the tilt of the beds, which, however, in beds of low dip is not great. The maximum depth to the top of the Tuxedni sandstone near the entrance to Tuxedni Harbor is at least 5,000 feet. Drilling in this vicinity would therefore seem unadvisable unless much more favorable structural conditions should be discovered than are now known.

by oil seeps and drilling, the structure of these beds in the vicinity of I usedni Bay is not considered to be especially favorable for the accumulation of oil, for, so far as observation has shown, the structural features commonly considered as favorable or necessary for the farmal features commonly considered as favorable or necessary for the favorable of oil within an oil oil reservoir are not well developed here as the other hand, the sedimentary beds themselves are seemingly as favorable for the development of the oil as the corresponding beds farther sentli. The petroleum of Iniskin and Oil beys is believed to be derived from the formation of the Tuxedni sandstone and is stored in the porcus beds of that formations of the formation of the long time that these upmarned been oil bearing, it seems likely that much of the oil has escaped to the surface and been lost during the long time that these upmarned the surface and been lost during the long time that these upmarned the surface and been lost during the long time that these upmarned the corn in sand beds sealed by being tanked against impervious shale.

the deeply buried part of the formation in the area nearer the inlet is oil bearing, it is unfavorable from the standpoint of the driller because of the great thickness of overlying beds that must be penetrated in order to reach the oil. The depth of the drill hele would be not only the thickness of the beds but an added depth due to the not of the beds, which, however, in beds of low dip is not great. The maximum depth to the top of the Tuxedni sandstone near the maximum depth to the top of the Tuxedni sandstone near the minima of Tuxedni Harbor is at least 5,000 feet. Drilling in this vicinity would therefore seem umadvisable unless much more favorable structural conditions should be discovered than are now known able structural conditions should be discovered than are now known.

Pantis of small-day increment were cherred at different place, but no creat faults were teen within the gree of the sediment. It is not all the words to the Typedin satisfance with the appropriate of the Typedin satisfance with the appropriate of the Typedin satisfance with the appropriate were the volunteering the Topedin and the theory and the appropriate were the volunteering the Topedin and the theory and the appropriate were the volunteering the Topedin and the appropriate the appropriate and the appropriate appropriate and the appropriate appropriate and appropriate app

Be and the Subsect bare of the worder of the section of the sectio

GOLD LODES IN THE UPPER KUSKOKWIM REGION.

By George C. Martin.

DISCOVERY AND DEVELOPMENT.

The recent discovery of deposits of high-grade gold ores in the upper Kuskokwim region has attracted attention to a part of Alaska that is comparatively little known either to the general public or to

mining men or geologists.

For several years a few small placer mines have been worked on Ruby and Hidden creeks, which are tributary to Nixon Fork from the south. In the course of this placer mining it was found that the gold became more abundant as it was followed up the creeks, but that above certain points it was no longer found. Shafts sunk into the bedrock at the limits of the placer gold revealed rich gold-bearing lodes lying on or near a monzonite-limestone contact. Further prospecting at this contact revealed the presence of other gold lodes. Shafts were sunk early in 1919 on two of the more promising of these lodes, and from one of them several hundred tons of high-grade ore was mined in the winter of 1919-20. This ore was sledded to Kuskokwim River and in the summer of 1920 it was shipped to the Tacoma smelter. In the meantime prospectors had traced the contact of the monzonite boss near the margin of which the known lodes lie, had staked claims along probably the entire contact, over much if not all of the monzonite area, and over part of the surrounding limestone, and had dug many trenches and pits along the contact and at other places, revealing the presence of many ore bodies of different sizes and richness. Many of the more promising claims, including the one from which ore had been shipped, passed into the control of the Alaska Treadwell Gold Mining Co. and associated interests early in 1920. During the summer of 1920 the Alaska Treadwell Co. was actively engaged in prospecting its holdings, and prospecting was being continued on a smaller scale on some of the other claims.

SOURCES OF INFORMATION.

Although the lower part of Kuskokwim River was explored in 1832, information concerning the upper part is still scanty. Several prospectors visited the upper part of the river between 1889 and 1898.

The earliest precise information concerning the country through which the upper river flows was gained by J. E. Spurr 1 and W. S. Post, who, in the summer of 1898, crossed the Alaska Range at the headwaters of Skwentna River and of the South Fork of the Kuskokwim and descended the Kuskokwim to its mouth (Pl. III). The resulting geologic information and maps of the area adjacent to the river from the forks to McGrath have been used in this report. In 1899 Lieut. Joseph S. Herron ² crossed the Alaska Range at the head of Kichatna River and explored areas on various tributaries of the Kuskokwim above the forks. In 1901 a steamer was taken up the Kuskokwim to the forks. In 1902 an expedition under the leadership of Alfred H. Brooks 3 crossed the Alaska Range through Rainy Pass, near the headwaters of the South Fork of the Kuskokwim, and traveled northward along the western base of the Alaska Range. In 1907 G. B. Gordon 4 reached the headwaters of the North Fork of the Kuskokwim by wav of Kantishna River and Minchumina Lake and descended the Kuskokwim to its mouth. Gordon's account of his explorations contains some general information on the region and much information concerning the natives but very few accurate cartographic or geologic data. A preliminary railroad survey from the Susitna Valley to Iditarod by way of the South Fork of Kuskokwim River was made in 1914 by J. L. McPherson for the Alaskan Engineering Commission.

Information bearing upon this district is to be found in descriptions of neighboring districts, notably in accounts by Smith ⁵ of an area on the south, by Eakin ⁶ of an area on the northeast, and by Mertie and Harrington ⁷ of an area on the west.

The prospects in the district have been described by J. S. Rivers ⁸ and by an anonymous writer ⁹ and have been briefly mentioned by Brooks and Martin. ¹⁰

The statements herein presented are based primarily on observations made by the writer in a brief visit in the summer of 1920, but they include also such other information as could be gathered from various sources. Acknowledgment should be made for aid

¹ Spurr, J. E., A reconnaissance in southwestern Alaska in 1898: U. S. Geol. Survey Twentieth Ann. Rept., pt. 7, pp. 31–264, pls. 7–13, maps 4–14, 1900.

² Herron, J. S., Explorations in Alaska, 1899, for an all-American route from Cook Inlet, Pacific Ocean, to the Yukon: War Department, Adjt. General's Office, No. 31, 1901, pp. 1–77, with maps.

³ Brooks, A. H., The Mount McKinley region, Alaska: U. S. Geol. Survey Prof. Paper 70, 234 pp., 18 pls. 1911.

⁴ Gordon, G. B., In the Alaskan wilderness, 247 pp., 1917.

⁵ Smith, P. S., The Lake Clark-central Kuskokwim region, Alaska: U. S. Geol. Survey Bull. 655, 162 pp., 12 pls., 1917.

⁶ Eakin, H. M., The Cosna-Nowitna region, Alaska: U. S. Geol. Survey Bull. 667, 54 pp., 8 pls., 1917. ⁷ Mertie, J. B., jr., and Harrington, G. L., Mineral resources of the Ruby-Kuskokwim region: U. S. Geol. Survey Bull. 642, pp. 223-266, pl. 11, 1916.

Rivers, J. S., Eng. and Min. Jour., Aug. 21, 1920.
 Min. and Sci. Press, vol. 121, pp. 475-476, 1920.

¹⁰ Brooks, A. H., and Martin, G. C., The Alaskan mining industry in 1919: U. S. Geol. Survey Bull. 714, p. 93, 1921.

h

1-

m

g

n t.

a

0

e

S

rendered to the writer in the field and for information furnished by all the local claim owners, miners, and prospectors and especially by Mr. Livingston Wernecke, who was in charge of the local operations of the Alaska Treadwell Mining Co. Much of the information here presented would not have been available without Mr. Wernecke's cordial and generous cooperation.

GEOGRAPHIC ENVIRONMENT.

POSITION.

The lode prospects to be described are about 12 miles north of the forks of the Kuskokwim. (See fig. 4.) The forks are in west-

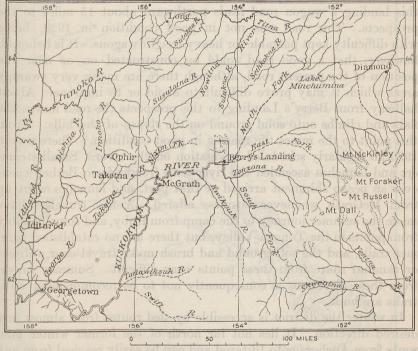
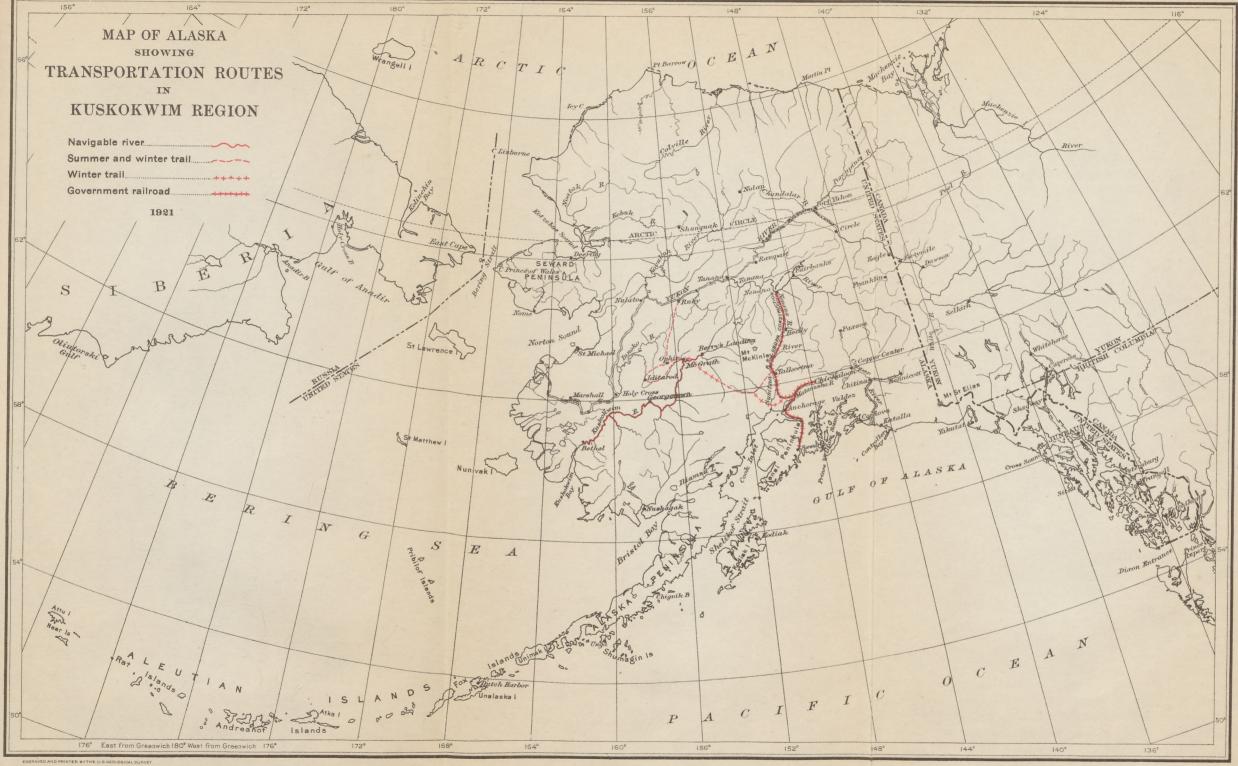
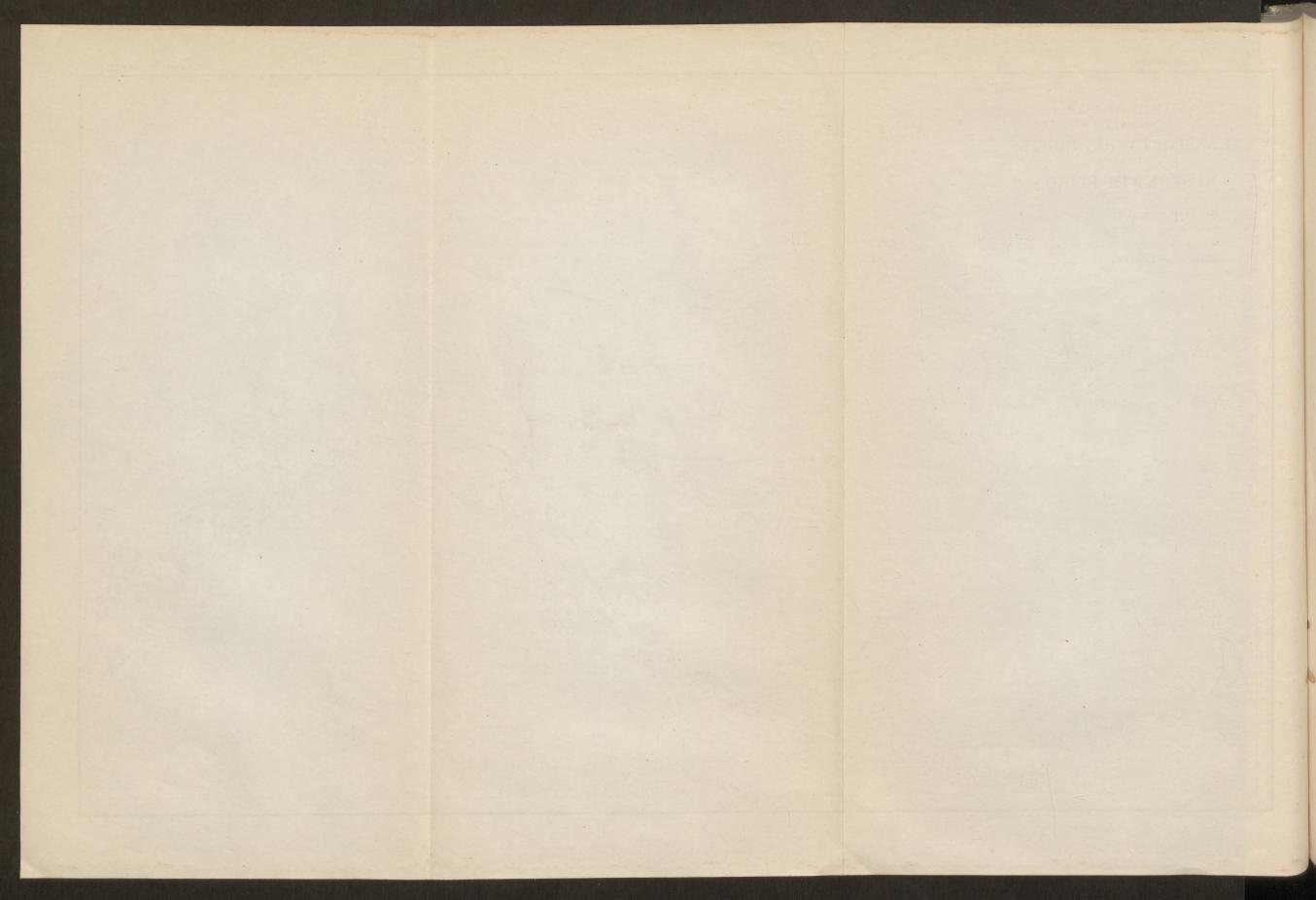


Figure 4.--Index map of upper Kuskokwim basin. The rectangle indicates the area shown in figure 5.


central Alaska, in about latitude 63° N., longitude 154° W., or about 500 miles above the head of deep-water navigation at Bethel and 600 miles from the mouth of the river. The prospects and the exposures described are all included within a small area near the divide between the main Kuskokwim and Nixon Fork, which is one of the larger northern tributaries of the Kuskokwim. The district has been popularly known as the "Nixon Fork country," but this name is not especially appropriate and will probably be replaced in local usage.


ACCESS AND SETTLEMENTS.

The only feasible route to the camp that is at present open in summer is that by way of the Kuskokwim, either from its mouth or from McGrath, which may be reached by an overland route from Iditarod. McGrath was the nearest permanent settlement in 1920, although there seemed to be promise that a small settlement would be established at Berry's Landing, near the forks of the Kuskokwim. about 90 miles above McGrath. (See Pl. III.) Berry's Landing is the head of ordinary navigation on the Kuskokwim; it can be reached by launches or small steamers. Although the river is probably navigable by small boats for some distance above the forks, Berry's Landing is the nearest point on the river to the lode prospects. From this landing a wagon road leads northward about 15 miles to the prospects. This road was not in good condition in 1920, being with difficulty kept passable for heavy freight wagons. It is believed, however, that a good road could be constructed on or near the position of the present road, although there are many very swampy areas which it may prove difficult to avoid or to improve. About halfway from Berry's Landing to the prospects the road leaves the flats and climbs onto solid ground on the slopes of the hills. From this point to the mines the road is in good condition. There was in 1920 no regularly scheduled navigation on the river. Small steamers and launches ascended the river with freight from Bethel whenever an ocean shipment arrived at that port, and launches went up from McGrath whenever business offered. A few travelers have made the summer journey to the camp from Ruby, and some possibly from points in the Tanana Valley, but there are no established summer trails, and the soft ground and brush make travel over a direct or random route from these points very difficult. Summer travel from these directions is consequently not to be recommended until trails are built.

In winter the district is accessible by sled routes from almost any desired direction. It lies not far north of the former winter mail route from Anchorage to Iditarod and can be easily reached from any of the settlements in the Tanana Valley.

Comparatively easy access to the district could probably be had in either summer or winter over a road built from some point on the Government railroad between Nenana and the foothills of the Alaska Range. Such a road would be about 200 miles long (see Pl. III) and would follow the foothills of the Alaska Range through the Kantishna district, past Lake Minchumina and the headwaters of the North Fork of the Kuskokwim, and would continue along the divide between Nixon Fork and the Kuskokwim. Much of the area that would be traversed is unsurveyed, but enough is known about the general character of the country to make it practically certain that a feasible

route for a road can be found. If a productive mining camp is established here it is believed that most of the transportation of Passengers and light freight to and from the district will be over some such route as this, though heavy freight will probably always move over Kuskokwim River.

RELIEF AND DRAINAGE.

The camp is in a group of irregular rounded hills, which have no definite trend and stand in general about 1,000 feet above the forks of the Kuskokwim, or probably about 1,500 feet above sea level. The area is in one of the higher parts of the line of hills which forms the divide between Nixon Fork and the Kuskokwim. The hills in the immediate vicinity of the camp have steep but fairly smooth slopes. Cliffs, sharp peaks, and ridges of definite trend are noticeably absent. The area between the hills and the Kuskokwim is an imperfectly terraced flat having a general elevation of about 50 feet above the river. It is the customary river flat of interior Alaska and is probably formed of several terraces, but no detailed information concerning their number, attitude, and form is at hand. All the prospects thus far discovered are on the Nixon Fork side of the divide, on small creeks that flow out from the hills and meander across the broad, flat valley to join Nixon Fork, which follows a most meandering course, as indicated on the accompanying map (Pl. III). The courses of these creeks beyond the immediate vicinity of the prospects and the identity of possibly larger streams into which they may empty before reaching Nixon Fork is not known. The lack of knowledge concerning them is indicated by the names Puzzle, Mystery, Hidden, and Riddle, which have been applied to some of the creeks.

VEGETATION.

The hills and small valleys in the vicinity of the camp are covered with a fairly uniform but in general open mixed forest of spruce and birch, and on the hillsides there are fairly numerous but not very dense thickets of alders and willows. A remarkably thick coat of moss covers all the slopes. Exposures of rock or bare ground are very scarce, even along the creeks or on the tops of the highest hills. The flats along Kuskokwim River bear scattered patches of forest, which are separated by swamps and meadows. The trees include spruce, poplar, and larch, the poplar predominating except in favored places, most of them either near the river or at the base of the hills, where there are forests of spruce.

Grass grows abundantly on the hillsides and in the more open birch forests. There is also much grass on the flats, but most of it is marsh grass. The parts of the flats seen by the writer are either swampy or have been recently burned over and bear little or no useful vegetation.

ANIMALS.

The larger animals include moose, caribou, and probably both brown and black bear. All are relatively scarce, for this district lies in one of the poorer game countries of central Alaska. The reason for the scarcity of the larger game animals is not known. They have not been exterminated by hunters, for the human population, both white and native, is small, and there has been no hunting for market or for trophies. The smaller fur-bearing animals are said to be abundant. The useful birds include numerous grouse and waterfowl of various kinds.

CLIMATE.

This district is within the more rainy part of central Alaska. Summer rains are much more frequent than in the Yukon-Tanana region, but the rainfall is of course not so great as that of the coast region. No weather records are available, but the abundance of rain is indicated not only by the general observations of the inhabitants but by the dense growth of moss on the hillsides.

GEOLOGY.

The rocks exposed in the vicinity of the prospects include Paleozoic (probably Middle Devonian, though possibly Ordovician) limestone and shale, a mass of quartz monzonite which is intruded into the limestone, terrace gravel, and stream gravel. (See fig. 5.) The limestone and shale are believed to underlie a large area throughout the region and are probably cut by numerous masses of quartz monzonite that have not yet been discovered.

LIMESTONE.

The rocks in the vicinity of the lode prospects of the Kuskokwim, except the intrusive rocks and gravels, are limestones that are believed to be part of the limestone and slate which Spurr ¹¹ has described as the "Tachatna series" (now spelled Takotna). The fact that the writer observed only limestone with little if any interbedded shale or slate in the hills near the lode prospects, whereas Spurr described the exposures in the river bank as including much shale or slate, probably means that the limestone finds its characteristic topographic expression in the peaks and ridges, which comprise almost the only exposures of bedrock away from the river. The additional fact that the exposures are few but are practically all of limestone is perhaps an indication that limestone is not areally the most extensive rock of the district.

¹¹ Spurr, J. E., A reconnaissance in southwestern Alaska in 1898: U. S. Geol. Survey Twentieth Ann. Rept., pt. 7, pp. 123, 157–159, 179, 1900.

th

ct

n.

d

a

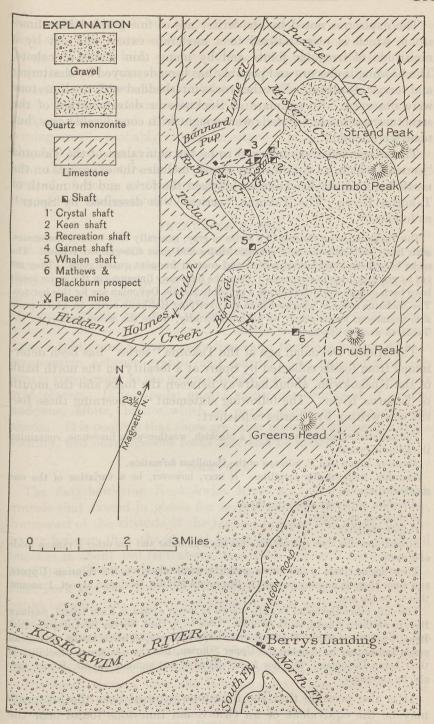


FIGURE 5.—Geologic map of Nixon Fork lode district, upper Kuskokwim basin.

The exposures noted by the writer are of fine-grained blue limestone, which is recrystallized to a moderate extent and cut by a multitude of irregular joints and by many thin seams of calcite. The bedding is obscure and possibly has been destroyed by shattering and recrystallization. No other rocks interbedded with the limestone were observed. No estimate of thickness or determination of the structure was made. Fossils were sought with considerable care, but none were found.

These limestones are believed to be the equivalent of the Takotna "series," which, as described by Spurr, includes the exposures on the north bank of the Kuskokwim between the forks and the mouth of Takotna River. The Takotna "series" was described by Spurr ¹² as follows:

The Tachatna series consists of a series of gray, generally thin-bedded limestones, with limy, carbonaceous, and chloritic shales and some fine-grained arkoses. The rocks have been considerably folded and contain frequent quartz veins. They are cut by granitic dikes in rare cases. From the light-gray limestone in this series fossils have been obtained which indicate a probable Middle Devonian age for this horizon. The Tachatna series is separated from the overlying Holiknuk series, in which probable Cretaceous fossils occur, by an unconformity, while the series underlying the Tachatna was not exposed.

The Middle Devonian age of the Takotna "series" has been determined from fossils collected by Spurr at a locality on the north bank of the Kuskokwim, about halfway between the forks and the mouth of Takotna River. The following statement ¹³ concerning these fossils was written by Charles Schuchert:

The material submitted consists of a blackish, weather-worn limestone, containing the following corals:

Favosites, much like F. billingsi of the Hamilton formation.

Favorites, with smaller corallites. It may, however, be a variation of the one mentioned above.

Alveolites, with very small corallites.

Striatopora, sp. undet.

Crepidophyllum?

Stromatoporoids, two species, one having a globular and the other a ramose mode of growth.

There are no corals in this fauna pointing unmistakably to the Silurian (Upper), and since there is nothing present to disprove a Middle Devonian aspect, I assume that to be the age.

The only other Devonian locality known to me in Alaska is Kuiu Island, Saginaw Bay, in southern Alaska, south of Sitka. (See U. S. Geol. Survey Seventeenth Ann. Rept., pp. 900 and 902.) The fossils from Cape Lisburne, in north Alaska, are also all corals and appear to indicate the Upper Silurian, but there is also a possibility of their being Devonian. The few fossils gathered last summer by Mr. Brooks may also be Devonian.

It is also possible that the limestone exposed near the prospects may be the equivalent of an Ordovician limestone found near the headwaters of the North Fork of the Kuskokwim and described by Eakin.¹⁴ This Ordovician limestone occurs at the north end of the range of hills which extends northeast from the locality herein described. The intervening area has not been traversed by geologists, and it is not known that the limestone extends through it continuously, but observations made by Eakin and by the writer from the north and south ends of the intervening belt indicate that this intervening area is probably chiefly limestone. It is therefore possible that the limestone at the prospects is continuous with the limestone near the headwaters of the Kuskokwim and is of Ordovician age instead of being continuous with the nearer Devonian limestone exposed on the banks of the river.

INTRUSIVE ROCKS.

A roughly oval area of quartz monzonite, about 3 by 5 miles in size, cuts the limestone in the vicinity of the prospects. A few small basic dikes, one of which (p. 161) is of pyroxenite, have also been intruded into both the monzonite and the limestone. The monzonite is locally known as granite and may properly be so called in popular speech, although microscopic examination shows that it differs somewhat from a true granite, being more basic and therefore intermediate in composition between granite and diorite. The monzonite of this area is very similar to the monzonite of the Iditarod and Candle Creek gold placers. It is a sodic quartz monzonite composed of quartz, andesine, albite, biotite which is partly chloritized, apatite, and zircon. It is possible that there are other masses of monzonite in the vicinity, and other igneous rocks may also be present.

GRAVELS.

The flats bordering Kuskokwim River are covered with bench gravels that extend in places for several miles back from the river. No record of the altitude of the highest benches was made, but the writer believes that the general upper limit of the well-developed benches is about 100 feet above the river. Spurr ¹⁵ records a silt bluff 100 or 150 feet high about halfway between the mouth of the East Fork and the mouth of Takotna River and notes that the silt banks between this locality and some localities well up on the South Fork do not rise more than 20 feet above the river. The writer agrees with this observation but believes that higher terraces, not cut by the river, are present in this interval. These deposits are the usual river benches of interior Alaska and call for no special description.

The small streams near the lode prospects have the customary alluvial wash, which is locally gold bearing.

15 Op. cit., p. 122.

¹⁴ Eakin, H. M., The Cosna-Nowitna region, Alaska: U. S. Geol. Survey Bull. 667, pp. 23-25, 1918.

Glacial deposits are not known in the region, although much of the material in the terraces and bars of the Kuskokwim was derived from glacial deposits in and near the Alaska Range.

MINERAL RESOURCES.

GOLD LODES.

OCCURRENCE.

The gold lodes herein described lie on or near a contact between quartz monzonite ("granite") and limestone. The monzonite outcrops in a roughly elliptical area measuring about 3 by 5 miles. The west side of the monzonite has an irregular outline that may be due either to erosion along a sloping contact, to original irregularity in the shape of the monzonite mass, or to deformation. The rocks are so poorly exposed that the contact relations are not well known, but it is believed that the monzonite is intrusive into the limestone, that the western margin of the monzonite slopes westward at an angle departing appreciably and perhaps considerably from the vertical, and that the contact has been modified by faulting along lines diagonal to its original direction.

All the known ore bodies and most of the indications of mineralization have been found at or near the contact of the monzonite and the limestone, near the western margin of the monzonite, at places where the contact departs sharply from its general northerly trend. The ore does not occur in one continuous body but in several lenticular masses, none of which has yet been traced for any considerable distance. It is believed that workable ore is more likely to be found where the contact has been cut by faults or by zones in which the rocks are shattered. The ore bodies perhaps extend along the faults for considerable distances from the intrusive contact or along the contact for considerable distances from the faults.

Although the ore shows considerable differences in appearance and in richness from one prospect to another, it is probably of one general type, characterized by the presence of gold-bearing copper sulphides, which have been deeply and thoroughly weathered in most of the prospects to iron oxides and hydroxides and copper carbonates. The ore in all the prospects except the Crystal shaft is thoroughly oxidized to the extreme depth reached by the workings in August, 1920. The ore in the Crystal shaft, on the contrary, is unoxidized, even at the surface. The lack of alteration at the Crystal shaft may be due to some unexplained tightness of the fissure or to the fact that this ore body is within the monzonite, whereas most of the others are in the limestone or on the contact.

No assays of the ore have been made by the Geological Survey. A published description, which is believed to be based on reliable first-hand information, says:

he

om

en

it-

he

ue

in

re

ut

e,

in

r-

es

1-

d

S

r

d

e

S

The ore is valuable chiefly for gold, but it carries 2 or 3 ounces of silver, and some of it contains from 2 to 8 per cent copper. * * * Several lenses of ore have been disclosed; they consist of high-grade ore—for example, 38 feet assaying \$56 and 32 feet assaying \$65 per ton. A large proportion of the ore assays between \$30 and \$35 per ton, for a full stoping width, but the ore bodies are comparatively short—for example, 40 to 60 feet.

Most of the ore seen by the writer is believed to contain not more than 2 per cent of copper. A specimen which was sent to the Geological Survey and which is said to have come from the Whalen claim contains copper and a little nickel. Samples collected by the writer from the Recreation, Garnet, Whalen, and Crystal shafts, the Garnet trench, and the Mathews & Blackburn prospect were analyzed in the laboratory of the Geological Survey, and no trace of nickel was found.

Additional ore bodies may be sought not only along the contact of the limestone with the mass of monzonite but on the margins of any other monzonite areas that may be discovered in this district. The geographic and geologic province of which the known mineralized area is a part and in which similar geologic conditions may be expected and additional mineralized areas of this type may perhaps be found includes the belt of hills between Kuskowim River and Nixon Fork extending northeastward from the mouth of Takotna River for a considerable distance beyond the forks of the Kuskowim and possibly as far as the headwaters of the North Fork. Most of this area has not been examined geologically, but limestone is visible for a considerable distance from the hills near the prospects. Special search should be made in this belt for other areas of monzonite, and they should be carefully prospected, although it is not certain that they will contain valuable ores.

MINE AND PROSPECT OPENINGS.

Crystal shaft.—The Crystal shaft is near the head of Crystal Gulch, a tributary of Ruby Creek (fig. 5). It is in the monzonite not far from the limestone. The shaft was begun in January, 1919, and was sunk in the winter of 1919–20 to a depth of 65 feet. The workings, which were inaccessible at the time of the writer's visit, were made for the purpose of mining whatever ore could then be shipped at a profit. It is said that the ore body thus mined was a lens 10 by 20 by 65 feet in dimensions and that there was "6 feet of sulphides in

¹⁷ U. S. Geol. Survey Bull. 714, p. 93, 1921.

¹⁶ Min. and Sci. Press, vol. 121, pp. 475-476, 1920.

the bottom of the shaft." The ore is unoxidized and, as shown by specimens on the dump, consists of chalcopyrite, pyrite, and bornite in a gangue of calcite, siderite, and a zeolite, probably scolecite.

n

Keen shaft.—The Keen shaft is on the wagon road near the head of Crystal Gulch, about 1,000 feet east of the western border of the monzonite. It is said to have revealed a vein 4 feet wide, and material from this vein on the dump shows quartz with much yellow stain containing numerous small flakes of a grayish mineral with metallic luster (probably arsenopyrite) and a few small cubes of pyrite.

Recreation shaft.—The Recreation shaft is near the wagon road on the hillside northeast of Ruby Creek. It is in the limestone about 600 feet west of the margin of the monzonite. A shaft 50 feet deep with a drift 35 feet long exposes a vein having a maximum thickness of 6 feet. The vein has been traced by surface cuts for about 200 feet. The ore is thoroughly oxidized and shows in thin section iron oxides and hydroxides, quartz, chlorite, which is in part spherulitic, malachite, probably some azurite, and a little apatite. The specimens show much dark-green and some blue stain, probably derived from copper minerals. No sulphides or metallic minerals were seen.

Garnet shaft.—The Garnet shaft is south of the wagon road near the head of Crystal Gulch. It is in limestone, about 100 feet from the outcrop of the monzonite, but masses of monzonite show in the lower workings. The shaft was 76 feet deep when visited, and there was about 70 feet of drift. At the surface the ore is the full width of the shaft, which does not show the walls. At the bottom of the shaft the vein is not more than 4 feet wide. The ore, which is thoroughly oxidized, consists of chloritic material, iron ores, and quartz with many thin films and small masses of malachite and azurite.

Whalen shaft.—The Whalen shaft is on the divide between Ruby and Hidden creeks. At the end of August, 1920, it was 100 feet deep, and there was 160 feet of drift on the 40-foot level. Crosscuts on the 40-foot level show 32 feet of ore reported to average \$68 per ton in gold. The vein is in limestone not far from the monzonite, and at the south end of the workings it lies very close to the monzonite. The ore, which is thoroughly oxidized even in the deepest workings, consists of chloritic material, iron ores, and quartz, containing many small masses of copper carbonates and a few small masses of chalcopyrite or pyrite.

Garnet trench.—The Garnet trench is on the contact between the monzonite and limestone, south of Mystery Creek and near the northeast corner of the Southern Cross claim. The ore consists chiefly of garnet containing many thin films and small masses of malachite and azurite. The thin section shows, in addition to garnet,

augite, a little sericitized plagioclase, apatite, epidote, and chloritic material.

Twin shafts.—The Twin shafts are near the center of the Southern Cross claim. They are in an oxidized zone on the contact of a fine-grained porphyry dike intrusive into limestone. The ore was so much decomposed that no microscopic study or determination of the constituent minerals was possible. It is said to carry about \$10

worth of gold per ton.

te

d

le

d

f

Mathews & Blackburn prospect.—The Mathews & Blackburn prospect is in the valley of Hidden Creek, near the south end of the area of monzonite. Only a small, shallow excavation had been made at the time of the writer's visit, and no well-defined ore body had been exposed. The prospect is situated on the outcrop of a basic dike intrusive into limestone, near the margin of the main mass of monzonite. The dike is of pyroxenite and is composed of augite, which is the chief constituent, magnetite, which also is present in considerable amount, melilite, a green garnet that is probably melanite, iron oxides, calcite, chloritic material, and copper carbonates.

GOLD PLACERS.

The Mathews & Blackburn placer mine is on Hidden Creek, just inside the area of the monzonite. It was worked on a small scale by shoveling in from an open cut. The pay gravel is said to be 75 to 125 feet wide, and it has been shoveled in to a depth of about 4 feet.

The O'Malley & Walden placer mine is on Ruby Creek near the contact of the monzonite and limestone. It is worked by drifting.

The Griffin & Whalen placer mine, on claim "No. 1 above," on Holmes Gulch, is in the limestone about a mile west of the margin of the monzonite. It was worked by sluicing in the early part of the summer of 1920, as in previous years.

63963°-22-11

area of monzonite. Only a small shallow execuation had been made at the time of the writer's visit, and no well-defined ore body had representate and imputate, south of Restacy Creek and near the northwest corner of the Southern Cross rights. The said courses nelectate and exercise. The time section shows, in addition to remove

METALLIFEROUS LODES IN SOUTHERN SEWARD PENINSULA.

By S. H. CATHCART.

INTRODUCTION.

The value of the total mineral output of Seward Peninsula is about \$81,000,000, of which over \$80,000,000 is the value of the gold won from placer mines. Lode prospecting began soon after placer mines Were developed and has been continued in a more or less desultory manner through a period of 20 years, but thus far the attempts to open up lode mines have met with but little success. Little bedrock work has been done since 1917, when the effects of the World War began to be felt, and since then the suspension of the requirement for annual assessment work has still further decreased the prospecting of lode claims. In 1915 and 1916, owing to the war demands, a temporary stimulus was given to the mining of stibnite-bearing lodes. but it soon subsided. The Big Hurrah quartz mine is the only lode-gold producer that was opened up on any considerable scale, and this mine was operated only from 1903 to 1908 and then not continuously. Within the last few years underground work has been done at the Lost River tin mine, the Kougarok silver-lead property, and the gold lodes near Bluff, but elsewhere lode development has been almost negligible. There are now no productive lode mines in the region under discussion; only a few have produced in the past, and the output from those few has been small.

In the area of the York Mountains the relation of the mineralization to the geology has been pretty well established.² Tin, tungsten, antimony, copper, and lead have been discovered and are known to be closely related to granite bosses and porphyry dikes that intrude the limestone and slates. For the rest of the peninsula no such relation has been determined. A possible exception is the platinum recovered from the placers of Dime Creek. Basic igneous rocks occur in the vicinity of these placers, and although platinum has not been determined as a constituent of those rocks it is believed to have been derived from them.

In the absence of such well-defined genetic relations for the mineralization of most of the peninsula, it was deemed desirable to ascer-

¹ An exception to this statement is the silver-lead deposit at Omalik in the Fish River basin, which was ⁰pened up and from which some ore was shipped as early as 1881.

² Steidtmann, Edward, and Cathcart, S. H., The geology of the York tin deposits, Alaska: U. S. Geol. Survey Bull. — (in preparation).

tain the conditions which have led to a very wide distribution of metallic minerals throughout the country rock, especially the conditions which have resulted in concentrations of gold rich enough to be reflected in scattered placer deposits but which have not produced

gold lodes of notable promise.

The writer undertook to determine, so far as the physical conditions permitted, the geologic relations of the bedrock occurrence of metallic minerals in this region. It was believed that such studies might help the prospector by determining the geologic conditions under which the metalliferous lodes were formed. Field work was begun on July 3 and continued until September 19, 1920. During this time most of the lodes of the peninsula in the area south of the mountains, between Council on the east and Cripple River on the west, were visited and the country rock in the vicinity of the richest placers was studied in an attempt to determine something more concerning the relations that exist between the mineralization of the region and the geology. In all 110 prospects were examined, and the ores, where available, were studied. The prospects show considerable variety in mineralization. Iron, bismuth, tungsten, gold, copper, lead, zinc, graphite, and antimony have been found in bedrock, and mercury is known in the placers.

The investigation was originally planned to be continued through several years, with the hope of not only determining the genesis of the ores but also correlating the many geologic formations found in Seward Peninsula. As for the present the investigation has been suspended, it seems desirable to record the provisional conclusions

reached during the first season of field work.

This paper outlines certain features of the mineralization that were observed. It does not describe in detail all the prospects examined, nor discuss in more than a general way the mineralization of other important districts which were not visited. Descriptions of the geology and mineral deposits of the peninsula are contained in previous reports published by the United States Geological Survey, a list of which follows.

Preliminary report on the Cape Nome gold region, Alaska, with maps and illustrations, by F. C. Schrader and A. H. Brooks: Special Pub., 56 pp., 19 pls., 1900.

Reconnaissance in the Cape Nome and Norton Bay regions, Alaska, in 1900 (A reconnaisance of the Cape Nome and adjacent gold fields of Seward Peninsula, Alaska, in 1900, by A. H. Brooks, assisted by G. B. Richardson and A. J. Collier; A reconnaissance in the Norton Bay region, Alaska, in 1900, by W. C. Mendenhall): Special Pub., 222 pp., 23 pls., 1901.

An occurrence of stream tin in the York region, Alaska, by A. H. Brooks: Mineral Resources, 1901, pp. 267–271, 1902.

A reconnaissance of the northwestern portion of Seward Peninsula, Alaska, by A. J. Collier: Prof. Paper 2, 70 pp., 12 pls., 1902.

Stream tin in Alaska, by A. H. Brooks: Bull. 213, pp. 92-93, 1903.

The Kotzebue gold field of Seward Peninsula, Alaska, by F. H. Moffit: Bull. 225, pp. 74-80, 1904.

Tin deposits of the York region, Alaska, by A. J. Collier: Idem, pp. 154-167.

The tin deposits of the York region, Alaska, by A. J. Collier: Bull. 229, 61 pp., 7

The Fairhaven gold placers, Seward Peninsula, Alaska, by F. H. Moffit: Bull. 247, 85 pp., 1905.

Recent development of Alaskan tin deposits, by A. J. Collier: Bull, 259, pp. 120-127,

Gold mining on Seward Peninsula, by F. H. Moffit: Bull. 284, pp. 132-144, 1906.

The York tin region, by F. L. Hess: Idem, pp. 145-157.

The Nome region, by F. H. Moffit: Bull. 315, pp. 126-145, 1907.

Gold fields of Solomon and Niukluk river basins, by P. S. Smith: Bull. 314, pp. 146-156, 1907.

Geology and mineral resources of Iron Creek, by P. S. Smith: Idem, pp. 157-163.

The Kougarok region, by A. H. Brooks: Idem, pp. 164-181.

Water supply of Nome region, Seward Peninsula, 1906, by J. C. Hoyt and F. F. Henshaw: Idem, pp. 182-186.

The gold placers of parts of Seward Peninsula, Alaska, including the Nome, Council, Kougarok, Port Clarence, and Good Hope precincts, by A. J. Collier, F. L. Hess, P. S. Smith, and A. H. Brooks: Bull. 328, 343 pp., 1908.

Water-supply investigations in Alaska, 1906-1907 (Nome and Kougarok regions, Seward Peninsula, etc.) by F. F. Henshaw and C. C. Covert: Water-Supply Paper 218, 156 pp., 2 pls., 1908.

Investigation of mineral deposits of Seward Peninsula, by P. S. Smith: Bull. 345, pp. 206-250, 1908.

The Seward Peninsula tin deposits, by Adolph Knopf: Idem, pp. 251-267.

The mineral resources of the Lost River and Brooks Mountain region, Seward Peninsula, by Adolph Knopf: Idem, pp. 268-271.

Water supply of the Nome and Kougarok regions, Seward Peninsula, 1906-1907, by F. F. Henshaw: Idem, pp. 272-285.

Geology of the Seward Peninsula tin deposits, Alaska, by Adolph Knopf: Bull. 358, 71 pp., 9 pls., 1908.

Recent developments on Seward Peninsula, by P. S. Smith: Bull. 379, pp. 267-301,

The Iron Creek region, by P. S. Smith: Idem, pp. 306-354.

Mining in the Fairhaven Precinct, by F. F. Henshaw: Idem, pp. 355-369.

Water-supply investigations in Seward Peninsula, 1908, by F. F. Henshaw: Idem, pp. 370-401.

Geology and mineral resources of the Solomon and Casadepaga quadrangles, Seward Peninsula, Alaska, by P. S. Smith: Bull. 433, 234 pp., 16 pls., 1910.

Mining in Seward Peninsula, by F. F. Henshaw: Bull. 442, pp. 353-371, 1910.

Water-supply investigations in Seward Peninsula in 1909, by F. F. Henshaw: Idem, pp. 372-418.

A geologic reconnaissance in southeastern Seward Peninsula and the Norton Bay-Nulato region, Alaska, by P. S. Smith and H. M. Eakin: Bull. 449, 146 pp., 13 pls., 1911.

Geologic features of Alaskan metalliferous lodes, by A. H. Brooks: Bull. 480, pp. 43-94, 1911.

Notes on mining in Seward Peninsula, by P. S. Smith: Bull. 520, pp. 339-344, 1912. Geology of the Nome and Grand Central quadrangles, Alaska, by F. H. Moffit: Bull. 533, 140 pp., 12 pls., 1913.

Surface-water supply of Seward Peninsula, Alaska, by F. F. Henshaw and G. L. Parker, with a sketch of the geography and geology by P. S. Smith and a description of the methods of placer mining by A. H. Brooks: Water-Supply Paper 314, 317 pp., 1913.

sor

par

wh

in

tha

Th

str

(E

is

Mo

Th

an be

no

no

his

its

me

scl

gre wi

Si

m

Se

ar

of

of

T

te

m

80

th

M

po

W.

m

de

ro

It

ar

fo

C

Placer mining on Seward Peninsula, by Theodore Chapin: Bull. 592, pp. 385-395,

Lode developments on Seward Peninsula, by Theodore Chapin: Idem, pp. 397–407. Iron ore deposits near Nome, by H. M. Eakin: Bull. 622, pp. 361–365, 1915.

Placer mining in Seward Peninsula, by H. M. Eakin: Idem, pp. 366–373.

Antimony deposits of Alaska, by A. H. Brooks: Bull. 649, 67 pp., 3 pls., 1916.

Lode mining and prospecting on Seward Peninsula, by J. B. Mertie, jr.: Bull. 662, pp. 425–449, 1917.

Placer mining on Seward Peninsula, by J. B. Mertie, jr.: Idem, pp. 451-458.

Mineral springs of Alaska, by G. A. Waring, with a chapter on the chemical character of some surface waters of Alaska, by R. B. Dole and A. A. Chambers: Water-Supply Paper 418, 118 pp., 9 pls., 1917.

Mineral resources of Seward Peninsula, by G. L. Harrington: Bull. 692, pp. 353-400,

Mining in northwestern Alaska, by S. H. Cathcart: Bull. 712, pp. 185-198, 1920.

Pliocene and Pleistocene fossils from the Arctic coast of Alaska and the auriferous beaches of Nome, Norton Sound, Alaska, by W. H. Dall: Prof. Paper 125, pp. 23–37. pls. 5–6, 1919.

Geology of the York tin deposits, Alaska, by Edward Steidtmann and S. H. Cathcart (in preparation).

GEOLOGY.

OUTLINE.

The foregoing list of publications indicates the large number of geologic investigations that have been made on Seward Peninsula. The Geological Survey has published reconnaissance geologic maps (scale 1:250,000) of nearly the entire region (20,000 square miles) and detailed maps (scale 1:62,500) of certain important districts.3 These surveys and investigations have been made by a score of geologists during a period of more than 20 years. Each new investigation has added many additional facts bearing on the geology and the occurrence of mineral deposits. As yet there has been no adequate summary of this large mass of material and no correlation of the many formations to which the rocks have been assigned. To the end that a better understanding may be had of the relation between the ore deposits, to be here described, and the general geology of the region, the following provisional statement on the stratigraphy of Seward Peninsula as a whole is here quoted from an unpublished manuscript by A. H. Brooks:

The bedrock of Seward Peninsula includes many sedimentary formations, ranging in age from pre-Ordovician to middle Carboniferous (Pennsylvanian). There are also some Upper Cretaceous sediments, as well as extensive lava sheets, chiefly of Quaternary age but in part possibly older, in the eastern part of the peninsula. In much the larger part of the peninsula intrusive rocks are not abundant, but in the Kigluaik, Bendeleben, and Darby mountains there are extensive stocks of granite rocks with

⁸ Smith, P. S., Geology and mineral resources of the Solomon and Casadepaga quadrangles, Seward Peninsula, Alaska: U. S. Geol. Survey Bull. 433, pls. 6-7, 1910. Moffit, F. H., Geology of the Nome and Grand Central quadrangles, Alaska: U. S. Geol. Survey Bull. 533, pls. 3-4, 1913.

some dikes. There are also a number of granitic stocks, with which porphyry dikes are associated, in the York district. A few isolated stocks of granite occur in other parts of the peninsula. There are also local occurrences of pegmatitic, gabbroid, and diabasic intrusives.

All investigators of this field have recognized two distinct systems of structure, one trending about north and the other about east, but there is diversity of opinion as to which is the older. The Cretaceous rocks of the eastern part of the field are involved in the northerly folds. As these are the youngest consolidated rocks, it is evident that their deformation occurred during the most recent period of crustal disturbance. There is, however, some evidence of folding in late Paleozoic time, which produced structural features trending north. It is therefore possible that the post-Cretaceous (Eocene?) folds followed the structure of older Paleozoic time. The east-west folding is probably to be correlated with the dominating structural features of the Arctic Mountain system of northern Alaska and Siberia, which trend approximately east. This folding was certainly earlier than Upper Cretaceous, probably pre-Cretaceous, and certainly not earlier than Middle Jurassic. There is evidence that there has also been some later movements along these older east-west folds. As the intrusions were no doubt in a general way contemporaneous with the folding, and as in turn some if not all of the mineralization was genetically related to the intrusions, the tectonic history of the region is not without economic interest.

The bedrock of most of the gold-bearing areas of Seward Peninsula, especially in its southern part, consists of feldspathic and mica schists locally interbedded with metamorphic limestones that in places broaden out into considerable belts. The schist areas are also in places broken by wide belts of both massive and schistose greenstones and also by narrower belts of slates and quartzites. These formations are without doubt Paleozoic, and there is much evidence that they are younger than Silurian. They may be tentatively assigned to the Devonian or Carboniferous. The multiplicity of formation names in the many reports dealing with the geology of Seward Peninsula has caused much confusion in the minds of those not personally familiar with the region, hence it seems desirable to present at least a provisional correlation of the many formations that have been described, beginning with what

are believed to be the oldest rocks of the peninsula.

Pre-Ordovician.—Dark slates and phyllites, locally graphitic, with some thin beds of limestone. These rocks have been definitely recognized only in the western part

Ordovician with some Silurian.—Massive arenaceous limestone, locally crystalline. Typically developed in the western part of the peninsula, where these rocks are termed Port Clarence limestone. They carry Ordovician and Silurian fossils and, as mapped, some of Pennsylvanian age. Paleozoic limestone, with which are associated some dolomite and slate, is widely distributed in Seward Peninsula. For many of these rocks no definite age assignment is possible on the basis of the facts now in hand. The limestone beds at some localities carry Silurian fossils (in dolomite), some include Middle Devonian fossils, some are undoubtedly of Pennsylvanian age, and some possibly Ordovician.

Devonian (?).—Feldspathic, micaceous, siliceous, chloritic, and graphitic schists, with some beds of limestone, are very widely distributed over the region. The age of most of them seems to be pretty definitely later than Silurian, and there is some evidence that they are immediately succeeded by Pennsylvanian limestone. rocks are provisionally assigned to the Devonian. In this group are included the Nome, Solomon, Kuzitrin, and Tigaraha schists and the schist of the Kigluaik group. It appears that the lower part of this series (Kuzitrin, Kigluaik, Tigaraha) is siliceous and the upper part calcareous. Most of the gold deposits of the peninsula have been found in association with the more calcareous members of this group of formations.

Carboniferous limestone.—Massive light-blue and white crystalline limestone. Cape Mountain (Bering Strait) Pennsylvanian fossils have been found in this formation. The Sowik limestone of the Solomon region and the limestones overlying the Nome group are believed to belong to this formation.

Carboniferous.—Succeeding the supposed Pennsylvanian limestone in the Solomon and Casadepaga region are formations made up of black quartzose slates and schists not definitely recognized elsewhere in the peninsula. These have been termed the Hurrah slate and Puckmummie schist.

Carboniferous (?).—Greenstones are widely distributed in the peninsula, especially in the southern part. They occur chiefly as stocks, dikes, and sills, most of which have been rendered schistose. Their age is not definitely known, but they appear to be the youngest Paleozoic rocks of the region. The Casadepaga schist (chloritic) has been correlated with these rocks.

Intrusives.—Granitic and allied intrusive rocks occur as stocks and dikes in certain parts of the peninsula. They intrude the youngest of the known Paleozoic rocks and are for the most part Mesozoic or younger. Some of these rocks are sheared and gneissoid, as in the Kigluaik Mountains; others are massive, as those of the York district, where the granitic intrusives are accompanied by porphyry dikes. In the York district the mineralization is genetically related to the intrusives, and this is probably also true in some other districts.

There is good reason to believe that there was more than one period of intrusion. In the region east of Norton Bay mineralized rock accompanies granitic intrusives which traverse Upper Cretaceous beds and are probably of Eocene age. The opinion is ventured that the massive intrusives of the York district and possibly of some other parts of the peninsula are of Eocene age and were injected at the time of the latest period of deformation, which produced north-south folds. If this is true the other intrusives can logically be correlated with the older Jurassic (?) folding. So far as is now determined, this earlier period of intrusion was not accompanied by any very definite epoch of mineralization—at least, no evidence of mineralization has been found in association with the granites of the Kigluark Mountains, which are believed to belong to the earlier epoch of intrusion.

Quaternary.—The Quaternary deposits consist principally of sand and gravel, with locally some small glacial moraines. During the Quaternary period there were poured out some extensive lava flows, which in certain places (Fairhaven and Kougarok districts) cover gravel deposits. In the Quaternary system also fall the terrace and ancient sea beach deposits that are especially well developed in the Nome and Solomon regions. Some of the lavas of the eastern part of the peninsula are probably pre-Quaternary.

COUNTRY ROCK.

The rocks of the area visited are nearly all metamorphosed sediments. Granitic intrusives are plentiful in the Kigluaik and Bendeleben mountains, north and northeast of Nome, but except for the granite of Cape Nome and of several smaller areas in the vicinity of Stewart River and Dickens Creek they are not known to be exposed in the area under consideration. Greenstone sills, stocks, and dikes are numerous but do not appear to have produced any mineralization. In fact, areas in which greenstones are abundant appear to be unfavorable to the occurrence of gold.

The metamorphic series consists mainly of schist but includes considerable limestone and some black slate. Chlorite schist is by far the most common type. It is usually siliceous, but calcitic varieties are common. Chlorite may be present almost to the exclusion of mica or may be only accessory to mica. The chlorite varieties

are green; the micaceous varieties gray. The mica schists consist chiefly of muscovite and are highly siliceous. Feldspar schists are common in some parts of the area. The feldspar (albite) occurs in small crystals, together with chlorite and quartz, and the rock is not always easily distinguished from the chloritic types. Graphitic schists are present but are abundant only in small areas. The rocks are made up chiefly of quartz, massive and brittle, through which graphite is finely disseminated and with it a little muscovite. The schists taken as a whole are chloritic and siliceous. Graphitic, feldspathic, calcareous, and micaceous varieties are common but are subordinate to the general type. Accessory minerals, including biotite, are present in much of the rock, but these are nowhere conspicuous. The above-described schists belong principally to what has been called the Nome group.

Black slate is best developed in the Solomon region (Hurrah slate). It is a very siliceous rock, black, brittle, with good cleavage, and composed chiefly of quartz, with graphite, and here and there a little sericite. Lithologically similar types occur in the Council, Iron Creek, and Nome regions, but the fine slaty qualities are best devel-

oped in the Solomon region.

the

lon

sts

he

lly

ch

to

as

in

nd

rk

he

is

n.

es

11

ne

1e

1e ar

n

9

y

Limestone is an important constituent of the series. It occurs in thin beds generally not more than 50 feet thick and commonly only 5 feet thick throughout the schist series. It may occur as an occasional layer of limestone interbedded with schist, or it may form half of the section. As heavy-bedded limestone including thin beds of schist, it is most conspicuous and covers a considerable area. The beds are light gray or blue-gray to dark blue, are everywhere marmarized, and are in many places schistose.

STRUCTURE.

The structure of the rocks of the area is complex. Faulting has occurred in all the formations. Close folding is not unusual in the limestones and is common in the schists. The details of the structure are not well known. Two periods of deformation are recognizable. The axis of one set of folds strikes in general north; that of the other set east. The easterly folds are best developed in the vicinity of Kigluaik and Bendeleben mountains, where they are the prevailing structural features. Although they can be recognized throughout the area, they are elsewhere subordinate to the northerly folds. The areas of most intense deformation are the Nome and Solomon regions. Smith has described in detail the structure of the Solomon and Casadepaga quadrangles, which may be considered as best illustrating the complicated geology that is rather characteristic of the peninsula as a whole.

⁴ Smith, P. S., Geology and mineral resources of the Solomon and Casadepaga quadrangles, Seward Peninsula, Alaska: U. S. Geol. Survey Bull. 433, pp. 111-120, 1910.

MINERALIZATION.

ROCK OPENINGS.

The distribution and occurrence of the mineral deposits of a region are largely dependent upon the openings that were available at the time the mineral-bearing solutions were introduced. The extreme irregularity of many of the lodes of Seward Peninsula and the disseminated character of the mineralization are perhaps best explained by considering the stratigraphy of the metamorphic series, the contrast between the physical properties of the rocks of that series, the order of their succession, and the way in which they behaved when subjected to deforming forces.

Viewed in a general way the metamorphic series, principally mapped as the Nome group, is composed essentially of schist and limestone. at is not possible to give a measured section showing the relative proportions of the two rock types and their relation to each other, as the structure is complicated by intense folding and a great deal of faulting. Horizons are not distinguishable by lithologic data, and the limestones are fossiliferous in but few localities. Metamorphosed and unmetamorphosed greenstones add further complications, so that it is impracticable to subdivide the series other than into two parts, one predominantly schist, the other predominantly limestone.

The lower part consists chiefly of schist with interbedded limestone. The limestone beds range in thickness from less than 1 foot to perhaps 100 feet. Beds 5 to 20 feet thick are the most common. Few limestone beds of 20 feet or more do not contain one or several thin zones of schist. Not uncommonly the limestone and schist are about equally abundant and of about the same thickness. The most pronounced limestone zones include 20 to 30 per cent of schist interbedded with the limestone, and the most pronounced schist zones contain thin beds of limestone. Almost any ratio of limestone to schist or of schist to limestone can be seen in different parts of the area. The limestone is usually coarsely crystalline and fairly massive. Thin-bedded platy types and schistose phases also occur. various types of schist that occur in the group have been described. They range from soft calcareous and highly chloritic varieties to dense brittle siliceous varieties. Slates are conspicuous in some parts of the area, especially in the Solomon and Iron Creek

The limestone division of the Nome group, though chiefly limestone, includes many thin beds of schist ranging from 1 foot to 50 feet or more in thickness. The limestone is recrystallized and on the whole fairly massive, but zones of thin-bedded platy and schistose types are common. The contact between the two divisions is not sharp. In the limestone division schist is relatively most abundant at the base, and in the schist division limestone is relatively most abundant at the top.

The succession of limestone and schist is an extremely heterogeneous group. All degrees of so-called competency are represented not only among individual members of the group but among beds at various horizons throughout the group as a whole. The competent beds are the limestones, slates, and quartzose schists, and their competency within any zone is dependent upon their proportion and disposition relative to the less competent micaceous, chloritic. and calcareous members of the group.

A part of the gold mineralization is known to have occurred before the deformation of the series that produced most of the schist. Probably the larger part of the gold and apparently all the other valuable minerals were introduced later than the period of greatest metamorphism. The openings into which these later minerals were introduced resulted from folding or faulting of the heterogeneous series just described. All the later movements were not of the same age nor of the same intensity. Neither was all the later mineralization of the same age, but all the later openings were developed under similar conditions in a series of rocks whose physical characteristics were probably not much different at the different stages of deformation. The same principle, therefore, probably governed the formation of the rock openings in all the later periods of deformation.

As pointed out by Brooks 5 the most widespread effect of folding was to cause an adjustment within the series which to a large extent took the form of shearing at the contact of the so-called competent and incompetent beds. The physical properties of the rocks, other than their competency or resistance to deformation, were also important, especially those of the limestone. The uniform bedding planes of the limestone acted as original well-defined surfaces of weakness, so that when shearing forces were applied movement took place along these surfaces. These contact and bedding shear zones resulted in many poorly defined fissures which were distributed throughout the schist-limestone and limestone-schist divisions. Though the fissures were commonly not of great width and few of them are occupied by well-defined, massive veins, they permitted the infiltration of gold-bearing quartz and sulphide solutions and contain the quartz stringers so generally distributed through the area.

The controlling influence during deformation has been in large part the limestone and other competent members of the series, but exceptions to the localization of the fissures along the limestone contacts are so numerous that they require further explanation. Where the limestone beds are thick, as compared with the schists, the openings

⁶ Brooks, A. H., U. S. Geol. Survey Bull. 328, p. 122, 1908.

seem to be closely confined to the immediate contact. Where the width of the schist zones is greater, adjustment within the relatively plastic schist beds has been effected by close folding, which has given rise to shears within the schist body and a general shattering of it. As the width of the schist zones increases, the fissuring becomes less closely confined to the contacts and more independent of the limestone. The most pronounced shear zones occur in bodies of schist several hundred feet in thickness in which competent beds are reduced to a minimum, but even here the action of the competent beds as the controlling factor during adjustment is recognizable. An especially favorable horizon for fissures formed by such shearing is at or near the junction of the main limestone division of the group and the underlying schist division.

Other fissures that cut the schist and the limestone are either not related to fissures that were produced by shearing or represent the extreme product of the deformation. A certain amount of deformation could be accommodated by the adjustment of the beds of such series as have been described, but if the deforming forces continued to act the beds would break. Fissures thus produced are the cleanest cut and most continuous observed and are occupied by the largest veins known in the area. Of the fissures in the schist even the cleanest cut show extreme irregularity. The physical properties of the schist did not permit it to fracture along sharp, well-defined planes. The fissures follow sinuous courses along both the strike and the dip, and horizontal movement along these sinuous lines has given to the veins which now occupy the fissures their habits of pinch and swell.

Only a few veins of considerable size fill fissures in the limestone division. The physical properties of the limestone cause it to break more evenly than the schist, and the veins in limestone are more uniform than those in schist. Any irregularities seem to be due to the division of the beds into blocks by joint planes and to unequal movement of the individual blocks, which resulted in straight-line reentrants and cavernous openings in the fissure walls. The joint systems and bedding planes in the limestone are the openings most commonly filled by later solutions.

The black slate member of the series is best developed in the Solomon region. It covers a very small area but is exceptional among the rocks of the series in the way in which it has fissured. It is a dense siliceous, uniform-textured rock which has fractured along cleancut lines. The veins of Big Hurrah Creek occur in this formation and are the best defined and most regular of the veins known in the region. The contrast between the fracturing qualities of this division of the Nome group and those of the schist affords a good explanation why most of the veins of Seward Peninsula have proved so irregular and discouraging to prospectors.

TYPES OF DEPOSITS.

In this region concentrations of mineralization, especially of gold mineralization, are only relative. Dissemination is the rule. concentrated deposits may be classed as veins and shear zones.

Veins.—Although the veins of Seward Peninsula have not shown great promise and have proved a source of discouragement to prospectors, because of their lack of continuity and the erratic distribution of the minerals which they contain, they are important in a study of the general mineralization of the region. They are known to be one of the sources if not the chief source of the placer gold. In addition to the original gold content of the veins, gold-bearing sulphides of a later period of mineralization have in many places followed the same fissures as the veins and fill fractures in the vein quartz and impregnate the schist of the vein walls. So far as known the original sulphide content of the veins was small.

Smith 6 has classified the veins as older quartz veins, newer quartz veins, and calcite veins. The calcite veins are abundant in both schist and limestone but especially in the limestone. Usually they occur as thin stringers and have attracted little attention as carriers of valuable mineral, but on Snow Gulch and Dry Creek, north of Nome, a number of tunnels have been driven on calcite veins that contain a little gold. The importance of the veins of this type is

probably negligible.

S

The older quartz veins are those that antedated the period of extreme deformation and metamorphism in which the schists of the region were formed. Throughout the schist occur lenses and masses of quartz, some of which suggest by their outline that they are derived from or are deformed remnants of veins that were contained in the sediments at the time of their metamorphism. Smith 7 has noted that some of this quartz has had a different origin, being the result of the decomposition of silicate minerals during metamorphism. The quartz of the older veins is completely recrystallized, and nothing concerning the earlier history of their mineralization can be determined. Some of these veins are known to carry gold, but their very irregular occurrence eliminates them as prospective lodes.

The older veins are usually inconspicuous, and it is the later veins which are usually observed and to which prospecting has been largely confined. The later veins are not all of one period, but subdivision according to age is not possible. At the Big Hurrah mine, where veins of this type are well developed, smaller veinlets of several ages can be recognized, and veinlets of later quartz cut the quartz of the main veins. A further indication of the repeated or continued injection of quartz is seen in the ribbon rock at this locality.

7 Idem.

⁶ Smith, P. S., op. cit. (Bull. 433), p. 90.

veins can be subdivided on the basis of accessory gangue constituents into quartz, quartz-feldspar, and quartz-calcite veins. They cut all the rocks of the series; they may be parallel to the bedding and schistosity or may cut them. They range in size from stringers less than an inch to veins several feet in width, but most of them are less than 6 inches wide. They are generally not traceable for more than a few hundred feet along the strike, and whatever their width, they are characterized by repeated and abrupt pinch and swell and irregularity of strike and dip.

The quartz of the veins is commonly white, clear, and vitreous and is stained by iron oxide on the fractured surfaces. Comb structure that shows several periods of vein growth is not unusual. The veins are characteristically of open texture, and the openings are usually cavities into which clear quartz crystals that show excellent terminations project. Some veinlets that cut schist are less than a quarter of an inch wide and show the open texture distinctly.

Where calcite occurs as an accessory constituent of the vein, it is commonly concentrated in areas through the quartz. Locally both quartz and calcite are present in about equal amounts, but usually the calcite crystallizes by itself in well-formed rhombohedrons. It may be white or stained yellow by iron oxide. Where tested it was

nonmagnesian.

The feldspar type of vein is best known in the Nome area. A few of these veins occur in the Solomon area but are not conspicuous. The feldspar is everywhere of a plagioclase variety. Albite and oligoclase were about equally abundant in the thin sections examined. The feldspar occurs both disseminated through the quartz and segregated in small nests. It was nowhere seen to be present in any con-

siderable quantity.

Sulphides of contemporaneous origin with the quartz occur in some of the veins. Pyrite is most common, but arsenopyrite and chalcopyrite have also been noted. Most of the sulphide is, however, safely assignable to a later period of mineralization, as it is usually seen to occur as veinlets in the quartz or in openings in the vein. Stibnite, arsenopyrite, and pyrite are the most abundant of the later sulphides. Galena, chalcopyrite, pyrrhotite, and bismuthinite are also known. Scheelite is a constituent of the veins in several localities, and from the general distribution of this mineral in the placers it is thought to be rather common and perhaps a minor constituent of the veins.

Shear zones.—Shear zones are exceedingly common, both in schist and in limestone. Most of the shearing, because of its very general distribution, did not cause concentration of the mineralization but rather the opposite. However, a type of shear zone is recognized in which there was considerable concentration and which may prove

to be an important factor in determining the source of the placer gold. The zones of this type occur in schist, and many of them contain very little quartz; consequently they are soft and easily concealed by talus and moss. It can not be said how abundant they are, or what their distribution may be. They are very prominent in the Snake River drainage basin, and they are probably much more numerous than they appear to be, as their exposure is largely fortuitous. Stibnite, gold, and scheelite are present in these zones. The best-defined examples were noted at the head of Waterfall Creek, on the Christophosen property; near the head of Goldbottom Creek, in the California quartz lode; on Boulder Creek, in the Boulder lode; on Rock Creek, at Sophie Gulch; in a small gulch just west of Snow Gulch, tributary to Glacier Creek; in New Years Gulch, a tributary of Anvil Creek; and opposite the mouth of Specimen Gulch, on the northwest bank of Anvil Creek. Possibly certain hematitic schists that occur on Dexter and Dry creeks belong to this class of deposits, but they do not seem to be typical. (See fig. 18.)

These zones are characterized by disseminated sulphides. In some of them quartz is plentiful, but it is older than the sulphides. Comparatively little quartz seems to have accompanied the later mineralization. Where these zones are opened by mining operations fault planes are seen to cut the schist. The weathered outcrops are iron stained, and the soft, decomposed schist will pan gold and on assay shows a low gold content. The width of the zones is not well defined, for the mineralization gradually diminished with increasing distance from the faults. Where determinable, arsenopyrite is the most abundant sulphide impregnating the schist of these zones. Pyrite is also plentiful. Stibnite occurs at the Waterfall, Rock, and Anvil creek localities, but it is not known to be contemporaneous with the arsenopyrite. Scheelite has been mined from the zone on Sophie Gulch, but at this locality quartz veinlets are numerous and at least part of the scheelite occurs as a contemporaneous constituent of the veins.

As these zones carry gold, even if their content is too low to class them as commercial ore bodies, their importance as feeders for the rich placers of the district is evident. The width of many of them is measured in scores of feet, and in some localities they are said to have been traced for several thousand feet. As known, they represent rather good-sized bodies of low-grade ore, or rather mineralized rock.

Contact shearing and shearing within the limestone has resulted in concentrations of argentiferous galena and of copper sulphides.

At the contact of many of the massive limestone beds which occur throughout the schist division there is evidence of intense deformation. The limestone has been rendered schistose, and the schistose limestone grades into calcareous schist which in all probability has been derived from the limestone and represents the extreme phase of metamorphism. The limestone is in many places closely folded and contorted along the contact. Galena and sphalerite have been introduced along these horizons in several localities, and replacement ore bodies have been formed in the limestone and schist. The only deposit of this kind known within the area described occurs on Kruzgamepa River near the mouth of Iron Creek (p. 210). The ore here occurs as lenticular bodies in the schist and consists of galena and sphalerite in a gangue of quartz and calcite. On Kugruk River, near the mouth of Independence Creek, a deposit of lead-silver ore is being explored. The locality has not been visited by a member of the Geological Survey, but from descriptions it is understood to be a deposit of lead-silver ore has been known for many years.⁸

At Iron Creek (p. 208) and Copper Mountain (p. 217) quartz carrying copper sulphides has been introduced along shear zones that have followed the bedding planes in the limestone, and the limestone has been replaced by silica. All the concentrations of copper minerals

known in the area occur in deposits of this type.

Many of the relative concentrations in veins and mineralized shear zones grade imperceptibly into slightly mineralized country rock. Sulphides, chiefly pyrite, occur everywhere throughout the schist and slate of the Nome group and at many places in the limestone. Hardly a weathered specimen of schist can be found that is not specked with iron oxide, and thin sections show decomposed sulphide in every specimen examined. The schist as a whole is well mineralized. In the limestone the sulphides are less plentiful, but at its contact with schist and also adjacent to surfaces of movement within the limestone itself sulphides are almost always recognizable. Concentrations are frequently seen in the schist along the limestone-schist contact, occurring as tiny veinlets that cut the schist where it has suffered considerable distortion, coating fissures in the schist and coating the wall rock of quartz veinlets. It is not definitely known that the disseminated pyrite contains gold, but gold occurs chemically or mechanically combined with sulphides in some of the lodes of the area, and it is very probable that a part of the placer gold may have its origin in the disseminated sulphides.

Quartz veinlets from a fraction of an inch up to several inches in width occur in the schist in great numbers. They are nonpersistent, variable in width, and irregular in strike and dip. They appear to be almost nowhere concentrated to the point of forming a stringer lode. Such concentrations as occur are not sufficient

⁸ Smith, P. S., and Eakin, H. M., A geologic reconnaissance in southeastern Seward Peninsula: U. S. Geol. Survey Bull. 449, pp. 130–133, 1911.

to remove them from the class of disseminated deposits. The veinlets carry native gold. Stringers a quarter of an inch in width contain small nuggets. Free gold disseminated through the schists is not known to occur.

RELATION OF GOLD TO IGNEOUS ROCKS.

Brooks ⁹ has described the gold lodes of Seward Peninsula as deposits differing from the lodes of other parts of Alaska in that they show no genetic relation to intrusive rocks. Smith ¹⁰ cites the presence of tourmaline in many of the rocks as evidence that granitic intrusives which are not exposed may underlie the gold-producing areas and also correlates some of the later quartz veins with the intrusion of the granitic rocks of the Kigluaik Mountains. An examination of the geologic map, which shows a belt of granitic intrusives in the area of the Kigluaik Mountains, one prominent area of granitic rock at Cape Nome, and a few small isolated bosses as far south as Stewart River, suggests that the region between the mountains and the coast may be underlain by intrusive rocks.

Another criterion that may have some significance is the character of some of the later quartz veins, which are of the quartz-feldspar variety. In the Fortymile district Spurr ¹¹ found similar veins and could trace the transition from granite to aplite to pegmatite to quartz-feldspar veins, and finally to quartz veins without feldspar. This evidence suggests that the veins of the Nome region especially have been derived from a granitic rock but represent a product a considerable distance removed from its source.

Another feature which suggests that the mineralization is related to a granitic rock is the widespread occurrence of scheelite in the placers. Scheelite occurs as a constituent of the quartz veins and is associated with the arsenopyrite. An analysis of the descriptions of 50 tungsten deposits, which include the most productive deposits of the world, indicate that some of their outstanding features are as follows: (a) The composition of the intrusive from which they are derived is usually that of a granite, although the deposits may be associated with rocks as basic as diorite; (b) the deposits may occur in the granite but usually occur in the country rock and have considerable ability to migrate from their source; (c) the traveling ability varies with the mineral. Scheelite is more likely to occur at a distance from the intrusive rock than any other tungsten mineral.

In the Kigluaik Mountains the granite is intruded almost entirely as sills and dikes. The few bodies of granite penetrating the Nome

⁹ Brooks, A. H., Geologic features of Alaskan metalliferous lodes: U. S. Geol. Survey Bull. 480, p. 70, 1911.

Smith, P. S., op. cit. (Bull. 433), pp. 132-133.
 Spurr, J. E., Geology of the Yukon gold district, Alaska: U. S. Geol. Survey Eighteenth Ann. Rept., pt. 3, pp. 147, 291, 1896.

group south of the mountains are bosses, and the rocks are badly sheared. At one locality on Stewart River there is a granite which is so highly sheared as to be decidedly schistose, and its origin is not easily recognizable. It is possible that bosses and sills of granitic rock that have been converted to schist occur throughout the highly metamorphosed schists. Schists derived from igneous rocks have not been identified, however, and it is probable that if they are present the alteration has gone so far that they are beyond recognition.

It is not enough to say that the granite known elsewhere on the peninsula underlies the areas here discussed or that it may have been present and is now metamorphosed beyond recognition, for where the granite is known—in the York district and in the Kigluaik Mountains, for instance—it has not produced auriferous mineralization but deposits of tin, tungsten, and lead. It should be noted however, as suggested by Brooks (p. 168), that there may have been more than one period of granitic intrusion. Most of the gold deposits of Alaska are related to dioritic rocks. Diorite occurs at Cape Darby, 12 and andesite, quartz diorite, and monzonite occur in the Fairhaven district, 13 but elsewhere the intrusive rocks are chiefly biotite granites. If the quartz-feldspar veins are accepted as evidence of an underlying granitic mass from which the gold may have been derived, it is interesting to note that the feldspars of these veins wherever determined were plagioclase feldspars, albite or oligoclase. Plagioclase feldspar is an accessory constituent of the biotite granites, but it seems reasonable to assume that the character of the magma from which the veins are derived would be reflected in the veins themselves. The feldspars of the veins noted by Spurr 14 were orthoclase. It is not improbable, therefore, that the rock which is supposed to have produced the gold mineralization is a diorite such as has supplied the gold elsewhere in Alaska.

SEQUENCE OF MINERALIZATION.

It does not seem possible to assign a definite age to any of the several periods of mineralization which have been noted. The relative ages are known only in part. The two features of the age relations which are most impressive are (a) the number of periods of mineralization during which the various metals have been deposited and (b) the probable geologic youth of most of the sulphide, part of which is either gold bearing or was accompanied by gold and which seems to account best for certain of the well-known concentrations of gold.

¹² Mendenhall, W. C., A reconnaissance in the Norton Bay region, Alaska, in 1900: U. S. Geol. Survey Special Pub., p. 205, 1901.

¹³ Moffit, F. H., The Fairhaven gold placers, Seward Peninsula, Alaska: U. S. Geol. Survey Bull. 247, p. 30, 1905.

¹⁴ Spurr, J. E., op. cit.

The order of succession may have been somewhat as follows:

1. The older quartz veins. These antedated the extreme metamorphism of the metamorphic series. How much of the disseminated sulphide and gold mineralization is assignable to this period is not

clear. A large part of it is later.

2. Replacement deposits at limestone-schist contacts and along zones of bedding shear in limestone. The contact type includes the argentiferous galena of Iron Creek (p. 210); the shear-zone type includes the copper of Iron Creek and Copper Mountain (pp. 208, 217). The relative ages of these types are not determined. Galena occurs in small amounts as veinlets in the siliceous copper ores of Dickens Creek (p. 219) and as veinlets cutting the later quartz veins of Mountain Creek. If the galena mineralization is all of one age, the galena replacement deposits may be considerably younger than the copper replacement deposits.

3. The later quartz veins. The relative age of the copper replacement deposits and of the later quartz veins is also uncertain. That the former are merely a variation of the latter is questionable, however, as the copper sulphides are not prominent constituents of the quartz veins and the accessory feldspar and calcite of the veins are not known in the copper ores. In the Casadepaga district Smith found silicified limestone cut by later quartz veins. That the veins are of more than one period of intrusion is very probable, or at least their introduction was continued throughout some time, as shown by the vein structure at the Big Hurrah mine. From the evidence at hand, it might be best to consider the copper replacement deposits as older than the later quartz veins, although they may in part be contemporaneous. Geologically both of these types are fairly young. They are but slightly disturbed and certainly are subsequent to any of the periods of major deformation of the rocks of the peninsula. It is probable that they are younger than the late Cretaceous coal-bearing rocks. which occur in the eastern part of the peninsula, as those rocks are considerably faulted and folded.

4. Sulphide mineralization. Most of the sulphide minerals are probably younger than the later quartz veins. Practically all the stibnite and arsenopyrite and much pyrite are certainly younger. The pyrite is so abundant that it may have accompanied the mineralization of all periods. The age of the arsenopyrite and stibnite is shown by their association with the later veins. Movement sufficient to reopen the vein fissures and slightly shatter the veins supplied part of the openings into which these sulphides were injected. The movement that has occurred since the deposition of the stibnite is probably very slight, as those delicate ore bodies are not seriously disturbed. Slight movements are recorded in the several beach levels at Nome, the oldest of which may be Pliocene. The sulphide

mineralization would seem to be safely assignable to the Tertiary, but there is no evidence to indicate whether it was early or late in Tertiary time.

If the above interpretation is correct, it would seem that the sulphide mineralization and most of the gold mineralization of this area occurred subsequently to the mineralization which was effected by the granites in the York district. The York deposits are thought to be of Mesozoic age,¹⁵ but that determination is also in doubt, as the granites do not occur in association with sedimentary rocks younger than Mississippian.

AREAS OF MINERALIZATION.

Most of the lode prospects of Seward Peninsula occur within two comparatively small areas—the York district, in the extreme northwestern part of the peninsula, and an area lying south of the Kigluaik and Bendeleben mountains, between Cripple River on the west and Council on the east. Prospects are also known near Kougarok Mountain, in the Kougarok Valley, on Kugruk River, at Omalik, and elsewhere, but most of the prospecting has been done within the two areas specified. It is very probable that these areas have been considered more favorable not so much because of the absence of lodes elsewhere which are as attractive as many or most of those that occur within the areas cited, but rather because of their proximity to tin placers in the York district and to the very productive gold placers of Nome, Solomon, and Council in the southern district. However, since the finding of gold at Nome, placer miners have pretty thoroughly covered the creeks of the entire peninsula and incidentally have investigated the promising lodes, so that, although the restriction of gold lodes may not be so great as is indicated by the distribution of the lode prospects, and other areas may possibly contain lodes of value, there was probably a relatively richer mineralization in the York and southern districts.

MINERAL DEPOSITS OTHER THAN GOLD.

In the foregoing description the bedrock occurrence of gold has been principally emphasized. There are, however, many other minerals on the peninsula of either proved or possible value. Some occurrences of these minerals are described in the following pages; others lie outside of the area under discussion.

Copper.—The copper ore of the area visited occurs in replacement deposits along sheared zones in limestones and schist and is characterized by features not observed in any of the other ores. At numerous localities the limestone, which is normally blue, is bleached

¹⁵ Steidtmann, Edward, and Catheart, S. H., Geology of the York tin deposits, Alaska: U. S. Geol. Survey Bull. — (in preparation).

to a lighter color or to white, and in places the bleaching is accompanied by silicification. These altered zones occur both at schist contacts and along planes of adjustment within the limestone and apparently unrelated to schist. The agency that effected the bleaching is not known. Silica has been introduced along the shear zones in places, and not uncommonly the bleached limestone is completely replaced. The copper sulphides that occur in these zones are contemporaneous with the quartz, but the quartz does not everywhere contain copper minerals.

This alteration of the limestone has been noted on Penny River, in the Solomon district, at Mount Dixon,16 on Iron Creek, at Copper Mountain, on Slate Creek, on Manila Creek, and at Mount Distin. Copper minerals are associated with the altered limestone on Mount Dixon, Iron Creek, Manila Creek, and Copper Mountain, and zinc

and lead at Mount Distin.

The quartz bodies in which the copper minerals occur seem to conform with the bedding of the limestone. The quartz contains many shrinkage cavities and retains the original bedding planes of the replaced rock. The most noticeable feature of the rock is its banded structure. Chalcopyrite, bornite, and pyrite are the usual sulphides observed. Galena is locally present. As all the developments are confined to the surface workings, malachite and azurite are the most abundant ore minerals.

Copper has been reported from the following localities:

Lost River, below the mouth of Tin Creek.17

Associated with the tin deposits of Ears Mountain. 17a

About 31 miles northwest of Kougarok Mountain, between Bismark, and Star creeks, tributaries of Quartz Creek.18

Three or four miles southeast of Kougarok Mountain. 18 On Kougarok River near the mouth of Taylor Creek. 19

Timber Creek and Tubutulic divide, Council City precinct.20

On the east coast of Darby Peninsula, about 3 miles north of Carson Creek.²⁰ In the Bendeleben Mountains, on the divide between Kingsland and Nugget creeks.20 North side of Split Creek, a tributary of Bear Creek in the Fairhaven precinct.21 East of Iron Creek near the head of Sherette Creek, in the Kougarok precinct.

On Copper Mountain, Dickens Creek, and Copper Creek, at the head of Nome River.

On Dexter Creek, in the Nome district.22

On Mount Dixon, on Spruce Creek, and in the Moonlight Creek divide, in the Solomon district.22

16 Smith, P. S., op. cit. (Bull. 433), p. 115.

17a Idem, p. 26.

²¹ Harrington, G. L., Gold and platinum placers of Kiwalik-Koyuk region, Alaska: U.S. Geol. Survey Bull. 692, p. 399, 1917.

¹⁷ Knopf, Adolph, Geology of the tin deposits of Seward Peninsula, Alaska: U.S. Geol. Survey Bull. 358, pp. 57-58, 1908.

¹⁸ Mertie, J. B., jr., Lode and placer mining on Seward Peninsula, Alaska: U. S. Geol. Survey Bull. 662,

¹⁹ Smith, P. S., Mineral deposits of Seward Peninsula, Alaska: U. S. Geol. Survey Bull. 345, p. 244, 1908. 20 Smith, P. S., and Eakin, H. M., A geologic reconnaissance in southeastern Seward Peninsula and the Norton Bay-Nulato region, Alaska: U. S. Geol. Survey Bull. 449, pp. 134-135, 1911.

²² Smith, P. S., op. cit. (Bull. 345), p. 243.

At the head of Twin Mountain Creek, in the Nome district.

At the head of Waterfall Creek.23

On the Klokerblok divide near the head of Eldorado Creek, in the Bluff region.

On the ridge at the head of Manila Creek.

Half a mile north of the mouth of Little Hurrah Creek, in the Solomon district.

Near the head of North Fork, a tributary of Last Chance Creek, in the Nome district.

At most of these localities copper is present in very small quantities, and at many of them development would hardly be justified. Little development work has been done at any locality.

Tungsten.—A small amount of tungsten has been recovered from the placers incidentally to the mining of gold. In the York district wolframite is associated with cassiterite in the tin deposits. It is present in very small quantities, so far as known, and has not contributed to the production. Scheelite is the mineral found in the placers and is present in small quantities at many localities. The concentrates from most of the streams of the Snake River valley contain scheelite. It occurs in the placers at Bluff, in the Council region, in the Solomon district, and in the Fairhaven district.

Sophie Gulch, a tributary of Rock Creek (p. 245), has been sluiced for its scheelite content. The gulch is cut in a shear zone in schist which contains a multitude of small quartz veins. The schist adjacent to the veins is impregnated with sulphides. Scheelite occurs with the sulphides that impregnate the schist and in the quartz veins that cut the schist. As the sulphide mineralization was later than the formation of the veins, and as scheelite appears to be contemporaneous with both the quartz and the sulphides, more than one period of tungsten mineralization seems certain.

Scheelite has also been mined from a quartz vein on Twin Mountain Creek and has been reported from lodes on the north side of Glacier Creek²⁴ and on the divide between Glacier and Anvil creeks.

Lead.—Within the area examined galena and sphalerite occur on Kruzgamepa River at the mouth of Iron Creek (p. 210) and on Steep Creek at the foot of Mount Distin (p. 232). At the former locality the ore is chiefly galena. It occurs as lenticular bodies along limestone-schist contacts. At Mount Distin the ore occurs in veinlets in a zone of bleached limestone. Galena is also present in very small quantities with the copper ores of Dickens Creek, Mountain Creek, Rock Creek, and Sophie Gulch.

Lead, in several places associated with zinc or with copper, has been reported from the following localities:

At Brooks Mountain.25

North of Rapid River, a tributary of Lost River.25

On Tin Creek, a tributary of Lost River.25

On Kruzgamepa River, at the mouth of Iron Creek (lead and zinc).

²³ Mertie, J. B., jr., op. cit. (Bull. 662), p. 442.

²⁴ Idem, p. 437.

²⁵ Knopf, Adolph, op. cit. (Bull. 358), p. 42.

Northeast of Mount Bendeleben (lead and copper).

At Omalik.26

At the head of Steep Creek, on Mount Distin (lead and zinc).

On Kugruk River, at the forks of Independence Creek.

On Fish River, 5 or 6 miles above the mouth of the Niukluk.²⁷

On Waterfall Creek.27

Most of the galena discovered on the peninsula has been reported to be silver-bearing. The property on Kugruk River has been actively exploited for several years and is the best-developed silverlead prospect on the peninsula. A considerable tonnage of highgrade ore is reported to have been mined, but no shipments have been made. This property has not been visited by a member of the Survey.

Zinc.—The presence of sphalerite with galena at Mount Distin and on Kruzgamepa River has been referred to in connection with the occurrence of lead. Mertie²⁸ reports zinc to be present on the ridge between Penny River and the head of Oregon Creek. The ore

consists of sphalerite and a little pyrite in a gangue of quartz.

Iron.—Five groups of iron claims have been staked on Cripple River. The ore is mostly limonite (pp. 258-261). Too little development work has been done to determine the nature of the occurrence. Mertie 29 reports sulphides as present with the ore at the Mogul group of claims and suggests that the iron may be merely gossan material capping a sulphide vein. The Cub Bear group of claims was visited by the writer. No sulphides were observed at this locality. The iron ore occurs in a zone perhaps 50 or 100 feet wide and extending for several thousand feet along the crest of an anticlinal fold in limestone. A small quantity of the ore is botryoidal limonite, with which some oxide of manganese occurs. Most of the material is iron-stained limestone and represents no great concentration of the iron oxide. The observed structural relations strongly suggest that the ore has been deposited from aqueous solutions circulating along the fissured crest of the fold.

Platinum.—Platinum is recovered from the placers of Dime Creek incidentally to the mining of placer gold. The ratio of the platinum to the gold content of the gravels is thought to be about 1 ounce of platinum to \$4,000 in gold. Attempts have been made to locate the bedrock source of the platinum, and prospectors have received favorable returns on some of the material which they have had assayed. Specimens of greenstone dike rock which were reported to contain a trace of platinum were submitted to the Geological Survey, but assays made on this material for the Survey by competent chemists

²⁶ Mendenhall, W. C., A reconnaissance of the Norton Bay region, Alaska: U. S. Geol. Survey Special Pub., pp. 213-214, 1901.

²⁷ Mertie, J. B., jr., op. cit. (Bull. 662), p. 446.

⁹⁸ Idem, p. 447.

²⁹ Idem, p. 444.

have shown the rock to contain no platinum. Sulphides reported to contain platinum have been referred to under "Bismuth." The fact that platinum has seldom been found in hard rock does not preclude the possibility of finding it, but it can not be too strongly emphasized that platinum is an exceedingly difficult element to determine analytically. A platinum content is frequently reported when the element is not present. Prospectors can not afford to accept determinations by any chemist except one who is especially qualified to handle that particular work.

Antimony.—The stibnite that occurs in the area examined is commonly associated with the later quartz veins. Kidneys of stibnite accompanied by very little quartz have been found along shear zones in schist at several localities, but the ore bodies have been small. The best-known localities are the Sliscovich mine, on Manila Creek

and the Hed & Strand mine, on Lost Creek (pp. 226, 229).

In all the deposits observed the stibnite seems to have been introduced since the formation of the veins. Apparently after the intrusion of the quartz movement continued to take place along the vein fissures, and they were reopened and the veins shattered. At some localities the stibnite occurs as irregular bodies between the vein and its schist wall and as nests and stringers in the vein itself. In most localities it is present only as veinlets in the quartz.

The stibnite is usually accompanied by some pyrite and a variable amount of contemporaneous quartz. In the richest specimens the stibnite occurs as distinct acicular crystals, some of which are an inch or more long, and the quartz is present as well-formed but smaller crystals with good terminations. In the lower-grade ore the stibnite is finely crystalline, and quartz forms most of the rock. Gold is present with the stibnite at the Sliscovich mine and at several places on Anvil Creek.

The localities at which stibnite has been reported to occur are as

Sliscovich mine, Manila Creek.

Hed & Strand mine, Lost Creek.

Cold Creek.

Divide between Manila and Hobson creeks.

Big Hurrah Creek

Head of Waterfall Creek.³⁰

Quartz Gulch, tributary to Anvil Creek.

Winsted tunnel, northwest bank of Anvil Creek above Specimen Gulch.

Olsen shaft, southeast bank of Anvil Creek below Specimen Gulch.

Northwest bank of Anvil Creek below Quartz Gulch.

Ridge between Anvil and Glacier creeks, southwest of Snow Gulch.

³⁰ Mertie, J. B., jr., op. cit., p. 438.

⁸¹ Idem, p. 440.

Lost River region.³²
Head of Bonita Creek, a tributary of Osborn Creek.³³
California quartz lode, on Goldbottom Creek.³³
Quartz veins of the Solomon-Casadepaga region.³³
West side of Brooks Mountain.³³
Omalik mine.³³

Tin.—Lode tin is known only in the York district. Deposits have been prospected at Ears Mountain, Lost River, Potato Mountain, and Cape Mountain. Cassiterite occurs in quartz veins, porphyry dikes, and contact-metamorphic deposits closely related to granite bosses. Development work has been in progress at the Lost River locality for the last three seasons, but no work has been done at the other localities in recent years. The production from the lodes has been negligible. Most of the tin mined has come from the placers of Buck and Grouse creeks. The placers of Cape Mountain have produced some tin and, together with those on the streams flowing north from Potato Mountain, promise production for the future. Tin has been recognized in the placers of Humboldt Creek, in the Fairhaven district, and Goldbottom Creek, in the Nome district.

Bismuth.—Bismuth has been found at only one locality on the peninsula, on Charley Creek, a tributary of Stewart River (p. 223), where a quartz vein contains some bismuthinite (bismuth sulphide). The sulphide content of the vein appears to be low, but as almost no work has been done on the property very little of the vein is exposed. This occurrence has been of especial interest because the sulphide was reported to carry 2 ounces of platinum to the ton. An assay made on some of the material for the Geological Survey did not show any trace of platinum.

Graphite.—Graphite-bearing schists occur in both the Nome group and the Kigluaik group. The graphite in the schist of the Nome group is in a very finely divided state and is of no economic interest. A belt of schist of the Kigluaik group in which the graphite occurs as flakes and in which concentrations of rather pure material occur locally extends from the head of Grand Central River northeastward to the vicinity of Graphite Bay, an arm of Imuruk Basin. Several shipments of selected material have been made from the Graphite Bay locality (p. 222).

Mercury.—Cinnabar is a constituent of the placer concentrates in the vicinity of Bluff, at Koyana Creek, and at Budd Creek, in the Port Clarence precinct, and has been reported from other localities. The source of the material at Bluff is said to have been discovered in one of the schist lodes of that locality, but no details of the occurrence are known.

⁸² Knopf, Adolph, op. cit., p. 59.

³³ Brooks, A. H., Antimony deposits of Alaska: U. S. Geol. Survey Bull. 649, pp. 57-59, 1916.

Coal.—A little coal occurs in the Cretaceous sediments of the eastern part of the peninsula. It is lignite of fair quality and is generally considered to have about one-half the fuel value of average Pacific coast coal. It is being mined at present on Kugruk River and has been mined at Chicago Creek, both in the Candle district. Thus far, because of the low grade of the product, the high cost of transportation has limited its use to the vicinity of the mines. No great tonnage is known to be available. Coal has been found at the following localities:

Chicago Creek, tributary to Kugruk River.³⁴ Kugruk River near Montana Creek.³⁴ Koyuk River near mouth.³⁵ Wilson Creek, a headwater tributary of Kiwalik River.³⁶ Hunter Creek near the mouth of the Buckland.³⁶

THE LODE DEPOSITS.

BLUFF REGION.

The Bluff region, which has produced about \$1,500,000 worth of placer gold, includes a small area lying on the shores of Bering Sea about 50 miles east of Nome. Its salient geologic features are simple, though the details are complex, due to folding and faulting. Limestone is the dominating country rock and occurs in a roughly triangular area, whose base is on the coast and whose apex is inland. This limestone appears to be bounded on the inland side (fig. 6) by schist which here and there contains some thin limestone beds. Some bands of schist also occur within the limestone, and these are important to the miner because they are the loci of the strongest mineralization. These bands of schist may in part be altered igneous intrusives, but this is uncertain. The small valleys of the region have a gravel filling, which is nearly everywhere auriferous and which contains some workable gold placers. The gold placers of Daniels Creek and of the adjacent beach line have furnished much the larger part of the gold output of the region.

Placer gold was discovered at the mouth of Daniels Creek in 1889.³⁷ The beach gravels at this locality were also gold bearing and for a distance of 1,000 feet are said to have been "probably the richest deposit of this kind ever found in the world." ³⁸ It is estimated that the pay streak must have averaged \$150 to the cubic yard. ³⁹ Gold

³⁴ Henshaw, F. F., Mining in the Fairhaven precinct: U. S. Geol. Survey Bull. 379, pp. 362-363, 1909; Mining in Seward Peninsula: U. S. Geol. Survey Bull. 442, pp. 368-369, 1910.

Smith, P. S., and Eakin, H. M., A geologic reconnaissance in southeastern Seward Peninsula and the Norton Bay-Nulato region, Alaska: U. S. Geol. Survey Bull. 449, p. 139, 1911.

³⁶Harrington, G. L., Gold and platinum placers of Kiwalik-Koyuk regions, Alaska: U. S. Geol. Survey Bull. 692, p. 384, 1919.

²⁷ Brooks, A. H., Richardson, G. B., and Collier, A. J., Reconnaissances in the Cape Nome and Norton Bay regions, Alaska, in 1900: U. S. Geol. Survey Special Pub., p. 104, 1901.

²⁸ Brooks, A. H., U. S. Geol. Survey Bull. 328, p. 288, 1908.

³⁹ Idem, p. 289.

has also been mined from the creeks both east and west of Daniels Creek, but lower Daniels Creek and the beach at its mouth have proved to be the attractive placers of the area.

Brooks ⁴⁰ pointed out from his study of the placers in 1906 that "(1) the source of the gold is entirely local; (2) where richest * * * there appears to have been little sorting action by water; (3) the gold is so intimately associated with mica schist débris that most probably the schist had a close connection with its origin." He also described certain zones of mineralized schist exposed in the bluffs east of the mouth of Daniels Creek.

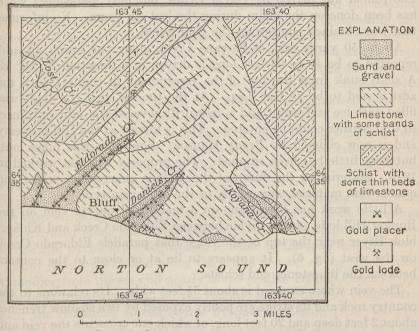


FIGURE 6.—Geologic sketch map of the vicinity of Bluff.

Several belts of mineralized mica schist have been recognized in the area, but those lying immediately east of Daniels Creek appear to be the most persistent and the most strongly mineralized. Before they are described brief mention will be made of some other occurrences of mineralized schist.

There is some evidence that Daniels Creek itself may be cut on one of these schist bands, though the nearest exposed bedrock on both sides is limestone. There is a schist band in the limestone at the mouth of Koyana Creek, and here mineralized zones have been opened up in a small way.

About 100 yards west of Koyana Creek near sea level an adit has been driven for 30 feet along a quartz vein in a sheared zone in the

⁴⁰ Brooks, A. H., U. S. Geol. Survey Bull. 328, p. 289, 1908.

schist. Owing to the timbering the relations and behavior of the vein can not be made out, but at the face an 8-inch stringer of quartz of the later-vein type (p. 173) is exposed. About a foot of red iron-stained gougelike material occurs on the vein wall. Sulphides occur in the quartz of the vein and in the schists near the vein but are largely localized along the contact of quartz and schist. Pyrite and arsenopyrite are abundant in the several places exposed, arsenopyrite the more plentifully. The zone of decomposition that forms so prominent a part of the lode is probably the result of the decomposition of the sulphides, especially of those contained in the schist. The tunnel was driven by David Lylles, but only assessment work has been done on the claim during the last six years. No information was obtained concerning the gold found.

About 50 yards east of Koyana Creek along the beach an adit reported to be 40 to 60 feet long is driven in a direction N. 50° E. A shaft sunk from the top of the escarpment to connect with the adit is said to be 75 feet deep. At the time of visit the shaft was filled with ice and water and a snowdrift covered the adit entrance, so that neither could be entered. This is known as the Hill property and is now claimed by Brady Hanson. Some ore was taken out, but very little has been shipped. The property was last worked in 1910. Material on the dump of the shaft is quartz-mica schist and quartz-vein material, apparently of the later-vein type.

20

A little work has been done on a metallized quartz vein on the Bunker Hill lode, on the divide between Eldorado Creek and Klokerblok River near the top of the ridge that parallels Eldorado Creek on the west (fig. 6). It appears to lie at or close to the contact between the limestones and schists.

The vein where exposed is about $5\frac{1}{2}$ feet wide. Its relations to the country rock and its strike are poorly exposed by two shallow trenches about 2 feet deep and 20 feet long, of which one crosscuts the vein and the other follows its strike. The vein strikes about N. 5° E. and appears to dip west at an angle near the vertical. The footwall is limestone; the hanging wall schist. Where best exposed the vein shows a central portion of about 18 inches of unmineralized quartz with a foot of mineralized quartz on the footwall and $2\frac{1}{2}$ feet on the hanging wall.

The vein is stained with carbonates, both azurite and malachite, and is said to carry gold. An assay of \$80 in gold to the ton is reported by the owner, but nothing is known of the nature of the sample. The copper content is said to be small. A specimen of the metallized portion of the vein shows chalcopyrite and pyrite in small amounts.

As stated above, the deposits adjacent to and just east of Daniels Creek are the most valuable of the region. Here the mineralized

schist bands in the limestone were staked as lode claims soon after the Daniels Creek placers were discovered. The original locators have carried on development work on these claims in a small way for some 20 years. Three lodes are recognized from Daniels Creek eastward, the Sea Gull, Idaho, and Eskimo lodes (fig. 7). They trend in a general northerly direction and except where they crop out on the cliff face are concealed by the tundra vegetation and exposed only by the mining operations. The Sea Gull and Idaho lodes lie parallel to each other; the Eskimo lode has the same attitude to a point 2,000 feet from the beach, where it swings slightly to the west. and at 4,000 feet from the beach the interval between the Eskimo and Idaho lodes is reduced by about one-half. Prospecting has shown the lodes to be continuous but of varying width, the width increasing to the north and in depth. Where explored at the croppings on the sea cliff maximum widths of 60, 165, and 150 feet are reported for the Sea Gull, Idaho, and Eskimo lodes, respectively. At 4.000 feet from the beach the widths are estimated from the workings to be 100, 200, and 200 feet, respectively.

e

1

e

The lodes are made up essentially of quartz-mica schist, silvery gray where fresh and buff where weathered. Quartz veins seem to occur everywhere throughout the schist and range in size from stringers less than 1 inch to well-defined veins several feet in width. Exposures are not adequate to afford conclusive evidence concerning the disposition of the quartz, but the veins appear to be somewhat concentrated along the margins of the lodes. The sulphides arsenopyrite and pyrite are recognizable in some of the lode material.

Four claims are staked along the strike of each of the three lodes, extending from the sea cliff nearly to the head of Daniels Creek valley. The most southerly claim on the Eskimo lode is held by John Corrigan: the remaining eleven claims by Charles Megan, Henry Megan, and W. J. Somerville. The schist zones have been traced by pits and shafts and are said to contain gold wherever prospected. Most of the work has been done about three-quarters of a mile from the beach, where fourteen shafts, ranging in depth from 30 to 100 feet and aggregating 657 feet were pointed out to the writer. They were distributed as follows: Sea Gull, five shafts, 240 feet; Idaho, six shafts, 335 feet; Eskimo, three shafts, 82 feet. Numerous pits and trenches have also been dug along the strike of the lodes, and on the Idaho lode at the beach 145 feet of tunnel, winze, and crosscut work has been done. The approximate location and depth of the workings are shown in figure 7. Mining has not been carried to any great depth, for several The shafts have been sunk chiefly for prospecting purposes, and it is said that no shaft failed to find gold-bearing quartz in sufficient quantities and rich enough to mine. The present mill equipment will handle, efficiently, only the oxidized surface portion of the

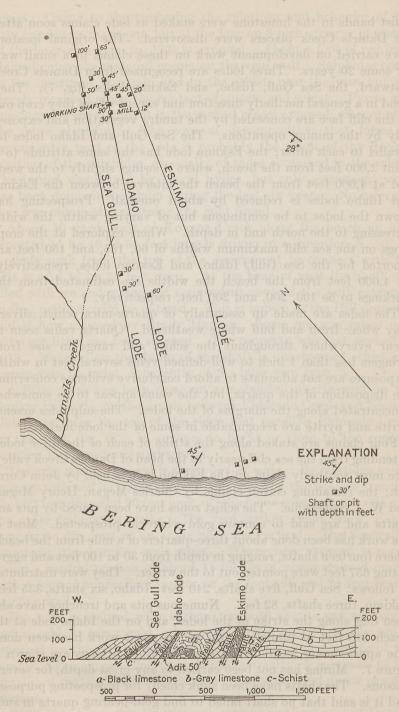


FIGURE 7.—Sketch map and geologic section showing gold lodes near Bluff.

lodes. There is no timber in the vicinity of Bluff, and mine supports are difficult to obtain. As the lode material is soft no considerable depth can be reached without danger from caving. Only the present working shaft is timbered; all the others are caved and inaccessible.

The rock formations with which the lode deposits are associated are exposed on the bluff that faces the sea just east of Daniels Creek (fig. 7). Three formations are recognized, a dark-blue carbonaceous limestone, a grav limestone interbedded with mica and chlorite schist, and the quartz-mica schist which forms the gold-bearing lodes. The lithology of the limestones is not uniform but shows variations which are dependent largely upon structural relations. The limestones are everywhere marmarized and show massive, slightly schistose, and highly schistose phases. The schist consists predominantly of quartz with some micaceous mineral. Muscovite is the common accessory constituent, with which usually occurs some chlorite, and locally the chlorite is in excess of the muscovite. The exposed schist is buff, and the less altered schist a silvery gray. The structural relations of the formations as exposed on the sea cliff are shown in figure 7.

East of the Eskimo lode the carbonaceous limestone is exposed at the base of the cliff. About 50 feet of the blue limestone is overlain by 100 feet or more of gray limestone. The contact is a fault plane concordant with the bedding of the limestones, which appear to be conformable. The rocks are gently folded into a syncline that pitches north. The blue limestone at the contact is dense, dark blue, and platy. The rock contains abundant graphite and considerable muscovite. Quartz is present in scattered grains that show the effects of strain. Cordierite is also present in small amounts. The overlying gray limestone is altered for a distance of several feetfrom the contact to a coarsely crystalline marble. The limestone lamination planes are marked by iron stain, which gives to the cross-fracture surfaces a blotched appearance.

The syncline is terminated on the west by a fault that brings the grav limestone down to form the footwall of the Eskimo lode. As indicated in the sketch map, this is the only occurrence of the gray limestone with the mineralized schists. The carbonaceous limestone adjacent to the schist lodes usually shows a schistose structure. This structure may be so well developed as to obscure its relation to the limestone, but where traced away from the lode the schistosity decreases until marmarized and slightly schistose but easily recognizable limestone occurs. The locus of deformation seems to be the Idaho lode, as here the folding and minor faulting and alteration of the

limestone is most intense.

Only the major structural features are represented in figure 7. Many of the features are obscured by slide and made uncertain by the inaccessibility of the cliff face. Minor faulting and folding, or rather shattering and crumpling, is very common, especially in the vicinity of the lodes. Small faults occur in the blue limestone that do not extend into the gray, and vice versa. Many of these faults have a low angle of dip and swing off along the bedding planes. West of the Sea Gull lode the carbonaceous limestone is best exposed and least disturbed. It is fine textured and crystalline and occurs in beds half an inch to 8 inches in thickness, which strike N. 21° W. and dip 30° W. It is much jointed but broken in clean-cut blocks. The joints are filled with calcite veinlets, which average less than an inch in width and are spaced but a few inches apart. About 350 feet of the formation is exposed, the base in fault contact and the top eroded.

Some idea of the relations of the lodes to the country rock can be obtained at the exposure on the sea cliff. The underground exposures show little, as the development work in the one accessible shaft is confined to a single quartz vein and does not crosscut the schist

body or show the relations of the schist to the wall rock.

The Eskimo lode, the most easterly of the three schist zones, is about 150 feet wide. It dips about 70° W. and occurs in fault contact with both footwall and hanging wall. The hanging wall is carbonaceous limestone; the footwall gray limestone. The sulphide mineralization of the schist was apparently concentrated along the footwall, where the limestone is stained buff and the schist weathers to a fine friable material and is highly iron stained. Microscopic examination of the rocks at the contact shows the schist to be probably 98 per cent quartz. It is strained, and the crystals are elongate parallel to the schistosity. A little muscovite is the only other original constituent present in any notable quantity, although accessory zircon occurs through the quartz. Calcite occurs in veinlets through the rock. The limestone is finely crystalline, is stained by limonite, and contains scattered cubes of pyrite.

Quartz veinlets are abundant in the schist, especially near the margin of the lode. No large or well-defined veins crop out. Fresh

sulphides were not observed.

The Idaho lode is exposed on the cliff top about 650 feet west of the Eskimo lode. It differs from the other lodes chiefly in its structural relations with the limestone. The hanging wall is carbonaceous limestone, which dips 45° W. A fault dipping 35° W. forms the contact, along which 1 foot or more of gouge and talclike material occurs. The footwall is carbonaceous limestone, which near the base of the cliff occurs in folded relations with the schist of the lode. The infolding of the two formations is distinct, being outlined in minor as well as major folds. These relations are shown in figure 8.

The schist of the lode is highly folded and crenulated within itself. Quartz stringers occur through the schist in great numbers and

appear to have been deformed with the schist, as they are badly shattered. The individual veins are mostly of small size and in general concordant with the schistosity of the lode rock. Along the hanging wall the veins are most abundant and reach several inches in width. The fault contact (fig. 8), which shows gouge and highly iron-stained schist, appears to be the best-mineralized part of the lode. The concentration of mineralization along the walls in this and the other lodes may in places be more apparent than real, being due largely to the fact that the contact surface afforded a better opportunity for water circulation and hence more complete decomposition of the sulphides contained in the schist. The gold content can be determined only by systematic assays. Assays of the Idaho lode are said to show gold throughout the width of the schist zone. The tenor is very irregular, however, ranging from \$2 to \$180 a ton.

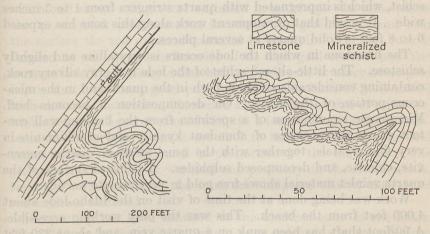


FIGURE 8.—Sketches of cliff exposure of Idaho lode, showing relation of mineralized schist to limestone

The highest values are shown by the material near the hanging wall, where the quartz veins and sulphides seem to be best developed.

The lode is 20 feet wide on the cliff top and about 50 feet wide at the beach, where, owing to folding, the exposure is about 165 feet wide.

The wall rock of the Idaho lode is a carbonaceous limestone consisting of about 90 per cent calcite, 5 per cent graphite, 4 per cent angular quartz, and 1 per cent sericite. Close to the lode it is distinctly schistose and marmarized and contains some pyrite. Metamorphism is more noticeable here than in the vicinity of either of the other lodes. Quartz is the dominating mineral of the lode schist, and with it occur chlorite and muscovite, chlorite the more abundantly. Accessory apatite and zircon occur through the quartz. Calcite and limonite are abundant secondary constituents. Polished surfaces of the vein quartz material show very minute particles of free gold. The sulphide content is not determinable at the cliff exposure, owing to the extreme alteration of the more highly mineralized portion of the exposed lode.

The Sea Gull lode crops out along the top of the sea cliff about 250 feet west of the Idaho lode. Exposures on the cliff face are obscured by talus. The lode is 10 feet wide at the surface and is said to be 60 feet wide at the beach, which is 110 feet lower in elevation. The increase in width is said not to be due to folding, like that in the Idaho lode. Both hanging wall and footwall are carbonaceous limestone, which dips about 30° and 45° W., respectively. The lode dips about 30° W. The hanging-wall contact is a fault surface, along which movement is recorded by gouge. The footwall contact is not exposed, but the relations are probably those of faulting. Along the hanging wall is exposed a zone of highly iron-stained schist, which is impregnated with quartz stringers from 1 to 3 inches wide. It is said that development work along this zone has exposed 6 to 8 feet of solid quartz at several places.

The limestone in which the lode occurs is crystalline and slightly schistose. The little-altered schist of the lode is a gray silvery rock, containing considerable sulphide both in the quartz and in the micaceous portion of the schist. On decomposition it becomes buff. Microscopic examination of a specimen from the hanging-wall contact shows the presence of abundant kvanite and of sillimanite in very fine crystals, together with the usual strained quartz, muscovite, chlorite, and decomposed sulphides. A polished surface of the quartz veinlet material shows free gold in very minute particles.

Work was being done at the time of visit on the Idaho lode about 4,000 feet from the beach. This was the only working accessible. A 90-foot shaft has been sunk on a quartz vein, and about 220 feet of drifts have been run along its strike. The vein is almost vertical. Where opened at the surface it was 8 inches wide, but on the 80-foot level it has a width of 7 feet. As exposed the vein shows three distinct types—an iron-stained shattered quartz, a green phase, and a softer hematitic phase. Where the three types are present, the quartz almost always forms the central part of the vein. The other types are less uniformly disposed. The hematitic material tends to localize along the walls, but in places it is confined to one wall. The green rock occurs between the hematite and the quartz or, if the hematite is absent, next to the wall. In several places it was observed extending into the quartz, and in one place it is surrounded by quartz.

The quartz of the vein is white and opaque and shows columnar crystals oriented transverse to the vein. Openings showing wellterminated crystals are common. The veins are of the later-vein type (p. 173). They are badly shattered, and in the fractures a green

chloritic material commonly occurs. The green rock of the vein is composed chiefly of the chloritic material, in which occurs considerable of the vein quartz and fresh sulphides, chiefly arsenopyrite and some pyrite. In thin section the chloritic substance is pale yellow, is highly birefringent, and occurs as minute flakes in aggregate structure. In hand specimen the rock is deep green to yellowish green, hard, and usually cellular. The hematitic material is badly decomposed quartz schist. It is soft and crumbles in the hand. The unaltered wall rock is a silvery gray quartz-mica schist in which quartz is the chief constituent. The vein quartz is prominent even in small specimens of the schist. Viewed as a whole the wall rock is schistose; in detail it is essentially quartz. Next to the veins it breaks down readily and is of buff color.

The vein is continuous so far as followed but is not constant in width and shows still greater variation in make-up. In some places the quartz rock predominates, in others the green rock, and near the surface the red oxidized material of the vein. The red rock is favored by the operators, because of its high gold content and also because it is free milling. The buff schist is said to carry some gold but is not considered good pay. A certain amount of it is mined with the vein material and is milled as a part of the run of mine ore, which is said to have a value of \$5 to \$6 a ton. All the veins encountered in the prospect shafts are said to have been of this general type, varying in width and in proportion of the materials. The green rock occurs on the Sea Gull and probably on the Eskimo lode. Near the surface some of the veins are composed almost entirely of red oxidized material.

Prospecting has been confined to the oxidized zone of the lodes. The sulphide material was nowhere seen exposed, and its relations could not be determined. In specimens the relations are further obscured by the great amount of chloritic material associated with the sulphides. This chloritic substance is an infiltration product and is clearly later than the sulphide and quartz. The freshest of the quartz is cut by microscopic veinlets of this material, areas of unaltered arsenopyrite are surrounded by it, and shattered crystals are seamed with it. From the nature of the decomposed vein material and from similar occurrences elsewhere on Seward Peninsula, the sulphides are judged to be later than the quartz veins, having impregnated the schist of the vein walls and filled fractures in the quartz. The decomposed hematitic material, which is undoubtedly schist that has been impregnated by sulphides and weathered, mills free gold, but some gold is not recovered on the plates, and the gold content is probably in part base. Gold also occurs in the quartz of the open-structured veins, so that more than one period of gold mineralization may be represented.

In local usage the terms "hard ore" and "soft ore" are applied to the quartz-vein material and the schist country rock, respectively. Both the hard and soft ore are reported to carry gold, but the hard ore is said to be of higher grade than the soft. This relation does not necessarily mean that the schist and the quartz were mineralized individually, for the quartz solutions have so squeezed through the schist mass that the smallest openings have been filled, and many of the veinlets are so minute and occur in such an attitude that they would impart little of their hardness or resistance to the schist mass as a whole. The quartz may still remain the gold carrier, and thus the gold content of the soft ore or schist may be due to its contained metallized quartz veinlets. The larger veins have probably been considerably enriched by the later sulphide mineralization.

Four men were employed in mining at the time of the writer's visit. Dumps are taken out during the winter, and the ore is milled in the summer. It is crushed to 1-inch size in a small jaw crusher and reduced to 30-mesh in a Cover rod mill. The pulp is passed over amalgamation plates for gold recovery and then over two Monarch tables. The tables effect a concentration of 5 to 1 for the hard quartz ore and 20 to 1 for the soft schist ore. The concentrates are stacked. The mill has a rated capacity of 40 tons in 24 hours; the average run of quartz ore is 6 to 8 tons through 30-mesh in 24 hours.

The lodes have not been crosscut in any of the underground operations. The importance of crosscutting lodes of this type is very evident. From the evidence at hand it seems reasonable to believe that these zones contain one or more roughly parallel quartz veins, and although a single vein of low or moderate gold content may not prove to be an attractive mining venture, the presence of a number of veins which would in themselves offer a sufficient tonnage or which occur sufficiently close to one another to make mining of the entire schist and quartz body practicable might make the lode a commercial ore body.

Concentrates from Daniels Creek show scheelite and cinnabar, but neither of these minerals was observed to occur in the mill concentrates. The source of the scheelite is not definitely known, although it is probably present as a minor constituent of the quartz veins. Veins of this type carry scheelite in the Nome region. The cinnabar is said to have been found in place in the Eskimo lode associated with the schist. The working in which this was discovered is now caved, and the occurrence was not seen by the writer. Cinnabar is also said to be present in small amounts in the Idaho and Sea Gull lodes, and mercury is sometimes liberated on heating the mill pulp. It is also known in the placers of Eldorado and Swede creeks but has not been traced to its source. The fact that little placer ground

has been discovered on Daniels Creek above the point where the lode system crosses its valley is further evidence that these lodes supplied the gold for the rich beach and creek placers.

SOLOMON DISTRICT.

Placer gold is widely distributed in the Solomon River basin, about 30 miles east of Nome, but little very rich placer ground has been found. Most of the successful alluvial mining has been done on the large bodies of auriferous gravel by means of dredges.

FIGURE 9.—Geologic map of part of Solomon district.

Smith ⁴¹ has mapped the region in detail, and part of his geologic map is here reproduced as figure 9. The Solomon schist, as determined by Smith, is the oldest formation. It consists essentially of micaceous and chloritic schists, with some lenses of limestone. This formation is succeeded by the Sowik limestone, 400 to 1,000 feet in thickness. Smith provisionally assigned the Sowik to the Ordovi-

⁴¹ Smith, P. S., The geology and mineral resources of the Solomon and Casadepaga quadrangles, Seward Peninsula, Alaska: U. S. Geol. Survey Bull. 433, 1910.

cian(?), but Brooks now believes that it may be Carboniferous (p. 168). The Hurrah slate, a still higher formation, is made up of black and quartzose slates and schists.

Nearly all the most promising lode prospects of the region are in the Hurrah slate. There are, however, some quartz veins in the Solomon schist, and the contact between this schist and the overlying limestone is a common locus of disseminated mineralization. It is a significant fact that the gold of much of the richest placer ground of the district has been derived from the auriferous quartz veins of the Hurrah slate. The dominating trend of the lodes in this slate is northwest, but some northeasterly veins have been found. The veins are of the later-vein type (p. 173) and, with the exception of one antimony-bearing vein on Hurrah Creek, have been explored for their gold content. Sulphides are as a rule not conspicuous in the veins, and the gold is free-milling. The sulphides are mostly later than the veins and occur as veinlets in the quartz. Pyrite is the principal sulphide observed and the only one seen to occur as a contemporaneous constituent of the veins. Pyrrhotite and a little chalcopyrite are minor constituents of the sulphide veinlet at one locality on Hurrah Creek, and arsenopyrite occurs at the Alden prospects, on upper West Creek, in the schist area, and at the Flynn prospect, on Solomon River. On West Creek arsenopyrite impregnates the schist country rock in the same association in which it is so conspicuous in the Nome region. At the Flynn prospect it is present in a green chloritic rock very similar to the green rock of the Bluff lodes. The Big Hurrah quartz mine, which is the one productive gold lode of Seward Peninsula, is in this district. It is the only property in the district on which any considerable development work has been done.

As the occurrence of auriferous lodes in the Solomon district, cutting the Hurrah slate, may yet prove to be of commercial importance, some brief notes on several prospects and on the Big Hurrah mine will be presented, although the district, so far as lode mining is concerned, is now practically abandoned and the underground workings are for the most part inaccessible. A further difficulty is presented by the fact that not even the names of some of the prospects described could be learned. They have, however, all been marked on the map (fig. 9) by an appropriate symbol and can be identified by the descriptions of localities given in the text.

On the south side of Uncle Sam Mountain, near the level of the coastal plain, a shaft has been sunk on a quartz vein that cuts the Hurrah slate. The property has apparently not been worked for many years, and the relations of the vein could not be seen. The shaft is full of ice within 15 feet of the surface and is timbered to that depth. To judge from material on the dump the vein was probably 2 or 3 feet wide and from the drift has a strike of about N. 40° E.

The quartz is clearly of the later-vein type, showing comb structure and cavities lined with perfectly terminated crystals. No sulphides are seen in the quartz, and no fresh sulphides in the slate associated with the quartz contacts. Specks of limonite through the slate probably indicate decomposition of sulphides contained in it.

About 300 feet from the top on the south slope of Uncle Sam Mountain a massive iron-stained quartz ledge, 7 feet or more wide, has been exposed by an open cut. The vein strikes N. 45° W. and stands nearly vertical. The outcrop is iron stained, but no sulphides were observed. The transition from massive quartz to quartz with slate inclusions to slate with a little quartz is observed and probably indicates reopening of the vein. Decomposed feldspar is present in the vein quartz in small amounts. The wall rock is the Hurrah slate.

Iron-stained quartz that contains sulphides occurs as drift near the head of Buena Vista Creek, on the east slope of the valley, at an elevation of 500 feet. The ledge is not exposed. The country rock is the Hurrah slate. The quartz is of the later-vein type and shows many original cavities into which well-terminated quartz crystals project. Pyrite is abundant and apparently later than the vein. It

fills cavities and coats quartz crystals.

Two openings have been made on quartz veins at the mouth of Buena Vista Creek, on the east bank. One is now caved and inaccessible; the other, a drift 15 feet long, follows an 8-inch quartz vein. The vein strikes N. 45° W. and dips 60° S. The wall rock, which is black slate, strikes N. 50° E. and dips 45° N. The vein is variable in attitude, here cutting the bedding of the slate, there following it. Just north of the drift face the vein is offset 5 feet by a fault that has followed the bedding of the slate. This is a minor dislocation such as is commonly observed to affect the later quartz veins. Ribbon rock was not seen here, the vein walls being clean cut and not affected by the mineralization. The quartz is iron stained on fracture planes and contains pyrite, which occurs both as crystals through the quartz and in cavities and fractures later than the quartz. Two ages of sulphide mineralization are here apparent.

Considerable prospecting has been done about half a mile from the mouth of an unnamed stream that enters Big Hurrah Creek from the north a quarter of a mile below Little Hurrah Creek. The workings are now so caved and slumped that no exposures of the veins can be seen. There are probably a dozen open cuts from 5 to 30 feet long and 3 or 4 feet deep and three shafts, now caved and filled with water.

The country rock is the Hurrah slate.

Quartz on the dump at the main shaft is of open texture, coarsely crystalline, and clearly of the later-vein type. Considerable sulphide occurs through the quartz in well-defined veins, which in places swell to nests. Pyrite and pyrrhotite are the principal sulphides. Some

arsenopyrite is present, and chalcopyrite is recognizable on a polished surface. The gold content of the vein is not known. So far as could be observed, the vein is structurally different from most of the other gold lodes of the district in the absence of ribbon rock, and it is mineralogically different from most of the other sulphide-bearing gold lodes in the absence of arsenopyrite and the presence of pyrrhotite and chalcopyrite.

A vein of quartz has been opened by a trench 10 feet long and 2½ feet deep on the south bank of Big Hurrah Creek about half a mile above the mouth of Little Hurrah Creek. The trench is now so filled with wash that the vein can not be seen. The dump shows mica schist of the Solomon schist and iron-stained quartz vein material, including lenses of schist. The opening is near the contact of the Solomon schist and Hurrah slate. The bedrock schist is a highly quartzose mica schist with probably some chlorite. The vein is made up of large, well-defined crystals, many of which show good terminations and comb structure. Several reopenings of the vein are recorded in one hand specimen. The schist at the contact appears to be silicified, and open texture along the contact is the rule.

The Big Hurrah lode was discovered in 1900, opened up in 1903, and then equipped with a mill and operated on a productive basis until 1908. Since then the property has been idle, and at the time of the writer's visit the underground workings were for the most part inaccessible. Smith's description ⁴² of this lode is the primary source of the following notes, but they also include some supplementary observations made on the surface exposures and open cuts near the mine. This deposit is one of the few auriferous lodes on Seward Peninsula whose continuity and structural relations are known by extensive underground openings.

The Big Hurrah quartz veins are about the only veins of any great size and proved continuity known on Seward Peninsula. They are several feet in width and are not subject to the pinch and swell and extreme irregularity that have been found to be characteristic of most of the veins on the peninsula. The reason for the difference in the habit of these veins lies in the character of the country rock—the Hurrah slate, a brittle rock that fractures readily and breaks along sharp, clean-cut lines. These physical properties of the slate are not found in the schist and limestone formations that form the bedrock of most of the peninsula, and even the limestones lend themselves less readily to this form of opening.

The three quartz veins that form the lode are roughly parallel in strike. Two of them dip to the southeast and the other to the northwest. They crop out on the bank of Little Hurrah Creek, have been followed by underground workings for several hundred feet to the

⁴² Op. cit., pp. 143-147.

south, and are 4 to 8 feet wide. Considerable prospecting has been done west of Little Hurrah Creek and north of Big Hurrah Creek in the black slate area, in the hope of finding the continuation of the veins or others equally favorable to mine. Little success has attended such attempts, and to date the veins are known only within a very small area of slate between the forks of Big and Little Hurrah creeks.

The main developments at the Big Hurrah mine have been by means of an incline shaft, which has a general though not constant slope of about 60°. The strike of the veins is northwesterly, and the dip is to the southwest. The upper portion of the vein has also been worked in part by adits run in from the outcropping of the vein on Little Hurrah Creek. A general plan of the underground workings is shown in figure 10.

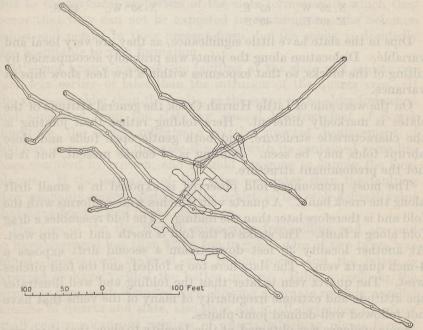


FIGURE 10.-Plan of underground workings of Big Hurrah mine.

North of the main lead there is another vein about 50 feet below in the footwall. This vein, unlike the two farther south, has a northwesterly dip, although the strike is essentially the same as the others.⁴³

It was at one time a question with the operators of the property whether the opposite dipping lodes were two distinct veins or limbs of an anticlinal fold. There seems to be no evidence to support the latter theory, and the general attitude of the formation and its minor structural features seem to point to their being two distinct veins.

If the underground conditions at the mine could be studied or the discoveries made during the development work learned, considerable data would probably be available upon which to base a conjecture

TAKEAD A ZAKEAD A ZAK

⁴² Smith, P. S., op. cit., p. 145.

C

(

ti

0

1

t

li

concerning the probability of finding these or similar veins beyond their present known limits. As such data are not to be had, only surface observations can be made. Examination of the open-cut exposures is far from satisfactory but seems to justify certain generalizations. On the east side of Little Hurrah Creek the slate is badly fractured but not appreciably folded. The slate cleavage here strikes N. 10° W. and dips 45° S. Jointing here is the common structure; it is very pronounced and complex. Joints traverse the slate in all directions and with dips extremely variable in direction and amount. The following series was observed on one face:

Strike N. 75° W., dip 45° N. N. 25° W., 65° E. N. 40° E., 40° S.

Dips in the slate have little significance, as they are very local and variable. Dislocation along the joints was probably accompanied by tilting of the blocks, so that exposures within a few feet show dips at variance.

On the west side of Little Hurrah Creek the general attitude of the slates is markedly different. Here folding rather than jointing is the characteristic structure, and both gentle open folds and close abrupt folds may be seen. Jointing is of course present, but it is

not the predominant structure.

The most pronounced fold observed is exposed in a small drift along the creek bank. A quartz vein 8 inches wide conforms with the fold and is therefore later than the folding. The fold resembles a drag fold along a fault. The strike of the fold is north and the dip west. At another locality 30 feet downstream a second drift exposes a 4-inch quartz vein. The slate here too is folded, and the fold pitches west. The quartz vein is later than the folding and well illustrates the attitude and extreme irregularity of many of the veins that have

not followed well-defined joint planes.

Some evidence was obtained at this locality to show that there was more than one period of intrusion of the later quartz veins, separated by a period of slight deformation. There is also evidence of two systems of folding—one comprising open folds whose axes strike east and the other comprising closed folds and faults that strike north. What is believed to be a fault belonging to the northerly system follows the course of Little Hurrah Creek. Differences were noted in the general type of predominating structure on the east and west sides of the creek and also the presence of what are probably drag folds along the creek bank on the west side. These features denote that the west is the downthrown side of the fault. The failure to find an extension of the lodes west of Little Hurrah Creek may be due to this supposed fault.

Concerning the probable extent of the veins to the southeast more conclusive evidence is to be had. As shown on the geologic map (fig. 9) the Hurrah slate forms the country rock for about 1 mile south of the mouth of Little Hurrah Creek and a quarter of a mile to the east, where it is in contact with the Solomon schist; such relations in themselves indicate fault contact. Pits dug along the strike of the veins to the southeast have exposed Solomon schist in the area mapped as black slate. On the basis of this evidence, the veins can not extend in black slate country rock for more than 800 feet, and to judge from outcrops in the creek bank the distance is probably less. The favorable character of these veins is so evidently due to the physical properties of the slate formation in which they occur that they can not be expected to continue into the Solomon schist and persist in their present form, for the schist is decidedly less hospitable to vein formation.

It is not known whether the faulting at the slate and schist contact was earlier or later than the intrusion of the quartz vein. If the veins are older than the faults, as the schist is the older formation and separated from the slate by several hundred feet of Sowik limestone, the schist indicates a relative upward displacement of 400 feet or more. In this case the slate with its contained veins has been removed by erosion, and its gold has gone to supply the local placers. If the intrusion of the veins was later than the faulting they probably never existed in the schist as the well-defined veins

that have been mined in the slate area.

The ores of the Big Hurrah mine were free-milling and are said to have averaged less than \$20 a ton in gold. Ore of two types was mined—quartz-vein material and ribbon rock—and the latter is reported to have yielded the better returns. Ribbon rock, as the term was here used, included rock showing alternate roughly parallel laminae of quartz and slate, also slate cut in all directions by many small contemporaneous veinlets of quartz, which in places formed more than 50 per cent of the mass. This banded rock was probably due to reopening of the vein and repeated injection of quartz. other type probably represents shattered wall rock of the vein. The veinlets are as a rule clean cut but locally show curving and ramifying tendencies. The slate consists essentially of quartz with abundant graphite, considerable white mica, and limonite, which give to the rock a very fine lamination. The ribbon rock ranges from quartz with occasional fine laminae of slate to slate with a minor content of quartz.

The vein rock is coarsely crystalline vitreous white quartz of the later-vein type, showing cavities into which well-terminated crystals project. The small veinlets of the ribbon rock are of the same opentextured vein type. In some of the veinlets the quartz crystals

project from one wall only; in others the fissures are incompletely filled by crystals projecting from both walls. A little white mica is the only other constituent of the veins observed microscopically, but decomposed feldspar was seen in some hand specimens and is probably a minor constituent of the vein. The quartz is strained and in places shattered. Fissures through the quartz filled with later quartz give further evidence of movement and more than one injection of quartz. Native gold can occasionally be seen in hand specimens. Microscopically it is seen to occur with the quartz of the vein. Sulphides are almost absent. Neither the sulphides of the vein nor the carbon of the schist were observed to be associated with the gold.

The Gray Eagle claim, an antimony prospect, is on the north bank of Big Hurrah Creek about 1 mile from Solomon River. A 12-foot shaft has been sunk and several trenches dug on a 4-foot quartz vein which carries stibnite. The country rock is the Hurrah slate. The workings are now caved, and the vein is not exposed. No work has been done here for five years. The claim is owned by E. W. Quiggley, who reports the vein to be 4 feet wide and to strike about N. 45° E. and dip 45° N. The stibnite is said to occur throughout the width of the vein. The center of the vein for a width of 1 foot is said to be almost pure stibnite, and the sulphide to occur in nests through the rest of the vein.

Specimens from the dump show the ore to be an intimate admixture of stibnite and quartz crystals occurring through the quartz of the vein. Columnar crystals of stibnite an inch in maximum size occur with clear, glassy, well-terminated crystals of quartz half an inch or less in width. The quartz of the vein, which is free from stibnite, is of the open-textured later-vein type. The material examined did not show definitely the relation of the sulphide to the vein, but it is probably later.

Near the top of the hill northeast of the mouth of Big Hurrah Creek considerable work has been done on the Flynn gold quartz vein. Here there is an inclined shaft, said to be 60 feet deep but now filled with water. Probably 20 smaller shafts and trenches, some of which are 50 feet long and 3 to 8 feet deep, show quartz on the dump, but no vein is exposed. The country rock is the Hurrah slate. In addition to quartz, a green mineralized rock occurs on the dump of a shallow shaft, now filled with water. The rock is composed of fresh arsenopyrite and a very little quartz in a mass of chloritic material such as forms the green rock of the Bluff lodes. Much of the quartz on the dump is of the ribbon-rock type. It is iron stained, but no sulphides were observed. The size, attitude, and relations of the vein could not be seen or learned, as no one is on the property and no work has been done for five years.

Two other prospects within the basin of Solomon River but outside of the area included in the map (fig. 9) will be briefly mentioned.44

On the first tributary to Solomon River from the west below East Fork an adit has been driven on a vein occurring in the black graphitic slates. This vein is located along a fault which has an indeterminate throw and is distinctly later than the fault The amount of mineralization is not very great, although in places the rocks are considerably iron stained. The adit is only 20 feet long, and the mineralization becomes progressively less toward the breast, and the amount of drag indicated by the wall rocks also diminishes. No work has been done at this place for some time.

Several openings have been made on lodes on West Creek, which flows into Shovel Creek, a westerly tributary of Solomon River. These occurrences are described by Smith 45 as follows:

A series of veins occurring in the chloritic-schist areas away from any contacts with other rocks has been opened on West Creek 2 miles above the mouth. Some work is done here every year, and there are 600 or 700 feet of underground workings, but the mine has not yet shipped any ore. The development is on a north-south vein, which was opened by an adit that drifted along the vein for over 350 feet. In this drift both walls were decomposed chloritic schist, which in places showed marked slickensiding. Another adit about 300 feet long has been driven on a vein farther west, which shows the same general character as the first. A crosscut following a small cross stringer has been run from the eastern drift. The quartz from all the veins is practically the same in character. It is white and somewhat shattered but is apparently not sheared nor folded and presumably belongs to the later set of veins. In addition to the quartz the veins carry abundant chlorite and a small amount of pyrite and marcasite. The later metallic minerals occur in small stringers and vugs. The wall rocks are also said to be gold bearing, and the footwall schist is reported to carry from \$8 to \$10 a ton in gold, but no assays of the rock have been made by the Survey.

COUNCIL DISTRICT.

The Council district has been a large producer of placer gold for 20 years. No valuable metalliferous lodes have been developed in the district—in fact, very few lodes have been found. It appears that a large part of the placer gold is derived from mineralized zones in which the metal has not been sufficiently concentrated to form lodes of commercial value.

The rocks of the district include limestone and schist of various types with a little slate. These rocks strike northeast and almost invariably dip southeast at angles of 25° to 45°. A belt of massive limestone forming the ridge west of Ophir Creek is the only welldefined unit of the district. The bedrock of the rest of the area consists of schist and limestone in varying proportions. On the accompanying sketch map (fig. 11) these rocks have been differentiated into a series in which the schist and limestone occur in about equal proportion, and a series which is largely schist with only subordinate amounts of limestone. The sequence of these beds, if indeed they are distinct formations, has not been established.

⁴⁴ Smith, P. S., op. cit., p. 148.

⁴⁵ Idem.

The larger features of the geology are not complex, and the uniform southeasterly dip suggests a simple monocline. There are, however, many shear zones in which some of the limestone has been altered to calcareous schist, so that it is difficult if not impossible to trace beds and groups of beds for any considerable distance. It is not impossible that the apparent monocline may actually be an overturned fold, perhaps accompanied by thrust faults, though no

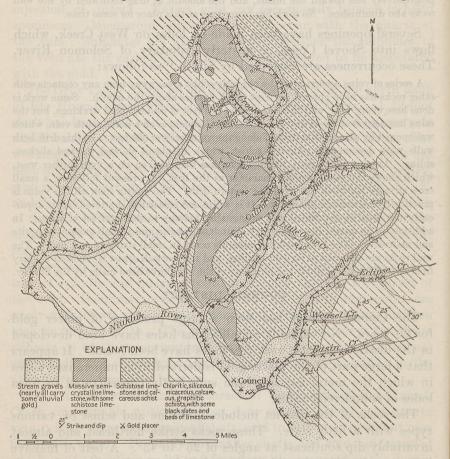


FIGURE 11.—Geologic sketch map of part of Council district.

evidence of faulting was found. The map also shows the approximate distribution of the stream gravels. Practically all these gravels carry a little gold, but it is only in certain localities that these auriferous gravels are rich enough to afford valuable placers.

Few lodes that have encouraged hard-rock prospecting have been discovered in the Council district. The mineralization of the country rock from which the very rich placers of Ophir Creek have been derived does not seem to have been sufficiently concentrated at any

locality to form a lode, but rather the gold has been disseminated throughout the bedrock. Quartz stringers and sulphides are very common in the schist and limestone, especially in the schist. The quartz is known to carry gold, as some of the veinlets are reported to show a gold content on assay and quartz is frequently found attached to gold in the placers. That quartz is the only carrier of gold in the district has not been proved. Some gold may occur with the sulphides, but its presence has not been demonstrated. It is perhaps safe to assign most if not all of the gold to the quartz veinlets, as the sulphides are almost entirely pyrite, and the gold that occurs with sulphides elsewhere on the peninsula is associated with arsenopyrite or stibnite.

The nature of the occurrence which would permit the gold to be so generally distributed throughout the country rock and not tend to produce lodes has been discussed by Brooks, 46 who, from his study of the region, has shown the gold to be related to the limestone and schist contacts. The behavior of the limestone and schist series when subjected to intense folding has been discussed on page 171. The shearing incident to such folding is believed to have supplied openings along the contacts of members of the series which differed in resistance to shear, and these openings were later filled by quartz veinlets that carried the gold (fig. 12). The country rock of the Council district was especially favorable for this mode of occurrence, either because it comprised a series which was originally very heterogeneous and which consequently offered a great many such contacts or because schist zones had been developed within a massive limestone as the result of the shearing. There is evidence that many of the schist zones have been derived from the limestone. as the schist is mostly of the calcareous variety. All the limestone is somewhat schistose, and the transition from slightly schistose limestone through schistose limestone to calcareous schist is frequently West of Sweetcake Creek and east of Melsing Creek the schist is largely siliceous and limestone is not a prominent member of the series. (See diagram, fig. 12.) Between Sweetçake Creek and Ophir Creek and extending north to Crooked Creek is an area which is occupied chiefly by limestone. Between Ophir Creek and Melsing Creek schist and limestone alternate. The schist is largely calcareous, and the limestone is rather schistose. The schist appears to increase and the limestone to decrease in amount toward the east. Ophir Creek, the most productive creek of the area, flows through that part of the series in which the contacts are most numerous and in which quartz veins are most plentiful. Guy Creek,

⁴⁶ Brooks, A. H., The gold placers of parts of Seward Peninsula, Alaska: U. S. Geol. Survey Bull. 328, p. 123, 1907.

the least productive creek of the area, flows through the massive limestone member of the series and cuts only one schist zone. Crooked Creek and its tributaries are cut through the limestone member and into the underlying siliceous schist, which at its contact

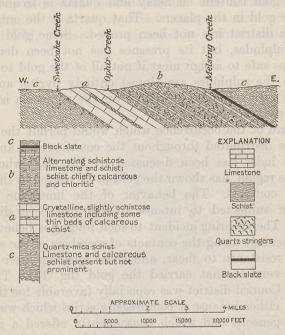


FIGURE 12.—Diagrammatic cross section from Sweetcake Creek to Melsing Creek, showing distribution of quartz stringers, in part mineralized, in schist and limestone.

with the massive limestone is impregnated with quartz veinlets. Sweetcake Creek occupies a similar position with respect to the contact of the siliceous schist and massive limestone.

IRON CREEK REGION.

The Iron Creek region which lies about 35 miles northeast of Nome, has produced a good deal of placer gold, though no very rich deposits have been found. There are also some copper and galena prospects within the district. The bedrock of the district consists chiefly of schist broken by broad belts of limestone which trend in a north-westerly direction. These features are indicated on the accompanying sketch map (fig. 13), but the details of the geology are far more complex than is indicated by this map. The limestone areas are broken by bands of schist. On the other hand, the areas mapped as schist include feldspathic and chloritic schists, as well as considerable areas of black slate and some bands of greenstone, which is of igneous origin. That the placer gold is derived from the schist and limestone

contacts is clearly indicated by their distribution, as shown on the

Quartz is not a prominent constituent of the auriferous gravels, and quartz veins are not noticeably abundant in the country rock. The sulphide mineralization was decidedly of the disseminated type, except in the copper prospects. The relations of both quartz veinlets and sulphides to the country rock are much the same as those ob-

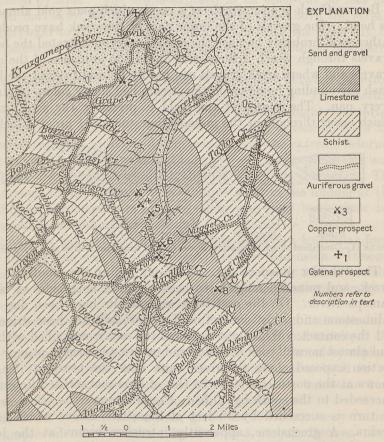


FIGURE 13.—Geologic sketch map of Iron Creek region.

served in the Council district, where schist interbedded with limestone and schist near its contact with heavy limestone were the most susceptible to shearing and the sheared zones offered the most favorable openings for the introduction of gold-bearing solutions. In the Iron Creek region the black slate seemed to have played a part comparable to that taken by the limestone. Both slate and limestone have acted as competent beds, and the schist adjacent to them shows what concentration of mineralization was observed.

Although quartz does not seem to be as abundant in the schist of Iron Creek as at other localities, considerable quartz is associated with the copper minerals in the limestone. This quartz is not known to be gold-bearing, neither is it known that the copper and gold mineralization are of the same age. The younger quartz veins, with which most of the veins in the schist can be safely correlated, have been found by Smith ⁴⁷ to cut silicified limestone in the Solomon district, presumably similar to that which here carries the copper.

Benson Creek is an example of a creek which pans gold almost to its head. The gravels of the lower part of the creek have produced rather well, probably because the creek has reconcentrated the bench gravels through which it flows, but above the influence of the older gravels and where creek gravels can hardly be said to exist the loose wash surrounding boulders on the stream bed shows colors to almost every pan. The source of this gold is probably the schist zones which occur throughout the massive limestone, but proof is lacking.

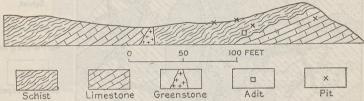


FIGURE 14.—Generalized sketch of exposures on east bank of Kruzgamepa River at Wheeler prospect.

The Wheeler prospect (fig. 13, No. 1) lies at the mouth of Iron Creek, and mine openings have been made in both sides of Kruzgamepa River. On the east bank several pits have been dug near a limestone and schist contact, and a short adit has been driven to cut the contact. Where not timbered the adit is now filled with ice, and almost no wall rock is visible and no ore was seen in place. The section exposed along the river bank near the prospect (fig. 14) shows at the north end 50 to 75 feet of blue marmarized limestone. succeeded to the south by 40 feet of quartz-muscovite schist, which in turn is succeeded by 50 feet of limestone, above which schist occurs. A greenstone, apparently intrusive, occurs at the lower contact of the upper limestone with the schist. The mineralization occurred along the contact of the lower limestone and the schist. The contact shows considerable deformation, the limestone and schist being infolded and the limestone rendered slightly schistose. The beds strike N. 70° W. and dip 10° N.

The schist at the contact shows an abundance of pyrite, but the limestone was only slightly mineralized, if at all. Galena is said to have been found in small quantities, both in the schist and in the

⁴⁷ Smith, P. S., op. cit. (Bull. 433), p. 142.

limestone. The ore consists of finely crystalline galena and pyrite in a gangue of quartz and calcite. Some chalcopyrite is also probably present, as malachite stain is seen in places.

On the west bank of the Kruzgamepa two "kidneys" of galena have been uncovered in a schistose limestone near its contact with a chloritic schist. One body of ore has been removed; a part of the other is still to be seen, but its relations to the inclosing rock are obscured by slide. The ore is exposed in an open cut 30 feet long driven northwest on the river bank and 15 feet above the stream. A shaft said to be 22 feet deep, sunk in line with the open cut, did not penetrate the overlying schist and exposed nothing but barren

The mineralized zone is typical of a contact between limestone and schist along which adjustment has occurred. The limestone forms the footwall and adjacent to the schist is highly contorted. crenulated, and closely folded with schist. The limestone itself has become somewhat schistose at the contact, but the extreme deformation extends only 20 feet into the limestone, and beyond this zone it shows its normal crystalline, slightly schistose character. This zone seems to have been a locus of adjustment in the folding at this locality, as other contacts exposed along the river bank show less intense deformation of the limestone.

The ore is not well exposed but seems to have a lenticular form. The section seen was only a few feet in largest dimension. It seems to lie entirely within the limestone and is probably 30 feet or more from the contact. No schist was seen in immediate proximity to the ore.

The ore consists of finely crystalline galena with a little sphalerite and considerable pyrite in a gangue of quartz and calcite. The structural relations suggest that it may have been formed by replacement. Thin sections show that the sulphides occur both in the calcite and in the quartz in replacement relations, but some hand specimens show them as veinlets cutting quartz.

Mr. O. E. Wheeler, the owner, gives the following assay returns on samples of ore determined by Hoover & Strong, Denver. It is not known how the samples were taken: East side, lead 22.87 per cent, silver 20 ounces to the ton; west side, lead 14.2 per cent, silver 14.5 ounces to the ton.

Only a small tonnage of ore is in sight. The ore uncovered has been in disconnected masses along the zone of shearing and offers little encouragement for further prospecting.

The copper prospects of the Iron Creek district have been described by Smith.48 No commercial ore bodies have been found in this

⁴⁸ Smith, P. S., U. S. Geol. Survey Bull. 345, pp. 242-243, 1908.

district, but in view of the mode of occurrence of the copper ores the prospects will be described in some detail.

The mineralization occurred in the limestone that forms the ridge east of Iron Creek. Mineralized rock has been found in a number of places on the ridge between the headwaters of Benson and Penny creeks. Prospecting has been confined to very shallow surface work, except at one locality where a 90-foot shaft has been sunk, and an adit driven. (See fig. 13, No. 4.) The shaft and adit were not accessible at the time of the writer's visit. Although the deposit has not been explored sufficiently to determine definitely the nature of the occurrence, some of the features observed are worthy of record. The sulphide minerals, chiefly chalcopyrite and some pyrite, occur in quartz which has replaced the limestone and was probably introduced along the bedding planes of the limestone. Wherever observed the mineralized rock is banded, and the banding is conformable with and resembles in detail the banding of the limestone with which the siliceous rock is interbedded. Adjacent to the replaced limestone the normally blue limestone is usually bleached to pale blue or even white. The bleaching of the limestone may produce a banding of colors in the unsilicified and unmineralized rock. In many places beds of limestone show bleaching and recrystallization where no mineralization has taken place. That the bleached aspect of the limestone is due in some way to the process of mineralization and not to lithologic variation in the limestone itself is evident, as it is commonly seen adjacent to the silicified limestone and it is not continuous along the strike of a bed. As the quartz has probably been introduced along the limestone bedding planes the ore bodies can be expected to conform with the structure of the limestone country rock, but this inference can be proved only by underground exploration, though it is supported by all exposures of the silicified and of the bleached limestone where unmineralized. It is probable that here, as observed elsewhere on Seward Peninsula, the major adjustment in the limestone, where it occurs interbedded with schists and has been folded, has taken place along its bedding planes. This adjustment has made the bedding planes the equivalent of fractures and the easiest paths of circulation for later solutions. Fractures transverse to the bedding must also have formed, and exceptions to the bedded occurrence of the veins must be expected. Such an exception is seen near the head of Penny River, but all other exposures observed suggest strongly the bedded occurrence.

Shearing occurred at more than one horizon, and it is practically certain that more than one horizon is represented by the mineralized rock exposed here. The country rock is chiefly limestone, interbedded with which occur beds of schist 10 to 50 feet thick. None of the exposures show positively the relations of the shear zones to the

schist. Schist that carries sufficient malachite to class it as an ore occurs, and copper-stained schist is common. Some specimens of schist ore were seen to carry a little sulphide. Although the silicified limestone observed is interbedded with normal limestone and none was seen at the schist contact, at least some of the openings were

probably near the contact.

The silicified rock is of the replacement type that shows many small irregular cavities resulting from shrinkage. Thin sections of the rock indicate that replacement was complete and that quartz is the only canque mineral. The quartz is shattered and strained and is traversed by sericite and chlorite in small veinlets. Polished specimens show chalcopyrite to be the principal and in places the only sulphide. It occurs in bands roughly parallel to the bedding of the limestone. The bands of sulphide are usually one-eighth inch or less, rarely an inch in width. Limonite surrounds and cuts the sulphides in the surface ores, which are the only ores available for examination, so that the original sulphide content and the relative proportions of sulphide to quartz can not be definitely stated. The fresh sulphide observed occurred within 5 feet of the surface and where seen probably did not form more than a small percentage of the ore. The most characteristic physical property of the ore is its banded structure, which is due to several factors, the sulphides occurring in the quartz and the iron oxide resulting from their decomposition, the shrinkage cavities of the quartz, the banding of the replaced limestone, and the copper carbonates that occur in the openings in the quartz and along the former bedding surfaces of the limestone. All these minerals are roughly alined in parallel arrangement and concordant with the bedding of the unmineralized limestone.

Sulphides of copper are not invariably present where there has been silicification of the limestone. In following one of these croppings along its dip, it may be found that the silica followed certain ill-defined channels along the limestone bedding, as a result of which it will grade laterally into limestone, also that the sulphide is present throughout some parts of the quartz rock and absent in others. The fact that it everywhere shows copper minerals at the surface is due to the presence of the copper carbonates, which will be found to disappear at depth. Although these suggestions are the least favorable that might be offered, they probably represent about what should be expected in developing such deposits. These deposits appear to be of the same type as those developed at Copper Mountain, in the upper Grand Central basin, to be described below.

Malachite is the most common of the oxidized ores, although azurite also occurs. Other secondary copper minerals seem to be absent. A polished surface of chalcopyrite ore shows sulphide surrounded and cut by limonite. Three types of oxidized ore occur—

schist, quartz, and botryoidal malachite. In the quartz-muscovite schist the malachite occurs along the cleavage surfaces and has the same relation to the quartz as the mica. In the siliceous ore carbonates occur as filamentary coatings of fracture surfaces, along planes of banding, and in open spaces through the rock. Some chalcopyrite is present with the carbonates. Crystalline malachite in radial structure with some botryoidal surfaces forms the highest-grade ore known to the miners. Iron oxide is an abundant constituent of all the oxidized ore.

The Wheeler copper prospect (fig. 13, No. 4) is at the head of Sherrette Creek on the east side and near the top of the mountain, near the head of Lula Creek, the north fork of Benson Creek. The development workings consist of several small pits and an adit 200 feet long, driven S. 50° W. to connect with a 90-foot shaft. The adit is now partly filled with ice and completely frosted over, so that no rock can be seen. It was driven in limestone and encountered no ore. The shaft was sunk on a cropping of malachite, which at the surface was 8 feet wide. At a depth of 25 feet schist was encountered, dipping south. The schist is stained by malachite and persisted in the shaft to a depth of 60 feet, where barren limestone was encountered, into which the shaft penetrated 5 feet. No drifting was done. The shaft is now filled with ice.

The only mineralized rock to be seen in place occurs at the open cut leading to the collar of the shaft. Here the limestone is closely folded, marmarized, and in places schistose. It was originally dark blue, but has been bleached white along certain zones and has a banded appearance. Schist infolded in the limestone is stained with malachite and contains some stringers of quartz.

Assay returns on ore from this property shipped to the Tacoma smelter are given by Mr. Wheeler, as follows: The surface malachite, taken above a depth of 20 feet in the shaft, assayed gold, none; silver, 0.33 ounce to the ton; copper, 35.68 per cent; iron, 7.60 per cent; silica, 15.40 per cent. About 8 tons of this material was shipped. Schist ore taken below a depth of 25 feet in the shaft assayed gold, 1.82 ounces to the ton; silver, 5.16 ounces to the ton; copper, 17.18 per cent. About $2\frac{1}{2}$ tons of this ore was shipped. Another shipment of 14 tons was made, but no assays of it are available.

Nothing can be seen of the lode from which this ore was taken, but Smith⁴⁹ describes it as a zone of mineralization 5 feet wide in schist. It appears to occur in a schist layer in the limestone. A quartz vein striking north was observed near this copper locality. The quartz is iron stained, but no work has been done on it, so its size and relations are not observable on the talus-covered slope. Two open cuts on the saddle at the head of Benson Creek exposed nothing but lime-

⁴⁹ Smith, P. S., U. S. Geol. Survey Bull. 345, pp. 242-243, 1908.

stone. The limestone is blue, coarsely crystalline, and banded by zones of white marble, one-quarter inch to 3 inches wide. It is slightly schistose and badly fractured. The dip is almost vertical. A fault striking N. 25° E. is exposed in one pit. The limestone south of the fault surface is much shattered.

Near the top of the mountain at the head of Benson Creek, south of the saddle (fig. 13, No. 3), a drift has been made in silicified limestone, which shows copper metallization. The workings, which are but 8 feet deep, give the best exposure of the copper ore seen in the district. At the face of the drift the following section is exposed:

Section at face of drift at head of Benson Creek.
Feet.
Blue limestone
Silicified limestone with no copper
Copper ore containing quartz and copper sulphide and carbonate 5
Limestone
Blue limestone.

The mineralized rock is a silicified limestone, the bedding of which is still apparent and conformable with the overlying blue limestone, which strikes N. 10° E. and dips 5°-10° E. Close folding of the limestone is shown in the trench leading to the pit. The face of ore as exposed is an alternation of roughly parallel bands of malachite, quartz, sulphides, and iron oxides. The layers of ore minerals are discontinuous and are interspersed throughout with quartz, without order of succession. They vary from minute films to layers half an inch in width. The sulphide is chiefly chalcopyrite, which is surrounded by iron oxide.

The ore body seems to be related to the bedding of the limestone. It occurs with limestone on both footwall and hanging wall, and there is no indication of vein or lens form. However, it has not been opened along the dip, and this relation is not proved. No schist is exposed, but the folded limestone seen in one trench suggests the usual occurrence at the limestone and schist contact. The section exposed along the ridge between this locality and the shaft is made up of limestone, including a few schist zones 50 to 100 feet thick. The sulphides are clearly related to the quartz, which was probably injected as tiny veinlets along closely spaced bedding shear zones and replaced the adjacent limestone. On the top of the hill, half a mile to the south, four pits have exposed silicified limestone, but only a trace of mineralization was observed. The silicification is here clearly related to shearing in the limestone, as no schist is present.

Three openings have been made on a copper cropping at the head of Sherrette Creek, on the east side of the ridge (fig. 13, No. 5). The pits are shallow and filled with debris, so that no structural data can be obtained. Mineralized quartz and schist occur on the dumps. The mineralization is of the same type as that in the Wheeler prospect.

Two 20-foot cuts have been made in limestone on the west slope and near the top of the ridge, at the head of Left Fork (fig. 13, No. 6). In the more easterly one a little quartz-malachite ore is exposed, some of which carries sulphides. Little can be seen of the structural relations, but the ore appears to conform with the bedding. The only relation evident is that of copper to quartz. The quartz shows many openings, some of which are lined with projecting crystals. The copper carbonate occurs chiefly as fillings of the cavities and coatings on fractures.

About 100 feet northwest of these cuts a pit uncovers a quartz zone conformable with the bedding and unaltered limestone. The quartz is probably continuous with that at the cuts, but here the open texture of the quartz is less evident and almost no malachite is seen—a fact which points to irregularity of mineralization along the quartz zones, dependent upon the texture. This statement applies to the oxidized ore only. As is seen elsewhere, the sulphide content, though irregular, is not related to the open texture.

On the point of the hill near creek level, just above the forks of Left Fork (fig. 13, No. 7), an opening in limestone exposes carbonate ores of copper. Both azurite and malachite are present. The cut is very small, exposing a face of about 10 by 5 feet, so that few structural data are obtainable. The limestone strikes N. 20° E. and dips 25° E. No schist is exposed. The relation of quartz to limestone here is somewhat different from that seen elsewhere. A lenslike mass of quartz lies in general at a slight inclination to the bedding of the limestone. Several small stringers and apophyses from the lens cut the exposed face. The limestone and quartz contact is in places clean-cut, blue massive unaltered and unmineralized limestone adjoining the vein. Elsewhere the limestone near the vein is silicified and the original banding preserved. All the copper minerals seen are associated with the quartz and are oxidized. They coat fractures and occur as a drusy filling of cavities in the quartz.

Although the banded character shown by the ores of the Wheeler copper prospect is evident in some of the material here, the relation of the quartz is more of the vein type. It suggests that the quartz has followed fissures which in general were openings along beds of limestone but in places cut across the limestone beds. The replacement of the limestone was incidental to the introduction of the quartz. Several shallow pits have been made along the ridge southeast of this locality. They have exposed the typical quartz rock; but it shows little or no mineralization.

Several open cuts have been made on a strong showing of the quartz on the west side of the ridge about midway between the headwaters of Left Fork and Hardluck Creek, but there is hardly a trace

of copper mineralization. The character of the quartz body has not changed, the open texture of the quartz and the well-terminated crystals lining cavities are the same, and some decomposed sulphide is disseminated through the rock, but the copper minerals seem to have largely disappeared. The limestone here is shattered and almost schistose. It strikes N. 30° W. and dips south. The exposures show nothing of the relations of the quartz and limestone.

Just south of the saddle between Shoal and Last Chance creeks a 6 by 8 foot shaft 10 feet deep has been sunk on an outcrop of quartz (fig. 13, No. 8). Although exposed for only a few feet along the strike it appears to be a distinct vein and in this respect is different from other exposures. The vein is 5 or 6 feet wide, strikes N. 50° W., and dips west. The limestone 100 yards to the east strikes N. 70° W. and dips 20° S. At its contact with the vein the limestone is altered to a calcareous schist for a width of a few inches. Both schist and limestone show a little sulphide mineralization adjacent to the vein. The quartz is mineralized by decomposed sulphides, some of which were probably chalcopyrite. Very little copper stain is present, however, and the vein is chiefly a slightly iron-stained bull quartz. The silicified limestone does not occur here, the limestone being calcareous to the vein walls.

About 200 yards to the south, at the head of Penny Creek, several openings on quartz in limestone show only very slight copper stain. The exposures do not show the relations. The copper almost disappears southward along the ridge. No further openings or croppings were observed.

On the east bank of Iron Creek about a mile above the mouth of . Bertha Creek (fig. 13, No. 2) a small open cut exposes a lode of the type occurring on the ridge at the head of Benson Creek. The material is silicified limestone containing a little sulphide and some malachite stain. The lode occurs in the blue limestone but is poorly exposed and not well defined. It is about 3 feet wide where seen.

About 200 feet north of this locality a vein of coarsely crystalline calcite has been opened. The calcite is cut by veinlets of quartz and contains fresh pyrite in abundance. Some pyrite also occurs in the quartz veinlets. The relations of the vein are not exposed. Both schist and limestone occur on the dump and suggest that the vein is at or near to the contact.

COPPER MOUNTAIN.

Some copper-bearing rock has been found on the two slopes of Copper Mountain, whose drainage is carried southward into Nome River and northward into Kruzgamepa River. This area lies about 25 miles north of Nome. The general features of the geology

are shown on the accompanying map (fig. 15), which is based on Moffit's survey.⁵⁰ A broad belt of schist, locally including beds and lenses of limestone, forms the country rock of the mineralized area. To the south the schist is overlain by heavy limestones which include some minor beds of schist. On the lower northern slope of the mountain there is a small area of gneissoid granite, which was intruded in the schist.

So far as it could be determined the copper mineralization was of the same type as that on Iron Creek, already described. The zones of mineralization occur in bleached and in places silicified beds or lenses of limestone which are interlayered with the schist. In these

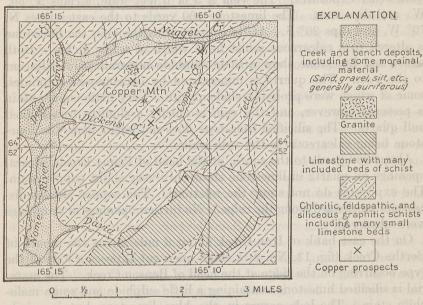


FIGURE 15.—Geologic sketch map of Copper Mountain area.

zones sulphides occur in association with quartz. The quartz is of open texture, and shows shrinkage cavities. The most prominent feature of the ore is its banding, which is due in part to the preservation of the original limestone bedding and in part to the disposition of the ore minerals.

Microscopic examination of the bleached but apparently unsilicified and unmetallized limestone shows it to be practically all calcite. Muscovite occurs in small amounts along bedding planes. Veinlets of quartz that are parallel and oriented with the micas are numerous. Angular crystals of quartz occur through the calcite and are especially abundant near the veinlets. The relations of the quartz suggest

⁵⁰ Moffit, F. H., Geology of the Nome and Grand Central quadrangles, Alaska: U. S. Geol. Survey Bull. 533, 1913.

that it was introduced along cleavage surfaces and replaced the limestone. In the silicified limestone in which copper sulphides occur the replacement is complete, and quartz, with a little mica, forms the gangue of the ore.

Malachite and azurite are the most abundant ore minerals, as the workings have been confined to the oxidized zone. Sulphides occur, however, within a few feet of the surface. Pyrite and chalcopyrite are about equally abundant. Galena is present in small amounts at one of the shafts on Dickens Creek. Bornite is common as an associate of chalcopyrite and in places is the only copper sulphide in the ore. The amount of mineralized rock that might be classed as ore and the details of the occurrence of the ore can not be determined, as the workings are all inaccessible.

The occurrence near the north point of Copper Mountain is of interest in that it is one of the two prospects in southern Seward Peninsula which are in the vicinity of recognizable intrusive granite. A small body of sheared biotite granite crops out on the slope below the tunnel (fig. 15). The granite is rather finely crystalline but shows porphyritic and chilled marginal phases. Small dikes of dense finely crystalline light-green rock cut the mass. Both dikes and granite are cut by later quartz veins. The contact is not exposed, but blocks of limestone in contact with the chilled phase of the granite were seen as float. The limestone is marmarized, and pyrite occurs here and there at the contact, but the rock shows no other evidence of metamorphism. The granite is intruded in schist that is in contact with the silicified limestone in which the mineralization occurred. About 50 feet of schist lies between the granite outcrop and the mineralized zone. No direct relation between the igneous rock and the mineralization was observed. The facts that the mineralized zone is associated with uncrushed quartz and that the sheared granite is cut by undisturbed quartz veins suggest that movement affecting both the sedimentary contacts and the igneous intrusive prepared the openings which are now occupied by the mineralized quartz and the quartz veins, respectively.

On Copper Creek about a quarter of a mile above the railroad several openings have been made in a limestone bed which shows zones of alteration and some copper mineralization. The country rock here is schist, with which occur beds of limestone 50 to 100 feet thick. A fall is formed where the creek crosses the contact and affords an unusually good exposure of the alteration and mineralization of the limestone. The limestone, normally blue, is bleached for a thickness of 12 feet to white or pale bluish white. In places this alteration affects the rock in zones and gives the limestone a banding parallel to the bedding. Both the bleached and the unbleached limestone are coarsely crystalline, and some of the

bleached rock resembles pure calcite. Distortion of the limestone along the contact with the schist was not observed at this exposure. Several zones of schist a few inches thick are interbedded with the limestone, but the rock itself is massive. Two openings have been made in the altered zone at the fall. On the west bank of the creek a 10-foot incline and an 8-foot shaft have cut into but not across the zone. The rock shows little silicification and no copper minerals. On the east bank, 200 feet away from the first opening, an incline has been driven on the same zone. The limestone dips 28° S., and the incline follows the dip. At the time of visit ice filled the opening within 20 feet of the surface. The rock here is banded blue and white, and the bands are from a few inches to a foot or more in width. As a whole it is little silicified, but there are two zones of entirely silicified rock conformable with the bedding. They are 3 and 5 inches wide and separated by a foot or more of unsilicified rock. The quartz rock has a banded character, due in part to the white and blue colors, in part to copper carbonate, and in part to bornite, which with the carbonate seems to occur along former planes of lamination. The mineralized rock appears to be the result of a replacement of limestone and the silica to have been introduced along the bedding planes.

The almost complete absence of quartz in the western prospect indicates a very erratic distribution of this mineral. The presence of unmineralized quartz indicates further restriction of the sulphide mineralization. Where sulphide minerals of this type have been observed, they occur in silicified portions of bleached limestone. The bleached limestone, however, is not everywhere silicified, and the quartz is not everywhere metallized. The next overlying limestone shows only a very little copper stain, although its altered basal portion is as prominent as the limestone just referred to. The upper contact of this bed of limestone is also altered, but without being silicified, so far as observed. There are certainly two zones of alteration here, and probably three, as no surface indications of faulting can be observed.

The neighboring schists are highly mineralized and are cut by veins of the quartz-calcite type. One quartz vein 2 feet wide can be traced for a quarter of a mile on the upper creek. The quartz-calcite veins show sulphide mineralization both in the quartz and in the calcite.

Work has been done on a similar copper showing on the divide between Copper and Dickens creeks. A number of pits, trenches, and shallow shafts have been made on a zone of bleached limestone, which is as much as 300 feet wide, is lenticular in outline, and extends in a N. 40° E. direction for a distance of a quarter of a mile. The openings are now caved or filled with water, and no exposures of

ore in place can be seen. Moss covers the saddle and hillside, so that the stratigraphic relations are obscured, and only mineralized rock from the dumps is available for examination. Chalcopyrite, bornite, and pyrite are the most abundant sulphides. Galena occurs in small amounts at one shaft. Azurite and malachite are present with the sulphides. The sulphide and oxide minerals occur in a roughly parallel arrangement, giving the ore a banded appearance.

This zone is too high stratigraphically to be correlated with the zones of Copper Creek. The circumscribed nature of this type of mineralization is emphasized here by the apparent elliptical form of the area of altered limestone.

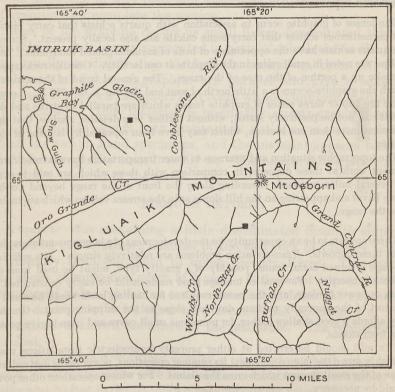


FIGURE 16.—Map showing location of graphite deposits () in the Kigluaik Mountains.

GRAPHITE DEPOSITS IN THE KIGLUAIK MOUNTAINS.

Graphitic schists are common in the Kigluaik Mountains, and in many places the graphite is sufficiently abundant to warrant their investigation as possible commercial deposits. Several hundred tons of graphite has been mined on the north slope of the mountains, where commercial ore bodies have been developed on two properties only a few miles from tidewater at the Imuruk Basin. (See fig. 16.) Development work on these two properties is at present

suspended. Harrington 51 has described these deposits as occurring in lenses associated with the schist and gneiss that form the country rock of the northern slope of the Kigluaik Mountains. Such graphitic deposits have been traced for several miles west of Cobblestone River on the outer slope of the mountains and are reported to occur farther in the range. Considerable work has been done on the properties, but most of the graphite shipments have been made from the eastern property, owned by the Alaska Graphite Co., which has built a wagon road to tidewater. The second group of claims is owned by the Uncle Sam Alaska Mining Co. The following description of these deposits is taken from Harrington's report: 52

The lenses of graphite occur in association with quartz schists that carry biotite, but garnetiferous schists that carry some calcite are also locally present. Some of the quartz schists have the appearance of beds of metamorphosed sandstone. Tourmaline was noted in small grains in the graphite at one locality. Granitic rocks appear to make up a portion of the core of the range. The general trend of the schists in which the graphite occurs is a little north of west and the dip is 60°-75° N. Locally there are two or three series of graphite lenses which are parallel in strike and dip, but it can not be positively stated, without further very detailed studies, that they represent more than one horizon, which may have been repeated by faulting or close folding.

The topographic situation and nearness to water transportation have favored development work at these deposits, in comparison with those which are said to occur for several miles eastward, extending along the front of the range beyond Cobblestone River and appearing on the hill slopes or in the stream valleys which are incised into the range.

There appears to be an opportunity for the development of a large amount of graphite from these deposits. Transportation problems are relatively simple. If a sufficient tonnage is mined aerial trams, possibly of a gravity type, might be used from one or both properties. For smaller tonnage good roads could be easily constructed for team or power haulage, and the power required for hauling loads would be small on account of the generally uniform downhill slope to the shipping point. Graphite Bay affords a good shallow harbor, for numerous small coves and islands give protection from storms.

If a mill should be erected at either property hydroelectric installations would probably prove the more economical for summer operations, power being derived from some of the small streams which cross the claims. For winter operations other power would be necessary.

Graphite deposits also occur south of the crest line of the Kigluaik Mountains, where they were long ago found by Moffit, 53 but not being as accessible as those described above, they have attracted but little attention. Such deposits are found in the upper part of the Grand Central basin, where they have an eastern trend. The best

⁵¹ Harrington, G. L., Mineral resources of Seward Peninsula: U. S. Geol. Survey Bull. 692, pp. 364-366.

⁵² Op. cit., pp. 365, 367.

⁵⁸ Moffit, F. H., Geology of the Nome and Grand Central quadrangles, Alaska: U. S. Geol. Survey Bull. 533, pp. 135-136, 1913.

deposit seen in that region occurs on the West Fork of Grand Central River in the schist which overlies the limestone forming Mount Osborn and in which the valley of West Fork is cut. This schist probably belongs to an older series than those which are described in connection with the other deposits and are confined to the mountain area. It is essentially a siliceous biotite schist and is intruded by many igneous sills and dikes. In general it strikes N. 80° E. and dips 15°-25° S.

The best exposure of the graphite-bearing beds occurs along the divide between West Fork of Grand Central River and Windy Creek. The schist includes quartz-biotite, garnet, and graphitic varieties. Some limestone in thin beds and numerous intrusive sills and dikes

of granitic rock complete the section.

Most of the graphite occurs as small flakes disseminated through the schist. It is locally segregated in nests of \(\frac{1}{4} \)-inch size in the rock, but usually its distribution through the rock is uniform. At some horizons the flakes of graphite are parallel and give a schistose structure to the rock; at others they occur without uniform orientation. The richest of this material is essentially quartz-graphite schist. Where graphite occurs with biotite it is not always easy to distinguish the two in hand specimens, and the material appears to be of much better quality than it really is. The biotite schist is the most prominent member of the series.

BISMUTH DEPOSIT.

A quartz vein containing a little disseminated bismuth sulphide is exposed in the stream channel of the east fork of Charley Creek, a tributary from the south to upper Stewart River. The deposit lies about 25 miles due north of Nome. It does not appear to be of commercial value, so far as can be determined from the exposures, but a description is included here because the occurrence of vein bismuth is unknown elsewhere in the peninsula. The country rock is schist.

The development workings consist of open cuts on both sides of the creek, which expose the vein for a distance of about 50 feet along the strike and 10 feet in depth. Two parallel quartz veins 10 and 5 inches wide striking N. 80° W. and dipping 50° N., are separated by a foot or more of schist. The quartz is of the open-textured type and shows numerous cavities lined with well-terminated crystals. Microscopically the vein is made up of quartz with a little white mica. The veins have been intruded along joint planes in the chloritic schist country rock, which strikes east and dips 30° S. The wall rock is quartz-muscovite schist containing considerable chlorite and some biotite. A little graphite and pyrite are also present. The veins can

not be traced beyond the creek bottom, the valley sides being covered by moss and talus, and they are exposed here only because the creek

has cut a narrow gorge in this part of its course.

No ore was seen in place. A small quantity of mineralized quartz on the dump contains bismuthinite, occurring in tiny veinlets through the rock. Cross veinlets concentrated here and there form dark patches in the white, opaque vein material. There is no means of estimating the sulphide content of the vein, as the portion now exposed was not seen to contain any. The mineralized material on the dump contains only 1 or 2 per cent of sulphide, and the metal content of the vein is probably very small. The vein has been reported to contain platinum in considerable amounts, but reliable assays made for the Geological Survey show no trace of platinum.

ANTIMONY DEPOSITS.

Antimony in the form of stibnite is rather widely distributed on Seward Peninsula.⁵⁴ It occurs at several localities in the vicinity of Nome, in the Manila-Lost Creek area, described below, on Big Hurrah Creek in the Solomon district (p. 204), in the York district,⁵⁵ and at the Omalik mine, in Fish River basin.⁵⁶

The deposits in the Manila-Lost Creek area have thus far proved to be of the most importance. A number of antimony-bearing lodes have been found in this area, which lies about 20 miles north of Nome. Here the southward drainage goes into Nome and Snake rivers, and the northward drainage into Stewart River. As shown on the accompanying map (fig. 17), which is based on Moffit's survey, the country rock consists of a great series of schists, with some interbedded limestone, which is overlain by a heavy limestone formation that also includes some beds of schist. These rocks are cut by a few granite stocks and dikes.

In the vicinity of Manila Creek a number of antimony-quartz lodes, some of which are gold-bearing, have been prospected. At the Hed & Strand mine, on Dahl Gulch, a tributary of Lost Creek, and at the Sliscovich mine, on Manila Creek, considerable development work has been done and some antimony ore has been produced. The Hed & Strand property has been described by Mertie,⁵⁷ and the Sliscovich by Chapin.⁵⁸ Little or no progress has been made since their visits. A number of other prospects have exposed ore between Cold Creek and Manila Creek and on the divide between Manila and Hobson creeks, but the workings are shallow, and except

⁵⁴ Brooks, A. H., Antimony deposits of Alaska: U. S. Geol. Survey Bull. 649, pp. 50, 59, 1916.

Knopf, Adolph, Geology of the Seward Peninsula tin deposits: U. S. Geol. Survey Bull. 358, 1908.
 Smith, P. S., and Eakin, H. M., A geologic reconnaissance in southeastern Seward Peninsula and Norton Bay-Nulato region, Alaska: U. S. Geol. Survey Bull. 449, pp. 131-133, 1911.

Mertie, J. B., jr., Placer mining on Seward Peninsula: U. S. Geol. Survey Bull. 662, p. 436, 1917.
 Chapin, Theodore, Lode development on Seward Peninsula: U. S. Geol. Survey Bull. 592, p. 403, 1914.

for ore on the dump show nothing concerning the occurrence of the antimony.

The ores of this locality are typical of most of the antimony ores of the peninsula. In the area examined the stibnite is commonly associated with the later quartz veins. Kidneys of stibnite accompanied by very little quartz have been found along shear zones in

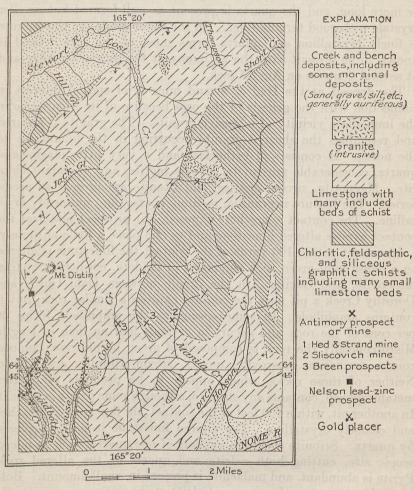


FIGURE 17.—Geologic sketch map of Manila-Lost Creek area.

schist at the Boulder lode on Waterfall Creek (p. 231), and in the Winsted tunnel on Anvil Creek (p. 238), but the ore bodies are small.

Where associated with the quartz veins the stibnite seems to have been introduced since the formation of the veins. Apparently after the intrusion of the quartz veins movement continued to take place along the vein fissures and they were reopened and the veins shat-

63963°-22--15

tered. Antimony-quartz solutions were then introduced. 59 At some localities the stibnite occurs as irregular bodies between the vein and its schist wall and as nests and stringers in the vein itself, but at most localities it is present only as veinlets in the quartz.

The stibnite is usually accompanied by some pyrite and a variable amount of contemporaneous quartz. In the purest specimens the stibnite occurs as distinct acicular crystals, some of them an inch or more long, and the quartz is present as well-formed but smaller crystals with good terminations. In the lower-grade ore the stibnite is finely crystalline and quartz forms most of the rock. Gold is known to be present with the antimony at the Sliscovich mine and at several deposits on Anvil Creek.

The deposit at the Hed & Strand mine is of special interest in connection with the genesis of the ores because of its occurrence in the immediate vicinity of intrusive granite. The granite is sheared and resembles the sheared granite occurring in the mountains to the north. It consists of orthoclase and a very little plagioclase, quartz, considerable muscovite, a little biotite, and abundant chlorite. Magnetite, zircon, apatite, and titanite are present as accessories. The texture is granitic, medium coarse, and uniformly crystalline. The contact is nowhere exposed, but prospect pits near the contact expose altered limestone and in one place a little antimony.

In one pit within 100 yards of the contact the limestone is altered to a dense light-green rock composed of epidote, cordierite, quartz, muscovite, and calcite. On the divide between Dahl Gulch and Dorothy Creek a pit near the contact exposes a similar rock, but it contains amphibole. In some specimens the amphibole forms 50 per cent of the rock and occurs in crystals half an inch in length. Microscopically the rock is composed of green hornblende, epidote, zoisite, cordierite, muscovite, quartz, zircon, titanite, and calcite. Neither of these rocks, which appear to be products of contact metamorphism, contains any stibnite, although some pyrite is present. In another pit, within 100 feet of the contact, the limestone is bleached and coarsely crystalline. The altered limestone is partly replaced by quartz. Stibnite occurs in veinlets of one-quarter inch to microscopic size, cutting both calcite and quartz of the altered rock. Pyrite is abundant, and malachite is present in small amount. Both occur in or coating fractures. Calcite veins are numerous in the limestone, and one vein was seen to contain a crystal of stibnite 1 inch long.

Although the data obtainable do not afford definite proof, it is probable that the epidotized limestone is the result of contact metamorphism. It is not certain, however, that the stibnite is in any way related to the granite. Stibnite is not seen to occur with the

⁵⁹ This interpretation of the facts has already been made by Brooks (Bull. 449, p. 52, 1911).

contact rock. It is present with the silicified limestone but is of later origin than the alteration of that rock. It is probable that an opening was formed at the granite contact, along which the stibnite solutions entered. Further evidence that the antimony mineralization was not related to the granite is found in the structural relations. The granite has been badly sheared. The age of greatest movement in the rocks of the region antedated the formation of the quartz veins, later movement shattered these veins, and the stibnite was then introduced. Some movement has occurred along the veins since that time, but it has probably been slight, as even the soft stibnite ore has been little affected by it. The time of antimony mineralization would therefore seem to be much later than the intrusion of the granite.

The structural features observed in the Sliscovich and Hed & Strand tunnels, as well as the strike of these two well-defined lodes. indicate a parallelism with the dominating structure of the Kigluaik Mountains to the north. These features are probably related to the later deformation of the Kigluaik rocks. The smaller features of this period of folding probably determined the openings along which

antimony mineralization took place.

The Hed & Strand antimony mine is on Dahl Gulch, a tributary of Lost Creek, which empties into Stewart River (fig. 17). A 250-foot tunnel has been driven near creek level in a direction S. 40° E. Drifts have been run 145 feet southwest and 520 feet northeast along the main vein, which is intersected 90 feet from the entry. At 200 feet from the entry a drift has been run 190 feet northeast. A winze has been sunk in the tunnel 60 feet from the entry, and a raise driven from the 520-foot drift. Some stoping has been done on the vein, and numerous surface pits and trenches have been dug in the vicinity of the mine. Shipments of ore were made in 1915 and 1916, totaling 106 tons, and a few tons remain on the dump.

At the time of the writer's visit little could be seen of the ore relations. Stibnite has been mined only from the main vein, where it occurred in shoots. The shoots encountered by the present workings have been stoped out, so that only the least productive part of the vein is now exposed. The vein strikes N. 65° E. and dips 50° NW. According to Mertie,60 the vein where intersected by the tunnel was 4 feet thick and consisted of white quartz and stibnite. The stibnite occurred as a body 2 feet thick along the footwall. As exposed along the drift the vein shows repeated pinch and swell. Where not stoped the vein is present only as a thin stringer and in places seems to disappear entirely. Near the end of the northeast drift the quartz has a gray color, due to finely crystalline stibnite, occurring in tiny veinlets through it. Elsewhere it contains only pyrite in veinlets.

⁶⁰ Mertie, J. B., jr., Placer mining on Seward Peninsula: U. S. Geol, Survey Bull, 662, p. 437, 1917.

At the end of the northeast drift a 2-inch quartz vein intersects the drift at an angle near 90°. An eighth of an inch of pyrite occurs between the quartz and the wall rock. Specimens of massive arsenopyrite, said to come from this locality, were shown to the writer and are reported to be silver-bearing. This veinlet does not seem to be related to the main vein. In the southwest drift near the adit a small amount of ore remains at the edge of a stope. Two types of ore are present—quartz vein material cut by veinlets of stibnite and acicular stibnite including crystals of quartz. The quartz is here frozen to the footwall and is 2 inches thick; 1 inch of gouge separates the quartz from 1 inch of stibnite, and 3 inches of gouge occurs between the stibnite and the hanging wall. The stibnite is evidently later than the quartz vein and has been introduced along the hanging wall, filling fractures in the quartz vein and occupying open spaces between the vein and the hanging wall. Later movement along the vein has broken the contacts between the quartz and stibnite and between the stibnite and the hanging wall.

The wall rock is chlorite schist, and the hanging wall is everywhere slickensided. At the end of the southwest drift the footwall is altered to sericite schist and is highly mineralized by pyrite. This alteration was not seen to be common.

The drift running northeast at 200 feet from the entry exposes little. It follows a stringer of quartz one-fourth inch to 4 inches wide. The walls are slickensided and in places show gouge. No antimony was seen. At 30 feet from the adit the drift intersects an 8-inch quartz vein, which is offset 2 feet in crossing the drift.

A zone of antimony-quartz mineralization appears to extend from the divide between Hobson and Manila creeks to Cold Creek. The relations of the lodes to the geology can be made out only at the Sliscovich mine, for little can be learned from the surface. The steep slopes are covered with coarse talus of chlorite and feldspar schist; the gentle slopes with moss. Quartz float is abundant through the talus, and a number of veins are probably represented.

At the head of the right fork of Manila Creek a quartz vein not fully exposed but apparently several feet wide strikes S. 80° E. and dips 40° S. It was located by Joe Sliscovich as a quartz lode. No evidence of mineralization was observed, and almost no work has been done on the property.

Just east of this exposure, along the strike of the vein, several pits have exposed quartz which shows mineralization and structure similar to those of the copper ore of Iron Creek and Copper Mountain. It is an open-textured banded quartz rock which contains abundant sulphide, chiefly pyrite, and some malachite stain. The source of this material is not clear. It is not exposed well enough to indicate

whether it is a vein or rock in place. Its isolated occurrence suggests that it might be a drift boulder derived from the ridge above.

The ridge at the head of the right fork of Manila Creek consists of limestone underlain by schist. Several pits along the contact zone expose bleached limestone and in places a calcareous muscovite schist stained by malachite. The copper stain is associated with the mica, and the rock is similar to the schist ore of Iron Creek. The quartz rock referred to above may have originated along this contact, although the bleached limestone exposed at the contact is not noticeably silicified or metallized.

A hundred yards southeast of the copper-stained rock on the ridge several openings have been made on antimony ore. The veins were not exposed at the time of visit, but ore on the dump shows that the mineralization was essentially the same as at the Hed & Strand mine, the rock consisting of quartz cut by veinlets of stibnite. The country rock is chlorite schist.

The Sliscovich antimony-gold mine is near the head of Manila Creek (fig. 17). Details of the occurrence are reported as follows by Chapin, 61 who visited the property in 1913:

This property was staked in 1905. The vein, which strikes N. 60° E. and dips 45° NW., was traced on the surface for over half a mile, nearly across the basin of Manila Creek. Besides a number of prospect pits two openings have been made to develop the lode. A short distance below the point of discovery a 50-foot adit was driven to crosscut the lode, but no further work was done at this place. The main opening is at an elevation 100 feet lower. There an adit was driven 315 feet to the lode, which was opened by an inclined shaft for 100 feet.

The lode is composed essentially of dull, opaque quartz and stibnite, the sulphide of antimony, in approximately equal amounts, although slight variations in the proportions of the two minerals appear from place to place. Near the surface the antimony predominates, and in places nearly pure stibnite occurs in small bunches. A number of assays and analyses have been made on samples of the ore, all of which show rather constant antimony, gold, and silver. An analysis made on a small shipment of ore said by the owners to have been obtained by accurate sampling of the vein was submitted for chemical determination and showed the following:

Gold and silver not published. Qualitative arsenic (As) None Wet lead...... Trace

Lime and magnesia present but not determined quantitatively.

No development work has been done on the property since Chapin's visit. In 1915 the high price of antimony induced the mining of the antimony portion of the vein. A stope was begun about 30

⁶¹ Chapin, Theodore, Lode developments on Seward Peninsula: U. S. Geol. Survey Bull. 592, pp. 403-404,

feet from the bottom of the shaft, driven 30 feet to the north and 40 feet to the south along the vein, and extended within 25 feet of the floor of the adit. Only rock containing high percentages of stibnite was removed, and the waste incident to such mining was dumped into the shaft. The stopes were not well timbered, and the roof is sloughing, so that only that part of the vein at the upper limit of

the stope can be seen.

Where the vein is intersected in the adit it is only a few inches wide. At a depth of about 25 feet in the shaft it swells, and this is the portion that has been removed. At one place it was seen to consist of 13 inches of stibnite and 32 inches of quartz. It appears to be a compound vein similar to the Hed & Strand vein, consisting of a quartz portion on the hanging wall through which occur veins and nests of stibnite, and a stibnite portion on the footwall in which the stibnite includes some quartz. Gouge occurs on both walls and between the two portions of the vein.

The relative proportion of the quartz and stibnite phases of the vein varies from place to place. The stibnite portion is said to thin out entirely in places, but the quartz portion to persist. The quartz phase may show almost no stibnite, a little, or much. Some nests of very pure coarsely crystalline stibnite occur through the vein. The antimony mineralization was clearly later than the introduction of

the gold-bearing quartz vein.

Few structural data can be had from the working, due to timbering, frosting, and sloughing of the walls. A number of fractures can be made out, striking N. 30°-60° E. and dipping 45°-80° W. Gouge marks some of the surfaces, and several are filled by thin seams of quartz. One fault surface, almost horizontal, extends for 150 feet. The wavy character of the surface is noticeable. Here as elsewhere irregularity seems to mark the fractures in schist and is reflected in the pinch and swell of the veins.

An opening has been made on an antimony-bearing quartz vein on the ridge west of Manila Creek, about half a mile south of the Sliscovich mine. A shallow shaft is now caved, and the ore is not seen in place. To judge by the material on the dump, the vein is probably

not more than 8 inches thick.

A number of openings have been made on antimony veins by Henry Breen, who has staked six claims between Clear Creek and the divide between the right fork of Manila Creek and Hobson Creek. (See fig. 17.) Several trenches and pits on the east bank of Clear Creek expose antimony ore. These are sunk in chlorite schist at a limestone and schist contact. The Emestone is bleached but not noticeably silicified. Details of the occurrence of the ore are obscured by wash in the trench. In one cut the mineralized rock is exposed for about 6 feet. The part seen is 2 feet thick; the base is

concealed, being overlain by gravel. The bottom of the pit is about at the limestone contact. In the ore on the dump stibnite is associated with quartz-calcite gangue. The relations are not clear, owing to the decomposed nature of the material, but the occurrence is probably one of stibnite in quartz, which lies in the limestone at a schist contact. Some stibnite also occurs as veinlets cutting schist.

A dozen or more pits have been dug S. 70° E. of the Cold Creek locality and on the west slope of the ridge between Steep and Manila creeks. No ledge is exposed. The country rock is chlorite schist. Some ore on the dumps would seem to indicate a vein trending about N. 45° E. and possibly 2 feet wide. The ore consists of stibnite and quartz and is similar to the other antimony ore of the locality.

The Christophosen antimony property is at the head of Waterfall Creek, about 5 miles west of the Sliscovich mine. (See fig. 19.) The lode is in a schist country rock. Development work consists of two tunnels and several open cuts. The upper tunnel, now caved and inaccessible, is said to be 105 feet long; the lower tunnel is 270 feet long and driven N. 25° W. According to Mertie, 62

The tunnels are said to intersect a stockwork of iron-stained schist and quartz in which the stibnite occurs as lenticular masses. None of the antimony stringers are over 12 inches in thickness.

In the open cuts it is apparent that a shear zone striking about N. 20° E. runs through the property. The attitude of the faults is about vertical. This zone is about 100 feet thick and is heavily iron-stained and mineralized by pyrite, pyrrhotite, stibnite, and gold.

Little is exposed in the one tunnel which is accessible. About 60 feet from the portal a quartz vein, apparently a lens, is intersected which strikes N. 50° E. and dips 80° S. It is followed for 12 feet along its strike and apparently stoped. No evidence of mineralization is seen. At 70 feet from the entry a 3-foot quartz vein strikes N. 70° W. and dips north. The tunnel is driven in graphitic schist and exposes little quartz, other than that mentioned. On the dump quartz of the later-vein type contains considerable pyrite.

A 2-foot vein of quartz containing a little stibnite is exposed by the open cuts. It strikes N. 60° E. and dips north but can be traced for only a short distance. Quartz containing some stibnite occurs on the dumps of several open cuts. The antimony mineral, here as elsewhere, is later than the quartz occurring as veins through it. Concentrations of well-crystallized stibnite show included and evidently contemporaneous crystals of clear quartz, some of which have good terminations. The mineralized schist of the shear zone is exposed in several open cuts. The rock is a graphitic quartz schist containing a little sericite. It is highly iron-stained. Very little

⁶² Mertie, J. B., jr., Lode mining and prospecting on Seward Peninsula: U. S. Geol. Survey Bull. 662, p. 439, 1916.

quartz-vein material occurs through the mineralized shear zone. According to Mertie, 63

About $2\frac{1}{2}$ tons of high-grade stibnite has been mined at this property and sold. The stibnite assays over 58 per cent antimony and carries also some gold and silver. Assays of the crushed schist and quartz in the shear zone also show a little gold.

ZINC-LEAD DEPOSIT ON STEEP CREEK.

The Nelson zinc-lead prospect is on the south slope of Mount Distin, near the headwaters of Steep Creek, a tributary of Goldbottom Creek (fig. 17). The developments consist of a 40-foot tunnel, a 30-foot open cut, and several pits. At the time of visit the tunnel was partly filled with water and inaccessible.

The country rock is limestone, with which is interbedded quartzmica schist. Along a limestone and schist contact the limestone is bleached for a width of 30 feet. It strikes N. 15° W. and dips 18° W. Galena, sphalerite, and pyrite occur in the bleached limestone. At the mouth of the tunnel several stringers of sulphide occur parallel to the bedding of the limestone. The best exposure of the mineralized zone was seen in the open cut, where it is 6 feet wide. Almost every foot of face exposed, both laterally and vertically, shows sulphide, but the occurrence is very irregular and discontinuous. Veinlets of sulphide in the limestone parallel to its bedding constitute the usual mode of occurrence. One 2-inch veinlet of rather pure galena cuts the bedding and dips west at an angle of 35°. It is accompanied by gritty gouge, so badly decomposed that the relation of the sulphide to the gangue is not determinable. Viewed in the large the face of ore has a parallel structure, due to the arrangement of the veinlets. In detail the parallel zones are made up of smaller veinlets branching in all directions. The limestone here is not silicified. The sulphides occur as veinlets and replacement deposits in the limestone. Sphalerite is a common accessory mineral of the galena ores of Seward Peninsula but rarely occurs as the dominating sulphide. Mertie 64 has described such an occurrence in the headwater region of Penny River (fig. 19), as follows:

A zinc prospect consisting of two claims owned by G. Christophosen is on the ridge between Penny River and the head of Oregon Creek, at an elevation of 1,600 feet. The prospect lies N. 64° E. from the mouth of Nugget Creek.

The ore occurs in a small saddle on the ridge, in a narrow band of limestone country rock. A short distance away, on both sides of the saddle, the country rock is schist, and this rapid alternation of limestone and schist is a characteristic geologic feature in this vicinity. The strike of the country rock is N. 30° E. and the dip about 30° SW. There appears to be no well-defined vein but instead an iron-stained zone of mineralization, which trends approximately S. 8° E. The lode was located originally by float in the valley of Penny River. Development work consists mainly of a caved shallow shaft.

⁶³ Mertie, J. B., jr., op. cit., p. 439.

⁶⁴ Idem, p. 447.

The ore is sphalerite, with a little pyrite, in a quartz gangue. Two kinds of quartz are present—the white, opaque variety and the clear, vitreous quartz. The latter appears to be either contemporaneous with the ore deposition or at least closely connected with it genetically. The ore is said to carry also some gold.

NOME REGION.

The richest placers developed in Seward Peninsula are those within a few miles of Nome, notably on Anvil, Dexter, and Glacier creeks. Gold placers have also been found at several localities in a belt some 15 miles wide and extending inland for some 20 miles. It is to be expected that where the richest placers have been found the greatest concentration of gold in bedrock would also occur. In spite of this apparently favorable condition and a large amount of prospecting, no commercial lode deposits have vet been developed in this region. It should be remembered, however, that mining costs, owing chiefly to the high price of fuel, mine timber, supplies, and transportation, are very high. A lode whose gold content was so low as to prohibit profitable exploitation under these conditions of high cost might be of commercial value if such conditions could be changed. Most of the prospecting has been done in search of gold, and both vein and shear-zone deposits have been explored. A number of deposits of antimony (stibnite) and several of tungsten (scheelite) have also received some attention.

The nature of the antimony mineralization has been described on page 225 and need not be mentioned further. Tungsten has been found in bedrock at Sophie Gulch, on Twin Mountain Creek, 65 in lodes on the north side of Glacier Creek, and on the divide between Glacier and Anvil creeks. In the tin deposits of the York district wolframite is associated with cassiterite. In the deposit cited above the tungsten mineral is scheelite. At Sophie Gulch it occurs as a contemporaneous constituent of the quartz-calcite veins and accompanying sulphides which have impregnated the schist adjacent to the veins. At Good Luck Gulch it is recognized microscopically, associated with pyrite, arsenopyrite, and quartz, replacing limestone. As it seems to be contemporaneous with both the later quartz veins and the arsenopyrite, more than one age of tungsten mineralization is certain. Scheelite is fairly common in the placers. It is known at Bluff and in the Council, Solomon, and Fairhaven districts and is probably widely distributed, perhaps as a minor constituent of the later quartz veins.

Quartz veins are very common in the Nome region. They occur as stringers and as massive veins as much as several feet in width. Freemilling gold is known to be present in veins as narrow as a quarter of an inch, but the gold content of all veins so far as known is uniformly

⁶⁵ Mertie, J. B., jr., op. cit., p. 437.

b

p

low. The feldspar type of vein is best known in this district, and the conspicuous veins are usually of that type. No great enrichment of the country rock seems to be assignable to the quartz veins. It seems more probable that enrichment has been effected by the formation of mineralized shear zones and that the gold has been derived from arsenopyrite, which is the usual metallic mineral of those zones. Two types of shear zone in which sulphides are abundant are known. In one the ore occurs in the schist; in the other it occurs along walls of the later quartz veins.

The relation of arsenopyrite to the later quartz veins is similar to that of stibnite. After the deposition of the veins movement reopened the fissures and shattered the veins, and solutions bearing arsenopyrite, gold, a little pyrite, and very little quartz were introduced along the reopened fissures, filled fractures in the veins, and impregnated the schist wall. Unaltered sulphides in these deposits are rarely exposed, and details of the associations can not be seen. The deposits appear at the surface as zones of decomposed schist, stained red by iron oxide. The intense mineralization as shown by the decomposition extended for only a few feet from the vein wall and diminished rapidly with increasing distance from the vein. Where the fresh sulphide can be seen it is chiefly arsenopyrite. The decomposed schist pans gold. Polished and thin sections have not shown free gold to be included in or associated with the sulphides, and the gold mineralization may in part be independent of the sulphides. Mertie 66 cites a mill run made on one of these deposits in which the sulphides are said to have assayed \$48 to \$65 a ton in gold.

The mineralization of the shear zone in schist is comparable to that of the schist adjacent to the later veins, which has just been described. Sulphides, chiefly arsenopyrite, impregnate the schist. Stringers of quartz cut the schist, usually not in great numbers, but at Sophie Gulch and on Glacier Creek zones of this type are exposed in which the veinlets form regular stockworks. The limits of the zones are not well defined, the sulphide mineralization having gradually diminished with increasing distance from the main surfaces of shear. The weathered outcrops are stained with iron oxide. According to report, the schists show a gold content on assay, and gold can be panned

from the decomposed materials.

Many lode claims have been staked in the Nome region during the last 20 years, and on some of these claims considerable underground exploration has been done. Though a little gold ore has been mined and milled from some of these prospects, and a few tons of antimony has been produced, no commercial ore bodies have been blocked out. For the sake of elucidating the principles governing the distri-

⁶⁰ Mertie, J. B., jr., Lode mining and prospecting on Seward Peninsula; U. S. Geol. Survey Bull. 662, p. $432,\,1916.$

bution and mode of occurrence of gold in the bedrock, the principal prospects will be described. At the time of the writer's visit to this field in 1920 many of the old workings were caved and inaccessible. Fortunately, some record of the lodes is available, through the reports of Mertie ⁶⁷ and Chapin, ⁶⁸ who examined the region in 1913 and 1914. In the following descriptions extensive use will be made of these reports. The locations of the prospects here to be described, which lie close to Nome, are given on the accompanying maps (figs. 18 and 19).

Attempt to find a gold-bearing calcite lode is shown by some openings made by M. Charles at the head of Cooper Gulch, about half a mile east of Anvil Mountain. Here there are some small

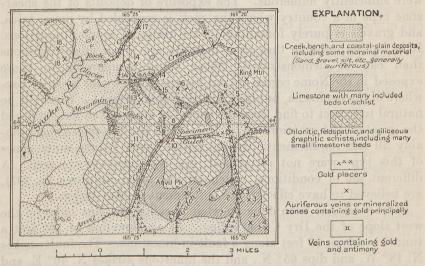


FIGURE 18.—Geologic sketch map of Anvil Creek and vicinity, 4 miles north of Nome.

reticulated veins of calcite which strike N. 30° E. Nothing encouraging the hope of finding a valuable lode was seen at this locality. The calcite veins and stringers carry some quartz and are iron-stained, showing the presence of a sulphide.

It is important to note the relation between the arsenopyrite deposits and some of the more productive placers of the peninsula as observed in the lodes at Bluff, at Koyana Creek, and on West Creek in the Solomon region (pp. 186, 198). The arsenopyrite-bearing rock is perhaps the most conspicuous type of mineralized rock in the Nome region, where it is known to occur on Goldbottom Creek, Good Luck Gulch, Boulder Creek, Gold Hill, Rock Creek, Sophie Gulch, Snow Gulch, Glacier Creek, Mountain Creek, New

of Mertie, J. B., jr., Lode and placer mining on Seward Peninsula: U. S. Geol. Survey Bull. 662, pp. 425-

⁶⁸ Chapin, Theodore, Lode developments on Seward Peninsula: U. S. Geol. Survey Bull. 592, pp. 397-407, 1914.

Years Gulch, and Anvil Creek and is suspected of being the source of the iron-stained schist of Dexter and Dry creeks. The known distribution of arsenopyrite in the Nome region as the principal sulphide mineral of the later quartz veins and of the shear zones suggests that it may be the same mineralization which has locally enriched the bedrock in this area and from which much of the gold of the rich placers has been derived. For many years prospectors have postulated a mother lode that supplied the gold for the rich placers of the Snake River drainage basin and the beach deposits. It is improbable that any one continuous lode exists. Relative enrichments such as are cited here would be sufficient to effect a tremendous concentration in the stream gravels if such enrichments were sufficiently numerous. The exposure of deposits of the shearzone type in a country where the rock is concealed by moss, talus, and gravels is purely fortuitous or the result of mining operations. It is not improbable that such deposits are much more numerous than can be demonstrated. Shear zones comparable to those exposed in the Nome region are not known to the writer to occur elsewhere in the peninsula, but they are probably present. It would be natural to expect to find them developed in areas which have suffered the greatest deformation. The Nome and the Solomon areas probably fill this requirement. In the Ophir Creek region shear zones of this type were not recognized, nor was arsenopyrite seen. A different set of conditions, which are discussed elsewhere (p. 207), are believed to have effected the enrichment in that region.

Some work has been done on what is called the Rex lode, on the west slope of the Dry Creek valley. At an elevation of 550 feet a tunnel is driven 25 feet along a fault in limestone. The fault strikes N. 18° W. and dips 65° N., and the limestone strikes N. 40° E. and dips 10° N. A slightly iron-stained calcite vein, 1 foot or less in width, lies along the fault. The owner claims an assay of \$3 to \$5 in gold to the ton on this material. Another 25-foot tunnel 50 feet lower exposes the same vein. About 200 feet south of this second tunnel three tunnels have been driven on different veins and are now caved. One was 180 feet long. At an elevation of 480 feet a tunnel is now being driven N. 70° W. along an 8-inch vein of calcite. Here only calcite has been seen, and no quartz or sulphide minerals were observed.

A number of claims are staked on the Red lode, along the valley of Dry Creek, between elevations of 400 and 500 feet. East of the road just below East Gulch a pit exposes iron-stained schist similar to that observed on Dexter Creek. Both limestone and schist occur on the dump, and the hematitic material is probably related to the contact. A shaft 40 feet above the pit just mentioned is now caved. Limestone and quartz-chlorite schist but practically no quartz occur

on the dump. On the east side of Dry Creek, at an elevation of 500 feet, a 25-foot tunnel, now caved, and a 30-foot trench 50 feet above it have been opened on a fault zone in limestone. The fault zone strikes N. 40° W. and can be traced on the hillside. The limestone along the fault is brecciated and stained by hematite and limonite, which are accompanied by considerable calcite. No sulphides were seen. The oxide mineralization here probably resulted from ground waters circulating along this shattered zone and is illustrative of what may be the conditions giving rise to the iron ores of the Cub Bear mine on Cripple River.

An open cut at an elevation of about 770 feet on the east side of Dry Creek exposes iron-stained limestone. The cut is now caved, but some greenstone containing pyrite is on the dump. The sulphide content of this rock may be the source of the iron stain in the

limestone at this locality.

At the head of Newton Gulch A. Homberger has made a dozen or more openings in limestone and schist. Veinlets of quartz in the schist and a little pyrite form the only evidence of mineralization seen. No defined lode has been followed, but an average value of \$5 in gold to the ton is claimed by Mr. Homberger as the result of

composite sampling.

Arthur Hines and Charles McLaughlin have located five claims covering most of King Mountain and five claims on the north slope of Dexter Creek, between Deer and Grouse gulches. On Dexter Creek six shafts, five 20 feet and one 56 feet deep, were sunk but are now caved. They were sunk in limestone and decomposed, highly iron-stained schist. The country rock here is alternating schist and limestone. The schist where exposed is decomposed almost to soil and stained yellow. Little quartz is seen, and the decomposed material is said not to pan a color, but to assay \$3 to \$24 a ton in gold. The owners also claim that it contains platinum. Platinum in rock of this type would be entirely exceptional, and its presence or absence should be determined by a competent chemist.

South of these claims, at the mouth of Grouse Gulch, there is an old tunnel at creek level, said to have been 400 feet long and to have cut decomposed schist that showed an average of \$11.80 a ton in gold for 150 assays. This schist is about half calcite and half quartz,

with a very little sericite.

The bedrock of Dexter Creek is alternating limestone and schist. Very little quartz is seen, but the thin schist zones are highly mineralized and much decomposed. On Grass Gulch and Left Fork the rock is chiefly limestone with a little interbedded schist and almost no quartz. The limestone is bleached white at certain horizons, chiefly at schist contacts. Miners working here say that the richest placer ground is found on the bleached limestone.

Bursick & Kern have made 8 or 10 openings at the base of King Mountain on the south and southwest sides. All are in schist and expose very little quartz. No evidence of mineralization was observed. A 20-foot tunnel in schist exposes a few inches of quartz but no trace of mineralization. At an elevation of 640 feet Bursick & Kern have a cut 30 by 50 feet in white limestone. The adjacent schist is well mineralized. The limestone resembles the bleached limestone that accompanies the mineralized rock elsewhere. The bed is 4 feet thick but is neither silicified nor mineralized. On Nekula Gulch, a quarter of a mile to the southwest, is the Caribou Bill claim, one of the richest placers mined in the district. 69

New Years Gulch, a tributary to Anvil Creek, is cut through a zone of mineralized schist and quartz-feldspar veins similar to the zones exposed on Glacier and Rock creeks. The zone is 25 feet wide and strikes N. 40° W. (?). The iron-stained schist is said to pan gold. The vein material is reported to carry arsenopyrite and pyrite, but none was seen by the writer. An assay made for the Survey on this

oxidized schist did not show any gold.

At the Hendrickson prospect, on the north side of Anvil Creek between New Years and Specimen gulches, a 150-foot adit exposes a little quartz, limestone, and schist. The limestone is highly mineralized. Pyrite and arsenopyrite occur abundantly in small crystals in a slightly schistose type of limestone, and pyrite occurs also in a nonschistose phase. The quartz shows some arsenopyrite mineralization. According to Mertie, the adit is reported to crosscut a belt of mineralized country rock for 120 feet, and within this belt lies a rich zone 15 feet wide, which assayed \$11 to \$12 a ton in gold. A shaft on the opposite side of the creek is filled with water.

On the east bank of Anvil Creek just below New Years Gulch hydraulic work exposes much jointed schist that is well mineralized and on weathering is discolored. In some places the discoloration is more intense than in others and might well represent higher concentration of sulphides, of which New Years Gulch is an extreme

example. Quartz veinlets occur throughout the schist.

Some of the gold from the hydraulic bench on Anvil Creek just above Specimen Gulch is attached to quartz, some is clean, and one nugget showed only hematite in the crevices. All the nuggets are angular and probably local. The attached material suggests that the gold may be derived in part from the quartz stringers and in part from the sulphides.

On the north bank of Anvil Creek, opposite the mouth of Specimen Gulch, a tunnel 70 feet long has been driven in graphitic schist. The

 $[\]otimes$ Collier, A. J., Gold placers of parts of Seward Peninsula, Alaska: U. S. Geol. Survey Bull. 328, p. 200, 1908.

⁷⁰ Mertie, J. B., jr., op. cit., p. 431.

opening was made by J. C. Widstedt in 1899, and several tons of antimony was mined. The stibnite occurred in kidneys in the schist but not in large quantities. The schist in the vicinity of the stibnite kidneys is well mineralized by pyrite and arsenopyrite. Samples of the ore show coarsely crystalline stibnite and a little pyrite. It is said to have assayed \$72 a ton in gold, \$28 in silver, and some copper. Little can be seen in the tunnel, because of the sediment covering the walls.

On the west bank of Quartz Gulch, about halfway up the gulch, a shaft was sunk by Mr. Widstedt on an antimony-bearing quartz vein. The shaft is now full of water. The material on the dump consists of quartz, schist, and stibnite. The stibnite is finely crystalline and is associated with pyrite and a little arsenopyrite. In the quartz rock stibnite occurs in veinlets. Where stibnite pre-

dominates the relations of the quartz are not clear.

On the hillside northwest of this locality is another shaft now caved, out of which antimony is said to have been mined; only schist shows on the dump. On the east side of Quartz Gulch a small open cut exposes several parallel quartz stringers in iron-stained schist. The decomposed zone is 12 feet wide. Finely crystalline

stibnite occurs in tiny veinlets in the quartz.

On the west side of Anvil Creek opposite the mouth of Specimen Gulch an open cut exposes a shear zone in schist. The schist is about half calcite and half quartz, with much graphite and a little muscovite. It is badly crumpled and iron stained. Numerous indistinct quartz veinlets cut the schist. Pyrite was the only fresh sulphide seen. Beginning 100 feet south of this exposure and continuing for several hundred feet a series of these sheared and ironstained zones in schist are exposed by a cut made in building a road along the side hill. The occurrence is similar to that of the Boulder lode and other sheared zones which are known to pan gold and is probably representative of a type of sulphide mineralization common in the Nome district but not generally exposed. On the west side of Anvil Creek below Quartz Gulch several tunnels have been driven but are now caved and inaccessible. No ore was seen on the dumps. One of these tunnels was evidently driven on a limestone and schist contact. Quartz-calcite veinlets occur in both limestone and schist, and sulphides are prominent in both. At the mouth of Quartz Gulch on the Scotia claim a 10-foot tunnel exposes an 8-inch quartz-calcite vein, cutting schist. Both schist and quartz contain pyrite and arsenopyrite.

On the east bank of Anvil Creek a quarter of a mile below Specimen Gulch two shafts have been sunk by Charles Olsen on antimony-goldquartz veins. One, 54 feet deep, is now caved; the other, 100 feet deep, is full of water. The 54-foot shaft, according to Mr. Olsen, was sunk on a 4-foot vein of quartz that strikes a little west of north and carried only a little gold. At a depth of 49 feet stibnite was encountered which continued to 54 feet, where the shaft was abandoned. The stibnite portion of the vein was more than 5 feet wide. The 100-foot shaft is 100 feet west of the 54-foot shaft. It encountered stibnite at 60 feet, which continued on the hanging wall to 100 feet, and at that depth the shaft was abandoned because of water. These veins dipped west and had 10 feet of talc schist on the hanging wall. The ore occurring on the dump is very finely crystalline stibnite with some pyrite and quartz through it. It is said to have assayed \$21 to the ton in gold, \$2.05 in silver, and some copper.

On the ridge between Anvil Creek and Snake River, southwest of Quartz Gulch, at an elevation of 650 feet, a big ledge of white, opaque (bull) quartz has been exposed by Peterson & Lamoreaux in an open cut and short tunnel. This body of quartz is 8 feet or more thick, strikes S. 45° W., and dips about 45° NW. It is heavily iron stained. The vein is not clean cut but shows stringers going off into the black schist country rock. Strongly developed fractures striking N. 35° W. are present in the quartz, as well as other irregular fractures and faults. This quartz has the appearance of having suffered considerable metamorphism and is probably an old quartz vein formed prior to the gold mineralization of the region. It is reported that galena was found disseminated in some of this quartz. A near-by shaft, about 40 feet deep, is filled with water.

The Eureka and Borasco claims, usually known as the Jorgensen property, lie on Mary Gulch, a tributary of Mountain Creek. Here several openings have been made on quartz veins in mineralized mica schist and marmarized limestone. Oligoclase feldspar is prominent in some of the vein rock. Pyrite, arsenopyrite, and galena occur in veins cutting the quartz, and Mertie 72 reports scheelite from the same locality. The galena occurs in veinlets in the quartz but was not seen in association with the other sulphide and may represent a different period of mineralization. Scheelite may belong to either the quartz or the sulphide period of mineralization. The schist is highly mineralized with arsenopyrite and pyrite. The sulphides are concentrated along the vein, and in the weathered outcrop the schist adjacent to the vein is altered to hematitic material. This intensely iron-stained zone may extend a foot or more from the vein. It is reported that gold can be panned from this rock and that the vein carries gold. Shearing along the vein is apparent. The order of mineralization would seem to be as follows: Quartz, probably carrying a little gold and scheelite, was introduced first. Later movement. in part at least along the vein, reopened the fissure and shattered the quartz. Contemporaneous with or later than this movement sulphides carrying gold filled fissures in the vein and impregnated the

⁷¹ Mertie, J. B., jr., op. cit., p. 432.

⁷² Idem, p. 435.

schist wall rock. The gold content of this and of most of the quartz-feldspar veins of the area about which anything could be learned seems to occur chiefly in the sulphides.

About 200 feet above the forks of the creek a cut exposes quartz in limestone. The habit of the quartz occurring in the two formations is well contrasted. In the schist the veins are extremely irregular in the strike and dip and are subject to rapid pinching and swelling. In the limestone the veins are, as a rule, more clean cut but in places subject to irregularities. At this locality the quartz has followed in general the bedding of the limestone, but in two places it cuts the bedding and fills irregular openings. The quartz in the limestone shows some galena but seems to be less well mineralized than that exposed in the schist.

The Golden Eagle and Gold Bug claims of the West group are near the head of Bonanza Gulch, half a mile south of Glacier Creek, near the top of the divide between Anvil Creek and Nome River. Here a 120-foot adit has been driven on a vein of the quartz-feldspar type. It shows a little pyrite and arsenopyrite. The country rock is quartz-mica-chlorite schist and where exposed, adjacent to the vein, is intensely iron stained. This soft hematitic material is said to pan gold. The width of the mineralized schist zone is not determinable. It strikes about N. 70° E. The face of the drift exposes a nearly vertical 8-inch vein in a zone of soft, highly altered schist. The exposures do not show the structural features.

About 200 yards north of the west end of Hot Air bench, between Glacier and Rock creeks, a trench exposes a quartz-feldspar vein in which sulphides are abundant. Arsenopyrite and pyrite occur in veinlets that cut the feldspar and quartz. There is a noticeable association of the sulphides with the feldspar of the vein. The relations of the vein to the bedrock could not be determined.

On the south side of Glacier Creek above Snow Gulch several short tunnels are driven on quartz-feldspar veins. In one tunnel 100 yards above the gulch the vein exposed is 1½ feet thick. Arsenopyrite and pyrite occur in veinlets through the quartz and feldspar of the vein.

On the north bank of Glacier Creek, opposite the mouth of Snow Gulch, a tunnel driven 20 feet in schist exposes a 1-foot quartz-feldspar vein. The country rock, quartz-chlorite schist, strikes N. 60° W. and dips 20° N. The vein strikes east and dips south at an angle ranging from practically nothing to 45°. The schist is highly folded and irregular. The vein pinches and swells from 3 inches to 1 foot within the 6 feet of length exposed. An 8-inch lens of quartz is exposed above the vein but extends for only 2 feet. A 1-inch stringer dips north and merges with the vein. The quartz

shows little or no mineralization, but the schist adjacent to it is well mineralized with arsenopyrite and pyrite.

A zone of mineralized schist impregnated by quartz is exposed in a small gully on the south bank of Glacier Creek just above the mouth of Snow Gulch. The occurrence is similar to that of Sophie Gulch. The zone appears to strike N. 30° E. Its width is not determinable. The schist has been literally shattered, and the fractures strike and dip in all directions. The schist included between veinlets is commonly curled and contorted along what probably are the surfaces of greatest movement. The veins are of the quartzfeldspar variety and from 1 to 3 inches in width. They are extremely irregular, pinching and swelling, forming lenses and blowouts, and ending as abruptly as they begin. They are all contemporaneous. branching and anastomosing and conforming with the fractures in the schist. The fissures filled are clean cut, and the vein walls are well defined. Between the veins and especially adjacent to them the schist is intensely iron stained. Only extremely decomposed material can be seen, so that the nature of the sulphide mineralization by which it was formed is not determinable. It is probably another exposure of that type of rock containing disseminated sulphides, which in places is known to carry gold and which may be very common, as the softness of the material would permit its exposure only under exceptional conditions. Both moss and talus would effectually conceal it.

The quartz veins are probably later than any considerable movement along the intruded zone, as no offsetting was observed. The sulphide mineralization of the schist was, at least in part, later than the introduction of the quartz, as arsenopyrite, the most abundant sulphide of these zones, occurs as veins in the quartz. How far the sulphide mineralization may have extended from the vein has not been determined, but to judge from the intensity of the decomposition colors it was largely concentrated within a few inches of the vein. This criterion is fairly reliable, as water circulation is not confined to the vein fissures, and the wall rock is cut in great detail by incipient fractures and is decidedly porous rather than dense, even in its most unaltered parts.

The localization of the schist mineralization largely along the fissures filled by quartz indicates the same control for the sulphide mineralizing solution as for the quartz. The old avenues of entrance were open, whether due to incomplete filling of the fissures by quartz or to later shattering that affected the vein walls. Free gold can be panned from many of these zones of decomposed schist. The quartz-feldspar veins are known to carry gold. Whether the gold is the product of a separate mineralization or related to the sulphide

mineralization is not definitely known. According to Chapin,73 the sulphides at the New Era tunnel do not pan free gold. The decomposed schists carrying the same sulphides in many places pan gold. At Bluff (p. 186) the ore is similar to that which is in part free milling and in part base.

At creek level, just west of Hot Air bench, on the north bank of Glacier Creek, two 30-foot open cuts and a 15-foot adit expose a vein of the quartz-feldspar type. The country rock is chlorite schist, which strikes east and dips 40° S. The vein is 8 inches thick and conforms in general with the irregular strike and dip of the schist. A fault in the schist at the tunnel face strikes N. 70° W. and dips 45° N. The vein has been terminated by the fault gouge on the west side of the drift and cuts the fault surface on the east side of the drift. It is almost certain from observations made on this vein that it is later than any period of serious deformation of the schist. It is shattered but not displaced. No sulphide mineralization of the vein was observed.

The Hot Air bench, on the north bank of Glacier Creek, was a large producer of placer gold. The bedrock is schist, and quartz is not plentiful. The schist is mineralized, but the shear zones observed in the bedrock of Rock and Anvil creeks are not seen here. It hardly seems possible that this gold could have been of local derivation. Microscopically the schist proves to be a quartz-albite variety in which chlorite is the most abundant micaceous mineral and muscovite is prominent. Sillimanite and titanite occur as accessories, and arsenopyrite seems to be the sulphide.

The New Era tunnel, on the west side of Snow Gulch, near its head, is now caved and inaccessible. The country rock of Snow Gulch is a succession of limestones and schists, and the tunnel is driven along one of the schist zones. Quartz, limestone, and calcareous schist on the dump are not representative of the mineralization, which is

described by Chapin 74 as follows:

The lode, as judged by specimens from the dump, is composed of stringers of quartz with much included schist, both quartz and schist containing considerable pyrite and arsenopyrite. The arsenopyrite occurs as small irregular bunches and as isolated crystals in both vein matter and schist and appears to be contemporaneous with the quartz. Some of the pyrite may perhaps have the same relation, but most of it is of later origin than the arsenopyrite and fills fractures which penetrate that mineral. A small amount of albite occurs with the quartz.

No visible gold could be detected in any of the samples taken from this tunnel, nor can free gold be obtained on crushing the ore. The gold is contained in the sulphide and extends into the wall rock for a considerable distance.

⁷³ Chapin, Theodore, Lode developments on Seward Peninsula: U.S. Geol. Survey Bull. 592, p. 400, 1914. 74 Idem, p. 400.

West of Snow Gulch, at an elevation of about 450 feet, a trench 50 feet long and 12 feet deep at the face exposes a quartz-calcite vein in limestone. A 12-foot shaft and a 20-foot shaft on the strike of the trench expose the ledge for 100 feet to the southwest. The vein is 2 or 3 feet thick, strikes N. 20° E., and dips 15°-30° W. It conforms in general with the bedding of the limestone. A very little sulphide was seen in both limestone and quartz. Continuing along the direction of these openings, in a line N. 25° E., twenty or more pits have been sunk in quartz-muscovite schist. A little quartz, about equivalent to the quartz occurring in the schist anywhere, is on the dump at each opening, but no ledge is exposed. The pits extend for half a mile or more.

On one of the Big Four claims, on the east side of Snow Gulch above the Miocene Ditch tunnel, a 20-foot shaft and several open cuts have exposed a quartz vein system in limestone. The veins are of the quartz-calcite type, are of open texture, and contain a little sulphide. Free gold was observed in one vein at the contact of the vein and the limestone. In the shaft the veins occur dominantly with the bedding of the limestone but are also transverse to it. They appear to be fairly continuous and not to exceed a few inches in width. The limestone is underlain by schist, and several openings are made in the contact. The schist is highly mineralized.

Where the Government road crosses Rock Creek there is an outcrop of limestone which shows considerable sulphide mineralization. The mineralized limestone is dark blue to black, much contorted, slickensided on some surfaces, and cut by small veinlets of quartz. The microscope shows that it is partly replaced by quartz, being about half quartz and half calcite. The only sulphide observed is pyrite.

The folding in the limestone and schist is exposed on the creek bank. Along the crest of an anticline, where the limestone is in contact with schist, both rocks are unusually well mineralized. The schist resembles that of the Boulder and California lodes, being highly iron stained. No well-defined quartz veinlets occur in the mineralized rock, and apparently the mineralizing solutions contained little or no silica. Here, as at Good Luck Gulch, however, the sulphide accompanies the quartz in replacing limestone. The crest of a fold is here seen to have afforded an opening favorable to the introduction of the mineralizing solutions.

On the north bank of Rock Creek, 200 yards northwest of the road crossing, a caved 10-foot shaft exposes a 2-foot vein of the quartz-feldspar type. The vein strikes N. 30° W. and dips 90°. Several openings south of the creek are along the strike of this vein and possibly on it.

On the south bank of Rock Creek, just below Sophie Gulch, two tunnels, a shaft, and an open cut have been made on a quartz-feldspar

vein. The tunnels are driven S. 75° E. and S. 25° E. about 100 feet apart, and the shaft is probably sunk at their intersection. Both tunnels are caved, and the shaft is filled with water. The vein strikes N. 65° E. and dips 50° S. It is partly exposed by a cut and appears to be 3 or 4 feet thick. The feldspar of the vein is albite. It also contains a little pyrite, arsenopyrite, and ilmenite. The country rock is quartz-chlorite schist, which is iron stained at the surface. Material on the dump of the shaft contains fresh sulphides, the ilmenite occurring on fractured surfaces in the quartz.

This is the property referred to by Mertie as the Stipec and Kotovic

property. He says: 75

The tunnel cuts a 12-foot vein of white opaque quartz which is greatly shattered and iron stained. A mill run on this material has shown it to contain 250 pounds of concentrates to the ton of rock milled and \$6.25 a ton in free gold. The concentrates, which are chiefly arsenopyrite and pyrite, are said to assay from \$48 to \$65 a ton in gold. It is said by the owners that the schist in the mineralized zone carries more gold than the mineralized quartz.

In a hydraulic cut (Reinisch pit) on the north bench of Rock Creek opposite Sophie Gulch free gold was observed in a quartz stringer cutting black schist made up essentially of quartz, muscovite, and carbon. The stringer consists of white, vitreous quartz, about half an inch wide, which abounds in openings. In places the fissure is clearly incompletely filled, well-terminated crystals projecting from one wall, while no quartz occurs on the wall opposite. The gold seems to occur on the crystalline quartz and to be later than the quartz, but the evidence is too meager to warrant a positive statement of this relation. The miners report that gold usually occurs between the quartz and the wall rock.

Mertie 76 has described the occurrence of scheelite on Sophie Gulch

as follows:

The property known as the Sophie lode, on Sophie Gulch, a tributary of Rock Creek, consists of one patented placer claim and two lode claims. Residually weathered tungsten ore was mined here by placer operations in 1916. * * * The results

of microscopic work on this lode will be included in a later report.

The country rock at this place is an iron-stained, thin-cleaving, foliated mica schist. the cleavage of which, measured at one place in the pit, strikes north and dips 23° E, It shows also a vertical jointing trending N. 35° W. Many well-developed fissures are present, striking N. 45° E. and nearly vertical or dipping steeply to the northwest. These are filled with iron-stained shattered quartz. Such veins range in thickness from a fraction of an inch to a foot or more. There is great irregularity in these quartz stringers, most of them thickening in places and thinning in others; also stringers run out into the country rock. Iron-stained fault planes striking N. 18° W. and dipping 54° E. cut both the country rock and the quartz stringers, and along these there is little or no quartz but considerable iron-stained gouge material.

⁷⁰ Mertie, J. B., jr., Lode and placer mining on Seward Peninsula, U. S. Geol. Survey Bull. 662, p. 433, 1917.

¹⁶ Idem, p. 436.

The scheelite occurs for the most part along the sides of quartz stringers and disseminated in the mica schist. Locally the scheelite is present in the quartz. It is reported that gold occurs in the iron-stained schist outside of the zone of scheelite mineralization, but no gold is reported to have been found in the scheelite-bearing rock. Besides scheelite, however, arsenopyrite, pyrite, and galena are found in the form of later veinlets definitely cutting the quartz.

It is said by the owners that the belt of scheelite mineralization is about 50 feet wide and has so far been traced about 500 feet in each direction from the open cut. The trend of this zone appears to be that of the iron-stained quartz veins and stringers—that is, about N. 45° E. The northwest side of the lode is reported to carry more scheelite than the other side. Two shafts—one 32 feet deep, northeast of the open cut, and the other 28 feet deep, southwest of the cut—have been driven to ascertain the value of the ore along the lode. It is said that these shafts show a higher content of scheelite in depth than at the surface.

The writer can supplement the above description by his own observations. The veins are all contemporaneous, cut the schist in all directions, and form complex patterns on the walls of the cut. They are of the quartz-feldspar and quartz-calcite types, are badly shattered, and crumble under the pick. Adjacent to the quartz and extending several inches or a foot from the vein the schist is intensely iron-stained, having the appearance of hematite. Where the veins are close together the entire body of intervening schist may be so altered. Arsenopyrite, galena, and pyrite occur in veinlets through the quartz. Arsenopyrite is also seen in the wall rock of the vein and is probably the mineral from which the hematite is derived. The iron-stained and highly mineralized schist is said to carry gold. A specimen of scheelite-bearing quartz vein material from this locality showed the scheelite to be yellowish brown and the quartz clear and colorless. White calcite is a prominent constituent of the vein rock.

At the mouth of Sophie Gulch a tunnel has been driven on a quartz-feldspar vein in a zone of mineralized and highly iron-stained schist. The tunnel is caved and inaccessible. Vein material on the dump contains arsenopyrite.

Just east of the mouth of Sophie Gulch a hydraulic pit on the south side of Rock Creek exposes highly mineralized chlorite schist that strikes N. 40° E. and dips 20° E. The schist is cut by 23 quartz veins from 1 to 8 inches wide in an exposed width of 28 feet. The veins are roughly parallel and alined about with the strike of the schist. Arsenopyrite, galena, and stibnite were observed in the veins, which are of the open-textured quartz-feldspar type. The schist is mineralized, and hematite occurs along the vein walls. Concentrates from the sluice boxes at this pit are chiefly scheelite, quartz, and schist. Placer gold with very delicate structure and attached to quartz also occurs and is undoubtedly derived from a local bedrock source.

Half a mile above Sophie Gulch, on the south bank of Rock Creek, a tunnel is driven S. 55° E. in chlorite schist. The working is inaccessible. Ore on the dump is quartz-feldspar vein material contain-

ing arsenopyrite and pyrite. The schist adjacent to the quartz is impregnated with fresh sulphides and is in all probability the equivalent of the hematitic schist which is of common occurrence on Rock Creek and which pans gold in many localities. The arsenopyrite mineralization seems to have been later than the vein and probably followed the same fissure as the quartz.

Two openings have been made on quartz veins on Gold Hill, in the Snake River valley between Monument and Thompson creeks. At an elevation of about 150 feet, opposite the mouth of Rock Creek, an open cut exposes a vein of the quartz-feldspar type. No sulphides were observed in the quartz, but it is said to assay \$3.50 to the ton in gold. The country rock is much contorted quartzchlorite schist, which in the vicinity of the vein is highly iron-stained and is said to pan free gold. The vein is about 2 feet thick, strikes N. 25° W., and dips south. The attitude of the vein is conformable with the structure of the schist, being very irregular and changing from horizontal to vertical where exposed. Small quartz veinlets ramify through the decomposed schist in the vicinity of the vein. Near the top of the hill a trench exposes a similar vein in highly decomposed and iron-stained schist.

On the north bank of Albion Creek, tributary to Rock Creek, a shaft said to be 50 feet deep has been sunk on a quartz vein. The shaft is now partly filled with water. No vein is in sight, and only a little quartz and some slightly mineralized schist appear on the dump. The vein is said to have given assays of \$120 a ton in gold but to have pinched out. No work has been done on the property for years. The country rock is chlorite schist. Quartz stringers

are abundant in the schist at this locality.

Two openings have been made in schist and in vein quartz at the mouth of Good Luck Gulch, a tributary of Snake River from the east 3 miles north of Rock Creek. The southerly opening consists of a 40-foot trench trending N. 75° W. The banks of the trench are caved, and no rock is exposed in place. The schist is highly ironstained and decomposed. Some quartz vein material occurs on the dump, and several sacks of ore apparently from this working are stacked on the river bank near by. The material is highly mineralized. Pyrite and arsenopyrite occur in a gangue of quartz and calcite, through which muscovite in small flakes is scattered in considerable amount. Arsenopyrite is the more abundant of the sulphides. A single small crystal of scheelite is seen in thin section. In hand specimen the rock is blue and calcareous. It is probably a replaced limestone, but there is no field evidence to verify this conclusion.

Several pits along the strike of the lode expose no rock in place. Material on the dump includes iron-stained schist and a little banded quartz rock containing pyrite and similar in appearance to the copper ores of Copper Mountain (p. 217). The bedrock occurrence of this material can not be seen.

About 100 yards north of these pits a trench 30 feet long is driven N. 85° W. along the strike of a vein which dips 70° S. The vein is almost covered by débris. Where exposed it is 1 foot wide at the surface and 3 inches wide where it disappears in the trench floor. Material on the dump indicates that the vein may have had a thickness of 3 or 4 feet in one place. The vein is of the quartz-feldspar type and shows openings lined with quartz crystals. Pyrite and arsenopyrite occur through the quartz. The including rock is highly mineralized quartz-mica schist that strikes N. 75° W. and dips 25° N.

Many of the streams tributary to Nome River from the west between Alpha Creek on the south and Last Chance Creek on the north carry auriferous gravels, and these have locally yielded much placer gold. These creeks therefore apparently traverse a zone which is locally auriferous about 8 miles in length and 2 miles in maximum width. More accurate evidence of bedrock mineralization has been found at many localities in the form of auriferous zones and small quartz veins. Moffit ⁷⁷ in 1906 noted the presence of mineralized bedrock in this zone as follows:

A large amount of highly mineralized quartz is present in schist exposures south of Good Luck Gulch. The quartz is much crushed and in general occurs as stringers, although at one place a mass 4 or 5 feet wide is exposed in a small outcrop. A prospect hole shows much rotten iron-stained quartz. The schist also is filled with iron oxide, in which some pyrite still remains. Panning shows the presence of gold.

Several quartz veins, the largest of which is about 5 inches thick, occur near the mouth of Boulder Creek. Assay values of \$3 to \$4 a ton in gold were obtained from

samples taken here.

On Pioneer Gulch the best ground of the residual placers occurs just below a number of small quartz stringers cutting the schist bedrock. One of these stringers 3 inches thick showed considerable free gold. Similar occurrences are known in other parts of the region, but nowhere has the number or size of the mineralized veins been sufficiently great to constitute an ore body.

Moffit ⁷⁸ noted the presence of scheelite and hematite pebbles associated with the placer gold of Bangor Creek, which contained fragments of scheelite weighing half a pound. The placers of Last Chance Creek, he states, carry scheelite, hematite, magnetite, and pyrite.

In 1907 Claus Rodine found a gold-bearing ledge on Twin Mountain Creek. Since then gold-bearing lodes have been found at a number of other localities in this belt. The general features of the bedrock geology are simple, for the belt is made up almost entirely of schist,

⁷⁷ Moffit, F. H., Geology of the Nome and Grand Central quadrangles, Alaska: U. S. Geol. Survey Bull. 533, p. 131, 1913.
78 Idem, p. 87.

which here and there includes some beds or lenses of limestone. There are, however, considerable local variations in the geology, for the schist includes feldspathic, micaceous, chloritic, and graphitic varieties. The schists in general trend north and are closely folded and much faulted. The evidence in hand goes to show that the mineralized zones are in general parallel to the schist, though there are some local variations from this strike.

Alpha Creek, the most southerly of the streams in this belt, has produced considerable placer gold. This gold is but little worn and probably of local bedrock derivation. The creek is cut in gravel, and the country rock is exposed only where a small area has been cleaned in mining. The bedrock exposed is chiefly quartz-mica schist and is well mineralized. Many quartz stringers cut the schist. The quartz is of a clear vitreous granular variety containing some fresh and considerable decomposed sulphide. A. C. Stewart is said to have had \$12 assays on some of these stringers, but a composite sample of the quartz veinlets assayed for the Survey did not show any gold content. A little limestone and a little quartz from a larger vein than any seen occurs in the wash, but the gravel consists largely of the local schist and quartz stringer material. This occurrence would appear to be assignable to local quartz veins in schist bedrock, but the veinlets that would logically seem to be the source gave negative returns when assayed. Either the gold is not uniformly disseminated through the quartz or it is concentrated in certain veins. It is quite probable that the gold may have come from the mineralized schist and not from quartz veins.

There has been more prospecting of lodes on Boulder Creek and its tributary Twin Mountain Creek than in any other part of this belt. Here a large group of claims was located in 1915 by W. L. Cochrane and Claus Rodine, of the Dakota-Alaska Mining Co. This and other groups extend from Alpha Creek on the south across Sledge and Boulder creeks and up Twin Mountain Creek nearly to its head. Another group of lode claims covers much of the valley of Boulder Creek.

A vein of quartz has been opened on the north slope of Sledge Creek about 1½ miles above its mouth (fig. 19). This vein, as shown in a cut about 20 feet long, is about 2 feet wide, strikes N. 40° E., and dips 70° E. It is made up of quartz and orthoclase feldspar. Some masses of feldspar measuring several inches were seen in the vein. The quartz is iron-stained, but no sulphides were observed in it.

Mertie 79 has described the lodes of Boulder Creek as follows:

A number of lode claims on Boulder Creek owned by W. L. Cochrane and Claus Rodine are being prospected. The Boulder lode, embracing several of these claims,

⁷⁹ Op. cit., pp. 427-429.

is on the southwest side of Boulder Creek at an elevation of about 250 feet. Development work on this lode up to November, 1916, consisted of a tunnel driven 92 feet into the hillside on the southwest side of the creek. The direction of the tunnel, 60° W., is about the same as that of the cleavage in the schistose rock. The rock through which the tunnel is being driven is a much altered schist, heavily impregnated by iron-bearing solutions and cut by numerous veins and lenses of white, opaque quartz and also by thin stringers of limonitic material.

It is apparent that the gold in the tunnel has a genetic relation to the iron minerals, but it is not believed by the writer that the white, opaque quartz had any direct connection with the gold mineralization, for the quartz shows the effects of shattering and iron impregnation in a measure comparable with the schist itself and therefore was present prior to the mineralization. The presence of the white, opaque quartz is believed to be merely fortuitous, though it may have had an indirect influence on the mineralization by assisting mechanically or chemically in the precipitation from the mineralizing solutions.

The only quartz seen by the writer other than the white, opaque quartz was a veinlet of clear granular quartz, about three-eighths of an inch thick, near the face of the tunnel. Evidently the mineralization took place with very little deposition of silica by the auriferous solutions.

About 50 pounds of stibnite was taken from an open cut at the surface a short distance west of the tunnel. Scheelite in well-developed crystal outline has also been found in the white quartz in the tunnel. It is rather likely that the scheelite represents another stage in this mineralization, or possibly an entirely different period of mineralization.

At the time of the writer's visit to this lode the tunnel had been driven 85 feet, and although there was much evidence of mineralization in the iron-stained schist sulphides in any notable amount had not been found. Subsequently, in further driving of the tunnel, sulphide ore was encountered in the lode material. Specimens of the last material taken from the tunnel were sent to the writer by Mr. Rodine and prove to contain both pyrite and arsenopyrite.

The Boulder lode is similar in many respects to the California quartz lode on Goldbottom Creek—that is, it is a lode of the disseminated type—a mineralized body lying probably in a zone of shearing. Mr. Rodine says that the trend of the lode, or, in other words, of this zone of disturbance, is about N. 3° E. If this is the correct direction of the lode, it would appear that the tunnel has crosscut about 76 feet of the mineralized zone, and in striking the sulphide ore the tunnel is probably entering the higher-grade ore.

Assays have been made about every 10 feet in this tunnel, and these, known in a general way to the writer, are considered favorable in so large a body of mineralized rock. If the assays are reliable, there is here evidently a good-sized body of low-grade ore. Yet the owners should do a great deal more prospecting on the lode, particularly drill-hole prospecting, to determine its width and extension before making preparations for a milling plant.

On the northeast side of Boulder Creek another tunnel 35 feet long has been driven on the Dakota lode, which embraces 13 claims. The country rock here is limestone, with a minimum of iron staining and practically no sulphides. Veins of white, opaque quartz and of calcite are present, but there seems to be little indication of any intense mineralization.

Bedrock is uncovered in a pit in the creek bed on claim No. 1 below Discovery, Boulder Creek. The country rock is an iron-stained schist, the cleavage of which strikes N. 60° W. and dips 30° SW. A fault zone trending N. 30° W. and dipping southwest cuts through the schist at this locality. A vein of the white quartz near by strikes N. 60° E. and dips steeply northwest. The fault zone is greatly iron stained

and cut by limonitic stringers. This material pans gold, and some very rich pieces of gold-bearing white quartz have been taken from this locality.

An open cut on the northeast side of Boulder Creek farther downstream has exposed a good-sized ledge of the white quartz. This is chiefly of interest on account of the presence of pyrite and pyrrhotite together in the quartz, the pyrrhotite being much less plentiful in the Nome district than pyrite or arsenopyrite.

When the writer examined this locality the mine workings were not accessible, but he was able to make more detailed observations on some of the bedrock geology than Mertie.

A 20-foot cut in the hillside near the mouth of Boulder Creek on the north bank exposes a quartz vein. The country rock is chlorite schist, striking N. 15° E. and dipping 15° E., which is highly contorted and shows considerable decomposed sulphide. The vein occurs as several stringers which in part cut across and in part conform with the schistosity. It swells to a foot in width and pinches to a few inches within a few feet. It is of the quartz-calcite type. No mineralization was observed.

On the north bank of Boulder Creek about 200 yards below the mouth of Twin Mountain Creek a 35-foot tunnel is driven in limestone. Several small stringers of quartz and calcite are intersected. Pyrite occurring in calcite is the only metallic mineral observed.

Near the mouth of Twin Mountain Creek and on the east bank two tunnels have been driven on veins of the quartz-calcite type. One is caved and inaccessible; the other, 40 feet long, is driven in chlorite schist and exposes a quartz-feldspar vein 15 feet from the portal. This vein swells from 1 inch to 1 foot in thickness and pinches to a stringer within 4 feet. Pyrite and a little arsenopyrite occur in veinlets through the quartz, and scheelite is said to be a constituent of the vein. The tunnel is driven S. 85° E. The schist strikes N. 5° E. and dips east. The vein in general conforms with the strike and dip of the schist.

The bedrock of Twin Mountain Creek is schist for several claims above the mouth. The gold it contains is hardly assignable to the influence of limestone, but rather to quartz veins, which are plentiful. Miners claim that the gold comes from an older and higher channel. The creek is incised in high terraces which merge with the terraces of Boulder Creek.

The Boulder lode is on the south side of Boulder Creek about a quarter of a mile above the mouth of Twin Mountain Creek. The workings consist of the tunnel described by Mertie and a shallow shaft. Both are now caved and inaccessible. The lode is evidently a shear zone in schist. The schist is highly stained with iron oxide, and some quartz occurs in stringers through it. To judge from the alinement of the workings and from traceable scars in the hills north of Boulder Creek valley, the strike of the lode is about north.

Limestone both underlies and overlies the schist zone of the lode. which is about 100 feet wide. The underlying limestone shows close folding both along its strike and along its dip, a feature which is well shown on the differentially weathered fracture surfaces of the beds. The stratigraphic position of the mineralized schist zone is shown by exposures along a ditch in the creek bank. West of the lode limestone immediately overlies it. The limestone strikes N. 10° E. and dips 20° W., thus conforming in general with the strike of the lode. Overlying this limestone, which is 50 feet or more thick, schist predominates in the section to the head of Boulder Creek. One considerable bed of limestone occurs about half a mile to the west, but it dips east and may be the same limestone which overlies the lode. duplicated by folding. To the east of the lode the series is predominantly limestone, with interbedded schist. The limestone occurs in thicknesses of 50 to 100 feet, and its structural relations are complex. East, west, and northeast dips are recorded within a few hundred feet. The included beds of schist are well mineralized.

Apparently the lode represents a zone of shearing in the schist at the contact of a zone which is predominantly limestone with a zone which is predominantly schist. The limestone near the lode is completely marmarized and shows intense deformation in detail and everywhere a complexity of structure. No doubt shearing occurred along all the schist zones in the limestone, for they are well mineralized, but the greatest adjustment occurred at the margin of the limestone mass, and this became the most favorable opening for later mineralizing solutions.

The lode rock is quartz-mica schist, in which chlorite and muscovite are abundant. Quartz is not present in any great amount. The material on the dump is of the later open-textured quartz-calcite vein type. Sulphides are abundant in the schist and occur also in the quartz and limestone and in calcite veins in the limestone. Pyrite is most common. Both pyrite and arsenopyrite occur as veinlets in the quartz. Mertie reports stibnite in the lode.

The lode in many respects is similar to that occurring on Goldbottom Creek. Two "runs of gold" are claimed for placers of Boulder Creek. Rough gold occurs below the point where the creek cuts the Boulder lode and is thought to be derived from the lode. The creek gold above the lode is fine and is assigned to the old stream gravels of the terraces that occur along the slopes.

The Lilly lode is on the saddle at the head of Twin Mountain Creek (fig. 19). Here a shallow trench at the limestone and schist contact exposes limestone cut by quartz veinlets and some iron-stained graphitic quartz schist. The limestone is somewhat silicified and shows decomposed pyrite in places, but no other sulphide was seen.

A few hundred feet west of this locality a 12-foot drift is run along a quartz vein in limestone. The limestone is an outlier on the schist and covers only an acre or so. No mineralized rock was seen in place, but a little mineralized quartz occurring in veinlets of 14-inch size, closely spaced and parallel to the lamination of carbonaceous schist, contains pyrite, malachite, and probably chalcopyrite. The relations of these minerals to the country rock could not be determined.

Considerable placer gold has been mined on Pioneer Gulch, 2 miles north of Bangor Creek. Here the bedrock is not exposed, but Moffit has described the placers as being of residual origin. The alluvial gold is angular, and some of it is attached to quartz, indicating its source in the near-by bedrock. An old shaft on the creek bank is inaccessible, but to judge by the material on the dump it was opened on a quartz-calcite vein of the open-textured type, con-

taining a little pyrite and arsenopyrite.

Last Chance Creek, where there has been considerable placer mining, is 2 miles northwest of Pioneer Gulch. Here Moffit noted the occurrence of scheelite. Near the mouth of Waterfall Creek, a tributary to Last Chance from the north, are exposed quartz veins which cut chloritic schist. The schist is highly folded, contorted. and fractured, and dips in general about 45° NE. Opaque quartz of the later-vein type containing a little pyrite occurs in veins from 1 inch to 1 foot wide along a shear zone in the schist. The zone strikes in general east and dips north. The quartz veins both follow and cut across the schistosity of the country rock. They are contemporaneous, as they do not offset or terminate one another but merge. This type of vein occurrence becomes prominent farther south in the Snake River valley. The Christophosen antimony lode, at the head of Waterfall Creek, has been described on page 231.

The California quartz lode is on Henry Gulch, a small tributary of Goldbottom Creek about half a mile from the Goldbottom-Mountain Creek divide. It is 20 miles north of Nome (fig. 19). The developments consist of a 70-foot shaft sunk on an incline of 60° and a 12-foot open cut in the creek bank. The shaft is said to have been sunk on the lode and to have left the lode at a depth of 33 feet. It was filled with water at the time of the writer's visit, and the lode was exposed only in the open cut. The property is equipped with a stamp mill having a theoretical capacity of 10 to 12 tons in 24 hours. Water power is supplied by a ditch 3 miles long, with intake on Fred Gulch. The mill equipment consists of a Blake Hercules jaw crusher, a battery of three 1,000-pound stamps, and a Pinder table. Most of the gold is recovered on the plates, the table having proved unsatisfactory, owing to sliming of the ore. No ore has been milled for several years, and the equipment is not in the best

state of repair. Practically no work has been done here since Mertie's visit in 1916. The lode occurs along a shear zone in the Nome schist, about 300 feet from the limestone area of which Mount Distin is a part. Mertie ⁸⁰ describes the lode as follows:

The lode matter consists of shattered quartz and country rock, which are heavily iron stained and mineralized. The ore body lies along a shear zone, which has a general strike of N. 15° W. The shearing seems to have taken place along a number of faults, with this general strike and with variable dips to the northeast, but to have been concentrated along the hanging-wall side of the shear zone. The hanging wall is therefore marked by a well-defined fault, with slickensided walls. Below the hanging wall, for about 4 feet, the lode matter is greatly crushed, iron stained, and mineralized, and it is from this part of the lode that the ore has so far been taken. The footwall is not well defined, the lode merging gradually into the country rock on that side.

The country rock in this vicinity is chlorite and sericite schist, with considerable graphitic slate and some thin bands of limestone. These rocks contain a system of old quartz veins, which are parallel to one another and lie conformably with the cleavage of the schist, striking N. 40° E. and dipping 50° SE. The shear zone, which strikes N. 15° W., cuts diagonally across the quartz veins, and the character of the lode matter is therefore variable. At one locality it may be entirely the red, iron-stained shattered schist; at another it may be dominantly the mineralized vein quartz. * * *

The lode system is crosscut by the creek and well exposed. The mineralizing solutions were effective for a considerable distance laterally, for the iron staining is plainly apparent for 300 feet upstream from the lode and for a considerable distance downstream. The owner says that this zone of shearing may be traced 1 mile to the northwest and 2 miles to the southeast.

Pyrite and arsenopyrite are the principal mineralizing agents, but here and there a little free gold may be seen. In this as well as in most other gold lodes in the Nome district very little quartz has been introduced with the mineralizing solutions. Stibnite is reported to be present in seams 2 inches or less in thickness, but these were not seen by the writer. Hydrous manganese oxide is present in the gouge. Molybdenum and tungsten also are reported from assays.

The 4 feet of ore along the hanging wall is said to have a value of about \$50 a ton, as indicated by assays, but the owner has been able to obtain only from \$8 to \$10 a ton from the plates. It is therefore inferred that much of the gold is either mechanically intergrown with the sulphides, in particles of microscopic or submicroscopic size, or chemically combined with the sulphides.

Several quartz veins 1 to 3 feet wide that crop out on the north side of the creek appear to be on the strike of the lode and a part of it. On the north bank, 75 feet west of the veins, a highly mineralized schist crops out which has no counterpart on the south bank. It is said that the fault surface of the lode has been traced along a sinuous course to this outcrop. Microscopically the rock is found to be a carbonaceous quartz-muscovite schist, containing considerable chlorite and a little sillimanite, zircon, and tourmaline. Sulphides are abundant.

Gold is said to occur throughout the mineralized schist of the lode. The schist is essentially a graphitic quartz-mica schist. Both mus-

⁸⁰ Op. cit., pp. 426-427.

covite and biotite are present, the latter largely altered to chlorite. Pyrite and arsenopyrite are plentiful.

No quartz ore was seen in place, but a sample of the better grade of gold-bearing quartz taken from the shaft was given to the writer. Microscopically the rock is seen to contain some oligoclase feldspar, and it is probably related to the quartz-feldspar veins. It includes considerable schist and in places is essentially schist cut by quartz. Free gold can be seen in the quartz. Arsenopyrite and pyrite are abundant, and apparently contemporaneous with the quartz. Stringers of quartz that cut the schist are of the later vein type but were not found to contain feldspar.

About 1 mile below the California quartz lode mine, on the west bank of Goldbottom Creek, a 60-foot tunnel is driven in chlorite schist. A small outcrop of quartz occurs above the tunnel, and several stringers of vitreous quartz showing a little pyrite are cut by the tunnel. No definite lode is apparent.

Two small tunnels have been driven and a shallow shaft sunk near the head of Goldbottom Creek on the south bank just above the forks. All the workings are now caved, and neither the lode nor the inclosing rock can be seen, on account of the cover of moss and earth. Some graphite schist, vein quartz, and mineralized siliceous rock, probably a silicified limestone, lie on the dumps, also some limonitic gossan material. There is no evidence upon which to judge concerning the size of the vein or its occurrence. No work has been done here for years, but work is said to have been in progress for a considerable time.

The most conspicuous and plentiful material on the dumps is the silicified limestone, in which considerable sulphide occurs. The rock abounds in openings into which well-terminated quartz crystals project. The openings are in general parallel, fissure-like, and discontinuous. Many of them are filled with calcite. Pyrite seems to be the only sulphide. It occurs in small isolated crystals, in nests, and in roughly parallel streaks. The sulphide does not fill the openings but occurs through the quartz. The rock is noticeably banded, owing in part to the open texture and calcite filling and in part to the arrangement of the sulphides. The quartz vein material indicates a vein of the later type. Openings occur in it, but no sulphide was observed. The schist is of a graphitic quartz variety in which the graphite occurs in distinct flakes. No sulphide was observed in the schist.

Two prospects which are somewhat north of the Nome district proper are of interest and will be described. One of them is on Buffalo Creek, a headwater tributary of Nome River, and lies well within the Kigluaik Mountains. The other is in Slate Creek valley, about 15 miles to the east.

The Buffalo Creek lode is on the west slope of the valley about 1 mile from the mouth of the stream. It is a quartz vein about 2 feet wide, strikes N. 45° E., and dips south. The vein follows a shear zone in schist of the Kigluaik group and ranges in dip from 45° to horizontal. The footwall is much sheared, but the nearest determinable wall rock is biotite schist. The vein is iron-stained quartz but shows no mineralization. A tunnel is driven in the soft, decomposed schist footwall for 20 feet parallel to the ledge but does not cut it.

The deposit on Slate Creek, staked under the name "Osmun lode," is described by Chapin ⁸¹ as follows:

A prospect is being opened on Slate Creek, a small stream which flows into Kruzgamepa River from the south 4 miles east of Salmon Lake. The lode is a mineralized dike cutting greenstone. The rock is badly weathered, so that its original character is in doubt, but it appears to have been a fine-grained quartz-feldspar rock in which all the feldspar is now replaced by sericite and kaolin. The dike has been fractured and filled with ferruginous calcite that has partly replaced the included fragments and the walls. A later fracturing of the lode was healed by irregular veinlets composed of quartz and calcite deposited simultaneously. No assays of this lode were made, but small amounts of gold were obtained by crushing and panning the rock. The ledge, which is about 3 feet wide, strikes east and dips 70° N.

A short distance south of the open cut mentioned is an outcrop of rock which appears to be another dike about 10 feet thick and parallel to the one described. It is an eventextured rock of gray color and very fine grain and, like the other dike, was probably a quartz-feldspar intrusive. Quartz, the only original mineral now found in it, occurs with a finely granular mass of epidote. Traversing the rock in many directions are irregular veinlets composed mainly of a green silvery micaceous mineral which proves to be chlorite. With it are associated a number of other vein minerals—quartz, albite, calcite, epidote, and a colorless amphibole which is probably tremolite. This dike is not thought by the prospectors to be of economic value, and work has therefore been confined to the other lode.

The country rock is a fine-grained greenstone. It is evident that this was originally a basic igneous rock, but it has been entirely recrystallized. Green hornblende is the most conspicuous mineral, but considerable amounts of chlorite and epidote are present. Garnet and pyrite are abundant and may be readily seen in the hand specimen. Albite fills the interspaces and includes rutile and titanite and fragments of other minerals.

The Steiner lode is on the west side of Penny River about 4½ miles from the coast of Bering Sea, at an elevation of about 200 feet (fig. 19). Here a shaft has been sunk 105 feet and a drift run 220 feet N. 50° W. The shaft was started on a quartz-feldspar vein striking east, which is not now exposed. It is said to have been 5 to 10 feet wide and traceable for 1,000 feet on the surface. The quartz continued to a depth of 60 feet in the shaft and then dipped north. The shaft was continued 45 feet and a drift was run to intersect the vein but did not reach it. The quartz is said to have assayed \$7 a ton in gold. The drift is run in quartz-mica schist and graphitic quartz schist.

⁸¹ Op. cit., p. 405.

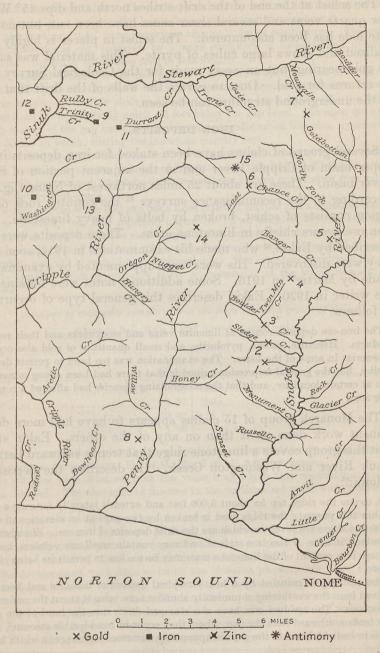


FIGURE 19.—Map showing location of metalliferous lodes northwest of Nome. 1, Alpha Creek; 2, Sledge Creek; 3, Boulder and Dakota; 4, Lilly; 5, Pioneer Gulch; 6, Waterfall Creek; 7, California; 8, Steiner; 9, Monarch; 10, Galena; 11, Mogul; 12, America; 13, Cub Bear; 14, 15, Christophosen.

63963°-22-17

The schist at the end of the drift strikes north and dips 45° W. A few quartz veins and several shear zones have been cut, but no definite lode has been encountered. The schist in places is highly mineralized and shows large cubes of pyrite. This material was said to be gold-bearing, but an assay made for the Geological Survey gave no returns for gold. Dust so covers the walls of the drift that little of the underground structure can be seen.

IRON DEPOSITS.

Several groups of claims have been staked for iron deposits in the upper basin of Cripple River and in the adjacent portion of Sinuk River basin. These are about 25 miles northwest of Nome (fig. 19). According to the reconnaissance surveys 82 the country rock of the region consists of schist, broken by belts of heavy limestone. The iron ore occurs chiefly in limestone areas. These deposits were first described by Eakin, 83 who made his examinations in 1914, soon after they were discovered. His work was supplemented by examinations made by Mertie 84 in 1916. Some additional notes were obtained by the writer in 1920. Eakin describes this general type of occurrence as follows:

The iron-ore deposits consist of limonite veins and stockworks and their residual products. Hematite, galena, pyrolusite, and small quantities of gold also occur as accessories in some of the lodes. The examination was too brief to permit detailed studies, but the general impression gained is that there had been strong mineralization at certain localities, and that the mineralizing agencies had affected a considerable area.

The Monarch group of 15 claims appears to have had more development work done on it than on any of the others. Eakin states that this group covers a limestone ridge that trends eastward between Sinuk River and Washington Creek. He describes the deposit as follows:⁸⁵

It covers the ridge top for about 3,000 feet and extends laterally for over a mile. Within this property the ridge crest is broken by two gaps at an elevation of about 1,000 feet above sea level, in which are the chief deposits of iron ore. Elsewhere the limestone is more or less iron-stained and may contain small ore veinlets, but the average iron content of the limestone mass may be too low to permit its being classed as ore.

The east gap is mantled by a heavy residual deposit of limonite and hematite, derived from the weathering of unusually abundant ore veins that cut the underlying limestones. The residual ores have also slumped down into the head of the gulch that leads northward from the gap, where they occur in considerable amounts. The veins in bedrock beneath the gap are apparently numerous and range in width from a

⁸² Collier, A. J., and others, Gold placers of parts of Seward Peninsula, Alaska: U. S. Geol. Survey Bull. 328, pl. 10, 1908.

⁸³ Eakin, H. M., Iron ore deposits near Nome: U. S., Geol. Survey Bull. 622, pp. 361-365, 1915.
84 Mertie, J. B., jr., Lode mining and prospecting on Seward Peninsula: U. S. Geol. Survey 662, pp. 444-446 1917

⁸⁵ Op. cit., pp. 362-365.

few inches to about 30 feet. They are approximately vertical, but their persistence, either vertically or horizontally, is not determinable from the exposures.

In the west gap there is no important accumulation of residual ore. The underlying limestone is cut, however, by a wide stockwork of limonite and pyrolusite veinlets. No heavy veins were seen at this locality.

The residual deposits of the east gap have been developed over an area approximately 600 by 800 feet, in open cuts that range from a few yards to several hundred feet in length. A shallow shaft and a short drift have been driven into the deposit in the head of the northerly gulch, 50 feet below the gap level. An open cut at the south margin of the gap has uncovered a mass of undisturbed limonite, apparently a vein 30 feet in width, cutting the limestone country rock.

In the west gap several short open cuts have been made in loosened bedrock material which contains numerous veinlets of limonite and pyrolusite. Elsewhere on the claims the iron-stained limestone detritus has been thrown out of open cuts without

revealing any high-grade ores.

The residual ore of the east gap has a loose granular texture and a high iron content, and is unusually free from injurious impurities. Two samples taken by the writer, one from an open cut at the east margin of the deposit and the other a composite sample from a line of open cuts 400 feet long across its center, were found to contain 53 and 55 per cent of metallic iron, respectively. The complete analysis of the composite sample, which is probably fairly representative of the whole deposit, is as follows:

Analysis of composite sample of iron ore from Monarch group of claims. [Analyst, R. C. Wells, United States Geological Survey.]

SiO ₂	5. 53	TiO ₂	None.
Al ₂ O ₃	1.34	P ₂ O ₅	. 13
$\mathrm{Fe_2O_3}$	78.30	S	Trace.
MgO	. 10	MnO	1.37
CaO	1.97	BaO	Trace.
H ₂ O	10.40	I is essentially into the country of	
CO ₂	1. 10	Galena group, consisting of nine cla	100. 24

The iron, manganese, phosphorus, and sulphur contents of the ore, calculated from this analysis, are as follows: Fe, 54.81; Mn, 1.06; P, 0.057; S, trace.

No samples were obtained from the veins from which this residual material has been derived. The character of the ores in the undisturbed veins was therefore not determined.

Only qualitative analyses of samples taken from the west gap were made. They contain limonite and pyrolusite in about equal amount. The veinlets appear to comprise only a small part of the general mass of the stockwork, so that the iron and

manganese content of minable material is probably not high.

The development work done so far on the Monarch property has failed to furnish an adequate basis for estimating the quantity of ore available in either the residual deposits or the underlying veins. The size and extent of the veins for the most part can only be conjectured. The area of the residual deposits is fairly well outlined, but their depths have not been generally demonstrated. However, it seems certain that the residual high-grade ores aggregate at least several hundred thousand tons. Apparently they cover an area 600 by 800 feet to a depth of several feet. In places shafts 12 feet deep are said to have been sunk in ore. Although ore occurs in the head of the northerly gulch 50 feet or more below the level of the east gap, it is unsafe to assume that the divide is underlain by ore to this depth, for this ore is apparently not in place but has slumped down into the head of the gulch from the gap above. Obviously additional prospecting will be required to determine accurately the reserves of

high-grade residual ores and to demonstrate the availability of the undisturbed vein ores. The stockwork of the west gap will also require careful investigation to determine its value. The relatively high manganese content of the veinlets and the reported association of gold with the manganese strengthens the possibility that this deposit may prove of commercial value.

The limestones on the property away from the gaps contain from 5 to 40 per cent of iron. The average content is probably nearer the lower figure, and if this proves true it seems doubtful that much of this material can be considered as commercial ore.

Mertie's interpretation of the facts available in regard to this ore body is in general accord with that of Eakin, but he has added some further details as follows:

The country rock is limestone, which has been brecciated and replaced by limonite. Hematite is present only as a subordinate constituent. A specimen of the ore taken from a trench at the head of Iron Creek shows on a polished surface massive limestone with numerous angular inclusions of iron-stained limestone, residual fragments of the shattered country rock. Pyrolusite, in places intergrown with calcite, is present in veinlets that cut the limonite and the replaced limestone. These relations and the probable genesis of this iron deposit will be discussed more fully in a later paper on the iron resources of Alaska. For this report it is sufficient to say that the iron ore now exposed on the ridge and in Iron Creek is a residual concentration, a surficial enrichment of an underlying lode. Theiron content of this lode at depth can not be judged from the surface indications; in fact, it is entirely possible that this deposit is only a surface capping, or "iron hat," covering some other metalliferous deposit. The occurrence of galena and sphalerite with limonite in the Galena group near by, the presence of similar limonitic material in considerable amount in a silver-lead lode in the Inmachuk basin, and the constant association of limonitic material and other iron minerals with most of the gold lodes on the peninsula might be cited as evidence of this possibility.

Another group of claims has been described by Mertie 86 as follows:

The Galena group, consisting of nine claims, is about 2 miles southwest of the Monarch group on the divide between Sinuk River and Washington Creek. These claims, though prospected chiefly for their iron content, have also surface indications of both lead and zinc, in the form of galena and sphalerite.

It appears that the ore-bearing solutions have followed in large measure one or more of a system of joint planes in the country rock. On the Sunrise claim, one of this group, the country rock is crystalline limestone, the cleavage of which strikes east and dips 25° S. This limestone is cut by a number of joint planes, the more prominent of which had the following strikes and dips: N. 40° E., 65° NW.; N. 80° E., 70° N.; N. 15° W., 90°. Disseminated galena in a quartz gangue occurs along the vertical joint plane. This ore is said to show considerable values in gold.

An open cut on the Oso claim shows disseminated sphalerite, with a little pyrite, in the crystalline limestone. The extent of the zinc mineralization is not known. In a pit at another locality on the Oso claim the same system of jointing as above described was exposed, and vein quartz, with some iron-stained vein material, occurs along a joint plane striking N. 10° W. and dipping 75° N. Lilac-colored fluorite was also seen in this pit, but its exact relation to the mineralization could not be determined.

On the Fox and the Williams claims disseminated galena accompanied by quartz was observed in limestone and calcareous schist.

Considerable botryoidal limonite was seen on the dump at a prospect on the Kentucky claim.

⁸⁶ Op. cit., p. 445.

The following description of the ore deposits of two groups of claims is taken from Eakin's report.87

The Mogul property consists of four claims situated on the Sinuk River and Washington Creek divide about 11 miles east of the Monarch property. No development work has been done here, the locations being made on the strength of a few acres of the blossom of ore veins that cut the limestones locally. Evidence of the veins is found in heavily iron-stained limestone detritus that has a scant admixture of limonite nodules and vein fragments. There is little evidence as to the size and extent of the veins or the possibilities of commercial development.

The American group includes four claims situated at the base of a limestone ridge west of Sinuk River, below American Creek, 2 miles northwest of the Monarch property. The locations are said to cover an "iron-ore bed" over 50 acres in extent. The only development work done consists of a few pits 6 to 8 feet deep, and no analyses

have been made of the ore. The locality was not visited by the writer.

The Cub Bear group of iron claims lies near the head of Cripple River on the divide between Cripple River and an eastern tributary of Washington Creek, at an elevation of about 1,000 feet. The developments consist of 12 trenches 20 to 30 feet long and 3 feet deep. The country rock is chiefly limestone, with a little interbedded schist. The mineralization occurred in a well-defined saddle between two knolls. The limestone of the eastern knoll strikes N. 10° E. and dips 15° E.; that of the western knoll strikes N. 10° E. and dips 20° W. Structurally the mineralization occurred along the crest of an anticline. The mineralized zone is exposed only by the trenches, as tundra covers the saddle. The trenches are alined about N. 5° E., which is approximately the strike of the country rock. Six openings are made on the north of the saddle, and six on the south. The trenches on the south expose limonite chiefly, with some hematite. The material is essentially iron-stained limestone, through which some small veinlets of iron oxide occur. The rock is badly fractured and seamed with incompletely filled veinlets of calcite. Only surface débris is exposed by the pits, and no rock of ore grade is seen on this side of the saddle. On the north side several of the trenches have exposed massive botryoidal limonite of good quality. A cellular limonite is also present on the dumps, and manganous oxide in small amount occurs with it. The quantity of ore on the dumps does not exceed a few tons. No ore in place is exposed.

The occurrence is very poorly exposed by the workings and elsewhere is covered by moss. Mertie reports sulphides to be present with the ore at the Mogul group of claims and suggests that the iron may merely be gossan material capping a sulphide vein. It is not possible to say whether this represents the gossan of a sulphide vein or not. No sulphide was seen. The zone of mineralization is probably 50 or 100 feet wide and, as observed, seems to occur along the shattered crest of a fold, which suggests that the iron oxide may be but a deposit resulting from the circulation of ground waters

along this zone.

⁸⁷ Op. cit., pp. 364-365.

The fullowing description of the one deposits of two groups of claims

The Moyal property consists of four claims situated on the Sinuk River and Washington freek divide about 11 miles cast of the Morarch property. No development work has been done here, the locations being made on the strongth of a tan errequentle process of ore veins that cut the limescapes locally. Predence of the veins is found in nearly view stained limescape detritus that has a scan admixture of limentle nodnies and vein impraems. There is little evidence as to the size and extent of the

wish the orest the Mogul group of claims and suggests I had be iron

SAN JAP NO NO NO N

INDEX.

A. Maria de la	Page.
Page.	Cathcart, S. H., Metalliferous lodes in south-
Acknowledgments for aid 5-6,75	ern Seward Peninsula, Alaska. 163-261
Admiralty Island, development on 36-37	Chandalar district, production in, 1906 to 1920. 58
Aitken property, mining on	Chapin, Theodore, cited
Allotments of appropriations 69–70	Charles, Nelson & Pitcher claims, description
Alpha Creek, exposures on 249	of
Aniak district, mining in	Charley Creek, bismuth deposit on 185, 223–224
Antimony, deposits of, on Seward Penin-	
sula	Chisana district, production in, 1913 to 1920. 50-51
localities and mode of occurrence of 60-61,	Chistochina district, operations in 38–39
184–185	Chititu Creek, placer mining on
none mined in 1920. 24	Christophosen antimony prospect, descrip-
Anvil Creek, workings on 238–240	tion of
Apex claims, development on 37–38	Christophosen zinc prospect, description of. 232-233
	Cinnabar. See Quicksilver.
Arsenopyrite, mineralization by 234, 235–236	Circle district, production in, 1894 to 1920 48
B. min want to shape the	Coal, consumption of, 1899–1920
Bailey Bay, Shelockum Lake outlet at 89-90	difficulties of developing
Baranof Lake outlet at Baranof, Baranof	occurrence of
	production of, 1888 to 1920
Island	in 1920
Barometer Mountain, stibnite-realgar lode	propaganda concerning
opened in	Coal mining, effects of laws on
Bear Creek, mining on 60	Cooper Gulch, openings on
Beatson mine, operation of	Copper, localities where found
Beaver Creek, galena discovered on 54–55	mode of occurrence of
Beaver Falls Creek at George Inlet, Revi-	production of, 1880 to 1920
llagigedo Island	in 1920
Benson Creek, copper deposit at head of 215	Copper Creek, copper mineralization on 219-221
placers on	Copper Mountain, copper deposits on 217–221
Bering River coal field, development in 26	Copper River basin, operations in 38–39
Berners Bay, development at	Cost of mining on Seward Peninsula 65–67
Big Creek, mining on	Council district, geology of
Big Hurrah Creek, quartz veins on 199–200	gold lodes in
Big Hurrah lode, description of 200–204	mining in
Bismuth, deposit of, on Charley Creek. 185, 223-224	Crater Lake outlet at Speel River, Port Snet-
Bluff region, lode deposits in 186–197	tisham
Bonanza Gulch, claims on	Cripple River, iron deposits on
Bonanza mining, function of 7	Crow Creek, development on 40–41
Bonnifield district, production in, 1903 to	Crystal Gulch, workings on
1920	Crystal Guich, workings on
Boulder Creek, lodes on 249–251	D.
Breen antimony prospects, description of. 230-231	B. M. Cook minimum on 67
Brooks, Alfred H., cited 166–168	Dahl Creek, mining on 67
Preface by 5–6	Dan Creek, placer mining on
The Alaska mining industry in 1920 7–67	Daniels Creek, gold lodes near
work of	placers on 186–187
Buena Vista Creek, quartz veins near 199	Depression, effects of, and possible relieffrom. 8
Buffalo Creek, exposure on	Developments, new 10-11
TO SEE THE TOTAL PROPERTY OF THE PROPERTY OF T	Dexter Creek, claims on
C.	Disseminated deposits, origin of
Candle Creek, dredging on	Dredges, output of gold from, 1920
Canfield, George H., Water-power investiga-	Dry Creek, lodes on 236–237
tions in southeastern Alaska 75–115	Dunton mine, change of name of
Canyon Creek, Kenai Peninsula, mining on 40	E
Kuskokwim region, mining on 60	
Carlson Creek at Sunny Cove, Taku Inlet 110-111	Eagle district, production in, 1908 to 1920 49
Carroll Inlet, Revillagigedo Island, Swan	Eakin, H. M., cited
Lake outlet at 85–86	Eldorado Creek, gold lode near
Cascade Creek at Thomas Bay, near Peters-	Eska mine, operation of
burg	Eskimo lode, description of

F. Page	J. Dame
Page.	Page.
Fairbanks district, production in, 1903 to 1920. 44-46	Juneau, Gold Creek at
Fairhaven district, mining in	Juneau district, operations in
Falls Creek at Nickel, near Chichagof 96-99	K.
Fidalgo Bay, mining on	Kachemak Bay, mining of lignite on 41
Flat Creek, mining on	Kantishna district, operations in 52–53
Fish Creek near Sea Level, Revillagigedo	production in, 1903 to 1920. 52
Island	
Fish Creek Mining Co.'s property, description	Karta River at Karta Bay, Prince of Wales
of	Island
Fortymile district, production in, 1886 to 1920. 49-50	Kenai Peninsula, mining on 40-41
Freight rates to mines on Seward Peninsula. 66-67	Kennecott Copper Corporation, cited 38-39, 39-40
G.	Ketchikan district, operations in
	Kigluaik Mountains, graphite deposits in 221-223
Gaging stations, list of	King Mountain, claims on 237, 238
map showing	Kleary Creek, mining on 67
Galena. See Lead.	Kobuk region, freight rates to
Galena lode, work on	mining in 67
George Inlet, Revillagigedo Island, dis-	Kougarok district, mining in 62,63,65
charge measurements of streams	Koyana Creek, gold lodes near
at	Koyuk district, mining in 61, 62, 63
Georgetown district, mining in	Koyukuk district, mining in 59
Glacier Creek, openings on	Kruzgamepa River, gold lodes on 210-211
Gold, production of, 1889 to 1920 12–13	Kugruk River, development on
production of, from lode mines, 1920 13-14	Kuskokwim region, development in 10-11
from placer mines, 1920 14-19	map of Alaska showing transportation
Gold Creek at Juneau	routes in 152
Goldbottom Creek, exposures on	operations in 59-61
Gold Hill district, production in, 1911 to	upper, access to and settlements in 152-153
1920	animal and vegetal life in 153-154
Goodnews Bay district, mining in	discovery and development of gold
Granite, antimony deposit near 226	lodes in 149
copper mineralization near	exploration of
relation of, to mineralization 177–178	geographic environment in 151
Grand Central River basin, graphite de-	geology of
posits in	gravels in
Graphite, deposits of, in the Kigluaik Moun-	intrusive rocks in
tains	limestone in
Gray Eagle claim, description of	lodes in
Green Lake outlet at Silver Bay, near Sitka. 93-94	placers in
Grindstone Creek at Taku Inlet 108-109	relief and drainage of
Gypsum, mining of	
Center Lake outlet at Spool River Port Sant-	L.
H. madel	Last Chance Creek, copper sulphide at head of 217
Harrington, G. L., cited	exposure on
Hed & Strand mine, description of 224, 226-228	Lead, deposit of
Helm Bay Mining Co., ore body opened by 35-36	localities and mode of occurrence of 182–183
Henry Gulch, development on	production of 1892 to 1920 22
Hidden Creek, workings on 60, 160, 161	1920
Hirst-Chichagof property, development on 37-38	Left Fork, copper deposits on
Holmes Gulch, placer mine on 161	Limestone, nature and distribution of, on
Hoosier prospect, description of	Seward Peninsula
Hot Springs district, production in, 1902 to	Lindeborg claims, description of
1920	Long River below Second Lake, at Port
Hyder, situation of 117, 119	Snettisham 106–107
Dexter Creek, duline on . 1	Lost Creek, antimony deposits near 224-231
Trouble to remain cationing bearing imposist	M.
Idaho lode, description of	
Iditarod district, mining in	McConnell, R. G., cited 122–123
Indian River district, production in, 1911 to	McKinley district, mining in 60
1920. 57–58	Mahoney Creek at George Inlet, Revillagigedo
Innoko district, mining in	Island
production in, 1907 to 1920	Manila Creek, antimony deposits near 224–231 Marble, quarrying of 33
Iron, deposits of, on Seward Peninsula 258-261	Marble, quarrying of
Iron, modes of occurrence of 183	Martin, George C., cited 60
Iron Creek region, copper deposits in 210-217	
gold lodes in	Gold lodes in the upper Kuskokwim region, Alaska
TORIN S (1)	1051011, 11140314

INDEX.

Page.	Page
Mary Gulch, claims on	Prince of Wales Island, discharge measure-
Matanuska region, mining in	ments of streams on
exploration of	Prince William Sound region, mining in 39-40
Men employed, 1911 to 1920, estimates of 9-10	Production, totalin 41 years.
Mercury. See Quicksilver.	
Mertie, J. B., jr., cited	total values by years and by substances,
240, 245-246, 249-251, 254, 260	1880 to 1920
Mineralization, areas of	Progress of surveys
sequence of 178–180	Publicationsissued
Mining operations, large, function and vol-	Gla-Gilli Lawrence Committee Committ
ume of	Q.
Moffit, Fred H., Geology of the vicinity of	Quartz Gulch, openings on 239
Tuxedni Bay, Cook Inlet,	Quicksilver, occurrence of
Alaska 141–147	production of
	Quigley mine, operation of 52-53
Montana Creek, cinnabar-bearing lode on 24	
Moore Creek, mining on 60	R.
Myrtle Creek at Niblack, Prince of Wales	Rampart district, production in, 1896 to 1920. 47
Island	Red Mountain, developments on
Mystery Creek, workings on 160-161	
	Red Top lode, work on 53
N. artenia de la composita del composita de la composita de la composita de la composita della composita della composita della	Resurrection Creek, mining on
Nelchina district, mining in	Rex Creek, placer mining on
Nelson zinc-lead prospect, description of 232	Revillagigedo Island, discharge measure-
New Alaska Mining Co.'s property, descrip-	ments of streams on 80–88
	Richardson district, production in, 1905 to
tion of	1920
Newton Gulch, openings on	Rock Creek, exposures on 244-245
New Years Gulch, exposure on	openings on
Niblack, Prince of Wales Island, Myrtle Creek	Ruby Creek, workings on 60, 160–161
/ at	
Nickel, near Chichagof, Falls Creek at 96-99	The state of the s
Porcupine Creek near	Rush & Brown mine, operation of 34–35
Ninemile roadhouse, prospect near 140	Russian Mountains, mining in
mining and prospecting in	S. S.
Nixon Fork district, lode development in 10-11	
	Salmon River, description of
Nizina district, operations in	Salmon River district, climate of 118–119
Nome region, lodes in	commercial conditions in
mining in	discoveries in
Nome River, western tributaries of, exposure	geology of
on	granite of the Coast Range in 124-125
hadres Fried O. nevil from	greenstones and associated rocks in 122-124
	ore deposits in, classification of 127-129
Oil. See Petroleum.	distribution of
O'Neill, J. J., eited	origin of
Ophir Creek, mining on. 55	
Orchard Lake outlet at Shrimp Bay, Revilla-	porphyry dikes in 126–127
gigedo Island	production from, outlook for
Otter Creek, dredging on 56	prospects in
	publications bearing on
Yentna distilot, minim, P. i uninim, tolitalis anton Y	situation of
Palmer Creek, mining on 40	topography of
Penny River, opening on	Salt Chuck mine, operation of
prospect at head of	Sand, abrasive, shipment of
Petroleum, effects of laws concerning 9	Scheelite, indication from occurrence of 177
land staked for	See also Tungsten.
permits to drill for, applications for 32	Schist, nature and distribution of, on Seward
production of, 1920	Peninsula 170–171
Petroleum products shipped to Alaska, 1905	Schuchert, Charles, fossils determined by 156
to 1920	Sea Gull lode, description of 189–197
Pioneer Gulch, rocks on	Sea Level, Revillagigedo Island, Fish Creek
Platinum, occurrences of	near
Platinum metals, production of, 1916 to 1920. 23	Seward Peninsula, commercial conditions
recovery of	on
Porcupine Creek near Nickel	country rocks on
Port Clarence district, mining in 62, 63	gold on, relation to igneous rocks 177-178
Port Snettisham, discharge measurements of	lode mining on
streams at	placer mining on
Su cams at 105-107	practi mining ourselves of or

Page.	Page.
Seward Peninsula, mineralization on 171–180	Texas Creek, description of
publications on	Thane, Sheep Creek near
	Thomas Bay, near Petersburg, Cascade
platinum, tin, coal, and garnet sand pro-	Creek at 90-92
duced on	Tin, occurrence of
scope of investigation on 163–164	
shear zones on, nature and origin of 174-177	production of the contract of
stratigraphy of	1920
structure of the rocks of	Tin deposits, development and working of 61-65
veins on, nature and origin of 172, 173-174	exhaustion of
Sheep Creek near Thane	To'ovana district, production in, 1915 to
Shelockum Lake outlet at Bailey Bay 89-90	1920
Sherrette Creek, copper deposit at head of 215	Transportation, cost of
Shrimp Bay, Revillagigedo Island, Orchard	Tungsten, none mined in 1920 24
Lake outlet at 86–88	occurrences of
Silver, production of, 1880 to 1920 12–13	Tuxedni Bay area, Chinitna shale in 144
Silver Bay, near Sitka, Green Lake outlet at. 93-94	Chisik conglomerate in 144–145
Sinuk River, iron deposits on 258–261	geography of
Sitka district, operations in	geologic map of
Sixmile Creek, mining on. 40	geology of
Slate Creek, mining on	Naknek formation in 145
prospect on	Quaternary deposits in 145–146
Sledge Creek, exposure on 249	structure of
Sliscovich mine, description of 224, 227, 229-230	Tuxedni sandstone in
Smith, P. S., cited	Twin Mountain Creek, exposure on 248-249,
Snake River valley, openings in 247–248	251, 252–253
Snettisham, Sweetheart Falls Creek near102–103	U. samhano deluta nariaza
Snow Gulch, openings on	Uncle Sam Mountain, quartz veins near 198-199
Solomon district, gold lodes in	Once built industry, quarter forms and and
mining in	V.
Sophie Gulch, openings on 245–246	Valdez, mining near 40
Southeastern Alaska, map of, showing loca-	Valdez Creek district, mining in
tion of gaging stations 76	Valuez Creek district, mining in
operations in	W.
SouthwesternAlaska, mining in	Water-power investigations, discontinuance
Speel River, Port Snettisham, Crater Lake	of
outlet at	Watson & Bain property, description of 138-139
Spurr, J. E., eited	Wells, R. C., analysis by
Squaw Creek, mining on	West Creek, lodes on 205
Squaw Creek, mining on	Westgate, Lewis G., Ore deposits of the Sal-
Steep Creek, zinc-lead deposit on	mon River district, Portland
Stewart, B. D., cited	Canal region, Alaska 117–140
Stibnite. See Antimony.	Wheeler copper prospect, description of 214–215
Stoner claims, description of	
Sulphur, development of deposit	Willow Creek district, mining in
Supplies for placer miners, cost of	Work of field and office forces 71–73
Susitna region, mining in	work of field and office forces
Swan Lake outlet at Carroll Inlet, Revilla-	Y. On the latest with the
gigedo Island	
Sweetheart Falls Creek near Snettisham 102–103	Yentna district, mining in 41, 42
T.	Yukon region, production in 1886 to 1920 43-44
Taku Inlet, Carlson Creek at Sunny Cove on 110–111	Z. and indicate the street of
	Zinc, occurrences of
Grindstone Creek at 108–109	Zine, occurrences of
	The same of the sa

RECENT SURVEY PUBLICATIONS ON ALASKA.

[Arranged geographically. A complete list can be had on application.]

All these publications can be obtained or consulted in the following ways:

1. A limited number are delivered to the Director of the Survey, from whom they can be obtained free of charge (except certain maps) on application.

2. A certain number are delivered to Senators and Representatives in Congress for distribution.

3. Other copies are deposited with the Superintendent of Documents, Washington, D. C., from whom they can be had at prices slightly above cost. The publications marked with an asterisk (*) in this list are out of stock at the Survey but can be purchased from the Superintendent of Documents at the prices stated.

4. Copies of all Government publications are furnished to the principal public libraries throughout the United States, where they can be consulted by those

interested.

The maps whose price is stated are sold by the Geological Survey and not by the Superintendent of Documents. On an order amounting to \$5 or more at the retail price a discount of 40 per cent is allowed.

GENERAL.

REPORTS.

*The geography and geology of Alaska, a summary of existing knowledge, by A. H. Brooks, with a section on climate, by Cleveland Abbe, jr., and a topographic map and description thereof, by R. U. Goode. Professional Paper 45, 1906, 327 pp. No copies available. May be consulted at many public libraries.

*Placer mining in Alaska in 1904, by A. H. Brooks. In Bulletin 259, 1905, pp.

18-31. 15 cents.

The mining industry in 1905, by A. H. Brooks. In Bulletin 284, 1906, pp. 4–9.

*The mining industry in 1906, by A. H. Brooks. In Bulletin 314, 1907, pp. 19–39. 30 cents.

*The mining industry in 1907, by A. H. Brooks. In Bulletin 345, 1908, pp. 30-53. 45 cents.

*The mining industry in 1908, by A. H. Brooks. In Bulletin 379, 1909, pp. 21–62. 50 cents.

*The mining industry in 1909, by A. H. Brooks. In Bulletin 442, 1910, pp. 20–46. 40 cents.

The mining industry in 1910, by A. H. Brooks. In Bulletin 480, 1911, pp. 21–42 *The mining industry in 1911, by A. H. Brooks. In Bulletin 520, 1912, pp. 19–44. 50 cents.

The mining industry in 1912, by A. H. Brooks. In Bulletin 542, 1913, pp. 18-51. *The Alaskan mining industry in 1913, by A. H. Brooks. In Bulletin 592, 1914, pp. 45-74. 60 cents.

The Alaskan mining industry in 1914, by A. H. Brooks. In Bulletin 622, 1915, pp. 15-68.

The Alaskan mining industry in 1915, by A. H. Brooks. In Bulletin 642, 1916,

The Alaskan mining industry in 1916, by A. H. Brooks. In Bulletin 662, 1917, pp. 11–62.

The Alaskan mining industry in 1917, by G. C. Martin. In *Bulletin 692, 1918, pp. 11-42.

The Alaskan mining industry in 1918, by G. C. Martin. In Bulletin 712, 1919, pp. 11–52.

The Alaskan mining industry in 1919, by A. H. Brooks and G. C. Martin. In Bulletin 714, 1921, pp. 59–95.

The Alaskan mining industry in 1920, by A. H. Brooks. In Bulletin 722, 1921, pp. 7–67.

Railway routes, by A. H. Brooks. In Bulletin 284, 1906, pp. 10–17.

Railway routes from the Pacific seaboard to Fairbanks, Alaska, by A. H. Brooks. In Bulletin 520, 1912, pp. 45–88.

*Geologic features of Alaskan metalliferous lodes, by A. H. Brooks. In Bulletin 480, 1911, pp. 43–93. 40 cents.

*The mineral deposits of Alaska, by A. H. Brooks. In Bulletin 592, 1914, pp. 18-44. 60 cents.

*The future of gold-placer mining in Alaska, by A. H. Brooks. In Bulletin 622, 1915, pp. 69–79. 30 cents.

*Tin resources of Alaska, by F. L. Hess. In Bulletin 520, 1912, pp. 89–92. 50 cents. Alaska coal and its utilization, by A. H. Brooks. Bulletin 442–J, reprinted 1914.

*The possible use of peat fuel in Alaska, by C. A. Davis. In Bulletin 379, 1909, pp. 63–66. 50 cents.

*The preparation and use of peat as a fuel, by C. A. Davis. In Bulletin 442, 1910, pp. 101–132. 40 cents.

*Methods and costs of gravel and placer mining in Alaska, by C. W. Purington. Bulletin 263, 1905, 362 pp. No copies available. (Abstract in Bulletin 259, 1905, pp. 32–46, 15 cents.)

*Prospecting and mining gold placers in Alaska, by J. P. Hutchins. In Bulletin 345, 1908, pp. 54-77. 45 cents.

*Geographic dictionary of Alaska, by Marcus Baker; second edition prepared by James McCormick. Bulletin 299, 1906, 690 pp. 50 cents.

Tin mining in Alaska, by H. M. Eakin. In Bulletin 622, 1915, pp. 81–94.

Antimony deposits of Alaska, by A. H. Brooks. Bulletin 649, 1916, 67 pp.

The use of the panoramic camera in topographic surveying, by J. W. Bagley. Bulletin 657, 1917, 88 pp.

The mineral springs of Alaska, by G. A. Waring. Water-Supply Paper 418, 1917, 114 pp.

Alaska's mineral supplies, by A. H. Brooks. Bulletin 666-P, 14 pp.

The future of Alaska mining, by A. H. Brooks. In Bulletin 714, 1921, pp. 5-57.

Preliminary report on petroleum in Alaska, by G. C. Martin. Bulletin 719, 1921, 83 pp.

TOPOGRAPHIC MAPS.

Map of Alaska (A); scale 1:5,000,000; 1912, by A. H. Brooks. 20 cents retail or 12 cents wholesale.

Map of Alaska (B); scale 1:1,500,000; 1915, by A. H. Brooks and R. H. Sargent. 80 cents retail or 48 cents wholesale.

Map of Alaska (C); scale 1:12,000,000; 1916. 1 cent retail or five for 3 cents whole-sale.

Map of Alaska showing distribution of mineral deposits; scale 1:5,000,000; by A. H. Brooks. 20 cents retail or 12 cents wholesale. New editions included in Bulletins 642, 662, and 714.

Index map of Alaska, including list of publications; scale 1:5,000,000; by A. H. Brooks. Free.

In preparation.

Relief map of Alaska (D), scale, 1:2,500,000.

SOUTHEASTERN ALASKA.

REPORTS.

*Economic developments in southeastern Alaska, by F. E. and C. W. Wright. In Bulletin 259, 1905, pp. 47–68. 15 cents.

*The Juneau gold belt, Alaska, by A. C. Spencer, pp. 1–137, and A reconnaissance of Admiralty Island, Alaska, by C. W. Wright, pp. 138–154. Bulletin 287, 1906, 161 pp. 75 cents.

Lode mining in southeastern Alaska, by F. E. and C. W. Wright. In Bulletin 284, 1906, pp. 30–53.

Nonmetallic deposits of southeastern Alaska, by C. W. Wright. In Bulletin 284, 1906, pp. 54–60.

*Lode mining in southeastern Alaska, by C. W. Wright. In Bulletin 314, 1907, pp. 47–72. 30 cents.

*Nonmetalliferous mineral resources of southeastern Alaska, by C. W. Wright. In Bulletin 314, 1917, pp. 73–81. 30 cents.

*Reconnaissance on the Pacific coast from Yakutat to Alsek River, by Eliot Blackwelder. In Bulletin 314, 1907, pp. 82–88. 30 cents.

*Lode mining in southeastern Alaska, 1907, by C. W. Wright. In Bulletin 345, 1908, pp. 78–97. 45 cents.

*The building stones and materials of southeastern Alaska, by C. W. Wright. In Bulletin 345, 1908, pp. 116–126. 45 cents.

*The Ketchikan and Wrangell mining districts, Alaska, by F. E. and C. W. Wright. Bulletin 347, 1908, 210 pp. 60 cents.

*The Yakutat Bay region, Alaska; Physiography and glacial geology, by R. S. Tarr; Areal geology, by R. S. Tarr and B. S. Butler. Professional Paper 64, 1909, 186 pp. 50 cents.

*Mining in southeastern Alaska, by C. W. Wright. In Bulletin 379, 1909, pp. 67–86. 50 cents.

*Mining in southeastern Alaska, by Adolph Knopf. In Bulletin 442, 1910, pp. 133–143. 40 cents.

*Occurrence of iron ore near Haines, by Adolph Knopf. In Bulletin 442, 1910, pp. 144-146. 40 cents.

*Report of water-power reconnaissance in southeastern Alaska, by J. C. Hoyt. In Bulletin 442, 1910, pp. 147–157. 40 cents.

Geology of the Berners Bay region, Alaska, by Adolph Knopf. Bulletin 446, 1911. 58 pp.

Mining in southeastern Alaska, by Adolph Knopf. In Bulletin 480, 1911, pp. 94–102. The Eagle River region, southeastern Alaska, by Adolph Knopf. Bulletin 502, 1912, 61 pp.

*The Sitka mining district, Alaska, by Adolph Knopf. Bulletin 504, 1912, 32 pp. 5 cents.

*The earthquakes at Yakutat Bay, Alaska, in September, 1899, by R. S. Tarr and Lawrence Martin, with a preface by G. K. Gilbert. Professional Paper 69, 1912, 135 pp. 60 cents.

A barite deposit near Wrangell, by E. F. Burchard. In Bulletin 592, 1914, pp. 109–117.

*Lode mining in the Ketchikan district, by P. S. Smith. In Bulletin 592, 1914, pp. 75-94. 60 cents.

The geology and ore deposits of Copper Mountain and Kasaan Peninsula, Alaska, by C. W. Wright. Professional Paper 87, 1915, 110 pp.

Mining in the Juneau region, by H. M. Eakin. In Bulletin 622, 1915, pp. 95–102.

Notes on the geology of Gravina Island, Alaska, by P. S. Smith. In Professional Paper 95, 1916, pp. 97–105.

Mining in southeastern Alaska, by Theodore Chapin. In Bulletin 642, 1916, pp. 73–104.

Water-power investigations in southeastern Alaska, by G. H. Canfield. In Bulletin $642,\,1916,\,\mathrm{pp}.\,10\,5\text{--}127.$

Mining developments in the Ketchikan and Wrangell districts, by Theodore Chapin. In Bulletin 662, 1917, pp. 63–75.

Lode mining in the Juneau gold belt, by H. M. Eakin. In Bulletin 662, 1917, pp. 71–92.

Gold-placer mining in the Porcupine district, by H. M. Eakin. In Bulletin 662, 1917, pp. 93–100.

Water-power investigations in southeastern Alaska, by G. H. Canfield. In Bulletin 662, 1917, pp. 101–154.

*Water-power investigations in southeastern Alaska, by G. H. Canfield. In Bulletin 692, 1919, pp. 43–83. 50 cents.

The structure and stratigraphy of Gravina and Revillagigedo islands, Alaska, by Theodore Chapin. In Professional Paper 120, 1918, pp. 83–100.

*Mining developments in the Ketchikan mining district, by Theodore Chapin. In Bulletin 692, 1919, pp. 85–89. 50 cents.

*The geology and mineral resources of the west coast of Chichagof Island, by R. M. Overbeck. In Bulletin 692, 1919, pp. 91–136. 50 cents.

The Porcupine district, by H. M. Eakin. Bulletin 699, 1919, 29 pp.

*Water-power investigations in southeastern Alaska, by G. H. Canfield. In Bulletin 712, 1920, pp. 53–90.

Lode mining in the Juneau and Ketchikan districts, by J. B. Mertie, jr. In Bulletin 714, 1921, pp. 105–128.

Notes on the Unuk-Salmon River region, by J. B. Mertie, jr. In Bulletin 714, 1921, pp. 129–142.

Water-power investigations in southeastern Alaska, by G. H. Canfield. In Bulletin 714, 1921, pp. 143–187.

Marble deposits of southeastern Alaska, by E. F. Burchard. Bulletin 682, 1920, 118 pp. Water-power investigations in southeastern Alaska, by G. H. Canfield. In Bulletin 722. Ore deposits of the Salmon River district, Portland Canal region, Alaska, Ly L. G. Westgate. In Bulletin 722.

TOPOGRAPHIC MAPS.

*Juneau gold belt, Alaska; scale, 1:250,000; compiled. In *Bulletin 287. 75 cents. Not issued separately.

Juneau special (No. 581A); scale, 1:62,500; by W. J. Peters. 10 cents retail or 6 cents wholesale.

Berners Bay special (No. 581B); scale, 1: 62,500; by R. B. Oliver. 10 cents retail or 6 cents wholesale. Also contained in Bulletin 446.

Kasaan Peninsula, Prince of Wales Island (No. 540A); scale, 1:62,500; by D. C. Witherspoon, R. H. Sargent, and J. W. Bagley. 10 cents retail or 6 cents wholesale. Also contained in Professional Paper 87.

Copper Mountain and vicinity, Prince of Wales Island (No. 540B); scale, 1:62,500; by R. H. Sargent. 10 cents retail or 6 cents wholesale. Also contained in Professional Paper 87.

Eagle River region (No. 581C); scale, 1:62,500; by J. W. Bagley, C. E. Griffin, and R. E. Johnson. In Bulletin 502. Not issued separately.

Juneau and vicinity (No. 581D); scale, 1:24,000; contour interval, 50 feet; by D. C. Witherspoon. 10 cents.

CONTROLLER BAY, PRINCE WILLIAM SOUND, AND COPPER RIVER REGIONS.

REPORTS.

*Geology of the central Copper River region, Alaska, by W. C. Mendenhall. Professional Paper 41, 1905, 133 pp. 50 cents.

*Geology and mineral resources of Controller Bay region, Alaska, by G. C. Martin. Bulletin 335, 1908, 141 pp. 70 cents.

*Notes on copper prospects of Prince William Sound, by F. H. Moffit. In Bulletin 345, 1908, pp. 176–178. 45 cents.

Mineral resources of the Kotsina-Chitina region, by F. H. Moffit and A. G. Maddren. Bulletin 374, 1909, 103 pp.

*Copper mining and prospecting on Prince William Sound, by U. S. Grant and D. F. Higgins, jr. In Bulletin 379, 1909, pp. 78–96. 50 cents.

Mining in the Kotsina-Chitina, Chistochina, and Valdez Creek regions, by F. H. Moffit. In Bulletin 379, 1909, pp. 153–160.

Mineral resources of the Nabesna-White River district, by F. H. Moffit and Adolph Knopf; with a section on the Quaternary, by S. R. Capps. Bulletin 417, 1910, 64 pp.

*Mining in the Chitina district, by F. H. Moffit. In Bulletin 442, 1910, pp. 158–163.
40 cents.

*Mining and prospecting on Prince William Sound in 1909, by U. S. Grant. In Bulletin 442, 1910, pp. 164–165. 40 cents.

Reconnaissance of the geology and mineral resources of Prince William Sound, Alaska, by U. S. Grant and D. F. Higgins. Bulletin 443, 1910, 89 pp.

Geology and mineral resources of the Nizina district, Alaska, by F. H. Moffit and S. R. Capps. Bulletin 448, 1911, 111 pp.

Headwater regions of Gulkana and Susitna rivers, Alaska, with accounts of the Valdez Creek and Chistochina placer districts, by F. H. Moffit. Bulletin 498, 1912, 82 pp.

*The Chitina district, by F. H. Moffit. In Bulletin 520, 1912, pp. 105–107. 50 cents. *Coastal glaciers of Prince William Sound and Kenai Peninsula, Alaska, by U. S. Grant and D. F. Higgins. Bulletin 526, 1913, 75 pp. 30 cents.

*The McKinley Lake district, by Theodore Chapin. In Bulletin 542, 1913, pp. 78–80. 25 cents.

*Mining in Chitina Valley, by F. H. Moffit. In Bulletin 542, 1913, pp. 81–85. 25 cents.

*Mineral deposits of the Ellamar district, by S. R. Capps and B. L. Johnson. In Bulletin 542, 1913, pp. 86–124. 25 cents.

*The mineral deposits of the Yakataga region, by A. G. Maddren. In Bulletin 592, 1914, pp. 119–154. 60 cents.

*The Port Wells gold-lode district, by B. L. Johnson. In Bulletin 592, 1914, pp. 195-236. 60 cents.

*Mining on Prince William Sound, by B. L. Johnson. In Bulletin 592, 1914, pp. 237–244. 60 cents.

The geology and mineral resources of Kenai Peninsula, by G. C. Martin, B. L. Johnson, and U. S. Grant. Bulletin 587, 1915, 243 pp.

Mineral deposits of the Kotsina-Kuskulana district, with notes on mining in Chitina Valley, by F. H. Moffit. In Bulletin 622, 1915, pp. 103–117.

Mining on Prince William Sound, by B. L. Johnson. In Bulletin 622, 1915, pp. 131–139.

The gold and copper deposits of the Port Valdez district, by B. L. Johnson. In Bulletin 622, 1915, pp. 140–188.

The Ellamar district, by S. R. Capps and B. L. Johnson. Bulletin 605, 125 pp.

A water-power reconnaissance in south-central Alaska, by C. E. Ellsworth and R. W. Davenport. Water-Supply Paper 372, 173 pp.

Mining on Prince William Sound, by B. L. Johnson. In Bulletin 642, 1916, pp. 137-145.

Mining in the lower Copper River basin, by F. H. Moffit. In Bulletin 662, 1917, pp. 155–182.

*Retreat of Barry Glacier, Port Wells, Prince William Sound, Alaska, between 1910 and 1914, by B. L. Johnson. In Professional Paper 98, 1916, pp. 35–36. \$1.25.

Mining on Prince William Sound, by B. L. Johnson. In Bulletin 662, 1917, pp. 183-192.

Copper deposits of the Latouche and Knight Island districts, Prince William Sound, by B. L. Johnson. In Bulletin 662, 1917, pp. 193–220.

The Nelchina-Susitna region, by Theodore Chapin. Bulletin 668, 1918, 67 pp.

The upper Chitina Valley, by F. H. Moffit, with a description of the igneous rocks, by R. M. Overbeck. Bulletin 675, 1918, 82 pp.

*Platinum-bearing auriferous gravels of Chistochina River, by Theodore Chapin. In Bulletin 692, 1919, pp. 137–141. 50 cents.

*Mining on Prince William Sound, by B. L. Johnson. In Bulletin 692, 1919, pp. 143-151. 50 cents.

*The Jack Bay district and vicinity, by B. L. Johnson. In Bulletin 692, 1919, pp. 153-173. 50 cents.

*Mining in central and northern Kenai Peninsula in 1917, by B. L. Johnson. In Bulletin 692, 1919, pp. 175–176. 50 cents.

*Nickel deposits in the lower Copper River valley, by R. M. Overbeck. In Bulletin 712, 1919, pp. 91-98. 20 cents.

*Preliminary report on the chromite of Kenai Peninsula, by A. C. Gill. In Bulletin 712, 1920, pp. 99–129. 20 cents.

Mining in Chitina Valley, by F. H. Moffit. In Bulletin 714, 1921, pp. 189-196.

In preparation.

The Kotsina-Koskulana district, Alaska, by F. H. Moffit. Chromite of Kenai Peninsula, Alaska, by A. C. Gill.

TOPOGRAPHIC MAPS.

Central Copper River region, reconnaissance map; scale, 1:250,000; by T. G. Gerdine. In *Professional Paper 41. 50 cents. Not issued separately.

Headwater regions of Copper, Nabesna, and Chisana rivers, reconnaissance map; scale, 1:250,000; by D. C. Witherspoon, T. G. Gerdine, and W. J. Peters. In *Professional Paper 41. 50 cents. Not issued separately.

Controller Bay region (No. 601A); scale, 1:62, 500; by E. G. Hamilton and W. R. Hill. 35 cents retail or 21 cents wholesale. Also published in *Bulletin 335.

Chitina quadrangle (No. 601), reconnaissance map; scale, 1:250,000; by T. G. Gerdine, D. C. Witherspoon, and others. 50 cents retail or 30 cents wholesale. Also published in Bulletin 576.

Nizina district (No. 601B); scale, 1:62,500; by D. C. Witherspoon and R. M. La Follette. In Bulletin 448. Not issued separately.

Headwater regions of Gulkana and Susitna rivers; scale, 1:250,000; by D. C. Witherspoon, J. W. Bagley, and C. E. Giffin. In Bulletin 498. Not issued separately. Prince William Sound; scale, 1:500,000; compiled. In *Bulletin 526. 30 cents.

Not issued separately.

Port Valdez district (No. 602B); scale, 1:62,500; by J. W. Bagley. 20 cents retail or 12 cents wholesale.

The Bering River coal fields; scale, 1:62,500; by G. C. Martin. 25 cents retail or 15 cents wholesale.

The Ellamar district (No. 602D); scale, 1:62,500; by R. H. Sargent and C. E. Giffin. Published in Bulletin 605. Not issued separately.

Nelchina-Susitna region; scale, 1:250,000; by J. W. Bagley, T. G. Gerdine, and others. In Bulletin 668. Not issued separately.

Upper Chitina Valley, reconnaissance map; scale, 1:250,000; contour interval, 200 feet; by International Boundary Commission, F. H. Moffit, D. C. Witherspoon, and T. G. Gerdine. In Bulletin 675. Not issued separately.

In preparation.

The Kotsina-Kuskulana district (No. 601C); scale, 1:62,500; by D. C. Witherspoon.

COOK INLET AND SUSITNA REGION.

REPORTS.

- *Gold placers of the Mulchatna, by F. J. Katz. In Bulletin 442, 1910, pp. 201–202, 40 cents.
- *Geologic reconnaissance in the Matanuska and Talkeetna basins, Alaska, by Sidney Paige and Adolph Knopf. Bulletin 327, 1907, 71 pp. 25 cents.
- *The Mount McKinley region, Alaska, by A. H. Brooks, with description of the igneous rocks and of the Bonnifield and Kantishna districts, by L. M. Prindle. Professional Paper 70, 1911, 234 pp. 70 cents.
- *A geologic reconnaissance of the Iliamna region, Alaska, by G. C. Martin and F. J. Katz. Bulletin 485, 1912, 138 pp. 35 cents.
- Geology and coal fields of the lower Matanuska Valley, Alaska, by G. C. Martin anó F. J. Katz. Bulletin 500, 1912, 98 pp.
- *The Yentna district, Alaska, by S. R. Capps. Bulletin 534, 1913, 75 pp. 20 cents.
- *Mineral resources of the upper Matanuska and Nelchina valleys, by G. C. Martin and J. B. Mertie, jr. In Bulletin 592, 1914, pp. 273–300. 60 cents.
- *Mining in the Valdez Creek placer district, by F. H. Moffit. In Bulletin 592, 1914, pp. 307–308. 60 cents.
- The geology and mineral resources of Kenai Peninsula, Alaska, by G. C. Martin, B. L. Johnson, and U. S. Grant. Bulletin 587, 1915, 243 pp.
- The Willow Creek district, by S. R. Capps. Bulletin 607, 1915, 86 pp.
- The Broad Pass region, by F. H. Moffit and J. E. Pogue. Bulletin 608, 1915, 80 pp. The Turnagain-Knik region, by S. R. Capps. In Bulletin 642, 1916, pp. 147–194.
- Gold mining in the Willow Creek district, by S. R. Capps. In Bulletin 642, 1916, pp. 195–200.
- The Nelchina-Susitna region, by Theodore Chapin. Bulletin 668, 1918, 67 pp.
- *Mineral resources of the upper Chulitna region, by S. R. Capps. In Bulletin 692, 1919, pp. 207–232. 50 cents.
- *Gold-lode mining in the Willow Creek district, by S. R. Capps. In Bulletin 692, 1919, pp. 177–186. 50 cents.
- *Mineral resources of the western Talkeetna Mountains, by S. R. Capps. In Bulletin 692, 1919, pp. 187–205. 50 cents.
- *Platinum-bearing gold placers of Kahiltna Valley, by J. B. Mertie, jr. In Bulletin 692, 1919, pp. 233–264. 50 cents.
- *Chromite deposits of Alaska, by J. B. Mertie, jr. In Bulletin 692, 1919, pp. 265–267.
- *Geologic problems at the Matanuska coal mines, by G. C. Martin. In Bulletin 692, 1919, pp. 269–282. 50 cents.
- *Preliminary report on chromite of Kenai Peninsula, by A. C. Gill. In Bulletin 712, 1920, pp. 99–129. 20 cents.
- *Mining in the Matanuska coal field and the Willow Creek district, by Theodore Chapin. In Bulletin 712, 1920, pp. 131–176. 20 cents.

63963°-22-18

- Mining developments in the Matanuska coal fields, by Theodore Chapin. In Bulletin 714, 1921, pp. 197–199.
- Lode developments in the Willow Creek district, by Theodore Chapin. In Bulletin 714, 1921, pp. 20–206.
- Geology in the vicinity of Tuxedni Bay, Cook Inlet, by F. H. Moffit. In Bulletin 722.

In preparation.

Chromite of Kenai Peninsula, Alaska, by A. C. Gill.

TOPOGRAPHIC MAPS.

- Kenai Peninsula, southern portion; scale, 1:500,000; compiled. In *Bulletin 526. 30 cents. Not issued separately.
- Matanuska and Talkeetna region, reconnaissance map; scale, 1:250,000; by T. G.
- Gerdine and R. H. Sargent. In *Bulletin 327. 25 cents. Not issued separately. Lower Matanuska Valley; scale, 1:62,500; by R. H. Sargent. In Bulletin 500. Not issued separately.
- Yentna district, reconnaissance map; scale, 1:250,000; by R. W. Porter. Revised edition. In *Bulletin 534. 20 cents. Not issued separately.
- Mount McKinley region, reconnaissance map; scale, 1:625,000; by D. L. Reaburn. In *Professional Paper 70. 70 cents. Not issued separately.
- Kenai Peninsula, reconnaissance map; scale, 1:250,000; by R. H. Sargent, J. W. Bagley, and others. In Bulletin 587. Not issued separately.
- Moose Pass and vicinity (602C); scale, 1:62,500; by J. W. Bagley. In Bulletin 587. Not issued separately.
- The Willow Creek district; scale, 1:62,500; by C. E. Giffin. In Bulletin 607. Not issued separately.
- The Broad Pass region; scale, 1:250,000; by J. W. Bagley. In Bulletin 608. Not issued separately.
- Lower Matanuska Valley (602A); scale, 1:62,500; contour interval, 50 feet; by R. H.
- Sargent. 10 cents. Nelchina-Susitna region; scale, 1:250,000; by J. W. Bagley. In Bulletin 668. Not issued separately.

In preparation.

The Seward-Fairbanks route; compiled; scale, 1:250,000.

SOUTHWESTERN ALASKA.

REPORTS.

- *A reconnaissance in southwestern Alaska, by J. E. Spurr. In Twentieth Annual Report, pt. 7, 1900, pp. 31–264. \$1.80.
- *Gold mine on Unalaska Island, by A. J. Collier. In Bulletin 259, 1905, pp. 102–103.
- *Geology and mineral resources of parts of Alaska Peninsula, by W. W. Atwood. Bulletin 467, 1911, 137 pp. 40 cents.
- *A geologic reconnaissance of the Iliamna region, Alaska, by G. C. Martin and F. J. Katz. Bulletin 485, 1912, 138 pp. 35 cents.
- *Mineral deposits of Kodiak and the neighboring islands, by G. C. Martin. In Bulletin 542, 1913, pp. 125–136. 25 cents.
- The Lake Clark-central Kuskokwim region, by P. S. Smith. Bulletin 655, 1918, 162 pp.
- *Beach placers of Kodiak Island, Alaska, by A. G. Maddren. In Bulletin 692, 1919, pp. 299–319. 50 cents.
- *Sulphur on Unalaska and Akun islands and near Stepovak Bay, Alaska, by A. G. Maddren. In Bulletin 692, 1919, pp. 283–298. 50 cents.

TOPOGRAPHIC MAPS.

Herendeen Bay and Unga Island region, reconnaissance map; scale, 1:250,000; by H. M. Eakin. In *Bulletin 467. 40 cents. Not issued separately.

Chignik Bay region, reconnaissance map; scale, 1:250,000; by H. M. Eakin. In *Bulletin 467. 40 cents. Not issued separately.

Iliamna region, reconnaissance map; scale, 1:250,000; by D. C. Witherspoon and C. E. Giffin. In *Bulletin 485. 35 cents. Not issued separately.

*Kuskokwim River and Bristol Bay region; scale, 1:625,000; by W. S. Post. In Twentieth Annual Report, pt. 7. \$1.80. Not issued separately.

Lake Clark-central Kuskokwim region, reconnaissance map; scale, 1:250,000; by R. H. Sargent, D. C. Witherspoon, and C. E. Giffin. In Bulletin 655. Not issued separately.

YUKON AND KUSKOKWIM BASINS.

REPORTS.

- *The coal resources of the Yukon, Alaska, by A. J. Collier. Bulletin 218, 1903, 71 pp. 15 cents.
- The Fortymile quadrangle, Yukon-Tanana region, Alaska, by L. M. Prindle. Bulletin 375, 1909, 52 pp.
- Water-supply investigations in Yukon-Tanana region, Alaska, 1907–8 (Fairbanks, Circle, and Rampart districts), by C. C. Covert and C. E. Ellsworth. Water-Supply Paper 228, 1909, 108 pp.
- *The Innoko gold-placer district, Alaska, with accounts of the central Kuskokwim Valley and the Ruby Creek and Gold Hill placers, by A. G. Maddren. Bulletin 410, 1910, 87 pp. 40 cents.
- Mineral resources of the Nabesna-White River district, Alaska, by F. H. Moffit and Adolph Knopf, with a section on the Quaternary by S. R. Capps. Bulletin 417, 1910, 64 pp.
- *Placer mining in the Yukon-Tanana region, by C. E. Ellsworth. In Bulletin 442, 1910, pp. 230–245. 40 cents.
- *Occurrence of wolframite and cassiterite in the gold placers of Deadwood Creek, Birch Creek district, by B. L. Johnson. In Bulletin 442, 1910, pp. 246–250. 40 cents.
- Placer mining in the Yukon-Tanana region, by C. E. Ellsworth and G. L. Parker. In Bulletin 480, 1911, pp. 153-172.
- Gold-placer mining developments in the Innoko-Iditarod region, by A. G. Maddren. In Bulletin 480, 1911, pp. 236–270.
- *Placer mining in the Fortymile and Seventymile river districts, by E. A. Porter.
 In Bulletin 520, 1912, pp. 211–218. 50 cents.
- *Placer mining in the Fairbanks and Circle districts, by C. E. Ellsworth. In Bulletin 520, 1912, pp. 240–245. 50 cents.
- *Gold placers between Woodchopper and Fourth of July creeks, upper Yukon River, by L. M. Prindle and J. B. Mertie, jr. In Bulletin 520, 1912, pp. 201–210. 50 cents.
- The Bonnifield region, Alaska, by S. R. Capps. Bulletin 501, 1912, 162 pp.
- A geologic reconnaissance of a part of the Rampart quadrangle, Alaska, by H. M. Eakin. Bulletin 535, 1913, 38 pp.
- A geologic reconnaissance of the Fairbanks quadrangle, Alaska, by L. M. Prindle, with a detailed description of the Fairbanks district, by L. M. Prindle and F. J. Katz, and an account of lode mining near Fairbanks, by P. S. Smith. Bulletin 525, 1913, 220 pp.
- *The Koyukuk-Chandalar region, Alaska, by A. G. Maddren. Bulletin 532, 1913, 119 pp. 25 cents.

A geologic reconnaissance of the Circle quadrangle, Alaska, by L. M. Prindle. Bulletin 538, 1913, 82 pp.

*Placer mining in the Yukon-Tanana region, by C. E. Ellsworth and R. W. Davenport. In Bulletin 542, 1913, pp. 203–222. 25 cents

The Iditarod-Ruby region, Alaska, by H. M. Eakin. Bulletin 578, 1914, 45 pp. *Placer mining in the Ruby district, by H. M. Eakin. In Bulletin 592, 1914, pp.

363–369. 60 cents.
*Placer mining in the Yukon-Tanana region, by Theodore Chapin. In Bulletin 592,

1914, pp. 357–362. 60 cents. *Lode developments near Fairbanks, by Theodore Chapin. In Bulletin 592, 1914, pp. 321–355. 60 cents.

Mineral resources of the Yukon-Koyukuk region, by H. M. Eakin. In *Bulletin 592, 1914, pp. 371–384.

Surface water supply of the Yukon-Tanana region, Alaska, 1907 to 1912, by C. E. Ellsworth and R. W. Davenport. Water-Supply Paper 342, 1915, 343 pp.

Mining in the Fairbanks district, by H. M. Eakin. In Bulletin 622, 1915, pp. 229–238. Mining in the Hot Springs district, by H. M. Eakin. In Bulletin 622, 1915, pp. 239–245.

Quicksilver deposits of the Kuskokwim region, by P. S. Smith and A. G. Maddren. In Bulletin 622, 1915, pp. 272–291.

Gold placers of the lower Kuskokwim, by A. G. Maddren. In Bulletin 622, 1915, pp. 292–360.

An ancient volcanic eruption in the upper Yukon basin, by S. R. Capps. Professional Paper 95, 1915, pp. 59–64.

Mineral resources of the Ruby-Kuskokwim region, by J. B. Mertie, jr., and G. L. Harrington. In Bulletin 642, 1916, pp. 228–266.

The Chisana-White River district, Alaska, by S. R. Capps. Bulletin 630, 1916, 130 pp.

The Yukon-Koyukuk region, Alaska, by H. M. Eakin. Bulletin 631, 1916, 88 pp. The gold placers of the Tolovana district, by J. B. Mertie, jr. In Bulletin 662, 1917, pp. 221–277.

Gold placers near the Nenana coal field, by A. G. Maddren. In Bulletin 662, 1917, pp. 363–402.

Lode mining in the Fairbanks district, by J. B. Mertie, jr. In Bulletin 662, 1917, pp. 403–424.

Lode deposits near the Nenana coal field, by R. M. Overbeck. In Bulletin 662, 1917, pp. 351–362.

The Lake Clark-central Kuskokwim region, Alaska, by P. S. Smith. Bulletin 655, 1918, 162 pp.

The Cosna-Nowitna region, Alaska, by H. M. Eakin. Bulletin 667, 1918, 54 pp. The Anvik-Andreafski region, Alaska, by G. L. Harrington. Bulletin 683, 1918, 70 pp.

The Anvik-Andreafski region, Alaska, by G. L. Harrington. Bulletin 683, 1918, 70 The Kantishna district, Alaska, by S. R. Capps. Bulletin 687, 1919, 116 pp.

The Nenana coal field, Alaska, by G. C. Martin. Bulletin 664, 1919, 54 pp.

*Mining in the Fairbanks district, by Theodore Chapin. In Bulletin 692, 1919, pp. 321–327. 50 cents.

*A molybdenite lode on Healy River, by Theodore Chapin. In Bulletin 692, 1919, p. 329. 50 cents.

*Mining in the Hot Springs district, by Theodore Chapin. In Bulletin 692, 1919. pp. 331–335. 50 cents.

*Tin deposits of the Ruby district, by Theodore Chapin. In Bulletin 692, 1919, p. 337. 50 cents.

*The gold and platinum placers of the Tolstoi district, by G. L. Harrington. In Bulletin 692, 1919, pp. 338–351. 50 cents.

*Placer mining in the Tolovana district, by R. M. Overbeck. In Bulletin 712, 1919, pp. 177–184. 20 cents.

Mineral resources of the Goodnews Bay region, by G. L. Harrington. In Bulletin 714, 1921, pp. 207–228.

Gold lodes in the upper Kuskokwim region, by G. C. Martin. In Bulletin 722.

TOPOGRAPHIC MAPS.

Circle quadrangle (No. 641); scale, 1:250,000; by T. G. Gerdine, D. C. Witherspoon, and others. 50 cents retail or 30 cents wholesale. Also in *Bulletin 295. 35 cents.

Fairbanks quadrangle (No. 642); scale, 1:250,000; by T. G. Gerdine, D. C. Witherspoon, R. B. Oliver, and J. W. Bagley. 50 cents retail or 30 cents wholesale. Also in *Bulletin 337 (25 cents) and Bulletin 525.

Fortymile quadrangle (No. 640); scale, 1:250,000; by E. C. Barnard. 10 cents retail or 6 cents wholesale. Also in Bulletin 375.

Rampart quadrangle (No. 643); scale, 1:250,000; by D. C. Witherspoon and R. B. Oliver. 20 cents retail or 12 cents wholesale. Also in *Bulletin 337 (25 cents) and part in Bulletin 535.

Fairbanks special (No. 642A); scale, 1: 62,500; by T. G. Gerdine and R. H. Sargent. 20 cents retail or 12 cents wholesale. Also in Bulletin 525.

Bonnifield region; scale, 1:250,000; by J. W. Bagley, D. C. Witherspoon, and C. E. Giffin. In Bulletin 501. Not issued separately.

Iditarod-Ruby region, reconnaissance map; scale, 1:250,000; by C. G. Anderson, W. S. Post, and others. In Bulletin 578. Not issued separately.

Middle Kuskokwim and lower Yukon region; scale, 1:500,000; by C. G. Anderson, W. S. Post, and others. In Bulletin 578. Not issued separately.

Chisana-White River region; scale, 1:250,000; by C. E. Giffin and D. C. Witherspoon. In Bulletin 630. Not issued separately.

Yukon-Koyukuk region; scale, 1:500,000; by H. M. Eakin. In Bulletin 631. Not issued separately.

Cosna-Nowitna region, reconnaissance map; scale, 1:250,000; by H. M. Eakin, C. E. Giffin, and R. B. Oliver. In Bulletin 667. Not issued separately.

Lake Clark-central Kuskokwim region, reconnaissance map; scale, 1:250,000; by R. H. Sargent, D. C. Witherspoon, and C. E. Giffin. In Bulletin 655. Not issued separately.

Anvik-Andreafski region; scale, 1:250,000; by R. H. Sargent. In Bulletin 683.

Not issued separately.

Marshall district; scale, 1:125,000; by R. H. Sargent. In Bulletin 683. Not issued separately.

In preparation.

Lower Kuskokwim region; scale, 1:500,000; by A. G. Maddren. Ruby district; scale, 1:250,000; by C. E. Giffin and R. H. Sargent. Innoko-Iditarod district; scale, 1:250,000; by R. H. Sargent and C. E. Giffin.

SEWARD PENINSULA.

REPORTS.

*The Fairhaven gold placers of Seward Peninsula, Alaska, by F. H. Moffit. Bulletin 247, 1905, 85 pp. 40 cents.

Gold mining on Seward Peninsula, by F. H. Moffit. In Bulletin 284, 1906, pp. 132-141

The gold placers of parts of Seward Peninsula, Alaska, including the Nome, Council, Kougarok, Port Clarence, and Goodhope precincts, by A. J. Collier, F. L. Hess, P. S. Smith, and A. H. Brooks. Bulletin 328, 1908, 343 pp.

*Investigation of the mineral deposits of Seward Peninsula, by P. S. Smith. In Bulletin 345, 1908, pp. 206–250. 45 cents.

Geology of the Seward Peninsula tin deposits, by Adolph Knopf. Bulletin 358, 1908, 72 pp.

*Recent developments in southern Seward Peninsula, by P. S. Smith. In Bulletin 379, 1909, pp. 267–301. 50 cents.

*The Iron Creek region, by P. S. Smith. In Bulletin 379, 1909, pp. 302–354. 50 cents. *Mining in the Fairhaven district, by F. F. Henshaw. In Bulletin 379, 1909, pp. 355–369. 50 cents.

Geology and mineral resources of the Solomon and Casadepaga quadrangles, Seward Peninsula, Alaska, by P. S. Smith. Bulletin 433, 1910, 227 pp.

*Mining in Seward Peninsula, by F. F. Henshaw. In Bulletin 442, 1910, pp. 353-371.

40 cents.

A geologic reconnaissance in southeastern Seward Peninsula and the Norton Bay-Nulato region, Alaska, by P. S. Smith and H. M. Eakin. Bulletin 449, 1911, 146 pp. *Notes on mining in Seward Peninsula, by P. S. Smith. In Bulletin 520, 1912, pp. 339–344. 50 cents.

Geology of the Nome and Grand Central quadrangles, Alaska, by F. H. Moffit. Bulle-

tin 533, 1913, 140 pp.
Surface water supply of Seward Peninsula, Alaska, by F. F. Henshaw and G. L. Parker, with a sketch of the geography and geology by P. S. Smith and a description of methods of placer mining by A. H. Brooks; including topographic reconnaissance map. Water-Supply Paper 314, 1913, 317 pp. 45 cents.

*Placer mining on Seward Peninsula, by Theodore Chapin. In Bulletin 592, 1914,

pp. 385-396. 60 cents.

*Lode developments on Seward Peninsula, by Theodore Chapin. In Bulletin 592, 1914, pp. 397–407. 60 cents.

Iron-ore deposits near Nome, by H. M. Eakin. In Bulletin 622, 1915, pp. 361–365. Placer mining in Seward Peninsula, by H. M. Eakin. In Bulletin 622, 1915, pp. 366–373.

Lode mining and prospecting on Seward Peninsula, by J. B. Mertie, jr. In Bulletin 662, 1917, pp. 425–449.

Placer mining on Seward Peninsula, by J. B. Mertie, jr. In Bulletin 662, 1917, pp. 451–458.

*Tin mining in Seward Peninsula, by G. L. Harrington. In Bulletin 692, 1919, pp. 353-361. 50 cents.

*Graphite mining in Seward Peninsula, by G. L. Harrington. In Bulletin 692, 1919, pp. 363–367. 50 cents.

*The gold and platinum placers of the Kiwalik-Koyuk region, by G. L. Harrington. In Bulletin 692, 1919, pp. 368–400. 50 cents.

*Mining in northwestern Alaska, by S. H. Cathcart. In Bulletin 712, 1919, pp. 185–198. 20 cents.

Mining on Seward Peninsula, by G. L. Harrington. In Bulletin 714, 1921, pp. 229–237. Metalliferous lodes of southern Seward Peninsula, by S. H. Cathcart. In Bulletin 722.

In preparation.

The geology of the York tin deposits, Alaska, by Edward Steidtmann and S. H. Cathcart.

TOPOGRAPHIC MAPS.

Seward Peninsula; scale, 1:500,000; compiled from work of D. C. Witherspoon, T. G. Gerdine, and others, of the Geological Survey, and all available sources. In Water-Supply Paper 314. Not issued separately.

Seward Peninsula, northeastern portion, reconnaissance map (No. 655); scale, 1:250,000; by D.C. Witherspoon and C.E. Hill. 50 cents retail or 30 cents wholesale. Also in *Bulletin 247. 40 cents.

Seward Peninsula, northwestern portion, reconnaissance map (No. 657); scale, 1:250,000; by T. G. Gerdine and D. C. Witherspoon. 50 cents retail or 30 cents wholesale. Also in Bulletin 328.

Seward Peninsula, southern portion, reconnaissance map (No. 656); scale, 1:250,000; by E. C. Barnard, T. G. Gerdine, and others. 50 cents retail or 30 cents wholesale. Also in Bulletin 328.

Seward Peninsula, southeastern portion, reconnaissance map (Nos. 655–656); scale, 1:250,000; by E. C. Barnard, D. L. Reaburn, H. M. Eakin, and others. In Bulle tin 449. Not issued separately.

Nulato-Norton Bay region; scale, 1:500,000; by P. S. Smith, H. M. Eakin, and others. In Bulletin 449. Not issued separately.

Grand Central quadrangle (No. 646A); scale, 1:62,500; by T. G. Gerdine, R. B. Oliver, and W. R. Hill. 10 cents retail or 6 cents wholesale. Also in Bulletin 533.

Nome quadrangle (No. 646B); scale, 1:62,500; by T. G. Gerdine, R. B. Oliver, and W. R. Hill. 10 cents retail or 6 cents wholesale. Also in Bulletin 533.

Casadepaga quadrangle (No. 646C); scale, 1:62,500; by T. G. Gerdine, W. B. Gorse, and B. A. Yoder. 10 cents retail or 6 cents wholesale. Also in Bulletin 433.

Solomon quadrangle (No. 646D); scale, 1:62,500; by T. G. Gerdine, W. B. Corse, and B. A. Yoder. 10 cents retail or 6 cents wholesale. Also in Bulletin 433.

NORTHERN ALASKA.

REPORTS.

*A reconnaissance in northern Alaska across the Rocky Mountains, along Koyukuk, John, Anaktuvuk, and Colville rivers and the Arctic coast to Cape Lisburne in 1901, by F. C. Schrader, with notes by W. J. Peters. Professional Paper 20, 1904, 139 pp. 40 cents.

*Geology and coal resources of the Cape Lisburne region, Alaska, by A. J. Collier. Bulletin 278, 1906, 54 pp. 15 cents.

*Geologic investigations along the Canada-Alaska boundary, by A. G. Maddren. In Bulletin 520, 1912, pp. 297–314. 50 cents.

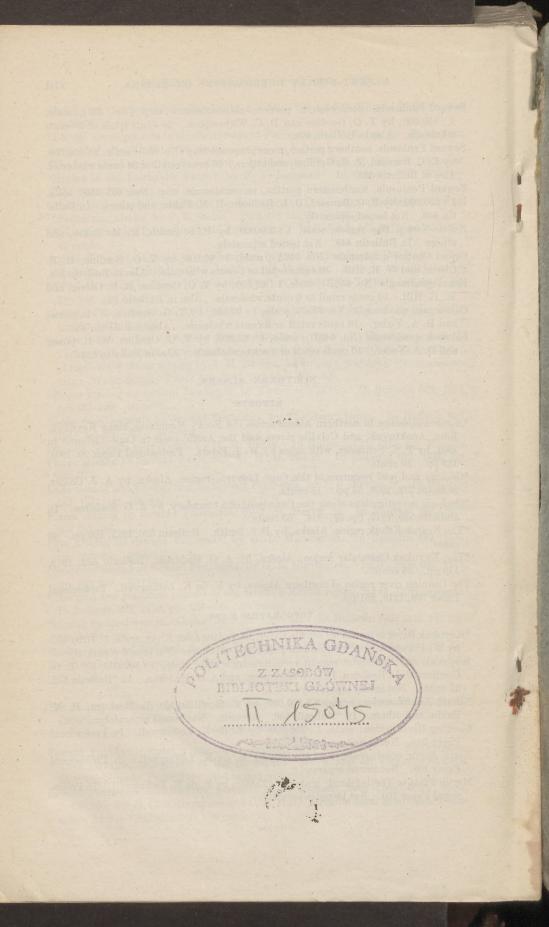
*The Noatak-Kobuk region, Alaska, by P. S. Smith. Bulletin 536, 1913, 160 pp. 40 cents.

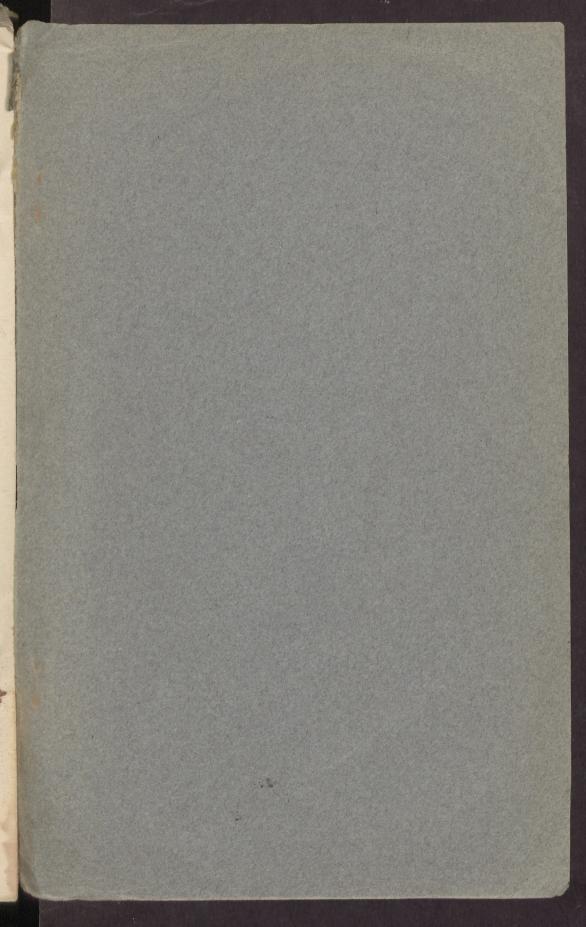
*The Koyukuk-Chandalar region, Alaska, by A. G. Maddren. Bulletin 532, 1913, 119 pp. 25 cents.

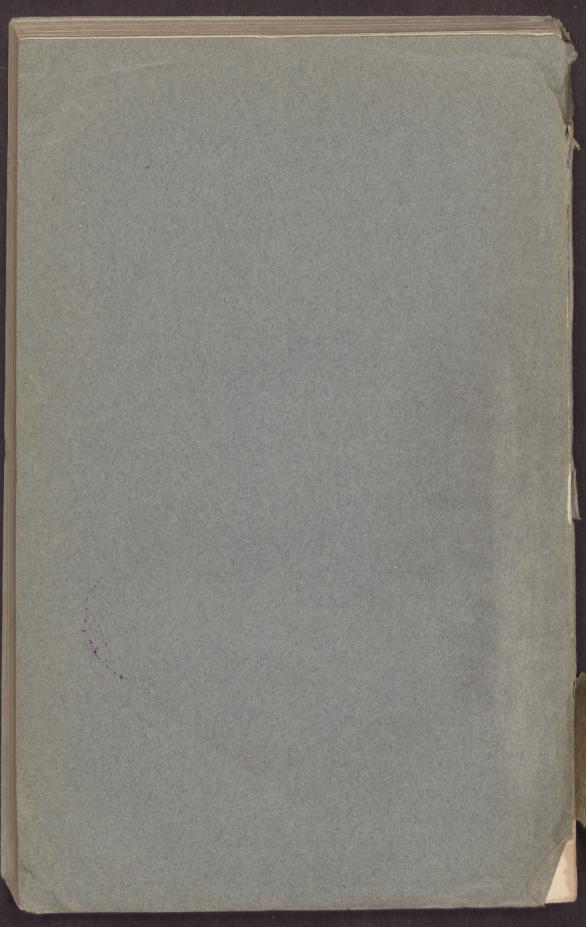
The Canning river region of northern Alaska, by E. de K. Leffingwell. Professional Paper 109, 1919, 251 pp.

TOPOGRAPHIC MAPS.

*Koyukuk River to mouth of Colville River, including John River; scale, 1:1,250,000; by W. J. Peters. In *Professional Paper 20. 40 cents. Not issued separately.


Koyukuk and Chandalar region, reconnaissance map; scale, 1:500,000; by T. G. Gerdine, D. L. Reaburn, D. C. Witherspoon, and A. G. Maddren. In *Bulletin 532. 25 cents. Not issued separately.


Noatak-Kobuk region; scale, 1:500,000; by C. E. Giffin, D. L. Reaburn, H. M. Eakin, and others. In *Bulletin 536. 40 cents. Not issued separately.


Canning River region; scale, 1:250,000; by E. de K. Leffingwell. In Professional Paper 109. Not issued separately.

North Arctic coast; scale, 1:1,000,000; by E. de K. Leffingwell. In Professional Paper 109. Not issued separately.

Martin Point to Thetis Island; scale, 1:125,000; by E. de K. Leffingwell. In Professional Paper 109. Not issued separately.

