
INTERACTION DESIGN
IN AGILE IT PROJECTS

Marcin Sikorski

Gdańsk Tech
Publishing House

GDAŃSK UNIVERSITY OF TECHNOLOGY PUBLISHERS
CHAIRMAN OF EDITORIAL BOARD
Dariusz Mikielewicz

EDITOR OF SCIENTIFIC PUBLICATIONS
Michał Szydłowski

REVIEWERS
Witold Chmielarz
Jerzy Grobelny

COVER DESIGN
Wioleta Lipska-Kamińska

Published under the permission
of the Rector of Gdańsk University of Technology

Gdańsk University of Technology publications may be purchased at
https://www.sklep.pg.edu.pl

No part of this publication may be reproduced, transmitted, transcribed,
stored in a retrieval system or translated into any human or computer language
in any form by any means without permission in writing of the copyright holder.

© Copyright by Gdańsk University of Technology Publishing House, Gdańsk 2021

ISBN 978-83-7348-840-3

Gdańsk University of Technology Publishing House

Edition I. Ark. ed. 8,8, ark. print 10,5, 247/1134

Spis treści

Preface .. 	 5

1.	 Quality of interactive products ... 	 7
1.1.	 Interactive IT products .. 	 7
1.2.	 Perceived quality of IT products ... 	 10
1.3.	 The interplay between HCI and interaction design 	 15
1.4.	 IT products and IT projects ... 	 17

2.	 Graphical user interfaces .. 	 19
2.1.	 Specific features of graphical user interfaces 	 19
2.2.	 Design guidelines for GUI .. 	 22
2.3.	 Standardization for consistency ... 	 26
2.4.	 Evaluation of user interfaces .. 	 28
2.5.	 Trends and innovations .. 	 29

3.	 Web user interfaces .. 	 37
3.1.	 Specific features of Web user interfaces .. 	 37
3.2.	 Design guidelines for Web user interfaces 	 39
3.3.	 User Experience factors ... 	 42
3.4.	 Web accessibility and interoperability .. 	 46
3.5.	 Evaluation of web user interfaces .. 	 47
3.6.	 Trends and innovations .. 	 49

4.	 Mobile user interfaces ... 	 58
4.1.	 Specific features of mobile user interface .. 	 58
4.2.	 Design guidelines ... 	 60
4.3.	 Design patterns for standardization and consistency 	 64
4.4.	 Mobile accessibility .. 	 65
4.5.	 Mobile UX factors ... 	 66
4.6.	 Evaluation of web user interfaces .. 	 69
4.7.	 Trends and innovations .. 	 70

References4

5.	 IT projects – cooperation with users .. 	 74
5.1.	 IT projects and software development lifecycles 	 74
5.2.	 Classical methodologies for IT projects ... 	 76
5.3.	 Iterative methodologies of IT projects .. 	 79
5.4.	 Agile methodologies for IT projects .. 	 82
5.5.	 Collaboration with users in IT projects ... 	 90

6.	 Strategy – envisioning the product .. 	 92
6.1.	 The outline of Strategy ... 	 92
6.2.	 Identifying the problem ... 	 93
6.3.	 Identifying users’ needs .. 	 95
6.4.	 Presenting the product vision ... 	 96
6.5.	 Deliverables from Strategy ... 	 100

7.	 Analysis – understanding users’ needs ... 	 102
7.1.	 The outline of Analysis ... 	 102
7.2.	 Identifying users’ requirements .. 	 102
7.3.	 Understanding users’ needs ... 	 109
7.4.	 Deliverables from Analysis ... 	 116

8.	 Design – converting visions into concepts .. 	 117
8.1.	 The outline of Design ... 	 117
8.2.	 Conceptual design ... 	 118
8.3.	 Freehand sketching .. 	 123
8.4.	 Deliverables from Design ... 	 129

9.	 Development – from concepts to solutions ... 	 130
9.1.	 The outline of Development ... 	 130
9.2.	 Low-fidelity prototyping .. 	 131
9.3.	 High-fidelity prototyping .. 	 137
9.4.	 Deliverables from Development ... 	 143

10.	Validation – evaluation and testing .. 	 144
10.1.	The outline of evaluation and testing ... 	 144
10.2.	Expert-based evaluation .. 	 145
10.3.	User-based evaluation ... 	 147
10.4.	Deliverables from evaluation and testing ... 	 156

The Retrospective ... 	 157

References .. 	 160

Preface

Interactive systems, such as various types of software, online services or mo-
bile applications, in recent years have become an integral part of everyday life.
These systems are becoming increasingly complex from a technical viewpoint, es-
pecially in their “back-end” part, including necessary IT infrastructure, databases,
web services and architectures that remain invisible for end-users. Despite engi-
neering complexity of the back-end, from user’s perspective the operation of an
interactive system should be as easy as possible. The user interface, often referred
as “front-end”, should be designed to be simple to use, visually attractive, providing
a positive User Experience (UX) and – above all – granting functionality and usa-
bility for end-users or customers.

For this reason, interaction design has recently emerged as a distinct profes-
sional area of information technology (IT). Interaction design is taking its roots from
the scientific discipline of Human-Computer Interaction (HCI), which is located on
the crossroads of social sciences (mainly management and cognitive sciences)
and engineering sciences (mostly computer science and software engineering).

Quality of interaction and quality of user experience (UX) now are indispensa-
ble elements of IT product quality. Consequently, the User-Centred Design (UCD)
approach, being a part of HCI, has been successfully applied for improving usability
of IT products and adding a “customer’s voice” to IT projects.

IT projects have undergone radical changes in recent years. Nowadays due
to market pressures, most of IT solutions, such as online services, websites, and
mobile applications, are designed and developed using the agile approach. The
agile approach in IT project management declares readiness for rapid changes
in requirements, customer focus and quality assurance based on two pillars: ex-
cellent communication in the development team and intensive cooperation with
customers. Agile approach introduced “sprints“ – short, dynamic design cycles, fre-
quent prototyping and regular evaluation of the developing product by prospective
users and customers. Focusing on users’ needs, contemporary IT projects attempt

Preface6

to combine techniques inherited from classical software engineering with novel
techniques borrowed from the agile approach.

Therefore, the main goal of this book is to present the impact of agile approach
on User-Centred Design, that resulted in gradual adaptation of interaction design
methods to agile IT projects.

The first part of this book (chapters 1–4) provides an overview of interaction de-
sign principles for graphical, web and mobile user interfaces. All three types of user
interfaces are now popular as typical points of access to applications and services
users need for their daily activities.

The second part (chapters 5–10) present a critical review of user-centred tech-
niques useful for improving usability of interactive products, primarily addressed to
agile IT projects. A number of user-centred techniques useful at different stages of
an agile IT project were presented, with focus on optimizing their positive impact to
users, customers and project clients.

Regarding quality management terminology, the first part of the book rep-
resents a product-oriented perspective, while the second part is highlighting a proj-
ect-oriented view, spanning all main stages of a typical IT project: the Strategy,
Analysis, Design, Development (prototyping), Evaluation and Testing, and the Ret-
rospective.

The author hopes that this book will be a source of valuable theoretical and
practical knowledge for all researchers and practitioners (especially IT managers)
involved in cooperation with users and customers in IT projects. Furthermore, read-
ers interested in new trends in interaction design should also find here an inspi-
ration for creating software-based solutions developed with adequate balancing
engineering excellence with human needs and values.

The author would like to thank the Reviewers of this book, Prof. Witold Ch-
mielarz, and Prof. Jerzy Grobelny, for their valuable comments which helped to
bring the book to the final shape.

1. Quality of interactive products

1.1. Interactive IT products

Interactive systems built with Information-Technology (IT) play an important
role in supporting human activities in business and in everyday life. Examples of
interactive systems include products and solutions such as:
•	 software systems for office, engineering, financial or commercial purposes, etc.;
•	 application software for personal use like games, education, family finances,

etc.;
•	 websites for public information, e-commerce and services, as well as intranet

portals for internal use in companies;
•	 web applications for calculations, navigation, reservations, etc., (often embed-

ded into specific websites for shopping, travel or insurance;
•	 mobile applications, including mobile websites (m-pages), providing users with

access to online services from mobile devices.

Additionally, various electronic devices like built-in car audio and navigation
systems, remote controls, etc., can be also treated as interactive systems, if only
they enable users to access some type of user interface with display and control
functions.

Interactive systems are used for work and for private life, including learning
and entertainment. They can be used in following modes (Figure 1.1):
•	 desktop mode: user usually sitting at the desk with a stationary computer, op-

erating a specific software to complete a specific task;
•	 web-based mode: user is using a computer with a web browser with to explore

the internet or to use a specific web application for a specific task;
•	 mobile mode: user is using a mobile device (a smartphone or tablet) with mo-

bile web browser or mobile applications dedicated for specific tasks.

1. Quality of interactive products8

In desktop mode users are usually put in the role system operators because
for specific work-related tasks a specialistic software has to be used, often licenced
to an institution or a company. Otherwise, in web-based and mobile modes usually
users are consumers having a broad choice of information, applications and online
services, some of them can be fee-based. As a result, expectations of consumers
are often higher than those of system operators.

Figure 1.1. IT-based interactive systems and services
(Credits: https://wdrfree.com)

Interactive systems usually have two important design areas:
•	 front-end: the user interface, including the screen and other devices helpful in

control actions;
•	 back-end: any other components invisible for the user, like servers, cloud ser-

vices or network infrastructure;

Interaction design is limited to designing the user interface (the front-end), but
also factors located in the back-end (like hardware performance or network speed)
may have a serious influence on user’s satisfaction from using a specific IT products.

A well-designed user interface improves the performance of users’ tasks, pro-
vides a smooth interaction and pleasure of use, shaping users’ positive attitude to
the system and to the manufacturer’s brand. Task completion time, tolerance for
human errors, understandability, ease of learn and use, are frequently mentioned
users’ expectations regarding IT products.

1.1. Interactive IT products 9

Figure 1.2. Front-end and back-end of a web-based service
(Credits: https://teamquest.pl)

In general, the quality of an interactive IT product can be viewed in three di-
mensions:
•	 technical quality (“engineering excellence”), mainly described in terms of tech-

nical requirements, represents the degree of technical excellence of a specific
solution and refers mainly to measurable design characteristics (e.g. perfor-
mance, reliability, complexity of the system architecture, and code attributes);

•	 ergonomic quality (“user-friendliness”), describing system’s compliance with er-
gonomic requirements regarding the user interface, the ease of use and feeling
of comfort when using the system; sometimes the ergonomic quality is also de-
scribed using rather vague terms “intuitiveness”, “friendliness”, or “ease of use”;

•	 usability (“quality in use”) expressed as by the level of user satisfaction result-
ing from the use of the product in real tasks by specific users; achieving high
usability depends on providing both technical quality and ergonomics quality
during designing and manufacturing of an interactive product.

Because the technical excellence is no longer a guarantee for the market
success, in contemporary IT projects design efforts are largely directed towards
building a competitive advantage in areas such as usability, user experience, en-
riching user’s lifestyle or other factors building the perceived quality of a specific IT
product. For this reason, knowledge accumulated by research conducted within the
discipline Human-Computer Interaction (HCI) has been broadly used for designing
software systems, websites, online services or mobile applications (Hartson and
Pyla, 2012; Pinhanez, 2009).

1. Quality of interactive products10

1.2. Perceived quality of IT products

Basic terminology

Perceived quality of interactive products (hereafter limited to the front-end
only) is shaped by following main factors (Shneiderman et. al., 2017; Rogers et al.,
2015; Hartson and Pyla, 2012; Nielsen, 1993):
1.	 Functionality: the range of functions available in a specific interactive product,

such as a software application, website or online service; additionally, the de-
gree to which available set of function is matching users’ needs is considered,
too.

2.	 Usability: the degree to which a user can achieve specific objectives in a specif-
ic context of use. According to ISO 9241-11 standard usability is defined as the
outcome of tasks efficiency, task effectiveness and user satisfaction.

3.	 User Experience: the whole of user’s emotions resulting from the outcome of IT
product operation. According to Hassenzahl (2008), User Experience is combi-
nation of pragmatic (task-related) and hedonistic (pleasure-related) emotions,
which jointly shape user’s attitude to a specific IT product, service website or
mobile app and to the service provider.

The term “usability” for IT products is defined in different ways in literature
and in ISO standards. It can have different meanings for instance in the case of
software operated through a computer screen and another meaning for on-line ser-
vices operated from a mobile device like a smartphone or a tablet. For this reason,
a classical, yet very universal definition proposed by Jakob Nielsen (Nielsen 1993)
can be still useful. Nielsen defined that the usability of an IT product:
•	 is a quality attribute expressing the ease of use of an interactive product and

it can also mean a set of methods used to improve the usability of a product in
the design process (called “usability engineering”);

•	 is defined by such characteristics as: ease of learning, effectiveness in achiev-
ing task objectives, ease in remembering accomplished skills, tolerance for hu-
man errors, and user satisfaction, understood as subjectively perceived enjoy-
ment from using the system.

Nielsen’s definition sometimes interpreted in a way expressing usability as the
outcome of all quality characteristics which make the product supportive in com-
pleting user’s tasks, easy to learn and operate, and pleasant to use.

While the term “quality” describes a generic excellence of an IT product, the
term “usability” describes quality in use, experienced by specific users in specific
tasks executed in a specific environment. For instance, a validated, high-quality
website may represents different usability levels for young users and for seniors
with possible visual impairments. Usability is therefore a subjective matter, and can

1.2. Perceived quality of IT products 11

be rather described than measured, considering a specific context of use: users’
characteristics, their tasks, and a local environment.

The term “User Experience” (UX) represents all emotions, feelings, impres-
sions resulting from the operation of a specific interactive system, like a software
product or an internet shop. According to Hassenzahl (2008), User Experience is
a combination of two principal components: (1) pragmatic (task-related) and (2)
hedonistic (pleasure-related) emotions. They jointly shape user’s attitude to a spe-
cific interactive product, website or mobile app, and also to the brand of a service
provider.

Individual episodes of UX get cumulated across subsequent interactions, like
operating a software or visiting a website. Even quick memories “easy-to-use”, “in-
tuitive”, “complicated”, “slow” or “demanding” can instantly and significantly shape
customers’ willingness to return, and whether a specific website is likely to become
a favourite one.

If UX is positive, satisfied and loyal customers often convert their positive user
experiences into opinions, comments and encouraging recommendations. As they
are published online, they are important for attracting new customers, hence opti-
mizing UX is a critical issue in web design.

In case of operating a software product, UX also shapes the attitude to the
system regarding whether an operator likes it or not. Nevertheless, even if UX is
negative, an operator has no choice just to use it, but probably with frustration
affecting quality of work and with negative attitude to a specific system, software
house or a specific company.

The ISO-based model of perceived quality

Considering the impact of a local context of use (specific users, tasks and
environment), perceived quality of an interactive product results from two factors:
(1) quality of design (product characteristics), and (2) quality in use (how these
characterises actually preformed in a specific context of use).

International standards ISO/IEC 9126 and ISO 9241-11 specify required quality
characteristics for a software application – and more generally for software-based
interactive product. The standard ISO/IEC 9126 specifies six key characteristics
of software product quality: functionality, performance, reliability, maintainability,
portability, and usability. According to ISO/IEC 9126, usability is composed of the
following sub-characteristics:
•	 understandability: ease at which a user understands system functionalities;
•	 learnability: ease at which a user learns to operate the system;
•	 operability: ease at which a user uses the system in a given context;
•	 attractiveness: stimulating user interest;
•	 compliance: compliance with standard solutions regarding usability.

1. Quality of interactive products12

Paradoxically, another standard ISO 9241-11 defines usability as a result of
three principal components:
•	 effectiveness: the degree to which the product performs its objectives in a spe-

cific context of use;
•	 efficiency: the relationship between the task outcomes and expenditures in-

curred for their accomplishments;
•	 satisfaction: the degree of user satisfaction resulting from the actual use of

a product in specific tasks, in a specific context of use.

Apparent discrepancy between the two standards can be mitigated by ade-
quate interpreting usability-related characteristics to a specific interactive product
located in a specific context of use, as suggested in both standards.

Figure 1.3 presents the components affecting perceived quality of an interac-
tive software product as a combined view of (1) quality characteristics derived from
standards and (2) user-perceived quality factors originating from a specific context
of use.

User’s characteristics, goals, and tasks to be executed in local environment
are coupled with a specific IT product and its characteristics, as shown in the left-
hand part of Figure 1.3.

Figure 1.3. Perceived quality of an interactive software product

From the user’s viewpoint, among engineering quality characteristics defined
by ISO/IEC 9126 the functionality is essential, and it should be adequate to the us-
er’s task. The task is executed by a specific user described by demographic profile,
education, attitude, skill, current goals etc. Achieving user’s goal can be easier or
difficult, depending by an interplay between components shaping the engineering

1.2. Perceived quality of IT products 13

and the ergonomic quality of the IT product. As a result, actual performance of
user’s tasks, related to all expenditures required to produce a specific outcome,
expresses the efficiency of a computer-supported task. In case of a software prod-
uct, efficiency is the key parameter which shapes user’s satisfaction from the task
outcome, and from the usage of a specific software product.

Interpretation of usability expressed in the standard ISO 9241-11 for almost
two decades was adequate to all contexts where the user was put in a role of sys-
tem operator. However, for many interactive products today users are no longer
merely trained system operators, acting on behalf of a specific employer or an insti-
tution. Currently users often are online customers who have specific requirements;
they pay attention to the specific content (like products, prices etc.) and usability of
a selected website (i.e. how easily the task can be completed), but also if the task
execution (a shopping process) was pleasant, convenient and compliant to their
subjective expectations.

The FUVUX model

ISO-based quality concepts have been suitable primarily for software products
and users employed as system operators in companies. Nowadays, while majority
of IT products are available as online services, competing for customers aware of
broad choice and expecting outstanding quality in all dimensions.

Obviously, functionality, usability, and User Experience, relevant to a specific
interactive product, also affect the trust users/customers have towards a specific
service and its vendor. In a short-term perspective, momentary user experiences
shape user’s willingness to return and use the service website or app again. In
a long-term perspective, cumulated user experiences affect user-perceived quality
of relationship with a specific service, its vendor and user’s attitude to its brand (e.g.
a specific on-line bank).

Functionality, usability, user experience and value constitute subsequent lay-
ers, affecting user-perceived perceived quality (Figure 1.4). This mechanism, de-
scribed as the FUVUX model (Sikorski, 2012), describes a general framework for
designing contemporary interactive systems, applicable not only for e-business
or e-commerce areas. The four components sequentially upgrading the user-per-
ceived quality are the following:
•	 Functionality: the system should have all the functions needed by the user to

perform all tasks;
•	 Usability: the system should enable achieving intended result with the lowest

possible inputs from the user;
•	 User eXperience: the system should provide the user with positive emotions,

feelings, and experiences, encouraging the user return to the site;
•	 Value: the system should support developing of valuable relationships between

the supplier and user (client) and should provide a feel of the benefits from
system use.

1. Quality of interactive products14

Figure 1.4. The FUVUX model for digital product

The FUVUX model is based on following assumptions, stacked bottom-up:
1.	 Providing users with adequate functionality enables users to complete theirs

tasks and evaluate usability of a specific system.
2.	 Only achieving high usability leads to positive UX, resulting in user’s willingness

to reuse the system or service again.
3.	 Only cumulated positive UX makes users revisit and believe that the system

or delivers benefits (value) and builds win-win relationships with the vendor or
brand.

The FUVUX model defines the basic features of an interactive system, and the
four layers composing customer-perceived quality. The FUVUX model also syn-
thetically describes the chain of expectations for interactive systems (including web
and mobile apps), viewed from the user (online customer) perspective.

Service development layer model

The development layer model describes how the maturity of an online service
affects user/customer engagement in online interactions.

This model, proposed by Sikorski (2008) and presented in Figure 1.5 defines:
•	 the design focus (left-hand side), composed of five layers of increasing service

maturity: Functionality, Usability, Experience, Relationship and Value;
•	 the interaction outcome (right-hand side), observed by user/consumer: Perfor-

mance, Satisfaction, Delight, Loyalty and Lifestyle.

The design focus presents a slight extension of FUVUX, reflecting relevant
outcome for the consumer, as a component of perceived quality.

1.3. The interplay between HCI and interaction design 15

Figure 1.5. The layer development model for online services
(adapted from Sikorski, 2008)

In a gradual evolution of online services an UX-related innovation is a breaking
point, opening a gateway to added-value services, which are able to convert con-
sumer’s delight to a permanent loyalty. Furthermore, if frequent interactions create
a value-based relationship, an online service gets integrated with a customer’s life-
style. Added-value services are the lucrative part of online services because they
are frequently used as a part of a specific lifestyle, they often improve quality of life
or deliver a specific value (like safety, in online insurances) and generate stable
revenues from commissions or subscription fees.

1.3. The interplay between HCI and interaction design

Interaction design is the practice of designing interactive products and digital
services. Interaction with user/consumer is an essential part of the product, ena-
bling transfer of value between service vendor and user, and developing customer
loyalty.

Interaction design methods largely originate from Human-Computer Interac-
tion (HCI) as a research discipline which created basic terminology, design models
and evaluation methods. Most importantly, HCI proposed methods for involving
users into design activities, as the most-cost-effective way for early detecting of
design flaws.

HCI encompasses the key term “usability” as a subjective measure, situated in
a local “context of use” composed of the triad: user-tasks-environment (Figure 1.6).
As a result, usability of an interactive system must be planned for a combination
of factors creating a typical set of conditions in which users will be executing their
tasks.

1. Quality of interactive products16

While HCI builds largely on a combination of cognitive psychology and soft-
ware engineering, interaction design incorporates practice-oriented disciplines
such as visual design, information architecture, user research, prototyping and
consumer research.

Figure 1.6. The usability framework relevant to ISO 9241-11
(Credits: http://ui-designer.net/usability/usersgoals.htm)

Both HCI and interaction design strongly promote user-centred design, assum-
ing that high quality and usability of interactive systems can be delivered largely by
appropriate managerial actions rather than by merely refining desired quality char-
acteristic of a product. This implies frequent contacts between users/consumers
and the design team, frequent testing and evaluation and making design decisions
considering feedback received from prospective users/customers.

HCI research has introduced novel methods and techniques, nowadays widely
adopted for interaction design, such as
•	 context of use analysis for understanding users’ needs;
•	 persona for describing a profile of a typical user;
•	 tasks scenarios and use cases for identifying prospective users’ activities;
•	 screen templates, wireframes and design patterns for providing consistency in

visual design;
•	 storyboards and user flow for planning user navigation though a prospective

system;
•	 different types of prototypes for evaluating validity of design concepts and col-

lecting user feedback.

HCI and interaction design have many overlapping topics, combining a re-
search perspective with a practical viewpoint, useful for designers, developers and

http://ui-designer.net/usability/usersgoals.htm

1.4. IT products and IT projects 17

managers working in IT projects. In this approach all activities are user-centred,
what means that user satisfaction is placed as a vital factor for defining quality of
each interactive system. Furthermore, user involvement in an IT project is a key
method for delivering high usability and UX for prospective users and customers.

1.4. IT products and IT projects

Quality assurance and quality management in contemporary IT projects are
generally based on two approaches:
•	 product-oriented approach: precise specification of required quality character-

istics, emphasis on control, measurements and verification of specified require-
ments through regular inspections and testing in the specific points of product
development;

•	 process-oriented approach: involving users to collaborate with designers
throughout the project lifecycle and delivering quality product by team-based
iterative design, testing and evaluation, performed with real users.

Quality of interaction is a natural part of interactive product quality. Because
there are no theoretical models which could be used for predicting prospective
reactions of users, frequent testing and evaluation are vital points of user-centred
design activities.

Informed managerial decisions in IT projects, as to how often and in what roles
users should be involved, is even more important for delivering usability in the final
product. Suboptimal usability of an interactive product is more often caused by the
lack or inadequate user involvement than faulty specification of required quality/
usability characteristics.

For instance, required characteristics of a user interface can be (more or
less correctly) specified as visual clarity, consistency, aesthetics, user guidance,
user control and compliance with standards or design patterns. However, only af-
ter these characteristics are conveyed on specific design activities and validation
checkpoints, they can be implemented and tested by prospective users.

Again, this is the project management responsibility to create conditions that
predefined quality characteristics be actually delivered. Project managers thus
need to orchestrate the team members and their skills, organization, cooperation
and coordination within the team, working with users in the project, communicating
with project stakeholders, and providing assurance that all important requirements
were appropriately handled during the project. No need to mention that solving
various problems arising during the project without compromising product quality is
a challenge, especially when project time and costs are fixed.

Therefore, a skilful interaction design in an IT project involves a lot of evange-
lizing, negotiating, communication - from systematic process of casting users into

1. Quality of interactive products18

appropriate roles, through design, testing and collecting user feedback. Usually
prospective users are not available on-site, so they need to be represented by
someone who can communicate their needs to the design team. Whether it would
be a delegated customer representative, or a team member employed as an UX
specialist, UX manager or an UX consultant – each choice may seriously affect the
quality and usability of a final product.

Undoubtfully, involving users in appropriate stages of design is still the most
cost-effective way of providing usability and UX, and it requires user-centred man-
agerial viewpoint from the very beginning of an IT project. This process however
starts from specifying the product concept, its design goals and guidelines for de-
signing specific user interfaces. They will be presented in subsequent chapters, for
GUI, web, and mobile user interfaces, respectively.

2. Graphical user interfaces

2.1. Specific features of graphical user interfaces

Early computers, since 1960s present in business, administrative and military
applications, were mainly intended to perform numerical calculations. Then com-
puters displayed only alphanumeric characters and commands needed to be typed
in from the keyboard by a system operator. Such interaction mode – the only one
then available – was called the Command Line Interface (CLI).

At that time for software designers, system performance and reliability were
the top priorities. Ease of use or software usability were not required by computer
owners, because systems were operated only by trained specialists employed as
console operators or programmers.

Since the 1990s, personal computers (PCs) became available also beyond
the professional work domain, and new application areas soon emerged. Comput-
er games, education, and creative activities were supported with multimedia and
communication capabilities, clearly indicating that computers can also be useful in
work-unrelated activities. The users were no longer trained operators; thus, soft-
ware applications had to get easier to use.

In the meantime, in available software applications their user interfaces were
much improved with novel windows-based visual environments. Subsequent de-
velopments in graphical user interfaces have shown that popular software appli-
cations can be much easier to use. They can also be the source of user satisfac-
tion, engagement, and positive motivation to use computers also for domestic use.
Subsequently, with growing market demands, computer manufacturers initiated
systematic research to improve software usability. Further progress in this area re-
sulted in developing a novel concept of user-system interaction, namely Graphical
User Interface (GUI).

The concept of GUI was based on several principles that enabled users with
easier operation of software applications (Olsen, 2003):

2. Graphical user interfaces20

1.	 The whole surface of the screen was used for the user interface. Graphical ob-
jects located on the screen (icons, buttons, menus etc.) could be pointed and
clicked by a user operating a mouse, joystick or graphical tablet.

2.	 The graphical objects (like icons) were designed in a way resembling actual
objects users knew from real life, and used across the whole application in
a consistent manner.

3.	 User’s task could be completed step-by-step in an interactive mode, with possi-
bility of customization individual paths according to user’s preferences.

4.	 After users learned how to operate a specific software application, newly ac-
quired skills could be easily reused in another application in a similar manner.

The success of GUI was crafted by a handy combination of novel components
described as a WIMP – Windows, Icons, Menu and Pointer (Figure 2.1):
•	 Windows: a framed fragment of the screen surface, which may contain an edit-

able workspace, message box, form to fill in or any other content. The windows
allowed viewing an object from different perspectives, switching among multi-
ple documents and could be opened, scrolled, stretched, overlapped, closed,
and moved around the screen using the mouse.

•	 Icons: clickable graphical objects that open when clicked on, such as symbols,
buttons, labels or widgets, representing applications, objects, tools, and com-
mands (like starting a program).

•	 Menu: an ordered, logical composition of available options (labels, icons, imag-
es etc.) that could be scrolled through, selected and activated after clicked on
by the user. In GUI there can be various types of menu, like drop-down, vertical,
horizontal, and toolbars or palettes.

•	 Pointer: a distinct symbol on the screen (the cursor), changing current position
with the mouse’s movements and enabling specific operation on objects that
were pointed and clicked on by the user. in GUI the pointer is a mouse-con-
trolled point of entry to the windows, menus, and icons on the screen.

For making the GUI-based system operational and intuitive, visual metaphor
is essential. A metaphor (Figure 2.2) is a characteristic element of GUI, serving as
a visual scenery of the user interface. A metaphor is usually built on an analogy,
making use of objects already familiar to the user from real life, like a calendar,
clock, pen, dustbin or shopping cart. If the screen objects can be used in a way
similar to analogical objects know from real life, users learn the system operation
faster and find it more intuitive. A visual metaphor, apart from its aesthetical value,
suggests the “mechanics” of system operation, including the look, layout and be-
haviour of objects, as well as constraints in moving objects across the screen.

2.1. Specific features of graphical user interfaces 21

Figure 2.1. WIMP elements of Graphical User Interface (GUI)
(Credits: https://commons.wikimedia.org/)

Figure 2.2. A GUI-based metaphor of a weather station
(Credits: https://freepik.com)

A metaphor is only an illusion of workspace on a screen surface, but during the
system operation it is a significant cognitive support for the user. Visual metaphors
in GUI should refer to actual environment where the user’s activity takes place, for
instance an office, store, library, open terrain, etc. In engineering software applica-
tions, the metaphors often resemble the look of electronic equipment, machinery or

https://freepik.com

2. Graphical user interfaces22

measurement tools, while in computer games the metaphor is usually the scenery
where the action takes place, like a battlefield or construction site.

The GUI concept, combining WIMP with a visual metaphor, enables software
users to perform intuitive, direct operations on screen objects, such as drag-and-
drop, scroll, or resize. Moreover, with GUI non-vocational users were finally able to
easily operate complex software with the mouse, and to explore using computers
beyond their professional domains.

However, in software engineering projects developing user-friendly software
requires an easy-to-use GUI to be developed in a procedural, repetitive manner.
As a result, software designers and developers needed to acquire new design
skills while GUI design guidelines gradually were getting available. Initially, soft-
ware manufacturers built their GUI solutions by copying successful patterns and
adopting best practices. Subsequently, industry- and academia-based systematic
research produced design guidelines for newly emerging GUI solutions.

2.2. Design guidelines for GUI

The most universal, classical principles for designing human-computer inter-
action, known as usability heuristics, were developed by Jacob Nielsen (1993) as
a result of extensive user-based research on usability shaping factors for then-ex-
isting computer systems. The Nielsen’s usability heuristics are as follows:
H1.	 Visibility of system status. Keep users informed of system status

with constant feedback.
The system should provide the user with regular feedback on what is currently
going on by confirmation of actions, progress bar, a clock/hourglass, a text
message, etc.

H2.	 Match between system and the real world. Set information in a logical,
natural order.
The system should use simple and natural dialogue (language, phrases, con-
cepts, symbols familiar to the user) in a natural and logical order of informa-
tion appearance. Whenever possible, visual analogies (metaphors) should be
used based on easily understood objects and operations.

H3.	 User control and freedom. Ensure users can easily undo/redo actions.
The system should guide the user through consecutive steps of the task. The
functions “undo”, “repeat” and “cancel” should be available for each operation.
The user should be able to pause the task at any time and to continue from
the same point after a break.

H4.	 Consistency and standards. Maintain consistent standards, so users
know what to do next without having to learn new toolsets.
The system should use the same words, symbols, situations, and actions in
the same way across all activities. Common standards and habits should be

2.2. Design guidelines for GUI 23

respected, using symbols, operations and patterns which users already know
from other systems.

H5.	 Error prevention. Prevent errors if possible; wherever not, warn users
before they commit to actions.
Situations prone to human errors should be detected early and typical er-
rors possibly avoided with a variety of aids such as checking spelling, gram-
mar, correctness of names, validity of data format etc. User’s work should
be saved, protected and recoverable in a controllable, well-understood and
trusted procedure, known to the user when the work starts.

H6.	 Recognition rather than recall. Do not make users remember
information; keep options, etc. visible.
Minimize the user’s memory load by making objects, actions, and options vis-
ible. The user should not have to remember information from one part of the
dialogue to another. Aids for minimizing user’s cognitive load should be used,
like patters, galleries, autocorrection of word phrases etc. All available naviga-
tion options should be visible at once (no hidden elements) and dialogue win-
dows should not include elements that are unnecessary or very rarely used.

H7.	 Flexibility and efficiency of use. Make systems flexible so novices
and experts can choose to do more or less on them.
Allow users to tailor frequent actions for both inexperienced and experienced
users, who should be allowed to complete their actions in multiple ways. Pro-
vide intuitive keyboard shortcuts, quick access to recently used objects, fre-
quently used tools, or other “favourite” components. Automating routine tasks
should be provided by saving user profiles, preferences, data, history, or by
self-development of macros for tedious, multi-step operations.

H8.	 Aesthetic and minimalist design. Design with aesthetics
and minimalism in mind – do not clutter with unnecessary items.
Screen design free from unnecessary objects will allow the user to focus on
the task and finish it faster. Elegant design is often based on minimalistic, but
carefully orchestrated composition of visual elements.

H9.	 Help users recognize, diagnose, and recover from errors.
Provide plain-language error messages to pinpoint problems
and likely solutions.
Error messages should be expressed in a plain language, in a friendly tone,
suggesting a constructive action or other solution, like using links to on-line
help and support. Full reversibility of actions should be provided – usually it
is users’ preferred way to return and continue work after an error. Possibility
for recovering from errors not only improves tasks performance, but it builds
user’s mood and confidence to the system, affecting general UX.

2. Graphical user interfaces24

H10.	Help and documentation. Offer easy-to-search troubleshooting
resources, if needed.
Even though it is better if the system can be used without documentation, usu-
ally it will be necessary to provide some form of help or support for the users.
Various forms of support should be available, like on-screen hints, message
windows, direct prompts, or access to online chats staffed by a competent
agent.

Since then, Nielsen’s usability heuristics have been used as universal guide-
lines for interaction design, and they also serve as criteria for evaluating usability
of interactive products. Figure 2.3 presents a symbolic, lightweight explanation of
Nielsen’s usability heuristics.

Figure 2.3. A symbolic explanation of Nielsen’s usability heuristics
(Credits: https://uxdesign.cc)

In the HCI literature there are also many other design guidelines presented
by other authors, who expanded the original scope of Nielsen’s usability heuristics.
Among many, following design recommendations based on Jacobsen and Meyer
(2019), Malewicz and Malewicz (2019); Hartson and Pyla (2012), Norman, (1999);
Tognazzini, (1995); Shneiderman et al. (2017), Dix (2004) and Krug (2005), de-
serve a particular attention.
1.	 Visibility of key objects

	– All important functions and object should be visible to the user at once and
there should be a clearly visible on-screen prompt on how to get started.

	– Navigation controls should always be visible and should not disappear from
the screen.

	– The structure of the whole system should be transparent, with a visible divi-
sion into distinctive sections or modules.

2.2. Design guidelines for GUI 25

2.	 Mapping objects to actions
	– An accurate translation of user intentions into the look and behaviour of user

interface elements is necessary for a smooth interaction.
	– Mapping user’s expectations into system behaviour should be as natural

as possible by using easy understandable visual analogies, symbols, and
labelling.

3.	 User guidance
	– The user should know in advance how many steps need to be performed and

what data may be needed.
	– Steps and operations should be guided step-by-step, supported by on-line

validation and reversible “undo-redo” options.
4.	 Intuitiveness

	– The system should advance and “put forward” objects and data the user
needs in subsequent steps, making impression of “reading user’s mind” dur-
ing the system operation.

	– In order to pre-program these actions and behaviours, users’ work with the
system should be observed and actual task-related activities accordingly re-
flected in user’s workflow.

5.	 User’s autonomy
	– Users should be able to perform their tasks in multiple ways, depending on

available skills, time, constraints, environment, or other local conditions.
	– Explorable interfaces should be provided not only for “open” tasks, but for all

situations where users are encouraged to self-learning, gaining news skills
or getting familiar with other areas of work process, beyond their local, own
routines.

6.	 Support for the visually impaired users
	– All visual aids should complement each other: scaling the size of letters and

graphics, the ability to zoom the workspace, change colours or contrast, hid-
ing graphics, magnifying selected objects, etc.

	– Additional aids should be available for improving the visibility of objects in
varying lighting conditions (sunlight, darkness), what would provide smooth
interaction by reducing a chance for human errors.

7.	 Consistency
	– Consistent user interfaces decrease error rate, reduce users’ annoyance,

and minimize the load on human memory and mental effort.
	– For providing consistency, appropriate GUI styleguides, patterns and tem-

plates provided by the manufacturers of software platforms and environ-
ments should be followed whenever possible.

The above general design guidelines are supported by hundreds of tips re-
garding screen design, icons, menus, dialogue boxes, navigation planning, and
other interaction design details, easily available in interaction design handbooks

2. Graphical user interfaces26

(e.g. Sharp et al., 2019; Malewicz and Malewicz, 2019; Galitz 2013) and in numer-
ous sources online, for instance:
•	 User Interface Design Handbook: https://designcode.io/ui-design-handbook;
•	 Usability.gov: https://www.usability.gov/what-and-why/user-interface-design.html;
•	 Interaction Design Foundation: https://www.interaction-design.org/ebook.

2.3. Standardization for consistency

Among all usability guidelines, achieving user interface consistency is definite-
ly the critical factor for reducing users’ effort in learning and operating any inter-
active system. Standardization and reuse of user interface elements are the main
methods for achieving user interface consistency (Sharp et al., 2019; Shneiderman
et al., 2017). Following aspects of standardization for consistency are especially
important: using screen templates, user interface styleguides, and “de facto” stand-
ards, shortly described below.

Screen templates and wireframes

User interface consistency can be easily achieved by unification of visual ele-
ments and by designing a user interface on a series or standardized layouts where
location, look and behaviour of control elements (buttons, windows etc.) is similar
across the whole system. Such templates, often called “wireframes”, form a reus-
able skeleton for all screens, and designate specific areas where users can find
various types of information or objects (Figure 2.4).

Figure 2.4. Template-based screen consistency
(Credits: https://www.pngwing.com)

https://designcode.io/ui-design-handbook
https://www.usability.gov/what-and-why/user-interface-design.html
https://www.interaction-design.org/ebook

2.3. Standardization for consistency 27

Styleguides

With years of expertise in development of IT systems, software companies
attempt to standardize user interface elements, so user interface consistency could
be provided at low cost. The styleguides are documents that present recommend-
ed patterns for typical design issues like appearance, location and behaviour of
user interface components (controls or widgets) such as windows, buttons, tool-
bars, dialog boxes, menus, navigation tools and other visual elements.

Promoting the use of styleguides to designers assumes that an easy-to-use
GUI can be achieved not by reinventing but by using consistent graphical layouts
across the whole system and by reuse of standardized elements the user are al-
ready familiar with.

User interface styleguides are available from software companies such as
(Figure 2.5):
•	 Apple: https://developer.apple.com/design/human-interface-guidelines/;
•	 Microsoft: https://docs.microsoft.com/en-us/windows/win32/appuistart/-us-

er-interface-principles;
•	 Google: https://developers.google.com/style/;
•	 SAP: https://experience.sap.com/guidelines/.

Figure 2.5. An excerpt from the Microsoft Windows styleguide
(Credits: https://docs.microsoft.com/en-us/windows/uwp/)

https://developer.apple.com/design/human-interface-guidelines/
https://docs.microsoft.com/en-us/windows/win32/appuistart/-user-interface-principles
https://docs.microsoft.com/en-us/windows/win32/appuistart/-user-interface-principles
https://developers.google.com/style/
https://experience.sap.com/guidelines/

2. Graphical user interfaces28

“De facto” standards

The term “de facto” standards describe those user interface elements which
became well-known to users and are widely used in software applications, but they
had not gone through any formal standardization process. “De facto” standards
include examples such as: a hover panel showing folders the left-hand part of the
screen and their contents in the right-hand panel, a ribbon menu, a +/- zoom button,
or local menu hidden under right-button of a mouse.

In user interface design, including “de facto” standards makes systems easier
to use and provides the users with familiar experience already known from other
applications. Many “de facto” standards which turned to be successful and popular
usually get included into styleguides and they eventually become recommended
design patterns.

2.4. Evaluation of user interfaces

There are three main types of user interface evaluation for IT projects: heuristic
evaluation, checklist-based inspection, and user-based usability testing.

Heuristic evaluation

Heuristic evaluation (Nielsen and Molich 1990) is performed by an external ex-
pert - interaction designer, user interface or UX specialist. This method is aimed to
assess the degree of compliance of specific user interface (IT product) with regard
to Nielsen’s usability heuristics, presented in section 2.2. In heuristic evaluation
an evaluator needs to assess to what extend each usability heuristic is satisfied
in an evaluated system. An expert is interpreting each aspect of the user interface
against each heuristic with relevance to specific tasks performed by users.

Heuristic evaluation obviously is a subjective process, but at the same time
it opens room for discovering new opportunities for improving the product beyond
existing usability problems. For instance, in addition to evaluating the user inter-
face, heuristic evaluation can also refer to other aspects of the product, like factors
affecting consumer trust or other business aspects. Practical guides to conducting
heuristic evaluation were provided by Nielsen (1994) and Wong (2020).

Checklist-based inspection

Checklist-based inspection is usually conducted by a qualified specialist or
tester, working for a specific IT development team. Evaluation process is based
on systematic inspection of software product (GUI), following all items (questions)
included a specific evaluation checklist.

Evaluation is usually performed by marking a score on a specific scale, ex-
pressing several possible grades of conformance with a specific question. Many

2.5. Trends and innovations 29

checklists include also open questions of blank fields for adding comments or notes
relevant to items being evaluated.

Contrary to heuristic evaluation, a checklist-based evaluation is less prone to
subjectivity, less flexible and not aimed at discovering new problems beyond the
scope of the checklist. After evaluation is completed, the coverage percentage ratio
is calculated to produce reports and graphs showing the current state of product
usability and a list of required corrections.

There are many checklists available for evaluating user interfaces, accessible
both from the classical HCI literature and from on-line sources such as:
•	 https://www.stickyminds.com/sites/default/files/article/file/2014/GraphicalUIT-

estingChecklist.pdf;
•	 https://www.methodsandtools.com/archive/archive.php?id=37;
•	 https://lvivity.com/checklist-for-ui-testing.

User-based usability evaluation

Usability evaluation is a type of user-based testing, performed with a sample
of prospective users invited to test a specific software product during the usability
testing session. Users perform a series of pre-specified tasks with a given soft-
ware product, or a prototype. Their actions are usually video recorded in order to
collect quantitative and qualitative data useful in detecting where errors occur, and
which user interface elements make the software product difficult to understand
and operate.

After the testing, users fill in a questionnaire with questions about their sat-
isfaction and product usability and share their opinions in an interview. Usability
evaluation with users my be supplemented with expert reviews or with laboratory
experiments.

The above evaluation methods are applicable for the GUI, but also for web and
mobile user interfaces, after some modifications, presented in Chapters 3 and 4.

2.5. Trends and innovations

Towards a more natural interaction

Despite GUI was a great step forward from the CLI (Command Line Interface),
there is still an ongoing search for even more intuitive interaction techniques, called
NUI (Natural User Interfaces). The main limitation of GUI is necessity to use de-
vices intermediating between the system and user, such as a keyboard, mouse of
joystick. No wonder that novel interaction techniques are continuously developed,
attempting to expand the concept of GUI towards more natural interaction NUI –
Natural User Interfaces (Figure 2.6).

https://www.stickyminds.com/sites/default/files/article/file/2014/GraphicalUITestingChecklist.pdf
https://www.stickyminds.com/sites/default/files/article/file/2014/GraphicalUITestingChecklist.pdf
https://www.methodsandtools.com/archive/archive.php?id=37
https://lvivity.com/checklist-for-ui-testing

2. Graphical user interfaces30

Figure 2.6. The concepts of CLI, GUI and NUI
(Credits: https://interaction-design.org)

The NUI concept aims at building user-system interaction as reflecting natural
human communication activities, such as speech, gaze, touch or gestures. In NUI,
now-dominating intermediary devices such as mouse or keyboard could be elimi-
nated, and user-system interaction would much resemble a direct human-human
communication.

Although the concept of NUI is still largely in a laboratory phase, some inter-
action techniques presented below open interesting opportunities towards NUI. At
least, they are significantly expanding GUI and improving User Experience. For
instance, voice interfaces, or Augmented Reality (AR) do not require complex com-
puting and can much improve UX, so they are getting quite popular in many appli-
cation areas.

Despite of recent developments in user-system interaction methods, now dom-
inating GUI is not likely to be rapidly replaced by NUI in the near future. Instead,
a gradual evolution towards natural user interfaces (NUI) will rather take place,
based on NUI-like extensions, such as speech recognition, gestures and touch
control, and new types of input devices. This evolution is already taking place, sup-
ported by novel trends and innovative forms of interaction, shortly presented below.

On-screen direct manipulation

Direct manipulation is an interaction technique allowing users make direct
changes to on-screen objects without using dialog boxes. This method is usually
executed by right-clicking the mouse over an object, highlighting the object, and
next changing its geometrical parameters (shape, size, location, etc.) directly by
dragging or rotating an object with the mouse or by selecting additional options
from the context menu (e.g. changing the colour). A popular form of direct manip-

https://interaction-design.org/

2.5. Trends and innovations 31

ulation is for example the “drag and drop” or other similar mouse-controlled opera-
tions performed directly on geometric objects (Figure 2.7).

Direct manipulation was the first extension of GUI towards more natural inter-
action and gained high adoption in engineering, creative, or gaming applications.
Direct manipulation produces an immediate effect, it is pleasant to use, easy to
learn and encourages experimentation, thus making it a method very much liked
by all categories of users. Despite obvious advantages, applying direct manipula-
tion may be problematic to objects of operations which do not have a direct visual
representation.

Nevertheless, although used mostly with mouse, direct manipulation has be-
come even more popular with the spread of touchscreens-equipped devices like
tablets or smartphones.

Figure 2.7. Direct manipulation in a solitaire card-game
(Credits: https://www.microsoft.com)

Touch and haptic user interfaces

The touch screen interface is an interface allowing users to interact with soft-
ware simply by touching screen objects by a finger. It has become pleasant and
engaging and because users no longer have to use buttons or a mouse to hover
over the GUI elements.

Although for some time touch screens no longer seem to be a novelty, they are
an important step toward more natural interfaces, simplifying manual operation on
handheld devices. Small touch screen devices are appropriate for tasks involving
manual selection and pointing, but they are not much suitable for precise opera-
tions such as drawing, movement, operations on objects, or for entering a great
amount of data (such as writing text). For this reason, apart from mobile devices,
touch screens are often used for situations where space is limited (e.g. cars, ma-

2. Graphical user interfaces32

chines), and for operations which do not require extensive data entry or high-pre-
cision movements.

Haptic user interfaces also use touch for operating a software app or device,
but they can also transmit force and vibrations from and to user. For this reason,
haptic interfaces are often used for remote control of devices, or in computer sim-
ulators where manual operations (such as assembly, repair, surgery, etc.) are the
subject of training.

Voice interfaces

Voice interfaces, often available as an add-on to GUI, open for users the pos-
sibility for operating software (or devices) with voice commands. Although yet far
from perfect, voice interfaces have undergone a big progress in recent years. Cur-
rent technology for generating output voice messages for the user (one way com-
munication) is quite well developed, synthetically generated messages are useful
as an additional channel to inform users, but for the blind or manually disabled
users but they are the main form of interaction.

Voice interfaces based on human speech recognition include chatbots, call
routing, speech to text, and handsfree control of computer and mobile operations.
Speech recognition is one of the most common examples of a natural modalities
being already implemented.

However, in a two-way communication voice interfaces still face problems with
correct understanding if users speak with dialect, with errors or in a noisy surround-
ing. Users often complain that generated voice responses are still too “robotic”, and
significantly less realistic than those between humans conversating with emotions,
tone, and sentiment.

Virtual Reality

Virtual reality (VR) Interfaces apply computer-generated visualizations that
provide users with the illusion of participation within the artificially created envi-
ronment. Images, animations, or videos are projected on a screen or inside user’s
headset, providing a sense of presence (“immersion”) is a certain thematic envi-
ronment. VR makes use of user’s natural gestures for moving objects or issuing
control commands, but it requires uncomfortable equipment (headset, gloves, ca-
bles) to be attached to the body of a user. In addition to this, VR require cameras,
motion sensors, supporting software and projection systems to be unstilled in us-
er’s space for recognizing specific human gestures and then translating them into
actions. Simple VR systems do not require expensive projection equipment, but
an affordable headset, nevertheless numerous motion sensors are necessary for
using gestures for manipulating an object (Figure 2.8).

A VR interface provides users with a new kind of experience and emotional en-
gagement, enabling them to navigate in a 3D space and to interact with 3D objects,

2.5. Trends and innovations 33

and encouraging active participation in a specific action by creating the psycholog-
ical state of “presence” or “immersion” within a certain reality.

Because VR interfaces are costly, so far, they have been used mostly in com-
plex systems like training simulators or visualization environments for architects,
automotive designers, and other construction-related professionals. Most recently,
growing availability of low-cost VR solutions (headsets and software) opens new
opportunities for broadening VR application areas also to personal therapeutic, ed-
ucational or entertainment purposes.

Figure 2.8. Virtual reality in an engineering design application
(Credits: https://robodk.com)

Augmented Reality

Augmented reality (AR) enriches the real physical space display with images
generated by a computer. Differently than in VR, an expensive headset is not re-
quired for AR, using special glasses instead. It is also possible to display the image
directly on a screen, whether it is a computer or a handheld device, like a tablet. It
is much simpler and cheaper, often even a low-cost solution.

For this reasons AR finds primary applications in maintenance and servicing of
industrial machinery, in museums for expanding visitor’s experience when viewing
historical objects and in gaming. In a coming future more advanced applications of
AR are expected to revolutionize e-learning (conducting educational experiments),
maintenance of industrial equipment (Figure 2.9) and occupational training for
workers in robotized manufacturing plants.

2. Graphical user interfaces34

Figure 2.9. Augmented reality in industrial applications
(Credits: https://i-scoop.eu)

Multimodal interfaces

Multimodal user interfaces use simultaneously many input and many output
modalities (channels) for user-system interaction. It means that for instance voice,
touch and gesture can be used in parallel, without necessity to switch the channels
in a manual way. This offers the user a very natural interaction, high autonomy, and
potentially hight tolerance to errors, which automatically are handled by the system,
possibly using AI algorithms, too.

Because the system automatically recognizes user’s commands and their
modality, such systems are very complex from an engineering point of view. For
instance, gesture recognition allows the controllers to have very precise acceler-
ometers and gyroscopes for sensing the rotation, acceleration, and tilting. As a re-
sult, multimodal systems are very costly, and unfortunately yet not as reliable as
required for industrial or military applications. For this reason, most of multimodal
interfaces thus very costly, and yet not as reliable as required for industrial or mil-
itary applications can be found in the area of entertainment and gaming, including
Microsoft’s Kinect that allows the gamers to interact through their gestures, body
motions, and speech commands.

Brain-Computer Interface

The Brain-Computer Interfaces (BCI) may seem to be mysterious, as they are
able to read user’s neural signals and make use of them with adequate software
that translates the neural signals into actions. Nevertheless, there are still many

2.5. Trends and innovations 35

challenges regarding user control and reliability of BCI-base systems, especially
adequacy of intention recognitions, accuracy of control actions, or calibrating each
system (device) to individual characteristics of a specific user.

Although BCI offers a huge potential, due to their complexity, BCI-based de-
vices are still in a laboratory phase. However, in a not very distant future they may
have many applications, particularly in the health sector. It may allow the paralyz-
ed patients to operate their wheelchair or even an ergoskeleton-supported limbs
merely by “the power of the thought”.

Future developments

In recent years user interfaces have been significantly expanded with innova-
tive components, enriching user-system interaction. User interfaces have under-
gone following stages:
•	 CLI (Command Line Interface) – text-based interface based on user-typed

commands, now used only in professional software applications;
•	 GUI (Graphical User Interface) – now dominating user interface, based on

WIMP and direct manipulation;
•	 NUI (Natural User Interface) – a yet experimental user interface, aimed at en-

abling users to control computers with voice, gestures or body movements,
without devices such as mouse or keyboard.

The ultimate goal of NUI is to create a smooth and seamless interaction be-
tween the user and machine, performed in the most natural way possibly resem-
bling an actual human-human communication — it is as if the user interface does
not even exist.

Unfortunately, NUI requires using many sensors in user’s environment and
making use of complex optimization models for compensating human variability
and imprecision. On the upsides, it is important that NUI it is not very difficult to
learn for the novices, who step-by-step are getting more and more advanced. How-
ever, although NUI is a very attractive concept, due to its complexity its full imple-
mentation to everyday life is still very far from completed.

As a result, despite of recent developments is not likely that in the foreseeable
future GUI would be replaced by NUI. Instead, GUI will be rather evolving by grad-
ually with extensions such as embedded online content (like chatbots or online help
systems) or connections to online collaboration platforms. Incremental changes
make GUI gradually undergoing some sort of hybridization with online contents
and integrated with web applications. With advancements in computer graphics,
current GUI interfaces enable new forms of information presentation, access to
multimedia (video with sound), and visual communication with other individuals.
Moreover, GUI-based applications are essential for stimulating human creativity
and exploration, which deepen the understanding of the task situation by the user.

2. Graphical user interfaces36

However, a good GUI is still difficult to design and implement, and the com-
plexity of interaction techniques requires regular user-based evaluations in an IT
project. Moreover, in some tasks the user productivity in GUI paradoxically can
be much lower than the in CLI-based systems due to the fact that manual mouse
operations are often much slower than skilled typing.

Collaboration and communication require users should have access to a com-
puter connected the internet or to a corporate network. As a result, a new network-
ing computing paradigm emerged, based on user interaction with websites and
with web applications, which offer functionality formerly not available in GUI-based
software.

These changes gave rise to web-based and mobile user interfaces which will
be presented in the next chapter.

3. Web user interfaces

3.1. Specific features of Web user interfaces

Since the 1990s businesses and PC users gained access to the Internet, which
enabled them to explore online content, e-shops, and online services. For users
Internet-related benefits were the consequence of two major factors:
•	 availability of web browsers enabling users to access the online content, al-

though at first only “from the desk”, using a using a cable connection to the
internet;

•	 availability of websites with online content, at first purely informative, then fol-
lowed by e-commerce.

Currently, following types of web user interfaces are in use:
1.	 Informational websites. These websites primarily provide textual and visual in-

formation, and due to rather poor interactivity the user usually remains a pas-
sive consumer (reader) of the content.

2.	 Service websites. These websites primarily provide specific services, like mak-
ing a reservation, buying an item, or travel planning, and they require some
activities to be performed by the user. All e-commerce, e-business, and e-gov-
ernment services available usually fall into this category.

3.	 Web applications: Known also as internet applications, they perform specific
functions like calculations, bookings, payments, etc. They have similar appear-
ance to typical software applications, but they are developed as typical compo-
nents to be embedded as a part of a specific website. In order to improve task
performance and UX, some web applications may be standalone applications
(without a browser menu), often installed as a “thin client” in a local system.

Comparing to GUI, the design of web user interfaces has a broader scope
because a website is expected to provide not only usability (task-related), but
also pleasant emotions for the user (positive UX). Moreover, due to specificity of

3. Web user interfaces38

web-based interaction, websites and web services can be accessed by users from
a global market, so they need to be designed for an international audience.

While the GUI is strongly tied to the paradigm of work-related desktop com-
puting, web users expect enjoyment and pleasant experiences, apart from task
performance. With the emergence of various e-business websites, per analogy to
market situations from real life, users gradually accepted their position as online
consumers who have quality-related requirements. Subsequently, web designers
and website owners had to put usability as precondition for smooth completing
self-service transactions, and the positive UX as a second precondition that con-
sumers would return and shop again.

Web-based interaction introduced new user interface elements previously not
present in GUI-based systems:
•	 attractive content (text, images, and video) capturing attention of users;
•	 intensive use of graphics for creating a unique website style and atmosphere;
•	 cursor turning into a “hand” over a hyperlink on a webpage;
•	 free navigation through the website structure, supported by a variety of guid-

ance aids such as a site map, or marking places already visited links;
•	 novel functions such as search window, shopping basket, forward-backward

buttons, access to history, favourites, etc.

As a result, the web-based interaction is more intensive, engaging, and en-
abling users to feel pleasure in online explorations, which were not available in
GUI-based systems. As web design was progressing, it soon became clear that not
a web browser, but the content of each web page, its usability and UX, largely con-
stitute UX for online customers. Furthermore, web design had to follow changing
trends and latest developments in internet technologies (Figure 3.1).

For websites and web-based interaction, main design objectives can be spec-
ified as follows:
1.	 Providing adequate functionality, understandability and ease of use (usability).
2.	 Providing attractive, engaging content with good readability and accessibility.
3.	 Delivering positive UX for memorable emotional impressions for the users.
4.	 Developing valuable business relationships with users-customers.
5.	 Providing respectful interaction, customer privacy and security protection.

The prevalence of web user interfaces introduced a new computing paradigm:
free access to rich online content, using computers for services and enjoyment,
and turning users into online consumers. Subsequently, design guidelines for web
user interfaces needed to be developed so the users to their best could exploit
unlimited opportunities for exploring the web.

3.2. Design guidelines for Web user interfaces 39

Figure 3.1. Changing trends in web design (2004–2008–2015–2020)
(Credits: https://bbc.co.uk)

3.2. Design guidelines for Web user interfaces

Guidelines for Web user interface design largely originate from design rec-
ommendations relevant to GUI. For However, for web design classical Nielsen’s
usability heuristics had to be considerably adapted to specific characteristics of
web-based interactions (Nielsen 2000, Nielsen and Loranger 2006), as follows:
H1.	 Visibility of system status. Keep users informed of system status

with constant feedback.
The system (the website) should always provide information about what is
currently happening in the system through confirmations and messages. For
instance, the user should be informed with a progress bar when the data are
still in transfer and how long it may take. Also, user’s current location in the
structure of the website should be clearly marked.

H2.	 Match between system and the real world. Set information in a logical,
natural order.
The system should inform the user with a plain language, with words, phras-
es and graphics familiar to the user. Information should appear in a natural
and logical order, especially when filing in online forms or checking out to the
payment. Language versions should be provided, or at least translations of

https://bbc.co.uk

3. Web user interfaces40

important content, instructions, or labels. Navigation tools, maps, and location
plans should reflect the actual layout of objects.

H3.	 User control and freedom. Ensure users can easily undo/redo actions.
The system should guide the user through subsequent steps of the task. Func-
tions like “cancel”, “back”, “forward” “undo” should be available for each op-
eration. Variable navigation aids should be provided: navigation path (“bread-
crumbs”), site maps, easy return to the home page and clear, hierarchical
view of objects. Additionally, there should be provided an easy correction of
errors in online forms, preview the actual appearance of objects.

H4.	 Consistency and standards. Maintain consistent standards, so users
know what to do next without having to learn new toolsets.
The system should use consistent page layouts, and permanent positioning
of clickable objects such as logo, headers, menus etc., which should operate
in the way known to users from other systems. Names and labels should be
short and communicative, following popular conventions. Acronyms and ab-
breviations usually are not obvious for a larger audience, so they should not
be used.

H5.	 Error prevention. Prevent errors if possible; wherever not, warn users
before they commit to actions.
Interaction, layout and content of the website should be designed in a way
minimizing possibility for human error and with opportunity of easy correction,
like pre-set default data values, automatic spell checking, autocompletion,
and forms which do not lose data when “back” button is clicked. Error-pre-
venting visual aids for improving visibility should be always available, such
as font enlargement, appropriate scaling of webpage (including online forms),
and clear preview of data/documents to be submitted.

H6.	 Recognition rather than recall. Do not make users remember
information; keep all available options visible.
Minimizing the user’s memory load should be achieved by making all objects,
actions, and options clearly visible, as well as by simple, minimalistic design.
All navigation options should be visible at once, clear marking of visited vs. un-
visited links. For a temporary storage of items, a clipboard, wish list or a handy
personal repository should be available.

H7.	 Flexibility and efficiency of use. Make systems flexible so novices
and experts can choose to do more or less on them.
The website should accelerate the user in reaching the goal by multiple short-
cuts, aids like “skip intro”, “jump to” and a local search engine complementary
to hierarchy menu. Also, a preview of recently selected items, autocompleting
data or phrases, and always visible list of most commonly used options (fre-
quently purchase items, for example) should be available.

H8.	 Aesthetic and minimalistic design. Design with aesthetics
and minimalism in mind – do not clutter with unnecessary items.

3.2. Design guidelines for Web user interfaces 41

In website design visual elegance should be achieved through simplicity and
minimalism: smart use of white space, adequate level of detail, clear layout of
pages without any unnecessary ornamentation, providing transparent choices
and careful using of only purposeful graphics.

H9.	 Help users recognize, diagnose, and recover from errors.
Provide plain-language error messages to pinpoint problems
and likely solutions.
In websites errors usually occur when users fill in online forms or select spe-
cific parameters from a dialogue box. Validation of user input data should take
place yet in the data field, default formats of data, hints and tips should be pro-
posed before the user makes a mistake and frequent confirmation messages
for the websites. Also, for new or infrequent users/customers, a supportive
and user-friendly system for login and password reminders will be necessary.

H10.	Help and documentation. Offer easy-to-search troubleshooting
resources, if needed.
Although websites are intended to be entirely self-service systems, users
sometimes may need help in case of problems or questions. Adequate, com-
plementary forms of support should be provided, like on-screen help, live chat,
active phone line or answers to typical questions. For websites offering specif-
ic services or products, like travel or medicines, supplementary explanations,
procedures, or instructions may be necessary.

In the HCI literature there are numerous design guidelines for web user inter-
face (e.g. Beaird and George, 2014; Phyo, 2003; Pearrow, 2000), which highlight
web-specific issues such as:
1.	 Consistency of presentation and navigation

	– Consistent navigation is essential for positive UX, but it strongly depends on
specific screen layouts, and on placement of navigation tools.

	– Designing screen layouts with regular grid helps to maintain consistency in
visualization and in navigation.

2.	 Readability of text, images, and icons
	– Texts structured into short paragraphs, with adequate level of detail and high-

lighted keywords. Only sans-serif fonts should be used, as they are easier to
read on the screen.

	– Text should be adequately balanced with images and white space.
	– Icons and other graphical objects should clearly communicate their meaning.

3.	 A variety of navigation tools
	– Global and local navigation should be complementary, supported by site

map and internal search window. For fast navigation traditional links (na-
vy-magenta) are most intuitive, and hidden menus or other disappearing
navigation elements should not be used.

	– Breadcrumbs (University > Faculty > Department > Staff > John Brown) can be
used to help users in quick browsing across the website information hierarchy.

3. Web user interfaces42

	– A quick return to the homepage should be provided by a click on header or
logo located in top-left corner of each subpage.

4.	 Perfectionism in online forms
	– Because online forms are a frequent source of users’ frustration, they should

be carefully designed and tested for possible human errors.
	– In designing online forms a logical and clear layout for data field should be

used, with prompted default formats of the data, and real time validation of
data in the field.

	– After the online form was submitted, a user should promptly receive a con-
firmation.

5.	 Adequate use of graphics
	– Moderate use of graphics is required for accomplishing a minimalistic, ele-

gant design.
	– Adequate use of graphics and colour is essential for creating the website

mood suitable to the brand image.
	– The use of videos and animation should be purposeful and minimal.

6.	 Trust and confidence
	– Multiple ways of creating confidence to website brand should be used, and

not only in e-commerce websites.
	– Excellence and perfectionism in design and verified, engaging content are

essential for building user’s trust to the website and its brand.
	– Extensive contacts data, information about people behind the company and

references to established institutions enhance online users’ trust to the com-
pany and its brand.

	– Clear declarations about customer care and support, and visible information
about security of payment process and protecting user privacy are also im-
portant trust-building elements.

In addition to the above guidelines, providing convenience and comfort for web
users is also essential. Websites are gateways to services, so avoiding customer
frustration and disappointment is essential to minimize the dropout of customers
(Nielsen, 2000; Nielsen and Loranger, 2006). Amenities such as easy registration,
password recovery, user guidance, storing the shopping history and the contents of
unpaid shopping baskets, are simple but essential components making a website
not only usable, but also service-oriented as to customer expectations.

3.3. User Experience factors

As presented in Chapter 1, a basic model of UX proposed by Hassenzahl
(2008) specifies its two main components: the pragmatic (task-related) and hedon-

3.3. User Experience factors 43

istic (pleasure-related) quality. For the web-based interaction this definition needs
to be expanded, because:
•	 in activities carried out online there are many more factors contributing to UX

than described by the Hassenzahl model;
•	 in e-business and other areas UX instances get cumulated in subsequent inter-

actions, shaping individual attitude to system re-use and to the specific online
brand (Hassenzahl and Tractinsky, 2006).

A “honeycomb” model of UX (Morville, 2004) is therefore much more suitable
for web-related activities, and it specifies required UX-related features of an inter-
active product (Figure 3.2):
•	 valuable (the core of positive UX): does the website deliver value for end users?
•	 useful: is the website useful in practical situations?
•	 usable: is the website easy to use?
•	 desirable: is the website and its offer attractive?
•	 accessible: is the website accessible for users with disabilities and for any type

of system/device users may have?
•	 credible: is the website trusted and believable?
•	 findable: is the website easy to find and is it easy to navigate?

According to the honeycomb model, for gaining positive cumulated UX, user’s
subjective assessment from all the above components should be clearly positive.
Steadily positive UX, cumulated during some period of time, should result in revis-
iting the website and – if further interactions produces positive UX – in developing
valuable business relationships and customer loyalty.

Figure 3.2. A “honeycomb” model of User Experience
(Morville, 2004)

Selected UX-shaping factors, which are important in website user interfaces
design, are presented below.

3. Web user interfaces44

Predictability

Users expect each website would behave in a predictable way, with a con-
sistent appearance and reliable feedback responses. Predictable behaviour is es-
pecially important in websites with a very complex structure, where conventional
navigation is difficult for users. Instead, users often expect to use a local search
engine, which – if effective – further reduces necessity to wade in complicated nav-
igation structures. In such cases, after quick landing on the final product page, user
has no further contact with website navigation. Return to the home page or skip-
ping among the thematic sections should be made in an easy, predictable manner
valid across the whole website. When users can faultlessly predict in what location
to look for specific elements, subjectively perceived speed of task completion will
contribute to increasing UX.

Speed

Users expect websites to work fast. Despite the speed is a subjective assess-
ment, it is a very important UX-shaping factor. Apart from the time consumed for
correcting errors, speed-related UX is the outcome of the subjectively perceived
pace of data transfer. For this reason, optimizing web pages for fast data loading is
crucial, especially graphics and scripts which are prone to causing delays.

Preventing user errors saves time needed for corrections, what also affects
perceived time of task completion. To make an impression of a speedy operation,
user‘s cursor movements should be smoothly guided by buttons with standard col-
ours (red for alert, “Stop” or “Cancel” and green for “OK”, “Next” etc.), or by simply
enlarging the size of default buttons such like “Next”, “OK”, “Accept” or “Submit”.
The effect of perceived speed may be even better, if default buttons are green per
analogy to “big green button” effect known from the copier machines, where bright-
ly green button stands out from other buttons in the control panel. This simple trick
makes finding and clicking an object faster and it shows how a de facto standard
can be used for accelerating user’s activities and improving UX.

Navigation

Although in websites hierarchic structures of content are still present, users
often navigate in a non-hierarchic manner, taking advantage of flexible and revers-
ible navigation paths. Since local search engines are present in most websites, the
significance of classical navigation tools (like hierarchic menus, site maps, „bread-
crumbs”, etc.) has diminished. For optimizing navigation paths, web analytics is of-
ten used for tracking pathways most frequently attended by users. This knowledge
can be successfully utilized for planning the layout of the website, to provide users
with a quick access to most popular products and for building a smooth checkout
process.

3.3. User Experience factors 45

In website design a positive UX resulting from a smooth navigation, following
elements are helpful: choosing screens templates for navigation (Figure 3.3) dis-
tinct marking of clickable elements, highlighting subsequent steps of a process,
opening a new link in a new card, and placing on each subpage a clickable logo
making an easy return to the home page.

Figure 3.3. Typical navigation templates for web user interface
(Credits: https://www.oreilly.com)

User guidance

Contemporary websites usually have a complex structure, combining hierar-
chical information architecture with network-like user flows. Navigation is no longer
simply top-down – it can be subject-by-subject, allowing user skip among differ-
ent sections of the website. In websites for procedural tasks, like buying tickets,
submitting reports, applying for funds etc., navigation paths should guide the user
smoothly through subsequent steps towards intended task outcome. At the same
time the user should feel a solid sense of control with reasonable amount of flex-
ibility and freedom as needed. A clear indication what part of the service the user
is currently in, strengthens the sense of control and facilitates easy return to the
home page. For positive UX, it is important that users would be guided especially in
more difficult parts of the procedure or in infrequently visited websites with lengthy
procedural tasks.

Supporting exploration

For positive UX, especially regarding its hedonic component, providing liberty
of exploration, pleasant astonishments and interesting discoveries are essential.
Many websites are intended for open, exploratory tasks whose outcome can vary
a lot, for instance searching for a memorable gift, or for a romantic holiday destina-
tion. Such websites should encourage users to free exploration of sections which
would meet their potential interests. In traditional websites with a static content,
advertisements and other visual suggestions should be directly prompting users
to explore specific topics. In systems with a dynamically generated content, espe-
cially where recommender systems are used, a panel with clearly visible list of the

3. Web user interfaces46

recommended objects (“Most popular”, “Bestsellers”, etc.) is often used to attract
customers’ attention, to make them explore contents, and to stimulate cross-selling
whenever possible.

3.4. Web accessibility and interoperability

Currently a large part of web users have various visual impairments, making
for them difficult seeing some elements of website contents. In many countries web
designers are obliged to provide adequate accessibility for visually impaired users,
in accordance with W3C1 guidelines, national standards and legal regulations. For
instance, it is mandatory to validate the webpage code and modify it a way which
guarantees accessibility for the visually impaired users, and to provide compatibility
with “screen readers” used by blind users. Easy to operate control aids should be
available for enlarging font and graphics, for setting the contrast, and for hiding
graphics and animations as needed. Whenever possible, using new web technolo-
gies such as HTML5 and CSS3 is recommended.

Providing accessibility currently is not only a legal issue, but also an important
UX-related factor for each “healthy” user who may not be able to improve text read-
ability by increasing the font, contrast, or to rescale the webpage when needed.
Such situations may occur for anyone, causing annoyance, frustration and result-
ing in negative UX. Therefore, even if not required by law, accessibility aids should
be always provided such as:
•	 zooming, appropriate scaling, contrast adjustment;
•	 reducing dynamic content (animations, video);
•	 presenting important data in a simple, alphanumeric format;
•	 optimizing online forms for accessibility, jointly with the content.

Accessibility may be also limited when a website does not open quickly or
loading images gets stuck due to a slow data transfer. Therefore, possibility of ad-
justing the website display for low-speed networks should be provided, especially
when technological deficiencies at users’ side may be expected.

The technical aspect of accessibility, called interoperability (not yet required by
law), describes providing users with access to websites’ functionality and contents
no matter which browser and what device is used. Subsequently, all content avail-
able online should “technologically neutral” – accessible from standard platforms
like Windows, iOS, Android, and diverse devices like PCs, laptops, tablets, smart-
phones, TV sets etc.

All aspects of accessibility can be successfully solved using the Responsive
Web Design or ARIA technologies (Kearney et al., 2020) to make website auto-
matically resize to any display type (desktops, tablets, and phones) and to any

1	 W3C – World Wide Web Consortium

3.5. Evaluation of web user interfaces 47

orientation (vertical or horizontal). Automatic reformatting of the contents to display
correctly goes at the cost of increased code complexity but it provides much en-
hanced UX for users.

3.5. Evaluation of web user interfaces

Similarly to GUI, for evaluating web user interfaces following methods are
available:
•	 expert-based methods (reviews): heuristic evaluation and checklist-based in-

spections
•	 user-based evaluations: usability testing and satisfaction surveys.

Heuristic evaluation
Heuristic evaluation is aimed at evaluating conformance of a website to Niels-

en’s usability heuristics adequately adapted to specificity of web-based interaction.
Expert evaluation of a Web interface can be performed using appropriately adapted
heuristic evaluation (described in Section 2.4). Performed in a similar manner like
for GUI, heuristic evaluation is subjective, flexible, and exploratory, but additionally
it often includes references to similar or competitive websites.

Checklist-based inspection
Web site inspections are conducted using web usability checklists, which iden-

tify the coverage ratio for specified requirements. A typical web usability checklist
has usually 30-50 items (questions), grouped into several thematic sections corre-
sponding to the main criteria for the evaluation.

Web usability checklists are less subjective than heuristic evaluation and they
allow at relatively quick identification of usability/accessibility deficiencies. A minor lim-
itation the checklists have is that they do not suggest how to improve a website, either
they do not address website’s emotional impact on user (UX).

In the literature (e.g. Rubin and Chisnell, 2008; Wong, 2002; Dumas and Re-
dish, 1999). there are many checklists available for evaluating Websites. They can
be divided into two categories:
•	 usability checklists, for which a typical evaluation scope is website usability and

user satisfaction;
•	 accessibility checklists aimed at evaluating website’s compliance with require-

ments regarding visually impaired users.

In addition to manually-operated accessibility checklists there are also numer-
ous software applications (e.g. ANDI, see Figure 3.4) for automated accessibility
testing which validate the code for compliance with W3G guidelines. After analys-
ing the website at specific URL address, a checker shows the fragments of code

3. Web user interfaces48

which need to be reworked because they reduce content accessibility for users
(Csontos and Heckl, 2020).

Figure 3.4. Web accessibility testing tools ANDI
(Credits: https://www.ssa.gov/accessibility/andi/help/install.html)

User-based evaluation and satisfaction surveys

Usability testing for websites can be performed with users in conventional
manner in laboratory conditions. Because it is focused on collecting possibly accu-
rate measurements with and adequate research apparatus, nowadays in agile IT
projects low-cost usability testing methods are getting increasingly popular. They
utilize less resources (“testing with 5 users” slogan), so cheap and quick in deliver-
ing practical recommendations instead of high precision results.

Remote usability testing describes the testing when users remain at home, like
typically during internet shopping (Figure 3.5). Their actions are recorded using
their computers, but the test tasks, interviews and surveys are managed from ex-
ternal locations by the test organizers. During the test, users perform specific tasks
scenarios using the evaluated website, like buying specific products online.

Satisfaction surveys usually follow usability testing and can be performed as
a paper questionnaire (only on-site), an online form or an audio-video interview.
Direct interviews with users allow to discover also factors affecting emotional state
(UX) of website users, which are otherwise difficult to be captured in conventional
user satisfaction questionnaires.

Ad-hoc satisfaction ratings are used for rapid collecting user feedback on
a popup window about the rate of user satisfaction just after completing a task. Ad-
hoc satisfaction surveys contain only a few short questions, and they are frequently
used during a regular operation of a website, and rarely during the design process.
Ad-hoc collected data is rough and not sufficient for in-depth explanatory analysis,
so users are usually prompted to open questions where they can explain their rat-
ing, if it was lower than the maximum value.

https://www.ssa.gov/accessibility/andi/help/install.html

3.6. Trends and innovations 49

Figure 3.5. Remote usability testing
(Credits: https://www.packtpub.com)

3.6. Trends and innovations

Servicizing the Web

Servicizing (Rothenburg, 2007; Toffel, 2008) is a business transaction practice
in which satisfying customer needs is achieved (1) by selling the specific function-
ality rather than the product itself, or (2) by increasing the service component of
a product offer. The servicizing concept is based on the idea that customers want
to purchase a solution to their problem, not necessarily the ownership of a prob-
lem-solving tool (like a software). Therefore, they are rather willing to pay the func-
tion (the value) the product can release, than the product itself.

SaaS (Software as a Service) is a distribution model in which individuals and
businesses can get access to cloud-based web applications for a reasonable sub-
scription fee instead of paying for a lifetime ownership of a software licence. Simi-
larly, Spotify and other streaming services provide subscription fee-based access
to digital content (music, videos, etc.) instead of selling files or CDs to be owned
by a consumer.

Servicizing is now quite popular for several reasons:
•	 users are consumers who treat web-based solutions as useful services, not as

typical software products or systems;
•	 consumption of value from digital products is often based on a subscription fee

rather than on owning a device;
•	 users expect the possibility of terminating their subscriptions whenever their

needs change (which is impossible when owning a software which is no longer
needed).

3. Web user interfaces50

Servicizing also changes the definition of value for customer, as customers
are now rather willing to reward the value of a direct solution for their problem,
than owning the tool. The servicizing concept thus allows to convert an IT product
(usually a website or mobile application) into a solution-delivering service or a sub-
scription-based personal assistant. As a result, online services are pervasive and
penetrating all areas of professional and private life.

There are three main statements resulting from the servicizing concept:
1.	 In online services adequate functionality, usability and UX are necessary to cu-

mulate positive user experiences and to create trust-based customer-vendor
relationships.

2.	 In agile IT projects designers are primarily developing services for customers,
not merely software products.

3.	 The customers want to pay benefits they get from a specific service, not its en-
gineering excellence or an ownership of the IT tool.

For designing web-based interactions, servicizing means that all types of web-
sites and web applications deliver value only by activation user-service interaction,
when customer is operating a website or an app. It is similar to the Service Domi-
nant Logic (SDL) concept, which states that value is created by mutual exchange
of activities among actors involved in a business relationship (Vargo and Lusch,
2008).

Both servicizing and SDL are perfectly suited as conceptual frameworks for
web-based applications and online services, no matter if they provide rapid solu-
tions to common problems, or have a long-term effect in improving quality of con-
sumer’s life.

The Web is going business

In the timespan of recent several years, online services have become a natural
part of everyday life. In e-business to be successful, a broadened design perspec-
tive must be applied to designing websites and web applications.

In this broader view, designing user interface, caring for usability and UX is
only a part on the job. Beyond visual aspects, the website should be trustworthy,
accessible, and supportive in strengthening the brand image. A website should also
clearly inform that this site safe and credible. A solid assurance about protecting
customer data, protecting privacy and guaranteed security of payment, confirmed
by certificates and authorizations should be provided. Nevertheless, perfectness
in each detail of web design, outstanding usability and UX are the fundaments for
building trust and credibility for designing economical interactions online.

In efforts to keep an online service resilient to market competition, during its
lifecycle it is important not only to keep it growing financially, but also strengthen-
ing its maturity by raising subsequent maturity levels. While the FUVUX model
(Sikorski, 2012) identifies crucial design areas (functionality, usability, user expe-

3.6. Trends and innovations 51

rience and value) which should be subsequently developed to gain acceptance
with customers, the layer-based model for online services describes the process
of gradual growth and development. Both models, presented in Chapter 1, can
be used to conceptualize the systematic upgrade of online services. The upgrade
development process may take place a series of small, incremental changes, as
well as major revitalizations taking place in dedicated projects aimed at improving
Customer Experience.

E-business websites and online services are usually integrated with Custom-
er Relationship Management (CRM) systems, which allow preparing customized
offerings and campaigns. As a result, nowadays the scope of web design covers
issues beyond pure user interface design: strengthening the online vendors’ image
and brand, as trusted and caring for customers, and designing economic interac-
tions, especially online relationships which build customer loyalty (Figure 3.6).

Figure 3.6. An example of a website creating relationship with a brand
(Credits: https://hardrock.com)

Expanded interactivity

In today’s digital business customers expect more interactivity, regarding fol-
lowing areas:
1.	 Interactivity with a product or service

User’s motivation to buy a product is much affected by visual stimuli. For this
reason, multiple modes of visual interactivity with the product must be provided,

3. Web user interfaces52

using high-quality interactive graphics, ability to zoom or flip the product view,
with quick loading of visual contents and immediate feedback to user actions.
Excellent visual search is also very important, not only by finding product images
from an internal search engine, but also by gallery views, history (with product
images) and a purposeful use of suggestions generated by recommender sys-
tems. For instance, Rich Internet Applications (RIA) with AJAX technology can
improve UX by enabling smooth zooming, viewing, rotating objects etc., during
an online configuration of a product or when browsing a big information space.

2.	 Interactivity with the service vendor
Users/customers often have questions regarding the product, delivery, guar-
antee, etc. They may be sending a question by e-mail or using an online form
or a chat available in a website. Excellent responsiveness is a crucial factor for
building positive Customer Experience. Customers frequently complain that in
many websites an online chat is not always staffed, or it is operated by a chatbot
often distrusted by users. Users also complain that getting response to a written
enquiry often takes long (or sometimes it is never received); no wonder that
a vendor who responds quickly has a higher chance for receiving the custom-
er’s order.

3.	 Interactivity with other customers
Customers’ decisions are often much driven by recommendations, opinions and
comments from other users. For this reason it is essential that online vendors
provide users the possibility for social interactions directly on their website, or
on vendor’s fanpage. Even if comments are sometimes critical, customers usu-
ally appreciate vendor’s openness if they are politely responded. Otherwise, if
vendor had not provided an area for customer’s comments, the critical ones will
be probably published online elsewhere, leaving the vendor with little possibility
to respond.

The Web is going social

In 1990s, early videoconferencing apps (like Skype) prepared users to new
opportunities social interacting online can offer. Subsequently, rapid emergence of
Facebook and Twitter empowered users to communicate and to publish comments,
videos, or podcasts.

In recent years social media became a powerful tool for creating online com-
munities, marketing communication, social and political campaigning and publish-
ing own content (User Generated Content - UGC). UGC and largely spontaneous
social activity online significantly benefited in democratizing the web. In many plac-
es it also much contributed to strengthening civic society, to social reinforcement,
rapid information spread and mobilizing communities for actions when needed.

Also, businesses have successfully combined websites with social media.
Websites present data, facts, and periodically updated information, which remain
rather static and official. Instead, social media (like company fanpages or video

3.6. Trends and innovations 53

channels) conduct dynamic interaction with target communities and often are com-
plementary to official websites.

Social media created new business opportunities for campaigning, crowd-
sourcing, and fundraising. They also contributed to creating a variety of new jobs,
like social marketers, influencers, bloggers, and other types of online content cre-
ators.

On the other hand, users’ liberty in social media created significant problems
regarding credibility, validity and accurateness of user-published news or opinions.
Subsequently social media turned out to be prone to abuse, online violence, hate
speech and propagating various extremisms. Nevertheless, despite of some regu-
lating efforts, they are still associated with high risk for misinformation, fake news,
scam, and aggression. This raises concerns about institutions and regulators un-
able to efficiently protect the most vulnerable members of the society, like children
and youth.

Actually, in social media UX results largely from interacting with content almost
entirely generated by other users, which is often controversial and much beyond
the control of webmasters and moderators. In web design using social media, all
these concerns should be adequately handled in designing web-based interaction.
Nowadays credibility and trust are essential to build relationships, and they are an
essential part of interaction design.

Web-based conversational interfaces

In 1990s early web-based videoconferencing apps (like Skype) gave rise to
online interactions with remotely located persons. Today conversational interfaces
are an essential part of social media, but in addition to connecting people, they can
be also used for conducting dialogues between human user and a software robot,
such as chatbot of a virtual agent.

Both chatbots and virtual agents are conversational interfaces powered by
AI-based speech engines. They are able to “understand” questions users’ put in
a natural language and to prepare an answer to be presented by a text message
or by a synthesized voice.

Chatbots and virtual agents are often embedded into websites of utility compa-
nies, banks and other institutions daily serving frequent enquiries from thousands
of customers. The use of chatbots is often motivated by expectations that call cen-
tre’s costs will be reduced, because most of typical questions could be possibly
answered by a software robot.

Chatbots are chat-like conversational interfaces, where a user can type
a question to a text-based dialogue window, usually marked by an icon symboliz-
ing an automated chatbot. If equipped with suitable language engine, chatbots are
able to conduct text-based conversations in a way much similar to human-human
dialogue (Figure 3.7).

3. Web user interfaces54

Virtual agents are on-screen human-like characters, often animated, that re-
spond to user questions using synthetized voice or by a text message (Figure 3.8).
They usually represent assistant personnel from specific institution that owns the
website, now “staffed” a virtual person. Virtual agents are of complex engineering,
because they need various AI-based mechanisms to dynamically adjust replies to
the context, to customer’s expectations and to a specific dialogue style. The ani-
mation of the agent (mimics and gestures) also needs to be synchronized with the
content of the dialogue.

Figure 3.7. Conceptualization of a chatbot-based conversational
web user interface

(Credits: https://chatbotsmagazine.com)

If a conversational interface (a chatbot or a virtual agent) works smoothly,
users should be impressed, and their positive user experience should result in
confidence to a virtual agent and in willingness to reuse. Unfortunately, despite of
significant advancements in speech and language engineering, conversations with
a chatbot or virtual agent yet do not resemble a real human-human dialogue for
following reasons:
•	 comparing to chatbots, users have much higher – and difficult to meet – expec-

tations for virtual agents as to the quality of dialogue and their behaviour to be
realistic;

•	 very few virtual agents look and behave in a way similar to a real human; users
often criticize that domain knowledge and dialogue flexibility is much inferior to
a living company representative;

3.6. Trends and innovations 55

•	 virtual agents and chatbots lack the ability to understand context, humour, irony,
jargon or situational issues, so the dialogue is prone to jams, errors and mis-
understandings.

As a result, in many cases the UX with chatbots and virtual agents is still far
from expected, and users are reluctant to use them again. Certainly, imperfect AI
and speech engineering can be blamed, but also the lack of precise and universal
guidelines how to design virtual agents and chatbots to be competent, and able to
resemble the style of human-human dialogues.

Figure 3.8. A virtual assistant – an example
(Credits: https://www.pinscreen.com/vitualassistant)

Collaborative online environments

Web-based collaborative online environments have recently become popular
in Computer-Supported Cooperative Work (CSCW). Collaborative environments
revolutionized the teamwork among remotely located personnel in offices, busi-
ness and industry. Now users can take part in virtual teams using a web browser,
a locally installed application (a thin client) or a mobile application on a handheld
device (Figure 3.9).

In addition to chat and videoconferencing, collaborative environments offer
a set of synchronized functionalities, for instance including:
•	 scheduling virtual meetings and inviting participants to virtual teams;
•	 sharing screens, documents, folders, and other resources;
•	 shared workspace (whiteboard) for collaborative brainstorming, drawing,

sketching etc.;
•	 applications for collaborative engineering design, modelling, prototyping or de-

cision making;
•	 control panel for customizing the screen layout for individual needs.

3. Web user interfaces56

Nevertheless, currently available online collaboration platforms often leave
users with mixed UX after participation in virtual teams. Following complaints are
frequently heard:
•	 technical quality of connections: quality of sound, image or video, poor visual

contact, time lags desynchronizing video and sound, or insufficient fluency of
communication among team members;

•	 high load of simultaneous multitasking: conducting work process, dynamically
assigning roles to team members, sharing access to files, conversating with
participants, coping with unexpected problems and operating control panel of
collaboration platform;

•	 meagre communication in virtual team: some participants remain passive while
others are overworked, the balance between autonomy and supervision re-
mains problematic, and tasks and deadlines assigned online need to be later
confirmed in a written form as e-mails, memos or minutes.

Figure 3.9. A collaborative web user interface - an example
(Credits: https://www.exoplatform.com)

Ongoing strive for competitive advantage

Website owners in e-commerce operate in a very competitive environment, so
they constantly look for novelties aimed at attracting online customers and retain-
ing their loyalty. To achieve this goal, online businesses eagerly use social market-
ing, Search Engine Optimization (SEO), and web analytics for identifying patterns
of online consumer behaviour.

https://www.exoplatform.com

3.6. Trends and innovations 57

Online businesses constantly search for new functionalities, for new business
models and for new methods of building customer relationships. As all online busi-
nesses now use CRM systems, which are often combined with AI-based recom-
mender systems and customer profiling. This requires collecting and mining data
collected on customer online behaviours, so protecting data privacy and security
are here especially relevant. Search for new functionalities is aimed at providing
new experiences also with newly emerging technological opportunities, like virtual
agents. E-commerce websites may also use an AR or VR add-ons to set the prod-
uct in a new context, for instance enabling user to see oneself onscreen, dressed
in clothing considered for purchase.

Ongoing search for competitive advantage is continuous process of frequent
implementing small changes. Classical, GUI based software applications needed
periodical, time-consuming upgrades, reducing availability of the system for users.
Instead, web-based online services undergo numerous, systematic improvements
in User Experience as well as technical and business aspects. Only from time to
time websites undergo bigger revitalization projects, covering major improvements
in both front-end interactions and in back-end processes. Their radical effect will be
easily noticed by customers, but not always enthusiastically, if changes seem too
radical for some customers.

While in web design a typical IT project usually takes weeks, up to several
months, further maintenance and improvement process will be hopefully spread
over many years. As a result, a website and online service must be also designed
for easy maintenance, upgrades and revitalisation, so thoughtful selecting the right
technology and system architecture are of the utmost importance.

The Web is going mobile

Nowadays users operate a broad spectrum of Web user interfaces: from sim-
ple websites to advanced online services and digital platforms, connecting busi-
ness process participants. In everyday use, in a global scale, web user interface is
now probably more frequently used than GUI. While GUI remains mostly for desk-
top work-related use, economic and social interactions largely take place online,
using web user interfaces.

In recent years availability of wi-fi networks and handheld devices (smart-
phones and tablets) increased popularity of both m-websites and mobile apps. As
a result of further servicizing, all online services are now available with mobile
devices from any location, any time, using mobile user interfaces presented in the
next chapter.

4. Mobile user interfaces

4.1. Specific features of mobile user interface

Since about 2000 dynamic development of online services, accompanied by
the wide availability of smartphones and tablets, enabled computer users to access
the internet not only in static, desktop-based mode. Per analogy to web-based
experience, mobile users expected that mobile services and mobile applications
would provide performance, efficiency and positive UX with rewarding relationships.

Subsequently, existing websites were soon adapted to small screens. As
a result, mobile websites (m-pages, m-sites) and mobile applications became
extremely popular. Nowadays mobile applications are frequently used literally for
everything, ranging from direct communication and solving ad-hoc problems, to
long-term supporting improving quality of live. Typical activities users perform with
mobile applications include for instance:
•	 solving daily problems: shopping, cooking, calculations, navigation, or travel

planning;
•	 news and information “on the go”: e-newspapers, e-books, reading news, or

e-books;
•	 staying connected: text, chats, video communication, e-mails, communities

and social networks;
•	 entertainment: games, puzzles, riddles, music, video, or social interactions;
•	 education and personal development: learning in commute time, viewing tuto-

rials and videos, educational games;
•	 improving own lifestyle: persuasive applications (Figure 4.1) for wellbeing, fit-

ness, e-health, saving, or ecology;
•	 professional work: performing work-related tasks out of office, teleconferencing,

collaborating, remote diagnostics, etc.

4.1. Specific features of mobile user interface 59

Figure 4.1. A lifestyle-related mobile application – a workout assistant
(Credits: https://www.runtastic.com)

In mobile interaction social aspect is especially important. Ability to stay con-
nected all the time with family and friends makes users prefer to use mobile appli-
cations for ad-hoc social activities.

Relying on mobile devices and mobile apps in almost any aspect of everyday
life, and habit of having a mobile device always nearby, led to so-called mobile
user experience (Adobe, 2015) which is an important factor for today’s online con-
sumers. When using the same service in different interaction modes (mobile, web,
desktop) online customers expect consistent UX when accessing the same service
using a conventional website, m-page and mobile app.

Design objectives for mobile interaction are shaped by two forces: firstly, con-
forming to limitations imposed by specificity of mobile devices, and secondly, by
exploring new business opportunities offered by mobile business and marketing.

Regarding limitations, following factors largely affect the design of mobile in-
teractions:
•	 small screen size, limited input capacities, no right click, small buttons, small

labels;
•	 poor reactivity of a touchscreen, uncomfortable scrolling and typing;
•	 negative environmental impacts, like sunlight, dust or noisy environment;
•	 limited timespan of user’s attention, frequent multitasking with external inter-

ruptions;

https://www.runtastic.com

4. Mobile user interfaces60

•	 limited bandwidth and computing resources, affecting speed, performance and
task efficiency.

Regarding new business opportunities, design objectives for mobile interac-
tion may be driven by such factors as constant access to an online consumer, avail-
ability of novel mobile marketing tools, and the need to mitigate user’s concerns
about privacy protection in public networks.

After compromising limitations and new opportunities following design goals
emerge for mobile applications:
•	 adequate functionality and practical usefulness in solving a specific problem;
•	 time on task and task performance;
•	 usability - ease of use;
•	 positive UX and willingness to reuse the application;
•	 long-term values - supporting individual lifestyle, improving quality of life.

From the business viewpoint, design objectives for mobile interaction design
do not differ much from web-based design, including all components of the FUVUX
model: functionality, usability, user experience and value for customer. Also the lay-
er model of online service development applies for mobile apps and services, too.
Both models were presented in Chapter 1.

4.2. Design guidelines

Guidelines for mobile user interface design largely originate from design rec-
ommendations relevant to GUI and web user interfaces. However, for mobile user
interfaces Nielsen’s usability heuristics need to be considerably adapted, regard-
ing limitations of a small screen and variable environmental context (Nielsen and
Budiu, 2013).
H1.	 Visibility of system status. Keep users informed of system status

with constant feedback.
The mobile application should always provide information about what is cur-
rently application in the system through confirmations and messages. For in-
stance, the user should be informed with a progress bar when the data are still
in transfer and how long it may take.

H2.	 Match between system and the real world. Set information in a logical,
natural order.
The application should inform the user with a plain language, with words,
phrases and graphics familiar to the user. Information should application in
a natural and logical order, especially when a user is filing in online forms or
checking out to the payment. Abbreviations and acronyms should be avoided,
using instead short labels with a common language.

4.2. Design guidelines 61

H3.	 User control and freedom. Ensure users can easily undo/redo actions.
The application should smoothly guide the user through subsequent steps of
the task. Functions like “cancel”, “back”, “forward” “undo” should be easily vis-
ible for each operation. Additionally, there should be provided an easy correc-
tion of errors in online forms, preview of the data before they are sent, preview
the actual appearance of objects, preferably with zooming or scaling the view.

H4.	 Consistency and standards. Maintain consistent standards, so users
know what to do next without having to learn new toolsets.
The application should use consistent page layouts, and permanent position-
ing of clickable objects such as buttons, headers, labels, menus etc., which
should operate in the way known to users from other systems. Names and
labels should be short and communicative, following popular conventions. Be
consistent within the use of interaction gestures, controls, functions, and other
elements of user interface. Use clear, intuitive graphical symbols, commonly
known to the users. In design, for symbols to be clear, adequate use of simpli-
fication and abstraction are essential.

H5.	 Error prevention. Prevent errors if possible; wherever not, warn users
before they commit to actions.
Interaction, layout and content of the application should be designed in a way
minimizing possibility for human error. Prevent the user from getting lost. Oth-
er hints for preventing errors include pre-set default data values, automatic
spell checking, autocompletion, forms which do not lose data when the “back”
button is clicked.

H6.	 Recognition rather than recall. Do not make users remember
information; keep important objects always visible.
Make sure that the main functions of the application are easily accessible.
Minimize the user’s memory load. For a temporary storage of items, a clip-
board, wish list or a handy personal repository should be available. Use short
menu paths for the main functions or keep the main functions visible all the
time.

H7.	 Flexibility and efficiency of use. Make systems flexible so novices
and experts can choose to do more or less on them.
The application should accelerate the user in reaching the goal by using mul-
tiple types of shortcuts, as well as by using a local search complementary to
hierarchy menu. Also, a preview of recently selected items, autocompleting
data or phrases, and always visible list of most commonly used options (re-
cently selected items, for example) should be available. For increasing task
performance in repetitive tasks, allow the user to switch off or hide unneces-
sary screen elements.

4. Mobile user interfaces62

H8.	 Aesthetic and minimalistic design. Design with aesthetics
and minimalism in mind – do not clutter with unnecessary items.
Make all objects, actions, and options clearly visible through visual elegance,
simplicity and minimalism. Visual elements should guide users gaze to important
elements, like using the “big green button” pattern. All elements should work well
together and complement each other (Grobelny and Michalski, 2020). Balance,
clarity and adequate contrast are important for users. Clarity of the screen is
mainly achieved through contrast, which can be created with opposites, such as
dark and light objects. The distinction between insignificant and significant visual
elements needs to be made clear in order to guide attention to specific details.

H9.	 Help users recognize, diagnose, and recover from errors.
Provide plain-language error messages to pinpoint problems
and likely solutions.
In mobile applications users usually commit errors when they perform activi-
ties in unfavourable conditions, like operating controls in space constraints or
in poor visibility due to sunlight. Validation of user input data should take place
real time in the data field, and default formats of data, hints and tips should be
proposed before important action is to be completed. Error messages should
be expressed in plain language, should precisely indicate the problem, and
constructively suggest a solution. When errors occur, recovering from them
should be straightforward, preferably using reversible actions.

H10.	Help and documentation. Offer easy-to-search troubleshooting
resources, if needed.
Although mobile applications are intended to be entirely self-service systems,
users still may need help in case of problems or questions. Adequate forms of
support should be provided, like on-screen help, answers to typical questions,
or a live chat or phoneline. Provide both a quick guidance focused on the
user’s task and more detailed documentation to read, preferably with search
functions. Pay attention to the understandability of the user support informa-
tion.

Other guidelines important for mobile user interfaces include (Nielsen and
Budiu, 2013; Hartson and Pyla, 2012):
1.	 Respecting diversity of mobile usage patterns

	– In mobile interactions there is a very limited focus and timespan of user’s
visual attention with quick instances of manual operations. Users are ac-
cessing the device frequently but for very short periods of time. Limitations
of finger-operated touch combined with poor reactivity of a touchscreen can
make interaction more difficult.

	– There can be changing light and weather conditions, and operation in a noisy
surrounding making sound signalization unreliable. Scrolling and typing can
be uncomfortable when affected by cold, humidity, dirt, fat, etc.

4.2. Design guidelines 63

	– Multitasking operations are often “on the go” while walking, eating, talking,
or inside a vehicle (vibrations etc.), lacking the comfort of device operation
indoors. Multi-access is common – users often access the same online ser-
vice switching among several mobile devices they own. There are variable
usage patterns, for instance ad-hoc problem solving, staying connected or
just killing the time by entertainment, or socializing.

2.	 Providing excellent visibility of important objects
	– For mobile user interface design the surface of a small screen should be

used sparingly, focusing the content on the main functionality of the applica-
tion. Available space should be used in most useful purpose by placing es-
sential information, control elements, important data fields in central location,
with the most important elements in the upper 50% of the screen.

	– Text must be easy to read: only Arial front or similar, size min. 11pt, prefera-
bly scalable and flowable, excellent contrast with the background. Graphics
should be minimalistic and informative, and important elements must be vis-
ible all the time (no hiding).

	– Limitations of objects’ visibility due to: poor weather, sunlight, location, as
well as visual impairments of users, should be included as a critical design
factor.

3.	 Providing efficient manual control by fingers
	– The need of typing with the finger should be minimized, by using default val-

ues, words from vocabulary, auto-complete, etc.
	– Clickable objects must be big, at least 9x9mm, the bigger the better, default

object (like “OK”, “Next” or “Submit”) should be distinctive, wherever possible
use the green colour for default (“the big green button” pattern). The time
and effort of manual navigation should be reduced: minimal number of steps,
immediate feedback, manual selection better than typing, eliminate scrolling
instead rather using buttons [Next >] or [>] than sliders.

	– Online forms in small screens are especially disliked by users: eliminate long
scrolling, provide big, scalable data fields, readable labels, real-time data
validation, an instant confirmation on successful submitting and a smooth
transfer to the next activity.

4.	 Providing reliable guidance
	– In multi-step procedural tasks, users expect guidance: a visual path (like

“Step 3 of 5” or a progress bar) should be provided.
	– If there are questions related to the displayed content, there should be pos-

sibility to explain unclarities (like missing parameter in product description)
directly from the screen where the questionable item is located (for instance
calling a hotline).

	– All guidance hints should be designed in such a way that they are clearly
visible also in the sunlight.

4. Mobile user interfaces64

5.	 Providing excellent feedback
	– For actions performed on a small screen excellent confirmations for the sta-

tus of operation should be provided. Visual confirmation of operations using
objects (sending, receiving, refreshing, reformatting, saving etc.) should be
easily visible also in the sunlight.

	– Alerts for the users should be easily received also in unfavourable environ-
mental conditions. Preferably, users should be able to select what types of
confirmations (visual, sound, vibration) are preferred.

6.	 Solving user’s dilemma: an application or m-page
	– Mobile users can access preferable services using or a mobile version of

a website (m-page, m-website) or a dedicated mobile application. Because
users are often sceptic as to downloading an application they do not know,
they need to be convinced that a specific application offers more benefits
than an m-site, for instance access to exclusive offers.

	– User’s hesitation whether to download a mobile application or rather not,
may be rooted in numerous uncertainties, for instance: will the application
have access to user’s data in a device or in the cloud? will the speed of an
application be better than of m-page? will the application affect the battery
life?

	– For convincing users to download a mobile application tangible benefits
(missing in m-pages) should be presented, for example ability to work off-
line, improved ease of use, usability and UX, or functionalities not available
in m-page, like user profiles, history, ability of sharing data. The process of
communicating the value of a mobile application versus the m-page includes
three phases: informing, encouraging, and retaining by rewarding user’s loy-
alty with increasing benefits.

4.3. Design patterns for standardization and consistency

In mobile user interface design, following design patterns reduces users’ work-
load and makes manual operations easier. In mobile user interfaces three types of
designs patterns (Mendoza, 2013) can be used:
•	 interaction elements, like typical controls or other visual objects;
•	 interactions solutions, like typical widgets consisting of several objects;
•	 relationships among typical objects, like a location of default buttons in a dia-

logue window.

Typical design patterns, used in both iOS and Android, according to Neil (2015),
include for instance:

4.4. Mobile accessibility 65

•	 Springboard. It is a starting point to dive into an application, an equivalent of
home screen. A regular grid should be used to arrange objects of equal impor-
tance and an irregular layout to highlight certain objects.

•	 Expanding list. It allows user to go through 2-3 levels of information (text or
graphics) with Touching the [+], [>] or [-] symbol will expand / collapse the list
through subsequent levels of the description hierarchy.

•	 Tip. A small object with a text bubble. It can be used anywhere to suggest the
purpose of the object or how to perform the next operation.

•	 Page carousel. Used for fast browsing or a quick transition between several
pages by moving screens (Figure 4.2).

•	 Metaphor. Start screen with a metaphor of a real environment, already known
to the user. Due to poor visibility using a wrong metaphor is especially mislead-
ing in mobile user interface. The quality of metaphor has a very strong impact
on willingness to use the application and to understanding the purpose and the
way of operating the application.

Figure 4.2. A carousel – design pattern for mobile user interface
(Credits: https://www.androidpatterns.com)

4.4. Mobile accessibility

In contrary to websites, which are developed mainly with HTML-based technol-
ogies, mobile applications developed in different programming techniques conform
rather poorly to accessibility guidelines. Similarly to web user interfaces the World

https://www.androidpatterns.com/

4. Mobile user interfaces66

Wide Web Consortium specified general guidelines for providing accessibility for
impaired users (W3C, 2020):
•	 colours should satisfy adequate contract requirements;
•	 visibility of all important objects should be improved with appropriate user con-

trols;
•	 all active elements must be focusable, such as links, buttons, and form fields;
•	 text equivalent must be provided for every image or a non-text element within

the app;
•	 avoid scrolling of screens, using a switch “next” or “back” instead;
•	 touch targets, like buttons, must be large enough for the user to interact with;
•	 displayed content should not be restricted to a single orientation, such as por-

trait or landscape, unless essential.

Mobile applications should provide users with ability to increase the font, con-
trast and adequate scalability of the screen layout in any position, which are the
minimal features regarding accessibility. As an alternative, redirecting visually im-
paired users from a mobile app to a fully accessible mobile page is recommended
option, if required functionality is the same.

4.5. Mobile UX factors

Mobile UX

Mobile user experience can be described in terms proposed by Hassenzahl
(2008) as a composite hedonistic and pragmatic components, but it is too synthetic
for mobile interactions. Due to business-related specificity of mobile applications,
the “honeycomb” model by Morville (2004), should be used, with UX components
can defined as follows:
•	 useful: functionality and content should satisfy specific needs of the user;
•	 usable: the application/m-website must be easy to use;
•	 desirable: the application/ m-website is the preferred option for performing the

task;
•	 findable: the application/m-website is easy to find on the internet or in the app

stores;
•	 accessible: relevant content needs to be accessible to people with disabilities;
•	 credible: users believe that the application or a website can be trusted;
•	 valuable: users believe that they benefit for using the application/m-website.

Similarly to web-based interactions, subjective instances of UX get cumulated,
shaping user-consumer’s attitude to the reusing the application or service and to
its brand (Mendoza, 2013).

4.5. Mobile UX factors 67

Personalized User Experience

A handheld device is a very personal equipment, because it offers many pos-
sibilities for service personalization:
•	 the application would know user’s name, and can use it in greetings and headers;
•	 user’s default data and settings may be shared among applications or devices

for cross-selling;
•	 web analytics can be used for inferencing from user’s “favourites” and “fre-

quently used”;
•	 analysis of user’s behaviour and preferences is rather easy because:

	– geolocation data show user’s frequent routes and daily habits;
	– search phrases, history of activity informs on user’s preferences;
	– recommender systems can be used for projecting user’s expected needs

and prospective behaviours.

Users are aware that mobile websites and applications can store and share
user data with other entities. Therefore it may create concerns as to privacy protec-
tion, and eventually reluctance to download and use an application. News spread-
ing about consequences of user profiling and tracking access to community and
friends increase users’ anxiety. For this reason mobile users should be informed
that the application was granted access to user data and that these data will not
be shared with anyone. This is the crucial element of trust, essential for shaping
a positive personalized UX and keeping users loyal to a specific brand.

Successful UX though product design

An IT project aimed at developing a mobile application bears usual manage-
rial risks, plus the one that application fails to gain popularity, despite its technical
correctness. The market for mobile applications seems to be saturated now: users
have a vast availability of mobile applications of any type. Downloading and trying
them is easy, so users often uninstall new applications shortly after they found
them unfit to individual needs.

For this reason designing a mobile application, which will attract a large num-
ber of users and retain them for a long time, is not easy. From the analysis of suc-
cessful mobile applications for individual users (Adobe, 2015; Adobe, 2013) some
common success factors can be identified:
•	 narrow scope, perfectly focusing the functionality, usability and UX of an appli-

cation around its main purpose (value) essential for users:
•	 user feedback, constructed in way delivering users’ complains to the design

team and responding to them in an appropriate manner;
•	 analysing competitive solutions, and delivering competitive advantage for cus-

tomers;
•	 attractive loyalty programmes, helpful in retaining customers and in promoting

cross-sales interesting for users-consumers.

4. Mobile user interfaces68

Successful UX though understanding the mobile context

Considering the costs and efforts needed to develop a dedicated mobile appli-
cation, it is clear that accurate strategy and precise concept of the application are
crucial. Developing product strategy for a mobile app starts from answering several
preliminary questions:
•	 What particular problem an application is expected to solve?
•	 Why this application would be better than other alternative solutions?
•	 Why would users use this application, and not any competitive one?
•	 Where are the users located when the problem occurs? Why would they turn to

the application to find a solution?
•	 What is the ideal solution of the problem, expected by users? How it differs

from exiting solutions?
•	 Why should the users-consumers return? Why should they abandon using

competitive applications? Which loyalty program would support their long-term
loyalty?

•	 What different payment schemes will be offered for users-consumers?
•	 Which is the most adequate technology for the application? What prospective IT

infrastructure (cloud services, business partners) will be needed?

Finding out the right answers well before design and development begin, re-
duces potential risk that the application would not gain sufficient number of users
and business goals would not be met.

Successful UX through project management

Market success of the application is not only the outcome of a good concept,
but also the result of thoughtful organization of the whole product lifecycle, which
includes:
•	 project strategy: identifying the market niche and target users, preparing a good

concept for the application and infrastructure, preparing a business case for
convincing business partners and sponsors;

•	 organization of the project: recruiting competent people, providing technolo-
gy and software development infrastructure, establishing cooperation with the
business customer, applying an adequate project management model;

•	 managing operational activities: teamwork-based design, development and
testing;

•	 deploying and promoting the application/service: promoting the application/ser-
vice to users-customers, building the market and community for the application/
service, retaining users by attractive loyalty programs;

•	 maintenance and revitalization: change management, scalable IT infrastruc-
ture, maintenance, modifying business models for growth, securing coopera-
tion networks, financial background and business alliances.

4.6. Evaluation of web user interfaces 69

Considering availability of development frameworks for mobile applications,
development process may seem easy. Indeed, it may be relatively easy to deliver
an application that is technically correct, but it fails short in gaining popularity due
to UX-related deficiencies or business-related flaws.

4.6. Evaluation of web user interfaces

Heuristic evaluation

Heuristic evaluation is aimed at evaluating conformance of a website to Niels-
en’s usability heuristics adequately adapted to specificity of mobile interaction. Ex-
pert evaluation of a mobile interface can be performed using appropriately adapted
heuristic evaluation (described in Section 2.4). Performed in a similar manner like
for GUI or web user interface, heuristic evaluation is subjective, flexible and explor-
atory, and additionally it often includes references to websites or mobile applica-
tions serving the same purpose.

Checklist-based inspection

Mobile user interface inspections and reviews are conducted using standard
a usability check-list identify the coverage ratio for requirements specified in the
checklist. Questions-checkpoints are usually grouped into several thematic sec-
tions corresponding to the main criteria for the evaluation.

In the literature and online there are many checklists available for evaluating
mobile websites and applications. They can be divided into two categories:
•	 usability checklists, with evaluate usability and sometimes mobile UX;
•	 accessibility checklists evaluating m-website of mobile app’s compliance with

requirements regarding accessibility for visually impaired users specified by
W3C Consortium (W3C, 2020).

User-based evaluation and satisfaction surveys

Following types of usability testing are applied for mobile user interface (Albert
et.al., 2010):
•	 laboratory usability testing: testing indoors, feasible only for validating general

concept in for early prototypes;
•	 outdoor usability testing: testing “in the field”, in a variety of contexts to which

the application is addressed (like user’s home, open space, public transport or
other locations).
Usability testing of mobile user interface is usually less formal than in laborato-

ry conditions, and aimed at pointing out specific improvements preferred by users.
In addition to usability testing, following types of user satisfaction surveys are used:

4. Mobile user interfaces70

•	 traditional online user satisfaction questionnaires: for a mobile application and
a website respectively, usually as extensive post-test surveys with users who
have just completed usability testing;

•	 ad-hoc satisfaction checks – a quick sampling of user satisfaction as an instant
quick survey for users who have just completed testing mobile a m-website or
a mobile app;

•	 post-test interviews: because filling in a survey questionnaire on a small screen
is difficult, an informal interview with user in all cases is often used for collecting
feedback and exploring improvement opportunities.

Figure 4.3. Mobile usability testing in a laboratory and outdoors
(Credits: https://www.justinmind.com/ and https://wiki.smu.edu.sg/is480/)

4.7. Trends and innovations

Mobile lifestyle

Users of mobile devices usually stay connected online all the time, because
during the day they use mobile apps many times for various purposes. The often
treat their device as a personal assistant and a preferred channel for accessing
online services and especially connecting with friends.

Mobile lifestyle (Adobe, 2015; Adobe, 2013) is characterized by users’ belief
that many everyday problems can be solved ad-hoc using a specific app. Mobile
apps are essential for users when at home (for activities such as cooking, shopping,
planning), also at travel (music, navigation or finding places to visit) and at work,
usually as a supplementary channel of communication. Mobile apps are treated as
useful services, used for convenience and improving quality of life.

Permanent using mobile apps, and keeping the mobile device nearby, creates
a sort of digital addiction, especially dangerous for young users. Users take their
device with them also when moving around indoors, and they may feel the “sepa-
ration anxiety” when the device is away, down or off-line. They almost “live” in the

https://www.justinmind.com/
https://wiki.smu.edu.sg/is480/

4.7. Trends and innovations 71

online space, feel the need to be permanently connected, and may have more
“friends” online than in real life. They often show reduced ability for sensible conver-
sating and discussing meaningful issues, and instead they prefer communicating
by brief “tweets” and memes. Therefore for hygienic and safety reasons, children
and youth need a supervision regarding how they are affected by prevalent use
of mobile apps. Mobile lifestyle is inevitable, but it should be kept balanced, rea-
sonably taking benefits for work and everyday life, and positive outcomes of social
interaction.

Mobile lifestyle of consumers, and frequent interactions with online contents,
contributed much to creation of new business opportunities online. Professional
bloggers, influencers, youtubers take advantage of broad ability of creating, distrib-
uting and commercializing User-Generated Content (UGC). When consumers are
permanently connected and available online, business communication strategies
must be also digital. When users have ad-hoc wish to shop, they should not be
forced to get seated at a computer screen. Mobile apps should be available at the
finger’s reach, and their functionality, usability and UX should be orchestrated to
streamline conversion from product watching to buying.

Combination with AR, VR and voice

E-business owners operate in a very competitive environment. Therefore they
do their best to attract online customers and retain their loyalty for a possibly long
time. Most recently, new developments in software technology enable transferring
innovations and new functionalities form service websites to mobile applications.

Figure 4.4. A mobile application with AR
(Credits: https://historypin.org)

https://historypin.org

4. Mobile user interfaces72

For instance, such technologies as AR, VR and voice interfaces, now are
getting popular also with mobile applications. Low-cost headsets for VR are now
available, creating demand for VR-based mobile applications, primarily for enter-
tainment and education. AR-based mobile applications (Figure 4.4) now are widely
used for supporting industrial machinery maintenance, for expanding user expe-
rience in museums, gaming, entertainment, and probably they fill be widely used
also in e-health mobile applications in a not very distant future. Voice interfaces and
chatbots are used in the same way as in their WWW counterparts – websites and
web applications, considering additional constraints how the service is operated
with a handheld in real settings, often outdoors.

New mobile computing paradigms

With wide availability of mobile technologies, new computing paradigms have
recently emerged, such as ubiquitous computing, Internet of Things, wearable
computing and persuasive computing.

Persuasive technologies are mobile applications designed to help people
monitor their behaviour and to persuade them a positive change in their lifestyle,
attitude and behaviour, e.g. caring more for fitness, sleeping, weight, eating habits
etc. Persuasive applications often use sensors installed in wearable devices, like
smartwatches, wristbands etc. Persuasive apps promote novel functionality and
novel experiences such as feedback tools encouraging self-reflection or visual-so-
cial tools, based on boards and charts benchmarking how the user performs in
specific activities in relation to peers and friends (Figure 4.5).

Figure 4.5. A persuasive mobile application – an example
(Credits: https://aaptiv.com)

4.7. Trends and innovations 73

Voice control is often used not only for providing drivers with hands-free op-
eration and activating commands by voice. Voice-controlled household devices or
systems are no longer a novelty, either. Most recently “smart speakers” got increas-
ingly popular as an interaction devices for “smart home”, leading towards applica-
tion of Internet of Things (IoT) computing paradigm in everyday life.

Servicizing of mobile interaction

Per analogy to web-based interaction, mobile applications can be used for
a variety of purposes, from ad-hoc problem solving to long-term improving of qual-
ity of life. It is really hard to find an area of human activity not supported by some
mobile applications – no matter what their quality and usability may be.

Integration of mobile applications with individual lifestyles, resulted that smart-
phones now are used mostly for accessing the online services, and not so much for
phone conversations. Because users tailor their smartphones by downloading mo-
bile applications matching individual needs, nowadays mobile devices serve usu-
ally as multifunctional personal assistants. Moreover, their value for users comes
from a personal set mobile applications, not from a mobile device by itself. As a re-
sult, when users/consumers are constantly connected to Wi-Fi, it opens new op-
portunities for targeting users with novel lifestyle-related applications and services.

As a result, current IT projects are largely focused on delivering services for
customers, and software is no longer the final product. Mobile lifestyle, and servi-
cizing of mobile applications, affect the scope of IT projects and the way how they
are managed. While for back-end solutions traditional project management meth-
odologies are often used, mobile apps and other front-end solutions are usually
designed in agile projects.

User-centred methods for interaction design and cooperating with customers
in IT projects will be presented and discussed in remaining part of this book.

5. IT projects – cooperation with users

5.1. IT projects and software development lifecycles

Contemporary IT projects are based on three main approaches (Sommerville,
2016):
1.	 Classical approach (also known as sequential, linear or traditional) identifies the

main phases of the software project with the assumption that they are located
in a roughly linear, easily predictable process. The sequential approach is slow
and costly as to coping with unexpected changes in requirements. For soft-
ware projects performed in stable conditions, typical for institutional clients, it is
assumed that almost all design activities can be performed without the active
participation of prospective users.

2.	 Iterative approach (also known as spiral, cyclic or incremental) establishes more
contact points with users (customers) and provides better responsiveness to
sudden changes occurring during the project. In iterative approach an IT project
is conducted as a series of cyclic iterations which deliver subsequent software
components in a spiral, incremental manner. For achieving high usability of the
product, the iterative approach highlights that involving prospective users into
the project is vital, especially in identifying requirements, evaluation of proto-
types and usability testing.

3.	 Agile approach operates on quick, interactive software development cycles and
intensive teamwork. Agile approach leaves much freedom to the team how to
optimize their work process and make the project “slim” by reducing project
documentation to a reasonable minimum. The agile approach declares high
responsiveness to sudden changes, typical for projects conducted for business
customers. Most importantly, high quality and usability of the product is achieved
at low cost, largely by frequent prototyping and intensive communication with
users (customers).

5.1. IT projects and software development lifecycles 75

All three approaches are widely present in contemporary software engineering
and IT project management (Sommerville 2016), although the agile approach has
recently gained extremely high popularity.

All types of IT projects are built upon synchronization of three main processes:
•	 workflow: conceptual and engineering activities that directly increase value of

the product through all tasks performed across all stages of the project;
•	 communication: information flows among team members that support the work-

flow and other relevant activities in the project;
•	 management: all activities (typically assigned to the project leaders) aimed at

coordinating the team towards delivering an expected product; all classical
management functions apply hereby: planning, organizing, motivating, moni-
toring and continuous improvement.

The project manager and the development team play the crucial role in car-
rying out project activities, spanned by the three abovementioned processes. Ex-
cellent communication with the customer and with other stakeholders is the key
factor for delivering a product with high quality and usability. The term “project
stakeholders” describes all parties interested in the outcome of a project: primarily,
the project team, the client, end-users, the board managers and optionally external
bodies such as regulatory institutions or media. For better understanding of team-
work taking place in IT projects, and perspectives and motivations of participants, it
is essential to clarify the most important roles:
•	 The user (end-user) is the person actually operating the system. Sometimes,

users are customers if they own the rights to use a specific software application
or an online service. Ease of use and practical usefulness of are the product
characteristics most appreciated by the user.

•	 The customer (retail customer or user, see above) is the person actually in-
teracting with a specific software or online service, which is the source of in-
come for the software vendor or online service owner. For instance the user
of a banking application certainly is a consumer, generating profit to the bank.
Ease of use, practical utility and ability to collect some benefits represent prod-
uct characteristics most appreciated by the user.

•	 The client (also interchangeably called business customer) is usually a repre-
sentative of an organization which places an order for delivery of a specific IT
system or service. A client can be external (from outside) or internal – like an-
other department from the same organization where the project team is located.

•	 The sponsor is the person (usually a representative of an organization) who
authorizes and controls the funding used to develop the software product. The
project sponsor cooperates strictly with the project leader in making decisions
for optimal allocation of available resources such as budget, time, staff, tech-
nology, etc., attempting to complete the project within given constraints.

5. IT projects – cooperation with users76

The most popular IT project methodologies will be briefly presented hereafter,
based on relevant software lifecycle models available in IT management literature,
e.g. Chmielarz (2016); Sommerville (2016); Cobb (2011); Pressman (2000).

5.2. Classical methodologies for IT projects

The waterfall

Classical methodologies for IT projects management assume that project ac-
tivities can be described as a sequence of predictable activities, performed in a pre-
dictable manner.

The classical, sequential model (“the waterfall”) identifies subsequent stages in
the software lifecycle, placed in a cascading, waterfall-like sequential order, shown
in Figure 5.1:
•	 Analysis – requirements identification and specification,
•	 Design – system architecture design,
•	 Implementation – software coding,
•	 Testing – software tests and evaluation feedback,
•	 Maintenance – deployment, operation and modifications for changes.

Analysis

Design

Implementation

Testing

Maintenance

Figure 5.1. The waterfall model of software development
(adapted from Pressman, 2000)

The waterfall model is based on assumption that each phase always begins
after successful completion of the previous phase, what if often incorrect in real
life. Moreover, in the waterfall model the contact with the client (rarely end user) is
taking place only at the beginning and at the end of the project, what is frequently
blamed for insufficient usability of the final product. Nevertheless, despite these
limitations, the waterfall model still may be useful for procedural software projects,
assuming the stability of specified requirements.

5.2. Classical methodologies for IT projects 77

The spiral model

The spiral model portrays an IT project as an expanding spiral, unfolding from
its centre (Sommerville 2016; Jayaswal and Patton 2009). Each iteration includes
the cyclic passage through four activity areas, shown in Figure 5.2:
1.	 Action planning,
2.	 Risk analysis and selection of design variants,
3.	 Software engineering development,
4.	 Evaluation, testing and acceptance by the client representative.

Planning Risk
analysis

DevelopmentEvaluation

Figure 5.2. The spiral model of software development
(adapted from Jayaswal and Patton, 2009)

The spiral model (Figure 5.2) includes the waterfall software engineering mod-
el in the Development area, but it strongly emphasizes the impact of other non-en-
gineering areas, especially planning, risk analysis for decision-making and regular
evaluation contact points with the client (customer).

Comparing to the waterfall model, the spiral model highlights the iterative na-
ture of real-life design activities, where results are usually achieved in an iterative
rather than in sequential manner. The main advantage of the spiral model is that it
emphasizes the need for regular contact with the client (customer or user) because
all deliverables must be evaluated in specified touchpoints in each iteration cycle.
However, the main limitation of the spiral model is that it remains slow in producing
software deliverables, especially if the system functionality is very complex. Nev-
ertheless, experiences from IT projects based on the waterfall and spiral models,
after numerous refinements served as a basis for the development of widely used
process-oriented, classical methodologies such as RUP, PRINCE2 or PMI, respec-
tively (Chmielarz, 2016).

5. IT projects – cooperation with users78

Incremental model

Incremental model is a process of software development where requirements
are broken down into standalone, parallel “streams” of software development cy-
cle (Figure 5.3). Each stream is planned for delivering a specific software-based
component (such as module, functionality, or feature) called “increment”. The In-
cremental development is done in subsequent steps such as analysis, design, im-
plementation and coding, testing and verification. Delivered increments are subse-
quently integrated and deployed to the client’s site for operation and maintenance.

Analysis Design Code Test Increment 1

Analysis Design Code Test Increment 2

Analysis Design Code Test Increment 3

Analysis Design Code Test Increment 4

Figure 5.3. The incremental model of software development.
(adapted from Hartson and Pyla, 2012)

The first increment is usually the core of the product, in which the essential re-
quirements are included, while supplementary features will be added in next incre-
ments. Advantages of the incremental model include benefits such as that system
development is broken down into many mini development projects which are easier
to manage, and that the client (customer) may start gaining business value before
the whole system is completed.

Rapid prototyping

The process of rapid prototyping is also known under the name Rapid Applica-
tion Development (RAD), shown in Figure 5.4. It includes the following cyclic steps
(Sommerville, 2016):
1.	 Requirements planning: identify only the most essential functional requirements,

temporarily ignoring other non-functional details.
2.	 User design:

	– a quick, initial prototype of user interfaces is developed;
	– end-users test the prototype and provide feedback on additions or changes;
	– the prototype is refined using the feedback from evaluation.

3.	 Construction: the software is coded and implemented, based on the refined
prototype.

5.3. Iterative methodologies of IT projects 79

4.	 Release: deployment of a ready-to-use component to the client, with minor im-
provements yet to be made.

The “User design” is repeated until the product gains end users’ acceptance.
As shown in Figure 5.4 all these steps of RAD are performed in a sequential man-
ner, only the User Design cycle is iterative, with user-based prototype testing and
evaluation. Rapid prototyping enables delivering a software product quickly, itera-
tively and with the participation of domain experts (end-users or their representa-
tives) as prototype testers.

Figure 5.4. The rapid prototyping model (RAD) for software development
(adapted from Jayaswal and Patton, 2009)

The RAD assumes participation of users only in testing and evaluating the
mock-up of the user interface, without all other elements essential for making the
system really operational. This limitation poses a significant difficulty in integrating
rapid prototyping with software engineering practices, because the quick prototype
usually will not be coded in the same technology as the real system. Despite in-
troducing an iterative element of user-based testing, the rapid prototyping model
still remains technology oriented, focused rather on increasing speed of delivery
than on actual, process-based developments regarding usability and ergonomics
of user interface.

5.3. Iterative methodologies of IT projects

User-Centred Design (UCD)

The iterative User-Centred Design (UCD) approach was developed following
the idea of a spiral development cycle. The UCD identifies IT project as a spiral
cycle of development activities leading to achieving product usability in an itera-
tive, collaborative manner with direct participation of prospective users. The UCD
approach was validated in IT projects and eventually was included in the standard
ISO 13407 as a recommended, iterative design process for IT products, shown in
Figure 5.5.

5. IT projects – cooperation with users80

Figure 5.5. Iterative user-centred design (UCD) process
(Adapted from ISO 13407:1999)

As shown in Figure 5.5, after identifying the need for user-centred design as
a starting point, the UCD process is performed as an iterative repetition of the fol-
lowing steps:
•	 understand and specify the context of use of the product: the purpose of the

product, who are the users, what tasks they perform and in what environment;
•	 specify the user and organizational requirements: identifying user’s needs and

requirements as well as organizational constraints;
•	 produce design solutions: develop a specific design concept or a prototype;
•	 evaluate designs against requirements: evaluate with users the concepts, pro-

totypes and solutions and collect user feedback.

In the UCD approach, active participation of users and frequent testing are
aimed as the main usability assurance tools in IT projects. The iterative UCD ap-
proach requires participation of users in specified points of an IT project, particular-
ly in identifying requirements of user interfaces and in testing prototypes.

The ISO 13407 standard recommends that appropriate identification of user
needs and appropriate collaboration with prospective users are fundamental for
a successful usability assurance of any interactive system. Particularly, the UCD
process points out that the key element of a successful product is that the design
team appropriately understands the context of use for a prospective product.

The UCD-STAR model

The UCD model proposed in ISO 13407 has established a fundamental frame-
work for collaboration between designers and users, nevertheless it imposes
a fixed sequence of activities, which might be not suitable for all types of IT projects.

Therefore the UCD-STAR model was proposed by Hix and Hartson (1993), to
be more iterative by providing designers with more flexibility. The UCD-STAR mod-

5.3. Iterative methodologies of IT projects 81

el still relies on the iterative approach, but it identifies required activity areas, not
a fixed sequence of activities expected from the design team (Figure 5.6):
•	 Task/Functional analysis – understanding user’s needs and task-related activ-

ities;
•	 Requirements specification – finding out what people need from the system;
•	 Conceptual/Formal design – creating the overall idea for the new system and

details how the system will work;
•	 Implementation – developing the code;
•	 Prototyping – bringing ideas to life, envisioning further developments;
•	 Evaluation – checking up how far the design solution is acceptable.

Evaluation
Requirements
specification

Task/Functional
analysisImplementation

Prototyping

Conceptual/
Formal design

Figure 5.6. The UCD-STAR model for developing interactive products.
(adapted from Hix and Hartson, 1993)

Comparing to the ISO-based UCD model, in the UCD-STAR model activities
can be performed in “non-orderly” manner subject to the specific design situation.
Most importantly, the transfers between any activities can be made only via evalu-
ation, preferably user-based. The UCD-STAR model offers more flexibility, as the
designers may start the process at any point, moving freely among relevant design
areas, and customizing the UCD process to their actual needs.

The contribution of UCD to IT projects

The UCD models introduced the iterative design approach to IT projects, plac-
ing the user in an active role very close to designers. Most importantly, UCD has
defined usability as an essential component of IT systems quality. The UCD ap-
proach has also introduced many innovative methods and techniques, such as:
•	 participatory observation – techniques based on ethnographic approach;
•	 context of use – an analysis of user characteristics, tasks and environment;
•	 user workshops – moderated teamwork with users as a part of an IT project;
•	 task analysis – developing precise task scenarios and use cases for projecting

desired functionality of a system;

5. IT projects – cooperation with users82

•	 persona – an imagined profile of a representative user;
•	 card sorting – projecting the information structure by users with a set of sticky

cards;
•	 prototyping and testing – building user interface prototypes and testing them

with users;
•	 regular collecting user feedback – interviews, surveys and questionnaires.

Because UCD methods and techniques are focused on establishing strong
collaboration with prospective users across the whole duration of the project, they
are often classified as “soft” design methods, in contrary to traditional software
engineering.

Main advantages of the UCD approach include:

•	 involving users to IT projects from the start: early focus on users, tasks and
actual context of use;

•	 iterative design, development, and improvements, and fixing problems quickly,
based on frequent feedback from prospective users;

•	 bringing users’ knowledge on the task and the context, and utilising their re-
al-life expertise which might be otherwise inaccessible to design team;

•	 delivering product usability in a cost-effective way, based on immediate users
feedback from evaluating proposed design solutions.

Despite of the above benefits, there are also some downsides of UCD:
•	 it is sometimes hard to get users involved in a project (cost, reluctance etc.);
•	 users are not expert designers so expecting them to produce design ideas may

not work;
•	 users are not always right, as they often know things “as-they-are” but not what

they may really need;
•	 the user (customer) is central to the design process but might not be present all

the time, being available only in specific points of the project.

5.4. Agile methodologies for IT projects

Although the UCD approach is iterative, it still bears the burden of a slow
progress and slow delivery, much below expectations of managers in current IT
projects. To face this problem and to make IT projects faster and more reactive to
changes, a set of quick and “light” project management methodologies was de-
veloped, collectively called “agile” in contrary to classic, slow and “heavy” design
approaches.

Main agile methodologies will be briefly presented below (based on Stellman
and Greene, 2013; Shore and Warden, 2008) starting from the Kanban and Lean,
which laid the foundations for agile approaches for IT projects.

5.4. Agile methodologies for IT projects 83

Kanban

Originating from industrial applications in Toyota, the Kanban is a simple tech-
nique useful in agile project management, providing rapid visual control of tasks
performed by the team. A typical Kanban board has three columns with post-it
cards which depict specific tasks and their current status: „to do”, „in progress” or
„done” (Figure 5.7).

Figure 5.7. The Kanban board
(Credits: https://www.freepik.com)

Post-it sticky cards represent tasks directly resulting from specific require-
ments to be implemented and delivered as software functionalities. While the work
process advancing, the cards are moved among the columns according to the
progress of a specific task. The columns of the Kanban board can be modified
according to the needs of the team. The number of cards per column can be also
limited depending on the current throughput of the team. Kanban board improves
transparency over a work process because it provides rapid visual monitoring and
control for all team members, hence the Kanban board should be placed centrally
in a shared workspace.

The Kanban board is one of the simplest and cheapest techniques useful for
improving the process of software development, making it faster and more trans-
parent. Although the Kanban board does not visualize any direct iterations, it de-
picts the dynamics of the project and the progress achieved in specific tasks by the
development team. The Kanban board also records how ideas and requirements
gradually transform into new functionalities and into value to be delivered for the
customer.

Lean

Lean is an industry-based management approach aimed at economization of
work processes by getting them “slimmer”. This optimization is primarily made by

5. IT projects – cooperation with users84

eliminating all unnecessary elements – inputs, structures and actions which do not
add value to the end result. In principle, these activities should make a specific
process more effective, more reactive and more engaging for its participants in the
team.

Stellman and Greene (2013) list the seven main values of Lean: “eliminating
waste,” “supporting learning,” “making decisions as late as possible,” “delivering as
early as possible,” “giving powers to the team,” “building integrity into the product,”
“recognizing the whole.” Implementing these values in practice is based on sharing
information within the team, on individual engagement of each member in looking
for improvements and on collective decision making. As the Lean approach is sup-
ported with a variety of team management techniques and tools, its implementation
in practice is relatively easy.

Despite its industrial origin, the Lean values are applicable also for software
development processes in IT projects. Similarly to industrial settings, the most im-
portant issue is educating the team so they understand the Lean values and are
able to use the Lean techniques and tools in an adequate manner. In software en-
gineering the Lean approach gained high popularity especially in small companies
and start-ups, which wanted to deliver a successful product despite operating with
very limited resources (Cohn, 2013).

Extreme Programming (XP)

The eXtreme Programming (XP) is a set or engineering and teamwork man-
agement techniques known for its significant contribution to the development of
agile project management methodologies, as we know them today. The XP has
been successful in iterative delivering software products faster and in more cost-ef-
fective way than it used to be in classical or in iterative approaches (Jayaswal and
Patton, 2009; Cohn, 2013). The XP software development model has following
specific features:
•	 intensive teamwork, streamlined by an energetic team leader;
•	 short, dynamic development cycles;
•	 continuous, incremental delivery – delivering single functionalities or ready-to-

use components even before the whole system is completed.

The XP has introduced to IT projects novel activities such as:
•	 standups – daily short meetings for work planning and a short discussion of

current issues;
•	 pair programming – working in pairs helps developers in detecting errors, in

mutual reviews of the code and in reaching joint responsibility for its quality;
•	 test-driven development – test scenarios are prepared before relevant function-

ality was created;
•	 refactoring – simplification of code and continuous improving its clarity event

after testing was completed.

5.4. Agile methodologies for IT projects 85

For speeding up the development the XP introduced specific principles of com-
munication in the team. Preferably all members of the team should be located in
one big room: shared workspace should be equipped with whiteboards depicting
project-related diagrams, architectures, charts, drawings, etc. Secondly, a good
visual contact among the team members, combined with easy access to visual
tools, intensify the teamwork, collaboration, and discussions, so beneficial for the
speed of software development and the quality of deliverables.

Since the emergence of XP, its values and principles have been successfully
validated in software development practice. As a result, they substantially facilitat-
ed the emergence of other agile approaches, in particular the Scrum, which is now
the most popular agile methodology in IT projects.

Scrum

The Scrum methodology (The Scrum Guide, 2020) has successfully incorpo-
rated key elements of XP, Lean and Kanban, and established several characteristic
elements, now quite popular in agile projects management:
•	 sprints – short, dynamic, iterative development cycles based on an intensive

teamwork;
•	 readiness for sudden changes in requirements, occurring during the project;
•	 quick software delivery based on intensive communication with the client (cus-

tomer) and within the team.

Selected components of the Scrum methodology are presented in Figure 5.8.
The dynamics of agile teamwork is shaped mostly by rapid development cycles –
short sprints fuelled by intensive interactions taking place inside the team and with
the customer. Agile teams usually work in self-organization mode, in a shared work-
space (one big room or open space office), equipped with whiteboards and other
visual tools.

Figure 5.8. The main elements of Scrum
 (Credits: https://www.scrum.org)

5. IT projects – cooperation with users86

The Scrum methodology identifies following basic roles in an IT team:
•	 Scrum Master, who acts as a team leader, keeps guiding the team members to-

wards self-organization and collective decision making, coordinates their daily
activities and removes various barriers occurring in their everyday work.

•	 Product Owner, who acts in the project as a customers’ representative, ensur-
ing communication between the client or customer and the development team.
Key responsibilities include deciding on the scope of system functionality, allo-
cating the tasks to the development team, prioritizing prospective functionalities
regarding their business value, and accepting (or rejecting) the delivered work
outcome. In addition, Product Owner should be always available to the team
and have ability to clearly communicate the vision of the emerging product.

•	 The development team (agile team) are remaining team members, mainly soft-
ware developers, tasked with delivering an increment – a finished, ready-to-use
part of the product. The team has the authority to organize and manage their
work on their own for achieving the best possible efficiency of work. The opti-
mal Scrum team should consist of members with multidisciplinary background
and good interpersonal skills, because in agile projects the source code is usu-
ally owned by the entire development team, not by individuals.

In agile teams it is the responsibility of the Scrum Master to optimize working
conditions for the team members and to run all required meetings. Instead, the
Product Owner should focus merely on product quality and usability, to be ensured
by intensive communication with the client (customer) and with the rest of the team.

 The most important activities in Scrum projects include:
•	 Sprints are intensive, quick, product development iterations, taking form one

to several weeks, ending with the delivery an increment – a specific, ready-to-
use part of the product. Each sprint starts from the sprint planning meeting and
ends with the sprint review after the client accepted a finished increment.

•	 Sprint planning meeting gathers the entire development team, the Scrum Mas-
ter, the Product Owner and the client (business customer). Basing on the list of
functions to be performed by the product, they define the functionalities to be
developed in the current Sprint. The Sprint usually needs to be divided into the
sequence of smaller and shorter iterations called Scrums.

•	 Scrum is a short development cycle devoted to a single component of the prod-
uct. A complete series of subsequent Scrums, covering the timespan of the en-
tire sprint, should result in delivering a ready-to-use component (an increment)
to be demonstrated to the client for validation and feedback.

•	 Standup (called also “daily Scrum”, or “daily”) is a brief, 15-minute standing
meeting taking place every at the start of each workday. The purpose of this
meeting is to synchronize the work of all developers and organize their tasks for
the current day. The Scrum Master should respond with quick decisions how to
cope with reported issues.

5.4. Agile methodologies for IT projects 87

•	 Sprint review is a meeting taking place at the end of each sprint, aimed at
demonstrating and validating the specific outcome (increment, deliverable). In
addition to mandatory participants such as the development team, the Product
Owner and the Scrum Master, the client and other stakeholders are also invit-
ed. An execution of complete user’s task should be performed on a prototype
to validate usability and User Experience. The developers should be able to
answer all questions about newly implemented features.

•	 Sprint retrospective is a meeting organized between the last Sprint review and
the Sprint planning for the next iteration. This meeting – with participation limit-
ed only to the Scrum team members – is aimed at identifying improvements to
be made for the next iteration, basing on a critical retrospective of all activities
performed during the previous sprint. The Scrum Master is responsible for cre-
ate an open, positive, and stimulating atmosphere for making the retrospective
meeting as constructive as possible.

The Scrum methodology introduced following artefacts essential for driving the
work progress in agile development teams:
•	 Product backlog – the catalogue of functional and non-functional requirements,

comprising the complete product. The Product Owner is responsible for the
backlog content, its updating, distribution and availability to all team members.
Product backlog is always divided into smaller parts (called sprint backlogs)
covering selected requirements, scheduled for processing in next sprints.

•	 Sprint backlog – contains the subset of requirements for a specific deliverable
declared as the outcome of a current sprint. It is the collection of all items (like
user stories of requirements) to be implemented in the current sprint. The team
members select specific items to be processed in the current sprint, following
their priorities determined by the Product Owner. The content of a sprint back-
log reflects all the work the team has to do to deliver a specific, ready-to-use
part of the product (an increment).

•	 User story – a short, structured projection of task to be performed by the user
and its expected outcome. User story represents a requirement for a specific
functionality to be implemented by the agile team.

•	 Increment – a set of items (tasks, jobs, activities etc.) from the product backlog
which need to be completed during the current sprint. Handing over an incre-
ment (like a component, functionality or feature) from the current sprint to the
client means that the component is ready to produce business value for the
client or for customers, even if the entire system is not yet completed.

•	 Definition of “done” (DoD) is a set of acceptance criteria for the outcome (in-
crement, component etc.) resulting from each user story. Among other issues,
the outcome should have had a code review, have been tested, be immediately
deployable and approved by the client. Finally, the item card on Kanban board
should be moved to “done”.

5. IT projects – cooperation with users88

For keeping the Scrum team members informed in real time specific visual
control tools are used such as:
•	 Scrum board – a Kanban board showing allocations of tasks and their progress,

accordingly modified to the needs of a specific team;
•	 Product burnout chart – a chart which presents the amount of remaining work in

all planned iterations (sprints), necessary for implementing all pending require-
ments till the product is complete.

•	 Sprint burnout chart – a chart analogous to the product burnout chart but used
for tracking work progress in a single sprint.

The Scrum methodology works well for relatively small projects, taking up to
several months and typically engaging the team up to about 20 individuals. Howev-
er, for bigger projects multiplied and combined efforts often need to be developed
with agile methodologies. For this purpose extensions of agile methodology can be
used, such as:
•	 LeSS (Large-Scale-Scrum) is addressed to IT projects with multiple Scrum

teams collaborating upon one product for one customer. LeSS follows funda-
mental Scrum principles, naming them as Transparency, Empirical Process
Control, Iterative Development, and Self-Managing Teams. LeSS is mainly
focused on efficient communicating among representatives of several agile
teams, and with the customer (Cohn, 2013).

•	 SAFe (Scaled Agile Framework) is a set of workflow patterns intended to guide
organizations in expanding lean and agile practices across large numbers of
synchronized agile teams. SAFe was developed by integrating three primary
bodies of knowledge: agile software development, lean product development,
and systems thinking. SAFe addresses the need of big companies willing to
transfer their conventional practices of their design teams closer to agile ap-
proach (Cohn, 2013)

•	 Nexus is an organizational framework which introduces a Nexus Integration
Team, composed by Product Owner, Scrum master and Team Members. The
Integration Team is entirely responsible for synchronizing and integrating the
increments delivered by numerous Scrum teams in a specific project (Bittner
et al., 2017).

Design Thinking

The tendency to make IT projects more cost-effective and more reactive to
changes has resulted in development of other agile approaches, going beyond the
Scrum or XP. Among them, especially interesting is the Design Thinking, primarily
used for designing various services, both traditional and online.

Design Thinking identifies five closed-loop, highly interactive spheres of de-
sign activity, (Stickdorn and Schneider, 2010; Meroni and Sangiorgi, 2011), pre-
sented in Figure 5.9:

5.4. Agile methodologies for IT projects 89

•	 Empathize. Understanding – taking the viewpoint of a user/customer, including
physical, psychological and emotional needs when attempting to use a specific
service.

•	 Define. Redefining – reformulating the problem to be solved from the viewpoint
of a user/customer.

•	 Ideate. Creating – generating numerous ideas for possible solutions with help
of collaborative creativity tools and under supervision of a skilled moderator
who helps to overcome mental barriers in creativity process.

•	 Prototype. Developing – the team members (including users) spontaneously
build low-cost prototypes, inject new ideas and collaboratively expand initial
concepts.

•	 Test. Validating – the prototype is evaluated by prospective users/customers
who provide the team with feedback regarding possible improvements.

Empathize

Define Prototype

Ideate Test

Figure 5.9. Five iterative phases of Design Thinking
(adapted from Stickdorn and Schneider, 2010)

Design Thinking approach is iterative, assuming that numerous feedback
loops will be created as a result of user-based workshops and testing, ultimately
improving quality of the final product or service.

Design Thinking proved to be especially useful in IT projects expected to deliv-
er digital innovations or novel online services. In Design Thinking projects it is ex-
pected that real users (not the proxies or representatives like business customers
or clients) will be involved, and in all activities, not only in selected contact points.

According to Thallmaier (2015), and Humphreys and Grayson (2008), this
significant extension leads to two new forms of user activity during and after the
project:
•	 Co-Design: active participation in creating value during the project, working

together with designers;

5. IT projects – cooperation with users90

•	 Co-Production: active participation in creating value during the service con-
sumption (after the service was deployed to the market) – configuring, sharing
information, publishing user-created content, strengthening relationships etc.

In the area of designing interactive services, where providing positive User Ex-
perience plays a crucial role for user-perceived quality, Co-Design and Co-Creation
approaches bring an important contribution. Nevertheless, in all user-centred ap-
proaches, active participation of prospective users (customers) provides a cost-ef-
fective quality assurance which for usability works usually much more efficiently
than formal measurement methods dominating in traditional software engineering
practice (Sikorski, 2013).

5.5. Collaboration with users in IT projects

In recent years the methods of collaboration between the IT team and clients,
users and customers have undergone significant changes.

In classical IT projects the contacts of IT teams with users ranged from non-ex-
isting to sporadic, located only in selected points of the project. It was generally
assumed that the IT team was able to correctly recognize the end users’ needs,
or they were clearly communicated by users’ representative such as the client or
business customer.

In UCD and STAR models users need to be involved in selected points of the
project, especially when specifying requirements, evaluation prototypes, testing us-
ability and collecting user feedback.

In Scrum and other agile methodologies the user (customer) sometimes is
present with the team, but more often is represented by a designated team member
(Product Owner, UX manager or another stakeholder). Except the development
phase, the user (or representative) is involved in almost all activities of the project,
ranging from initial interviews, problem exploration, to user workshops and elabo-
rating user stories and use cases, to design and evaluation of prototypes. Product
Owner needs to balance business requirements expressed by the client with us-
er-based requirements, captured during user workshops, interviews or collecting
user stories.

In Design Thinking the users (customers) are present with the team in all activ-
ities and fully involved in many roles, also as a co-designers, in addition to testing
and evaluation. Nevertheless, users’ active participation is especially important in
the first parts of the project: problem definition, analysis of user’s needs, specifying
requirements and preparing product concept.

Individual users may directly participate in IT projects, or – more frequently –
indirectly through their representatives such as business customers or authorized
team members (Product Owner, UX lead, usability manager, etc.).

5.5. Collaboration with users in IT projects 91

In the idealised case the user is almost full-fledged member of the team, pres-
ent all the time like in Design Thinking, but in most software, development projects
such availability is not realistic, despite highly recommended. Anyway, in any IT
projects involving even a small group of representative users full-time is better than
the relying merely on communication with the client (business customer).

There are many ways in which IT projects can be conducted in business set-
tings with methodologies presented in the previous chapter. They may differ in
defining specific stages, their content and recommended transitions. Nevertheless,
they all originate from an engineering roots where logical reasoning and pragmatic
management coined subsequent phases of developing usable products for cus-
tomers. Each phase is contributing to the project overall success and feeds into
next stages of product development process. For the purpose of this book, follow-
ing stages were defined:
•	 Strategy. This phase includes building the rationale for the product and for the

IT project, ideating the product, planning its value for target users (consum-
ers) and outlining the scope of a prospective IT project.

•	 Analysis. This phase includes systematic analysis of users’ problems and
tasks, understanding users’ needs located in a specific context of use, and
specifying users’ requirements.

•	 Design. This phase includes developing task scenarios, envisioning product
functionalities and conceptual foundations of a specific user interface.

•	 Development. This phase includes prototyping – preparing concepts, tem-
plates and prototypes to be evaluated by prospective users, as well as coding,
which includes developing the architecture and the code of subsequent com-
ponents creating the product.

•	 Validation. This phase includes evaluation and testing as well as collecting users’
feedback for the acceptance of specific components; additionally, a retrospective
upon possible improvements of the design process is often included here.

•	 Deployment. This phase includes deploying the product to its target environ-
ment, training end-users, and handing over to the customer all responsibilities
relevant to the system operation. This phase often includes also preparing the
contractual solution for the system maintenance, improvements and – es-
pecially in case of online services – running promotion and marketing cam-
paigns for attracting new users (consumers) and retaining the current ones.

The next chapters of this book cover the phases listed above (except Deploy-
ment), and relevant methods of interaction design applicable mostly in agile proj-
ects. In further chapters in focus are mostly projects developing online services
and mobile applications for individual users (consumers). Nevertheless, presented
methods and techniques may be also useful for classical projects, and for “hybrid”
projects which combine elements of classical, iterative, and agile projects. An vice
versa, some methods originating from the classical and iterative approaches are
still useful also in an agile design context, so they will be briefly discussed as well.

6. Strategy – envisioning the product

6.1. The outline of Strategy

The Strategy phase is aimed to:
•	 identify the need for the product (application, service) and its market goals;
•	 identify the problem to be solved and potential users (customers);
•	 prepare a solid rationale for launching a project which would deliver this prod-

uct to the market.

The Strategy phase is to project a roadmap of a process, that would make pos-
sible achieving these goals, and would cover design, implementation, deployment
and operation of a prospective product. The decisions made while shaping a prod-
uct strategy will have a significant impact on the remaining phases of prospective
project.

The Strategy phase is not aimed at presenting specific proposals or solutions:
it is rather expected to deliver a vision of the product, realistic enough to convince
decision makers and team members to engage. The decision about launching
a project should be based on facts, data and observations suggesting that there
are users (consumers) awaiting such a product and eventually ready to pay for
a specific solution.

From the users-centred perspective these goals (activities) can be redefined to
envisioning a product which should perfectly respond users’ needs resulting form
a problem situation the product (application or service) is to solve. Therefore pro-
spective users (customers) should be reached out and invited to participate not
only in the Strategy, but also in next phases of the prospective project.

User research activities planned in the Strategy phase are limited to collecting
only basic information, necessary for initial identification of users’ needs, preparing
the product concept and rationale its design and development.

6.2. Identifying the problem 93

Continuous focus on customer’s needs is the element critical for avoiding bad
design. Collaboration with user should be established in the Strategy phase as
a set of principles:
•	 users should be involved throughout the process;
•	 identify user needs – establish requirements;
•	 develop alternative designs to meet these;
•	 build early prototypes that a can be communicated and assessed by users;
•	 frequently test and evaluate what is being built throughout the process (not only

at the end);
•	 iteration is a part of the process – often by abandoning previous concepts or

prototypes.

As a result of the Strategy phase, the outline of a prospective IT projects should
be delivered, to be accepted by relevant decision makers (sponsors, board, etc.).

6.2. Identifying the problem

The key issue when working on the Strategy is correct understanding the prob-
lem situation, and what exactly prospective users need. The best way to cope with
this issue it is taking a sample of observations from real life:
•	 observing users in real-life situations exactly when the problem shows up;
•	 studying users’ tasks when they attempt to solve the problem with existing apps

and other methods;
•	 interviewing users and discovering why existing solutions are not satisfactory,

thus opening a gap for innovation.

Because there are now plenty of IT solutions available for any purpose, finding
a revolutionary idea for a completely novel product, service or app may be extreme-
ly difficult. More realistically, an idea for solving an existing problem in a better way
may seem more feasible. It all starts from a quick glance around – locating the
user or customer who faces a specific problem and needs a quick and efficient
solution. However, this approach works well largely for IT products located out of
professional software domain, where a more formal, systematic approach needs
to be applied.

Nevertheless, if the case is finding a problem to solve with a mobile app or
service, there are still plenty unresolved issues, in both individual and social dimen-
sions. In the individual dimension everyday life brings many examples, such as:
•	 driving-related problems such as problems with finding a place for parking, or

avoiding traffic jams;
•	 personal financial management, optimizing household consumption;
•	 personal health and dietary nutrition, rush and nervous lifestyle;
•	 work-life balance, social relations with family or friends;

6. Strategy – envisioning the product94

•	 travelling, curiosity about the world, passions and hobbies;
•	 spiritual sphere, enriching personal lifestyle, helping those in need.

In the social dimension, potential ideas for a novel app or service may address
areas such as:
•	 improving security for children or for the disadvantaged,
•	 collaborative education for gifted children;
•	 integrating local communities, public or social health, ecology, quality of life
•	 social relations, tensions, prejudices, racism, migrations, etc.

Social domain is obviously more complex and designing interaction will always
include social media or other channels of community-based communication.

For both individual and social lives there is always area for endless innovations
and improvements possibly enabled by online services and apps – brand new or
redesigned from existing ones.

After identifying an interesting problem area, envisioning of the product (app or
service) leading to problem solution should be done. It is usually a highly personal
process guided by individual creativity skills. In this process adequate reprocessing
of knowledge acquired from observation is essential. Before reaching an accept-
able outcome, following steps take place:
•	 Preparation: preparatory activities to find a solution – reformulating the prob-

lem, collecting and classifying information, analysing the context;
•	 Incubation: the process of subconscious understanding of the core of a prob-

lem, based on subconscious and conscious processing of information collected
during preparation;

•	 Enlightenment: the revelation – a more or less sudden appearance of a long-
searched idea as a result of an unexpected association or “jump” of intuition;

•	 Verification: initial checking suitability of idea for solving a given problem, and
its practical feasibility.

In this process the Incubation phase is crucial. It takes usually longer than
expected, and it involves many subconscious cognitive activities, in which the in-
formation collected from external world gets combined with internal exploratory
understanding of the problem.

Beyond individual, internal activities, the creative process of product envision-
ing is strongly fuelled by positive reinforcements from the external environments.
Apart from information and stimuli incoming from readings and observations, com-
munication with others is very helpful in this stage. Different forms of brainstorming,
working in pairs, exchanging views, cognitive trips and simulations help to discover
and explore new aspects relevant to prospective product.

6.3. Identifying users’ needs 95

6.3. Identifying users’ needs

After an initial envisioning of a prospective product, it is time for collecting hard
data which may convert the product idea based on visionary intuition to the product
concept based on objective facts.

Now a more systematic search is required to gain a deeper understanding of
user needs, based primarily on first-hand sources: evidence-based data, verified
factual information, and credible references. We need especially facts and stories
which describe users’ habits, needs and motivations, helpful in prospective con-
verting users into loyal consumers. This knowledge will be essential in finalizing the
product concept is Strategy, but it will undergo many refinements in further stages
of the prospective project.

In order to gain this knowledge it is necessary to reach out to a small group
of real users, who are familiar with the problem and who preferably use already
existing solutions (apps or services). The best starting point is a direct on-site ob-
servation when users face a specific problem and unsuccessfully try to solve with
existing apps or other methods.

Conducting several in-depth interviews with representative individuals needs
to address issues such as:
1.	 Which functionality of the app is critical for achieving the complete solution of

the specific problem?
2.	 How would you describe problem solution as a complete one?
3.	 Which apps and services available online do you use now for solving this prob-

lem?
4.	 How far are you satisfied with these apps (or with your favourite app)?
5.	 What is still missing in these apps, what are the gaps in their functionality, usa-

bility and UX?
6.	 What are the difficulties, concerns or limitations you experience when using

these apps?
7.	 Do you share your experiences on solving this problem or using this app with

other users?
8.	 What advantages could convince you to start using an alternative app for solv-

ing this problem?

The outcome of user interviews should be extended by a thorough desk re-
search: studying existing alternative solutions (apps and services online), further
exploring the problem space using case studies published online, reading reports
helpful in analysing potential markets or in identifying potential business goals.

Information found in internet, combined with information from real users (po-
tential customers) may reveal possible type of competitive advantage and top value
to be offered by the product for customers.

6. Strategy – envisioning the product96

Optionally, the outcome of initial user research study can be extended with:
•	 Persona – a brief profile of a typical user (consumer);
•	 a description of context of use – the specific environment or situation where the

product will be used;
•	 a short video presenting a prospective product in a simulated use by target

users, in a way similar to seen in tv commercials.

Nevertheless, the scope of this study should be strictly limited to the goals of
Strategy phase: identifying basic needs of prospective users (customers), specify-
ing the problem to solve, and projecting a vison of the product (app, service, solu-
tion) and its potential market.

6.4. Presenting the product vision

Presentation of product vison to a specific audience (usually the decision mak-
ers) is usually delivered in as a slide show, with a text document to follow if the con-
cept was accepted. Product vision is supported by three interrelated documents:
product plan, project plan and business case.

Product plan

The objective of a product plan is to convince the decision makers (the board,
prospective project sponsors or local sceptics):
•	 that the product will be successful because it comes to meet a vital need of real

customers;
•	 that it is worth launching a project that would deliver this product and deploy it

to on the market;
•	 that sufficient resources (people, technology, skills, etc.) are available to make

this project successful.

A product plan presents the product concept in a structured manner, usually
covering following sections:
1.	 Problem and solution statement

	– prepare a clear definition of the problem the app will solve for users (cus-
tomers);

	– identify conditions which make the solution complete for the suer (customer).
2.	 Audience definition

	– identify who will download or buy your app, basing on the profile of repre-
sentative customers who already use existing apps/services;

	– create user profiles (personas) of customers based on initial user research
and user feedback;

	– describe key needs of your users (customers) relevant to expected solution
and essential functionality of an app or service.

6.4. Presenting the product vision 97

3.	 Gap definition
	– perform desk research: existing alternative solutions and analysis of com-

petitive products;
	– perform user research: existing apps/services and their deficits, as unsatis-

fied needs declared by users;
	– identify unique functionality and competitive advantages of a prospective

product.
4.	 Market definition

	– explain where to find customers for the new app, how many, and what are
distinctive features of this market segment;

	– explain which features will attract the audience and which advantages of the
product are driving potential revenues.

5.	 Technical feasibility
	– explain which technologies have been used by competitive products (apps/

services);
	– point out which other technologies seem to have a promising growth poten-

tial for this product.
6.	 Business potential

	– highlight product uniqueness addressing the vital needs of the market (who,
where, how many);

	– clarify why people would use this app (at least three strong reasons) and
possibly pay a subscription fee;

	– explain main business goals relevant to the prospective product;
	– propose a simple business model depicting value flows, competitors, part-

ners, communication channels, relevant costs, revenues (Osterwalder
2010), and explain how this business model could grow, including the CRM
approach and community development.

If the product plan was accepted, further documents need to be prepared such as:
•	 product brief – a synthetic, textual version of the abovementioned product con-

cept;
•	 project plan (or a project brief) – a document which presents an outline of a pro-

spective IT project in which the product will be created;
•	 business case – a document presenting business rationale for developing the

product and locating it on the market.

Project plan

A project plan is a document or a slide show which presents an outline of a pro-
spective IT project in which the product will be created. A project plan should reveal
strategic concepts, management frameworks and operational details regarding for
instance:

6. Strategy – envisioning the product98

•	 proposed organization of the project (the leader, the team, methodology of pro-
ject management etc.);

•	 sources for acquiring necessary resources (team, technology, support, legal/
admin, financial etc.)

•	 the sources for recruiting competent people for the project;
•	 the scope of analytic works: identifying end user needs and specifying main

customer requirements;
•	 cooperation with the client (business customer) and other stakeholders during

the project;
•	 risk management model for the project and its ability to cope with sudden

changes;
•	 dealing with existing constraints (platform, infrastructure, business networks

and alliances, etc.)

Before starting a project, following questions should be also answered:
•	 Is the purpose of the app to build revenue for the company through mobile

sales?
•	 Is it to serve as the beginning, middle or conclusion of a series of apps?
•	 Will it drive traffic to the company website or physical retail sales by increasing

brand awareness?
•	 Will the app exist to provide service also to existing customers?

In business practice often the project brief document is used as an easy-to-
read, abbreviated version of product plan, presenting the general framework of the
project, its goals, audience and the most essential data.

Last but not least, when planning the project, technical considerations should
be not neglected. For instance, if the intended product is an online service or a mo-
bile app, especially platform-related decisions should be made as soon as possi-
ble, for example, smartphone or tablet dominant; iOS or Android-centric; and sin-
gle-platform or cross-platform development.

Strategizing the primary platform of an app will determine user interface design
requirements. Not only the iOS and Android versions will require different software
development environments and different organization of the project, but also a tab-
let-first app will have a different user interface than the one designed primarily for
smartphones. The apps intended to “push” users to a physical location (a shop,
a branch) will have functions and solutions different from those designed to sell
goods or services directly online.

Technical considerations and constraints should be considered early, as they
may critically affect the final shape of the product plan, equally as circumstances
related to the market, budgeting or expected customer behaviour.

An optional supplement to the project plan may include the outline of post-pro-
ject activities such as:

6.4. Presenting the product vision 99

•	 deploying the app or service to the market and promoting it to end users (cus-
tomers);

•	 retaining the users by attractive loyalty programs and building cooperation net-
works;

•	 conditions for long-term securing financial background, scalable IT infrastruc-
ture and other vital aspects of business logistics.

Business case

Business case is a document which should clarify why developing the product
and undertaking this project is reasonable from a business point of view.

In addition to the product and project plans, business case will include infor-
mation such as:
•	 high-level business goals for the product and measurable success criteria,
•	 understanding why the organization wants to create the product (app or ser-

vice), regarding market expansion, building competitive advantage, expanding
product portfolio or other reasons;

•	 assessing own development potential compared to competition, based on
benchmarks from other apps in the competitive space;

•	 projecting the costs required to gain the competitive advantage; sometimes an
effective improving of an existing solution (an app or service) that works can be
preferred rather than reinventing the wheel;

•	 financial data, cash flows, revenue estimates etc. describing how the product
can operate on the market; the costs incurred during the development (the
project) should be separated from the cost incurred during operation (including
maintenance);

•	 the business model outlined in product plan should be expanded to details, and
its potential for long-term relationships with customers should be explained;

•	 relevance of financing the product development with technology and infrastruc-
ture should be included, preferable as variants to be considered before final
decisions will be made.

After analysing the content of the business case, decision makers should be
able to reflect on:
•	 determining which is the best business model for the product;
•	 composing a clear statement of what the business sees as the goals of the

product;
•	 proposing a clear definition of product success goals and setting for them

measurable metrics;
•	 making sure that the goals are not so numerous and diverse that they become

contradictory or competitive.

Possible means which make the product vision presentation more convincing
the decision makers include for example:

6. Strategy – envisioning the product100

•	 short, dynamic slide show of the product concept (called also “design pitch”),
illustrated by data collected from real users;

•	 additional items (“props”) such as: a mock-up prototype, a demo, a video pro-
totype.

6.5. Deliverables from Strategy

The Strategy phase should deliver the outcomes such as: key problem identi-
fied, a rough idea of the product and approximate description of target users (cus-
tomers). For decision makers, this presentation should combine author’s visionary
intuition with results of user interviews and with facts and data which confirm the
legitimacy of proposed concept.

The deliverables from the Strategy phase (the product plan, project plan and
business case) are complementary (Figure 6.1). After the presentation and critical
discussion, they should have ensured the decision makers and potential sponsors
that:
•	 the vision of the product in based on actual needs of potential customers;
•	 there is a facts-based gap on the market to be filled in by the product with an

attractive business potential;
•	 developing this product is feasible with available resources, as well as launch-

ing it to the market.

PRODUCT PLAN:
• problem solution
• customers
• functionality
• market advantage
• vision of success

PROJECT PLAN:
• organization
• team and skills
• resources
• technology
• constraints

BUSINESS CASE:
• business model
• costs and investments
• partners
• profitability
• long-term benefits

Figure 6.1. Interconnected product plan, project plan and business case

6.5. Deliverables from Strategy 101

Product vision is complete with all their deliverables, nevertheless in practical
setting preparing the detailed business plan if often delayed till the project unrolls,
more information is collected, and the product is already in design and develop-
ment. For this reason, a more systematic user research is required, covered in the
Analysis phase, presented in the next chapter.

7. Analysis – understanding users’ needs

7.1. The outline of Analysis

The Analysis phase is intended to conduct a thorough study of user’s tasks,
problem domain and the environment in which the prospective system will be oper-
ated. The Analysis builds on outcomes of Strategy, especially the product plan, but
it explores the problem area in a more systematic, analytic manner.

In classical projects the Analysis phase is aimed to deliver specification of
user requirements to drive next stages of the project. Requirements are usually
acquired from the client, who is expected to express technical and business re-
quirements, as well as to present requirements from users (system operators) who
are not involved in the project.

In agile projects user requirements are collected largely as user stories directly by
interviewing the users during user workshops. User stories are next converted to the
product backlog, representing projected features of the product.

While in classical projects the focus of the Analysis is identification and specifi-
cation of requirements, in agile projects the goals are twofold: firstly, understanding
users’ needs and expectations, and secondly, exploring new opportunities for inno-
vation to make the product more attractive for customers. This difference is cause
by the fact that in classical projects usually IT systems for business and industry
are developed, while agile projects largely deliver web-based products, services
and mobile apps for customers.

7.2. Identifying users’ requirements

In classical projects collecting user requirements is particularly important, be-
cause the cost of usability errors caused by incorrectly specified requirements are
especially high, due to communication difficulties between designers and users.

7.2. Identifying users’ requirements 103

Poor interactivity with the user and lack of frequent feedback makes early detection
of usability flaws virtually impossible unless the elements of iterative User-Centred
Design process were applied.

Categories of requirements

In IT projects multiple categories of requirements must be considered (Som-
merville, 2016; Pressman, 2000), briefly described below.
General requirements
•	 General requirements include issues such as business goals and context of the

system, the scope of the system and plans for its evolution, controlling the im-
pact of stakeholders of the system, or providing compliance with standards and
legal regulations regarding financial security or other operational requirements.

•	 Examples: reduction in customer complaints by 50%; shortening account set-
tlement time to 48 hours; achievement of full compliance with mandatory reg-
ulations.

Functional requirements
•	 Functional requirements directly relate to available system functionality, the

types of processed information and exact descriptions of input to output state
transitions. They have a direct impact on user task performance regarding the
operation of the system (application or service), as well as on user (customer)
satisfaction.

Examples: ability to manually update the prices of products; administration of
registered users; creation of sales reports.
Non-functional requirements
•	 Non-functional requirements are not directly related to system functions, but

to “invisible” system quality characteristics such as reliability, response time,
safety, security, credibility, and system responses to user errors. Particularly,
requirements for usability and the user interface fall into category of non-func-
tional requirements. Non-functional requirements should be formulated in such
a way to make them possible to validate.

Examples: ease of learning the system (validation: e.g. 90% of users are able
to learn basic functions in 2-hours of training); visual attractiveness (validation: e.g.
90% of users declare they like the look of the system); reliability (e.g. max. one
failure per month).
Limitations of the system environment
•	 Limitations of the system environment, which are a subset of non-functional

requirements, define the system requirements (architecture, hardware, etc.),
conditions of cooperation with other systems (devices) and requirements for
standardization, documentation, operational and diagnostic procedures, etc.

7. Analysis – understanding users’ needs 104

Examples: the application will be running on MS Windows; application must be
running on a specific type of database; minimal hardware requirements; ability to
perform system maintenance remotely.
Implementation requirements
•	 Design and implementation requirements include issues such as constraints

for time, budget and project team; available technology and existing standards;
organization of work, design and testing methodology; preferred technologies
and software development tools; methods of implementation of the system at
the client’s site.

Examples: project duration maximum six months; project will be implemented
by internal staff only; project team will permanently work with five end-users dele-
gated by the client.

Requirements acquisition and management

The main source of requirements are project stakeholders, for instance the
clients, business customers, management staff of the client’s company, the project
team, experts, and subcontractors. End users are also important stakeholders, un-
fortunately too rarely contacted in classical projects.

Acquisition of requirements in classical software projects is usually the respon-
sibility of an analyst, who is a member of the project team. The outcome of the an-
alytic work should be delivered as a Requirements Specification document, which
contains a general description of the system, and the description of requirements
from relevant groups of stakeholders.

Managing requirements in an IT project is a difficult and responsible task, be-
cause of their strong impact on the quality of the resulting product. In acquisition
and updating requirements frequently occur problems such as:
•	 limited experience of the analyst, lack of available analogies, difficulties in iden-

tifying and formalizing requirements for the system to be developed;
•	 knowledge related to user requirements is not normally available in the finished

form, it is distributed, subjective and incomplete;
•	 lengthy discussions how to specify the requirements and how to determine the

conditions for their acceptance in the finished system;
•	 non-functional requirements are often specified by imprecise terms, making

their verification and validation very difficult;
•	 difficulties in communication between the team and the client who is often una-

ble to articulate actual needs or does not know exactly what is feasible.

Persisting difficulties in defining requirements contributed to the emergence of
a software engineering discipline called Requirements Engineering, applied often
in classical projects, whose task is to develop effective methods of identifying and
updating requirements across the whole project lifecycle.

7.2. Identifying users’ requirements 105

Selected techniques for requirements identification

The most popular techniques used for requirements identification will be briefly
presented hereafter (Sharp et. al., 2019; Jayaswal and Patton, 2009; Dix, 2004).
Context of use analysis

The context of use analysis is often regarded as part of a business analysis,
because it is a “reconnaissance” before the start of the actual design work. Per-
formed on site where users work, it not only facilitates identifying requirements
and risk factors for the project, but also helps in establishing direct contact with
prospective users.

Context of use analysis consists of three main components (ISO 13407):
1.	 Description of user characteristics: describing the profile of typical users, their

task objectives and benefits expected from the use of the system.
2.	 Description of user’s tasks: description of work processes, document workflow

and organizational conditions affecting the use of the system.
3.	 Description of environmental conditions: identification of technical and environ-

mental conditions affecting the way how users’ work is actually performed with
the system.

Task analysis
The detailed description of user tasks is extracted from the context of use analy-

sis and documented as a separate area of the project, including:
•	 detailed diagrams, flowcharts and other models describing users’ tasks, their

priority and criticality as well as the type of used data sources;
•	 approximate percentage of time users are working strictly with a computer;
•	 identification of quality requirements as to the task performance;
•	 identification of results achieved by the user in various situations, including

disruptions and their impact on job performance.

The descriptions of user tasks should include not only on activities and facts
directly associated with the system, but also other processes and work-related ob-
jects such as paper archives, folders, boards, meetings, phones, etc. Task analysis
should also identify systems used currently and users’ opinions on their usability.
Identification of user’s needs and preferences on how the work should be per-
formed, expected division of labour, the order of tasks, etc., is also recommended.

Documentation analysis
Documentation analysis is often used for the description of the current forms of

work organization and procedures. The following documents are analysed:
•	 process maps, work manuals, procedures and instructions how the task should

be performed;
•	 historical documentation and archival data, which allow to estimate the through-

put of work systems and their organizational characteristics;

7. Analysis – understanding users’ needs 106

•	 “best practices”, as proven methods to perform tasks that might be considered
for the proposed new system.

An additional benefit from the documentation analysis is that the employees
(system operators) explain to the analyst how the process ideally should proceed
and how the work tasks should be carried out. The discovery of new knowledge
takes place, and the designers learn what obstacles may cause the expected result
not delivered as planned.

Business process analysis
Business process analysis (often known as business analysis or business en-

vironment analysis) includes:
•	 description of technical conditions, such as: existing systems: hardware, soft-

ware, telecommunications and network equipment, system integration plans,
planned investments; tools used in data processing, documentation, mainte-
nance of systems, timeliness and completeness;

•	 description of work organization, e.g. business logics, business process map,
circulation of documents, diagrams of the process workflow, teamwork, com-
munication; division of tasks, responsibilities, evaluation feedback about the
work quality and performance; the impact of forced work pace, bottlenecks,
disruptions, delays, their frequency and significance;

•	 description of the conditions related to management, e.g.: organizational struc-
ture and processes in the organization, management style, teamwork, person-
nel management, internal communication channels; relationships with business
partners, cooperation networks, customer support and brand image;

•	 description of the physical work environment, e.g.: location: office space, light-
ing, noise, microclimate, space and furnishings, hazards, work outdoors, travel,
protective clothing, personal protections etc.

Within business analysis for creating formal models of the process multiple
diagramming notations are used, such as Data Flow Diagrams (DFD), Entity Rela-
tionship Diagrams (ERD), Unified Modelling Language (UML) or Business Process
Modelling Notation (BPMN)

Analytical meetings
Analytical meetings are regularly held during preliminary stages of the project,

but in classical projects they can take place also in later phases, such as design,
development and testing. Analytical meetings are moderated by the project manag-
er or the chief analyst. They usually take place at the client’s premises and involve
representatives of the client company, the project team, and sometimes also other
invited persons.

The purpose of analytical meetings is to agree the stakeholders’ viewpoints on
the scope and functionality of the system, to develop a list of requirements and to
agree on the final specification of requirements. The work with the client is based

7.2. Identifying users’ requirements 107

largely on step-by step consenting on subsequent requirements, and team-based
production of documents related to the actual project pragmatics.

Analytical meetings and business process analysis cover much broader area
than the context of use. They go beyond the individual workplace level, to manage-
ment-related issues at the organization level. Although business process analysis
performed by a business analyst with the client can be sufficient for projecting the
basic functionality of the system, for achieving high usability it is highly recom-
mended to also use user-centred techniques described hereafter.

Participatory observation
A direct observation of users’ work is the conventional technique for the context

of use analysis. However, it is ineffective as a merely passive observation, even if
the researcher (analyst) spent much time in the user’s workplace. Participatory ob-
servation means that the researcher (analyst) actively participates in regular tasks
performed by the user or in related auxiliary activities (Figure 7.1).

Participatory observation is often associated with the ethnographic approach,
in which the researcher goes to the environment, where members of the studied
community are living or working, and participates in their daily routines to make
a better contact with them and to gain the most valuable research material. Similar
approach works well also in the area of user-centred design for IT systems, be-
cause delivering usability without user observation and detailed user research is
virtually impossible.

“Shadowing” is a particular version of participatory observation, while the re-
searcher follows step-by-step all operations performed by the user (Figure 7.2). It
can be used both for analysing user operations in an existing system, as well as for
optimizing user operations in a newly designed prototype.

Figure 7.1. Participatory observation
(Credits: https://techknowtools.com)

7. Analysis – understanding users’ needs 108

Figure 7.2. Participatory observation – “shadowing”
(Credits: https://www.liveworkstudio.com)

Individual interviews
An interview with an individual user may be performed as formal, informal or

semiformal, depending on how rigid the interview scenarios are applied. It also de-
pends on the scope of intended questions, regarding for instance current methods
of work, what disturbances may happen, how they are coped with etc.

Individual interviews are very useful for the exploration of specific topics or
problem areas, but time-consuming for interviewees (users) who are usually dis-
tracted from their current activities. They are also time-consuming for the analyst,
and with a larger number of respondents can be also costly due to the difficulty of
compiling data collected from numerous interviews.

Group interviews
Interviews conducted with a group of several users are very valuable because

users possess unique work-related knowledge which shows up only during the
moderated group discussion and could not be normally acquired through individual
interviews. Group interviews allow the analyst (moderator) to save much time, but
they require adequate preparation beforehand to be efficient, and a skilled person
for moderating, making handnotes and controlling audio recordings.

Processing results from a group interview is difficult, because collected data
are purely qualitative (text, sentences, or emotions) and there can be significant dif-
ferences in opinions expressed by the participants. Nevertheless, group interviews
are widely applied in all situations where time is precious or opinions from various
groups of shareholders must be obtained.

Survey questionnaires
Survey questionnaires are useful for collecting data from a larger number of

respondents. Questionnaires distributed on paper or online allow to collect quan-

7.3. Understanding users’ needs 109

titative data as well as qualitative (descriptive) information using closed and open
questions, accordingly. Questionnaires are generally tedious for users to fill in, so
they should be short, containing only questions regarding essential requirements.

Survey questionnaires are useful for collecting data primarily on existing sys-
tems, because users have difficulty in expressing opinions speaking about the future
or unknown solutions beyond their current experience. Otherwise, for projecting fu-
ture solutions interviews and user workshops are more suitable.

Summary of classical requirements-related methods
The abovementioned methods for requirements identification mainly serve the

projects devoted to design and development of IT systems for supporting work-re-
lated activities in offices, industry, services etc.

In real settings, for adequate identifying user requirements in classical projects
usually a mix of techniques must be used, combining interviews, observations, doc-
umentation studies and – most importantly – user workshops. Knowledge gained
from users is volatile and difficult to restore later even with possession of notes. For
this reason, data analysis should begin as soon as possible after collection of data.
The best practice is to review the collected materials, grouping them into themat-
ic categories, and then formulate preliminary conclusions yet prior to the deeper,
detailed analysis. They can be corrected later on, during user workshops (Hartson
and Pyla, 2012; Gottesdiener, 2002), described in the next section.

7.3. Understanding users’ needs

In contrary to classical projects, in agile projects collecting requirements is
less formal. Moreover, it often goes much beyond requirements identification alone,
reaching also understanding users’ needs and expectations. This expansion may
also reveal opportunities for novel features that make the product more attractive
for users or buyers in the consumer market.

Selected techniques for understanding users’ needs

Expanded context of use
Similarly to classical projects, expanded context of use also includes charac-

teristic of users, their tasks, and the environment. However, it goes beyond a mere
description what the user does, attempting to explore possible scenarios beyond
routine activities.

Issues such as disturbances or obstacles from the environment are explored in
order to propose novel functionalities and features which would mitigate the effect
of annoyances to user experience. Simulating task scenarios which include abnor-
malities during the product operation help to design solutions that will be tolerant to
human errors and to hardware or environment.

7. Analysis – understanding users’ needs 110

x

Figure 7.3. “Rich Picture” for expanding context of use of a business IT system
(Credits: Agata Bojke)

Techniques such as storytelling, freehand sketched Rich Picture (Figure 7.3)
or storyboards, are extremely efficient for team-based exploration of context of use.
Techniques such as “Five-Why” or “How Might We…” can be also useful for discov-
ering sources of anxiety or reluctance experienced by the user (consumer), as well
as for discovering a new value to be offered for customers.

Ethnography and participatory observation
In interaction design ethnography-based observation means a direct focus on

understanding users’ habits and behaviours by active participation of research-
er in users’ daily activities. Comparing to participatory observations, in ethnogra-
phy-based observation a researcher (analyst) is even more active, taking part in
all users’ activities and local “rituals” relevant to work of after-hours pursuits. The
observer-ethnographer is “immersed” in the culture that they study, discovering
regular habits and understanding users’ behaviour when using a specific product,
service, or app. As a result, ethnography-based observations usually take longer
because of a broader scope of user research.

The benefits from ethnography for interaction design include drawings, expla-
nations, and stories helpful in better understanding of an existing situation. Novel
aspects regarding the context of use and user’s habits can be thus revealed, such
as new relationships discovered among users (customers), their tasks (problem to
solve) and the environment in which the problem is located.

7.3. Understanding users’ needs 111

Interviews-insights
Insights are specific interviews aimed to reveal interesting and surprising ob-

servations (“insights”) that can be used as a starting point for cognitive explorations
resulting in the discovery of a novel solution. By getting to know users and their
motivations, values and behaviours the analyst will find “insight” related to the key
aspects of the problem.

The analyst prepares a list of expected information before starting the interview.
During the interview, the interviewer must be open to newly emerging circumstanc-
es, rather avoiding direct questions, instead encouraging the subject to tell about
own habits, behaviours or views on a specific topic. The interviewer may change
the order of the topics, as well as their form and content of prompts, adapting to the
subject’s behaviour and the dynamics of the narrative.

Empathy map
Empathy map is a template-based interviewing technique originating from the

Design Thinking, aimed at gaining a deep understanding user-customer’ problem
and “entering” into user’s (customer’s) problem situation to be solved.

The template shown in Figure 7.4. is used for collecting information helpful
for identifying user’s expectations, even if they are unspoken. Most importantly,
motivations and barriers relevant to using (or rejecting) a specific online service or
app are also discovered. Identification of expected benefits, but also limitations and
anxieties hindering the user from using the specific app or service, offer guidelines
leading to design of relaxed operation and more trust towards the product, service
or app.

Osterwalder (2010)

Figure 7.4. Example of a template used for Empathy map
(Credits: Osterwalder, 2010)

7. Analysis – understanding users’ needs 112

Persona
Services and apps developed in agile projects often aimed to support activities

performed a way out of professional activity. If they are related to entertainment,
education or lifestyle, more non-work-related information about target users will be
needed.

Persona is often used also in classical projects, but in a format limited to de-
scribing basic characteristics of a typical user and work-related tasks the user
wants to perform with the system.

Persona used in agile projects in an expanded version, apart from a brief de-
scription of occupational activities of a target user (consumer), usually also includes
information about life goals, hypothetical personality traits, motivations, frustrations,
and favourite brands (Figure 7.5). Expanded Persona may contain any information
collected during observations, interviews, and Empathy maps.

Figure 7.5. An example of expanded user profile – Persona
(Credits: https://psdrepo.com)

Storytelling
Storytelling is a popular, fact-based, narrative technique often used during user

workshops. Storytelling is focused on encouraging participants to personal reflec-
tion on actual experiences and observations regarding specific situations, products,
or services. Storytelling session must be moderated (Figure 7.6) and is usually
supported with visual add-ons or digital props such as video, prototype or a rele-
vant object.

During the session users tell their stories regarding the topic (e.g. frustration
with specific IT system or service) and thereafter they turn for collective projection
of new experiences and solutions as expected from the project. Storytelling ses-
sion often coverts into a workshop producing three projections: before-and-after,
difference (roadmap) and call to action for change.

7.3. Understanding users’ needs 113

Figure 7.6. A storytelling session
(Credits: https://freepik.com)

User stories
User stories are typical task scenarios as told by actual end-users (consum-

ers), and not the client. In the first round they can be verbally expressed stories how
user preforms a specific task. Finally, using sticky cards, they should be converted
to a synthetic format which includes: the stakeholder, representation of a specified
need (intended action) and value to be delivered for user (customer) after the user
action was completed (Figure 7.7).

Figure 7.7. A user story – example

All collected user stories, build the projected functionality of a prospective
product (system, service or app). Further exploring collected user stories within
a specific context of use can reveal new user needs, new scenarios and novel
features making the product more attractive and innovative.

https://freepik.com

7. Analysis – understanding users’ needs 114

User story mapping
User story mapping (Patton, 2014) is a popular technique for projecting us-

ers’ tasks performed in a specific process. In Figure 7.8. the arrow depicts the
flow direction of the main process, while the cards beyond (user stories) represent
its main steps. The cards (user stories) placed in relevant columns below depict
actions included in each main step, sorted according to their priority for the user.
Specific selections of cards marked by horizontal lines represent functionalities to
be implemented in subsequent versions (releases) of the product.

Figure 7.8. User story mapping – an e-commerce website example
(Adapted from https://4ba.pl)

User story mapping is primarily used by the team to prioritize user stories for
preparing product backlog and scheduling jobs (planned product features) to be
located on the Kanban board.

User story mapping is often used also in meetings with the client for prioritiz-
ing key functionalities of the product. This technique is also helpful for common
understanding of the product by the team and by the client, as well as for novel
interpreting the functionality of the product in beyond current context of use. The
main limitation of user story mapping is its inability to show possible relationships
among relevant requirements (user stories), what may seriously affect the timing
and complexity of development works to be done.

User workshops
In agile projects user workshops are regularly conducted for early validating

outcomes resulting from current sprints. User workshops (Figure 7.9) may include
activities such as moderated teamwork with informal interviews and discussions,
identification of problem components and envisioning possible solutions and prior-
itizing design issues. User workshops may be facilitated by using “props” – specific

7.3. Understanding users’ needs 115

artefacts aimed at prompting participants, e.g. a prototype, video, scenario or de-
vice related to the topic of the workshop.

User workshops often use the teamwork with sticky notes on a whiteboard,
which open unlimited opportunities for collective requirements elicitation, planning
information architecture, user story mapping or using affinity diagrams for discov-
ering innovative features of a prospective product.

Figure 7.9. User workshop
(Credits: https://xnsio.com/)

Affinity diagrams
Affinity diagrams is a flexible, workshop-based teamwork technique using

sticky cards on a whiteboard to stimulate visual thinking of participants (Figure
7.10). The cards bear words, phrases or symbols depicting specific meanings, rel-
evant to the problem under study. Team members collaborate in converting the
contents of the whiteboard according to the session objective, by grouping, classi-
fying, sequencing the cards, as well as finding out new connections and relation-
ships. The main purpose of affinity diagram is to convert a chaotic collection of
ideas (items, objects) into specific categories (clusters) which can be labelled with
a meaningful keyword (topic, name).

Affinity diagrams are now extremely popular for design teams and for user
workshops. It can be used at all stages of the projects for any conceptual and de-
sign activities. Furthermore, affinity diagrams do not need a skilled moderator, it is
self-organizing technique for the team which quickly integrates for teamwork both
users or clients and the design team. Affinity diagrams are helpful in redefining the
problem and are essential for stimulating creative teamwork in concepts mapping,
prioritization of items I brainstorming-related activities.

https://xnsio.com/

7. Analysis – understanding users’ needs 116

Figure 7.10. Affinity diagrams during a teamwork
(Credits: http://www.msrblog.com/)

7.4. Deliverables from Analysis

Comparing to Strategy, the techniques applied in the Analysis phase are aimed at:
•	 identification of basic requirements (functional and non-functional);
•	 understanding of users’ needs, expectations, and feelings;
•	 identifying task scenarios and projecting expected functionality of the product;
•	 understanding context of use and local environmental factors that may disturb

the smooth operation of a prospective system (product).

The Analysis results in significantly deeper understanding of users’ needs com-
paring to what was discovered in the Strategy, when preparing the product plan
(product concept) was the main goal.

Nevertheless, in the technological stream of the projects deliverables such as
logical data models, DFD, ERD and UML diagrams or BPMN process maps form
an indispensable fundament for software engineering works making the product
ready-to-use.

In agile projects, the techniques presented in this chapter serve not only for
collecting and recording information about users’ needs. Moreover, in the product
stream the focus is also on innovation, so collaboration with users (customers)
takes place using more intensive interpersonal communication than in classical
projects. User-based exploratory analysis helps to discover novel aspects for the
product by “reframing” – redefining the problem, Persona and product functionality,
as expected by prospective users (consumers).

The deliverables from the Analysis phase should provide a complete input to
conceptual work to be performed in the Design phase.

http://www.msrblog.com/

8. Design – converting visions into concepts

8.1. The outline of Design

The Design phase is aimed at creating the concept of a prospective system,
built upon information collected in the Analysis phase.

While the Analysis describes an existing situation and problem to be solved,
Design is looking ahead – continues expanding current viewpoints, further rede-
fining the problem, the context of use and value for the client and for the user
(customer). Design draws on both: formal models related to software engineering,
and on “soft” concepts resulting from user workshops and other activities related
to interaction design.

In IT projects – in the Design and in other phases of the project – three parallel
streams (workflows) can be distinguished:
•	 the product stream: all activities aimed at creating the concept and its refining

till the final product – maximizing value for users (customers);
•	 the technological stream: preparing foundations for system architecture, soft-

ware platforms, cloud services and other components of the IT infrastructure –
maximizing engineering excellence and making the product operational;

•	 the business stream: preparing and refining the business model for the product
or service, making it profitable –maximizing value for the client.

This chapter is devoted to design activities relevant only to the product stream,
in which interaction design and UX-related issues are largely located. Design ac-
tivities take the input from the deliverables of the Analysis: description of problem
to be solved, user Persona, task scenarios, user stories with projected product
functionality and features expected by prospective users (customers).

8. Design – converting visions into concepts118

8.2. Conceptual design

The scope of conceptual design

Conceptual design for an interactive product involves several areas:
1.	 System architecture: software engineering and technological solutions making

the prospective system feasible for implementation, coding, deployment and
maintenance. This component of design is invisible for users (as largely located
in the back-office) but it strongly affects system performance, speed and other
UX-related factors.

2.	 Information architecture: the structure of content, menus and other components
of the process users are going though when using the product. Information ar-
chitecture can vary a lot, from strictly hierarchical to network-based. The type
of information architecture and how the content was divided into modules or
sections affects the complexity of navigation, system usability and UX related
to a specific product.

3.	 Visual design: the elements of screen design such as layout, consistency, co-
lours, icons and images affect product attractiveness and pleasure-related part
of UX. Overloading users with bright colours or useless ornamentations deteri-
orate system ergonomics and usability, what leads to negative UX. Visual aes-
thetics based on minimalism and elegance should be present across the whole
product: in screen layouts, visual metaphors, images and user controls.

4.	 Interaction design: includes the task flow (user flow, or user journey) guides the
user through subsequent steps (screens) of the system operation, navigation
and compliance with users’ expectations. User interface design is a crucial part
of interaction design, critically affecting product usability and UX.

5.	 User experience: all design activities aimed at creating pleasant emotions for
the user (consumer), positive attitude to using the product again and creating
valuable relationships with a specific brand.

In all the aforementioned areas conceptual design is searching for ideas and
solutions preferably better that exiting ones, novel and innovative in building com-
petitive advantage for the prospective product. Therefore in the product stream
conceptual design is a particular activity not based on technologies and standards,
but on creativity of designers and users into involved into various forms of work-
shops, described hereafter.

Selected techniques for conceptual design

User workshops
In the Analysis phase user workshops were using teamwork for better under-

standing of the problem to be solved “as it is” and balancing the viewpoints and
expectations of various stakeholders. In the Design phase instead, user workshops
gather the team and other stakeholders (preferably users and customers) to draw

8.2. Conceptual design 119

ideas, concepts and solutions into a format suitable for further software implemen-
tation.

Collaborative activities performed during user workshops (figure 8.1) may in-
clude:
•	 developing an expanded Persona for a newly discovered segment of target

users (customers);
•	 refining specific tasks scenarios, user stories and use cases;
•	 card sorting, affinity diagrams and user story mapping for refining customer

journey through a specific process or service;
•	 redefining user’s problem for introducing a novel functionality or a novel busi-

ness model offering a better competitive advantage for the product and for the
client.

Figure 8.1. User workshop – conceptual design
(Credits: https://uxdesign.cc)

For reprocessing and upgrading all information collected so far, some formerly
used techniques can be used again, such as:
•	 group interviews: in the new iteration users are encouraged by the moderator

to discuss emerging design ideas, stimulated by a demonstration of a particular
product or concept, about which users express their opinions;

•	 requirements refinement workshops: user stories can be rearranged and refor-
matted to discover novel aspects or redefine user expectations (Figure 8.2);

•	 affinity diagrams: user story mapping again for discovering novel product fea-
tures, or card sorting (figure 8.3) aimed to reveal the information architecture as
imagined by users, for instance an intuitive menu structure preferred by users.

8. Design – converting visions into concepts120

Figure 8.2. Requirements refinement workshop
(Credits: http://www.interaction-design.org/)

Figure 8.3. Card sorting – an example
(Credits: https://www.interaction-design.org)

8.2. Conceptual design 121

Iterative refining and reprocessing earlier collected artefacts with users help to
deepen understanding of the topic and add novel design aspects. As a result, in-
spirations for creative activities are collected, to be executed in creative workshops.
In addition, the teamwork gives participants two motivations: sense of participation
in the design process and feeling of “ownership”, which both are helpful in further
activities.

Detailed information on facilitating user workshops can be found in the HCI
literature e.g.: Sharp et al. (2019), Hartson and Pyla (2016) or Gottesdiener (2002).

Creative workshops
Creative workshops are aimed primarily at generating ideas for fresh, revo-

lutionary solutions to be applied in a novel product. Creative workshops can be
also called up as an attempt to solve a problem for which all conventional methods
failed.

In IT projects creative workshops are often used for designing products for
customers such as online services, websites, or mobile apps. For this reason to
explore ideas possibly originating from users (customers) quite frequently separate
workshops are organized for user groups, independently from workshops for pro-
fessional designers from the team.

For creative workshops generally all techniques used for user workshops are
applicable, especially the ones any using sticky notes. Nevertheless, for stimulat-
ing collaborative creativity the role of the moderator is critical. Interpersonal skills,
ability to inspire the team and create the mood for generating ideas are the most
expected personality traits. Additionally, ability to break old thinking patterns, to con-
vert conflict situations into illuminating experience, and – last but maybe the most
important – the sense of humour, are essential no matter which techniques were
applied for a specific problem.

The most popular techniques for creative teamwork include:
•	 brainstorming: facilitated by a moderator, releases unhampered creation of

ideas by participants, generating new solutions, breaking thinking patterns for
innovative problem solving (figure 8.4); evaluation and selection of ideas takes
can place only at the very end of the brainstorming session;

•	 mind mapping: drawing of concepts and ideas around the centrally located
main concept; the drawing is freehand, preferably using of bright colours, funny
symbols or other odd elements (Figure 8.5); mind mapping enables the projec-
tion of user expectations, regarding for instance preferred product functionality
or menu structure; mind mapping should be first performed as an individual
exercise, and next mind maps from all team members should be discussed and
integrated as needed;

8. Design – converting visions into concepts122

Figure 8.4. Brainstorming session – an example
(Credits: https://www.business2community.com)

Figure 8.5. Mind mapping – an example
(Credits: https://learningfundamentals.com.au/resources/)

8.3. Freehand sketching 123

•	 six thinking hats: representing thinking styles (e.g. gut instinct, pessimistic
judgement, neutral facts, enthusiasm etc.) in which the brain can be challenged
when coping with a problem; during a moderated session, team members learn
how to switch thinking across six distinct thinking styles roles (“thinking hats”)
for redirecting thoughts, the conversation, or the meeting towards creative out-
comes;

•	 change of scenery: the team is taken away from office to a casual place, like
outdoors or a time-off cafeteria where an odd scenery can help people think
differently and devise new ideas; the session should be also moderated and
ideas should be recorded (using sticky cards or a flipchart), and further refined
when back in the office.

Nevertheless, whatever technique are used for creative teamwork, the suc-
cess factor is a lucky combination of personalities, relaxed mood, casual modera-
tion, and skilled use of visualisation techniques such as whiteboards, sticky cards
and freehand sketching.

8.3. Freehand sketching

In all types of workshops, but also in individual design activity, freehand sketch-
ing of newly emerging ideas is essential for inspiration and creativity. Freehand
sketching is also the best way to externalize initial concepts and to make them
understood by others, therefore it an important visual communication technique in
many areas of design, engineering, and management.

Freehand sketches radically differ from formal diagrams used in IT projects
because they do not need to conform to any disciplined notations, being therefore
informal, flexible and spontaneous. In contrary to technical, diagrammatic draw-
ings, freehand sketching activates the right hemisphere of the brain, stimulating
creative thinking, exploration, and discovery.

The study of Newman et al. (2003) found out that a generalized design process
has discovery, design exploration, design refinement, and production phase.
1.	 Discovery is intended to determine and clarify the scope of the project and the

requirements of users.
2.	 In design exploration phase, possible solutions to the problems identified in the

discovery phase are generated and explored. Such solution can be in the form
of information design, navigation design, or rough graphic design.

3.	 To continue to design refinement phase, it is required that a design idea be
selected prior to the refinement. The design is iteratively refined and detailed.

4.	 Production starts when the design has reached a satisfactory level of detail – or
in a worse case when the deadlines and budget dictate so. Designers prepare
the design for hand-off to a client or a software development team. The handoff

8. Design – converting visions into concepts124

may include interactive prototypes, written descriptions, guidelines, and speci-
fications.

The study of Newman et al. (2003) also revealed that every designer in the
project sketches at least once on paper, designers often annotate their sketches
and printouts during the project, and that (often before the end of a project) paper
sketches get discarded together with valuable ideas that may be needed some
time later.

When facilitating the teamwork, freehand sketching can be used to:
•	 draw attention of the audience (the team) incomparably stronger than using

PowerPoint slide show or any other digital media;
•	 inspire exploration by visual thinking and collective feedback;
•	 encourage the discussion and interaction among the team members.

Therefore, having whiteboards and flipcharts centrally placed in a shared work-
space is essential for efficient visual communication in the team and instant record-
ing new design ideas, concepts, or hints. In both cases of individual and collective
design, sketching on paper or whiteboard, and using sticky notes, contributes much
better to creativity than using any screen-based devices like tablets or displays.

More information on the use of freehand sketching and storyboarding for inter-
action design can be found in the HCI literature, for instance Becker (2020), Sharp
et al. (2019), or Hartson and Pyla (2012).

In IT projects for ideation and developing new concepts for interaction de-
sign, a specific trio of freehand sketching techniques is frequently used, embracing
screen sketches, storyboards, and user flow, briefly described hereafter.

Screen design
Ad-hoc freehand sketches of prospective screens are usually the first visuali-

zations of an emerging user interface, expressing design ideas and general layout
concepts (Figure 8.6).

Sketches are the basis for the development first screen layout templates,
screen wireframes, windows, buttons etc., and eventually paper prototypes of the
user interface. When about to start sketching, there is no need to worry about any
personal deficiencies of drawing skills; the only importance is that the sketch is
communicative to others, and it operates using simple symbols.

In IT projects freehand sketches are a commonly used tool for creating visual
concepts and interaction solution concepts. They are also valuable for communi-
cating the product concept and screen layouts to future users (consumers) but are
not as useful for presenting the proposed method of system navigation.

During user workshops, when discussing and refining freehand sketches, fol-
lowing issues frequently arise:
•	 new, previously not expressed, user expectations are formulated, usually re-

garding non-functional requirements;

8.3. Freehand sketching 125

•	 there is a need to modify earlier task scenarios by adding details resulting from
discussions and users’ suggestions.

Figure 8.6. A freehand sketch of a screen template
(Credits: http://www.agilemodeling.com)

Graphic designs developed by arranging freehand sketches can then be pre-
sented in the form (even static) of screen design metaphors and further steps to be
executed in the form of interactive prototypes. All screens sketches are related to
specific task scenarios, so it is logical to combine them in a sequence (“storyboard”)
showing step-by step how the user is progressing towards the expected outcome.

Storyboards
Storyboards is the technique borrowed from cinematography as a way of

drawing a sequence of scenes taking place on consecutive screens the user goes
through when performing a task (Figure 8.7). Successive screens are sketched us-
ing small cards or sticky notes. Each card shows a screen that is part of a system’s
navigation. Usually the first drawing (screen) presents a problem situation the user
wants to solve, and the last card (screen) shows the outcome of the task execution
(problem solved).

8. Design – converting visions into concepts126

Figure 8.7. Storyboard freehand sketch – a raw version
(Credits: https://uxplanet.org)

Storyboards prepared with freehand sketching are very effective in quick vis-
ualizing the sequence of screens (actions) the user will perform when trying to
accomplish the task with the product or app.

The storyboard technique is commonly used in the early stages of design for
the presentation of planned interaction concepts and for developing the system
navigation. It also helps in conceptual developing of prototypes intended for further
testing and evaluation.

In iterative design, storyboards certainly will be subject to many discussions,
improvements and changes. As a result, refined storyboard will usually not only
have richer content but also better quality of graphics (Figure 8.8). Because creat-
ing a storyboard is largely based on the earlier outcomes such as task scenarios,
user stories and user story mapping, it is also possible a step back is needed to
correct relevant user story maps.

8.3. Freehand sketching 127

Figure 8.8. Storyboard – a refined version
(Credits: http://www.debaoki.com/storyboards)

User flow
User flow (known also as user journey, task flow, or navigation flow) is the

visualization of user (customer) flow when operating a system (product). It is based
mainly on the storyboard presenting a sequence of consecutive screens user goes
through.

User flow can be prepared as a minimalist, plain flowchart with boxes and oth-
er symbols depicting specific user actions or decisions. More frequently however,
user flow is built as a network of subsequent screens the user goes through when
performing a task (Figure 8.9).

The first version of user flow can be constructed with a series of hand-sketched
sticky cards used as miniature screens. A complete user flow should be built on
a regular, consistent screen layouts and should contain all screens needed to ac-
complish basic task scenarios. Nevertheless, yet it may have no window messages,
or screen objects for reverting user actions, or more complex actions like scrolling
or zooming.

Certainly, at this stage of design freehand screen sketches and storyboards
are not intended to be complete. Their objective is to give general outlook a how
user interaction will look like and to visualize its overall flow. The visual details will
change in further refinements, but the navigation scheme proposed in user flow is
likely to remain mostly unchanged.

8. Design – converting visions into concepts128

Figure 8.9. User flow sketching – an example
(Credits: http://www.visualux.design/sketching)

Trying to get through typical task scenarios, the designers can simulate user’s
actions and make necessary corrections. Many further annotations and improve-
ments will be still made in design iterations and during development and testing
(Figure 8.10).

Figure 8.10. User flow reviewed and annotated – an example
(Credits: https://www.vippng.com/maxp/hJoimmm/)

http://www.visualux.design/sketching

8.4. Deliverables from Design 129

Storyboards and user flow sketches are first conceptual models for designing
interaction and user interface. They may be still rough and incomplete, but they are
extremely useful as initial prototypes and first visualizations how the prospective
system may look like and be operated by the user.

8.4. Deliverables from Design

In addition to software engineering solutions delivered from the technological
stream, the Design phase feeds the project with ideas and concepts which form the
user interface of a prospective product.

For interaction design area, the most important outcomes from the Design
phase include:
•	 refined input data: task scenarios, Persona, use cases, user stories, and user

story map projecting key functionality of the product;
•	 freehand sketches of individual screens, screen template layouts, storyboards

and user flow, where key functionality of the product was combined with initial
concept for user interaction and navigation.

In fact, these deliverables are initial and partial prototypes of the product, ready
for review within the team by cognitive or manual simulating of user tasks. Drafts,
sketches and graphical mock-ups can be also consulted with the client and with
representative users (customers) as needed – the sooner the better.

Despite they will undergo further improvements and refinements, the key el-
ements of the product are now ready for development in two areas: firstly, the
implementation and coding in a programming language (the technological stream),
and secondly, prototyping the user interface (the product stream) to be presented
in the next chapter.

9. Development – from concepts to solutions

9.1. The outline of Development

The Development phase has following objectives:
•	 in the technological stream: developing software – that means converting

models and diagrams into solutions such as implementation of system archi-
tectures, developing the code, programming, cleaning an optimizing software
components;

•	 in the product stream: building prototypes – that means converting interaction
concepts into solutions, such as:
	– early prototypes (sketches, paper mock-ups) for internal evaluation by team

members (and preferably also by clients or users);
	– digital prototypes, based on early prototypes, ready for testing by users and

acceptance by clients.

Prototyping of a prospective product (or its user interface) is based on compo-
nents prepared in Design phase, such as screen templates, user stories, and user
flows.

Recent popularity of prototyping in IT projects is caused by its direct benefits
such as (Becker, 2020; Sharp et al., 2019; Hartson and Pyla, 2016; Dix et al., 2004):
•	 early validating design concepts: checking whether the model developed by

the product designer is sufficiently convergent with expectations of users;
•	 improving communication: thanks to experiments and prototyping project

shareholders such as clients, users, customers, project sponsors, can learn
more about the product features than from traditional drawings or documents,

•	 energizing the team: by demonstrating work progress as a clickable demo sat-
isfied users are the living proof of success, otherwise the costs of removing
errors is still relatively low.

9.2. Low-fidelity prototyping 131

Prototyping is a vital part of contemporary IT projects, because the UX aspects
of the product can be evaluated early in the development process, even with limited
features of the product.

Various types of prototypes differ a lot in detail, regarding the stage of the pro-
ject in which they can be applied. Nevertheless, generally they can be categorized
into two major groups:
1.	 Low-fidelity prototypes, usually made with paper:

	– initial prototypes – screen sketches, wireframes, graphical mock-ups, story-
boards and user flows;

	– paper prototypes – paper mock-ups with movable user interface parts and
other user interface models animated by the designer (e.g. “Wizard of Oz”).

2.	 High-fidelity prototypes: developed with software tools:
	– clickable digital prototypes running on a computer screen (screen proto-

types);
	– video prototypes presenting simulated use of a prospective system (product).

In another dimension, prototypes are also classified into two major classes:
•	 horizontal prototypes, which contain a broad selection of functions, but they

are usually made as simplified, without details and often with much incomplete
functionality;

•	 vertical prototypes, which offer a narrow selection of features, but their implemen-
tation is compete, so the user can perform all steps of the process.

In IT projects two more terms are frequently used:
•	 MVP (Minimum Viable Product): a “minimal” product with one principal func-

tionality, that is ready for small-scale testing on the market to check whether
users (consumers) find the product useful in real settings and attractive from
a business viewpoint;

•	 POC (Proof of Concept): a small internal project aimed to validate a certain or
theory or concept (like a new type of wireless connectivity), which serves to
verify some key functional aspects of the intended design, but usually does not
have all the functionality of the final product

Two main categories of prototyping, namely Low fidelity and High-fidelity, will
be presented in the remaining part of this chapter.

9.2. Low-fidelity prototyping

Refined sketches

Although we have abundant software and technology supporting interaction
design, often the best method is still drawing of software screens on paper. Despite

9. Development – from concepts to solutions132

of technological advancements, paper remains still a valuable proxy for digital tools
and design assumptions can be examined quickly.

In IT projects paper-based sketches continue to be widely used due to their
speed and ability to help designers and developers think as well as validate solu-
tions quickly with users. Especially, when project deadlines are tense, paper
sketches can be quickly assembled to address user’s needs and mimic user’s
screen actions with a desired level of complexity and fidelity.

When trying to identify whether a certain concept or solution is meeting us-
er’s needs, there is a large set of assumptions a designer has to validate as early
as possible. Therefore all prototypes of interactive products for consumers should
start from freehand sketches some way. The more designers use paper to validate
their ideas, the faster they learn what is working or not with their concepts.

Many designers are reluctant and sceptic to drawing because it requires pen-
cilling. Sketching, unfortunately, is not a universal skill shared by all. Many people –
especially IT professionals – say they cannot draw. This seems to be a failure of
individual perception – nearly everyone can draw, it is only the matter of practice
that was probably abandoned or dominated by digital tools. Therefore, any attempt
to use own ability to draw is likely to improve communication with clients or users
at all stages of the project (Figure 9.1).

Figure 9.1. A hand sketched user flow for a mobile application
(Credits: http://wireframes.linowski.ca)

9.2. Low-fidelity prototyping 133

The actual goal of sketching paper prototypes is not about rendering details,
but rather about speed of validating your ideas. The reality of drawing is thinking,
experimenting, exploring and gradually converting our visions into viable concepts.
For this reason initial prototypes prepared earlier – freehand screen sketches, sto-
ryboards and user flows can be refined several times, what goes easy if they are on
the papers and easily available within a reach of hand. As a result, refined screens,
storyboards, and improved user flow (Figure 9.2) will lead to producing new proto-
typing artefacts – wireframes and paper prototypes.

Figure 9.2. Refined user flow for a mobile application
(Credits: https://www.mockplus.com)

Wireframes

Screen wireframes are similar to freehand sketches but are usually more elab-
orated in detail and prepared using a computer (Figure 9.3). They are screen tem-
plates, using a regular geometric grid to show a clear allocation of the main areas
for user objects and information fields, necessary to plan in detail how the screen
space is to be used.

Many software tools can be used to develop wireframes from sketches, allow-
ing quickly creating digital prototypes to be tested by users. Wireframing is espe-
cially important for web design, where a webpage should be automatically adjusted
to the specific parameters of user’s screen.

It should be however noted that wireframe screen prototypes and screen
sketches are not very suitable for illustrating the subsequent stages of user’s tasks
(navigation through the process).

9. Development – from concepts to solutions134

Figure 9.3. Wireframe screen prototype – an example
(Credits: https://www.archimetric.com)

For this purpose much more suitable are storyboards, preferably in refined
versions, ready to be shown to the client. Improved wireframe prototypes furnished
with sample contents can be also presented to the client for approval as static,
graphical mock-ups (Figure 9.4), being much more informative than wireframes.

In fact, many designers are reluctant to show hand sketched screens to cli-
ents, regarding them as raw, informal and unprofessional. On the contrary, comput-
er-generated wireframes and graphical mock-ups are treated as tidy and regular,
more likely to be appreciated by the client. The advantage of screens printed on
paper is that annotations resulting from discussion with client can be directly placed
on the screen printout so they will not be lost. Furthermore, wireframes printed on
paper can be next used for building refined storyboards and paper prototypes, re-
ducing designer’s labour especially if many screens are needed.

Figure 9.4. Graphical mock-up and wireframe – (static) – the difference
(Credits: https://brainhub.eu)

9.2. Low-fidelity prototyping 135

Paper prototypes

In contrary to graphic mock-ups which are static, paper prototypes are made
with movable paper parts. Using paper prototypes it is possible to simulate per-
forming simple tasks and thus bring interactivity to previously made sketches.

As shown in Figure 9.5., to create interactive paper prototypes easy to find,
cheap raw materials are needed such as cardboard sheets, coloured paper, sticky
notes, adhesive tape, scissors, glue, fluorescent markers, transparencies, etc.

Figure 9.5. A simplistic paper prototype of a user interface
(Credits: https://community.sap.com)

Paper prototyping, to some extent, is successful to make paper sketches inter-
active. At this stage of interaction design, it is not about displaying how the product
will look like, but rather actually showing how it should work (Becker, 2020). The
key role in paper prototyping is a person acting “computer” who manipulates the
paper version of the interfaces, and not the quality of graphics (Figure 9.6).

Figure 9.6. A clickable paper prototype
(Credits: https://www.connected.io/)

9. Development – from concepts to solutions136

Through paper prototyping, designers can quickly validate whether ideas are
worth pursuing into a more robust prototype. Every designer should build paper
prototypes first as there is always much to learn from making mistakes on unsuc-
cessful trials to complete a task.

A huge value of paper prototypes is found if certain ideas do not actually work.
Rather, the execution is cheap, and you can discard them at once if they do not get
accepted by users. Eliminating bad idea early in the design process is much better
than allowing it to move into further development – or worse, making it into hands
of users. Killing bad ideas at the paper stage can save a lot of work and costs for
the project.

Paper prototypes are often called early prototypes, as they are made early
in the project, without any rendering of detail, but with an entire emphasis put on
showing the projected interaction method.

Evaluation of paper prototypes is performed in the team as a collective review
or a cognitive walkthrough – mentally simulating all steps of the task to be per-
formed by the user. Less frequently paper prototypes are demonstrated for consul-
tation with the client, instead computer-generated wireframes and static graphical
mock-ups are rather preferred.

Further evaluation of digital prototypes can be made in many ways: starting
from internal team reviews using cognitive walkthrough, to consultations with the
client, to – most valuable – testing paper prototypes with users. Even if the digital
prototype is basic and incomplete, simulating task scenarios on paper instead of
screen makes possible detecting quickly major usability flaws or missing function-
alities.

In theory, when the design is no longer subject to major changes – usually in
later stages, high-fidelity prototype is built to represent the look-and-feel and be-
haviour that resemble the final product. However, it is a common temptation among
designers to skip paper prototyping and start digital prototyping based on freehand
sketches. In reality, experienced designers might build hi-fi prototypes early – to
cope with deadlines, and then patch up the prototype with more functionality in later
stages. In most cased however the risk is very high that resulting digital prototype
will be loaded with major usability issues, as basic interaction patterns had not
been validated on paper. Saving time this way can be illusory, and valuable ideas
emerging during paper prototyping may never come to life.

More information on building low-fi prototypes can be found in the HCI litera-
ture: Sharp et al. (2019), Becker (2020), Dix (2004), Snyder (2003).

Wizard of Oz

The “Wizard of Oz” prototyping method is especially useful in design and eval-
uation of interactive systems, which are difficult to implement and must be tested
in a very short time.

9.3. High-fidelity prototyping 137

The method involves the user entering commands into a mock-up system
while responses are generated by a designer “from the back” (Figure 9.7), like
a magician apparently bringing a non-existing the system to life.

Figure 9.7. The idea of the “Wizard of Oz” prototyping
(adapted from Sharp et al. 2019, Dix et al., 2004)

Once popular for designing CLI user interfaces, most recently “Wizard of Oz”
method is popular for testing for voice interfaces, chatbots and other solutions for
which the construction of a prototype would be very labour intensive, but the tests
should have been completed in a very short time.

The advantages of “Wizard of Oz” include a very short time needed to build
the prototype and very high flexibility of generated responses, including reactions
to unpredictable user errors. Moreover, the user does not need to know any details
of the system and the scope of its functions, and can reveals his/her expectations
by expressing task-related intentions.

“Wizard of Oz” is classified as a low-fidelity prototyping method because it aims
to design and evaluate main interaction patters for the users-system dialogue, ne-
glecting other technical details of user interface to be developed.

9.3. High-fidelity prototyping

From paper to digital prototypes

Paper prototypes become harder to maintain as they are added with more and
more features and screens. More and more fidelity is needed to present all objects
on the screen and make them clickable to test the prototype live (Becker, 2020).
Digital, interactive prototypes may include some clickable buttons, links, or some
dropdowns.

Clickable prototypes can be produced through multiple iterations from low fi-
delity (sketch or paper) to high fidelity (digital) prototype, via paper prototypes with
movable objects such as windows or dropdowns.

9. Development – from concepts to solutions138

Apparently difficult transition of design tested with a paper prototype to a dig-
ital prototype can be an issue tempting to start digital prototyping just from screen
sketches and user flows, leaving paper prototyping aside. Just on the contrary, the
sketch-and-snap trick can be used: with prototyping software tools, photos of paper
prototypes can be easily converted directly into digital prototypes.

Digital prototypes are actually simple simulators of the product, giving an im-
pression how it might work, despite lacking some underlying components, like a da-
tabase or connection to cloud services. Digital prototypes should merely sufficiently
mimic how the product might work when actually coded, along with how the inter-
face might behave. They can include animations, transitions, and other advanced
interactions to simulate the aesthetics of a proposed design and to approximate the
system responses to user interactions.

As they get closer and closer to a finished product, a high-fidelity prototype can
also be coded to make the product closest to the final design in terms of content
and functionality. Therefore it is natural that a designer wants to build clickable pro-
totypes early on, often to test their ideas throughout a process before users may
validate them in real settings. Testing usability of digital prototypes in controlled
conditions, with real users trying to accomplish specific tasks with the prototype,
provides invaluable feedback for improvements in usability and UX.

For building a digital prototype from a paper prototype, however several funda-
mental artefacts should have been approved beforehand (Snyder, 2003):
•	 refined screen compositions, as visual representations that show the look of

the interface, including the graphical details; and primarily approved in internal
discussions of a product visual design; they may use nonsense words (“lorem
ipsum”) to represent yet non-existing text and links;

•	 refined wireframes, which precisely defines the screen layouts, location of
visual and navigation objects, showing which content goes where;

•	 refined storyboard, as a pictorial scenario in series of drawings showing how
the interface should be used to accomplish a task;

•	 user flow, as a tasks flowchart showing user journey through the product when
accomplishing the task.

However, all of them can be used in paper prototyping as long as they contain
realistic content to support a task scenario (Snyder, 2003). In comparison with
technology that tends to change rapidly, paper prototyping will never be obsolete
as long as people still draw and write on paper.

Evaluation of digital prototypes that is to come later, can be made in many
ways: starting from internal team reviews using cognitive walkthrough, to consulta-
tions with the client, to – most valuable – testing paper prototypes with users. Even
if the digital prototype is basic and incomplete, simulating task scenarios on screen
makes possible detecting usability flaws or missing functionalities that some way
passed though during evaluation of paper prototypes.

9.3. High-fidelity prototyping 139

Despite of many benefits, digital prototypes have also some limitations, for
instance:
•	 users or clients may think that the prototype exactly resembles the appearance

of the final product, what is usually not correct;
•	 the prototype has no goal to be complete – it can simulate only selected func-

tionalities and has underneath no real software architecture, with no connection
to database or cloud services;

•	 due to high fidelity of graphics, during evaluation with users or clients often
too much attention is put to details such as icons, images, colours, losing from
sights more important issues such as navigation, user guidance or tolerance
for user errors.

Software tools for building digital prototypes

The role of these software tools is to create a digital, interactive imitation of a prod-
uct and to let validate designer’s concept in a series of simulated tasks.

Software products used for building high-fidelity digital clickable prototypes
can be roughly divided into two categories: general-purpose tools and dedicated
tools.

General tools
General-purpose tools include software products designed for another area of

office work, but with some effort and creativity, despite some limitations, they can
be adapted for building digital prototypes. General tools include office software
such as:
•	 presentation software (like Microsoft PowerPoint, or Keynote from Apple),

which allow to use slides as screens, which if suitable hyperlinked, can simu-
late user going though subsequent steps of the task; active graphic elements
(buttons, images) are also hyperlinked, and when clicked they “move” to user
another screen following specific paths of the user flow (Figure 9.8);

•	 graphical editors, like Adobe Photoshop, suitable primarily for high-fidelity
graphical mock-ups and modelling user interface objects, however with signifi-
cantly limited interactivity;

•	 spreadsheets, like Microsoft Excel, they have limited interactivity and need us-
ing external graphic objects, but they are excellent for prototyping systems in
which calculation or charts need to be dynamically produced in real time.

General tools include also:
•	 HTML editors, basically intended for designing and developing websites; they

enable preparing HTML-based prototypes (with CSS and JavaScript) a set of
hyperlinked webpages for any kind of user interface, including small screens
of mobile devices;

•	 coded prototypes, developed is a specific programming language, like C++ or
Python; the advantage is that – in contrary to conventional digital prototypes –

9. Development – from concepts to solutions140

the code used to create the prototype, after necessary improvements, can be
reused in a finished product, saving much labour and time.

Figure 9.8. A clickable prototype in PowerPoint
(Credits: Piotr Świerczyński)

With HTML-based or with coded prototypes users can perform operations, just
like fully fledged websites or applications, more realistically understanding how
the product will works in a real world (Becker, 2020). Nevertheless, for developing
HTML-based or coded prototypes solid programming skills in the team members
are needed beforehand. They are expected to prepare a useful prototype in just
few hours, and without excellent software development skills it might take too long.

Prototyping software tools
Dedicated prototyping tools fall into two categories:

•	 desktop tools, such as GUI Design or Axure based on a fixed licence price,
•	 web applications (online services), based on a monthly subscription fee.

All dedicated prototyping applications work in a similar manner: there is a li-
brary of screen objects, which can be placed on a selected screen template using
with drag-and-drop. Identically as is website design, the screens and objects can
be linked as needed, and external images or graphics can be added, too. After the
prototype is ready, using “play” or “simulation” mode the full-screen prototype can
be operated and tested.

9.3. High-fidelity prototyping 141

Desktop tools include only two leading products:
•	 GUI Design Studio (www.carettasoftware.com), a professional application for

creating user interface prototypes with rich functionality, largely for systems
intended as work tools in engineering, business or administration;

•	 Axure RP (www.axure.com), advanced application for creating user interface
prototypes, largely websites and web applications based; the prototypes are
exported to HTML so they can be remotely presented to the client using only
a Web browser (without Axure).

Figure 9.9. Axure – prototyping a website
(Credits: https://www.axure.com/)

Web applications for prototyping tools are usually available online via a brows-
er or using a thin client. These prototyping tools are actually using cloud services,
and they are based on a monthly subscription fee, what makes them especially
suitable for agile projects.

The way how the prototypes are build is similar as in other dedicated tools for
prototyping: screen objects are dragged to screen templates, which are next linked
as needed and can be simulated for evaluation and testing (Figure 9.10)

On the market there is abundance of software tools for building prototypes,
both fee and commercial. There are too many to list, so only a few names: Adobe
XD, Figma, InVision, JustInMind or Protoshare are available options. More exten-
sive list of prototyping applications can be found in the https://prototypr.io/prototyp-
ing/ website.

All they vary a lot regarding their functionality, available libraries for graphics
and user interface widgets as well as their ability to emulate more complex opera-

http://www.carettasoftware.com
http://www.axure.com
https://prototypr.io/prototyping/
https://prototypr.io/prototyping/

9. Development – from concepts to solutions142

tions like scrolling, panning or zooming. By default all web applications for prototyp-
ing are adjusted to designing and prototyping mobile user interface.

More detailed information on the development of digital prototypes can be
found in the HCI literature such as: Becker, 2020; Hartson and Pyla, 2016; Tullis
and Albert, 2008;

Figure 9.10. Prototyping app editing window – an example
(Credits: https://www.mockplus.com/app-prototyping-tool)

Video prototypes

Video prototype is a short video prepared in a way resembling common TV
commercials, advertising benefits and novelty of a specific product. In case of vid-
eo prototypes for software, online services or mobile apps, the product is presented
as operated by Persona target user in a in realistic context.

The product may be yet not existing (Figure 9.11), so its operation is simulated
using digital prototypes, and the main objective of video prototype is to emphasize
its attractivity and business potential for specific audience, like decisionmakers,
project sponsors or clients. For this reason video prototypes are largely used as
a supplement for the product plan in the Strategy phase.

Video prototyping is a method delivering suggestive, impressing presentations,
which however are fictious because they present yet non-existing product, only
a digital prototype or a mock-up. Nevertheless, this is quite understandable, be-
cause their goals are merely promotion of product vision in the Strategy phase, as
well as persuasion and influencing decision makers and project sponsors, in a way
similar to classical video commercials.

9.4. Deliverables from Development 143

Figure 9.11. A video prototype – the Starfire system
(Credits: https://www.asktog.com)

9.4. Deliverables from Development

The Development phase feeds further stages of the project with deliverables
located in two streams:
•	 the technological stream, with engineering deliverables such as code reviewed,

running solutions, specific parts of the product fully implemented and ready for
testing;

•	 the product stream, with interaction solutions reviewed by the team (or initially
accepted by client), ready for testing by users within usability testing or UX
testing to come.

Specifically, in the product stream following categories of outcomes should be
handed-off and initially approved:
•	 initial prototypes: screen wireframes, storyboards, and user flows, approved by

the client;
•	 low-fi prototypes: graphical mock-ups and paper prototypes, tested by walk-

through in the team or reviewed by real users, ready for converting into hi-fi
prototypes;

•	 hi-fi prototypes: digital prototypes, reviewed by click-through in the team and
ready for usability testing by external users.

In the Development phase both technological and product stream become in-
tegrated by the need to combine the two types of outcomes into one product, ready
to be validated with real users by evaluation and testing.

10. Validation – evaluation and testing

10.1. The outline of evaluation and testing

The last phase in an IT project is the Validation of solutions which were envi-
sioned, designed, and developed so far. The Validation includes Evaluation and
Testing performed in various forms:
•	 in the technological stream: a battery of tests applied to all software compo-

nents delivered from the Development phase;
•	 in the product stream: evaluation and testing of functional components, proto-

types or specific modules of a finished system.

In user centred design (UCD) evaluation should be performed on a regular
basis across the whole project. Whenever possible, prospective users should be
invited to evaluate, in addition to team members and clients.

Evaluation methods in IT projects may vary a lot – from internal reviews inside
the team to testing solutions with large groups of users. Validation differs from ver-
ification: the latter is rather checking the conformance to engineering excellence
requirements, while validation includes whether the product is what the customer
really wanted (Jayaswal and Patton, 2009).

Validation covers both evaluation and testing. Evaluation is more general, more
flexible and less formal than testing, remaining rather a continuous managerial ac-
tivity than a disciplined process. Evaluation allows some subjectivity, while testing
is more procedural and disciplined, conducted according to specific instructions
and procedures, with formal reports required to be submitted.

Results of validation should result in improving the quality of the final product
as well as in streamlining further activities planned in the project. Regarding inter-
action design, major methods useful in the Validation phase will be presented in the
remaining part of this chapter.

10.2. Expert-based evaluation 145

10.2. Expert-based evaluation

Expert evaluation is aimed to determine the degree of conformity of the prod-
uct (interaction solutions, user interface, functionality) with established design prin-
ciples, guidelines, requirements or other earlier specified evaluation criteria.

Expert evaluation comes to play when subjective criteria or the impact of con-
text must be considered. In interaction design area expert evaluation can be per-
formed by an external expert of by a senior team member and is often supplement-
ed by results of usability tests and evaluations collected from users.

The main types of expert-based evaluations (according to Wong, 2020; Sharp
et al. 2019; Hartson and Pyla, 2012; Dix et al., 2004) will be discussed in the fol-
lowing sections.

Heuristic evaluation

Heuristic evaluation is exploratory: the expert analyses the user interface, in-
terpreting each of the Nielsen’s heuristics (Nielsen, 1993) regarding specific fea-
tures of the evaluated system and the tasks assigned to the user. Heuristic evalua-
tion is flexible: it may cover product usability, product functionality or only the user
interface. Heuristic evaluation is most effective when carried out by a team of 3–5
experts working independently, while the results of their work are later compared
and aggregated.

The biggest advantage of heuristic evaluation is its exploratory nature, be-
cause:
•	 evaluation is based on the unrestricted exploration of problem areas by an

expert who interprets the contents of the Nielsen’s heuristics in terms of a par-
ticular system,

•	 heuristic evaluation often results in constructive proposals how to improve the
product, often based on expert’s knowledge from other similar solutions;

•	 flexibility of the evaluation allows at changing its scope depending on current
findings or references to other similar systems.

However, heuristic evaluation has following limitations:
•	 it is not formalized making difficult aggregating and comparing results from

individual experts,
•	 experts are not always available, and their work can be expensive,
•	 experts may not know the software application domain (e.g. accounting), so

they may overlook problems located outside their competence area.

Heuristic evaluation is useful at various stages of product development, but
especially for evaluation of high-fidelity prototypes or finished systems, e.g. the
competitive ones.

9. Development – from concepts to solutions146

Internal reviews

Internal reviews are performed in the team (without the client) for design con-
cepts, architectures or other deliverables, like the code or user interface prototypes.
Internal reviews can be performed as individual reviews (by an expert of another
experienced team member) or as a collective activity during a team meeting.

Peer-based review is common also in agile projects, especially XP-based
ones. When software developers work in pairs, they mutually review and check the
quality of code written by the other workmate in the pair.

Results of internal reviews should be added to documentation of the project
and stored for future reference. Preferably, reviews performed on a regular basis
should be added to the timeline of the project as fixed checkpoints.

Cognitive walkthrough

Cognitive walkthrough is a review method in which an expert is projecting im-
agined steps the user is most likely to go through when working with the system.
These steps may be depicted on subsequent screen sketches (like in storyboard-
ing) or just projected in expert’s mind.

At first, each user task is divided into individual operations; next an expert
(designer) simulates expected behaviour of the user by trying to answer following
questions:
•	 is it obvious to the user what the next action is?
•	 does the user correctly interpret the descriptions of activities and connect with

the functions that need to be activated?
•	 are the system confirmations formulated in such a way that the user is able to

interpret the system response properly and which is the correct choice?

Cognitive walkthrough task scenarios are usually carried out using screen
sketches. Imagined projection of subsequent screens can be supported by the
think-aloud protocol about what the user is going to do, and which visual elements
they would use to complete the current action.

Checklist-based inspections

In IT projects checklist-based inspections are often used for evaluating how far
users’ requirements have been satisfied in a specific deliverable, like a prototype.
Checklist-based inspections are performed by testers employed in and IT project,
or by an external inspector.

In checklist-based inspections evaluation is limited only to documented require-
ments, that had been identified beforehand and included in a relevant checklist. It
makes evaluation less prone to subjectivity and makes easy preparing a standard-
ised evaluation report, presenting problem areas or items which require corrections
or improvements. An evaluator is expected only to identify detected deficiencies

10.3. User-based evaluation 147

using the checklist and present the report, and not to propose how to correct them,
may be considered as a limitation of this method.

References to typical checklists for evaluation of user interfaces can be found
online and in abundant HCI literature, for instance Sharp et al. (2019); Shneider-
man et al., (2017); Hartson and Pyla (2012).

10.3. User-based evaluation

User-based evaluation techniques

User-based evaluation requires users to be involved in on-site or remotely,
and the evaluation can include testing the product is simulated conditions. For this
purpose numerous observational and empirical techniques are available, briefly
presented hereafter.

Evaluation by observation
Evaluations by observation take place when a small group of users is observed,

while performing a specific task in a laboratory or “in the field” (Figure 10.1). Largely
qualitative data are then collected: comments, discussions, questions, emotions.
Encouraging users to think aloud and express spontaneous comments makes col-
lected data more valuable. This method can be used at any stage of system devel-
opment and collected observations from user behaviour enable quick identification
of difficulties encountered during system operation.

This method has also limitations such as: the presence of an observer can in-
fluence the behaviour of users, analysis of the collected data is very time consum-
ing, and results depend on the attitude of users and their willingness to cooperate.

Evaluation by observation can be also performed within the ethnographic ap-
proach, as an observer working with the user while performing the tasks, asking
questions, or performing supplementary activities.

Figure 10.1. Direct observation of a user working with a system
(Credits: https://www.sapdesignguild.org/)

https://www.sapdesignguild.org/

9. Development – from concepts to solutions148

Presentation and walkthrough of a paper prototype
The presentation is facilitated by team member who moderates the course of

the meeting in such a way as to obtain information most useful for designers. Due to
simplified graphic design, the evaluation is limited mainly to the aesthetic aspects,
invoked emotions, associations, etc. This method is often used in website design
for consulting users (beyond the client) on preferred selection of colours, graphics,
and indication of elements that do not fit to a specific visual style. After approval,
a walkthrough over the clickable paper prototype usually will be performed in the
next iteration.

The prototype walkthrough requires users to simulate performing simple tasks
using a clickable paper prototype. The tasks may be based on pre-prepared sce-
narios or on verbal commands. User activities with a prototype are observed and
can be also video recorded.

Walkthrough-based evaluation of paper prototypes is very simplified and usu-
ally limited to performing simple tasks which do not require high manual precision
or analytical thinking. The objectives of paper prototypes walkthrough testing are
limited merely to collecting initial user feedback: validation of the general interac-
tion concept, first observations of users’ reactions and mistakes and collecting first
suggestions for improving proposed interaction methods.

Interviews
Interviews (preferably group interviews, if possible) are very useful not only

in the Analysis phase, but also in the evaluation of prototypes. Interviews are best
held at a user’s workplace, immediately after finishing the prototype review, walk-
through, or testing (Figure 10.2).

Figure 10.2. Example of interview with a group of users
(Credits: http://cs.queensu.ca/~audrey/projects.htm)

A group interview conducted after the prototype evaluation gives a better op-
portunity to express their opinions and to display personal attitudes, and provides
a sense of greater security in the group, than an individual interview. Moreover,

10.3. User-based evaluation 149

some valuable information reveals only as a result of interaction among partici-
pants, being unlikely to capture in individual interviews.

Detailed instructions on how to plan and conduct interviews with respondents
are provided in numerous marketing research textbooks and in the HCI literature
such as Sharp (2019); Shneiderman et al., (2017); Hartson and Pyla (2012).

Survey questionnaires
After evaluating the prototype, especially the digital one, users should fill in

a questionnaire specifically designed to evaluate user satisfaction with a specific
interactive product. Closed questions in the questionnaire collect numerical scores,
while open questions collect comments and suggestions for improvements.

Questionnaire design should facilitate of aggregating test results in a spread-
sheet, including the method of error correction due missing data points. If the ques-
tionnaire is not only a survey tool, but it is also expected to provide data for statis-
tical analysis, it will be necessary to consult a statistician, as well as running some
pilot studies, to ensure the accuracy and reliability of the questionnaire as a re-
search tool.

Availability of electronic questionnaires is a clear temptation for the research-
er to accelerate the process of gathering responses from respondents. Electronic
questionnaires have obviously the following advantages: rapid acquisition of re-
sponses, rapid and automatic analysis of data, there are no copying and distribu-
tion costs involved, and data are immediately recorded in a database, easy error
correction.

There are also some disadvantages: questionable representativeness of re-
spondents, it is difficult to prevent against re-filling of the questionnaire, and to
assess the survey reliability and validity.

Detailed guidelines on how to build questionnaires, choose measurement
scales and conduct research, are provided in numerous marketing research text-
books and in the HCI literature such as Sharp et al.(2019); Shneiderman et al.,
(2017); Hartson and Pyla (2012).

Usability testing

Laboratory usability testing
Usability testing is a formal method for usability evaluation of an interactive

product. It is usually performed in a laboratory, under controlled conditions (Rubin
and Chisnell, 2008). Objective data from measurements during usability tests are
supplemented with subjective data, collected from surveys and questionnaires. Us-
ability testing is based on several characteristic features:
•	 a sample of representative users must be invited as testers;
•	 users will execute only predefined task scenarios using a hi-fidelity prototype

or a finished product;
•	 users’ activity will be video recorded and supervised by a researcher;

9. Development – from concepts to solutions150

•	 user activity data will be stored for further qualitative and qualitative analysis;
•	 preferably the development team representative should be present during the

test and in the interview following the testing.

The structure of a typical usability test is usually the following:
1.	 Introduction: the purpose of the study, the duration of the test, the session logis-

tics.
2.	 Initial interview: ensuring about the representativeness of the users’ group.
3.	 Sample tasks: trivial, no time measurement, tuning the video recording equip-

ment.
4.	 Test tasks: with full video recording of time on task, errors, etc.
5.	 Product evaluation survey: filling in a paper questionnaire.
6.	 Final interview: gathering opinions and comments from test participants.
7.	 End of the test.

After completion of all tasks (or after approx. 60 minutes, regardless of the
results), users are asked to complete a specially designed questionnaire, aimed to
collect their opinions about the work experience from testing the application. User’s
activity during tasks execution is videorecorded using a common digital camera or
with support of dedicated software (Figure 10.3).

Figure 10.3. Video recording of a user working during a usability test
(Credits: http://www.library.illinois.edu/sc/services/usability_testing.html

http://www.library.illinois.edu/sc/services/usability_testing.html

10.3. User-based evaluation 151

It is important to record simultaneously the operations performed by the user
and the related changes on the screen. For this purpose can be used:
•	 the system with two cameras, one recording the user screen and the other is

recording user keyboard; both video signals are next mixed in a video mixer
(software based);

•	 special software (e.g. Noldus Observer, Techsmith Morae) can be used, which
captures the image on the screen and collects all the data from the computer
where user is working; the software mixes the video streams in any combina-
tion desired by the researcher (Figure 10.3).

In addition to video recording, also conventional data collection techniques can
be applied, such as direct observation, time measurements, observation protocols,
audio recording or system logfiles recording.

A detailed overview of technologies for usability studies is presented in the
work of Rubin and Chisnell, (2008) and Albert et al. (2010).

Remote usability testing
Remote usability testing is using software tools which enable capturing on

video user usability session despite the user and the research are in different lo-
cations. While the user performs scheduled tasks scenarios following on-screen
instructions, remote usability testing software records mouse clicks, mouse move-
ment, page scroll and other user activities while operating a website or an applica-
tion. The users may work on their computer in their environment (e.g. at home), or
using a mobile device such as tablet or mobile phone.

A detailed overview of technologies for remote usability studies is presented in
the work of Bleeker de and Okoroji (2018) and Albert et al. (2010).

Web analytics
Analysis of user traffic statistics is a valuable source of information about user

behaviour, especially when it comes to indicate sites where users behave in a man-
ner inconsistent with the intention of the designers (e.g. suddenly leave the service
or forgo purchase). Analysis of the traffic on a website can determine what is hap-
pening, but unfortunately it does not explain why people exhibit certain behaviours.
For this reason, the analysis of user behaviour needs support of other (mostly qual-
itative) methods, which are expected to explain the mechanism of the observed
phenomena. Per analogy to web traffic statistics, the telemetry is used for web and
mobile applications, monitoring which functionalities and how frequently they are
used is specific tasks.

Detailed information on how to use user traffic statistics for improving user
experience (UX) is provided in the work of Beasley, (2013).

Low-cost usability testing
In agile projects usability testing should deliver results quickly, frequently, and

not necessarily with superior accuracy. For this reason many low-cost usability

9. Development – from concepts to solutions152

testing methods were created, collectively labelled a “guerrilla usability testing”,
in contrary to conventional usability studies based on established research meth-
odologies. These low-cost methods include techniques such as testing usability
with 5 users, using informal tasks scenarios, integrating prototyping with testing,
recording video with mobile phones, conducting very brief interviews or instant
one-minute on-line surveys.

In low-cost usability studies the emphasis is not put on methodological rigour
or scientific accuracy, but merely on quick informing designers which usability prob-
lems were detected and how they should be corrected.

An overview low-cost usability testing techniques can be found in various
sources online and in the work of Hartson and Pyla (2016) and Albert et al. (2010).

Planning and conducting usability testing

Preparing tasks scenarios
During usability testing the participants will perform specific test scenarios,

which should be carefully prepared in advance. They should be prepared in writing
and made available to participants as a paper printouts. They should contain the
purpose of the task and what result should be obtained, but without hints what
exactly needs to be done in order to achieve the result – the users should discover
the correct method by themselves.

Test tasks should be related user’s goals in a given context of use; in other
words, they should relate to the most common tasks and problems that a user
can try to solve in typical situations. In the initial phase of usability testing a user
is often asked to perform one or two sample tasks. The goal of a sample task is to
familiarize the user with the product to be tested and to check if the video recorder
is working correctly.

The test tasks should be sequenced from the easiest to the most difficult one,
because the users usually are not able to accomplish all tasks, especially the more
difficult ones. In this situation, collected data can be fully analysed at least from
simple tasks, performed at the beginning of the test.

A good task scenario should be helpful in solving a specific design problem,
should provide measurable data and refer to specific elements of user interface
which are likely to need improvements.

Selecting appropriate methodology
When preparing usability testing, following factors should be considered:

•	 the goals and scope of the usability testing, expected precision of results and
the formality of report;

•	 the type of tested application affecting the location of testing (desktop - testing
indoors, mobile – outdoors);

•	 ability to collect user-based data by videorecording, performing interviews or
surveys;

10.3. User-based evaluation 153

•	 local logistics and organizational issues regarding the test, like ability to recruit
representative users.

Finally, the key issue is choosing the right type of usability testing: the forma-
tive – for improving current design, and the summative – for evaluating a complete
and finished solution.

Frequently enough, the A/B testing is popular, while two versions of the same
design must be compared basing on users’ opinions and task performance results.

An overview methodological issues regarding usability testing planning can be
found in HCI textbooks such as Sharp et al., (2019), Hartson and Pyla (2016) and
Albert et al. (2010).

Setting up an equipment for usability testing
Following equipment should be prepared in advance to planned usability test-

ing session:
•	 a test device for the users – computer, tablet, mobile phone or another hand-

held device;
•	 videorecording equipment – a camera or two, a tripod, memory cards etc.;
•	 software tools such as:

	– a video mixer (software based) for mixing video stream from two cameras
(the screen and user’s face or body);

	– video recording and analytic software (Observer, Morae) - optional;
	– additional equipment such as an eye tracker of face reader - optional.

For usability testing A suitable ambient environment should be also prepared,
like an office room or another location resembles actual user’s workplace or home.
Otherwise outdoor testing should be performed during weather conditions appro-
priate for usability testing goals (for instance the sunlight when testing mobile ap-
plication outdoors).

User recruitment
Recruitment of participants for usability testing can be done in various ways.

In the case of prototype testing, participants are often recruited from among us-
ers who earlier took part in requirements workshops, analytical meetings or other
forms of cooperation with designers. Sometimes participants are recruited using
the “snowball” method, but sometimes are recruitment is outsourced to an agency
that specializes in market research.

The problem of the optimal number of users for usability testing is not uniformly
treated in literature. A practical approach to the problem suggests that the optimum
sample size is from 5 to 10 participants, but it depends on the type of system to
be tested, the size of available laboratory room, availability of participants and the
budget available for testing, as well as on methods planned for further data analysis.

More comprehensive guidelines about recruitment of participants can be found
in HCI literature: Albert et al. (2010), as well as Rubin and Chisnell (2008).

9. Development – from concepts to solutions154

Ethical aspects
Planning usability testing should include essential ethical aspects regarding

users’ comfort, security and privacy protection. The researcher should ensure the
participation of members on a voluntary basis and obtain the written consent from
each participants to take part in the test and agree for the video recording of their
work.

Before the test starts, it should be emphasized to the participants that the sys-
tem is evaluated, not the skills of the users. It is also important to ensure the users
that the anonymity of personal data was secured.

Usability tests can be stressful for users, thus test time is limited to a maximum
of 90 minutes. Participants should be informed about the possibility of quitting the
test at any time. In all situations researchers should present polite treatment of
participants and avoid exerting any pressure on them.

Conducting usability testing sessions

Gathering observation data
During the test - in addition to automatic video recording – user behaviour

should be observed, including manual note taking, including characteristic user
comments observed during the task execution. The problem with usability should
be noted is situations such as for instance:
•	 a user specified an action objective, but despite efforts there is no progress

within a certain time (help is necessary from the observer),
•	 a user specified an action objective and must try several approaches to find

a solution, because the system does not suggest how to begin,
•	 user specified an action objective, has unsuccessfully tried several approaches,

and then resigned from the task,
•	 participant expressed surprise at the specific behaviour of the system, a nega-

tive opinion, a problem statement, or a redesign suggestion.

After the test tasks are completed, subjective data should be collected from
users using survey questionnaires and interviews.

Usability measurements
Objective data (measurements and observations) collected during the test can

be used for calculating results such as:
•	 time of completion of each task, time values distribution among the participants,
•	 percentage of tasks completed by the user at a given time,
•	 percentage of tasks completed correctly by the user,
•	 percentage of users who have completed a specific task within a given time,
•	 the ratio of positive to negative comments,
•	 number of users who showed frustration or dissatisfaction.

10.3. User-based evaluation 155

In addition to the objective test results, subjective data concerning user satis-
faction should be gathered, e.g.:
•	 evaluation and opinions expressed in the questionnaires and during interviews,
•	 percentage of users expressing opinions of a particular type,
•	 aggregated indicators which describe most frequently expressed opinions.

More techniques on data collection during usability tests have been discussed
in detail by Albert et al. (2010), and Rubin and Chisnell (2008).

Analysis and reporting user-bases data

Detailed description of techniques useful for analysing data from user-based
studies can be found in HCI textbooks such as Sharp et al., (2019), Hartson and
Pyla (2016) and Albert et al. (2010). Hereafter only selected issues will be outlined.

Retrospective analysis is a simple technique for an in-depth analysis of video
recording made during an usability testing session. Shortly after the sessions (pref-
erably next morning) one of users-testers is invited to play the recording and watch
own activity during executing task scenarios. Usually the user is keen to comment
own actions, responses of the systems and other issuer making task execution
more difficult. These comments are valuable in explaining erroneous behaviours
(system response other than expected, or user’s intention not adequately mapped
to existing functionality) and most importantly, in drawing redesign suggestions.

Analysing quantitative data is simple with a spreadsheet and charts. Quanti-
tative results inform what, when, how many, but leave room for interpretation and
explanation to be made by the researcher. On the contrary, qualitative data convey
texts, verbal statements, videos or observation notes. They are difficult to analyse
and need coding of specific categories, what is subjective and prone to errors. Nev-
ertheless, qualitative analysis is able to inform why something happens. Usually
the researcher has to perform manual analysis and interpretation, what takes time.
Most recently, software tools for qualitative analysis have been available (like Nvivo
and other products), using techniques such as text mining for sentiment analysis,
and visualizations of factors shaping users’ attitude to the product.

Reporting results from user-based studies

There are three types of reports from user-based studies:
•	 a written report (document) addressed to the project manager or client;
•	 a slide show to be presented to team members or project managers;
•	 a research paper, to be published in an academic journal.

In agile IT projects currently the slide show presented at the meeting is the
most popular format for reporting results of usability evaluations. This is caused by
the pressure of time and the need for direct conclusions, driving further research
activities.

9. Development – from concepts to solutions156

Furthermore, decisions can be taken during the meeting when the results were
shown and discussed, so the decision process is quick and agile.

Finally, the PowerPoint slides have a landscape format, quick to read and
handy for electronic distribution to team members or to other recipients. While pa-
per documentation is no longer popular, slide-based reports are stored in the ar-
chive of the project together with other project files.

10.4. Deliverables from evaluation and testing

The Validation phase combines many methods, but for usability-related issues
with only three sources of data: the team, the client, and users (customers).

Evaluation methods can be classified as expert-based and user-based, and
the latter include many more methods, including empirical testing and surveys.

In IT projects evaluation results form user-based testing need to be compared
(and sometimes combined or confronted) with results of expert-based evaluations,
or with the outcomes from internal reviews from the team. Some inconsistencies
are unavoidable, so again it is the task for designers and project managers to ad-
equately balance different viewpoints primarily for the benefit of clients and users
(consumers).

In the Validation phase follows further integration of the technological and the
product streams. As a result of validation, certainly some rework will have to be
done, and further iterations will be certainly needed. Afterwards, the product should
be ready to be handed off to the client for deployment or integration with other sys-
tems. After that, the agile team should gather again at the Retrospective meeting,
intended to reflect on just completed process.

The Retrospective

In agile projects the retrospective reviews are conducted frequently, typically
after each sprint, regarding two aspects: firstly, the quality of a recent outcome
(increment), and secondly, the quality the development process – particularly com-
munication and organization issues important for planning the next sprint. Finally,
a “big” retrospective is performed for the whole product, regarding product backlog
and how far its goals and requirements have been accomplished.

Also, for this book, it is worth looking back – what was done, and forward –
highlighting the challenges emerging ahead.

When looking back, this book had an ambition to present how the theories and
methodology of HCI (Human-Computer Interaction) evolved in rapidly changing
world of digital transformation and prevailing agile IT projects. The pressure from
business clients has much contributed to the emergence of agile design and agile
management, making them now the leading concepts relevant to IT projects and
software development. Similarly, matured methods of user centred design (UCD)
had to evolve to deliver results faster, be more cost-effective and more relevant to
the needs of agile design teams.

As a result, similarly like in business and IT practice, in this book more empha-
sis is put to qualitative methods in interaction design, and support they can offer
for IT project managers, than to strictly quantitative methods and measurements.
Across all stages of a generalized IT project presented in this book, frequent eval-
uations and intensive communication with users are promoted as a rapid and most
efficient user-centred quality management framework regarding product usability
and user experience (UX).

Certainly, methods of agile design will be continuously refined, based on even
more intensive teamwork and communication with clients and end-users. Further-
more, since the role of remote teamwork keeps growing, future development of
agile design methods depends a lot on advancements in remote collaboration be-
tween the team and other remotely located project stakeholders. Beyond the Strat-
egy, Analysis and Design phases, further developments can be expected especial-

The Retrospective158

ly in methods for conducting remote evaluations, testing, validation and providing
user feedback for the team.

When looking ahead, we can see serious challenges caused by latest techno-
logical advancements, such as:
•	 natural interaction methods, voice user interfaces, and gesture-controlled mul-

timodal interfaces;
•	 adaptive components, based on Artificial Intelligence (AI), which are autono-

mous in learning new behaviours upon data collected from the environment;
•	 Internet of Things (IoT) paradigm, enabling devices to communicate online, ex-

change data and autonomously adapt their behaviour;
•	 industrial robots, autonomous vehicles and cyberphysical systems in industry,

and software robots automating office and administrative procedures;
•	 AI-based surveillance of traffic, transport and public space;
•	 social media which enrich contemporary social life, but at the same time are

very prone to abuse, trolling, violence or spreading fake news.

Among many, newly emerging challenges for IT projects management include:
•	 adapting the agile approach for very big projects:

	– synchronization of numerous agile teams working in big projects;
	– synchronization of agile teams (usually design and development) in an or-

ganization working in traditional design or in administrative, procedural en-
vironment;

•	 evaluating the impact of smart systems on project management:
	– designing human interaction with autonomous (smart) systems that learn

and change;
	– adding mandatory risk assessment for evaluating possible impact of smart

systems on human safety, security and attitude to autonomous robots;
•	 evaluating the impact of smart systems to social life:

	– possibility of undermining social trust and stability by malicious campaigns
in social media;

	– possibility of AI-based, autonomous systems to be hijacked or reprogrammed
for malicious use.

There are many other possible challenges, but they all seem to be related to
the fact that digital services become invisible and smart, and thus able to penetrate
users’ privacy and behaviours in many spheres of life.

It means that future developments regarding interaction design need to ad-
dress two vital issues: human interacting with autonomous systems operating be-
yond users’ control, and social impact of digital solutions. In relevance, recent re-
port of Stephanidis and Salvendy (2019) specified seven grand challenges that will
shape developments in interaction design:

The Retrospective 159

•	 Human-Technology Symbiosis: humans much more interacting with smart
devices, services, materials, and environments, than with “computers” as we
know them today;

•	 Human-Environment Interactions: human living a world which is concealed and
ubiquitous continuum between the physical and the digital;

•	 Ethics, Privacy and Security: designing and implanting solutions which will be
beneficial to people living in technologically augmented and intelligent environ-
ments;

•	 Well-being, Health and Quality of Life: using IT for fostering a healthy life, psy-
chological well-being and quality of life;

•	 Accessibility and Universal Access: using IT for improving quality of life of disa-
bled and older persons, especially in the view of aging populations;

•	 Learning and Creativity: using IT for supporting people in learning, creating,
and sharing knowledge for development in both individual and social dimen-
sions;

•	 Social Organization and Democracy: shifting IT developments from coping with
earthy problems such as economy, poverty, climate change towards smart so-
cieties related issues such as social participation, social justice, and e-democ-
racy.

The above list of challenges will be never exhaustive. All the time new chal-
lenges will be emerging, but – hopefully – also new opportunities will be available
to provide effective solutions.

As a deep retrospective, for IT business community a permanent reflection is
therefore needed on issues such as:
•	 the impact of new technological developments on social life;
•	 developing a regulatory framework how smart systems are designed, imple-

mented and operated;
•	 developing ethical responsibility of designers of smart systems, as well as

multidisciplinary skills of development team members;
•	 rethinking the role of training and education of IT professionals with regards to

social perspective.

Last but not least, in the design activity of each IT professional and manager,
an ongoing professional retrospective is needed to see relevant digital products
and IT projects as aimed at improving the quality of life in all human activities, from
work, education, entertainment, to business and social life.

References

1.	 Adobe (2013). Adobe 2013 Mobile Consumer Survey results. URL: https://
empoweryou.ca/wp-content/uploads/2013/12/Adobe-2013-Mobile-Consum-
er-Survey-Result.pdf (Accessed: 11 April, 2021)

2.	 Adobe (2015). Mobile Consumer Report. URL: https://wwwimages.adobe.com/
content/dam/acom/en/solutions/pdfs/adobe_mobile_consumer_study.pdf (Ac-
cessed: 7 June, 2021)

3.	 Albert B., Tullis T., Tedesco D. (2010). Beyond the Usability Lab. Conducting
Large-Scale Online User Experience Studies. Morgan-Kaufmann.

4.	 Beaird, J., and George, J. (2014). The Principles of Beautiful Web Design.
SidePoint Pty. Ltd., Fitzroy, Australia.

5.	 Beasley, M. (2013). Practical Web Analytics for User Experience. Morgan Kau-
fman.

6.	 Becker, C.R. (2020). Learn Human-Computer Interaction. Packt Publishing,
Birmingham.

7.	 Bittner, K., Kong, P., Naiburg, E., and West, D. (2017). Nexus Framework for
Scaling Scrum, The: Continuously Delivering an Integrated Product with Multi-
ple Scrum Teams. Addison Wesley.

8.	 Bleeker de, I., and Okoroji, R. (2018). Remote Usability Testing. Packt Publish-
ing, Birmingham.

9.	 Csontos, B., Heckl, I. (2020). Improving accessibility of CMS-based websites
using automated methods. Universal Access Information Society. URL: https://
doi.org/10.1007/s10209-020-00784-x.

10.	 Chmielarz, W. (2016). Information Technology Project Management. Warsaw
University.

11.	 Cobb, C.G. (2011). Making Sense of Agile Project Management: Balancing
Control and Agility. Wiley.

12.	 Cohn, M. (2013). Succeeding with Agile. Addison-Wesley.
13.	 Dix, A., Finlay, J. Abowd, G., Beale, R. (2004). Human-Computer Interaction.

Prentice Hall.

https://empoweryou.ca/wp-content/uploads/2013/12/Adobe-2013-Mobile-Consumer-Survey-Result.pdf
https://empoweryou.ca/wp-content/uploads/2013/12/Adobe-2013-Mobile-Consumer-Survey-Result.pdf
https://empoweryou.ca/wp-content/uploads/2013/12/Adobe-2013-Mobile-Consumer-Survey-Result.pdf
https://wwwimages.adobe.com/content/dam/acom/en/solutions/pdfs/adobe_mobile_consumer_study.pdf
https://wwwimages.adobe.com/content/dam/acom/en/solutions/pdfs/adobe_mobile_consumer_study.pdf
https://doi.org/10.1007/s10209-020-00784-x
https://doi.org/10.1007/s10209-020-00784-x

References 161

14.	 Dumas, J.S. and Redish, J.C. (1999). A Practical Guide to Usability Testing.
Intellect.

15.	Galitz, W. (2013). The Essential Guide to User Interface Design: An Introduc-
tion to GUI Design Principles and Techniques. Wiley.

16.	 Grobelny, J., Michalski R. (2020). Investigating human visual behavior by hid-
den Markov models in the design of marketing information. In: Cassent D.J (ed):
Proceedings of the AHFE 2019 International Conference on Human Factors
and Simulation, July 24-28, 2019, Washington D.C., USA. Springer, 2020.
234–245.

17.	Gottesdiener, E. (2002). Requirements by Collaboration: Workshops for Defin-
ing Needs. Pearson.

18.	 Hartson, R. and Pyla, P. (2012). The UX Book: Process and Guidelines for En-
suring a Quality User Experience. Waltham, MA: Morgan Kaufman.

19.	 Hassenzahl, M. (2008). User experience (UX): Towards an experiential per-
spective on product quality. ACM International Conference Proceeding Series.
339, pp. 11–15. 10.1145/1512714.1512717.

20.	Hassenzahl, M., and Tractinsky, N. (2006). User Experience – a Research
Agenda. Behaviour and Information Technology, Vol. 25, No. 2, March–April
2006, pp. 91–97.

21.	Krug, S. (2005). Don’t Make Me Think: A Common Sense Approach to Web
Usability. New Riders Publishing.

22.	Hix, D. and Hartson, P. (1993). Developing User Interfaces. Wiley.
23.	Humphreys, A., and Grayson, K. (2008). The Intersecting Roles of Customer

and Producer: A Critical Perspective on Co-Production, Co-Creation and Pro-
sumption. Sociology Compass 2: pp. 963–80.

24.	Jacobsen, J., and Meyer, L. (2019). Praxisbuch Usability und UX. (in German).
Rheinwerk Computing, Bonn.

25.	Jayaswal, B.K., and Patton, P.C. (2009). Design for Trustworthy Software.
Prentice-Hall.

26.	Kearney, M., Gash, D., and Boxhall, A. (2020). Introduction to ARIA. URL:
https://developers.google.com/web/fundamentals/accessibility/semantics-aria
(Accessed: 9 June, 2021)

27.	Malewicz, M., and Malewicz, D. (2019). Designing User Interfaces. 4Hype,
Warsaw.

28.	Mendoza, A. (2013). Mobile User Experience: Patterns to Make Sense of it All.
Morgan Kaufman.

29.	Meroni, A. and Sangiorgi, D. (ed.). (2011). Design for Services. Farnham: Gower.
30.	Morvile, P. (2004). User Experience Design. Semantic Studios. URL: https://

semanticstudios.com/user_experience_design/ (Accessed: 17 March, 2021)
31.	Neil, T. (2015). Mobile Design Pattern Gallery: UI Patterns for Smartphone

Apps. O’Reilly.

https://developers.google.com/web/fundamentals/accessibility/semantics-aria
https://semanticstudios.com/user_experience_design/
https://semanticstudios.com/user_experience_design/

References162

32.	Newman, M.W., Lin, J., Ho, J.I., & Landay, J.A. (2003). DENIM: An Informal
Web Site Design Tool Inspired by Observations of Practice. Human-Computer
Interaction, 2003. 18(3): pp. 259–324.

33.	Nielsen, J. (1993). Usability Engineering. San Diego, CA: Academic Press.
34.	Nielsen, J. (1994). How to Conduct a Heuristic Evaluation. URL: https://www.

nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
(Accessed: 7 January, 2021)

35.	Nielsen, J. (2000). Designing Web Usability. New Riders.
36.	Nielsen, J., Loranger, H. (2006). Prioritizing Web Usability. New Riders.
37.	Nielsen, J., Molich, R. (1990). Heuristic Evaluation of User Interfaces. Proc.

ACM CHI’90 Conf. (Seattle, WA, 1–5 April), 249–256.
38.	Nielsen, J. and Budiu, R. (2013). Mobile Usability. Pearson.
39.	Norman, D. (1999). The Design of Everyday Things. Basic Books.
40.	Olsen, D. (2003). Developing User Interfaces. Morgan Kaufmann.
41.	Osterwalder, A. (2010). Business Model Generation. John Wiley and Sons.
42.	Patton, J. (2014). User Story Mapping. O’Reilly Media.
43.	Pearrow, M. (2000). Web Site Usability Handbook. Charles River Media.
44.	Phyo, A. (2003). Return on Design. Smarter Web Design That Works Pearson.
45.	Pinhanez, C. (2009). A Service Science Perspective on Human-Computer In-

terface Issues of Online Service Applications. International Journal of Informa-
tion Systems in Service Sector, 1(2), pp. 17–35.

46.	Pressman, R.S. (2000). Software Engineering. A Practitioner’s Approach. Pren-
tice-Hall.

47.	Rothenburg, S. (2007). Sustainability Through Servicizing. MIT Sloan Manage-
ment Review, Winter 2007. URL: https://sloanreview.mit.edu/article/sustainabil-
ity-through-servicizing/ (Accessed: 3 March, 2021)

48.	Rubin, J., Chisnell, D. (2008). Handbook of Usability Testing. How to Plan, De-
sign and Conduct Effective Tests. Wiley.

49.	Sharp H., Rogers Y., Preece J. (2019). Interaction Design. Beyond Hu-
man-Computer Interaction. Wiley.

50.	Shneiderman, B., Plaisant, C., Cohen, M., and Jacobs, S. (2017). Designing the
User Interface: Strategies for Effective Human-Computer Interaction. Pearson.

51.	Shore, J., and Warden, S. (2008). The Art of Agile Development. O’Reilly Media.
52.	Sikorski, M. (2008). HCI and the Economics of User Experience. In: Law, E.,

Hvannberg E., Cockton, G. (eds): Maturing Usability, Springer-Verlag, London,
2008, pp. 318–343.

53.	Sikorski, M. (2012). User-System Interaction Design in IT Projects. Gdansk
University of Technology.

54.	Sikorski, M. (2013). Evolution of End-User Participation in IT Projects. In:
Pańkowska, M. (ed.): Frameworks of IT Prosumption for Business Systems
Development. IGI Global Hershley, New York, pp. 48–63.

55.	Snyder, C. (2003). Paper Prototyping. Morgan-Kaufmann.

https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
https://sloanreview.mit.edu/article/sustainability-through-servicizing/
https://sloanreview.mit.edu/article/sustainability-through-servicizing/

References 163

56.	Sommerville, I. (2016). Software Engineering. Pearson Education.
57.	Stellman, A., and Greene, J. (2013). Learning Agile: Understanding Scrum, XP,

Lean, and Kanban. O’Reilly.
58.	Stephanidis, C., Salvendy, G. and 30 others (2019). Seven HCI Grand Challeng-

es. International Journal of Human-Computer Interaction, 35:14. 1229–1269.
DOI: 10.1080/10447318.2019.1619259.

59.	Stickdorn, M. and Schneider, J. (2010). This is Service Design Thinking. Am-
sterdam: BIS Publishers.

60.	Thallmaier, S.R. (2015). Customer Co-Design. Springer-Gabler. Wiesbaden.
61.	Tognazzini, B. (1995). Tog on Software Design. Addison-Wesley Professional.
62.	Toffel, M.W. (2008). Contracting for Servicizing. Harvard Business School. URL:

http://dx.doi.org/10.2139/ssrn.1090237.
63.	Tullis, T., Albert, B. (2008). Measuring the User Experience. Morgan Kaufman.
64.	Vargo, S.L., and Lusch, R.F. (2008). Service-dominant logic: continuing the

evolution. Journal of the Academy of Marketing Science, 36(1), 1–10.
65.	Wong, E. (2020). Heuristic Evaluation: How to Conduct a Heuristic Evalua-

tion. URL: https://www.interaction-design.org/literature/article/heuristic-evalua-
tion-how-to-conduct-a-heuristic-evaluation (Accessed: 3 June, 2021)

66.	W3C (2020). Mobile Accessibility. World Wide Web Consortium. URL: https://
www.w3.org/WAI/standards-guidelines/mobile/ (Accessed: 9 May, 2021)

Standards

1.	 ISO/IEC 9126. Software Quality Characteristics. International Standard.
2.	 ISO 9241-11. Ergonomics of Human-System Interaction. International Stand-

ard.
3.	 ISO 13407:1999. Human-Centred Design Processes for Interactive Systems.

Internet Resources (all accessed: 19 May, 2021)

https://www.scrum.org
https://wdrfree.com
https://teamquest.pl
http://ui-designer.net/usability/usersgoals.htm
https://commons.wikimedia.org/
https://freepik.com
https://uxdesign.cc
https://www.pngwing.com
https://docs.microsoft.com/en-us/windows/uwp/
https://interaction-design.org
https://www.microsoft.com
https://robodk.com
https://i-scoop.eu
https://bbc.co.uk

https://www.interaction-design.org/literature/article/heuristic-evaluation-how-to-conduct-a-heuristic-evaluation
https://www.interaction-design.org/literature/article/heuristic-evaluation-how-to-conduct-a-heuristic-evaluation
https://www.w3.org/WAI/standards-guidelines/mobile/
https://www.w3.org/WAI/standards-guidelines/mobile/
https://www.scrum.org
https://wdrfree.com
https://teamquest.pl
http://ui-designer.net/usability/usersgoals.htm
https://commons.wikimedia.org/
https://freepik.com
https://uxdesign.cc
https://www.pngwing.com
https://docs.microsoft.com/en-us/windows/uwp/
https://interaction-design.org/
https://www.microsoft.com
https://robodk.com
https://i-scoop.eu
https://bbc.co.uk

References164

https://www.oreilly.com
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.packtpub.com
https://hardrock.com
https://chatbotsmagazine.com
https://www.pinscreen.com/vitualassistant
https://www.exoplatform.com
https://www.runtastic.com
https://www.androidpatterns.com
https://www.justinmind.com/ and https://wiki.smu.edu.sg/is480/
https://historypin.org
https://aaptiv.com
https://www.freepik.com
https://www.scrum.org
https://www.liveworkstudio.com
https://psdrepo.com
https://freepik.com
https://4ba.pl
https://xnsio.com/
http://www.msrblog.com/
https://uxdesign.cc
http://www.interaction-design.org
https://www.interaction-design.org
https://www.business2community.com
https://learningfundamentals.com.au/resources/
http://www.agilemodeling.com
https://uxplanet.org
http://www.debaoki.com/storyboards
http://www.visualux.design/sketching
https://www.vippng.com/maxp/hJoimmm/
http://wireframes.linowski.ca
https://www.mockplus.com
https://www.archimetric.com
https://brainhub.eu
https://community.sap.com
https://www.connected.io/
https://www.axure.com/
https://www.mockplus.com/app-prototyping-tool
https://www.asktog.com
https://www.sapdesignguild.org/
http://cs.queensu.ca/~audrey/projects.htm
http://www.library.illinois.edu/sc/services/usability_testing.html

https://www.oreilly.com
https://www.ssa.gov/accessibility/andi/help/install.html
https://www.packtpub.com
https://hardrock.com
https://chatbotsmagazine.com
https://www.pinscreen.com/vitualassistant
https://www.exoplatform.com
https://www.runtastic.com
https://www.androidpatterns.com/
https://www.justinmind.com/
https://wiki.smu.edu.sg/is480/
https://historypin.org
https://aaptiv.com
https://www.freepik.com
https://www.scrum.org
https://www.liveworkstudio.com
https://psdrepo.com
https://freepik.com
https://4ba.pl
https://xnsio.com/
http://www.msrblog.com/
https://uxdesign.cc
http://www.interaction-design.org
https://www.interaction-design.org
https://www.business2community.com
https://learningfundamentals.com.au/resources/
http://www.agilemodeling.com
https://uxplanet.org
http://www.debaoki.com/storyboards
http://www.visualux.design/sketching
https://www.vippng.com/maxp/hJoimmm/
http://wireframes.linowski.ca
https://www.mockplus.com
https://www.archimetric.com
https://brainhub.eu
https://community.sap.com
https://www.connected.io/
https://www.axure.com/
https://www.mockplus.com/app-prototyping-tool
https://www.asktog.com
https://www.sapdesignguild.org/
http://cs.queensu.ca/~audrey/projects.htm
http://www.library.illinois.edu/sc/services/usability_testing.html

